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Preface

This is an extensive revision of a book that I wrote over ten years ago.
My purpose then has remained unchanged: to introduce the concepts
and methods of spatial statistics to geologists and engineers working
with oil and gas data. I believe I have accomplished more than that; just
as I learned the basics of variography and kriging from books for mining
engineers, this book could be used by scientists from many fields to learn
the basics of the subject.
I have tried to adopt an introductory and practical approach to the
subject, knowing that books that detail the theory are available. What I
say and write comes from my own experience. As a geologist working in
the public sector, I have had the privilege of using geostatistics in funded
research, in answering service requests from industry, and in short
courses. I have taught geostatistics in the university classroom, and
advised graduate students in theses and dissertations. I have attempted
to anticipate the needs and questions of the enquiring scientist because I
was there myself, and know the kind of questions and concerns I had at
the time I was trying to learn the subject.
Geostatistics has become a toolbox of methods useful for attacking a
range of problems. The number of methods is now broad enough - even
for such an established method as kriging - that determining the best
one for all situations has been largely abandoned. One still finds compar­
ative studies, but most leave the impression that the efficacy of a
particular method varies with the data. Hence, I have avoided direct
comparison of techniques, preferring instead to illustrate features of
each. In general, the geostatistician should learn a range of methods, and
pick the one that works best for a given situation, given available
software or a willingness to write computer programs.
Necessary items in the geostatistical toolbox of today are the ability to
calculate and model semivariograms, linear methods of kriging, cokrig­
ing and variants of cokriging, nonlinear methods such as indicator
kriging or disjunctive kriging, and conditional simulation. All geo­
statistics depends on a model of spatial dependence, hence variography.
Even nonlinear geostatistical estimation methods, and most methods of
simulation require setting up and solving the systems of equations used
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in linear kriging. Indicator approaches to estimation and simulation are
used widely. Although disjunctive kriging is encountered less often, it
uses that important technique, the computation of normal scores. There
has been a virtual explosion in methods and application papers on
conditional simulation (or stochastic simulation) in the ten years since
my original book came out. Conditional simulation has become im­
portant in the area of reservoir characterization, an area where the
geologist and engineer can cooperate effectively.
To learn any method, one needs to know the motivation for the
method, how it works, the steps the user must go through, and problems
the user might encounter. The best way to do all this is through real
examples. I have placed a strong emphasis on the examples; most of the
time spent on this revision was on developing new examples to reflect
where geostatistics has gone in the past ten years. I have elected to use
real data sets, with all the ensuing problems, and I have 'let the warts
show'. Some of the examples did not turn out as well as I expected, but
they had the advantage of being data that I was familiar with because in
most cases they came out of projects that I worked on.
Geostatistics is by nature mathematical and statistical. I have not tried
to avoid mathematics when it seemed necessary; the educated user
should be exposed to the mathematical underpinnings of any method.
No advanced mathematical knowledge is required, and in places I have
tended to simplify where possible. The emphasis throughout is on what
the practitioner needs to know, and the results one can expect to get.
I wish to thank Ronald R. McDowell, Senior Research Geologist at the
West Virginia Geological Survey, for help in programming and for
reading the manuscript. Raymond Strawser drafted some of the figures.
Richard Chambers provided data used in Chapter 4. Frank Curriero
fielded some of my statistical questions. This work would not have been
possible without the support and encouragement of Larry D. Woodfork,
Director and State Geologist, and Carl J. Smith, Deputy Director, of the
West Virginia Geological and Economic Survey.

Michael Edward Hohn
1998



CHAPTER 1

Overview of geostatistics

Geostatistics is the statistics of observations located in space or time.
Such data can be correlated spatially or temporally. Thickness of a
stratigraphic unit is spatially correlated; at a particular locale, the thick­
ness is constant, but the similarity in thickness varies with distance. In
the subsurface, thickness can be estimated from nearby wells. The
assumption that a variable such as thickness is correlated with itself in
space - Le. autocorrelated - lies at the heart of contour mapping.
Several features set geostatistics apart from ad hoc and manual ap­
proaches to local estimation. First of all, methods for estimation such as
kriging use an explicit criterion of optimality requiring a model of spatial
dependence. Second, parameters of this model are unique to each set of
data. Third, geostatistical methods such as kriging provide a measure of
uncertainty in the estimate.
The criterion most often optimized in geostatistical estimation is
estimation variance, also called kriging variance. In essence, one tries to
minimize a sum of squared deviations. Other criteria may be used, such
as mean absolute deviation or some type of asymmetric loss function.
Whatever the criterion optimized, it is chosen to fit the problem at hand
and is reported explicitly by the author.
Estimation involves solving a set of equations that describe the ex­
pected autocorrelation between values of a variable observed at control
wells and the value to be estimated. Therefore, estimation needs some
model of autocorrelation. Constructing such a model is analogous to the
geologist looking at a map of control points annotated with observed
values of the variable to be mapped and remarking, 'The data are very
noisy, so some smoothing is necessary' or 'My data are very good, so
each datum should be honored exactly'. Through use of the semivario­
gram, the geostatistician attempts to quantify such remarks for objective
and consistent use in mapping.
Whatever criterion is optimized in computing expected values, this
criterion forms not only part of the algorithm, but a measure of success
in estimation. Given a particular autocorrelation model, the kriging
variance, for instance, generally decreases with increasing well control.
Because a calculated variance accompanies each local estimate, contour

M. E. Hohn, Geostatistics and Petroleum Geology
© Kluwer Academic Publishers 1999



2 Overview of geostatistics

maps of kriging variance may be used to spot areas needing more
sampling, if possible, or to limit the area contoured for the mapped
variable. Thus, geostatistics provides a measure of uncertainty.
One can take estimation one step further, and estimate local frequency
distributions in addition to averages or medians. This allows one to place
confidence intervals around expectations. In addition, the petroleum
geologist can begin to make statements about the probability of exceed­
ing some value of initial potential or cumulative production. Kriging
variance has rather strong distributional requirements in order to be
used as a measure of uncertainty, and has been supplanted by other
measures, such as the variance obtained by stochastic methods.
The geostatistician finishes with two products: a map of estimates (or
predictions), and local frequency distributions. The first item can come
into play for ranking areas by favorability if one is interested in drilling
new wells. Local frequency distributions may be used to evaluate risk
and setting values in economic models.

1.1 A FEW DEFINITIONS

A reader of the geostatisticalliterature must know a few key words and
phrases. Some terms appear strange in the context of petroleum geology,
but for the sake of consistency with the rest of the literature, they are
retained here. For example, nugget effect relates to small-scale variabil­
ity, and is defined in a later chapter.
A variable distributed through space is a regionalized variable. Exam­
ples are formation thickness, geothermal gradient, success rate, cumu­
lative production, porosity and permeability. The space may have one or
more dimensions and can include time. For instance, inferred sea-level
temperature through time at a given locality is a regionalized variable.
A random variable takes on values that follow a probability distribu­
tion, such as normal or uniform distribution. Take for example, permea­
bility, z(x1), measured at a given horizon in a well at location XI' Then z(x1)
is a particular realization of a single random variable Z(x1). Each value of
z(x) observed in a gas field represents a different random variable, but
the set of the random variables observed constitute a random function.
To estimate a value at some new location, we want to use observed
values in conjunction with what we can figure out with regard to the
random function of cumulative production. One piece of information is
how smoothly permeability varies from well to well at a particular
horizon.
This random function has two components:

1. a regional component manifesting some degree of spatial auto­
correlation and lack of independence in proximal values of z(x), and
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2. a local, random component.

The geologist usually assumes the presence of the first component and
ignores the second. Geostatisticians attempt to quantify the relative
contribution of each component.

1.2 A SIMPLE GEOSTATISTICAL CASE STUDY

A straightforward mapping problem includes five steps: data gathering
and cleanup, univariate analysis, semivariogram calculation and model­
ing, estimation and mapping. In addition, the practitioner might want
some measure of uncertainty, and the petroleum geologist or engineer
perhaps requires multiple realizations for input to a flow simulator. This
section presents a simple example that utilizes standard geostatistical
techniques, along with indications of alternative strategies. Data for this
example are for final open flows of gas from Upper Devonian rocks in
one field in West Virginia. The values of initial potential are in thousand
cubic feet per day (Mcfpd).
This example was not intended to be typical in the type of data - initial
open flows - but is typical of many geological datasets with regard to the
problems that the practitioner often faces in drawing a map of natural
resources, or petrophysical data. These problems include poor well
control in some areas, clustered wells in others, skewed data distribution
with possible outliers, and poor spatial correlation caused by measure­
ment error or poor sampling.
We assume that spurious values have been purged (Appendix A) and
are ready for univariate analysis through histograms. The histogram of
ra~ data (Fig. 1.1) shows a large positive tail. It is sometimes advisable
to transform data, or use methods that are resistant to skewed distribu­
tions or outliers.
The semivariogram is a graphical device for modeling spatial continu­
ity. Defining z(x) as the value of initial potential at a site x, and z(x + h)
as the value of initial potential at a well site h km from x, we calculate the
quantity

n

y(h) = L [z(x) - z(x; + h>F /2n
;=1

using all n pairs of wells separated by a distance h. If wells are drilled on
a regular grid, the calculation is straightforward for each value of h,
which would be integral multiples of well spacing. Where wells are
situated irregularly, h must be assigned a tolerance, such as! h. Plotting
distance h on the horizontal axis, and y(h) on the vertical, gives the
semivariogram (Fig. 1.2). For small values of h, initial potentials are
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Figure 1.1 Histogram of initial potentials of gas observed in gas wells
producing from Upper Devonian rocks in a field situated in West Virginia.

nearly equal, and the observed values of t'(h) approach zero; as h
increases, values of initial potential become more independent, t'(h)
increases.
Rather than using the formula given above, the geostatistician may
choose to compute a so-called robust semivariogram (Chapter 2) to
mitigate the effects of outliers or a skewed distribution. The h-scatter­
gram is useful for observing outliers or spurious values and can form
part of the clean-up process (Chapter 2). Again, appropriate transforms
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Figure 1.2 Semivariogram of initial potential (line with symbols) and model
(dashed curve).
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of the data can improve the appearance of the semivariogram, and make
them easier to fit.
The observed semivariogram is shown in Fig. 1.2 with an exponential
model:

-Y(h) = Co + CD - exp( - hja)]

where Co is the nugget effect, C is a constant called the sill, 300 000
Mcfpd2, and a is another constant called the range, 1.5 km. Although
some a priori justification for a particular model for the semivariogram
can exist, model fitting is usually a strictly empirical process involving
an iterative technique with the help of software (Chapter 2). It is still
usually the practice to fit semivariograms by eye, but Chapter 2 also
describes one method for automated fitting using a least squares
criterion.
Choosing a semivariogram model determines the degree of smoothing
in the next stage, estimating initial potential at each node of a regular
grid through linear kriging. For each node the estimate is a linear
combination of initial potentials observed at k surrounding wells:

k

z*(x) = 2: ~iZ(X)
;=1

where the ~i are weights determined by solving a system of equations
that minimize an estimation variance. Factors that influence the magni­
tude and sign of each weight are the proximity of each well to the grid
node and to the other k -1 wells (Chapter 3). From the grid of local
estimates a contouring program creates the final map (Fig. 1.3).
In the past, estimation variance has been used as a measure of
uncertainty. Although this practice has been discouraged in recent years,
estimation variance may be used to mask areas on the map with poor
well control, in addition to generating distribution functions and risk
qualification under special conditions.
Because uncertainty in an estimate is inversely proportional to well
spacing, one would like to decrease this variance short of drilling more
wells. One way to attempt this is to measure a variable that correlates
highly with the variable of interest, and compute linear estimates
through cokriging (Chapter 4). A standard cokriging approach is used
when two or more variables are observed at discrete locations in a
reservoir. However, a regionalized variable such as that obtained from
seismic data is measured almost everywhere, in which case so-called
kriging with an external drift is used, for instance, to use acoustic
impedance to supplement porosities measured in wells.
In addition to estimation of regionalized variables, geostatistical meth­
ods attempts to ask questions such as: 'what is the likelihood that a well
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Figure 1.3 Contour map of kriged estimates of initial potentials. Wells are
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will produce more than a specified number of barrels necessary for the
well to be economic?' Similarly one might want to compute the probabil­
ity that formation thickness, porosity or permeability exceeds some
critical value. The nonlinear method of disjunctive kriging (Chapter 5)
attempts to answer questions such as these. Because it involves a
transform to normality, disjunctive kriging is appropriate for skewed
data. This transform - yielding normal scores - is used in other geo­
statistical methods, and has become an important tool in geostatistics.
As mentioned above, estimation variance may be a useful criterion for
estimating a regionalized variable at a location, but it has limited
usefulness in computing confidence intervals. Many geostatisticians
object to the fact that estimation variance depends solely upon the
semivariogram and the local configuration of points, not on observed
values. Indicator kriging (Chapter 6) provides both an estimate and a
probability distribution. One can estimate directly the probability that a
regionalized variable exceeds or does not exceed given cut-off values. In
addition, indicator kriging is relatively robust to extreme values and
non-normality.
The first step in indicator kriging is to create one or more indicator
variables, each corresponding to a specified cutoff. A particular indicator
variable is assigned a value of 1 for observations below the cutoff, and 0
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for observations equal to or above the cutoff. For each indicator variable,
one computes a semivariogram, fits a model, and performs a conven­
tional kriging. Figure 1.4 shows three semivariograms for the indicator
variables formed by applying cutoffs of 270,581, and 919 Mcfpd to the
initial potential data. These values are the 25th, 50th, and 75th
percentiles.
Indicator kriging was performed using nine cutoffs (250; 500; 750;
1000; 1250; 1500; 1750; 2000; and 2500 Mcfpd). An immediate product of
indicator kriging is a map of estimated probability of initial potential
exceeding each cutoff; Fig. 1.5 is the map for a Mcfpd cutoff at
1000 Mcfpd. At a given location, one can compute probabilities of
exceeding each of a number of cutoffs, yielding a cumulative distribution
function, such as that in Fig. 1.6, or a histogram (Fig. 1.7).

It is straightforward to compute the mean and median of each dis­
tribution function and map this statistic over the study area (Fig. 1.8).
This map is similar to the one obtained by ordinary kriging, but is
relatively robust to outliers and skewed distributions. In addition, meas­
ures of uncertainty can be computed from the local distribution func­
tions, and used in place of estimation variance. 'Estimation variance'
computed through indicator kriging is highest where well density is low,
and variability among neighboring observations is large. Uncertainty is
lowest where well control is good, and variability is low.
When data are subject to large errors, or spatial variability is finer than
sample spacing, estimates are smoothed and do not reflect the well-to­
well variability found in the field. For example, kriged estimates of
permeability are not appropriate inputs to flow simulators because the
very low or high permeability zones will have been smoothed away.
Conditional simulation (Chapter 7) provides multiple values of a
regionalized variable for any given location. The map representing one
such set of values has the same mean, variance and semivariogram as
known values, and passes through these known values, i.e. is con­
ditioned to the observations. For variables such as permeability, each
realization generated by conditional simulation can be used as input to a
flow simulator in order to show a range of possible outcomes. Condi­
tional simulation can also be used to quantify uncertainty, another
alternative to estimation variance.
Sequential indicator simulation was used to generate the two realiza­
tions in Fig. 1.9, which resemble maps of kriged estimates, but differ in
the degree of small-scale variability, and with each other. The increased
variability would be more apparent if a contour map was drawn, but
such maps are difficult to read because of the large number of contours
within small areas. The largest variability is in areas with poor well
control, where the surface is least constrained. The least variability is
near well locations, and if the grid were fine enough, we would see that
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the simulated values are the same as observed values where well
locations and grid nodes coincide.
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1.3 GEOSTATISTICS ON THE COMPUTER

This book assumes that even the simplest calculations are performed by
computer, largely because these calculations become tedious and un­
wieldy for large data sets. Perhaps the most effective way to test
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Figure 1.9 Two realizations of gas initial potential (in Mcfpd) generated by
sequential indicator simulation.

understanding of a method is to program it for the computer, but a
second assumption is made here that the geostatistician prefers to find
programs in the literature or commercially. Because each year brings new
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geostatistical software on the market, any list is soon obsolete. This
section lists some programs that should belong in the geostatistician's
standard repertoire, and some sources for public domain or inexpensive
software.
What programs does the geostatistician need? The following tasks are
routine in geostatistics.

1. Computing univariate statistics, including means, variances and
histograms

2. Drawing scattergrams
3. Semivariogram calculation
4. Interactive curve fitting
5. Grid searching
6. Equation solving
7. Drawing contour or shaded maps.

Univariate and perhaps bivariate analysis and display are used for
initial looks at data, when incorrect data must be eliminated, outliers
detected, and distributions examined. Items 3 and 4 relate to modeling
spatial continuity of a variable. Spreadsheets with interactive graphics
are very useful for curve fitting, and they are readily available. Actual esti­
mation requires searching for wells proximate to nodes on a grid, solving
a system of equations for determining weighting factors, and drawing
a contour map. Each function can be implemented separately, and
possesses different requirements for efficiency. Bivariate plots enter the
picture once again in so-called validation of a geostatistical analysis.
Application of geostatistics in the area of oil and gas differs from many
other fields in the importance of conditional simulation, particularly in
building reservoir models of porosity and permeability. This method
requires all of the software components listed above, plus implementa­
tion of one or more simulation algorithms. Results from conditional
simulation often become input for reservoir flow simulators. Conditional
simulation represents an important link between the work of the geolo­
gist and the petroleum engineer.

1.4 COMPUTER SOFIWARE

An important source of programs is journals, particularly Computers and
Geosciences. The journal Mathematical Geology does not publish programs,
but includes many original accounts of new methods, for which code is
available elsewhere. Major repositories of computer programs are the
many theses and dissertations coming out of graduate departments that
teach and do basic research in geostatistics.
Few programs obtained from the literature for use in writing this book
escaped modification. Aside from the usual modifications related to
input and output file specifications, changes included addition of more
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detail in output, particularly intermediate results, clearer table formats
and headings. Some algorithms were altered for greater efficiency. Many
programs as published handle relatively small data sets; some authors
are very conscientious about writing code in which array sizes may be
easily increased and then documenting where changes need to be made.
In some cases, simply increasing array sizes is not practical because the
resultant code becomes too inefficient or the algorithm simply fails. Some
programs gave incorrect answers.
Programs have entered the public domain through work by govern­
ment agencies such as the US Geological Survey and reports of govern­
ment-sponsored research (Clayton, 1994). An important example of such
a program is Geo-EAS (Englund and Sparks, 1991), a personal computer­
based package for semivariogram calculation and modeling, and kriging,
suitable for small sets of data.
At least two sets of programs appear on diskettes with published
manuals. VARIOWIN (Pannatier, 1996) provides interactive modeling of
semivariograms in two dimensions. The user can create nested aniso­
tropic models in several directions simultaneously, and very quickly.
GSLIB (Deutsch and Journel, 1998) includes the whole gamut of pro­
grams for geostatistics, including summary statistics, semivariogram
calculation, kriging, cokriging, and conditional simulation. As published,
the programs are not interactive, and the user must find a way to
interactively model semivariograms. Nevertheless, GSLIB was used ex­
tensively throughout this book for estimation and simulation.
Most, if not all methods described in this book exist in commercial
software. In addition to the drawback of cost, implementation of new
methods can take time to appear on the marketplace.

1.5 DATA SOURCES

Most of the examples used in this book are taken from a data base
developed at the West Virginia Geological and Economic Survey, and in
many instances, were the results of research that involved the author.
Some data were taken from the literature in order to provide diversity.
Richard Chambers of Amoco Production Research kindly provided the
seismic and porosity data used in Chapter 4 (Chambers, Zinger, and
Kelly, 1994).
Some of the data sets used in this book can be obtained electronically
at http://www.wvgs.wvnet.edu/www/geostat/geostat.htm.

FURTHER READING

The two most general books available to the interested reader are by
Cressie (1993) and Isaaks and Srivastava (1989). The first is by a statistician
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and includes much theory as well as examples. The book by Isaaks and
Srivastava includes some of the theoretical underpinnings, but its
strength lies in the authors' ability to explain and give examples of
variography and estimation. They do not include simulation.
A recent book by Goovaerts (1997) is a broad survey of geostatistical
methods, including simulation, in the context of environmental applica­
tions. Classic texts on geostatistics are those by David (1977), Journel and
Huijbregts (1978), and Clark (1979).
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CHAPTER 2

The semivariogram

2.1 BASIC CALCULATION AND PRINCIPLES

The first step in a geostatistical analysis is variography: computing and
modeling a semivariogram. The semivariogram is the basic geostatistical
tool for measuring spatial autocorrelation of a regionalized variable. As
the name implies, a semivariogram is a measure of variance. Although
procedures exist for modeling the semivariogram through iterative or
least-squares methods, practitioners recommend actual inspection of the
observed semivariogram and the fitted model. A properly fitted model
then allows the computer program to calculate linear estimates that
reflect the spatial extent and orientation of autocorrelation in the variable
to be mapped.
A straightforward way of measuring how a variable z changes in value
between site x and another site h units distant, say x + h, is to compute
the difference z(x) - z(x + h), as in Fig. 2.1. If the surface represented by
the two points is continuous and h is a small distance, one expects the
difference to be small. With increasing h, the difference increases. Trans­
lating this intuitive notion into a formula, one would like to observe the
behavior of

L [z(x) - z(x + h)j2
2y-(h) = -----

n

or

L [z(x) - z(x + h)j2
y-(h) = ----­

2n

The quantity y-(h) is the semivariogram. Like the familiar variance of
basic statistics, it is a sum of squares divided by the number n of sampled
differences. Unlike simple variance about a mean, the semivariogram
measures difference between two samples. However, simple variance
can equal the semivariogram if one considers large values of h relative to
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z (x)

The semivariogram

X 1 X 2
x

Figure 2.1 A hypothetical regionalized variable, z, in a single dimension, x.

the spatial variability of the area sampled and there exists no regional
trend, called 'drift'.
The 'semi' in semivariogram comes from the fact it is a variance
divided by 2. For reasons of convenience and brevity, the word is
shortened to variogram by many authors, who consider the insistence on
'semivariogram' to be pedantic. I find variogram easier to say repeatedly.
Above all, the writer should be consistent in a given paper or talk.
The semivariogram shows the values that y(h) takes on with h. The
best way to understand the meaning of the semivariogram is to actually
compute it from an example. At this point one wants to distinguish the
true or theoretical value of y(h) from one estimated from samples, y(h).
When a variable is measured at regular intervals along a transect, one
can compute the semivariogram for integer values of h. In petroleum
geology, irregularly spaced samples in a two-dimensional or three­
dimensional space is the norm. Therefore, a value of y(hI ) is calculated
from all sample pairs separated a distance between hI - h/2 and hI + h/2.
Semivariance may be influenced by the direction of the vector between x
and x + h, requiring the use of directional envelopes in addition to
distance envelopes.
For an example, data were obtained from Fig. 10 of a paper by Gumati
and Kanes (1985), describing Paleocene sedimentary rocks in Libya.
Distances north and east in Appendix B are in arbitrary units equal to
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about 0.3 mile per unit, and the regionalized variable is the thickness of
the Paleocene rocks. In the original paper, these data were used to
construct a hand-contoured isopach map. As the first step in making the
semivariogram, one selects increments of distance and the size of the
distance tolerance. The smaller the increment, the more points available
to plot on the semivariogram, but also the fewer the number of pairs
used to compute each value. The number of increments is limited by the
extent of the area under study. Although a constant distance tolerance is
usually assumed in running available computer programs, an alternative
approach might be to use a smaller tolerance for a small distance, a
larger one at large distances. Such a procedure is reasonable if sample
locations are clustered such that small distance tolerances are overly
represented relative to larger distances. As a further option, one can
compute all possible intersample distances less than a certain value,
calculate the squared differences, sort the results by distances, then
calculate a mean semivariogram value for all pairs in the first tenth
percentile, say, and similarly for all ten increments, to yield a constant
sample size for each point on the semivariogram. Unfortunately, this
procedure could yield few values of the semivariogram function at small
distances.
Myers et ai. (1982) studied variogram models for 13 elements and other
geochemical variables measured in groundwater in Texas. Although not
occurring on a regular grid, observations were not clustered, and the
sample size for y(h) at small values of h would have been small.
Therefore, values of h were sorted and grouped into irregular intervals of
equal sample size n. The calculated value of y(h) was graphed against
the mean h for each interval. They followed this procedure for several
values of n to determine an optimal sample size.
In practice, drawing the semivariogram is an iterative job in which one
attempts to strike a balance between the smooth curve afforded by large
sample sizes and a sufficient number of points to fit a semivariogram
model. Journel and Huijbregts (1978) offer two rules of thumb: for each
computed value of the semivariogram function, the number of pairs
should be greater than 30; the section of interest of the semivariogram,
usually the increase at relatively small distances, should be represented
by three or four values. Webster and Oliver (1993) maintain that this
number of pairs is far too low, and that 150 to 200 samples are necessary
to obtain the minimum number of pairs for reasonably precise measure­
ment of the semivariogram. With the small number of samples available
in the Paleocene thickness data, either rule of thumb is hard to follow.
Returning to the example, assume a distance increment of 2 units and
a tolerance of +1 unit. Seven pairs of samples fall in the range: 1 ::;; h < 3;
these are shown in Fig. 2.2 as the solid lines connecting sample locations.
Therefore, "'1(2) is calculated as follows:
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Figure 2.2 Sample location map of Paleocene clastic thicknesses taken from
Gumati and Kanes (1985). Solid lines connect points separated by distances
between one and three units.

y(h) = 1/2n[(2911 - 2658)2 + (2572 -1910)2
+ (3209 - 3080)2 + (2220 - 2270)2
+ (2995 - 3001)2 + (2629 - 2706)2
+ (2435 - 1439)2]

= 108500

Table 2.1 shows the calculated values of the experimental semivario­
gram for seven values of h, 1/and Fig. 2.3 the semivariogram. Note that
distances beyond about half the dimensions of the study area were not
considered for several reasons: at greater distances the number of pairs
decreases; beyond this distance the semivariogram contrasts values of
the variable along the edges of the study area; finally, most mapping
applications do not require knowledge of y(h) beyond a relatively small
distance. One does not consider measured values at one edge of a study
area when contouring the opposite edge.
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Table 2.1 Calculated values for semivariogram of
Paleocene clastics data

19

Distance

2.26
4.16
5.93
8.06
9.85
11.99
13.94
15.87
17.96

Semivariogram

108500
207000
289000
299200
251800
213 600
306600
418100
360100

Number of pairs

7
45
51
52
81
61
73
65
72
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Figure 2.3 Experimental semivariogram for Paleocene clastic thickness.

2.1.1 Anisotropy

The semivariogram in the previous section was constructed under the
assumption that the statistic: [z(x) - z(x + h)]2 was dependent upon the
value of h, and independent of x and the orientation of the vector
between x and x + h. However, many geologic phenomena display
spatial anisotropy in variance. For instance, a structure contour map of a
stratigraphic horizon in the folded Appalachians shows a marked direc­
tionality in variation. Variability along the northeast-southwest axes of
synclines and anticlines is much smaller for a given distance than that in
a northwest-southeast direction.
Constructing the semivariogram in order to reveal anisotropy involves
the same calculations used in the previous section, but now vectors
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between pairs of samples are grouped into both distance and direction
classes. Selecting an appropriate number of directions usually requires
some experimentation and invokes the tradeoffs between sample size
and detail discussed above. In addition to a distance tolerance, the
computer program must also use a tolerance in orientation (Fig. 2.4). A
reasonable tolerance is one-half the angle between the directions se­
lected, analogous to the distance tolerance.
Structural data often show anisotropy in the semivariogram. The base
of a Mississippian-age reservoir sandstone in Ritchie County, West
Virginia is no exception. This unit includes light gray, fine- to medium­
grained, poorly sorted and interbedded shales in the Pocono Group and
highly calcareous or dolomitic sandstones in the overlying Greenbrier
Group. The Pocono and Greenbrier portions cannot be distinguished
without geophysical logs or samples and are treated as a single unit.
Subsea depths of the reservoir base were available for 348 locations,
distributed across most of the county (Fig. 2.5). Experimental semivario­
grams were constructed for the four directions shown in Fig. 2.6.
Sernivariograms for north-south and northeast-southwest directions rise
up to a separation distance of about 2 km, and then level off. In contrast,
sernivariograms for the other two directions continue to rise, and look
quite different from the first two semivariograms beyond 5 km. The
appearance of the semivariogram thus agrees with the well-known fact
that prevailing structural grain in the Appalachians is along a roughly
northeast to southwest axis, with local exceptions. In this area, structural
grain appears to be north-northeast to south-southwest.

North

East

Figure 2.4 Method of setting distance and direction tolerances.
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Figure 2.5 Location of wells in Ritchie County, West Virginia, with reported
values of subsea depths for the base of a Mississippian reservoir sandstone. Map
coordinates are in kilometers.

A useful plot for showing the principal direction of anisotropy is a
contour map of the sernivariogram surface. Such a plot can be generated
directly from the output of most computer programs for calculating
semivariograms by plotting calculated values on polar coordinates. A
better display results when tolerances in h are defined on rectangular
coordinates; this yields a grid of semivariogram values that can be
contoured. Fig. 2.7 shows results obtained through the VARIOWIN
program of Pannatier (1996). Note that the semivariogram is symmetric
about the origin and therefore only an arbitrary half of Fig. 2.7 needs to
be drawn, but showing a full 3600 is more effective in showing the
principal directions of anisotropy.

2.1.2 Effect of distance classes on the semivariogram

Data used in the previous example also show the effect of distance
interval on the appearance of the experimental semivariogram. Selecting
an interval of 2 km yields a very smooth curve for the northeast-
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Figure 2.6 Experimental semivariograms of the subsea depth of the base of the
Mississippian reservoir sandstone in Ritchie County, West Virginia. Directions
are: north (diamond), northeast (circle), east (square), and southeast (triangle).

southwest direction, but only one value shows the behavior of the curve
near the origin (Fig. 2.8). This lack of values can become a liability when
one attempts to fit a model. On the other hand, a value of 0.5 km appears
too small; the observed values of -y(h) jump about and depend upon
small numbers of pairs at 0.5 km (62 pairs) and 1 km (86 pairs). A
distance interval of 1 km yields a smoother curve that preserves some
detail. Unfortunately, the only value that helps to define the semivario­
gram near the origin is based on only 21 sample points.
One observation that can be made from this analysis is that the
semivariogram increases rapidly from 0 to 1 km, where it flattens out.
Beyond about 9 km, it rises again.

2.1.3 Stationarity

The first chapter stated that a group of spatially distributed samples can
be treated as a particular realization of a random function. If a phenome­
non is homogeneous over a study area, observed values z(x1) and
z(x1 + h) can be considered realizations of the same random variable with
a particular distribution function.
Only one realization of a random function such as the base of a
reservoir sandstone is available for a given value of x. Knowledge that
this datum occurs within certain limits allows one to use all the data to
study the probability distribution of the random function. The independ­
ence of statistics such as mean, variance, or covariance with respect to
location is called stationarity.
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Figure 2.7 Semivariograms for depth of sandstone reservoir, displayed as a
contour map.

Stationarity is defined through first- and second-order moments of the
observed random function, and degrees of stationarity correspond to the
particular moments that remain invariant across a study area. For a
random variable Z(x) observed at point x, the distribution function of
Z(x) has an expectation

EIZ(x)} = m(x)

which can depend upon x. This is the first-order moment. Three second­
order moments are useful in geostatistics:

1. The variance of the random variable ZOO:
VAR IZ(x)} = E[Z(x) - m(x>F}

2. The covariance:
C(xl, x2) = E{[Z(XI) - m(xl )] [Z(X2) - m(X2)]}

where Z(xl) and Z(x2) are two random variables observed at xl and x2•

The covariance can be a function of Xl and x2.

3. The semivariogram function:
g(xl, x2) = VAR IZ(xl) - Z(x2)} /2

The four degrees of stationarity considered important in geostatistics
are strict stationarity, second-order stationarity, the intrinsic hypothesis,
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Figure 2.8 Semivariograms for depth of sandstone reservoir in the northeast­
southwest direction, showing the effect of the size of the distance classes. Filled
circles = 0.5 km; diamonds = 1 km; squares = 2 km.

and quasi-stationarity. Define the spatial law of a random function as all
distribution functions observed for all possible points in a study area.
Strict stationarity requires an invariant spatial law between any two
random variables IZ(xl), Z(x2) ••• Z(xk)} and IZ(x/ + h), Z(x2 + h) ...
Z(xk + h)}.

In other words, the distribution function remains unchanged with
respect to h. Because most geostatistical applications only need the first
two moments, the assumption of strict stationarity is unnecessary.
Second-order stationarity of a random function requires the
following:

1. The expectation EIZ(x)} = m(x) does not depend upon x, i.e. the
expectation is invariant across the study area.

2. The covariance depends only on separation distance h, i.e.
C(h) = S IZ(x) • Z(x + h)l - m2 for all x.

The vector h can be one dimension or more.

If the covariance C(h) is stationary, the variance and the semivariogram
are also stationary:

C(O) = E([Z(x) - mF} = VAR IZ(x)}
g(h) = E([Z(x + h) - Z(x>F} /2 = C(O) - C(h).

The correlogram is defined as

r (h) = C(h)/C(O) = 1 - r<h)/C(O).

Under conditions of second-order stationarity, the semivariogram and
the covariance are alternative measures of spatial autocorrelation.
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The intrinsic hypothesis requires that expected values of the first
moment and the semivariogram are invariant with respect to location. By
not requiring stationarity of the covariance and therefore the existence of
a finite variance C(O) of the random function, the intrinsic hypothesis is
a reduced form of second-order stationarity. The intrinsic hypothesis is
sufficient for most geostatistical problems.
The concept of stationarity is used tacitly by geologists in everyday
work and is not merely a set of rules and definitions that make possible
the geostatistical methods to come. Stationarity of the first moment is
assumed in a statement like 'The base of the Greenbrier Group occurs
about 900 feet below sea level in Ritchie County, West Virginia'. This
statement does not preclude the assumption that the base of the Green­
brier Group varies in depth from well to well as a result of geologic
structure. Stationarity in the semivariogram is invoked by the logic, 'My
well is half a kilometer from a well where the base of the Greenbrier
Group is 925 feet below sea level, so I expect the Greenbrier Group to be
about 925 feet below sea level in my well'.
A variable under study may actually have a trend across the area of
interest, i.e. show a 'drift'; such a variable is not stationary in the ways
defined above. However, one can define quasi-stationarity as a local
stationarity when the maximum distance h used in computing the
semivariogram or the covariance is much smaller than the scale of the
trend. For instance, elevation of a stratigraphic horizon would not be
stationary across a 5-km-wide anticline, but could appear stationary
within distances of 0.25 km. The impact of nonstationarity depends in
part on the scale of sampling in relation to the scale of a systematic trend.
With sufficient sampling, stationarity can be achieved, but the petroleum
geologist seldom has control over the sample distribution. Note that if
the anticline is one of dozens in a large study area, it represents local
variability in the regional elevation of the stratigraphic horizon.

2.2 MODELING AN OBSERVED SEMIVARIOGRAM

2.2.1 Theoretical models

Fitting a standard model to an observed semivariogram must precede
estimation and mapping by geostatistical methods. The process of fitting
a model to an observed semivariogram is called a 'structural analysis' in
most books on mining geostatistics. The model chosen for a given set of
data depends upon both practical and theoretical considerations. Most
experimental semivariograms can be described by a very few models,
and thus the option of fitting more esoteric models can be ignored. As
described in subsequent chapters the semivariogram model is used for
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computing parameters necessary to kriging, which in turn places con­
straints on the properties of the theoretical semivariogram. The semi­
variogram must satisfy a certain criterion to be admissible. Admissible
functions are discussed after a survey of semivariogram models most
often encountered.
The two features of the observed semivariogram that guide practitio­
ners in fitting a theoretical model are: (l) presence or absence of a sill,
and (2) behavior at the origin. Most of the semivariograms illustrated in
this chapter show evidence of a sill: a leveling off of -y(h) once h increases
beyond some distance a. Behavior at the origin falls into two types, linear
and parabolic.
Another feature of the semivariogram that one can observe from
illustrations in this chapter is the tendency of the observed curve not to
approach the origin at small values of h. If one was to fit a straight line
to the first two or three points in any of the figures, the y intercept would
be greater than zero. This so-called nugget effect must be taken into
account by a model.
Three models occurring most often in the literature are the spherical,
the exponential, and the Gaussian. The spherical model is by far the one
most often used in recent years. The equation of a spherical model is as
follows:

y(h) =C I( : )- (:3 )]
y(h) =C

where c = sill and a = range.

for h:;;;; a

for h > a

In the example shown in Fig. 2.9, the range a equals 9, and the sill equals
500 units. Near the origin the curve behaves linearly. This fact has been
exploited when fitting the spherical model to real data; a straight line
fitted to the two observed semivariogram values at lowest h intersects
the sill at ~ of the range. In Fig. 2.9 the tangent reaches the sill at h = 6
units.
The exponential model has the following equation:

Like the spherical model, this one shows linear behavior at the origin
(Fig. 2.10), but unlike the previous model, a tangent drawn at the origin
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Figure 2.9 A spherical semivariogram model.

reaches a value equal to the sill at a distance one-third of the practical
range, which equals 3a. Figure 2.10 shows an exponential model with a
sill of 500 units and a range of 3. Beyond the practical range of 9, the
exponential model approaches the sill asymptotically.
Some care must be exercised in using the exponential model with
computer software for geostatistics. Some programs use the following
equation:
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Figure 2.10 An exponential model.
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Figure 2.11 Graphical comparison of spherical (dotted line) and exponential
(dashed line) models for the semivariogram.

so that the range a equals the practical range. If using software from
different sources for semivariogram modeling and kriging, the user can
unintentionally specify a range that is wrong by a factor of three.
Figure 2.11 shows both models discussed to this point in order that the
reader can compare the shapes. The exponential model rises more
rapidly at the origin but levels off more gradually than the spherical
model. The latter shows an abrupt change in behavior near the sill. These
observations become helpful when one goes to fit a model to actual
data.
The Gaussian model possesses a sill, but behaves parabolically at the
origin:

y(h) = C [1 - exp (- :: II
The Gaussian model (Fig. 2.12) resembles the characteristic parabolic
behavior of the experimental semivariogram in the presence of regional
trend and may be used in lieu of a drift effect at small distances of h. In
petroleum geostatistics, the Gaussian model is used with structural data
in which there is a pronounced trend, or with seismic data in which the
'sample' spacing is very close and the degree of continuity is high.
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Figure 2.12 A Gaussian semivariogram model.

The simplest of models without a sill is the linear model:

y(h) = ph

where p is the slope of the line. At small distances of h the linear model
can be used in place of other models showing linear behavior at the
origin, i.e. the spherical and exponential models, but such a procedure
has little practical value.
Finally, a general linear model is possible:

y(h) = phr

where p is a constant and 0 < r < 2. Models with values of r < 1 resemble
a spherical or exponential model at the origin, and those with values of
r > 1 are parabolic at the origin. The simple linear model is a member of
this class of models and is about the only one encountered in the
literature.
The logarithmic or De Wijsian model also lacks a sill:

y(h) = r In (h)

The semivariogram of the De Wijsian model is linear if plotted against
the logarithm of distance.

2.2.2 Nugget effect

Many observed variograms do not approach zero with decreasing sepa­
ration distance. Instead, projecting a straight line fitted to the first few
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points of the experimental semivariogram gives a nonzero y-intercept,
Co' This observation has become known as the nugget effect from the
characteristic appearance of the semivariogram for gold deposits.
The nugget effect implies abrupt changes in the regionalized variable
over small distances, variability at a spatial scales finer than sample
spacing, or low precision in the measurement.
Presence or absence of a nugget effect can depend upon the scale of
sampling relative to the geographic scale of variation in the phenome­
non. Taking the example of a fractured reservoir, adjacent wells can
exhibit very different behavior depending upon their relative proximity
to natural fractures. The need to intersect natural fractures presents
nearly an all-or-nothing situation to the geologist. The range of influence
of a fracture depends upon the probability that a vertical well intersects
the fracture, which depends in turn upon the thickness of the target
formation, whether the fracture is limited to the formation, and the
degree to which the fracture is vertical. Creation of fractures through
completion technology increases the chances of a well communicating
with a natural fracture. Thus, the range of influence of a natural fracture
is effectively increased. If a reservoir rock is very much fractured relative
to normal well spacings, the variability due to fracturing no longer
appears as a component of the nugget effect. Similarly, if wells were
allowed to be spaced as close as physically possible, the probability of
intersecting a fracture would present a continuous surface, and the
contribution of fracture patterns to the nugget effect would disappear.
The sources of measurement error in petroleum geology are many. For
instance, obtaining a good formation thickness from an electric log can
depend upon quality of the log, the ability of the geologist to recognize
formation signatures across a field or basin, and the ratio of the thickness
of the unit to the scale of the log. The petroleum geologist often has little
or no control over the source and quality of data. Information such as
initial potential and cumulative production, can be obtained from public
records, with the result that the geologist relies upon the ability and
integrity of others. Initial potential can depend upon the time and dura­
tion of the measurement. A figure can be transcribed to a driller's log
incorrectly and misinterpreted by the geologist assuming the figure
represents final open flow from one formation when in fact flows have
been commingled. Company practice in completing wells has an effect.
One company completes the full thickness of the given formation;
another completes an individual sand, believing it to be the principal
reservoir rock. Finally, the order in which wells are drilled and com­
pleted relative to the depletion of a field can affect measured initial
potential.
The preceding discussion suggests that a nugget effect is no more
than one of the standard semivariogram models with a very small
range,
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for h > 0

where a is a very small distance relative to well or sample spacing. Thus,
the observed nugget effect is the sill, Co of this model. In all practicality,
one does not attempt to fit a specific model because it cannot be observed
except through additional sampling, which is probably not possible.
Journel and Huijbregts (1978) provide a general definition of a nugget
effect as the sum of all sources of variation with ranges much smaller
than the distances between samples. When a semivariogram appears
completely flat - or at least varies randomly about a flat line - it is said
to show a pure nugget effect and represents an absence of any spatial
autocorrelation. One can conclude that the samples are spatially inde­
pendent. Writing the nugget effect model as follows:

y(O) = 0 for h ~a
y(h) = Co for h > a

covariance is written:
C(h) = C(O) - y(h)

so that:

C(h) = C(O) = Co for h = 0

C(h) = Co - y(h) =0 for h >a
Because a is close to 0, the covariance is zero for all observable separation
distances.
Thus, the nugget effect represents a random component in a re­
gionalized variable. It can be called noise and is modeled with a single
number, CO' which represents the sill of a model with very small range.
If the petroleum geologist could be sure of the source of variation in a
given context, the term nugget effect could be dropped for a more
appropriate one like fracture effect or stratigraphic effect. Rarely would
such an assignment be possible. In general, one would like to reduce the
nugget effect in order to improve the precision of estimates. Ways one
can reduce the nugget effect include obtaining better well control, re­
examining the data for sources of error, and applying adjustments and
correction factors.

2.2.3 Nested models

Few experimental semivariograms resemble the simple models de­
scribed above; usually at least a nugget effect is present in addition to a
spherical or exponential model. A model written as the sum of two or
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more simple models is said to be nested. One of the simple models with
nugget effect is strictly speaking a nested model, but not usually called
one. For an example:

where

and

Yl(h) = C I( : )- (:3 )1

= C for h >a

for h';;;;a

for all a.
More typically, a model of the following form is called a nested
model:

y{h) = Yl(h) + Y2(h) + Y3(h)

where Yl(h) is a nugget effect, and Y2(h) and Y3(h) are two exponential
models. In general, a nested model is the sum of two or more semivario­
grams having different ranges and sills, and possibly directions of
anisotropy:

y{h) = Yl(h) + Y2(h) + ... Yl(h)

Each semivariogram expresses variability at a particular spatial scale.
For an example of a nested model, a fractured reservoir such as the
Devonian shales in the Appalachians can possess several sources of
variation in porosity, permeability, initial potential of oil or gas, or
cumulative production.

1. At the level of the well, variability attributable to completion method
and measurement error.

2. At a scale of, say, 0.5 km, presence of vertical natural fractures such
that the production potential of a well depends upon the probability
of intersecting the fracture in or near a siltstone bed.

3. At a scale of 10 km, the thickness of the siltstone bundles that serve as
a principal reservoir facies within the shales in some areas.

Each of these sources of variation can be modeled given sufficient well
density, except that variation at the level of the single well would be
modeled as a nugget effect. The hypothetical model in Fig. 2.13 includes
three terms: Yl(h) for measurement error, Y2(h) for fracture intersection,
and Y3(h) for thickness of siltstone. Note that all sources of variation
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Figure 2.13 Hypothetical nested semivariogram model of initial potential.
Shown are component models and the sum.

come into play at all separation distances, although the principal varia­
bility at small distances arises from sources with small ranges.

2.2.4 Admissibility

Semivariogram models described in the previous section show one
property that becomes important at the estimation stage, namely, they
are conditionally positive definite. Given a stationary random function
Z(x) with covariance C(h), let Y be a linear combination with weights
Ai:

Y = 2: AjZ(xj)
;;1

which is a random variable with variance
n n

VAR1Y} = 2: 2: AjAF(x; - x)
;;\ };\

which must be greater than or equal to zero. C(h) is said to be positive
definite. Any covariance model fitted to observed values of covariance
must have the property that VAR lY};,. 0 because estimations such as
kriging use linear combinations of krJown values. In terms of the
semivariogram, admissible functions must satisfy the relationship:
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II II

VARIYj = L L AiJ\Y(Xi - Xj)
i=1 j=1

for any n locations XI' Xz ... XII of a random variable, and any weights AI'
Az ... An such that:

II

L Ai = 0
;=1

Thus, a model for y(h) must be checked for admissibility, or one of the
standard models used. Fortunately, models such as the spherical and
exponential have been shown to be positive definite: the spherical for up
to three dimensions, and the exponential for more.
Nested models pose no difficulties because any linear combination of
admissible functions has positive definite covariances. Thus, we gen­
erally do not have to consider the question of admissibility. One must
guard against the temptation to use arbitrary polynomials for fitting
semivariograms automatically with a computer program.

2.2.5 Covariance

Under conditions of second-order stationarity, graphs of covariance and
the semivariogram are alternative representations of spatial dependance.
The relationship:

y(h) = C(O) - C(h)

means that the covariance behaves inversely with the semivariogram.
Just as the semivariogram increases with separation distance, the covari­
ance decreases (Fig. 2.14). The semivariogram of a regionalized variable
possessing second-order stationarity exhibits a sill C(O), which equals the
sample variance of the variable. Two values observed at separation
distances greater than a are independent.

2.2.6 A simple example

Data in Table 2.2 are values of the experimental semivariogram for initial
potential of gas recorded from 1216 wells producing from Upper
Devonian sandstones and siltstones in Barbour County, West Virginia
(Fig. 2.15). Production can come from one or more sands in the Upper
Devonian section (Fig. 2.16). Size and stratigraphic level of the comple­
tion zone obviously varies from well to well, and ideally one wants to
study initial potential of each pay zone in isolation. In reality, most wells
have more than one pay zone, and volumes are commingled on the
records available. Therefore, geostatistical analysis at best treats the ex­
pected behavior of the typical Upper Devonian well in the study area.
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The graph of the semivariogram (Fig. 2.17) shows the general shape of
a spherical or exponential model with possibly a nugget effect. A first
attempt uses a spherical model (Fig. 2.18); equation for the model is:

Table 2.2 Semivariogram of gas initial potential
from wells in Barbour County, West Virginia

Distance
(km)

0.18
0.56
1.02
1.51
2.01
2.51
3.01
3.50
4.01
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00

Semivariogram
(Mcfpd)

630073
1414794
1600760
1763792
1785528
1752289
1939881
1750987
1791542
1831248
1860682
1922626
1859647
1733616
1828121
1832027
1834715
1801883
1863105
1743702
1760844

Number of pairs

64
1791
3456
4863
6220
7448
8685
9733
10 730
11510
12329
13044
13869
14481
15147
15523
16160
16928
17288
17648
17957
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Figure 2.15 Locations of wells producing gas from Upper Devonian rocks in
Barbour County, West Virginia. Map coordinates are in kilometers.

[
3h h31

y(h) = 1.8 X 106 - - --

2·0.9 2.0.93

In general, parameters used on this first pass appear good, but the model
rises too quickly for small values of h. A larger range provides a better fit
in this region but reaches the sill at too short a distance. The whole
appearance of the spherical model appears wrong, suggesting use of an
exponential model.
Figure 2.19 shows the fit of an exponential model to the observed data.
Results are much better. The exponential model has a sill of 1 800 000
Mcfpd2 and a range of 0.4 km, giving the equation:

y(h) = 1.8 X 10
6
[1 - exp (- 0~4 II
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Figure 2.16 Partial stratigraphic section of subsurface rocks in Barbour County,
West Virginia, including Brallier and Chemung clastics used in example.

The fit is so good that one could suspect that the data set was con­
structed for the occasion. However, real data were used, and the im­
pressive appearance of the semivariogram probably follows from the
large number of wells with data available, the homogeneity of initial
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Figure 2.18 Spherical model fitted to gas initial potentials.

potential across the study area, and a sufficient number of closely spaced
wells. The number of pairs per calculated value of the semivariogram
function is certainly high (Table 2.2), even for small separation
distances.
The geological meaning of the semivariogram of initial potential is less
impressive. The semivariogram rises very quickly and has nearly
reached the sill at a 2 km separation distance. The practical side of this
observation is that one might not want to draw contours on a map more
than 2 km away from the nearest control point.
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Figure 2.19 Exponential model fitted to gas initial potentials.

2.2.7 Example of a nested model

Fitting a more complex, nested model to a semivariogram follows the
same iterative process of selecting parameters, comparing the resulting
curve with the real data, and adjusting the parameters. This job is best
done with an interactive program that allows the user to change ranges,
nugget effect and sills, and display observed and semivariogram models.
Although none of the computations are difficult or involved, iterations to
an acceptable fit are repetitive enough to discourage the geostatistician
having to do them on a calculator.
The semivariogram in Table 2.3 and Fig. 2.20 does not appear to
conform to simple models. Therefore, an attempt will be made to model
three main features:

1. A nugget effect
2. A rapid rise of the semivariogram at distances less than 2 km
3. A gradual, straight-line rise to a sill, around which the semivariogram
meanders.

With further modeling, the meandering around the sill could be taken
into account. The need to model accurately beyond a separation distance
greater than 10 km depends upon the ultimate purpose of the model. In
this case data are subsea depths to the base of the reservoir sandstone in
Ritchie County, West Virginia, and are to be used for estimation of
structure. Because of excellent well control, it is unlikely that estimates
would need to be made farther than 4 or 5 km from a control well.
A preliminary model included three simple models:

1. A nugget effect of 4000 £t2.
2. A spherical model with a sill of 6000 £t2 and range of 1 km.
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3. A spherical model with a sill of 8000 ff and a range of 10 km.

Shown in Fig. 2.21, the model appears to capture the general shape of the
observed semivariogram, but the model is too high at small values of h.

Table 2.3 Semivariogram of the top of a Lower
Mississippian reservoir sandstone in West Virginia

Distance
(km)

0.39
1.04
2.03
3.02
4.02
5.02
6.00
7.00
8.00
9.00
10.01
10.99
12.00
13.00
14.00
14.99
16.01
17.02
18.00
19.01
19.99
20.99
22.00
22.99
23.98
25.00
25.99
27.00
27.98
28.98
29.97
30.98
31.99
33.00
34.00
34.98
35.98
36.95
37.96
38.93
39.99
40.94
41.71

Semivariogram
<tt2)

6140
8318
9411
9205
10760
10870
12160
11890
14320
17570
17110
19750
20080
23220
20100
22000
20560
17620
17110
15790
16660
15070
15120
17730
18450
22580
20420
25040
28720
26760
35450
30120
32260
38570
44810
40460
57310
65560
76140
51650
121400
29980
76100

Number of pairs

86
705
1035
1280
1518
1767
1987
1984
2161
2073
2395
2466
2373
2543
2483
2606
2604
2689
2651
2574
2438
2305
2083
1998
1769
1428
1291
1103
904
761
728
616
544
538
439
391
279
211
126
63
25
8
3
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Figure 2.20 Semivariogram of subsea tops of a Mississippian reservoir
sandstone in Ritchie County, West Virginia, exhibiting possible nested
behavior.

Subsequent adjustments to the parameters and replotting gave better
results (Fig. 2.22), which captures the essential characteristics of the data.
The model is:

y(h) = Yl(h) + yih) + Y3(h)

where Yl(h) is a nugget effect model equal to 4000 ff, Y2(h) is a spherical
model with a sill of 2000 ff and range of 1 km and Y3(h) is a spherical
model with a sill of 10 000 ff and a range of 12 km.
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Figure 2.21 First nested model fitted to semivariogram in Fig. 2.20.
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Figure 2.22 Second model fitted to semivariogram in Fig. 2.20.

This model can be further improved by giving more attention to small
distances, and ignoring the hump in the semivariogram beyond 7 km.
The result (Fig. 2.23) uses the following models and parameters:

y(h) = Yj(h) + Y2(h) + y/h)

where Yl(h) is a nugget effect model equal to 4500 ft2, Y2(h) is a spherical
model with a sill of 4000 ft2 and range of 1.9 km and Y3(h) is a spherical
model with a sill of 6500 ft2 and a range of 20 km.
From consideration of the observed semivariogram and the model, one
might conclude that the observed elevation of the Big Injun depends
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Figure 2.23 Final model fitted to semivariogram in Fig. 2.20.
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upon regional structural features, a small-scale variability that could be
minor structural features, and a very fine-scale variability. The small
nugget effect means that well control is adequate to very good for
mapping small-scale features in addition to regional structure. Note that
directional effects have been ignored in this example; a better fit might be
obtained if a nested, anisotropic model were considered.

2.3 HOLE EFFECTS

Some phenomena encountered by the petroleum geologist display
marked pseudoperiodicity, e.g. elevation of a formational horizon in a
folded belt. Whereas a semivariogram along the structural trend re­
sembles one of the simple models described above, a semivariogram
across structural highs and lows displays a so-called hole effect, named
from the oscillation of the semivariogram that reflects the pseudoper­
iodicity of the phenomenon under study.
A hole effect may be one-dimensional or multi-dimensional; one must
take care to distinguish between the dimensionality of a hole effect and
that of the regionalized variable. The elevation of a formational top is a
regionalized variable in two dimensions, but the hole effect described is
only one-dimensional.
Two models have been used to describe a hole effect:

1. C(h) = C (sin ah) / ah
y(h) =C[l- (sin ah)/ah]

2. C(h) =C[cos h/a]
y(h) = C[l - cos h/a]

where h is expressed in radians.
The amplitude of a hole effect is the minimum value of the covariance
divided by the sill value

amplitude = [minimum value of C(h)l/C(O)

For the first model above (Fig. 2.24), the maximum amplitude of an
isotropic hole effect in a three-dimensional space is 0.212. An observed
amplitude greater than 0.212 means that the assumed hole effect is
illusory, or that a one-dimensional model must be chosen, such as the
second model above, which has a maximum amplitude of 1. Thus, use of
a model such as y(h) = C[l- cos h/a] allows one to fit large hole effects
(Fig. 2.25). On the other hand, the cosine model is not admissible for
more than one direction. The cosine model can be used to model
regionalized variables in two or more dimensions, but the hole effect is
only fully manifested in one direction, is weak in directions oblique to
this one, and disappears in directions orthogonal to it.
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Figure 2.25 Semivariogram model of the form (1 - cos (h 11) = C*
(3h/2 - h3/2).

A hole effect may be undamped or damped in its oscillations. The simple
cosine model is obviously undamped, but can be damped through use of
a nested model, e.g.

-y(h) =cn - exp (- hiat) cos hiaz]

in which the exponential term serves to damp the cosine term. Figure
2.26a shows the model:

-y(h) = (1 - exp (- hllO) cosl(hi}) + c * (3h/2 - h3 /2)

and Fig. 2.26b shows:

-Y(h) = (1 - exp (- h13) cos/(hll) + C * (3h12 - h3 /2)

2.4 ANISOTROPIC MODELS

Models considered in previous sections depended only upon the magni­
tude of the separation distance h. If (xu, x) represents the coordinates of
a point in two-dimensional space, then a vector h has coordinates (hu' h)
and modulus h equal to
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Figure 2.26 Two hole-effect models differing in degree of damping. The cosine
term in (a) is damped less than that in (b).

An isotropic phenomenon has the same variability in every direction,
and so the semivariogram is straightforward:

f<hu,h) = 'Y .J (h~ + h~)

In contrast, an anisotropic phenomenon has a semivariogram that is a
function of the direction represented by the vector: (hu' h) in two
dimensions.
The most commonly recognized anisotropic models are geometric, in
which a linear transformation of a single model describes the variability
in each direction, and zonal anisotropy, in which each direction is
modeled separately. A nested semivariogram model can include both
isotropic and anisotropic models, reflecting the fact that a regionalized
variable can have many sources of variation. For instance, if a given
small-scale spatial variability results from measurement error, this error
might be modeled by an isotropic nugget effect. The thickness of a sand
unit may be less variable at a distance h in direction f1 than at the same
distance in direction f2. Direction f1 may be parallel to the stream
channels that deposited the sand, and f2 perpendicular to the primary
direction of deposition. The semivariogram corresponding to this hypo­
thetical situation would look like this:
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I'<h) = Yl (h) + Y2(h)
where YI (h) = YI( Ihi) = Co is a nugget effect and Y2(h) is a function of the
vector h.
Therefore, the consideration of directional effects adds an additional
level of complexity to the job of fitting semivariogram models. However,
the results can be very satisfying. If data are collected and semivario­
grams are calculated in order to detect patterns of spatial autocorrelation,
then meeting the research goal requires as close a fit of the model to the
data as possible, within the limits of the data. On the other hand, sources
of spatial variation may be known a priori, and the semivariogram
serves as a tool in the accurate mapping of a regionalized variable. The
ability to recognize and model these known sources of variation in­
dicates adequate sampling in number and spatial distribution. Failure to
observe an expected effect in an experimental semivariogram should set
off an alarm bell: either the sampling was inadequate for modeling the
expected effect, or the effect does not exist in reality. One may be justified
in including the effect if ancillary knowledge shows that the effect is
present. For instance, the geologist may decide to fit an anisotropic hole
effect to the elevation of a formation if it is known that a hole effect was
observed in an overlying formation. Knowledge of the geological milieu
of a regionalized variable should always guide fitting a model.

2.4.1 Geometric anisotropy

A geometric anisotropy is recognized by the fact that the sill remains
unchanged with direction, whereas the range changes. It is represented
by a single model that changes with direction as a function of a linear
transformation, i.e. it can be reduced to an isotropic model by a linear
transformation of the coordinates of the vector h.
Before examining this transformation, consider the simple example of
geometric anisotropy shown in Fig. 2.27. In the direction of maximum
range, a spherical semivariogram with a sill of 1 has range r l . At a right
angle to the first direction, the spherical model has the range r2. Models
for the two directions are as follows.

3h h3

Y (h) =---
1 3

2r2 2r2

Taking the ratio:

k = rl /r2
we can evaluate YI(h) for separation distance kh:
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Figure 2.27 Geometric anisotropic model with (a) ranges plotted on polar
coordinates and (b) conventional semivariograms.

3(kh) 3(kh)3
y](hk) = -- - --

2r] 2ri

3h 3h3

2r2 2r~

= Y2(h)

Therefore, one can obtain a value of the semivariogram along the
minor axis at a separation distance h by multiplying the separation
distance by k, and using the semivariogram model for the major axis. The
constant k is called the anisotropy ratio.
Computer software for geostatistical estimation and simulation re­
quires input of the range, anisotropy ratio, and the direction of the major
axis for an anisotropic semivariogram. Some programs assume the ratio
to be the minimum range divided by the maximum. Models in three
dimensions require an additional anisotropy ratio and yet another angle.
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The user must read documentation carefully to determine the convention
being used with regard to the anisotropy ratio and both the reference
direction and angular direction used to specify the direction of
anisotropy.
Fitting a geometric anisotropic model is not hard. The scientist must
compute semivariograms for several directions, at least four, and model
each using the same sill, and different ranges. Displaying semivario­
grams on polar coordinates can assist finding the direction with max­
imum range. The direction of minimum range must be at a right angle to
the first direction to be a geometric anisotropy. Once these two ranges
have been determined, a useful check on the model is to compute the
range for an angle 45 deg to the other directions, Le. r4S' When plotted on
polar coordinates, the range of a model of geometric anisotropy falls
along an ellipse. The equation for the ellipse gives ranges at intermediate
angles, given the length of the major and minor axes, rl and r2,
respectively:

In order to compute the value of a semivariogram model in an arbitrary
direction, a linear transformation of coordinates becomes necessary. For
two dimensions, the task is to compute new coordinates h'u and h'yt
which will be used to compute the separation distance Ih' I. This
distance will then be used in an isotropic semivariogram model:

y(hu,h) = ')" ~ (h'~ + h'~)

where y(h) is an anisotropic model, ')"(h) is an isotropic model,

h'u = allhu+ a12hy
h'y = a21hu + anhy

and alit a12, a21t and an are weighting factors. The transformation is more
conveniently expressed in matrix form:

[h'] = [A).[h]

where:

[h] = [ :: I
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This procedure can be visualized as a stretching of the original co­
ordinate space along a direction perpendicular to the major axis of
anisotropy, computing a separation distance in this new space for use in
an isotropic semivariogram.
Defining <l> to be the angle that the major axis of an ellipse makes with
the x-axis, and k the ratio of anisotropy of the ellipse, then the matrix
multiplication given above uses values:

[
h'u] [ cos <l> sin <l> ] [hu ]
h'y = - k sin <l> k cos <l> . hy

The separation distance computed from the new coordinates are substi­
tuted in the semivariogram model corresponding to the direction along
the major axis of the anisotropy ellipse.
This transformation can also be written in the following way:

, - [h'u ]_ [ 1 0] [ cos <l> sin <l>] [hu ]_h - _. . - SRh
h'y 0 k - sin <l> cos <l> hy

where the first transformation matrix S represents the stretching or
shrinking, and the second matrix R provides the rotation of axes.
In mapping applications, the transformation given above has two
purposes. In the presence of anisotropy, a mapping package should
consider an elliptical search radius about each locus for estimation. This
is easily done by transforming each point (xu' x); to new, isotropic
coordinates (x'u' x'), and comparing the distance between (x'u' x') the
point to be estimated against the search radius. A second use for the
transformation is that outlined above: calculation of a semivariogram for
the kriging system of equations.
In the case of models without a sill, e.g. linear models, all of the
directional semivariograms are linear, but with different slopes. One can
construct a graph of the inverse of the slope with direction; the result
should describe an ellipse if a geometric anisotropy is appropriate.

2.4.2 A convenient notation

Given a particular one-dimensional model with range a, one can show
quite easily that evaluating that model for a separation distance h gives
that same value as the same model with a range of 1 evaluated for a
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separation distance of hia. Therefore, we can use a shorthand notation
for the spherical model:

y(h) = Sph(hla)

In two dimensions, the same notation can be used, and becomes even
more useful. Assume an isotropic spherical model with range 1, hx is
distance along the major axis of anisotropy, hy is distance along the minor
axis, and ax and ayare the respective ranges. The spherical model can be
written:

where ¢ is the direction of the major axis. The same notation can be used
for other models, Le. Exp for the exponential model.
The matrix for stretching now becomes:

S = [Ilax 0 I
a Ilay

This notation and transformation matrices are easily extended to three or
more dimensions.

2.4.3 Zonal anisotropy

Zonal anisotropy is recognized by a change in sill with direction, and can
be expressed in matrix form:

In petroleum geology, zonal anisotropies are often observed between the
vertical and the two horizontal directions. Hence, the stretch matrix
would look like this:

~ ~ ~]
a a Iia

Some computer programs for kriging do not have an explicit provision
for zonal models; the user specifies a geometric model, the direction
along which the zonal anisotropy is observed, the range along this
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direction, and a very large range for the direction orthogonal to the first.
In matrix notation this becomes:

where ax and ay are very large numbers.

2.4.4 Nested anisotropic models

A semivariogram model can equal the sum of n isotropic models, where
each model may be itself isotropic or anisotropic, and is accompanied by
a transformation matrix. Take the case of a three-component anisotropic
model in two dimensions:

-y(h) = 'YI (h) + 'Y2(h) + 'Y3(h)

Assume that the first component is isotropic; then:

l/a 0

o l/a

The second component, representing geometric anisotropy in direction
<PI' has 52 equal to:

lib! 0

o l/b2

The third component, zonal anisotropy in direction "2' has 53
equalling:

lie 0

o 0

2.4.5 Example of a nested anisotropic model

In this section, a complex model is fitted to a semivariogram computed
from 4137 values of the thickness of the Berea sandstone, a Mississippian
unit observed in the subsurface under much of southwestern West
Virginia. The resultant model includes an anisotropic hole effect nested
with other isotropic and anisotropic models. For mapping purposes,
modeling the experimental semivariogram could probably be restricted
to distances less than 4 km, but this data set presents an opportunity to
fit and study a complex model.
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Figure 2.28 Semivariograms of Berea Sandstone thickness. Directions are:
north (diamond), northeast (circle), east (square), and southeast (triangle).

The semivariogram (Fig. 2.28) shows several features:

(a) Steep rise from little or no nugget effect
(b) Gradual rise in all directions
(c) A hole effect in the southeast direction
(d) In the northeast direction, values greater than the hole effect at
distances beyond 10 km.

An anisotropic nested model with four components was constructed:

1. An isotropic spherical model with a range of 0.75 km and a sill of
95 £t2,

2. An isotropic exponential model with a range of 5 km and a sill of 90
£t2,

3. An anisotropic hole effect with a sill of 40 £t2 and a range of 7.5 km:

40 [1 - exp (- b/h) cos (hy /7.5)],

where hv = h (cos 01 cos 4> + sin 01 sin 4», 01 = 135°, b = 0.1 and
4> = direction for which semivariogram is to be drawn. Note that the
term (hy / a) acts to damp the hole effect in directions other than 135°.
In particular, at 45° (northeast), hy is equal to zero, and the hole effect
disappears. At 135°, the term (cos 01 cos 4> + sin 01 sin 4» equals
unity, and hy equals h. This model is therefore a one-dimensional hole
effect. The exponential term acts to damp the hole effect with distance
hy •

4. An anisotropic linear model,

2.5(hy /1)

with:
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hy = h (cos O2 COS <I> + sin O2 sin <1»

53

O2 = 45°
In this case, the model is damped along directions other than 45°. At
this angle, the inner product is equal to one, hy = h, and the model
becomes

T<h) = 2.5h

whereas at 135°, the inner product disappears, hy = 0, and

T<h) = 0

Figure 2.29 shows the results.

As usual, final values for the sills, ranges and other constants were
obtained by repeatedly changing the values and looking at graphs like
Fig. 2.29. Journel and Froidevoux (1982) outline a more analytic ap­
proach, but the result should be the same. Even an analytic approach can
require some iterative adjustments until a satisfactory fit is achieved.
The final semivariogram model can be interpreted in light of inferred
depositional environments of the Berea Sandstone in southwestern West
Virginia. Averaging 27 ft in the study area, it ranges in thickness from
10 ft in the northeast, to 80 ft in the southwest. This overall trend could
account for the anisotropic exponential model. Depositional environ­
ments range from fluvial channel, proximal mouth bar, distal mouth bar,
and marine (Williamson, 1974).

2.4.6 Another anisotropic model: elevation of a datum

The previous section showed the appearance of a nested model in which
a trend is present, but accounts for a small proportion of total variance.
Structural data often includes a strong trend, yielding semivariograms
with a distinctive appearance.
The Granny Creek field in central West Virginia produces oil from a
sandstone reservoir at the top of the Price Formation, Lower Mis­
sissippian in age. This is one field of perhaps a hundred that have
produced oil and gas from the Price Formation in the Appalachian basin
since the 1860s.
A contour map of the base of the reservoir sandstone shows clearly
that the field lies in a syncline (Fig. 2.30). Contoured values of the
semivariogram (Fig. 2.31) showed the expected north-south anisotropy
in this datum, and is useful for determining the principal axis of
anisotropy: NlOoW.
A nested model with two terms provided a good fit to the directional
semivariograms (Fig. 2.32a-d):
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Figure 2.29 Semivariograms and nested anisotropic model for Berea Sandstone
thickness. Directions are: (a) northeast; (b) southeast; (c) north (diamonds) and
east (squares).
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Figure 2.30 Contour map of the base of the reservoir sandstone in Granny
Creek Field, central West Virginia. Filled circles represent well locations. Units
on map are in feet below sea level.
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Figure 2.31 Contoured semivariogram of elevation of the reservoir sandstone in
Granny Creek Field. Units are ft2.
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~ ( h2 h
2 I ~(h

2
h
2 Iy(h) = 85Sph

17O
_x_ + _y_ + 7100 Gauss

170
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2862 2662 950Q2 285Q2

Note the use of the Gaussian semivariogram model; this is often a good
choice for a model when well control is excellent in the presence of a
strong structural trend. For another published example, see Chu et al.,
(1994). The Gaussian model represents high continuity in a regionalized
variable from well to well at small distances.
Notice also that at the ranges specified, the Gaussian component of the
model never reaches a sill; my interest was in exploiting the strong
upward concavity of the Gaussian model. This model serves my pur­
poses in a strictly utilitarian way - its shape was useful - rather than a
theoretical model of any kind. This is an important theme throughout
this book and the field of geostatistics generally: we are building
statistical models, not process models.

2.5 THREE-DIMENSIONAL EXAMPLES

2.5.1 Porosity

Geophysical logs were found for 275 wells in Granny Creek Field (Fig.
2.33); porosity was estimated from digitized density logs, giving a
database of 13233 measurements. The field lies in a syncline plunging to
the northeast. The reservoir sandstone comprises an upper, relatively
coarse-grained unit and a lower, finer-grained unit, deposited in a
fluvial-deltaic environment. An angular unconformity truncates the top
of the reservoir, with the result that in places the upper, coarser unit is
missing. The most productive interval is the lower sandstone unit, which
is sandwiched across most of the field by shales below and low-porosity,
low permeability coarser sandstones above. Porosity and permeability
were reduced in the coarse unit by extensive quartz and calcite
cement.
The histogram of calculated porosities (Fig. 2.34) looks as though two
populations could be present; one with a mode around 20%, and a
second with a mode around 10%. Although the data are not strictly
normal, there is no suggestion of a tailor outliers.
The number of wells permits calculation of directional semivario­
grams. At distances less than 1.5 km, the semivariogram is isotropic (Fig.
2.35), and therefore a single semivariogram was calculated in the hor­
izontal direction (Fig. 2.36), As one must expect in a sedimentary
environment, porosity is strongly anisotropic in three dimensions, such
that variability over a given distance vertically is much greater than in
the same distance horizontally. In fact, because the high-porosity, pro­
duction portion of the sandstone is sandwiched by low porosity units,
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Figure 2.33 Location of wells with geophysical logs for calculation of porosity
in Granny Creek oil field.

the vertical semivariogram has the suggestion of a hole effect (Fig. 2.37).
Average thickness of the sandstone is about 15 m.
An important feature of the semivariograms is the apparent nugget
effect in the horizontal direction, which is not present in the vertical
direction. This often happens for three-dimensional data because wells
cannot be spaced infinitely close, whereas samples can be taken very
close in the vertical direction, especially when the measurements are
taken from geophysical logs. Variability from well to well probably
represents both actual, small-scale variability, and error caused by in­
accuracies in aligning equivalent strata between pairs of wells. In this
case, there was no good datum for realigning vertical elevations, and so
this task was carried out through automated correlation techniques:
basically, internal comparison of geophysical log profiles. Even if a
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Figure 2.34 Histogram of calculated porosity in Granny Creek oil field.

datum was available, equivalent strata might not be horizontally
matched because of off-lapping of depositional units.
One way in which to model the nugget effect is to use a model such as
the spherical semivariogram, with a very small range specified for the
horizontal direction, and a very long range specified for the vertical
direction.
Because of the serious differences in appearance between the hor­
izontal and vertical semivariograms, there is the temptation to model
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Figure 2.35 Horizontal semivariograms of porosity in Granny Creek oil field.
Directions are: north (diamond), northeast (circle), east (square), and southeast
(triangle).
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Figure 2.36 Omnidirectional horizontal semivariogram of porosity in Granny
Creek oil field. Fitted model is dashed.

each semivariogram separately, and add the results to give a model that
might look like this:

;{.h) = llSph I(h~ + h~) + 14Sph I(~ + h~) + 35Sph I(h~ + h~)
~ 12 00

2 ~ 200Q2 00
2 ~ 002 7.52

where hh is horizontal separation distance, and hv is vertical separation
distance. This model is shown in Figs 2.36 and 2.37. Although this model
fits the observed semivariograms very closely at short distances, it can be
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Figure 2.37 Vertical semivariogram with model (dashed line) of porosity in
Granny Creek oil field.
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shown that nested semivariograms composed entirely of pure geo­
graphic and pure stratigraphic semivariograms are not admissible. Semi­
variograms such as this cannot be used in the estimation stage. Even
though the proposed model includes both vertical and horizontal com­
ponents in each term, the trick of using infinite ranges (or very large
ranges) means that at best the matrices used in kriging will be ill­
conditioned, i.e. close to being singular. Dimitrakopoulos and Luo (1994)
give some guidelines for admissible semivariograms in three
dimensions.
The following model is both admissible and simpler:

The graphs show a reasonable good fit in both the horizontal (Fig. 2.38)
and vertical (Fig. 2.39) directions. A similar model is provided by:

(
Ihi) I(h

2
h
2
)r{h) = l1Sph _ + 24Sph .1 _h_ + _v

7.5 ~ 39002 7.52

where:

Ih I = J(h2 + h2) = /(h2 + h2 + h2)V h v V x y v

The first term - an isotropic spherical model - acts like a nugget effect in
the horizontal direction because the range is much less than any reason­
able well spacing.
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Figure 2.38 Omnidirectional semivariogram of porosity in Granny Creek field,
with admissible model (dashed line).
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Figure 2.39 Vertical semivariogram with admissible model (dashed line) of
porosity in Granny Creek field.

Notice that in creating this model, the overall sill was not given too
much attention as long as the fit at smaller distances was reasonable. An
equally useful model could have used a smaller sill in order to better fit
the horizontal semivariogram, with some downward adjustment to the
range in the horizontal direction. No attempt was made here to model
the full range of separation distances. In the process of building a three­
dimensional interpolation, samples of more than two or three well
spacings from the point of estimation will not be given much weight, if
any. The same is true in the vertical direction.
In principle, there is little difference between two and three dimen­
sions when computing semivariograms, and in building models. In
practice, there can be a large difference stemming from the fact that
geographic and stratigraphic variability tend to be very different in scale.
As in the example above, one is tempted to model the two directions
separately and add models to achieve an omnibus semivariogram model.
However, one rarely needs more than two terms: one to provide a nugget
effect in one or more directions, and a second for relative large-scale
variability. Always remember that the goal is not to obtain an explana­
tory model, but rather a descriptive model for use in estimation. Under­
standing the geological phenomenon can perhaps guide the modeling
stage.

2.5.2 Permeability

Geologists and petroleum engineers recognize the importance of perme­
ability in oil and gas production, and determining the three-dimensional
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variability in permeability is central to reservoir characterization. Un­
fortunately, sufficient quantities of permeability data are usually hard to
obtain. This next example is typical in that regard. In contrast to the
porosity data used in the previous example, only values of permeability
measured from core are considered here, resulting in data from only
eight wells (Fig. 2.40) in Granny Creek field.
The 251 values of core permeability are not normally distributed (Fig.
2.41); the long tail in the histogram suggests that the permeability values
might be log-normal. The resulting histogram (Fig. 2.42) looks like a
mixture of several log-normal distributions, with the addition of a large
spike of low-permeability values representing a lower threshold.
The small number of wells precludes computation of more than a
single semivariogram in the horizontal direction. In fact, one can argue
that eight wells is not sufficient for even one semivariogram. One

o 1 km

Figure 2.40 Location of wells with core permeability in Granny Creek oil
field.
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Figure 2.41 Histogram of core permeability in Granny Creek oil field.

difficulty is that no wells are closer than approximately 500 m, so there
are no semivariogram values at small geographic distances (Fig. 2.43).
Nevertheless, the horizontal semivariogram is relatively smooth except
for a jump beyond 2500 m. The northern-most well no doubt accounts
for the jump in semivariogram values at large distances.
The vertical semivariogram is fairly smooth at small distances (Fig.
2.44), particularly up to the distance equal to half the average formation
thickness of about 15 m.
Semivariograms computed from raw permeability values appear to be
easily modelled within the distance range of interest. Sometimes, a log
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Figure 2.42 Histogram of the natural log of permeability in Granny Creek
field.
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Figure 2.43 Omnidirectional horizontal semivariogram of permeability in
Granny Creek field.
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Figure 2.44 Vertical semivariogram of permeability in Granny Creek field.

transform results in a smoother, easier-to-model semivariogram. In this
case, the log transform does not make a large difference in the appear­
ance of semivariograms in the horizontal (Fig. 2.45) and vertical (Fig.
2.46) directions. A suggested model shown on these figures includes an
isotropic nugget effect, and an anisotropic exponential model:
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where hh is horizontal distance, and hv is vertical distance.
Data such as those used in this example are perhaps sufficient for
estimating spatial variability within a well: geographic variability has
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probably been inadequately sampled. Porosity at least can be estimated
from geophysical logs, which are usually more numerous than cores in
mature fields. Several approaches exist for inferring a semivariogram for
permeability: by estimating permeability from another variable, by anal­
ogy, and by trial and error.
The first option is to uncover an empirical relationship between core
permeability and another measurement, such as porosity, which might
itself have been estimated from geophysical logs. In many settings, the
statistical correlation between porosity and permeability varies among
facies; the geologist wants to examine the relationship between core
permeability and porosity from samples grouped by lithology or envi­
ronment of deposition, and calculate a regression equation for each
group.
Geostatistical studies for petroleum reservoirs representing many de­
positional environments now appear in the literature, and can be used as
analogues. Semivariograms in the literature can be examined for typical
nugget-to-sill ratios and ranges, and used as guides in modeling semi­
variograms computed with sketchy data from one's own reservoir.
In Chapter 7, the method of conditional simulation is described, in
which a surface or volume is fitted to data under the conditions that
interpolated values have the same mean, variance and semivariogram as
the observed values. Results of such an exercise are often used as input
to reservoir flow simulators. When trying to reproduce observed flow
patterns, one can specify a variety of semivariograms in building the
model of permeability, and compare results with actual events. This is
probably the least desirable of the three options, and should be guided
by analogues, available data, and experience.

2.6 OUTLIERS, NORMALITY, AND ROBUSTNESS

Plotting a histogram of the regionalized variable under study should
precede any calculation of semivariograms or kriged estimates. Fre­
quency distributions of gas or oil volumes, porosity and permeability are
generally skewed or include outliers. Anyone attempting to calculate
average well initial potential for a field knows the effect that a single
very high value has on the statistic. Similarly, a very few observed values
of [z(x) - z(x + h)] can account for a large proportion of an average
semivariogram value (Krige and Magri, 1982). These large differences
may be attributed to a few values on the tail of a non-normal distribution
or to outliers. Transformations to normality and rejection of outliers are
related topics that can be considered separately and in great depth;
interested readers wanting to go beyond the brief survey here should
consult, for example Hawkins (1980) on outliers and Huber (1978) on
robust procedures.
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One of the simplest ways to improve the appearance and stability of
the semivariogram is to apply a logarithmic transformation. Krige and
Magri (1982) found that 192 lead grades in a South African mine
exhibited a two-parameter lognormal distribution except for six high
values they treated as outliers. They plotted the cumulative frequency of
the differences [z(x) - z(x + h)] for a lag of 15 m in the east-west direction
for transformed and untransformed data and also with and without
outliers. Out of 543 pairs of untransformed data, the 15 highest differ­
ences contributed 64% toward the mean value of the semivariogram at a
lag of 15 m. This percentage was reduced considerably after logarithmic
transformation. They also found that the presence of one or more outliers
can mask the shape of the semivariogram and fitting a nugget effect was
impossible. The logarithmic transformation resulted in semivariograms
that fitted a De Wijsian model, but the population variance and nugget
effect were still inflated because of the presence of outliers. Elimination
of these outliers brought additional improvement. They observed a
similar improvement by applying a procedure described by Cressie and
Hawkins (1980) to untransformed data with outliers.
This procedure begins with a set of squared differences Yh:

Yh = [z(x) - z(x + h)j2

Examining a class of power transformations:

Yh = ([z(x) - z(x + h)j2j1

Cressie and Hawkins found that t = 0.25 yields values of Yh that fit a
normal distribution. They go on to show how to undo this transforma­
tion and conclude that an unbiased estimator for the semivariogram is:

y(h)=~[l/n 2: Iz(x)-z(x+h)ll]4 / (0.457+0.494/n+O.045/n2
)

One may be able to further improve the estimate of g(h) by using not the
mean of Yh' but some other estimate of expectation, such as the median
or a trimmed mean.
Logarithmic transformation and use of the Cressie and Hawkins
transformation to Yh were applied to a set of 467 gas initial potentials
measured from wells in Wirt, Roane, and Calhoun counties, West Vir­
ginia. A histogram of the raw data shows characteristic non-normality
and presence of one large value (Fig. 2.47). The semivariogram (Fig. 2.48)
exhibits an apparent hole effect and a very irregular pattern. One good
feature appears to be the relatively small nugget effect that needs to be
fitted.
The histogram of the data after computing the common log of each
observation yields an almost normal distribution (Fig. 2.49). The result­
ing sernivariogram is much smoother (Fig. 2.50) than one calculated from
raw data, and the apparent hole effect disappears.
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Figure 2.48 Semivariogram of Devonian shale gas initial potentials from Roane,
Wirt and Cathoun Counties, West Virginia.

The highest value of 10gIO (initial potential) may be considered an
outlier, so one can use Cressie and Hawkins' transformation to find any
improvement. In this example the improvement is minimal; there is
some shift downward for the curve as a whole, but the shape remains
essentially unchanged (Fig. 2.50). Finally, their transformation can be
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Figure 2.49 Histogram of Devonian shale gas initial potentials after logarithmic
transformation.

applied to the raw data, yielding a smooth curve similar to that obtained
after logarithmic transformation (Fig. 2.51).
The appearance of a hole effect in semivariograms is probably com­
mon for data coming from irregularly distributed sample sites, in the
presence of outliers. This may be a serious hazard for variables such as
initial potential, highly clustered among fields and dry regions. This
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Figure 2.50 Sernivariograms of log-transformed gas initial potentials, calculated
with robust (filled circles) and conventional estimation (filled squares).
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Figure 2.51 Semivariogram of gas initial potentials, using robust estimator
(filled circles) and after removal of one outlier (filled triangles).

observation underscores the need for looking at a histogram of raw or
transformed data.

2.6.1 The h-scattergram

An h-scattergram (or h-scatterplot) shows the bivariate relationship
among pairs of points separated by a specific distance or within a
selected distance envelope. It is useful for identifying possible outliers,
subsets of the data, and for illustrating the statistical basis of the
semivariogram.
Given a separation distance, one plots the pairs z(x) and z(x + h) along
two axes of a bivariate scattergram. The shape of the resultant cloud is
related to the value of the semivariogram for distance h. The moment of
inertia of the bivariate scattergram around a line with a slope of one
equals the semivariogram for distance h (Fig. 2.52):

d = [z(x + h) - z(x)] cos 45
d2 = [z(x + h) - z(x)F
E(d 2) = E([z(x + h) - z(h)FI
E(d2) = y{h)

For a semivariogram with small nugget effect and a sill, the scattergram
at small values of h should exhibit little deviation from the line of unit
slope. With increasing h, the scatter should increase, approaching a
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Figure 2.52 An h-scattergram.

circular cloud beyond the range. The following sections give several
examples illustrating the potential usefulness of the h-scattergram.

2.6.2 Outliers

The h-scattergram can be used for identifying outliers in data, such as the
unusually high value that appears among initial potentials measured in
Devonian shale wells.
In this case, it was a simple job of finding the outlier because it
appeared to be so extreme compared with the rest of the sample
distribution. H-scattergrams of raw and log-transformed data (Figs 2.53,
2.54) show a number of things.
First, notice that the transformation has changed the bivariate distribu­
tion of initial potentials from a cloud of points near the origin with
points straggling off toward higher values (Fig. 2.53), to a distribution
that seems to be bivariate normal (Fig. 2.54). The points show almost no
clustering about the line of unit slope. Notice also that transformed data
cluster very poorly around a line even at short separation distances (Fig.
2.54a), reflecting the very low covariance and the large nugget effect.
Finally, the effect of the outliers at 15000 Mcfpd is largely mitigated by
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the transformation, as can be seen by comparing Fig. 2.53a with Fig.
2.54a.

2.6.3 Permeability

Values of permeability from Granny Creek field were found earlier to
have a histogram with a large spike of values at the lowest values,
apparently a detection threshold. An h-scattergram of permeability for
values of h less than one foot (Fig. 2.55a) shows the presence of two
populations: one in which values of similar permeability tend to be
adjacent in the core, resulting in a clear correlation on the h-scattergram;
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and a second consisting of the threshold values, which do not appear to
be associated with either high or low values of permeability. Hence, one
can picture permeability in a given well as a parameter that changes
smoothly from sample to sample, except for occasional, very low perme­
ability layers that occur randomly through the stratigraphic section, or at
least are not associated with either high or low permeability values.
These observations suggest further lines of enquiry, and could affect
how one maps the data in three dimensions. For instance, the geologist
might want to discover whether the very low-permeability values corres­
pond to samples of a particular lithology, perhaps shales embedded or
interfingering with the reservoir sandstone. Are these samples concen­
trated in one part of the reservoir? The geologist might decide to strip
out these values before mapping, or at least to obtain a semivariogram
for the rest of the data. The problem then becomes how to include these
low-permeability zones in the final model. They are apparently difficult
to predict in the stratigraphic section.
At larger distances (Fig. 2.5Sb), a number of pairs show up having a
moderate to high value for one member, and a low value for the other.
These might well correspond to samples lying on either side of a
boundary between zones of different permeability. The geologist would
want to look at cross sections, and if zones do exist, consider mapping
zones separately. In this case, the upper, coarser sandstone facies gen­
erally is lower in permeability than the lower facies.

2.6.4 Organic shale thickness

The Huron Shale is a brown to black shale with some interbedded gray
shale that averages about 300 ft in thickness in southwestern West
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Virginia. Bounded above and below by gray shales, the Huron is easily
recognized from gamma ray logs and drillers' logs. It is an important
reservoir for Devonian shale gas (Neal and Price, 1986). To explain the
occurrence and volume of Devonian shale gas, maps of initial potentials
or cumulative production could be compared with an isopach map of the
Huron Shale.
Data from 111 wells were selected for analysis. Because the semivario­
gram has a very small nugget effect (Fig. 2.56), points on the h­
scattergrams fall close to the line (Figs 2.57, 2.58). Maximum h in these
figures is 3 km, less than the range. With increasing h, the cloud of points
changes from a tight configuration about a line of slope one (Fig. 2.58a),
to a more elliptical shape (Figs. 2.58b-c).
The h-scattergrams show the presence of several outliers. Not all
extreme values are the same, however. In Fig. 2.58a, some extreme values
fall in line with the trend of the cloud, but others fall well away from the
line of unit slope. The first group of points simply represent correct
values for organic shale thickness at the upper end of the distribution.
Figure 2.58a includes one point in the scattergram that deviates some­
what from the main trend. A closer look at the two wells that this point
represents shows that the top of the Huron may have been picked about
30 ft too high in one well. The thickness recorded in the data base was
not unambiguously wrong, but the h-scattergram suggests some close
study of logs from surrounding wells would be in order.
On the other hand, several groups of points plot well away from the
main cloud in all scattergrams. These correspond to two wells with
incorrect thicknesses recorded in the data base.
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Figure 2.56 Semivariograrn of Huron thickness in Mingo County.
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2.7 AUTOMATED FITIING OF SEMIVARIOGRAMS

Many practitioners are bothered by the fact that the semivariogram
model is commonly fitted by eye. Purported disadvantages of such an
approach are the time spent, and the nonobjectivity of the manual
approach. The first criticism is easily dismissed; time spent in fitting
semivariograms rapidly decreases with experience, and represents the
minimum time one should spend with data. A completely hands-off
approach leads all too often to the following scenario: data are collected,
semivariograms computed and fitted, kriged values are computed and
mapped, strange features are questioned, and the search begins for
outliers and incorrect data. Is this an objective approach?
Circumstances that call for an automated, hands-off approach include
research that requires comparison of semivariograms, or resampling
experiments that involve repeated creation of data sets and model fitting.
Neither situation occurs very often in the geological studies I am
concerned with in this book.
Nevertheless, computational methods for fitting semivariograms have
been proposed, and include ordinary least squares, generalized least
squares, weighted least squares, and maximum likelihood. The latter has
rather strong distributional requirements, and is not generally used.
Among the least-squares approaches, ordinary least squares is the most
straightforward, but the most naive. Generalized least squares accounts
for covariance between semivariogram values, but the covariance matrix
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needed can be difficult to obtain. Cressie (1993) considers weighted least
squares to be a reasonable compromise between the simplicity of ordi­
nary least squares and the intractability of generalized least squares.
Weighted least squares minimizes the quantity

k [ y(h( ') 12L N(h(j» J - 1
j= 1 i-.h(j);€»

where y'(h(j» is the semivariogram computed at distances h(l), .. .,h(k);
N(h(j) is the number of pairs used in calculating y(h(j», and y(h(j);€» is
a model with parameters €>. The user must specify a particular model,
e.g. a spherical model with sill C, range a, and nugget effect Co' so that
€> = (Co' C, a). This method gives preferential weight to semivariogram
values with the largest number of pairs, and also to the smallest values
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semivariogram of Fig. 2.17.

of the observed semivariogram, generally those nearest to the origin.
Gotway (1991) provides a computer program for this method.
Recall the manual fit of an exponential model to the semivariogram of
gas initial potentials (Fig. 2.19), which gave a constant of 1.8 X 106, and
range of 0.4 km. Can weighted least squares do any better in fitting this
model? The results of an automated fit are virtually identical to the
manual fit; the constant for the exponential model is 1.839 X 106 and the
range is 0.428 (Fig. 2.59). Differences in these fitted parameters between
the manual and hands-off approach mainly derive from the human
operator's tendency not to use as many decimal places. This brief
experiment also suggests that once a model has been specified, most of
the work is done.

2.8 SUMMARY

Spatial behavior of a regionalized variable can be observed through the
semivariogram, a simple graph of between-well distance on the hor­
izontal axis and variance on the vertical axis. For most applications in
petroleum geology, sample locations are not situated on a regular grid,
so a constant lag cannot be used. Instead, the user selects a lag size and
a tolerance, usually one-half the lag size. Selection of a lag size depends
upon the number of samples, the dimensions of the study area, and the
type and degree of continuity between wells or sample sites. Increasing
the lag size yields more pairs at each point on the semivariogram, but the
number of points decreases to the point of obscuring the appearance of
the semivariogram at small distances.
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A regionalized variable may display anisotropic behavior, such as that
found on structure maps in folded areas. To detect anisotropy, a semi­
variogram is constructed for each of several distances, requiring a
direction tolerance in addition to a distance tolerance.
Geostatistical estimations require some degree of stationarity in the
variable being studied; a constant semivariogram across the area is
usually sufficient. Even in the presence of a regional trend, stationarity
may be achieved at a local level.
Practical use of an observed semivariogram requires the fitting of a
model that captures the main features of the plotted curve. Models can
be classified by two characteristics: (l) their appearance at the origin, and
(2) presence or absence of a sill. The spherical and exponential models
are the most useful in oil and gas applications. Observed semivariograms
often call for nested models, in particular one that includes a so-called
nugget effect or noise component. Additional models that may be fitted
include hole effects, which display pseudoperiodicity, and anisotropic
models, which include zonal and geometric anisotropy.
Semivariograms can be fitted for one, two, three, or more dimensions.
The complexity of fitting models in three dimensions is increased by the
fact that a serious anisotropy usually exists between the horizontal
directions and the vertical direction. The user must take care not to
construct inadvertently a model that is inadmissible by using purely
horizontal and purely vertical terms in a nested model.
As with many statistics, the semivariogram is sensitive to the distribu­
tion of the data or the presence of outliers. A simple transform to near­
normality can markedly change and improve the semivariogram. For
making the semivariogram robust to outliers, a simple procedure exists
that can be easily added to any program for calculating the experimental
semivariogram. Although normal procedure is for modeling semivario­
grams by eye, automated methods exist for situations in which the
geologist wishes to remain at arm's length from the modeling procedure,
or when a large number of models are to be fitted.
Throughout the fitting procedure, the practitioner must keep in mind
that the purpose of fitting a model is to obtain a product that can be used
in estimation. The purpose of a spatial model in this book is for input to
estimation, not to explain a natural phenomenon. The latter is a separate
topic beyond the scope of this book. As a result, the geologist should pay
close attention to observed semivariograms for small separation dis­
tances. The reasons should become more obvious in the next chapter.
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CHAPTER 3

Linear estimation

Drawing a contour map by hand or by computer uses interpolation.
Algorithms for this interpolation range from fitting splines, computing
trend surfaces, to drawing flat surfaces within triangulations, all requir­
ing some criterion to be satisfied. The geologist working by hand
interpolates between pairs of points, draws connecting contours, does
some smoothing to make the map look 'real', and perhaps works in some
trends derived from geological experience.
Kriging is a method of calculating estimates of a regionalized variable
at a point, over an area, or within a volume, and uses as a criterion the
minimization of an estimation variance. Calculated at intersections of a
regular grid, kriged estimates can be used for drawing a contour map.
The steps in computer mapping are as follows.

1. Collect data, probably irregularly distributed across the study area.
2. Superimpose a regular grid.
3. Interpolate values at each grid node.
4. Construct the contours.
5. If necessary, smooth the lines.
6. Draw the maps.

In this chapter, we are concerned with the third step.

3.1 KRIGING EQUATIONS

Assume that the regionalized variable under study has values Zj = z(x),
each representing the value at a point Xi' Also assume that this re­
gionalized variable is second-order stationary, with expectation

E{z(x)} = m
a centered covariance

E{Z(x + h)Z(x)} - m2 = C(h)

and a variogram

E{[Z(x + h) - Z(x)]2} = 2y(h)

A kriged estimator zi is a linear combination of n values of the re­
gionalized variable:

M. E. Hohn, Geostatistics and Petroleum Geology
© Kluwer Academic Publishers 1999
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n

zi= LA;Zj
;;]

Weights Aj are calculated according to these criteria:

1. The estimate is unbiased.
2. The estimation variance is minimized.

The first criterion is satisfied by requiring weights to sum to one, thus
ensuring that

and

E{[zv - zZI = 0

The second criterion says that estimation variance:

E{[Zv - ZkFI
is to be minimized. Writing estimation variance as

E{[Zv - ZkFI = ElZ/I- 2ElZ"zkl + ElZ/1
it is calculated from:

C(V,v) - 2 L A;C(V,V;) + L L AjAiC(V;,vi )
j i j

where C(A,B) is the average covariance between each point in an area A,
and each point in an area B. The origin of the terms in this equation will
be explained below, along with a discussion of how they are
calculated.
The 'kriging system' is a set of n + 1 linear equations with n + 1
unknowns, obtained by setting equal to zero each of the partial
derivatives:

where the n weights Aj are to be calculated, and Il- is a Lagrange
parameter. The system of equations can be written in terms of co­
variances or in terms of the semivariogram function. The first instance
gives the following system of equations to be solved:

n

L AiC(V;,vi ) + Il- =C(v;,V)
i;]

n

LA=l
i;] J

for all i = l,n

Estimation variance can be rewritten as follows:
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n

<T~ = C(V,V) - JL - 2: A;C(V;,v)
;=1
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With the exception of the first term, all terms in this equation are
computed in the course of setting up and solving the system of equa­
tions. This way of calculating estimation variance avoids the double
summation term and having to save a duplicate n by n array of C(V; ,v)
terms.
Using the semivariogram -y(h), the system of equations becomes

n

.2: A/y(v;,vj ) - JL =Y(Vi,V)
]=1

n

2: A= 1
j=1 ]

and estimation variance is:

for all i = l,n

n

~ = - Y(V,V) + JL + 2: AiY(V;,v)
i=1

Although both ways of setting up the system of equations are valid, the
first has been preferred for computational reasons, even when the data
are not second-order stationary, but follow the intrinsic hypothesis.
Writing the system of equations in the form of covariances eliminates the
problem of zeroes along the diagonal, which preclude many algorithms
that involve dividing by these terms. If the regionalized variable does
not obey second-order stationarity and there exist no sill C(o), one can
define pseudocovariance as follows:

C(h) = A - y(h)

where A is some number greater than any value of y(vi,vj ) or y(v;, V).
The nonbias criterion eliminates the constant A from the system of
equations.
The system of equations is perhaps more easily visualized in matrix
form. Defining

[A] =
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and

then

[W]=

Linear estimation

C(Vt,V)
C(V2,V)

[B] =

C(Vt,Vt ) C(Vt,V2) ••• C(vt,vn) 1
C(v2,vt ) C(V2,V2) ••. C(v2,v) 1

C(VwVt) C(vn,v2) ••• C(vn,vn) 1
1 1 1 0

[W] [A] = [B]

[A] = [W]-t [B]

3.1.1 Terms in the kriging system

All covariances in the kriging system are computed from a semivario­
gram and the relative distances between samples and the point or block
to be estimated.
Each entry in matrix [W] is a sample-to-sample covariance. The
distance between well site i and well site j is calculated to give h jj along
with the direction of the vector described by the two samples if an
anisotropic model is to be used. The value of y(hij ) = y(vj,vj ) is calculated
from the semivariogram model, to give the covariance C(vj,Vj) = C(O)­
y(vj,vj ). Matrix [W] depends only upon the relative locations of samples
and does not contain any information about the geographic locations for
which an estimate is desired. In applications where sampled locations lie
on a regular grid, this matrix is constant across the area to be kriged
except for the edges; exploiting this fact can mean considerable savings
in computation time.
Note that [W] remains the same for both point and block kriging. Not
so matrix [B], covariances between sample points Vi and the point or
block to be kriged, V. If one wants to perform point kriging, C(vj , V) is
merely calculated from the distance between location V j and location V,
and the direction of the vector joining these two locations if the semi­
variogram model is anisotropic, to give y(vj , V) and the covariance. If we
are computing an estimate of the mean value of a regionalized variable
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within a block, then C(v;,v) represents the average covariance between
any point in the block V and sample v;. Although in principle computa­
tion of point-to-block covariance constitutes an integration, in practice
the computation is carried out through a discrete summation. The area or
volume of a block is represented by a set of points regularly disposed
within the block, the covariance between sample Vi and each point is
computed, and an average value is used for C(vi,v). Precision increases
with the number of points within the volume or area, but four or five
points on a side appears sufficient; this yields 16 or 25 points for an
area.
To illustrate terms in the kriging equations, Fig. 3.1 shows sample­
point-to-sample-point covariances in matrix [W], sample-point-to­
estimated-point covariances [B] in point kriging, and sample-point-to­
estimated-block covariance [B] in block kriging. Area V in Fig. 3.1b could
have been drawn to include one or more sample points and calculations
would remain the same. In the case of point kriging, point V can coincide
with a sample point, in which case the estimate equals the known value
at that point and kriging variance equals zero. Thus, kriging is an exact
interpolator.
Points Vi must be unique so that matrix [WJ is strictly positive definite.
The kriging system cannot accommodate replicate samples; one must
first reduce these to mean values at a location. If kriging is performed
from samples stored in a data base, care must be taken that duplicate
entries have not been made to the data base. Computer programs for
kriging can be written to check that no sample locations lie within a
specified distance tolerance. Even when two points do not coincide, they
may be close enough relative to other points in the kriging system to
make matrix [WJ ill-conditioned and the numerical solution of the
kriging equations unreliable.
Two of the three terms in the equation for estimation variance are
computed while the kriging equations are set up and solved. The
remaining term, C(V,v), the average covariance of samples within blocks
of size V, is computed in the same way as C(v;,V), except that each point

" e(y! ..,,} " " C(VI. Y,) "

~(.,.vl

v
v

e(., ....)

" (b) .,

Figure 3.1 Some of the terms in the kriging equations for (a) point kriging
and (b) block kriging.
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Vi is one of m points used to make a discrete approximation of block V,
and these m values are averaged. If a block is approximated by 16 points,
then 16 values of «vi,vj ), i = I, m; j = I, m are computed and averaged.
Block covariance is obviously constant for a given block size, and there­
fore in mapping an area the value of the block variance can be calculated
once at the beginning of a computer program. In the context of point
kriging, «V,V) equals covariance at a separation distance of zero.

3.1.2 Properties of kriged estimates

Because kriged estimates minimize estimation variance, considering the
three terms of this variance along with the semivariogram model shows
that weights depend upon four factors.
The first one is size and shape of the block to be estimated, expressed
by the term: «V,V). With decreasing block size, average covariance of
points in the block increases, and the estimation variance increases to a
maximum when estimating a variable at a point.
Second, distances between points in the block and control points are
expressed by the term «Vi'V). With increasing distance between the
block and control points, average covariance decreases and estimation
variance increases. The farther away the control wells from a point or
area, the more uncertainty in an interpolation at that point or block. This
accords with geologists' assumption that map reliability increases with
the number of control points.
Third, the configuration and distances between control wells are
expressed by the term «Vi,Vj ). The influence of sample configuration on
the estimation variance is explored in some detail below, but for now the
following generalization can be made: both the number of control points
and their relative dispersion influence estimation variance.
Finally, quality and value of the estimate depends on the semivario­
gram model. At a given level of precision, estimation of a regionalized
variable with a large range can be achieved with fewer widely dispersed
wells than a variable having a small range. If a strong directional
anisotropy exists in a northeast-southwest direction, an estimate com­
puted from wells in the northwest and southeast directions must have
greater uncertainty than one calculated from wells situated the same
distance to the northeast and southwest.
Minimization of kriging variance is thus consistent with the geologists'
intuition with regard to the spacing of control wells. But where the
geologist may have a qualitative sense of overall reliability of a map,
computation of estimation variances provides local measures of reliabil­
ity that may influence the collection of more data, if possible, and
interpretation of the map.
For a simple example of kriging at a single point, consider estimating
the value of a regionalized variable at point V from the four points in Fig.
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Figure 3.2 Hypothetical configuration of control sites equidistant from a site.

3.2. Assume a spherical semivariogram model having a sill of I, range of
200, and no nugget effect. Covariance between each point and itself is I,
to give the values in the diagonal of matrix [W]. Covariance between
points 1 and 4 equals C(O) - '}'(v!,v4), or

1 -1*[(3*100)/(2*200) - (003)/(2*2003)] = 0.3125

Completing the calculations gives the following matrix:

1 .4918 .4918 .3125 1
.4918 1 .3125 .4918 1

[B] = .4918 .3125 1 .4918 1
.3125 .4918 .4918 1 1
1 1 1 1 0

Covariance between V and the samples is a constant because all are the
same distance from the point to be estimated:

1 -1*[(3*50)/(2*200) - (503)/(2*2003)] = 0.6328
Therefore, matrix [B] is simply:

[

.6328

.6328

.6328

.6328
1
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and the solution is

Linear estimation

.2500
.2500

[A] = .2500
.2500
.0588

with an estimation variance of

1.0 - 0.0588 - 4*(0.6328*0.25) = 0.3084.

As expected, weights are all equal, and the estimate is the mean value of
the regionalized variable at the four control wells.
Consider the same point distribution, but in a spherical model with an
overall sill of 1 and a nugget effect of 0.25. The matrix of covariances has
smaller values off the diagonal, and covariances between control points
and point V are lower (Table 3.1A). Kriging weights remain unchanged,
but now kriging variance equals 0.54, greater than that calculated for the
model without a nugget effect. Thus, uncertainty beyond a very small
range as expressed by the nugget effect leads to a greater uncertainty in
the final estimate.
The influence of anisotropy can be explored by going back to the
spherical model with a sill of 1, range of 200, no nugget effect, and an
anisotropic ratio of 1.5 in the east-west direction. The kriging system in
Table 3.1B now yields two groups of weights: samples situated east and
west of V are given more weight than those to the north and south.
Consider now the configuration of wells in Fig. 3.3, in which two wells
are very close to each other and therefore redundant, and two wells are
roughly equidistant from each other and the cluster. Using the previous
semivariogram model, nugget effect of zero, sill of 1, and range equal to
200, solving the kriging equations (Table 3.1C) gives nearly equal weights
to points one and four and the sum of points two and three. Thus, each
point in the cluster was downweighted relative to isolated points in
other directions. Notice that kriging variance, 0.349, has increased over
that of the example with four evenly spaced points, 0.326. Because two
points are clustered, the uncertainty in the estimate is about the same as
that in an estimate based on three points.
Relative magnitude of nugget effect and range both control the degree
of smoothing in kriged estimates. In the case of pure nugget effect,
estimates constitute a simple moving average. For example, the config­
uration of points in Fig. 3.3 was used in conjunction with semivariogram
models that differ only in the relative magnitude of the nugget effect
(Table 3.2). With an increase in the nugget effect, weights approach the
same value until they are equal to 0.25.
Remembering that the nugget effect represents a model with a very
small range, one can see that an increase in nugget effect means that



Kriging equations 89

Table 3.1 Systems of equations and solutions for three combinations of semi-
variograms and well configurations

A. Nugget effect = 0.25
Point-to-point

Covariances between samples covariances Weights
1.00 0.37 0.37 0.23 0.47 0.25
0.37 1.00 0.23 0.37 0.47 0.25
0.37 0.23 1.00 0.37 0.47 0.25
0.23 0.37 0.37 1.00 0.47 0.25

B. Anisotropic semivariogram
Point-to-point

Covariances between samples covariances Weights
1.00 0.37 0.37 0.09 0.63 0.37
0.37 1.00 0.31 0.37 0.46 0.13
0.37 0.31 1.00 0.37 0.46 0.13
0.09 0.37 0.37 1.00 0.63 0.37

C. Irregular sample spacing
Point-to-point

Covariances between samples covariances Weights
1.00 0.51 0.47 0.30 0.63 0.35
0.51 1.00 0.93 0.35 0.63 0.13
0.47 0.93 1.00 0.39 0.63 0.19
0.30 0.35 0.39 1.00 0.59 0.34

more spatial variability in the regionalized variable occurs at short
distances, to the limit of complete independence in the case of pure
nugget effect. In this situation, the simple mean provides an unbiased
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Figure 3.3 A second hypothetical configuration of control points.
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Table 3.2 Kriging weights and kriging variance for configurations in Fig. 3.3
using different constants for the semivariogram

Nugget effect 0.00 0.25 0.75 1.00
Sill of spherical model 1.00 0.75 0.25 0.00

Well 1 0.35 0.31 0.27 0.25
Well 2 0.13 0.18 0.23 0.25
Well 3 0.19 0.19 0.23 0.25
Well 4 0.34 0.32 0.27 0.25

Kriging variance 0.35 0.58 1.03 1.25

o
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.. ..
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1

o o
3

25
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4

Figure 3.4 A third hypothetical configuration of control points.

estimate. Because all covariances between V and each control well are
zero, the second term in the equation for estimation variance drops out,
and the estimation variance in our example equals 1 - IJ-, where IJ- must
equal ~. With increasing n, the estimation variance approaches the simple
variance. Thus, uncertainty in our estimate depends upon the number of
samples when they are independent, as we learned in introductory
statistics. Restated, for a given number and configuration of samples, our
uncertainty in an estimate decreases with decreasing independence.
When two samples lie in the same direction from the site to be
estimated, kriging is said to 'screen' the more distant site relative to the
near one. For instance, the configuration of wells in Fig. 3.4 includes two
sites that lie due east of V Solving the system of kriging equations yields
the following weights:

well 1 0.278
well 2 0.135
well 3 0.629
well 4 - 0.042
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and a kriging variance of 0.244. Notice that well 4 is assigned a weight
near zero, even though it lies the same distance from V as wells 1 and
2.

3.1.3 Examples along a transect

The smoothing influence of the nugget effect and the range will now be
illustrated for points along a transect of synthetic data. These samples
should give some insight into what one might expect to see on a map.
In the first example, a spherical semivariogram model was used with
a sill of 25, a nugget effect of zero, and a range of 25 ft. Kriged estimates
were calculated every foot, and estimates at sampled footages equal the
observed values. Figure 3.5 shows estimates along one 15-ft interval;
estimation standard error is plotted as an envelope around the estimates.
Of course, estimation variance at control points equals o. When a nugget
effect is absent, and the range is large, interpolation forms a smooth
surface, and estimation variance increases away from control points.
Estimates calculated using a nugget effect of 15 and a spherical model
with sill of 10 are surrounded by much larger confidence envelopes.
Except for excursions through the control points, kriged estimates form a
very smooth surface (Fig. 3.6a). If control points are not included with
the interpolations but are replaced by values at very close footages, the
surface is very smooth indeed (Fig. 3.6b). Thus, the moving average
process of kriging dominates interpolation when the nugget effect is
large, as shown in the previous section.
Some computer programs give results like those shown in Fig. 3.6b,
even when the sites to be estimated include sites of known values, as in
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Figure 3.5 Kriged estimates along a transect (filled circles) and estimation
standard errors (squares) for one semivariogram model.
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Fig. 3.6a. This would seem to contradict an earlier statement that the
surface must pass through the control points. The reason for the contra­
diction is that the nugget effect is a simple way to compute covariances
in the presence of a model with a very small, indeterminate range.
Properly speaking, the nugget effect should be replaced by a model - a
spherical model, say - that passes through the origin. But because the
appearance of this very fine-scale model is unknown, it is approximated
as a constant Co' For very small values of h, i.h) =Co, and the covariance
C(O) - Y(h) equals C + Co - Co = C, as it should. But the computed
covariance for h =0 also comes out being C, when in fact it should be
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Figure 3.6 Kriged estimates (filled circles) and standard error (squares) along
a transect for a semivariogram model with large nugget effect. In (a) some of
the estimated locations coincide with the observed points, and therefore
estimates equal observed values and estimation variance is zero; in (b) the
estimated locations do not coincide with the observed points.
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C+ Co' Many programs fail to check whether the site to be estimated is
coincident with an observation point.
The result is an estimate with non-zero kriging variance. In practice,
this discrepancy is rarely a problem; points on a regular grid are unlikely
to correspond with sample sites, unless the sample locations are as
crudely digitized as those in the present example. However, if one insists
that the kriged surface passes through control points, special provision
must be made in the computer program.
In Fig. 3.7 the semivariogram model has a nugget effect of zero, sill of
25, and range of 4 ft. The resulting surface has a rougher appearance than
that in Fig. 3.5, which was calculated with the same model but a larger
range. The shorter range implied less continuity between control sites,
and the interpolated surface shows more peakedness. Like the surface
that resulted from the large nugget effect, the one in Fig. 3.7 seems to
gravitate near the regional mean, only approaching the very high or low
values close to control points.
What is the geologic meaning of these profiles? How might they affect
the geologists' interpretation of a particular regionalized variable? Given
the raw data, most geologists would probably draw a smooth inter­
polation like that in Fig. 3.5, rather than the one in Fig. 3.7. Why use an
algorithm that produces the rougher surface in Fig. 3.7 or the very
smooth surface in Fig. 3.6a? The answers lie partially in the geologic
meaning and practical value in delineating the geographic or strati­
graphic limits of extreme values. Assume for now that data used in this
section represents elevation of a formation top. If the petroleum geologist
is looking for areas of structural closure, the surface in Fig. 3.5 has a large
area of closure within a well-defined anticline, whereas the surface in
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Figure 3.7 Kriged estimates (filled circles) and standard errors (squares) for
semivariogram model with a short range and no nugget effect.
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Fig. 3.6b appears to be a gentle monocline, with no closure within the
geographic window we are peering through. In specifying a large nugget
effect the geostatistician is saying that autocorrelation is low beyond a
very short distance, and therefore extreme values should not be taken as
more than local features. At the time of mapping these extreme values
are limited to very small areas (Fig. 3.6a) or ignored altogether (Fig. 3.6b).
In either case the maps show very conservative estimates in the presence
of a large nugget effect.
To take another example, assume that the regionalized variable in
these figures is initial potential (although the absolute scale makes little
sense). Using a cutoff of 266 units, four of the estimates in Figure 3.5 lie
above this value, three values lie above this value in Fig. 3.7, and only
the observed value lies above this value in Fig. 3.6. In the presence of a
large range and little small-scale uncertainty, one can delineate a rather
large area of higher potential. The smaller the range and the greater the
small-scale uncertainty, the less emphasis one places on these extreme
values.
Note that kriged estimates do not imply that the actual surface in Fig.
3.6 is a monocline with bumps and depressions; rather, they imply that
small-scale features do exist but cannot be determined very far from the
control points. The problem lies not in the map but in the number of
control wells relative to the scale of the structure. In the case represented
by Fig. 3.6 many bumps and depressions probably lie between the
second and third control points, but the program cannot draw them in
any more than a geologist can. The large envelope around the estimates
shows that almost anything can happen between the control points. One
way to visualize what might be taking place between the control points
is to perform conditional simulation, the subject of Chapter 7.
On a transect or map of kriged estimates, the geologist could report
only those estimates with an estimation variance less than a given value.
This procedure parallels that of the geologist who limits contouring to
areas a certain distance from control points.
To summarize this section, the kriging system of equations and the
kriging variance depend upon the size and shape of the area V; distances
between V and control points, the configuration of the control points,
and the semivariogram model. With a number of examples I have
attempted to clarify the computations and to show the effect of these
factors on the kriging weights. Given a configuration of points, the
semivariogram model can have a profound influence on map appearance
and estimation variance. Kriging places less importance on extreme
values in the presence of large degrees of indeterminate, small-scale
variation. These examples are not meant to suggest that the geologists
experiment with semivariogram models until the map 'looks right'.
Rather, one should attempt to model the regionalized variable con­
scientiously. If the resulting model does not yield a map of the expected
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appearance, perhaps some fault lies in the data, or perhaps an attempt
must be made to obtain more data, thereby reducing the nugget effect.
The next section illustrates kriging applied to actual data.

3.2 EXAMPLES

3.2.1 Thickness of a clastic section

A spherical semivariogram with a sill of 300 000 ft2, no nugget effect, and
range of 8 units describes the regional behavior of data extracted from a
study of Paleocene clastics (Gumati and Kanes, 1985) (Fig. 3.8). This
simple semivariogram model was used with 39 observations to generate
kriged estimates on a regular grid of 6 X 6 points (Fig. 3.9). Kriging
variance ranges from a low of 0, where a node of the grid coincides with
a control point, to a high of 338 278, where the regionalized variable was
poorly sampled in the northern part of the study area (see Fig. 2.2).
Block kriging provides an average value of clastic thickness within an
area or, multiplied by the dimensions of the two-dimensional block,
estimates volume of rock. If estimates of blocks are combined, the result
is a so-called global estimate of reservoir thickness or volume. Such
parameters can be estimated through simple arithmetic averages, but the
results would be biased in the presence of significant clustering of
control points.
Block kriging was performed on the thickness data using the same
semivariogram model used in point kriging, and 5 X 5 blocks centered
on the grid nodes used above. Two observations may be made from the
map of kriged estimates (Fig. 3.10). The standard error of estimation is
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Figure 3.8 Semivariograms of the thickness of Paleocene clastics.
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Figure 3.9 Estimates (above symbols) and estimation variances for point
kriging of Paleocene thickness data.

lower for each block relative to that for the point centered within the
block. With increasing block size, estimation variance should decrease.
Observe from Fig. 3.10 that block estimates vary less than point
estimates. Whereas raw data range between 1439 and 3941, point esti­
mates range between 1794 and 3474, and block estimates range between
1887 and 3332. The calculation of kriged estimates for points on a coarse
grid accounts for the limited range in the estimates; an infinitely fine grid
would yield at least the same range of estimates as the original data
because kriging is an exact interpolator. However, the smaller range in
the block estimates results from the smoothing that kriging performs
when estimating average block values. As block size increases, the range
further decreases to the limit of a regional average. Histograms of point
(Fig. 3.11) and block (Fig. 3.12) estimates show that the latter estimates
cluster more about a median value of 2400 ft.
How do block estimates compare with a naive average of values
within a block? We can take the three values that lie within the 20 X 20
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Figure 3.10 Block kriged estimates and estimation variances for thickness of
Paleocene clastics.

area in the extreme northeast corner of the total area. The average of the
three values, 3632, 3048, and 3890, equals 3523 ft, whereas the average of
the four blocks in this area equals 3278 ft, less than the naive estimate
because kriging includes the points surrounding the area in question in
computing an average thickness. When control points are distributed
uniformly throughout the limits of a block, points outside the block are
screened, and contribute very little to the calculation. On the other hand,
if control points are clustered to one side of the block, consideration of
surrounding values better defines the regionalized variable and im­
proves the estimate.
Block kriging is not used often with oil and gas data. It was developed
in the context of mining, where interest lies in computing the average
value of a regionalized variable such as gold within a volume of rock.
Even if we are interested in computing the average porosity in a volume
of reservoir, for example, we usually choose a block size so small relative
to well spacing, that point and block estimates are virtually identical.
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Figure 3.11 Histogram of estimates from point kriging Paleocene thicknesses.

3.2.2 Initial potential of Upper Devonian gas

In Chapter 2 a simple exponential semivariogram model was found to fit
closely the spatial behavior of initial potential of gas observed in wells
producing from Upper Devonian clastics in Barbour County, West
Virginia. These data are used to further illustrate kriging of two­
dimensional data, and to introduce a procedure called 'validation',
A subset of the original data was used to compute a new semivario­
gram (Fig. 3.13); the locations selected fall within the region to be
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Figure 3.12 Histogram of estimates from block kriged Paleocene thicknesses.



Examples 99

3,500,000

3,000,000
N
~

2,500,000~
~ 2,000,000
l!lc
III 1,500,000
.~

.2
1,000,000E :Ql

en
500,000

0

0 2 3 4 5 6

Distance (Kilometers)

Figure 3.13 Semivariogram of initial potentials in a portion of Barbour
County, West Virginia.
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Figure 3.14 Contour map of kriged estimates of gas initial potentials in a
portion of Barbour County, West Virginia. Area mapped is 10 krn on a side.
The contour interval is irregular; units are thousands of cubic feet of gas per
day.
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mapped as well as in adjacent areas to avoid edge effects. Kriged
estimates were computed for each point on a regular grid covering a
100 km2 region (Fig. 3.14). The grid was 91 rows by 91 columns, thus
providing an estimate every 0.11 km, a spacing much finer than the
sample spacing. To eliminate edge effects, wells within a distance equal
to the practical range, 4.5 km, were included along with wells falling
within the area to be mapped.
Kriged estimates show the large degree of smoothing one expects to
find when the nugget effect equals about half the sill. A map of well
locations annotated with the initial potentials shows the large variation
among even closely spaced wells (Fig. 3.15). Nevertheless, the map of
kriged estimates shows trends in initial potential within the area
mapped. Those needing the surface to exactly honor the data might be
out of luck, although as demonstrated in earlier examples, if the grid is
fine enough, the contour map will honor each point. Of course, with such
a large nugget effect, each well would be surrounded by a bull's-eye.
In Chapter 2, we looked at the possibility of using a log transform on
raw data to smooth the sernivariogram, and expedite model-fitting. In
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the present example, some exploratory work showed little difference
between semivariograms computed from untransformed and trans­
formed data.

3.2.3 Log transform?

Nevertheless, using the log transform in kriging has a long, if checkered
history. It was observed several decades ago that many data sets were
highly skewed, and approach a lognormal distribution.
This fact has several consequences, one of which is that the semivario­
gram can be hard to model with confidence. Another is that assumptions
of stationarity that are made may be violated. In geographic terms, the
effect of this is that maps may show large areas of high values centered
about a few observations, i.e. what we call bull's-eyes. In addition, and
perhaps more serious, is that estimation variances are unrealistically
small in areas of high values in the regionalized variable. The noticeable
nonnormality of data sets in many fields - including petroleum geology
- has caused part of the concern over use of estimation variance in any
way, and has led to the development of nonlinear methods of estimation,
including lognormal kriging (Rendu, 1979).
Lognormal kriging uses a forward transform of calculating the loga­
rithms of each raw value. Semivariograms and linear estimates are
computed from transformed data. Estimates must then be back-trans­
formed to the original units. If the original data are represented by Zj and
logtransformed data by Yj, kriged estimates in the original units of
measure are calculated from:

Z;; = lO(yi +"I/2 - p.)

where z;; and Y;; are kriged estimates, oi is the estimation variance, and
J.L is the Lagrange parameter. To simply compute the antilog of y;; yields
a biased estimate and is incorrect. A concern of many practitioners is that
because the back-transform involves the estimate and estimation Va.'i­
ance in the exponent, that back-transformed values may be overly
sensitive to minor perturbations in data values and locations.
Lognormal kriging was carried out on the initial potential data, and
results are compared in with disjunctive kriging in Chapter 5 and
indicator kriging in Chapter 6.

3.2.4 Cross validation

The practice of 'cross validation', or simply 'validation', is a com­
monsense procedure for comparing estimated values with observed
values, just as one computes residuals between predicted and observed
values in regression or analysis of variance. The procedure is as follows:
for each sample in the data set, compute a kriged value at the same
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location from the rest of the data, ignoring that sample. The result is an
estimated value for comparison with the corresponding true value.
Comparison of observed errors and kriging variance can be made in a
number of statistical and graphical ways. If the kriged estimates are
unbiased, averages of the estimates and the observations should be
equal. The 674 values of initial potential used in the previous section
average 1239.3 Mcfpd; the average kriged estimate from cross-validation
of untransformed data is nearly identical: 1232.3 Mcfpd.
Graphical displays are useful and often humbling. After fitting the
exponential model to the experimental semivariogram in Chapter 2, the
observation was made that although a very satisfying fit of the theoret­
ical model to the data was found, the interpretation of the model was
less encouraging. Specifically, the very large nugget effect relative to the
sill means that there exists a large proportion of the fine-scale variation
not captured by the well density. As a result, kriged estimates largely
represent moving averages, leading to large deviations between esti­
mated and observed values.
Indeed, this is the case. A graph of observed versus estimated values
should result in a straight line with a slope of 1. Such a plot for the initial
potential data (Fig. 3.16) displays very little correlation. Moreover, there
appears to be a conditional bias: low values of initial potential are
overestimated, and high values are underestimated.
However, such a plot can be dissected by considering estimation

variance, which is relatively low for locations surrounded by a number
of nearby wells, and higher for locations having well control that is
sparse or poorly distributed. Figure 3.17a shows results for the 100 wells
with the smallest estimation variances; these wells should have the best
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Figure 3.16 Scattergrarn of observed values of initial potential against
estimated values.
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agreement between observed and estimated values because they have
the best control. The cloud of points does indeed lie along a line with
slope of 1, although there is a lot of scatter. Three points with low
observed values fall away from the main group of points, and might
represent errors in the data. For the 100 wells with the highest estimation
variances, the cloud of points bears no relationship with the line of slope
1 (Fig. 3.17b). Well control was so poor for these wells that the estimate
is basically a regional average. The conditional bias depends upon the
degree of well control.
Clark (1986) reviews the history of validation and its usefulness in
geostatistics. She points out that this type of comparison was used
initially to compare methods of estimation (David, 1977; Journel and
HUijbregts, 1978) and to justify the use of kriging as an estimation
method (e.g. Parker et al., 1979, and others in the same volume).
Validation is still used in this way.
Because statistics and displays used in validation depend upon both
estimation method and semivariogram model, the procedure has also
been used in supporting the selection of a particular semivariogram
model, or for adjusting the parameters of a model. Clark (1986) demon­
strates that use of validation procedures for selecting a semivariogram
model may not be incorrect, but they also may not be sensitive enough to
be very useful. In one example, she modeled an obviously anisotropic
semivariogram in three ways: with an isotropic linear model, an aniso­
tropic linear model, and a pure nugget effect. Standard validation
procedures did show that the third model had problems but could find
little difference between the first model and the second, correct one. She
urges caution. Nevertheless, the statistics and displays generated by
validation efforts provide excellent tools for peering into the results of a
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Figure 3.17 Scattergram of observed and estimated initial potentials for (a)
the 100 wells with the smallest estimation variances, and (b) the 100 wells
with the largest estimation variances.
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geostatistical study and may have more value in exploratory data
analysis than in testing the hypothesis 'My semivariogram model is
right'. Davis (1987) comes to a similar conclusion.

3.3 KRIGING IN THREE DIMENSIONS

Estimation in three dimensions is no different than that in two dimen­
sions, except some practical aspects of the search and gridding algorithm
become important. These include the search radius and adjusting for
structural deformation of the reservoir to be mapped.

In Chapter 2, the following model for the semivariogram of porosity
was fitted:

(
Ihi) j(h2

h
2

)y(h) = l1Sph _ + 24Sph _h_ + _v

7.5 39002 7.52

which showed unsurprisingly that porosity is strongly anisotropic in the
vertical versus the horizontal directions. This anisotropy has an im­
portant implication in the practical use of estimation on a grid and the
choice of search radius. To force the search algorithm to 'find' more than
the nearest well to the node being estimated, the search radius or
window in the vertical direction must be much smaller than that
horizontally. This makes sense, because we want the search to take place
at least approximately along directions representing original bedding, if
possible.
Because the typical oil or gas reservoir is structurally deformed, a
process known as flattening must be applied before gridding. This
procedure is usually accomplished by selecting a datum internal or
external to the reservoir, and computing new elevation relative to this
datum, the same as hanging a stratigraphic cross-section from a datum.
Where chronostratigraphic units cross lithostratigraphic units, care must
be taken in selecting a surface for this vertical adjustment (Bashore et ai.,
1994). Because the data are approximately normal in distribution, data
were not transformed in any way. A block 1 km by 1 kID by 17 m was
kriged and the results are displayed here as a map and two cross-sections
(Figs 3.18-3.20). The map represents a slice 7.5 m from the base of the
block, where porosity is relatively high. The two cross-sections show
north-south and east-west slices through the block. This block is
approximately in the middle of Granny Creek field.

3.4 SUMMARY

Linear estimation, or kriging, minimizes estimation variance by solving a
set of kriging equations. These equations include covariances between
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Figure 3.18 Map of three-dimensional model of porosity in Granny Creek oil
field at an elevation of - 257.5 m (see Figs 3.19 and 3.20). Filled circles show
well locations. Units are per cent porosity. The contour interval is 1%
porosity.
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Figure 3.19 East-west cross-section through three-dimensional model of
porosity in Granny Creek field at coordinate 4265500 North in Fig. 3.18. Units
are per cent porosity. The contour interval is 1% porosity.

the point or volume to be estimated and the sample points and covar­
iances between each pair of sample points. The weights calculated
through solving the system of equations depend upon the size and shape
of the volume to be estimated, the distance and direction of each sample
from the volume to be estimated, the distance between samples, and the
semivariogram.
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Figure 3.20 North-south cross-section through three-dimensional model of
porosity in Granny Creek field at coordinate 487000 East in Fig. 3.18.

Kriging is an exact estimator in the sense that the estimate at a control
point equals the observed value. Kriging also smoothes the data when
the semivariogram includes a large nugget effect.
Validation procedures exist for the user to assess the quality of the
kriged estimates. These 'leave one out' procedures have been used in the
past in modeling semivariograms, but results can be misleading. Valida­
tion is more useful for viewing the effect of smoothing on the
estimates.
Linear estimation in three dimensions usually requires that depths be
adjusted relative to a datum so that the search parallels original bedding
planes. The search radius for gridding must generally be much larger in
the horizontal directions than the vertical.
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CHAPTER 4

Multivariate geostatistics

There are several situations where one may want to study and exploit the
covariance between two or more regionalized variables.

1. The variable of interest is a linear combination of regionalized varia­
bles. Direct estimation of the linear combination is usually not optimal
(Myers, 1983).

2. A variable is poorly sampled but correlates highly with a second
variable that is much better sampled. One can take advantage of this
correlation to improve estimation of the undersampled variable.

3. A variable exhibits low spatial autocorrelation, but correlates highly
with one that exhibits relatively high continuity. Again, the observed
values or the second variable may help to improve estimates of the
first variable, particularly if the first one is undersampled.

The mutual spatial behavior of regionalized variables is called cor­
egionalization. A number of methods exist for estimating a coregion­
alized variable from two or more variables, including cokriging, kriging
with external drift, and collocated cokriging.

4.1 COREGIONALIZATION

Consider the two-variable case in which we want to estimate a value z*
from Zj, Zz ... zn' and there are also m observations of a second variable:
Yl' Yz ... Ym' Call this estimate Z~k to indicate that the estimate is to be
computed through cokriging. The task at hand is to compute two sets of
weights A], Az ... Ani and K], KZ ... Km, which are used to compute the
cokriging estimate:

n m

L A;Zj + L KjYj
j;] j;]

Cokriging makes use of the covariance between the main or primary
variable z, and the secondary variable y. If the primary variable is
seriously undersampled relative to y, the hope is that the secondary
variable is sufficiently well sampled and covariance between the two

M. E. Hohn, Geostatistics and Petroleum Geology
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variables is high enough to improve the estimate of the primary vari­
able. Put another way, the goal is to minimize the uncertainty in the
estimate.
The following quantities are defined under second-order stationarity.
For random functions Z(x) and Y(x), the second-order moments are the
cross-covariance:

Czy(h) = ElZ(x + h)Y(x)} - mZmy

and the cross-variogram:

2yZY(h) = E{[Z(x + h) - Z(x)] [Y(x + h) - Y(x)]}

If Z = Y, these two expressions reduce to the ordinary covariance and
variogram.
The cross-covariance is calculated from

CZy(h) = *2: [z(x + h) y(x)] - mzmy

and the cross-semivariogram from

YZy(h) = ~n 2: [z(x j + h) - z(xj)] [y(xj + h) - y(x j)]}

The cross-variogram and cross-covariance display some interesting prop­
erties. In contrast to a semivariogram, the cross-semivariogram can take
on negative values. Such behavior is observed when two variables are
negatively correlated. For instance, one would expect a negative cross­
semivariogram between percentages of illite and quartz in a clastic
unit.
The cross-semivariogram is equal when z and yare switched; the
cross-covariance is not:

but

Czy<h) = Cyz( - h)

Similarly, the following are true:
yzy<h) = yzy< - h)

and

Czy(h)i=Czy< - h)

Cokriging uses matrices of cross-covariances. Strictly speaking, such
matrices are not necessarily symmetric. However, cross-covariances are
usually calculated from cross-semivariograms using the equation:

2yzy<h) = 2Czy<0) - Czy<h) - Cyz(h),

which simplifies to

yzy<h) = Czy<O) - Czy<h)

if we assume Czy<h) =Cyz(h), which is usually reasonable.
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4.2 COKRIGING EQUATIONS
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The cokriging system of equations is fairly simple, and resembles that for
kriging:

" m

L ,\C(vi,vj ) + L KiC(Ui,Vj) + J..LI = C(\~Vj)
i=l i=1

" m

L ;.l(vi,uj ) + L KiC(Ui,Uj ) + J..L2 =C(V,uj)
i=1 i=1

"
L'\·=1I

i=1

for j = I, n

for j = I, m

There are two unbias conditions, for a total of n +m + 2 equations.
The following equation gives the estimation variance:

" m

cr:k =C(V,V) + J..LI - L '\iC(Vi,v) - L KiC(Ui,v)
i=1 i=1

All of the cautions relating to interpretation and use of estimation
variance from kriging also hold in the case of cokriging. However,
estimation variance as an index of uncertainty is useful for gauging the
relative effectiveness of cokriging in reducing uncertainty.
As stated earlier, cokriging is generally used for estimating a variable
that is sampled sparsely in comparison to a secondary variable with
which it is correlated. At least one observation of the primary variable
must be included in the cokriging system of equations.
Interested readers might want to consult the papers by Myers (1982,
1983) for a general statement of cokriging in matrix form. He considers
the case where more than two variables are to be mapped, and no clear
distinction exists between primary and secondary variables. This might
be the case in which one variable was observed in one set of wells, and
a second variable in a different set of wells. In some areas, one or another
variable is undersampled.

4.3 MODELING A COREGIONALIZATION

Continuing with the most common case of a primary variable and one
secondary variable, the first step in cokriging is computing and modeling
a semivariogram for each variable. In addition, the cross-semivariogram
must be calculated and modeled. If more than one secondary variable is
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to be included, a cross-semivariogram must be computed for each pair of
variables, including the primary variable. If the total number of primary
and secondary variables equals n, there will be n(n +1)/2 semivario­
grams and cross-semivariograms to examine. This can become a lot of
work, and is thought to be the major drawback to cokriging by many
workers.
Consider also that for the set of semivariograms and cross-semivario­
grams to be positive definite, the following relationship must hold for
any variable j and k:

I'Yjk(h) I~ ~ ('Y/h) 'Yk(h»

This is most easily accomplished by using the linear model of coregional­
ization with positive definite coefficients. In words, this approach uses
the same nested model for all semivariograms and cross-semivario­
grams, differing only in the coefficients. For the two-variable case with
three nested structures, the models are:

'Yz(h) = al'YI(h) + a2'Y2(h) + a3'Y3(h)
'Y/h) = bl 'YI (h) + b2'Y2(h) + b3'Y3(h)
'Yz/ h) = cI'YI(h) + c2'Ylh) + C3'Y3(h)

For this model to be positive definite, the following must be true for
every i:

aj>O
bj>O

Icd < ~ (aib;>

Fitting these models can be tedious, but a few rules of thumb are
important and help in the modeling.
First, include only variables that are clearly correlated with the pri­
mary variable as determined from scattergrams or correlation
coefficient.
Second, do not overfit the semivariograms or cross-semivariograms.
Here is one place to remember that accurate models are needed only up
to the search radius to be employed. Also, screening effects limit the need
to find accurate semivariograms beyond typical well-spacing distances.
This is particularly true for the secondary variables, for which sampling
is the most dense. For most applications, a simple model with nugget
effect is probably sufficient. Three-dimensional data probably require
more complex models.
Start with fitting the semivariograms and then do the cross-semivario­
grams. Or, if you start with cross-semivariograms, work in an organized
and consistent fashion, checking for positive definiteness as you go. The
requirements for positive definiteness mean that any cross-semivario­
gram model must also appear in the semivariogram, but not all semi­
variogram models must have non-zero coefficients for all
cross-semivariograms.
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4.4 A SIMPLE EXAMPLE
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A set of artificial data was constructed to illustrate the undersampled
case and to suggest when cokriging has some advantage over ordinary
kriging of one variable. Two regionalized variables are sampled on a
regular grid (Fig. 4.1); one variable has been sampled at every node on
the grid, whereas the second was sampled at only 11 nodes. Estimates
are to be calculated at the center of each cell. From the configuration of
samples, one can see that some cells should yield good estimates for each
variable, whereas others should yield relatively high estimation vari­
ances for the undersampled variable.
The following semivariogram models were assumed for the two
variables. The fully sampled variable has a nugget effect of zero, sill of
1.8, and range of a spherical model equal to two units; the undersampled
variable has the same model with a sill of 1.1; and the cross-semivario­
gram has a nugget effect of zero, a sill of 1.4, and a range of two units.
This cross-semivariogram model has the highest value of the sill that
satisfies the requirement for positive definiteness.
The advantage of cokriging over kriging and the effect of semivario­
gram models on the results are examined through comparison of estima­
tion variances. One must use estimation variance as an absolute measure
of error with caution. Kriging variance can represent little more than an
index of sample configuration. However, using estimation variance for
the purpose of comparison is appropriate.
Estimation variances were calculated for the undersampled variable
through kriging (Fig. 4.2) alone and cokriging (Fig. 4.3). In well-sampled
cells, such as that in the extreme lower left, the reduction in estimation
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Figure 4.1 Sample locations for two regionalized variables; grid nodes have
been sampled for one (open circles) or both variables (large closed circles).
Small closed circles show locations where estimates are calculated.
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Figure 4.2 Estimation variance of the undersampled variable obtained by
cokriging with a relatively large cross-covariance.

variance from 0.560 to 0.475 is small. In contrast, the upper left-hand cell
shows a reduction from 1.223 obtained by ordinary kriging, to 0.485 by
cokriging. In general, the effect of cokriging is to reduce all the estima­
tion variances to a relatively small value averaging 0.48.
With such a high cross-covariance between the variables, the secon­
dary variable can be virtually substituted for the first. When cross­
covariance equals zero, cokriging gives the same results as kriging. Most
real-world cases are somewhere between these two extremes.
Consider now the case when the cross-semivariogram has a sill of 0.55
and semivariograms remain unchanged. The gain in cokriging is now

o o o o •
1.223 0.875 0.866 0.863

o o • o o

0.875 0.623 0.875 1.202

o

•

•
0.618 0.863

o

o

o

o
1.189 0.872

o

o

•
0.560 0.849 0.860 0.560

• • o • •
Figure 4.3 Estimation variances obtained by kriging the undersampled
variable.
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Figure 4.4 Estimation variances obtained by cokriging in the presence of low
cross-covariance between an undersampled variable and a secondary variable.

much reduced, reflecting lower cross-covariance between the two varia­
bles (Fig. 4.4). Indeed, one might decide in such a case that the work
required in cokriging does not warrant the expected improvement in the
estimates.
Cokriging equations in matrix form are illustrated for the configura­
tion of three points that includes two fully sampled locations and one
undersampled location (Fig. 4.5). An estimate is to be calculated for the
point labeled V. Assume a model of coregionalization used earlier: sills of
1.1, 1.8, and 0.55 for the undersampled variable, fully sampled variable,
and the cross-semivariogram, respectively; ranges of two units; and no
nugget effects.

o

Figure 4.5 Simple configuration of two fully sampled locations (closed
circles); an undersampled location (open circle); and a site for estimation
(square).
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The cokriging equations for the problem in Fig. 4.5 are:

~(V2,V2) f(V3,V2) f(U I,V2) f(U 2,V2) f(u y v2) 1 0 AI C(V,v2)

~(V2,V3) ~(V3,V3) ~(UI,V3) ~(U2,V3) ~(U3,V3) 1 0 A2 C\v,v3)

~(V2,UI) ~(V3,UI) ~(UJtUI) f(U 2,UI) ~(U3,UI) 0 1 KI C\v,ul )

f(V2,U2) ~(V3,U2) ~(UI,U2) ~(U2,U2) ~(U3,U2) 0 1 K2 C(V,u2)

C(V2,U3) C(V3,U3) C(U I,U3) C(U2,U3) C(U3,U3) 0 1 K3 C(V,u3)

1 1 0 0 0 0 0 f..LI 1
0 0 1 1 1 0 0 f..L2 0

Plugging in values gives:

1.1000 0.3437 0.1719 0.5500 0.1719 1 0 AI 0.5409
0.3437 1.1000 0.0639 0.1719 0.5500 1 0 A2 0.5409
0.1719 0.0639 1.8000 0.5625 0.2090 0 1 KI 0.2705
0.5500 0.1719 0.5625 1.8000 0.5625 0 1 K2 0.2705
0.1719 0.5500 0.2090 0.5625 1.8000 0 1 K3 0.2705
1 1 0 0 0 0 0 f..LI 1
0 0 1 1 1 0 0 f..L2 0

and the solution is:

AI 0.500
A2 0.500
KI 0.113
K2 - 0.072
K3 - 0.040
f..LI - 0.139
f..L2 - 0.001

4.5 INITIAL POTENTIALS AND CUMULATIVE PRODUCTION

Initial potentials and ten-year cumulative production figures have been
made available for about 452 wells producing gas from Devonian shales
in an area covering four 7.5-min quadrangles in southwestern West
Virginia (Columbia Gas System Service Corp., 1985).
In contrast to most of the data used in this book, these data are not
taken from public records. The company providing this information was
responsible for drilling, completing, and producing gas from these wells,
in addition to using the data for mapping. Although some wells were
shot or hydraulically fractured and other wells completed naturally, two
sources of variation - company and reporting practice - have been
eliminated, giving an above-average set of data.



Initial potentials and cumulative production 115

Both initial potential and cumulative production of gas after ten years
were available for 377 wells; initial potential was available for an
additional 75 wells. Over most of a four-quadrangle study area, well
control is sufficient for mapping cumulative production without the aid
of initial potentials. In some areas, wells were drilled almost exclusively
by other companies, and so cumulative production figures were not
available. Cokriging improves estimates of cumulative production across
these areas.
Using initial potential to estimate cumulative production conforms to
the common practice of using initial potentials to informally predict gas
production. Cokriging makes the procedure more explicit and objective
and exploits the positive correlation between these two variables (Fig.
4.6).
Semivariograms and the cross-semivariogram were fitted with a
spherical model having a range of 1.5 km and no nugget effect (Figs
4.7-4.9). Constants for the spherical models are:

Cumulative production: 20 000
Initial potential: 175 000
Cross-semivariogram: 27 000

A 36-krn2 area was chosen for evaluating use of cokriging cumulative
production (Fig. 4.10). Within this area, wells represented only by initial
potentials lie in a northwest-southeast band. Estimates of cumulative
production were calculated through both ordinary kriging and cokriging
at a O.l-krn spacing, and then contoured.
Estimation variance for kriged cumulative production (Fig. 4.11) re­
flects the poor well control over much of the area mapped. More than
half has variances exceeding 20 000 MmcP. Estimation variances for
cumulative production obtained through cokriging exceed 20 000 MmcP

600
13 • • ••E 500 ...
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c= 400 • • f.2
U
~
~ 300 •e •a.
Ql 200 ••.=: • •(;j • ••'3 •
E 100
~

c.> •
200 400 600 800 1000

Initial Potential (Mcfpd)

Figure 4.6 Scattergram of initial potential and cumulative production of gas.
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Figure 4.7 Semivariogram of initial potential of gas.

over less area (Fig. 4.12), but the improvement appears small. Within the
area of good well control, there is no improvement.
Maps of cumulative production after kriging (Fig. 4.13) and cokriging
(Fig. 4.14) are nearly identical in the southwest corner, where control for
both variables is good. As expected, the maps differ most in areas of poor
control on cumulative production. The map of kriged estimates shows
numerous artifacts of the estimation and contouring, caused by the short
range in the semivariogram, and the lack of wells. Adding several wells
in the north-central part of the area improves the estimates, but leaves
some artifacts where control remains poor.
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Figure 4.8 Semivariogram of cumulative production of gas.
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Figure 4.9 Cross-semivariogram of initial potential and cumulative
production.
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Figure 4.10 Locations of control wells used in cokriging cumulative
production. Initial potentials were available for all wells, cumulative
production for wells represented by open circles.
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Figure 4.11 Contoured estimation variances for kriged estimates of
cumulative production. Contour interval is 5000 Mmcf.
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Figure 4.12 Contoured estimation variances for cokriged estimates of
cumulative production. Contour interval is 5000 Mmcf.
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Figure 4.13 Kriged estimates of gas cumulative production. The contour
interval is 50 Mmd.

4.6 A STRATIGRAPHIC APPLICATION
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When drawing a structure contour map, the geologist may not have
good control in some areas because the datum is hard to pick from logs
or because the rock unit lies deeper than most wells. A shallower horizon
may be much better sampled because of its distinctive lithology or
because it is an important target for drilling. The geologist can use
elevations of the shallower unit if the interval between the two horizons
is thought to be roughly constant. Such a procedure can be formalized
through cokriging.
The top of the Upper Devonian shales in much of West Virginia can be
found easily on drillers' lithologic logs because of the presence of the
overlying Berea Sandstone. In areas where the Berea is absent, wire-line
logs are generally necessary to accurately pick the top of the shales.
The Greenbrier Limestone is a distinctive formation that occurs a
variable distance above the Devonian shales in much of West Virginia. In
the central part of West Virginia, the Greenbrier is about 2200 ft above
the top of the shales. Despite this thick interval of intervening rock,
elevation of these two formation tops are statistically correlated (Fig.
4.15). Data used in this example comprise of 2335 tops of the Greenbrier
Limestone, and 206 tops of the Devonian shales.
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Figure 4.14 Contoured estimates of gas cumulative production calculated
through cokriging. Contour interval is 50 Mmcf.
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Figure 4.16 Directional semivariograms of subsea elevation of the top of the
Greenbrier Formation. Directions are: (a) N 30 deg East; and (b) N 120 deg
East.

Wells used in this example are situated in an area of broad folds
oriented northeast-southwest. Consequently, directional semivariograms
for the top of the Greenbrier Limestone show definite anisotropy, with
the major direction equal to N300E (Fig. 4.16). The large number of data
available results in a relatively smooth semivariogram. Directional semi­
variograms for the top of the Devonian shales are more erratic because of
the relatively small number of data (Fig. 4.17). Cross-semivariograms are
intermediate in appearance (Fig. 4.18). The semivariogram for the top of
the Greenbrier Limestone was modeled first in order to provide some
guidance in modeling the other semivariograms.
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After a lot of experimentation and iteration, the linear model of cor­
egionalization decided upon includes two terms: an isotropic exponen­
tial model with a range of 100 m, and an anisotropic Gaussian model
with a range of 12 000 m along the major axis of N30oE, and 6000 m
along the minor direction. Let 1'1(h) stand for the exponential model,
'Y2(h) stand for the Gaussian model, 'YD(h) the model for the top of the
shales, 'YG(h) the model for the Greenbrier Limestone, and 'YDG(h) the
cross-semivariogram. The complete models are:

'Yo(h) = 2,500'YI(h) + 300,000Y2(h)
Yc(h) = 3,100YI(h) + 25,000'Y2(h)
Yoc(h) = 500YI(h) + 80,000Y2(h)
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Figure 4.17 Directional sernivariograrns of subsea elevation of the top of the
Devonian shales. Directions are: (a) N 30 deg East; and (b) N 120 deg East.
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Figure 4.18 Directional cross-semivariograms between elevation of the top of
the Greenbrier Formation and elevation of the top of the Devonian shales.
Directions are: (a) N 30 deg East; and (b) N 120 deg East.

For an area 10 km by 10 km, subsea tops of the Devonian shale and the
Greenbrier Limestone were estimated through kriging, and the top of the
shales through cokriging. The Devonian shale top (Fig. 4.19) shows a
broad syncline running from the northeast corner to roughly the south­
west corner of the map of kriged estimates. Well control in the western
part of the area mapped is relatively poor.
The kriged estimates of the top of the Greenbrier Limestone (Fig. 4.20)
shows the same synclinal structure and a much better well control. A
number of targeted gas reservoirs lie between the two formation tops
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Figure 4.21 Contour map of elevation of the top of the Devonian shales
calculated through cokriging. The top of the shales is known at locations
indicated by a closed circle. The top of the Greenbrier Limestone was
observed at all well locations posted. Contour interval is 100 ft.

considered here, and therefore many wells do not go as deep as the
shales.
The map of estimates from cokriging (Fig. 4.21) exhibits the same
fundamental structure as the kriged estimates, but the syncline appears
to be better defined in the south-central part of the map. Look at the
4300 ft contour line; it is blunt and ragged on the map of kriged
estimates. Cokriging appears to have eliminated an edge effect in the
northwestern corner of the map of kriged estimates. Although estimation
included wells outside of the area mapped, an area of sparse data in the
primary variable remained directly to the west of this corner.
A peculiar north-south structure lies in the western part of Fig. 4.21
which one would probably investigate further before accepting.

4.7 KRIGING WITH EXTERNAL DRIFT

Picture the case in which the secondary variable is known everywhere in
the study area, such as the travel time to a horizon in seismic data.
Hence, we know the value of this variable at every node on an arbitrary
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grid, as well as at locations where the primary variable was measured.
The primary variable in our example is depth to the same horizon;
because these depths are observed directly in wells only, we want to use
the complete coverage provided by the seismic data to supplement our
measured depths during estimation.
Kriging with external drift is a linear estimator like all we have
looked at so far (Galli and Meunier, 1987):

II

Zk' = 2: A.jZ;
;=1

The divergence from ordinary kriging comes in the system of
equations:

II

2: A./:(v;,vj ) + J.L1 + J.LzY(V) = C(vj,v) for all j = 1,n
]=1 II

2: A.j = 1
II j=1

2: A.jy(vj ) = y(V)
j=1

Notice that there is only one set of weights; the secondary variable is not
used in estimation directly, but rather shows up in one of the constraints.
This system of equations is a special case of methods such as universal
kriging that attempt to account for trend in the data through
polynomials.
The external drift method requires two sets of data. The first is the
value of both the primary and secondary variables at each well location.
The second is a grid of values of the secondary variable which matches
the locations at which the primary variable is to be estimated. The user
must also provide a semivariogram for the primary variable. This
method requires neither a semivariogram for the secondary variable, nor
a cross-semivariogram.
The following example of kriging with external drift uses seismic and
well data to estimate porosity in a siltstone reservoir within the west
Texas Permian basin. The data were studied previously by Chambers et
ai. (1994), and were provided by the senior author of that paper.
The goal is to estimate average porosity in a siltstone over an area of

10 000 by 10 000 ft. Porosity was observed in 55 wells. Chambers et ai.
(1994) describe acquisition and scaling of the acoustic impedance data
between - 1 and O. The complete data set was sampled to give an 86 by
86 node grid for estimation of porosity using acoustic impedance as an
external drift.
The 55 values of porosity are barely enough to yield a variogram (Fig.
4.22), to which a spherical model was fitted with a range of 3 000 ft, and
sill of 2%2. Kriged estimates of porosity from the well data show broad
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Figure 4.24 Contoured grid of scaled acoustic impedance values.
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Figure 4.25 Contoured estimates of porosity calculated through kriging with
external drift, with acoustic impedance as the drift variable. Contour interval
is 0.5%.
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trends such as the high values in the northeast corner of the area
mapped, and an east-west low in the center of the map (Fig. 4.23). The
map of acoustic impedance (Fig. 4.24) was drawn directly from the grid
of values provided, and suggests some detail on a scale smaller than that
of the well spacing.
The contour map of porosity estimated by the external drift method
(Fig. 4.25) uses the same contour interval as the map of kriged estimates.
Kriging with external drift has added some complexity, local trends
follow those in acoustic impedance in many places, and porosity is less
smoothed. The histogram of estimated values of porosity by ordinary
kriging looks very similar to that for porosity calculated with the help of
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Figure 4.26 Histograms of gridded values of porosity calculated by (a)
ordinary kriging, and (b) kriging with external drift.
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the seismic data, but note that the latter histogram is heavier in the tails
(Fig. 4.26).

4.8 COLLOCATED COKRIGING

It should be obvious that standard cokriging can be used for improving
well data such as porosity with seismic information. The fact that seismic
data are sampled densely in comparison with well data, combined with
the screening effect of kriging, means that few values of the secondary
data need to be used in the cokriging equations. Only the value of the
secondary variable closest to the grid node being estimated receives very
much weight. If the grid for estimation corresponds to that on which the
secondary variable is sampled, the grid nodes are collocated.
This observation means that the cokriging equations can be sig­
nificantly simplified by including neighboring values of the primary
variable, and only one collocated value of the secondary variable. A
further simplification for the practitioner is possible when the cross­
covariance between the two variables is equal to the product of the
covariance for the primary variable and the correlation coefficient be­
tween the primary and secondary variables, scaled by the variance of the
two variables:

where Cy(O) and Cz(O) are variances, and Pzy is the correlation coefficient.
Hence, only the semivariogram for the primary variable needs to be
modeled; the cross-semivariogram is obtained through this equation.
The practitioner should check that the resulting cross-semivariogram
model adequately fits observed values. Collocated cokriging is de­
scribed by Xu et al.(1992); and an example appears in Chu et al. (1994)
and Bashore et al. (1994).
One advantage of collocated cokriging over a full cokriging is that
seismic data can display a high degree of continuity. As a result,
cokriging equations are approximately singular and become unstable.
Utilizing only a collocated value of the secondary variable avoids this
problem.

4.9 DIFFICULTIES AND SOLUTIONS

4.9.1 Noncoincident well locations

Primary and secondary variables may be sampled at a different network
of sites. This can happen when a set of data is constructed from multiple
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samplings. Take, for example, the case in which porosity is available
from one set of wells, permeability from another. In this situation, the
conventional cross-semivariogram cannot be computed because it re­
quires the variables to be sampled at some of the same locations. This is
an extreme case. In others, the number of coincident samples might be
too small for a cross-semivariogram to be calculated.
The pseudo cross-semivariogram was proposed by Clark et al. (1989)
as a substitute for the usual estimator of covariance between two
variables:

1
A~y(h) = -- 2: [z(x) - y(x; + h)]2

2n(h)

A number of authors have suggested alternative definitions of the
pseudo cross-semivariogram, looked at the properties of this statistic,
proposed ways of modeling it, and examined its appropriateness in
cokriging (e.g. Myers, 1991; Papritz et al., 1993).

4.9.2 Too many variables

The most time-consuming part of cokriging is computing and modeling
n(n + 1)/2 semivariograms and cross-semivariograms. This task becomes
very tedious for n greater than 3. Unlike ordinary kriging, where the
model only needs to fit the experimental semivariogram to a reasonable
degree, cokriging requires that all of the cross-semivariograms obey the
inequality constraint. The simplest solution is to drop some of the
variables, namely those that show little statistical correlation with the
variable of interest.
Davis and Greenes (1983) present a way of cokriging without having
to model cross-semivariograms. Briefly, their method begins with an
initial orthogonalization of the variables through principal components
analysis. For each of the new variables, one computes and models a
semivariogram. Ordinary kriging of the transformed data is followed by
a back-transform to the original units. Computations can be performed
with programs for ordinary kriging along with subroutines for
eigenvector analysis and matrix multiplication.
This procedure depends upon the transformed data having no spatial
cross-covariance; this can be checked by computing the cross-semivario­
grams. Wackernagel (1995) summarizes the major approaches to geo­
statistical analysis of multivariate data.

4.9.3 Secondary variables insufficiently weighted

Cokriging can sometimes give results that appear nearly identical to
those obtained through ordinary kriging, as though the secondary
variable was ignored. The secondary variables can be given more weight
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by imposing a different nonbias condition. Take the simple case of a
single secondary variable. If the observed values of the secondary
variable are adjusted such that their mean equals that of the primary
variable, then the cokriging estimate is calculated from:

n In

Z~k = .2: AjZ j + .2: K/Yj - mz - my)
1=1 )=1

where mz is the mean value of the primary variable, and my is the mean
of the secondary variable. The nonbias condition is now:

n

Yet another approach is to go without nonbias conditions altogether.
Simple cokriging requires that all variables be adjusted to a mean of
zero. All three methods are available in the GSLIB software of Deutsch
and Journel (1998).

4.10 SUMMARY

Mutual behavior of two or more variables in space - a coregionalization
- can be used to obtain better estimates of a given variable than if that
variable is estimated alone. Cokriging estimates a regionalized variable
from two or more coregionalized variables, and is useful when a primary
variable is undersampled relative to secondary variables.
Cokriging requires semivariograms for both the primary variable, and
each of the secondary variables. In addition, one must calculate and
model cross-semivariograms between all variables. Modeling is often
tedious and difficult because of the requirement for admissibility. The
linear model of coregionalization helps this process along providing
several simple rules are obeyed. The advantage of cokriging can dis­
appear in the presence of large nugget effects in semivariograms, low
cross-correlation, or large range in the undersampled variable relative to
sample spacing.
Kriging with external drift and collocated cokriging are methods
related to conventional cokriging. The first is used when values of a
secondary variable are available on a grid. Collocated cokriging is used
when the grid of values to be estimated coincides with that of the
secondary variable, and only a single coincident value of the secondary
variable is used with the primary variable for estimation at each location
on the grid. Both methods are appropriate for drawing maps of structure
or porosity, in which well data are sparse in comparison with a grid of
data obtained through a 3-D seismic survey.
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Common problems with cokriging are noncoincident sample locations
across variables, several secondary variables, and an apparent under­
weighting of the secondary variables during estimation. The first prob­
lem can be handled with the pseudo cross-semivariogram. The number
of variables can be reduced through principal components analysis.
Rewriting the cokriging equations increases the weight given to the
secondary variables during estimation.
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CHAPTER 5

Nonlinear estimation:
disjunctive and lognormal

kriging

Linear estimation through ordinary kriging provides local averages of a
regionalized variable, and calculated estimation variance gives some
idea of the expected precision of the estimates. However, some applica­
tions may call for knowledge of local spatial distributions. Placing
confidence intervals around local estimates; stating the probability that a
regionalized variable lies below, between, or above some values; com­
puting mean values of a variable above a cutoff; drawing a map of
estimated local medians rather than estimated local averages; and han­
dling extreme values in markedly nonnormal data all require considera­
tion of local distribution.
At first, estimation variance reported by most kriging programs seems
to provide a confidence interval about the estimate. However, kriging
variance gives a proper confidence interval only under condition of
multivariate normality (Journel, 1986); we have observed in previous
chapters the rarity of univariate normal distributions. Simple transforms
can fit data to a univariate normal distribution, but they cannot guaran­
tee multivariate normality, and correct back-transforms are needed.
These back-transforms can themselves require specific distributional
assumptions, and can be numerically unstable. Kriging variance of a
linear estimate might only represent a measure of the goodness of local
sample distribution (Journel, 1986).
Drawing a map of local averages may not answer the question asked
by the geologist. A map of initial potential shows locations of high and
low interpolated values, but gives a very poor impression of the proba­
bility of drilling a well above some value. Presence of a few very high
values tends to inflate local averages, and simple interpolation gives a
misleading impression of the chance of drilling a well with high initial
potential. Because of the highly skewed distribution of initial potential,
most observed values are very low. Rather than the map of average or
interpolated initial potential, a geologist might consider an isoprobability

M. E. Hohn, Geostatistics and Petroleum Geology
© Kluwer Academic Publishers 1999
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map, which shows the probability that initial potential is greater than
some threshold at any given location in a region.
Finding local spatial distributions is also necessary for calculating the
average value of a regionalized variable above or below a specified
cutoff. For instance, one may want to know average thickness of a
reservoir sand where it is thicker than some minimum required as an
indicator of economic production. When an area is being considered for
exploration or development, well control is sparse and ordinary linear
estimates are highly smoothed. Thus, no area may appear to have a sand
thickness greater than the selected threshold except for very small areas
around the control wells. Linear estimators do not reproduce the degree
of local variability reflected in control wells.
An average might not be the best measure of central tendency; in some
cases the median is more useful and closer to what the petroleum
geologist wants to measure and express. Sometimes, the median comes
closer than the average to the geologist's idea of 'typical'. Maps of
median values provide an obvious alternative to maps of averages or
hand-drawn interpolations.
Extreme values pose a difficult problem in that they may persist even
after a transform, suggesting that they belong to a population other than
the one under analysis. Very large production values may be trimmed
from the data set, but this trimming makes some assumption about the
distribution of the main population, and the trimmed values may
contain the most valuable information. Untrimmed, these extreme values
can inflate the apparent extent of highly productive areas.
Several avenues exist for computing local estimates for contouring that
allow some kind of probabilistic judgments. In this chapter we consider
two methods, disjunctive and lognormal kriging. Both involve a trans­
formation of raw data to a normal distribution, modeling semivario­
grams computed from transformed data, and solving kriging equations,
but differ in how the transform is done, and how kriging results are
back-transformed to the original scale. Disjunctive kriging is described
below in some detail because it includes an important step: calculation of
normal scores from raw data. Lognormal kriging are discussed briefly,
just enough to show its potential usefulness, and to point out the hazard
of incorrect back-transformation.

5.1 DISJUNCTIVE KRIGING

Disjunctive kriging comprises four main steps: (1) normalizing raw data,
(2) computing and modeling a semivariogram of normalized data, (3)
calculating coefficients, and (4) estimating local averages and frequency
distributions. After outlining the method, I present an example using the
initial potential data from Barbour County.
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5.1.1 Methodology

5.1.1.1 Overview
Central to disjunctive kriging is transforming sample values Z in a space
S' to normalized values y in a space 5". Whereas the data can have any
probability distribution, including the normal distribution, values y have
a normal distribution with a mean of 0 and variance 1. Values in 5' and
5" are related through a function <!>:

Z = <!>(y)

which is expressed as a linear combination of an infinite number of
Hermite polynomials:

<!>(y) = 2: CJik(Y)
k=O

where Hk(y) is a Hermite polynomial of order k, and each Ck is a
coefficient calculated from sample values. A value Zi has coordinates
CJik(Y) in space 5', and its corresponding value Yi has coordinates Hk(y)
in space 5". An estimate y'dk has coordinates Hkv in 5". Each coordinate is
a linear combination of corresponding coordinates of sample values,
i.e.

"
Hkv = 2: ),)ik(Y)

i=1

The estimate Zdk in 5' is calculated through:
K

Zdk = 2: C~kv
k=O

The following sections present disjunctive kriging in some detail
through the three steps of transforming raw data to normal scores, com­
puting a semivariogram, and estimation, including back-transformation.

5.1.1.2 Normal scores transform

Given n values Zi' sorted in increasing order from ZI to z", the number of
values of Zi less than or equal to a value Zo equals io' and the estimated
probability that Zi is less than or equal to Zo is (io - O.5)/n. The observed
values are sorted, and a value Pi is calculated for each Zi. From a table of
the cumulative distribution of the standard normal variate, the corre­
sponding value of Yi is found for each Pi. This procedure can be carried
out graphically (Fig. 5.1), or from a table of the standard normal variate,
or more likely, with a computer program such as that in Kim et al., 1977;
Yates et al., 1986, or GSLlB (Deutsch and Journel, 1998). The normal
scores transform is an important step in other geostatistical techniques,
such as sequential Gaussian simulation (Chapter 6).
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Figure 5.1 Graphical transformation of raw data to a normal distribution.

The estimation stage is going to require us to represent the transform
4> with a linear combination of Hermite polynomials

4>(y) = L CPk(Y)
k=O

In practice, this transformation is approximated through a finite number
of terms:

k

4>(y) = L CPk(Y)
k=O

where Hk(y) is calculated from the relationships:

Ho(Y) = 1
H1(y) = Y

H k+1(y) = yHk(y) - kHk_1(y)

Coefficients Ck are calculated through Hermite integration:

1
Ck = ------------

I 2

[k! ~ (21T») L w/Y,/2)4>(Yj)Hhj)
j=!

where k = I, K. Values of wj are given by Rendu (1980) and Abramowitz
and Stegun (1970), and are imbedded in any computer program, along
with a value for J. Values of 4>(Yj) are computed through the inverse of
the procedure described above for obtaining normal scores.
The user must specify the number of terms K in the expansion that
affect accuracy of the transformation. With increasing K, the fit between
raw data and 4>(y) improves. Goodness of fit for a given number of
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coefficients depends on the shape of the raw data distribution; complex
or skewed distributions require more coefficients than approximately
normal distributions. Rendu (1980) points out that the important factor
should be accuracy of estimation, not goodness of fit to the function <1>; he
uses ten coefficients in his example.

5.1.1.3 The Semivariogram of transformed data

Autocorrelation among normalized data must be modeled for the esti­
mation step. Stationarity is an important assumption in disjunctive
kriging. The user simply graphs the semivariogram of the normalized
data; because the values have a variance of 1, the sill should equal 1, and
the autocorrelogram P(h) has the relationship

p(h) = 1 - }/(h)

5.1.1.4 Estimation

Once sample values have been normalized and coefficients calculated,
estimation is straightforward. For each value of k > 0, one must solve a
system of m linear equations:

m

.2: A/pi = (p;)k
]=1

for i = 1, m

where m equals the number of sample values Y i in the neighborhood of
the location to be estimated; Pij is the value of P(h) between sample i and
sample j; and Piv is the value of P(h) between sample i and the point to be
estimated. Weights A are used in the equation:

n

H/a, = 2: A!ik(Y)
i=l

to give the kth coordinate of the normalized block estimator in the space
S". Using the Hermite polynomial approximation to <1>, the disjunctive
kriging estimate is simply:

Because K + 1 systems of equations must be solved, run-time efficiency
requires that K be kept to a minimum. However, for large K, values for
Pij and Piv approach zero, and kriging weights also tend to zero. There­
fore, large values of K are unnecessary.
An important output from disjunctive kriging is a local frequency
distribution, which is said to be conditioned on the local, available data,
and provides such information as the probability that the regionalized



Example: initial potential 139

variable exceeds a given value. Recall that this kind of information can
be computed from the estimate and estimation variance given by ordi­
nary kriging, but to use estimation variance requires the assumption of
multivariate normality that is untestable, perhaps unrealistic, and un­
likely for many univariate distributions. The local frequency distribution
is calculated from the following:

K

Pdk(zc) = 1 - G(y) - e<-Y;/2l / J(271") 2: [Hk_1(y)/k! Hkv ]
k=1

where Pdk(zc) is the probability that an estimate exceeds a cutoff zc' and
G(yc) is the Gaussian cumulative distribution function.
In summary, disjunctive kriging looks to the user much like ordinary
kriging with the addition of an initial step to transform data, requiring
selection of the number of coefficients to use. Output from this step
includes normal scores and a set of coefficients. From the normal scores,
the user computes a semivariogram and fits a model. Input to the
estimation procedure comprises normal scores, coefficients, and the
semivariogram model. The user obtains as output an estimate, and
optionally probabilities of exceeding specified cutoffs of the regionalized
variable.

5.2 EXAMPLE: INITIAL POTENTIAL

A data set comprising 674 values of initial potentials of gas in Barbour
County, West Virginia, shows far from a normal distribution (Fig. 5.2).
Individual values range between 10 and 16022 Mefpd. Values in Fig. 5.3
are normal scores as calculated using 18 coefficients. Although the
distribution is not ideal, transformed data (Fig. 5.3) approach a normal
distribution, and is certainly much better than the skewed distribution of
the raw data.
One can judge the efficacy of the transformation from the first several
moments of transformed data. Data plotted in Fig. 5.3 have a mean of
- .002, a variance of 1.03, and a skewness of - .058, reasonably close to 0,
1 and 0, respectively.
The mean of initial potential calculated with the Hermite model,
1243 Mefpd, is within 0.3% of the actual value of 1239 Mefpd. The
variance given by the model, 2438421 Mcfpd2, is within 4.3% of the
observed value, 2549088 Mcfpd2. Theoretical values for the mean and
variance are given by:
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Figure 5.2 Histogram of gas initial potentials in Upper Devonian rocks of
Barbour County, West Virginia.

Rendu (1980) suggests that ten coefficients are far more than adequate,
a conclusion borne out in part by the small absolute values beyond the
first several terms in Table 5.1. On the other hand, inspection of Fig. 5.3
shows that even 18 coefficients appear inadequate for a fully satisfactory
transformation. Others have reported difficulties in obtaining an accurate
fit for highly skewed data and see this as a drawback to disjunctive
kriging.
The sernivariogram of initial potentials in Barbour County (Fig. 5.4)
displays the same large nugget effect noted in Chapter 2. An exponential
model with a range of 1.5 krn, constant of 0.56 Mcfpd2, and nugget effect
of 0.54 Mcfpd2, provide a good fit to observed values. Note the overall
sill does not equal the variance of 1. This can happen if there exists a
trend in the data, or if only part of the variogram is plotted and modeled.
Although disjunctive kriging requires stationarity, these data do not
appear trended sufficiently to discourage use of the method.



Example: initial potential

180

160

140

120

!!l

~ 100
'0
Qj
.Q 80E
::l
Z

60

40

20

0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Normalized Initial Potential

Figure 5.3 Histogram of normalized values of gas initial potential.

Table 5.1 Ten Hermite coefficients for
Barbour County initial potential data

Co 1242.79 Cs - 12.76
Cj 1245.00 C6 - 3.39
C2 590.81 C7 - 0.01
C3 148.34 Cs 0.05
C4 70.25 C9 - 0.06
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The map of initial potentials computed through disjunctive kriging
(Fig. 5.5) looks similar over much of the area to that obtained from
ordinary kriging (Fig. 3.14). As before, the grid has 91 rows by 91
columns, providing an estimate every 0.11 krn, much finer than the
sample spacing. To eliminate edge effects, wells outside the mapped area
up to a distance equal to the practical range, 4.5 krn, were included with
wells falling within the area to be mapped. The similarity of the two
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Figure 5.4 Semivariogram of normalized values of initial potential.

maps should not surprise us; ordinary kriging has often been found to be
insensitive to lack of normality, except where large data spikes occur.
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Figure 5.5 Contour map of initial potentials estimated by disjunctive kriging.
Units are thousands of cubic feet per day (Mcfpd). The contour interval is
irregular.
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Indeed, the map of ordinary kriged estimates seems to have larger spikes
around the locations of very high-volume wells.
The problem with ordinary kriging is in trying to obtain exceedance
probabilities, such as the probability of exceeding a given volume of gas.
Disjunctive kriging gives these probabilities explicitly, without having to
compute an estimation variance. Hence, at specified locations, we can
draw a graph showing the probability that initial potential falls within
given intervals, or a cumulative frequency graph for exceedence proba­
bilities.
At each location, disjunctive kriging was used to compute the proba­
bility of exceeding each of nine values for initial potential: 198; 327; 467;
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Figure 5.6 Results from disjunctive kriging at location 'A' in Fig. 5.4. (a)
Conditional cumulative distribution function; (b) histogram of relative
frequencies.
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Figure 5.7 Results from disjunctive kriging at location 'B' in Figure 5.4. (a)
Conditional cumulative distribution function; (b) histogram of relative
frequencies.

600; 792; 986; 1200; 1561; and 2477 Mcfpd. These values break up the
distribution of initial potentials into deciles. Results are shown for two
locations designated'A: and 'B' on Fig. 5.5, representing spots with low
and high estimated initial potential, respectively. Note that like the
overall data distribution, these locally conditioned frequency distribu­
tions are skewed, and histograms in Figs 5.6 and 5.7 have a spike for the
region above 2000 Mcfpd. Comparing these two figures, we see that the
center of mass at location 'A: is less than 1000 Mcfpd, whereas the same
at location 'B' exceeds that rate. In addition, the histogram at location 'B'
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Figure 5.8 Scattergram comparing results of disjunctive kriging using ten
Hermite polynomials with kriging using five coefficients.

has a relatively long tail; the probability that initial potential exceeds
2000 Mcfpd is almost 50%.
One of the problems I experienced was in selecting the number of
coefficients to use. A reasonable fit between the raw data and the
theoretical distribution was only achieved with a minimum of 18 coeffi­
cients. Yet, the program I was using to carry out the actual kriging could
handle no more than 10; including more than that resulted in attempts to
divide by zero. Previous authors have stated that few coefficients are
actually needed for estimation, and so, because the Hermite polynomials
are orthogonal, I could simply use the largest 10 coefficients for the
kriging stage.
This poses the question: did I lose much by reducing the number of
coefficients? To find out, I computed kriged estimates using five coeffi­
cients, and obtained results virtually identical to those in Fig. 5.5.
Estimates given by using five coefficients are nearly equal to those
obtained by using 10 coefficients (Fig. 5.8). Dropping down to three
coefficients appears to cause a conditional bias in the results; larger
values of initial potential are underestimated, smaller values are overesti­
mated (Fig. 5.9). Even so, mapped estimates change little when the
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Figure 5.9 Scattergram comparing results of disjunctive kriging using ten
Hermite polynomials with kriging using three polynomials.

number of coefficients is as few as three (Fig. 5.10). Table 5.2 shows the
effect of the number of coefficients on conditional probabilities. It
appears that 10 coefficients are far more than necessary for these data.

5.3 LOGNORMAL KRIGING

Taking the logarithms of the initial potential data yields close to a normal
distribution (Fig. 5.11), suggesting that this might be a useful transform
for kriging. Lognormal kriging has been around for several decades, and
has many variants. The method consists of calculating logarithms, mod­
eling the semivariogram computed from transformed data, kriging, and
back-transforming to the original units. This back-transform is more than
simply taking the antilogs of kriged estimates, as explained in Chapter
3.
Using the Barbour County data once again, I found that an exponential
model with constant of 0.11, range of 1.5 km., and nugget effect of 0.10,
were found to fit closely th~ observed semivariogram (Fig. 5.12).
Kriged estimates computed for each point on a regular grid covering
the same 100 km2 region looked at before (Fig. 5.13) show the large
degree of smoothing one expects to find when the nugget effect equals
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Figure 5.10 Contour map of initial potentials estimated by disjunctive kriging
using three Hermite polynomials. Units are thousands of cubic feet per day
(Mcfpd). The contour interval is irregular.

Table 5.2 Comparison of disjunctive kriging results for differ­
ing numbers of coefficients at two locations. Numbers are
calculated probabilities of exceeding cutoff

Cutoff (Mcfpd)

198
327
467
600
792
986
1200
1561
2477

Location 'A'
3 Coeff. 5 Coeff.

0.98 0.98
0.82 0.83
0.73 0.74
0.66 0.67
0.56 0.56
0.43 0.43
0.30 0.30
0.19 0.19
0.10 0.10

Location 'B'
3 Coeff. 5 Coeff·

1.00 1.00
0.99 0.99
0.97 0.97
0.94 0.94
0.88 0.88
0.79 0.78
0.65 0.65
0.51 0.51
0.35 0.35

about half the sill. A map of well locations annotated with the initial
potentials shows the large variation among even closely spaced wells
(Fig. 3.15). Nevertheless, the map of kriged estimates shows trends in
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Figure 5.13 Contour map of initial potentials estimated by lognormal kriging.
Units are thousands of cubic feet per day (Mdpd), The contour interval is
irregular.

initial potential within the area mapped. Those needing the surface to
exactly honor the data might be out of luck, although as demonstrated in
earlier examples, if the grid is fine enough, the contour map will honor
each point. Of course, with such a large nugget effect, each well would
be surrounded by a bull's-eye.

5.4 SUMMARY

In this chapter we have considered the problem of estimating local
frequency distributions, which transcends simple estimation of local
averages. By estimating local frequency distributions, one can draw
maps of medians, probability of exceeding a cutoff value, and others.
Nonlinear estimation provides a means to such estimates, but at a
computational cost.
Disjunctive kriging begins with a transformation of sample data to
normality; the transformation function is approximated by a linear
combination of Hermite polynomials. Transformed data are used in
calculating a semivariogram and fitting a model. Estimation requires
solving K-l sets of equations, where K equals the number of terms in the
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Hermite expansion used to approximate the transformation between
normalized and raw data.
Fitting a set of Hermite polynomials to raw data generally does a good
job of approximating the mean and variance, but a plot of the frequency
distribution function calculated from the polynomials can look only
crudely normal. The main problem appears to be with the one or more
extremely large values that can occur in sets of highly skewed data such
as initial potential.
Estimation needs no more user intervention than does ordinary krig­
ing, although the computer must do a lot more work. The results include
not only estimates of local averages, but percentiles of local frequency
distributions.
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CHAPTER 6

Indicator kriging

Examples in the previous chapters used data that vary along a con­
tinuous scale. However, in many situations one is presented with nom­
inal data or with data that are more easily treated if converted to a
nominal scale. As a simple example of such an indicator variable, the
presence or absence of a show of gas may be represented by the two
values 0 and 1. Statistics such as success ratio assume a value for
economic threshold that may not be stated. A more explicit use of a
threshold appears in Kumar (1985), where fields had to exceed 1 million
barrels (159 000 m3) in recoverable reserves to be economical at 1979
prices. A continuous variable can be converted to an indicator variable
for a number of thresholds, yielding a new variable for each threshold
chosen; this procedure forms the basis for an important estimation
method described in the second part of this chapter.

6.1 ANALYSIS OF AN INDICATOR VARIABLE

To introduce the idea of an indicator variable, consider a map of
successful and dry wells (Fig. 6.1) adapted from an illustration in Kumar
(1985; Fig. 3). Kumar studied the northwest shelf of the Delaware basin
in New Mexico, a region that is generally densely drilled but has some
sparsely drilled areas. The Permian Age San Andres Formation, one of
three major oil-producing intervals in Kumar's study area, contains oil
accumulations in updip pinchouts zones with above-average porosity. In
addition, some structural anomalies are present in the study area. Areas
deemed prospective had low drilling density, were updip from estab­
lished fields, and contained a structural anomaly.
In Kumar's Fig. 3, each section with at least one test of the San Andres
Formation was shaded one color if all tests were dry and a second color
if at least one producer was drilled. To create a small set of data, I simply
laid a sheet of graph paper over Kumar's figure and read off coordinates
of successful and dry sections in a central area of about 65 km2• The
resulting sample distribution (Fig. 6.1) provides a close approximation to
Kumar's map. The intent was not to repeat Kumar's study, which stands
on its own, nor to provide a new interpretation.

M. E. Hohn, Geostatistics and Petroleum Geology
© Kluwer Academic Publishers 1999
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Figure 6.1 Locations of successful (solid circles) and unsuccessful oil wells in
the Delaware basin of New Mexico; data adapted from Kumar (1985).

Geostatistical analysis of the data set follows the same procedures
described in Chapters 2 and 3. Based on 333 values, the experimental
semivariogram conforms to an exponential model with a range of 1.33,
sill of 0.21, and nugget effect of zero (Fig. 6.2). The first three points of the
experimental semivariogram are calculated from 596, 873, and 1070
pairs, respectively. Each field in the study area is represented by numer­
ous samples. The number and spacing of the samples account in part for
the smoothness of the semivariogram. In addition, the data cannot
include any outliers because all values must equal 0 or 1.
The sill in Fig. 6.2 equals the sample variances, 0.21. The following
simple relationship holds true between the mean m and variance (12 of an
indicator variable:

Kriging an indicator variable does not result in values of 0 and 1, but
rather estimates along a continuous scale that generally lie between 0
and 1. In the present situation, linear estimates represent success rates for
blocks or predicted probabilities of success at points. Thus, linear estima­
tion from an indicator variable yields probabilities. A map of point
estimates (Fig. 6.3) clearly shows fields conforming to densely drilled
areas with at least one successful well per section. Surrounding these
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Figure 6.2 Indicator semivariogram for data in Fig. 6.1.

fields are haloes with lower values of predicted success, grading into
interfield areas of dry holes.
Drawing maps of success rates is one situation where the computer
possesses a clear advantage at all steps over hand contouring. Between
raw data presence and absence and the final map, one must calculate
frequencies at a point or a block. As this task is only practical through a
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Figure 6.3 Contour map of point-kriged estimates of success probabilities.



154 Indicator kriging

computer program, linear estimation is a reasonable path to follow and
provides the advantages of unbiased results and a measure of precision
in the form of estimation variance.
One of three basic considerations in Kumar's choices for prospective
areas, drilling density, is measured indirectly through estimation vari­
ance. The map of estimation variance or standard error (Fig. 6.4) may be
useful in finding areas adjacent to known fields with high estimation
variance and correspondingly low drilling density.
Kriging indicator variables is seen to be an exercise in defining the
limits of a field. Where wells judged successful by some criterion are
located near unsuccessful wells, field limits are sharply defined. Where
successful and unsuccessful wells lie some distance from each other, field
limits are rather more fuzzy, and better represented by a probabilistic
estimate as performed here. The criterion for success might be whether
the well was completed, or whether the well exceeds some threshold in
production, oil saturation, porosity, or reservoir thickness.
Pawlowski et ai. (1993) proposed an interesting use of indicator kriging
to solve the general problem of defining a field boundary for contouring
reservoir thickness of the oil column. Assigning wells within the field a
value of one, and wells outside a value of zero, they performed kriging
on this indicator variable. They multiplied kriged estimates of oil column
thickness by the probability estimates, giving a map showing a gradual
decrease in oil column thickness towards the limits of the field.

Figure 6.4 Contour map of standard error of estimated success probabilities.
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6.2 INDICATOR KRIGING WITH MULTIPLE CUTOFFS
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A number of issues in geostatistics can be boiled down to the basic
problem of computing a cumulative distribution function at a specific
location, conditioned on surrounding observations, i.e. computed from
observed values of the regionalized variable. Having a conditional
cumulative distribution function (ccdO, one can not only compute an
estimate, but also a confidence interval, and probabilities of exceeding
(or not exceeding) certain values. For a while, estimation variance
seemed to be the route to a ccdf, but it requires assumptions such as
multivariate normality.
The method of indicator kriging was proposed as a so-called non­
parametric estimation of regionalized variables. It has the advantages
that any distribution can be handled; it is easy to use; it gives exceedence
probabilities and therefore confidence intervals directly; it provides a
local ccdf from which at least two measures of central tendency are easily
calculated, mean and median; and it is robust to outliers.
Given a regionalized variable that is measured on a continuous scale,
assume that instead of a single threshold or cutoff, L cutoffs Z/ are applied
to the observed data, such that

i(x; ZI) = 1 if z(x) < ZI

oif not,
where z(x) is the value of a regionalized variable such as initial potential
OP) at location x. Thus, raw data are transformed into L new variables,
each taking on values of 0 and 1. Cutoffs are not necessarily imposed by
nature or a measuring device, nor necessarily suggested by the purpose
of estimation, such as mapping the frequency of wells with first-year
production above z. Although some cutoffs may be chosen to satisfy
some goal of the mapping, the main purpose is to obtain a reasonable
picture of the frequency of wells below or above each cutoff. The
proportion P of values below a cutoff z/ within an area or volume
equals

P(V; z) =~ Ii(x; z)dx
V v

With knowledge of P(V; z), one can compute the proportion of wells with
a value of the regionalized variable above cutoff z/:

proportion z(x) > z/ = P(V; z)

The proportion can be estimated from n observed values of z(x):

1 n

P*(V;z/) = - L i(xk;zl)
n k=1
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i.e. a simple arithmetic average of the indicator variable. In fact, V does
not need to be an area, but can be a point, in which case, the quantity
being estimated is the probability that the regionalized variable at a point
exceeds a given cutoff.
We know that spatially autocorrelated, probably clustered data should
not be treated as though they were independent; instead, they should be
weighted according to whether they lie in or near V, and according to the
spatial continuity of z(x), to give the estimate:

n

P*(V;z,) = 2: Ak(Z,)i(xk;z,)
k=l

with n weights Ak(Z/) corresponding to the number of points in the
neighborhood of V For each cutoff, a system of ordinary kriging equa­
tions is set up and solved for the weights. Each cutoff also requires
calculating, graphing, and modeling a semivariogram.
Although most of the computations in indicator kriging can be done
with computer programs for linear kriging, the work is most efficiently
carried out with programs written specifically for the method, such as
those in Deutsch and Journel (1998), particularly at the estimation stage.
Searching for samples within a neighborhood takes up a large proportion
of the computer time required in kriging. Therefore, all sets of equations
should be set up and solved after each search. Modifying an existing
kriging program or obtaining a program for indicator kriging has clear
advantages over simply running a standard program once for each
cutoff. Aside from a savings in time, a program for indicator kriging
must check for problems in order relations, described next.
Assume that the rank-ordered cutoffs are IZl < Z2 < Z3 < .. .ZL}; esti­
mated probabilities must obey the order relations:

P*(v;z/) ~ P*(V;Z/+l)

for all 1. Because the systems of equations are solved separately, proper
order relations are not guaranteed. Violations are usually minor and can
be corrected by using an approximation:

P**(V; z/) = Max IP*(V; z/), O}
P**(V; z[) = Max IP**(V; Z/_l)' P*(V; z[)}

P**(V; ZL) = Min IP**(v; zL)' I}

The first and third corrections ensure that the estimated probabilities lie
between 0 and 1. This procedure must start with the lowest cutoff. With
modification, this procedure can start with the highest cutoff. Finally, the
average of the upward- and downward-corrected values can be calcu­
lated, the approach used in GSLIB (Deutsch and Journel, 1998).
Ways of avoiding order relation problems include constraining
weights to be non-negative and using median kriging. Constraining the
weights requires special programming, and is not often implemented.
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Order relations occur when different semivariograms are used for each
cutoff; a single weighting scheme corresponding to the median cutoff
resolves this problem but also loses one of the advantages of indicator
kriging, i.e. the covariance models provide a more detailed description of
the spatial continuity of the variable than the one model corresponding
to the median. Rather than trying to avoid order relation problems, one
is probably better off using conventional indicator kriging and making
the required corrections.

6.2.1 Working with the cd£

The result of indicator kriging is a set of cutoff values, and an estimate of
the probability of not exceeding that cutoff. Depending upon the number
of cutoffs, these results give a more-or-less complete picture of the
expected value of the regionalized variable at a given location, and can
be graphed as either a conventional histogram or a cumulative distribu­
tion function. From this cdf, we can compute some measure of central
tendency such as a mean or median, and a measure of uncertainty such
as an estimation variance.
We can also draw several types of maps, including maps of the
probability of exceeding or not exceeding each cutoff. Because we want
to map an estimate of the regionalized variable at each location, we must
compute a mean in the following way:

L

Zik = 2: z'/[P*(V;Z/+1) - P*(V;z/)]
/=1

where z·/ is a central value of the interval [z" Z/+1]' This central value can
be set equal to the midpoint of the interval or to the observed mean of all
values between the two cutoffs. The lower and upper tails of the
distribution must be handled by one of several possible ways. Taking the
upper tail, for instance, one can use the midpoint between the uppermost
cutoff specified and the maximum value in the observed data. A hyper­
bolic model is useful for the upper tail in positively skewed data. By
adjusting constants in the hyperbolic model, one can control the length
of the tail and how quickly it declines.
An option provided in GSLIB is to use the observed data above the
upper cutoff to divide the interval between this cutoff and a specified
maximum value into several sub-intervals of equal probability. These
sub-interval probabilities must sum to that for the interval as a whole.
This approach of interpolating between tabulated quantiles can be used
for interpolating between cutoffs, and for the lower tail.
Percentile maps can be drawn from the conditional distribution func­
tion fitted at each grid node. For instance, the median can be found by
interpolating between za and za+1' where P'(V; z") is the highest value of
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p'(V; z/) less than 0.5. The same procedure yields a percentile for any
value; it is not limited to the 50th percentile. With appropriate choice of
percentages, we can compute and map upper and lower confidence
intervals.
Indicator kriging gives risk-qualified estimates without the assump­
tion of multivariate normality required for using estimation variances
from linear kriging. A desirable side-effect obtained from indicator
kriging is robustness of semivariograms and estimates to extreme values
in the regionalized variable. Because transformation from raw values to
indicator variables uses the rank order of the data, extreme values affect
only the number of cutoffs one wants to consider.

6.3 EXAMPLES

The case studies that follow illustrate semivariograms for indicator
variables defined by a number of cutoffs. In the first two examples, I stop
with the fitting of models; the third example uses the models and
indicator kriging to map initial potentials.

6.3.1 Initial potential in Barbour County

The 674 values of gas initial potential in Devonian clastics of Barbour
County, West Virginia, show no pronounced trends with direction.
Semivariograms were calculated for four cutoffs. These cutoffs and
percentages of values below each cutoff are as follows:

400 Mcfpd 25%
792 50
1399 75
2477 90

At the lowest cutoff, a nugget effect dominates the semivariogram (Fig.
6.5), which is described by an exponential model.

Nugget effect = 0.13
Constant = 0.D15
Range = 3 m

The other cutoffs were also fitted with exponential models and nuggets
effects. For cutoff 2 (Fig. 6.6) the following constants were used.

Nugget effect = 0.19
Constant = 0.10
Range = 3 km
Anisotropy ratio = 0.33
Major axis is north-south
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Figure 6.5 Directional semivariograms and model of gas initial potential in
Barbour County for the 400 Mcfpd cutoff. Directions are diamonds: north­
south; filled circles: northeast-southwest; squares: east-west; and triangles:
southeast-northwest. Dashed line shows the isotropic model.
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Figure 6.6 Directional semivariograms and anisotropic model of gas initial
potential for the 792 Mcfpd cutoff. Directions are diamonds: north-south; filled
circles: northeast-southwest; squares: east-west; and triangles: southeast­
northwest. The model represented by the long dashes is for the north-south
direction, the other for the east-west direction.

For cutoff 3 (Fig. 6.7):

Nugget effect = 0.11
Constant = 0.09
Range = 1.5 km
Anisotropy ratio = 0.5
Major axis is north-south
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Figure 6.7 Directional semivariograms and anisotropic model for gas initial
potential for the 1399 Mcfpd cutoff. Directions are diamonds: north-south;
filled circles: northeast-southwest; squares: east-west; and triangles: southeast­
northwest. The model represented by the long dashes is for the north-south
direction, the other for the east-west direction.

For cutoff 4 (Fig. 6.8):

Nugget effect = 0.07
Constant = 0.025
Range = 2 km (isotropic)

Semivariograms for the highest and lowest cutoffs have the largest
nugget effects relative to the constants for the exponential model. This is
not unusual for variables constructed through the indicator transform. In
this case, the observation can be interpreted as there being a background
level of gas accumulation throughout the study area. Superimposed on
this background are poorly-defined north-south trends in gas quantity
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Figure 6.8 Directional semivariograms and model for gas initial potential at
2477 Mcfpd cutoff. Directions are diamonds: north-south; filled circles:
northeast-southwest; squares: east-west; and triangles: southeast-northwest.
Dashed line shows the isotropic model.
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(spatial covariance is low). Several sweet-spots are more-or-Iess ran­
domly scattered across the area represented by these data.
Semivariogram models do not need to be understandable, nor explan­
atory. However, we can sometimes ask ourselves if the observed semi­
variograms and the models appear to make sense. It is possible to invest
a lot of time in modeling a semivariogram and constructing estimates,
only to discover that the computer program was reading the wrong data.
When carrying out a multiple-step procedure such as indicator kriging,
one should occasionally step back from the work at hand, and ask
whether the expected results are being obtained.
Kriging each indicator variable gives a separate map that is interpreted
to be the probability that initial gas potential will exceed that cutoff for a
new well (Figs. 6.9-6.12). Each map can look different from the others, in
part because semivariogram models differ in range, anisotropy, and
relative nugget effect. Indeed, maps for the 50th and 75th percentiles
have a more north-south trend than maps for the other two cutoffs.
Computed probabilities and midpoints of each interval were used as
described above to compute an estimate of initial potential across the
area mapped (Fig. 6.13). Trial and error showed that good results were
obtained when values above and below the minimum and maximum
cutoffs were computed by interpolating between tabulated quantiles as
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Figure 6.9 Probability that initial potential will not exceed 400 Mcfpd.
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Figure 6.10 Probability that initial potential will not exceed 792 Mcfpd.
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Figure 6.11 Probability that initial potential will not exceed 1399 Mcfpd.
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Figure 6.13 Contoured initial potential of gas from indicator kriging. Units
are thousand cubic feet of gas per day (Mcfpd). The contour interval is
irregular.
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described earlier. Comparing results of indicator kriging with ordinary
kriging of log-transformed data (Fig. 6.14) shows very similar maps.
Ordinary kriging of raw, untransformed data yields a measure of
estimation variance that is constant for a given spatial configuration of
data. Hence, maps of estimation variance, or estimation standard devi­
ation, consist of concentric circles around individual points, coalescing in
areas between points. Because indicator kriging provides a cdf at each
grid location, we can compute the lower and upper 16% quantiles, and
map this quantity. This quantity is like the estimation standard deviation
of conventional kriging. Results show that uncertainty in the estimates
depends not only upon data configuration, but also the values of initial
potential (Fig. 6.15). Notice how the estimation standard deviation
increases along trends to the northwest and to the southwest. Our
measure of uncertainty no longer shows those rather unbelievable
concentric rings around individual data points.
By the way, the estimation variance for lognormal kriging shares with
indicator kriging this property of dependence on data values. Unlike the
formula for estimation variance in ordinary kriging, that for lognormal
kriging includes the log estimate as a term. Why, then, not use lognormal

Figure 6.14 Contoured initial potential of gas from lognormal kriging. Units
are thousand cubic feet of gas per day (Mcfpd). The contour interval is
irregular.
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Figure 6.15 Contoured 'estimation standard deviation' of estimates of initial
potential calculated with indicator kriging. The contour interval is 1000 Mcfpd.

kriging? Indicator kriging makes few distributional assumptions, and
permits greater flexibility in modeling spatial dependence.

6.4 MEDIAN KRIGING

The flexibility and sensitivity that indicator kriging offers in modeling
spatial dependence comes with a cost: the number of semivariograms
that must be modeled, and the number of sets of equations that must be
solved. Median indicator kriging (Journel, 1983) has been proposed as a
practical shortcut for many data sets. Using this approach, one computes
and models the semivariogram for the median of the data. Kriged
estimates are still calculated for a number of cutoffs, but now the same
semivariogram model is used for all cutoffs, meaning that only one set of
equations needs to be solved.

If semivariograms calculated for a number of cutoffs are very similar,
median indicator kriging should give results very similar to indicator
kriging, and for the initial potential data, this is indeed true (Fig. 6.16).
Estimates illustrated in this map were calculated by using nine cutoffs
representing deciles of the data, and the anisotropic model for the
792 Mcfpd cutoff was used. The map of estimated initial potentials from
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Figure 6.16 Contoured initial potential of gas from median indicator kriging.
Units are thousand cubic feet of gas per day (Mcfpd). The contour interval is
irregular.

median indicator kriging appears to have somewhat more of a north­
south trend than the previous map. This is explained by the use of an
anisotropic model for all cutoffs. Obviously, median indicator kriging is
inappropriate if we were primarily interested in computing the probabil­
ity of exceeding, or not exceeding particular cutoffs. Semivariograms for
the higher cutoffs do not display noticeable anisotropy, and it would be
incorrect to use an anisotropic model for estimating such probabilities.
Interested readers might want to consult Goovaerts (1994) for relative
performance of methods for indicator kriging and Lajaunie (1990) for a
comparison with disjunctive kriging.

6.5 CUMULATIVE DISTRIBUTION FUNCTIONS

One of the interesting features of indicator kriging is that cumulative
distributions functions can take on very different, sometimes bizarre
shapes from place to place in a study area. In contrast, we assume
normal cdfs for ordinary kriging, and so, armed with an estimate and
estimation variance at a location, we must draw a normal curve to
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represent the cdf. For lognormal kriging, cdfs across our map have the
same general shape, but are skewed to a lesser or greater degree from
place to place. Disjunctive kriging is much the same; cdfs vary from
place to place in the mean and variance, with a corresponding change in
skewness.
Figures 6.17 and 6.18 compare cdfs for two locations: one with a low
estimate for initial potential (location A on Fig. 6.16), and one for a high
estimate (location B). The distributions can be viewed as cumulative
functions, or in histogram form. They show that the two cdfs differ in
both location and scale, and the one with the higher estimate has the
larger spread in values, characterized by a large tail that goes beyond the
interval graphed. In addition, neither cdf is normal, especially the one
with the higher average.
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location A in Fig. 6.16.
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location B in Fig. 6.16.

6.6 SOFT DATA

Some data - formation tops come to mind - can include both 'hard'
information, for which we know a value, and 'soft' information, for
which we know the true value lies within certain limits. Taking struc­
tural data as an example, we might know the top of a particular
formation in some wells, and the top of an overlying formation in others.
The first set of wells provide hard data, the second soft data. When we
draw a structure contour map, we would like to use all available data,
but we can only use the soft data very easily if we contour by hand. Most
computer programs cannot utilize soft data. Yet, we know that shallower
formation tops can provide constraints on the elevation of the top of the
formation of interest at some locations.
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However, indicator kriging provides a way out of this problem.
Because one must transform formation tops to a set of indicator variables
that specify whether the top is above or below each specified elevation,
soft data is easily incorporated in the analysis. Assume that we are
mapping the formation top in terms of distance below sea level. For all
subsea depth cutoffs less than total depth below sea level, we can record
a value for the corresponding indicator variable. For cutoffs greater than
total depth, we record a missing value that is not considered during
estimation.

6.7 FACIES MODELING

The spatial relationships between two or more sedimentary facies often
determine recovery efficiency within an oil field. In studies of reservoir
heterogeneity, determining vertical and horizontal distribution of perme­
ability plays an important role. In some cases, permeability is linked to
facies; for instance, low permeability shales within predominantly sand­
stone units can act as barriers to flow, or high-permeability sandstones
interbedded with low-permeability clastic sediments can lead to delete­
rious water breakthrough during waterflooding. In other cases, empirical
relationships between porosity and permeability can differ among litho­
logic units. Accurate prediction of permeability from porosity requires
determination of lithofacies.
Mapping lithofacies in a petroleum reservoir is an obvious application
of indicator kriging. The simplest case is when only two facies are
present. For example, the Granny Creek oil field described in earlier
chapters can be divided vertically into a lower, distal facies deposited in
distributary mouth bars. These intergrade with proximal mouth bar
sediments, overlain by fluvial channel deposits. In the original study,
four facies were identified from geophysical logs (Hohn et 01., 1997), but
for this example, I assigned the two most distal facies a value of one, and
the two proximal facies a value of zero.
Based on data from the entire field, semivariograms were fitted with
the following model (Figs 6.19 and 6.20):

~(
h2 h2.)
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Indicator kriging of a volume of the reservoir gives a set of probability
maps such as that in Fig. 6.21. This is the probability that the lithofacies
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Figure 6.19 Directional semivariogram of a facies indicator variable in the
horizontal direction. Dashed line shows model.

is the distal one. By assigning this facies to each coordinate where the
probability exceeded 0.5, a map like Fig. 6.22 results. Figure 6.23 repre­
sents the lithofacies at another level within the reservoir. Vertical slices
through the middle of the volume show the interfingering of the two
lithofacies (Figs 6.24, 6.25).
Most problems of this type require more than two lithofacies. If
lithofacies can be placed in some kind of order, conventional indicator
kriging is straightforward. For each coordinate in a volume, a predicted
lithofacies is assigned based on which one has the largest probability.
Given three lithofacies numbered I, 2, and 3, for instance, we can use
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Figure 6.20 Directional semivariogram of a facies indicator variable in the
vertical direction. Dashed line shows model.
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Figure 6.21 Contoured probability that rock at an elevation 2.5 m above the
base of the reservoir represents the distal facies. Solid circles are well locations.

indicator kriging as described above with two cutoffs, 1.5 and 2.5, gives
the probability that the lithofacies is equal to 1, equal to 1 or 2, or equal
to three. The difference between the first two probabilities gives the
probability that the lithofacies equals 2. The lithofacies with the highest
predicted probability would be assigned to each coordinate on a surface
or within a volume.

Figure 6.22 Facies map derived from Fig. 6.21. Black areas represent the
distal facies.
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Figure 6.23 Facies map at an elevation 4 m above the base of the reservoir.

Although ad hoc, this approach makes sense in many situations. Within
a clastic reservoir, for instance, lithofacies are often defined on the basis
of average grain size, and might range from shales, to shaley siltstones,
siltstones, silty sandstones and sandstones. These discrete categories in
fact represent a discretization of a continuum of rocks differing in grain
size, and are in a sense indicator variables with upper and lower cutoffs.
If we could quickly measure grain size in the well, true indicator
variables could be defined and mapped using straightforward indicator
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Figure 6.24 East-west cross-section of facies at northing 4263500.
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kriging. More often, geophysical logging tools are used to infer grain size
or rock type indirectly. This was the case for the data used in the
preceding example, in which rock types were determined from density
and gamma-ray logs (Hohn et al., 1997).
Dimitrakopoulos and Dagbert (1993) took a different approach; they
recognized similarities between mapping rock types and indicator krig­
ing, but viewed the problem as one having to do with rock types that
define proper subsets of the space or volume. They called their rock
types relative indicator variables. The method they proposed begins with
a set of rock types DK, ordered such that the space occupied by Dk is
contained within the space occupied by rock type Dk+1• Presence or
absence of rock type 1 is first estimated. Within the subspace that rock
type 1 is estimated to be absent, rock type 2 is estimated. Where rock
type 2 is absent within this subspace, rock type 3 is estimated. And so
forth. The advantage of relative indicator kriging is that order relations
are maintained. Obviously, results depend on the sequencing of litho­
types, and the effects of mis-specification - getting the sequence wrong ­
are unknown.
Soares (1992) defined an indicator variable as simply the presence or
absence of a given rock type, without any implication of ordering of rock
types. Spatial dependence is measured with a covariance or semivario­
gram, as usual, but with a difference. Semivariograms representing each
rock type are summed to give a multiphase variogram, which measures
the probability that locations x and x + h manifest different rock types.
Solving a single set of kriging equations yields a set of probabilities for
each rock type at each location.
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For a given location, one can assign the rock type having the highest
probability of occurrence. To preserve the overall proportion of litholo­
gies in a study area, a more sophisticated approach is probably needed.
Soares (1992) proposed a scheme in which the probabilities of each rock
type are sorted into descending order. If lithology k has a proportion p
among n locations, it is assigned to the p*n locations at which the
probability of lithology k exceeds that of all other lithologies. Dimitrako­
poulos and Dagbert (1993) used the same method for going from
probabilities to an allocation of lithologies.
Similarly, I could be more sophisticated in assigning my two litholo­
gies to each location, using the overall proportion of the distal lithotype
to determine a probability level for going from Fig. 6.21 to Fig. 6.22. This
proportion equals 0.14, the probability level exceeded by 14% of the
values equals 0.62; the resulting map has less of this lithotype than before
(Fig. 6.26).
Because the proportion of lithotypes changes from the top of the
reservoir to the bottom, it makes even more sense to compute a propor­
tion at each level of the reservoir, and use these proportions as thresh­
olding probabilities. Beucher et al. (1993) and Le Loc'h and Galli (1997)
used a vertical proportion curve in their work, and in fact extend the
concept to three dimensions.
The number of methods for estimating lithologic types is increasing. A
potential difficulty with many approaches is the assumption of an order
relationship among the facies. This assumption often makes sense for
facies based on grain size or environment of deposition. Although they

Figure 6.26 Facies map derived from Fig. 6.21, assigning the distal facies to
every location where the probability of this facies exceed 0.62.
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do not always require that transitions between facies are only between
adjacent facies within the order, it is not clear what the effect on the
results would be if, for example, a fluvial facies cut across several more
distal facies.
Rivoirard (1993) summarized the types of arrangements that can occur
among rock types, ranging from complete disorder to a strict ordering
with transitions. At the one end are mosaic models, in which there is no
requirement that particular rock types occur adjacent to each other, or
that there exists ordering or sequence of rock types. If one could travel
around the space occupied by the lithologies, as one left one lithology,
the new lithology could not be predicted. At the other end are his
diffusion models, in which there is not only a sequence of rock types,
but to travel from rock type i to rock type i + 2, one must travel through
rock type i + 1. Between these extremes are models in which there is a
sequence of rock types, but one can skip categories in the sequence while
traveling around the reservoir. Rivoirard gave examples of the semi­
variograms one might expect under these models, and the appropriate
analyses.
Rivoirard's diffusion model fits the cross-section shown in Fig. 6.27,
where rocks of the finest grain size are surrounded by rocks of slightly
coarser grain size, and so forth; transitions between lithologies are
smooth. In Fig. 6.28, there is a definite order of lithologic types, but
transitions can be abrupt. This is the picture we see in stacked, fining­
upward sequences typical of many fluvial deposits.

Figure 6.27 Hypothetical cross-section illustrating the diffusion model of
facies architecture. Not to scale.
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Figure 6.28 Hypothetical cross-section illustrating a model of facies
architecture less severe in requirements than the diffusion model of Fig. 6.27.
Not to scale.

6.8 PROBABILITY KRIGING

Consider the uniform transform:

y(x) = estimated probability [z(x) ;;:: zl
where the values y(x) are uniformly distributed in the interval (0, 1). For
n data, the quantity n·y(x) is simply the rank order of z(x). As in
nonparametric univariate statistical tests, geostatistics based on ranks are
robust to the presence of outliers and nonnormal distributions. Used in
conjunction with the transform to indicator variables, the uniform trans­
form leads to an estimator called 'probability kriging' (Sullivan, 1984;
Journel, 1985):

n n

P*(V;z/) = L Ak(z/)i(xk;z/) + L Kk(Z/)y(xk)
k=1 k=1

with

for each cutoff 1. This estimator utilizes a cokriging system of equations
of dimensions 2n + 2, and requires not only an indicator semivariogram
for each cutoff, but a semivariogram for the uniform transformation, and
a cross-semivariogram between transformed data and each indicator
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variable, to give a total of 2L + 1 semivariograms and cross­
semivariograms.
Other than the greater burden in modeling spatial continuity, this new
estimator requires the same computations as indicator kriging, including
the check for problems in order relations and subsequent adjustments.
Because the transform must be one to one, a step must be added when
duplicate values are present in the data. A frequent occurrence in
geological data is the presence of a 'spike' in the histogram below some
lower level of detection. Although one can remove such a spike by
assigning ranks at random, a more sophisticated approach exploits
spatial autocorrelation of the data. Given two data values that are equal,
this approach assigns the higher rank to the point surrounded by the
larger observed values. A program in Verly (1984) finds all samples
within a specified radius from a point and calculates a local average.
These local averages are used to break tied ranks.
Probability kriging represents an attempt to calculate estimates that
are less sensitive than indicator kriging to the choice and number of
cutoffs and estimates that more fully reflect local variability of the raw
data while maintaining robustness to outliers and nonnormality. In a
comparison of these nonparametric estimators, Sullivan (1984) graphed
estimated versus observed values for a number of cutoffs. One drawback
to indicator kriging occurs when sample spacing is nearly uniform and
approaches the range of the semivariogram for a given cutoff. Because
only a small number of samples lie within the range, a limited number of
possible 0, 1 outcomes, and therefore estimated values, are possible for a
given sample configuration. The result is a very noisy map for that
cutoff. The estimator employing rank order largely avoids this difficulty.
Sullivan also shows that indicator kriging yields smoother estimates than
does the more complex estimator. All kriging methods give smoothed
estimates such that the variance of the estimates is less than that of the
actual data: large values are underestimated, and low values are overesti­
mated. In general, one prefers to lessen the smoothing property of an
estimator while maintaining some robustness to extreme values. It can be
shown in theory and actual examples (Sullivan, 1984) that the variance of
estimates from probability kriging lies between those for indicator
kriging and ordinary kriging. As in any method of estimation, the degree
of smoothing depends upon the relative magnitude of the nugget effect
to the sill and the range.
I have not included detailed examples of probability kriging because it
consists of a simple extension of computational methods discussed in
this and earlier chapters, and results look similar to those from indicator
kriging. Sullivan's dissertation discusses both methods in detail, and
provides FORTRAN code for computing indicator semivariograms and
cross-semivariograms, indicator kriging, and probability kriging. FOR­
TRAN code for despiking is found in the dissertation by Verly (1984).
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GSLIB (Deutsch and Joumel, 1998) provides most of the tools for
probability kriging.

6.9 SUMMARY

An indicator variable takes on values of 0 or 1 depending upon the
presence or absence of a feature. Although a variable may be nominal a
priori, more often it results from a threshold applied to continuous data.
An indicator variable can be estimated and mapped like any variable;
results are probabilities of exceeding the cutoff.
The idea of applying a cutoff to continuous data can be developed
further to give nonparametric estimates of the full range of a continuous
variable. The geostatistician merely applies a number of cutoffs and
computes semivariograms and kriged estimates for each cutoff. For a
given locality, the result is a set of probabilities of exceeding each cutoff;
these estimates are used to construct local frequency distributions and to
construct mean, median, and isoprobability maps. The advantages of
nonparametric estimation include robustness to nonnormality and out­
liers. The principal disadvantage is the large number of semivariograms
that must be fitted if the number of cutoffs is large. However, one is left
in the end with a clear picture of the univariate and bivariate distribution
of a given set of data.
Median indicator kriging eliminates the chore of modeling several
semivariograms by using the model at the median for all cutoffs.
Probability kriging is a method that attempts to retrieve some of the
information lost by transforming data to a set of indicator variables.
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CHAPTER 7

Conditional simulation

In the past ten years, conditional simulation has come be used in analysis
and mapping of regionalized variables. An important advantage to the
geostatistical approach to mapping lies in the modeling of spatial
covariance that precedes interpolation; semivariogram models derived
from this step can make the final estimates sensitive to directional
anisotropies present in the data. On the other hand, the smoothing
property of kriging can also mean that one throws away detail at the
mapping stage.
In earlier chapters, I argue that the smoothing property of kriged
estimates in the presence of a large nugget effect can be desirable when
the geologist wants to estimate reserves. In other situations, the geologist
may want to enhance extreme values, emphasize directional aniso­
tropies, and otherwise exploit the fine-scale variation in data. In the place
of local estimates with minimal estimation variance, the geologist wants
a map that honors observed values of the regionalized variable, has the
same degree of fine-scale variability as the observed data, and obeys the
same spatial law. By relaxing the requirement of minimal squared error,
conditional simulation sacrifices some certainty for more detail.
A simulation is said to be 'conditional' when it honors the observed
values of a regionalized variable.

7.1 METHODS OF CONDITIONAL SIMULATION

This discussion of methods for simulation considers only the case in
which we want to create a realization that passes through data provided
by a user. As we will see, at least one method requires an initial
realization that is not conditioned to data, but the results are usually
conditioned in a subsequent step. Usually, we are interested in condi­
tional simulations.
A taxonomy of simulations can divide methods into those that result
in a conditioned result in the first step, and those that first yield a
nonconditioned simulation, and then condition this result to the data. In
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the first class belong so-called sequential methods and LV decomposi­
tion; to the second class belongs the now-classic turning bands method.
Another method, simulated annealing, does not fit very well into this
taxonomy. It begins with an initial realization, and trades values at pairs
of grid nodes to satisfy a goodness-of-fit criterion, the objective function.
Each of these methods is described below.

7.1.1 Sequential methods

In sequential simulation, a simulated value at each location u is drawn
from a probability distribution function computed from actual and
previously simulated values in the neighborhood of this location. The
algorithm begins with a randomly selected location, and progresses
sequentially across the grid representing the area to be simulated. The
order of this progression is not specified by theory, but a random
sequence is usually followed (Isaaks, 1990).
At each location, the computer program searches for points in a user­
specified neighborhood; these points can include both data input to the
program, and data that have been simulated in earlier steps. A probabil­
ity distribution is computed from these points by way of one of a
number of methods. How one computes this probability distribution
distinguishes between types of sequential simulation, two of which are
sequential indicator and sequential Gaussian simulation.
The sequential indicator method uses indicator kriging to compute
the local probability distribution. This method requires input of a
semivariogram model for each cutoff specified by the user. As in
indicator kriging, one can elect to input for all cutoffs the semivariogram
model for the cutoff corresponding to the median of the data, with some
loss in accuracy. In simulating petrophysical variables such as permeabil­
ity, one is interested in extreme values, and usually wants to provide
accurate spatial models for the extremes in order to best capture the
effect of permeability barriers or high-permeability zones on fluid flow
through a reservoir. The time needed to model semivariograms for the
tails is probably worth the effort.
Sequential Gaussian simulation computes a conventional kriged esti­
mate and estimation variance from data transformed to normal scores.
This approach requires a single semivariogram model based on trans­
formed data. Once simulation at every node is complete, results are
back-transformed to the original units.
Both sequential indicator and sequential Gaussian simulation require
some decisions to be made about the tails of the distributions. Because
the number of grid nodes to be simulated vastly outnumbers the number
of input data in most situations, information provided by the input data
is usually insufficient to yield reasonable values at the tails. Data sets in
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petroleum applications are often long-tailed at the upper end, but with
few values. As a result, the probability distribution in the tails is poorly
known on a purely empirical basis from data at hand. The user must
bring in some additional information gleaned from previous experience,
or developed from the goals of the simulation. In cases where the
number of control wells is large, the user can perform linear inter­
polation between quantiles computed from input data; this was ex­
plained in the chapter on indicator kriging (Chapter 6).
Programs such as GSLIB (Deutsch and Journel, 1992) give the user a
menu of extrapolation such as a power model, a hyperbolic model, and
linear extrapolation. In addition, parameters required by the power and
hyperbolic models can create short or long tails. Here the judgment of
the user comes into play. When reservoir parameters are to be used to
compute volumetrics, one might want to select a conservatively short
upper tail to avoid unrealistic overestimations of reservoir potential. On
the other hand, when extreme values of permeability lead apparently to
problems during secondary recovery, long tails are appropriate so that
one can assess the total range of possible scenarios.
Whatever approach is used for computing a local probability distribu­
tion, the shape, mean, and spread of this distribution depends on the
semivariogram input to the program, the locations of points in the
neighborhood, and the values of the regionalized variable at these
points. Where points are sparse, the spread tends to be wide, and the
center near that of the regionalized variable. Near one or more control
points or a previously determined simulation point, the spread tightens,
and the center approaches that of these points. Of course, grid nodes
coinciding with control points (within a reasonable tolerance) have
centers equalling values at the controls points, and zero spread.
These probability distributions are then used to select a point at
random. The range of values that might be selected is wide in areas of
poor control, very narrow where data densities are high. As a result,
results from repeated simulation of an area differ most from each other
in areas of poorest control.

7.1.2 LV decomposition

This method uses a matrix algebra method called LV or Cholesky
decomposition, using as input covariance between data locations and
grid locations, a vector of independent normal random variables, and the
conditioning data. First, a covariance matrix C is calculated:
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Where Cll is covariance between data at control points, C22 is covariance
between nodes on a grid, and C12 is covariance between data locations
and grid nodes. LU decomposition gives matrices Land U, which when
multiplied equal the matrix C:

Using the vector of known data z, and a vector of random variables w
obtained from a random number generator, a vector of simulated values
zcs is given by:

zcs = L21 L"]Iz + L22w

Notice that vector w has a number of entries equal to the number of
nodes on the grid for simulation. Similarly, the covariance matrices can
become very large, creating storage and computation time problems on
the computer, as well as numerical inaccuracies when the covariance
matrix has a large number of zero entries, i.e. dimensions of the area
being mapped are much larger than the ranges of the covariance model
used.
Nevertheless, this method has the advantages that it conditions in one
step, it handles any kind of covariance function, and it is easy to
implement using libraries of standard mathematical algorithms. Davis
(1987) and Dowd and Saral; (1994) show practical ways to increase the
size of grid that LU decomposition can handle, but at the cost of adding
some complexity to the calculations.

7.1.3 Turning bands

At one time, the turning bands method was synonymous with simula­
tion; it can handle problems of virtually any size, and was available in
the literature. Error simulation methods such as the turning bands
algorithm account for the smoothing effect of kriging by adding an error
component having a mean of zero and an appropriate variance and
semivariogram. The turning bands method thus has two steps: initial
computation of a nonconditional simulation, and conditioning this sim­
ulation to the input data.
The turning bands method uses the fact that given a set of random
numbers T j and a weighting function f, a one-dimensional random
function Y(u) is:

Y(u) = ffeu + r)T(r)dr = T*f'
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where f'(u) is the transpose of f(u); i.e. f'(u) = f( - u), T(r)dr is a stationary
random measure that when discretized yields T;, and * is the convolution
product. Covariance of Y(u) is:

where c?- is the variance of Y. Thus, one can construct a one-dimensional
sequence of values having a specified covariance.
A discrete approximation for Y(u) is obtained by forming a series of
random variables, T;, independent of each other and belonging to the
same distribution with a mean of zero and a specified variance. These
values are computed by assigning points at regular intervals along a line
to give t j -k •.• t; ... t j+k and calculating the moving average:

R

Yj = 2: tj+d(kb)
k=-R

The value b, is the distance of separation between adjacent values of t j •

When b is set to ~, where a is the range of a covariance or semivariogram
model, the discrete approximation is simply:

R

Y j = 2: kt j+k
k=-R

A small bias in the one-dimensional covariance of Y j can be corrected by
a multiplicative factor (Journel and HUijbregts, 1978, p. 536).
The turning bands method extends the one-dimensional simulation to
three dimensions. Given N lines 01' 02' ..., ON corresponding to unit
vectors uniformly distributed over the unit sphere, a simulated value
zs(x) can be constructed from independent simulations along the lines:

1 N

z,(x) = - 2: Zj(x)
~N ;=1

where Zj(x) is the simulated value along line i which is within a band that
is perpendicular to the line and that includes point x. Although one can
choose large N, a value of 15 gives good results.
Adjusting values zs(x) to have the same approximate distribution as
observed values, z(x) requires two steps. First, minor deviations of
simulated values from a zero mean and unit variance are eliminated by
subtracting the actual mean of the simulated values, and multiplying by
the variance. Second, adjusted values are scaled and centered to the
desired mean and variance, usually the mean and variance of the
conditioning data. When observed values of the regionalized variable
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follow a normal distribution, only this centering and rescaling is
needed.
When a regionalized variable does not follow a normal distribution, a
transform to normality is applied to the conditioning data before calcu­
lating the mean, variance, and the semivariogram used in simulation.
Once simulation is completed including conditioning, described next,
simulated values are transformed by the inverse of the original trans­
form. Hermite polynomial expansions may be used for the general case.
Whatever the transform, simulation uses transformed values, and re­
quires a semivariogram model computed from transformed values of the
regionalized variable.
Conditioning output from the turning bands method at a location g
requires:

1. the simulated value at g obtained through turning bands: zs(g)
2. an estimate of the regionalized variable at g obtained by kriging
nearby wells: z*( g)

3. an estimate of the simulated variable at g obtained by kriging
simulated values at locations coinciding with sample locations:
zs*(g)·

In general, sample locations do not coincide with grid locations, as
required by the calculation of zs*(g). However, the node nearest each
sample location is sufficient if the grid is fine relative to sample
spacing.
Conditioned values, zc(g) are simply calculated from:

zc(g) = zs(g) + z*(g) - Zs*(g)

Examining the formula shows that the conditionally simulated values
equal observed values everywhere grid nodes coincide with sample
locations. Journel and Huijbregts (1978, p. 496) show that the estimation
variance of the simulated values is twice that for kriged estimates.

7.1.4 Simulated annealing

The method of simulated annealing has become popular in recent years
for generating simulations like those given by sequential and turning
bands techniques, and also for improving results obtained by these other
approaches. Simulated annealing begins with an initial image, input
data, and a semivariogram to be reproduced. During the analysis, the
annealing algorithm attempts to modify the intial image to one that
better reproduces the variogram, while also maintaining the same uni­
variate distribution as that of the input data.
Unlike methods described above, simulated annealing does not have a
predetermined number of steps which can be calculated before a simula­
tion. Rather, annealing operates iteratively, attempting to minimize an
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objective function within a reasonable number of iterations, while trying
to avoid falling into a local minimum.
A computer program first creates an initial image by assigning each
node a value of the regionalized variable randomly drawn from a
frequency distribution provided by the user. Where grid nodes and input
data coincide within some tolerance, grid nodes are assigned the input
values. Obviously, this initial image does not conform to a specified
semivariogram.
The simulated annealing algorithm now attempts to reproduce a given
semivariogram by exchanging values chosen at random from the grid;
values corresponding to locations of conditioning data are left alone
throughout iteration. Not every drawing of a pair of grid nodes results in
a swap. The algorithm first computes the value of an objective
function:

0= 2: [y*(h) - -y(hW

h -y(h)2

where y*(h) is the semivariogram model specified by the user, and y(h) is
the semivariogram for the simulated image. This function should go to
zero with the number of iterations. Remember, the goal of the annealing
procedure is to find a near-perfect fit between the semivariogram of
simulated data, and the one input by the user.

If the swap at a particular step reduces the objective function, the swap
is made. To reduce the chance that the simulation ends before the
objective function is sufficiently close to zero - i.e. the algorithm falls into
a local minimum - some swaps are accepted that actually increase the
objective function. The probability of accepting is given by the
formula:

where On is the value of the objective function if the swap is made, 0 0 is
the old value, i.e. the swap is not made. The value t determines how
quickly the algorithm reaches a solution. The higher this value, the more
often an unfavorable value for the objective function is accepted, and the
more slowly the algorithm reaches a minimum. If it is lowered too
quickly, the probability of falling into a local minimum increases. The
number of iterations required increases with the size of the grid, but only
indirectly. The number of iterations vastly outnumbers the number of
grid nodes.
As with all simulation methods outlined in this chapter, the user must
input conditioning data, a semivariogram, and a random number seed to
start the random selection off. Annealing also requires t, and parameters
that control the decrease in t as the simulation progresses. The number
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and effect of these parameters depends on the particular implementation
of simulated annealing.

7.2 EXAMPLES

The three case studies in this section are used to illustrate sequential
indicator simulation and sequential Gaussian simulation. The reader
should already be familiar with data used in these examples because
they have been used in previous chapters. The first set is the initial
potential data from Barbour County, West Virginia, an example of
skewed data in two dimensions. The second set of data is the three­
dimensional distribution of porosity in a sandstone reservoir in Granny
Creek field. The third example shows the use of simulation for generat­
ing lithofacies models in three dimensions.

7.2.1 Sequential indicator simulation: initial potential
in Barbour County

Recall that gas initial potentials are available from 674 wells within one
county. These wells were used in Chapter 6 to compute and fit semi­
variograms for four cutoffs corresponding to the 25th, 50th, 75th, and
90th percentile of the input data. Constants for exponential models with
nugget effects are repeated here for convenience:

Cutoff: 400 Mcfpd
Nugget effect: 0.13
Constant: 0.Q15
Range: 3 km

Cutoff: 792 Mcfpd
Nugget effect: 0.19
Constant: 0.10
Range: 3 km with anisotropy ratio = 0.33
Major axis is north-south

Cutoff: 1399 Mcfpd
Nugget effect: 0.11
Constant: 0.09
Range: 1.5 km with anisotropy ratio = 0.5
Major axis is north-south

Cutoff: 2477 Mcfpd
Nugget effect: 0.07
Constant: 0.025
Range: 2 km
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For each cutoff, the nugget effect is a large proportion of the variance,
and two cutoffs show minor anisotropy at smaller separation
distances.
These semivariogram models were used to generate simulations
within the 10 by 10 kIn area used in previous chapters (Fig. 7.1).
Although only 206 gas wells lie within this area, the complete set of wells
in Barbour County was used to avoid edge effects. GSLIB (Deutsch and
Journel, 1992) with some modifications was used to generate simula­
tions; interpolation in the tails and between cutoffs followed tabulated
quantiles.
An important feature of simulation is that the user can generate as
many realizations as desired, each merely requiring a new random
number seed. The four simulations in Fig. 7.2 are all different, but
because they are conditioned to the same set of data, they share the same
trends in high and low gas volumes. For instance, they all have the same
meandering trend of high values in the western part of the area mapped.
Within these trends, initial potential is very noisy, consistent with the
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Figure 7.1 Locations of wells used to simulate gas initial potentials in a
portion of Barbour County, West Virginia. Wells near location 'N are generally
low in gas potential, and wells near location 'B' are relatively high in
potential.
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general observation that gas volumes from adjacent wells can have very
different values. Despite this large variability over small distances, areas
exist with a better-than-average chance of encountering a high volume.
To aid in comparing these results with those obtained through kriging,
the contour map of initial potential estimated by median indicator
kriging in Chapter 6 was superimposed on these maps. One can see both
the relative smoothness of kriged estimates, and the general correspon­
dence between trends on the two types of maps.

It is good practice to compare the semivariogram of a conditional
simulation with the one provided as input to the computer program. In
this case, semivariograms for each cutoff used in the simulation (Fig. 7.3)
fail to match the anisotropy of the input models for the middle cutoffs,
but they have approximately the correct sills and nugget effects. These
discrepancies probably arise because the simulation only covered a small
part of the total area represented by the Barbour County. Ways to refine
the analysis include computing a semivariogram for this specific
10 x 10 km area; dividing the area into subregions, each with a different
model; or employing a moving-window method such as that described
by Haas (1990).
Another check is to compare the semivariogram of initial potential (not
the indicator variables) from the simulation with that of the original data
(Fig. 7.4). This illustration has both a semivariogram computed from the
complete set of data, and one for the 206 wells within the area mapped.
This small area includes some of the largest values of initial potential in
the data, and thus has a higher sill. Simulated data yield a higher value
of the semivariogram at the smallest distances. At distances greater than
about 0.5 km, all three semivariograms have nearly reached their re­
spective sills. The first point on the semivariogram for the subset of data
is based on only 45 pairs. In general, semivariograms show that the
simulation has captured the low spatial covariance of initial potential
beyond a few hundred meters shown by the well data.
Yet another check on the results is the comparison of the histogram for
wells in the area mapped (Fig. 7.5), and the histogram for the simulated
grid (Fig. 7.6). The two histograms look very similar. They both differ
from the histogram drawn for the data as a whole shown in Chapter 5
(Fig. 5.2), which includes wells located outside the area mapped.
A P-P plot is convenient for making such comparisons of histograms
(Fig. 7.7). In this graph, the cumulative relative frequencies of gas
volumes from wells are plotted against those for the simulation results. If
the two distributions are the same, the P-P plot displays a straight line.
In this case study, the distributions of well data and simulated values are
very similar.
Given a large number of simulations, one can generate a cumulative
probability distribution at each location in an area, similar to those
created in the previous chapters. At a sample location, the resulting
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Figure 7.2 Four conditional simulations of gas initial potential, generated
with different random number seeds. Well locations are shown as solid circles.
Units are Mcfpd. Superimposed are contours of kriged estimates of initial
potential corresponding to quartiles of the histogram of initial potential.
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Figure 7.4 Semivariograms of simulated gas initial potentials for the complete
data set (solid circles), data within the area mapped (triangles), and the
simulation (squares).
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Figure 7.5 Histogram of initial potential within area simulated and mapped.

Figure 7.3 Directional semivariograms (solid lines) of simulated initial
potential and model (dashed line) for each indicator variable (cutoff) used in
conditional simulation. Directions are: north-south (diamonds); northeast­
southwest (solid circles); east-west (squares); and southeast-northwest
(triangles). Cutoffs are: (a) 400 Mcfpd; (b) 792 Mcfpd; (c) 1399 Mcfpd; (d)
2477 Mcfpd.
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histogram should have a single spike at the value observed. The histo­
gram spreads out as one moves into areas of sparse well control or large
variance in observed values. Histograms in Figs 7.8 and 7.9 were made
from 100 simulated values of initial potential at each of the two locations
studied in previous chapters. Location A has a center of mass around
875 Mcfpd, and very little tail, although two values exceeded
2000 Mcfpd. Location B is located in an area of generally high gas
volumes, and has a large tail; almost a third of the values exceed
2000 Mcfpd. The appearance of these histograms roughly match those in
Chapters 5 and 6 for disjunctive and indicator kriging.

7.2.2 Sequential Gaussian simulation: porosity in Granny Creek
Field

To reduce computing time, the complete set of three-dimensional log
porosity data from Granny Creek field used in previous chapters was
reduced in size to those wells occurring within a ten kilometer area, plus
some wells in the surrounding area. Sequential Gaussian simulation
requires an initial calculation of normal scores from porosity data.
Resulting horizontal and vertical semivariograms of normal scores re­
semble those calculated from raw data and graphed in Chapter 2 (Figs
7.10,7.11). The following model was fitted:

(
Ihl ) ~(h2 h2)y(h) = 0.35Sph - + 0.65Sph _h_ +~
3.0 17502 72
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Figure 7.8 Local cumulative distribution and histogram of initial potential at
location A in Fig. 7.1.
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Figure 7.9 Local cumulative distribution and histogram of initial potential at
location B in Fig. 7.1.

Notice that the vertical semivariogram shows a pseudoperiodicity aris­
ing from zonation of the sandstone reservoir represented by these data.
I made no attempt to model this oscillation about the sill because vertical
distances greater than two to three meters were not to be used in the
search that takes place in simulating porosity at a given node.
The practitioner must be careful in specifying an appropriate search
radius for simulation. In this situation, the search radius I used was
300 m horizontally, and 3 m vertically. It is also important not to go
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Figure 7.10 Semivariogram of normal scores of porosities computed from
geophysical logs (solid line) and fitted model (dashed line) in the horizontal
direction.
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Figure 7.11 Semivariogram of normal scores of porosities computed from
geophysical logs (solid line) and fitted model (dashed line) in the vertical
direction.
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beyond the vertical range of available data; resulting extrapolations
contain artifacts that can mislead the unwary user. In early runs with this
set of data, I inadvertantly went too deep, and 'found' a new high­
porosity zone.
The same volume kriged in Chapter 3 was simulated here for compar­
ison. Figure 7.12 shows a map view of a slice 3 m from the base of the
reservoir. Small-scale variability occurs where the map of kriged esti­
mates is fairly smooth.
Vertical slices (Figs 7.13, 7.14) show the strong vertical zonation of the
reservoir; the zone of relatively high porosity in the lower part of the
reservoir is the one in which most of the wells in the field were
completed. Again, simulated porosities vary more locally than kriged
estimates. Horizontal (Fig. 7.15) and vertical (Fig. 7.16) semivariograms
of simulated log porosity compare roughly with specified models.
Reservoir characterization usually requires knowledge about the spa­
tial distribution of permeability. Because core permeability data are
generally limited in number and spatial distribution, it has been found
useful to infer a three-dimensional model of permeability from porosity;
Almeida and Frykman (1994) published an example which used geo­
statistical methods to generate realizations of permeability in a
reservoir.
An easy way for coming up with a three-dimensional model of
permeability is to regress permeability on log porosity, and using a fitted
regression equation, compute a value of permeability at each node from
the three-dimensional realization of log porosity. One drawback to this
approach is that permeabilities calculated in this way have the same
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Figure 7.15 Semivariogram of simulated normal scores of porosities
computed from geophysical logs (solid line) and fitted model (dashed line) in
the horizontal direction.

spatial covariance as porosity, up to a multiplicative factor, because the
permeabilities ar~ essentially recentered and rescaled porosities. This is
not a problem if in fact permeability and porosity have about the same
semivariograms. A second drawback is the fact that what little permea­
bility data are available go unused during simulation. This approach has
the advantage of being easy to understand and implement. In some
instances, so little permeability data might be available within an area to
be simulated that this simple method works as well as any.
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Figure 7.16 Semivariogram of simulated normal scores of porosities
computed from geophysical logs (solid line) and fitted model (dashed line) in
the vertical direction.
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Sequential Gaussian cosimulation is a general method (Verly, 1993)
that combines the principles and practice of simulation and cokriging to
generate realizations of several regionalized variables simultaneously.
Recall from Chapter 4 the following nomenclature: the variable of direct
interest, e.g. permeability, is the primary variable, which is usually
undersampled. A secondary variable such as log porosity is to be used
indirectly while estimating simulating the primary variable.
The initial step in sequential Gaussian cosimulation is to compute and
model semivariograms from normal scores of the primary and secondary
variables. Also needed is a cross-semivariogram between the primary
and secondary variables. All sequential methods compute a kriged
estimate at each grid node from surrounding data and previously
simulated values. Cosimulation uses cokriging to compute an estimate of
the primary variable from surrounding actual and simulated values, and
nearby values of the secondary variable. This method can be extended to
more than one secondary variable, e.g. core and log porosity.
Almeida and Frykman (1994) simplified the sequential Gaussian cosi­
mulation approach by computing estimates at each node through collo­
cated cokriging, hence avoiding having to calculate and model
cross-semivariograms. They computed a realization of the secondary
variable on the same grid to be used for the primary variable. If data are
already available on this grid, such as with seismic data, this step is
skipped. Semivariograms are necessary for the primary and secondary
variables, but correlation coefficients are used in place of cross­
semivariograms.
Chambers et al. (1994) combined sequential simulation and kriging
with external drift as yet another approach to the general problem of
incorporating secondary information. In their situation, acoustic imped­
ance served as the secondary variable in simulating porosity. Theirs is an
interesting study because they demonstrated the effect of different
numbers of control wells, and compare the results of kriging with
conditional simulation. They drew a map representing an average of a
number of simulations, and showed that this map approximates one of
kriged estimates, as it should.
Strictly speaking, Gaussian methods require data that are multivariate
normal. Although this requirement cannot be checked, a necessary
condition for a distribution to be multivariate normal is that it is
univariate and bivariate normal. The normal scores transform used in
sequential Gaussian simulation must result in a set of values that are
univariate normal. Bivariate normality can be checked by comparing
indicator semivariograms with a theoretical indicator semivariogram
computed from the model fitted to the normal scores semivariogram.
This was done for the porosity dataset using the bigaus program in
GSLIB (Deutsch and Joumel, 1992).
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Figure 7.17 Vertical semivariograms used in check for bivariate normality of
log porosity normal scores. Semivariograms with solid circles are calculated
from normal score indicator variables, semivariogram without symbols are
computed from semivariogram model. Cutoffs correspond to the 50th (solid
lines), 75th (dotted lines), and 90th (dashed line) percentiles.

Because of the extreme sensitivity of observed semivariograms in the
horizontal direction to the vertical window tolerance, vertical semivario­
grams were used for the comparison. Beyond two or three meters,
semivariograms respond to the strong vertical trends in porosity (Fig.

Figure 7.18 Map of simulated facies at an elevation 4 m above the base of the
reservoir. Black areas represent the distal facies. Solid circles are well locations.
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7.17), and therefore the theoretical semivariograms and those computed
from the normal scores for three cutoffs should only be compared for
small separation distances. Although there are no formal tests proposed
in the literature for the comparison, it seems reasonable to conclude from
the graph that the transformed data are bivariate normal.

7.2.3 Sequential indicator simulation of sandstone facies

In Chapter 6, indicator kriging was used to map two facies within a
sandstone reservoir using the following model for the semivariogram:

~(
h2 h

2
)

y(h) = 0.0255ph _h_ + --.::.. + 0.0355ph
0.001 2 00

2

( ~ h~ h;)
+1.05 h =-

P 100 0002 902

Facies were determined from geophysical logs in a study of reservoir
heterogeneity within a Lower Mississippian sandstone reservoir. This
model will now be used for sequential indicator simulation of facies in
three dimensions within the same volume of reservoir used in the
previous example.
Results show an expected similarity with the model obtained through
indicator kriging, but with a large number of small-scale features (Figs
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Figure 7.19 East-west cross-section of simulated facies at northing 4263500 of
Fig. 7.18.
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Figure 7.20 North-south cross-section of simulated facies at easting 486000 of
Fig. 7.18.

7.18-7.20). These features accord with the geologists observations that
transitions between facies tend not to be very well defined. The upper,
proximal facies interfinger with the lower, distal facies. The resulting
three-dimensional model has many discontinuities that could affect flow
of oil and water through the reservoir.

7.3 WHICH METHOD TO USE?

Research into methods of conditional simulation is at the stage that
kriging was ten years ago; a number of methods and variations on a
theme have been proposed, but the features unique to each are not all
known. Only a handful of comparative studies are available in the
literature. However, a few guidelines are possible.
Applications using the turning bands method have declined in num­
bers for two reasons: the directions of anisotropy are limited to the
coordinate axes of the grid; and the limited number of lines can lead to
artificial and unrealistic-looking bands in the results. Although it might
be possible to rotate coordinate axes before variography and simulation
for simple semivariogram models, the resulting grid would probably
have to be rotated back and regridded. This is not worth the effort with
other simulation methods available.
Sequential methods are easy to use and software is widely available.
The Gaussian methods require a normal scores transform before variog­
raphy, but as we have seen, such transforms can be beneficial for a
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number of reasons when working with skewed distributions. The in­
dicator approach takes more work at the variography stage. The tedious­
ness of modeling a number of semivariograms can be eliminated if one
uses the model for the cutoff at the median is used for all cutoffs. It is a
good idea to check whether this model fits those for the other cutoffs
reasonably well.
Simulated annealing requires a few more decisions by the user than
the other methods, for example, an initial grid, parameter t, and an
objective function. It has been used in place of the other simulation
methods, but the most important applications of simulated annealing
will be in situations where objective functions other than the semivario­
gram are required, and where results of a simulation by another method
must be adjusted for some reason. The salient feature of simulated
annealing is the ability to create quite complex objective functions
beyond the simple semivariogram.
Use of a sophisticated objective function is illustrated by Deutsch (993).
Wanting to create realizations of permeability, he used both a semivariogram
and effective permeabilities in the objective function, weighted to ensure
that both contributed equally. Because calculated effective permeabilities
are nonlinear averages, conventional simulation methods could not be used
to incorporate this information. Realizations generated by this process were
used in flow simulators to predict breakthrough time and remaining oil
in place after 50 years of production.
In simulating rock types within a sandstone reservoir, Murray (994)
was able to obtain reasonable results with sequential indicator simula­
tion. Although semivariograms were not reproduced exactly, they were
close, and the proportions of lithologies were correct. A problem with the
realizations was the fact that the least-favorable rock type was often
found within the most-favorable rock type, Le. vertical transition prob­
abilities between the two rock types were too high in the realizations
compared with what was observed in wells. Therefore, Murray used
simulated annealing to postprocess the initial realizations, utilizing the
frequency of transitions as part of the objective function. Both the
transition probabilities and vertical semivariograms were much im­
proved in the final realizations.
The interested reader should consult the paper by Gotway and
Rutherford (994), who compared several methods of conditional simu­
lation with several data sets of different types and probability distribu­
tions. This is probably the most extensive comparative study published
to date.

7.4 SUMMARY

Conditional simulation is used to generate multiple realizations of a
regionalized variable for points within an area or volume. It is often used
to create realizations of permeability for input to flow simulators.
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Whereas kriging tends to result in smoothed maps of a regionalized
variable, simulation attempts to preserve variablity at all scales. In
general, simulation algorithms create realizations that reproduce the
mean, variance and semivariogram of observed data. When the simula­
tion also reproduces the observed data, it is said to be conditioned.
The turning bands method was once used almost exclusively, but is
less used today because of artifacts in the results and limitations on the
semivariogram model that can be used. It creates an initial realization
that is then conditioned to the data through a simple calculation.
Sequential simulation methods are frequently used. Gaussian simula­
tion and indicator simulation use a normal scores transform and in­
dicator transforms respectively on data prior to actual simulation. Hence,
these methods are particularly suited to the skewed data distributions
often observed in geologic data.
Simulated annealing starts with an initial image of the correct mean
and variance, and updates this image according to an objective function.
This objective function usually includes the semivariogram, but can use
additional functions of the realization. This flexibility makes it useful in
situations where a nonlinear criterion must be satisfied, and for post­
processing realizations generated by other simulation algorithms.
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APPENDIX A

Locations and initial
potentials of Devonian wells
in a West Virginia gas field

Easting Northing Initial potential
(krn) (krn) (Mcfpd)

568.869 4360.153 100
559.100 4355.079 102
535.641 4365.509 103
561.432 4353.771 110
562.071 4342.616 118
574.727 4345.594 119
565.212 4345.477 133
562.264 4345.422 133
565.081 4358.239 150
564.085 4357.214 150
567.922 4350.865 154
558.686 4352.763 158
560.245 4355.549 158
536.995 4352.106 193
563.636 4356.439 198
564.574 4358.852 200
579.492 4353.132 200
562.185 4358.370 215
560.153 4351.880 225
565.858 4342.801 225
561.002 4350.469 227
565.791 4356.427 232
564.645 4344.517 245
569.092 4359.322 246
565.282 4357.131 246
571.558 4356.540 250
559.251 4350.948 250
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Easting Northing Initial potential
(km) (km) (Mcfpd)

566.532 4345.335 266
569.471 4354.424 267
566.099 4348.321 270
560.808 4350.899 286
554.354 4352.453 298
564.726 4343.408 320
571.468 4353.918 327
560.436 4349.385 335
562.811 4351.993 353
564.806 4356.788 353
570.392 4358.409 360
572.447 4348.409 400
565.831 4348.720 412
566.250 4347.521 425
561.981 4344.835 440
568.626 4347.017 444
572.289 4355.220 444
574.984 4351.176 448
559.938 4354.930 450
560.480 4349.909 467
561.144 4353.737 470
569.345 4349.768 482
566.554 4348.356 489
560.141 4350.431 492
569.951 4346.320 492
567.038 4347.775 500
561.383 4356.915 500
571.342 4346.148 516
568.767 4347.327 516
573.577 4350.608 519
562.266 4348.321 531
560.463 4345.933 539
574.689 4347.011 550
571.410 4354.410 581
560.320 4348.891 582
557.679 4349.703 582
563.866 4357.613 600
562.941 4347.679 622
566.860 4349.006 622
574.057 4350.458 638
576.991 4346.941 650
559.818 4345.680 650
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Easting Northing Initial potential
(km) (km) (Mcfpd)

560.549 4350.342 660
563.120 4343.395 671
568.518 4348.342 678
559.528 4349.131 696
569.834 4345.980 696
565.154 4346.680 696
561.915 4350.199 697
561.825 4349.488 730
569.247 4347.300 764
560.800 4345.750 787
566.960 4348.545 793
560.774 4349.079 793
565.771 4347.393 793
566.587 4347.216 808
572.179 4354.171 822
570.139 4346.723 822
565.995 4349.183 852
568.225 4346.305 875
565.752 4346.777 880
564.503 4347.259 907
561.422 4348.869 907
557.857 4351.585 910
563.008 4342.377 919
561.007 4349.883 919
569.895 4347.152 1000
563.311 4346.449 1008
559.884 4349.535 1055
564.073 4347.040 1100
569.587 4354.856 1131
566.519 4346.814 1154
563.743 4346.359 1185
563.667 4346.852 1185
564.891 4340.758 1200
568.172 4355.153 1320
568.572 4355.865 1402
561.440 4349.702 1476
569.517 4346.563 1516
560.529 4346.703 1517
569.177 4347.022 1517
563.188 4346.848 1569
570.240 4346.076 1594
569.135 4349.057 1600
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Easting Northing Initial potential
(krn) (krn) (Mcfpd)

561.714 4342.212 1639
568.477 4355.833 1782
569.159 4349.088 1825
563.555 4342.936 1900
564.149 4346.578 1975
568.847 4354.603 1980
566.478 4348.849 2000
561.473 4348.499 2208
561.855 4348.717 2300
563.669 4343.615 2700
564.489 4351.760 3011
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Thickness of Paleocene
clastics in Libya

No. East North Thickness

1 0.0 24.0 1848
2 2.5 20.0 1806
3 4.0 25.0 2220
4 1.0 11.0 2513
5 6.0 0.0 3209
6 5.0 2.0 3080
7 10.0 2.0 3164
8 8.0 7.0 2164
9 5.5 11.0 2400
10 4.0 14.5 2434
11 20.0 30.0 3632
12 27.5 26.0 3048
13 24.0 21.0 3890
14 11.0 17.0 2480
15 8.0 20.5 2573
16 5.0 23.0 2270
17 8.0 24.5 2134
18 3.5 29.0 1967
19 7.0 28.5 1684
20 19.0 1.5 2435
21 14.0 4.0 2640
22 16.5 8.5 2530
23 13.5 8.0 2629
24 11.0 9.0 2706
25 20.0 11.5 2911
26 11.0 13.5 2209
27 16.0 17.0 1674
28 14.0 12.5 2436
29 18.5 20.5 2110
30 17.5 23.5 1870
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No. East North Thickness

31 20.0 12.5 2658
32 22.5 16.5 2234
33 23.0 12.5 1690
34 29.0 8.0 3941
35 20.5 7.0 2572
36 21.5 3.0 1439
37 22.5 7.5 1910
38 26.0 5.0 2995
39 25.0 2.5 3001
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Initial Potential of Gas from
Wells in Barbour County,

West Virginia

Easting Northing Initial Potential
(Km) (Km) (Mcfpd)

571.50 4331.60 163
588.38 4323.50 870
574.02 4337.20 800
571.45 4331.80 169
577.93 4322.30 1233
588.28 4323.50 600
577.67 4329.50 370
579.17 4325.80 293
573.97 4337.10 169
577.81 4329.30 275
583.54 4328.50 933
577.79 4322.30 6787
572.72 4327.30 133
588.47 4321.20 1200
572.77 4327.20 381
579.31 4326.10 1900
587.40 4329.50 950
577.17 4324.20 5500
577.05 4324.10 3890
583.35 4328.50 470
579.21 4326.30 76
578.97 4324.20 118
573.24 4338.50 4000
571.83 4331.90 684
576.26 4323.40 467
576.58 4323.00 4100
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Easting Northing Initial potential
(km) (km) (Mcfpd)

575.93 4322.80 1500
587.54 4329.40 1000
579.82 4323.00 683
589.17 4321.50 670
571.55 4331.40 268
577.93 4324.40 2316
576.53 4323.40 3300
577.59 4324.60 6500
570.53 4332.00 1303
575.84 4327.30 1000
583.21 4332.60 467
586.36 4323.30 875
588.59 4321.10 600
578.17 4322.40 4224
577.36 4324.50 8245
573.31 4338.40 1200
570.95 4334.30 184
584.40 4328.80 959
575.72 4327.20 2000
575.87 4323.70 850
578.54 4333.10 219
579.46 4325.60 283
583.83 4328.60 1399
588.23 4321.30 900
578.50 4332.90 169
577.54 4329.70 275
578.66 4324.20 2477
570.65 4332.30 431
571.71 4332.00 244
576.39 4322.80 820
579.94 4322.90 839
577.44 4338.00 850
579.03 4325.50 1200
577.73 4322.80 1186
584.50 4328.60 1390
587.82 4329.90 712
579.23 4329.80 1356
589.38 4323.70 800
587.07 4333.00 900
577.01 4327.50 2000
578.20 4324.50 2800
583.69 4334.70 1500
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Easting Northing Initial potential
(km) (km) (Mcfpd)

575.85 4323.30 1469
577.88 4324.90 492
587.04 4328.50 492
583.54 4334.90 490
570.99 4334.20 311
577.82 4329.10 539
576.09 4324.20 5244
575.24 4334.90 400
586.26 4323.40 1100
584.61 4329.20 136
588.90 4321.80 1200
584.39 4329.40 400
575.83 4338.30 2000
577.71 4323.00 2477
588.02 4325.00 920
577.22 4323.60 3450
589.41 4321.50 678
578.83 4326.40 1000
578.78 4328.40 1710
570.59 4331.70 200
583.20 4328.90 959
572.71 4338.00 947
575.24 4334.50 6731
580.07 4331.30 444
576.94 4327.70 193
577.47 4337.50 1500
577.01 4338.00 2000
577.63 4338.20 787
587.18 4329.20 1237
580.98 4332.00 200
578.76 4325.90 150
579.34 4329.90 1073
576.87 4329.70 2768
587.53 4330.10 950
575.71 4325.30 2477
579.11 4324.00 5175
572.63 4339.40 769
579.56 4337.40 1205
576.66 4334.00 1500
577.55 4321.90 5673
579.70 4337.40 327
581.24 4332.20 792
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Easting Northing Initial potential
(km) (km) (Mcfpd)

583.88 4328.30 440
578.59 4328.20 1299
574.33 4337.10 400
570.97 4332.10 134
574.33 4337.50 189
586.47 4328.00 1547
572.21 4327.50 70
577.28 4327.20 144
588.55 4323.20 1500
580.53 4331.70 400
579.02 4326.60 1061
589.53 4323.50 246
575.68 4323.90 421
588.13 4330.30 823
580.78 4332.40 200
576.54 4324.00 5750
579.23 4324.70 1900
580.41 4331.30 1570
573.13 4334.80 1033
577.86 4327.10 986
586.85 4332.90 163
578.75 4324.70 3000
584.88 4326.20 1594
580.44 4328.50 989
588.78 4323.60 1400
577.98 4331.80 888
586.74 4321.70 1476
583.13 4332.80 1500
583.33 4332.60 581
576.15 4330.20 66
586.69 4321.40 1975
575.96 4322.40 1500
584.60 4334.60 1443
588.21 4331.50 750
579.25 4325.20 2500
576.61 4322.40 5537
577.69 4327.50 2057
580.58 4328.50 949
575.67 4322.80 2144
573.60 4333.00 190
583.22 4329.20 313
583.78 4324.00 762
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Easting Northing Initial potential
(km) (km) (Mcfpd)

579.31 4333.40 379
576.43 4337.80 2000
586.15 4322.20 1087
583.98 4334.40 2316
577.26 4337.20 1100
575.59 4337.90 1000
586.85 4328.70 990
575.73 4338.50 680
589.21 4322.20 700
589.00 4321.00 1500
576.54 4329.70 30
575.88 4330.30 232
575.91 4325.20 2232
573.70 4337.20 1007
572.90 4339.00 2000
588.27 4330.70 769
576.23 4333.70 3000
588.36 4325.00 1986
577.84 4323.80 984
575.45 4335.20 3610
576.78 4333.70 4464
571.11 4335.20 222
586.91 4329.60 900
576.30 4322.10 7428
571.99 4327.30 320
578.10 4329.70 452
576.94 4323.00 3100
577.81 4337.10 1000
574.82 4323.40 2141
586.70 4323.10 600
570.70 4332.80 516
578.51 4322.20 875
582.94 4328.30 1061
578.35 4323.90 3400
575.58 4334.80 5000
573.63 4334.80 166
573.83 4323.40 90
584.55 4334.80 300
584.94 4325.80 1032
571.96 4331.50 516
588.91 4331.50 762
587.09 4322.00 793
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Easting Northing Initial potential
(km) (km) (Mcfpd)

575.19 4330.10 792
575.28 4323.40 2000
577.19 4329.20 345
574.22 4323.50 2477
578.88 4333.50 119
573.70 4332.90 440
587.14 4328.30 641
575.30 4338.00 400
577.84 4331.50 1215
588.26 4325.50 1704
579.72 4333.40 1500
576.20 4327.40 1237
573.11 4334.20 226
577.88 4332.50 703
580.95 4332.70 207
579.14 4328.30 880
576.04 4333.30 641
576.60 4338.20 1500
576.67 4332.90 5180
578.77 4322.50 421
571.22 4330.60 231
587.97 4321.50 1000
573.07 4338.10 2000
577.89 4321.80 881
587.59 4333.30 1639
576.15 4332.90 16021
586.44 4322.40 539
577.61 4332.70 3500
589.56 4322.50 850
586.28 4328.10 1391
584.19 4324.10 713
588.51 4331.10 311
573.64 4334.30 778
580.21 4332.00 520
574.68 4323.00 2500
576.35 4331.00 800
577.99 4328.60 858
576.03 4324.50 2055
584.56 4329.60 1008
577.32 4321.40 2319
577.18 4332.30 2157
586.14 4321.70 1332
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Easting Northing Initial potential
(km) (krn) (Mcfpd)

578.14 4325.40 440
575.04 4325.40 7000
589.28 4324.20 620
575.13 4325.80 2000
573.76 4323.50 1838
579.17 4330.70 1107
576.90 4332.00 1312
587.17 4332.60 43
576.66 4329.30 350
579.60 4323.30 610
577.08 4333.10 2100
587.67 4330.50 984
588.56 4322.00 622
579.87 4325.50 1500
575.30 4330.50 171
573.10 4332.00 272
578.27 4327.20 516
578.86 4332.80 2100
575.27 4327.00 3700
572.42 4338.10 110
576.46 4332.40 1838
587.95 4331.10 318
572.69 4334.90 713
580.28 4337.30 816
588.72 4325.30 700
572.49 4338.80 200
574.54 4325.20 517
584.54 4326.50 379
586.62 4327.60 1122
576.89 4337.40 1500
573.93 4339.10 2000
575.46 4334.00 3500
585.49 4321.50 933
587.79 4334.80 1183
579.49 4322.60 913
574.94 4330.90 1400
578.38 4327.60 5180
576.07 4336.00 5000
587.04 4322.50 1400
575.89 4329.80 382
577.44 4328.50 212
575.15 4334.20 1100
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Easting Northing Initial potential
(kIn) (kIn) (Mcfpd)

579.52 4324.30 379
579.84 4331.10 713
578.79 4329.70 1678
574.37 4323.00 2477
577.85 4328.00 2500
572.03 4336.00 492
587.53 4325.60 582
577.21 4326.80 2477
571.27 4335.70 200
588.30 4329.80 808
587.73 4325.00 320
576.57 4331.40 1007
577.41 4331.60 1299
588.44 4324.00 933
587.84 4323.60 368
578.37 4333.80 622
584.98 4328.70 762
577.79 4326.60 3156
581.77 4331.90 1020
589.60 4321.20 750
570.66 4334.40 249
570.31 4332.60 467
588.14 4327.60 750
584.88 4326.90 582
576.71 4324.50 7273
578.55 4336.80 424
576.57 4330.80 731
585.30 4321.30 1404
588.14 4327.30 600
571.75 4327.60 417
571.20 4330.20 193
589.69 4322.30 119
574.49 4325.60 1300
578.09 4330.20 730
587.99 4332.00 787
587.76 4331.60 787
578.23 4325.80 12439
574.17 4338.70 1200
578.69 4323.00 2600
574.50 4339.60 400
574.72 4326.10 1500
571.30 4334.90 492
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Easting Northing Initial potential
(kIn) (kIn) (Mcfpd)

579.78 4322.30 386
572.75 4334.40 306
583.93 4323.50 978
574.40 4326.60 141
574.93 4326.90 7773
584.34 4328.00 561
575.96 4332.40 342
588.47 4332.00 712
573.55 4335.30 46
576.06 4321.60 1948
577.32 4338.40 400
580.15 4333.10 1073
576.00 4335.80 2000
585.72 4322.10 291
580.09 4339.20 539
586.29 4329.40 678
586.67 4330.10 207
588.98 4322.70 561
586.00 4329.60 1032
588.51 4326.60 492
576.06 4334.30 1200
587.74 4332.80 600
587.27 4327.50 440
587.24 4323.50 2400
576.15 4337.60 1647
589.27 4325.20 700
578.53 4329.10 1858
578.21 4337.50 989
583.20 4335.10 1300
577.64 4325.30 2768
572.03 4336.20 1100
578.78 4331.00 1100
574.91 4331.20 124
578.36 4332.10 3816
587.48 4321.70 561
574.57 4339.10 353
587.20 4333.70 984
578.65 4337.30 438
588.96 4324.70 84
586.38 4330.50 298
573.05 4327.30 78
589.25 4331.30 696
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Easting Northing Initial potential
(krn) (krn) (Mcfpd)

580.48 4338.80 1055
585.31 4326.50 386
578.28 4330.70 956
574.83 4330.00 904
574.41 4338.30 400
587.37 4322.90 1500
579.38 4331.40 10000
589.79 4324.00 700
574.03 4325.00 143
574.22 4331.20 154
571.68 4330.60 87
574.76 4337.60 850
579.65 4328.20 949
584.32 4333.90 660
582.44 4328.00 1561
577.17 4321.30 1185
577.28 4330.10 1525
579.32 4330.30 300
570.93 4331.00 1917
576.11 4331.80 198
583.49 4323.70 424
571.75 4338.70 267
587.68 4333.70 1205
582.86 4322.20 762
578.46 4331.60 4012
581.58 4331.60 421
580.32 4333.50 900
588.08 4334.90 762
578.26 4323.40 2380
583.62 4334.10 852
576.40 4326.90 2316
574.87 4338.50 1000
585.28 4320.80 1080
583.04 4327.70 516
583.17 4322.20 1073
573.33 4333.60 1225
573.32 4331.70 192
575.80 4331.30 919
585.82 4330.30 467
577.50 4336.70 671
588.23 4326.10 1164
570.67 4333.30 714
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Easting Northing Initial potential
(kIn) (krn) (Mcfpd)

572.20 4339.50 500
582.29 4328.60 211
571.41 4336.10 1000
577.56 4333.40 4000
580.64 4337.10 830
575.31 4322.20 1100
584.95 4337.80 539
572.81 4335.30 184
579.62 4326.80 2237
579.19 4337.80 978
578.01 4333.80 1205
588.42 4336.80 907
579.56 4339.30 375
588.72 4326.80 1050
577.09 4322.00 6766
580.66 4337.10 444
587.95 4329.10 1143
573.08 4339.60 1700
572.34 4329.50 2144
573.03 4332.50 492
573.91 4333.70 206
576.43 4327.90 295
589.41 4325.60 539
575.49 4333.50 5497
584.69 4330.40 2210
587.57 4327.00 933
583.72 4324.50 750
581.20 4338.30 539
574.20 4335.20 582
585.18 4330.00 1032
573.81 4325.60 189
572.41 4332.20 176
585.32 4330.50 823
580.11 4325.80 348
585.90 4323.10 450
579.89 4323.90 327
577.61 4330.90 783
576.86 4328.50 888
572.67 4337.50 7273
584.75 4325.50 390
584.61 4327.40 858
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Easting Northing Initial potential
(km) (km) (Mcfpd)

586.66 4333.30 1100
584.68 4338.30 712
575.90 4326.50 3482
580.53 4338.30 1076
585.58 4325.90 1900
571.92 4328.00 297
571.97 4335.40 149
579.14 4334.00 1100
579.17 4327.70 1255
575.81 4325.70 3700
588.26 4336.30 1283
579.76 4338.80 381
580.21 4327.90 239
574.17 4330.70 1100
582.50 4329.40 189
583.89 4333.60 1055
573.78 4339.50 1500
583.46 4335.70 363
581.09 4337.70 240
574.14 4334.30 146
574.00 4328.80 641
574.23 4326.90 31
585.83 4320.80 134
574.75 4335.30 8692
587.48 4334.40 327
579.23 4329.00 7273
586.84 4327.20 808
571.29 4338.70 131
588.10 4322.50 1350
584.50 4324.40 530
579.76 4332.00 404
580.80 4333.10 200
572.52 4329.80 87
584.33 4326.00 750
572.60 4331.50 348
579.46 4332.70 1517
578.71 4336.20 411
579.88 4333.90 1039
587.60 4336.50 1675
583.75 4335.70 1200
584.89 4327.90 321
571.49 4338.30 787
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Easting Northing Initial potential
(kIn) (kIn) (Mcfpd)

585.45 4329.10 442
589.51 4320.90 850
575.10 4324.00 1000
577.49 4326.00 7273
587.43 4323.90 1200
571.32 4332.70 492
580.15 4326.70 1107
576.26 4336.30 3750
578.05 4336.50 1050
589.12 4332.00 348
572.14 4330.20 565
575.41 4329.40 267
574.59 4339.90 88
583.09 4329.80 372
573.76 4331.20 1100
587.41 4326.10 660
579.16 4336.50 261
583.14 4321.20 490
583.04 4334.70 692
578.73 4338.10 1356
586.62 4321.00 1632
574.23 4324.20 267
576.73 4339.00 600
583.67 4329.70 122
580.84 4339.10 263
585.20 4339.00 2144
575.20 4335.90 4142
573.40 4328.70 375
587.11 4320.80 1561
570.67 4335.30 212
584.14 4337.80 289
582.90 4322.60 311
573.19 4325.80 886
587.20 4325.40 1320
571.22 4333.50 340
573.61 4324.40 150
583.32 4321.60 492
576.78 4334.40 550
589.81 4324.40 620
581.67 4332.60 1958
580.21 4327.30 492
586.79 4332.20 50
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Easting Northing Initial potential
(km) (km) (Mcfpd)

583.35 4337.40 1750
572.26 4326.80 492
575.92 4321.20 4224
586.49 4330.90 1100
581.91 4328.20 539
582.83 4339.10 1560
588.23 4328.10 800
572.48 4339.80 738
578.01 4338.60 641
574.55 4328.70 283
583.31 4338.40 2316
583.02 4337.00 412
589.29 4337.80 625
584.20 4338.70 989
584.91 4339.60 133
580.83 4322.80 957
572.99 4329.00 4760
580.54 4323.50 440
573.54 4329.40 249
570.28 4331.30 162
588.87 4337.40 527
574.13 4329.90 157
570.03 4332.00 492
585.46 4337.50 561
585.57 4327.00 412
574.57 4331.80 167
588.41 4335.60 298
573.72 4335.90 500
587.62 4335.50 1055
572.92 4325.50 152
580.09 4336.60 500
573.22 4324.90 479
576.93 4326.20 2144
573.45 4336.60 500
586.82 4331.60 900
585.53 4339.70 3714
583.81 4323.00 600
582.81 4338.10 531
588.97 4330.10 495
575.80 4328.50 481
585.60 4328.40 539
588.10 4337.20 852
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Easting Northing Initial potential
(krn) (krn) (Mcfpd)

582.39 4332.20 1750
588.24 4333.00 603
584.62 4337.30 1517
575.51 4336.50 37
580.10 4329.10 119
581.68 4336.70 219
581.73 4338.30 474
575.21 4332.50 7773
584.71 4333.60 1391
571.19 4328.40 1750
575.11 4328.40 260
589.92 4323.10 1517
576.28 4339.20 350
582.17 4337.50 516
584.83 4320.40 267
584.25 4320.40 984
588.43 4320.40 1762
570.72 4330.20 754
582.40 4336.70 539
589.60 4334.30 582
582.25 4329.80 298
581.22 4323.10 500
585.82 4339.10 124
582.35 4327.40 746
588.62 4329.20 146
586.47 4334.50 227
572.03 4337.00 55
582.33 4331.30 2837
589.52 4326.00 1409
580.22 4322.00 467
574.54 4333.00 130
582.96 4339.60 256
582.96 4324.40 1237
584.16 4330.50 1848
580.04 4324.90 675
583.10 4326.40 746
571.52 4329.10 285
583.60 4327.60 1164
581.13 4328.90 353
581.46 4325.50 582
587.24 4336.70 762
574.95 4321.90 1476
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Easting Northing Initial potential
(km) (km) (Mcfpd)

585.46 4337.00 492
572.34 4333.70 111
582.00 4330.70 1087
581.46 4324.70 232
578.67 4334.50 1200
582.37 4325.50 1958
580.90 4326.00 198
582.05 4339.40 1347
581.15 4336.40 1561
574.13 4327.90 348
570.85 4339.30 582
583.60 4320.30 198
583.07 4320.60 2530
582.43 4326.30 696
579.45 4321.60 1632
589.81 4334.60 381
579.03 4339.60 411
585.45 4334.00 298
581.95 4324.30 1000
584.98 4324.10 500
571.16 4337.20 350
584.21 4339.60 10646
586.17 4340.00 321
589.72 4331.50 1426
586.44 4335.20 1302
586.47 4324.00 1200
582.46 4339.90 1205
583.33 4325.40 1517
588.88 4338.60 947
584.73 4331.20 762
580.99 4330.80 492
580.01 4339.90 193
587.86 4320.30 467
579.14 4335.60 919
570.06 4333.70 1207
578.64 4321.30 2400
589.80 4337.70 440
585.26 4322.50 500
589.34 4335.40 298
581.72 4334.20 581
585.65 4335.00 30
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Easting Northing Initial potential
(kIn) (kIn) (Mcfpd)

575.38 4340.00 325
570.61 4329.10 203
577.01 4339.80 1217
581.15 4334.30 600
585.79 4320.00 1719
570.74 4327.80 2316
585.95 4325.50 1195
589.57 4336.40 1100
581.78 4321.70 500
578.14 4339.80 311
589.53 4329.70 907
586.78 4339.90 959
570.36 4338.10 207
584.39 4332.30 400
570.26 4336.40 50
589.21 4339.00 822
570.32 4339.60 444
589.41 4327.30 2000
589.68 4333.50 933
570.29 4324.80 1342
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Admissibility of semivariogram
models, 3~

Amplitude of a hole effect, 43
Anisotropic semivariogram model
definition, 44-6
and estimation variance, 88
of indicator variables, 158-160
in kriging, 86, 180
nested,51
of structure, 121
Anisotropy
and calculating a semivariogram,
19-21
geometric, 45-50
ratio, 47
zonal, 45, 50-1
Autocorrelation
and cokriging, 107
defined, 1
in disjunctive kriging, 138
and kriging, 94
and nugget effect, 31

Biased estimates, examples of, 102-3,
145

Bivariate scattergrams, 12
Block kriging, 95-7
and calculating covariances, 84-6
compared with point kriging, 95-{i
example, 95-7
Block size and estimation variance, 96

Centering of simulated values, 184-5
Cholesky decomposition, 182
Clustered samples in kriging, 88, 95,
97

Collocated cokriging, 130, 200
Cokriging
compared with kriging, 111-113,
115-119, 123-5
defined, 107
and probability kriging, 176
purpose,S, 107
system of equations, 109, 113-114
Computer programming and
anisotropy, 49

Computer programs, 10-13
for calculating semivariograms, 21,
34, 177
for cokriging, 131
for conditional simulation, 183, 188,
200
debugging, 13
for despiking data distributions,
177
for disjunctive kriging, 136, 145
for indicator kriging, 156-7
for kriging, 83, 85, 93
for mapping, 81, 197
for normal scores transform, 135
for probability kriging, 178
sources of, 12-13
Conditional cumulative distribution
function, 143-5, 155, 157, 166-8

Conditional simulation, 7
rationale for, 94, 180
of several variables, 200

Conditioning
local estimates, 138
of simulated data, 180, 183, 205
Confidence envelopes around
contoured surfaces, 91, 94
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Confidence intervals
and indicator kriging, 158
for kriged estimates, 2, 6, 134
Contour maps, appearance of, 94
Coregionalization
defined, 107
and geostatistics, 108-9
Correlation coefficient and cokriging,
107

Correlogram, 24
Cosimulation, 200
Covariance
and block size, 86
calculating, 84, 87
in cokriging, 108, 114
in kriging, 82-3
of pure nugget effect, 31
of a random variable, 23-4
and semivariograms, 34
Cross-covariance, 108, 113
Cross-semivariograms, 108
and cokriging, 109, 115
fitting, 110
and probability kriging, 230
after principal components analysis,
131

Cross-validation, see validation
Cumulative distribution functions, see
conditional cumulative
distribution

functions
Cutoff (threshold), 134, 187-8, 204
selecting, 155, 177
in simulating an indicator variable,
181

Damping a hole effect, 44
Data transforms,S, 6, 68, 134, 155,
176

De Wijsian semivariogram model, 29,
68

Diffusion models of lithofacies, 175
Discrete approximation, 86, 184
Discrete summation in block kriging,
85-6

Disjunctive kriging, 6, 195
system of equations, 138
Drift,25

Edge effects in mapping, 100,141

Edge of area mapped and
semivariogram, 18

Error in measurement, 30, 32, 75
Estimation variance,S, 6, 134
and block size, 86
calculating, 83, 88
in cokriging, 109, 111-13, 115-16
as confidence interval, 134, 143
equation for, 82-3
in kriging, 82, 111-13
in mapping kriged estimates, 154
minimizing, 82-3
rationale, 86
and semivariogram, 83
and simulation, 185
and validation, 102-3
Exact Interpolator, kriging as an, 85,
96

Examples
cumulative production of gas in
four quadrangles, 114-19
geophysical log, 91
initial potential
in Barbour County, West Virginia,
34-8, 98-101, 139-46, 158-65,
187-95
in central West Virginia, 68-73
in four quadrangles, 114-19
in a West Virginia field, 3-10
lithofacies, 169-74, 202-3
oil from the San Andres Formation,
151-54
permeability, 62-7, 73-4
porosity, 57-62, 104, 195-202
seismic data, 126-30
structure
of Devonian shales, 119-25
in Granny Creek field, 53-7
of a Mississippian sandstone,
19-22, 39-43

thickness of Berea Sandstone, 51-3
of Paleocene clastics, 16-19,95-8
Exceeding a cutoff, probability of,
139, 143, 156-7, 161

Expectation of a random variable, 23
Exponential model of semivariogram,
5,26-8,122
admissibility of, 34
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example in indicator kriging, 152,
158-160
fitting, 35-8
and simulation,187-8

Facies, see lithofacies

Gain from cokriging, 112-13
Gaussian model of semivariogram,
equation for, 28, 122

Geostatistics defined, 1
Global estimates, 95

h-scattergram
applied, 4, 71-6
defined,71
Hermite integration, equation for, 137
Hermite polynomials
in disjunctive kriging, 137-9
used for normal approximation, 185
Histograms
of frequency distributions, 67, 71
of initial potential, 4, 140, 148,
193-5,
of kriged estimates, 96
of cumulative distribution function,
143-4, 167-8, 189, 195
of permeability, 64
of porosity, 129
of simulated gas initial potential,
194-5

Hole effect, 43-4, 46
cosine model of, 43-4
damped, 44, 52-3
sine model of, 43
and statistical outliers, 68, 70

Independence of samples, 31, 89
Indicator kriging, 6, 195
advantages of, 155, 158, 154-65
system of equations, 156
Indicator variable, definition of, 7, 151
Initial potential
frequency distribution of, 134
Interpolation, 81, 134
Intrinsic hypothesis
defined,25
and kriging, 83
Isoprobability maps, definition of,
134-5

Kriging, linear
described,S, 81
system of equations, 82-4
in three dimensions, 104, 169-70
Kriging with external drift,S, 107,
125-30

Kriging variance, see Estimation
variance.

Lagrange parameter, 82-3, 109
Linear combination
and admissibility, 33
in kriging, 81
of variables, 107
Linear estimation, limitations of, 134,
143

Linear semivariogram model,
29,34,52-53

Lithofacies, modeling, 169-76, 202-3,
204

Local spatial distributions
(cumulative distribution
functions), 2
applications for, 134-5
estimating, 134, 138, 189, 195
Local variability and smoothing
property of kriging, 135

Logarithmic model of semivariogram,
29

Logarithmic transform
and kriging, 101,135,146-9
to normal distribution, 101, 146
and semivariogram, 68
Lognormal kriging, 146-9, 164
LU decomposition, 181, 182-3

Matrices in cokriging, 109
in kriging, 83-4
Mean
calculated from Hermite
polynomials, 139
and indicator kriging, 161
of an indicator variable, 152
mapped from indicator kriging, 161
Median, 135, 181
and disjunctive kriging, 134
and indicator kriging, 7, 157-8
Median indicator kriging, 156-7,
165-6,189

Mosaic models of lithofacies, 175
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Moving average effect of kriging, 91,
102

Multiphase variogram, 173
Multivariate normality and
confidence intervals, 134, 158

Nested semivariogram models, 31-3
admissibility of, 34
fitting, 34-8
Nominal data, 151
Nonconditional simulation
calculations, 183-5

Normal distribution, transforming to,
6, 10, 101, 136--8, 146, 181, 185,
195,203

Nugget effect, 2, 5, 26, 29-31
and computer programs, 91-93
definition, 26, 30
and estimation variance, 88
fitting, 39-43
and kriging, 91-3, 149

Objective function, 186
Order relations in indicator kriging,

156--7, 177
Orthogonalization, 131
Outliers, statistical
finding, 72-3
and kriging, 135
and indicator kriging, 158, 176
and semivariograms, 67-71

P-P plot, 189
Partial derivatives, 82
Permeability, 169, 181-2, 197, 200, 204
Point kriging, 84, 95--6
Porosity, 169, 195-7, 200
Positive definiteness, 33-4, 85, 110
Postprocessing a simulation, 204
Precision and estimation variance, 134
Principal components analysis and
cokriging, 131

Probabilities, estimating, 134-5
Probability kriging, 176--8
Pseudocovariance, 83
Pseudo cross-semivariogram, 131
Pure nugget effect, 31

Random variable, 3
Range,5,26

and estimation variance, 86, 88
fitting, 35--6, 39-41
and kriging, 91-4
and simulation, 184
Regionalized variable, 2
Relative indicator kriging, 173
Replicate samples and kriging, 85
Robustness
and indicator kriging, 6, 155, 158,
176
and semivariograms, 68-71

Sample control, 135
and cokriging, 111
and estimation variance, 86, 102,
154
and mapping, 43
and simulation, 182
Scattergram used in validation, 102-3
Screening effect of kriging, 90
Second-order stationarity, 23-4, 108
Seismic data, 126--130,200
Semivariograms, 3, 15-16,23-4
calculating, 16--21
and cokriging, 109-110
and disjunctive kriging, 138-140
fitting, 76--8
of indicator variables, 152, 158--60,
169
interpretation of, 38, 42, 45, 53,
160-1
in kriging, 83-4
modeling, 25-34
robust, 4
and sample spacing, 16--17
in simulation, 184, 186, 189
surface, 21, 53
validating, 103-4

Sequential Gaussian simulation, 135,
181, 195-204

Sequential Gaussian cosimulation, 200
Sequential indicator simulation, 7,
181, 187-195, 202-204

Sequential simulation, 181-182
Sill, 5, 26, 83
Simple cokriging, 132
Simulated annealing, 181, 185-7, 204
Skewed data and local spatial
distributions, 134, 157, 204
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Smoothing
disadvantages of, 180
and kriging, 7, 91-5, 96, 135, 177,
180

Soft data, 168-9
Spatial law, 24, 180
Spherical sernivariogram model, 26
admissibility of, 34
and cokriging, 115, 126
fitting, 35-6
and indicator kriging, 169
and kriging, 87-91
in simulation, 195, 202
Spike in a histogram, 177
Standard error of kriged estimates,
91-3,95-6

Stationarity, 22-5
and cokriging, 108
and covariance, 34
and disjunctive kriging, 138
and kriging, 81,83
Strict stationarity, 24
Structural analysis, 25
Structure maps and kriging, 93-4
Success rates, 153

Tails of distribution, 181-2

Trimming for robustness of estimates,
135

Turning bands method, 181, 183-5,
203

Unbiasedness
and cokriging, 109
and indicator kriging, 154
and kriging, 82, 83, 89
and validation, 102-3
Undersampled variables, 107, 109, 132

Validation, 101-4
Variance
calculated from Hermite
polynomials, 140
of an indicator variable, 153
of a random variable, 23

Vertical proportion curve, 174
Volumetric calculations, 182

Weights
in cokriging, 108, 114, 132
in disjunctive kriging, 136, 138
in indicator kriging, 156
in kriging, 81-84, 88-91
Well control, see sample control


