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PREFACE TO THE FIRST EDITION

THIS pamphlet, together with the companion pamphlet en-

titled The Magnetic Circuit, is intended to give a student in

electrical engineering the theoretical elements necessary for cal-

culation of the performance of dynamo-electric machinery and

of transmission lines. The advanced student must be taught to

treat every electric machine as a particular combination of electric

and magnetic circuits, and to base its performance upon the

fundamental theoretical relations rather than upon a separate
"
theory

"
established for each kind of machinery, as is often

done.

The first chapter is devoted to a review of the direct-current

circuit, the next four chapters treat of sine-wave alternating-

current circuits, and the last two chapters give the fundamental

properties of the electrostatic circuit. All the important results

and methods are illustrated by numerical problems of which there

are over one hundred in the text. The pamphlet is not intended

for a beginner, but for a student who has had an elementary de-

scriptive course in electrical engineering and some simple labora*

tory experiments.

The treatment is made as far as possible uniform, so that the

student sees analogous relations in the direct-current circuit, in

the alternating-current circuit, in the electrostatic circuit and

finally in the magnetic circuit. All matter of purely historical or

academic interest, not bearing directly upon the theory of electric

machinery, has been left out. An ambitious student will find a

more exhaustive treatment in the works mentioned at the end of

the pamphlet.
The electrostatic circuit is treated in accordance with the

modern conception of elastic displacement of electricity in di-

electrics. No use has been made of the action of electric charges
at a distance, or of the electrostatic system of units. The volt-

ampere-ohm system of units is used for electrostatic calculations,
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in accordance with Professor Giorgi's ideas (see a paper by Pro-

fessor Ascoli in Vol. I of the Transactions of the International

Electrical Congress, St. Louis, 1904). Those familiar with

Oliver Heaviside's writings will notice his influence upon the

author, particularly in Arts. 22 and 23,* where an attempt is

made at a rational electrostatic nomenclature.

Many thanks are due to the author's friend and colleague,

Mr. John F. H. Douglas, instructor in electrical engineering in

Sibley College, who read the manuscript and the proofs, checked

the answers to the problems and made many excellent suggestions

for the text.

CORNELL UNIVERSITY, ITHACA, N. Y.

August, 1910.

PREFACE TO THE SECOND EDITION

THE first edition of this book was issued as a pamphlet of

some 85 pages which the author used for two years in his classes

to supplement some other texts. In its present edition, the book

is made independent of these texts, so that its size had to be

more than doubled. The book has been practically rewritten, and

completely reset in type. All the cuts are new. The topics are

treated somewhat more in detail, and a large number of practical

problems are provided. The new topics added are : the resistance

of conductors of variable cross-section, the electrical relations in

polyphase systems, performance characteristics of the trans-

mission line, transformer and induction motor and the permittance

(electrostatic capacity) of transmission lines.

In the treatment of alternating currents by means of complex
quantities, particular attention is paid to the trigonometric form
E (cos 8 + j sin 0) of the expression for a vector. In fact, the

transmission line, the transformer, and the induction motor to

some extent, are treated in this trigonometric form. The author
trusts that the reader will find this somewhat novel treatment
more convenient in numerical applications than the usual form

e+je'.
*
Chapter 14 in the second edition.
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Since the appearance of the first edition, the author has been

encouraged by some of his colleagues in his treatment of the

electrostatic circuit in the ampere-ohm system of units, a treat-

ment which involves the use of permittances in farads and

elastances in darafs. He has extended this treatment to the calcu-

lation of capacity of cables and transmission lines. The students

grasp this mode of presentation much more readily than the old-

fashioned way, based upon the law of inverse squares and elec-

tric charges acting at a distance. The purpose of the present

treatment is to impress them with the idea of a continuous action

in the medium itself and with the role of the dielectric.

Mr. F. R. Keller of the electrical department of Columbia

University has read and corrected the manuscript and the proofs

of the second edition, and checked the answers to the new prob-
lems. The author wishes to express sincere appreciation of his

painstaking, faithful and competent work. The author is also

indebted to Mr. John F. H. Douglas for critically reading the

galley proof of the second edition.

CORNELL UNIVERSITY, ITHACA, N. Y.

May, 1912.
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SUGGESTIONS TO TEACHERS

(1) THIS book is intended to be used as a text in a course

which comprises lectures, recitations, computing periods and
home work. Purely descriptive matter has been omitted or only

suggested, in order to allow the teacher more freedom in his

lectures and to permit him to establish his own point of view.

Some parts of the book are more suitable for recitations, others for

reference in the designing room, others again as a basis for dis-

cussion in the lecture room, or for brief theses.

(2) Different parts of the book are made as much as possible

independent of one another, so that the teacher can schedule

them as it suits him best. Moreover, most chapters are written

according to the concentric method, so that it is not necessary to

finish one chapter before starting on the next. One can cover the

subject in an abridged manner, omitting the last parts of some

chapters.

(3) The problems given at the end of nearly every article are

an integral part of the book, and should under no circumstances

be omitted. There is no royal way of obtaining a clear under-

standing of the underlying physical principles, and of acquiring
an assurance in their practical application, except by the solution

of numerical examples.

(4) The book contains comparatively few sketches, in order to

give the student an opportunity to illustrate the important re-

lations by sketches of his own. Making sketches, diagrams and

drawings of electric circuits and machines to scale should be one

of the important features of the course, even though it may not

be popular with some analytically inclined students. Mechanical

drawing develops precision of judgment, and gives the student a

knowledge that is tangible and concrete.

(5) The author has avoided giving definite numerical data,

coefficients and standards, except in problems, where they are in-

dispensable and where no general significance is ascribed to such
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data. His reasons are: (a) Numerical coefficients obscure the

general exposition. (6) Sufficient numerical coefficients and de-

sign data will be found in good electrical hand-books and pocket-

lxx)ks, one of which ought to be used in conjunction with this

text, (c) The student is likely to ascribe too much authority to

a numerical value given in a text-book, while in reality many
coefficients vary within wide limits according to the conditions of

a practical problem, and with the progress of the art. (d) Most
numerical coefficients are obtained in practice by assuming that

the phenomenon in question occurs according to a definite law,

and by substituting the available experimental data into the cor-

responding formula. This point of view is emphasized through-
out the book, and gives the student the comforting feeling that he

will be able to obtain the necessary numerical constants when
confronted by a definite practical situation.

(6) The treatment of the electrostatic circuit is made as

much as possible analogous to that of the electrodynamic cir-

cuit. The teacher will find it advisable to make his students

perfectly familiar with the juse of Ohm's law for ordinary electric

circuits before starting on the electrostatic circuit. The student
should solve several numerical examples involving voltages and

voltage gradients, currents and current densities, resistances, re-

sistivities, conductances and conductivities. He will then find

very little difficulty in mastering the electrostatic circuit, and
from these two the transition to the magnetic circuit, treated in

the companion book, is very simple indeed. The following table
shows the analogous quantities in the three kinds of circuits.



LIST OF PRINCIPAL SYMBOLS.

The following list comprises most of the symbols used in the text. Those

not occurring here are explained where they appear. When, also, a symbol
has a use different from that stated below, the correct meaning is given where

the symbol occurs.
Page where defined

Symbol. Meaning. or first used.

a Radius of conductor of transmission line 176

a Radius of core of cable 171

A Cross-section 13

b Interaxial distance between conductors of transmission line 176

6 Radius of inner surface of cable sheathing 171

b Susceptance 75

C Constant 54, 72

C Permittance or electrostatic capacity 147

D Dielectric flux density 154

Dmax Rupturing flux density 165

e Electromotive force 1

e Instantaneous value of voltage 34

e Horizontal component of vector of e.m.f 83

e' Vertical component of vector of e.m.f 83

ei Local source of e.m.f 3

e t Terminal voltage 3

E Effective value of alternating voltage 48

E Vector of the voltage E 83

Em Maximum value of voltage 34

/ Frequency of alternating current or voltage 33

F Mechanical force 60

g Conductance 2

geq Equivalent conductance 8

G Voltage gradient or electric intensity 16

Gmax Rupturing voltage gradient 165

h Elevation of conductor above the ground 181

h Head of fluid 10

h Instantaneous value of harmonic 54

i Current 1

i Horizontal component of vector of current 87

i Instantaneous value of current 33

i' Vertical component of vector of current 87

7 Effective value of alternating current 48

/ Vector of the current / 88



xiv LIST OF PRINCIPAL SYMBOLS

Page where defined

Symbol. Meaning. or first used.

IL Primary load current 1 16

Im Maximum value of current 34

/ Mesh currents in squirrel-cage rotor 133

j V^T 83. 85

kb Breadth factor of winding 133

A" Relative permittivity
151

/ Length 13

log Common logarithm 172

L Inductance - 60

Ln Natural logarithm 171

m Mass 60

m Number of phases 133

p Number of poles 135

P Constant 73

P Input per phase of induction motor 123

P Power 10

Pate Average power 48

q Instantaneous displacement of electricity 193

q Rate of discharge of a fluid 10

Q Constant 73

Q Quantity of electricity 144

Q Quantity of heat '. 2

r Resistance 1

rtq Equivalent resistance 7

R Resistance 8

Ro Resistance at C 5

Rt Resistance at 1 C 5

Slip of induction motor 123
<S Area of curve 53
S Elastance 148
t Time 33
T Temperature 6
T Time of one cycle of alternating wave 33
u Variable angle 33
U Current density 15
v Velocity 60
V Volume ......."".'I.'!!!!!!'.!! 15
W Energy \\\\ 46W Density of energy 158
x Reactance 53
x Variable radius 171
y Admittance 76
y Ordinate of curve 50
Y Admittance operator 89
z Impedance 67
Z Impedance operator 88



LIST OF PRINCIPAL SYMBOLS XV

Page where defined

Symbol. Meaning. or first used.

a Angle 43, 94

a A ratio 189

a Temperature coefficient 5

7 Conductivity 14

e Base of natural system of logarithms 72

6 Difference of temperature 2

6 Phase angle 82

01 Angle of incidence of current 28

61 Angle of incidence of dielectric flux 163

02 Angle of refraction of current 28

02 Angle of refraction of dielectric flux 163

K Permittivity 151

Ka Permittivity of air 151

p Resistivity 13

<r Circle coefficient or dispersion factor of induction motor 138

a Elastivity 152

aa Elastivity of air 152

T Time constant of a circuit 72

< Phase angle 34

Magnetic flux 114

$m Maximum value of magnetic flux 114

$ Angle 121

w Angle 52

O Angle 52





THE BLBCTEIC CIRCUIT

CHAPTER I

FUNDAMENTAL ELECTRICAL RELATIONS IN DIRECT-
CURRENT CIRCUITS

1. The Volt, the Ampere, the Ohm, and the Mho. The
student is supposed to be familiar with Ohm's law, both theoret-

ically and from his laboratory experience. A brief synopsis of

the law, given below, is intended to refresh the relations in his

mind, and to establish a point of view which permits of extending
these relations to alternating-current circuits. Moreover, the

law is presented in a form applicable to magnetic and dielectric

circuits.

When the current in a conductor is steady and there are no

local electromotive forces within the conductor, the value of the

current is proportional to the voltage between the terminals of

the conductor. This is an experimental fact, called Ohm's law.

The word "conductor" is used here in the sense of "the part of

the circuit under consideration.
"

It may consist of two or more

distinct physical conductors. Considering the electromotive force

e as the cause of the current i, this law merely states that the effect

is proportional to the cause, or

e = r-i, (1)

where the coefficient of proportionality r is called the resistance

of the conductor. When the current is expressed in amperes,

and the electromotive force in volts, the resistance r is measured

in units called ohms.

Ohm's law is sometimes written in the form

i = 9-e, (2)
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where the coefficient of proportionality

g
= l/r (3)

is called the conductance of the conductor. The reason for this

name is easy to see: The resistance r shows how difficult it is to

force a unit current through a given conductor, while its recip-

rocal g shows how easy it is to produce the same current in the

same conductor. Conductances are measured in units called

mhos, one mho being the reciprocal of one ohm. Hence, a resist-

ance of one ohm represents at the same time a conductance of

one mho; a resistance of two ohms has a conductance of one-half

mho, etc. Increasing the resistance of a winding from 4 to 5 ohms
reduces its conductance from 0.25 to 0.20 mho.

It will be seen below that in some problems it is convenient to

use conductances instead of resistances. Both are fundamental,
and there is no reason why Ohm's law should not have been ex-

pressed originally by eq. (2) instead of (1).

With our present meager knowledge of the true nature of

electrical phenomena, it is well-nigh impossible to give a clear

physical meaning of the quantities under discussion without

resorting to analogies. For instance, the flow of current through
a conductor may be compared to the flow of heat through a

rod; the voltage or difference of electric potential is analogous
to the difference of temperature 6 at the ends of the rod, and the

electric current to the quantity of heat Q passing through a cross-

section of the rod in unit time (the rate of flow of heat). The
ratio of to Q is sometimes called the thermal resistance of

the rod.1

Again, the phenomenon of the flow of electricity is somewhat
analogous to the flow of water through pipes. The hydraulic
head may be likened to the voltage, and the rate of discharge of
water to the current. With very low velocities, in capillary
tubes, the discharge is proportional to the head, so that eqs. (1)
and (2) hold true for the flow of water.

Whatever the reasons which have led originally to the choice
of the magnitudes of the ampere, the ohm, and the volt, these
units may be considered at present, for all practical and most
theoretical purposes, as arbitrary units, like the foot, the pound, or

1 It even has been proposed to measure this resistance in thermal ohms or
thohm*.
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the meter. Their values have been established by an interna-

tional agreement, whence the name, international electrical units.

These units are represented by concrete standards with minutely

specified dimensions and properties; the ohm by a column of

mercury, the ampere by a silver voltameter, and the volt by a

standard cell. It is understood, of course, that only two out of

the three units need to be standardized, the third being determined

either as their product, or their ratio. It has been decided by
international agreement to consider the ampere and the ohm as

fundamental units, the volt being derived from them. Hence

the present system of practical electrical units is properly called

the ampere-ohm system. This fact does not preclude, of course,

the use of standard cells as secondary standards.

The ampere, the volt, and the ohm are connected by simple

multipliers (powers of 10) with the absolute electromagnetic units

(the C.G.S. system of units). It is conceded at present by some

prominent physicists that the choice of the units was not quite

fortunate, according to our present understanding of the electro-

magnetic relations. Since, however, it is too late to change these

units, it is better to consider them as arbitrary, and not con-

nected in any way with the magnitudes of the centimeter, the

gram, and the second.

In applying Ohm's law to practical problems, it must be

clearly remembered that e represents the net voltage acting be-

tween the ends of the conductor r. This is important when the

circuit contains sources of counter-electromotive force, such as

electric batteries, or motors. Let, for instance, the total resistance

of a circuit, connected across the terminals of a generator, be 12

ohms, and let the terminal voltage of the generator be 120 volts.

Then the current is equal to 10 amperes, provided that there are

no counter-electromotive forces in the circuit. Let, however, the

circuit contain a storage battery of, say, 24 volts, connected so

as to be charging, that is, opposing the applied voltage. The
current in the circuit is now only (120 24)/12 = 8 amp., the

value 120 24 = 96 being the net voltage in the external circuit.

Should the terminals of the battery be reversed, so as to help the

generator voltage, the current would increase to (120 + 24)/12
= 12 amp.

Thus, when there is an external or local source of electro-

motive force, say ei, within a conductor, the terminal voltage e t
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between the ends of the conductor is added algebraically to eh

BO that we have, instead of eq. (1),

e t + ei=i-r, (4)

where e\ is considered positive when in the same direction as e t .

In the foregoing numerical example the counter-e.m.f. is therefore

considered negative.

In numerical computations it is sometimes convenient to use

multiples and submultiples of the units originally agreed upon,

in order to avoid large numbers or very small fractions. This is

accomplished by adding to the names of the original units certain

Greek prefixes for the multiples, and Latin prefixes for the sub-

multiples. These prefixes are as follows:

deca. . . .ten deci one tenth

hecto. . .one hundred centi one hundredth

kilo one thousand milli one thousandth

mega. . .one million micro one millionth.

For instance, instead of 10,000 amperes one may say or write

10 kiloamperes; instead of 0.0003 volt one may say 0.3 millivolt,

or 300 microvolts, etc. Another way to avoid very large or very
small numbers is to use 10 to the proper power as a multiplier.

For instance, one may speak of a resistance of 7 X 10~6
ohm, of a

conductance equal to 5 X 107
mhos, etc.

Prob. 1. In order to determine the resistance of the armature of an
electrical machine, a direct current is sent through it and the drop of volt-

age is measured between the brushes. The following are the readings:

Volts 0.44 0.73 1.00 1.33 1.73

Amperes 8.1 12.9 18.1 24.0 31.0

What is the most probable value of the resistance? Hint: Take an

average of the ratios, or better, plot the volts against the amperes as
abscissa? and draw a straight line through the origin.

Ans. 0.0559 ohm.
Prob. 2. The resistance of a transmission line is 1.2 ohms. What

voltage is necessary at the generating end in order to produce a current
of 75 amp. (a) when the line is short-circuited at the receiving end;
(b) when a pressure of 500 volts must be maintained at the receiving
e"d? Ans. 90 volts; 590 volts.

Prob. 3. The armature resistance of a 250-volt generator is 0.025
ohm. At what current will the voltage drop in the armature be equal
to 4 per cent of the terminal voltage? Ans. 400 amp.
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Prob. 4. The conductance of a bath of molten metal is 5 kilomhos;
what voltage is required to send a current of 7 X 104

amp. through it?

Ans. 14 volts.

Prob. 5. The coil of a regulating electromagnet of 50 ohms resistance

is connected across a 110-volt line; the voltage of the line fluctuates by
10 per cent. In order to make the regulating mechanism more sensi-

tive, that is, in order to accentuate the fluctuations of current in it, a

counter-e.m.f. storage battery of negligible resistance is connected in

series with the coil. What must be the voltage of the battery if the cur-

rent in the coil at 120 volts must be twice that at 100 volts?

Ans. 80 volts.

2. Temperature Coefficient. The resistance of all metals and
of practically all alloys increases with the temperature, according
to a rather complicated law. Within the usual limits of tem-

perature the increase in resistance is nearly proportional to the

temperature rise; in other words, the relation between the resist-

ance of a conductor and its temperature is represented by a straight

FIG. 1. The relation between the resistance and the temperature of

metals.

line MN (Fig. 1). Let the resistance at C. be R ohms; then

the resistance at some temperature t C. is

Rt = R (l+a), . (5;

where a is called the temperature coefficient of the material. For

the values of a for various materials see an electrical handbook.

For the most important material, copper, a 0.0042; in other

words, the resistance of a copper conductor increases by 0.42 per
cent for each degree centigrade, considering the resistance at

C. as 100 per cent.

The formula given below is sometimes more convenient in

computations than formula (5). Assume that the same straight-
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line law (Fig. 1) holds for low temperatures, and let temperatures

be measured from the point A at which the straight line crosses

the axis of abscissae. Denoting temperatures from this point by

T, we have, for any two temperatures,

Rl/R 2
= Tt/Tt (6)

With this formula it is not necessary to refer computations to

the resistance at C. The point A is found from the condition

Rt = 0, from which, according to eq. (5), tA = I/a. Thus, for

any temperature,
T = t + l/a (7)

For copper, T = t + 238.1; that is, point A lies 238.1 C. below

the freezing point of water. This does not mean that the resist-

ance of copper actually varies according to this law at such

temperatures; A is merely a fictitious point through the position

of which it is convenient to express the equation of the full-drawn

part of the straight line in Fig. 1.

Let, for instance, the resistance of the winding of an electric

machine be 0.437 ohm at the room temperature of 22 C. After

the machine has been run for several hours the resistance of the

same winding is found to be 0.482 ohm, with the room temper-

ature unchanged. Let it be required to calculate the final tem-

perature of the winding from the increase in its resistance. We
have Ti = 238.1 + 22 = 260.1, and according to eq. (6) the un-

known final temperature T2
= 260.1 X (482/437) = 286.9, or

t t
= 286.9 - 238.1 = 48.8 C. Two other practical formulae for

temperature rise will be found in Appendix E of the Standard-

ization Rules of the American Institute of Electrical Engineers.
These rules are reprinted in most electrical handbooks and pocket-
books. See also a convenient method given in problem 2 below.

Prob. 1. The resistance of a conductor increases by 31 per cent from
23 to 75 C. What is in formula (5)? Ans. 0.00691.

Prob. 2. The relation between the resistance and the temperature
of copper conductors is easily obtained on an ordinary slide rule, as fol-

lows: On the lower movable scale mark C. on division 238; 10 C. on
division 248, and so on. Set a known resistance on the lower fixed scale,
and bring the corresponding temperature opposite. Then the resistance
at any other temperature is read opposite the corresponding division on
the temperature scale. Give an explanation of this method.

Prob. 3. Prove the formulae for #<+, and r in the above-mentioned
Standardization Rules.
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3. Resistances and Conductances in Series and in Parallel.

When resistances are connected in series, the total resistance of

the circuit is increased. This can be more easily seen by resort-

ing to analogies. For instance, if the length of a pipe carrying a

fluid be increased, the frictional resistance to the flow becomes

greater; in like manner, a long rod offers a more difficult path for

the passage of heat than a short one. In the electric circuit, the

equivalent resistance of two conductors in series is equal to the

sum of their individual resistances, as is shown below. This follows

from the experimental fact that electricity in its flow behaves like

an incompressible fluid; that is, the same quantity of it must pass
in a given time interval through all the cross-sections of a circuit.

Let two conductors, r\ and r^, be connected in series across a

source of voltage e, and let a current i flow through them. Part

of the total voltage e is spent in overcoming the resistance of the

first conductor, the rest in overcoming that of the second con-

ductor. But, according to Ohm's law, when the conditions are

steady, the voltage across the first conductor, ei = i-n; the

voltage across the second is ez = i r%. Adding these two equa-
tions gives the total voltage

e = ei + e2
=

i(ri + r2).

An equivalent resistance, req , by definition, is one which, with

the same total voltage e, allows the same current i to pass through
the circuit, as the combination of the given conductors. Hence,

e = i- req .

Comparing the two foregoing equations gives

req
= ri + r2 (8)

The law is true for any number of conductors in series; it may
be proved by successively combining them into groups of two.

When several conductors are connected in parallel, the voltage

across them is common to all the branches, so that we have

(9)

where i\, 12, ... are the currents in the separate branches. The
total current is equal to the sum of the currents in the separate
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branches, because electricity behaves in its flow like an incom-

pressible fluid. Thus, the equivalent resistance, req ,
is determined

by the condition

e = (i! + i, + etc.) req (10)

Substituting the values of ii, iz, etc., from (9) into (10) and

canceling e, gives

\/req
= 1/ri + l/r2 + etc., (11)

or, in words: when two or more conductors are connected in

parallel, the reciprocal of the equivalent resistance is equal to the

sum of the reciprocals of the individual resistances.

We have defined conductance as the reciprocal of resistance,

so that eq. (11) may be written also in the form

geq
=

gi + 02 + etc (12)

It will thus be seen that it is convenient to use conductances in

parallel circuits and resistances in series circuits. The simple
rule is: Resistances are added in series; conductances are added in

parallel. This rule follows directly from the physical concept of

resistance and conductance.

Prob. 1. Prove that when two conductors, 1 and 2, are in parallel

ti/i = gi/gz = r 2/n, (13)

and that when they are in series

ei/ci = ri/r =
QI/QI (14)

Prob. 2. Show that when two resistances are in parallel the equivalent
resistance

req
= rir 2 /(ri + r 2), (15)

and that for two conductances in series

geq
=

0i0i/(0i + gj (16)

Prob. 3. Two resistances, TI = 5 ohms and r 2
= 7 ohms, are connected

in scries. Resistance ri is shunted by a comparatively high resistance

Ri = 100 ohms; r 2 is shunted by a resistance J? 2
= 50 ohms. What is

the equivalent resistance of the whole combination? Solution:

Equivalent conductance of r, and Ri is 0.2 + 0.01 = 0.21 mho;
Equivalent resistance of r, and Ri is 1/0.21 = 4.76 ohms;
Equivalent conductance of r 2 and Ri is

0.1429 + 0.0200 = 0.1629 mho;
Equivalent resistance of r 2 and R is 1/0.1629 = 6.14 ohms.

Ans. 4.76 + 6.14 = 10.90 ohms.

Prob. 4. Four resistances, r, = 1.2, r 2
= 1.7, R =

25, and r =
750 ohms, are connected as shown in Fig. 2. The generator voltage
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between the points A and B is 500 volts. Determine the current through
the resistance R and the voltage across this resistance. 1 Solution: Com-
bine the resistances r^ and R into one; determine the conductance

l/(R + r 2), and combine it with the leakage conductance l/r . De-

N D

FIG. 2. A series-parallel combination of resistances.

termine the equivalent resistance between the points M and N, and the

total resistance between A and B. Having found the total current, sub-

tract from the generator voltage the voltage drop in the part AM of the

line. This will give the voltage across MN, and consequently the value

of the leakage current. After this,

the drop in rt is determined, and

thus the voltage across the resist-

ance R is found.

Ans. 447.3 volts; 17.8 amps.
Prob. 5. The armature winding

of a direct-current machine (Fig. 3)

consists of 108 coils; the conduct-

ance of each coil is 61 mhos. The
coils are connected in series in such

a way that the circuit is closed

upon itself. Two positive and two

negative brushes are placed alter-

nately at four equidistant points of

the winding, so as to divide it into

four branches in parallel. The two

positive brushes are connected to-

gether, as are also the two negative
brushes. What is the equivalent
resistance of the armature between
the terminals of the machine?

Ans. 0.1106 ohm.2

Terminals

FIG. 3. A four-pole multiple winding.

1 This combination represents a transmission line the resistance of which

is ri + raj the useful load resistance is represented by R, and the leakage re-

sistance by TO. The problem in a generalized form is of great importance in

the theory of alternating-current circuits (see Figs. 41 and 42).
2 For details of armature windings see the author's Experimental Electrical

Engineering, Vol. 2, chap. 30.
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Prob. 6. Two equal resistances of r ohms each are connected in

series. When one of them is shunted by an unknown resistance R, the

total resistance of the combination decreases by 10 per cent. Find the

value of R. A- 4r -

4. Electric Power. The electric power (energy per unit

time) converted into heat in a conductor is found by experi-

ment to be proportional to the resistance of the conductor and

to the square of the current (Joule's law). The practical unit of

power, the watt, is so selected that the coefficient of proportion-

ality is unity, or the power

P = i
2
r = i2/g (17)

Either i or r may be eliminated from this expression, using Ohm's

law. This gives three more expressions for power:

P = e . i = e2/r
= etg (18)

All these expressions are used in practice, depending upon which

quantities are known in a particular case.

The expression e i is the fundamental one; it is analogous to

the expression h q for the power lost by friction in a pipe in which

a fluid is in uniform motion. In the pipe, the energy lost per

unit time is equal to the rate of discharge q times the head h lost

in friction; in other words, it is equal to the quantity factor

times the intensity factor. In an electric circuit the current i

is the quantity factor, while the voltage drop e is the intensity

factor.

If P in eqs. (17) and (18) is expressed in kilowatts, or in mega-

watts, a numerical factor equal to 10~3 or 10~6
respectively is

introduced on the right-hand side of the equation. Sometimes

the output of a motor is measured in horse-power; the English

horse-power is equal to 746 watts, while the metric horse-power
is 736 watts. It is strongly recommended by the International

Electrotechnical Commission that the odd and superfluous unit

"horse-power" be dropped altogether and that mechanical power
be expressed also in watts (or kilowatts). This means that elec-

tric motors as well as generators should be rated in kilowatts.

Sometimes the duty of a machine is expressed in kilogram-
meters per second; the conversion ratio to watts is:

1 kg.-m. per second = 9.806 watts.
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In many cases, however, it is not necessary to introduce either

kilogram-meters or calories, since mechanical, thermal, and electri-

cal energy can all be expressed in joules (watt-seconds).

If a conductor contains a local e.m.f. ei, the power commu-
nicated to this part of the circuit, between its terminals, is

equal to e t i, where e t is the terminal voltage. But the power
i2r converted into heat may be either smaller or larger than e ti,

depending upon the polarity or direction of e\. Multiplying both

sides of eq. (4) by i, we find that the power

P = e ti + eii = iV (19)

Let e t be positive, that is, in the same direction as e t (for instance,

an extra battery or generator connected into the circuit to boost

the voltage); the power fV converted into heat is in this case

larger than e ti, because the power supplied by the local source

of e.m.f. is also converted into heat. If, however, ei is negative,

that is, if it acts as a counter-e.m.f. (which is usually the case in

practice), the power converted into heat is smaller than e ti. In

this case the power eii is communicated to the local source of

e.m.f. If this source is a storage battery, the energy is stored in

chemical form, and may be made available at a later time; if it

is a motor, the energy is converted into mechanical work on the

motor shaft. Let, for instance, the voltage at the terminals of a

circuit be 110 volts, and let the counter-e.m.f. of a motor in the

circuit be 100 volts; assume the current through the circuit to

be 20 amp. Then the voltage drop due to resistance in the

conductors is only 10 volts, and the power converted into heat

is 200 watts. The power communicated to the motor is 2000

watts, and the total power supplied to the circuit is 2200 watts.

The unit of electrical energy is the watt-second, or joule. When
the heat dissipated in a conductor must be expressed in thermal

units, use the relation

1 kg.-calorie = 4186 joules.

Prob. 1. The armature current of a 220-volt direct-current motor at

a certain load is 63 amp., and the armature resistance is 0.14 ohm. How
much electric power is converted into mechanical form, and what is the

torque developed by the armature if the speed is 1050 r.p.m.?
Ans. 13.3 kw.; 12.3 m.-kg.

Prob. 2. If the currents in the shunted resistances Ri and R z (problem
3, Art. 3) represent pure loss of power, what is the efficiency of the whole

arrangement? Solution: Let the voltage across the resistances n and
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Ri be r. Then the voltage across r 2 and Ri is e (6.14/4.76) = 1.29 e.

Hence, the useful power is e
2
/5+ (1.29 <?)

2
/7 = 0.438 e2 watts. The power

lost in the resistances fl, and R 2 is e2
/100 + (1.29 e)

2
/50 = 0.0433 e2 watts.

The efficiency is 43.8/(43.8 + 4.33) = 90 per cent.

Prob. 3. The heating element of a 110-volt electric kettle must be

designed so that it will heat 1.5 liters (1 liter = 1 cu. decimeter) of water

at a rate of 10 C. per minute, assuming no losses by radiation. What
are the resistance of the element and the rated current of the utensil?

Ans. 11.6 ohms; 9.5 amp.
Prob. 4. It is required to calculate the exciting current i, the number

of turns n per pole, and the resistance r per turn of a field coil of a 5000-kw.

6-pole turbo-alternator, from the following data: The excitation required

at the rated load is 9000 amp .-turns per pole; at short overloads 12,000

amp.-turns per pole are needed. The external area of the field coil is

280 sq. dm.; in continuous service, 4 sq. cm. of cooling surface must be

allowed per watt converted into heat, in order to avoid overheating the

coils. The exciter voltage is 125, and during the overload about 10 per
cent of this voltage must be absorbed in the field rheostat, as a margin.
Hint: Solve the following three equations; in = 9000; i*rn = 28,000/4;

(12,000/?i)nr = 0.9 X 125/6.

Ans. 500 amp.- 18 turns; 1.562 X 10~3 ohms.



CHAPTER II

FUNDAMENTAL ELECTRICAL RELATIONS IN DIRECT-
CURRENT CIRCUITS (Continued)

5. Resistivity and Conductivity. A cylindrical conductor

may be considered as a combination of unit conductors in series

and in parallel. For instance, a wire 12 m. long and having a

cross-section of 70 sq. mm. may be regarded as composed of 70 X
12 = 840 unit conductors, each of one square millimeter cross-

section, and one meter long. These unit conductors are first

combined into sets of 70 in parallel, and then the 12 sets are

connected in series. The resistance of such a unit conductor,

made of copper, and at a temperature of C., is about 0.016

ohm. A set of 70 unit conductors in parallel has 7V of the resist-

ance of one, because the current is offered 70 paths, instead of

one; twelve sets connected in series offer twelve times the resist-

ance of one set. Therefore, the resistance of the given conduc-

tor is (0.016/70) X 12 = 0.002743 ohm.

Each material is characterized by the resistance of a unit con-

ductor made out of it. The resistance of a unit conductor at a

specified temperature is called the resistivity
l of the material and

is denoted by p. Thus, the resistance of a conductor of a length I

and cross-section A is

r = p-l/A (20)

The numerical value of p depends upon the units of length and

resistance used. A unit conductor may, for instance, have a

cross-section of one square millimeter, and may be one meter, or

one kilometer long; or it may be a centimeter cube. In the

English system it may have a cross-section equal to one circular

mil, and a length of one foot, one thousand feet, one mile, or any
such specified length. Besides, the resistivity may be expressed in

ohms, megohms, or microhms. In each case, the unit of resistance

and the units in which the dimensions of I and A are expressed in

1 The older name is
"
specific resistance."

13
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formula (20) are selected so as to suit the convenience of the

user of the formula. For the values of p for different materials

see one of the various handbooks and pocketbooks for electrical

engineers.

In some cases it is more convenient to use the conductance of

the unit conductor, instead of its resistance. The conductance

of a unit conductor, at the specified temperature, is called the

electric conductivity (or specific conductance) of the material; the

conductivity is the reciprocal of the resistivity of the same'mate-

rial. Denoting this conductivity by 7, we have 7 = 1/p. By
reasoning similar to that given above, we find that the conduc-

tance of a conductor having the dimensions I and A is

g
= 7-A/l........ (21)

Prob. 1. The resistivity of aluminum equals 2.GG microhms per cubic

centimeter; what is its conductivity per mil-foot? Solution: The re-

sistance of a conductor one foot long and having a cross-section equal to

one circular mil is 2.66 X 1CT6 X 197,300 X 30.48 = 16 ohms; where

197,300 = (1000/2.54)
2 X 4/V is the factor for converting square centi-

meters into circular mils, and 30.48 is the number of centimeters in one

foot. Ans. 0.0625 mho per circular mil-foot.

Prob. 2. Each field coil of an electric machine has 720 turns, the

average length of a turn being about 1.5 m. What size wire is required
if the hot resistance of the coil is to be 1.14 ohms? According to the

A. I. E. E. Standardization Rules, a temperature rise of 50 C. is allowed

above the air at 25 C. Ans. About 20 sq. mm.
Prob. 3. A given current i is to be transmitted at a given voltage

between two given localities whose distance apart is I. Deduce an

expression for the most economical size of the line conductor. A small

conductor means a saving in the original investment, but a higher operat-

ing cost on account of the power lost in the conductor, and vice versa.

The most economical conductor is one for which the annual interest and

depreciation plus the cost of the i*r loss per year is a minimum. Solu-

tion : Let the cost of one watt-year be p cents, and let the conductor cost

q cents per cubic centimeter, installed. Let 5 be the annual interest

and depreciation in per cent to be allowed on the original cost of the con-
ductor. The cost of the power lost in the line is pPpl/A, and the initial

cost of the conductor is qlA. The condition of the problem is that

pVpl/A + sqlA +K = mm., ..... (22)

where the constant K represents the interest and depreciation on the

poles, insulators, etc., the size of which is essentially independent of the
size of the conductor. Equating the first derivative with respect to A to

zero, we get -pt'VA 2 + 6q
=

0, or

pi*P/A = SqA..... . (22a)
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In other words, the most economical cross-section is that for which the

sum charged to the annual interest and depreciation is equal to the cost

of the wasted energy. This result is independent of the length of the

line and of the voltage, and is known as Kelvin's law of economy.
1 Know-

ing all the data, the cross-section A can be calculated from condition

(22a) ; see also problems 6 and 7 in Art. 6.

Prob. 4. A transmission line from the generating station A to a place
B is I kilometers long. At B the line is divided into two branches; one

to C, li km. long, and carrying a current tij the other to D, h km. long,

and eanying a current t'i. The total permissible voltage drop from A
to either C or D is volts (one way). Determine the sizes of the con-

ductors in the three parts of the line so as to make the total initial cost

of copper a minimum. Solution: Take the unknown voltage drop x
from A to B as the independent variable; then the three cross-sections

are determined by the conditions ipl/A = x, iipZi/Ai = x, and

*tpl*/A t
= f x. The value of x itself is determined by the condition

that IA + M.I + ItAi = min. Substituting the values of A, A l and .4,

into this expression, and equating the first derivative with respect to x
to zero, we get tP/x* = *iii*/(e

-
*)* + uV/( -

*)*. Extracting the

square root of each member of this equation and solving for x, we find that

+ (VO (Wl*

Having found x, the three cross-sections are easily calculated from the

three conditions written above.

6. Current Density and Voltage Gradient. When a current

is distributed uniformly over the cross-section of a cylindrical

conductor, it is convenient to speak of the current density, or the

current per unit cross-section of the conductor. Denoting this

density by t7, we have

U = i/A (23)

U is measured hi amperes (or kiloamperes, milliamperes, etc.)

per square centimeter, or per square millimeter. The current

density is numerically equal to the current through each unit

conductor of which the given conductor consists.

1 In practice the selection of the cross-section of a line conductor is

determined by many other considerations besides that of economy, as out-

lined above. For instance, it may be desired to reduce the original invest-

ment to a minimum while the load is small, and to change the conductors

to a larger size afterwards. The problem above is intended only to introduce

the reader into this subject. He will find numerous contributions treating

of more complicated cases in various periodicals and transactions. See also

A. C. Perrine, Electrical Conductors, Chapter 8.
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When the voltage drop is distributed uniformly along a con-

ductor, it is convenient to speak of voltage drop per unit length.

This voltage drop across a unit length is called the voltage gradient,

and is measured in volts, kilovolts, millivolts, etc., per meter or

per centimeter. Denoting the voltage gradient by G, we have

G = e/l (24)

The value of G characterizes the electrical condition at a point

(or a cross-section) of the conductor; for this reason G is some-

times called the electric intensity at a point.

Having previously introduced the resistance p and the conduct-

ance 7 of a unit conductor, we can now write Ohm's law for the

unit conductor, in the form

G= P U = V/y (25)

Equation (25) has a definite meaning also without the concept

of the unit conductor; namely, it gives the relation between the

voltage gradient and the current density at a point, for a given

material. The reader can easily think of a thermal analogue.

Hooke's law for elastic materials is also somewhat analogous to

eq. (25), because it expresses a straight-line relation between the

cause and the effect. Equation (25) can be deduced directly

from eq. (1) by writing the latter in the form Gl = (pl/A) UA
and canceling I and A.

Prob. 1. What is the voltage drop per kilometer of a copper wire

having a cross-section of 70 sq. mm., and carrying a current of 150 amp.?
Solution: U= 150/70= 2.143 amp. per sq. mm. The conductivity of

copper 7, at the temperature of the line, is equal to 57 mhos for a unit

conductor of one square millimeter cross-section and one meter long.

Therefore, the electric intensity or the voltage drop per meter of length,

according to formula (25), is 2.143/57= 0.0376 volt per meter.

Ans. 37.6 volts/km.
Prob. 2. What is the expression for power converted into heat in a

unit conductor? Ans.

P = G U = U*P = C72/T = 7 G* (25a)

Prob. 3. What is the amount of power lost in the conductor con-
sidered in problem 1?

Ans. (0.0376 X 2.143) X 70 X 1000 = 5640 watts.
Prob. 4. The space available on the frame of a generator for a rec-

tangular field coil is 16 X 12 cm. for the inside dimensions, and 28 X
24 cm. for the outside dimensions; the limiting height is 15 cm. What
current density can be allowed in the coil, if 12 sq. cm. of exposed surface
are required per watt loss, in order that the temperature of the coil shall
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not exceed the safe limit? The space factor of the coil is 0.55; in other

words, 55 per cent of the gross space is occupied by copper, the rest being
taken by the air spaces and the insulation. Solution: The exposed
surface is 2(28 + 24) X 15 = 1560 sq. cm.; therefore, 130 watts loss

can be allowed in the coil. With a space factor of 0.55 the useful cross-

section of copper is 6 X 15 X 0.55 = 49.5 sq. cm.; the average length
of one turn equals 2(22 + 18) = 80 cm. Therefore, the coil contains

4950 X 0.8 = 3960 unit conductors, each one meter long and one square
millimeter in cross-section. The permissible loss per unit conductor is

130/3960 = 0.0328 watt. Hence, according to the answer to problem 2

above, U = A/0.0328 X 57 = 1.37 amp. per sq. mm. This result is

independent of the size of the wire, as long as the space factor remains

approximately the same. The maximum ampere-turns are'137 X 49.5 =
6780, and, for a constant space-factor, are also independent of the size

of the wire.

Prob. 5. What are the size of wire and the exciting current in the pre-

ceding problem if the voltage drop must not exceed 20 volts at 80 C.?

Ans. 4.74 sq. mm.; 6.5 amp.
Prob. 6. Referring to problem 3 in Art. 5, what is the general expres-

sion for the most economical current density? Ans. U = Vs<?/(pp).
Prob. 7. Referring to the preceding problem, what is the most eco-

nomical current density if copper costs 15 cents per pound, the annual
interest and depreciation is taken at 12 per cent, and the estimated cost

of wasted power is 22 dollars per kilowatt-year?
Ans. 0.95 amp. per sq. mm., taking p at 25 C.

7. Kirchhoff's Laws. Consider an arbitrary network of

conductors (Fig. 4), with sources of e.m.f. connected in one or

more places. When such a system is left to itself, definite cur-

rents will flow through the conductors, and definite differences of

potential will be established between the junction points of the

conductors. Thus, if all the resistances and e.m.fs. are given, it

ought to be possible to calculate the magnitude and direction of

all the currents. The distribution of the currents is such that

two conditions are satisfied:

(1) As much current flows toward each junction as from it,

because electricity behaves like an incompressible fluid. For any
junction this is expressed mathematically by the equation

(26)

in which all the currents flowing toward the junction are taken

with the sign plus, all those flowing away from it with the sign

minus, or vice versa. Thus, for instance, at the point C let the

currents flowing toward the junction be 20 and 30 amp. respec-
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lively, and one of the currents flowing away from it be 40 amp.

Then the fourth current must necessarily be 10 amp. flowing

away from C, because 20 + 30 - 40 - 10 = 0. Equation (26)

is called Kirchhoff's first law.

(2) The sum of the terminal voltages along any closed circuit

in the network is equal to zero, or

2et = (27)

Consider, for instance, the path ABCDEFA,&nd connect a zero-

center voltmeter first between A and B, then between B and C,

and so on, every time transferring both terminals, so that one

Fia. 4. A network of conductors, illustrating Kirchhoff's laws.

particular terminal of the instrument always leads the other.

Consider the deflections to one side of the zero point as positive,

to the other side as negative. Equation (27) means that the

algebraic sum of these readings is equal to zero. The reason is

as follows: The reading A-B shows how much higher is the

potential at B than that at A
;
the reading B-C shows the amount

by which the potential at C is higher than that at B. Hence,
the sum of the two readings indicates the difference of potential

or the voltage between C and A. Consequently, the sum of all

the readings around the closed circuit indicates the difference

of potential between A and A, which difference is evidently

zero, no matter by which closed path the original point has been

reached. The reader may again resort to analogues in order to
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see this law more clearly. For instance, the potentials at the

joints may be likened to temperatures, and the voltmeter readings

to differences of temperature. Or the potentials may be com-

pared to absolute pressures in a network of pipes, and the voltages

e t to the differences of pressure. Again, the potentials of the

points A, B, C, etc., are analogous to the altitudes of certain

points, say above the sea level, while the voltages correspond to

their relative elevations. In all such cases the sum of the differ-

ences around a closed path is equal to zero.

Equation (27) is usually written in a somewhat different

form, because the values of e t are usually not known, so that it

is desirable to express them through the given electromotive

forces and the resistances of the conductors. The general expres-

sion (4) of Ohm's law holds for each conductor in the network.

Write these expressions for all the conductors along a closed

path, and add them together, term by term. The sum of the

e<'s is equal to zero, according to eq. (27), so that the result is

Sei = Sir (28)

This form of eq. (27) is known as Kirchhoff's second law. In

this equation a certain direction of currents and voltages must be

assumed as positive. Let, for instance, in the circuit ABCDEFA
the clockwise direction be taken as positive; that is, all the cur-

rents flowing clockwise are to be considered positive, and also

all the e.m.fs. which tend to produce currents in the clockwise

direction. Let e\ = 70 volts, and ez = 50 volts, and let the

resistances of the conductors be 2, 3, 5, 4, 8 and 6 ohms respec-

tively. Let all the currents be known except that in DE, and let

them be 10, 15, 15, 3 and 5 amp. respectively, the directions being
those shown in the figure. Denote the unknown current in DE
by x, and assume it to flow in the clockwise direction. Equation

(28) then becomes

70-50 = 10X2+15X3-15X5 + 4z-f3X8 + 5X6,

from which x = 6 amp. In other words, the current in DE is

equal to 6 amp. and is flowing counter-clockwise.

For a given network of conductors the number of equations
of the form (26) is equal to the number of junction points less one,

because the equation for the last point can be obtained by com-

bining the other equations. The number of equations of the
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form (28) is equal to the number of independent closed paths in

the network. The total number of equations of both kinds is

just equal to the number of unknown currents, so that these

currents can be determined by solving the simultaneous equations.

Prob. 1. A constant c.m.f. of 110 volts is maintained at the generat-

ing station, and power is transmitted through a line having a resistance

of 0.5 ohm to two devices in parallel, viz., a resistor of 10 ohms, and a

motor the internal resistance of which is 5 ohms. Calculate the line

current (a) when the motor armature is blocked, and (b) when it revolves

at such a speed that the counter-e.m.f. is 90 volts..

Ans. 28.7 amp.; 13.05 amp.

FIG. 5. An unbalanced Wheatstone bridge.

Prob. 2. Write the equations for the six unknown currents in a
Wheatstone bridge (Fig. 5) when it is not balanced.

Ans. {6 = i 2 4- {4 ; it = ii + ig ; i, = i4 4- ig
-

ibrb 4- i lTl 4- i2Ta = e
-

Prob. 3. Show that the preceding six equations are reduced to three
when the galvanometer circuit is open.

Fia. 6. A leaky electric circuit containing a counter-e.m.f.; this is an
analogue to the magnetic circuit of a loaded electric machine.

Prob. 4. Two sources of c.m.f., Cl and c (Fig. 6), are connected to act
; each other, e, being larger than e,. The internal resistances of
sources are r, and r 2 respectively; the main external resistance is

e insulation between the terminals of the sources of e m f is



CHAP. II] DIRECT-CURRENT CIRCUITS 21

imperfect, and the leakage conductances are represented by gn and gi2

respectively. Write Kirchhoffs equations for the unknown currents

(a) when there is no leakage; (b) when gi2
=

0; (c) when g i{
=

0; and

(d) when both leakages are present.
1

Prob. 5. A telegraph line with ground return has a resistance of r'

ohms per kilometer, and a leakage conductance to the ground of g' mhos

per kilometer. 2 The voltage at the receiver end of the line is E2 ,
the

receiver current I2 . What are the values of the voltage and of the current

at a distance of s kilometer from the receiving station? Solution: Con-
sider an infinitesimal length ds of the line, at a distance s from the receiv-

ing end, and let the voltage to the ground at this point be e. If i is the

line current at the same point, then the leakage current corresponding to

the element ds of the line is di, and we have, according to Ohm's law,
di = eg'ds, where g'ds is the leakage conductance through the element ds

of the line. For the element of the line itself, Ohm's law gives de = ir'ds.

Substituting the value of e from the first equation into the second, gives
d2
i/ds

2 =
r'g'i, or i is such a function of s that its second derivative is

proportional to the function itself. The solution of this differential

equation is i = A
1i~

ms + A 2e
+ms

,
where m =

^r'g', and A\ and A 2

are the constants of integration. However, in our case it is preferable
to express the solution through hyperbolic functions, in the form i =

Ci cosh ms + C2 sinh ms, where m = v/rV and C\ and C2 are the con-

stants of integration. The reader can check this solution by substitut-

ing it in the differential equation. The constants of integration are

determined from the given conditions at the receiver end of the line.

Namely, from di = eg'dswefmde = (1/00 (di/ds) = (m/g
1

) (Cisinhms +
C2 cosh ms). For s = 0, e = E2 and i = I2 . Consequently, C\ = I 2 ;

C2
= E2g'/m.

Prob. 6. Referring to the preceding problem, the resistance of a

telegraph line is 7 ohms per kilometer, and the insulation resistance to

the ground is 1.2 megohms per kilometer; the line is 400 kilometers

long. A relay of 300 ohms resistance and requiring 0. 12 ampere to operate

it, is connected between the receiver end of the line and the ground.
Calculate the required current and battery voltage at the sending station.

Ans. 0.195 amp.; 445 volts.

1 The electric circuit shown in Fig. 6 is of importance because it serves

as a good analogue to the magnetic circuit in a loaded machine. The electro-

motive forces ei and e2 correspond to the magnetomotive forces of the field

and the armature respectively, the reluctances of the parts of the main path

being represented by 2 r, n and r2 ,
while the leakage permeances correspond

to <7a and giz. See the author's Magnetic Circuit, the latter part of Art. 40,

and problem 13.

2 Primed symbols are used in this book and in the Magnetic Circuit where

quantities refer to unit length.



CHAPTER III

CONDUCTORS OF VARIABLE CROSS-SECTION 1

8. Current Density and Voltage Gradient at a Point. When
the cross-section of a conductor varies along its length (Fig. 7),

the voltage drop per unit length and the current density are also

variable. In places like MN, where the cross-section of the

conductor is comparatively small, the resistance per unit length

is correspondingly large, and vice versa. Consequently, the volt-

age gradient and the current density are also larger at MN than,

for example, at PQ. Equations (23) and (24) give in this case

only an average current density and an average voltage gradient
over the conductor.

Q
FIG. 7. A couductor of variable cross-section, showing the stream lines and

equipotential surfaces.

The lines traversing the diagram (Fig. 7) represent stream
lines and equipotential surfaces. The stream lines, marked with

arrowheads, represent the direction of the electric flow, while the

equipotential surfaces are perpendicular to them, and are the loci

of points of equal potential. The distribution is analogous to that
1 This chapter may be omitted if desired, because it is not necessary for

the understanding of the following chapters on alternating currents. The
importance of this chapter lies in the fact that the treatment is analogous
to that of the electrostatic circuit, and therefore it greatly facilitates the study
of the latter. This chapter may, therefore, be conveniently studied before
taking up Chapter 14. The treatment is also analogous to that used in the
author's Magnetic Circuit.

22
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which obtains in the flow of heat; the stream lines indicate the

direction of the flow of heat, while the equipotential surfaces are

analogous to those of equal temperature.

In order to understand the meaning of equipotential surfac.es,

let one lead of a voltmeter be applied at one of the terminals of

the conductor, and let the other lead be moved about inside the

conductor (assuming this to be possible), marking the points for

which the deflection of the voltmeter remains the same. All

the points for which the reading is, let us say, 10 volts form an

equipotential surface; while all those for which the voltmeter

reads 11 volts form another equipotential surface, and so on.

Between two points on the same equipotential surface the volt-

meter reading is evidently zero. The equipotential surfaces are

perpendicular to the stream lines, because if there were a com-

ponent of flow along an equipotential surface there would be an

ir drop between two points on the same surface, and the voltage

between these two points could not be zero.

Stream lines and equipotential surfaces give a clear idea of

the character of flow of a current in a conductor of irregular shape,

especially if they are drawn to correspond to equal increments of

current and voltage. This means that the lines of flow should

be drawn so as to define tubes of current of equal strength. For

instance, in Fig. 7 the current included between any two adjacent
stream lines is supposed to be the same let us say, equal to one

ampere. Similarly, the voltage between any two adjacent equi-

potential surfaces should be the same; for example, one volt. If

the lines are drawn sufficiently close together, they give complete
information about the voltage and current relations in the differ-

ent parts of the conductor, and also show places of high and low

current density and voltage gradient.

The true current density at a point is obtained by considering
an infinitesimal tube of current di and dividing di by the infini-

tesimal cross-section dA of the tube at the point under consider-

ation. Then, instead of eq. (23), we have

U=di/dA (29)

If, on the other hand, it is desired to express the total current

through the density, the preceding relation gives

i =
/ UdA, (30)



24 THE ELECTRIC CIRCUIT [ART. 8

the integration to be extended over the whole equipotential sur-

face, U being a function of the position of dA. In other words,

current is the surface integral of current density.

..
The relation between the variable intensity G along the conduc-

tor, and the total voltage e at its terminals, is no longer expressed

by the simple relation (24), applicable to the whole conductor.

Relation (24) must now be written for an infinitesimal length dl

of a stream line, because G is constant only for an infinitesimal

length. The definition of G remains the same, namely, G is the

rate of variation of voltage per unit length of the conductor.

Thus, denoting by de the voltage between two adjacent equi-

potential surfaces at a distance dl apart, we have

G =
de/dl, or de = G>dl (31)

The total voltage e between the terminals of the conductor is

equal to the sum of these infinitesimal drops, or

fJo G-dl (32)

Equation (32) is expressed in words by saying that voltage is the

line integral of electric intensity (or voltage gradient).
A clear understanding of relations (31). and (32) is of para-

mount importance in the study of electrostatic and magnetic
phenomena. This will be aided by recalling to mind the thermal

analogy previously used. In the case of the flow of heat, G
corresponds to the rate of change in temperature per unit length
of the rod, while e represents the total difference of temperature
between the ends of the rod. Equation (31) expresses the fact

that, by taking the rate at a certain point and multiplying it by
a very short element of the length of the rod, the actual difference
of temperature between the ends of this element is obtained.

Thus, for instance, let the drop in temperature at some point
of the rod be equal to 2.5 C. per meter length. Then the actual

drop in a very short element, say 0.1 mm., is 2.5 X 0.0001 =
0.00025 C. The element of length must be small, because by
supposition the cross-section of the rod is not constant, and the
rate of drop is consequently variable. For a short length the vari-
able quantities can be assumed constant, or, more correctly, aver-

age values can be used. Equation (32) thus states that the total
difference of temperature between the ends of the rod is equal to
the sum (or the integral) of the drops in the very small elements.
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Similarly, in a pipe of variable cross-section the rate of loss

of head per unit length is variable, so that it is only possible to

speak of this rate G at a point. The total loss of pressure, or

head e, is obtained by summing up the small losses of head in

infinitesimal elements of the pipe. The loss of pressure for a

length dl isGdl; the total head e is the integral of this expression,

over the whole length of the pipe. This is expressed mathemati-

cally by eq. (32).

Relation (25) between G and U holds true for a non-uniform

flow as well, because it merely gives a relation between the cause

G and the effect U at a point, depending only upon the property
of the material, as expressed by the factor 7 or p. This relation

may be also considered as Ohm's law for an infinitesimal cylindri-

cal conductor of length dl and cross-section dA, namely,

Gdl = de= (P dl/dA}UdA.

Canceling dA and dl, relation (25) is obtained.

Prob. 1. A current of 50 amp. is flowing along a cylindrical con-

ductor 3 cm. in diameter. The resistivity of the material varies in con-

centric layers in such a way that the current density is proportional to

the cube of the distance from the axis. What is the current density at

the periphery? Ans. 17.7 amp. per sq. cm.

Prob. 2. A conductor of circular cross-section, 225 cm. long, has the

form of a truncated cone, the diameters of the two terminal cross-sections

being 1.2 cm. and 3 cm. respectively. The total drop at a certain current

is 65 volts. What is the general expression for the voltage gradient Gx

at a distance x from the smaller end?

Ans. Gx/G = [a/(a + x)]
2

,
where a = 150 cm. is the distance from

the smaller end to the apex of the cone, and G = 0.723 volt per centimeter

is the voltage gradient at the smaller end. G is determined from eq.

(32), namely, 65 - G f a*dx/(a + z)
2

.

Jo
Prob. 3. A non-linear irregular conductor, made of homogeneous ma-

terial, has a current density U and an electric intensity G, varying from

point to point in magnitude and direction. What is the general expres-
sion for the power converted into heat?

Ans. According to eq. (25a),/\ f* r

y J J
where dv is the element of volume to which G and U refer, and the inte-

gration is extended over the whole volume of the conductor. The
volume dv must be taken as a cylinder or parallelepiped, the length of

which is in the direction of flow of the current, the cross-section being

perpendicular to this flow.
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9. The Radial Flow of Current. The solution of problems

involving a non-uniform flow of current usually requires con-

siderable facility in the use of higher

mathematics beyond ordinary calculus.

An exception to this statement is the

simple case of radial flow (Fig. 8) be-

tween two concentric electrodes, cyl-

indrical or spherical. The following

exercises give an opportunity for prac-

tice in the solution of problems of this

kind. They serve to illustrate the

concepts of current density and voltage

gradient, and to prepare the student's

mind for the solution of certain prob-

lems on concentric cables, involving

the dielectric and magnetic circuits.

FIG. 8. Flow of current be-

tween two concentric elec-

trodes.

Prob. 1. Calculate the resistance of a cylindrical layer of mercury
MM (Fig. 8) of height h = 5 cm., between two concentric cylindrical

terminals 7\ and T2 ,
the radii of the contact surfaces being a = 10 cm.

and b = 18 cm. The resistivity of mercury is 95 microhms per cubic cen-

timeter. Solution: Take an infinitesimal layer of the mercury, between

the radii x and x + dx; the resistance of this layer is P dx/(2irxh).

The resistances of all the infinitesimal concentric layers are in series;

therefore, r is obtained by integrating the foregoing expression between

the limits a and 6, the result being

r =
[P/(2^)].Ln(6/a) (34)

Ans. r = 1.775 microhms.

Prob. 2. In the preceding problem, when a current of 10,000 amp.
flows through the mercury, what is the amount of heat generated per
second per cubic centimeter of mercury, at both electrodes? Solution:

The current density at the inner electrode is 10,000/(2x X 10 X 5) =
31.8 amp. per square centimeter. According to eq. (25a), the loss of

power is (31.8)
2 X 95 X 10~ = 0.0958 watt per cubic centimeter. The

heat loss at the outer electrode is 0.096 X (10/18)
2 = 0.0295 watt per

cubic centimeter.

Prob. 3. What is the curve of electric intensity G as a function of x
in the preceding two problems, and what are the limiting values of Gl

Ans. An equilateral hyperbola; Gi = 3.02, (7 2
= 1.677 millivolts per

centimeter length.
Prob. 4. A lead-covered cable, consisting of a solid circular conductor

of A square millimeters in cross-section, is insulated with a layer of

rubber c mm. thick, between the conductor and the sheathing. What is
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the insulation resistance of I kilometers of such a cable, if the resistivity

of rubber is p megohms per centimeter cube?

Ans. [P X 10~*/(2 nt)] Ln (1 + 1-772 c/V.l) megohms, according to

eq. (34).

Prob. 6. Show that by doubling the thickness of the insulation in

the preceding problem, the insulation resistance is increased less than

twice.

Prob. 6. A current is flowing through a hemispherical shell of metal

along radial lines. Express the resistance of the shell as a function of its

radii a and 6, and the conductivity y of the material.

Ans. (&-o)/(2irya&).
Prob. 7. Apply the method of superposition and the result obtained

in Arts. 60 and 63, to the calculation of the resistance of an unlimited

conducting medium between two parallel cylindrical terminals. Such a

case obtains, for instance, when a load resistor consists of two vertical

pipes in a pond, the pipes being used as the terminals, the current

flowing through the water.

10. The Resistance and Conductance of Irregular Paths.

Let a conductor of irregular shape (Fig. 7) be connected to a

source of constant voltage e. The power converted into heat in

the conductor is e
2
/r, where r is the resistance of the conductor.

This resistance depends upon the distribution of the current in

the body of the conductor. The general law, demonstrated by
all experiments, is that the distribution of the current is such as

to make the dissipated energy a maximum. Since by supposi-

tion e is constant (unlimited supply), the resistance r must be a

minimum.
Let now the same conductor be connected to a source of

constant current for instance, an arc-light machine. The dis-

tribution of the current in the conductor is such as to effect its

passage with a minimum expenditure of energy, that is, minimum

voltage at the terminals, or minimum iV. This again means
that the resistance r is a minimum. The student is advised to

consider similar cases in the flow of heat or of a fluid, in order to

make the matter perfectly clear to himself.

The general law of nature that of minimum effort or mini-

mum resistance applies in all such cases, and is used in the cal-

culation of the resistance of conductors of irregular form. The
conductor is divided into small parts by means of stream lines

and equipotential surfaces as shown in Fig. 7, drawing them to the

best of one's judgment. These small cells are nearly cylindrical

in form, so that their resistances or conductances are easily esti-
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mated by using their mean lengths and average cross-sections.

The resistance of the whole conductor is found by properly com-

bining the resistances of these cells in series, and the conductances

of the filaments thus obtained in parallel. Then the assumed

shapes of the stream lines and of the equipotential surfaces are

somewhat modified, and the resistance is calculated again, and

so on. Thus, by successive trials, the minimum resistance, or the

maximum conductance, of the given conductor is found, and this

is the true value of resistance or conductance, as the case may
be. The lines corresponding to this minimum give the true distri-

bution of currents and voltages within the conductor.

The work of the trials is made more systematic by following

a procedure suggested by Lord Rayleigh, and further developed

by Dr. Lehmann. This method is described in detail in Art. 54

below, in application to the electrostatic field, and also in Art. 41

of the author's Magnetic Circuit, in application to the magnetic
field. The student will have no difficulty in applying the method
to an electro-conducting circuit. The best way to make it clear

to one's self is actually to draw a conductor of irregular shape
'(in two dimensions for the sake of simplicity) and to calculate its

resistance in the above-mentioned manner. 1

11. The Law of Current Refraction. The method out-
lined above for the mapping out of stream lines and equipoten-
tial surfaces applies only in a homogeneous conductor. When a
current passes from one substance to another (Fig. 9), the stream
lines suddenly change their direction at the dividing surface AB
between the media, and in so doing they obey the law of cur-
rent refraction, which is

tan 0i/tan 2
= 71/72 (35)

Here 0i and 2 are the angles of incidence and refraction, while
71 and 72 are the respective conductivities of the two media.
This equation shows that the lower the conductivity of a sub-

stance, the more nearly do the stream lines approach the direc-
1 In two-dimensional problems of this kind, the properties of conjugate

functions may be used when the geometric forms involved can be expressed
by analytic equations. However, the purely mathematical difficulties are
such as to make this method applicable only in a comparatively few simple

X Maxwell, Electricity and Magnetism, Vol. 1, p. 284; J. J.

Thomson, Recent Researches in Electricity and Magnetism, chap. 3; Horace
Lamb, Hydrodynamics, chap. 4.
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tion of the normal NiN* at the dividing surface. In this way,
the path between two given points is shortened in the medium
of lower, and is lengthened in that of higher conductivity, by such

an amount in each case that the total conductance of the composite
conductor is larger with refraction than without it. Hence, the

existence of refraction is a necessary consequence of the general

law of least resistance.

Mediums,
of low conductivity

Medium 1,
of high conductivity

FIG. 9. The refraction of a current, or of a flux.

To deduce eq. (35), consider a tube of current between the

equipotential surfaces ab and cd, and let the width of the path in

the direction perpendicular to the plane of the paper be one

centimeter. Let C/i and Uz be the current densities in the tube,

and let G\ and Gz be the corresponding voltage gradients. Two
conditions must be satisfied, namely, (1) the total current through
cd is equal to that through ab, and (2) the voltage drop along ac

is the same as that along bd. These conditions are expressed by
the equations

Ui-ab = Uz-cd
and

d . bd = (?2 ac.

Dividing the first equation by the second and rearranging the

terms gives

Ui/Oi _ Ut/Gt

bd/ab ac/cd
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But. according to eq. (25),_l/j/6ri
=

71, and Ut/Gt = 72- From

Fig. 9, bd/ab = tan 0i, and ac/cd = tan 2 . By substituting these

values in the preceding equation, relation (35) is obtained.

Thus, in mapping out an electro-conducting circuit in two

media, the stream lines must be so drawn as to satisfy eq. (35),

and the conductance must be a maximum for the combination,

and not for each part separately. A similar law applies to elec-

trostatic and magnetic fluxes (see Art. 55 below, and Art. 41a of

the author's Magnetic Circuit).

Prob. 1. Make clear to yourself the reason why the refraction of

light follows a sine law, while in the case of the electric current it is a
law of tangents.

Prob. 2. Show that total refraction is impossible for an electric cur-

rent.

Prob. 3. Draw a set of curves giving values of X for different values
of O t when the ratio of conductivities is 1, 2, 10 and 100.



CHAPTER IV

REPRESENTATION OF ALTERNATING CURRENTS AND
VOLTAGES BY SINE-WAVES AND BY VECTORS

12. Sinusoidal Voltages and Currents. A large proportion

of the electric power used for lighting, industrial purposes, and

traction is generated in the form of alternating currents. Some
of the advantages of the alternating current over the direct cur-

rent are: (1) Alternating-current power can be easily converted

into power at a higher or at a lower voltage, thus making possible

the transmission of power over long distances; (2) the genera-

tion of alternating currents is simpler than that of direct currents,

the latter requiring a commutator,
1 which needs constant atten-

tion in operation; and (3), by combining two or three alternating-

current circuits into a polyphase system it is possible to convert

electric into mechanical power, using motors of simple and rugged
construction (induction motors and synchronous motors).

Alternating voltage waves generated by commercial alter-

nators are more or less irregular in shape, but for most engineer-

ing calculations it is accurate enough to assume them to vary
with the time according to the sine law (Fig. 10). This assump-
tion simplifies the theory and calculations greatly; moreover,

the results obtained with this assumption are comparable with

one another, because they all refer to a standard shape of the

voltage and current curves, instead of a particular form in each

specific problem. If the curve of a voltage or current differs

greatly from the sine-wave, it can be resolved into a series of sine-

waves of different frequencies, so that even then the sine-wave

remains the fundamental form (see Art. 15 below). Fig. 10

shows the well-known construction of a sine-wave, the instan-

taneous values of the current or voltage being represented as

1 The homopolar machine, which is a direct-current machine without a

commutator, has not proven, up to the present time, to be commercially suc-

cessful.

31
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ordinates, against time as abscissae. Instead of actual time in

seconds, the curve is sometimes plotted against some other quan-

tity proportional to time for instance, fractions of a complete

cycle. It is sometimes convenient to use as abscissae the angu-

lar positions of a field pole of the alternator with respect to an

armature conductor in which the electromotive force under, con-

sideration is induced.

Fia. 10. An alternating current represented by a sine-wave.

To construct the curve of an alternating current or voltage,

draw a circle the radius of which equals the maximum value of

the wave. Divide the circle into a certain number of equal or un-

equal parts, such as ab, be, etc., and mark on the axis of abscissae

points a', b', c', etc., corresponding to the points of division on

the circle. That is, a'b' is either equal or proportional to ab;

b'c' is either equal or proportional to be, and so on. In general,

an abscissa such as a'c' represents, to a certain selected scale, the

central angle u corresponding to the arc ac. The lengtlTa'ra'

represents to the same scale an angle of 360 degrees, or the time

of one complete cycle of the wave. The ordinates of the sine-

wave are equal to the corresponding ordinates of the circle. For

example, the point c'" on the curve is obtained by transferring
the ordinate cc" of the circle to the corresponding abscissa a'c'.

The name "sine-wave" is derived from the fact that these

ordinates are proportional to the sines of the abscissae, which

represent to some scale the central angles of the circle of refer-

ence. The equation of the curve expresses this property ana-

lytically. Let the maximum value of the current, which is also
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equal to the radius of the circle, be denoted by 7TO ;
we have then

from the triangle Occ" ....... (36)

where the ordinate i = cc" = c'c'" represents the instantaneous

value of the alternating current, at the moment of time corre-

sponding to the angle u. The variable angle u is proportional

to the time, because the radius Oc which generates the sine-wave

is assumed to revolve at a uniform speed. Let time t be counted

from the position Oa of this radius, and let T =a'mf be the in-

terval of time necessary to complete one revolution of the radius,

or the time of one complete cycle of the alternating wave. When
t = 0, u =

0; and when t = T, u = 2ir. Therefore, in general,

u = 2irt/T, ....... (37)

because this expression satisfies the foregoing conditions. Sub-

stituting this value of u into eq. (36), we obtain

i = Im sm(2irt/T)....... (38)

For the values of t = 0, T, T, f T, etc., i = 0, as one would

expect, because at these moments the current changes from

positive to negative values, or vice versa. At t = j T, f T, T,

etc., we have i = 7m ;
at these moments the current reaches

its positive and negative maxima. Equation (36) is used when
the sine-wave is plotted against the values of angle as abscissae.

Equation (38) gives the same curve referred to time as abscissae.

'in practice, the rapidity with which currents and voltages

alternate is not denoted by the fraction of a second T during
which a cycle is completed, but, in a more convenient manner,

by the number of cycles per second. Thus, instead of saying
that an alternator generates current which completes a cycle

within ^ of a second, it is customary to say that the frequency
of the current is 60 cycles per second. Denoting the frequency
in cycles per second by /, we have

/ = 1/T, ........ (39)

and consequently
i = /m sin2ir/........ (40)

This is the usual expression for an alternating current having a

frequency of / periods per second. Analogously, for an alternat-

ing voltage we have
e = Em sm2irft, ....... (41)
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where Em is the maximum instantaneous value, also called the

amplitude, and e is the instantaneous value of the voltage at the

time t.

In numerical calculations, and when drawing sine-waves, the

values of the ordinates for various values of u or t are obtained

either graphically, as in Fig. 10, or from a table of sines. For

approximate calculations, values of sines can be taken from a

slide-rule. In the problems which follow, the student is advised

to become familiar with each of the three methods of obtaining

values of sines.

In some cases one has to deal with two currents or voltages

of the same frequency for instance, in two different parts of the

same circuit. The two corresponding sine-waves (Fig. 11) usu-

FIG. 11. Two alternating currents displaced in phase by an angle <f>.

ally differ in amplitude, and also pass through zero at different

instants. Thus, in Fig. 11, when the current 1 is at a maximum,
the current 2 is still growing, and passes through its maximum
somewhat later. In other words, the current 2 lags behind the

current 1, or, what is the same, the current 1 leads the cur-

rent 2. The angle between the zero points (or between the

maxima) of the two waves is called the angle of phase differ-

ence, or simply the phase angle. If we regard the two waves

as being formed by the revolving radii Im
' and 7TO", then

</>
is the

angle between the radii at any instant.

When the two waves are of different frequencies, there is no
constant phase angle between them; but this angle varies peri-

odically, so that at some intervals of time the two waves are

nearly in phase, and at others they are nearly in opposition.
The familiar method of synchronizing two alternators by means
of incandescent lamps is based on this phenomenon.
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Prob. 1. An alternating current fluctuates according to the sine law

between the values of 75 amp., making 6000 alternations per minute -

(3000 positive and as many negative ones). Draw a curve of instan-

taneous values of this current; mark on the axis of abscissae the time t in

thousandths of a second, the angles u in degrees, and the same angles in

radians.

Prob. 2. What is the frequency of the current in the preceding probr

lem, in cycles per second? Ans. 50. "^

Prob. 3. Plot on the same curve sheet with the curve obtained in

problem 1 the sine-wave of a current the frequency of which is three times

as great, and the amplitude, 52 amp. The curve is to be at its maximum
when the first curve is at a maximum.

Prob. 4. Supplement the preceding curves by one, the frequency of

which is 50 cycles per second, the amplitude 63 amp., and which reaches

its positive maxima at the same instants in which the first curve passes

through zero. Show that with these data two distinct curves can be ^
drawn.

Prob. 6. Draw on the same curve-sheet with the preceding curves a

sine-wave representing a 50-cycle alternating current, the amplitude of

which is 120 amp., and which lags by 30 degrees with respect to the

current in problem 1.

Prob. 6. The current mentioned in problem 1 is generated by a

12-pole alternator, that in problem 3 by a 14-pole machine. At what

speeds must these machines be driven in order to give the required

frequencies? . Ans. 500 and 1285 r.p.m.
Prob. 7. Express the currents given in problems 1 to 5 by equa-

tions of the form of eq. (36). Ans. i = 75 sin u; i = 52 sin 3 u; i =
63 cos u; i = 120 sin (u 30).
Prob. 8. The angle u in the answers to the preceding problem is ex-

pressed in degrees; rewrite the equations so as to have u expressed in

radians, and in fractions of a cycle. Also represent the currents as func-

tions of the time t.

Prob. 9. Express by equations similar to eq. (41) the following sinus-

oidal voltages of frequency /: (a) Amplitude Em volts, (b) Amplitude
Em'

volts, lagging degrees with respect to the first curve, (c) Ampli-
tude Em" volts, leading the second curve by <t> radians, (d) Amplitude
Em'"

volts, lagging one nth of a cycle with respect to the curve (a).

Prob. 10. The voltages required in the preceding problem are induced /'

by four identical alternators, having p poles each, and coupled together.

By what geometrical angles must the revolving or the stationary parts
be displaced in order to give the required differences in phase?

13. Representation of a Sine-wave by a Vector. It is clear

from the foregoing theory and problems that all sine-wave cur-

rents or voltages are different from one another in three respects

only, namely: (1) in amplitude; (2) in frequency; and (3) in

relative phase position. In most practical cases, all the currents
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and voltages entering into a problem are of the same frequency,

so that they differ from each other solely in their amplitudes and

phase positions. In such cases it is not necessary to draw sine-

waves, or even to write their equations; it is sufficient to indicate

the radii /,' and Im
" which generate these curves (Fig. 11), in their

true magnitudes and relative positions. The rotating radius, at

any instant, gives by its vertical projection to scale the magnitude

of the alternating current or voltage at that instant.

The absolute position of the radii is immaterial, because they

are revolving all the time. It is their relative position which is

permanent, and which determines the relative position of the

sine-waves. The moment from which time is counted is arbi-

trary in most problems; hence, one of the radii can be drawn in

any desired position. Then, all other radii in the same problem

are determined by their phase displacement with respect to this

"reference" radius.

It must be clearly understood that the foregoing representa-

tion by vectors is true only when all the vectors are revolving at

the same speed, that is, only with alternating quantities of the

same frequency. When currents and voltages of different fre-

quencies enter into a problem, the angle between the vectors

varies all the time, and it is necessary to introduce an arbitrary

zero of time for reference. In general, the graphical method of

solution is unsuitable for such problems.

In mathematics and physics, a quantity which has not only a

magnitude, but also a definite direction in space or in a plane,

is called a vector. Thus, for instance, in mechanics, force is a

vector quantity, while volume is not. The radii which repre-

sent sine-waves have both magnitude and direction in a plane.
It is proper, therefore, to call them vectors. While the direction

of the first vector is usually arbitrary, once it is selected, the

directions of all the other radii become definite, so that with
this limitation, the radii in alternating-current problems have
definite directions and may be called vectors. While they must
be imagined as revolving when generating their respective sine-

waves, yet they revolve as a system, maintaining their relative

positions unchanged. The required relations always depend
upon the relative positions of the radii, so that the fact that they
are revolving can be altogether disregarded, and the radii consid-

ered as simple stationary vectors.
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Prob. 1. Draw the vectors of the currents in problems 1, 4 and 5 of

the preceding article in their true magnitudes and relative positions.

Prob. 2. A single-phase alternator has a terminal voltage of which

the maximum instantaneous value is equal to 16 kilovolts. The maxi-

mum value of the current supplied by the machine is 325 amp. The
character of the load is such that the current wave lags behind the voltage
wave by an angle of 37 degrees. Assuming both the voltage and the

current to vary according to the sine Jaw, represent the foregoing condi-

tions by two vectors. y
Prob. 3. Draw a vector diagram showing the phase (star) voltages and

currents of a 25-cycle three-phase system (Fig. 36), the amplitude of

each voltage being 7235 volts, and each displaced in phase by 120 degrees
with respect to the other two voltages. The current in the first phase
is 30 amp., and lags behind the corresponding phase voltage by of a

cycle. The current in the second phase is 47 amp., and leads its voltage

by 18 degrees. The current in the third phase is 72 amp., and lags behind

the corresponding phase voltage by 0.004 of a second.

Note: In the foregoing three problems the student is supposed to

draw the vectors equal in length to the amplitudes of the alternating

waves. In practice, it is customary to draw vectors equal in length to

the effective values of voltages and currents, and not to their amplitudes.
For sine-waves the effective value is equal to the amplitude divided by

\/2 (see Chapter 5). The difference is not important for our present

purposes. The use of effective values would merely change the arbi-

trary scale to which the vectors are drawn.

14. Addition and Subtraction of Vectors. There are many
practical problems in which alternating currents or voltages have

to be added, or subtracted one from another. For instance,

when two or more alternators are working in parallel, the total

current delivered to the station bus-bars is equal to the sum of

the currents supplied by each machine. Or, to find the voltage

at the receiving end of a transmission line, the voltage drop in

the line is subtracted from the generator voltage. When the com-

ponent quantities vary according to the sine law and are all of one

frequency, the resultant quantity is also a sine curve of the same

frequency. This curve may be found (a) graphically, by adding
the component curves point by point; (b) analytically, by adding
their equations; or (c) by adding the vectors of these curves.

It must first be proved that the sum of two sine-waves of

one frequency is also a sine-wave of the same frequency. Let

the two currents to be added be represented by the equations

i = Im sin (u +
i' = /' sin (u + <j>'

" (42)
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where u = 2 irft is the variable time angle, and and 0' are two

constant angles characterizing the relative phase positions of the

two waves with respect to some reference wave Im
"

sin u. The

phase displacement between i and i' is 4>' 0. Expanding the

foregoing sines of the sum of two angles, and adding the two

equations, member for member, we obtain

ie g
= i + i' = (Im cos + Im cos </>') sin u

+ (Im sin + Im
'

sin 0') cos M, . . . . (43)

where the constant coefficients of sin u and cos u are grouped

together. The subscript eq stands for "equivalent." This ex-

pression is of the form ieq
= A sin u + B cos u, where A and B

are constants. No matter what values A and B may have, the

right hand side of this equation is reducible to the form

ieq
= Ieqm sm(u + <i>eq) (44)

Assuming this equation to be true, we equate the right-hand sides

of eqs. (43) and (44), and expand sin (w + eg). Equating the

coefficients of sin u and cos u, we get

Iegm cos ca
= Im cos + // cos 0'; 1

leqm sin eg Im sin + Im
'

sin 0'. )

These are two simultaneous equations with Ieqm and e9 as the

unknown quantities. Squaring and adding these equations, we
obtain

/e7m
2 = (/ sin + Im

'
sin 0')

2 + (/ cos + 7TO
'

cos 0')
2

- (46)

Dividing the second equation by the first gives

tan C ,
=

(Im sin + // sin 0')/(/ cos + 7m
'

cos 0')- (47)

No matter what values Im ,
Im ', and 0' may have, the values

of Ieqm and e , determined from these equations are real. In
other words, it is always possible to represent eq. (43) in the
form of eq. (44). This proves the proposition, because we see
from eq. (44) that ieq is a sine-wave having the same u = 2 irft for
the variable angle, hence the same frequency as the component
waves. The amplitude and the phase position of this resultant
wave are determined by eqs. (46) and (47) .

When two currents or voltages are represented by vectors,
their sum or difference is also a vector, because, as proved before,
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it is also a sine-wave of the same frequency. The problem
is to find the vector of the resultant wave, knowing the vectors

of the component waves in their magnitudes and positions. Any
ordinate of the resultant wave must be equal to the sum of the

corresponding ordinates of the component waves. Hence, the

vector of the resultant wave must satisfy the condition that its

projection upon the F-axis (Fig. 12) shall be equal to the sum of

the projections of the component vectors on the same axis. This

condition must be fulfilled at all instants of time, that is, during

the rotation of the three vectors. To satisfy this requirement

the resultant vector must be the diagonal of a parallelogram of

which the other two vectors are the adjacent sides.

FIG. 12. Addition of vectors.

Let OA and OB be the given vectors to be added together.

From the end B of the vector OB draw a line BC equal and paral-

lel to OA. Connecting and C gives the resultant vector OC,
in magnitude and position. It will be seen from the figure that

the projection of OC upon the F-axis is equal to the sum of the

projections of OB and BC upon the same axis. But BC is equal

and parallel to OA, so that the projection of OC on the vertical

axis is equal to the sum of the projections of the given vectors

on the same axis. This construction holds true for any instant

whatever. By drawing AC, the parallelogram OBCA is com-

pleted, so that the construction is identical with that for finding

the resultant of two mechanical forces. However, in practical

applications it is not necessary to complete the parallelogram,

because the resultant is perfectly determined by the triangle

OBC. The resultant of two vectors obtained in this way is called

their geometric sum.
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If the triangle were not closed, the condition of equality with

the sum of the projections of the given vectors might be satisfied

for one particular instant of the cycle, but would not be satisfied

for other instants. Thus, for instance, assuming the line OC'

to be the resultant vector, we see that for the instant shown in

the sketch the projection of OC' upon the axis OF is equal to the

sum of the projections of OB and BC upon the same axis; but the

condition is not fulfilled when the vectors rotate.

The rule for subtraction of vectors follows immediately from

the preceding rule, because to subtract a vector means to add a

vector with the opposite sign. Thus, let it be

required to subtract the vector OA from OB

(Fig. 13); this may mean, for instance, the

subtraction of the voltage wave represented

by OA from that represented by OB. From

the end B of OB draw vector BC equal and

opposite to OA. The resultant, OC, represents

the difference of the two given vectors, in

direction and magnitude, and thus determines

the sine-wave of the resultant voltage. If it

were required to subtract. OB from OA, it

would be necessary to draw AC' equal and

opposite to OB, thus obtaining the resultant

OC', equal and opposite to the former resultant

OC. This is in accord with the general alge-

FIG. 13. Subtraction braic rule that A - B = -(B -A}.
The preceding results with regard to the

addition and subtraction of vectors are summed up in the follow-

ing rule : Relations which are true algebraically for instantaneous

values of sinusoidal currents and voltages, hold true geometrically

for the vectors of these quantities. It is customary to provide
vectors of currents with triangular arrows, as in Fig. 12; vectors

of voltages are usually distinguished by pointed arrows, as in

Fig. 13. This distinction enables one to see directly from the

diagram whether a vector represents a current or a voltage, with-

out reference to the text.

Prob. 1. The currents generated by two alternators in parallel are

75 and 120 amp. respectively, the second current lagging behind the first

by 30 degrees. Determine the magnitude and the relative phase position
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of the resultant line current by three methods: (a) point by point; i/

(b) analytically; (c) by means of vectors.

Ans. 188.8 amp., lagging by 18 32' behind the first current.

Prob. 2. Solve the preceding problem without the use of eqs. (46) ^/
and (47), simply by means of the theorem proved above, that the sum
or the difference of two sine-waves is also a sine-wave. Solution:

leg sin (u + <t>eq)
= 75 sin u + 120 sin (u

- 30).

This equation is true for any instant, or for any value of u. It contains

two unknown quantities, the amplitude and the phase position of the

resultant curve. It is necessary, therefore, to apply this equation to two

particular moments of time, in order to obtain two equations with two
unknown quantities. It is most convenient in this particular case to

choose u =
7I-/2 and u = 0. Substituting these values, two equations

with two unknown quantities are obtained. This method is preferable
in the solution of practical problems, because it is not necessary to

remember eqs. (46) and (47), and also because the two values of u can

be selected so as to give the simplest equations.
Prob. 3. Two alternators, with the same number of poles, are coupled

together so as to give voltages differing in phase by 27 degrees, the voltage
of the second machine leading that of the first. The first alternator

generates a voltage the amplitude of which is 2300 volts, the second

1800 volts. The two machines are connected electrically in series. Find

graphically the vector of the resultant voltage in its magnitude and phase

position. Find also the vector of the resultant voltage when the termi-

nals of one of the machines are reversed. Ans. (1) 3988 volts, lead-

ing the first by 11 49'; (2) 1074 volts, lagging behind the first by 49 32'.

Prob. 4. An alternator, the terminal voltage of which is 6600, supplies
its load through a transmission line. The conditions are such that the

current lags behind the generator voltage by an angle of 35 degrees.
The voltage drop in the line is 540 volts, leading the current ia -phase by
an angle of 67 degrees. Find the receiver voltage by subtracting the

voltage drop in the line from the generator voltage (geometrically) ;
also

determine the phase displacement between the receiver voltage and the

current. Ans. 6149 volts; 32 20'.

15. Non-sinusoidal Currents and Voltages. When a current

or voltage wave differs considerably from the pure, sine form,
it is often convenient to represent it as the result of a superposi-

tion of sine-waves of different frequencies (Fig. 14). No mat-
ter how complicated a periodic wave may be, it can always be

so represented with sufficient accuracy, by properly selecting the

amplitudes and the phase relations of the component sine-waves,
o'r harmonics, as they are called. Theoretically, an infinite num-
ber of sine-waves is necessary in order to represent any given

irregular wave exactly. In practice, however, a limited number
of harmonics is sufficient.
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If the frequency of the given irregular wave is/, the frequencies

of the harmonics are /, 2 /, 3 /, and so on. When, however, the

given wave is symmetrical, that is, when the part above the axis

of abscissae is identical with that below, all even harmonics (2/,

4/, etc.) drop out, and the wave consists only of the fundamental
wave of frequency /, and the odd harmonics (3/, 5/, etc.). The
student can easily convince himself of the truth of this statement

by taking a fundamental sine-wave and adding to it a second

harmonic and a third harmonic. In the first case the resultant

wave will be unsymmetrical; in the second, symmetrical. Nearly
all of the waves encountered in practice are symmetrical.

Let the fundamental wave be represented by the equation

7/1
= Ci sin (u ai), the third harmonic by the equation y$ =

Cs sin 3 (u as), etc. The meaning of Ci, 3, etc., and of ai,

a 3 , etc., is clear from Fig. 14; is an arbitrary origin from which

the angles are measured. The ordinates of the given composite

symmetrical wave are represented by the equation

y = Ci sin (u ai) + C3 sin 3 (u a3) + C5 sin 5 (u 5)

+ etc (48)

This expression is known as the Fourier series, and is of great

importance in mathematical physics.

In practice, the problem which presents itself is usually that of

analysis; that is to say, it is often required to analyze or resolve

a given irregular wave into its harmonics. In other words, know-

ing y, one is asked to determine the values of C and a for one or

more harmonics. This is a purely mathematical problem, and is

not treated here, because the solution will be found in numerous

textbooks, handbooks and magazine articles.
1 There are also

mechanical wave analyzers on the market, by means of which

any desired harmonic may be separated by tracing the given

curve with a stylus, in a manner similar to the way in which a

planimeter is used.

It is of importance for an electrical engineer to train his eye
in the discernment of prominent harmonics, without mathematical

analysis. This training is afforded by exercises in wave synthesis,

that is, in combining various assumed harmonics into irregular

waves.

1
See, for instance, the author's Experimental Electrical Engineering, Vol. 2,

p. 222.
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Take first a fundamental sine-wave and a third harmonic of

a reasonable magnitude, say between 15 and 30 per cent of the

fundamental. Combine these waves into one, with different rela-

tive phase positions of the fundamental and the third harmonic.

In this way a flat wave, a peaked wave and a one-sided "humped"
wave will be obtained. Then change the magnitude of the third

harmonic and construct similar waves, in order to see the influ-

ence of this factor. After that, plot similar curves for the funda-

mental wave with a fifth harmonic, a seventh harmonic, and so

on. Finally, combine the fundamental wave with the third and

the fifth harmonics simultaneously, and so on. After some prac-

tice, the eye will easily discern prominent harmonics in a given

irregular wave. Numerous oscillograms of irregular waves will

be found in many current periodicals and in the transactions of

the various electrical societies. Read in this connection Art. 30
of the Magnetic Circuit.

Prob. 1. Draw two or three sets of curves suggested in the preceding
paragraph; each set must comprise about six curves and each curve
must have a harmonic with a different phase position.

Prob. 2. Devise a simple apparatus by means of which harmonics
can be combined mechanically, and the resultant waves observed, with-
out actually plotting curves point by point.

Prob. 3. Analyze a given irregular wave into its harmonics, using the
method given in the reference above, or any other method found in the
literature on the subject.



CHAPTER V

POWER IN ALTERNATING-CURRENT CIRCUITS

V 16. Power when Current and Voltage are in Phase. Let

a resistance r be connected across the terminals of an alternator,

the voltage at the terminals varying according to the sine law.

The current through the resistance also varies according to the

sine law, because Ohm's law holds true for any moment of time,

so that the curve of the current is in phase with that of the voltage.

If the equation of the voltage wave is e = Em sin u, the equation
of the current is i = (Em/r) sin u. Graphically, the current and
the voltage are represented by two vectors of different lengths, but

in the same direction for instance, like OC and OD in Fig. 13.

Divide the time T of one cycle into a large number of small

intervals A. Then the amount of energy delivered to the resist-

ance r and converted into joulean heat during one of such inter-

vals varies with the time position of the interval in the cycle,

in other words, with the instantaneous values of the voltage and
the current. This energy is practically equal to zero when the

current and the voltage have values near zero, and it reaches a

maximum with them. However, the dissipated energy, being in

the nature of a frictional loss, never becomes negative, because

whether the current flows in one direction, or in the other, the

heat liberated, e i AZ = i*r A, is always positive.

Since the voltage and the current vary with the time, the rate

of liberation of energy, or the instantaneous power, is also variable.

The expression P = ei = i
zr represents the instantaneous power

as with direct current. If e and i remained constant for one

second, the energy liberated would be equal to i
2
r. As a matter

of fact, e and i may be considered constant only during the infini-

tesimal element of time dt, so that the energy liberated during the

time dt is i
2r dt. Nevertheless, it is proper to say that at the in-

stant under consideration the energy is liberated at a rate equal to

i
zr per second, because (i

zr dt}/dt
= i

2
r. This is analogous to the

45
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way in which we speak of the instantaneous speed of a body during

a period of acceleration or retardation. The speed varies from

instant to instant, so that to say that the speed is v at a certain

instant merely means that, if the body continued to move at this

velocity for one second, it would cover a space equal to v. In the

same sense, the instantaneous power indicates the amount of

energy which would be developed per second, if the current and

the voltage suddenly became constant.

The total energy liberated in the form of heat during one

complete cycle is
nT r*T

W = I i
zr-dt = r I i

2 -dt.
Jo Jo

(49)

When no local e.m.fs. are present, the same energy is repre-

sented by the expression

W = f
T
ei-dt....... (50)

Jo

When there are local e.m.fs. in the part of the circuit under

consideration, the total energy communicated to it during an

interval of time is different from that dissipated as heat (Art. 4).

According to eq. (19), we have

W = r eii-dt = r fJo Jo

Suppose, for example, that e\ is the counter-e.m.f. of a motor

in the circuit, and therefore nearly in phase opposition to e t . Then
the i'V loss on the right-hand side of the equation is the difference

between the energy supplied to the circuit and that converted into

mechanical work in the motor.

The foregoing equations are true whether the current and the

voltage vary according to the sine law or not. If they are sinus-

oidal, the integration can be easily performed, and the energy per

cycle evaluated by the following method. Let the current be

represented as before by i = Im sin u. Substituting this value

into eq. (49), we have

W = Im
zr f

T
smz udt...... (52)

This expression is easily integrated by using the substitution

sin'u = (1 cos2u). Or it may be evaluated by observing
that its value remains the same if a cosine is substituted for the
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sine. This is because the limits of integration are u = and

u = 2 TT, and in summing up sines or cosines through 2 TT we take

the same quantities, only in a different order. Hence we may
write

W = In?r f
T
cos?udt. (52a)

Jo

Adding the two expressions term by term, and remembering that

sin2 w -j- cos2 u =
1, we get

2W = Im*r C
T
dt = Imz

r.T,
Jo

or the energy converted into heat during one cycle is

W = lIm*r-T (53)

When there are no local e.m.fs. and the current is in phase
with the voltage, we have Em = Imr, so that from eq. (53), and by

analogy to eq. (18), we have

W = %ImEm -T (54)

and
W = %(Em*/r).T (55)

The student must clearly understand that the phase relation

between the current and the voltage is of no consequence in eq.

(53), while eqs. (54) and (55) hold true only when the current is

in phase with the voltage. Or else, Em in these latter expressions

may be said to refer to that component of the total terminal

voltage which is used up in Ir drop.

Prob. 1. A sine-wave alternating current, which fluctuates between
75 amp., flows through a resistance of 10 ohms. Plot curves of instan-

taneous values of the voltage and power; the frequency is 50 cy./sec.

Ans. Em = 750 volts; max. power = 56.25 kw.
Prob. 2. Determine the total energy liberated per cycle in the pre- \

ceding problem, by integrating graphically the curve of power.
Ans. 562.5 joules (watt-seconds).

Prob. 3. Prove analytically that the curve of power obtained in

problem 1 is a sine-wave of double frequency, tangent to the axis of

time. Proof: The equation of the curve is P = 7mV sin2 u. But from

trigonometry .

cos 2 u = cos2 u sin2 u = 1 2 sin2 M.

Substituting the value of sin2 u from this equation into the expression for

P, we get
P =

I Infr - i Ir,?T COS 2 U.

The first term is constant, while the second represents a sine-wave of
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double frequency, because 2 u = 2 IT (2 f)t. The first term is never

smaller than the second, so that P is always positive, and the whole curve

lies above the axis of abscissae. The second term becomes equal to the

first and P =
0, only when 2 u is a multiple of 2 IT. At these points the

curve is tangent to the axis of abscissa;.

Prob. 4. Deduce eq. (53) directly from (52), expressing sin u in terms

of the cosine of the double angle, as in the preceding problem. Hint: .

From eq. (37), dt = (T/2 TT) du, and the limits of integration are u = and

17. The Effective Values of Current and Voltage. In prac-

tice, it is the average rate of delivery or dissipation of energy

that is of interest, or, in other words, the average value of the

variable instantaneous power. This is analogous to using in

calculations the average speed of a machine, when the actual

speed varies within certain limits. This average power is found

by dividing the total energy developed during one cycle by the

period T of the cycle. When the current varies according to

the sine law, the total energy per cycle converted into heat is

expressed by eq. (53). Dividing both sides by T, we find that

the average power
Pave = \ In?r........ (56)

It is convenient to use in eq. (56) a new value of the current,

7 = 7m/v
/
2 = 0.707 Im ,

..... (57)

instead of 7m ,
because then the expression for the average power

becomes identical with that in a direct-current circuit, namely,

Pa*e
= I2r........ (58)

Analogously, if we define

E = Em/V2 = 0.707 Em ,
..... (59)

eqs. (54) and (55) become

Pave
= E'I ....... (60)

and

....... (61)

which are perfectly similar to the corresponding expressions in a

direct-current circuit.

E and 7, as defined above, are called the effective values of the

alternating voltage and current respectively. We may say that

by definition the effective value of an alternating (or variable)
current is equal to such a constant current which, when flowing
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through a resistance, dissipates the same average power as the

actual variable current.

This definition of an effective value applies to variable cur-

rents of any form. It is used, for instance, in determining the

temperature rise of electric railway motors. During the run of a

car the current fluctuates within wide limits, but the heating of

the motor windings is nearly the same as would occur with a

certain constant current, which is called the effective value of

the actual variable current. The condition for the same average
i
2r loss is

Pr-T = r C

where T is the interval of time for which it is desired to obtain

the effective value. Hence

C
Jo

(62)

This equation expresses in mathematical language that 72 is the

average value of i
2

,
over the period of time T. Taking the square

root of both sides of this equation, we can also define the effective

value / as the square root of the mean square of the instantaneous

values. This definition is true for any form of alternating or

variable current. The effective voltage is defined by a similar

expression, so that more generally

f
Jo

(63)

where y denotes an instantaneous value of current or voltage.

Alternating-current ammeters and voltmeters are always cali-

brated so as to indicate the effective values of current and voltage.

When an irregular wave of current or voltage is given graphi-

cally, its effective value is found by taking a sufficient number

of equidistant ordinates (Fig. 15) and replacing the integration

in eq. (63) by a summation. Let the half-wave be divided into

k equal parts, where k is an even number, and let yo, yi, . . . yk

be the corresponding ordinates. Then, according to Simpson's

Rule,

(63a)
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The larger the number of ordinates, the more accurate is the value

of y,ff determined by this method. The value of ye/f
2 may also

be found by plotting a curve of y
2
against u, as shown in Fig. 15,

and determining its mean ordinate by means of a planimeter.

When a large number of effective values must be determined,
for instance, from the records obtained by a graphic ammeter

during several runs of an electric train, the squaring of ordi-

nates becomes a tedious process. Some practical methods, by
means of which the necessity for squaring ordinates is eliminated,

are described in the next article.

FIG. 15. The effective and the average ordinates of an irregular half-v

The effective value of a current or a voltage is also called the

quadratic mean, to distinguish it from the arithmetical mean value
defined by the familiar equation

-i

or for a periodic curve

(64)

(65)

It will be noted that the upper limit of integration is TT and
not 2 TT. It is evident that for a symmetrical wave the average
ordinate over a whole cycle is equal to zero. The average value,
therefore, always refers to a half-wave.
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W = T>).J&~
"* ~ $

For the sine-wave

sin u du =
(2/ir)ym ,

-

or

yave/ym = 2/7T
= 0.637 (66)

The ratio of the effective to the mean ordinate is called the

form factor, because it gives an idea of the degree to which the

curve is flat or peaked as compared to the sine-wave. For a

sine-wave the form factor is

(7/m/V2)/(2i/m/7r)
= l.ll (67)

For a perfectly flat-topped or rectangular wave, the maximum

value, the effective value and the average value are all the same,

so that the form factor is equal to unity. For very peaked waves,
the influence of the high middle ordinates is more prominent in

the quadratic mean, so that the effective is considerably higher

than the mean value, and the form factor is larger than 1.11.

Another ratio which helps in judging about the shape of a

curve is the so-called amplitude factor, or the ratio of the maximum
ordinate to the effective value. The author is not aware that

either the form factor or the amplitude factor is used to any con-

siderable extent in practice.

Prob. 1. An electric heater was tested for power consumption on an

alternating-current circuit, by having an ammeter in series with it, and
a voltmeter across its terminals. Both instruments were calibrated to

indicate effective values. The readings were 110 volts and 5.7 amp.
Assuming the current and the voltage to have been in phase, which is

nearly the case, what was the average power consumption of the heater,
and what was its resistance? Determine also the maximum instan-

taneous values of the current and the voltage, under the supposition of

the sine law. Ans. 627 watts; 19.3 ohms; 155.56 volts; 8.06 amp.

FIG. 16. A stepped curve of current or voltage.

Prob. 2. Determine the average value, the effective value, the form
factor and the amplitude factor of the curve shown in Fig. 16.

Ans. 0.75 ym ;
0.791 ym ; 1.055; 1.264.
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Prob. 3. Check sonic of the values of the form factor and the ampli-

tude factor given in the table in the Standard Handbook (see Index under
"
form factor"). This will afford practice in calculating effective values

of curves when they are given by analytic equations of the form y =
f(t),

using eq. (63).

Prob. 4. Plot an irregular wave, taken from an available oscillograph

record, and calculate its average and effective values by the point-by-

point method, or by using a planimeter.

v

18. Some Special Methods for Calculating the Effective

Value of an Irregular Curve. As is mentioned in the preceding

article, squaring a large number of ordinates in order to find

the effective value of a curve is a tedious process, and methods

are available which sometimes lead to the end more quickly. It

must be admitted, however, that for one who has to do this

work only occasionally, the plain point-by-point method described

above is probably the quickest and the most reliable.

FIG. 17. An irregular curve (Fig. 15) and the equivalent sine-wave,

plotted in polar coordinates.

(a) Fleming's Method. The given curve (Fig. 15) is replotted
in polar coordinates (Fig. 17), so that equal polar angles O/fc cor-

respond to equal distances ir/k upon the axis of absciss. The
ratio between an abscissa u in Fig. 15 and the corresponding polar
angle in Fig. 17 is of no consequence; in other words, it makes
no difference what total central angle fl corresponds to the total
distance TT in Fig. 15. The area of an infinitesimal triangle sub-
tended by a polar angle du is \ i/

2
do>, because y is the base of the
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triangle, and y dco is its altitude. Thus, the total area of the curve

in Fig. 17 is

S-|/V<fe........ (68)

But, by the defining equation (63), the effective value, or the quad-
ratic mean ordinate, of the same curve in Fig. 15 is found from

the expression

(69)

because co is proportional to t. Comparing the preceding two

equations, we find that

1^ = 25/0........ (70)

Since S is easily evaluated, for instance, by means of a planimeter,

the effective value is calculated from eq. (70) without squaring
the ordinates, but simply by replotting the given curve in polar

coordinates.1

When the given curve is a pure sine-wave, the corresponding
curve in polar coordinates is a circle, provided that the angle fi

is selected equal to IT. The student can easily prove this for him-

self, either graphically or analytically. Let ym be the maximum
ordinate of the sine-curve; then the area of the circle is S = j irym

z
,

and from eq. (70) we find yeff
= ym/\/2. This is the same value

as found before by a different method.

When the given curve is not much different from a pure sine-

wave, the corresponding polar curve approaches a circle in form

(always provided that O =
T). In such cases it is possible to

determine the area of the polar curve without a planimeter, by
drawing a circle of equal area as judged by the eye (Fig. 17).

The effective value is then the same for the given curve and for

the sine-wave corresponding to this circle, and is equal to the

diameter of the circle divided by V2. Such a sine-wave is called

the equivalent sine-wave. It is often convenient in dealing with

irregular current and voltage waves to replace them by equivalent

sine-waves, so as to be able to apply an analytical solution, or

to construct vectors.

1 For a more detailed treatment and numerous practical applications,

see C. O. Mailloux,
" Me'thode de Determination du Courant Constant Pro-

duisant le meme Echauffement qu'un Courant Variable," in the Transac-

tions of the International Congress of Applications of Electricity, Turin, 1911.
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(b) The Effective Value in Terms of Harmonics. When an

irregular wave is given in the form of a Fourier series, eq. (48),

the effective value can be expressed through the amplitudes of

the harmonics. In order to use the expression for y in the funda-

mental formula (63), we have to square the Fourier expansion.

This gives terms of two kinds, namely, squares of harmonics,

and products of pairs of harmonics. Let the nth and the pth

harmonics be represented by the expressions

hn
= Cn smn(u - ) (71)

and

Then the right-hand side of eq. (63) will contain the following

terms:

) f hn
2 dt = (CS/T) C smz n(u- an}dt = \ Cn

2
; (73)

Jo Jo

,j?dt
= (CP

2/D C sin2
p(u - ap) dt = \ Cp

2
; (74)

2 (l/D C
T
hnhpdt =

Jo

2 (CnCp/T) f
T
s\n n(u- an ) sin p(u - ap) dt = (75)

Jo

The values of the first two integrals are found in precisely the

same way as that of eq. (52) in Art. 16, that is, on the basis of

the fact that their values do not change if cosines are substituted

for the sines. The third integral is identically equal to zero, as

is shown in problem 3 below. Thus eq. (63) becomes

y<tf = (Ci/V2) + (C,/V2)
S + etc., . . . (76)

or the square of the effective value of a complex wave is equal to

the sum of the squares of the effective values of its harmonics.

Prob. 1. Plot a complex wave consisting of known harmonics and
determine its effective value (a) by the method given in the preceding
article; (b) by the Fleming method; (c) from eq. (76).

Prob. 2. An irregular wave has a third and a fifth harmonic, the

amplitudes of which are equal respectively to 12 per cent and 4 per cent
of that of the first harmonic. Show that the effective ordinate is equal
to 71.3 per cent of the amplitude of the fundamental wave, and that the

average value depends upon the phase positions of the harmonics.
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Prob. 3. Prove that expression (75) is identically equal to zero.

Proof : According to the familiar formula of trigonometry, sin A sin B =

% cos (A B) \ cos (A + B), we have sin n(u an) sin p(u ap) =
% cos [(n p} u + a] % cos [(n + p) u + b], where a and b do not

contain the variable u. Integrating these cosines leads to terms of the

form sin [(n p) u + a] and sin [(n + p) u + b]. Since the limits of

integration are and 2 w, and n and p are integers, the values of these

sines at the upper limit are the same as at the lower limit, and conse-

quently each of the integrals is equal to zero.

Vl9. Power when Current and Voltage are out of Phase.

In a majority of practical alternating-current circuits there is a

more or less pronounced phase displacement between the current

and the voltage. This is due to the presence of local electro-

motive forces, the principal among these being as follows: (a)

The counter-electromotive forces of motors connected into the cir-

cuit, (b) The electromotive forces induced by alternating mag-
netic fluxes in the circuit. These fluxes may be created by the

current itself, or they may be due to the influence of other circuits

(self and mutual induction), (c) The electromotive forces due to

the "elastivity" of the dielectric medium surrounding the circuit

(electrostatic capacity or permittance).

The actual workings of these causes are discussed more in

detail in the following chapters. Here it is sufficient to note that

there are factors which produce local electromotive forces in

alternating-current circuits, and that they bring about a phase

displacement between the voltage and the current. Let OB
(Fig. 13) be the generator voltage, and let OA represent the sum
of the various local electromotive forces in the circuit. Sub-

tracting OA from OB, the net voltage OC is obtained, which is

just sufficient to supply the ohmic drop in the circuit. The
current OD is in phase with this voltage, and is numerically equal
to OC divided by the total resistance r of the circuit. It will be

seen that there is a phase displacement. < between the current and

the generator voltage OB; it is also clear from the figure that this

phase displacement is due to the presence of the electromotive

force BC.

We shall first calculate the energy supplied by the generator

during one cycle in the specific case when the phase displacement
between the current and the voltage is exactly 90 degrees. If

the current is represented by the equation i = Im sin u, the

expression for the voltage is e = Em cos u. The instantaneous
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power is equal to i e = ImEm sin u cos u = \ ImEm sin 2 u. Thus,

the power varies as a sine function of double the generator fre-

quency; the energy flows now away from, and now toward,

the generator. The average power for one cycle is therefore zero,

for the power has as many negative values as it has positive ones.

Mathematically, this result is represented by the time integral

of the instantaneous power over a complete cycle. Omitting the

constant quantities Em and Im ,
we have

/ smucosudu =
\ cos2w =0.

Let now the phase displacement between the current and the

voltage be less than 90 degrees, and be equal, say, to <. The

average power delivered by the alternator is in this case smaller

than the product El, and its value must be investigated. The

vector of the voltage E can be resolved into a component E cos <

in phase with the current, and another component, E sin 0, in

quadrature with the current. According to the proof given

above, the average power produced by the quadrature component
of the voltage is zero, so that the total average power is

Pave
= El - cos (77)

A more rigid proof of this expression is given in problem 3 below.

The product El is called the apparent power, and cos< is

referred to as the power-factor. Thus, the power-factor can be

defined either as the cosine of the angle of phase displacement
between the current and the voltage, or as the ratio of the true

power Pave to the apparent power IE. The second definition

is more general, because it applies also to non-sinusoidal currents

and voltages.

Referring to Fig. 13, the factor 7 cos < which enters into

eq. (77) represents the projection of 7 upon the direction of the

voltage OB, or E. Hence, eq. (77) can be interpreted by saying
that the true power is equal to the product of the voltage by
the component of the current in phase with it. This component
of the current, I cos <, is therefore called the energy component,
while the component 7 sin

<j>, at right angles or in quadrature with

the voltage, is called the reactive component.
1

Instead of resolving the vector of the current into two com-

ponents, it is sometimes preferable to resolve the voltage E into
1 The older name for this reactive component is wattless current.
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the components E cos < and E sin <, in phase and in quadrature
with the current. In this case, eq. (77) is expressed in words by

saying that the average power is equal to the current times the

component of the voltage in phase with it. These components
of the voltage are also called the energy component and the reactive

component respectively. The two components of power, the true

power El cos
</>,

and the reactive power El sin 0, stand in the

same relation to the apparent power El as the two sides of a

right triangle bear to the hypotenuse; that is,

(El)* = (El cos <)
2 + (El sin </>)

2
(78)

Let now the current and voltage curves be different from pure

sine-waves, and also different from each other in form. The
fundamental equation

Pa*e
= (1/T) f

T
ei-dt (79)

Jo

holds true in all cases, so that if the curves are given graphically,

the energy per cycle is found by multiplying the corresponding

instantaneous values of e and i, and using the planimeter on the

resultant curve. The average ordinate of this curve gives the

average power. Of course, the parts of the resultant curve below

the axis of abscissae must be evaluated separately from those above

it, and the difference of the two taken to represent the total

energy.

If the two waves are given in the form of Fourier series, an

expression for the average power may be obtained in terms of

the effective values of the harmonics. Substituting the expan-
sions for e and i into eq. (79), two kinds of terms are obtained,

those containing products of two harmonics of the same frequency,

and those containing products of two harmonics of different fre-

quencies. The terms of the first kind, after integration, give re-

sults of the same form as for the fundamental wave; that is, for

the nth harmonic \ Enln cos <, where En and / are the amplitudes
of the nth harmonics, and <f>n is the phase displacement between

them. The terms of the second kind give zero after integration,

the proof of this being analogous to that in problem 3 of the pre-

ceding article. Thus

Pave = vEJi cos 0i + \EJZ cos < 3 + etc. . . (80)

In other words, each harmonic contributes its own share of power,

as if it were acting alone.
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Let E and 7 be the effective values of some non-sinusoidal

periodic voltage and current, measured, for instance, by means

of hot-wire or dynamometer-type instruments. Let Pave be the

average power according to eq. (80), or measured by a dyna-

mometer-type wattmeter. Then the ratio Pave/EI is called the

power-factor of the system, the same as with sinusoidal curves.

This ratio is also often denoted by cos <, meaning by </>
the phase

angle between the equivalent sine-waves of voltage and current,

as defined in the preceding article. With the use of this angle and

of the equivalent sine-waves, vector diagrams may be constructed

and the corresponding calculations performed with currents and

voltages deviating considerably from pure sine-waves, though of

course such calculations check only approximately with the actual

measurements.

Prob. 1. Assuming the line current in problem 4, Art. 14, to be 452

effective amperes, calculate the average power delivered by the alternator,
and the power received at the opposite end of the line.

Ans. 2444 kw.; 2350 kw.
Prob. 2. Referring to problem 1, Art. 17, a wattmeter was connected

into the heater circuit, and the true power was found to be 598 watts.

Assuming all the three instruments to be in calibration, calculate the

power-factor and the angle of displacement between the current and the

voltage in the heater; also the energy component and the reactive com-

ponent of the current.

Ans. 95.4 per cent; 17 30'; 5.39 amp.; 171 amp.
Prob. 3. Deduce expression (77) for power by direct integration.

Solution: Let the current be expressed by /, sin u; also let the voltage
he leading by an angle <t>,

and therefore expressed as Em sin (u + <#>).

Substituting these values into eq. (79), we get

CT
l\ve = (E,,Jm/T) I

sin u sin (u + $) dt,
Jo

= (EmIm/2 *) / sin u [sin u cos <j> + cos u sin
<f>] du,

= (EmIm/2 *) [cos tt> I sin2 u du + sin < / sin u cos udu].
Jo Jo

From a table of integrals we find that the value of the first integral is *-,

and that of the second is zero. Substituting these values, and introduc-

ing the effective values of voltage and current, formula (77) is obtained.
Prob. 4. Plot a sine-wave representing an alternating voltage of

500 effective volts, and a current of the same frequency, of 20 effective

amperes, lagging behind the voltage by 30 degrees. Plot on the same
curve sheet the sine-wave of the instantaneous power, and check the
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average ordinate of this curve with the value obtained by formula (77).

Explain why the power is negative during a part of the cycle, remember-

ing that there are local electromotive forces in the circuit.

Prob. 5. Prove that the curve of power consists of a sine-wave of

double frequency, plus a constant term, the latter representing the aver-

age power. Compare with problem 3, Art. 16. Suggestion: ie = ImEm
sin u sin (u + <f>}. Use the trigonometric transformation, 2 sin A sin B=
cos (A - B] - cos (A + B).

Prob. 6. A non-sinusoidal voltage is represented by the equation
e = 270 sin u + 62 sin 3(u + 15) + 16 sin 5(u - 25); the correspond-

ing line current is i = 18 sin (u
- 30) - 7 sin 3 (u + 50) + 2.5 sin

5(w + 10). Calculate the true average power and the power-factor of

the system.
Ans. Pave

=
\ (4860 cos 30 - 454 cos 75 - 40 cos 5) = 2027 watte;

the power-factor is 75 per cent.



CHAPTER VI

INDUCTANCE, REACTANCE AND IMPEDANCE

20. Inductance as Electromagnetic Inertia. Experiment
shows that an electric current in a variable state behaves as if

it possessed inertia; there is an opposition to any change in its

magnitude and direction. This opposition is manifested in the

form of an "induced" electromotive force in such a direction as

to tend to counteract the change in current. Thus, if an external

e.m.f. tends to increase the current, the induced e.m.f. is in a

direction opposite to that of the current; but when, on the other

hand, the current for some reason decreases, the induced e.m.f.

is in the same direction as the current, and therefore tends to

strengthen it. These reactions of the current are similar to those

exerted by a moving body; for instance, the water in a pipe, when
its motion is accelerated or retarded. In practical applications, it

is convenient to consider, not the reactions themselves, but the

external forces necessary to overcome them. Thus, in the case

of a moving body of mass m, the external force necessary to com-
municate to it an acceleration dv/dt is F = m dv/dt. Here F
is positive when the acceleration is positive, and vice versa.

Similarly, to increase a current at a rate of di/dt, an external e.m.f.

is necessary of the magnitude

e = Ldi/dt, (81)

where L is a constant which characterizes the circuit and is analo-

gous to the mass m in the mechanical motion. The coefficient L
is called the inductance of the circuit, and depends upon its shape
and proportions, the presence or absence of iron, the number of

turns which the conductor makes, and some other factors, which
it is not necessary to discuss here. In most books the right-hand
side of eq. (81) is written with the sign minus, because e is under-
stood to mean the induced e.m.f. or the reaction of the circuit;
while in our case e designates the external voltage, equal and

60



CHAP. VI] INDUCTANCE, REACTANCE AND IMPEDANCE 61

opposite to this reaction. The form of the equation used here is

preferable, because in practice one deals with components of the

applied voltage rather than with the induced counter-e.m.f .
;

moreover, the minus sign is apt to confuse a beginner.

The inertia effect of the electric current is brought about

through the mechanism of the magnetic field produced thereby.

When the current varies, the flux embraced by the electric circuit

also changes, and according to Faraday's law of induction this

flux induces in the circuit an e.m.f. Thus, postulating the exist-

ence of electromagnetic inertia, and stating the law of induced

e.m.f., are perhaps but two different ways of expressing the same

physical phenomenon, the true nature of which is at present un-

known. Any arrangement of the circuit which increases the flux

linked with it, also increases its inductance L or the inertia effect.

The inductance of a given electric circuit can be calculated with

more or less accuracy,
1 or it can be measured experimentally,

using eq. (81). For our present purposes we shall assume L to

be a constant quantity, which characterizes the inertia of a given

electric circuit, according to eq. (81), without any reference to

the nature of the magnetic flux which produces it. Mechanical

inertia is used in physics and in engineering as a fundamental

entity, without explaining it in any other terms, while the mystery
as to its cause is just as deep as that surrounding the electro-

magnetic inertia. Some modern physicists even believe that all

inertia is of an electromagnetic nature.

The fact that a body resists acceleration, together with the

law of conservation of energy, leads to the conclusion that a mov-

ing body possesses a certain amount of stored energy. The
external work done upon a body while it moves through a dis-

tance ds is F ds = m (dv/dt) ds, or, since ds = v dt, we have

F ds = mv dv. The total work done upon the body while accel-

erating it from rest to a velocity v is therefore

W = C
S

Fds = r mv dv = \ mv2
.

According to the law of conservation of energy, this work is

stored in the moving body as its kinetic energy.
"

The electrical work done in increasing a current against the

induced electromotive force, during the time dt is dW = ei dt, or

1 See the author's Magnetic Circuit, Chapters 10 to 12,
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substituting for e its value from eq. (81), dW= Lidi. The total

energy supplied to the circuit from the external source of power,

while the current increases from zero to a certain value i, is

W = r Lidi = $Li* (82)
Jo

This does not include the energy required for supplying the i-r

loss. According to the law of conservation of energy, expression

(82) represents the energy stored in the circuit as long as the value

of the current remains the same. When the circuit is broken,

this energy is converted into heat. Analogously, when a non-

elastic moving body is stopped, its accumulated energy is con-

verted into the heat of impact. Inductance can be defined from

either eq. (81) or (82); and for most purposes the two definitions

are identical. Similarly, in mechanics, mass may be defined

either as the ratio of F to dv/dt, or as a ratio of the kinetic energy
to \v

z
.

The unit of inductance in the ampere-ohm system is called

the henry. According to eq. (81), a circuit has an inductance of

one henry when one volt is necessary in order to increase the

current at a rate of one ampere per second. This one volt does

not include, of course, the e.m.f. necessary for overcoming the

resistance of the circuit. The henry being rather a large unit,

inductance is frequently measured in millihenrys. Substituting
into eq. (81) the physical dimensions of the voltage in the ampere-
ohm system, we get [IR] = [LI/T] or [L]

= [RT]. In other

words, the henry stands for the "ohm-second." For this reason,
one instrument for measuring inductance has been called by its

inventors "the secohmmeter. "

All actual circuits which possess inductance, at the same time,
have some resistance, however small it may be. Therefore, the

total instantaneous voltage applied during a variable state is

e = ir + L di/dt (83)

Ohmic resistance may be compared to mechanical friction,
so that eq. (83) can be interpreted by reference to the mechan-
ical analogy used above, in the following way; namely, the

force necessary to accelerate a body must be augmented in

practice by the amount required for overcoming the inevitable

friction.
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Prob. 1. A circuit which possesses an inductance of 12 millihenrys

and carries a direct current of 150 amp. is broken within one-fifth of a

second. What is the average voltage induced in the circuit during this

interval of time? Ans. 9 volts.

Prob. 2. Calculate the electromagnetic energy stored in the circuit of

the preceding problem while the current is steady. Ans. 135 joules.

Prob. 3. The current in a coil is made to vary at a uniform rate of

250 amp. per second. At the instant when the current is equal to 150

amp., a voltmeter connected across the terminals of the coil reads 295

volts; when the instantaneous current is 100 amp. the voltmeter reading
is 230 volts. From these data calculate the resistance and the induc-

tance of the coil. Ans. 1.3 ohms; 0.4 henry.

21. Reactance. It is natural to expect the inductance to

exert a considerable influence upon the voltage and current rela-

tions in an alternating-current circuit, because the Current is

varying in magnitude all the time. The influence of inductance

in this case is analogous to that of the inertia of the moving parts

in a reciprocating engine; i.e., energy is stored during the periods

of increase in velocity (or in current), and is returned to the source

of power during the intervals of time when the velocity (or the

current) decreases. There is no net gain or loss of energy for a

complete cycle, although the instantaneous values of current and

voltage may be considerably affected.

Consider first a part of a circuit which has inductance only,

the resistance being negligible. Let the current vary according

to the familiar law i = Im sin (2 irft a). Substituting this value

into eq. (81), we get

e = 27r/L7m cos(27r/Y-), .... (84)

which means that the voltage necessary to force a sinusoidal

current through an inductance also varies according to the sine

law, and is in leading quadrature with the current. The ampli-

tude of the voltage Em = 2 -irfLIm ,
or the relation between the

effective values of voltage and current, is

E = 2irfLI (85)

It will be seen from this relation that, in alternating-current cal-

culations, the quantities / and L always appear as a product.

It is therefore convenient to introduce, for the sake of abbrevia-

tion, a new composite quantity x, defined by the relation

. . (86)
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The quantity x is called the reactance of the circuit, and always

refers to a stated frequency /. Equation (85) becomes then

E = xl, (87)

from which it follows that reactance is measured in ohms, like

resistance. This does not mean, however, that the two quanti-

ties are similar in their physical nature.

r Let now some resistance be con-

. nected in series with the inductance

E ||l (Fig. 18), or let the coil which pos-

sesses inductance have also an appre-

ciable resistance. Substituting the

expression for i, given above, into

eq. (83), we get

e = rlm sin (2 irft
-

a) + xlm cos (2 */-).. . (88)

Since the sum of two sine-waves is also a sine-wave (see Art. 14),

the total voltage e varies according to the sine-law. These com-

ponent sine-waves of voltage, their sum, and the current wave
are shown in Fig. 19. The student is advised to study this figure

FIG. 18. Resistance and re-

actance in series.

FIG. 19. The instantaneous current and voltage relations in the circuit

shown in Fig. 18.

very carefully, because it represents one of the most important
fundamental relations in the whole theory of alternating currents.

The same relations are represented vectorially in Fig. 20, and the

two figures may be conveniently examined together. One de-

scribes the phenomenon from instant to instant; the other gives
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the salient features in a symbolic form. The vector E consists

of one component Ir in phase with the current, and another Ix

in leading quadrature with the current. The first component

ir i

FIG. 20. The current and voltage relations in the circuit shown in Fig. 18,

represented vectorially.

serves to overcome the ohmic resistance; the second, the reac-

tance of the circuit. From the triangle of voltages we have

(89)

For the phase displacement between the current and the voltage

we have
tan< = Ix/Ir = x/r, ...... (90)

or the power-factor

cos</>
= r/Vr2 + z2....... (91)

The hydraulic analogue shown in Fig. 21 may make these

relations clearer. ACDGA represents a closed pipe circuit in

which water is made to oscillate

to and fro by means of the piston

B. The water is assumed to be

devoid of inertia, and the inertia

of the whole circuit is concen-

trated in a heavy mass F, which

moves freely with the water.

The force upon the piston rod

H is analogous to the alternat-

ing voltage E in Fig. 18; the

velocity of the water is analo-

FIG. 21. A hydraulic analogue
to Fig. 18.

gous to the alternating current, the friction in the pipes represents

the ohmic resistance r, and the inertia of the heavy mass F stands

for the inductance L. To make the analogy closer, we assume

that the piston is forced to perform a simple harmonic motion;
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so that the velocity of the water varies with the time according

to the sine law, and may be represented by the curve for i in

Fig. 19.

The force upon the piston B consists of two parts, that re-

quired for overcoming the friction in the pipes, and that necessary

for accelerating and retarding the mass F. These two compo-

nents of the force can be represented by the curves for ir and ix

in Fig. 19. The frictional reaction is at a maximum when the

piston is in the middle of its stroke, because there the velocity

of the water is the greatest. On the other hand, the acceleration

is zero in this position, so that the mass F exerts no reaction.

At the ends of the stroke the acceleration or retardation is at a

maximum, so that the force necessary for constraining the mass

F to the prescribed motion is at a maximum; however, the fric-

tional resistance is equal to zero. Adding the two sinusoidal com-

ponents, we find the resultant force upon B, corresponding to

the curve e in Fig. 19. It will be seen that e reaches a maximum

before the center of the stroke; this gives a phase angle between

the force and the velocity that is analogous to the phase angle

between the voltage and the current. The student can easily

deduce that the force leads the velocity in phase, and that the

displacement is greater the larger the mass F, as compared to

the frictional resistance; in other words, the greater the reactance

as compared to the resistance. It may be shown also that the

inertia reaction of the same mass F is greater for a higher fre-

quency of oscillation, because the acceleration and retardation are

proportionately larger.

Prob. 1. The inductance of a coil is 0.2 henry; its ohmic resistance

is negligible. Draw a curve giving the voltage necessary to maintain a
current of 12 amp. through the coil, at frequencies ranging from zero to

100 cycles per second.

Ans. A straight line through the origin; at / = 100, E = 1508 volts.

Prob. 2. A reactive coil without iron draws a current of 75 amp. when
connected across a 110-volt 25-cycle circuit. What current would it draw
at 60 cycles and at the same voltage, provided that the effect of its

resistance can be neglected? Plot a curve of current at intermediate

frequencies.

Ans. 31.25 amp.; equilateral hyperbola asymptotic to both axes.

Prob. 3. The reactive magnetizing current of a 2200-volt, 600-kilo-

volt-ampere, 50-cycle transformer must be not over 2.5 per cent of the

full-load current. What is the lower limit of its no-load reactance and
inductance? Ans. 322.5 ohms; 1.027 henrys.
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Prob. 4. The coil considered in problem 1 is connected in series with

a 100-ohm resistance; it is required to maintain a current of 12 amp.
through the two, at various frequencies. Supplement the curve obtained

in that problem with curves of voltage drop across the resistance, and the

total voltage across the combination. Plot also the corresponding values-

of power-factor. Determine the ordinates of the curves graphically,

and check a few points analytically.

Ans. Er
= 1200 volts, independent of the frequency. At / = 0,

EMai =Er ,
and cos 0=1. At /= 100, E tota i

= 1927 volts, cos = 62.25

per cent.

Prob. 5. Three simultaneous instrument readings in a power house

are: 7520 kw.; 66 kv.; 147 amp. The power-factor meter shows that

the current is lagging behind the voltage. What are the readings at the

same instant at the receiving end of the line, if its resistance is 45 ohms
and its reactance 83 ohms. Hint: Draw the vectors of the generator

voltage and current in their true relative position. Subtract the ohmic

drop in phase with the current, and the reactive drop in quadrature with

it. The result will give the receiver voltage in its true magnitude and

phase position. Ans. 6547 kw.; 53.4 kv.

Prob. 6. In order to determine the power input into a single-phase

110-volt motor, without the use of a wattmeter, the motor is connected

in series with a non-inductive resistance across a 220-volt circuit. The
resistance is adjusted so that the voltage across the motor terminals is

110, when the motor is carrying the required load. Under these condi-

tions the voltage across the resistance is found to be 127, and the current

through the motor 23 amp. From these data determine graphically the

power-factor of the motor, and calculate its power input.
Ans. 72.3 per cent; 1826 watts.

Prob. 7. Referring to the preceding problem, calculate cos <f> trigo-

nometrically, from the triangle of voltages, instead of determining it

graphically.

22. Impedance. When a reactance is connected in series

with a resistance, eqs. (89) and (91) indicate that the current and

voltage relations are determined, not by the value of the reac-

tance alone, but by a composite expression

z = Vr* + x\ (92)

The quantity z has the dimension of a resistance, and is called

the impedance of the circuit. It can hardly be called a physical

quantity, but rather an abbreviation for a certain combination

of the physical properties of a circuit; in other words, an abbre-

viation for the radical in eq. (92). Introducing the value of z

into eqs. (89) and (91), we obtain

E = zl (93)

and cos =
r/z. . (94)
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Impedance may be defined from eq. (93) as the ratio of the voltage

to the current in a circuit containing resistance and reactance.

In a non-inductive circuit the impedance is simply equal to the

total resistance, while in a purely inductive one the impedance

is equal to the reactance. It must be clearly understood that

eq. (93) gives only the relation between the magnitudes of the

vectors. The phase relation is given by Fig. 20, or by eq. (94).

The three quantities r, x, and z form a triangle of which z is

the hypothenuse (Fig. 20). This triangle is similar to the tri-

angle of voltages, but the quantities r, x, and z are not vectors in

the same sense as currents and voltages are. From the impe-

dance triangle we have the following useful relations:

r = z cos (95)

and
x = z sin </> (96)

When two impedances are connected in series (Fig. 22), the

voltage and current relations are as represented in Fig. 23. The
total terminal voltage E is less

than the arithmetical sum of

the voltages EI and E2 across

the two impedances, and is

equal to their geometric sum.

FIG. 22. Two impedances in series. The resultant phase angle has

a value intermediate between

the phase angles <f>i and < 2 of the two component impedances.
It will be seen from the triangle ABC that the resultant voltage

Fia. 23. The current and voltage relations in the circuit shown in Fig. 22.

is the same as that required by an impedance which consists

of a resistance TI + r2 and a reactance Xi + z2 . In other words,
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the resultant impedance is

z = (n + r2)
2 + (Xl + z2)

2
, .... (97)

and the resultant phase angle is determined from the equation

tan =
(si + z2)/(ri + r2)..... (98)

These equations show that two impedances are added in series

by adding the resistances and the reactances separately. An

impedance of 5 ohms in series with one of 7 ohms is not equal to

an impedance of 12 ohms, but as a rule is less. The relations

shown in Figs. 22 and 23, and eqs. (97) and (98), are easily ex-

tended to any number of impedances in series. Dividing all the

voltage vectors in Fig. 23 by the value of the current 7, the dia-

gram of voltages is converted into one of impedances, as in Fig. 20,

the relations being represented by eqs. (97) and (98). It must be

borne in mind, however, that from a physical point of view the

latter relations are not vectorial in the same sense as are those

of the voltages.

Prob. 1. The impedance of a coil is 7.5 ohms at 60 cycles; the re-

sistance measured with direct current is 6 ohms. What is the inductance?

Ans. 11.9 millihenrys.

Prob. 2. Two impedance coils are connected in series across a 292-

volt line. The voltages across the coils are 152 and 175 respectively;

the current is 7.3 amp. Knowing that the resistance of the first coil is

10 ohms, determine graphically the resistance of the second; also the

impedances of both coils.

Ans. r z
= 23.8; z\ = 20.82; z 2

= 23.97, all in ohms.

Prob. 3. When a certain non-inductive resistance is connected across

a source of alternating voltage, a current / flows through it. When an

inductance, containing negligible resistance, is connected across the same
source of voltage, the current is /'. What are the current and the phase

displacement when the resistance and the inductance are connected in

series across the same source? Solution: Let the unknown voltage be

E. The unknown resistance is r = E/I; the unknown reactance x

E/I'. When the two are connected in series, the impedance z = [(E/I)
2

+ (E/I'Y\*. Consequently, the current is E/z= 7/'/(/
2 + / /2

)* ;
tan =

x/r = I /I'.

23. Influence of Inductance with Non-sinusoidal Voltage.

(a) Let an alternating voltage e of an irregular form, such as is

shown in Fig. 14, be applied at the terminals of a pure resistance r

(non-inductive). The current through the resistance is at any
instant equal to e/r, and consequently has the same wave form

as the voltage.
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(I)) Let now the same voltage be applied at the terminals of

a pure inductance L (without resistance). It may be said a priori

that the current wave will be different from that of the voltage,

and will approach more nearly a sine-wave. This follows from the

very concept of inductance as the inertia of the circuit; the high-

frequency harmonics in the voltage are unable to produce currents

of the same magnitude as at lower frequencies, because the react-

ance offered to each harmonic is proportional to its frequency.

This property of an inductance of choking higher harmonics is

useful in some applications.

Let the voltage across an inductance be given in the form of a

Fourier scries,

e = E t sin (2 irft
-

i) + #3 sin 3 (2 irft
-

3) + etc.

Substituting its value in the fundamental eq. (81), we get

E l sin (2 Trft
- + E3 sin 3 (2 Trft

-
3) + etc. = L di/dt.

Multiplying both sides of this equation by dt and integrating

gives
-

(#!/2 TT/) COS (2 Trft
-

i)
-

(#3/6 TT/) COS 3 (2 Trft
- a 3)

etc. = Li + const.

The constant of integration is equal to zero, because the current

cannot have a unidirectional component without a commutating
device or electric valve of some sort. Therefore

i = - (Ei/2 7T/L) cos (2 Trft
- -

(#3/6 7T/L) cos 3 (2 Trft
-

3)

-
etc., (99)

which means that each harmonic in the e.m.f. produces its own

current, as if this harmonic were acting alone. The total current

is the sum of such harmonic currents. The reactance of the coil

for the nth harmonic is n times as great as for the fundamental

wave; therefore, the higher harmonics in the current are rela-

tively smaller than those in the voltage wave.

(c) Let now a non-sinusoidal alternating voltage be impressed
at the terminals of an impedance coil, and let it be required to

determine the wave form of the current. The result to be

expected will be intermediate between those derived for a pure
resistance and a pure inductance; viz., the current wave will be

more nearly of sine form than the voltage wave, but not to the

same extent as in the case of a pure inductance.

Substituting the above given expansion for the voltage wave
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into the fundamental eq. (83), we obtain a differential equation for

i, which equation some readers may not be able to solve. We
choose, therefore, the opposite way; that is, we assume the current

wave to be given, instead of the voltage wave, and determine the

corresponding voltage wave from eq. (83). This procedure is

much simpler, because it involves differentiation instead of inte-

gration. Let the current be given in the form

i = /i sin (u i) + 73 sin 3 (u 3) + etc., where u = 2 irft.

Substituting this value into eq. (83) and rearranging the terms,

gives

e = [Iir sin (u i) + 2 irfLIi cos (u ai)] + [/3r sin 3 (u a3)

+ 6 Tr/L/g cos 3 (u -> 3)] + etc. . . . (100)

This result shows that each harmonic of the current requires a

corresponding harmonic of the voltage, as if it were flowing alone.

The total voltage is equal to the sum of the harmonic voltages.

Therefore we conclude that, conversely, if the voltage were given,

the current would be equal to the sum of the harmonic currents

produced by the respective harmonics in the voltage. If the

impedance to the first harmonic is z\ = \/r2 + x2
,
that to the

third harmonic is z3
= Vr2 + (3 x)

2
,
and in general the impedance

to the nth harmonic is zn = Vr2 + (nx)
2
. The phase displace-

ment between the corresponding harmonics of current and voltage

is determined from the condition, tan <
= nx/r, or cos n = r/zn .

The general conclusion reached is as follows: When the applied

voltage contains higher harmonics, the total current is found by
summing the harmonic currents due to each harmonic of the

voltage acting alone.

Prob. 1. The effective value of the fundamental wave of an e.m.f. is

110 volts; it has a pronounced third harmonic, of 24 per cent of the fun-

damental wave. This voltage is applied across a pure reactance, equal to

5 ohms for the fundamental frequency. Calculate the current.

Ans. 22.07 amp.
Prob. 2. An alternating voltage is represented by the expression

170 sin 250 t + 62 sin (1250 t + 2.3). It is applied to an impedance coil

having an inductance of 45 millihenrys and a resistance of 7 ohms. Show
that the current in amperes is equal to 12.82 sin (250 1 1.015) +
1.09 sin (1250 + 0.853).

24. The Extra or Transient Current in Opening and Clos-

ing a Circuit. Since an electric current possesses inertia in
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the form of inductance, no current can be established or broken

instantly, unless the applied electromotive force be infinitely

large. Thus, when a large electromagnet is connected to a source

of continuous voltage, the current increases during an appreciable

interval before it reaches its final value. Again, when the circuit

is broken, the current continues in the form of an arc through

the air for an appreciable time. In a majority of cases these

transient phenomena at the opening and closing of a circuit are of

no practical importance, yet there are circumstances under which

they must be taken into consideration; for instance, in switching

on and off large amounts of energy, in high-frequency oscillations,

in highly inductive circuits, etc. We shall consider here two

simple cases of such extra currents; namely, when a circuit pos-

sessing resistance and inductance is connected to a source of

(a) continuous voltage and (b) sinusoidal alternating voltage.

(a) Direct Voltage. When e in eq. (83) is constant, one value

of i which satisfies this equation is i = e/r, because in this case

di/dt = 0. However, this is not the most general solution,
because it is possible to select an exponential expression in addi-

tion to the constant i, which will satisfy the equation. Put

i = /r + CV-'*
f (101)

where e is the base of natural logarithms, and C and T are certain

constants. Substituting this value of i into eq. (83), we get

Cre-'/' - (L/r)Ce-^ =
0,

or

T = L/r.

Besides, i = when t = 0, so that expression (101) becomes
=

e/r + C, from which

C = -e/r,
and consequently

i = (e/r) (1
-

-*/*) (102)

In other words, when a direct-current circuit is closed, the current
increases at first rapidly, then more and more slowly; and theo-

retically it reaches its final value of e/r only after an infinite time.
In reality, the current becomes practically constant after a frac-
tion of a second, unless the inductance is exceedingly large. The
factor T = L/r is called the time constant of the circuit; it deter-
mines the rate of the initial rise in current, and has the dimension
of time.
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(b) Sinusoidal Voltage. If the voltage follows the law e =
Em sin 2 irft, one solution of eq. (83), as we have seen before, is

i = (Em/z) sin (2 irft $), where cos< =
r/z. But this is not the

most general solution, because it is possible to add to it an expo-

nential term of the form Ce~ t/T
,
and to select the time constant r

in such a way that this term will cancel in eq. (83). Since the

sine term of the current alone satisfies the equation, we will find

as before T = L/r. The constant C is determined by the condi-

tion that i = when i = 0, or

= - (Em/z) sin + C,

from which

C= (Em/z}sm4>=.Emx/z\

Therefore the current

i = (Em/z) sin (2*fl
-

<) + (Emx/z
2
)<--<r/

L
. . . (103)

Under ordinary conditions the exponential term becomes negli-

gibly small within a fraction of a second, so that it is legitimate

to consider the current to be a pure sine-wave, as we have done

heretofore. However, the extra current may be of importance in

transient phenomena, for instance, at the moment of closing a

circuit.

The solutions (102) and (103) of eq. (83) are found above by

trials, because it is assumed that the reader is not familiar with

the general method for the solution of linear differential equations ;

otherwise, the solution could have been written directly. Equa-
tion (83) is of the form

dy/dx + Py = Q, ...... (104)

where P and Q are functions of x or constants. By referring to

any book on differential equations, the reader will find that the

general solution of this equation is

.... (105)

where
^

(106),-/P<b

Prob. 1. The current in a coil due to a constant e.m.f. reaches 99 per
cent of its final value within one hundredth of a second after the circuit

is closed. Show that the time constant of the coil is equal to 2.17 milli-

seconds.
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Prob. 2. Show that the time constant may be defined as the interval

of time during which the current reaches (e l)/e = 0.632 of its final

value.

Prob. 3. Select the constants of an alternating-current circuit so as

to have a power-factor of about 80 per cent; and plot curves of (a) the

voltage, (b) the sinusoidal component of the current, (c) the exponential

component of the current, and (d) the total current, for the first few

cycles after the circuit is closed.

Prob. 4. Extend the theory given above to the case where the cir-

cuit is closed at an instant when the alternating voltage is not equal to

zero.

Prob. 6. Check the solutions (102) and (103), using formula (105).

Prob. 6. When an impedance, consisting of r and L, is suddenly short-

circuited, so that e becomes instantly equal to zero, show that the line

current gradually disappears according to the exponential law i = i ()(Trt/L ,

where i' is the magnitude of the current at the instant of short-circuit.



CHAPTER VII

SUSCEPTANCE AND ADMITTANCE

25. Concept of Susceptance. The concept of reactance, as

introduced in Art. 21, indicates the degree of difficulty in forcing

an alternating current through a coil, against the reaction of an

alternating magnetic field. In this respect, reactance is analo-

gous to resistance. We have seen, however, in Chapter I, that it

is more convenient to use conductances, when resistors are con-

nected in parallel. Similarly, when reactive coils or reactors are

connected in parallel, it is more convenient in calculations to use

the reciprocals of their reactances. The reciprocal of reactance is

called susceptance, and is usually denoted by the symbol 6. Thus,

by definition, the susceptance

b=l/x = l/(2rfL) (107)

By analogy with conductance, one may say that the susceptance

measures the degree of ease in forcing an alternating current

through a coil, against the reaction of a pulsating magnetic field.

Since reactance is measured in ohms, susceptance is measured in

mhos. Equation (87) becomes

I =
bE,. (108)

it being understood as before that the current lags by 90 degrees

behind the voltage. The student is reminded that the concept
of susceptance, like that of reactance, implies pure inertia reaction,

without any ohmic resistance; this limitation is very important
for a clear understanding of the rest of the chapter.

When several inductive coils are connected in parallel, their

susceptances are simply added together, or

beq
= 61 + 62 + etc (109)

The proof is similar to that for the addition of conductances (see

Art. 3). Thus, a susceptance of 3 mhos in parallel with one of

2 mhos gives a total susceptance of 5 mhos.
75



76 THE ELECTRIC CIRCUIT [ART. 26

Prob. Two reactive coils of 10 and 20 millihenrys respectively are

connected, first in series and then in parallel, across a
40-cycle,

180-volt

line. The ohmic resistance of the coils is negligible. What is the current

in each case? Ans. 23.85 amp.; 107.35 amp.

26. Concept of Admittance. Let now a pure inductance be

connected in parallel with a pure ohmic resistance, across a source

of alternating voltage E (Fig. 24), and let it be required to find

E

FIG. 24. A susceptance in parallel

with a conductance.

FIG. 25. The voltage and current

relations in the circuit shown
in Fig. 24.

the total current through the combination.' The inductance can

be expressed as a susceptance, and the resistance as a conductance.

The current through the susceptance, according to eq. (108), is

bE, in quadrature with the voltage (Fig. 25) ;
the current through

the conductance, according to eq. (2), is gE, in phase with the

voltage. The total current

= E V^~+&? . . . (110)

(Ill)

and the phase angle is determined from the relation

tan< = Eb/Eg = b/g

cos = g/Vg* + &2. ..... (112)

In the case of a series connection, we have found it convenient

to introduce the impedance z as a symbol for Vr2 + z2
. Simi-

larly, in a parallel connection it is convenient to introduce the
abbreviation

y = Vg* + b\ ...... (113)

The quantity y is called the admittance of a circuit, and is measured
in mhos, the same as 6 and g. Equation (110) becomes

i = yE, ....... (114)
and eq. (112),

COS0 = g/y........ (115)
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The three quantities g, b and y form a triangle (Fig. 25), in which

y is the hypothenuse, and the angle adjacent to g is the phase

angle </>. From this triangle we obtain two useful relations,

g
= y cos 4>

b = y sin 0.

When there are several susceptances and conductances in parallel

(Fig. 26), the reactive and the energy components of the current

I ^

and (116)

FIG. 26. Susceptances and conductances in parallel.

must be added separately (Fig. 27). Therefore, the amperes per

volt in phase or the conductances, and the amperes per volt in

E&3

FIG. 27. The voltage and current relations in the circuit shown in Fig. 26.

quadrature or the susceptances, must also be added separately, so

that the equivalent admittance

y = V(gi + 2 + etc.)
2 + (61 + 6 2 + etc.)

2
,

. (117a)

and

tan c/,
=

(&! + 6 2 + etc.)/(0i + g* + etc.). . . . (117b)

The student should compare Fig. 27 with Fig. 23 in order to see

the similarity of procedure and the difference in the physical

phenomena in the two cases. With a series connection, it is the

current that is common to all the parts of the circuit, while the

partial voltages are added geometrically. In a parallel combina-

tion, the voltage is common to all the branches, while the com-

ponent currents are combined in their proper phase relations.
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The following table gives the quantities defined in this and the

preceding chapter, in their proper relations.

-

Prob. 1. What susceptance must be connected in parallel with a

resistance of 0.2 ohm, in order to bring the power-factor of the combina-

tion down to 80 per cent? Also, what is the value of the resultant ad-

mittance? Ans. 3.75 mhos; 6.25 mhos.

Prob. 2. Two electrical devices are connected in parallel to a line of

voltage E. One device consumes a current /i at a power-factor cos <t>i',

the total line current is 7, lagging behind the voltage by an angle <.

Show how to determine graphically the susceptance and the conductance

of both devices.

27. Equivalent Series and Parallel Combinations. Let a

resistance ra be connected in series with a reactance xa ;
also let

another resistance rp be connected in parallel with a reactance xp .

If the values of the resistances and reactances are so selected that

the series combination, when connected to the same source of

supply, will let through the same current at the same power-
factor as the parallel combination, then the two combinations are

called equivalent. It is sometimes convenient to replace a given
series combination by an equivalent parallel combination, and
vice versa. For instance, when some parts of a circuit are in

parallel and others in series, it is convenient for numerical cal-

culations to replace them all by an equivalent parallel or series

combination.

The problem is to find the relation between the four quanti-
ties r,, rp , x, and xp ,

if these quantities form two equivalent com-
binations. According to the above-given definition, the angle
is the same for both, and besides, according to eqs. (93) and (114),

y-i/, (us)

where y refers to the parallel combination and z to the equiva-
lent series combination. Combining now eqs. (116), (95) and (96),
we have

lAp = 9 = y cos = (l/z) (r./z)
= r8/z

2
;
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or

r.rp
= z*= l/</

2
; (119)

z.zp = z2 = l/i/
2

(120)

By means of eqs. (119) and (120) a series combination can be

replaced by an equivalent parallel combination, and vice versa.

Instead of rp and xp ,
their reciprocals, g and b, may be used. In

practice, g and & are usually spoken of as the conductance and the

susceptance of either the series or the parallel combination; but

it must be clearly understood that they are the reciprocals of rp

and xp ,
and not of r, and xt . If ra and xt are given, it is first

necessary to determine rp and xp from eqs. (119) and (120), and

then to take their reciprocals. In other words, for a series circuit

the equivalent conductance and susceptance are

g = r./*> (121)

and 6 = xt/z
z

(122)

On the other hand, if g and b are given,

r. = g/y
2

; (123)

x. = b/y* (124)

The reciprocals of r, and x, are of no practical importance, and

are not used in this work.

Prob. 1. An impedance coil has a reactance of 7.5 ohms; the resist-

ance of the winding is 2 ohms. What are the susceptance and the con-

ductance of the equivalent parallel combination?

Ans. 124.3 and 33.2 millimhos.

Prob. 2. Check the answer to the foregoing problem by actually cal-

culating the current and the power-factor of the series and the parallel

combinations at some assumed voltage.
Prob. 3. Show that rp and xp are always larger than rt and x, re-

spectively. Hint: In eqs. (119) and (120) replace zz by ra
2 + x,

2
,
and

solve for rp and xp .

Prob. 4. An apparatus takes 25 amp. and 2000 watts at 110 volts,

the current being a lagging one. What are the equivalent conductance
and susceptance of the device? What are the resistance and reactance

in series equivalent to this apparatus?
Ans. 0.165 mho; 0.156 mho; 3.2 ohms; 3.04 ohms.

Prob. 6. In adjusting a measuring instrument, a non-inductive re-

sistance of 120 ohms was used in parallel with a choke coil. The imped-
ance of the coil was 75 ohms, its resistance 16 ohms. In the regular
manufacture of the instrument it is desired to use a resistance and a re-

actance in series. Determine their values, either graphically or analyti-

cally. Ans. ra = 38.0 ohms; xa
= 44.3 ohms.
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28. Impedances in Parallel and Admittances in Series. In

the preceding chapter we have learned how to add impedances

in series, and in this chapter how to add admittances in parallel.

Let now two or more impedances be connected in parallel, and let

it be required to find the equivalent impedance. This is done

by replacing each of the given impedances by an equivalent

parallel combination, and then adding their admittances in par-

allel, according to the rule developed above. Conversely, let sev-

eral admittances be connected in series, and let it be required to

find the equivalent admittance. To solve this problem, each

parallel combination is replaced by an equivalent series combina-

tion, and then the impedances are added in series. The student

understands, of course, that the addition in both cases is geo-

metric, and that only like components can be added algebraically.

Problems of this kind occur, for instance, in the theory of trans-

mission lines, transformers, and induction motors; for this reason

it is important that the student understand the equivalent com-

binations, and that he acquire facility in changing from a series

to a parallel combination, and vice versa, as is explained in the

preceding article.

Prob. 1. The load of a single-phase, 6600-volt generator is estimated

to consist of 1200 kw. of lamps, practically non-inductive, and of 800 kw.
of motors, working at an average power-factor of 75 per cent. What
will be the expected generator output, in amperes, and the power-factor?
Solution: The energy component of the motor current is 800/6.6 = 121.2

amp.; the reactive component is 121.2 tan ^ = 106.8 amp. The lamp
current is 1200/6.6 = 181.8 amp. The total energy component of the

generator current is 121.2 + 181.8 = 303 amp. Consequently, the total

generator current is (303
2 + 106.S

2
)* = 321.3 amp.; the power-factor

is 303/321.3 = 94.3 per cent.

Prob. 2. Check the solution of the preceding problem graphically.
Prob. 3. Three resistances of 2, 5 and 10 ohms, and two reactances of

4 and 2.5 ohms, are all connected in parallel across a 250-volt alternating-
current line. What are the total current and the power-factor of the com-
bination? Ans. 258 amp.; 77.5 per cent.

Prob. 4. Three impedance coils, having ohmic resistances of 2, 3 and
4 ohms respectively, and inductances of 13, 10 and 22 millihenrys, are
connected in parallel across a source of 220-volt, 60-cycle alternating
voltage. Calculate the total current and the power-factor. Check the
solution graphically. Ans. 110 amp.; cos = 0.495.

Prob. 6. Solve the preceding problem for a frequency of 25 cycles per
second. Construct the vector diagrams of the currents in both problems
to the same scale, so as to see the influence of the frequency.
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Prob. 6. In problem 4, let the total current be given in magnitude,
but not in its phase position; assume the inductance of the third coil to

be unknown. Show how to determine analytically and graphically the

vector of the current in the third coil, and the position of the vector of

the total current.

Prob. 7. The admittance of a winding is 0.2 mho; the current through
the winding lags by 34 degrees with respect to the voltage at its terminals.

Determine the resistance and the reactance of the winding.
Ans. 4.145 ohms; 2.796 ohms.

Prob. 8. A coil having a resistance of 2.3 ohms and a reactance of

5 ohms is connected in parallel with another coil, for which r = 3 ohms
and x = 4 ohms. Calculate the resistance and the reactance of the

equivalent series circuit. Ans. 1.36 ohms; 2.255 ohms. .

Prob. 9. The coils given in the preceding problem are connected in

parallel across 55 volts. Calculate the total current, its energy and re'ac-

tive components, and the power-factor of the combination.

Ans. 20.85 amp.; 10.78 amp.; 17.88 amp.; cos <t>
= 0.5165.



CHAPTER VIII

THE USE OF COMPLEX QUANTITIES

29. Addition and Subtraction of Projections of Vectors.

With the explanation given in the preceding four chapters, the stu-

dent is enabled to handle, by means of vector diagrams, problems

involving resistances and reactances in alternating-current cir-

cuits. A number of problems in transmission-line calculations

and in the theory of alternating-current machinery may be solved

by the use of such vector diagrams. The disadvantages of the

graphical method are: (1) Results are usually obtained which

hold for one specific case only; an analysis of the effect of various

factors is often difficult. (2) Some vectors may be many times

smaller than others; for instance, the voltage drop in a transmis-

sion line, as compared to the line voltage itself. Therefore, the

diagram must be drawn to a very large scale, or else the results

are not sufficiently accurate. In addition to these drawbacks,
some engineers object to graphical methods in general, as involv-

ing the use of drawing instruments, which may not be convenient.

On the other hand, vector diagrams are quite convenient in

some practical cases; moreover, they are helpful for the under-

standing of general relations in a circuit, without reference to

particular numerical values. Again, in some problems, the un-

known vectors can be calcu-

lated from the vector diagram

trigonometrically ,
without the

necessity of actually drawing
it to scale.

It is possible to treat

vectors analytically, using

their projections on two axes,

FIG. 28. A vector and its projections.
as in analytic geometry (Fig.

28). A vector, such as E,
can be denned either by its magnitude and phase angle 0, or

by its projections e and e' upon the axes of coordinates.

82
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If E and 6 are given, the projections are calculated from the

expressions
e = Ecosd',}

e' = Esme.l'
If the projections are given, the vector itself is determined in

magnitude and position from the equations

E =
(e

2 + e'
2
)*; (126)

tan 6 = e'/e (127)

In numerical computations it is more convenient first to calculate

tan from eq. (127) and then to determine E from one of the

eqs. (125), using trigonometric tables. This does away with the

necessity for squaring the projections and extracting a square

root.

The fact that e and e' are components of the vector E along

two perpendicular axes is expressed symbolically thus:

E = e+je' (128)

Here j is a symbol which indicates that the projection e' refers

to the vertical axis. This symbol must not have any real value;

for the time being, it may be considered merely as an abbrevia-

tion of the words "
along the vertical axis." The sign plus in

eq. (128) denotes the geometric addition. The dot under E sig-

nifies that by E is meant not only the magnitude of the vector,

but its direction as well, the latter being defined by the projec-

tions. When the magnitude only is meant, the dot is omitted.

The foregoing notation has been introduced by Dr. Charles

P. Steinmetz, and is now universally used in this country. Much
credit is also due to Dr. Steinmetz for developing the analytic

method, used below, of dealing with alternating currents and

voltages by means of their projections.

The addition and subtraction of vectors are reduced simply to

the addition and subtraction of projections. According to Fig. 12,

the projection of a vector on any axis is equal to the sum of the

corresponding projections of its component vectors on the same

axis. Thus, if a current is represented as a vector by its projec-

tions 50 -f- j 70 amp., and another current by 100 + j 40 amp.,

the vector sum of these currents is 150 + j HO amp. Or, the

resultant of two voltages, EI e\ + jei and E2
= e2 + jez', is

Eeq
= EI -\- E z

= (ei + e<t) -\- j(e\ + 62').
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As an illustration, let us solve problem 3, Art. 14, by the method

of projections. Take the voltage vector of the first alternator

in the horizontal direction, this being the simplest assumption.

This vector is therefore expressed as E\ = 2300 + j 0. The hor-

izontal projection of the second vector is 1800 cos 27 = 1603.8

volts, and its vertical projection is 1800 sin 27 = 817.2 volts.

Both of these projections are positive, because the second vector

leads the first, and is therefore in the first quadrant. Thus, E2
=

1G03.8 + j 817.2 volts. The resultant voltage, Eeq
= E v + E2

=

3903.8 + j 817.2 volts. For some purposes, it is sufficient to

leave the answer in this form; if, however, the magnitude and

phase position are required, they are found as explained above:

tan e = 817.2/3903.8 = 0.2092; 6 = 11 49'; cos 9 = 0.9786; Eeq

= 3903.8/0.9786 = 3988 volts.

If the terminals of the second machine be reversed, then Eeq
=

EI E2
= 696.2 j 817.2. This vector has a positive horizon-

tal projection and a negative vertical projection. Consequently,

it lies in the fourth quadrant, and lags behind the reference vec-

tor by less than 90 degrees. Proceeding as above, we find 6 =

-49 32'; Eeq
= 1074 volts.

Prob. 1. Solve problem 1, Art. 14, by the method of projections,

assuming the vector of the first current to be horizontal.

Prob. 2. Check the solution of problem 4, Art. 14, by the method of

projections.

v 30. Rotation of Vectors by Ninety Degrees. In problems

involving reactance, it is necessary to multiply the vector of the

current by the reactance of the circuit and then turn it by 90

degrees, in order to determine the reactive drop in voltage. The

simple multiplication of the vector of current by the reactance

converts it into a vector of voltage, and thus merely changes the

scale. But turning the vector modifies the relative magnitudes
of its projections; it is, therefore, necessary to find a relation

between the magnitudes of the original and the new projections.

In the simplest case let a vector E\ be drawn along the refer-

ence axis, or axis of abscissae, and let its length be a. In the sym-
bolic notation it is represented as E l

=
a, the other projection

being zero. After having been turned by 90 degrees counter-clock-

wise, the vector is directed along the positive axis of ordinates,
and is symbolically represented as E2

=
ja, the horizontal pro-
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jection being zero. Thus, in this particular case, a rotation by
90 degrees is equivalent to a multiplication by j. .

It is convenient to define j in such a manner that multiplication

of any vector by j will turn the vector by 90 degrees in the positive

direction (counter-clockwise), while division by j will turn the vec-

tor by 90 degrees in the negative direction (clockwise). In order to

find a value of j which satisfies these requirements, let the vector

EZ be turned again by 90 degrees counter-clockwise, being now
directed along the negative X-axis. Its expression is now E 3

=

a. On the other hand, the same expression must be obtained

by multiplying E2 by j. Therefore, we have a = fa, or j
2 =

1; consequently, j = V
/

1. If the original vector EI is to be

turned by 90 degrees clockwise, we must, according to our assump-

tion, divide it by j. We then have E* =
a/j, or, multiplying the

numerator and the denominator by j, #4 = ja/j
2

. If j
2 =

1, as

it appears- to be above, then Et
=

ja. This checks with the

preceding result, because E^ = E*- It will thus be seen that

the value of j
2 = 1 satisfies the requirements set above, when

the original vector is directed along one of the axes of coordinates.

Let now the original vector EI (Fig. 29) have an arbitrary

direction in the first quadrant, or EI = a + jb. Multiplying EI

by j we must get the vector Ez ,
of the v

same magnitude, but in the second

quadrant and perpendicular to EI.

E 2 has a vertical projection equal to

the horizontal projection a of the

original vector EI; the horizontal pro-

jection of E2 is negative, and is equal
in its absolute value to the vertical

projection 6 of the vector E 1 . Thus,
FlG ' The relation between

,, .
, the projections of two vectors,

the new vector is expressed as
pe^endicular to each other.

E2
= b + ja. On the other hand,

multiplying EI by j we have jEi = ja + fb = ja b, which is

the same as above. Therefore, in this case also the assump-
tion j

2 = 1 is correct, and leads to rotation by 90 degrees.

It is left to the student to verify the cases in which the vector lies

in some other quadrant, and where EI is divided by j, for rotation

by 90 degrees in the negative direction.

Expressions of the form a + jb, where a and 6 are real quan-
tities and j = V 1, are called in algebra complex quantities.
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The student need not be discouraged by the name, because for

our purposes j is simply a quantity which separates the two pro-

jections of a vector, obeys the law of multiplication and division,

and is of such a nature that j
2 =-1. Moreover, solutions by

means of complex quantities are quite as simple as by other

methods.

Prob. 1. A current of 80 + j 43 amp. flows through a resistance of

2 ohms in series with a reactance of 3 ohms. Find the voltage drop across

the impedance. Solution: The vector of the voltage consists of two

components, representing the ohmic and the reactive drop respectively.

The ohmic drop, #,, is equal to 2 (80 + j 43) = 160 + j 86 volts. To
find the inductive drop, EZ, the vector of the current must be multiplied

by x =
3, and then turned by 90 degrees, in other words, multiplied by j.

Thus, Ez
= 3j (80 +J43) =-129 + J240 volts. The total voltage

E = Ei + E z
= 31 + j 326 volts.

Prob. 2. Solve the preceding problem when the voltage is given and

the current is unknown. First Solution: Let the unknown current be

represented by its projections as i + ji'. We have, as in the preceding

problem,
2 (i + ji') + 3j (i + ji')

= 31 + j 326, . . . (129)

or, collecting the terms containing j,

(2i-3i')+j(2i' + 3i) = 31+J326. . . . (130)

This equation can be satisfied only if the terms with and without j
are equal to each other respectively, because a real quantity cannot be

equal to an imaginary one. Or, from a geometric point of view, the left-

hand side and the right-hand side of eq. (130) each represent a vector by
its projections. But two vectors are identical only when their corre-

sponding projections are equal. Thus, we have

2t-3i' = 31; 2i' + 3i = 326.

Solving these equations for i and i', we find i = 80, i' = 43, as in the pre-

ceding problem. Second Solution: Equation (129) can be written in the
form (2 + 3;) (i + ji')

= 31 + j 326; or, i+ ji'= (31+ j 326) / (2 +3j).
Considering here j as an ordinary algebraic quantity, we can get rid of

it in the denominator by multiplying both the numerator and the denomi-
nator by 2 - 3 j. The result is

. ., (31 + j326)(2-3j) 1040
,

. 559

~~2-(3j)
=

l3-
+ -7

l3-'

or i + ji'
= 80 + j 43, as before.

Prob. 3. A voltage of 28 + j 120 volts applied to the terminals of a
coil produces in it a current equal to 4 +j 1.5 amp. Determine the
resistance and the reactance of the coil.

Ans. r = 16 ohms; x = 24 ohms.
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Prob. 4. Verify the answer to problem 4, Art. 28, by the method of

projections, assuming the vector of the voltage to be horizontal.

31. Impedance and Admittance Expressed as Complex Quan-
tities or Operators. Let it be required to find the voltage neces-

sary to maintain a current i + ji' through a resistance r and react-

ance x in series. The voltage drop in the resistance is r (i + ji'} ;

that in the reactance is jx (i -i- ji'}. Hence, the total voltage is

E = r(i+ji')+jx(i+ji'), or

E = e + je'
=

(r + jx) (i + ji'}. . . . (131)

It is legitimate to factor out the expression (i + ji'), and to treat

j as any other algebraic quantity, because j is now assigned a

definite value, V^l. Moreover, eq. (131) represents simply the

geometric addition of four component vectors, two of them

directed along the X-axis and the other two along the F-axis.

As long as this interpretation is kept in mind, the terms may be

arranged in any desired order.

Equation (131) shows that, in order to obtain the expression

of the voltage drop through an impedance, the current must be

multiplied by the complex quantity r + jx. The expression

r -\-jx is not a vector, because it does not stand for a sine-wave,

but an operator upon the vector of the current. The operation

consists, first, in multiplying the vector of the current by r, then

in multiplying the same vector by x and turning it by 90 degrees

in the positive direction, and finally, hi adding the two vectors

geometrically. All these operations are included in the expression

r + jx, which is called the impedance operator.

In order to get the projections e and e' of E from eq. (131),

the terms on the right-hand side must be actually multiplied and

the results represented in the form of a complex quantity. We
get then, separating the real and the imaginary parts,

E = e + je'
=

(ri
-

XL') + j (ri
r + xi).

The real and the imaginary parts on each side of this equation are

equal to each other respectively, because they represent the pro-

jections of the same vector E upon the two axes. Consequently

e =n-';l
e' = ri' + xi.

j

'

In problems these steps are best left until the numerical values

have been substituted, in order to avoid complicated expressions.
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If the voltage and the impedance are given, and it is required

to find the current, we get from eq. (131) the relation

In order to reduce the right-hand side of this equation to the

form of a complex quantity, we multiply the numerator and de-

nominator by the expression r jx. This gives

, _ (e+je')(r-jx) _ re + xe' re' - xe

i+v -^nr^i r2 + X2 + -V + x2

Equating the real and the imaginary parts respectively, we

obtain

i' = (re'
-

xe)/*.
'

Equation (131) expresses the fact that the voltage E is equal

to the product of the current by the impedance, if the operator

(r + jx) be considered as the impedance of the circuit in the com-

plex notation. Denote the impedance by Z, then

Z = r+jx........ (135)

Here capital Z is used to indicate that it is a complex quantity,

as distinguished from the numerical value z of the same imped-
ance. The letter is not provided with a dot, because Z is not a

vector, but an operator.

In the abbreviated notation, eq. (131) becomes

E = IZ......... (136)

In this expression each letter stands for a complex quantity, so

that when actual numerical or algebraic relations are necessary,

the expression must again be expanded into (131) and the multi-

plication of the two complex quantities actually performed.
Instead of dividing the voltage by the operator (r + jx) and

then eliminating j from the denominator, it is more convenient

to introduce another operator by which the voltage must be multi-

plied in order to obtain the current. It will be remembered from

Art. 26, that a voltage must be multiplied by an admittance in

order to get the current. Consequently the operator in question
must be expected to have the elements and the dimensions of an

admittance. Replacing the given series combination by an equiv-
alent parallel combination (Art. 27), the unknown current is split

into a component Eg through a pure conductance, and a compo-
nent jEb through a pure susceptance in parallel with the con-
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ductance. The latter component is provided with the prefix j,

because it lags by 90 degrees behind the voltage. Thus, the total

current

!=E(g-jb)....... (137)
The expression

Y = g-jb ........ (138)

is called the admittance operator. The symbol Y, like the symbol
Z above, is not provided with a dot because it is not a vector.

Combining the two preceding equations gives

I = YE........ (139)

Equations (136) and (139) represent generalized forms of Ohm's

law for alternating currents, corresponding to the simple expres-

sions (1) and (2) for direct current. Equation (139) is an abbre-

viated form of the relation

i+ji' =
(e + je')(g-jb)..... (140)

Multiplying out and equating the real and the imaginary parts

on both sides of this equation, we get

The relations between r, x and z on one hand, and g, b and y on

the other, are deduced in Art. 27; it being understood, of course,

that in the present treatment the two combinations are equivalent.

Equations (136) and (139) imply that

YZ =
1, ....... (142)

(r+jx)(g-jb) = 1.

Substituting into this last equation the values of g and 6 from

eqs. (121) and (122) and performing the multiplication, it will be

found that the equation is reduced to the identity 1 = 1, this

being a check on eq. (142).

With the abbreviated notation of complex quantities, using the

symbols^, /, Z and F, alternating-current problems are solved

almost as easily as direct-current problems. Either the impedance

operator or the admittance operator is used, depending upon the

relative connection of the parts of the circuit, whether parallel

or series. In many cases the abbreviated notation may be pre-

served until the solution has been obtained, the projections of

the vectors, e + je' and i + ji', and the expanded forms of the
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operators, r + jx and g
-

jb, only then being substituted in a

numerical form to get the final answer.

Prob. 1. Find, by means of complex quantities, the voltage required

in problem 5, Art. 21. Solution: Assume the vector of the current to

be the reference vector. At the power house cos <f>
= 7520/(66^X 147) =

0.775; sin</> = 0.632. The generator voltage is 66 X 0.775 +j 66 X
0.632 = 51.15 +.7 41.71 kilovolts. The voltage drop in the line is

147(45 +j 83) = 6615 +j 12,200 volts. Hence, the load voltage is

(51.15
- 6.61) + ./(41.71

- 12.2) = 44.54 +j 29.51 kilovolts. The nu-

merical value of the load voltage is (44.S4
2

+ 29 .51
2

)* = 53.43 kilo-

volts.

Prob. 2. Determine analytically the resistance r 2 required in problem

2, Art. 22.

Prob. 3. A voltage equal to 180 + j 75 produces a current of 7 +
j 1.5 amp. What is the impedance of the circuit?

Ans. 26.78 + j 4.97 ohms.

Prob. 4. Power is transmitted from a single-phase alternator to a

load consisting of a resistance of 1.17 ohms in series with a reactance of

0.67 ohm. The generator voltage is 2300, and the impedance of the

transmission line is 0.085 -f j 0.013 ohm. Determine (a) the line cur-

rent; (b) the voltage drop in the line; (c) the receiver voltage. Take
the generator voltage as the reference vector.

Ans. (a) 1413.6 -j 769.6 amp.; (b) 130.1 -j 47 volts; (c) 2169.9+
j 47 volts. Use the admittance operator to obtain the current, and the

impedance operator to calculate the line drop.
Prob. 5. A voltage, e + je', is impressed across the impedances

r\ + jxi and r 2 + jx z in parallel. Find the total current. Solution:

The total conductance is g = n/Zi2 + r 2 /2 2
2
,
and the total susceptance is

b = Ji/zi
2 + z 2/z 2

2
. Hence, the current i + ji'

=
(e + je') (g jb)

=
(eg + e'b) + j (e'g

-
cb).

Prob. 6. Extend the solution of the preceding problem to the case

in which more than two impedances are in parallel.

Ans. i + jV =
[e s(r/) + e'z(z/*)] + j [e'z(r/s)

- e S(z/z2
)].

Prob. 7. Two impedances, r\ + jx\ and r 2 + jx 2 ,
in parallel, are

connected in series with a third impedance r + jx. Show how to deter-

mine the total voltage, knowing the total current i + ji' ; or, how to find

the expression for the total current when the total voltage e + je' is

given.

Prob. 8. Show how to solve the preceding problem when both the
current and the voltage are given, but either the impedance n + jxi or
the impedance r + jx is unknown.
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THE USE OF COMPLEX QUANTITIES (Continued)

32. Power and Phase Displacement Expressed by Projec-

tions of Vectors. Let an alternator supply a current / = i -f- ji'

at a voltage E = e -f je', and let it be required to calculate the

power output of the generator. The expression for the average

power is P = El cos <, where < is the phase displacement between

E and /. The angle < is the difference between the angles de and

which the vectors E and / respectively form with the reference

axis. Hence, we have

P = El cos <f>
= El cos (0.

-
6i)

= E cos de I cos 0i + E sin de / sin 0.

Remembering that E cos de ,
Esin6e , etc., represent the projec-

tions of the given vectors on the axes of coordinates, we have

simply
P = ei + e'i' (143)

Another way of deducing expression (143) is to resolve the given

vectors of current and voltage into their components along the

axes of coordinates, and to consider the contribution of each pro-

jection to the total power. The projections e and i, being in

phase, give the power ei. Similarly, the projections e' and i' give

the power e'i'. The projection i' of the current gives zero average

power with the projection e of the voltage, the two being in phase

quadrature. For the same reason the average power resulting

from e' and i is equal to zero. Thus, ei + e'i' represents the

total average power.

To find the phase displacement, or the power-factor of the

output, we write

N tan 6e tan 0j
tan = tan (0,

- 00 = ^. ^- ,

1 + tan e tan 0<

.......
Knowing tan </>, its cosine is found from trigonometric tables. 1

1 Or else the power-factor, cos <f>
= cos (Oe Oi), can be found from the

relations Oe = tan- 1
e'/e, and ^ = tan- 1

i' /i.

91
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Power-factor can also be determined directly from the expres-

sion

cos = P/EI =
(ei + eY)/[(e

2 + e'
2
) (t

2 + i'
2
)]*, (145)

but the calculations are more involved than when formula (144)

is used.

The power calculated by means of formula (143) sometimes

comes out negative, if some of the projections of E and / are

negative. The interpretation is that the phase displacement
between the current and the voltage is over 90 degrees, so that

power is being supplied to the machine, instead of being delivered

by it. In other words, the machine acts as a motor and not as a

generator. Tan
<j>

in formula (144) may also be negative, which
means either that the current is leading, or that it is lagging by
an angle larger than 90 degrees. The question is decided by
reference to the sign of the power.

For the reactive power (Art. 19) we have

Pr
= EI sin = EI sin (0e

-
{ )
= E sin del cos t

- - E cos eel sin 0,,

or PT
= e'i - ei' (146)

The apparent power is

Pa = (# + i'rf (e
2 + e'

2
)* (147)

However, it is sometimes more convenient to determine the appar-
ent power from the relation

Pa = P/ cos 0, (148)

where P is calculated from eq. (143), and cos is found from

trigonometric tables, knowing tan from eq. (144).

Prob. 1. The terminal voltage of an alternator is 5370 +.7 735; the
line current is 173 - j 47 amp. Calculate the output of the machine and
the power-factor of the load. Ans. 894.5 kilowatts; 92 per cent.

Prob. 2. In the preceding problem, what must be the projection of the
current upon the 7-axis in order that the power shall become zero?

Ans. i'= -1264 amp.
Prob. 3. Let the line current in problem 1 be 58+jl2 amp.

Explain the negative sign of the power and the plus sign of tan <f>. Draw
the vectors of the current and voltage.

Prob. 4. A synchronous machine generates a voltage equal to 2300 -
j 50 volts, and supplies a current, through an impedance of 5 + j 50
ohms, to another synchronous machine generating a counter-e.m.f. of
2300 + j 50 volts. What is the power output of the first machine? Is
the current leading or lagging? Make clear to yourself the physical
meaning of the answer. Ans. 4.55 kw.; <t>

= 173 3' lagging.
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Prob. 6. A current of 350 j 75 amp. is maintained through an im-

pedance, the power output being 952 kw. at a power-factor of 86 per cent

lagging. Find the voltage across the impedance. Hint: Solve eqs. (143)

and (144) together for the unknown projections e and e'.

Ans. 2930 + j 987 volts.

Prob. 6. Solve problem 5 by calculating the value of the impedance,
and multiplying the impedanee by the current. Hint: power =

I-r;

x = r tan <f>.

Prob. 7. Solve problem 5, using the expression for the reactive power.
^/

33. Vectors and Operators in Polar Coordinates. Instead of

representing a vector by its orthogonal projections, as in eq. (128),

it is sometimes more convenient to express the same vector as a

complex quantity in terms of its magnitude and direction. Sub-

stituting the values of e and e' from eqs. (125) into eq. (128), we
obtain

# =#(cos0+./sin0) (149)

Similarly, a current in phase with this voltage is expressed as

7 = 7(cos0+.7'sin0), (150)

while a current lagging by an angle behind the voltage E is

represented by the equation

1=1 [cos (0
-

0) + j sin (0
-

0)]. . . . (151)

When the vectors of currents and voltages are expressed in the

trigonometric form shown above, it is convenient to use the

operators Z and Y in a similar form. Substituting the values of

r and x from eqs. (95) and (96) into eq. (135), we get

Z = z (cos + j sin 0) (152)

In a similar manner, using eqs. (116) in eq. (138), gives

Y = y(cos0 -jsintfO (153)

When calculating the voltage drop IZ or the current E/Z it

is necessary to find the product or the ratio of two complex

expressions of the form cos + j sin 0. By actually performing
the multiplication and separating the real from the imaginary
term we find that

(cos 0+ j sin 0) (cos 0+ j sin 0) = cos (0+0)+ j sin (0+0). (154)

This gives a simple rule for the multiplication of two or more

complex quantities in the trigonometric form. In order to deduce
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a similar rule for division, we observe that

cos<> jsm<f>
= cos ( 0) + jsm( <). . . (155)

This relation is easily verified by multiplying the numerator and

the denominator of the left-hand side of the equation by cos <j>

-

j sin <{>,
so as to get rid of the complex quantity in the denomi-

nator. Equation (155) leads to the following rule for the division

of complex quantities in trigonometric form :

(0-/)). (156)

Thus, for instance, if the current given by eq. (150) flows through

an impedance expressed by eq. (152), the required terminal volt-

age is

E = IZ = Iz [cos (0 + 0) + j sin (0 + </>)], . (157)

which result simply means that the voltage is equal to Iz and

leads the current by the angle 0.

The operator given by eq. (152) multiplies a vector by z and

turns it by the angle < in the positive direction. Hence, the

operator (cos <j> + j sin 0) simply turns a vector by the angle <,

without changing its length. Thus, if it be required to turn a

vector A = a + ja
r

by an angle a in the positive direction, the

projections of the new vector are found from the following expres-

sion:

(a + ja'} (cos a + j sin a) =
(a cos a a' sin a)

+ j (a' cos a + a sin a)..... (158)

Of course, the same result could be obtained by first calculating

the angle 6 which the vector A forms with the reference axis, from

the relation tan 6 = a'/a, and then determining the new projec-

tions A cos (6 + a) and A sin (6 + a).

Voltage Regulation of a Transmission Line.1 As an example of

the use of complex quantities in the trigonometric form, let us

consider the voltage regulation of a single-phase transmission

line. Let the resistance and reactance of the line, and the gen-
erator voltage EI, be given; and let it be required to determine

the receiver voltage E2 for a given current I and a given power-

1 The electrostatic capacity of the line is disregarded here; a complete
treatment of the regulation of a transmission line, taking into account the

capacity and leakage, is given in Arts. 68 and 69 at the end of the book.
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factor of the load cos 0'. In the symbolic notation we have

E^Ei + IZ, (159)

where the impedance Z of the line is known, and is expressed by

eq. (152). The phase angle refers to the line, the angle 0' to

the load.

When actually solving an equation such as (159), it is highly

important to select the reference axis in the most advantageous

way, so as to simplify the calculations as much as possible. In

the case under consideration, it is convenient to select the refer-

ence axis in the direction of E 2 ,
because then E 2 is determined

by its magnitude alone, the direction angle being equal to zero.

The generator voltage is expressed by EI (cos 6 + j sin 0), where

the magnitude of E\ is given, but the angle 6 is unknown. The

current lags by the angle 0' behind E 2 ,
and therefore is expressed

by the formula / (cos 0' j sin 00- Thus eq. (159) becomes

E! (cos 6 + j sin 0)
= E2 + Iz [cos (0

- 00 + j sin (0
-

0')]- (160)

Equating the real and the imaginary parts gives

# 1 COS0 = #2 + /ZCOS(0-00; - (161)

EI sin 6 = Iz sin (0
-

0') (162)

From eq. (162)

sin e = (Iz/EJ sin (0
-

0') (163)

Knowing 9, we find from eq. (161)

E2
= #1 cos 0- Iz cos (0-0'). . . . (164)

In practice, one is usually required to determine the voltage

regulation of the line. According to the definition adopted by
the American Institute of Electrical Engineers (Standardization

Rules, Art. 187),

per cent regulation = 100 (E2
- Ez)/E2,

. . (165)

where E2 is the value of E2 at no load. But here E2
= EI, be-

cause the electrostatic capacity of the line is neglected. It is pos-

sible to determine the difference EI E2 directly from eq. (161),

by substituting for cos the expression 1 2 sin2
0. We obtain

then
A# = EI - E2

= Iz eos (0 -0')+2 E! sin2 \ 6. (166)

Equation (165) becomes

pr cent regulation = 100 kEKEi - A#). . (167)
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When it is required to calculate the voltage regulation for several

loads, the computations are conveniently arranged in a table

of the following form:

In practice, the voltage regulation is usually required for a

certain load of P2 watts, so that, strictly speaking, the current /

is not known. But, since E2 is not much different from Ei, it

is an easy matter to estimate the current with sufficient accuracy.

Or else a curve of voltage regulation is plotted against the load

as abscissae, so that the regulation may be read off at any desired

load. It is possible to solve the problem exactly, by using for

/ its expression P2/(E2 cos <') in eqs. (161) and (162). In this

case the equations are squared and added, so as to eliminate 6.

This gives a biquadratic equation for Ez, from which the receiver

voltage can be computed.
This problem can also be solved when the complex quantities

are expressed in the orthogonal form, instead of the trigonometric
form here used. The student is urged to work out the details, in

order to become thoroughly familiar with complex quantities in

both forms.

Prob. 1. A vector 72 + j 53 must be turned by 25 degrees in the nega-
tive direction. What are its new projections? Ans. 87.65 + j 17.6.

Prob. 2. A single-phase aluminum line is to be built from a power
house, at which a voltage of 11,500 is maintained at a frequency of 50

cycles, to a point 25 km. distant. When a current of 60 amp. at 80 per
cent lagging power-factor is delivered at the receiver end, the power loss

in the line must not exceed 10 per cent of the useful power. What must
be the size of the conductor, and what will be the per cent voltage regula-
tion at this load? The spacing between the wires is to be 61 cm.

Ans. No. 0000 B. & S.; 11.4 per cent.
Prob. 3. Check the answer to the preceding problem graphically.
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Prob. 4. Explain the theory of Mershon's diagram found in various

electrical handbooks and pocketbooks, and check by means of it the

answer to problem 2.

Prob. 6. Show how to determine the voltage regulation of a trans-

mission line when the receiver voltage is given.
Prob. 6. Show how to calculate the receiver voltage E 2 from eq. (159),

using the orthogonal projections of the vectors and operators. Discuss

the relative advantages and disadvantages of the rectangular and polar
coordinates in this case.

34. Vectors and Operators Expressed as Exponential Func-

tions. 1

Expressions (149) to (153) are sometimes written in the

exponential form, using the identity

cos e + j sin 6 = e#, ..... (168)

where e is the base of natural logarithms. This important equa-
tion follows from the well-known expansions for sin 9, cos and

e
9

,
obtained by Maclaurin's Theorem in calculus; namely,

The last series, when j d is substituted for 9, becomes

Substituting these values into eq. (168), it is found to be an iden-

tity. Thus, we have

E = E (cos 6+j sin 9)
= E&..... (169)

Similarly, the impedance operator becomes

Z = z (cos </> + j sin 0) = ze 1

'*, .... (170)

and the admittance operator

Y = y (cos
-

j sin <) = y-*+. . . . (171)

If, for instance, a current is given as / = Ie}0 and if it flows through
an impedance Z =

Zf?*, the required voltage is found by multi-

plying these two expressions, or

E = IZ = IzeW+< ...... (172)

1 This article may be omitted if desired, without impairing the conti-

nuity of the treatment in the rest of the book.
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This shows that the absolute value of the voltage is Iz and that

it leads the current by the angle 0. Equation (172) corresponds

to eq. (157) in trigonometric notation. The projections of the

current vector are / cos and / sin 6; while the projections of

the voltage vector are Iz cos (6 + </>) and Iz sin (6 + </>). Thus,

it is always possible to change from the exponential form to the

trigonometric form, and finally to the orthogonal projections, or

vice versa. The exponential form is more concise, and possesses

marked advantages in the solution of some advanced problems

relating to alternating currents and oscillations. 1

However, for

the simple problems treated in this book, the plain algebraic nota-

tion a + ja' and the trigonometric notation A (cos a + j sin a)

are amply sufficient. It is deemed advisable to explain the expo-
nential notation here in order to enable the student to read books

and magazine articles in which it is employed.

1 See for instance J. J. Thomson, Recent Researches in Electricity and

Magnetism.



CHAPTER X

POLYPHASE SYSTEMS

35. Two-phase System. The student knows from his ele-

mentary work that the induction motor operates on the principle

of the revolving magnetic field, and that such a field is produced

by a combination of two or more alternating currents differing

in phase. An electric circuit upon which are impressed two or

more waves of e.m.f. having definite phase displacements is called

a polyphase system. A large majority of the alternating-current

circuits used in practice hi the generation and transmission of

electrical energy are polyphase systems; it is therefore essential

that the student become familiar with the current and voltage

relations in such circuits.

Theoretically, the simplest polyphase system is a four-wire

two-phase system (Fig. 30), although it is not the most econom-

FIG. 30. A four-wire two-phase system with two independent circuits.

ical one hi practice. The two generator windings are independ-

ent, and are relatively displaced by ninety electrical degrees.

The two alternating voltages induced in these windings are there-

fore displaced in time phase by a quarter of a cycle. Each phase

may be used separately, for instance for lighting, or both phases

may be combined in the windings of a synchronous or induction

motor, for the production of a revolving magnetic field. Each

phase can be treated separately, as if it belonged to an independ-
ent single-phase system.
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Some economy in line conductors and insulators is achieved by

combining two conductors belonging to different phases into one

return conductor (Fig. 31). Such a system is called a three-wire

o Generator

Fid. 31. A three-wire two-phase system.

two-phase system. The current and voltage relations for a balanced

load and a lagging current are shown in Fig. 32. The vectors EI
and EZ represent the voltages

induced in the two generator
or transformer windings from

the point to the points A
and B respectively; in other

words, they are the voltages

between each phase wire and

the return wire. The vector

Eiz* is the geometric difference

of the two, and represents the

voltage between the two phase
wires. That "12 is the differ-

ence and not the sum of EI
Fiu. 32. A vector diagram of currents in- > \ ,\

and voltages for the two-phase system
and E* 1S PrOVed ^ the

shown in Fig. 31. following reasoning: Let the

wire OGG'O' be permanently

grounded, so that its potential is zero. Let the potential of the

wire A A' at a certain instant be for example 100 volts above
the ground, and that of the wire BB' 60 volts above the ground.
Then the difference of potential, or the voltage between AA' and

BB', is 40 volts. The same reasoning applies to every instant,

so that the vector of the voltage between AA' and BB' is the

geometric difference between EI and E*, which are the vectors

of the voltages between the points A and 0, and B and re-

* Pronounced E one two, and not E sub twelve.
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spectively. That is, the voltage between A and B is represented

in phase and magnitude by the vector connecting the ends of the

vectors EI and Ez . Numerically,

EIZ
= E 1 V2 = E2V2 (173)

The currents in the conductors AA' and BE' are represented

by the vectors l\ and 72 , lagging by an angle </>
with respect to the

corresponding voltages. The current in the return conductor is

the geometric sum of the two phase currents, and is represented

by the diagonal vector /i 2 . It will thus be seen that the common
return current is A/2 times as large as each component current,

or

In = Ii V2 = 72V2 (174)

If it is desired to have the same current density hi each of the

three conductors, the cross-section of the return wire must be

V2 times that of each of the other two wires.

The two phases hi Fig. 30 are sometimes electrically inter-

connected at their middle points, as shown in Fig. 33 at the left.

FIG. 33. A star-connected quarter-phase system to the left, a mesh-connected

system to the right.

This is done in order to fix the difference of potential between the

two phases. If the voltage between A and B is E, then the volt-

age between the common point and each wire is \ E, and the

voltage between the two phases is equal to \ E V2 = E/V2. For

example, the voltage Eda between D and A equals Ea Ed . These

relations are shown vectorially in Fig. 34. This circuit is some-

times called the star-connected quarter-phase system.
The four windings of a generator or motor are sometimes con-

nected in mesh, as indicated in Fig. 33 to the right. With the
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star connection, the star voltages OA, OB, etc., are induced

directly, while the mesh voltages AD, DB, etc., are established by
the combination of the star voltages. With the mesh connection

of the windings, however, the mesh or line voltages are induced

directly. The mesh and star voltages are shown in Fig. 34.

Electrically the two arrangements are equivalent, provided that

the proper numbers of turns are used in the windings.
The line and mesh currents are indicated in Fig. 34. The line

currents and those in the star-connected windings are represented

FIG. 34. A vector diagram of currents and voltages in the quarter-phase
system shown in Fig. 33.

by the sides of the square, each current lagging by the angle
with respect to the corresponding star voltage; the angle of lag
depends upon the character of the load. In Figs. 33 and 34 the

voltages are taken in the cyclic order AC, CB, BD, DA; hence, it

is natural to take the positive direction of the current in the same
way. With the arrows in Fig. 33 showing the positive directions
of the currents, each line current is the difference between two
adjacent mesh currents. Hence, in the vector diagram the mesh



CHAP. X] POLYPHASE SYSTEMS 103

currents are represented by the radii from the center to the vertices

of the -current square. It will be seen that the angle between the

mesh currents and the mesh voltages is also equal to <f>. While

the mesh voltages are V2 times as large as the star voltages, the

mesh currents are 1/V2 times the star currents. This condition

is necessary in order to have the same power per phase in the

mesh and star-connected systems.

36. Three-phase Y-connected System. This system is

shown in Fig. 35; the current and voltage relations are repre-

Fio. 35. A three-phase Y- or star-connected system.

sented in Fig. 36. OA, OB, and OC represent three generator

windings; O'A', O'B', and O'C' are the windings of a receiving

apparatus for instance, an in-

duction motor. The three gener-

ator windings are placed on the

armature core at angles of 120

electrical degrees with respect to

each other, so that the alternating

voltages induced in these windings

are displaced in phase by one-

third of a cycle, the positive di-

rection in the windings being

outward. They are represented
r, 3 r, Fio. 36. The line and star voltages,

by the vectors Ea ,
Eb ,

and Ec in
and the ljne currentg in the y.

connected systemshown in Fig . 35 .Fig. 36. The motor windings are

similarly displaced, so that the

whole system is symmetrical with respect to the three phases.

The currents lag behind the voltages by an angle <f> depending

upon the relative amounts of resistance, reactance, and counter-

e.m.f. in the circuit.
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The diagram of connections shown in Fig. 35 is also called the

star connection, and the points and 0' are called the neutral

points of the system. The voltages between the line conductors

and the neutral points are called the star or phase voltages, as

distinguished from the line voltages, or voltages between any

two line conductors. A line voltage, for instance between the

points A and B, is equal to the geometric difference between the

voltages OA and OB, as has been shown above in the case of a

two-phase line. Consequently, the line voltages are represented

in Fig. 36 by the three vectors E^, Ebc ,
and Eca ,

which connect

the ends of the vectors of the phase voltages. It will be seen that

the line voltages are V3 times as large as the phase voltages.

When the three phases are perfectly balanced and the currents

are nearly sinusoidal, the two neutral points and 0' may be

connected by a wire, as shown by the dotted line, or grounded,

and very little current will flow through this connection. The

reason is that the algebraic sum of the three currents flowing

towards or from the neutral points is equal to zero at all instants,

because
sin u + sin (u -f- f TT) + sin (u f TT) =0. (175)

This identity is easily proved by expanding the left-hand member,

using the expression for the sine of the sum of two angles. It

will also be seen from Fig. 36 that the geometric sum of the three

current vectors is equal to zero, because these vectors when added

form a closed triangle. In practice, there are transmission lines

on which one or both neutrals are grounded, although in some

installations both neutrals are insulated from the ground. To

prevent large currents with unbalanced loads or during short-

circuits, the neutrals are often grounded through protective

resistances. The question of grounded vs. ungrounded neutrals is

still in a somewhat controversial stage.

The power developed in the generator windings and available

at the generator terminals is 3 lyEy cos 0, where Ey is the phase

voltage. Since the line voltage E = EY V3, we have

P = 3 /Y#Y COS = 7Y#A V3 COS <f>.
. . (176)

In practical calculations of three-phase transmission lines and
electrical machinery, only one phase is considered; that is, the

three-phase circuit is reduced to an equivalent single-phase cir-

cuit. Let it be required, for example, to calculate the cross-sec-
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tion and per cent voltage regulation of a three-phase 66,000-volt

line, to transmit 50,000 kw. at 80 per cent power-factor, and at

a loss of 10 per cent of the useful power; the spacing to be 1.8 m.

First of all we find that the voltage between each wire and the

neutral is 66,000/V3 = 38,100 volts, and that the power per

phase is 50,000/3 = 16,700 kw. Hence, the problem is reduced

to the following one: Determine the cross-section and per cent

voltage regulation of a single-phase 38,100-volt line, having a

spacing of 1.8 m., the i
2r loss in one conductor being 1670 kw.,

and the resistance of the return conductor being negligible. The
solution of this problem is given in Art. 33 above. A drop of say
5 per cent in the phase or star voltage means also a drop of

5 per cent in the line voltage, because of the fixed ratio 1/V3
between the two.

Prob. 1. Assuming the reference axis in Fig. 36 to be horizontal, the

line voltage equal to 44 kv., the current per phase 73 amp., and the angle <f>

equal to 15 degrees, write down the complex expressions for all the cur-

rents and voltages.

Ans. Eb = 22 - j 12.7 kv.
; E* = 22 - j 38. 1 kv.

;
/ = 18.9 + j 70.5

amp.
Prob. 2. A three-phase 60-cycle line is 16 km. long; the spacing be-

tween the wires is symmetrical and is equal to 61 cm., the conductors con-

sisting of copper wire of 14 mm. diameter. It is required to maintain

a voltage of 6700 between the conductors at the receiver end of the line.

What is the generator voltage when the load is equal to 1000 kw. at unity

power-factor? Ans. 7040.

Prob. 3. Show that a three-phase transmission line may be treated

as a single-phase line which transmits one-half the power at the same

voltage. The three-phase line requires three conductors of the same size

as the single-phase line, with the same spacing (25 per cent saving in

material) .

Prob. 4. When the phase currents have higher harmonics, show that

equalization currents must flow through the neutral connection, even

though the phases are perfectly balanced. What happens when the

neutrals are insulated from each other?

Prob. 5. Show that the line voltage cannot have the third, the ninth,
the fifteenth, etc., harmonics, even if these harmonics are present in the

phase voltages.

37. Three-phase Delta-connected System. This method of

three-phase connection is shown in Fig. 37, one end of the line

being connected, for instance, to an alternator, the other end to a

motor or to three transformers. Fig. 38 represents the current
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and voltage relations. The currents in the windings are differ-

ent from those in the line. With the positive directions of the

FIG. 37. A three-phase delta- or mesh-connected system.

currents indicated in Fig. 37, each line current is equal to the

difference between the two adjacent currents in the
"
delta,"

Fia. 38. The voltages and currents in the delta-connected system
shown in Fig. 37.

Hence, in the vector diagram the line or
"
star

"
currents are

represented by a triangle, and the delta currents by the rays from

the center to the vertices of the triangle. It will be seen that the

delta currents are equal to 1/V3 of the line .currents, and are

displaced in phase by 30 degrees with respect to them. This also

follows from the identity

/ sin u - I sin (u + 120) = \/3 / sin (u
- 30). . (177)
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While there are no neutral points with a delta system, one or more

of them may be artificially created by connecting three resistances

or reactances in star as shown in Fig. 37 by dotted lines. The
.Y-voltages between this neutral and the line conductors are

shown in Fig. 38 by the vectors Ea , -E& and Ec . The delta volt-

ages are \/3 times as large as the star voltages, while the star or

line currents bear the same ratio to the delta currents. This is

necessary in view of the power relation

P = 3 #A/A COS </>
= 3 #Y/Y COS <. . . . (178)

In design and performance calculations one phase only is

considered, the three phases being identical when the load is

balanced. As far as the line is concerned, the delta-connected

generator and load may be replaced by equivalent star-connected

windings to give the same line currents and voltages. Then the

line is designed and its performance calculated the same as in the

preceding article. As a matter of fact, for line calculations it is

only necessary to know the power, the voltage, and the power-
factor of the load. The fact that the generator or the load is

delta- or Y-connected has no bearing upon the line performance
with a balanced load.

Prob. 1. A 2000-kw. 6600-volt induction motor is fed from a 66,000-
volt three-phase line through three step-down transformers, the high-
tension windings of which are connected in Y, the low-tension windings
in delta. What are the currents in these windings when the motor is

carrying a 25 per cent overload? It is estimated that at this overload

the power-factor is 90 per cent and the efficiency 92 per cent. The mag-
netizing current of the transformers is negligible.

Ans. 26.4 and 153 amp.
Prob. 2. Show that, while the instantaneous electrical output of a

single-phase alternator varies at double the frequency of the current,
the output of a polyphase machine is practically constant as long as the

load remains constant. Show that the same is true for motors.

Note: For the electrical relations in two- and three-phase systems
with unbalanced loads, and also for the theory of the V and T connections,
see the author's Experimental Electrical Engineering, Vol. 2, Chapter 25.

A more exhaustive treatment will also be found in his investigation
entitled Ueber mehrphasige Stromsysteme bei ungleichmdssiger Belastung

(published by Enke, 1900). See also the chapters on polyphase systems
in Dr. Steinmetz's Alternating-current Phenomena.



CHAPTER XI

VOLTAGE REGULATION OF THE TRANSFORMER

38. Imperfections in a Transformer Replaced by Equivalent

Resistances and Reactances. The reader is familiar in general

with the construction and operation of the constant-potential

transformer (Fig. 39). It consists of an iron core upon which

two windings are placed as closely as possible to each other.

When one winding is connected to a constant-potential alternat-

ing-current source of power, an alternating magnetic flux is excited

in the iron core and an alternating voltage is induced in the other

winding. If this latter winding is connected to an electrical load,

an alternating current flows through it, and causes a correspond-

ing flow of current through the first winding, in order that power

may be transmitted from the primary into the secondary circuit.

The constant-potential transformer is one of the most perfect

pieces of electrical apparatus, in that its efficiency (in medium and

large sizes) is nearly one hundred per cent, and its voltage regula-

tion with varying load is quite close. On the other hand, the

requirements for voltage regulation are quite exacting, there being
no provision in the apparatus itself for adjusting the voltage, like

the field rheostat in a generator. Therefore, the pre-determina-
tion of the voltage regulation of a transformer is of considerable

.practical importance.

Numerically, the 'regulation of a transformer is expressed in

a manner similar to that given in Art. 33 above for the trans-

mission line. Let, for example, the rated secondary voltage of a

ten-to-one transformer be 220 volts, and let us suppose that a

primary e.m.f. of 2280 volts is necessary in order to have the

rated secondary voltage at the rated load. Let now the second-

ary circuit be opened ;
the secondary voltage will rise to prac-

tically 228 volts, provided that the primary voltage is kept con-

stant. Then, by definition, the regulation of the transformer at

this load is 100 (228
-

220)/220 = 3.64 per cent. Let, in general,
108
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the secondary terminal voltage at a certain load be E2 ,
that at no

load EM Then, by definition,

per cent regulation = 100 (#02
- Ed/E* . . (179)

The difference between the no-load voltage and that at full load

is due to slight imperfections in the transformer itself. There-

fore, in order to be able to calculate the voltage regulation at a

given load, it is necessary to learn the nature of these imperfec-

tions; for purposes of computation, it is convenient to replace

these imperfections by certain resistances and reactances, as shown
in Fig. 39.

In an ideal transformer the ratio of the primary to the second-

ary voltage is equal to the ratio of the numbers of turns in the

corresponding windings. The same relation is very nearly true in

any good transformer at no load. This follows from the fact that

the two windings are linked with the same magnetic flux, and

hence the voltage induced per turn is the same in both. Hence,

denoting the primary and secondary induced voltages by En and

Eiz, and the corresponding numbers of turns in series by n\ and HZ,

we have
Eil/Ei ^

= n l/nz....... (180)

Furthermore, in an ideal transformer

7ini = /2n2,
. ...... (181)

that is, the currents are inversely as the numbers of turns, or the

primary ampere-turns are equal and opposite to the secondary

ampere-turns. This is because an ideal transformer is supposed
to have no reluctance in its magnetic circuit, so that no ampere-
turns are required to maintain a magnetic flux in it. Consequently,

any secondary current required by the load automatically draws

a compensating primary current from the source of power, of such

value that eq. (181) is satisfied. In a real transformer the primary

ampere-turns are slightly different from the secondary ampere-

turns, and the difference between the two is just sufficient to main-

tain the alternating flux through the reluctance of the core, and to

supply the core loss. Multiplying eqs. (180) and (181) term by
term, and canceling n\ and n2 ,

we find that

This simply means that an ideal transformer transmits power
from the primary into the secondary circuit without loss.
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(a) The Ohmic Drop. One of the causes of the internal volt-

age drop in a transformer is the ohmic resistance of its windings.

Because of the resistance of the primary winding, the primary

terminal voltage E l (Fig. 39) is slightly larger than the induced

I,

Iron Cure Windings

FIG. 39. Imperfect ions in a transformer represented by resistances and

reactances.

counter-e.m.f. EH which balances it. The secondary resistance

causes a voltage drop, so that the secondary terminal voltage E2

is smaller than the secondary induced e.m.f. Ei2 . Thus, the

effect of the internal resistances upon the terminal voltages is

such as to make the ratio E*/Ei smaller than the ratio n 2/ni.

The windings themselves may be thought of as devoid of resist-

ance, but corresponding resistances r\ and r2 may be placed out-

side the transformer, as shown in Fig. 39. 1

(b) The Reactive Drop. Another imperfection or cause of

internal voltage drop is the so-called leakage reactance of the

windings. The total magnetic flux in a loaded transformer may
be considered as consisting of three components; viz., the useful

flux linking with both the primary and the secondary windings,
the primary leakage flux linking with the primary winding only,

and the secondary leakage flux linked with the secondary winding
only. In an ideal transformer the two last-named fluxes are

absent because the two windings are supposed to be perfectly

interwoven, so as to leave no room for the leakage flux. The

primary leakage flux, being produced by the primary current, is

in phase with it, and induces an e.m.f. in lagging quadrature with

1 The equivalent resistances TI and r 2 must replace not only the true

ohmic resistances of the windings, but should also account for the eddy-
currcnt loss in the conductors. In low-tension windings made of heavy
conductors, this latter loss may be at least as great as the theoretical iV loss.

In new transformers the eddy-current loss can only be estimated; in actu-

ally built transformers it is calculated from the wattmeter reading on short
circuit.
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this current. This e.m.f. must be balanced by part of the applied

primary voltage, so that either this voltage or the induced e.m.f.

EH must be different from that in an ideal transformer. The
effect of the secondary leakage reactance is similar, in that it

absorbs part of the secondary induced voltage Ei2 ,
and makes

the secondary terminal voltage Ez different from that in an

ideal transformer. It is shown below that, with a load of lag-

ging power-factor, the reactive drop in both windings lowers the

secondary terminal voltage. With a leading secondary current,

the reactive drop is hi such a phase position as to raise the sec-

ondary voltage. For purposes of computation, the transformer

windings are assumed to produce no magnetic leakage fluxes, but

imaginary reactance coils are connected in series with the wind-

ings (Fig. 39). The reactances x\ and Xz of these coils are such as

to cause the same reactive voltage drop as that due to the actual

leakage fluxes in the transformer.1

(c) The Exciting Admittance. Having thus made the windings
of the transformer perfect by placing their impedances outside,

we still have the problem of making the magnetic circuit ideal

also. As stated before, the primary and secondary ampere-turns
are not quite equal, because of a certain number of ampere-turns

necessary to magnetize the iron. This means that a current

must flow through the primary winding even when the secondary
circuit is open. This current is called the no-load or magnetizing
current of the transformer. Its amount depends upon the reluct-

ance of the magnetic circuit and upon the core loss (hysteresis

and eddy currents). For purposes of computation the iron core

may be assumed to be of zero reluctance, and to have no core

loss; but we may imagine a fictitious or equivalent susceptance
6 and a conductance g (Fig. 39) connected across the primary

winding to draw a current equal hi phase and magnitude to the

exciting current of the transformer. Both go and 6 are shown
connected across the induced voltage EH, because both the mag-
netizing current and the core loss depend upon the value of the

flux and consequently upon the value of En, which is proportional
to the flux. Let the calculated or measured core loss be equal to

Po watts; then g is determined from the equation

P = En*go (182)

1 For further details in regard to the leakage reactance of transformers,
see the author's Magnetic Circuit, Art. 64.
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The pure magnetizing current, without the core-loss component,

is in phase with the flux which it produces, and therefore is in

quadrature with the induced voltage En. For this reason, it is

represented as flowing through a pure susceptance. Knowing
the pure magnetizing current IQ ',

the susceptance b is determined

from the equation
l

bo = I 7En (183)

Neither the core-loss component nor the pure magnetizing current

are proportional to the flux or to the voltage EH, so that strictly

speaking both b and g are functions of the counter-e.m.f. EH.

However, in practice, EH varies so little with the load that it is

admissible to assume g and &o to be constant quantities. More-

over, the influence of the magnetizing current upon the voltage

regulation is negligible in most cases. The magnetizing current

is mentioned here only for the sake of completeness, so as to make
the transformer core absolutely perfect. We shall see in the next

chapter that 6 and g are of considerable importance in the per-

formance of the induction motor.

Thus, by the foregoing reasoning, both the core and the wind-

ings of the transformer are made ideal, and all the imperfections
are replaced by external resistances and reactances. Having done

this, the performance of a transformer can be readily treated either

graphically or analytically, as explained below.

Prob. 1. Draw a diagram similar to Fig. 39 for a transformer with
several secondary windings supplying independent load circuits.

Prob. 2. Draw a diagram similar to Fig. 39 for an auto-transformer.

39. The Vector Diagram of a Transformer. Having re-

duced the transformer to an equivalent electric circuit (with a

perfect magnetic link), the current and voltage relations at a

certain load may be represented by a vector diagram (Fig. 40).
In order to make the relations clearer, the voltage drop and the

losses are greatly exaggerated. For this reason, the graphical
treatment is more suitable for purposes of explanation than for

numerical computations. For actual calculations the analytical
method given in the next article is preferable.

The calculation of the core loss and of the magnetizing current belongs
properly to the theory of magnetic phenomena, and is treated in detail in the
author's Magnetic Circuit, Arts. 19, 33, and 34. Here the values of P and
/o' are supposed to be known.
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Let the secondary terminal voltage and the load be given, so

that the vectors E2 and 72 can be drawn in magnitude and rela-

tive phase position. The secondary induced e.m.f. Ei2 is found

FIG. 40. The vector diagram of a transformer.

by adding to E2 the ohmic drop 72r2 in phase with 72 ,
and the

reactive drop I 2Xz in leading quadrature with 72 .

The primary induced voltage En is in phase with Eiz ,
because

both are induced by the same magnetic flux. The magnitudes
of the two voltages are as the respective numbers of turns; see
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eq. (180). The vector marked En in Fig. 40 is in reality equal and

opjx>site to En, and represents the part of the primary terminal

voltage that balances EH. Without the primary drop, the total

applied primary voltage would be equal to En. But, on account

of the primary drop in the transformer, the applied voltage Ei is

obtained by adding to En the resistance drop /ir x in phase with

the primary current /i and the reactive drop IiXi in leading

quadrature with I\.

In order to be able to construct the vectors /in and IiXi it

is necessary to know the vector of the primary current /i in

magnitude and phase position. In an ideal transformer, the

primary current is in exact phase opposition to the secondary

current, and the ratio of the two currents is inversely as the ratio

of the respective numbers of turns; see eq. (181). In the actual

transformer, the primary current, in addition to this component
72 (nz/ni)

" transmitted into the secondary," has a magnetizing

component 7
,
which serves to maintain the alternating flux in

the core, and which is not transmitted into the secondary circuit.

The total primary current is the geometric sum of the two com-

ponents, and can be constructed if the magnetizing current 7 is

known.

The magnetizing current itself consists of two components, as

explained in the preceding article, under (c). One component,

/</, is in phase with the useful magnetic flux 0, and would be the

only magnetizing component if the iron had no hysteresis and no

eddy currents. This component is in quadrature with the induced

voltage En, and is, with respect to it, the reactive component of

the magnetizing current. The other component, /</', in phase
with En, represents a loss of power, and is therefore called the

energy or loss component of the magnetizing current. Knowing
/o' and /o", the vector 7 is easily obtained.

The vector of flux, 0, is drawn in leading quadrature with the

induced e.m.f. #,- 2 ,
in accordance with Faraday's law of induction.

If the flux varies according to the law

(184)

the induced e.m.f. varies according to the law

e< 2
= - n2 dd> t/dt =-2^mrh. cos 2 irft, . . (185)

the second sine-wave lagging by 90 degrees behind the first.
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It is assumed in the construction of Fig. 40 that the primary and

secondary inductive drops can be calculated separately. Such is,

however, not the case with our present state of knowledge; both

theory and experiment enable us to determine only the total re-

active drop, including primary and secondary. Therefore, when

it is desired to use the vector diagram for actual computations, it

is customary to ascribe one half of the Ix drop to the primary and

the other half to the secondary circuit.

Usually, the magnetizing component of the primary current

can be neglected; then it does not make any difference how the

inductive drop is distributed. It will be shown in the next article

that in such case the voltage regulation depends only upon the

total impedance drop, either calculated or determined from a

short-circuit test. When the internal voltage drop is given in

per cent, it is understood to refer to the no-load voltage of each

particular circuit. For instance, if the reactive voltage drop in

a 20/1-kv. transformer is said to be 5 per cent, this means that

the secondary drop is 2.5 per cent of 1000 volts, or is equal to 25

volts, and that the primary drop is 2.5 per cent of 20,000 volts, or

is equal to 500 volts.

Prob. 1. What is the regulation of a 600-kw., 2200/220-volt, 25-cycle
transformer at the rated current and at 80 per cent power-factor (lag-

ging)? The total reactive drop is 10 per cent, the primary ohmic drop
is 2.2 per cent, and the secondary ohmic drop 2.8 per cent. The mag-
netizing current may be neglected.

1 Ans. 10.1 per cent.

Prob. 2. Determine the per cent voltage regulation of the trans-

former specified in the preceding problem at the rated load and at 80 per
cent power-factor, leading.

Ans. 1.4 per cent. The negative sign indicates a rise in secondary

voltage, instead of a drop.
Prob. 3. Correct the vector diagram of problem 1 for the magnetiz-

ing current, knowing that the core loss amounts to 20 kw., and that 8500
effective ampere-turns are necessary to maintain the flux, without the iron

loss. The number of turns in the secondary winding is 64.

Prob. 4. Adapt the diagram shown in Fig. 40 to an auto-transformer.

40. Analytical Determination of Voltage Regulation. Ap-
proximate Solution. As explained above, it is preferable to

calculate the voltage regulation of a transformer analytically,

1 An excessive internal drop is selected purposely to enable the student

to construct an accurate vector diagram to a convenient scale. The losses

and the magnetizing current in problem 3 also are too high for a standard

transformer.
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because the vectors of voltage drop are very small as compared

with those of the primary and secondary voltages. The relations

shown in Figs. 39 and 40 are expressed analytically by the

equations
E t =En-!&, (186)

E^Eu+ItZi (187)

Since our purpose is to find the relation between E t and E%, it

is necessary to eliminate from these equations EH and E i2 . The

relation between EH and Eiz is given by eq. (180); therefore, we

multiply eq. (186) by wi/na and subtract it from eq. (187). The

result is

E l
-

(ni/n2)# 2
= IiZj. + (wi/n2)/ 2Z2. . . (188)

The correct relation between /i and 7 2 is (Fig. 39)

1 1
= 1 2 (n 2/ni) + I = IL+IO, . . . (189)

where
/L = /t(ni/nO (190)

is the primary load current, or that part of the primary current

which is transmitted into the secondary circuit. In a great

majority of practical cases the magnetizing current is only a few

per cent of the total primary current at the rated load. The

voltage drop in the primary winding is also but a few per cent of

the line voltage EI. For these reasons, it is permissible in Fig. 39

to transfer the exciting admittance Y from the place MN to the

primary terminals AB. The voltage drop in the transformer is

then caused only by the load current, so that for the purpose of

calculating regulation we may use the approximate relation

/, = /L=/(n,/n 1) (191)

Substituting for /i and 7 2 their values from eq. (191) in terms of

I L, we finally obtain

^i-^L=/L[Zi + (ni/n0^d (192)

In this equation, the quantity

EL = (ni/n 2)#2 (193)

is called the primary load voltage, or the secondary terminal volt-

age reduced to the primary circuit. The expression (ni/n2)
2Z2 is

called the secondary impedance reduced to, or transferred into,

the primary circuit. The quantity

Z = Z l + (n!/n 2)
2Z8 (194)
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is called the total or equivalent impedance of the transformer

reduced to the primary circuit.

Using in eq. (192) the abbreviated notation introduced in

eq. (194), we get
E 1 -EL =I LZ (195)

Equation (195) corresponds to the simplified equivalent diagram
of the transformer shown in Fig. 41. This diagram differs from

Fig. 39 in two respects: (1) The magnetic link is omitted, the

primary circuit being connected directly to the modified second-

ary circuit; (2) the exciting admittance is connected across the

primary terminal voltage instead of across the induced voltage.

The latter change makes the equivalent diagram only approxi-

mately correct, but simplifies computations greatly.

Equation (195) is identical in form with eq. (159), Art. 33,

for the voltage drop in a transmission line; both are solved," and

the per cent voltage drop determined, in the same way. In fact,

without the exciting admittance Y ,
the equivalent diagram shown

in Fig. 41 reduces the performance of a transformer to that of a

transmission line.

Expression (194) for the equivalent impedance shows that

resistances and reactances can be transferred from the secondary

B N D

FIG. 41. The approximately equivalent diagram of a transformer or an

induction motor.

circuit into the primary, and vice versa, by multiplying them by
the square of the ratio of the numbers of turns. For instance, in

a 10,000/1000-volt transformer, a 1-ohm resistance in the low-

tension circuit causes the same per cent voltage drop as a 100-

ohm resistance in the high-tension circuit. This is easily verified

as follows: Let the current in the low-tension circuit be 20 amp.;

then in the high-tension circuit the current will be 2 amp. The

drop in the 1-ohm resistance is 20 volts, or 2 per cent of the

secondary voltage. The drop in the 100-ohm resistance is 200

volts, which is 2 per cent of the primary voltage. In other words,

the same reduction in the load voltage will be produced by using
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cither a resistance of one ohm in the secondary circuit or 100 ohms

in the primary circuit.

The secondary resistance r2 transferred into the primary cir-

cuit is denoted in Fig. 41 by r2 ', where

r,' = r, (m/nO
1....... (196)

Correspondingly
a^aiCni/n,) 2....... (196a)

The equivalent impedance Z consists of the quadrature sum

of the equivalent resistance

.... (197)

and the equivalent reactance

x = x, + xz' = X! + (ni/n 2)
2
:r2 .... (197a)

The equivalent resistance is easily calculated, knowing the re-

sistances of the two windings and the voltage ratio of the trans-

former. Or else it is calculated directly from the i
2r loss measured

by a wattmeter in a short circuit test. The equivalent reactance

is calculated from the terminal voltage in the short-circuit test,

making a proper allowance for the known resistance drop. To

illustrate, when the secondary circuit is short-circuited, eq. (195)

becomes
E l

= I LZ........ (198)

Ei and IL are measured directly, so that Z can be calculated.

Knowing the equivalent resistance r = P/Ii?, the reactance is

calculated from the expression x = Vz2 r2 . For a new trans-

former, the total equivalent leakage inductance is estimated with

sufficient accuracy by means of various semi-empirical formulae;
l

or else the total impedance drop ILZ is taken as a certain per-

centage of the rated voltage, from previous experience with similar

transformers.

Prob. 1. Check analytically the answers to problems 1 and 2 in the

preceding article.

Prob. 2. The high-tension winding of a 2000-kva., 33/1 1-kv. trans-

former was short-circuited, and the voltage on the low-tension side ad-

justed so as to circulate the rated current through the windings. The
instrument readings were 470 volts and 30 kw. Calculate the per cent
ohmic and reactive drops in the transformer. Ans. 1.5 and 4 per cent.

Prob. 3. Deduce a formula similar to (192), but referring to the

secondary circuit.

1 See for instance the author's Magnetic Circuit, Art. 64.
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Prob. 4. Show how the voltage regulation of a transformer can be

estimated, using Mershon's diagram given in various electrical handbooks
and pocketbooks.

Prob. 5. The primary voltage of a given transformer is kept constant

at a known value. Determine the percentage internal drop (Ei EL)/ Ei
for a given impedance of the load. 1 Solution: Let the load impedance,
reduced to the primary circuit, be ZL', then the load current is

IL = Ei/(ZL + Z),

where Z is the equivalent impedance of the transformer itself, supposed
to be known. The load voltage is

EL = E,- ZIL = EiZL/(ZL + Z) = #!/[! + (Z/ZL)].

Having expressed all the known and unknown quantities in the complex
form, in either Cartesian or polar coordinates, the magnitude and direc-

tion of EL can be determined, by using the general method, i.e., equating
the real and the imaginary parts on both sides of the equation.

Prob. 6. The equation for EL given in the preceding problem leads

to involved numerical computations. Moreover, the difference EI EL
cannot be accurately determined in this way when EL differs but little

from #1. Show how to simplify the numerical work, by taking advan-

tage of the fact that Z is small compared with ZL- Solution : When a

quantity a is small compared to unity, we have by division 1/(1 + a) =
1 a + a2 etc. We have accordingly

EL = E 1 [l- (Z/ZL)] approximately,
or

EL = Ei - E^/ZL..... . ..... (A)

Let EL be the vector of reference; consequently EI = EI (cos 9 + j sin 0).

Let also ZL = ZL (cos $L + j sin <L) and Z = z (cos <t> + j sin <). Then

according to eqs. (154) and (156),

E.Z/ZL = E.Z/ZL [cos (e + 4>
-

to) + j sin (e + <t>
-

to)],

or, denoting EiZ/Zi by A^i and <t> <f>L by 0, we have

A#j = A#! [cos (e + 0) + j sin (e + 0)].

Equation (A) may now be written in the form

Ei (cos e + j sin e}
= EL + A#i [cos (0 + 0) + j sin (e + ft)],

where

is a known quantity, as well as the angle /3
= # $L. Separating the

real and the imaginary parts, we get

E1 coso = EL + &EiCos(e + p), ......... (B)

Ei sin e = &Ei sin (0 + 0) = &Ei sin cos + A#i cos 6 sin 0. (C)

1 The conditions in this problem differ from those in the text above in

two respects: (1) The primary voltage is given instead of the secondary;

(2) the load is given by its impedance instead of the current and power-
factor.
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From eq. (C), dividing both sides by cos 6, we find

tan = AEi sin P/(Ei
- A#i cos 0), . . . . (D)

from which can be calculated. Using in eq. (B) the transformation

cos e = 1 2 sin2 e, the same as in Art. 33, we get, after division by Ei,

(Ei
- EL ) /EL = ( A#,/#,) cos (e + 0) + 2 sin2 J 0. . . (E)

While the derivation of formulae (D) and (E) may seem somewhat tedi-

ous, the results are in the form most convenient for numerical work.

41. Analytical Determination of Voltage Regulation. Exact

Solution. 1 The approximation made in the preceding article

consists in shifting the exciting admittance Y so that it is con-

nected across the primary terminal voltage EI, instead of across

the primary induced voltage EH (compare Figs. 39 and 41).

Retaining the exciting admittance in its correct place, we obtain

the equivalent diagram shown in Fig. 42. The secondary im-

B N

FIG. 42. The correct equivalent diagram of a transformer or an
induction motor.

pedance is reduced to the primary circuit as before, by being

multiplied by the square of the ratio of turns (ni/n2)
2

. This pro-
cedure is strictly correct, the magnetic link being by assumption
perfect.

Equations (186) and (187) hold here as before, but instead

of using the approximate eq. (191) we shall use the correct rela-

tion (189). The magnetizing current is

Jo=#iiF , (199)

so that the total primary current is

/!= /L+^-iFo (200)

Expressing 1^ and 7 2 in eqs. (186) and (187) through the load
current / L , and eliminating EH and E i2 as before, we obtain

$1 ~ Z!/L)/(I + ZiFo) = EL + I L (m/n,)
2
Z,. (201)

This equation takes the place of the approximate eq. (192). The
two equations become identical when F = 0.

1 This article may be omitted if desired.
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The complex quantity 1 + ZiY which enters into eq. (201)

may be called a correction factor, and may be represented in the

form
K= l+Z 1F = A;(cosa+jsina). . . . (202)

Since the ratio of two complex quantities is also a complex quan-

tity, eq. (201) may be expressed in the form

Ecl=EL + ILZc , (203)

where the corrected primary voltage

Ed = Ei/K = (Ei/k) [cos (6
-

a) + j sin (8
-

a)], (204)

and the corrected equivalent impedance

Zc
= Zi/K + (n./n^Z, = zc (cos ^ + j sin ^) . . (205)

Equation (203) is of the same standard form as eqs. (195) and

(159), and can be solved by the method given in Art. 33. l

This problem can be solved also by keeping the complex quan-
tities in the orthogonal form. The student will profit by working
out the details for himself.

Sometimes it is desired to know the voltage regulation of a trans-

former over a certain range of loads, the results being represented

in the form of a curve. In such a case, it makes no difference

for which particular loads the regulation is actually calculated,

provided that these loads are selected within certain limits.

If the primary voltage is given and is constant, it may be more
convenient to perform the calculations (according to Fig. 42),

not for an assumed current /2, but for an assumed load imped-
ance ZL . Combining the impedances in series and the admit-

tances in parallel, the whole circuit connected at the primary
terminals is finally reduced to one impedance. Dividing the

primary voltage by this impedance gives the primary current, and

consequently the drop in the primary impedance Zi. Thus, the

voltage EH becomes known, and the current 7 can be calculated.

After this, the current I L and the drop / z,Z2 are calculated. This

drop, being subtracted from En, gives the desired secondary

voltage Ei, reduced to the primary circuit.

1 Namely, when I L =
0, EL = Eci, so that per cent regulation is equal to

lQO&E/(Eci &E), where AE = Ec i EL (algebraically, not geometrically).

Consequently, eq. (166) and the table on page 96 are directly applicable.



CHAPTER XII

PERFORMANCE CHARACTERISTICS OF THE
INDUCTION MOTOR

42. The Equivalent Electrical Diagram of an Induction Mo-

tor. The student is supposed to be familiar with the general (quali-

tative) explanation of the performance of a polyphase induction

motor, and with the general shape of the load characteristics. 1

It will be shown here how to predetermine the performance char-

acteristics of a given induction motor by reducing it to an equiva-

lent electric circuit, similar to that of a transformer.

The following experiment shows the possibility of such an

equivalent diagram. A brake test is performed on the motor,

and the primary current and the power-factor are plotted against

the output as abscissae. Then the rotor is blocked, and variable

non-inductive resistances are inserted into its phase windings.

If the rotor has a squirrel-cage secondary, resistances must be

inserted in series with each bar, or into each section of the end-

rings between consecutive bars. The motor is thus reduced to a

polyphase transformer, the inserted secondary resistances repre-

senting the load. A load test is performed on this transformer,

and the curves of primary current and power-factor are plotted

against the total fir loss in the external resistances. These curves

are found to coincide very closely with the curves obtained from

the brake test, provided that the brake power and the fir power
are plotted to the same scale, one representing the mechanical,
the other the corresponding electrical output. Some difference

in the curves is due to the fact that the stationary transformer

has no friction loss; this is, however, partly or wholly compen-
sated by a greatly increased secondary core loss.

The theoretical reasons for this equivalence of an induction

motor to a polyphase transformer will become clear by consider-

1
See, for instance, the author's Experimental Electrical Engineering, Vol. 1,

chap. 17.
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ing the electrical relations in the rotor under the following three

headings:

(a) The Relationship between the External Resistance and the

Slip. Let the input into the rotor be P watts per phase of the

secondary winding, and let the motor be running at a slip s. For

instance, s = 0.05 means that the speed of the rotor is 5 per cent

lower than the synchronous speed, or the speed of the revolving

field. Then, sP watts are converted into heat in each phase of

the secondary winding, and (1 s)P watts are available on the

shaft as the output (including friction and windage). This is

because the tangential electromagnetic effort is the same on the

surface of the stator as it is on the surface of the rotor. But

while the gliding magnetic flux travels at synchronous speed, the

rotor travels at (1 s) times the synchronous speed. The elec-

tromagnetic coupling between the stator and the rotor is simi-

lar to a friction coupling between two shafts, having a certain

amount of slip. If the speed of the driven shaft is say 5 per cent

below that of the driving shaft, on account of the slip in the

coupling, 95 per cent of the power is transmitted and 5 per cent

is lost in heat in the coupling.

With the rotor blocked, let R be the external resistance per

phase of the secondary, and let J2 be the secondary current per

phase. For a slip s we must have the condition

s (R + r2) 7 2
2 = r2/2

2
,

or

s = r2/(fl + r2) (206)

If the slip is given, the required external resistance is

R = ra(l
-

s)/s (207)

(b) Equal Secondary Current and Phase Displacement with the

Rotor Running or Blocked. Let the reactance of the secondary

winding per phase be Xz ohms, at the primary or synchronous

frequency. With the rotor running at a slip s, the frequency of

the secondary currents is only equal to s times the primary fre-

quency, so that the reactance per phase is sx^. Therefore, the

phase displacement 2 between the induced secondary voltage

and the current is determined by the relation

tan 2
= sz2/r2 (208)

With the rotor blocked and provided with external resistances

satisfying condition (206), the total resistance of the secondary
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circuit per phase is R + r2
= ra/s. The secondary frequency

is equal to that in the primary circuit, so that

tan < 2
= Xt/(r2/s}

= sx2/r z ;

thus the phase displacement is the same as that given by eq. (208).

With the same revolving magnetic flux in both cases, the currents

are also equal. While with the stationary rotor the induced

secondary e.m.f. is larger in the ratio of 1: s, because of a higher

speed of cutting the secondary conductors, yet the total secondary

resistance R + r 2 is also larger in the same ratio of 1 : s, according

to cq. (206). The secondary reactance is also larger in the same

ratio on account of the higher frequency. Thus, with the rotor

blocked, both the e.m.f. and the impedance of the secondary

circuit are larger in the ratio of 1 : s than when it is running at a

slip s. Hence, the current, which is equal to the ratio of the e.m.f.

to the impedance, is the same in both cases.

(c) The Reaction of the Secondary upon the Primary Circuit

is the Same with the Rotor Running or Blocked. The magneto-
motive force of the revolving rotor is the same as that of the

stationary rotor with the resistance R in series, provided that in

both cases the magnetomotive force is considered with respect to

the stationary primary circuit. In the latter case the frequency
of the secondary currents is equal to that of the supply, so that

the resultant magnetomotive force due to all the secondary phases
travels in the air-gap at synchronous speed, the same as the

resultant magnetomotive force of the primary currents. The
two magnetomotive forces ^form one resultant magnetomotive
force which produces the revolving flux. With the revolving

rotor, the frequency of the secondary currents is s per cent of that

of the supply, so that the secondary magnetomotive force glides

relatively to the body of the rotor at a speed equal to s per cent

of the synchronous speed. But the speed of the rotor itself is

the (1 s) part of the synchronous speed. Hence, the velocity
of the secondary magnetomotive force with respect to the stator is

s + (1
~

s)
=

1, or is equal to the synchronous speed, and is

the same as the velocity of the primary magnetomotive force.

We have seen above that the secondary currents and their phase
relation are the same in the two cases, so that the secondary
magnetomotive force is also the same in phase and magnitude.
Consequently, with the same flux, determined by the applied volt-
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age, the primary magnetomotive force is also the same in both

cases. This means that the primary current and power-factor
are the same with the stationary rotor loaded electrically as with

the revolving rotor loaded mechanically.

We have thus proved theoretically, as well as experimentally,

that the performance of an induction motor may be reduced to

that of a stationary transformer. But we know from the pre-

ceding chapter that a transformer can in turn be replaced by an

equivalent electric circuit, either approximately (Fig. 41) or accu-

rately (Fig. 42). Thus, the same equivalent diagrams can be used

in the predetermination of the performance of an induction motor.

All the quantities which enter into these diagrams are understood

to be per phase of the primary circuit (usually per phase of Y
in a three-phase motor). When the number of the secondary

phases and the method of connections are different from those

in the primary circuit, the secondary winding is replaced by an

equivalent one of the same number of phases, and with the same

kind of connections as in the primary circuit; see Art. 45 below. 1

Prob. 1. Explain the principle of the speed control of an induction

motor by means of adjustable external resistances in the secondary cir-

cuit.

Prob. 2. Explain the principle of the direct and differential cascade

connection of two induction motors.

Prob. 3. Show how an induction generator can be reduced to an

equivalent electric circuit.

43. The Analytical Determination of Performance. Ap-

proximate Solution. The problem is to calculate the perform-
ance characteristics of a given induction motor in other words,

against the output as abscissae, to plot the following curves; viz.,

primary amperes, kilowatts input, primary power-factor,' slip,

torque, and efficiency. The resistances and the leakage reactances

of both windings, reduced to the primary circuit, are supposed to

be known, so that each primary phase of the motor can be replaced

by either the approximate or the exact diagram (Figs. 41 and 42).

The approximate diagram only is considered here, because it is

sufficiently accurate for most practical purposes. The exact solu-

tion is given in Art. 47 below. The iron loss, friction, and the

1 The values of the leakage reactances of the windings are supposed here

to be known; for their calculation from the dimensions of the motor see the

author's Magnetic Circuit, Art. 66.
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magnetizing current are also supposed to be known, so that the

exciting admittance Y is known. While in reality it varies some-

what with the load, in the approximate solution it is considered

to be a constant quantity.

The problem is solved similarly to that of the voltage regula-

tion of a transmission line or of a transformer, treated above;

that is, a load current IL is selected, and the circuit is solved in

the complex notation. In order to make the treatment independ-

ent of the other chapters, a complete solution is given below, with

some minor changes which simplify the numerical work. As in

the transmission line and in the transformer, we have

Ei=*EL + ZI Lt (209)

or, expanded,

Ei (cos + j sin 0)
= EL + IL (r + jx) . . . (210)

Here the direction of the unknown load voltage EL is again selected

as the reference axis. The current IL is in phase with EL, because

by assumption the external resistance R is non-inductive. Sepa-

rating the real and the imaginary parts, we get

Ei cos 9 = EL + ILr; (211)

Ei sin 6 = ILx (212)

When plotting the curves, it is immaterial which values of the load

are selected for computation. We assume, therefore, a series of

reasonable values for IL ,
and from eq. (212) calculate the corre-

sponding values of sin 6. Then from eq. (211) we find the values

of EL, and finally determine the outputs per phase from the

equation
PL = !LEL (213)

Knowing IL ,
EL ,

and the angle 6, the rest of the values for the

performance curves are calculated as follows:

(a) The Slip. The external resistance, reduced to the primary
circuit, is

R' = EL/IL
-

(214)

and the slip is found from the equation

s = iV/GR' + r,'), (214a)

which is identical with eq. (206), except that r 2
' and R' are second-

ary quantities reduced to the primary circuit.

(b) The Primary Current and Power-factor. The total primary
current per phase is

!i= !*+!L, (215)
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where the magnetizing current / is known, and can be repre-

sented with respect to the terminal voltage E : as

/o = / (cos </>o jsin^o)..... (216)

The load current, in its phase relation with respect to the terminal

voltage, is

IL = IL (cos9- jsinfl), ..... (217)
so that

!i = ii-jii = (!L cos 0+/o cos ) J(!L sin 0+/o sin ). (218)

Knowing the projections ii and i\ of the primary current with

respect to the terminal voltage E\, the primary phase angle 0i

is found from the equation

tan 0i = *YAi, ...... (219)

and then the primary power-factor, cos 0i, is taken from a trigo-

nometric table. The current itself,

7i = ii/cos0i....... (220)

(c) The input per phase is

Pi = Eil i cos 0i = Eiii..... (221)

The efficiency is equal to the ratio of the output to the input.

(d) The useful torque in synchronous watts, or the input into

the secondary, is equal to the output plus the secondary copper

loss. The tangential effort per phase, in kilograms at a radius of

one meter, or the torque per phase, in kg.-meters is

T = 973.8 (PL + 0.001 7LV2')/(synchr. r.p.m.), . (222)

PL being expressed in kilowatts, so as to avoid large numbers in

numerical applications.

Sometimes the performance data are desired for one particular

load, PL, only; for instance, at the rated output of the machine.

The method outlined above may in this case be somewhat tedious,

because one has to find by trials the proper values of IL and EL
which give the desired output. It may lead more quickly to the

desired end to solve eqs. (211), (212), and (213) as three simul-

taneous equations for the unknown quantities EL, IL, and 6.

Squaring the first two equations and adding them together, the

angle 6 is eliminated, and we get

Substituting for EL its value from eq. (213), gives a quadratic

equation for z/L
2

, namely

(zIL*Y -2 (z7L
2
) (i tfi

2 - PLr}/z + PL* = 0. . . (223)

^4. CVt
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The solution of this equation is

2/L
2 =

(i #i
2 - PiA/z - (l Ei* -Pir)*/* -Pi*.

The minus sign only is retained before the radical, because it

gives a smaller current. It can be shown that the solution with

the plus sign corresponds to the unstable region of operation of

the motor.

For numerical computations the preceding equation is put in

the form

zlj} = 1000 (Q
- VQ2 _ pL2), . . . (224)

where, for the sake of brevity, we introduce the notation,

Q= (5QOES- PLr)/z (225)

In the last two equations PL and Q are in kilowatts, so as to avoid

large numbers, and EI is in kilovolts. The student is reminded

that EI is the phase or star voltage, and not the line voltage, and

that PL is the output per phase.

When PL is small compared to Q, formula (224) represents

the difference of two quantities of nearly equal value. The
result is inaccurate, and it is better to expand the expression

[1 (Pz,/Q)
2
]*> according to the binomial theorem. This gives

zlj} = 1000 Q ft (PL/QY + i (PL/QY +^ (PL/QY + etc.]. (226)

The latter formula is much more convenient for numerical applica-

tions than eq. (224), because the second term in the brackets is

small as compared to the first, and the third term can usually be

neglected.

Knowing IL, the rest of the values are determined as before.

Prob. 1. Plot complete performance curves of a three-phase, 25-

cycle, 150-kw., 6-pole, 2200-volt, induction motor between no load and
25 per cent overload, from the following data: Total no-load input (for
all three phases) is 10.5 kw.; the no-load current per phase of the line

is 13 amp. With the armature blocked, the input is 230 kw., the cur-

rent per phase being 227 amp.
1 The resistance of the primary winding

per phase of Y is 0.60 ohm. Hint: Follow consistently the approximate
diagram, Fig. 41; that is, do not correct the no-load reading for the

primary i-r loss, and assume the magnetizing current with the armature
locked to be the same as at no load.

1 The data with the armature locked refer to the rated voltage; they
are obtained by extrapolating the curves taken at lower voltages. It would
not be practicable to apply the full line voltage to a large motor with the
armature blocked.
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ABS. At the rated output the primary current is 49 amp.; the

power-factor is 90.8 per cent; the slip, 3.5 per cent; the efficiency, 88.5

per cent; and the torque, 302 kg.-m.
Prob. 2. Check the answer to the preceding problem, using eq. (226).

Prob. 3. Extend the theory and the formulae given above to the

performance characteristics of an induction generator.

44. Starting Torque, Pull-out Torque, and Maximum Out-

put. When judging the performance of a given induction

motor, or designing a new motor, the following features are of

importance :

(a) The starting torque, either in its absolute value, or in

its ratio to the torque at the rated load. If the motor is to be

started by means of resistances in the secondary circuit, one may
be required to. calculate the values of these resistances necessary

for a prescribed starting torque, or for a maximum starting

torque.

(b) The pull-out torque, or the torque at which the motor

reaches the limit of stable operation, and comes to a stop. This

torque is usually given through its ratio to the full-load torque.

(c) The maximum output of the motor, in kilowatts. This

output takes place at a smaller slip than that at which the motor

pulls out. The output is a maximum when the product of

torque times speed is a maximum, but not when the torque

itself is greatest.

The three^ quantities mentioned above can be determined by

using the equations deduced in the foregoing article.

(a) The Starting Torque. In the general formula (222), PL =

at start, because the motor supplies no mechanical output, the

speed being equal to zero. In the equivalent electrical diagram

(Fig. 41) this corresponds to a short curcuit of the load, or R = 0.

Hence, IL = E\/z; substituting this value into eq. (222), we find

that the starting torque per phase, in kg.- m.

T8t
= 0.9738 #i2r2'/ (z

2 X synchr. r.p.m.). (227)

It will be seen from this expression that the starting torque is

proportional to the square of the line voltage. This fact permits
one to determine the initial torque when starting a motor on a

lower voltage, by means of auto-transformers. The same equa-
tion shows that the starting torque increases with the secondary
resistance. It is not quite proportional to it, because r2

'
is also

implicitly contained in z.
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When the motor has a phase-wound secondary and is started

by means of resistances in the secondary circuit, r* in formula

(227) includes this secondary resistance. It is thus possible to

calculate the external resistance required for a given starting

torque. For example, when the starting torque is given, the

ratio z2
/r2

'

in eq. (227) is a known quantity, or

*/rt
' = [(n + r/)

2 +*W =
c, . . . (228)

where

c = 0.9738 #i2
/ (desired torque X synchr. r.p.m.). (229)

Solving the quadratic (228) for r/, we obtain

*). (230)

In applications, the minus sign only is retained before the radical

because one would naturally use the smaller of the two resistances

which give the same torque.

The value of r2
'
determined from this expression comprises

both the resistance per phase of the rotor proper and the starting

resistance per phase, if any is used, both reduced to equivalent

primary values. To obtain their actual values, see Art. 45 below.

If the external resistance is to be so selected as to give a max-

imum starting torque, c in expression (228) must be a minimum.

Equating to zero the derivative of c with respect to r/, and

solving for r2 ', we get

r,' = (z
2 + ri)*, (231)

that is, r-i is very nearly equal to x. This value comprises the

resistance of the rotor proper and the starting resistance, both

per phase of the primary circuit. If a resistance is selected which

is either less than or greater than that determined by eq. (231),

the motor does not develop its full starting torque. This checks

with eq. (230), which shows that the same torque can be obtained

with two different values of starting resistance.

(b) Pull-out Torque. According to eq. (222), the torque is a

maximum when

EJL + IM = max (232)

Here EL and IL are functions of the independent variable 6.

Expressing them through from eqs. (211) and (212), and omit-

ting the constant factor #i2
,
we obtain

(1/z) sin 9 [cos
-

(r/z) sin 0] + (r 2'/z
2
) sin2 = max.,
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or, after simplification,

x sin 2 -
ri (1

- cos 26) = max. . . . (233)

Equating to zero the derivative of this expression with respect to

6, gives

x cos 2 6 - ri sin 2 6 = 0,

or

tan 2 6 = x/ri (234)

Knowing 6, the values of EL and IL are calculated from eqs. (211)

and (212), and then the torque is determined from eq. (222).

It is of interest to note that the angle 0, at which the motor

pulls out of step, is independent of the secondary resistance

r2 '. Neither does this resistance enter into eq. (233). Hence,
the maximum torque which a motor is capable of developing is inde-

pendent of its rotor resistance. This resistance determines only the

speed at which the maximum torque takes place. The higher the

secondary resistance, the lower the speed at which the motor

pulls out of step. By using an external starting resistance, and

a rotor winding of low resistance, two maxima of the torque are

obtained, one at the start, with the external resistance in, and the

other near synchronism, with it out.

(c) Maximum Output. The problem is to find the values of

EL and IL for which the product EL!L is a maximum. Again

expressing EL and IL through the angle 6 from eqs. (211) and (212),

and omitting the constant factor Ei*/x, we have

sin 6 [cos (r/x) sin 6}
= max.

Equating to zero the derivative of this expression with respect to

0, gives

* = **, (235)

where tan <f>
= x/r. Knowing the angle 0, the values of IL and

EL are calculated from eqs. (211) and (212), and then their product

EL!L is determined.

Prob. 1. The motor specified in problem 1 of the preceding article

is designed to be started at a reduced voltage. What per cent tap should

be used on the auto-transformers in order to get a starting torque of

about 30 per cent of the full-load torque?
Ans. 60 per cent of the line voltage.

Prob. 2. The same motor is provided with a phase-wound secondary
and is to be started by using resistances in series with the rotor windings.
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What external resistance is necessary in order to obtain a starting torque

equal to 1.5 times the full-load torque?
Ans. 0.78 ohm per phase, in terms of the primary circuit.

Prob. 3. What starting resistance in the preceding problem would

give the maximum starting torque? Ans. About 5.7 ohms.

Prob. 4. Show that the motor specified in problem 1 of the preceding
article pulls out of step when the torque exceeds 2.45 times the rated

full-load torque.
Prob. 5. Check the answer to problem 4 by using the answer to prob-

lem 3.

Prob. 6. Show that the maximum output of the same motor is equal
to 2.15 times the rated output.

Prob. 7. Show that the input into an induction motor is a maximum
when 6 = 45. Hint: IL cos 6 = max.

Prob. 8. Show how to calculate the per cent slip at which the motor

pulls out of step, and also the speed at which the output is a maximum.



CHAPTER Xin

PERFORMANCE CHARACTERISTICS OF THE
INDUCTION MOTOR (Continued)

45. The Secondary Resistances and Reactances Reduced
to the Primary Circuit. It is proved in Art. 40 that in a trans-

former the secondary resistance and reactance can be transferred

into the primary circuit by being multiplied by (rii/w2)
2

. The

same rule holds true for the induction motor, provided that the

number of phases is the same in the primary and in the secondary

windings, and that the two windings are of the same type (the

same number of slots per phase and the same winding pitch).

This is hardly ever the case, and with a different number of

phases and different types of winding in the primary and second-

ary, the following formula holds true :

r2'/r2
=

(roi/rog) (fc6in1//c62n2)
2

,
.... (236)

and analogously for the reactances,

x2'/xz
= (mi/m2) (fcmi/fan,)*. . . . (237)

In these expressions, m stands for the number of phases, n is the

number of turns per phase, and fa is the so-called breadth factor

which characterizes the winding. The subscripts 1 and 2 refer

to the primary and secondary windings respectively. The quan-
tities r2 and z2 are the actual resistance and reactance per phase
of the secondary circuit; r/ and Xz

f
are the equivalent quantities

per phase of the primary circuit. 1 When Wi = ra2 and kbi = fc& 2 ,

the preceding formulae become identical with eqs. (196) and (196a)

for the transformer.

Equations (236) and (237) refer to the resistances and react-

ances per phase, with the understanding that the windings of

each phase are all in series, both in the stator and in the rotor;

and that the connections are either both star, or both mesh, even

if the number of phases be different. Otherwise, the actual con-

1 For a proof of these formulae, see the author's Magnetic Circuit, Art. 44;
the values of kb will be found in Arts. 27 to 29 of the same book.

133
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ncctions must be taken into consideration and the values of r 2
'

and x2
'

further modified, keeping in mind the fact that the total

tV loss must be the same in the equivalent winding as in the ac-

tual one. As a simple illustration, let the stator be three-

phase Y-connected, and the rotor three-phase delta-connected. If

the equivalent secondary resistance calculated by means of

eq. (236) is r/, then only ^ r2
' must be used in the equivalent

diagram, per phase of Y. This is because the current per phase
of Y is v3 times as large as that per phase of delta, hence, for

the same &r loss, the resistance per phase of Y must be only one-

third of that per phase of delta. The same relation holds true

for reactances, because the stored electromagnetic energy is also

FIG. 43. A squirrel-cage rotor and the FIG. 44. The vectorial relation between
star resistances equivalent to the end the star and mesh currents in a sym-
ring. metrical m-phase system.

proportional to the square of the current (Art. 20), and the

equivalent diagram must express correctly the cyclic exchange
of energy between the primary and the secondary circuits.

In the most general case, let an ra-phase symmetrical system
be given, for instance a two-pole squirrel-cage rotor (Fig. 43),

and let it be required to find the relation between the mesh resist-

ances rm and the star resistances r, such that the i
zr loss per phase

shall be the same in both. The relation between the vectors of

the star currents and those of the mesh currents is shown in Fig. 44,
the star currents /, forming an m-sided polygon, and the mesh
currents Im being the radii of the polygon. This diagram is correct

because it satisfies the following conditions : (a) the star currents
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are displaced in phase relatively to each other by equal angles

of 2 TT/W, over the whole range of 2 TT; (b) the same is true for

the mesh currents; (c) each star current is the geometric differ-

ence of the two adjacent mesh currents; (d) the geometric sum of

the star currents is equal to zero (Kirchhoff's first law). From
the geometry of the figure we have

H, = /m sin(7r/m)...... (238)

The condition 78
2rg = 7m2rm leads to the ratio

m). . . . (230)

A similar relation holds for the reactances. When m =
3, we

find as before that rA/ry = 3.

Equation (239) finds its practical application in the calcula-

tion of the equivalent resistance and reactance of a squirrel-cage

rotor. The sections of the end-rings between the bars are mesh-

connected, while the bars themselves may be considered as parts

of a star-connected w2-phase system, where w2 is the number of

bars per pair of poles. Let r& be the resistance of each bar, includ-

ing the two contact resistances between the end-rings and the

bar; let rr be the resistance of a section of an end-ring between

two consecutive bars. The resistance of the rings can be replaced

by added resistances in series with the bars, so as to change the

connections to a pure star system (Fig. 43). According to eq.

(239) we find that the new resistance per bar must be equal to

r& + 2 rr/[4 sin2 (7r/m2)]. If the motor has p poles, or \ p pairs of

poles, there are \ p bars in parallel belonging to the same phase, so

that the total resistance of the secondary winding per phase is only
the 2/-p part of that of one bar. Hence, assuming that the primary

winding is star-connected, and that all the coils in each phase are

in series, the value of r2 to be used in eq. (236) is

. . . (240)

Analogously,

. . . (241)

Since there is only one bar per phase, and one bar is equivalent
to one-half of a turn, the value n2

= ^ and fc&2
= 1 must be

used hi eqs. (236) and (237).

Prob. 1. A two-phase induction motor has the primary winding ar-

ranged for two independent phases; the secondary is three-phase Y-con-
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ncctcd. When the rotor is stationary and its circuits arc open, 440 volts

impressed at the primary terminals produce 97 volts between the slip-

rings. The calculated starting resistance, per phase of the primary

circuit, is 14 ohms. What is the actual resistance to be used in series with

the rotor windings? Hint: Consider the primary circuit as ajour-phase
star-connected system, so that njtbi/njtbz = I X 440/(97/ V3).

Ans. 0.34 ohm.

Prob. 2. A six-pole, three-phase, Y-connected induction motor has a

squirrel-cage rotor of 80 cm. diameter with 73 bars; the resistance of

each bar is 120 microhms (including the contact resistance). In order

to have a certain required torque and slip, the equivalent rotor resistance

per phase of the primary circuit must be equal to 1.07 ohms. What must
be the actual resistance of each end-ring per centimeter of its length?
There are 100 turns per phase of the primary winding, and kb\ = 0.95;

for the squirrel-cage winding kb2 is always equal to unity.
Ans. 5.8 microhms.

46. The Circle Diagram. Let the values of primary current

obtained from a brake test on an induction motor be plotted as

vectors at proper phase angles with respect to the vector EI
of the primary voltage (Fig. 45). The locus of the ends of the

current vectors is found to be very nearly a semicircle. This

i? i;/

FIG. 45. The circle diagram of an induction motor.

locus, together with some auxiliary lines, is called the circle dia-

gram or the Heyland diagram of the induction motor. A similar

diagram holds true for the transformer, although it is hardly ever
used in practice.

The importance and the convenience of the circle diagram lie

in the fact that the complete performance of an induction motor
can be predicted if the diameter of the semicircle and its posi-
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tion with respect to the voltage vector EI are known. The semi-

circle is usually determined by the vector 7 of the no-load current,

and the vector of the current I8 obtained when the rotor is locked

(the subscript s stands for starting or short circuit). At any
other load, the extremity of the current vector 7i lies between

those of 7 and 78 .

The Heyland diagram is simply a graphic representation of

the current and voltage relations in the approximately equivalent

circuit diagram shown in Fig. 41. The exciting current and the

no-load losses are assumed to be constant at all loads from no-

load to standstill. The no-load current is resolved into a loss

component /</', in phase with the voltage E\, which component

represents the iron loss, friction, and windage; and a reactive com-

ponent Id which excites the mam flux in the motor. At any load,

the primary current I\ is the geometric sum of the load current

IL and the no-load current 7
,
the vectors of these three currents

forming a triangle.

That the locus of the current 7i or IL is a circle follows directly

from eq. (212), because from it we have

/L/sin e = Ei/x = const., .... (242)

which is easily seen to be the equation of a circle in polar coordi-

nates. The value of the constant

Edx = Iif (243)

is equal to the diameter of the circle, which diameter is thus

determined solely by the leakage reactance x of the motor. The

smaller x is, the larger is the circle and the better the motor,

because its power-factor is higher and its overload capacity

larger.

The load current I,L with the armature blocked has an energy

component in phase with the line voltage E\, because of the i?r

loss in the resistances of the stator and rotor. If these resistances

could be eliminated or put outside the motor, the load current

on short circuit would be purely reactive and equal to IL
' = EI/X.

Thus, the diameter of the circle is equal in position and magni-
tude to the load current (secondary current) of the machine with

the armature blocked, provided that the internal resistances are

eliminated and only leakage reactances are left. This condition

is called an ideal short circuit.

Leaving the loss component 7
"

of the no-load current out of
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consideration, the performance of the motor is determined by

the pure magnetizing current /</ and its ratio to the diameter IL
'

of the semicircle. This ratio is called the circle coefficient. Let

the exciting reactance, or the reciprocal of 60, be denoted by XQ.

Then /' = EI/XO, and, by definition, the circle coefficient

= I '/IL
' =

x/xo', (244)

in other words, the circle coefficient is equal to the ratio of the

leakage reactance to the exciting reactance. 1

Thus, knowing the magnetizing current and the short-circuit

current (or the magnetizing current and the circle coefficient),

the Heyland circle can be drawn, and the relation between the

primary current, the load current, the power-factor, and the

angle 6 graphically determined. By drawing certain auxiliary

lines, the input, output, slip, torque, and efficiency can also be

read off directly from the diagram, for any assumed primary
current.2 In other words, the circle diagram permits one to

determine graphically the performance characteristics, and offers

an alternative method to the analytical procedure explained in

Art. 43 above. The relative advantages of the analytical and

graphical methods depend upon the problem in hand and the

skill and temperament of the user; the student should thoroughly
familiarize himself with both methods before deciding upon the

use of one or the other.

The circle coefficient is very convenient for preliminary designs
and performance estimates. Mr. H. M. Hobart has made quite
a study of the numerical values of this coefficient for a large num-
ber of actually built motors, and has compiled his results in the

1 The circle coefficient is also called the dispersion factor (Streuungs-

koeffizient), and is usually denoted by a. Those familiar with magnetic
phenomena will notice that the circle coefficient is equal to the ratio of the

permeance of the main magnetic path in the motor to that of the leakage

paths.
This is because the reactances are proportional to the corresponding

inductances, and an inductance is equal to the permeance of the path times
the square of the number of turns linked with it. A motor is evidently im-

proved by reducing the permeance of its leakage paths and increasing that
of the useful path. This means that the motor is better the lower its circle

coefficient a.

2 For complete and explicit instructions in regard to the construction and
use of the circle diagram, see the author's Experimental Electrical Engineer-
ing, Vol. 2, Chap. 29.
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form of charts, from which the value of the coefficient may be

taken for a motor of given or assumed dimensions. 1

Prob. 1. Show that the circle coefficient of the motor specified in

problem 1, Art. 43, is equal to 0.0526.

Prob. 2. Check a few points on the curves obtained in problem 1,

Art. 43, by constructing the circle diagram of the motor.

47. The Analytical Determination of Performance. Exact

Solution. 2 The predetermination of the performance charac-

teristics of an induction motor, explained in Arts. 43 and 46,

is based upon the approximately equivalent diagram shown in

Fig. 41. The exact performance characteristics are obtained by

expressing analytically the electrical relations according to the

correct equivalent diagram shown in Fig. 42. To be absolutely

correct, both g and b must be varied somewhat with the load,

because (a) the friction and windage depend upon the speed,

(b) the iron loss is not exactly proportional to the square of the

flux, and (c) the magnetizing current is not proportional to the

voltage. Moreover, the friction loss ought to be separated from

the iron loss, and subtracted from the output, instead of being

added to the input. All these corrections make the calculations

much more involved, and, while it is well to know about them,

they are hardly ever justified in practice.

In large and medium-sized motors the losses and the internal

voltage drop are comparatively small, so that the performance
calculated according to the exact diagram differs but little from

that obtained with much less time and effort, by using the

approximate diagram. It is only in small motors, or where ex-

treme accuracy is required for some special reason, that the pro-

cedure given below is justified. In very small motors, say below

one kilowatt, the difference between the approximate and the

correct performance is quite appreciable, because of high losses

and a large voltage drop.

1 H. M. Hobart, Electric Molars (1910), Chapter 21. It may be of inter-

est to note that the correct equivalent diagram (Fig. 42) also leads to a

circle diagram, known as the Ossanna circle. Numerous articles on this

exact diagram will be found in the various volumes of the Elektrotechnische

Zeitschrift and Elektrotechnik und Maschinenbau.
2 This article may be omitted if desired, because the approximate solu-

tion given in Arts. 43 and 46 is sufficient in a great majority of practical cases.

However, the method used in this article is of interest to the student as

another and somewhat different application of complex quantities.
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It is much more convenient to plot complete performance

curves than to calculate the performance data for a specified out-

put. A certain external resistance R' is assumed, such as would

give a reasonable value of slip according to eq. (214a), and the

performance characteristics are calculated for this value of R'.

Then another value of R' is assumed, and the calculations are

repeated, and so on. For an assumed value of R' the total

admittance between the primary terminals is calculated, using

the general method given in Art. 28, that is, adding impedances in

series and admittances in parallel. Knowing the total admittance,

the primary current becomes known; then IL and EL are calcu-

lated, and finally the rest of the data are obtained as in Art. 43.

The details of the calculations are as follows :

(1) The impedance of the load plus that of the secondary

winding = (R' + r2') + jx-l .

(2) Using eqs. (121) and (122), Art. 27, find the corresponding
admittance 2 jb z .

(3) The total admittance between the points M and N is

(go 4- gz) j(b + 62).

(4) Using eqs. (123) and (124), Art. 27, find the corresponding

impedance rMN + JXMN>

(5) The total impedance between the primary terminals"is

Zeg
= (TMN + n) + j (XMN + #1).

(6) The corresponding admittance Yeq
=

geq
-

jbeq is calcu-

lated from eqs. (121) and (122).

(7) The primary current is

/i=#iFeg (245)

(8) The voltage across MN
#1 = tfi

- /xZi = ^(1- ZiF.,). . . . (246)

(9) The load current is

IL = /!- 7 = /j-tfaFo,

or, substituting the values of /i and EH from eqs. (245) and (246),

IL = Ei [Yeq (1 + FoZi) - Fo]. . . . (247)

(10) The load voltage

EL = lift' (248)
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The rest of the quantities are calculated in the same manner
as in Arts. 43 and 44.

In numerical work, it is convenient to take E\ along the ref-

erence axis. Having determined the value of Yeq , computations
are begun with the composite admittance in the brackets in

eq. (247). Either the orthogonal expressions of the form r + jx
or the polar expressions of the form z (cos + j sin </>) may be

used, according to one's preference or familiarity with one or the

other form. The student ought to be familiar with both forms.

The trigonometric form is convenient for multiplication and

division, while the Cartesian form is preferable in addition and

subtraction. It may be advisable to use both forms in the same

problem.
The calculator should avoid long algebraic expressions, jper-

forming numerical operations step by step. Much time is saved

by arranging the consecutive steps in a table, so as to repeat the

same operations mechanically for different values of R'. An
irregularity of the values in a column is a sure indication of a

numerical error.

Much time is also saved by intelligently discriminating be-

tween the principal terms and small correction factors in an ex-

pression. For instance, in eq. (247) Yeq is large as compared to

Yo and to Yeq YoZi. It would be a waste of time to figure out

the latter expression accurately, when, in all probability, the

principal term will be affected only by its first significant figure.

On the other hand, the principal term, Yeg ,
must be calculated

to a degree of accuracy at least equal to that desired in the result,

if not to a higher degree. Considerable skill, experience, and judg-
ment are necessary to determine the proper accuracy of computa-
tions in engineering problems. This is an art which grows by

intelligent exercise, and it is never too early to begin practicing

it. The rewards are time and mental energy saved for better

things, while obtaining an accuracy which is commensurate with

the desired result. 1

1 For a complete set of final formulae for induction motor characteristics,

see Arnold's Wechselstromtechnik, Vol. 5, part 1 (1909), pp. 65-78. A very

slight inaccuracy is introduced there in the beginning, by neglecting the

imaginary part in a complex quantity. See also Dr. Steinmetz's Alternating-

current Phenomena, under "
Induction Motor."
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Prob. 1. Make out a table showing in detail the order of computa-
tions for a complete set of performance characteristics of an induction

motor, according to the method developed above.

Prob. 2. Mark on the curve sheet obtained in problem 1, Art. 43, a

few points determined according to the exact equivalent diagram, in

order to see the inaccuracy resulting from the use of the approximate
method.



CHAPTER XIV

THE DIELECTRIC CIRCUIT

48. The Electrostatic Field. 1 In the following discussion, it

is assumed that the student knows the fundamental phenomena
of electrostatics from his study of physics. The purpose of the

treatment given here is to deduce the principal numerical relations

which are of importance in electrical engineering. The electro-

static field is considered in this book from Faraday's point of

view, viz., as consisting of displacements of electricity, and stresses

Battery

Condenser

FIG. 46. A plate condenser completing a direct-current circuit.

in the dielectric. This is different from the older theory of the

action of electric charges at a distance.

Let a source E of continuous electromotive force (Fig. 46) be

connected to two parallel metallic plates A and B, the combina-

tion of which is commonly known as a condenser. Let the plates

1 See the footnote at the beginning of Chapter 3.

143



144 THE ELECTRIC CIRCUIT [ART. 48

be separated from each other by air, or by some other non-conduct-

ing material. When the key K is pressed upwards, a certain

quantity of electricity, Q, flows from the battery to the plate A,

and the same quantity flows from the plate B back to the battery.

This quantity can be measured by the ballistic galvanometer

shown in the circuit. Within a very short time the difference of

potential between the plates becomes equal and opposite to that

of the battery and the flow of current stops.

Since electricity behaves like an incompressible fluid, the same

quantity, Q, is displaced through the whole circuit, including the

layer of insulation or dielectric between the condenser plates.

This displacement is accompanied by a stress in the dielectric,

similar in some respects to a mechanical stress in an elastic body.

The directions of the electric stress and of the lines of displacement

of electricity through the air are shown in the figure by dotted

lines. These stresses produce a counter-electromotive force,

which finally balances that of the battery. When the key is

opened, the condenser remains charged, since the stress and the

displacement can be relieved only in a closed circuit. To dis-

charge the condenser, its plates must be connected by a conductor;

this is done by pressing the key down. The deflection of the

ballistic galvanometer during the discharge is equal and opposite

to that during the charge, and the electric energy stored in the

condenser is dissipated by the current in the form of heat.

The difference between a dielectric and a conductor is that the

resistance of the former to the passage of electricity is of an elastic

nature; that is, the stress can be relieved and the stored energy
returned to the circuit. On the contrary, the resistance to the

flow of electricity in a conductor is of the nature of friction.

The energy is converted into Joulean heat and cannot be restored.

The modern electronic theory of electricity is not sufficiently

advanced at this writing to give a clear account of the true nature

of these displacements and stresses in a dielectric. It is therefore

preferable for our purposes not to specify the mechanism by which
these stresses and displacements are produced. We shall simply
assume, as a matter of fact, the structure of dielectrics to be such
that an e.m.f. across a layer of such material produces a displace-
ment of a certain quantity of electricity, which is proportional to

the e.m.f. When the e.m.f. is removed and a closed circuit is

provided, the stresses within the dielectric are relieved, and the
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displacement disappears. The analogy to an elastic body sub-

jected to external mechanical forces naturally suggests itself.

Experiment shows that, with given metallic plates (Fig. 46)

and the same applied e.m.f., the value of the electric displacement

depends upon the nature of the dielectric. With solid and liquid

insulating materials, such as glass, oil, mica, etc., the same e.m.f.

produces larger displacements of electricity than with air as the.

dielectric. These materials are therefore said to possess higher

permittivity than the air (some writers use the word inductivity) .

When an alternating voltage is applied at the terminals of a

condenser, the displacement of electricity in the dielectric varies

continually in its magnitude and periodically reverses its direc-

tion; consequently, it gives rise to an alternating current in the

conducting part of the circuit. This is called the charging or

capacity current. This current leads the alternating voltage in

phase by 90 degrees, as may be seen from the following consider-

ations: When the voltage has reached its instantaneous maximum
the charging current is zero, because at the crest of the wave the

voltage and the displacement remain practically constant for a

short period of time. As soon as the voltage begins to decrease,

the current begins to flow in the direction opposite to that of the

applied voltage, because the elastic reaction of the dielectric is

now larger than the applied electromotive force. At any instant,

the current, or the rate of flow of electricity, is proportional to

the rate of change of the applied voltage. But if the applied

voltage varies according to the sine law, the rate of variation is

also represented by a sine function differing in phase by 90 de-

grees from the original function, because d (sin x)/dx = cos x =
sin (90+ x); see also Art. 66 below. That there must be a dis-

placement of 90 degrees between the voltage and the current

follows also directly from the assumed elastic structure of the

dielectric. The energy is supposed to be periodically stored in

the dielectric and given up again without any loss; hence, the

average power must be zero, and the current must be reactive.

49. A Hydraulic Analogue to the Dielectric Circuit. The

hydraulic analogue shown in Fig. 47 may assist the student in the

understanding of the electrostatic circuit. A is a pump which

corresponds to the source of electromotive force in Fig. 46. The

pipes B and C represent the leads to the condenser, or the metallic

parts of the circuit. The cylinder D corresponds to the condenser,
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and the elastic partition K is analogous to the dielectric. Let

the pipes and the cylinders be filled with water, and let the piston

in A be in its middle position, the partition K not being stressed.

Let the stopcock M be open, and the stopcock N closed. When a

Stop Cocks

FIG. 47. A hydraulic analogue of a dielectric circuit.

pull to the right is exerted upon the piston rod and it is forced

to move, the water in the system is displaced, and the elastic

partition K is strained, as shown in the figure. With a given

pull, or a given electromotive force, the movement stops when
the pull is balanced by the elastic reaction of the partition.

The charge, or the total displacement, is represented by the

amount of water shifted; it can be measured by the water-meter

W, which thus takes the place of the ballistic galvanometer.
If the pipes are frictionless, and the inertia of the piston and

water is assumed negligible, the analogy can be followed still

further; namely, the phase difference in time between the pull

and the velocity of the water is equal to 90 degrees, the velocity

leading the pull. Assuming the motion of the piston to be har-

monic, the velocity of the flow of water is at its maximum when
the piston is at the center of its stroke. The required pull is equal
to zero at this moment, because the elastic partition is in its

middle, or unstrained position. At the end of the stroke the

velocity is zero, but the pull is at its maximum, because the

partition is strained to its extreme position, and exerts its maxi-
mum elastic reaction. Thus the pull lags behind the velocity.

Substituting another partition, made of a more yielding
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material (material possessing higher permittivity), a larger dis-

placement is produced with the same pull; this corresponds to

the case in which some solid or liquid dielectric is substituted for

the air.

Closing the stopcock M corresponds to breaking the electric

circuit of the condenser. It will be seen from analogy that the

condenser remains charged. To discharge the condenser, the

stopcock N must be opened; this equalizes the pressure on both

sides of the elastic partition. Since, in reality, water possesses

some inertia, the partition does not stop in its middle position

during the discharge, but the momentum of the water carries it

beyond the center. The electromagnetic inertia of the electric

current produces a similar effect, and we thus have a simple

explanation of the oscillatory character of the electric discharge.

During this discharge, the energy is alternately transformed into

the potential energy of dielectric stress, and into kinetic energy of

the magnetic field. The oscillations of the partition are gradually

damped out by the frictional resistance of the pipes. In the

electric circuit, oscillations are damped by the ohmic resistance

of the conducting parts of the circuit.

The student can follow this analogy still further, and
exp^iin

free electrical vibrations, current and voltage resonance, also the

effect of a resistance in series and in parallel with a condenser, etc.

50. The Permittance and Elastance of Dielectric Paths.

Let Q (Fig. 46) be the total displacement of electricity in the

dielectric, measured in ampere-seconds or coulombs, and let E
be the voltage impressed across the condenser or

"
permittor."

Experiment shows that up to a certain limit Q is proportional to

E; this is similar to the behavior of an elastic body, in which the

strains are proportional to the applied forces until the limit of

elasticity has been reached. Thus, we may write

Q = CE, (249)

where the coefficient of proportionality, C, is called the permittance

of the condenser. The older name for C is electrostatic capacity.

When E is in volts and Q in coulombs, permittance is measured

in units called farads. A condenser has a permittance of one

farad when a displacement of one coulomb is produced for each

volt applied at its terminals. The farad being too large a unit

for practical use, permittances are usually measured in micro-
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farads, one microfarad being equal to one millionth part of a

farad.

The larger the permittance of a condenser, the larger is the

displacement of electricity with the same voltage; hence C is a

measure of the ease with which an electric displacement can be

produced in a given condenser. In this respect the concept of

permittance is analogous to those of electric conductance and

magnetic permeance.
In some cases it is convenient to speak, not of the degree of

ease, but of the difficulty with which an electric displacement

can be produced in a given condenser. For this purpose, a

coefficient of proportionality, the reciprocal of C, has to be used;

and eq. (249) becomes

E = SQ, (250)

where
S = C- 1

(251)

is called the elastance of the condenser. Elastance is thus analo-

gous to electric resistance and to magnetic reluctance. When

permittance is measured in farads, the unit of elastance is the

reciprocal of the farad, and may therefore be properly called the

daraf. This is a name derived by spelling the word farad back-

wards, that is, in the same way in which mho is derived from ohm. 1

A condenser has an elastance of one daraf when one volt of pres-

sure is required for each coulomb of displacement within it. The
farad being too large a unit for practical use, the daraf is con-

sequently too small a unit. Therefore, in practice, elastances

should be measured in megadarafs, one megadaraf (= 106
darafs)

being the reciprocal of one microfarad.2

When two or more permittances are connected electrically

in parallel, the resultant permittance is larger than that of any
of the component condensers, because a larger path is offered to

1 It may be of interest to mention in this connection a similar derivation
of the name for a unit of magnetic reluctance. The henry being the natural
unit of magnetic permeance (or inductance) in the ampere-ohm system, the
author has proposed calling the corresponding unit of reluctance the yrneh, a
word derived by spelling the word henry backwards. See his Magnetic Circuit,
Art. 5.

2 For a complete rational nomenclature of electric and magnetic quanti-
ties, see the table on page xii at the beginning of the book, and also the one in

the Appendix.



CHAP. XIV] THE DIELECTRIC CIRCUIT 149

the displacement. The relation is similar to that of conductances

or permeances in parallel. Let d, C2 , etc., represent permit-

tances connected in parallel across a source of constant voltage

E, and let Qi, Q 2 , etc., be the corresponding electric displacements

through these condensers (or permittors). Then, according to

the definition of permittance, we have

Qi = C,E

(252)

The equivalent permittance, Ceq ,
must be such as to allow of a

displacement equal to the sum of the partial displacements, with

the same voltage; hence,

SQ = CeqE (253)

Adding eqs. (252) together gives

Qi + Q2 + etc. = E (Ci + Cz + etc.),

or, by comparison with eq. (253),

C., = 2C (254)

In other words, when permittances are connected in parallel,

the equivalent permittance is equal to their sum.

When condensers (or elastors) are connected in series, it is

more convenient to use their elastances. Since electricity behaves

like an incompressible fluid, the displacement through several

elastances in series is the same in all of them. Let this displace-

ment be denoted by Q, and let the voltages across the terminals

of the individual elastors be E
if
Ez ,

etc. Then,

(255)

where Si, Sz , etc., are the elastances of the separate condensers.

The equivalent elastance must allow of the same displacement Q
with the same total voltage, or

2E = SegQ. ....... (256)

Adding eqs. (255) together gives

Ei + Ez + etc. = Q (Si + S2 + etc.),
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or, by comparison with eq. (256),

Seq
= 2S. . (257)

In other words, when elastances are connected in series, the

equivalent elastance is equal to their sum. The analogy to the

addition of conductances in parallel and resistances in series is

self-evident (see Art. 3).

Prob. 1. A condenser, which has a permittance of 10 microfarads, is

connected to a direct-current magneto, the speed of which is increased at

a uniform rate, so that the voltage rises at a rate of 1.7 volts per second.

Calculate the charging current.

Ans. 17 microamperes. Note: This is the principle of an appara-

tus used for measuring the acceleration of railway trains.

Prob. 2. An elastance of 10 kilodarafs is connected across a 220-

volt, 50-cycle line. Show that the effective value of the charging current

is 6.91 amp. Solution: The maximum displacement in the dielectric is

220 V2/(10 X 103
)
= 22 V2 X 10~3 coulombs. This displacement is

reduced to zero within aU of a second; hence, the average charging

current is 4.4 \/2 amp. The effective value, assuming a sine-wave of

current, is 4.4 v7
2 X (-**/ V2) - 6.91 amp.

Prob. 3. Show that with two condensers in parallel the ratio of the

displacements equals that of the permittances or is inversely as the ratio

of the elastances. What is the analogous relation for conductances and
resistances?

Prob. 4. When two condensers are in series, show that the ratio of

the voltage drops across them equals that of the elastances, or is inversely
as the ratio of the permittances. What is the analogous relation for

resistances and conductances?

Prob. 6. A sectionalized condenser, such as is used for calibration

and exact measurements, is built up of the following permittances:

0.5, 0.2, 0.2, 0.05, and 0.05 microfarads. What is the extreme range
of permittances and elastances possible by combining these sections in

series and in parallel?

Ans. From 1 to 0.0192 mf., or from 1 to 52 mgd.
Prob. 6. Referring to the preceding problem, the sections of the con-

denser are connected as follows: 0.2, 0.05, and 0.05 mf. are in scries, and
the combination is shunted by 0.2 mf. Then the whole is put in series

with 0.5 mf. Show that the resultant permittance is equal to 0.154

microfarads.

51. Permittivity and Elastivity of Dielectrics. Experiment
shows that the permittance of a sample of any dielectric varies

with its dimensions in the same way that the conductance of a
metal or the permeance of a magnetic path in a non-ferrous medium
does; namely, the permittance is proportional to the cross-sec-

tion of the layer and inversely proportional to its length in the
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direction of the lines of force. By increasing the cross-section of

the path perpendicular to the lines of force (Fig. 46), the displace-

ment is increased in the same proportion. On the other hand,

the displacement is found to be inversely proportional to the

thickness of the dielectric, since the distance through which the

voltage must act is greater if the thickness is increased. These

relations follow directly from the laws deduced in the preceding

article for the addition of permittances in parallel and elastances

in series. Thus, by analogy with eq. (21), Art. 5, we put

C = KA/l, (258)

where K is called the permittivity of the dielectric. It is analogous

to the conductivity of a conducting material, or to the perme-

ability of a magnetic medium. Permittivity may be defined as

the permittance of a cubic unit of dielectric, when the lines of

displacement are straight lines perpendicular to one of its faces.

For air the permittivity is

K = 0.08842 X 10"6 microfarads per cm. cube. . (259)

For other dielectrics, liquid and solid, the permittivity is higher than

that of air; that is to say, they are more yielding to an electro-

motive force. It is convenient to express their permittivities in

terms of that of the air; for instance, we may say that the per-

mittivity of a certain transformer oil is 2.1 times that of the air.

The relative permittivities of some important insulating ma-

terials are tabulated in Art. 56 below, merely to indicate their

order of magnitude. For accurate values, the reader is referred

to various published physical tables and engineering handbooks.

The older name for relative permittivity is specific inductive

capacity (or dielectric constant). It is more convenient in prac-
tice to use relative than absolute permittivities, because the

necessity of tabulating small quantities like * in eq. (259) is

avoided. Besides, the data are more readily comparable with

one another, and with the permittivity of air, which is a standard

dielectric. This procedure is analogous to tabulating the con-

ductivities of various metals in terms of that of pure copper,

taken as 100 per cent. The absolute permittivity of a material

is obtained by multiplying the absolute permittivity of air by the

relative permittivity of the dielectric in question. Equation (258)

thus becomes
C = KKa A/I, (260)

where K stands for the relative permittivity.
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The clastance of a prismatic piece of dielectric, with the lines

of displacement parallel to one set of its edges, is expressed by

analogy with eq. (20), Art. 5, as

S =
ffl/A, (261)

where
a = K~ l

(262)

is called the elastivity of the dielectric. Elastivity is analogous to

the resistivity of a conducting material or to the reluctivity of a

magnetic medium, and may be expressed for practical purposes in

megadarafs per centimeter cube. For air, the absolute elastivity

is, according to eq. (259),

ffa
= Ka

-i = 11.3 x 106
megadarafs per cm. cube. . (263)

The concept of relative elastivity could be introduced if necessary,

in which case its values would be equal to the reciprocals of the

relative permittivities tabulated in Art. 56. However, it is suf-

ficient to use the relative permittivity, even when dealing with

elastances, so that eq. (261) becomes

S = (ffa/K)l/A (264)

The nomenclature used above is due to Mr. Heaviside;
1

it is

consistent and uniform with the nomenclature used in the electro-

conducting and magnetic circuits, and is suggestive as to the nature

of the phenomena. The electrostatic nomenclature now in general

use comprises but three terms; namely, condenser, capacity, and

specific inductive capacity. It is hoped that the more rational and

complete nomenclature used here will help to a clearer understand-

ing of the dielectric circuit, and will simplify engineering calcula-

tions relating thereto.2

Note: The author considers the above-given value of
, eq. (259),

to be an experimental coefficient, in the same sense in which other prop-
erties of materials are characterized by experimental coefficients. For an
engineer, the volt and the ampere are arbitrary units established by an
international agreement, no matter what their relation to the so-called

absolute units. The value of can be calculated theoretically, assuming
the ratio between the electrostatic and the electromagnetic units to be
known. In the absolute electrostatic system of units, with air as the

dielectric, a plate condenser having an area of A sq. cm. and a distance
between the plates equal to I cm., has a capacity equal to A/(4*1). The

1 O. Heaviside, Electromagnetic Theory (1894), Vol. 1, p. 28.
1 See the author's paper

" Sur Quelques Calculs Pratiques des Champs
Electrostatiques," in the Transactions of the Congresso Internazionak delle

Applicazioni ElcUriche, Turin, 1911.
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factor 4 w enters on account of an unfortunate selection of the expression
for Coulomb's law, which should have been gig 2/4 Trr2

,
instead of qiq^/r

2
.

In the absolute electromagnetic units the same capacity is equal to

(A/4 Ti-Z) (3 X lO10
)"

2
,
where 3 X 1010 is the velocity of light in centimeters

per second. To obtain the result in microfarads, the foregoing expression
must be multiplied by 1015

. On the other hand, the same capacity

expressed in the rational -units defined above is KaA/l. Equating the two

expressions gives Ka = lQ- 5
/(9 X 4 *) = 0.08842 X lO" 6 microfarads per

centimeter cube.

The fact that Ka can be expressed through the velocity of light does

not make *, the less an empirical coefficient, because the velocity of light

itself is determined experimentally. As a matter of fact, one of the ways
in which the velocity of light is determined consists in calculating it

indirectly from the value of a obtained from measurements.

Prob. 1. Show that in the English system *a = 0.2244 X 10~ 6 micro-

farads per inch cube.

Prob. 2. A condenser (Fig. 46) consists of two metal plates, 50 by
70 cm. each, in contact with a glass plate 3 mm. thick between them.

When a continuous voltage of 2400 is applied to the condenser, the ballis-

tic galvanometer shows a charge of 17.1 microcoulombs. What is the

relative permittivity of the glass? Ans. 6.9

Prob. 3. A 0.5-mf . mica condenser is to be made out of sheets of mica
12 by 25 cm., 0.3 mm. thick, and coated on one side with a very thin

film of silver. How many sheets are required? The relative permittivity
of the mica is about 6.

Ans. About 96 sheets, 48 sheets in parallel per terminal.

Prob. 4. Let the dielectric in problem 2 consist, instead of glass, of

three layers of different materials. Let the thicknesses of these layers
be 1.2, 0.7, and 1.1 mm., and let the corresponding values of relative per-

mittivities be 2, 3, and 5. What is the capacity of the condenser? Hint:

Calculate the equivalent elastance as the sum of three elastances in series.

Ans. 2.94 X 10~ 3 mf.

52. Dielectric Flux Density and Electrostatic Stress (Voltage

Gradient). Referring again to the uniform electrostatic field

(Fig. 46), consider a cube of the dielectric, one square centimeter

in cross-section, and one centimeter long in the direction of the

lines of force. Let a quantity of electricity Q be supplied by the

battery, as shown by the ballistic galvanometer; then the same

quantity of electricity must be displaced in the dielectric. Neg-

lecting a small displacement at the edges and at the outside sur-

faces of the plates, the whole quantity Q is uniformly displaced

between the plates. Therefore, if the area of each plate is equal

to A square centimeters, the displacement through the cube under

consideration is equal to

D = Q/A (265)
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Since Q is the total electrostatic flux, D is naturally called the

dielectric flux density. If Q is measured in coulombs, D is ex-

pressed in coulombs per square centimeter. In practice, Q is

measured in microcoulombs, and D is expressed in microcoulombs

per square centimeter. The dielectric flux density is analogous

to current density U (Art. 6) and to magnetic flux density B.

When an electrostatic field is non-uniform (Fig. 48), it is con-

veniently subdivided by lines of force and equipotential surfaces

perpendicular to the same. The procedure is similar to that used

in Art. 8. In this case, the total flux or displacement divided by
the area of an equipotential surface gives only the average flux

density through the surface. The actual density varies from

point to point, and it is therefore proper to speak of the dielectric

flux density at a point. Take a tube of infinitesimal cross-section

formed by lines of force, and let dQ be the displacement of electric-

ity through this tube. The displacement is the same through

any normal cross-section of the tube, because electricity behaves

like an incompressible fluid. Let dA be a particular cross-section

of the tube; then the flux density at this cross-section is

D = dQ/dA, (266)

D being usually expressed in coulombs (or microcoulombs) per

square centimeter. Since the cross-section of the tube is infinites-

imal, D is the density at the point corresponding to the position

of dA.

If the flux density in a uniform field is given, the total displace-

ment is

Q = DA (267)

In a non-uniform field, the flux density must be given as a function

of the coordinates of the field; so that

Q = f DdA, . (268)
Jo

the integration being extended over the whole area of an equi-

potential surface, or over the part of this area through which the

flux is to be calculated.

The electromotive force impressed at the terminals of a

condenser is balanced in the whole thickness of the dielectric;
that is, each small length of path in the dielectric produces its

own counter-electromotive force. Therefore, it is possible to

speak of the voltage drop per unit length of the path in the
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dielectric, the same as in Art. 6. This voltage gradient, or electric

intensity, in a uniform field is expressed by
G = E/l, (269)

and is measured, as in the conducting circuit, in volts per centi-

meter, kilovolts per millimeter, or in other suitable units.

In a non-uniform field, the electric intensity, or voltage gradi-

ent, varies from point to point. Let the voltage between two

infinitely close equipotential surfaces MN and M'N' (Fig. 48)

FIG. 48. A non-uniform electrostatic field, represented by lines of

displacement and equipotential surfaces.

be dE, and let the distance mn between the surfaces, along a

certain line of force HH', be dl. Then the voltage gradient along
mn is

G = dE/dl (270)

The length of the line mn being infinitesimal, G is the intensity at

any point between m and n.

When the voltage gradient is uniform, we have for the total

voltage across the field

E = Gl (271)

In a non-uniform field, G has to be given as a function of I, so that

E =
(272)
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the integration being performed between any two points on the

equipotential surfaces between which the voltage is to be deter-

mined.

Imagine a uniform field existing in a dielectric, and consider a

unit cube of the material. The total displacement through such

a cube is equal to the flux density D, and the voltage across it is

equal to the voltage gradient G. The permittance and the elas-

tance of the cube are respectively equal to the permittivity and

the elastivity of the material. Thus, applying to the cube

eqs. (249) and (250), we have

D = KG, (273)

and
G = <rD (274)

These equations are analogous to eq. (25) in Art. 6 of this book

and to eqs. (15) and (16), Art. 8, of the Magnetic Circuit. These

relations may be considered as fundamental in the theory of the

dielectric circuit, G being the cause, D the effect, and K (or a)

the coefficient of proportionality which characterizes the material.

Similar linear relations between cause and effect holS in the con-

duction of heat, and in the theory of elasticity. The voltage

gradient is sometimes called the stress in the dielectric, eq. (274) being

analogous to Hooke's law for elastic bodies. The elastivity a takes

the place of the modulus of elasticity.

If the field or the dielectric is non-uniform, eqs. (273) and (274)

still hold true for every point, D being the dielectric flux density
and G the voltage gradient at the point considered. This can be

proved by applying eqs. (249) and (250) to an infinitesimal par-

allelopiped instead of a unit cube.

Equations (268) and (272) are expressed in words by saying
that the total displacement Q is the surface integral of the dielectric

flux density D, and the voltage E is a line integral of the gradient
or stress G. These statements are almost self-evident from the

definition of the quantities and the structure of dielectrics.

Prob. 1. What arc the dielectric flux density and voltage gradient in

problem 2, Art. 51? Ans. 4.885 X lO" 3
nrc./cm.

2
;
8 kv./cm.

Prob. 2. The condenser specified in problem 4, Art. 51, is subjected
to a difference of potential of 10 kv. What are the voltage gradients
(stresses) in the three layers of dielectric?

Ans. 4.75; 3.16; 1.9 kv./mm.



CHAPTER XV

THE DIELECTRIC CIRCUIT (Continued)

53. Energy in the Electrostatic Field. When a dielectric

is being charged, a current flows into it from the source of elec-

tromotive force. This involves the expenditure of a certain

amount of energy, because the counter-e.m.f. due to the dielectric

stresses has to be overcome. This energy is not converted into

heat, and lost, as in the case of metallic conduction: it is stored

in the dielectric in potential form, and can be returned to the cir-

cuit by reducing the voltage at the condenser terminals. With
reference to the analogy shown in Fig. 47, the mechanical energy

expended by the pump in straining the elastic partition is stored

in the partition, in the form of potential energy. This energy
can be returned to the piston rod by allowing it to be moved by
the elastic forces of the partition.

In some cases it is necessary to calculate the energy stored in

an electrostatic field; or to express the energy stored per cubic

centimeter of dielectric, as a function of the stress G and flux

density D, at the point under consideration.

Consider first the simple case of a uniform field (Fig. 46),

and neglect the small amount of displacement occurring outside

the space between the plates. Let the dielectric be charged by

gradually raising the voltage between its limiting surfaces from

zero to a final value E; and let e and i be the instantaneous values

of the voltage and charging current at a moment t during the

process of charging.
1 The total electrical energy delivered to the

dielectric in charging it is

f*T f*TW = I eidt= I e>dq, .

Jo Jo
(275)

where T is the total time of charging, and dq = i dt is the infini-

tesimal charge or displacement added to the condenser during
the interval of time dt. The quantities dq and e can be expressed

1 The voltage and the charging current rise gradually, even though the

key K be closed suddenly. This is on account of an ever-present magnetic
inductance which acts as a kind of electromagnetic inertia.

157
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through the instantaneous flux density D t and the stress G t
',

namely, from eq. (267), dq = A dD t ,
and from eq. (271) e = G t l.

Performing the substitution, and taking the constant quantities A
and I outside of the sign of integration, we get

= Al C
T
G t dD t...... (276)

Jo

In order to integrate this expression, D t must be expressed through

G t ,
or vice versa. The relation between the two is given by eq.

(273). Eliminating D t ,
we obtain

W

W

= KAl f
T
G t dG t

= \ KVG\ . . . (277)

where V = A I is the volume of the dielectric, and G is the final

value of the stress, at the time T. Hence, the energy stored per

unit volume of the dielectric, or the density of energy, is

W' = W/V = \ KG
2 = \ G*/a..... (278)

Using relations (273) and (274), the preceding formula can also

be written in the following forms:

W' = i GD = i 2
/K
= \ aD*..... (279)

The analogy to the corresponding formula in Art. 69 of the Mag-
netic Circuit is apparent at once.

The total stored energy can be expressed through the per-

mittance or elastance of the dielectric. We have from eq. (249)

dq = C'de; substituting in eq. (275) and integrating, we get

W = \ CE* = i E2
/S...... (280)

Since the final charge, or total displacement Q equals CE or

E/S, the energy can be represented also in the following forms:

W = i QE = \ Q*/C = \ Q*S..... (281)

These formulae are analogous to the corresponding expressions in

Art. 57 of the Magnetic Circuit.

Let now the dielectric and the field be of an irregular form
as shown in Fig. 48. The stress G and the displacement D are

different at different points, so that it is necessary to consider

infinitesimal layers of the dielectric between consecutive equi-

potential surfaces, and infinitesimal threads of displacement be-

tween the electrodes. Consider an infinitesimal volume mnqp of

the dielectric, comprising the part of a tube of displacement EH'
between two equipotential surfaces MN and M'N'. The sides
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mp and nq can be provided with infinitely thin metal films, because

these sides lie in the equipotential surfaces, and therefore no

current would flow along these metal coatings. Then the element

of volume under consideration is converted into a small plate

condenser; the flux density and the stress within this element can

be considered as uniform, so that formula (277) holds true, and

we have
V....... (282)

Differentials are used because both the volume and the stored

energy are infinitesimal. The density of energy

W = dW/dV = !G2
,
..... (283)

and has the same expression as in the case of a uniform field; but

its numerical value is different from point to point, because G is

variable. The other expressions for the density of energy, eqs.

(278) and (279), also hold true for the points of a non-uniformly

stressed dielectric, provided that proper values of D and G are

used for each point.

The total energy stored in a non-uniform electrostatic field is

W = \ f
V

K&dV = \ C
V
GDdV = \ f

V

D*dV/K
; (284)

Jo Jo Jo

two more expressions may be written in which I/a- is used in place

of K. In order to perform the integration G and D must be given

as functions of coordinates, and the integration extended over

the whole space occupied by the field. Equations (280) and (281)

are true for condensers of any shape, because in the deduction of

these formulae no assumption is made as to the particular form of

the dielectric or the electrodes.

The expressions for the electrostatic energy of the field,

derived above, are analogous to the corresponding ones for the

potential energy of stressed elastic bodies; and this is consistent

with the assumed behavior of dielectrics. Consider the work

necessary per cubic centimeter to strain mechanically the elastic

fibers of a given material. The external mechanical force being

applied gradually (so as to avoid oscillations), the stress varies

from zero to its final value G. Let G t be some intermediate value

of the stress, and let D t be the corresponding strain. The same

symbols G and D are used here to denote the mechanical quantities

analogous to electric stress and displacement. While the strain
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increases from D t to (D t + dD t), the stress G t may be considered

constant; the infinitesimal work done is therefore equal to G t dD t .

The total work of deformation is

W

But, according to Hooke's law of elasticity, strains are propor-

tional to stresses, so that a linear relation exists between D t and

G t ,
similar to eq. (274). We thus arrive again at the result that

the work necessary to strain one cubic unit of an elastic material

is equal to | <rD2
.

Prob. Calculate the total stored energy, and the density of energy, in

the condenser given in problem 2, Art. 51.

Ans. 20.52 milliwatt-seconds (millijoules); 19.53 microjoules per
cubic centimeter.

54. The Permittance and Elastance ofj Irregular Paths. 1 In

most practical cases where it is required to determine the per-

mittance or elastance of a dielectric, for instance in high-tension

apparatus, the geometric shapes of the metal parts and of the

insulation are either irregular or too complicated to be expressed

analytically. It is therefore necessary in such cases to determine

the shape of the field by trials and approximations, or by experi-

ment. The general law, substantiated by all known experiments,
is as follows: The distribution of the lines of force and equipotential

surfaces in a dielectric is such as to make the total permittance a maxi-

mum, or the elastance a minimum.

This is a particular case of the general law of nature known as

the law of minimum resistance. Let a condenser of irregular

shape (Fig. 48) be connected to a source of unlimited energy,

having a constant voltage E. The law of minimum resistance

requires that the dielectric take in as much energy as is compati-
ble with its properties. This means that expression (280) must
be a maximum

;
that is, with constant E, the permittance C must

be a maximum, or the elastance S a minimum.
Now let it be required to establish a given flux in a certain

dielectric; in other words, let Q be a constant. The law of mini-
mum resistance requires in this case that the result be accom-

1 The treatment is similar to that of conductors of irregular shape, given
in Art. 10 of this book, and of irregular magnetic paths in Art. 41 of the

Magnetic Circuit.
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plished with the least possible expenditure of energy. According
to eq. (281), we have again the same condition of maximum C or

minimum S.

Therefore, in order to calculate the permittance (or the elas-

tance) of a given dielectric, or to find the flux densities and stresses

in different parts of it, proceed as follows: The field is mapped
out into small cells by lines of force and equipotential surfaces,

drawing them to the best of one's judgment; the total permittance
is calculated by properly combining the permittances of the cells

in series and in parallel. Then the assumed directions are some-

what modified, the permittance is calculated again, and so on;

until by successive trials the positions of the lines of force are

found with which the permittance becomes a maximum.
The work of trials is made more systematic by following a

procedure suggested by Lord Rayleigh. Imagine infinitely thin

sheets of metal (material of infinite permittivity) to be interposed

at intervals into the field under consideration, in positions approxi-

mately coinciding with the equipotential surfaces. If these sheets

.exactly coincided with the actual equipotential surfaces, the total

permittance of the field would not be changed, there being no

tendency for the flux to pass along the equipotential surfaces. In

any other position of the conducting sheets, the total permittance
of the field is evidently increased. Moreover, these sheets become
new equipotential surfaces of the system, because no difference of

potential can be maintained along a path of infinite permittance.

Thus, by drawing in the given field a system of surfaces approxi-

mately in the directions of the true equipotential surfaces, and

assuming these arbitrary surfaces to be the true ones, the true

elastance of the path is reduced. In other words, by calculating

the elastances of the laminas between the
"
incorrect

"
equipotential

surfaces and adding these elastances in series, one obtains an
elastance which is lower than the true elastance of the field. This

gives a lower limit for the required elastance (or an upper limit

for the permittance) of the field.

Imagine now the various tubes of force of the original field

wrapped in infinitely thin sheets of a material of zero permittivity
or infinite elastivity (absolute insulator). This does not change
the elastance of the paths, because no flux passes between the

tubes. But if these wrappings are not exactly in the direction

of the lines of force, the elastance of the field is increased, because
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the insulating wrappings displace the lines of force from their

natural positions. Thus, by drawing in a given field a system of

surfaces approximately in the directions of the lines of force,

calculating the permittances of the individual tubes, and adding

them in parallel, an elastance is obtained which is higher than the

true elastance of the field. This gives an upper limit for the

elastance (or a lower limit for the permittance) of the path under

consideration.

Therefore, the practical procedure is as follows: Divide the

field to the best of your judgment into cells, by equipotential

surfaces and tubes of force, and calculate the elastance of the

field in two ways: first, by adding the cells in parallel and the

resultant laminae in series; secondly, by adding the cells in series

and the resultant tubes in parallel. The first result is lower than

the second. Readjust the positions of the lines of force and the

equipotential surfaces until the two results are sufficiently close

to one another; an average of the last two results gives very

nearly the true elastance of the field.

One difficulty in actually following out the foregoing method,

is that the changes in the assumed directions of the field, that will

give the best result, are not always obvious. Dr. Th. Lehmann

has introduced an improvement which greatly facilitates the lay-

ing out of a field.
1 While he has developed his method for the

magnetic field, it is also directly applicable to the electrostatic

field. We shall explain this method as applied to a two-dimen-

sional field, though theoretically it is applicable to three-dimen-

sional problems also. According to Lehmann, lines of force and

equipotential surfaces are drawn at such distances that they
inclose cells of equal elastance. Consider a slice, or a cell, in a

two-dimensional field, a centimeters thick in the third dimension,

and of such a form that the average length I of the cell in the

direction of the lines of force is equal to its average width w in the

perpendicular direction. The elastance of such a cell is always

equal to unity, no matter whether the cell itself is large or small.

This follows from the fundamental formula for elastance, which

in this case becomes S =
al/(<r X w) = 1.

The judgment of the eye helps to arrange cells of widths

equal to their lengths, in proper positions with respect to each

1

"Graphische Methode zur Bestimmung des Kraftlinienverlaufes in der

Luft," Elektrotechnische Zeitschrift, Vol. 30 (1909), p. 995.
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other and to the electrodes; the next approximation is apparent
from the diagram, by observing the lack of equality in the average
width and length of the cells. Lord Rayleigh's condition is

secured automatically, since the combination of cells of equal

elastance leads to the same result, whether they are combined

first in parallel or in series. After a few trials the space is properly

ruled, and it simply remains to count the number of cells in series

and in parallel. Dr. Lehmann shows a few applications of his

method to practical cases of electrical machinery, and the reader

is referred to the original article for further details.

In a few simple cases, as for instance in determining the elas-

tance between two parallel metallic cylinders of circular cross-

section, or between two spheres, the principle of superposition of

electric systems in equilibrium can be used, and the result obtained

without trials. This principle is used in the determination of

the capacity of transmission lines and cables, in the next two

chapters. In two-dimensional problems, that is, in determining
the shape of a field between two infinite parallel cylinders of any
cross-sections whatever, the properties of conjugate functions can

also be used in some simple cases; for further details see the

references in Art. 10 above.

Prob. 1. Sketch empirically the field between two infinite parallel

cylinders of equal circular cross-section, the distance between the centers

being a few times larger than the diameter. Determine the lower and

upper limits of permittance per unit of axial length, and compare the

results with the theoretical formula (320) given in Art. 63 below.

Prob. 2. The terminal of a high-tension transformer consists of a

long vertical rod connected to the winding, and a torus ring concentric

with it, connected to the grounded case. The ring is of circular cross-

section, and is placed near the center of the rod. Assuming the insula-

tion in the whole field to be of the same permittivity, calculate by trials

the elastance of the combination, with certain assumed dimensions of

the rod and the ring.

65. The Law of Flux Refraction. When an electrostatic

flux passes from one dielectric into another of a different permit-

tivity (Fig. 9, Art. 11), the lines of force suddenly change their

direction at the dividing surface AB between the media, and

in so doing they obey the law of refraction, which is

tan 0!/tan 2
= KI/KZ (285)

Here 0i and 2 are the angles of incidence and refraction respec-

tively, while KI and KZ are the permittivities (relative or absolute)
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of the two media. A similar law is proved in Art. 11 above for

the electric conducting circuit, and in Art. 41a of the Magnetic

Circuit for the magnetic flux. The proof in the case of electro-

static flux is similar in all respects to that given in Art. 11, if the

student will use the words flux and flux density in place of current

and current density, and permittivity in place of conductivity.

Equation (285) shows that the lower the permittivity of a

dielectric the more nearly do the lines of force in it approach the

direction of the normal NiNz at the dividing surface. In this

way the path of a displacement between two given points is

shortened in the medium of lower, and lengthened in that of

higher permittivity, by such an amount in each case that the

total permittance of the composite condenser is larger with

refraction than without it. Hence, the existence of refraction is

a necessary consequence of the general law of least resistance,

mentioned in the preceding article.

When mapping out an electrostatic field in two or more

media, for instance, partly in a solid insulating material, partly

in oil, and partly in air, the lines of force must be drawn so as to

satisfy eq. (285) at the dividing surfaces. The permittance of

the part of the circuit in any one of the media will not be a

maximum, although the permittance of the whole combination

must be a maximum. It will thus be seen that the problem,
while quite simple in theory, is by no means an easy one in numer-

ical applications, especially with the shapes of surfaces used in

the construction of commercial high-tension apparatus. It is

advisable for the student to train his eye in sketching lines of

force in adjoining media of different permittivities, conforming
the field at least approximately to eq. (285). This can be con-

veniently done on available drawings of high-tension transformers,

switches, lightning arresters, etc. 1

56. The Dielectric Strength of Insulating Materials. The

proportionality between stress and flux density, indicated by
eqs. (273) and (274), holds only up to a certain limit; in this

respect it is similar to the proportionality between stresses and
strains in an elastic body. After a certain limit of dielectric

flux density or of voltage gradient has been exceeded, the material

1 See also some interesting sketches and experiments in Professor W. S.

Franklin's article on "
Dielectric Stresses from the Mechanical Point of View,"

in the General Electric Review, Vol. 14, June, 1911.
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weakens and finally breaks down. The phenomena of failure of

electric insulation and the subsequent disruptive discharge are

too well known to need a description here.

The values of the critical voltage gradient Gmax and of the

corresponding flux density Dmax ,
at which some of the more im-

portant materials break down, are given in the last two columns

of the table below. In designing insulation, the stresses must

be kept well below these critical values, the factor of safety de-

pending upon the importance of the apparatus, possibility of over-

potentials, and the gradual deterioration of the insulation by heat,

chemical action, moisture, and so forth. The values in the table

are principally intended to give the student an idea of the order

of magnitude of Gmax and Dmax . More accurate data will be found

in electrical handbooks and pocketbooks; in important cases these

design constants should be based upon test data obtained on the

material in hand.

It will be seen from the second column of the table that the

permittivities of solid and liquid dielectrics are larger than that

of air; in other words, they are more yielding to electric stress

than the air. This does not mean, however, that they break

down at a lower voltage gradient than the air. On the contrary,

the third and fourth columns show that the dielectrics commonly
used in electrical engineering are considerably stronger electrically

than the air, in that they can stand several times the electric stress

and displacement at which the air breaks down.

There does not seem to be any relation between the values of

elastivity and critical voltage gradient. One indicates the elec-

trical elasticity of the material, the other its ultimate strength.

They are analogous to the modulus of elasticity and the rupturing
stress respectively in the mechanics of materials. Air, from an
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electrical point of view, may be compared to a material of great

stiffness, but one which breaks at a comparatively small elonga-

tion. On the contrary, mica may be likened to a material which

is comparatively yielding, but can stand a very large elongation

before it is ruptured; so that, in spite of a smaller elastivity,

a much higher stress is required to rupture mica than air. The

student is advised to make clear to himself these two separate

properties of dielectrics. A rational design of high-tension

insulation depends essentially upon a distinct understanding of

them.

Dielectric strength may be properly given as the critical flux

density, Dmnz ,
but for practical purposes it is more convenient to

express it as the critical voltage gradient, Gmax ,
at which the

dielectric is broken down. When a dielectric is used for insula-

tion in the form of thin sheets having a comparatively large

radius of curvature, the flux density, and, consequently, the volt-

age gradient, are practically uniform throughout, so that Gmnx =

Gave . When, however, the layer of dielectric is thick as compared
to its radius of curvature, as for instance in the insulation of

high-tension machines, or when air or oil are tested between

two spherical terminals, the use of the average voltage gradient

Gave = E/l leads to wrong results. The only proper way in

this case is to calculate the voltage gradient for the place where

it is a maximum, and to see that it does not exceed the critical

value determined from previous tests. A breakdown in one

point of the dielectric results in an increase of gradient in others,

and possibly in a complete failure.

Prob. 1. Show how the values in the last column of the table are

derived from those in the two preceding columns.

Ans. Dmax = 0.08842 KGmnx X 1Q-*.

Prob. 2. A certain material stood about 82 kv. in a layer 3.7 mm.
thick. What voltage gradient can be allowed in this material at a factor

of safety of 2? Ans. 11 kv. per mm.
Prob. 3. Assuming the relative permittivity of the insulation in the

preceding problem to be 2.5, what is the density of energy at which the

material is broken down?
Ans. 5.45 X 10~ 3

joules per cubic centimeter.

67. The Electrostatic Corona. The phenomena which ac-

company the electrical breaking-down of air deserve special
mention in view of their great practical importance. When the

voltage at the terminals of an air condenser is raised sufficiently
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high, a pale violet light appears at the edges, at the sharp points,

and in general at the protruding parts having a comparatively
small radius of curvature. This silent discharge into air, due to

an excessive electrostatic flux density, is called the electrostatic

corona. In the regions where the corona appears, the air is elec-

trically
" broken down " and ionized, so that it becomes a con-

ductor of electricity. When the voltage is raised still higher the

so-called brush discharge takes place, until the whole thickness

of the dielectric is broken down, and a disruptive discharge, or

spark, jumps from one electrode to the other.

When the electrodes have projecting parts or sharp edges, the

corona is formed at a voltage far below that at which the disrup-

tive discharge occurs; the operating voltage of such devices is

generally limited to that at which the corona forms. No corona

is usually permissible in regular operation; first, because it may
involve an appreciable loss of power; secondly, because the dis-

charge, if allowed to play on some other insulation, will soon char

and destroy it. There are cases, however, in which some corona

formation is harmless. The air which is broken down becomes a

part of the electrode, smoothes down the shape of the protruding
metallic parts, increases their area, and thus reduces the danger-
ous flux density and makes it more uniform. It is of advantage
to operate certain parts of a very high-tension line at nearly the

critical voltage. Any voltage rise on the line due to lightning

or surges is automatically relieved by a corona loss into the

atmosphere; so that the line may be made self-protected, without

lightning arresters.

The formation of corona must be kept in mind in the design

of high-tension insulation, and in high-potential tests. Shapes
and combinations of parts which lead to high or non-uniform

dielectric flux densities should be avoided. Fig. 48 shows the

reason why the dielectric flux density, or the potential gradient,

is higher near protruding parts. The equipotential surfaces, for

obvious geometrical reasons, lie closer to each other near such

parts, while at a reasonable distance from the electrodes the

shape of the equipotential surfaces is not affected by small irregu-

larities in the shape of the metallic parts.

It will be seen from the table in the preceding article that the

air is broken down when the voltage gradient exceeds 3000 volts

per millimeter. Let this be the case at the point P (Fig. 48).
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The voltage gradient has this value only at the very surface of

the conductor, because the lines of force immediately spread out

in the air. Thus, only a very small portion of the air is broken

down and becomes part of the conducting electrode. No visual

corona is formed, however. Let now the voltage be raised still

further; then the next layer of air is broken down and becomes

part of the electrode. When a sufficiently thick layer of air is thus

ionized, a visual corona is formed around the point P. Consider-

ing the actual surface of the metal as the starting point, the volt-

age gradient at that point now would seem to be higher than 3000

volts per millimeter. This higher value is called the visual voltage

gradient as distinguished from the disruptive voltage gradient of

3000. The student should not be misled by these names. In

reality the voltage gradient does not exceed 3000, because beyond
this the air becomes part of the electrode; however, the concept of

visual voltage gradient is convenient in calculations.

In reality the phenomenon of ionization of air and formation

of the corona is not as simple as described above, especially around

conductors of small diameter, say less than 6 mm. The physical

state of the layer of air adjacent to the conductor seems to be in

some peculiar way affected by it, and the critical voltage gradient

apparently depends in this case upon the diameter of the conductor.

A discussion of numerical values and of physical theories is out-

side the scope of this book; and the student is referred for infor-

mation to the numerous articles on the subject that appear in the

leading periodicals, and in the transactions of the electrical engi-

neering societies in this country and abroad. 1

Quite extensive tests on corona formation, critical voltage, and
the accompanying loss of power were performed by the General

Electric Company, in 1910-11, and have been described by
Mr. Peek. 2 The student is referred to his article for numerical

data; the results are given on the first few pages of the article,

and are illustrated by a numerical example.
1

See, for instance, H. J. Ryan,
"
Open Atmosphere and Dry Transformer

Oil as High-voltage lusulators," in the Trans. Amer. Inst. Electr. Engrs.,
Vol. 30, Jan., 1911. This paper is a splendid exposition of the subject by
one of the pioneer investigators of the corona, and contains numerous refer-

ences to other articles on the subject. Professor J. B. Whitehead's experi-
mental investigations are particularly noteworthy.

1 F. W. Peek, Jr., "The Law of Corona and the Dielectric Strength of

Air," Trans. Amer. Inst. Electr. Engrs., Vol. 30, July, 1911; also Vol. 31.
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Prob. 1. Assuming that under certain conditions a corona is formed

when the dielectric flux density exceeds 0.0034 microcoulombs per square

centimeter, calculate the factor of safety of a 25-cycle transmission line

for which the charging current is 0.12 amp. per kilometer, the diameter

of the conductors being 12 mm. Solution: The line is charged during
0.01 of a second, and the average charging current is 0.12/1.11 = 0.108

amp.; hence, the maximum electrostatic displacement in the air is 1080

microcoulombs per kilometer. The surface of each conductor is 377,000

sq. cm. per kilometer, so that the density of displacement is 1080/377,000
= 0.002865 microcoulombs per square centimeter, and the factor of

safety is 34/28.65 = 1.20.

58. Dielectric Hysteresis and Conductance. When an al-

ternating voltage is applied at the terminals of a condenser, the

dielectric is subjected to periodic stresses and displacements.

If the material were perfectly elastic, no energy would be lost

during one complete cycle, because the energy stored during the

periods of increase in voltage would be given up to the circuit when
the voltage decreased. In reality, the electric elasticity of solid

and liquid dielectrics is not perfect, so that the applied voltage

has to overcome some kind of molecular friction, in addition to

the elastic forces. The work done against friction is converted

into heat, and is lost, as far as the circuit is concerned. The

phenomenon is similar to the familiar magnetic hysteresis, and is

therefore called dielectric hysteresis. The energy lost per cycle

is proportional to the square of the applied voltage, because both

the displacement and the stress are proportional to the voltage.

When stresses are well below the ultimate limit of the material,

the loss of power caused by dielectric hysteresis is exceedingly
small. Some investigators are even in doubt as to whether it

exists at all. There is often an appreciable loss of power in com-

merical condensers, but this loss can be mostly attributed to the

fact that dielectrics are not perfect insulators. While their ohmic

resistance is exceedingly high, as compared with that of metals,

they nevertheless conduct some current, especially at high voltages.

Thus, the observed loss of power and the heating of condensers

may be simply ascribed to the PR loss in the insulation. More-

over, small coronas can form at the edges and projecting parts,

even at the operating voltage, and thus be an additional source

of loss. Some small loss is also due to the ohmic resistance and

eddy currents in the metallic sheets which compose the electrodes

or plates of the condenser.
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An imperfect condenser, that is, one which shows a loss of

power from one cause or another, can be replaced for purposes

of calculation by a perfect condenser with an ohmic conductance

.shunted around it. This conductance, or
"
leakance," as some

authors call it, is selected of such a value that the PR loss in it is

equal to the loss of power from all causes in the given imperfect

condenser. The actual current through the imperfect condenser

is considered then as consisting of two components, the leading

reactive component through the ideal condenser, and the loss

component, in phase with the voltage, through the shunted con-

ductance. In this way, imperfect condensers can be treated graphi-

cally or analytically, according to the ordinary laws of the electric

circuit.

Prob. 1. A certain kind of condenser shows a loss of power of about
17.9 watts per microfarad, at 2200 volts, 25 cycles. By what fictitious

conductance should an ideal condenser be shunted, in order to replace
a condenser of this kind having a capacity of 1.5 mf,?

Ans. 5.55 rnicromhos.



CHAPTER XVI

ELASTANCE AND PERMITTANCE OF SINGLE-PHASE
CABLES AND TRANSMISSION LINES

59. The Elastance of a Single-core Cable. A cross-section

of a single-core cable is shown in Fig. 49. The round conductor

in the center is assumed to be solid (not

stranded) for the sake of simplicity. It is

surrounded by a layer of insulation, and is

protected on the outside by a lead sheath-

ing. Let such a cable be subjected to a

difference of potential between the core and

the sheathing; for instance, let one pole of

a battery be connected to the core and the

other pole to the sheathing. Let it be re-

quired to find the permittance or the elast- ^ fsin^core OTlon"
ance of the dielectric for a certain axial centric cable,

length I of the cable.

For reasons of symmetry, the lines of force are radial straight

lines between the two metal surfaces, and the equipotential sur-

faces are concentric cylinders. Consider the insulation to be sub-

divided into concentric layers of infinitesimal thickness. The
elastances of these layers are all in series, so that it is sufficient to

express analytically the elastance of a layer having a radius x

and thickness dx, and to integrate this expression between the

limits a and 6, where a is the radius of the core, and 6 is that of

the inner surface of the sheathing. The elastance of the layer in

question is

dS = <rdx/(2irxl), (286)

dx and 2 irxl being respectively the length and cross-section of the

path of the radial flux. Integrating this expression between the

limits a and 6 gives

S= (<r/2irZ)Ln(6/a), (287)

the abbreviation Ln standing for natural logarithm.
171
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For practical calculations it is convenient to modify this formula

in three respects; namely, (a) to introduce the relative permit-

tivity K of the insulating material, (b) to express I in kilo-

meters, and (c) to use common logarithms. Making these

changes, we finally obtain

S = C~ 1 = (41.45/XZ) log (b/a) megadarafs. . . (288)

For the permittance (capacity) per kilometer we have accordingly

C' = C/l = 0.0241 K/\og(b/a) microfarads per kilometer. 1

(289)

In some cases it is necessary to know the voltage across a

certain part of the insulation, for instance between the radii r and

r'. Applying formula (287) to this case, for I = 1 cm., we get

S'rr = (ff/2v) Ln (r'/r). The voltage drop Err> from r to r' is equal

to this elastance multiplied by the electric displacement Q' per

centimeter length of the cable. Or

Err
' = Sf

rr'
- Q' =

(ffQ
r

/2 TT) Ln (r'/r}. . . (290)

This formula finds its important application below in the calcula-

tion of the permittance of single-phase and polyphase transmission

lines. It is absolutely essential to agree in regard to the signs in

eq. (290). In the applications that follow, Q' is taken with the

plus sign when the positive displacement is directed from the con-

ductor, and with the minus sign when it is directed towards the

conductor. It is also important to write the distances r' and r in

the order given, because interchanging r' and r in eq. (290)

changes the sign of Err '.

If the insulation consists of two or more concentric layers of

different materials, the elastances of the layers are calculated

separately, according to formula (288), and then added in series.

The permittance of the cable as a whole is the reciprocal of this

resultant .elastance. The same formulae apply to a concentric

cable without sheathing, the outside conductor taking the place
of the sheathing as far as stresses in the dielectric are concerned.

With two cylindrical conductors side by side the elastance is cal-

culated as shown in Art. 63 below. With three conductors the

theory is rather difficult; as is also the case when the conduc-
tors are not of circular cross-section. Those interested will find

1 This simple derivation of the formula for the capacity of a single-core
cable demonstrates in a particularly striking manner the usefulness of the

concept of elastance.
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extensive literature on the subject in the European electrical

magazines and proceedings of electrical societies. In practice,

the permittance of such cables is usually determined by test.

The distribution of the electric stresses in a single-core cable

is of considerable practical importance. The total displacement

Q being the same through every concentric layer of the dielectric,

the flux density and consequently the stress is a maximum at the

surface of the inner core. For a layer of radius x we have

Q = Dx '2-n-xl = const., (291)

where Dx is the density of displacement through that layer.

Hence,
Dxx =

const., (292)

which means that the density of displacement is inversely pro-

portional to the distance from the center. Since displacements

are proportional to stresses (with a uniform insulation), we also

have
Gxx = const (293)

A useful relation between the total applied voltage E and the

stress Gx at a given point in the dielectric can be deduced from

eq. (293). We have
Gx = const,/x;

and if we multiply both sides by dx and integrate between a and

b, remembering that voltage is the line integral of intensity, we
obtain

Gxdx = E =
(const.) Ln (6/a).

Eliminating the constant between these two equations, gives

Gx = E/[x Ln (6/a)] (294)

Equations (292) and (293) show that a homogeneous dielectric

is fully utilized with regard to its dielectric strength only at the

surface of the core, the stress gradually decreasing toward the

periphery. This condition could be helped by gradually increasing

the elastivity of the material toward the sheathing, so as to in-

crease the voltage drop and the stresses there. If the elastivity

of each layer could be made exactly proportional to its radius,

the stress Gx would be the same throughout the dielectric. Such

a condition would be an ideal one, with regard to economy in
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material, provided that^ the dielectric strength of the
"
variable

insulation
" were constant.

This purely theoretical conclusion leads to the important

practical question of the grading of insulation of cables. With

high-tension cables, in which the thickness of insulation is large,

it pays to provide two or more layers of different materials, utiliz-

ing their permittivities and ultimate strengths in the most ad-

vantageous manner. The problem is primarily to relieve] the

stress near the inner core, and this is done by placing near it a

layer of insulation of high permittivity, so as to cause a low volt-

age drop. One case where the opposite arrangement would be

advantageous is in a low-voltage cable in which it is desired to

keep the total permittance as low as possible (for example, to

obtain small capacity or low charging current at high frequen-

cies). In this case the layer surrounding the core must have as

high an elastance as possible, because it is this layer that contrib-

utes most to the total elastance of the cable. With a clear

understanding of these principles, the student will be able to

design a graded insulation for given conditions, if he knows the

properties of the available materials. 1

Prob. 1. A single-core cable receives a charge of 1.18 millicoulombs

per kilometer when a continuous voltage of 12 kv. is applied between
the core and the sheathing. The core consists of a solid conductor the

diameter of which is 5 mm.
;
the insulation is 9.5 mm. thick. Determine

the value of the relative permittivity of the material of insulation, and
the extreme values of the dielectric flux density.

Ans. K =
2.78; Dmaz = 0.00750; Dmin = 0.00156 microcoulombs

per sq. cm.

Prob. 2. The insulation used in the cable specified in the preceding
problem breaks down at a flux density of 0.062 me. per sq. cm. Show
that the critical voltage for the cable is about 70 alternating kilovolts.

Prob. 3. What is the ratio between the maximum and the average
stress in the insulation in problem 1? Ans. 2.42. 2

Prob. 4. Deduce formula (290) from the fact that the voltage is the
line integral of the electric intensity.

1 For a theoretical treatment of the grading of insulation, and for the

bibliography of the subject, see H. S. Osborne, Potential Stresses in Die-
lectrics (1910), a thesis presented to the Massachusetts Institute of Tech-

nology for the degree of Doctor of Engineering.
* There is a tendency in practice to deal with average stresses even when

the field is far from being uniform. The answer to this problem shows that
one has to be careful in using an average value, unless its ratio to the maxi-
mum stress is known.



CHAP. XVI] ELASTANCE OF CABLES AND LINES 175

Prob. 6. Show by actual calculation that in the foregoing cable the

maximum stress in the dielectric is reduced by increasing the diameter of

the conductor to 7.5 mm., with the same diameter of the sheathing.

This is in spite of the fact that the insulation becomes thinner, and

consequently the average stress greater.

Prob. 6. Referring to the preceding problem, show that it is of ad-

vantage to make the ratio b/a about equal to
,
where e = 2.71828 . . .

is the base of the natural system of logarithms. If the diameter of the

conductor be further increased, so that the ratio b/a becomes less than

e, the maximum stress does not continue to decrease, but increases in-

stead. Solution: The stress at the core is Ga = E/[aLn (b/a)] according
to eq. (294) . As a varies, Ga reaches its maximum when dGa/da = 0.

Differentiating, we get

dGa/da = E [1
- Ln (6/a)]/[a Ln (b/a)]

2 =
0;

whence, 1 Ln (6/a) = 0, or b/a = t.

Prob. 7. Explain the following deduction from the theorem stated in

the preceding problem. In a concentric cable subjected to an excessive

voltage, if the insulation is quite thick, the layer around the inner core is

first gradually destroyed or charred up to a certain thickness, and then

the rest of the insulation suddenly breaks down. With a thin layer of

insulation no such phenomenon is observed.

Prob. 8. A cable is provided with several concentric layers of insula-

tion, the external radii of which are 61, 62 , etc., and the relative permit-

tivities, Ki, K2 ,
etc. Show that the elastance of the cable is expressed

by the formula

S = (41.45/0 [Kr l

log (bi/a) + Krl

log (62/6,) + Krl

log (63/62) + etc.].

Prob. 9. Show that in a single-core cable the density of energy stored

in the dielectric varies inversely as the square of the distance from the

center.

Prob. 10. A conductor 2 a cm. in diameter is surrounded by a con-

centric metal cylinder of 26 cm. inside diameter. What alternating volt-

age can be allowed between the cylinder and the conductor at a factor of

safety k against the formation of corona?

Ans. E = 18.4 a (Dc X 10 3
/&) log (6/a) effective kilovolts, where Dc

is the flux density in microcoulombs per sq. cm., at which corona is

formed.

Prob. 11. Show that the elastance of the dielectric between two con-

centric spheres of radii a and 6 is equal to (o-a/4 *-./?) (I/a 1/6) mega-
darafs.

Prob. 12. Show that with two concentric spheres the equation corre-

sponding to (294) is Gx = E/[x* (a~
l -

&-)].

Prob. 13. Apply the formulae given in the text above to the theory of

a condenser-type terminal. 1

1 See A. B. Reynders, "Condenser Type of Insulation for High-tension

Terminals," Trans. Amer. Inst. Electr. Engrs., Vol. 28 (1909), p. 209.
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60. The Elastance of a Single-phase Line. The general

character of the electrostatic field between two infinite parallel

conductors is shown in Fig. 50. The lines of force are arcs of

circles extending from one metal surface to the other; the equi-

potential surfaces are circular cylinders eccentric with respect to

the conductors (see Art. 62 below). It is required to calculate

the elastance of the air between the two conductors, for a unit

axial length of the line. Knowing this elastance, the charging

current of the line can be calculated for a given frequency. This

elastance, or its reciprocal, the permittance, is used in the pre-

determination of the regulation of a transmission line (Art. 68

below).

We shall consider in this article the usual practical case in

which the radius a of the conductors is small as compared with

the interaxial distance b. It is shown in Art. 63 below how to

determine the elastance when the diameters of the cylinders are

comparatively large.

For purposes of analysis it is convenient to consider the field

shown in Fig. 50 as the result of the superposition of two simple

radial fields similar to that in Fig. 49. Consider the conductor

A
, together with a concentric cylinder of an infinitely large radius,

as one electric system. Let the conductor B with a similar con-

centric cylinder form another independent system. Let the con-

ductor A be connected to the positive pole of a battery of voltage

E, the conductor B to the negative pole, and the two cylinders at

infinity to the middle point of the battery. In the first concentric

condenser the displacement of positive electricity is from the con-

ductor A to the infinite cylinder, while in the second system the

positive displacement is from the infinite cylinder toward the con-

ductor B. The displacements due to the two systems are equal

and opposite at the two infinite cylinders, and the cylinders them-

selves coincide at infinity, because the distance AB between their

axes is infinitely small as compared with their radii. Hence, the two

displacements at the cylinders cancel each other, and the combina-

tion of the two cylindrical condensers is electrically identical with

the two given parallel conductors A and B.

In a medium of constant permittivity the resultant stress or

voltage gradient, produced at a point by the combined action of

two or more independent electric systems, is equal to the geometric
sum of the stresses produced at the same point by each system.
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This principle of superposition can be considered either as an ex-

perimental fact or as an immediate consequence of the fact that

in a medium of constant permittivity the effects are proportional

to the causes. This principle being true for electric intensities,

the component flux densities at a point are also combined accord-

ing to the parallelogram law, because they are proportional to

the intensities. Hence, the resultant electrostatic flux can be re-

garded as the result of the superposition of the fluxes created by

FIG. 50. The electrostatic field produced by a single-phase trans-

mission line.

the component systems. Furthermore, the actual voltage be-

tween any two points in the dielectric is the algebraic sum of the

voltages due to the component systems, because each voltage is

the line integral of the corresponding voltage gradient, and the

principle of superposition is valid for these gradients. This line

integral is a function only of the positions of the two points, and

is independent of the path along which the integration is per-

formed. This latter fact is very convenient in applications of the

principle to the solution of problems.
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In order to be able to apply the formulae deduced in the pre-

ceding article, it is essential that the diameters of the two wires be

small as compared with the distance between them. The reason is

that each component system is supposed to possess a radial field,

in spite of the presence of the other conductor. This is practically

true when the second conductor is so small, or so far distant from

the first, that the infinite permittivity of its material does not

appreciably distort the radial field. To be more precise, the dis-

tortion of the radial component field originating from each con-

ductor, caused by the presence of the other, must be negligible.

It is sufficient to calculate the elastance of that part of the

system between one of the conductors and the neutral plane of

symmetry 00', the total elastance being equal to twice that

value. This we can do by computing the voltage needed to

produce a displacement Q' per unit length of the line. The volt-

age between the surface of the conductor A and the point N in

the plane of symmetry 00' is equal to \ E. On the other hand,
the .same voltage can be expressed as the sum of the voltages due

to the two component systems. Referring to eq. (290), let the

distance r' refer to the point N, and let r refer to a point on the

surface of the conductor A. Then, as far as the first component

system is concerned, the voltage between A and N is equal to

(aQ'/lv} Ln (\ b/a), where Q
f
is the actual displacement per unit

length of the line. In the second system, the voltage between the

same two points is (ffQ'/2v) Ln (\b/b}. The minus sign is

due to the fact that the displacement in the second system is

toward the conductor B, and hence must be considered as negative
if that at the first conductor is regarded as positive. The ratio

r'IT for the second system is more accurately equal to \ b/(b a),

but a, being by supposition small as compared to 6, is neglected in

the denominator. Equating the sum of the preceding two expres-
sions for the voltage between A and N to the actual voltage E,
we get

\E = (aQ'/2 TT) Ln (b/a) (295)

Hence, the elastance between one of the conductors and the

neutral plane 00', for a unit of axial length, is

S1 = (C")-
1 = \ E/Q' = (a/2 T) Ln(6/o), . (296)

or, with air as the dielectric,

S' = (C')-
1 = 41.45 log (6/a) megadarafs per kilometer. (297)
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The corresponding permittance is

C' = (S')~
l =

0.0241/log (b/a) microfarads per kilometer. (298)

When using these formulae, one must not forget that the per-

mittance is proportional to the length of the line, while the elas-

tance varies inversely as the length of the line. The total elastance

for a unit length between the two conductors is equal to 2 Sf

,
the

corresponding permittance being \ C'.

Prob. 1. For a few standard spacings and sizes of conductor, check

the values of permittance given by eq. (298) with those tabulated in an

electrical pocketbook.
Prob. 2. For some assumed values of a, 6, and E, corresponding to

an actual transmission line, plot a curve of values of the voltage gradient

along the line AB, and also draw the horizontal straight line represent-

ing the average gradient E/b.
Hint : At a distance x from A the intensity due to the system A is

aQ'/ (2 TTZ); that due to the system B is oQ'/ [2 * (6
-

a;)], both inten-

sities being directed from left to right.

Prob. 3. In Fig. 50 let A and B be small spheres, instead of cylinders.

Show that the elastance between one of the spheres and the neutral

plane 00' is equal to (<r/4 *) (I/a 1/6). . Hint: Apply the principle of

superposition, as in the text above, and utilize the solutions of problems
11 and 12 of the preceding article.

Prob. 4. In a transmission line the wire B is split into two separate
conductors BI and B2 ,

connected in parallel. The spacings A BI,

A B2
,
and BI 52 are equal to 6 t ,

62,
and 612 respectively. Show how

to calculate the total permittance per unit length of the line, using the

method of superposition. Solution: Let Q
f

, Qi, and Q2
'

be the displace-

ments issuing per unit length of the conductors A, BI, and B2 respectively.

Resolve the given system into three systems, with the three given con-

ductors each concentric with a cylinder of infinite radius. Then we have
the following three conditions : (a) Q

f + Q/ + Q2
' =

0, because electricity

behaves as an incompressible fluid; (b) the given voltage E between
A and BI is the sum of the partial voltages for the three component
systems, each expressed according to eq. (290) ;

and (c) the same is true

for the voltage E between A and Bz .

1 From these three equations the

quantities Qi and Q2
'

are eliminated, and the required elastance is de-

termined from the resultant equation, as the ratio of E to Q'.

Prob. 6. Show how to calculate the elastance between two small

cylinders or spheres of unequal radii.

Prob. 6. Analyze the formal mathematical reason for which the elec-

trostatic equipotential lines in Figs. 49 and 50 coincide with the magnetic
lines of force, and vice versa. Compare Figs. 46 and 47, Arts. 59 and

60, in the Magnetic Circuit.

1 Or else we may use as condition (c) the fact that the resultant voltage

between BI and J52 equals zero.
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61. 1 The Influence of the Ground upon the Elastance of a

Single-phase Line. When the ground is used as the return con-

ductor of a circuit, for instance in single-phase railways and in

telegraph lines, the elastance of the circuit is calculated by assum-

ing the ground to be a good conductor of electricity; in other

words, its permittivity is assumed to be infinitely large. This

gives a larger permittance than any other assumption, and con-

sequently a value which is on the safe side. According to the

law of refraction (Art. 55) the lines of force from the metallic con-

ductor enter the ground at right angles to its surface; so that the

field has the shape shown in Fig. 50, between one of the wires

and the plane of symmetry 00', which in this case represents the

surface of the ground. This leads to Lord Kelvin's method of elec-

tric images, which we shall use in its simplest form only.

When it is required to find the shape of the field, or the elastance

between a conductor such as A and an infinite conducting surface

such as 00'
,
first locate a fictitious conductor B, which is the elec-

tric image of the conductor A
;
that is, B is located as if it were

the optical image of A in the plane mirror 00'. Furthermore, if

A has a potential of E volts above that of 00', take the potential

of B as E volts below that of 00', the voltage between A and B
thus being 2 E volts. Having located B, the conducting plane
00' is removed, and the field between A and B is determined.

The part of the field between A and 00' has real existence, that

between 00' and B is fictitious.

The validity of this principle in the case under consideration

becomes evident by the following reasoning: Let a voltage of

2 E be maintained between A and B by means of a battery.
Place an infinite conducting sheet of negligible thickness so as

to coincide with the equipotential plane 00'. The field is not

affected thereby, the lines of displacement being normal to this

sheet. Connecting the sheet to the middle point of the battery
does not in any way disturb the field. Now the field between A
and the sheet 00' is maintained by one half of the battery, that

between B and 00' by the other half. Both halves are in equi-
librium independently of each other, so that the conductor B with
its half of the battery may be removed without disturbing the
field between A and 00'. Conversely, to find the field between

1 The rest of this chapter may be omitted if so desired, as it is not neces-

sary to an understanding of the remainder of the book.
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A and a conducting sheet 00', the latter is replaced by a fictitious

conductor B, so as to reduce the conditions to those investigated
in the previous article. For a general discussion of the principle

of electric images, see any standard work on the mathematical

theory of electricity and magnetism.

Applying this principle to the case of a single-phase line with

ground return, we see immediately that all of the formulae de-

duced in the preceding article hold true, provided that we put
6 = 2h, where h is the elevation of the conductor above the

ground. Since this elevation is usually quite considerable, it will

be seen that the elastance of the circuit is larger, and the charging
current smaller as compared to the case of a metallic circuit

having a comparatively small spacing.

The next case to be considered is that of the elastance of a

metallic return line, as reduced by the proximity of the earth

(Fig. 51). The elastance is reduced as compared to that in Fig.

50 because part of the medium of finite elastivity (air) is replaced

by the ground, which is assumed to be of zero elastivity, or a

good conductor of electricity. It will be seen from the figure that

the lines of force are deflected toward the ground, where they
find a path of less elastance.

The total elastance between the conductors A and B is cal-

culated, using again the method of electric images. The lines of

force meet the ground at right angles; and its surface is one of

equal potential. The field above the ground would be the same
if the ground were removed and replaced by the electric images
A' and B' of the wires, the polarity of the images being that indi-

cated in the sketch. The surface of the ground becomes now
a plane of symmetry. The fictitious field below the ground is

indicated by the dotted lines. The dielectric field may now be

considered as if due to a superposition of four systems, each consist-

ing of one of the conductors and a cylinder at infinity. Applying

eq. (290) for each of these four systems, we find that the voltage

between A and B,

due to system A, is +(<rQ'/2 T) Ln (b/a);

due to system B, is (vQ'/2 TT) Ln (a/6) ;

due to system A', is - (<rQ'/2 TT) Ln (2 d/2 hi} ;

due to system B r

,
is +(oQ'/2 TT) Ln (2 h2/2 d) ;

where 2 d = AB' = A'B. The actual voltage between A and B
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being equal to E, we have, by adding the preceding four ex-

pressions,

E =
(<rQ'/2 TT) [2 Ln (6/a)

- Ln (tf/hJk)]. . . (299)

One half of the elastance between A and B is

S r =
i- E/Q' =

(cr/27r) [Ln (b/a)
-

% Ln (d
2/W]. (300)

FIG. 51. The electrostatic field due to a single-phase line AB, as affected
by the proximity of the ground. A' and B' are the electric images of A and B.

This expression is identical with formula (296), except for the last

term, which represents the reduction in elastance due to the pres-
ence of the ground. When the distances h and k* to the ground are
large as compared to the spacing 6, the ratio tf/fuhe differs but
ittle from unity, and the correction is small because the logarithm
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of unity is equal to zero. Equation (300) can be written also in

a simpler form by combining the two logarithms into one. We
obtain then

S' = (<r/2x)Ln(6c/a), (301)

where bc stands for the corrected spacing, determined from the ex-

pression

bc = b(Vhihv/d). . . .
.

. . . (302)

We have thus arrived at the following simple rule: The elastance

and permittance of a single-phase line, with the effect of the ground

considered, are expressed by the same formulae (296) to (298) as

though this effect were ignored, provided that the actual spacing b is

replaced by the corrected spacing bc given by formula (302) or (305).

In practice, the values of hi, h%, and 6 are known, and it is de-

sirable to avoid the use of the quantity d in the foregoing formula.

Applying a well-known theorem of elementary geometry, we have

from the triangle AA'B

A 7
!!

2 = lA' 2 + AB 2 + 2 AA' X IF,
or

4d2 = 4 ^2 + 62 + 4Ai(fo-fo),

from which
4 dz = b2 + 4 hjtt.

Hence
d*/hih = 1 + i V/hih* (303)

Equation (300) becomes then

S' = (a/2 T) [Ln (6/a)
-

J Ln (1 + J V/hJ*)], . (304)

and from eq. (302) we have

bc
= b/Vl + i

b*/hiht. (305)

When tables of capacity for standard spacings are used, as tabu-

lated in various reference books, the correction for the influence

of the ground will be found convenient in the form shown in

problem 2 below.

Prob. 1. For various usual spacings and sizes of conductor, calculate

the per cent error introduced in computing the permittance of a trans-

mission line by neglecting the influence of the earth in the most unfavor-

able cases. Select the conductors either in a vertical or in a horizontal

plane, whichever arrangement in your opinion is more affected by the

ground.
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Prob. 2. When permittances are taken from standard tables, it is not

convenient to use the corrected spacing bc ,
because capacities are tabu-

lated for standard spacings only. In this case it is convenient to repre-

sent the elastance given by eq. (304) in the form Sc
' = S' - s, where S'

is the reciprocal of the value of capacity found in the tables, and s is the

correction due to the presence of the ground. Deduce a simple form of

this correction, when it is small. Solution: Expanding the natural loga-

rithm according to the series Ln (1 + x) = x f x 2 + i z 3
etc., we find

that the correction s = 9 Ln (1 + \ fr/h^) = 9 [| fr/h^ - |(i&VW 2

+ etc.] in megadarafs per kilometer of one conductor. S' must of course

be taken also in megadarafs per kilometer of one conductor.

Prob. 3. Deduce formulae for the influence of the ground in the case

of small spheres in place of the cylinders.

62. The Equations of the Electrostatic Lines of Force and

Equipotential Surfaces Produced by a Single-phase Line. In

Fig. 50, let P be a point on the line of force AN'PB, of which

we desire to find the equation. Let us calculate the total flux

which passes from conductor A to B between the plane of sym-

metry AB, and the surface of force on which the point P is

located. 1

Let the axial length for which the flux is determined be equal

to one centimeter. This flux may be considered as the resultant

of the fluxes due to the systems A and B. The radial flux pass-

ing between AB and P, due to the component system having
the center A, is equal to Q'6i/2ir, and is directed from left to

right. The flux due to the B system is equal to Q'dz/2 IT, and is

also directed from left to right, B being the negative conductor.

The total or the actual flux between the surfaces of force AB and
AN'PB equals (Q'/2 ir) (0i + 2). Since this flux does not depend

upon the position of the point P, provided that the point is taken

upon the line of force under consideration, we have

l -f 2
= const (306)

for all points on a line of force. This is the equation of the line

of force. For different lines of force, the value of the constant is

different. In the triangle APB, the angle w is supplementary to

1 It is convenient to speak of a surface formed by lines of force as a sur-

face of force. For instance, a line of force such as AN'PB, should it move in

a direction perpendicular to the plane of the paper, would form a cylindrical

surface, which we shall call a surface of force, by analogy with a line of force.

On the other hand, we shall call a line such as CPC' an equipotential line, to

distinguish it from the corresponding equipotential surface which it repre-
sents in the sketch.
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the sum of the angles 61 and 2 ,
so that condition (306) may also

be written

w = const (307)

This represents the arc of a circle passing through A and B, of

which w is the inscribed angle. It is thus proved that the lines of

force are arcs of circles passing through A and B.

For points on the line of symmetry 00' the angles 0i and 2 are

equal, so that the total flux corresponding to a certain angle 0i

is (Q'/2 TT) (2 0i)
=

Q'0i/7r. This fact permits us to mark on the

line 00' the intersections of the surfaces of force between which

are included definite fractions of the total flux Q'. For instance,

let it be desired to draw a line of force such that the flux between

it and the plane AB shall equal one sixth of the total flux. One
sixth of 180 degrees are 30 degrees; we therefore draw from A a

straight line at an angle of 30 degrees to AB, and through its inter-

section with 00' draw an arc of a circle passing through A and B.

In this way, the total flux, or what is the same, the total per-

mittance between A and B, can be divided into any number of

equal or unequal permittances in parallel.

To prove that the equipotential lines are also circles, take

again a point P determined by the distances n and r2 from A and

B respectively. If the point C lies on the same equipotential line,

the voltage between P and C is equal to zero, so that, applying

eq. (290) for the two component systems, we get

(aQ72 TT) Ln (n/AC) -
(*Q'/2 *) Ln (r2/C) =

0,

from which
Ln (n/AC) = Ln (r2/BC),

or

ri/r2
= AC/BC = const (308)

This is the equation of an equipotential line in
"
bipolar

"
co-

ordinates; the curve is such that the ratio of TI to r2 remains

constant. This constant is different for each equipotential line,

because each line has its own point C.

Equation (308) may be proved to represent a circle, by select-

ing an origin, say at A, and substituting for r\ and rz their values

in terms of the rectangular coordinates x and y. The following

proof by elementary geometry leads to the same result. Produce

AP and lay off PD = PB = rz . According to eq. (308), BD is

parallel to CP, and consequently PC bisects the angle APB <a.
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Let the point C' lie on the same equipotential line with C; then

the voltage between P and C' is also equal to zero, and by analogy

with eq. (308) we have

ri/r2
= AC'/BC' = const..... (309)

By plotting PD' = r2 (not shown in the figure) along PA, in the

opposite direction from PD, and connecting D' to B, one can show

as before that PC' bisects the angle BPD = 180 -
co. But the

bisectors of two supplementary angles are perpendicular to each

other; consequently, CPC' is a right angle, and the point P lies

on a semicircle drawn on the diameter CC'. This semicircle is

the equipotential line itself, because all points, such as P, which

are determined by C and C", must lie on it. The semicircle below

AB evidently belongs to the same equipotential line.

From eqs. (308) and (309) the following expressions are ob-

tained for the radius R of the equipotential line under considera-

tion.

RC
R =

i- (Bc/Acy
<310>

or

1 + BC'/AC','
.....

so that the equipotential line can be easily drawn for a given
C or C'.

Let it be required to calculate the elastance of the slice of die-

lectric between the neutral plane 00' and the equipotential sur-

face passing through a given point C. It is sufficient to find the

expression for a unit axial length, knowing that the elastance is

inversely proportional to the length of the conductors.

Write the expression for the voltage between the points N and

C, using again eq/ (290). For the systems A and B we have

ENC = (*Q'/2ir) [Ln (AC/AN) - Ln (BC/BN}},

or, since AN = BN,

ENC = (<rQ'/2ir)Ln(AC/BC)..... (312)

From this equation we see that the elastance per centimeter

Sffc'.= ENC/Q' = (a/2 TT) Ln (AC/BC}. . . (313)

From this expression, the elastance between any two equipotential
surfaces can be calculated, by computing first the elastance be-
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tween each of the surfaces and the plane of symmetry 00', and

then taking either the sum or the difference of these elastances,

depending upon the positions of the two given surfaces; that is,

whether they lie on different sides or on the same side of the

plane 00'.

It has been explained above how to divide the field by surfaces

of force into permittances of desired values, these permittances be-

ing proportional to the angles 0i or 2 ,
determined by the point Nf

on the neutral plane. Knowing now how to subdivide the field

into elastances of desired values by equipotential surfaces, the

student can without difficulty calculate the permittance or the

elastance of a given slice in the field between two equipotential

surfaces and two surfaces of force.

Prob. 1. For an assumed size of the conductors and a spacing used in

extra-high-tension transmission lines, draw a set of lines of force and equi-

potential lines (Fig. 50) such as to divide the total voltage and the total

electrostatic flux into 10 equal parts.

Prob. 2. Let A and B (Fig. 50) be two very small wires at a distance

of 90 cm. between centers. What is the permittance of the slice NN'PC
if ffN' = 25 cm.; NC = 32 cm.; and the axial length is 180 m.?

Ans. 0.000861 mf.

Prob. 3. Show that the lines of force between two small spheres are

not circles, but curves the equation of which is cos t + cos 2
= const.

Prob. 4. Show that the equipotential surfaces in the case of two
small spheres are represented by the equation 1/ri l/r2

= const.

Prob. 5. Show how to draw in a given case the field shown in Fig. 51.

Solution: Draw a set of n lines of force due to the system AB alone, the

same as in Fig. 50. Let the flux Q' be divided into n equal parts, so that

the flux between the adjacent surfaces of force is Q'/n. Draw a similar

set of lines of force for the system A'B'. The equation of a line of force

in the system AB is w = const.; that in the system A'B' is u> = const.

According to the principle of superposition, the equation of a line of force

in the resultant field is w w' = const., the minus sign being due to the

fact that A' is negative if A is positive.' Let the point of intersection of

two lines of force w = C and ' = C" be the starting, point for draw-

ing a line of force in the resultant field. Then the point of intersection

of the next lines = C + w/n and J = C' + v/n also belongs to the

same line of force in the resultant field, because for both points u u' =
C C'. In other words, the lines of force in the resultant field are

diagonal curves with respect to the lines of force in the component fields,

and may be drawn from intersection to intersection. A similar construc-

tion holds for equipotential surfaces. The student is strongly urged to

try this construction for some assumed data, because the method of

diagonal curves is generally applicable when a given field can be resolved

into two simpler fields.
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63. The Elastance between Two Large Parallel Circular

Cylinders. The formulae derived in Art. 60, for the elastance

and permittance of a homogeneous medium between two parallel

cylinders, hold true only when the diameters of the cylinders are

small as compared to the interaxial distance, for the reason there

explained. When the diameters of the "cylinders are compara-

tively large, the elastance is derived by reducing the conditions to

those obtaining in Art. 60.

Let A and B (Fig. 50) represent as before two conductors of

very small diameter, and let a difference of potential of 100 volts

be maintained between them by means of a battery. Let the volt-

age between the conductor B and the equipotential surface CPC'

be 20 volts. Place an infinitely thin metal sheet so as to coincide

with this surface, and connect this sheet to a point of the battery

such that the voltage between it and the conductor B still remains

equal to 20 volts. These changes do not affect the electrostatic

field either inside or outside the surface CPC', the displacement

being normal to this surface. Now remove the conductor B al-

together, leaving a difference of potential of 80 volts maintained

by the battery between the conductor A and the cylinder CPC'.

The field outside the cylinder is not affected; that inside of it has

entirely disappeared. We have now a field between the cylinder

A of very small diameter and the cylinder CPC' of a compara-

tively large diameter. Take now another equipotential surface,

for instance KMK', symmetrical with CPC', place a metal cylinder

so as to coincide with it, and connect it to a tap on the battery,
so that the same difference of potential of 20 volts remains be-

tween this cylinder and the conductor A. The field is not altered

by this connection, and now the conductor A may be removed.

Thus, we finally obtain a field between two cylinders of compara-
tively large diameter. The difference of potential between the

cylinders is only 60 volts, while the original difference of potential
between the conductors A and B was 100 volts.

Conversely, let the cylinders CPC' and KMK' be given, and
let it be required to find the shape of the field between them, and
the elastance of this field. The problem is reduced to that of

finding the positions of the infinitely small eccentric conductors
A and B, with respect to which the given cylinders are equi-

potential surfaces. Then the field is mapped out according to

the formulae given in the preceding article, leaving out the space
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inside the cylinders. The elastance between one of the large

cylinders and the plane 00' is calculated by using formula (313).

This method is applicable whether the two cylinders are of the

same radius or not, and whether one is outside or inside of the

other. It is always possible to find the positions of the lines A
and B with respect to which the given cylinders represent equi-

potential surfaces. The details of the calculation are given below.

Consider first the case of two cylinders CPC' and KMK' of

the same diameter d; let the distance between the centers p and

q of these cylinders be equal to c. In order to use eq. (313), it is

necessary to express AC and BC through the given quantities c

and d. According to eqs. (308) and (309), we have

AC/BC = AC'/BC
f

(314)

All the quantities which enter into this equation can be expressed

through one unknown length, for instance BC. We put

BC = AK =
x]

then

AC = CK + AK =
(c
-

d) + X-,

AC' = x + c;
- (315)

BC' = d - x.

Substituting these values into eq. (314), and solving the resulting

quadratic equation for x, we obtain, retaining the positive value

only,

= %d[-(a-l) + \/ 2 -
1], (316)

where the ratio of the interaxial distance to the diameter is de-

noted by a, or

a = c/d (317)

By substituting this value of x into the expression for AC m eqs.

(315), we find

AC = i[(c
-

d) + Vc2 - d2
]
= id [(a

-
1) +W -

1], (318)

so that

AC/BC = [(a
-

1) + V 2 -
!]/[

_
(
-

1) 4- Va2 -
1].

This expression can be simplified by multiplying both the numer-

ator and the denominator by the value of the numerator, so
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as to get rid of the square root in the denominator. The

result is

AC/BC = a + V 2 - 1 (319)

The expression (313) for the elastance between one of the cylinders

and the plane of symmetry, per unit of axial length, becomes

S' = (0/2*) Ln [a + Vo2^!]. . . . (320)

Those familiar with hyperbolic functions will notice that the pre-

ceding equation can be simplified into

S' = (cr/271-) Cosh-
1
** (321)

Since tables of hyperbolic functions are readily available, the

evaluation of elastance is simpler in this form than it is if eq. (320)

is used. 1

When the diameter of the conductors is small as compared to

the interaxial distance, a is a large quantity, and unity under the

radical sign in eq. (320) may be neglected. This equation be-

comes then practically identical with eq. (296). For large values

of a, the term (1 I/a
2
)*, obtained by factoring in expression (320),

is conveniently expanded according to the binomial theorem, the

result being

S' = (a/2 TT) Ln (2 a - i a"1 -
| or

3 -
TV a~5-

. . .). (322)

With the exception of 2 a, all of the terms in parentheses are

small corrections to the result.

Let now the diameters of the two given cylinders be different.

In addition to relation (314), we also have

BK/AK = BK'/AK' (323)

It is necessary in this case to introduce two unknown quantities,
BC = x and AK =

y. Equations (315) are modified accordingly.
All of the quantities in eqs. (314) and (323) are expressed through
x and y, and then these two equations are solved together for x
and y. After this, the elastance between each cylinder and the

plane 00' is expressed by using eq. (313).

1 Dr. A. E. Kennelly,
" The Linear Resistance between Parallel Conduct-

ing Cylinders in a Medium of Uniform Conductivity," Proceedings Amer.
Philosophical Soc., Vol. 48 (1909), p. 142; also his article on "

Graphic Rep-
resentations of the Linear Electrostatic Capacity between Equal Parallel

Wires," Electrical World, Vol. 56 (1910), p. 1000. See also his book on Ap-
plications of Hyperbolic Functions to Electrical Engineering (1912).
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In some cases it is required to calculate the dielectric flux

density at a point in the field between the cylinders, or at the sur-

face of one of the cylinders. Let P (Fig. 52) be a point in the

field between two parallel cylinders, small or large ;
the flux density

at P is the geometric sum of the densities due to the systems A
and B. The flux density due to the system A is

while that due to B is

These component densities are directed as shown in Fig. 52.

The resultant density D is directed along the tangent to the line

b

FIG. 52. Dielectric flux density at a point, determined by the method
of superposition.

of force through P. From the preceding two equations, we have

the relation

so that the triangles APB and Pmn are similar. The correspond-

ing sides are marked with one, two, and three short lines respec-

tively. From these triangles we can write

D : D, = b : r2 ,

or, substituting the foregoing expression for DI,

D = Q'6/(2W2)....... (324)

From this expression, the flux density can be calculated at any
point in the field or on the surface of one of the cylinders. Mul-

tiplying the flux density by the elastivity of the medium, the cor-

responding dielectric stress is obtained. It must be kept well in

mind that b, ri} and r2 refer to the points A and B, and not to the

centers p and q of the actual cylinders.
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Prob. 1. Take two equal cylinders at a comparatively short distance

apart, and (a) calculate the permittance per meter of the axial length;

(b) divide the field into 10 equal elastances in series and into 10 equal

permittances in parallel; (c) plot a curve of the flux density distribu-

tion on the surface of one of the cylinders.

Prob. 2. Show that on an equipotential surface surrounding A, and

consequently on the corresponding metal surface, the flux density varies

inversely as r,
2

.

Prob. 3. Show how to calculate the permittance between a large cylin-
der and a given infinite plane.

Prob. 4. Show that A and B are inverse points with respect to any
equipotential circle; this means that the radius qC is the geometric mean
between the distances qB and qA, and the radius pK is the geometric
mean between the distances pA and pB. This is true whether the radii

qC and pK are equal or not.

Prob. 5. Extend the theory given in this article to the calculation of

the elastance and flux density distribution between two large spheres.
Consult the chapters on electrostatics in some standard work on the
mathematical theory of electricity and magnetism.



CHAPTER XVII

EQUIVALENT ELASTANCE AND CHARGING CURRENT
OF THREE-PHASE LINES

64. Three-phase Line with Symmetrical Spacing. Consider

an unloaded three-phase line, and let the three conductors be

denoted by A, B, and C respectively. There is a displacement of

electricity between each pair of conductors, and since the three in-

stantaneous voltages are different, the displacements between the

three pairs of conductors at any instant are also different. The

three sets of lines of force are relatively displaced and the flux

density varies from instant to instant, so that there is produced
in reality a revolving electrostatic field. Let the instantaneous

displacements which issue from the three conductors per unit of

axial length be denoted by qi, q2 ,
and q3 ,

where the subscripts 1, 2,

and 3 refer to the conductors A, B, and C respectively. To be

consistent with the notation used before, these symbols should be

provided with the
"
prime

"
sign, but this sign is omitted in order

not to obscure the formulae. The displacements are considered

positive when they are directed from the conductors into the die-

lectric. Since electricity behaves like an incompressible fluid, as

much of it as is displaced at any instant out of one conductor

must be displaced into the other two conductors, so that at all

times the following relation holds, namely,

ffi + ?2 + ?3 = (325)

The three q's vary with the time according to the sine law. With

a symmetrical spacing of the wires, and symmetrical voltages

forming an equilateral triangle (Fig. 53), the effective values of

the three q's are equal, and the corresponding instantaneous

values are displaced in time phase by 120 degrees. The charg-

ing current per unit length of a conductor is equal to the rate

of change of the corresponding displacement with the time, or

i = dq/dt (326)

193



194 THE ELECTRIC CIRCUIT [AitT. 64

But, with sinusoidal voltages, the displacements vary also ac-

cording to the sine law, or

5
= Qro sm27r/f, ...... (327)

where Qm is the maximum value of the displacement from one of

the conductors. Substituting this value of q in eq. (326), we find

i = 2 7rfQm cos 2 TT/Y...... (328)

Consequently, the amplitude of the charging current

....... (329)

and the same relation holds true for the effective values of the

displacement and current. It is to be noted that the charging

current leads the flux by 90 electrical degrees. Thus, knowing

the displacement, the charging current can be calculated from

eq. (329). If Qm is expressed in microcoulombs per kilometer,

Im is in microamperes per kilometer.

The actual charging current which flows through a cross-

section of the conductor, is equal to that necessary to supply the

displacement between this cross-section and the receiver end of

the line. In other words, the charging current varies along the

line, from a maximum at the generator end to zero at the receiver

end. If the effective voltage along the line were constant in

phase and magnitude, the amplitude of the charging current

would vary according to a straight-line law. In reality, the volt-

age varies along the line, due to its resistance and inductance, so

that the variations in phase and amplitude of the charging cur-

rent along the line follow a much more complicated law.

The influence of the permittance of the line upon its voltage

regulation is treated in Arts. 68 and 69 below. The problem here

is a preliminary one; namely, with a given size and arrangement
of conductors in a three-phase line, to find the permittance per
kilometer of the equivalent single-phase line, for which the volt-

age regulation is usually calculated. The problem is solved by
applying again the principle of superposition. Each conductor

is considered as forming a condenser with a concentric cylinder
of infinite radius, the three phases being star-connected and the

three cylinders grounded. The vectors of the star and delta volt-

ages are shown in Fig. 53, the subscripts 1, 2, 3 referring again
to the conductors A, B, and C respectively.
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Applying eq. (290) for the voltage between the conductors A
and B, we have, for instantaneous values,

en = ((79i/2 7r)'Ln (6/a) + TT) Ln (a/6), (330)

where, as before, the spacing is denoted by 6, and the radii of the

conductors by a. The first term on the right-hand side of this

equation represents the action of system A, the second term that

of system B. The action of the system C is equal to zero, be-

cause, on applying eq. (290) for this system, it is observed that

r = r', on account of the symmetrical spacing. In other words,

FIG. 53. Electric displacements in a three-phase line with symmetrical

voltages and symmetrical spacing.

for system C the conductors A and B lie on the same equipoten-
tial cylindrical surface. The preceding equation is simplified to

ev, = (91 #>) S
r

,
where S' is the elastance expressed by eq.

(296), that is, the elastance between one of the conductors and
the plane of symmetry 00r

,
as if the third conductor did not

exist. Owing to symmetry, the other two equations are similar;

thus we have

to -fa -,)
e23 = (92-93)5'; (331)

631
= (q*- qi)S'.
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This result is interpreted graphically by Fig. 53, remember-

ing that relations which hold true algebraically for instantane-

ous values of sinusoidal quantities, hold true geometrically for

the corresponding vectors of these quantities. According to eqs.

(331), the instantaneous values of (qi
-

g2), (92
-

Qs), and (q3
-

1)

are in phase with the corresponding voltages e i2 ,
e23 ,

and e3\. For

this reason, the vectors (Qi
- Q2), (Qz

-
Qa), and (Q3

-
Qi) are

drawn in phase with the vectors En ,
E23 ,

and E3 i. In regard to the

quantities Qi, Q2 ,
and Q3 ,

we know that, for reasons of symmetry,

they are equal numerically and are displaced in phase relatively

to each other by 120 degrees. Therefore, they must be repre-

sented by vectors from the center to the vertices of the triangle

MNP. The condition is then fulfilled that each side of this tri-

angle is equal to the difference of two vectors from the point 0.

We see now that the three electric displacements Qi, Q2 ,
and

Q3 are in phase with the corresponding star- or Y-voltages of the

system; also, from the similarity of the triangles, we have Eu/Ei
= (Qi QaVQi, with corresponding relations for the other two

phases. Consequently, eqs. (331) are reduced simply to

E l
= Q';

E2
= QzS'; (332)

E3
= Q3S'.

We thus arrive at the following important conclusion: The dis-

placement (and consequently the charging current) per phase of a

three-phase line with symmetrical spacing and symmetrical voltages

is equal to that in a single-phase line with the same conductors and

the same spacing, provided that the star voltage of the three-phase

line is equal to that between one conductor and the neutral plane 00'

in the single-phase line.

As explained in Art. 36, an equivalent single-phase line is

obtained by taking one conductor of the three-phase line and

assuming the transmission voltage to be equal to the star voltage
of the actual transmission line; the return conductor is supposed
to be devoid of both resistance and inductance. The preceding
rule gives a simple method for finding the permittance of the

equivalent line; namely, the permittance of the equivalent single-

phase line is equal to that between one of the conductors of the actual

line and the plane of symmetry between it and one of the other con-

ductors, as if the third conductor did not exist.
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The calculation of the charging current with an unsymmetrical

spacing of conductors is much more involved, and is explained in

the next article. Fortunately, however, the spacing between the

conductors affects the value of the charging current but little,

with the usual ratios between size of conductor and spacing.

The student can easily verify this fact by consulting any available

table of capacities or charging currents of transmission lines.

The reason for this is that the principal part of the elastance be-

tween two small conductors occurs near the conductors, where

the flux density is comparatively high. Consequently, it is pos-

sible in practice to estimate the permittance per phase of a three-

phase line with unsymmetrical spacing, by finding the limits of

the permittance with symmetrical spacings. For instance, let

two conductors be placed on a cross-arm and the third on top of

the pole, forming an isosceles triangle. Let the spacings be

2 m. and 1.6 m. respectively. The charging currents are differ-

ent in the three conductors, but the average value is larger than

with a symmetrical spacing of 2m., and smaller than with a sym-
metrical spacing of 1.6 m. Having found the charging currents

or the equivalent permittances for these two spacings, one can

assume an intermediate value by interpolation, or else take one of

the two limits, whichever gives the more unfavorable operating

conditions of the line.

It is rather a tedious problem to estimate the influence of the

ground upon the charging currents in a three-phase line. The

theory is simple, the ground being replaced by the images of the

three conductors, as in Fig. 51; but the formulae are long and in-

volved, because the effects of six separate systems must be super-

imposed. See problem 3 in the next article.

Prob. 1. Show that when one of the conductors in a three-phase line

fails, the charging current in the other two conductors drops to 86.6 per
cent of its former value. Solution: Let C be the permittance between
one of the conductors and the plane of symmetry between it and one of

the other conductors. Then the charging current with the three phases

alive is kC(E/V^3), where E is the line voltage, and k is a coefficient

of proportionality with which we are not concerned here. Operating

single-phas^, the charging current is kC(%E). The ratio of the two is

0.5/ (I/ V3) = 0.866.

Prob. 2. A three-phase, 140-kv., 25-cycle transmission line consists of

conductors 2 cm. in diameter; the spacing is symmetrical and equal to

3.5 m.; the length of the line is 250 km. What is the total reactive
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power necessary to keep the line alive, and what are the voltage and the

permittance per kilometer of the equivalent single-phase line?

Ans. 7270 kva.; 80.8 kv.; 0.00947 mf. per km.
Prob. 3. A three-phase transmission line consists of conductors 18 mm.

in diameter, suspended all three in the same vertical plane, at a distance

of 2.4 m. between the adjacent conductors. What are the limits of the

clastance of the equivalent single-phase line?

Ans. 100 and 113 megadarafs per km.
Note: The proximity of the two limits shows that it is sufficient for

practical purposes to consider the symmetrical spacing only, as far as

the dielectric and magnetic effects are concerned. Mr. J. G. Pertsch, Jr.,

has called the author's attention to the fact that, with certain simplifying

assumptions, and when the three wires are transposed, the equivalent

spacing for inductance and capacity is equal to the geometric mean of

the three actual spacings, or

beq
= ^6,2623631.

In the case under consideration the equivalent spacing is 3.02 m., and the

corresponding elastance equals 105 mgd. per km.
Prob. 4. Extend the treatment given in this article to the case in

which the three delta voltages are different (Fig. 54), and show that the

point coincides with the center

of gravity of the triangle, a sym-
metrical spacing of the conductors

being presupposed as before. Solu-

tion: Equations (331) hold true as

before, and the sides of triangle
MNP are parallel to those of 123,
but the point cannot be deter-

mined in this case from the sym-
metry of the figure. Any point
within the triangle 123 gives a set

of star voltages Ei, E2 ,
and E3 ,

which will produce the given set of

delta voltages; but there is only
FIG. 54. Electric displacements in a one point from which the rays

three-phase line with unsymmctrical ^ t-ne vertices of triangle MNP
voltages and symmetrical spacing. satisfy condition (325). Since the

displacements in the equivalent
single-phase lines must be proportional to the voltages, condition (325)
requires that the geometric sum of Ei, Et ,

and E 3 shall equal zero.
The parallelogram 021'3 gives the geometric sum of Et and E 3 equal
to Or. If is the correct point, 01' must be equal and opposite to

01, and Om = JOl. Similarly, the condition must be fulfilled that
On =

\ 02, and Op =
\ 03. It is known from elementary geometry that

the three bisectors of a triangle divide each other in the ratio of 2 to 1,
and that the point of their intersection is the center of gravity of the
triangle. Hence the point is the center of gravity of the triangle 123.
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From eqs. (331) we again derive eqs. (332), and finally arrive at the

same conclusion as that printed in italics after these equations. The
three star voltages being different, one from another, the three charging
currents are also different, each leading the corresponding Q by 90 degrees.
The permittance and the voltage of the equivalent single-phase line are

also different for each phase, in spite of the symmetrical spacing of the

conductors.

Prob. 5. For a given three-phase line with symmetrical spacing and

voltages, draw the electrostatic field for the instant when one of the

delta voltages is equal to zero; also make three drawings of the field at

the ends of intervals A, A and T
s
z of a cycle later. Use the principle of

superposition explained in Prob. 5, Art. 62, and apply it to the three

component systems, A, B, and C, keeping in mind the relative magni-
tudes of the instantaneous displacements.

65. Three-phase Line with Unsymmetrical Spacing.
1 As

is mentioned in the preceding article, the calculation of charging
currents in a three-phase line with unsymmetrical spacing is

much more involved than with symmetrical spacing, and is not

of much practical importance at present. An outline of it is

given here in order to fix more firmly in the student's mind the

general principle of superposition, and the method by which the

results are derived in the preceding article. Moreover, the in-

fluence of the dielectric is becoming more and more important, as

the transmission voltages and the lengths of transmission lines

are increased. The time may come when the exposition given in

this article will be of assistance in the solution of practical prob-
lems.

Let the three spacings be denoted by 612, 623, and 631 respec-

tively. Equations (325) to (329) inclusive hold true as with a

symmetrical spacing, but eq. (330) now becomes

en = (<rgi/27r) Ln (&i2/a) + (<r?2/27r) Ln (a/6^) +
( <Tg3/2 7r)Ln(&23/&3i), '.--. - (333)

because the effect of the system C is not equal to zero in this case.

Similar equations may be written for 623 and 631, but only two

equations are independent; the third is obtained by combining
the two others, because the third voltage in a delta combination

is determined by the other two voltages. The third independent

equation is (325), and these three equations determine the three

unknown q's.

1 This article may be omitted, if so desired.
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The following solution of these equations gives an insight into

the physical relations, and leads to a result which is convenient

in numerical work. The last term on the right-hand side of

eq. (333) is usually much smaller than the other two terms, so

that it may be conveniently represented in the form of a cor-

rection to the other two, thus preserving the general form of eq.

(330). Substituting the value of q3 from eq. (325) into (333), we

obtain

e12
= fai/2ir) Ln (bcl/a)

-
(aq2/2w} Ln (6c2/a), . (334)

where the quantities,
bcl

=
&12&31/&

bc,
=

&23&12/&31, ...... (335)

may be called the corrected spacings. The factors by which the

displacements q\ and q2 are multiplied in eq. (334) are familiar,

since they are of the same form as the right-hand member of

eq. (296). It will be recalled that eq. (296) expresses the elas-

tance between one conductor and the plane of symmetry of a

single-phase line. The above-mentioned factors therefore rep-

resent the elastances of single-phase lines having the corrected

spacings 6ci and 6c2 respectively. Denoting the reciprocals of these

elastances, or the corrected permittances, by C with the corre-

sponding subscripts, eq. (334) and the two similar equations for

the other phases are reduced to the form

623
=

?2/C2
-

q3/C3 ;

e3 i
=

q3/C3
-

On the other hand, for any star point 0, no matter where

located, we have the following relation between the delta and
star voltages:

612
=

ei e2 :

(337)

We again select the neutral point in such a manner that each
star voltage is in phase with the corresponding q; that is, in

phase quadrature with the corresponding charging current. Then
the given three-phase system is directly resolved into three inde-

pendent single-phase lines, and our problem is solved. If the
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point is so selected, then by comparing eqs. (336) and (337) we

have

<?2/C2 ;
....... (338)

Substituting the values of the g's from these equations into eq.

(325) gives
Ciei + C2e2 + C3e3 = ...... (339)

This is the condition which the point must satisfy if eqs. (338)

are to hold true. Eliminating e2 and e3 from eq. (339) by means

of the first and the last of the eqs. (337), and solving for ei, we

obtain

ei = e12C2/C - e31C3/C, ..... (340)

where
C = Ci + C2 + C3....... (341)

As mentioned above, Ci, C2 ,
and C3 are the permittances per unit

length between one wire and the plane of symmetry, for the cor-

rected spacings defined by eqs. (335).

Since relations which hold true algebraically for instantaneous

values also hold true geometrically for the vectors of the same

quantities, eq. (340) suggests a

simple method for finding graph-

ically the position of the neutral

point in the vector diagram

(Fig. 55). To locate 0, plot 1 k

Eu(Cz/C} in the direction op-

posite to Eu, and W = E13(CS/C)

parallel to E&. Or else, the prob-

lem may be solved analytically,

using either the orthogonal or

the trigonometric form of com-

plex quantities. Having deter-

mined the position of 0, the FIG. 55. Electric displacements in

three star voltages become known,
a three-phase system with unsym-

, ,v ji j- j- metrical voltages and unsymmetricaland then the corresponding dis-

placements are found from eqs.

(338). The charging currents are determined by eq. (329), and

are in leading quadrature with the corresponding star voltages.

The given system is thus resolved into three independent equiva-
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lent single-phase systems with the voltages E1} E2 ,
and E3 ,

and

the permittances Ci, C2 ,
and C3 , per unit length.

Instead of using the treatment given above, one could find the

equivalent conductance and susceptance by using a method anal-

ogous to that employed in Art. 63 of the Magnetic Circuit.

Prob. 1. Determine the actual equivalent elastances in problem 3 of

the preceding article, and compare them with the assumed limits.

Prob. 2. Extend the treatment given above to the case in which the

cross-sections of the three conductors are different, one from another.

Prob. 3. Show how to estimate the influence of the ground upon the

charging currents in a three-phase line, using the method of successive

approximations. Solution: Replace the conducting ground by the three

images A', B', and C' of the actual conductors, as in Fig. 51. This gives

six electric systems with cylinders at infinity. Applying the principle of

superposition to the voltages between the conductors A B and B C,

we get, by analogy with eq. (333) :

e, 2
=

(aqi/2 ,) Ln (6 12 /a) + (aq./2,) Ln (a/6 12) + (aq s/2w) Ln (&/&)
-

(aqi/2,) Ln (BA'/AA') - (aq,/2*) Ln (BB'/AB
1

)

^

-(aq 3/2,)Ln (BC'/AC'); ,

(342)
623 = (<rjj/2 w)Ln (&ss/cO ~f" (0q3/2ir) Ln (o/623 ) -(- (<rqi /27r)Ln (6 31/612)

-
(<rg2/2 TT) Ln (CB'/BB') - (ffq 3/2 *) Ln (CC'/BC')

From these two equations, together with eq. (325), the three unknown

q's can be evaluated. By a method similar to that used in the text

above, eqs. (342) are conveniently reduced to the form

+ (a/2,) fo,Ln (BA'/AA')+ ?2Ln (BB'/AB') + q 3Ln (BC'/AC')} ]=
q l /C l -q,/Ct ;

L , ,

<?23 + (/2,) [?2Ln (CB'/BB') + q 3Lu (CC'/BC')+qiLn(CA'/BA')]
[

^
=

qi/Cz q^/Cz] }

where the three C's and the corrected spacings are the same as before,

without the ground. The last three terms on the left-hand side of eqs.

(343) are small as compared to 612 and e2 3, and represent the effect of the

ground. Therefore, the simplest way of solving these equations is to

neglect the correction terms in the first approximation, and to solve for

the three q's exactly as explained in the text above, by finding the proper
point (Fig. 55). The correction terms may be said to modify the

values of en and e23 in eqs. (343). Having the values of the q's in the

first approximation, the corrections are calculated, and, being added to

d2 and e-i3 , give new values of the latter, say e'n and e'23 . Having thus
modified the triangle 123 in Fig. 55, a new point is found, and new
values of the q's. The corrections for en and e23 can now be determined
more accurately, and then new values of the q's found, which will be more
nearly correct than the foregoing ones. In this way, the influence of the

ground can be estimated with any desired degree of accuracy, without

solving long and involved simultaneous equations.



CHAPTER XVIII

DIELECTRIC REACTANCE AND SUSCEPTANCE IN
ALTERNATING-CURRENT CIRCUITS

66. Dielectric Reactance and Susceptance. Let a condenser

of permittance C, or elastance S, be connected across an alternat-

ing-current line of voltage E and frequency /. Let any instanta-

neous value of the voltage be denoted by e, where e = Em sin 2 vft;

then the corresponding instantaneous displacement in the dielec-

tric is

q
= eC = e/S (344)

This displacement varies according to the sine law and is in phase
with the voltage, because q is at every instant proportional to e.

The charging current flowing from the line into the condenser is

at any instant equal to the rate of change of q with the time, or

i = dq/dt = 2 wfCEm cos 2wft (345)

It will be seen from this equation that the charging current leads

the voltage by 90 degrees, as has already been explained in Art. 48

above. The amplitude of the charging current is

Im = 2irfCEm (346)

It may thus be said that a permittance C connected across a

source of voltage, of frequency /, is equivalent to a susceptance

b=-Im/Em =-2TfC (347)

The minus sign is necessary because the current is leading, while

with a magnetic susceptance it is lagging. In other words, by

using the minus sign in the case of dielectric susceptance, and the

plus sign for magnetic susceptance, it is possible to extend the

formulae deduced in Chapters 8 and 9 to alternating-current cir-

cuits containing dielectrics.

In the preceding formulae C is in farads, S in darafs, q in

coulombs, and 6 in mhos. If C is expressed in microfarads and

S in megadarafs, eq. (347) becomes

b = -27T/C X 10- = -2 TT/ X 10-VS mhos. . (348)
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The corresponding dielectric reactance is

x = - 106
/(2 7T/C)

= - 106
S/(2 TT/) ohms. . . (349)

The dielectric susceptance is equal to - 2 irfC only when there is

no resistance in series with the condenser. When a condenser is

connected in series or in parallel with an ohmic resistance, the

treatment is analogous to that of a magnetic inductance in combi-

nation with a resistance; that is, equivalent series and parallel com-

binations are used, as explained in Art. 27. To give a detailed

treatment here would simply be to repeat what has already been

explained in the above-mentioned article. The only difference is

that expressions (348) and (349) are used in place of (107) and

(86), and the currents are leading, while with magnetic reactance

they are lagging with respect to the impressed voltage.

In some circuits both magnetic and dielectric susceptances

are connected in parallel. They are simply added, taking into con-

sideration their opposite signs. For instance, a magnetic suscept-

ance of 7 mhos in parallel with a dielectric susceptance of 5 mhos

is equivalent to a net magnetic susceptance of 2 mhos. A simi-

lar rule is applied when magnetic and dielectric reactances are con-

nected in series.

With these explanations, the student will have no difficulty

in dealing with any combination of resistances, condensers, and

inductance coils in an alternating-current circuit.

Prob. 1. A condenser of 7.3 mf. permittance is connected across a

500-volt, 60-cycle supply. What are the susceptance and the charging
current?

Ans. b = -0.002754 mho; I =j 1.377 amp., the voltage being the

reference vector.

Prob. 2. The condenser in the preceding problem is shunted by a

non-inductive resistance of 750 ohms. Find the total current and the

power-factor. Solution: The current through the resistance is = 500/750
= 0.6667 amp.; tan

<f>
= 1.377/0.6667 = 2.065; cos

<t>
= 43.58 per cent

(leading). Total current = 0.6667/0.4358 = 1.53 amp.
Prob. 3. The condenser and the resistance in the preceding problem

are connected in series, instead of in parallel. What is the equivalent
parallel combination?

Ans. Cp
= 1.387 mf.; rp

= 926 ohms.
Prob. 4. The voltage at the receiver end of a 25-cycle, single-phase

transmission line is 45 + j'57 kv.; the load current is 178 + j 69 amp.
The series magnetic impedance of the line is 32 + j 68 ohms, and its

capacity is 4.24 mf. Calculate the generator current and voltage. For

purposes of calculation, one half of this capacity can be assumed to be
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connected across the generator end of the line, the other half across the

receiver end. Solution: The dielectric susceptance at the receiver end
of the line is -2 * X 25 X 2.12 X KT6 = -0.333 X 10~3 mho. The

corresponding charging current is

j 0.333 X 10~3
(45000 + .; 57000) = - 19 + j 15 amp.

Consequently the total line current is 159 + j 84 amp. The line drop is

(159 + j 84) (32 + j 68) = -624 + j 13500 volts. The generator volt-

age is 44.38 + j 70.5 kv. The charging current at the generator end is

j 0.333 (44.38 + j 70.5) = -23.5 + j 14.79 amp. The generator current

is 135.5 + j 98.8 amp.
Prob. 5. Explain the physical reason why a dielectric susceptance in-

creases with the frequency, while a magnetic susceptance is inversely

proportional to it.

Prob. 6. Investigate the influence of a condenser in a circuit to which
a non-sinusoidal voltage is applied; give a treatment similar to that in

Art. 23. Show that the presence of an elastance accentuates higher
harmonics in the current, while an inductance tends to diminish them.

Make the physical reason for this difference clear to yourself.

67. Current and Voltage Resonance. Let a condenser be

connected in parallel with a pure reactance coil, across an alter-

nating-current line. Let the current through the condenser be

5 amp., leading, and that through the coil, 3 amp., lagging.

Then the total current supplied from the generator is 2 amp.,

leading. Thus, we have the paradox that the resultant current is

smaller than either of its components. It is even possible to

adjust the permittance and inductance to such values as to make
the leading and lagging components equal, in which case the gen-

erator current is zero. This condition is called current resonance.

When the line current is reduced, to zero, total or perfect reson-

ance takes place; otherwise the resonance is called partial. The
condition for perfect resonance is that the lagging current shall be

equal to the leading current, or, what is the same, the dielectric

susceptance must be numerically equal to the magnetic suscept-

ance. Thus, if there is no resistance in either circuit,

24G-1/04L),
from which

2irfVCL = l (350)

From this equation, any one of the three quantities /, (7, and L
can be determined, when the other two are given. Condition

(350) may be fulfilled for the frequency of one of the higher bar-



206 THE ELECTRIC CIRCUIT [AKT . 67

monies of an e.m.f. wave, in which case we have partial resonance

for the fundamental wave, and perfect resonance for one of the

harmonics. If such is the case, the line current does not contain

this harmonic, although it may be present to a considerable

amount in the two branch currents.

From the point of view of energy, current resonance consists

in a periodic transformation of the potential energy of the elec-

trostatic field into the kinetic energy of the magnetic field, and

vice versa. When the current is at its maximum, the energy of

the magnetic field of the reactance coil is also a maximum. But

at this moment the voltage, and consequently the electrostatic

displacement, are equal to zero, so that the whole energy of the

circuit is in the magnetic field. One quarter of a cycle later, the

displacement and the stored energy in the condenser are at a

maximum, but the current and the magnetic field are equal to

zero. At intermediate moments, the energy is contained partly
in the electrostatic, and partly in the magnetic field. When
condition (350) is satisfied, the maxima of the two energies are

numerically equal, and the system
"

oscillates
"

freely in the

electrical sense, in a manner analogous to the swinging of a pendu-
lum. The generator merely maintains the necessary frequency,
and supplies the i

zr loss. Without this loss, it would not be

necessary to have the generator at all; the oscillations, once

started, would continue indefinitely at the proper frequency.
When the two energies are not equal, there must be a cyclic ex-

change of energy between the generator and one of the branches;

namely, the one whose storage capacity for energy, at the gener-
ator frequency, is larger than that of the other branch. We then
have partial current resonance.

The presence of resistance in either branch obscures the effect

of resonance to some extent, leaving, however, its general char-

acter unchanged. The best way to see the influence of resistance

is to replace each impedance by its equivalent parallel combina-
tion. We then have two pure susceptances with reactive currents,
and two conductances, the currents through which are in phase
with the line voltage. The energy supplied to the conductances
is converted into heat, and thus does not enter into the electrical

oscillations.

Let now a dielectric reactance be connected in series with a
magnetic reactance, across an alternating-current line. The cur-
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rent through the two devices is the same, and may be taken as

the reference vector. Let the dielectric reactance be such as to

produce across the condenser a drop of 1000 volts, lagging behind

the current by 90 electrical degrees. Let the voltage across the

reactance coil be equal to 900 volts, leading the current by 90

degrees. With these conditions, the total line voltage is equal to

100 volts, lagging behind the current by 90 degrees. Thus, with

a line voltage of only 100, it is possible to produce partial voltages

of 1000 and 900 respectively. This condition is called voltage

resonance. When the two reactances in series are equal, we have

complete voltage resonance; otherwise the resonance is partial.

The student will readily see that the condition for complete volt-

age resonance is also expressed by eq. (350). In this case, the

presence of resistance has no effect upon the correctness of the

equation. By reading again the foregoing discussion of current

resonance, and applying it to voltage resonance, the points of

similarity and the differences between the two will be easily

One has to be on guard against possible resonance and a

dangerous rise in potential in the operation of transmission lines

and extended cable systems, because there the presence of per-

mittance and inductance offers favorable conditions for surges

between the dielectric and magnetic energies. These surges either

produce large currents which open the circuit-protecting devices

and interrupt the service, or the potential is raised to a value at

which the insulation of the system is broken down. With a clear

understanding of the principle of interchange of energy explained

above, the student ought to be able to follow without difficulty

special works on the subject.
1

Prob. 1. A magnetic reactance of 65 ohms is connected in parallel
with a permittance of 73.6 mf., across a 2200-volt, 25-cycle circuit. De-
termine the total current, and the component currents, through the react-

ance and through the condenser.

Ans. 33.85 25.44 = 8.41 amp. (lagging). This is a case of partial
current resonance, the total current being smaller than one of its com-

ponents.

1 See W. S. Franklin, Electric Waves; C. P. Steinmetz, Electric Dis-

charges, Waves, and Impulses; also his larger work on Transient Electric

Phenomena and Oscillations. Some elementary experiments and curves of

resonance will be found in V. Karapetoff's Experimental Electrical Engineer-

ing, Vol. II, Arts. 440 to 445.
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Prob. 2. The pcrmittor and the reactance coil given in the preceding

problem are connected across the same line in series, instead of in parallel.

Find the total current and the component voltages.

AIMS. 102.3 amp. (leading) ;
2200 = 8850 - 6650 volts. This is a

case of partial voltage resonance, the voltage drop across each of the

two devices being larger than the applied voltage.

Prob. 3. The elastance of a 60-cycle underground cable system is

equal to 11.5 kilodarafs; at what value of the inductance in the circuit is

resonance of the seventh harmonic to be feared?

Ans. 1.65 millihenry.

68. Voltage Regulation of a Transmission Line, Taking Its

Distributed Permittance into Account. The voltage regulation

of a transmission line, disregarding its permittance, is treated in

Art. 33. The value of the permittance of a single-phase line is

deduced in Art. 60, while in Chapter 17 the effect of the charging

current in a three-phase line is considered, and it is shown how
to calculate the permittance of the equivalent single-phase line.

The inductance of transmission lines is treated in Chapter 11 of

the author's Magnetic Circuit. It remains now to show how to

determine, for a given load, the relation between the generator

and receiver voltages of an equivalent single-phase line, knowing
its constants; viz., the values of the distributed resistance, mag-
netic reactance, and dielectric susceptance.

Let the total resistance of the equivalent single-phase line be

r ohms, and its magnetic reactance x ohms. Then the series

impedance of the line is

Z = r + jx (351)

Let the dielectric susceptance of the line be b mhos, where &, ac-

cording to eq. (347), is a negative quantity; and let the leakage
conductance to the ground be g mhos. Then the shunted ad-

mittance of the line is

Y = g-jb (352)

The leakage conductance is due to imperfect insulation of the

line, and may also be made to take into account the corona loss,

if any exists. The value of g can only be estimated, and in most
cases may be safely neglected. It is introduced here in order to

obtain a more general result, at the same time making the ex-

pressions for Z and Y symmetrical.
Since Y is uniformly distributed along the line, the current

changes as the distance from the generator increases; and there-
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fore it is necessary to consider the electrical relations in an in-

finitesimal length ds, at some intermediate point of the line. Let

the line voltage at this point be E, and the line current, /. The

series impedance of the element ds is (Z/l) ds, and its shunted

admittance is (Y/l) ds, where I is the total length of the line.

Let dE be the increment in the voltage in the length ds, and let

dl be the corresponding increment in the line current due to the

shunted admittance. We have then

dE =-I(Z/l)ds, ..... (353)

and
dl = - E(Y/l) ds...... (354)

The minus sign is needed on the right-hand side of eq. (353),

because the drop in voltage / (Z/l) ds causes a decrement in E.

Likewise the charging current E(Y/l)ds causes a decrement in

the line current.

Equations (353) and (354) contain two dependent variables,

E and /. To eliminate /, we divide both sides of eq. (353) by ds

and take the derivative with respect to s. The result is

Substituting the value of dl/ds from eq. (354), we obtain

d*E/ds
2 = EZY/l*....... (355)

This is a differential equation of the second order for E. We shall

omit the solution of it and give only the result, for two reasons:

first, because most students are not familiar with the methods of

integration of differential equations; and secondly, because the

solution is most conveniently expressed in hyperbolic functions of

a complex variable, a form of function unknown to most students

of engineering.
1

Fortunately, even for the longest transmission

1 The simple theory of hyperbolic functions and the solution of eq. (355)

may be found, among others, in the following works and articles : McMahon,
Hyperbolic Functions; Dr. Kennelly, Applications of Hyperbolic Functions to

Electrical Engineering; Dr. Steinmetz, Transient Electric Phenomena; Fender

and Thomson,
" The Mechanical and Electrical Characteristics of Transmission

Lines," Trans. Amer. Inst. Electr. Engrs., Vol. 30 (1911); W. E. Miller,
"
Hyper-

bolic Functions and Their Application to Transmission Line Problems," General

Electric Review, Vol. 13 (1910), p. 177; M. W. Franklin, "Transmission Line

Calculations," ibid., p. 74. For a proof of expansion (356), see Blondel and
Le Roy, "Calcul des Lignes de Transport d'Energie a Courants Alternatifs en

tenant compte de la Capacity et de la Perditance Reparties," La Lumiere
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lines built or projected, the solution can be represented with suffi-

cient accuracy by a few terms of an infinite series, as follows:

E, = E2 (l + %YZ + & F2Z2 + etc.)

+ 7,Z(1 + | YZ + TW F 2Z 2 + etc.). (356)

In this equation E\ is the generator voltage, E2 the receiver volt-

age, the same as in Art. 33, and /2 is the load current. Both F
and Z are known complex quantities, and therefore their product

and the square of the product .are also known. The terms in-

volving F2Z 2 are negligibly small in many cases.

Instead of eliminating / from eqs. (353) and (354), E may be

eliminated by a similar process, giving a differential equation for

/, analogous to eq. (355). The solution of this equation is

!i
= /(! + I YZ + ^ F 2Z 2 + etc.)

+ E2Y (1 + | YZ + T io F2Z2 + etc.), (357)

where /i is the generator current, and 1% the load current.

The general form of eqs. (356) and (357) is the same as that of

the corresponding equations in Art. 33, and in Chapters 11, 12, and

13, so that the methods of calculation indicated there are appli-

cable here, with self-evident modifications.

Neglecting the leakage conductance g in eq. (352), and using
the value of permittance given in Art. 60 above, also the value of

inductance from Art. 61 of the Magnetic Circuit, we find that

YZ = (Z/1000)
2 (-v+jw), .... (358)

and consequently

F2Z 2 =
(Z/1000)

4
(*>

2 - w* - 2jvw), . . . (359)

where
v = 0.09514 (0.1 /)

2
[0.46 + 0.05/log (b/d)], . (360)

and
w = 0.1515 /r'/log(6/a) (361)

In these expressions, I is the length of the line in kilometers, and
r' is the resistance per kilometer of one conductor, in ohms. With

Elcclrique, Vol. 7, 2nd Scries (1909), p. 355; also J. F. H. Douglas, "Trans-
mission Line Calculations," Electrical World, Vol. 55 (1910), p. 1066; arid Dr.

Stoinmetz, Engineering Mathematics, p. 204. The best tables of hyperbolic
functions are those published by the Smithsonian Institution; briefer tables

will be found in McMahon's book and in the General Electric Review, Vol. 13,

supplement to No. 5. See also Seaver's Mathematical Handbook, pp. 85 and
266.
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the extreme values of the ratio b/a of say 10 and 1000, the value

of log (b/a) varies within the narrow limits of 1 to 3, so that the

second term in the brackets in eq. (360) is comparatively small.

In practice, the value of the whole expression in the brackets in

formula (360) is usually between 0.48 and 0.50. This fact is

taken advantage of in numerical calculations which do not require

particular accuracy.

Prob. 1. Check the numerical coefficients in formulae (360) and (361).

Prob. 2. For a given receiver voltage, calculate the generator voltage,
at no load and at full load, for some very long transmission line, the

dimensions of which are taken from a descriptive article.

Prob. 3. Solve problem 2 by the use of tables of hyperbolic functions,

following the method indicated in one of the references in the footnote.

Compare the results with those obtained in problem 2, and make clear to

yourself the relative simplicity, and the limits of accuracy, of the series

when one, two, or three terms are used.

69. Approximate Formulae for the Voltage Regulation of a

Transmission Line, Considering Its Permittance Concentrated at

One or More Points. Instead of treating the permittance of a

transmission line in the correct manner described in the preceding

article, it is sometimes assumed to be concentrated at one or more

points along the line. The calculation of voltage regulation then

becomes similar to the treatment in Chapters 9 to 13. There is

no particular advantage in this approximate treatment as far as

the simplicity of numerical computations is concerned, because

the formulse obtained are similar to eq. (356). It is advisable,

however, for the student to deduce such formulae in order to see

for himself that the form of eq. (356) is a rational one; more-

over, this gives him one more exercise in the use of complex

quantities.

(a) The simplest assumption is to consider one half of the

line permittance (and leakage, if any) concentrated at the gener-

ator end of the line, the other half at the receiver end. The load

current is in this case apparently increased by the current E2 % Y
through the permittance \ Y connected in parallel with the load,

so that the total receiver current is equal to /2 + \ E2 Y. Hence,
the generator voltage is

#1 = E2 (l + i FZ) + 72Z. . (362)
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Comparing this formula with eq. (356), we see that the principal

terms are identical, the difference being in the additional terms

containing higher powers of YZ. If the influence of the line per-

mittance is small, for instance in short lines, the results calculated

by means of both formulae differ from each other but very little.

There is no reason, however, why the accurate expansion (356)

should not be used in all cases, taking as many terms as are re-

quired in a given problem.
The generator current, with the capacity concentrated at both

ends, is

7, = 7, + i YE, + i YElt

or, substituting the value of E\ from eq. (362),

!i
= JU + *YZ) + E2 Y(1 + J YZ). . . (363)

This formula is similar to eq. (357), and differs from it only in

the values of the coefficients of the minor terms.

(b) The line permittance and leakage may also be concen-

trated at the middle point of the line, in which case a diagram of

connections is obtained similar to Fig. 42, except that the suscept-

ance is dielectric and not magnetic. Introducing the voltage at

the center of the line as an auxiliary unknown quantity, and

eliminating it from the result, we obtain

Ei = E2 (l + i YZ) + / aZ(l + I YZ), . . (364)
and

Ii = |2 (1 + YZ) + E,Y (365)

(c) A closer approximation is obtained by assuming a part of

the line permittance concentrated at the middle point, and the

rest at both ends of the line. The fractions of the total permit-
tance to be assigned to these three points are determined from

Simpson's Rule for approximate integration; namely, according
to this "parabolic

"
rule,

yave = [l/(3 n)] [yQ + 4 (yi + ys + etc. + yn^)
+ 2 (y t + y, + etc. + yn-2) + yn], (366)

where yave is the average ordinate of a given curve, n is the num-
ber of equal parts into which the total width of the curve is sub-

divided, and t/o, yi, etc., are the actual ordinates at the points of

division. In the above formula, n must be an even number.
Let the given curve represent some arbitrary distribution of the
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permittance along the line, and let n = 2. The foregoing formula

gives
<72'), .... (367)

where the C's are marked with the prime sign to indicate that

they refer to unit length of the line. But in reality the permit-

tance is uniformly distributed over the length of the line, so that

Ca,e' = Co' = Ci = C2
f
. Multiplying both sides of eq. (367) by

the length I of the line, we obtain

C = iC+fC + |C...... (368)

This means that two thirds of the total permittance must be con-

centrated at the middle of the line, and one sixth at each end. 1

With this distribution of permittance it is again convenient

to introduce the voltage at the center of the line as an auxiliary

quantity. The relation between the load voltage and the gener-

ator voltage is calculated in the well-known manner, by adding
the voltage drop in the line to the load voltage. The result is

Ei = E.2 (l + YZ + & Y*Z2
) + I2Z(1 -H FZ); . (369)

!i
=

/i(l + * YZ + A F2Z2
) + E2 Y(l + & YZ

+ *}- ir
r2Z2

)............ (370)

These formulae come closer to eqs. (356) and (357) than those

obtained in the preceding two approximations.

Prob. 1. Check formulae (364) and (365) by actually performing the

algebraic transformations.

Prob. 2. Check formula (369) and (370) by actually performing the

algebraic transformations.

Prob. 3. If it be desired to have the permittance concentrated at

five equidistant points along the line, show that according to Simpson's
Rule one sixth of the total permittance must be placed in the middle,
one twelfth at each end, and the rest at one quarter and three quarters
of the length of the line.

1 This result has been first indicated by Dr. Steinmetz, in his Alternating-

Current Phenomena, in the chapter on "
Distributed Capacity."





APPENDIX.

THE AMPERE-OHM SYSTEM OF UNITS.

THE ampere and the ohm can be now considered as two

arbitrary fundamental units established by an international agree-

ment. Their values can be reproduced to a fraction of a per

cent according to detailed specifications adopted by practically

all civilized nations. These two units, together with the centi-

meter and the second, permit the determination of the values of

all other electric and magnetic quantities. The units of mass and
of temperature do not enter explicitly into the formulae, but are

contained in the legal definition of the ampere and the ohm.

The dimension of resistance can be expressed through those of

power and current, according to the equation P = PR, but it is

more convenient to consider the dimension of R as fundamental,
in order to avoid the explicit use of the dimension of mass [M].

Besides, there is no direct proof that the physical dimensions of

electric power are the same as those of mechanical power. All

we know is that the two kinds of power are equivalent one to

the other.

For the engineer there is no need of using the electrostatic or

the electromagnetic units; for him there is but one ampere-ohm

system, which is neither electrostatic nor electromagnetic. The

ampere has not only a magnitude, but a physical dimension as

well, a dimension which, with our present knowledge, is fun-

damental; that is, it cannot be reduced to a combination of the

dimensions of length, time, and mass (or energy). Let the dimen-

sion of current be denoted by [I] and that of resistance by [R];

let the dimensions of length and time be denoted respectively by
the commonly recognized symbols [L] and [T]. The magnitudes
and dimensions of all other electric units can be expressed through
these foui, as shown in the following table. For the correspond-

ing expressions of the magnetic units in the ampere-ohm system,

see Appendix I to the author's Magnetic Circuit.

215
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TABLE OF ELECTRIC UNITS, AND THEIR DIMENSIONS IN
THE AMPERE-OHM SYSTEM

* These are also the dimensions of the electric pole strength. The con-
cept of pole strength is of no use in electrical engineering, and, in the author's
opinion, its usefulness in physics is more than doubtful. The whole elemen-
tary theory of electrostatics can and ought to be built up on the idea of
stresses and displacements in the dielectric, as is done in this work.
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Other units of more convenient magnitude are easily created

by multiplying the tabulated units by powers of 10, or by adding

the prefixes milli-, micro-, kilo-, mega-, etc.

A study of the physical dimensions of the electric and

magnetic quantities is interesting in itself, and gives a better

insight into the nature of these quantities. Moreover, for-

mute can be checked and errors detected by comparing phys-
ical dimensions on both sides of the equation. Let, for instance,

a formula for energy be given,

W = aQDl/K,

where a is a numerical coefficient. Substituting the physical di-

mensions of all the quantities on the right-hand side of the equa-
tion from the table below, the result will be found to be of the

dimensions of energy. This fact adds to one's assurance that

the given formula is theoretically correct.

A slight irregularity in the system as outlined above is caused

by the use of the kilogram as the unit force, because it leads to

two units for energy and torque, viz., the kilogram-meter and

the joule; 1 kg.-meter = 9.806 joules. Force ought to be measured

in joules per centimeter length, to avoid the odd multiplier. Such

a unit is equal to about 10.2 kg., and could be properly called

the joulecen (= 107
dynes). There is not much prospect in sight

of introducing this unit of force into practice, because the kilo-

gram is too well established in common use. The next best

thing to do is to derive formulae and perform calculations, when-

ever convenient, in joulecens, and to convert the results into

kilograms by multiplying them by g
= 9.806.

Thus, leaving aside all historical precedents and justifica-

tions, the whole system of electric and magnetic units is re-

duced to this simple scheme: In addition to the centimeter, the

gram, the second, and the degree Centigrade, two other funda-

mental units are recognized, the ohm and the ampere. All

other electric and magnetic units have dimensions and values

which are connected with those of the fundamental six in a

simple and almost self-evident manner, as shown in the table

above.

To appreciate fully the advantages of the practical ampere-
ohm system over the C.G.S. electrostatic and electromagnetic

systems, one has only to compare the dimensions, for instance, of
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current density and voltage gradient in these three systems, as

shown below.
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current of transmission line, see also Elastance 193

currents of three-phase line with symmetrical spacing 196

currents of three-phase line with unsymmetrical spacing 201

Circle coefficient of induction motor 138

diagram of induction motor or transformer 136

Circuit, alternating-current 31

dielectric 143

dielectric, hydraulic analogue 145

direct-current 1

polyphase 99

221
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Coefficient, leakage, of induction motor 138

of self-induction see Inductance.

temperature of electric resistivity 5

Complex expression for admittance

expression for impedance

quantity, definition of 85

Component, energy, of current or voltage 56

reactive, of current or voltage 56

Condenser, charging current of 203

definition of 143

Conductance and resistance, how related, in an A.C. circuit 79

definition of 2

dielectric 109

Conductances, addition of 8

Conductivity, definition of 14

Conductor, definition of 1

of variable cross-section 22

unit, definition of 13

Continuous current, see Current, direct.

Core loss of transformer Ill

Corona, electrostatic 167

Current, alternating 31

density, definition of 15

direct 1

due to non-sinusoidal voltage 71

effective value of alternating 48

energy and reactive components of 56

primary, of induction motor 126

radial flow of 26

refraction, law of 28

resonance 205

transient, in opening and closing a circuit 71

Currents, polyphase alternating 99

Cycle of alternating wave, definition of 33

Cylinders, elastance between two large parallel 188

Daraf, definition of 148

Delta-connected three-phase system 105

Dielectric circuit 143

conductance 169

elastivity of 152

energy stored in 158

flux density 154

flux, refraction of 164

hysteresis 169

nature of 144

permittance of 147
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Dielectric, permittivity of 151

reactance 204

strength 164

stress 156

susceptance 203

Dimensions of units, table of 216

Dispersion factor of induction motor 138

Displacement, electric, illustrated 144

Disruptive voltage, see Dielectric strength.

Effective value in terms of harmonics 54

value of variable current 49

values of alternating currents and voltages, definition of 48

Elastance between concentric spheres 175

between small spheres 179

between two large parallel cylinders 188

definition of 148

of a single-core cable 171

of a single-phase line 176

of a three-phase line with symmetrical spacing 196

Elastances, addition of 149

Elastivity, definition of 152

Electric displacement illustrated 144

intensity, definition of 16

intensity in the dielectric circuit 155

power 10

Electromotive force, see Voltage.

Electrostatic, see also Dielectric.

capacity, definition of 147

corona 167

field, nature of 143

Energy component of current or voltage 56

converted into heat 10

density of 158

stored in dielectric 158

stored magnetic 62

unit of electrical 11

Equipotential surfaces denned 22

Equivalent resistance, definition of 7

series and parallel circuits 78

sine-wave, definition of 53

Exciting admittance of transformer Ill

Exponential expressions for vectors and operators 97

Farad, definition of 147

Field, electrostatic, see Electrostatic field.

Fleming's method for calculatingthe effective value of an irregular curve. 52
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Flux density, dielectric 154

dielectric, see Dielectric flux.

Form factor, definition of 51

Fourier series 43

Frequency of alternating current or voltage, definition of 33

Gradient, voltage, in the dielectric circuit 155

voltage, definition of 16

Ground, influence upon the charging currents in a three-phase line .... 202

influence upon the elastance of a single-phase line 180

Harmonics, definition of 41

effects of elastance and inductance on 205

Heaviside, Oliver, nomenclature of 152

Henry, definition of 62

Heyland diagram of induction motor or transformer 136

Homopolar machine 31

Horse-power, English, defined 10

metric, defined 10

Hydraulic analogue of inductive circuit 65

analogue of the dielectric circuit 145

Hysteresis, dielectric : . . . 169

Images, Kelvin's method of electric 180

Impedance, definition of 67

equivalent, of transformer 116

expressed as a complex quantity or operator 88

Impedances in parallel 80

in series 68

Inductance, definition of 60

influence of, with non-sinusoidal voltage 69

Induct ion motor, approximate analytical treatment 125

characteristics with locked rotor 123

circle coefficient or dispersion factor 138

circle or Heyland diagram of 136

equivalence to a polyphase transformer 122

equivalent electrical diagram of 122

exact analytical treatment 139

input per phase 127

magnetomotive forces in 124

maximum output of 131

primary current and power-factor 126

pull-out torque of 130

secondary resistance and reactance reduced to primary. 133

slip, calculation of 126

slip, defined 123

squirrel-cage rotor 134
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Induction motor, starting torque of 129

torque of 127
Inductive reactance, see Reactance.

Inertia as an analogue to inductance 60

Insulation, see also Dielectric.

condenser type 175

grading of 174

Intensity, electric, definition of 16

electric 155

factor, illustrated 10

Irregular paths, resistance and conductance of 27

Joule, definition of 11

relation of, to thermal units 11

Joulecen, definition of 217
Joule's law 10

Kelvin's law of economy 15

Kelvin's method of electric images 180

Kirchhoff's laws 17

Law, Joule's 10

Kirchhoff's first 18

Kirchhoff's second 19

of current refraction 28

of flux refraction 163

of economy, Kelvin's 15

of minimum resistance 27, 160

Ohm's, synopsis of 1

Leakage conductance of transmission line 208

factor of the induction motor 138

Lehmann, Dr., method of finding resistance of irregular conductor 28

Lehmann, Dr., method of mapping irregular field 162

Line, see Transmission line.

Magnetizing current of transformer Ill

Mean, see Average.
Mesh connection of polyphase system 101

Mho, definition of 2

Minimum resistance, law of 160

Motor, induction, see Induction motor.

Neutral points of polyphase system 104

Nomenclature xii

Notation xiii

Ohm's law, for an infinitesimal conductor 25

hydraulic analogy to 2
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Ohm's law, synopsis of 1

thermal analogy to 2

Operator, admittance 89

impedance 88

Operators expressed as exponential functions 97

polar expressions for 93

Output, maximum, of induction motor 131

Parallel connection of conductors 7

connection of impedances 80

connection of susceptances and conductances 77

Performance characteristics of the induction motor 122

characteristics of the transformer 108

characteristics of the transmission line 94, 208

Permittance, see also Elastance.

definition of 147

distributed, of transmission lines 208

Permittances, addition of 149

Permittivity, definition of 151

relative . 151

Phase angle, definition of 34

Phase displacement expressed by projections of vectors 91

Polar coordinates, vectors and operators in 93

Polyphase system, definition of 99

system, neutral points of 104

Power, alternating-current, when current and voltage are in phase 45

apparent 56

as double-frequency function 59

average, of non-sinusoidal waves 57

electric 10

expressed by projections of vectors 91

expression for average value in alternating-current circuit 56

practical unit of 10

real 56

Power-factor, definition of 56

of induction motor 126

with non-sinusoidal waves 58

Projections of vectors, addition and subtraction of 82

Quadratic mean value 50

Quantity factor, illustrated 10

Quarter-phase system, star- and mesh-connected 101

Radial flow of current 26

Rayleigh, Lord, method of finding permittance of dielectrics of irregular

shape 161

method of finding resistance of irregular conductor 28
Reactance and susceptance in an A.C. circuit 79
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Reactance, definition of 64

dielectric 204

equivalent, of transformer 118

inductive 63

leakage, of transformer 110

secondary, of induction motor reduced to primary 133

Reactive component of current or voltage 56

Refraction of current 28
of dielectric flux .\ 164

Regulation, see also Voltage regulation.

speed, of induction motor 123

voltage, of the transformer 108

voltage, of the transmission line 94

Resistance and conductance in A.C. circuits 79

and temperature, relation between 5

definition of 1

equivalent, definition of 7

equivalent, of transformer 118

law of minimum 160

secondary, of induction motor reduced to primary 133

Resistances, addition of 8

Resistivity, definition of 13

Resonance, current 205

voltage 207

Series connection of admittances 80

connection of conductors 7

connection of impedances 68

Series-parallel combination of permittances and elastances 150

combination of resistances 9

Sine-wave, definition of 32

definition of equivalent 53

of current or voltage 31

represented by a vector 36

Single-phase line, effect of the ground upon the elastance of 180

elastance of 176

equations of lines of force and equipotential surfaces 184

Sinusoidal currents and voltages, rule for addition and subtraction of ... 40

Slip, calculation of

of induction motor defined 123

Specific capacity, see Permittivity, relative,

resistance, see Resistivity.

Spheres, elastance between concentric 175

elastance between small 179

equations of lines of force and equipotential surfaces between . . 187

Square root of mean square value, defined 49

Star connection of polyphase system 101



228 INDEX

PAGB

Steinmetz, Dr. C. P., symbolic notation of 83

Stream lines, definition of 22

Superposition, principle of 177

Susceptance and reactance, how related, in an A.C. circuit 79

definition of 75

dielectric 203

Susceptances in parallel 75

Symbols, list of xiii

System, four-wire, two-phase 99

three-wire, two-phase 100

polyphase, definition of . 99

quarter-phase, star- and mesh-connected 101

three-phase, delta-connected 105

three-phase, V- and T-connected 107

three-phase, Y-connected 103

T-connected three-phase system 107

Temperature coefficient 5

Thermal resistance, definition of 2

Three-phase line, influence of the ground upon the charging currents. . . . 202

with symmetrical spacing, elastance and charging current of. ... 196

with unsymmetrical spacing, charging currents of 201

Three-phase system, delta-connected 105

V- and T-connected 107

Y-connected 103

Time constant of electric circuit 72

Torque of induction motor 127

pull-out, of induction motor 130

starting, of induction motor 129

Transformer, constant-potential, definition of 108

core loss of Ill

equivalent impedance of 116

equivalent resistance and reactance of 118

exciting admittance of Ill

leakage reactance of 110

magnetizing current of Ill

ohmic drop in 110

reactive drop in 110

vector diagram of 113

voltage ratio of 109

voltage regulation 108, 115, 120

Transient current in opening and closing a circuit 71

Transmission line, see also Three-phase line and Single-phase line.

leakage conductance of 208

voltage regulation of 94

voltage regulation, taking account of distributed per-

mittance . 208



INDEX 229

PAGE

Tube of current, meaning of 23

Two-phase, four-wire system 99
three-wire system ; 100

Unit conductor, definition of 13

of conductance 2

of electrical energy 11

of resistance 1

Units, C. G. S. and practical systems 3
international electrical 3
table of names and dimensions of 216
the ampere-ohm system 215

V-connected, three-phase system 107

Vector, definition of 36

diagrams, examples of 100, 102, 113

used to represent a sine-wave . 36

Vectors, addition and subtraction of 37

addition and subtraction of projections of 82

expressed as exponential functions 97

in polar coordinates 93

Voltage, effective value of alternating 48

energy and reactive components of 57

gradient in the dielectric circuit 155

gradient, definition of 16

gradient, rupturing values of 165

regulation of the transformer 108, 115, 120

regulation of the transmission line 94

regulation of transmission line, with permittance concentrated. 211

regulation of transmission line, with permittance distributed. . . 208

resonance 207

Watt, definition of 10

Wave form of alternating current or voltage 51

representation of irregular 41

Y-connected, three-phase system 103

Yrneh, definition of 148
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