
Selected Chapters of Geometry
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Chapter I. Euler’s Formula

I.1. The Euclidean and the Spherical Triangle

For the Euclidean triangle we have the well known

Figure 1

fact “Sum of the angles = π ” or
∑
α−π = 0.

For a spherical triangle with angles α and area F on a sphere of

radius r there is the “formula of the spherical excess” (excess of

Figure 2

the sum of the angles over π ):∑
α−π = F/r 2 (Thomas Hariot, 1603.)

This is proved with the help of the three great circles

that form the triangle. These great circles decompose the

sphere into six spherical 2 gons, three covering the origi-

nal triangle and the other three its antipodal image. Thus

Figure 3

these 2 gons cover the two triangles three times and the

rest of the sphere exactly once.

The surface area of the sphere is 4πr 2 . The area of a

2 gon of opening angle α is 4πr 2 · α
2π = 2αr 2 . This

Figure 4

gives us 2 · ∑2αr 2 = 4πr 2 + 4F (left hand: the six

2 gons, right hand: the whole sphere plus twice the orig-

inal triangle plus twice the antipodal one), which proves

the formula.
√

We apply this to get a relation for the vertex angles and edge angles of a tetrahedron.

For each vertex of the tetrahedron we have F/r 2 = ∑ ε − π , where F is the area of

the spherical triangle cut out by the corner from a sphere of radius r , and the ε are
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the edge angles of the tetrahedron at the edges going out from the vertex. Adding

over the vertices this gives the formula of J.-P. Gua de Malves (around 1740? 1783?)∑
F/r 2 = 2

∑
ε − 4π,

where the ε are the angles at the six edges.
√

We measure all angles by the fraction they cut out from a

sphere of (small) radius r with center at a vertex or an inte-

rior point of an edge and denote the angles F/4πr 2 at the

Figure 5

vertices by γ (the new ε is the old one divided by 2π ). The

formula then becomes∑
γ −

∑
ε+ 1 = 0.

This becomes more attractive if we write it as∑
γ −

∑
ε+ 4 · 1

2 − 1 = 0.

Here we interpret each of the four 1
2 s as the “angle” at one of the faces, i.e. the

fraction of the surface of a sphere with center at an interior point of the face cut

out by the tetrahedron, and interpret the 1 similarly with a sphere at an interior

point of the tetrahedron. Thus we have four sums in the formula going respectively

over the vertices, the edges, the faces, and the last with only one term for the whole

tetrahedron, all added together with alternating signs. This has a generalization to n
dimensions.

I.2. The n-Dimensional Simplex, Euclidean and Spherical

A Euclidean n simplex in k space Rk (with k ≥ n )is the convex hull of n+1 affine-

independent points. (Affine-independent means: not contained in any linear variety

of dimension < n .) Often one thinks of just the set of these points as the simplex.

The points are called the vertices of the simplex. Any p + 1 of the vertices (with

p ≤ n ) determine a boundary simplex, or face, more precisely boundary p simplex

or p face. There are
(
n+1
p+1

)
p faces of an n simplex. Similar to what we did with the

tetrahedron we assign to each face an angle, namely we consider a (small) sphere, of

radius r say, with center at an interior point of the face, and take the fraction of the

surface area of the sphere cut out by the n simplex. (As before this works also for
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p = n−1 or n : for each (n−1) face we get 1/2, and for the n simplex itself we get

1.) Let wp be the sum of these angles over all the p faces, for p = 0,1, . . . , n . (Note

wn−1 = (n+ 1)/2 and wn = 1.)

We claim: ∑
(−1)pwp = 0,

the alternating sum of the angle sums is 0; this generalizes what we found for the

tetrahedron; it also means that we should rewrite our first equation
∑
α − π = 0 as∑

α− 3π + 2π = 0.

The proof will involve a detour over the spherical simplex. So let Sn be a sphere of

radius r in Rn+1 , centered at the origin O , and let Ei be n + 1 hyperplanes (codi-

mension 1) through O , in general position (meaning that the intersection of any r of

them has dimension n − r , or also that the lines orthogonal to the Ei are indepen-

dent). Each Ei is oriented by choosing one of the two (closed) half-spaces determined

by it as “positive”. The intersection of the positive half-spaces is a convex cone Γ ; the

intersection Γ ∩ Sn is a spherical n simplex, say Σ , (of dimension n ). The faces ofΣ are the intersections of Σ and some subset of the Ei . (Each such face is a spherical

simplex in the intersection of the Ei defining it; its dimension is one less than that of

that intersection.)

The (multihedral) angle at a face is the angle of the Ei defining it, i.e. the fraction of the

total volume of a small sphere around an interior point of the face, that is contained

in Γ . (The angle at Σ itself is 1, the angle at a codimension-1 face is 1/2.) As before

we write wp for the sum of all the angles at the faces of dimension p . We define n+1

functions fi on Rn+1 by fi = 1 on the positive half space of Ei and 0 otherwise (the

characteristic or indicator function of this half space). For any (integrable) function g
on Sn we write

∫
g for the integral of g over Sn , the latter provided with the usual

area element. Clearly for any subset (p1, p2, . . . , pr ) of (1,2, . . . , n + 1) the value of∫
fp1fp2 · · ·fpr is the angle of Σ at the corresponding face.

We now form the function φ = (1−f1)·(1−f2)· . . .·(1−fn+1) . Clearly φ , restricted

to Sn , is 1 on (the interior of) the spherical simplex antipodal to Σ and 0 otherwise;

thus
∫
φ = AΣ = area of Σ . On the other hand, by multiplying out, we have

∫
φ =

∫
1−

∑∫
fi +

∑∫
fi1fi2 − . . .+(−1)n

∑∫
fi1fi2 · · ·fin

+ (−1)n+1
∑∫

f1f2 · · ·fn+1.



4 heinz hopf

The individual terms here are easily seen to be the angle sums wp introduced above.

Writing An for the total surface area of Sn , we get

AΣ = [wn −wn−1 +wn−2 − . . .+ (−1)nw0]An + (−1)n+1AΣ.
(This is the analogon of the decomposition of the 2 sphere considered in the begin-

ning.)
√

We rewrite this as Poincaré’s formula:

n∑
0

(−1)p wp =
{

2AΣ/An for n even
0 for n odd.

As earlier, let ∆ be a Euclidean simplex in Rn . Viewing Rn+1 as Rn × R , move the

center of Sn to the point (0,0, . . . ,0, r ) . Projecting ∆ stereographically (and confor-

mally) to a spherical simplex Σ on this Sn from (0,0, . . . ,0,2r) , and finally letting r
go to ∞ , we get the formula for the Euclidean simplex promised above.

I.3. Euler’s Theorem on Polyhedra, other Proofs and Consequences

Let there be given a triangulation of the sphere, with v vertices, e edges, and f
triangles. (The sphere is covered with a finite number of triangles; any two triangles

either are disjoint or have a vertex in common, or have an edge (and its two vertices) in

common.) For each triangle we have the relation
∑
α−π = F/r2 of Section I, between

its angles and its area. We add these f equations and get

v · 2π − fπ = 4πr 2/r 2 = 4π.

Thus we have 2v − f = 4. But we also have 3f = 2e . (Explode the sphere, or cut

the triangles apart. Since there are f triangles, one sees 3f edges. Also, each edge

belongs to two triangles; so one sees 2e edges.) Substituting f = 2e − 2f into the

first relation, we get

v − e+ f = 2,

the famous Euler formula (1752) for a triangulation of the sphere. It extends easily to

a more general situation:
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We consider a decomposition of the sphere into

(spherically) convex polyhedral cells. The bound-

ary of each cell is a simple closed curve, consist-

ing of a finite number, ≥ 3, of great circle arcs

(the “edges”), which meet at the “vertices”; any two

cells are either disjoint or have exactly one vertex

in common or have an edge (with its two endpoints-

vertices in common). More generally we allow cells

Figure 6

that are star-shaped from

one of their points; such a

cell is in the obvious way

the union of the spherical triangles formed by the central

point and the edges of the cell. (Note that a convex cell is

Figure 7
star-shaped from any interior point.)

Again we let v , e and f be the number of vertices, edges and cells. What is the value

of v − e+ f ?

We choose any cell that is not a triangle already, with n > 3 edges, and divide it, as just

described, into triangles from the chosen center of the cell, arriving at a new cell de-

composition of the sphere. Clearly the number v has increased by 1, e has increased

by n , and f by n−1. The change in the combination v−e+f is 0. We continue until

we have only triangular cells left. Using the Euler formula for triangulations, proved

above, we conclude that

v − e+ f = 2

holds for any decomposition into star-shaped polyhedral cells.

Here is another version (going back to Legendre): For any cell with n vertices we have∑
α− (n− 2)π = F/r 2

as follows by division into triangles from the center and our earlier formula
∑
α−π =

F/r 2 for a spherical triangle. Adding these equations over the cells and using the

obvious relation
∑
n = 2e we get

v · 2π − 2k ·π + 2fπ = 4π,

i.e.

v − e+ f = 2,

the Euler formula.
√
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I.4. Convex Polyhedra

A convex polyhedron in R3 is by definition a non-empty bounded set that can be

written as the intersection of a finite number of closed half spaces (The complement

of a plane in R3 is the union of two connected open sets, called open half spaces.

The union of either one with the plane is the corresponding closed half space.) It is

intuitively obvious and can be proved in detail that the (point set) boundary of such

an object is the union of a finite number of plane convex polyhedra, the faces, and

that for any two faces the intersection is as above on the sphere: it is either empty or a

single vertex or an edge (with its endpoints) of each of the two faces. The polyhedron

is the convex hull of the set of its vertices (the union of the sets of vertices of the

various faces). As before we write v , e , and f for the number of vertices, edges, and

faces.

Projecting from an interior point onto a sphere around the point we get a cell division

of the sphere with the same numbers v , e , f . Thus we have the same Euler formula

v − e+ f = 2

for convex polyhedra.

We think of all these convex polyhedra as cell divisions of the 2 sphere. Thus it is

a property of the 2 sphere that v − e + f for all these cell divisions always has the

value 2. One expresses this by saying that the Euler (or sometimes Euler-Poincaré)

characteristic χ(S2) is 2.

We make an application of this: regular polyhedra, strictly speaking combinatorially

regular polyhedra. A convex polyhedron is called (combinatorially) regular if

(1) The number of edges going out from a vertex is the same for all vertices, say m ,

and

(2) The number of edges of a face is the same for all the faces, say n . (For obvious

reasons we shall assume m,n ≥ 3.)

For such a polyhedron we ask for the possible values of v , e . f , m , n . I.e., what do

regular polyhedra look like?

Our starting point is the Euler formula v − e+ f = 2. Conditions (1) and (2) yield the

relations

m · v = 2e, n · f = 2e,
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a Diophantine system of equations, i.e., we are looking for solutions in (positive) inte-

gers. We have v = 2e/m and f = 2e/n and so

v + f = e+ 2 = 2(m+n)e/mn

or

1 = e · (1/m+ 1/n− 1/2).

This implies 1/m + 1/n > 1/2. Clearly then not both m and n can be ≥ 4, and so

one of them must be 3. Checking the possibilities for the other we find the table

m 3 3 4 3 5

n 3 4 3 5 3

v 4 8 6 20 12

e 6 12 12 30 30

f 4 6 8 12 20

Note the relation between the third and fourth and between the fifth and sixth column:

The entries for m and n are interchanged, and so are those for v and f .

These are the the values of v, e, f that the Euler relation allows for regular (convex)

polyhedra. Such polyhedra actually exist: they are the well known five Platonic poly-

hedra, Tetrahedron, Cube, Octahedron, Icasohedron, Dodecahedron. These polyhedra

are not only combinatorially regular, but even metrically regular: All the vertices are

congruent (i.e. the cones spanned by the faces at the vertices are congruent), and all

the faces are congruent.

The cases m = 2 and n = 2 make sense in a way, as degenerate cell divisions of the

sphere: For m = 2 and then f = 2 and v = e = n , any n , one takes the division of the

Figure 8

sphere into upper and lower

hemispheres, with n vertices

on the equator. For n = 2 and

v = 2, f = e = m , any m ,

there is dually the division of

the sphere into strips (2 gons)

by m meridians.
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I.5. More Applications

We consider consequences of the Euler formula for arbitrary (not necessarily regular)

convex polyhedra. Suppose every face has at least m edges and from every vertex

emanate at least n edges; also m ≥ 3, n ≥ 3. We denote by f3 the number of triangles

among the faces, by f4 the number of quadrangles, etc, and similarly by v3, v4, . . . the

number of vertices of “order” 3,4, . . . . We clearly have

f = f3 + f4 + . . .
2e = 3f3 + 4f4 + . . .

v = v3 + v4 + . . .
2e = 3v3 + 4v4 + . . . .

Because of our restrictions on the polyhedron this refines to

2e = n · fn + (n+ 1) · fn+1 + . . .
2e =m · vm + (m+ 1) · vm+1 + . . . .

This implies
2e ≥ n(fn + fn+1 + . . .) = n · f
2e ≥m(vm + vm+1 + . . .) =m · v,

or

1/n ≥ f/2e; and 1/m ≥ v/2k.

This in turn, using the Euler formula, means

1/n+ 1/m ≥ (2+ k)/2k = 1/2+ 1/k

and so

1/n+ 1/m > 1/2.

This is the same inequality that we had before, and we conclude:

a) At least one of m and n is 3, and

b) Both numbers are ≤ 5.

In words: On every convex polyhedron there is always either a triangle or a quadrangle

or a pentagon, and similarly for vertices. And: there is always either a triangle or a

vertex of order 3 (or both).
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I.6. Extension of Legendre’s Proof to n Dimensions

We start from Poincaré’s formula for the spherical simplex:
n∑
0

(−1)rwr =
{

2AΣ/An, n even
0, n odd.

Let the sphere be triangulated:

a0 vertices

a1 edges

...
...

an n simplices.

Now we add the Poincaré formula for the n simplices and get, by summation of the

angles at each vertex, edge, . . . :

n∑
0

ar =
2, n even

0, n odd

 = 1− (−1)n+1

If a division of the sphere into convex cells is given, one proceeds by dividing each cell

into simplices. Let A1, A2, . . . , An be the numbers of cells of dimension 0,1, . . . , n . We

are interested in
∑n

0 (−1)rAr . Dividing the cells into simplices is done by increasing

dimension. The boundary of a cell xr is a (polyhedral) sphere, divided into spherical

simplices, and one projects this division from any inner point of the cell. The numbers

Ar change at each step, but one shows that the alternating sum
∑n

0 (−1)rAr doesn’t

change. At the end one has a simplicial division, for which the formula holds, and so

the same formula holds for the original Ar .

To show that the sum doesn’t change: the boundary of the cell xr has αi simplices

of dimension i = 0,1, . . . , r − 1, and we know
∑r−1

0 (−1)tαt = 2 or 0, for r − 1 even

or odd. In the subdivision of xr we get

1 new vertex

α0 new edges

α1 new triangles

...

αr−2 new (r − 1) simplices

αr−1 new r simplices.
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However we lose the cell xr itself, and so the change is

1−α0 +α1 − . . .+ (−1)r (αr−1 − 1)

which is 0 as just noted.

I.7. Steiner’s Proof of Euler’s Theorem

For a triangle we have
∑
αi −π = 0. For an n gon

Figure 9

we have
∑
αi − (n − 2)π = 0 (divide the n gon

into triangles from some interior point; “artificial”

vertices on the edges, making the original n gon

into an m gon with m > n , are allowed). These

expressions can be written as

w0 −w1 +w2 = 0

where w0,w1,w2 mean the sum of the angles at the vertices, the edges, and “at the

(one and only) face”. I.e. w0 =
∑
αi , w1 = nπ , and w2 = 2π .

Let now z be a convex cell, divided in some manner

into convex cells. Let v, e, f be as usual the num-

bers of vertices, edges, and faces of this division.

For each cell zi of the subdivision we have the cor-

Figure 10

responding equation

wi0 −wi1 +wi2 = 0.

Also let W0,W1,W2 be the angle sums for z itself

(here we regard z as an n gon with all the vertices of the subdivision on the boundary

of z as vertices). We have W0 − W1 + W2 = 0 and W2 = 1. Finally let η and κ be

the number of vertices and edges of the subdivision that lie in the interior of z . We

clearly have

∑
wi0 = η = W0 (since every vertex in the interior contributes 1 to the sum)∑
wi1 = κ +W1 (similarly)∑
wi2 = f (clearly).
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Taking the alternate sum we get

0 = η− κ + f +W0 +W1.

With W0 −W1 +W2 = 0 and W2 = 1 this gives

0 = η− κ + f − 1.

Finally let v′ and e′ be the numbers of vertices and edges on the boundary of z .

Clearly we have v′ = e′ and also η+v′ = v, κ + e′ = e . putting it all together we find

v − e+ f = 1.

In words, the (Euler) characteristic of a subdivided convex cell is always equal to 1; it

is in this sense that we say that the Euler characteristic of a cell (with no subdivision

mentioned) is 1. That result is the basis for Steiner’s proof of Euler’s theorem:

So consider a (bounded) convex polyhedron in space. Choose a direction that is not

parallel to any edge or face (no problem: one has to avoid only a finite number of

planes and lines) and project the polyhedron in that direction into a plane. The image

is a convex polygon. Its boundary is one-to-one image of a closed edge path on the

polyhedron; it divides the polyhedron into two parts, each of which is projected one-

to-one onto the image polygon. Thus for each one we have v−e+f = 1. By addition,

noticing that for the common boundary curve the relation v − e = 0 holds, we get

v − e+ f = 2.

I.8. The Euler Characteristic of a (Bounded Convex) 3-Cell

The cell is subdivided into smaller convex cells. We have as usual v vertices, e edges,

f two-dimensional faces, and now also t three-dimensional cells. The Euler charac-

teristic is the alternating sum v − e+ f − t , and the main result will be that (again)

v − e+ f − t = 1.

A convex cell has natural vertices (the extreme points), natural edges (joining some

pairs of vertices), and natural faces which are convex 2 cells (maximal plane sets in

the boundary of the cell). As before we have the notions of angle at a vertex, at an
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edge, at a 2 face, and now also “at a 3 face”; we take them normalized (full angle = 1);

and the angle at the 3 face is (by definition: fraction within the cell of a small sphere

at an interior point) 1. Adding up gives the angle sums w0,w1,w2,w3 at the vertices,

edges, . . . . Similar to, but more complex than, our convention in the two-dimensional

case of an n gon, we now allow the cell to have a polyhedral subdivision of its bound-

ary with its vertices, edges, faces, together with one 3 dimensional element, the cell

itself, and the resulting angle sums wi . The first result to be proved is

w0 −w1 +w2 −w3 = 0,

the alternating sum of the angle sums is 0.

The first instance and the basis for the proof is the formula of de Gua for a tetrahedron

which we derived in the beginning (
∑
γ −∑ ε+ 1 = 0 or

∑
γ −∑ ε+ 4 · 1/2− 1 = 0);

in the new notation this says

w0 −w1 +w2 −w3 = 0.

Next, let a convex 3 cell (possibly with subdivided boundary) be given. In the interior

of each face introduce a new vertex, and join it by edges to the vertices on the boundary

of the face. This divides the face into triangles. One sees easily that w0 −w1 +w2

does not change under this process: for each face with r vertices there is now one

more vertex with angles 1/2, r new edges with angle 1/2, and r new faces with

angle 1/2, and the original face, with angle 1/2, has disappeared. For the moment

the numbers v, e, f will refer to the cells of the (thus subdivided) boundary. We

now introduce a new vertex in the interior of the 3 cell, and divide the cell into the

tetrahedra obtained by connecting the simplices on the boundary with the new vertex.

We write the formula of de Gua for each tetrahedron and add all the equations∑
wi0 −

∑
wi1 +

∑
wi2 −

∑
wi3 = 0.

Summing first over the contributions of the individual vertices, edges, faces, and tetra-

hedra The expression on the left can be rewritten as

1+w0 − (v +w1)+ (e+w2)− f = 0.

the numbers 1, v, e, f here come from the full angles around the interior vertex and

the edges, faces, tetrahedra issuing from it to the vertices, edges, and faces on the

boundary. With w3 = 1 this means

w0 −w1 +w2 −w3 + 2− v + e− f = 0,
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and with the Euler theorem for the boundary polyhedron (v−e+f = 2) there follows

the promised relation

w0 −w1 +w2 −w3 = 0

for a 3 cell with subdivided boundary.

Now let us take a 3 cell z that is subdivided into smaller 3 cells (all convex of course),

with v, e, f , t vertices, edges, faces, and 3 cells. (We should clarify the notion of

subdivision: It consists of a finite family of convex 3 cells whose union is the given

cell z , with the property that the intersection of any two is either empty or a common

vertex or edge or face.) We let v◦ etc. be the numbers of those in the interior, and v′

etc. the numbers of those on the boundary of z (note t′ = 0). For z with its division

of the boundary we have the equation W0 −W1 +W2 −W3 = 0, with W3 = 1. For each

of the smaller 3 cells we have w0 −w1 +w2 −w3 = 0. We add all these equations.

The sum of the w0 gives the angle sum at the vertices; similarly for edges, faces,

3 cells. for a vertex in the interior the sum of the angles around it is 1. Thus we get∑
w0 = v◦ +W0 ,

∑
w1 = e◦ +W1 ,

∑
w2 = f ◦ +W2 ,

∑
w3 = t◦ , and so

v◦ − e◦ + f ◦ − t◦ +W0 −W1 +W2 = 0

or also, with W0−W1+W2−W3 = 0 and W3 = 1, v◦ −e◦ +f ◦ − t◦ = −1. On the other

hand, by Euler we have v′ − e′ + f ′ = 2. Altogether this gives

v − e+ f − t = 1

for the characteristic of a 3 cell.

We state, but do not prove, the result for a convex n cell (any n = 0,1,2,3 . . . ): With

ai the number of i cells, the formula is

a0 − a1 + a2 − a3 + . . . (−1)nan = 1.

Let us assume an = 1 so that the cells of dimension < n form a subdivision of the

boundary of the cell (the polyhedral version of the (n − 1) sphere Sn−1 ). Replacing

n−1 by n and writing χ for the alternating sum of the numbers of cells of the various

dimensions we arrive at

χ(Sn) = 1+ (−1)n.

The even-dimensional spheres have characteristic 2, the odd-dimensional ones have

characteristic 0.
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Here is a third proof for the Euler theorem, using the result that v − e + f = 1 for a

(subdivided) 2 cell. Let a subdividion of the sphere into convex cells be given. The

value of v − e+ f doesn’t change if one subdivides an edge or a face (by introducing

new vertices and edges within the face): This is clear for an edge (a new vertex replaces

the edge with two edges), and, as just noted, a face contributes 1 to v − e+ f before

and after subdivision. Now consider two subdivisions. By superimposing them one

gets a third division which is a subdivision of each of the two. Since subdivision

doesn’t change v − e + f , it follows that all these values are equal. To find what the

common value is one takes any simple division (e.g. the tetrahedron).
√

As a matter of fact one can even allow more general cell divisions. E.g., divide the

sphere into two hemispheres, with two (say antipodal, for beauty’s sake) vertices on

the common equator.

More generally in another direction, one can develop all this for the other closed

surfaces (and even beyond that): one has division into cells as before, and it turns out

that v−e+f for a given surface always gives the same value, which then naturally is

called the (Euler) characteristic of the surface. As an example, the characteristic of a

torus is 0. Here are pictures for the “orientable” surfaces (Fig. 11)

Figure 11

g = 0 g = 1 g = 2

Here g is a number, called the genus of the surface, related to the characteristic by

χ = 2− 2g .
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Chapter II. Graphs

II.1. The Euler Formula for the Characteristic

A graph in space or the plane consists of a finite number of (closed) segments, such

that any two either are disjoint or have exactly an endpoint in common. Abstractly

a graph consists of two pieces of data: A finite set V of objects, called vertices,

and a set E of unordered pairs of distinct vertices, called edges; usually every vertex

belongs to at least one edge. (Sometimes one allows pairs (a,a) , “loops”, concretely

an edge [not straight] from a vertex back to itself; sometimes one uses ordered pairs,

interpreted as directed edges.) Every abstract graph can be realized in R3 (clear), but

not necessarily in the plane (see below).

The number v − e (number of vertices minus number of edges) is called the charac-

teristic of the graph; subdivision (introducing a new vertex in an edge) doesn’t change

it.

A closed curve (often called a circuit) in a graph must of course consist of a number

of edges in the usual cyclic arrangement; if it is simple (no “self-intersection”), it is

called a simple circuit.

A graph is called a tree if it is connected and contains no simple circuit. Clearly a

(nonempty) tree has at least two “free points” or “end points”, meaning vertices that

belong to only one edge, and has v − e = 1. The latter is proved by induction on e ,

by removing an edge with an endpoint, leaving a tree with smaller e .

Next, let K be a connected graph, but not a tree. By definition it contains a simple

circuit. Remove one of the edges, say s , of this curve. The remaining graph K′ = K−s
is clearly still connected. The number v is still the same, but e decreases by 1. We

iterate this, with K′′,K′′′, . . . , until we get to a Kp that is a tree. (This must happen!)

Then v − e has decreased by p , and for a tree the characteristic is 1; so we have

v − e = 1−p . As a consequence we see that it always takes the same number of such

steps (removing edges from simple circuits), p , to reduce K to a tree. The number is

called the connectivity of the graph, or also the first Betti number of K . (The name

refers to the Italian geometer Enrico Betti, 1823-1892, who introduced characteristic

numbers of this kind for geometric figures, also in higher dimensions.) We see that a

connected gaph is a tree if and only if its characteristic is 1. For an arbitrary connected

graph the characteristic is ≤ 1. For a generalK letK1,K2, . . . ,Kr be the components
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of K (maximal connected subsets). Each component Ki has vi vertices, ei edges,

and connectivity pi , with vi − ei = 1− pi . Put p =∑pi . then we have

v − e = r − p.

The left hand side involves numbers that are easily read off from the graph, but are

not invariants under subdivision. The right hand side involves numbers that express

geometric properties of the graph. One might call it the Euler formula for graphs.

II.2. Graphs in the Plane (and on the Sphere)

A graph K in the plane (or on the sphere) divides the plane (or sphere) into a cer-

tain number of connected domains or “faces” (components of the complement of the

graph); let f be that number. With p as before we shall prove the main relation

f = p + 1.

We first state a lemma, which is actually the main part of the Jordan curve theorem

for graphs (and which we prove below):

Lemma Given a simple circuit in the plane, any two points close to and on opposite sides

of an edge of the graph cannot be connected without meeting the graph.

Here to “connect” two points P and Q means to give a set (a “chain” from P to Q ) con-

sisting of P,Q , some other points P1, P2, . . . , Pm and the segments PP1, P1P2, . . . , PmQ .

Now to the proof of our relation:

1) The case p = 0 (K is a “forest”). We proceed by induction on the number e of

edges. For e = 0 or 1 the matter is obvious. So suppose the statement holds for

e = n , and take a forest with n + 1 edges. As we know, there exists an edge with a

free endpoint (to which no other edge is attached); take such a one. Removing it leaves

a forest K′ with n edges (for which the statement holds).

Any two points a and b not on K can then be connected

Figure 12

a

b

s

by a finite chain of edges that doesn’t meet K′ . Clearly one

can then connect a and b without meeting K : If the chain

meets the removed edge one can modify it by going by going

around the free end.

2) p arbitrary, > 0. We remove an edge k so that K′ = K−k has connectivity p−1.

We claim: The two sides of k belong to two different faces, this follows easily from
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the above Lemma, applied to a circuit in K that contains k . Therefore the number

of faces for K′ is one less than that for K . We iterate this. After p steps we arrive

at a graph K(p) with connectivity 0, and therefore, by point 1), with number of faces

1. We conclude f = p + 1.
√

From f = p + 1 and v − e = s − p follows the relation

v − e+ f = s + 1.

This is a generalization of the Euler formula for convex polyhedra: Suppose we have

a division of the 2 sphere into convex faces. The edges of the division form a graph,

which is obviously connected (a path in the 2 sphere connecting two points on the

graph can be modified by pushing the part of the path in any given face into the

boundary of the face). Thus s = 1, and the above formula becomes v − e+ f = 2.

Now to the proof of the lemma above.

So let P be a circuit on the plane,

let k be an edge of P , and let a
and b be two points on opposite

sides and “very close” to k . We

Figure 13

a

b

a b′ ′

must prove that a and b belong

to different faces (components of

the complement of P ).

We need the concept of arc (more explicitly, PL arc; here PL means “piecewise lin-

ear”); this is a tree whose vertices have order at most two; in other words, a sequence

{k1, k2, . . . , kn} of edges such that the only intersections are between ki and ki+1 for

i = 1, . . . , n − 1 and there they consist of one point, an endpoint of each edge. The

following is fairly easy to establish: If two points are connected by a continuous path

in an open set, one can also connect them by a PL arc in that open set. (Approximate

the path by a polygon; then eliminate unnecessary loops.)

So suppose a and b belong to the same face; as just noted, they can then be connected

by a PL arc in that face, i.e., without meeting P . Clearly one can arrange it so that this

arc together with the segment ab is a circuit Q . We note that P and Q have exactly

one point in common (on ab ), and that they are in general position. (Two graphs

are in general position if no vertex of either is contained in an edge of the other, a

condition easy to arrange by a slight shift of the vertices; and stable: if one has it,

then sufficiently small shifts of the vertices will not destroy it.) Our claim will then

follow from the following:
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Proposition. Two circuits D and E in general position have an even number of

points in common.

For the proof we take a point c in the plane in

general position to D and E , i.e., meaning here

that c does not lie on any line that contains two

Figure 14

cvertices of D and E . The point c and any edge

k of E span a triangle ∆k , and this triangle is

in general position to D .

It is elementary that the complement of the tri-

angle has two components, the interior and the

exterior of the triangle. It follows that the intersection of D and ∆k consists of an

even number of points (going around D one changes from interior to exterior of ∆k
or conversely at every point of intersection). Thus the sum S over the edges of E of

these numbers of intersection is also even. This sum consists of the contributions of

the segments from c to the various vertices of E and the edges k of E . On the other

hand segment from c to any vertex of E belongs to exactly two of the ∆k , and so the

contribution of this segment to S is also even, and so is the sum over the vertices of

E .

It follows that the sum of the contributions of the edges k of E is also even, and that

is our proposition. And so our Lemma is established, and so is our equation f = p+1.

In particular for a circuit we have v = e and s = 1 (s is the number of components

of the graph). Consequently we have from v − e = s − p that p is 1, and so f = 2,

i.e., a circuit divides the plane into exactly two components (the interior, which is

bounded, and the exterior, which is unbounded). This is the Jordan Curve Theorem

for PL curves.
√

All these arguments also hold on the sphere (with straight segments replaced by great

circle segments, preferably short enough not to contain any two antipodal points); for

general position of c and E one requires that no vertex of E is antipodal to c .

II.3. Comments and Applications

We have the formula v − e + f = 2 for connected graphs in the plane. That leads to

the question: Can every abstract graph be realized in the plane? We will allow here

to subdivide the edges by introducing new vertices in the interior of the edges (this
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doesn’t change v − e ). In the following v and e will mean the numbers of original

vertices and edges, before any subdivision.

Suppose we have a graph, embedded in the plane (with possible subdivision of the

edges). Let fn be the number of faces whose boundary is formed by n (original)

edges. Clearly f1 and f2 are zero except for the trivial cases when e ≤ 2. Ruling out

these cases, we will have

f = f3 + f4 + . . .
and

3f ≤ 3f3 + 4f4 + 5f5 + . . . .
We also have

3f3 + 4f4 + . . . ≤ 2e.

To see this, cut the plane along all those edges that belong to two different faces.

(Equality holds here if every edge belongs to two different faces. Consider the graph

in the plane consisting of a triangle and an extra edge from a vertex to some point

within the triangle.) Altogether we find

2e ≥ 3f ,

and so, because of v − e+ f = 2,

2e ≥ 6− 3v + 3e,

i.e.

3(v − 2) ≥ e for every connected graph in the plane.

In particular for v = 5 we get e ≤ 9. Thus

the graph A consisting of 5 vertices and

all possible edges between them, the “com-

plete graph” on 5 vertices, which has 10

edges, cannot be embedded in the plane.

(Note that the edges would be allowed to
Figure 15be subdivided.)

There is the dual statement: A map on the sphere, consisting of 5 (simply connected)

countries such that every two have an edge in common, does not exist.

A second example: Suppose f3 is 0. Then we have

2e ≥ 4f4 + 5f5 + . . . ≥ 4f .
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Using v − e+ f = 2 again we find

2(v − 2) ≥ e, if f3 = 0.

An example for this, B : We have six points,

arranged in two rows of three each. Each

point of row I is connected to each point

of row II by an edge; no other edges. This

Figure 16

I

I I
I

II II

II

IIcannot be realized in the plane. If it were,

there wouldn’t be any triangles (a triangle

would have to contain at least two points

from one row; but such points are not con-

nected by an edge); thus f3 = 0. Also v = 6. By the last result we would have e ≤ 8;

but e is 9.

Thus a graph that contains A or B as subgraph cannot be embedded in the plane.

The converse also holds: If a graph cannot be embedded in the plane, than it contains

A or B as subgraph (Kuratowski, Whitney).

II.4. A Result of Cauchy’s

Another application of v − e + f = 2, which will be used later: Let K be a graph in

the plane, and let it (i.e., its edges) be colored with two colors. The edges going out

from a vertex divide a small circle around the vertex into a number of sectors. We are

interested in the sectors whose bounding edges are of different colors; let z be their

number. One sees, by going around the circle, that z is even.

Figure 17

z = 0 : All edges have z = 2 z = 4 z = 6
the same color.

Vertices with z ≥ 4 are called crossing points.

Here is Cauchy’s result:
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Let K be a (finite, with at least one edge) graph in the plane that is colored with two

colors. Then K has at least one vertex which is not a crossing point; in fact it has at

least two such.

Proof: We can assume K connected, and also f1 = f2 = 0. Then we have

f3 + f4 + . . . = f
3f3 + 4f4 + . . . = 2e.

Thus
2e ≥ 3f3 + 4(f4 + f5 + . . .)
≥ 3f3 + 4(f − f3)

≥ 4f − f3.
And so

f3 ≥ 2(2f − e).
We now use the coloring. Let vi be the number of vertices with z = i . So then

v0 + v2 + v4 + . . . = v.
For each vertex p let wp be the number of edges that go out from p . So

w =
∑
wp = 2e.

Also let w∗ be the number of sectors whose two edges carry different

Figure 18

colors. Then we have

2v2 + 4v4 + . . . = w∗.
Now we consider w −w∗ . In every triangle in our graph there is at least one sector

whose edges have equal colors and which is thus not counted in w∗ . Thus

w −w∗ ≥ f3.

Because of w = 2e , f3 ≥ 4f − 2e and v − e+ f = 2 we have

w∗ ≤ 4(e− f) = 4v − 8.

This means

2v2 + 4v4 + . . . ≤ 4v0 + 4v2 + . . .− 8.

We rewrite this:

8+ 2v2 + 4v4 + . . . ≤ 4v0 + 4v2 + 4v4 + . . .
8+ 6v6 + 8v8 + . . . ≤ 4v0 + 2v2 + 4v6 + 4v8 + . . .

This gives 8 ≤ 4v0 + 2v2 , and so finally

v0 + v2 ≥ 2.
√
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Chapter III. The Four Vertex Theorem and Related Mat-
ters

III.1. The Theorem of Friedrich Schur (Erhard Schmidt’s Proof)

Let C0 be a curve in the plane (differentiability class

C2 , say) that together with the chord connecting

the endpoints a0 and b0 forms the boundary of

Figure 19

a b

C

d0 0 0

0

a convex set in the plane.

Let κ0 be the curvature of C0 . (We take curvature

in the space sense, i.e., non-negative by definition,

even for plane curves. The signed curva-

ture of a curve in an oriented plane will

only occur incidentally, if at all.) Let C be

Figure 20

a bd

C

another curve in space, of the same length

L as C0 , endpoints a and b, and suppose

that we have κ0(s) ≥ κ(s) for all s (here s
refers to arclength on C0 and C ).

F. Schur’s Theorem. The inequality d0 = |a0b0| ≤ |ab| = d holds for the lengths of

the chords. Equality holds iff κ0(s) = κ(s) for all s , and C lies in a plane.

Proof: We project C to the x1 axis in space. The projection of the chord is

d1 = x1(L)− x1(0) =
∫ L

0
ẋ1 ds =

∫ L
0

cosτ ds

where τ is the angle between the tangent vector of C and the (positive) x1 axis.

Similarly we have d0 =
∫ L
0 cosτ0 ds where τ0 is the angle between the tangent vector

and the chord of C0 . To complete the proof, it will be enough to show that for a

suitable choice of the x1 direction the inequalities

π ≥ τ0(s) ≥ τ(s)

hold for all s . Namely then we have cosτ ≥ cosτ0 for all s , and so d1 ≥ d0 and then

also d ≥ d0 .
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Now for the choice of the x1 axis: Let c0 be the (or a) point on C0 at maximal distance

from the chord ab , and let c be the corresponding point (same s value) on C . Take

the x1 axis parallel to the tangent vector to C at c .

Next we consider curvature from the point of view of the spherical map (“Gauss map”)

which assigns to each s value the tangent vector of the curve (C0 or C ), or rather the

point on the unit 2 sphere defined by the tangent vector: the length of the spherical

image of any arc on the curve is equal to the integral of the curvature over the arc.

For C0 convexity implies that the spherical image of the part from c0 to b0 is (part

of) a great semicircle and that for any subarc beginning at c0 the integral
∫
κ0(s)ds

over the arc equals the angle τ0 at the other endpoint. For C on the other hand the

corresponding τ is less than or equal to the integral
∫
κ(s)ds (since great circle arcs

minimize the distance between the endpoints). Putting this together we find

τ0 =
∫
κ0(s)ds ≥

∫
κ(s)ds ≥ τ,

as we wanted to show. Similarly for the part of C0 from a0 to c0 . This finishes the

proof.

For the case of equality of the chord lengths we must have τ0(s) = τ(s) for all s ; in

particular τ0(L) = τ(L) . So the spherical image of the part of C from c to b connects

two points at (spherical) distance τ0(L) =
∫
κ0 ds , which is

∫
κ(s)ds . The latter being

the length of that spherical image, that curve must be the great circle arc between its

endpoints. That in turn makes the curve C plane and convex, and so congruent to

C0 .
√

[Hopf illustrated F. Schur’s theorem by saying: “Look at your index finger. When

you straighten it, from a crooked position, the distance between its base and its tip

increases”.]

This theorem applies also to curves with corners. Here a corner contributes to the

integral of the curvature the value of the angle between the incoming and the outgoing

tangent at the corner (taken with a sign forthe integral of the signed curvature for a

plane curve), and one adds to the curvature inequality hypothesis the requirements:

the angles of C are less than or equal to the corresponding ones for C0 . The proof

then goes through as before. If the points c0 and c above are corners of C0 and C ,

one has to be careful with the choice the line through c that is to be the x1 direction:

Namely one should take that line in the plane of the incoming and the outgoing tangent

to C at c such that the angles of these two tangents with the line are both greater

than or equalto the corresponding angles for C0 at c0 ; that is possible.
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Parts of either curve in the theorem may be straight line segments. (If C0 has a straight

part, so is the corresponding part of C .) In particular both curves may be polygons,

with corners at corresponding points; the second polygon doesn’t have to be plane.

The hypothesis is then that corresponding edges have the same length, and that the

angles of the second polygon are greater than or equal to those of the first polygon.

Note that the angles at the ends of the base line play no role.

F. Schur’s Theorem for the case of polygons in the plane goes back to Cauchy and is

usually called Cauchy’s Lemma. Here are the hypotheses for it: Let C and D be two

convex polygons in the plane, with vertices {A1, A2, . . . , An} and {B1, B2, . . . , Bn} , and

interior angles αi and βi (understood to be strictly between 0 and π ). Suppose

(a) AiAi+1 = BiBi+1 for i = 1,2, . . . , n− 1 (the edges AiAi+1 and BiBi+1 are equal in

length), and

(b) αi ≤ βi for i = 2,3, . . . , n−1 (the interior angles of C at those Ai are less than or

equal to the corresponding angles of D at Bi ). (Nothing is said about the angles

at A1, An, B1, Bn ; the sides A1An and B1Bn are sometimes called “the base line”.)

Figure 21

1A nA

2A

1B nB

2B

The result is then:

Cauchy’s Lemma. The side A1An is less than or equal to B1Bn in length, with equality

if and only if each αi is equal to the corresponding βi , for i = 2,3, . . . , n− 1 .

Cauchy tried to prove the lemma as a simple generalization of the standard fact for

triangles that increasing an angle, without changing the lengths of its legs, increases

the base. He started with the triangle A1A2An , increasing the angle at A2 (and taking

the rest of the polygon along) until α2 has increased to β2 . This produces a new

polygon and makes A1An longer. And now he says: iterate — operate on the angle

at the new vertex A′3 , etc. However, the new polygon may no longer be convex, and

then the construction fails — the next step may decrease the base (there are easy

examples). E. Steinitz noticed the mistake and gave a considerably more complicated

argument to prove the lemma; we shall not go into details.
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As noted, Cauchy’s Lemma in the plane is part of the Theorem of F. Schur. In fact the

Lemma holds also for convex polygons on a sphere (edges are great circle arcs, and the

polygons should each lie in some hemisphere). The case of spherical polygons can

be derived from the plane case as follows: With the notations above for the spherical

polygons, project C from the center of the sphere to a suitable plane, obtaining a

plane convex polygon C′ . Now modify D by moving each vertex Bi along the ray

from the center of the sphere through Bi to the same distance from the center that

Ai has moved to under the projection. The new polygon D′ has straight edges, but

is likely to not be plane anymore. One verifies easily that corresponding edges of

C′ and D′ are equal and that the angles at corresponding vertices are ≥ or = just

as for the original polygons. Schur’s Theorem now tells us that the base of D′ is at

least as long as that of C′ , with equality only in the case of congruence of the two

polygons. Finally one verifies that the same alternative holds for the bases of the

original spherical polygons.
√

III.2. The Theorem of W. Vogt

Let C be a curve in the plane that together with

the chord between its endpoints a and b forms

the boundary of a convex set, and suppose that the

Figure 22

a b
α β

curvature decreases monotonically along C from a
to b . (Reminder: this is the curvature in the non-

negative sense.)

Theorem of W. Vogt The angle between C and the chord at a is greater than or

equal to that between C and the chord at b ; equality holds if and only if the curvature

is constant on C .

Proof: For once we now use the usual signed curvature in the plane; we denote it by

k (so κ = |k| ). With enough differentiability our curvature assumption amounts to

k(s) < 0 and k̇(s) ≥ 0 for all s . We may assume that k̇(s) is not identically 0. We

also have y(s) > 0 except at the endpoints. It follows that

0 <
∫
yk̇ds = yk ∣∣ba −∫ ẏkds.

Here yk
∣∣b
a is 0, because y = 0 at the endpoints. Further, with the usual angle τ we

have ẏ = sinτ and k = τ̇ , and so −ẏkds = d cosτ . Integrating we get 0 < cosτ
∣∣b
a ,

i.e., cosβ > cosα or α > β .
√
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Here is a second proof (the theorem isn’t that important; but the proofs are amusing).

Let p be the midpoint of ab , and let q be the “midpoint” of the curve C (point with

s = 1/2· length of the curve). The chord

pq divides the figure into two figures as

envisioned for F. Schur’s theorem: convex

over the base pq (each with a corner). The

Figure 23

a
p p

q q

b
α β

curvature inequality for the two curves is

satisfied (by the monotonicity of κ on C ),

except possibly for the condition on the an-

gles at the corner. If the latter held also, the two curves would have to have different

bases (unless κ is constant on C , trivial case). But they don’t and so the condition on

the angles at the corners cannot hold, and that is just what Vogt’s theorem says.
√

III.3. Mukhopadaya’s Four Vertex Theorem

Let C be a closed convex curve of class C2 ; write k for its curvature function, the

Four Vertex Theorem says:

Theorem. There are at least two points on C where k has a local maximum and at

least two where k has a local minimum, such that the maxima separate the minima

on C .

Points where k has a local maximum or

minimum are sometimes called vertices

of the curve (not too good a term). The

Figure 24

min

min

max
max

“such that. . . ” phrase is added here to

rule out the case where the maxima and

minima each form a nondegenerate arc

on the curve.

First proof, with F. Schur’s Theorem: Suppose there is only

one local maximum, at P , and only one local minimum, at

Q . Clearly one can find two points R1 and R2 , one on each

of the two arcs of C from P to Q , that divide C into two

parts of equal length and at which k has the same value.

Since k is monotone decreasing on the two arcs from P to

Figure 25

1 2
R R

Q

P

Q , the value of k at any point of the “upper” arc R1PR2 is

greater than the value of k at any point of the “lower” arc
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R1QR2 . By Schur’s Theorem, applied to the two curves R1PR2 and R1QR2 and their

common chord R1R2 , this chord, viewed as chord of the “upper” arc, would have to

be longer than if viewed as chord of the “lower” arc. Contradiction.

Second proof, with Vogt’s theorem: With P and Q as

before, consider the two arcs from P to Q on C and

their common chord PQ . By Vogt’s Theorem, for each

Figure 26

QP
arc the angle between arc and chord at P is greater than

that at Q . But the two angles at P add up to the same

value as those at Q , namely π . Contradiction.
√

III.4. Cauchy’s Congruence Theorem for Convex Polyhedra

Our subjects are bounded polyhedra (bounded sets with non-empty interior in 3 space

that can be written as convex hull of a finite number of points or also the intersection

of a finite number of half-spaces). By vertices, edges, and faces we mean the actual

geometric ones (although one might want to consider subdivisions).

The dihedral angle or interior angle of two faces of a convex polyhedron with a com-

mon edge is that region determined by the planes carrying the two faces that contains

the polyhedron, or also the real number measuring it cf. beginning of Ch. I. Just as

for interior angles of convex polygons, we require the dihedral angles of a convex

polyhedron to lie in the open interval (0, π) .

An isomorphism of two polyhedra P and Q is a one-one correspondence between

their sets of vertices that “preserves edges and faces”, meaning: If two vertices of

P form an edge, then the corresponding vertices of Q form an edge there, and con-

versely; and if some vertices of P are the vertices of a face of P , then the correspond-

ing vertices of Q′ form a face there, and conversely. Such an isomorphism is called

an isometry if it preserves the “metric data”, meaning: The length of any edge of P
equals that of the corresponding edge of Q′ , and the interior angle of a face of P at

a vertex equals the corresponding angle on Q (or maybe more intuitive: any face of

P is congruent to the corresponding face of Q ).

Here is Cauchy’s result:

Theorem If the two (compact) convex polyhedra P and Q are isometric, then they

are congruent (i.e., there is a rigid motion of 3 space, possibly orientation-reversing,

that sends P to Q ).
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For the proof we consider the dihedral face angles. Clearly Cauchy’s Theorem amounts

to the statement that the dihedral face angles along two corresponding edges of the

two polyhedra are equal.

So let K be the (abstract) graph consisting of those edges of P (or the isomorphic

Q ), for which the corresponding dihedral angles of P and Q are not equal, and their

vertices. We two-color K by giving an edge the first color if the dihedral angle at

the edge in P is greater than that at the corresponding edge in Q , and the second

if it is less than it. P and Q being congruent is then equivalent to K being empty.

Assuming K not empty, we are in position to apply the last result of the section on

Graphs in the Plane: There is the function z that to each vertex assigns the number

of sectors with different colors on the two sides. And there is the result that there are

at least two vertices in the graph at which z takes the value 0 or 2. Cauchy’s Lemma

will show that that is impossible, and that will prove the Congruence Theorem.

So let P be a vertex with z = 0. One takes a small

sphere of radius r with P as center and intersects

the polyhedron P with it, obtaining a spherical con-

vex polygon C with vertices A1, A2, . . . , An . We get

Figure 27

another such polygon D with vertices B1, B2, . . . , Bn
on a sphere (of the same radius) on Q at the corre-

sponding vertex Q .

By the isometry assumption corresponding edges of C and D have equal length (the

edges are, up to a factor r , the interior angles of faces of P and Q at P and Q ). The

present hypothesis z = 0 means that the angle of C at any Ai is greater than or equal

to the angle of D at Bi . Since also A1An equals B1Bn , Cauchy’s Lemma implies that

the two polygons are congruent. This means that the dihedral face angles at the edges

issuing from P on C equal the corresponding angles on D .

Now the other case, where z at P is 2. There are then two indices, which one may

take to be 1 and r , such that for i from 1 to r the angle at Ai is greater than that at

Bi , and for i from r +1 to n the angle at Ai is less than or equal to that at Bi . On C
let R and S be the midpoints of the edges ArAr+1 and A1An and introduce the new

edge RS , creating two “halfpolygons” with the common edge RS ; similarly we have

T and U and the edge TU for D .
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Figure 28

1A

S

nA

rA

R

r+1A

2A

Applying Cauchy’s Lemma to the half-polygons A1 . . . ArRS and B1 . . . BrTU one finds

RS ≥ TU.

Arguing the same way with the other two half-polygons one finds

RS ≤ TU.

The result is RS = TU , and then Cauchy’s Lemma says that the angles at Ai and Bi
are equal for all i , and that the two polygons C and D are congruent. As explained

above, this implies that the two polyhedra P and Q are congruent. This finishes the

proof of Cauchy’s Theorem.
√
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Chapter IV. The Isoperimetric Inequality

Occasionally this inequality will be referred to as “the I-I”.

An old version is “Dido’s Problem”: What route should a man take to walk from sunup

to sundown and to enclose as much land as possible? The answer is: he should walk

on a circular path. — We look at simple closed curves in the plane, of a given length L
(some differentiability assumptions) and ask: Which curve encloses the largest area?

The answer is that it is the circle, of radius L/2π ; it encloses an area F = L2/4π . Thus

the “Isoperimetric Inequality” for the plane says: The area enclosed by any simple

closed curve of length L is less than or equal to L2/4π and equality holds only for

the circle. We shall look at proofs of this, and at generalizations.

Jakob Steiner set up a procedure that to every simple closed curve in the plane, not

a circle, constructs another curve, of the same length as the given one, that encloses

a larger area. (Note: This doesn’t prove by itself that the circle encloses the largest

area. There could be other curves that enclose a larger area with no one having the

largest area. For the existence proof see, e.g., W. Blaschke, Kreis und Kugel. )

Here is the process:

I. Let C be not convex. Take a double sup-

Figure 29

port tangent and reflect the part of the curve

between the two points of contact.

II. Now let C be convex. Take two points a and

b on it that halve the perimeter. The chord ab
divides curve and area into two parts F1 and

F2 . Suppose F1 is larger. Then replace the part

a b

Figure 30
F2 by the mirror image of F1 across ab .

III. Suppose both areas are equal. If both arcs C1, C2 were semicircles, then C would

be a circle. So suppose C1 is not a semicircle. Then (by Thales) there is some point c
on it such that the angle acb = γ is not a right angle.
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a

b

c

Figure 31

a b

c

γ

With a and c fixed and the length of bc fixed, turn bc around c to change γ to

π/2, taking along the lune over bc . The resulting figure has area larger than that of

F1 . Add to it its mirror image across (the new) ab . Now we have a curve of the same

length as the old C , but with larger area.
√

IV.1. Proofs. H.A. Schwarz (1884), A. Hurwitz, Erhard Schmidt

First some generalities on area. The beginning is the definition of the area A of a

rectangle of sides l and w by A = l ·w . Next is the definition of the area under a

curve y = f(x) in the x -y plane as
∫ b
a f (x)dx .

a

a

x
x

y

y

b

b

∆

xy

dxy

∆Σ∫
Figure 32

Here (f (x),x) can be thought of as a parametric representation of a curve, and it

makes sense to change parameter, say by x = φ(t),α ≤ t ≤ β (pieceway class C1 ,

say); arclength s is a possibility. In detail we have
∫ b
a y dx = ±

∫ β
α yẋ dt , with the

+ sign for a = φ(α) , b = φ(β) (orientation preserving) and the − sign for a = φ(β),
b = φ(α) (orientation reversing). (By the way, φ doesn’t have to be monotone, and

some of its values may fall outside [a, b] , as long as f is defined there.)

With this said, instead of the function f we consider a closed curve C (simple closed,

say) in the plane, in some parametrization, and form
∫
C y dx . This gives us the area

enclosed by the curve, up to a ± sign; the integral over the “upper” part of C gives the



32 heinz hopf

area under that part, and the integral over

the “lower” part subtracts the area under

that part. The value of the integral will be

Figure 33

negative if we traverse C in the usual pos-

itive sense (interior to the left); and so the

area enclosed by C is given by
∫
C −y dx .

By analogy, and taking orientation into

account, the area is also given by
∫
C xdy ,

or then also by 1/2
∫
C xdy −y dx .

So now let C be such a simple closed curve, with length L and area A . Enclose it

in a vertical strip, touching it at a and b , which divide the curve into an upper and

a lower arc, C+ and C− . In the strip construct a circle

K that touches the sides at α and β . Call the radius ρ
and choose the coordinate origin at the center of K .

Map C to K by projecting vertically, upper (lower) arc

to upper (lower) arc. On K use the parameter inher-

ited from C ; this is not necessarily monotone, but runs

around the circle once. C is described by (x(t),y(t))
and K by (x(t), η(t)) , with the same x(t) for both and

with η(t) = ±
√
ρ2 − x2 . So we have

α βρ

a

b

p

p

p′

p′

Figure 34

A =
∫
xẏ dt, AK = −

∫
ηẋ dt = πρ2

and therefore

A+πρ2 =
∫
(xẏ − ηẋ)dt.

Now we use the Schwarz inequality for the vectors (x, η) and (ẏ,−ẋ) to get

A+πρ2 ≤
∫ √
x2 + η2 ·

√
ẏ2 + ẋ2 dt = ρ · L.

Furthermore there is the standard inequality 2
√
uv ≤ u+v for u,v ≥ 0, with equality

only if u = v . This gives 2
√
A ·πρ2 ≤ ρ · L , that is

4πA ≤ L2,

the isoperimetric inequality.
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Now for the = sign.

1) We must have 2
√
A ·πρ2 = A+πρ2 , which requires A = πρ2 . This means that ρ

is determined by A and so is independent of the direction of the strip that encloses

C . In other words, C is a curve of constant width 2ρ .

2) We must have equality in the Schwarz inequality. This means that the vectors (x, η)
and (ẏ,−ẋ) are parallel. Assuming that t is arc length on C (and so ẋ2+ ẏ2 = 1) we

have then

x = ±ρẏ, η = ∓ρẋ.

Now we use the constant width again to enclose the curve in a horizontal strip of width

2ρ , so that it is now enclosed in a square of side 2ρ . We take the center of the square

as origin of the coordinate system and so as center

of the circle K , which thus serves as comparison

circle also for the horizontal strip. The point x,y

ρ

Figure 35

on C now projects to the point (ξ,y) on K , with

ξ2 +y2 = ρ2 .

Repeating the previous in the horizontal direction

we get the equations

ξ = ±ρẏ, y = ∓ρẋ.

From the last two sets of equations we deduce

x2 +y2 = ρ2.

The curve C is identical with the circle K , as we claimed.
√

IV.2. The Isoperimetric Inequality in Rn

Briefly, the inequality says: Among all closed (n−1) dimensional surfaces in Rn with

given surface area A the sphere alone encloses the largest volume.

This of course requires definitions of “closed surface of dimension n− 1”, “surface

area”, “volume”, and of “enclosed” (Jordan theorem in Rn ); we shall not enter into

that, and take all for granted. (By the way, the surface doesn’t have to be connected;

under surface area and volume one must understand the sum of those for the compo-

nents. One only has to check the elementary fact that two spheres enclose a smaller
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volume than the one sphere with surface area equal to the sum of the other two. This

in turn amounts to the inequality ap + bp ≤ (a+ b)p for a,b ≥ 0, p ≥ 1.)

We write Ar and Vr for surface area and volume of the sphere of radius r in Rn .

(These are known quantities, involving π ; we shall not need them.) Consider a closed

surface F of surface area A and enclosed volume V . With this A take the sphere K
of radius r with Ar = A . Then our inequality says

Vr ≥ V,

with equality only in case F is equal to (congruent with) the sphere K . Naturally we

have Vr = rn · V1 and Ar = rn−1 · A1 and also Vr =
∫ r
0 At dt and Ar = dVr/dr ;

in particular A1 = n · V1 . Now Ar = A gives rn−1 = A/A1 . With Vr ≥ V we get

Vn−1
r = r (n−1)nVn−1

1 ≥ Vn−1 , or

(A/A1)n ≥ (V/V1)n−1.

With A1 = n · V1 we rewrite this as

An ≥ Cn · Vn−1,

where Cn = nnV1 is a dimension constant. For the plane this reads L2 ≥ 4πA ; for

3 space: A3 ≥ 36πV2 . One can also write the inequality in the form n−1
√
A/A1 ≥

n
√
V/V1 .

We begin, as for the plane, by representing volume as an (n−1) dimensional surface

integral. A (piece of) surface in n space can be described, in terms of an orthonormal

coordinate system, by giving one of the coordinates, xi , as function (class C2 say) of

the others. The volume “under” the surface F is then given by∫
(−1)(i−1)xi dx1 dx2 . . . d̂xi . . . dxn

where as usual the ̂ means that that term is to be skipped. The minus-sign is there for

orientation reasons, similar to what happened to
∫
ydx in the plane for a curve. For

a closed bounded surface the orientation is so chosen that the outer normal together

with that of the surface gives the basic orientation of Rn . The integral is computed

locally, in terms of local parameters u1, . . . , un−1 with, e.g.,

dx2 dx3 · · ·dxn = ∂(x2, . . . , xn)
∂(u1, . . . , un−1)

· du1 · · ·dun−1.
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The coordinate patches cover the surface. They don’t all have to agree with the orien-

tation of the surface, but the surface should be covered once more positively than neg-

atively (degree 1). The same cancelation argument as in the plane case will show that

the integral (which can also be written
∫

1/n · ∑(−1)(i−1)xi dx1 dx2 . . . d̂xi . . . dxn )

gives the volume enclosed by the surface. (This is a special case of Stokes’s theorem.)

The proof goes in two steps, I. for surfaces of revolution, II. for general ones.

I. Let F be an (n − 1) dimensional surface of revolu-

tion, with the xn axis as axis of rotation, and (n − 2)
dimensionl spheres as orbits of the rotation. We form a

coaxial spherical cylinder that contains and touches the

surface along one or several (n− 2) spheres, of radius

ρ . Choose one; it divides F into an upper and a lower

part. We choose a sphere K inscribed into the cylinder,

with the origin of the coordinate system at the center of

Figure 36

the sphere.

As in the plane case, F is projected to K along the

xn axis, with xn going to ξ , upper part to upper part

and lower to lower. The projection is of degree 1 and

so gives a parametric representation of K . This yields∫
(−1)n−1 ξ dx1 dx2 . . . dxn−1 = Vρ = ρnV1 .

Now a small computation is needed. Let us write X for

the vector (x1, x2, . . . , xn) . If the xi are functions of

parameters uα , α = 1,2, . . . , n−1, we write Xα for the

vector of partial derivatives of the xi with respect to

uα . Also write Di for the signed functional determinant

(−1)i−1 ∂(x1, x2, . . . , x̂i, . . . , xn)
∂(u1, u2, . . . , un−1)

and write D for the vector (D1, . . . ,Dn) . D is orthogonal to all Xα , as one sees by

expanding the determinant det [Xα,X1, X2, . . . , Xn−1] along the first column Xα ; the

Di are just the minors that appear, and the determinant is 0 because it has two equal

columns. Write ν for the corresponding unit vector 1/|D| ·D , with |D| = (∑D2
i
)1/2 ;

it is the unit normal to the surface F .

|D|2 can be written as det [D,X1, . . . , Xn−1] , as one sees again by expanding along the

first column. For the matrix M = [ν,X1, . . . , Xn−1] one has then detM = |D| ; this is
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then the (n−1) dimensional area of the parallelepiped spanned by the Xα . The prod-

uct M> ·M (here M> is the transpose) is the Gramian of the vectors involved, and the

1,1 minor is the Gramian [Xα ·Xβ] = G of the Xα . detM> ·M = det G is usually de-

noted by g , and thus finally |D| = (det G)1/2 = √g ; with all this
√g du1du2 . . . dun−1

is usually called the area element dA of F , and
∫ √g du1 . . . dun−1 is the area A of

the surface.

Now back to the volume integrals for F and K . We add the first n − 1 of the in-

tegrals for F and the last one (with ξ for xn ) for K . With Ξ denoting the vector

(x1 . . . , xn−1, ξ) this results in

(n− 1)V + ρnV1 =
∫ Ξ · ν dA.

By the Schwarz inequality, with |Ξ| = ρ and |ν| = 1, the right hand side is ≤ ∫ ρ·dA =
ρ · A . As in the plane case there is the arithmetic-geometric mean inequality, which

gives

nρ n
√
V1 · Vn−1 ≤ (n− 1)V = ρnV1 ≤ ρ ·A

and so

A ≥ n n
√
V1 · Vn−1,

which is one form of the Isoperimetric Inequality.

Now the = sign. First, in the Schwarz inequality there must be equality, so that Ξ and

ν are parallel. i.e., Ξ = ±ρ · ν.
K and F have parallel normals. Near any point on F in the

interior of the cylinder the normal is not horizontal and so F
can be described there by xn = f(x1, . . . , xn−1) with the nor-

mal (fx1 , . . . , fxn−1 ,−1) . For K this same normal appears as

(ξ1, . . . , ξxn−1 ,−1) . One concludes that f = ξ + const and that

the shape of F is as follows: An upper hemisphere touching the

h

Figure 37

cylinder along its boundary, then a piece of the cylinder, of height

h say, going down, and at the bottom the lower hemisphere.

Second, there must be equality in the arithmetic-geometric mean

inequality which implies that the n terms in the sum must be

equal to each other, and so ρnV1 = V , which requires h = 0 and F is a sphere.
√
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II. The I-I for a general surface. One employs a process called symmetrization, which

transforms the surface into a surface of revolution with the same volume and smaller

surface area. Take a “vertical” line L .

For any value h consider the horizontal

(n − 1) plane at level h and intersect

it with F , getting one or several sur-

faces in an Rn−1 . (One has to choose

the line well, to get decent surfaces as

sections. There will be a finite number

of h levels where the section has sin-

gularities, but very simple ones.) Write

z

Figure 38

B(h) for the total (n − 2) dimensional

surface area of these surfaces, and write

Q(h) for the (n− 1) dimensional area

of the closure of the intersection of the

plane with the interior of F . In that

plane one forms the (n − 2) sphere of

the same ((n− 1) dimensional) volume Q(h) and places its center on the line L , ob-

taining a surface of revolution F̃ of the same enclosed volume as F (by Cavalieri’s

principle); its surface area is denoted by Ã , and one has to prove A ≥ Ã , with equality

only for a surfaces of revolution. With B̃(h) for the surface area of the sphere, one

has of course B(h) ≥ B̃(h) .

We will give the proof for n = 3, with x,y, z instead of x1, x2, x3 . First an integral

inequality:

Let p(t), q(t) be two (continuous) functions, defined on the interval [0, T ] . Then(∫ T
0
pdt

)2

+
(∫ T

0
qdt

)2

≤
(∫ T

0

√
p2 + q2 dt

)2

with equality only if p/q is constant.

For the proof one defines two functions x(t),y(t) by x′ = p , y ′ = q and x(0) =
y(0) = 0. The inequality appears then as√

x(T)2 +y(T)2 ≤
∫ T

0

√
(x′)2 + (y ′)2dt,

which is simply the well known fact that the straight segment is the shortest connec-

tion between its endpoints, and also makes clear when the = sign holds. In particular,
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for p = 1 one has ∫ T
0

√
1+ q2 ≥

√
T 2 +

(∫ T
0
qdt

)2

.

with equality only if q is constant.

Consider a piece of F between two values z1, z2 of

z . Parametrize it by z and s , arc length on each

curve (or curves) z = const. The area element dA
s

z

Figure 39

works out to be
√

1+D2
z ds dz , where Dz is the

functional determinant xsyz − xzys (Dx and Dy
equal ys and −ys , respectively, with x2

s +y2
s = 1).

Thus ∫ √
1+D2

z ds dz

is the surface area of our piece of F . Similarly, for the (n−1) area difference of two

sections we have

Q(z1)−Q(z2) =
∫
dx dy =

∫
Dz dx dy,

the integral extended over the piece of surface under consideration. Letting z2 go to

z1 one gets

Q′(z) =
∫
Dz ds,

where now the integral goes over the boundary curve of the section at level z . Letting

L(z) be the length of that boundary curve, the inequality above gives

∫ L(z)
0

√
1+D2

z ds ≥
√
L(z)2 +

(∫
Dz ds

)2

and so, integrating over z ,

A ≥
∫ √

L(z)2 +Q′(z)2 dz.

The analogous inequality holds for the surface of revolution F̃ ; however by rotational

symmetry D̃z is independent of s , and so equality holds. Combining this with the

inequality B(h) ≥ B̃(h) , one finally gets

A ≥
∫ √

L(z)2 +Q′(z)2 dz ≥
∫ √

L̃(z)2 + Q̃′(z)2 dz = Ã,

which, as noted above, establishes the I-I.
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Now once more for the = sign. In the last formula there are two ≥ signs, which now

become = signs. The second one requires L(z) = L̃(z) for all z , which by the I-I in

the plane means that the horizontal sections of F are all circles. (Q(z) equals Q̃(z)
by definition.) The first one requires Dz to be independent of s , from our integral

inequality and the relation Q′(z) = ∫
Dz ds. This means that the third component

Dz/
√

1+D2
z is constant along each circle z = const, or that the angle of the normal

to F and the z axis is constant. One verifies that then the centers of the horizontal

circles making up F must lie on a vertical line. Then F is a surface of revolution,

and we are done.
√

(What needs to be done to extend the result to any n? Certainly the integral ineqality

has to put in a more general form.)


