|
2

i
01

o]
[
z
(<]
o
Q
[
(e}
>
=
7]
4

11
1































PREFACE

THIS book is not intended to be a text on “Practical Mathe-
matics” in the sense of making use of scientific material and of
fundamental notions not already in the possession of the student,
or in the sense of making the principles of mathematics secondary
to its technique. On the contrary, it has been the aim to give
the fundamental truths of elementary analysis as much prominence
as seems possible in a working course for freshmen.

The emphasis of the book is intended to be upon the notion of
functionality. Illustrations from science are freely used to make
this concept prominent. The student should learn early in his
course that an important purpose of mathematies is to express and
to interpret the laws of actual phenomena and not primarily to
secure here and there certain computed results. Mathematics
might well be defined as the science that takes the broadest view of
all of the sciences—an epitome of quantitative knowledge. The
introduction of the student to a broad view of mathematics can
hardly begin too early.

The ideas explained above are developed in accordance with a
two-fold plan, as follows:

First, the plan is to group the material of elementary analysis
about the consideration of the three fundamental functions:

1. The Power Function y = az* (n any number) or the law
“as x changes by a fixed multiple, y changes by a fixed multiple also.”
. 2. The Simple Periodic Function y = a sin mx, considered as
fundamental to all periodic phenomena.

3. The Exponential Function, or the law ““as x changes by a fized
increment, y changes by a fired multiple.”

Second, the plan is to enlarge the elementary functions by the
development of the fundamental transformations applicable to
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vi PREFACE

these and other functions. To avoid the appearance of abstruse-
ness, these transformations are stated with respect to the graphs
of the functions; that is, they are not called transformations, but
‘““motions” of theloci. The facts are summarized in several simple
“Theorems on Loci,” which explain the translation, rotation, shear,
and elongation or contraction of the graph of any function in the
xy plane.

Combinations of the fundamental functions as they actually
oceur in the expression of elementary natural laws are also dis-
cussed and examples are given of a type that should help to explain
their usefulness.

Emphasis is placed upon the use of time as a variable. This
enriches the treatment of the elementary functions and brings
many of the facts of “analytic geometry” into close relation to
their application in science. A chapter on waves is intended to
give the student a broad view of the use of the trigonometric fune-
tions and an introduction to the application of analysis to peri-
odic phenomena.

It is difficult to understand why it is customary to introduce
the trigonometric functions to students seventeen or eighteen years
of age by means of the restricted definitions applicable only to the
right triangle. Actual test shows that such rudimentary methods
are wasteful of time and actually confirm the student in narrow-
ness of view and in lack of scientific imagination. For that reason,
the definitions, theorems and addition formulas of trigonometry
are kept as general as practicable and the formulas are given
general demonstrations.

The possibilities and responsibilities of character building in the
department of mathematics are kept constantly in mind. It is
accepted as fundamental that a modern working course in mathe-
matics should emphasize proper habits of work as well as proper
methods of thought; that neatness, system, and orderly habits
have a high value to all students of the sciences, and that a text-
book should help the teacher in every known way to develop these
in the student.

Chapters V, VI and VII contain material that is required for
admission to many colleges and universities. - The amount of time
devoted to these chapters will depend, of course, upon the local
requirements for admission.
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The present work is a revision and rewriting of a preliminary
form which has been in use for three years at the University of
Wisconsin. During this time the writer has had frequent and
valuable assistance from the instructional force of the department
of mathematics in the revision and betterment of the text. Ac-
knowledgments are due especially to Professors Burgess, Dresden,
Hart and Wolff and to Instructors Fry,» Nyberg and Taylor.
Professor Burgess has fested the text in correspondence courses,
and has kindly embraced that opportunity to aid very materially
in the revision. He has been especially successful in shortening
graphical methods and in adapting them to work on squared paper.
Professor Wolff has read all of the final manuscript and made
many suggestions based upon the use of the text in the class room.
Mr. Taylor has read all of the proof and supplied the results to the
exercises.

Professor E. V. Huntington of Harvard University has read the
galley proof and has contributed many important suggestions.

The writer has avoided the introduction of new technical terms,
or terms used in an unusual sense. He has taken the liberty, how-
ever of naming the function az», the “Power Function of z,” as a
short name for this important function seems to be an unfortu-
nate lack—a lack, which is apparently confined solely to the
English language.

It is with hesitation that the writer acknowledges his indebted-
ness to the movement for the improvement of mathematical in-
struction that has been led by Professor Klein of Gottingen;
not that this is not an attempt to produce a text in harmony with
that movement, but for fear that the interpretation expressed
by the present book is inadequate.

The writer will be glad to receive suggestions from those that
make use of the text in the class room.

| CHARLES S, SLICHTER.
UNIVERSITY OF WISCONSIN
July, 25, 1914












INTRODUCTION

Any course in mathematics requires the frequent use of
geometrical constructions, and the carrying out of analytical
and numerical computations. In order that this work may
be performed neatly and accurately it is necessary that the
student have a few simple instruments, and a supply of proper
material for doing the work in a systematic and orderly manner.
The indispensible instruments are as follows:

I. Instruments. (1) Two 4H hexagonal drawing pencils; one
sharpened to a fine point for marking points upon paper or
for sketching free hand; the other sharpened to a chisel point
for drawing straight lines. Some prefer to use a single pencil
sharpened at both ends, one end round pointed, the other end
chisel pointed.

(2) A small drawing board' of soft wood—10 X 12 inches is
large enough. !

(3) A small T-square, same length as the drawing board.

(4) A 60° and a 45° transparent triangle. Five-inch triangles
are large enough, although a larger 60° triangle will be found to
be very convenient. ;

(5) A protractor for laying off angles.

(6) A triangular boxwood scale, decimally divided.:

(7) A pair of 6-inch pencil compasses for drawing circles and
arcs of circles, provided with medium hard lead, sharpened to a
narrow chisel point.

(8) A 10-inch slide rule is required for Chapter VIII, and may
be used earlier at the discretion of the instructor.

1 Drawing boards of this size with T-square and two wood triangles are marketed

by the Milton Bradly Co., Springfield Mass., and by Eugene Dietzgen Co., and
Keuffel and Esser of New York and Chicago, and retail for about 40 cents.
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xii INTRODUCTION

II. Materials. All mathematical work should be done on one
side of standard size letter paper, 83 X 11 inches. This is the
smallest sheet that permits proper arrangement of mathematical
work. There are required:

(1) A notebook cover to hold sheets of the above named size and
a supply of manila paper “vertical file folders” for use in submit-
ting work for the examination of the instructor.

(2) A number of different forms of squared paper and computa-
tion paper especially prepared for use with this book. These sheets
will be described from time to time as needed in the work. Form
M2 will be found convenient for problem work and for general
calculation. M2 is a copy of a form used by a number of public
utility and industrial corporations. Colleges usually have their
own sources of supply of squared paper, satisfactory for use with
this book. The forms mentioned in the text, printed on 16 1b.,
St. Regis Bond, cost about 25 cents per pound in 100 1b. lots
(12,000 sheets) from F. C. Blied & Co., Madison, Wis.

(3) Miscellaneous:supplies such as thumb tacks, erasers, sand-
paper-pencil-sharpeners, ete.

III. General Directions. All drawings should be done in
pencil, unless the student has had training in the use of the ruling
pen, in which case he may, if he desires, “ink in”’ the most im-
portant drawings.

All mathematical work, such as the solutions of problems and
exercises, and work in computation should be done in ink. The
student should acquire the habit of working problems with pen
and ink. He will find that this habit will materially aid him in
repressing carelessness and indifference and in acquiring neatness
and system.

TO THE INSTRUCTOR

The usual one and one-half year of secondary school Algebra
including the solution of quadratic equations and a knowledge of
fractional and negative exponents, is required for the work of this
course. In the appendix will be found material for a brief review
of factoring, quadratics, and exponents, upon which a week or ten
days should be spent before beginning the regular work in this
text.
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The instructor cannot insist too emphatically upon the require-
ment that all mathematical work done by the student—whether
preliminary work, numerical scratch work, or any other kind
(except drawings)—shall be carried out with pen and ink upon
paper of suitable size. This should, of course, include all work
done at home, irrespective of whether it is to be submitted to the
instructor or not. The “psychological effect’” of this requirement
will be found to entrain much more than the acquirement of mere
technique. If properly insisted upon, orderly and systematic
habits of work will lead to orderly and systematic habits of
thought. The final results will be very gratifying to those who
sufficiently persist in this requirement.

At institutions whose requirements for admission include more
than one and one-half units of preparatory algebra, nearly all of
Chapters V, VI, and VII may be omitted from the course.

An aslerisk attached to a section number indicates that the
section may be omitted during the first reading of the book.

.

GREEK ALPHABET

Capitals l Lé’;::r Names ‘ ' Capitals L:;::r Names
A @ Alpha N v Nu
B B Beta = £ Xi
r LY Gamma (0} o Omicron
A 8 Delta 11 b Pi
E € Epsilon Jo p Rho
Z (¢ Zeta 3z T Sigma
H 7 Eta T T Tau
(s} 0 Theta T v Upsilon
1 L Tota d ¢ Phi
K K Kappa X X Chi
A N Lambda L2 v Psi
M u Mu Q ® Omega







ELEMENTARY
MATHEMATICAL ANALYSIS
CHAPTER I

VARIABLES AND FUNCTIONS OF VARIABLES

1. Scales. If a series of points eorresponding in order to the
numbers of any sequence! be seleeted along any curve, the curve
with its points of division is called a scale. Thus in Fig. 1 (a)
the points along the curve OA have been selected and marked in
order with the numbers of the sequence:

0,1/4,1/2,1,2%,3,5,7, 8

Thus primitive man might have made notches along a twig
and then made use of it in making certain measurements of

1 A
% %1 2 g 5 @ 8
0 23

(@) A Non Uniform Scale

Lovootve e bbb e b b e s s |
1 & 3 4 5
(b)AUniform Arithmetical Scale

-6 -4 -3 -2 -1 0 +1 i e @ il
((‘) A Uniform Algebraic Scale

Fi1a. 1.—Scales of Various Sorts.

interest to him. If such a scale were to beeome generally used by
others, it would be desirable to make many copies of the original
scale. It would, therefore, be necessary to use a twig whose shape
could be readily duplicated; sueh, for example, as a straight stick;
and it would also be necessary to attach the same symbols in-
variably to the same divisions.

1 A sequence of numbers here means a set of numbers arranged in order of
magnitude,

1L



2 ELEMENTARY MATHEMATICAL ANALYSIS [§1

Certain advantages are gained (often at the expense of others,
however) if the distances between consecutive points of division
are kept the same; that is, when the intervals are laid off by repe-
tition of the same selected distance. When this is done, the scale

Fig. 2.—An Ammeter Scale.

is called a uniform scale. Primitive man might have selected for
such uniform distance the length of his foot, or sandal, the breadth
of his hand, the distance from elbow to the end of the middle
finger (the cubit), the length of a step in pacing (the yard), the
i amount he can stretch with both
arms extended (the fathom), ete.,
* ete.

We are familiar with many
scales, such as those seen on a
yardstick, the dial of a clock, a

SRR thermometer, a sun-dial, a steam-

Fig. 3.—Sun-dial Scale gage, an ammeter or voltmeter,

the arm of a store-keeper’s scales,

ete., ete. The scales on a clock, a yardstick, or a steel tape are

uniform. Those on a sun-dial, on an ammeter or on a good
thermometer, are not uniform.

One of the most important advantages of a uniform secale is

the fact that the place of beginning or zero may be taken at any

one of the points of division. This is not true of a non-uniform

%




§2] VARIABLES AND FUNCTIONS OF VARIABLES 3

scale. If the needle of an ammeter be bent the instrument cannot
be used. It is always necessary in using such an instrument to
know that the zero is correct; if a sun-dial is not properly oriented,
it is useless. If, however, a yardstick or a steel tape be broken,
it may still be used in measuring. The student may think of
many other advantages gained in using a uniform scale.

2. Formal Definition of a Scale. If points be selected in order
along any curve corresponding, one to one, to the numbers of
any sequence, the curve, with its divisions, is called a scale.

The notion of one to one correspondence, included in this
definition, is frequently used in mathematics..

In mathematics we frequently speak of the arithmetical scale
and of the algebraic scale. The arithmetical scale corresponds to
the numbers of the sequence:

05 308 sl -

and such intermediate numbers as may be desired. It is
usually represented by a uniform scale as in Fig. 1 (b). The
algebraic scale corresponds to the numbers of the sequence:

. —6, =5, -4, -3, —2, —1,0, +1, +2, +3, +4, +5, . . .
and such intermediate numbers as may be desired. It is usually
represented by a uniform scale as in Fig. 1 (¢). The arithmetical
seale begins at 0 and extends indefinitely in one direction. The
algebraic scale has no point of beginning; the zero is placed at any
desired point and the positive and negative numbers are then
attached to the divisions to the right and the left, respectively, of

the zero so selected. The scale extends indefinitely in both
directions.

Exercises

1. Show that the distance between two points selected anywhern
on the algebraic scale is always found by subtraction.

2. If two algebraic scales intersect at right angles, the commoe
point being the zero of both scales, explain how to find the distance
from any point of one scale to any point of the other scale.

3. What points of the algebraic scale are distant 5 from the

point 3 of that scale? What point of the arithmetical secale is
distant 5 from the point 3 of that scale?
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§3] VARIABLES AND FUNCTIONS OF VARIABLES 5

3. Two Scales in Juxtaposition or Double Scales. The relation
between two magnitudes or quantities, or between two numbers,
may be shown conveniently by placing two scales side by side.
Thus the relation between the number of centimeters and the
number of inches in any length may be shown by placing a centi-
meter scale and afoot-rule side

< 5
by side with their zeros coin- § =
ciding as in Fig. 4. A
A thermometer is frequent- g §
ly seen bearing both the 5| s B/
Fahrenheit and the centi- 2I[] :; 7

grade scales (see Fig. 5). LM
It is obvious that the double 1 __________’___/
scale of such a thermometer ;-2

9
may be used (within the BT, —
limits of its range) forconvert- Uil

A Em

12 0 it

ing any temperature reading %
Fahrenheit into the corres- I[]]s /7/
ponding centigrade equiva- § 2

lent and vice versa. The con- g;:z?/
struction of scales of this 1[204

L DAY be made to depend Fic. 7.—Method of Construction

upon the solution of the fol- of Double Scale showing Relation
lowing problem in elementary between * Miles per Hour” and ‘‘ Feet

geometry: To divide a given P°F Second.”
line into a given number of equal parts.

To construct a double scale showing the relation between speed
expressed in miles per hour, and speed expressed in feet per second,
we may proceed as follows: A mile contains 5280 feet; an hour con-
tains 3600 seconds. Hence, one mile per hour equals 5280 /3600
or 22/15 feet per second. On one of two intersecting straight
lines, OA (see Fig. 7), lay off 22 convenient equal intervals (say 1 /4
inch each). On the second of the intersecting lines, OB, lay off
15 equal intervals (say 1/2 inch each). Join the 15th division
of OB with the 22nd division of OA4 and draw parallels to the
line AB through each of the 15 divisions of OB. Then the 22 and
the 15 equal subdivisions stand in juxtaposition along 04 and
constitute the double scale required. Labelling the first scale
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““feet per second” and the second scale ‘‘miles per hour,” the
double scale may be used for converting speed expressed in
either unit into speed expressed in the other.

By annexing the appropriate number of ciphers to the numbers
of each scale, the range of the double scale may be considered
220 and 150 or 2200 and 1500, ete., respectively.

The lengths of the various units selected for the diagram are, of
course, arbitrary. As, however, the student is expected to prepare
the various constructions and diagrams required for the exercises
in this book on paper of standard letter size (that is, 8% by 11
inches), the various units selected should be such as to permit a
convenient and practical construction upon sheets of that size.

Exercises

The student is expected to carry out the actual construction of only
two of the double or triple scales described in the following exercises.

1. Construct a double scale ten inches long expressing the relation
between fractions of an inch expressed in tenths and fractions of an
inch expressed in sixteenths.

To draw this double scale it is merely necessary to lay off the
intervals directly from suitable foot-rules. On the scale of tenths
indicate the inch and half inch intervals by longer division lines than
the others. On the scale of sixteenths represent the quarter inch inter-
vals by longer division lines than those of the sixteenths, and represent
the half inch and inch intervals by still longer lines, as is usually done
on foot rules.

2. Draw a double scale showing pressure expressed as inches of
mercury and as feet of water, knowing that the den51ty of mercury
is 13.6 times that of water.

These are two of the common ways of expressing pressure. Water
pressure at water power plants, and often for city water service, is
expressed in terms of head in feet. Barometric pressure, and the
vacuum in the suction pipe of a pump and in the exhaust of a con-
densing steam engine are expressed in inches of mercury. The
approzimate relalions between these units, ¢.e.,, 1 atmosphere = 30
inches of mercury = 32 feet of water = 15 pounds per square inch,
are known to every student of elementary physics. To obtain, in
terms of feet of water, the pressure equivalent of 1 foot of mercury,
the latter must be multiplied by 13.6, the density of mercury. This
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result when divided by 12 gives the pressure equivalent of 1 inch of -
mercury, which is 1.13 feet of water.

If we let the scale of inches of mercury range from 0 to 10, then the
scale of feet of water must range from 0 to 11.3. Hence draw a line
OA 10 inches long divided into inches and tenths to represent inches
of mercury. Draw any line OB through O and lay off 11.3 uniform
intervals (inch intervals will be satisfactory) on OB. Connect the
end division on OA with the end division on OB by a line AB. Then
from 1, 2,3, . . . inches on OB draw parallels to BA, thus forming
adjacent to OA the scale of equivalent feet of water. Each of these
intervals can then be subdivided into 10 equal parts corresponding
to tenths of feet of water.

3. Draw a triple scale showing pressure expressed as feet of water,
as inches of mercury, and as pounds per square inch, knowing that the
density of mercury is 13.6 and that one cubic foot of water weighs
62.5 pounds.

To reduce feet of water to pounds per square inch, the weight of one
cubic foot of water, 62.5 pounds, must be divided by 144, the number
of square inches on one face of a cubie foot. This gives 1 foot of
water equivalent to 62.5/144 or 0.434 pounds per square inch. To
obtain the pressure given by 1 fool of mercury, the pressure equiva-
lent of 1 foot of water must be multiplied by 13.6, the density of
mercury. This result when divided by 12 gives the pressure equiva-
lent of 1 inch of mercury, or 0.492 pounds per square inch.

One pound per square inch is equivalent, therefore, to 1/0.434 or
2.30 feet of water or to 1/0.492 or 2.03 inches of mercury. If we let
the scale of pounds range from 0 to 10, we may select 1 inch as the
equivalent of 1 pound per square inch, and divide the scale OA into
inches and tenths to represent this magnitude. Draw two inter-
secting:lines OB and OC through O, and lay off 23 uniform intervals
on OB and lay off 20.3 uniform intervals on OC, 1/2 inch being a
convenient length for each of these parts. Connect the end divisions
of OB and OC with A and through all points of division of OB draw
lines parallel to BA and through all points of division of OC draw lines
parallel to CA, and subdivide into halves the intervals of the scales
last drawn. The range may be extended to any amount desired by
annexing ciphers to the numbers attached to the various scales.

Extending the range by annexing ciphers to the attached numbers
is obviously practicable so long as the various intervals or units are
decimally subdivided. The method is impracticable for scales that
are not decimally subdivided, such as shillings and pence, degrees and
minutes, feet and inches, ete:
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4. Draw a triple scale showing the relations between the cubic foot,
the gallon and the liter, if 1 cubic foot = 7% gallons = 28% liters.
Divide the secale of cubic feet into tenths, the scale of gallons into
quarts, and the third scale into liters.

It is obvious. that it is always necessary first to select the range of
the various scales, but it is quite as well in this case to show the equiva-
lents for 1 cubic foot only, as numbers on the various scales can be
multiplied by 10, 100, or 1000, ete., to show the equivalents for larger
amounts. 1

Select 10 inches = 1 cubic foot for the scale (OA) of cubic feet.
Draw two intersecting lines OB and OC. On OB lay off 7% equal
parts (say, 73 inches) and on OC lay off 28} equal parts (say, 283
quarter inches). Connect the end divisions with A and draw the
parallel lines exactly as with previous examples. The intervals of the
scale of gallons can then be subdivided into the four equal parts to
show quarts.

6. The velocity in feet per second of a falling body is given by the
formula » = g¢, in which g = 32.2 and ¢ is measured in seconds. Draw
a double scale showing the velocity at any time. 3

It is obvious that the reading 32.2 on the v-scale must be placed
opposite the mark 1 on the t-scale. First, select the range for the
t-scale, say from 1 to 10 seconds. Then a convenient scale for ¢ is 1
inch equals 1 second, which scale can readily be subdivided to show
1/5 or 1/10 seconds. If the general method be followed, it would be
necessary to lay off 322 equal parts on a line (OB) intersecting the
t-scale (OA). As this is an inconveniently large number, it is better
to lay off 3.22 divisions on the construction line OB. Each of these
divisions may be 2 inches in length, so that 6.44 inches will represent
the terminal or end division on the intersecting line' OB. From the
6.44 inch mark on OB draw a line to 10 on the {-scale 0A. Then from
2, 4, 6 inches on OB draw parallels to BA, thus locating » = 100,200,
and 300. These intervals can then be subdivided into 10 equal parts
to show » =10,20,30, . . . If values of v are wanted for ¢ > 10,
zeros may be annexed to the numbers attached to both scales.

6. Select sections from any of the double scales described above and
discuss the relation of the number of units on one side to the number of
units on the other side. Show that the ratio in different sections of
the number of units on the two sides of the same double scale is not
constant if one scale be a non-uniform seale.

7. If a double scale be drawn on a deformable body, as, for example,
on a rubber band, would the double scale still represent true relations
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when the rubber band is stretched? What if the stretching were
not uniform?

4. Functions. The relation between two magnitudes expressed
graphically by two scales drawn in juxtaposition, as above, may
sometimes be expressed also by means of an equation. Thus,
if 77 is the number of dollars, and z is the number of pounds sterling
in any amount, then:

y =487 (1)

also, if ¥ be the reading Fahrenheit, and C the reading centigrade
of any temperature, then:

F =3C+32 )

also, 3
U =13.6V/12 = 144W [62.5 (3)

where U, V, and W are pressures measured, respectively, in feet of
water, inches of mereury, or in pounds per square inch.

Note. The letters z, y, F, C, U, V, W in the above equations
stand for numbers; to make this emphatic we sometimes speak of them
as pure or abstract numbers. These numbers are thought of as arising
from the measurement of a magnitude or quantity by the application
of a suitable unit of measure. Thus from the magnitude or quantity
of water, 12 gallons, arises, by use of the unit of measure the gallon, the
abstract number 12.

Algebraic equations express the relation between numbers, and it
should always be understood that the letters used in algebra stand
Jor numbers and not for quantities or magnitudes.

Quantity or Magnitude is an answer to the question: ‘“How
muech?”’ Number is an answer to the question: “How many?”’

An interesting relation is given by the scales in Fig. 6. This
diagram shows the fee charged for money orders of various
amounts; the amount of the order may first be found on the upper
scale and then the amount of the fee may be read from the lower
seale. The relation here exhibited is quite different from those
previously given. For example, note that as the amount of the
order changes from $50.01 to $60 the fee does not change, but
remains fixed at 20 eents. Then as the amount of the order
changes from $60.00 to $60.01, the fee changes abruptly from 20
cents to 25 eents. For an order of any amount there is a cor-
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responding fee, but for each fee there corresponds not an order of
a single value, but orders of a considerable range in value. Thisis
quite different from the cases described in Fig. 5. There for
each reading Fahrenheit there corresponds a certain reading
centigrade, and vice versa, and for any change, however small, in one
of the temperature readings a change, also small, takes place in
the other reading. For thisreason the latter quantity is said to be
continuous. i

The relation between the temperature scales has been expressed
as an algebraic equation. The relation between the value of a
money order and the corresponding fee cannot be expressed by a
similar equation. If we had given only a short piece of the centi-
grade-Fahrenheit double scale, we could, nevertheless, produce it
indefinitely in both directions, and hence find the corresponding
readings for all desired temperatures. But by knowing the fees
for a certain range of money orders one cannot determine the fees
for other amounts. In both of these cases, however, we express
the fact of dependence of one number upon another number by
saying that the first number is a function of the second number.

Definition. Any number, u, is said to be a function of another
number, ¢, if, when ¢ is given, the value of u is determined. The
number ¢ is often called the argument of the function u.

Illustrations. The length of a rod is a function of its tempera-
ture. The area of a square is a function of the length of a side.
The area of a circle is a function of its radius. The square root
of a number is a function of the number. The strength of an iron
rod is a function of its diameter. The pressure in the ocean is a
function of the depth below the surface. The price of a railroad -
ticket is a function of the distance to be travelled.

It is obvious that any mathematical expression is, by the above
definition, a function of the letter or letters that occur in it.
Thus, in the equations:

w =+ 4 + 1
e TS
Ll | P

u=\/'t¢Z+t?—3?

u 1s in each case a function of ¢.
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Temperature Fahrenheit is a function of temperature centigrade.
The value of the fee paid for a money order is a function of the
amount of the order.

Goods sent by freight are classified into first, second, third,
fourth, and fifth classes. The amount of freight on a package is
a function of its class. It is also a function of its weight. It is
also a function of the distance carried. Only the second of these
functional relations just named can readily be expressed by an
algebraic equation. It is possible, however, to express all three
graphically by means of parallel scales. The definition of the func-
tion ts given (for any particular railroad) by the complete freight
tariff book of the railroad.

The fee charged for a money order is a function of the amount of
the order. The functional relation has been expressed graphically
in Fig. 6. Note that for orders of certain amounts, namely,
$23, $5, $10, $20, $30, $40, $50, $60, $75, the function is not de-
fined. The graph alone cannot define the function at these
values, as one cannot know whether the higher, the lower, or an
intermediate fee should be demanded. One can, however, define
the function for these values by the supplementary statement (for
example): “For the critical amounts, always charge the higher fee.”’
As a matter of fact, however, the lower fee is always charged.

A function having sudden jumps like the one just considered, is
said to be discontinuous.

Exercises

In the following exercises the function described can be represented
by a mathematical expression. The problem is to set up the expres-
sion in each case.

1. One side of a rectangle is 10 feet. Express the area A4 as a
function of the other side x.

2. One leg of a right triangle is 15 feet. Expressthe area A as a
function of the other leg z.

3. The base of a triangle is 12 feet. Express the area as a func-
tion of the altitude .

4. Express the circumference of a circle as a function (1) of its
radius r; (2) of its diameter d.

6. Express the diagonal d of a square as a function of one side z.
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6. One leg of a right triangle is 10. Express the hypotenuse h
as a function of the other leg 2.

7. A ship B sails on a course AB perpendicular to OA. If 04 = 30
miles, express the distance of the ship from O as a function of AB.

8. A circle has a radius 10 units. Express the length of a chord
as a function of its distance from the center.

9. An isosceles triangle has two sides each equal to 15 em., and
the third side equal to z. Express the area of the triangle as a
function of z.

10. A right cone is inscribed in a sphere of radius 12 inches. Ex-
press the volume of the cone as a funetion of its altitude I.

11. A right cone is inscribed in a sphere of radius a. Express the
volume of the cone as a function of its altitude I.

12. One dollar is at compound interest for 20 years at r per cent.
Express the amount A as a function of .

Functional Notation. The following notation is used to ex-
press that one number is a function of another; thus, if u is a
function of ¢ we write:

u = f(f)
y = f(z)

means that y is a function of z. Other symbols commonly used to
express functions of z are:

¢(2), X(2), f'(z), F(2), ete.

These may be read the “¢-function of z,”” the ‘ X-function of x,”
etc., or more briefly, “the ¢ of z,”” “the X of z,” etc.

Expressing the fact that temperature reading Fahrenheit is a
function of temperature reading centigrade, we may write:

B = J({C)
This is made specific by writing:

= $C + 32

Likewise,

Likewise the fact that the charge for freight is a function of class,
weight, and distance, may be written:

TG f(C: w, d)
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To make this functional symbol explicit, might require that we be
furnished with the complete schedule as printed in the freight tariff
book of the railroad. The dependence of the tariff upon class and
weight can usually be readily expressed, but the dependence upon
distance often contains arbitrary elements that cause it to vary
irregularly, even on different branches of the same railroad. A
complete specification of the functional symbol f would be con-
sidered given in this case when the tariff book of the railroad was in
our hands.

6. Variables and Constants. In elementary algebra, a letter is
always used to stand for a number that preserves the same value
in the same problem or discussion. Such numbers are called
constants. In the discussion above we have used letters to stand
for numbers that are assumed not to preserve the same value but
to change in value; such numbers (and the quantities or magnitudes
which they measure) are called variables.

If r stands for the distance of the center of mass of the earth from
the center of mass of the sun, r is a variable. In the equation
s = }gi® (the law of falling bodies), if ¢ be the elapsed time, s the
distance traversed from rest by the falling body, and g the acceleration
due to gravity, then s and ¢ are variables and g is the constant 32.2
feet per second per second.

The following are constants: Ratio of the diameter to the circumfer-
ence in any circle; the electrical resistance of pure copper at 60° F.;
the combining weight of oxygen; the density of pure iron; the breaking
strength of mild steel rods; the velocity of light in empty space.

The following are variables: the pressure of steam in the cylinder of
an engine; the price of wheat; the electromotive force in an alternating
current; the elevation of groundwater at a given place; the discharge
of a river at a given station. When any of these magnitudes are
assumed to be measured, the numbers resulting are also variables.

The volume of the mercury in a common thermometer is a variable;
the mass of mercury in the thermometer is a constant.

6. Algebraic Functions. An expression that is built up by
operating on z a limited number of times by addition, subtraction,
multiplication, division, involution and evolution only, is called
an algebraic function of x. The following are algebraic functions
Ofie:
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(1) 2. @) 2 +5. (7 28— 6a? + 11z — 6.
2 4+3
@) an. 5) 1/z. (8) zjmfé

(3) 34/z. (6) z2 — 5. 9 (¢ —a) (x—0b) (x — ).

The expression z? is an algebraic function of z but 2= is not an
algebraic function of z. The fee charged for a money order is not
an algebraic function of the amount of the order.

It is convenient to divide algebraic functions into classes. Thus
z% + 2 is said to be integral; (z 4+ 1) /(2 — 2?) and 2 + z~2 are
said to be fractional; likewise 22 + 2 and (x + 1) /(2 — «?) are
said to be rational; /1 — z and 3 — ’% are said to be irrational.
These terms may be formally defined as follows:

An algebraic function of z is said to be rational if in building up
the expression, the operation of evolution is not performed upon
z, or upon a function of z; otherwise the function is irrational.

Thus, expressions (1), (4), (5), (6), (7), (9), above, are rational
functions of z. Expressions (3) and (8) are irrational. Ex-
pression (2) is rational if » is a whole number; otherwise irrational.

A rational function is said to be integral if in building up the
function the operation of division by z, or by a function of z,
is not performed; otherwise the function is fractional.

Thus expressions (1), (4), (6), (7), (9), above, are integral func-
tions of x. Expressions (1), (4), (6), (7), (9) are both rational
and integral and may therefore be called rational integral
functions of z.

Exercises

Classify the following functions of r, ¢, or z, answering the following
questions for each function: (A) is the function algebraic or (B) non-
algebraic? If it is algebraic, is it (a) rational or (b) irrational; if it
is rational, is it (1) integral or (2) fractional? The scheme of classifi-
cation is as follows:

A. Algebraic.
(a) rational {

(b) irrational

(1) integral
(2) fractional

B. Non-algebraic. P
216108 Va? — z? \/ax‘; \/a/:c.
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ProBLEM 1: To compute graphically the product of two
numbers. Let the two numbers whose product is required be a
and b, On any line lay off the unit of measurement, O1, Fig. 8.
On the same line, and, of course, to the same scale, lay off 0A
equal to one of the factors a. On any other line passing through
1 lay off a line 1B equal to the other factor . Join OB and
produce it to meet AC drawn parallel to 1B. Then AC is the
required product. For, from similar triangles:

AC :1B = 04 : 01 (1)
or,
AC = OA X 1B (4)

It is obvious that the angle OAC may be of any magnitude.
Hence it may conveniently be taken a right angle, in which case the
work may readily be carried out on ordinary squared paper. Many
prefer, however, to do the work on plain paper, laying off the
required distances by means of a boxwood triangular scale. The
squared paper, form M1, prepared for use with this book is suitable
for this purpose. On a sheet of this paper, draw the two lines
0X and OY at right angles and the unit line 1U, as shown in Fig.
9. Then from the similar triangles O1B and OAC the proportion
(1) and the formula (A) above are true. Hence to compute
graphically the product of two numbers a and b count off (Fig. 9)
OA = o to the OX-scale and 1B = b to the OY-scale. Lay a
straight edge or edge of a transparent triangle down to draw OC.
It is not necessary to draw OC, but merely to locate the point C.
Then count off AC to the OY-scale. Then AC = a X b by (4).
The figure as drawn shows the product 4.4 X 1.9 = 8.4.

All numbers can be multiplied graphically on a section of
squared paper 10 units in each dimension by properly reading the
O0X and OY scales. Any product ab can be written a;b; X 10» =
¢; X 107, where a; and b; each have one digit before the decimal
point, and ¢; < 100.

Thus:

440 X 19 = 4.40 X 1.9 X 10°

8.40 X 10°
also

Il

BUOET3 =i8.7 X8 ¢102 27 X 10?
To proceed with the product of a; X by, we first determiue by
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ProBrEM 3: To compute graphically the square root of any
number N. 1In Fig. 10 count off 14 = N to the OX scale, and
draw a semicircle on OA as a diameter. Then 1C = A/N to
the OY scale. Another construction is to place the triangle in
the position shown in Fig. 10, so that the two edges pass through
0 and A and the vertex of the right angle lies on the line 1U.
Fig. 10 shows the construction for A/7. The readings on the 0X
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Fi1g. 10.—Graphical Method of the Extraction of Square Roots. The
figure shows /7 = 2.65.

scale may be multiplied by 102 and those on the OY scale by 10
where 7 is any integer positive or negative.

State the two theorems in plane geometry on which the proof of
these two constructions depends.

ProBLEM 4: To compute graphically the square of any num-
ber N. This is a special case of Problem 1, whena = b = N.

Exercises

. Compute the square roots of 2, 3, 5, and 7.

. Compute the square roots of 3.75, 37.5, 0.375.
. Compute the squares of 1.23 and 3.45.

. Compute the squares of 7.75 and 0.895.

. Show that =2 is nearly 10.

O B 0 PO =
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ProBLEM 5: To compute graphically the reciprocal of any
number N. This is a special case of Problem 2, when ¢ = 1 and
b=N.

ProBLEM 6: To compute graphically the integral powers of
any number N. This problem is solved by the successive applica-
tion of Problem 1 to construct N%, N3, N4 etc., and of Problem 2

Y U,

/

/

/

//
Al e
1/
i/

=

Y%// £§3
0 TiEH X
0 1 N 2 3 4
Fia. 11.—Graphical Computation of (1.5)" for n = ~4, —3, —2, —1
0,1,23,4,5.

to construct N-!, N-2, N3 etc. This construction is shown for
the powers of 1.5 in Fig. 11.
Exercises

1. Compute the reciprocal of 2.5; of 3.33; of 0.75; of 7.5.
2. Compute (1.2)3, (0.85)%, (1.15)%.
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3. Show that (1.05)'® = 2.08, so that money at 5 percent com-
pound interest more than doubles itself in fifteen years.

Nore: The work is less if (1.05)%is first found and then this result
cubed.

4. From the following outline the student is to produce a complete
method, including proof, of constructing successive powers of any
number. ] '

Let OA (Fig. 12) be a radius of a circle whose center is 0. Let
OB be any other radius making an acute angle with OA. From B
drop a perpendicular upon OA, meeting the latter at A,. From A,
drop a perpendicular upon OB meeting OB at A,. From A, drop a
perpendicular upon OA meeting OA at As, and so on indefinitely.
Then, if OA be unity, OA; is less than unity, and O4., OA;, OA,

. are, respectively, the square, cube, fourth power, ete., of OA,.

0 Ay A;A; AzAJA 61 a3 as a;

F1a. 12.—Graphical Computation of Powers of a Number.

Instead of the above construction, erect a perpendicular to OB meet-
ing OA produced at a;. At a, erect a perpendicular meeting OB pro-
duced at @, and so on indefinitely. Then if OA be unity, a; is
greater than unity and a,, as,as, . . . are, respectively, the square,
cube, ete., of a;.  As an exercise, construct powers of 4/5 and of 2.5.

5. Show that the successive “treads and risers” of the steps of
the ‘“‘stairways” of Figs. 13 and 14 are proportional to the powers
of r. The figures are from Milaukoviteh, Zeitschrift fir Math.
und Nat. Unterricht, Vol. 40, p. 329.

8. Double Scales for Several Simple Algebraic Functions. We
may make use of the graphical method of computation explained
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laid off on OB, and marked with the symbol of the original length,
will be opposite the square root of that number on OA.

No difficulty need be experienced in carrying out the actual
construction of double scales representing algebraic relations,
either by use of a table of numerical values of the function or by
means of graphical construction. As a less laborious method of
graphically expressing functional relations will be explained in the
next chapter, the matter of double scales will not be discussed
further at this place.
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Fi1e. 16.—The Fahrenheit-centigrade Double Scale Opened about the
32° Mark of the Fahrenheit Scale as Pivot.

9. Functions Represented by Scales not in Juxtaposition. It is
obvious that any double scale used to express the relation between
a function of a variable and the variable itself, may be separated, if
desired, into two distinct scales, provided means be adopted for
connecting corresponding points on the two scales. For example,
one of the two scales may be rotated about any one of its points,
as scissors about their pivot, thereby forming two intersecting
straight lines. Corresponding points may then be connected by
erecting perpendiculars to each scale and joining those that
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proceed from corresponding points, or by any other practical means.
In Fig. 16 the centigrade and Fahrenheit scales are shown opened
about the 32° division of the Fahrenheit scale as pivot. Perpen-
diculars erected at corresponding points of the two scales meet at
the points Py, P,y, Ps, . . .

The line NOM on which these points lie is straight. Why?
The student will write out a proof, making use of any three points
as Py, Psy, P;, and a property of similar triangles. Of course the
angle between OC and OF need not be taken as a right angle.

F
e N
P9

110
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100 P

-
=3
e

8
0,

)

=20

F1G6. 17.—Same as Fig. 16 with the Lengths of the Units on the OC and OF
Scales Made the Same.

It is also obvious that the divisions on both scales may now be

made the same length; that is, 0Q,, 0Q;, 0Q;, . . . may be
made the same length as OR;, OR,;, OR;, . . . . This is at
once accomplished if the lines 0Q;, 0Q,, 0Q;, . . . , be each

elongated in the ratio of OR;/0Q;. The functional relation may
be expressed equally well by marking as before the intersection
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of the perpendiculars erected at corresponding values. The
result is shown in Fig. 17.

In the same manner any of the double scales may be opened
about any point as pivot. If the angle between the scales is
made 90°, the relation between the function and its argument is
shown by points on a straight line making an angle of 45° with each
scale. If one of the scales be non-uniform, it may, after it is
turned about the selected pivot, be made a uniform scale, in which
case the straight line just mentioned becomes, in general, a curved
line. We see, therefore, that instead of showing the relation
between a function and its variable by means of two secales in
juxtaposition, we may use two uniform scales intersecting at an
angle, and connect corresponding values of the variable and its
function by perpendiculars erected at these corresponding points.
The pairs of perpendiculars intersect at points which, in general,
lie upon a curve. This curve is obviously characteristic of the
particular functional'relation under discussion. The respresenta-
tion of functional relations in this manner leads to the considera-
tion of so-called codrdinate systems, the discussion of which is
begun in the next chapter.
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the horizontal scale. Thus the point P, in Fig. 18, is 2% units to
the right and 3} units above the standard scales. P is 3 units to
the left and 2 units above the standard scales, ete. Of course
these directions are to be given in mathematics by the use of the
signs “ 4" and “—"" of the algebraic scales, and not by the use
of the words “right” or “left,” ‘“‘up” or “down.” The above
scheme corresponds to the location of a place on the earth’s
surface by giving its angular distance in degrees of longitude east
or west of the standard meridian, and also by giving its angular
distance in degrees of latitude north or south of the equator.

The sort of latitude and longitude that is set up in the manner
described above is known in mathematics as a system of rectangu-
lar codrdinates. It has become customary to letter one of the
scales XX, called the X-axis, and to letter the other Y'Y/, called
the Y-axis. In the standard case these are drawn to the right
and left, and up and down, respectively, as shown in Fig. 18.
The distance of any point from the ¥-axis, measured parallel to
the X-axis, is called the abscissa of the point. The distance of
any point from the X-axis, measured parallel to the Y-axis, is
called the ordinate of the point. Collectively, the abscissa and
ordinate are spoken of as the codrdinates of the point. Abscissa
corresponds to the longitude and ordinate corresponds to the
latitude of the point, referred to the X-axis as equator, and to
the Y-axis as standard meridian. In the standard case, abscissas
measured to the right of YY’ are reckoned positive, those to the
left, negative. Ordinates measured up are reckoned positive,
those measured down, negative.

Rectangular cobrdinates are frequently called Cartesian co-
ordinates, because they were first introduced into mathematics
by René Descartes (1596-1650).

The point of intersection of the axes is lettered O and is called
the origin. The four quadrants, X0Y, YOX’, X'0Y’, Y'0OX, are
called the first, second, third, and fourth quadrants, respectively.

A point is designated by writing its abscissa and ordinate in a
parenthesis and in this order: Thus, (3, 4) means the point whose
abscissa is 3 and whose ordinate is 4. Likewise (—3, 4) means the
point whose abscissa is (— 3) and whose ordinate is (+ 4).

Unless the contrary is explicitly stated, the scales of the co-
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ordinate axes are assumed to be straight and uniform and to inter-
sect at right angles. Exceptions to this are not uncommon,
however, of which examples are given in Figs. 19 and 22.

The use of two intersecting algebraic scales to locate individual
points in the plane, as explained above, is capable of immediate
enlargement. It will be explained below that a suitable array, or
set, or locus of such points may be used to exhibit the relation
between two variables laid off on the two scales, or between a
variable laid off on one of the scales and a function of the variable
laid off on the other scale. This fact has already been explained
from another point of view at the close of the preceding chapter.

11. Statistical Graphs. From work in elementary algebra the
student is supposed to be familiar with the construction of statis-

Fia. 19.—Barograph Taken During a Balloon Journey. The vertical
scale is atmospheric pressure in millimeters of mercury.

tical graphs similar to those presented in Figs. 19 to 32. The
student will study each of these graphs and the following brief
descriptions before making any of the drawings required in the
exercises that follow.

Fig. 19 is a barograph, or autographic record of the atmospheric
pressure recorded November 24, 1907, during a balloon journey
from Frankfort to Marienburg in West Prussia. One set of scales
consists of equal circles, the other of parallel straight lines. The
zero of the scale of pressure does not appear in the diagram.
Note also that the scale of pressure is an tnverted scale, increasing
downward. The scale of time is an algebraic scale, the zero of
which may be arbitrarily selected at any convenient point. The
scale of pressure is an arithmetical scale. The zero of the baro-
metric scale corresponds to a perfect vacuum—no less pressure
exists.
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F1G. 20.—Graphical Time-table of Certain Railway Trains between
Chicago and Minneapolis.
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Fig. 21.—Graphical Time-table of Passenger Trains between Chicago

and Los Angeles.
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Fig. 20 is a graphical time-table of certain passenger trains be-
tween Chicago and Minneapolis. The curves are not continuous,
as in the case of the barograph, but contain certain sudden jumps.
What is the meaning of these? What indicates the speed of the
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Fic. 22.—Upper Curve, Elevation of Water in a Well on Long Island
Lower curve, elevation of water in the nearby ocean.

trains? Where is the fastest track on this railroad? What shows
the meeting point of trains?

If the diagram, Fig. 20, be wrapped around a vertical cylinder of
such size that the two midnight lines just coincide, then each train line
may be traced through continuously from terminus to terminus.
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Functions having this remarkable property are said to be periodic.
In the present case the trains run at the same time every day,
that is, periodically. In mathematical language, the position of
the trains is said to be a periodic function of the time.

Fig. 21 is the graphical time-table of ‘“limited’’ trains between
Chicago and Los Angeles. The schedule of train No. 1, a very
heavy passenger train, is placed upon the chart for comparison.
The periodic character of this function is brought out very clearly
by using time as the abscissa. The student should discuss the

60
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F1g. 23.—The Graph of a Discontinuous Function.

discontinuities and the various speeds as shown from the diagram.
The track profile is given at the right of the diagram for purposes
of comparison.

Fig. 22 represents the fluctuation of the elevation of the ground-
water at a certain point near the sea-coast on Long Island. The
fluctuations are primarily due to the tidal wave in the near-by
ocean. Here the scale of one of the codrdinates (elevation) is
laid off on a series of equal circumferences similar to those of Fig.
19. Thescale of the other coordinate (time) is laid off on the mar-
gin of the outer or bounding circle. The curve is continuous.
Is the curve periodic? What indicates the rate of change in the
elevation of the ground-water? When is the elevation changing

. most rapidly? When is it changing most slowly?
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Fig. 23 represents the functional relation between the amount of
a domestic money order and the fee. Two arithmetical scales
were used in making the diagram, as in ordinary rectangular co-
ordinates, except that the vertical scale is ten-fold the horizontal
scale; that is, lengths that represent dollars on the one scale rep-
resent cents on the other. This is an excellent illustration of a
discontinuous function. On account of the sudden jumps in the
values of the fee, the fee, as explained in the preceding chapter, is
said to be a discontinuous function of the amount of the order.

12. Suggestions on the Construction of Graphs. Two kinds of
rectangular codrdinate paper have been prepared for use with this
book. Form M1 is ruled in centimeters and fifths, and permits
two scales of twenty and twenty-five major units respectively to
be laid off horizontally and vertically on a standard sheet of letter
paper 8 X 11 inches. Form M2 is ruled without major divisions
in uniform 1 /5-inch intervals. This form of ruling is desirable for
general computation and for graphing functions for which non-
decimal fractional intervals are used, such as eighths, twelfths,
or sixteenths, which often occur in the measurement of mass
or time.

It is a mistake to assume that more accurate work can be done
on finely ruled than on more coarsely ruled squared paper. Quite
the contrary is the case. Paper ruled to 1/20-inch intervals does
not permit interpolation within the small intervals while paper
ruled to 1/10 or 1 /5-inch intervals permits accurate interpolation
to one-tenth of the smallest interval. Form M1 is ruled to
2-mm. intervals, and is fine enough for any work. The centi-
meter unit has the very considerable advantage of permitting
twenty of the units within the width of an ordinary sheet of letter
paper (8% X 11 inches) while seven is the largest number of inch
units available on such paper.

In order to secure satisfactory vesults, the student must recognize
that there are several varieties of statistical graphs, and that
each sort requires appropriate treatment.

1. It is possible to make a useful graph when only one variable
is given. Thus the following table gives the ultimate tensile
strength of various materials:



32 ELEMENTARY MATHEMATICAL ANALYSIS [§12

ULTIMATE TENSILE STRENGTH OF VARIOUS MATERIALS

Material g e o
Hard steel... .. stiibs Aaautes | 50.0
Structural steel.............. [ 30.0
Wrought Irons.. 2 usst s } 25.0
Drawn brass... o, e | 21.5
Drawn copper............... ‘ 16.0
Cast brass. . F.0 wah p 3 12.0
Cast copper................. | 11.0
Cash Arom; ol i b oS 10.0
Timber, with grain.......... 5.0

A graph showing these results is given in Fig. 24. There are
two practical ways of showing the numerical values pertaining
to each material, both of which are indicated in the diagram; either
rectangles of appropriate height may be erected opposite the
name of each material, or points marked by circles, dots or crosses
may be located at the appropriate height. It is obvious in this
case that a smooth curve should not be drawn through these points
—such a curve would be quite meaningless. In this case there
are not two scales, but merely the single vertical scale. The hori-
zontal axis bears merely the names of the different materials
and has no numerical or quantitative significance. The result
is obviously not the graph of a function, for there are not two
variables, but only one. The graph is merely a convenient ex-
pression for certain discrete and independent results arranged
in order of descending magnitude.

2. It is possible to have a graph involving two variables in
which it is either impossible or undesirable to represent the graph
by a continuous curve or line. For example, Fig. 25 is a graph
representing the maximum temperature on cach day of a certain
month. Because there is only one maximum temperature on
each day, the value corresponding to this should be shown by an
appropriate rectangle, or by marking a point by a circle, or by a
dot or cross, as in the preceding case, since a continuous curve
through these points has no meaning. The horizontal scale may
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be marked by the names of the days of the week or by numbers,
but in either case the horizontal line is a true scale, as it corresponds
to the lapse of the variable time. Sometimes, as in Fig. 25,
graphs of this kind are represented by marking the appropriate
points by dots or circles and then connecting the successive points
by straight lines. These lines have no special meaning in such
a case, but they aid the eye in
following the succession of sepa-
rate points.

If a graph be made of the noon-
day temperatures of each day of
the same month referred to in
Fig. 25, one of the same methods
indicated above would be used
to represent the results; that is,
either rectangles, marked points,
or marked points joined by
lines. Although a smooth curve
drawn through the known points
would have a meaning (if cor-
rect), it is obvious that the noon- 0
day temperatures alone are not
sufficient for determining its
form. In all such cases a smooth
curve should not be drawn.

Fig. 26 shows the monthly
output and gross earnings of a  Fic. 24.—Graph Showing Ten-
power company during its first ls\‘llz tiﬁ;:lrégth S el
months of operation; the fixed i
charges are also shown upon the same diagram. (See also Figs.
24 and 84.)

3. If the data are reasonably sufficient, a smooth curve may,
and often should, be drawn through the known points. Thus if
the temperature be observed every hour of the day and the results
be plotted, a smooth curve drawn carefully through the known
points will probably very accurately represent the unknown
temperatures at intermediate times. The same may safely be

done in exercises (1) and (2) below. In scientific work it is desir-
3
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able to mark by circles or dots the values that are actually given
to distinguish them from the intermediate values ‘“‘guessed’” and
represented by the smooth curve.

In addition to the above suggestions, the student should adhere
to the following instructions:

4. Every graph should be marked with suitable numerals along
both numerical scales.

5. Each scale of a statistical graph should bear in words a
description of the magnitude represented and the name of the unit
of measure used. These words should be printed in drafting let-
ters and not written in seript.

6. Each graph should bear a suitable title telling exactly what is
represented by the graph.

7. The selection of the units for the scale of abscissas and ordi-
natesis an important practical matter in which common sense must
control. It is obvious that in the first exercise given below 1 em.
= 1foot draft for the horizontal scale, and 1 em. = 100 tons for
the vertical scale will be units suitable for use on form M1.

Further instruction in practical graphing is given in §33.

Exercises

1. At the following drafts a ship has the displacements stated:

Wgitiin-feet, 22 . N o0 15

PR e

|

T
Displacement in tons, T.....| 2096 | 1512 | 1018 | 586

|

Plot on squared paper. What are the displacements when the
drafts are 11 and 13 feet, respectively ?

2. The following tests were made upon a steam turbine generator:

Output in kilowatts, K........| 1, 190 995, 745

498, 247

Weight, pounds of steam con- 23 120 20,040 16,630 12,560| 8,320
sumed per hour, W. '

Plot on squared paper. What are the probable values of K when
W is 22,000 and also when W is 11,0007
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8. Make a graphical chart of the zone rates of the Parcel Post
Service for the first three zones, using weight of package as abscissa
and cost of postage as ordinate.

4. The average temperature at Madison from records taken at
7 a. m. daily for 30 years is as follows:

Jan. 1, 14.0. F. July 1,67.5. F.
Feb. 1, 15.1. Aug. 1, 64.0.
Mar. 1, 35.2. Sept. 1, 55.4.
Apr. 1, 40.0. Oct. 1,44.1.
May 1, 53.9. Nov. 1, 30.0.
June 1, 63.2. Dec. 1, 18.3.

Make a suitable graph of these results on squared paper.

13. Mathematical, or Non-statistical Graphs. Instead of the
expressions ‘‘abscissa of a point,”’ or “ordinate of a point,”’ it has
become usual to speak merely of the “x of a point,” or of the “‘y of
a point,” since these distances are conventionally represented by
the letters z and y, respectively. If we impose certain conditions
upon z and y, then it will be found that we have, by that very fact,
restricted the possible points of the plane located by them to a
certain array, or set, or locus of points, and that all other points
of the plane fail to satisfy the conditions or restrictions imposed.

It is obvious that the command, “Find the place whose latitude |
equals its longitude,” does not restrict or confine a person to a par-
ticular place or point. The places satisfying this condition are
unlimited in number. We indicate all such points by ‘drawing
a line bisecting the angles of the first and third quadrants; at all
points on this line latitude equals longitude. We speak of this
line as the locus of all points satisfying the conditions. We might
describe the same locus by saying “the y of each point of the
locus equals the z,” or, with the maximum brevity, simply write
the equation “y = «.”” This is said to be the equation of the
locus, and the line is called the locus of the equation.

It is of the utmost importance to be able readily to interpret any
condition imposed upon, or, what is the same thing, any relation
between variables, when these are given in words. It will greatly
aid the beginner in mastering the concept of what is meant by the
term funetion if he will try to think of the meaning in words of the
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relations commonly given by equations, and wvice versa. The
very elegance and brevity of the mathematical expression of rela-
tions by means of equations, tends to make work with them formal
and mechanical unless care is taken by the beginner to express in
words the ideas and relations so briefly expressed by the equa-
tions. Unless expressed in words, the ideas are liable not to
be expressed at all.

The equation of a curve is an equation satisfied by the co-
ordinates of every point of the curve and by the codrdinates of no
other point.

The graph of an equation is the locus of a point whose codrdi-
nates satisfy the equation.

Exercises

1. Draw and discuss the following loci:

The ordinate of any point of a certain locus is twice its ab-
scissa; the z of every point of a certain locus is half its y; the y of
a point is 1/3 of its z; a point moves in such a way that its lati-
tude is always treble its longitude; the sum of the latitude and
longitude of a point is zero; a point moves so that the difference
in its latitude and longitude is always zero.

2. Draw this locus: Beginning at the point (1, 2), a point moves
so that its gain in latitude is always twice as great as its gain in
longitude.

3. A point moves so that its latitude is always greater by 2 units
than three times its longitude. Write the equation of the locus
and construct.

4. A head of 100 feet of water causes a pressure at the bottom of
43.43 pounds per square inch. Draw a locus showing the relation
between head and pressure, for all heads of water from 0 to 200 feet.

SvcGEsTION: There are several ways of proceeding. Let pounds
per square inch be represented by abscissas or z, and feet of water be
represented by ordinates or y. Then we take the point z = 43.43,
y = 100 and other points, as z = 86.86, ¥y = 200, etc., and draw the
line. Otherwise produce the equation first from the proportion

1
z:y::43.43:100, or, 43.43y = 100z ory = £3x and then draw the

100
graph from the fact that the latitude is always 43 43 of the longitude.
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Be sure that the scales are numbered and labeled in accordance with
suggestions (4), (5) and (6) of §12.

5. A pressure of 1 pound per square inch is equivalent to a column
of 2.042 inches of mercury, or to one of 2.309 feet of water. Draw a
locus showing the relation between pressure expressed in feet of water
and pressure expressed in inches of mercury.

SvceEsTiON: Let # = inches of mercury and y = feet of water.
First properly number and label the X-axis to express inches of mer-
cury and number and label the Y-axis to express feet ot water. Since
negative numbers are not involved in this exercise, the origin may be
taken at the lower left-hand corner of the squared paper. First locate
the point z = 2.042, y = 2.309 (which are the corresponding values
given by the problem) and draw a line through it and the origin. This
is the required locus since at all points we must have the proportion
1y ::2.042 :2.309, which says that the ordinate of every point ot the
locus is 2309/2042 times the abscissa of that point.

6. A certain mixture of concrete (in fact, the mixture 1:2:5) con-
tains 1.4 barrels or eement in a cubic yard of concrete. Draw a locus
showing the cost oi cement per cubic yard of concrete for a range ot
prices of cement from $0.80 to $2.00 per barrel.

SvcaesTioN: Let z be the price per barrel of cement and y be the
cost of the cement in 1 cubic yard of concrete. Number and label
the two scales beginning at the lower left-hand corner as origin. Since
prices between $0.80 and $2.00 only need be considered, the first
division on the X-axis may be marked $0.80 instead of 0. FEach
centimeter may represent $0.10 on each scale. The cost of cement per
cubic yard of concrete must, by the condition of the problem, be 1.4
times the price per barrel of cement. Hence the first point located
on the vertical scale must correspond to 1.4 X $0.80, or to $1.12 cost
per cubic yard. As this is the lowest cost to be entered, it is desirable
not to start the vertical scale at $0.00, but at $1.00. Thus the lower
left-hand corner of the coérdinate paper may be taken as the point
(0.80, 1.00) in a system in which the unit of measure is 1 em. = 10
cents.

7. Draw a locus showing the cost per cubic yard of concrete for
various prices of cement, provided $2.10 per yard must be added to the
results of example 6 to cover cost of sand and crushed stone.

8. Cast iron pipe, class A (for heads under 100 feet), weighs, per
foot of length: 4-inch, 20.0 pounds; 6-inch, 30.8 pounds; 8-inch, 42.9
pounds. For each size of pipe construct upon a single sheet of
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squared paper a locus showing the cost per foot for all variations
in market price between $20.00 and $40.00 per ton.

SvegesTioN: If the horizontal scale be selected to represent
price per ton, the scale may begin at 20 and end at 40, as this covers
‘the range required by the problem. Therefore let 1 cm. represent
$1.00. Since the range of prices is from 1 cent to 2 cents per pound,
the cost per foot will range from 20 cents to 40 cents for 4-inch
pipe and from 42.9 cents to 85.8 cents for 8-inch pipe. Hence
for the vertical scale 10 cents may be represented by 2 em. In this
case the vertical scale may quite as well begin at O cents instead of
at 20 cents, as there is plenty of room on the paper.

T g Tl
Yy cl i 5 B| A
1] \mj=-2 | , ri”’.l'f’ o
m\=- |2 X 1 _3;
2| /m =+1, :
1
v
, | fml|=15
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-1 \7f=-2
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F1a. 27.—Lines of Slope (1.5) and of Slope ( —2).

14. Slope. The slope of a straight line is defined to be the
change in y for an increase in z equal to 1. Tt will be represented
in this book by the letter m. Thus in Fig. 27 the line A has the
slope m = 1.5, for it is seen that at any point of the line the
ordinate y gains 1.5 units for an increase of 1 in z. The line B,
parallel to the line A, is also scen to have the slope equal to 1.5.
The equation of the line A is obviously ¥ = 1.5z. In the same
figure the slope of the line C'is — 2, for at any point of this line
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the ordinate y loses, 2 units for an increase in @ equal to 1. The
equation of the line C is obviously y = — 2z. Line D, parallel to
line C, also has slope (—2)

If & be the change in y for an increase of x equal to k, then the
slope m is the ratio & /k.

The technical word slope differs from the word slope or slant in
common language only in the fact that slope, in its technical use,
is always expressed as a ratio. In common language we speak of a
“slope of 1 in 10,” or a “grade of 50 feet per mile,” etc. In mathe-
matics the equivalents are “slope = 1/10,” “slope = 50 /5280,”
ete.

As already indicated, the definition of slope requires us to speak
in mathematics of positive slope and negative slope. A line of pos-
itive slope extends upward with respect to the standard direction
OX and a line of negative slope extends downward with reference
to 0X.

In a similar way we may speak of the slope of any curve at a
given point on the curve, meaning thereby the slope of the tangent
line drawn to the curve at that point.

Exercises

1. Give the slopes of the lines in exercises 1 to 8 of the preceding

set of exercises.
2z D T

2. Draw y =25y =25,y =38,y = 33 Y =oi¥ = 5 ¥ = — 2%
y = — 3z; y = Oz. .

3. Prove that y = mx always represents a straight line, no matter
what value m may have.

15. Equation of Any Line. Intercepts.—In Fig. 28, the line
MN expresses that the ordinate ¥ is, for all points on the line, always
3 times the abscissa z, or it says that y = 3z. Theline HK states
that “y is 2 more than 3z.” Thus the line HK has the equation
y = 3x + 2. :

In general, since y = mx is always a straight line,' then y =
mx + b is a straight line, for the y of this locus is merely, in each
case, the y of the former increased by the constant amount b (which

1See exercise 3, §14, above.
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2. Sketch, from inspection of the equations, the lines given by:

(@) y = 3= ({sye=e—"4x.
®) y = 1= 9 y=—=
(c) 'y == (h) y = — 2z.
d) y = 2z. (#) y = — 3x.
(e) y = 3z, (G y =+ 2z
3. Sketch the lines given by:
(@) = = 3. dy=1 @y =0.
(D) =58 (o) ye=Sas (h) z =0.
() = = —2. f) y = -3. (@Fr2="4.
4. Sketch from inspection of the equations, the following:
(@) y ==+ 1.
®) y =z + 1.
() y = —2z + 4.
(d) y = 5z 4 3.
() y = —bz — 2.

b. Sketch, from inspection of the equations:

(@ y =z +4.
b)) y —2x —3 =0.
© y+3x+1/3=0.
d) ar + by = c.
(e) z/a + y/b
6. The shortest distance between y = mz and y = mz 4+ b is not b.
Show that it equals b/A/1 + m?.

16. Additive Properties. Sometimes a useful result is obtained
by adding (or subtracting) the corresponding ordinates of two
graphs. Thus in Fig. 26, operating expenses of a power plant
may be added to ordinates representing various rates of divi-
dends, and compared (by subtraction) with monthly revenue.
Sometimes, however, it becomes necessary to determine a result
by adding two functions corresponding to different values of the
variable or argument. Fig. 29 is an excellent illustration of this.
This diagram enables one to find the cost of a cubic yard of
“1:2:4” concrete (except cost of mixing) by knowing the prices
of the constituent materials. The information necessary to con-

1.
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struet the loci is given in the first line of Table I, p. 44. The
amount of cement in 1 cubic yard of 1:2:4 concrete is seen to be
1.58 barrels. The price per barrel of cement may be considered
a variable changing with the condition of the market and with
the locality where sold.

2 5 ]
. A 2 Cost of each Ingredient in One | |/
Calhng By the prlce Of § Cubic Yard of 1:2:4 Concrete
£l for Various Prices of the
cement, the cost y, of the 3 Constitatis
cement in 1 cubic yard of 5 4 /
1:2:4 concrete is then, for =
f = / A
all market prices of 3% i
2 I/
cement, expressed by the ¢ 3 ‘
e . . (=] =7
quation: el 74 S
il (S} /
Y1 = 1.5811 ;3 2 7//
5 4 /
Al 2 o pd L A
This is graphically repre- ¢ o83,
. . >
sented in Fig. 29 by the = mf’/ < >
. a a 1t A -
line of slope 1.58. Notein § "[15/ 12 | i
. [~ \G
this case that the slope & //'
. . -] it
of the line has a “physi- £ [ZZ4
cal” meaning, namely it is & 0 1 2 3 4
g, namely %t 18 Price of Stone and 8and per Cubic Yard and
the cost of the cement in 1 of Cement per Barrel in Dollara
cubic yard when the price Fig. 29.

is $1.00 a barrel. In the

same way the cost of the sand and of the crushed stone in 1
cubic yard of concrete for various market prices of these com-
modities is expressed by the lines of Fig. 29 of slopes 0.44 and
0.88 respectively.

ExampLe: Let the price ;1 of cement be $1.20 per barrel; let
the price x;of stone be $1.75 per cubic yard, and the price zs of sand
be $1.10 per cubic yard. Find the cost of the materials necessary
to make 1 cubic yard of 1:2:4 concrete. Then, from Fig. 29:

r = 3120 then Y= $1.90
Ty = 1.75 Y2 = -
T3 = 1.10 Yz = 0.48
Total, or cost of material for 1
cubic yard of concrete = $3.92

The cost of concrete, y, is a function of three variables, z;, s,
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3, all of which, for convenience’ sake, have been measured on the
same scale or axis 0X. The representation of several variables
on the same scale need not cause any confusion.

Since in this case the prices of the constituents of the concrete
are not the same, the total cost of 1 cubic yard of concrete cannot
be found by adding the ordinates at the same abscissa of the
three graphs, because the abscissas or the various market prices
of the ingredients are not the same.

The second line of the table may be used by the student as the
basis of construction of another diagram similar to that of Fig. 29.

TABLE I

The quantities of material required to make 1 cubic yard of concrete
(based on 33% percent voids in the sand and 45 percent voids in
the broken stone).

Quantities of materials in 1 cubie yard. of concrete

Mixture

Cement, Sand, Stone,

barrels* cubic yards cubic yards
1:2:4 concrete......... 188 & 044 | 0.88
1:2%:5 concrete........ 1.33 ’ 0.46 } 0.92

1:3 :6WeonEreter . Ty N N L e

* A barrel (4 bags) of cement weighs 380 pounds and contains 3} cubic feet of
cement.

Nore: The student may be interested to know how the figures in
the first line of the table are obtained. The explanation will best be ,
understood if the figures as given are first verified. First the 1.58
barrels of cement should be reduced to cubic yards. It gives 0.22
cubic yard. A part of this must be used to fill the 33} percent of
voids in the 0.44 cubic yard of sand. The cement required for this is
0.146 cubic yard. Thus the sand and cement combine to make
0.44 4 0.22 — 0.146 or 0.514 of mixed material. A part of this mix-
ture is used to fill the 45 percent voids in the 0.88 cubic yard of stone,
which equals 0.396 cubic yard. Hence the total volume of stone,
sand and cement is 0.88 + 0.514 — 0.396, which equals 0.998, or the
cubic yard required.

To find the numbers in the table, the above process needs to be
reversed and stated algebraically. Thus, to make a cubic yard of
1:2:4 concrete let
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z = cubic yards cement required.
y = cubic yards sand required.
z = cubic yards stone required.

Then, from the given porosities, or percent of voids,

Z — 3y = surplus of cement after filling voids in sand.
(x — 3y) + y = volume of mixed sand and cement.
[(z — 3y) + y]l — 0.45z2 = surplus of mixed sand and ce-
ment after filling voids in stone.
z + [(x — 3y) + y] — 0.45z = 1, the total volume,
or,
055z + 2y +2=1

£ 5 i I ) 0 I B

B Cost of each Ingredient in One Cubic Yard |/}
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Fig. 30.

Also, because the mixture is 1:2:4:
2t =y
dr =2
These give:
453z =1
x = 0.22 cubic yard

Shorter reasoning is as follows: As the voids in the crushed stone
are to be completely filled in the finished concrete, the z cubic yards
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of stone counts as only 0.55-z cubic yards in the final product. As the
voids in the sand are to be completely filled in the final mixture, the
y cubic yards of sand counts as only %y cubic yards in the final
product. As there are no voids to be filled in the cement, it counts
as z cubic yards in the final result. Hence the equation

z + 3y + 0.55z = 1, ete.

Exercise

From the diagram, Fig. 30, determine and insert in a table like
Table I, the quantity of each sort of material in 1 cubic yard of
1:3:6 concrete.

THE POWER FUNCTION

17. Definition of the Power Function. The algebraic function
consisting of a single power of the variable, such for example as the
functions 2, 3, 1/x, 1/22, 2%, etc., stand next to the linear
function of a single variable, mz + b, in fundamental impor-
tance. The function z» is known as the power function of x.

18. The Graph of x2. The variable part of many functions of
practical importance is the square of a given variable. Thus the
area of a circle depends upon the square of the radius; the distance
traversed by a falling body depends upon the square of the elapsed
time; the pressure upon a flat surface exposed directly to the wind
depends upon the square of the velocity of the wind; the heat
generated in an electric eurrent in a given time depends upon the
square of the number of amperes of current, etc., ete. Each of
these relations is expressed by an equation of the form y = az? in
which z stands for the number of units in one of the variable quan-
tities (radius of the circle, time of fall, velocity of the wind, amperes
of current, respectively, in the above named cases) and in which
y stands for the other variable dependent upon these. The num-
ber a is a constant which has a value suitable to each particular
problem, but in general is not the same constant in different prob-
lems. Thus, if y be taken as the area of a circle, ¥ = wz?, in which
z is the radius measured in feet or inches, etc., and y is measured in
square feet or square inches, ete.; or if s is the distance in feet
traversed by a falling body, then s = 16.1¢2, where ¢ stands for the
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elapsed time in seconds. In one case the value of the constant ¢
is 3.1416 and in the other its value is 16.1.

Let us first graph the abstract law or equation ¥ = z?, in which
a concrete meaning is not assumed for the variables z and y but
in which both are thought of as abstract variables. First form a
suitable table of values for « and x? as follows:

z |-3 —2-10 02 04 06 08 1.0 12 14 16 18 2 3
z2or y 9 4 1 0 0.04 0.16 0.36 0.64 1.0 144 196 2.56 3.24 4 9

Here we have a series of pairs of values of z and y which are asso-
ciated by the relation y = z2. Using the z of each pair of values
as abscissa with its corresponding y there can be located as many
points as there are pairs of values in the table, and the array of
points thus marked may be connected by a freely drawn curve.
To draw the curve upon codrdinate paper, form M1, the origin
may be taken at the mid-point of the sheet, and 2 em. used as the
unit of measure for z and y. If the points given by the pairs of
values are not located fairly close together, it is obvious that a
smooth curve cannot be satisfactorily sketched between the points
until intermediate points are located by using intermediate values
of z in forming the table of values. The student should think of
the curve as extending indefinitely beyond the limits of the sheet of
- paper used; the entire locus consists of the part actually drawn and
of the endless portions that must be followed in imagination beyond
the range of the paper. If the graph of ¥ = z? be folded about
the Y-axis, OY, it will be noted at once that the left and right
portions of the curve will exactly coincide. The student will
explain the reason for this fact.

19. Parabolic Curves. The equations y =z, y = 22, y = x%,
y = 3 should be graphed by the student on a single sheet of co6r-
dinate paper, using 2 cm. as the unit of measure in each case.
Table II may be used to save numerical computation in the con-
struction of the graphs of these power functions. As in the case
of y = 22, a smooth curve should be sketched free-hand through
the points located by means of the table of values, and intermediate
values of 2 and y should be computed when doubt exists in the mind
of the student concerning the course of the curve between any two
points.
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Fig. 31.—Parabolic Curves.
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Fic. 32.—Graph of the Power Function for » > 0 (Parabolic Curves)

in the First Quadrant.
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The graphs of the above power functions are observed to be
continuous lines, without breaks or sudden jumps. A formal proof

TABLE II

z EGEp e ! vz ? Yz | 1% ! 1/z | 1/x2

0.2 0.04 0.008 0.447 | 0.585 | 0.089 | 5.000 25.000

0.4; 0.16 0.064 0.632 | 0.737 0.252 | 2.500 ; 6.250

0.6 0.36 0.216 0.775 | 0.843 0.465 | 1.667 2.778

0.8 0.64 0.512) 0.894 | 0.928 0.715 | 1.250 ‘ 1.563

1.00 1.00 1.000; 1.000 | 1.000 1.000 | 1.000 | 1.000

1.2 1.44 1.728 1.095 | 1.063 1.312 | 0.8333 | 0.6944
1.4‘ 1.96 2.744; 1.183 { 1.119 1.657 | 0.7143 | 0.5102
1.6‘ 2.56 4.096 1.265 | 1.170 2.034 | 0.6250 | 0.3906
1.8‘ 3.24 5.832| 1.342 | 1.216 2.415 | 0.5556 | 0.3086

{
2.0} 4 OOIF 8.000 1.414 | 1.260 2.828 | 0.5000 | 0.2500
2Rt 44 84“ 10.65 | 1.483 | 1.301 t 3.263 | 0.4545 | 0.2066
2.4! 5.76/ 13.82 | 1.549 | 1.339 | 3.717 | 0.4167 | 0.1736
2.6, 6.76 17.58 | 1.612 | 1.375 | 4.193 ‘ 0.3846 | 0.1479
2.8 7.84 21.95 | 1.673 [ 1.409 I 4.685 | 0.3571 | 0.1276
3.00 9.000 27.00 | 1.732 | 1.442 5.196 | 0.3333 | 0.1111
3.2/ 10.24) 32.77 | 1.789 | 1.474 5.724 | 0.3125 | 0.0977
3.4 11.56 39.30 | 1.844 | 1.504 6.269 | 0.2941 | 0.0865
3.6 12.96; 46.66 | 1.897 | 1.533 6.831 | 0.2778 | 0.0772
3.8‘ 14.44‘ 54.87 | 1.949 | 1.560 7.407 | 0.2632 | 0.0693
4.0 16.00 64.00 | 2.000 | 1.587 I 8.000 | 0.2500 | 0.0625
4.2 17.64 74.09 | 2.049 | 1.613 J 8.608 : 0.2381  0.0567
4.4 19.36 85.18 ' 2.098 | 1.639 9.229 | 0.2273 | 0.0517
4.6 21.16 97.34 2.145 | 1.663 9.866 | 0.2174 ' 0.0473
4.8 23.04 110.6 | 2.191 | 1.687 : 10.42 1 0.2083 | 0.0434
|

5.0| 25.00{ 125.0 | 2.236 | 1.710 | 11.18 1 0.2000 " 0.0400
5.2| 27.04| 140.6 2.280 | 1.732 | 11.85 0.1923 | 0.0370
5.4 29.16; 157.5 2.324 | 1.754 | 12.66 | 0.1852 | 0.0343
5.6 31.36 175.6 2.866 | 1.776 | 13.25 0.1786 @ 0.0319
5.8 33.64 195.1 2.408  1.797 13.97 0.1724 | 0.0297
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TABLE II.—(Continued)

& e | Vz ‘ Rz ’ 2% ' 1/z ‘ 1/x?
6.0/ 36.00/ 216.0 | 2.449  1.817 | 14.70 | 0.1667 | 0.0278
6.2 38.44 238.3 | 2.490 | 1.837 | 15.44 | 0.1613 | 0.0260
6.4 40.96; 262.1 | 2.530 | 1.857 | 16.19 | 0.1563 | 0.0244
6.6 43.56 287.5 | 2.569 | 1.876 | 16.96 | 0.1515 | 0.0230
6.8 46.24| 314.4 2.608 | 1.895 |/17.33 0.1471 | 0.0216
7.0/ 49.00] 343.0 | 2.646 ( 1.913 | 18.52 | 0.1429 | 0.0204
7.2{ 51.84| 373.2 | 2.683 | 1.931 | 19.32 | 0.1389 | 0.0193
7.4 54.76{ 405.2 | 2.720  1.949 | 20.13 | 0.1351 | 0.0183
7.6 57.76| 439.0 | 2.757 | 1.966 { 20.95 | 0.1316 | 0.0173
7.8 60.84| 474.6 | 2.793 | 1.983 | 21.79 | 0.1282 | 0.0164
8.0 64.00 512.0 | 2.828 | 2.000 | 22.63 | 0.1250 | 0.0156
8.2| 67.24| 551.4 | 2.864 | 2.017 | 23.48 | 0.1220 | 0.0149
8.4/ 70.56] 592.7 | 2.898 | 2.033 | 24.35 | 0.1190 | 0.0142
8.6| 73.96/.636.1 | 2.933 | 2.049 | 25.22 | 0.1163 | 0.0135
8.8 77.44| 681.5 | 2.966 | 2.065 | 26.11 | 0.1136 | 0.0129
9.0/ 81.00| 729.0 | 3.000 | 2.080 | 27.00 | 0.1111 | 0.0123
9.2 84.64| 778.7 | 3.033 | 2.095 | 27.91 | 0.1087 | 0.0118
9.4 88.36| 830.6 | 3.066 | 2.110 | 28.82 | 0.1064 | 0.0113
9.6, 92.16/ 884.7 | 3.098 | 2.125 | 29.74 | 0.1042 | 0.0109
9.8I 96.04| 941.2 | 3.130 | 2.140 | 30.68 | 0.1020 | 0.0104
1 ‘, ‘
10.01‘100.00 1000.0 3.162 | 2.154 | 31.62 | 0.1000 | 0.0100

that z~ is a continuous function for any positive, rational value of
n will be given later.

All of the graphs here considered haveone impor tant prop-
erty in common, namely, they all pass through the points (0, 0)
and (1,1). Itis obvious that this property may be affirmed of any
curve of the class y = 2=, if n is a positive number. These curves
are known collectively as curves of the parabolic family, or simply
parabolic curves. The curve y = 22 is called the parabola.
y = 2 is called the cubical parabola. y = z’% is called the semi-
cubical parabola, etc. Curves for negative values of n do not pass
through the point (0, 0) and are otherwise quite distinet. They
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are known as curves of the hyperbolic type, and will be discussed
later.

The student should cut patterns of the parabola, the cubical
parabola and the semi-cubical parabola out of heavy paper for
use in drawing these curves when required. Each pattern should
have drawn upon it either the z- or y-axis and one of the unit lines
to assist in properly adjusting the pattern upon squared paper.

20. Symmetry. In geometry a distinction is made between two
kinds of symmetry of plane figures—symmetry with respect to a
line and symmetry with respect to a point. A plane figure is
symmetrical with respect to a given line if the two parts of the
figure exactly coincide when folded about that line. Thus the let-
ters M and W are each symmetrical with respect to a vertical line
drawn through the vertex of the middle angles. We have already
. noted that y = 2? is symmetrical with respect to OY.

A plane figure is symmetrical with respect to a given point when
the figure remains unchanged if rotated 180° in its own plane about
an axis perpendicular to the plane at the given point. Thus the
letters N and Z are each symmetrical with respect to the mid-point
of their central line. The letters H and 0 are symmetrical both
with respect to lines and with respect to a point. Which sort of
symmetry is possessed by the curve y = 23? Why?

Another definition of symmetry with respect to a point is per--
haps clearer than the one given in above statement: A curve is
said to be symmetrical with respect to a given point O when all
lines drawn through the given point and terminated by the curve
are bisected at the point O.

What kind of symmetry with respect to one of the codrdinate
axes or to the origin (as the case may be) does the point (2, 3) bear
. to the point (—2, 3)? To the point (—2, —3)? To the point
(2, —3)?

Note that symmetry of the first kind means that a plane figure is
unchanged when turned 180° about a certain line in its plane, and
that symmetry of the second kind means that a figure is unchanged
when turned 180° about a certain line perpendicular to its plane.

21. The curves in the diagram, Fig. 31, are sketched from a
limited number of points only, but any number of additional
values of 2 and y may be tabulated and the accuracy, as well as
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the extent, of the graph be made as great as desired. A num-
ber of graphs of power functions are shown as they appear in the
Jirst quadrant in Figs. 32 and 35. The student should explain how
todraw the portions of the curves lying in the other quadrants
from the part appearing in the first quadrant.

In the exercises in this book to “draw a curve’ means to con-
struet the curve as accurately as possible from numerical or other
data. To ‘““sketch a curve” means to produce an approximate or
less accurate representation of the curve, including therein its
characteristic properties, but without the use of extended numer-
ical data.

Exercises

1. On cdordinate paper draw the curves y = 22, y = x5, y = %,
y = % using 4 ecm. as the unit of measure. On the same sheet
draw thelinesz = + 1,y = + 1,y = + z.

2. On coérdinate paper sketch the curves z = y%, z = 3, x = y%%
z = y5. Compare with the curves of exercise 1.

3. Sketch and discuss the curves y = \/;, y = '\7;, Yy = \4/::;
Can any of these curves be drawn from patterns made from the
curves of exercise 1? Why? Explain the graphs of the first and
last if the double sign * +” be understood before the radicals, and
compare with the graphs when the positive sign only is to be under-
stood before the radicals.

4. Draw the curve 52 = z!. Compare with the curve y = z2.

5. Name in each case the quadrants of the curves of exercises
1-4, and state the reasons why each curve exists in certain quad-
rants and why not in the other quadrants.

22. Discussion of the Parabolic Curves. Draw the straight
lines z = 1,z = —1,y = 1,y = —1 upon the same sheet upon
which a number of parabolic curves have been drawn. These
lines together with the codrdinate axes divide the plane into a
number of rectangular spaces. In Fig. 33 these spaces are shown
divided into two sets, those represented by the cross-hatching,
and those shown plain. The cross-hatched rectangular spaces
contain the lines y = x and y= —z and also all curves of the para-
bolic type. No parabolic curve ever enters the rectangular strips
shown plain in Fig. 33.

IR RIRRTRIRRRRRRRARNNR=,
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The line y = z divides the spaces occupied by the parabolic
curves into equal portions. Why does the curve y = z? (in the
first quadrant) lie below this line in the interval z = 0 to z = 1,
but above it in the interval to the right of x = 1? On the other
hand, why does the curve y = A/z, or y? = z (in the first quad-
rant), lie above the line y = z in the intervalz= 0to z = 1 and
below ¥ = « in the interval to the right of z = 1?

One part of the parabolic curve y = z» always lies in the first
quadrant. If n be an even number, another part of the curve lies

. |
il ’Ui”ni u‘
F16.33.—The Regions of the Parabolic and the Hyperbolic Curves.

All parabolic curves lie within the cross-hatched region. All hyperbolic
curves lic within the region shown plain.

in which quadrant? If » be an odd number, the curve lies in which
quadrants?

If the exponent n of any power function be a positive fraction,
may m [r, the equation of the curve may be written y» = 2=, If
in this case both m and r be odd, the curve lies in which quadrants?
If m be even and r be odd, the curve lies in which quadrants? If
m be odd and r be even, the curve lies in which quadrants? If
both m and r be even the curve lies in which quadrants?

A curve which is symmetrical to another curve with respect to a
line may be spoken of figuratively as the reflection or image of the
second curve in a mirror represented by the given line.
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Exercises

Exercises 1-5 refer to curves in the first quadrant only.

1. The expressions 22, z%% 23, 25 are numerically less than z for
values of z between 0 and 1. How is this fact shown in the diagram,
Fig. 317

2. The expressions 22, 2%, x3, 25 are numerically greater than z for
all values of z numerically greater than unity. How is this fact
pictured in the diagram, Fig. 31?

3. For values of z between 0 and 1, 28 < 23 < 22 < 2% <u.
For valuesz > 1,28 > z3 > 22 >2%® > z. Explain how each of these
facts is expressed by the curves of Fig. 32.

4. Show that the graphs y = 2%, y = ¢4, y = 2%5, y = x5 are the
reflections of y = 23, y = 2%, y = x% y = 5, in the mirror y = z.

5. Sketch without tabulating the numerical values, the following
loei: =10 y = g0 y = gl00 gy = go.01,

The following are to be discussed for all quadrants.

6. Sketch, without tabulating numerical values, the following loci
Y= x4 yt = 26 yt = 22, Y} = 25, Y5 = 3

7. Sketch the following: y% = x101 3101 = 99 22000 — zlo01

8. Sketch the following: y = — 2%, y = — 2%, y? = — 23

23. Hyperbolic Type. Loci of equations of the form ya» = 1,
or y = 1/z», where n is positive, have been called hyperbolic
curves. The fundamental curve zy = 1, or y = 1/z is called the
rectangular hyperbola. Its graph is given in Figs. 34 and 35,
but the curve should be drawn independently by the student, using
2 cm. as the unit of measure. Its relation to the 2- and y-axes is
most characteristic. For very small positive values of z, the value
of y is very large, and as x approaches 0, ¥ increases indefinitely.
But the function is not defined for the value z = 0, for the prod-
uct zy cannot equal 1 if z be zero. For numerically small but
negative values of z, y is negative and numerically very large, and
becomes numerically larger as « approaches 0. The locus thus
approaches indefinitely near to the Y-axis, as  approaches zero.

Instead of saying that “y increases in value without limit,” it
is equally common to say ‘‘y becomes infinite;” in fact, ‘“infinite’’
is merely the Latin equivalent of “no limit.” It is often written
y = o. This is a mere abbreviation for the longer expressions,
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“y becomes infinite” or “y increases in value without limit.”
The student must be cautioned that the symbol « does not stand
for a number, and that “‘y = o ” must not be interpreted in the
same way that ‘““y = 5’ is interpreted.

As z increases from numerically large negative values to 0,
y continually decreases and becomes negatively infinite (abbre-
viated y = — ®). As z decreases from numerically large positive
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Fic. 34.—Hyperbolic Curves.

values to 0, y continually increases and becomes infinite. Thus,
in the neighborhood of z = 0, y is discontinuous, and, in this case,
the discontinuity is called an infinite discontinuity.

On account of the symmetry in zy = 1, if we look upon = as a
funetion of y, all of the above statements may be repeated, merely
interchanging = and y wherever they occur. Thus, there is an
infinite discontinuity in z, as y passes through the value 0.

The lines XX’ and Y'Y’ which these curves approach as near as
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we please, but never meet, are called the asymptotes of the
hyperbola.

All other curves of the hyperbolic family, such as ya? = 1,
xy* =1, y%? = 1, y*&* = 1 and the like, approach the X- and
Y-axes as asymptotes. The rates at which they approach the
axes depends upon the relative magnitudes of the exponents of the
powers of z and y; the quadrants in which the branches lie depend
upon the oddness or evenness of these exponents.

U
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Fie. 35.—Hyperbolic Curves in the Fig. 36.—A Hyperbola

First Quadrant. y = 1/z148 is the Formed by Capillary Action of
Adiabatic Curve for Air. Two Converging Plane Plates.

Exercises

1. Draw accurately upon squared paper the loci, zy = 1, zy® = 1,
2?2y =1, zy® = 1.

2. Show that the curves of the hyperbolic type lie in the rectangular
regions shown plain, or not cross-hatched, in Fig. 33.

3. In what quadrants do the branches of z'%y7 = 1 lie?

4. How does the locus of 2242 = 1 differ from that of zy = 1?

6. Sketch, showing the essential character of each locus, the curves
z2y3 = 1’ xlOy = 1’ xlODOy = 1.

6. Show that zy = a passes through the point (\/a, A/a); that
zy = a® passes through (¢, a) and can be made from zy = 1 by
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“stretching” (if @ > 1) both abscissas and ordinates of zy = 1 in the
ratio 1:a.! p

24. Curves Symmetrical to Each Other. Some of the facts of
symmetry respecting two portions of the same parabola or hyper-
bola may be readily extended by the student to other curves.
First answer the following questions:

How are the points (a, b) and (—a, b) related to the Y-axis?

How are the points (g, b) and (a, —b) related to the X-axis?

How are the points (a, b) and (b, a) related to the line y = x?
Prove the result by plane geometry. _

The following may then be readily proved by the student:

TrEOREMS ON Loci

1. If z be replaced by (— z)in any equation containing x and v,
the new graph is the reflection of the former in the axis YY'.

I1. If y be replaced by (— y)tn any equation containing x and vy,
the new graph is the reflection of the former in the axis XX'.

IIT. If « and y be interchanged in any equation containing x
and vy, the new graph is the reflection of the former one in the line
Yy =2

25. The Variation of the Power Function. The symmetry of
the graphs of the power function with respect to certain lines and
points, while of interest geometrically, nevertheless does not con-
stitute the most important fact in connection with these functions.
Of more importance is the law of change of value or the law by which
the function varies. Thus returning to a table of values for the
power function 2 for the first quadrant,

RIS N TR S SR ) TR
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we note that as z changes from 0 to 1/2 the function grows by the
small amount 1 /4. Asz changes from 1/2 by another increment of
1/2 to the value 1, the function increases by 3 /4 to the value 1.
As z grows by successive steps or increments of 1/2 unit each, it
is seen that z? grows by increasingly greater and greater steps,
until finally the change in 22 produced by a small change in =

1To “elongate '’ or * stretch '’ in the ratio 2:3 means to change the length
of a line segment so that (original length): (new or stretched length) =2: 3.
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becomes very large. Thus the step by step increase in the function
is a rapidly augmenting one. Even more rapidly does the func-
tion 2® gain in value as x grows in value. On the contrary, for posi-
tive values of « the power functions 1/z, 1 /2, 1 /23, etc., decrease
in value as z grows in value. Referring to the definition of the
slope of a curve given in §14, we see that the parabolic curves
have a positive slope in the first quadrant, while the hyperbolie
curves have always a negative slope in the first quadrant.

The law of the power function is stated in more definite terms
in §34. That section may be read at once, and then studied
a second time in connection with the practical work which
precedes it.

26. Increasing and Decreasing Functions. As a point passes
from left to right along the X-axis, x increases algebraically.
As a point moves up on the Y-axis, y increases algebraically and
as it moves down on the Y-axis, y decreases algebraically. An
increasing function of x is one such that as x increases algebraically,
¥y, or the function, also increases algebraically. By a decreasing
function of x is meant one such that as z increases algebraically,
y decreases algebraically. Graphically, an increasing function is
indicated by a rising eurve as a point moves along it from left to
right. The power function y = 2" (n positive) is an increasing
function of z in the first quadrant. The power function y =
z~" (— n negative) in the first quadrant is a decreasing function
of x. 3 ‘

The power function ¥ = x? is an increasing function for all values
of x while ¥ = z? isa decreasing function in the second quadrant
but an increasing function in the first quadrant. In a case like
y = + 2’ where y has two values for each positive value of z, it
1s seen that one of these values increases with « while the other
decreases with z.

Exercises

1. Consider the function ¥ = + z** and construct its locus. As z
grows by successive steps of one unit each, does the function grow by
increasingly greater and greater steps or not? Why? Is the slope
of the curve an increasing or a decreasing function of z?
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2. Does the algebraic value of the slope of zy = 1 increase with z
in the first quadrant?

3. As z changes from — 5 to + 5 does the slope of y = z? always

“increase algebraically?

4, Express in the language of mathematics the fact that the
curves y = x", when » is a rational number greater than unity, are
concave upward.

ANswER: ‘““When = is greater than unity, the slope of the curve
increases as z increases.”

Express in a similar way the fact that the curves y = 2!/” are
concave downward.

27. The Graph of the Power Function when x» has a Coeffi-
cient. If numerical tables be prepared for the equations

gr=
and =32

then for like values of = each ordinate, y’, of the second curve
will be three fold the corresponding ordinate, ¥, of the first curve.
It is obvious that the curve

y = az (1)
and the curve

y =gz ' @)

are similarly related; the ordinate ¥’ of any point of the first locus
can be made from the corresponding ordinate y (i.e., the ordinate
having the same abscissa) of the second by multiplying the latter
by a. 1If a be positive and greater than unity, this corresponds to
stretching or elongating all ordinates of (2) in the ratio 1:a; if a
be positive and less than unity, it corresponds to contracting or
shortening all ordinates of (2) in the ratio 1:a.

For example, the graph of ' = az" can be made from the graph
of y = x» if the latter be first drawn upon sheet rubber, and if
then the sheet be uniformly stretched in the y direction in the ratio
1:a. If the curve be drawn upon sheet rubber which is already
under tension in the y direction and if the rubber be allowed to
contract in the y direction, the resulting curve has the equation
y = az® where a is a proper fraction or a positive number less than
unity.

The above results are best kept in mind when expressed in a
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slightly different from. The equationy’ = a-z» can, of course, be
written in the from (y'/a) = x*. Comparing this with the equa-
tion y = z~, we note that (y'/a) = y ory’ = ay, therefore we may
conclude generally that substituting (¥'/a) for y in the equation of
any curve multiplies all of the ordinates of the curve by a. For
example, after substituting (y’'/2) for y in any equation, the new
ordinate ¥’ must be twice as large as the old ordinate y, in order
that the equation remain true for the same value of z.

In the same manner changing the equation y = 2 to y =

’
(%) , that is, substituting (¢'/a) for = in any equation multiplies

all of the abscissas of the curve by a. Multiplying all of the abseis-
sas of a curve by a elongates or stretches all of the abscissas in
the ratio! 1:aif ¢ > 1, but contracts or shortens all of the abscis-
sas if a<1. As the above reasoning is true for the equation of
any locus, we may state the results more generally as follows:

TrEOREMS ON Locr

IV. Substituting (g) for x in the equation of any locus multiplies
all of the abscissas of the curve by a.

V. Substituting (Z—) for yinthe equation of any locus multiplies all
of the ordinates of the curve by a.

Note: It is not necessary to retain the symbols 2’ and y’ to
indicate new variables, if the change in the variable be otherwise
understood.

Exercises
1. Without actual construction, compare the graphs y = z? and
y=>5z% y=zand y = ,"’2,.2; U= ;': and y = i, y=2% and y=2z%
= 2% and Y= x;é
2. Without actual construction, compare the graphs y = z? and
Y= (g) 2; y=x%and g= z3;, y=z%andy = (g a; y=x?and g=z2_

18ee footnote, p. 57.
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3 2
3. Compare y? = z% and y? = (;) 5 Y2 = z%and (g) =z3; y?= 23

4 r\ 3 1 z 1
and (%) =<'2> Y=g and 5 =

28. Orthographic Projection. In elementary geometry we
learned that the projection of a given point P upon a given line or
plane is the foot of the perpendicular dropped from the given point
upon the given line or plane. Likewise if perpendiculars be
dropped from the end points A and B of any line segment A B upon
a given line or plane, and if the feet of these perpendiculars be
called P and @, respectively, then the line segment P@Q is called the
projection of the line AB. Also, if perpendiculars be dropped
from all points of a given curve AB upon a given plane MN, the

Fia. 37.—Orthographic Projection of Line Segments

locus of the feet of all of the perpendiculars so drawn is called the
projection of the given curve upon the plane MN.

To emphasize the fact that the projections were made by using
perpendiculars to the given plane, it is customary to speak of them
as orthogonal or orthographic projections.

The shadow of a hoop upon the ground is not the orthographic
projection of the hoop unless the rays of light from the sun strike
perpendicular to the ground. This would only happen in our lat-
itude upon a non-horizontal surface.

The shortening by a given fractional amount of all of a set of
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parallel line segments of a plane may be brought about geometric-
ally by orthographic projection of all points of the line segments
upon a second plane. For, in Fig. 37, let A,B;, A.B), A3Bs,
etc., be parallel line segments lying in the plane MN. Let their
projections on any other plane be A’,C";, A’.C';, A’3C’5, ete.,
respectively. Draw A,C, parallel to A’;C’; and A,C, parallel to
A"\C",, ete. Then since the right triangles A,B,C,, A.B,Cs,
A3B;Cs, etc., are similar,

AB, _ A.B, _ A;3B;

AICI P AZC2 ¥, A303

Call this ratio a. It is evident that a« >1. Substitute the
equals: A’;C"y = A,C;, A’5C’y = A,C,, ete. Then:

A1B; A,B; ABs y _a

ANC' A0, AC 1

The numerators are the original line segments; the denominators
are their projections on the plane M 0. The equality of these
fractions shows that the parallel lines have all been shortened in
the ratio a : 1.

The above work shows that to produce the curve y = (z/a)n,
(e <1), from y = z» by orthographic projection it is merely neces-
sary to project all of the abscissas of ¥ = z» upon a plane passing
through YOY’ making an angle with OX such that unity on 0X
projects into a length a on the projection-of OX. To produce
the curve y = az» (a <1) from y = z» by orthographic projection
it is merely necessary to project all of the ordinates of ¥y = x» upon
a plane passing through XOX’ making an angle with OY such that
unity on OY projects into the length a on the projection of OY.

To lengthen all ordinates of a given curve in a given ratio,
1 :a, the process must be reversed; that is, erect perpendiculars to
the plane of the given curve at all points of the curve, and cut them
by a plane passing through XOX’ making an angle with OY such
that alength @ (¢ >1) measured on the new Y-axis projects into
unity on OY of the original plane.

29. Change of Unit. To produce the graph of y = 10z2 from
that of y = 2, the stretching of the ordinates in the ratio 1:10
need not actually be performed. If the unit of the vertical scale
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of y = 22 be taken 1/10 of that of the horizontal scale, and the
proper numerical values be placed upon the divisions of the
scales, then obviously the graph of y = 22 may be used for the
graph of y = 10z2. Suitable change in the unit of measure on one
or both of the scales of y = z~ is often a very desirable method of
representing the more general curve y = az".

An interesting example is given in Fig. 38. The period of vi-
bration of a simple pendulum is given by the formula T = w+/1/g.
When g = 981 cm. per ;¢
second per second (abbre- 14
viated em./sec.?) this gives 1.2
T = 0.1003+/1, which for %1.0
many purposes is suffici- Z i oz
ently accurate when writ- £ Ve
ten T = 0.10o/1. In this’ B Fod
equation 7 must be in sec- 7
onds and ! in centimeters. %
Thus when ! = 100 cm., T 0 20 40 60 80 100 120 140 160 180 200
= 1sec., so that the graph Length in Cm.
may he made by dr‘awmg F1G. 38.—Relation of Length of a Simple
the parabola y = 4/z from Pendulum to_Period of Vibration.
the pattern previously
made and then attaching the proper numbers to the scales, as
shown in Fig. 38.

30. Variation. The relation between y and z expressed by the
equationy = ax», where n is any positive number, is often expressed
by the statement “y varies as the nth power of z,” or by the
statement ‘“y s proportional to xn.” Likewise, the relation
y = a/z», where n is positive, is expressed by the statement
‘“y varies inversely as the nth power of z.”” The statement ‘“the
elongation of a coil spring is proportional to the weight of the sus-
pended mass” tells us: ;

y = mz ' (1)

where y is the elongation (or increase in length from the natural
or unloaded length) of the spring, and z is the weight suspended by
the spring, but it does not give us the value of m. The value of m
may readily be determined if the elongation corresponding to a
given weight be given. Thus if a weight of 10 pounds when sus-
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pended from the spring produces an elongation of 2 inches in the
length of the coil, then, substituting # = 10 and y = 2 in (1),

2 = ml0
and hence 5 - m=1/5

If this spring be used in the construction of a spring balance, the
length of a division of the uniform scale corresponding to 1 pound
will be 1/5 inch. ’

A special symbol, o, is often used to express variation. Thus

y < 1/d?
states that y varies inversely as d2. It is equally well expressed by:
_k
Yy = d“;

where £ is a constant called the proportionality factor.
The statements “y varies jointly as « and »,” and “y varies
directly as » and inversely as »,”” mean, respectively:

Y = auy
au
v

Thus the area of a rectangle varies jointly as its length and breadth,
or,
A = kLB

If the length and breadth are measured in feet and A in square feet,
k is unity. But, if L and B are measured in feet and A in acres,
then & = 1/43560. If L and B are measured in rods and 4 in
acres, then &£ = 1/160.

From Ohm’s law, we say that the electric current in a cireuit
varies directly as the electromotive force and inversely as the
resistance, or:

C « E/R or C =EkE/R

The constant multiplier is unity if C' be measured in amperes, E
in volts, and R in ohms, so that for these units

C =E/R
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31. Illustrations from Science. Some of the most important
laws of natural science are expressed by means of the power func-
tion! or graphically by means of loci of the parabolic or hyperbolic
type.

The linear equation ¥ = mz is, of course, the simplest case of the
power function and its graph, the straight line, may be regarded as
the simplest of the curves of the parabolic type. The following
illustrations will make clear the importance of the power function
in expressing numerous laws of natural phenomena. Later the
student will learn of two additional types of fundamental laws of
science expressible by two functions entircly different from the
power function now being discussed.

The instructor will ask oral questions concerning each of the
following illustrations. The student should have in mind the
general form of the graph in each case, but should remember that
the law of variation, or the law of change of value which the funec-
tional relation expresses, is the matter of fundamental importance.
The graph is useful primarily because it aids to form a mental pic-
ture of the.law of variation of the function. The practical graph-
ing of the concrete illustrations given below will not be done at
present, but will be taken up later in §33.

(a) The pressure of a fluid in a vessel may be expressed in either
pounds per square inch or in terms of the height of a column of
mercury possessing the same static pressure. Thus we may write:

p = 0.492h (1)

in which p is pressure in pounds per square inch and 4 is the height
of the column of mercury in inches. The graph is the straight
line through the origin of slope 492/1000. The constant 0.492 can
be computed from the data that the weight of mercury is 13.6 times
that of an equal volume of water and that 1 cubic foot of water
weighs 62.5 pounds.

In this and the following equations, it mubt be remembered
that each letter represents a number, and that no cquation can
be used until all the magnitudes involved are expressed in terms
of the particular units which are specified in connection with
that equation.

1For brevity ez” as well as z™ will frequently be called a pd“'er function of =z.

5
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(b) The velocity of a falling body which has fallen from a state
of rest during the time ¢, is given by

v =322t ' @)

in which ¢ is the time in seconds and v is the velocity in feet
per second. If ¢is measured in seconds and » is in centimeters per
second, the equation becomes!' v = 981f. In either case the
graph is a straight line, but the lines have different slopes.

(¢) The space traversed by a falling body is given by

s = gt (3)
or, in English units (s in feet and ¢ in seconds):
s = 16.1¢2 . 4)

(d) The velocity of the falling body, from the height 4 is:
v = A/2gh = A/64.4h (5)

The resistance of the air is not taken into account in formulas
(2) to (5).
The formula equivalent to (5):

imv? = mgh (6)

where m is the mass of the body, expresses the equivalence of
2mv?, the kinetic energy of the body, and mgh, the work done
by the force of gravity mg, working through the distance h.

1 A full discussion of the process of changing formulas like the ones in the pres-
ent section into a new set of units should be sought in text-books on physics and
mechanics. The following method is sufficient for elementary purposes. First,
write (for the present example) the formula » = 32.2 ¢ where v is in ft./sec. and
t is in seconds. For any units of measure that may be used, there holds a general
relation v = ct, where ¢ is a constant. To determine what we may call the
dimensions of ¢, substitute for all letters in the formula the names ot the units in
which they are expressed, treating the names as though they were algebraic
numbers. From v = ¢t write, ft./sec. = ¢ sec. Hence (solving for dimensions of ¢),
¢ has dimensions ft./sec.? Thererfore in the given case, we know ¢ = 32.2 ft./sec?.
To change to any other units simply substitute equals for equals. Thus 1 ft. =
30.5 cm., hence ¢ = 32.2 X 30.5 ¢m./sec.2 = 981 cm./sec.?

To change velocity from mi./hr. to ft./sec. in formula (19) below, we have
R = 0.003 V2 where R isin lb./sq. ft. and V is in mi./hr. Write the general
formula R = ¢V2%, The dimensions of ¢ are (Ib. / ft.2) + (mi.2/hr.2) or (Ib. / f£.2) X
(hr.2/mi.2). In the given case we have the value of ¢ = 0.003 (Ib./ft.2) X
(hr.2/mi%). To change V to ft./sec., substitute equals for equals, namely 1 hr.=
3600 sec., 1 mi.= 5280 ft., or merely (approximately) mi./hr. = § ft./sec.

N
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(e) The intensity of the attraction exerted on a unit mass by the
sun or by any planet varies inversely as the square of the distance
from the center of mass of the attracting body. If r stand for
that distance and if f be the force exerted on unit mass of the
attracted body, then

m
A e |

Q)
The constant m is the value of the force when r is unity.

(f) The formula for the horse power transmissible by cold-rolled
shafting is:
d3N
H=—+ (8)
where H is the horse power transmitted, d the diameter of the
shaft in inches, and N the number of revolutions per minute.

The rapid variation of this function (as the cube of the diameter)
accounts for some interesting facts. Thus doubling the size of the
shaft operating at a given speed increases 8-fold the amount of
power that can be transmitted, while the weight of the shaft is
increased but 4-fold.

If H be constant, N varies inversely as d®. Thus an old-fash-
ioned 50-h.p. overshot water-wheel making three revolutions per
minute requires about a 9-inch shaft, while a DeLaval 50-h.p.
steam turbine making 16,000 revolutions per minute requires a
turbine shaft but little over 1/2 inch in diameter.

(9) The period of the simple pendulum is

T=xVig 9)
where 7' is the time of one swing in seconds, I the length of the
pendulum in feet and ¢ = 32.2 ft./sec.,? approximately.

(h) The centripetal force on a particle of weight W pounds,
rotating in a circle of radius R feet, at the rate of N revolutions
per second is
_ 4*nWRN?

g

F (10)

or, if g=32.16 ft./sec.?,
F = 1.2276WRN? (11)
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where F is measured in pounds. If N be the number of revolutions
per minute, then l

. AmWRN?
F = 55004 (12)
— 0.000341WRN® (13)

(7) An approximate formula for the indicated horse power

required for a steamboat is:
S3D3%

LHP.= Eps (14)

where S is speed in knots, D is displacement in tons, and € is a con-
stant appropriate to the size and model of the ship to which it is
applied. The constant ranges in value from about 240, for finely
shaped boats, to 200, for fairly shaped boats.
"(7) Boyle’s law for the expansion of a gas mamtamed at
constant temperature is
pv=C (15)

where p is the pressure and v the volume of the gas, and C is a con-
stant. Since the density of a gas is inversely proportional to its
volume, the above equation may be written in the form

p=cp . (16)
in which p is the density of the gas.
(k) The flow of water over a trapezoidal weir is given by

q = 3.37Lh% (17)

where g is the quantity in cubic feet per second, L is the length of
the weir! in feet and % is the head of water on the weir, in feet.

() The physical law holding for the adiabatic expansion of
air, that is, the law of expansion holding when the change of
volume is not accompanied by a gain or loss of heat,? is
expressed by

p = cplrios (18)

1 The instructor is expected fully to explain the meaning of the technical terms
here used.
2 Note that when a vessel containing a gas is insulated by a non-conductor of

.i

heat, so that no heat can enter or escape from the vessel, that the temperature of

the gas will rise when it is compressed, or fall when it is expanded. Adiabatic expan-
sion may be thought of, therefore, as taking place in an insulated vessel.
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This is a good illustration of a power function with fractional expo-
nent. The graph is not greatly different from the semi-cubical
parabola
y = ex’
(m) The pressure or resistance of the air upon a flat surface per-
pendicular to the current is given by the formula

R = 0.003V2 (19)

in which V is the velocity of the air in miles per hour and R is the
resulting pressure upon the surface in pounds per square foot.
According to this law, a 20-mile wind would cause a pressure of
about 1.2 pounds per square foot upon the flat surface of a building.
One foot per second is equivalent to about 2 /3 mile per hour, so
that the formula when the velocity is given in feet per second
becomes:

R = 0.0013V? (20)

(n) The power'used to drive an aeroplane may be divided into
two portions. One portion is utilized in overcoming the resistance
of the air to the onward motion. The other part is used to sustain
the aeroplane against the force of gravity. The first portion does
‘““useless” work—work that should be made as small as possible by
the shapes and sizes of the various parts of the machine. The
second part of the power is used to form continuously anew the
wave of compressed air upon which the aeroplane rides. Calling
the total power! P, the power required to overcome the resistance
P., and that used to sustain the aeroplane P,, we have

P=pP +P, (21)

We learn from the theory of the aeroplane that P, varies as the
cube of the velocity, while P, varies inversely as V, so that

SER=RCI[S (22)
and
k
= v (23)

Thus at high velocity less and less power is required to sustain the
acroplane but more and more is required to meet the frictional

! Power ( = work done per unit time) is measured by the unit horse power, which is
550 foot-pounds per second.
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resistance of the medium. The law expressed by (23) that less
and less power is required to sustain the aeroplane as the speed is
increased is known as Langley’s Law. Ifrom this law Langley was
convinced that artificial flight was possible, for the whole matter
seemed to depend primarily upon getting up sufficient speed. It
is really this law that makes the aeroplane possible. An analogous
case is the well-known fact that the faster a person skates, the
thinner the ice necessary to sustain the skater. In this case

25
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Gals.for One Foot Depth

Fie. 39.—Capacity of Rectangular and Circular Tanks per Foot of Depth.

part of the energy of the skater is continually forming anew on
the thin ice the wave of depression which sustains the skater,
while the other part overcomes the frictional resistance of the
skates on the ice and the resistance of the air. '

(0) The ecapacity of cast-iron pipe to transmit water is often
given by the formula:

138 = 1.68hd5.25 (24)
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in which ¢ is the quantity of water discharged in cubic feet per
second, d is the diameter of the pipe in feet and & is the loss of
head measured in feet of water per 1000 linear feet of pipe.
This is a good illustration of the equation of a parabolic curve
with complicated fractional exponents. The curve is very
roughly approximate to the locus of the equation

y =c\Vha . (25)
(p) The contents in gallons of a rectangular tank per foot of
depth, b feet wide and [ feet long, is

q = 7.5b1 (26)

The contents in gallons per foot of depth of a cylindrical tank d
feet in diameter is

q = 7.5md?/4 (27)

Fig. 39 shows the graph of (26) for various values of b and also
shows to the same scale the graph of (27).

32. Rational and Empirical Formulas. A number of the
formulas given above are capable of demonstration by means of
theoretical considerations only. Such for example are equations
(1), (2), (3), @), (), (7), (8), (9), (10), etc., although the constant
coefficients in many of these cases were experimentally deter-
mined. Formulas of this kind are known in mathematics as
rational formulas. On the other hand certain of the above for-
mulas, especially equations (14), (17), (19), (22), (23), (24),
including not only the constant coefficients but also the law of
vartation of the function ttself, are known to be true only as the
result of experiment. Such equations are called empirical
formulas. Such formulas arise in the attempt to express by an
- equation the results of a series of laboratory measurements.

For example, the density of water (that is, the mass per cubic
centimeter or the weight per cubic foot) varies with the tem-
perature of the water. A large number of experimenters have
prepared accurate tables of the density of water for wide ranges
of temperature centigrade, and a number of very accurate empirical
formulas have been ingeniously devised to express the results, of
which the following four equations are samples:
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Empirical formulas for the density, d, of water in terms of tem-
perature centigrade, 0.

96(9 — 4)2
=" e 100
_ 1 - 90— g
OB R B
662 — 366 + 47
() d=1— 106
3 143 2 el
(&) 4 Tt 0.4850_-””“8_17._?)_017(;1 §020 1118
Exercises

1. Amongthe power functions named in the above illustrations, pick
out examples of increasing functions and of decreasing functions.

2. Under the same difference of head or pressure, show by formula
(24) that an 8-inch pipe will transmit much more than double the
quantity of water per second that can be transmitted by a 4-inch pipe.

3. Wind velocities during exceptionally heavy hurricanes on the
Atlantic coast are sometimes over 140 miles per hour. Show that the
wind pressure on a flat surface during such a storm is about fifty
times the amount experienced during a 20-mile wind.

4. Show that for wind velocities of 10, 20, 40; 80, 160 miles per hour
(varying in geometrical progression with ratio 2), the pressure
exerted on a flat surface is 0.3, 1.2, 4.8, 19.2, 76.8 pounds per
square foot respectively (varying in geometrical progression
with ratio 4).

6. A 300-h.p. DeLaval turbine makes 10,000 revolutions per min-
ute. Find the necessary diameter of the propeller shaft.

6. A railroad switch target bent over by the wind during a tornado
in Minnesota indicated an air pressure due to a wind of 600 miles per
hour. Show that the equivalent pressure on a flat surface would
be 7.5 pounds per square inch. :

7. Show that a parachute 50 feet in diameter and weighing 50
pounds will sustain a man weighing 205 pounds when falling at the
rate of 10 feet per second.

SuceesTion: Use approximate value = = 22/7 in finding area of
parachute from formula for circle, zr>» and use formula (20) above.

8. Show that empirical formulas (a) and (b) for the density of
water reduce to a power function if the origin be takenat 6 = 4,d = 1.
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33. Practical Graphs of Power Functions. The graphs of
the power function

y==2% y=2z% y=1/zr, y=1"% etc, @)

can, of course, be made the basis of the laws concretely expressed
by equations (1) to (27) of §31. If, however, the graph of a
scientific formula is to serve as a numerical table of the function
for actual use in practical work, then there is much more labor
in the proper construction of the graph than the mere plotting
of the abstract mathematical function. The size of the unit
to be selected, the range over which the graph should extend,
the permlS&ble course of the curve, become mattels of practical
importance.

If the apparent slope! of a graph departs too widely from
+ 1 or — 1, it is desirable to make an abrupt change of unit in
the vertical or the horizontal scale, so as to bring the curve back
to a desirable course, for it is obvious that numerieal readings can
best be taken from a eurve when it crosses the rulings of the co-
ordinate paper at apparent slopes differing but little from + 1.

The above suggestions in practical graphing are illustrated by
the following examples:

Graph the formula (equation (8), §31), for the horse power
transmissible by cold-rolled shafting

_ &N (2)

H 50

in which d is the diameter in inches and N is the number of
revolutions per minute. The formula is of interest only for the
range of d between 0 and 24 inches, as the dimensions of ordinary
shafting lie well within these limits. Likewise one would not
ordinarily be interested in values of N except those lying between
10 and 3000 revolutions per minute. Iig. 40 shows a suitable
graph of this formula for the range 1 <d < 10 for the fixed
value of N = 100. In order properly to graph this function, three
different scales have been used for the ordinate H, so that the
slope of the curve may not depart too widely from unity.

1 Ot course the real slope of a curve is independent of the scales used. By
apparent slope = 1 is meant that the graph appears to cut the ruling of the
squared paper at about 45°.
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If similar graphs be drawn for N = 200, N = 300, N = 400,
etc., a set of parabolas is obtained from which the horse power
of shafting for various speeds of rotation as well as for various
diameters may be obtained at once. A set of curves systematically
constructed in a manner similar to that just described, is often
called a family of curves. Fig. 39 shows a family of straight lines
expressing the capacity of rectangular tanks corresponding to
the various widths of the tanks. 4 '

Inasmuch as many of the formulas of science are used only for
positive values of the vari-

Z ables, it is only necessary in
= / these cases to graph the
- function in the first of the
) / four quadrants. For such
;-?60 - / problems the origin may be
B taken at the lower left cor-
§5° Y ner of the codrdinate paper
540 fo so that the entire sheet be-

/ /

z .

&30 comes available for the

e / 20— a0 curve in the ﬁrgt quadrant.
il ; 4 % The above illustrations

TV { { are sufficient to make clear
0 [
1 2 3 4 5 6 7 8 9 10 theimportance inscience of

Diameter of Shaft in Inchee § o o
the functions now being

discussed. The following
exercises give further prac-
tice in the useful application of the properties of the functions.

Fic. 40.—Capacity at 100 R.P.M. of
Cold-rolled Shafting to Transmit Power.

Exercises ,

The graphs for the following problems are to be constructed upon
rectangular codrdinate paper. The instructions are for centimeter
paper (form M1) ruled into 20 X 25 cm. squares. In each case
the units for abscissa and for ordinates are to be so selected as best
to exhibit the functions, considering both the workable range of
values of the variables and the suitable slope of the curves.

The student should read §12 a second time before proceeding
with the following exercises, giving especial care to instructions
(4), (5) and (6) given in that section.

T T o Y T Yg—
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1. Classify the graphs of formulas (1) to (27), §31, as to
parabolic or hyperbolic type.

2. Graph the formula v? = 2gh, or v = /2gh = 8.02k’%, if h range
between 1 and 100, the second and foot being the units of measure.
See formula (5), §31.

The following table of values is readily obtained:

1 5 10 20 30 40 - 50 60 70 80 90 100

v 802 17.9 253 358 43.9 50.7 56.7 62.1 67.1 71.7 76.0 80.2

Use 2 em. = 10 feet as the horizontal unit for &, and 2 em. = 10
feet per second as the vertical unit for v.  The graph is then readily
constructed without change of unit or other special expedient.

3. Graph the formula ¢ = 3.37Lh% for L= 1, for h= 0, 0.1, 0.2,
0.3, 0.4, 0.5. See formula (17), §31. Use 4 ecm. = 0.1 for hori-
zontal unit for A and 2 em. = 0.1 for vertical unit for g.

Al

4. Draw a curve showing the indicated horse power of a ship
I.H.P. = 83D%/C for C = 200 if the displacement D = 8000 tons, and
for the range of speeds S = 10 to S = 20 knots. See formula (14),
§31.

For the vertical unit use 1 em. = 1000 h.p. and for the horizontal
unit use 2 em. = 1 knot. Call the lower left-hand corner of the paper
the point (S = 10, I.H.P. = 0).

6. From the formula expressing the centripetal force in pounds of a
rotating body,

F = 0.000341WRN?

draw a curve showing the total centripetal force sustained by a 36-inch
automobile tire weighing 25 pounds, for all speeds from 10 to 40 miles
per hour. See formula (13), §31.

Miles per hour must first be converted into revolutions per minute
by dividing 5280 by the circumference of the tire and then dividing
the result by 60. This gives

1 mile an hour = 9} revolutions a minute
If V be the speed in miles per hour the formula for F becomes
F = 0.000341(1.5)25(91)2 V2 = 1.11V?
For horizontal scale let 4 em. = 10 miles an hour and for the vertical

scale let 1 em. = 100 pounds.

6. Draw a curve from the formula f = m/r? showing the accelera-
tion of gravity due to the earth at all points between the surface of
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the earth and a point 240,000 miles (the distance to the moon) from
the center, if f = 32.2 when radius of the earth = 4000 miles.

It is convenient in constructing this graph to take the radius of
the earth as unity, so that the graph will then be required of
f =3822/r*from r = 1tor = 60. In order to construct a suitable
curve several changes of units are desirable. See Tig. 41. One
centimeter represents one radius (4000 miles) from r = 0 to =10,
after which the scale isreduced to 1 em. = 10r. In the vertical direc-
tion the scale is 4 em. = 10 feet per second for 0 <r < 5, 4 em. =
1 foot a second for 5§ < r < 10, and 4 em. = 0.1 foot a second for

40
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Fic. 41.—Gravitational Acceleration at Various Distances from the
Earth’s Center. The moon is distant approximately 60 earth’s radii from
the center of the earth.

10 <7 < 60. Even with these four changes of units just used the
first and third curves are somewhat steep. The student can readily
improve on the scheme of Fig. 41 by a better selection of units.

34. The Law of the Power Functions. Sufficient illustrations
have been given to show the fundamental character of the power
function as an expression of numerous laws of natural phenomena.
How may a functional dependence of this sort be expressed in
words? If a series of measurements are made in the laboratory,
so as to produce a numerical table of data covering certain phe-

R —



§34] RECTANGULAR COORDINATES (¥

nomena, how can it be determined whether or not a power funetion
can be written down which will express the law (that is, the
function) defined by the numerical table of laboratory results?
The answers to these questions are readily given. Consider first
the law of the falling body

s = 16.1¢2 (1)

Make a table of values for values of ¢ = 1, 2, 4, 8, 16 seconds, as
follows:

b doatidogl 380 08 11 «8l1.00i 16

s| 161 644 257.6 10304 41216

The values of ¢ have been so selected that ¢ increases by a fixed
multiple; that is, each valué of ¢ in the sequence is twice the pre-
ceding value. From the corresponding values of s it is observed
that s also increases by a fixed multiple, namely 4.

Similar conclusions obviously hold for any power function.
Take the general case

y = azx® (2)

where n is any exponent, positive, negative, integral or fractional.
Let z change from any value z; to a multiple value mz, and call
the corresponding values of ¥, ¥, and y.. Then we have

Y1 = axy” 3)
and
Y2 = a(mz)» = amrx,» “)

Divide the members of (4) by the members of (3) and we have

Y2 *
i i (5)
That is, if z in any power function change by the fixed multiple
m, then the value of y will change by a fixed multiple m». Thus
the law of the power function may be stated in words in either of
the two following forms:

In any power function, if x change by a fived multiple, y will
change by a fixred multiple also.

In any power function, if the variable increase by a fixed percent,
the function will increase by a fixed percent also.
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This test may readily be applied to laboratory data to determine
whether or not a power function can be set up to represent as a
formula the data in hand. To apply this test, select at several
places in one column of the laboratory data, pairs of numbers
which change by a selected fixed percent, say 10 percent, or 20
percent, or any convenient percent. Then the corresponding pairs
of numbers in the other column of the table must also be related by
a fixed percent (of course, not in general the same as the first-
named percent), provided the functional relation is expressible by
means of a power function. If this test does not succeed, then
the function in hand is not a power funection.

Since the fixed percent for the function is m» if the fixed percent
for the variable be m, the possibility of determining n exists,
since the table of laboratory data must yield the numerical values
of both m and m».

35. Simple Modifications of the Parabolic and of the Hyperbolic
Types of Curves. In the study of the motion of objects it is
convenient to divide bodies into two classes: first, bodies which
retain their size and shape unaltered during the motion; second,
bodies which suffer change of size or shape or both during the
motion. The first class of bodies are called rigid bodies; a mov-
ing stone, the reciprocating or rotating parts of a machine, are
illustrations. The second class of bodies are called elastic bodies;
a piece of rubber during stretching, a spring during elongation or
contraction, a rope or wire while being coiled, the water flowing in
a set of pipes, are all illustrations of this elass of bodies.

When a body changes size or shape the motion is called a
strain.

Bodies that preserve their size and shape unchanged may possess
motion of two simple types: (1) Rotation, in which all particles
of the body move in circles whose centers lie in a straight line
called the axis of rotation, which line is perpendicular to the plane
of the cireles, and (2) translation, in which each straight line of
the body remains fixed in direction.

We have already noted that the curve

Vi = gn (1)
a
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can be made from the curve
y =ar @)

by multiplying all the ordinatesof (2) by a. The effect is either to
~ elongate or to contract all of the ordinates, depending upon whether
a > 1 or a <1 respectively. The substitution of (y;/a) for y
has therefore produced a motion or strain inthe curve y = z», which
in this case is the object whose motion is being studied. Likewise

y = (z:/a) (3)
can be made from
y=a" 4)

by multiplying all of the abscissas of (4) by a: The effect is
either to stretch or to contract all of the abscissas, depending
upon whether ¢ > 1, or ¢ < 1 respectively.

In general, if a curve have the equation

y = f(2) (5

y = flx1/a) (6)

i made from curve (5) by lengthening or stretching the XY-
plane uniformly in the x direction in the ratio 1: a.

The statement just given is made on the assumption that
a>1. If a<1 then the above statements must be changed
by substituting shorten or contract for elongate or stretch.

The reasons for the above conclusions have been previously

then

stated: substituting <%1> everywhere as the equal of x multiplies

all of the abscissas by a. That is, if (Z‘) =z, thenz; = az, so that

71 1s a-fold the old z.

We shall now explain how certain other of the motions men-
tioned above may be given to a locus by suitable substitution for
z and y.

36. Translation of Any Locus. If a table of values be prepared
for each of the loci

y =2 1)
y = (r; — 3)* : (2)

I
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as follows:

y | 4027 0N 16
=2, —1,0142.8 4 5,6

y| 25 16 9 4 1 0 1 4 9

and then if the graph of each be drawn, it will be seen that the
curves differ only in their location and not at all in shape or size.
The reason for this is obvious: if (x; — 3) be substituted for z
in any equation, then since (z; — 3) has been put equal to z, it
follows that z, = z 4+ 3, or the new z, namely z,, is greater
than the original z by the amount 3. This means that the new
longitude of each point of the locus after the substitution is greater
than the old longitude by the fixed amount 3. Therefore the
new locus is the same as the original locus éranslated to the right
the dustance 3.

The same reasoning applies if (z; — a) be substituted for z,
and the amount of translation in this case is a. The same reason-
ing applies also to the general case ¥ = f(z) and y = f(z1— a),
the latter curve being the same as the former, translated the dis-
tance a in the z direction.

As it is always easy to distinguish from the context the new z
from the old z, it is not necessary to use the symbol z;, since the
old and new abscissas may both be represented by z. The
following theorems may then be stated:

THEOREMS ON Loct

VI. If (x — a) be substituted for x throughout any equation, the
locus is translated a distance a in the x direction.

VII. If (y — b) be substituted for y in any equation, the locus is
translated the distance b in the y direction.

These statements are perfectly general: if the signs of a and
b are negative, so that the substitutions for  and y are of the form
z 4+ a’ and y + ', respectively, then the translations are to
the left and down instead of to the right and up.

Sometimes the motion of translation may seem to be disguised
by the position of the terms a or b. Thus the locus y = 3z + 5
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is the same as the locus y = 3z translated upward the distance 5,
for the first equation is really y — 5 = 3z, from which the conclu-
sion is obvious.

Exercises

1. Compare the curves: (1) y =2z and y = 2(z — 1); (2) y = 2?
and y = (x —4)% (3) y =2 and y — 3 =23; (4) y = 2% and
(x — 5)%; (5) y =522 and y = 5(x + 3)%; (6) ¥y = 223 and
2(x — k)3 (My=222and y =228+ k; 8) y+7 =2 and
z2and y — 7 = z2; (9) 3y? = 523 and 3(y — b)2 = 5(x — a)3.
Compare the curves: (1) ¥y = #® and y = (#/2)3; (2) y = z°
and y =23/8; 8) y = «® and y/2 = z3; (4) y = 23 and y = 223; (5)
y? = 3z® and (y/5)* = 3(z/7)% (6) y* ==2* and. y* = (3x)%; (7)
y = z? and y = 422 (note: explain in two ways); (8) ¥ = = and
2y = x3and y = 27x3.

3. Translate the locus ¥y = 2z3%; (1) 3 units to the right; (2) 4 units
down; (3) 5 units to the left.

4. Elongate three-fold in the z direction the loci: (1) ¥ = z; (2)
3y =25 @)yt =223 @y =2z +7.

6. Multiply by 1/2 the ordinates of the loci named in exercise 4.

Y
Y
Y

5

1 1
6. Show that y = —— and y = 7 —p are hyperbolas.

+b b

7. Show that y = is a hyperbola.

+ z+b
Nore: Divide the numerator by the denominator, obtaining the
p b
equationy =1 — m
. Show that y = -*i b is a hyperbola, namely, the curvezy = a—b

translated to a new position.

37. Shearing Motion. An important strain of the XY-plane
occurs if we derive

y =f@) + mz 1)

y = flx) @)

Graphically, the curve (1) is seen to be formed by the addition

of the ordinates of the straight line ¥’/ = mz to the corresponding

ordinates of 4’ = f(z). Thus, in Fig. 42, the graph of the func-
6

from



82 ELEMENTARY MATHEMATICAL ANALYSIS [§37

tion z® + z is made by adding the corresponding ordinates of
y’ = z%and y” = 2. Mechanically, this might be done by drawing
the curve on the edge of a pack of cards, and then slipping the
cards over each other uniform amounts. The change of the
shape of a body, or the strain of a body, here illustrated, is
called lamellar motion or shearing motion. It is a form of
motion of very great importance.

4

YSTT g
=3
18-2

Y

3

]
T ——
——
Y=
&
2

-3 -2 Bf-1 A7 2 3|

-1

-2

// { 4.
F1g. 42.—The Shear of the Cubical Parabola y = z3in the liney = z, and
alsoin the Liney = —ux.

" We shall speak of the locus y = f(z) + mz as the shear of the
curve y = f(x) in the line y = mz.

TrEOREMS oN Locr

VIII. The addition of the term mx to the right side of y = f(z)
shears the locus y=f(x) in the line y=ma.
The locus

y=ax3+me+b
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where, for convenience, the amount of the shearing motion is
represented by 2m instead of by m. Writing this in the form

y =224 2mr + m?2 — m?
or,
y = (x + m)? — m?

y+m2=(ac-’|—m)2 (4)

we see that (4) can be made from the parabola y = x2 by trans-
lating the curve fo the left

\ ; 4 &y the amount m and down
i &7 the amount m2  (See Fig.

\ Py - 44.)
\ ) R Shearing motion, there-

‘ fore, rotates the straight
/ o V line and translates the pa-

1 /“’ rabola. Theeffect on other

\ curves is much more com-

NN plicated, as is seen from

i bsll A ¢ * 3| Figs. 42 and 43.

Al 4 The parabola y = z2 is

/ identical in size and shape
4 with y = 22 + ma + 0.
Likewise,y = az2+ bxr + ¢

is a parabola differing only
in position from y = az2.

-3,

-4
Fig. 44.—The Shear of y = z? in the line
y = 0.6x. 1 Explain how the curve
y = 2% + 2z may be made
from the curve y = 23. How can the curve y = 223 4+ 3z be made
from the curve y = 2z3?
2. Find the coérdinates of the lowest point of y = 22 — 4z;
that is, put this equation in the form y — b = (z — a )2
3. Compare the curves ¥y = z3 + 2z and y = 23 — 2z. (Do not
draw the curves.)
4. Explain the curve y = 1/z + 2z from a knowledge of y = 1/z
and of y = 2z.

Exercises
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38. Rotation of a Locus. The only simple type of displace-
ment of a locus not yet considered is the rotation of the locus
about the origin O. This will be taken up in the next chapter
in the discussion of a new system of cooérdinates known as polar
codrdinates. The rotation of any locus about the X-axis or about
the Y-axis is readily accomplished, however, as previously ex-
plained. For substituting (— z) for « changes every point that is
to the right of the Y-axis to a point to the left thereof, and vice
versa. It is equivalent, therefore, to a rotation of the locus about
the Y-axis. Likewise, substituting (— y) for y rotates any locus
180° about the X-axis. It is preferable, however, to speak of the
locus formed in this way as the reflection of the original curve in
the y-axis or in the z-axis, as the case may be.

39. Roots of Functions. The roots or zeros of a function are
the values of the argument for which the corresponding value of
the function is zero. Thus, 2 and 3 are roots of the function
2?2 — 5z + 6, for substituting either number for z causes the
funetion to be zero. The rootsof 22—z — 6 are + 3 and — 2.
The roots of 3 — 622 + 11z — 6 are 1, 2, 3.

The word root, used in this sense, has, of course, an entirely
different significance from the same word in ““square root,”” ‘‘cube
root,” ete. But the roots of the function 22 — 5z — 6 are also the
roots of the equation 22 — 5z — 6 = 0.

In the graph of the cubic function y = 23 — z in Fig. 42, the
curve crosses the X-axis at 2 = — 1, £ =0, andx = 1. These are
the values of z that make the function z® — z zero, and are, of
course, the roots of the function 3 — z. No matter what the func-
tion may be, it is obvious that the intercepts on the X-axis, as 04,
OB, Fig. 42, must represent the roots of the function.

Exercises

1. From the curve y = z? sketch the curves y — 4 = 22; y = 422,
4y = 2%y = (x — 4)2
g o
2. Sketechy = 23/2;y = 2 — 1/4;y = z3/2 — 4;y =»(-x~ 23) :
3. Sketch the curves y = va; y = ¥/z; y=2vz; y = vz — 2;
B2 = /z -2, and y= /&~ 3.
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4. Sketch the curves y2 = (z — 3)3; (y — 2)2 = 2%, and (y — 2)?
= (xz — 3)3.
6. Graph y;, = z and y, =z® and thence y = = + x%.
6. Find the roots of zz — 6z + 8 = 0, from the graph of
y =2 — 6z + 8.
7. Find the roots of the functions z? — a? and z* — a*.
8. Compare the curvesy = z3andy = — z3;y = z2and — y =z?%;
y=2r+3andy = — 2z 4 3.
9. Graph y; = z and y; = 1/z and thence y = z 4 1/x.
10. Comparey = 1/z,y = 1/(z — 2),y = 1/(z + 3).
11. Compare y = 1/z, y = 1/(2z), y = 2/z.
40. *Graphical Construction of Power Functions and of other
Functions.! The graphical computation of products and quo-

Y O ] R
i N |
1 A U,
% b
7| B ad
ed) Jet a |a
' / 1
X
g ac /N0 A D
7,
A N d
- /” \
°

F1G6. 45.—Construction of an Ordinate Equal to the Product of Two
Given Ordinates.

tients, ete., explained in §7, may be applied to the construction of
the power functions. For this purpose it is desirable to elaborate
slightly the previous method so as to provide for finding prod-
uets, ete., of lines that are parallel to each other, instead of at right
angles as OA and 1B, Fig. 9.

1 The remainder of this chapter (except the review exerecises) may be omitted with-
out loss of continuity.
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The constructions can be carried out on plain paper by first
drawing the axes, the unit lines and the line ¥ = z, without the
use of scales or measuring device of any sort. The work is more
rapidly done, however, on squared paper, as then the use of a
T-square and triangle may be dispensed with. A unit of measure
equal to 2 inches or 4 em. will be found convenient for work
on standard letter paper 8% X 11 inches.

Note that the following constructions give both the magnitude
and the proper algebraic sense of the results.

(1) To construct an ordinate

]
! 4
equal to the product of two ordi- : / T’
nates: Let XX’, YY’, Fig. 45, be s £ e
the axes, U,, U, the unit lines, " A
and OR the line y = x, which 14
'/
Y / |
R = 3
/ / ‘fl
/ 7 ; i
//
/ﬁ o /AP | ;
// ——— / //.X 2 :
% U, S W T
" r =" |1 D1
/
/ b
Y, & le— - ———21— - —>
(o] D A B X
F1e. 46.—Construction of an Or- Fic. 47.—Construction of an Or-
dinate Equal to the Quotient of dinate Equal to the Square of a
Two Given Ordinates. Given Ordinate. :

we shall call the reflector. Let a and b be two ordinates whose
product is required. Move one of the two given ordinates as b
until, in the position ND, its end touches the reflector OR.
Move the second of the two ordinates to the position 1M on the
unit line U;. Draw OMP. The point P at which DN is cut by
OM (produced if necessary) determines DP, which is the prod-
uct a X b. This result follows by similar triangles from the pro-
portion /

DP:1M = 0D.: 01
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Substituting @ for 1M and b for OD (= DN = b) and unity for
01, we obtain

DP:a=1b:1
or

DP =a Xb

The same diagram shows the construction of the products ¢ X d
and a X c for cases in which one or both of the factors are negative.

Note that by the above construction the ordinate representing
the product is always located at a particular place, D, at which the
abscissa of the product a X b is either equal to a or to b, depending
upon which of the ordinates was moved to the reflector OR.

Y U,

F1e. 48.—Construction of the Reciprocal of z.

(2) To construct an ordinate equal to the quotient of two ordi-
nates: This is done by use of the second unit line U, as shown in
Fig. 46. The ordinate representing the quotient is located at D
where OD equals the dividend b.

(3) The special case of (1) when a = b leads to the construction
of 22 as shown in Fig. 47. The figure shows the construction of
22 at D where OD = z and of z;? at D; where 0D, = 2.

(4) The special case of (2) where b = 1 leads to the construe-
tion of 1/z as shown in Fig. 48.

(5) To construct the graph of y = x?% it is merely necessary to
make repeated applications of (3) to the successive ordinates of
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the line ¥ = z, as shown in Fig. 49. Thus from any point 4 of
y = x move horizontally to the unit line U, locating B, then if
OB meets DA at P, P is a point of the curve y = z2. The figure
shows the construction for a number of points, lettered A, A,
PN T

(6) To construct the graph of y = 3, first cut out a pattern of
y = z? of heavy paper, marking upon it the lines OY and U,

Y Uy
B
B, '
PiY
0, 1/
As B U,
N B
5 ok
X L1
D, ~D2|1,0 D,;- | X
N
B.
A
Y

F16. 49.—Construction of the Curve y = 2% from the curve y = z.

By means of this pattern draw the curve ¥y = 22 upon a fresh sheet
of paper as shown in Fig. 50. Then multiply each ordinate of
¥ = z? by z by moving it horizontally from any point 4 of y = z2?
to the unit line U, at B, then locating P on DA by drawing OB
until it cuts DA at P. The result is the cubical parabola
P\PyP P’ P,

(7) To draw the hyperbola y =1/x, make repeated application
of (4) above to successive values of z. To draw y=1/2?, repeat
division by z to the ordinates of y = 1/z, ete.



90 ELEMENTARY MATHEMATICAL ANALYSIS [§40

(8) To construct the graph of y = z**: First, from the pattern
of y = z? draw the curve y = A/ 2. From a pattern draw the
curve y = z* upon the same axes. Then from any point A4,
of y = 2"% proceed horizontally to B, on the reflector; then ver-
tically to C on the curve y = 3, then horizontally to P, on the
ordinate DA, first taken. Then P, is on the curve y = z
For, call DA; =y,; HCy=y,; DPy=y; OD = z; OH = za.
Then by construction (Fig. 51)

\ J g U n
\ pij
/
\ |
\ yARIY
B, I (A
Py
\ A/
‘Bl /A
VAVAY)
0,1/ 1,1 U,
/
WP,
-
B 2 0, 1,0D,D X
/ A
/
[i/1]
L/
Y - .

F1a. 50.—Construction of the Curve y = z3 from the curve y = z2.

OH = DA =y, = 2% (1)
DP1=y=HC'1=y2=x23 (2)

But,
Y1 = 22 4 (3)

Hence, by (3) and (2):
' y =y
and by (1) '
: y = (xlfé)s = ¥ (5)
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(9) Function of a function: The construction and reasoning
just given applies to a much more general case. Thus if the curve
0A,, Fig. 51, has the equation

y = f(x)
and if the curve OC, has the equation
y = F(z)
Y U
|
|
[
R,
A
/\/ ]
‘7 = -’—
1 L
A U,
Ay B
IAREZA,
&) o
x SO TH] 1 X
C2/. N P,
e N
B APR
/ N b
/
N
/
|
' Y

Fig. 51.—Construction of the Semi-cubical Parabola ¥ = z¥% from y =
zsandy = z%

then the curve OP; has the equation

y = Flf(=)]
Thus, if OA, be the curve A
=, ey
and OC, the curve
g =

then OP, is the curve
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For constructions of the function
y=a+ar+ax?t+ . . .+ a.z"
see ‘“‘Graphical Methods’ by Carl Runge, Columbia University
Press, 1912.
Miscellaneous Exercises

1. Define a function. Explain what is meant by a discontinuous
function. Give practical illustrations.

2. Define an algebraic funetion; rational function; fractional
function. Give practical illustrations in each case.

3. Give an illustration of a rational integral function; of a
rational fractional function.

4. Write a short discussion of the Cartesian method of locating a
point. Explain what is meant by such terms as ‘“‘axis,” “z of a
point,” ‘“quadrant,” etc.

6. What is meant by the locus of an equation?

6. Write the equations of the lines determined by the following
data:

(a) slope 2 Y-intercept 5
(b) slope —2 Y-intercept 5
(¢) slope 2 Y-intercept —5
(d) slope —2 Y-intercept —5
(e) slope —2 X-intercept 4

7. Make two suitable graphs upon a single sheet of squared paper
from the following data giving the highest and lowest average clos-
ing price of twenty-five leading stocks listed on the New York Stock
Exchange for the years given in the table:

Year Highest Lowest
1913 94.56 79.58
1912 101.40 91.41
1911 101.76 86 .29
1910 L1102 86.32
1909 112.76 93.24
1908 99.04 67 .87
1907 109.88 65.04
1906 113.82 93.36
1905 109.05 90.87
1904 97.73 70.66
1903 98.16 68.41

1902 101.88 87.30
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Should smooth curves be drawn through the points plotted from this
table?

8. Define a parabolic curve. What is the equation of the parabola?
Of the cubical parabola? Of the semi-cubical parabola?

9. Whatisthe definition of an hyperbolic curve? Of the rectangu-
lar hyperbola?

10. Draw on a sheet of coordinate paper the lines z =0, z = 1,
z=-1y=0y=1 y = —1. Shade the regions in which the
hyperbolic curves lie with vertical strokes; and those in which the
parabolic curves lie with horizontal strokes. Write down all that the
resulting figure tells you. )

11. Consider the following: y = z%y =273y = /24, 2y = —1,
y=—a3 P=za yt=2% oy =1, 23 = —y?, & = —y2 Which
are increasing functions of z in the first quadrant? For which
does the slope of the curve increase in the first quadrant? For
which does the slope of the curve decrease in the first quadrant?

12. Which of the curves of exercise 11 pass through (0, 0)?
Through (1, 1)? Through (—1, —1)?

13. Find the vertex of the curve y = 22 — 24z + 150.

Note: The lowest point of the parabola y = 22 may be called
the vertex.

SuGGEsTION: It is necessary to put the equation in the formy — b
= (z — a)?2. This can be done as follows: Add and subtract 144 on
the right side of the equation, obtaining

y = 2 — 24z 4 144 — 144 4 150
or,
y =(z—12)2+6
or,
y—6 = (x—12)2

Then this is the curve y = 22 translated 12 units to the right and 6
units up. Since the vertex of ¥y = x2is at the origin, the vertex of the
given curve must be at the point (12, 6).

14. Find the vertex of the parabola y = 22 — 6z +11.
16. Find the vertex of y = 22 + 8z + 1.

16. Find the vertex of 4 + y = 22 — 7x.

17. Find the vertex of y = 922 + 18z + 1.

18. Translate y = 4% — 12x + 2 so that the equation may have
the form y = 422,



CHAPTER III
THE CIRCLE AND THE CIRCULAR FUNCTIONS

41. Equation of the Circle. In rectangular coérdinates the
abscissa z, and the ordinate y, of any point P (as OD and DP,
Fig. 52) form two sides of a right triangle whose hypotenuse
squared is z2 + y% If the point P move in such manner that the
length of this hypotenuse remains fixed, the point P describes a
circle whose center is the origin (see Fig. 52). The equation of

this circle is, therefore:

x*t+y'=al ey

if a stand for OP, Fig. 52, namely
the fixed length of the hypote-
nuse, or the radius of the circle.

It is sometimes convenient to
write the equation of the circle
solved for ¥ in the form

y= tvar—x* (2

Fio. 52.—Tho Definition of the Cir-  L{u5 &Ives, for each value of @,
LAl the two corresponding equal and
opposite ordinates.
To translate the circle of radius a so that its center shall be the
point (h, k), it is merely necessary to write

(x—h)?2+ (y —k)? = a? (3)

This is the general equation of any circle in the plane zy, for it
locates the center at any desired point and provides for any
desired radius a.

Y

Exercises

1. Write the equations of the circles with center at the orlgm
having radii 3, 4, 11, v/2 respectively.
94.
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2. Write the equation of each circle described in exercise 1 in
‘the form y = + v/a? — 22

3. Which of the following points lie on the circle 22 4 y* =169
(5, 12), (0, 13), ( — 12, 5), (10, 8), (9, 9), (9, 10)?

4. Which of the following points lie inside and which lie outside
of the cirele z? + y* = 190: (7, 7), (10, 0), (7, 8), (6, 8), (—5, 9),
(=7, —8), 2, 3), (10, 5), (v/40, V50), (v/19, 9)?

42. The Equation, x?+ y24 2gx + 2fy +c¢ =0 (1)
may be put in the form (3). For it may be written

21+ 20 + g+ P+ 2y + =+

or,
@ +9+ @+ N = (Vg +7 =02 (2)

which represents a circle of radiusa/g? + f2 — ¢ whose center is at
the point (— g, —f). In case g2+ f2— ¢ < 0, the radical
becomes imaginary, and the locus is not a real circle; that is,
codrdinates of no points in the plane zy satisfy the equation. If
the radical be zero, the locus is a single point.

43. Any equation of the second degree, tn two variables, lacking
the termzy and having like coefficients in the terms x? and y2, repre-
sents a circle, real, null or imaginany. The general equation of
the second degree in two variables may be written:

az? 4+ by + 2hxy 4 292+ 2fy+c= 0 3)

for, when only two variables are present,there can be present three
terms of the second degree, two terms of the first degree, and one
term of the zeroth degree. When ¢ = b and A = 0 this reduces
to (1) above on dividing through by a.

Exercises
Find the centers and the radii of the circles given by the following
equations:

1. 22 + y2 = 25. Also determine which of the following points
are on this circle: (3, 4), (5, 5), (4, 3), (=3, —4), (=3, 4), (5, 0),
(P /21).

2. z2 + y2 = 16.

. 224y —4 =0.
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4, 22 + y2 — 36 = 0.

6. 22+ y2 422 =0.

6. y = ++/169 — 2. Also find the slope of the diameter through
the point (5, 12). Find the slope of the tangent at (5, 12).

7.9 —-22—y2=0.

8. z? + y? — 6y = 16.

9. 22 — 22 4 y? — 6y = 15.

10. (z + a)? + (y — b)? = 50.

11. =2 4 y2 + 62z — 2y = 10.

12. 2?2 4 y? — 4z } 6y = 12.

13. 22 +y2 —4x — 8y + 4 = 0.

14, 32?2 4 3y? + 62 + 12y — 60 = 0.-

16. Is 22 + 2y2 4+ 3z — 4y — 12 = 0 the equation of a circle?
Why?

16. Is 22?2 + 2y? — 3z + 4y — 8 = 0 the equation of a circle?
Why?

44. Angular Magnitude. By the magnitude of an angle is
meant the amount of rotation of a line about a fixed point. If
a line OA rotate in the plane XY about the fixed point O to the
position OP, the line OA is called the initial side and the line OP is
called the terminal side of the angle AOP. The notion of angular
magnitude as introduced in this definition is more general than
that used in elementary geometry. There are two new and very
important consequences that follow therefrom:

(1) Angular magnitude is unlimited in respect to size—that is,
it may be of any amount whatsoever. An angular magnitude of
100 right angles, or twenty-five complete rotations is quite as
possible, under the present definition, as an angle of smaller
amount.

(2) Angular magnitude exists, under the definition, in two
opposite senses—for rotation may be clockwise or anti-clockwise.
As is usual in mathematics, the two opposite senses are distin-
guished by the terms positive and negative. In Fig. 53, AOP,,
AOP,, AOP;, AOP, are positive angles. In designating an
angle its initial side is always named first. Thus, in Fig. 53,
AQP; designates a positive angle of initial side O4. P04
designates a negative angle of initial side OP,.
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In Cartesian coordinates, OX is usually taken as the initial
line for the generation of angles. If the terminal side of any angle
falls within the second quadrant, it is said to be an ‘“angle of the
second quadrant,”’ ete.

Two angles which differ by Y
any multiple of 360° are called £ ?
congruent angles. We shall ' P
find that in certain cases con- 0,
gruent angles may be substi- ¥ b
tuted for each other without x'_)?l, B
modifying results. N #

The theorem in elementary P
geometry, that angles at the E
center of a circle are propor- | 7,
tional to the intercepted arcs, ¥y i

holds obviously for the more Fia. 53.—Triangles of Reference
general notion of angular mag- (foelp,h Oﬁﬁp el B i
nitude here introduced. 1 2 el

45. Units of Measure. Angular magnitude, like all other
magnitudes, must be measured by the application of a suitable
unit of measure. Four systems are in common use:

(1) Right Angle System. Here the unit of measure is the right
angle, and all angles are given by the number of right angles and
fraction of a right angle therein contained. This unit is familiar
to the student from elementary geometry. A practical illus-
tration is the scale of a mariner’s compass, in which the right angles
are divided into halves, quarters and eighths.

(2) The Degree System. Here the unit is the angle corre-
sponding to 5§y of a complete rotation. This system, with the
sexagesimal sub-divisions (division by 60ths) into minutes
and seconds, is familiar to the student. This system dates back
to remote antiquity. It was used by, if it did not originate among,
the Babylonians.

(3) The Hour System. In astronomy, the angular magnitude
about a point is divided into 24 hours, and these into minutes
and seconds. This system is familiar to the student from its
analogous use in measuring time.

(4) The Radian or Circular System. Here the unit of measure
7
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is an angle such that the length of the arc of a circle described about
the vertex as center is equal to the length of the radius of the
circle. This system of angular measure is fundamental in me-
chanics, mathematical physics and pure mathematics. It must
be thoroughly mastered by the student. The unit of measure in
this system is called the radian. Its size is shown in Fig. 54.

0 Radius
Fia. 54.—Definition of the Radian. The Angle AOP is one Radian.

Inasmuch as the radius is contained 27 times in a circumference,
we have the equivalents:

27 radians = 360°.
or, 1 radian = 57° 17/ 44.8 = 57° 17'.7 = 57°.3.
1 degree = 0.01745 radians.

The following equivalents are of special importance:

a straight angle = 7 radians.

a right angle = gradians.
60° = ;: radians.
45° = Z radians.
30° = g radians.

$3 SRS % R L | I
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There is no generally adopted scheme for writing angular magni-
tude in radian measure. We shall use the superior Roman letter
“12 to indicate the measure, as for example, 18° = 0.31416".

Since the circumference of a circle is incommensurable with its
diameter, it follows that the number of radians in an angle is
always incommensurable with the number of degrees in the angle.

The speed of rotating parts, or angular velocities, are usually
given either in revolutions per minute (abbreviated “r.p.m.”)
or in radians per second.

46. Uniform Circular Motion. Suppose the line OP, Fig. 52,
is revolving counter-clockwise k™ per second, the 'angle AOP
in radians is then kt, ¢ being the time required for.OP to turn from
the initial position OA. If we call 0 the angle AOP, we have 6 = kt
as the equation defining the motion. The following terms are
In common use:

1. The angular velocity of the uniform circular motion is &
(radians per second).

2. The amplitude of the uniform circular motion is a.

3. The period of the uniform circular motion is the number of
seconds required for one revolution.

4. The frequency of the uniform circular motion is the number
of revolutions per second.

Sometimes the unit of time is taken as one minute. Also the
motion is sometimes clockwise or negative.

Exercises

1. Express each of the following in radians: 135°, 330°, 225°, 15°,
150°, 75° 120°. (Do mot work out in decimals; use ).

2. Express each of the following in degrees and minutes: 0.2F,
x*/5, $x7, fxt.

3. How many revolutions per minute is 20 radians per second?

4. The angular velocity, in radians per second, of a 36-inch
automobile tire is required, when the car is making 20 miles per hour.

6. What is the angular velocity in radians per second of a 6-foot
drive-wheel, when the speed of the locomotive is 50 miles per hour?

6. The frequency of a cream separator is 6800 r.p.m. What is
its period, and velocity in radians?
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7. A wheel is revolving uniformly 307 per second. What is its
period, and frequency?

8. The speed of the turbine wheel of a 5-h.p. DeLaval steam turbine
is 30,000 r.p.m. What is the angular velocity in radians per
second ?

47, The Circular or Trigonometric Functions. To each point
on the circle 22 + y* = a2 there corresponds not only an abseissa and
an ordinate, but also an angle § < 360° as shown in Figs. 52 and 53.
This angle is called the direction angle or vectorial angle of the
point P. When 6 is given, z, ¥ and a are not determined, but the
ratios y/a, z [a, y[x, and their reciprocals, a/y, a/z, = [y are de-
termined. Hence these ratios are, by’ definition, functions of 6.
They are known as the circular or trigonometric functions of 6,
and are named and written as follows:

Function of 6. Name. Written.
y/a. sine of 0. sin 6.
X/a. cosine of 6. cos 6.
y/x. tangent of 6. tan 6.
x/y. cotangent of 6. cot 6.
a/x. secant of 0. sec 0.
aly. cosecant of 4. csc 6.

The circular functions are usually thought of in the above order:
that is, in such order that the first and last, the middle two, and
those intermediate to these, are reciprocals of each other.

The names of the six ratios must be carefully committed to
memory, They should be committed, using the names of z, y,
and a as follows:

Ratio. Written.
ordinate /radius. sin 6. 3
abscissa /radius. cos 0.
ordinate /abscissa. tan 6.
abscissa /ordinate. cot 6.
radius /abscissa. sec 6.
radius /ordinate. csc 6. -

The right triangle POD of sides z, ¥ and @, whose ratios give the
functions of the angle XOP, is often called the triangle of reference
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for this angle. It is obvious that the size of the triangle of refer-
ence has no effect of itself upon the value of the functions of the
angle. Thus in Fig. 53 either P,0D, or P,'OD,’ may be taken as
the triangle of reference for the angle f:. Since the triangles are
similar we have.

Py . Pi'Dy P.D, _PyDy

0D, 0Dy 0P, ~0P,"
ete., which shows that identical ratios or trigonometric functions of
6 are derived from the two triangles of reference.

48. Elaborate means of computing the six functions have been
devised and the values of the functions have been placed in
convenient tables for use. The functions are usually printed
to 3, 4, 5 or 6 decimal places, but tables of 8, 10 and even 14 places
exist. The functions of only a few angles can be computed by
elementary means; these angles, however, are especially important.

(1) The Functions of 30°. In Fig. 55a, if angle AOB be 30°,
angle ABO must be 60°. Therefore, constructing the equilateral
triangle BOB’, each angle of triangle BOB’ is 60°, and

y =AB = +'BB’ = }a
Therefore,

1.
sin30° =¥ =%~ 172
a a

Also:
0A =V OB — AB* = Va? — a2 =3a V3
Therefore,
sin 30° Vo8
cos 30° = ta V3 = V3
a 2

I

ana
tan 30° = %az\/3 = \gg
cot 30° = tan1300 =13
b cosl30° i 2\23
ese 30° = e 2

sin 30°
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(2) Functions of 46°. In the diagram, Fig. 55b, the triangle
OAB isisosceles, so that y =z, and a? = 22 + y? = 222 It
follows that a = x4/2 = y-4/2.

Fic. 55.—Triangles of Reference for Angles of 30°, 45° and 60°.

Therefore:
\/2
sin 45° = s
vv2 2
PSRt v \/2
cos 45° = P S
tan 45°= 2 =1
z
1
o
cot 45 ian 45° 1
i
O~ s T R
sec 45 oos AES T /2

(3) Functions of 60°. In the diagram, Fig. 55¢, constructthe
equiangular tnangle OBB’; then it is seen that, as in case (1)

above,
OA = 30B' = t%a

7 a\/3

and

<
il
S
~
1
W
2
wof
II

Therefore:
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>

cos 60° = G 1/2

tan 60° = 1%:;\,{,3 B ela
cot 60° = m f11-60° e \g 3
sec 60° = boslﬁ(F )

csc 60° = 7in716_°‘ e _2T3

49, Graphical Computation of Circular Functions. Approximate
determination of the numerical values of the circular functions of
any given angle may be made graphically on ordinary coérdinate
paper. Locate the vertex of the angle at the intersection of any
two lines of the squared paper, form M1. Let the initial side of
the angle coincide with one of the rulings of the squared paper
and lay off the terminal side of the angle by means of a protractor.
If the sine or cosine is desired, describe a circle about the vertex
of the angle as center using a radius appropriate to the scale of
the squared paper—for example, a radius of 5 cm. on coordi-
nate paper ruled in centimeters and fifths (form M1) permits
direct reading to 1/25 of the radius a and, by interpolation, to
1/100 of the radius a. The abscissa and ordinate of the point
of intersection of the terminal side of the angle and the circle may
then be read and the numerical value of sine and cosine computed
by dividing by the length of the radius.

If the numerical value of the tangent or cotangent be required,
the construction of a circle is not necessary. The angle should
be laid off as above: described, and a triangle of reference con-
structed. To avoid long division, the abscissa of the triangle of
reference may be taken equal to 50 or 100 mm. for the determina-
tion of the tangent and the ordinate may be taken equal to 50
or 100 mm. for the determination of the cotangent.

The following table (Table III) contains the trigonometric
functions of acute angles for each 10° of the argument.
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Tasre 111
Natural Trigonometric Functions to Two Decimal Placcs
T i l sin 6 [ cos 6 ‘ tan 6 i cot 6 | sec 6 | esco
0 | 000 000 1.00/ 000 = 100 =
10 1 0’5157 0.17 0.98 0.18 5,67 | T502 5.76
20 ] 0.35 0.34 0.94 0.36 TS, 1.06 2.92
30 0.52 0.50 0.87 0.58 1.73 1.15 2.00
40 0.70 0.64 0.77 0.84 i’ 19 1.31 1.56
50 | 0.87 0.77 0.64 1.19 0.84 1.56 1.31
60 1.05 0.87 0.50 1.73 0.58 2.00 1.15
70 1.22 0.94 0.34 2.75 0.36 2.92 1.06
80 1.40 0.98 0.17 5.67 0.18 5.76 1.02
90 1.57 1.00 0.00 © 0.00 © 1.00
The most important of these results are placed in the following
table:
L1, 0% 30° | 45° | 60° | 90°
i ! V2 5]
Sinesteeas 4L e | 0 1/2 o | TRk 1
Corine [ f= b iy | 1 \/2§ V2 1/2 E 0
i 5 |
Tangent......... (0] \_/33 ‘ 1 /3 ' ©
Ly | i :
VT = 14142 | V3 =1.7321
Exercises

1. Find by graphical construction all the functions of 15°

NoTE.—A protractor is not needed as angles of 45° and 30° may be

constructed.
2. Find tan 60°.

suitable table.

Compare with the value found above in §48.
3. Lay off angles of 10°, 20°, 30°, 40°, with a protractor and deter-
mine graphically the sine of each angle, and record the results in a

4. Find the sine, cosine, and tangent of 75°.
6. Which is greater, sec 40° or cse 50°?

6. Determine the angle whose tangent is 1/2.
7. Find the angle whose sine is 0.6.
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8. Which is greater, sin 40° or 2-sin 20°?

9. Does an angle exist whose tangent is 1,000,000? What is its
approximate value?

50. Signs of the Functions. The circular functions have, of
course, the algebraic signs of the ratios that define them. Of
the three numbers entering these ratios, the distance or radius
a may always be taken as positive. It enters the ratios, there-
fore as an always signless, or positive number. The abscissa
and the ordinate, z and y, have the algebraic signs appropriate
to the quadrants in which P falls. The student should deter-
mine the signs of the functions in each quadrant, as follows:
(See Fig. 53.)

First | Second Third Fourth
quadrant I quadrant quadrant quadrant
Bimess e X2, L, . -+ - — -
Wosiner . ... . e + - - HE
Tangent......... + - ES =

Of course the reciprocals have the same signs as the original
functions.
The signs are readily remembered by the following scheme:

Sine Cosine Tangent
AN e -+
e A o o SR woe B
pl al ] b T8 =
Cosecant Secant Cotangent

The following scheme is of value in remembering the circular
functions and their signs in the different quadrants: Place on the
same line the variables and functions of the same algebraic signs,
thus :

Ordinate . . ¥ . . sin 8 . . csc @
Abscissa . . x . . cos 8 . . sec @
Slepe: .. Jdam.. o tan8 .. . Got 8
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The above scheme associates the signs of the functions with the
coordinates (x, y) of the point P and the slope of the line OP
for each of its four positions in Fig. 53.

61. Triangles of reference, geometrically similar to those in
Fig. b5 for angles of 30° 45°, and 60° exist in each of the four
quadrants, namely, when the hypotenuse and a leg of the triangle
of reference in these quadrants are both either parallel or perpen-
dicular to a hypotenuse and leg of the triangle in the first quad-
rant—then an acute angle of one must equal an acute angle of
the other and the triangles must be similar. The numerical
values of the functions in the two quadrants are therefore the
same. The algebraic signs are determined by properly taking
account of the signs of the abscissa and the ordinate in that
quadrant. Thus the triangle of reference for 120° is geometri-

3

cally similar to that for 60°. Hence, sin 120° e but
cos 120° = — 1/2 and tan 120° = —+/3.
Exercises

1, The student is to fill in the blanks in the following table with
the correct numerical value and the correct sign of each function:

Function | 120° | 135°| 150°

210° | 225° 240° | 300° | 315° | 330°
e

Sin l \

Cos | |

" Tan

Cot

Cse ‘

\

|

4

| |
| o

Sec : | [

| |

!

!

2. Write down the functions of 390° and 405°.
3. The tangent of an angle is 1. What angle < 360° may it be?

4, Cos 9 = — 1/2. What two angles < 360° satisfy the equation?
6. Sec 8 = 2. Solve for all angles < 360°.
6. Csc 0 = — /2. Solve for § < 360°.

»
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52. Functions of 0° and 90°. In Fig. 52 let the angle AOP
decrease toward zero, the point P remaining on the circumference
of radius a. Then y or PD decreases toward zero. Therefore,
sin 0° = 0. Also, x or OD increases to the value a, so that the
ratio r/a becomes unity, or cos 0° = 1. Likewise the ratio
y [z becomes zero, or tan 0° = 0.

The reciprocals of these functions change as follows: As the angle
AOP becomes zero, the ratio a /y increases in value without limit,
or the cosecant becomes infinite. In symbols (see §23)
ese 0° = o. Likewise, cot 0° = «, but sec 0° = 1.

In a similar way the functions of 90° may be investigated. The
results are given in the following table:

s P edd el From | From From
e | 0°to90° | 90° to 180° “1180" to 270° 270° to 360°

Sin Fito+1 | +dto 0]
Cos +1to 0 | Oto—1
Tan Oto}f o —ooto+ 1
Cot +wto 0 | Oto—o
Sec + 1ltot o —oto—1|
LCsc + oto4+1 |[+1 to-{-wt |

The student is to supply the results for the last two columns.

653. Fundamental Relations. The trigonometric functions are
not independent of each other. Because of the relation 2?2 4 y?
= a? it 1s possible to compute the numerical or absolute value of
five of the functions when the value of one of them is given. This
may be accomplished by means of the fundamental formulas de-
rived below:

Divide the members of the equation:

2t + y* = a? (1)

£ )=

sin? § 4+ cos?2 § = 1 (2)

by a?. Then

or,
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Likewise divide (1) through by z2: then
¢ y> z_ (‘1 ) 2
15 (x i\
sec? f§ = 1+ tan2 @ (3)
Also divide (1) through by y?: then

(G- o)

or,

or,
csc2f =1+ cot? @ (4)
Also, since
¥y
@ vt
DAoL
a
we obtain;:
sin 0
tan Oesias—
0 cos ¢ (5)
and likewise
cos 4
C = —
ot 6 =y (6)
sin=1/esc
cos=1/sec
__tan=1/cot
sin cos tan cot sec cse
\ / secf=1|+ tan?

sin? 4\ cbs2=1

Siilfala 7 cse?=1+ cot?
o8

Fig. 56.—Diagram of the Relations between the Six Circular Functions.

Formulas (2) to (6) are the fundamental relations between the six
trigonometric functions. The formulas must be committed to
memory by the student.

The above relations between the expressions may be illustrated
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by a diagram as in Fig. 56. The simpler or reciprocal relations are
shown by the connecting lines drawn above the functions.

The reciprocal equations and the formulas (2), (3) and (4) are
sufficient to express the absolute or numerical value of any function
of any angle in terms of any other function of that angle. The
algebraic sign to be given the result must be properly selected in
each case according to the quadrant in which the angle lies.

Exercises

All angles in the following exercises are supposed to be less than
ninety degrees.

1. Sin 6 = 1/5. Find cos 0 and tan 6.

Draw a right triangle whose hypotenuse is 5 and whose altitude is
1 so that the base coincides with OX. In other words, make a = 5
and y = 1 in Fig. 57. Calculate z = /25 — 1 = 2+/6 and write
down all of the functions from their definitions.

o ] A

Fic. 57.—Triangle of Reference for 8 and Complement of 6.

2. Cos 8 = 1/3. Find csc 6.

Takea = 3and z = 1in Fig. 57. Find y and then write down the
functions from their definitions.

3. Tan ¢ = 2. Find sin 4.

Take z = 1 and ¥y = 2 in Fig. 57, and calculate a and then write
down the functions from their definitions.

4. Sec 8 = 10. Find csc 6.

Take ¢ =10 and z = 1 and compute y.

b. Find the values of all functions of 6 if cot & = 1.5.

6. Find the functions of @ if cos 8 = 0.1,

7. Find the values of each of the remaining cireular functions in
each of the following cases:
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(a) sin § = 5/13. (d)‘tan 9 = 3/4. (g) tan § =
(b) cos 8 = 4/5. (e) sec § = 2. (h) sin 8 = \/ 2 + = 5
(c) sec § = 1.25. (f) tan 6 = 1/3.

Show that the following equalities are correct
8. Tan 6-cos 6 = sin 6.
9. Sin 6-cot 6-sec § = 1.
10. (Sin 8 + cos )2 = 2-sin §-cos 6 + 1.
11. Tan 6 + cot 6 = sec 6-csc 6.
12. Express each trigonometric function in terms of cach of the
others; i.e., fill in all blank spaces in the following table:

\ sin ‘ cos l tan } cot ‘ sec cse
; o g I ‘ | 1
sin | sin | | | i:SEi
| '
| l 1
cos cos [
‘ sec |
| | 1
tan tan I
i | ; 1 cot
| | }
| | 1
cot | ' #an 4 cot,
' |
52 2 ! sec
cos ‘
: 1 o 1 i ;
cse | sin [ cse

The following exercises refer to angles <360° of any quadrant:

13. If sin 6 = —3/4 and tan 4 is positive, find the remaining five
functions.

14. If cos § = 12/13 and sin ¢ is negative, find the remaining
five functions.

16. If tan 6 = — V3 and cos 6 is negative, find the remaining func-
tions of 4.
16. If cos 8 = — 1/3 and sin @ is positive, find the remaining

functions.
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17. If tan @ = 5/12 and sec 6 is negative, find the remaining
functions of 4.

18. Ifsin § = 3/5 and tan 6 is negative, find the remaining func-
tions of 6.

4. Functions of Comple- y

mentary Angles. Complementary 3 P, (k, k)
~k,k) P2 LN

angles are defined as two angles

whosesumis 90°. Supplementary s % P(h k)
¢ 8N AN @

angles are two angles whose sum 5 Js z $

is 180°. & AN %

Let 6 be an angle of the first D, S DD

quadrant, and draw the angle \ R

(90°— ) of terminal side OP;, as ; N

shown in Fig. 58. Let P and P,

lie on a circle of radius a. Let Py (k-h)

the codrdinates of the point P be ekl e

(h, k), then P, is the point (%, h). ] s I

3 = 16. 58.—Triangles of Reference
I:Ience PD,[OPy = hfa ~. for 9, and § combined with an
sin (90° — ). Butfrom the tri- 0Odd Number of Right Angles.

angle PDO, h [a = cos §. Hence

sin (9o®° — 6) = cos 0
Likewise, tan (9o° — 6) = cot 0
sec (9o° — 6) = csc 6

These relations explain the meaning of the words cosine, cotangent,
cosecant, which are merely abbreviations for complement’s sine,
complement’s tangent, etc. Collectively, cosine, cotangent, cosecant
are called the co-functions. Likewise from Fig. 58:

cos (go° — ) = sin 6
cot (go° — ) = tan 6
csc (9o° — f) =sec §

.

Later it will be shown that the above relations hold for all
values of 6, positive, or negative.

65. Graph of the Sine and Cosine. In rectangular coérdinates
we can think of the ordinate y of a point as depending for its value
upon the abseissa or z of that point by means of the equation y =
sin z, provided we think of each valuc of the abscissa laid off on
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the X-axis as standing for some amount of angular magnitude.
Therefore the equation y=sin x must possess a graph in rectangu-
lar coérdinates. In order to produce the graph of y = sin«, it is
best to lay off the angular measure z on the X-axisin such a manner
that it may conveniently be thought of in either radian or degree
measure. If we suppose that a scale of inches and tenths is in the
hands of the reader and thata graph isrequired upon an ordinary
sheet of unruled paper of letter size (8% X 11 inches), then it will
be convenient to let 1 /5 inch of the horizontal scale of the X-axis
correspond to 10° or to 7 /18 radians of angular measure. To

A, C
e
plA
N?h’ 2
1
(@) N, L
B /]
Ds’,flz
I, I
P 4
L7 ,//
Pl L . 2T T Py

Fig. 59.—Construction of the Sinusoid.

accomplish this, the length of one radian must be1.15 inches (z.e.,
18 /57 inch), which length must be used for the radius of the circle
on which the arcs of the angles are laid off. Hence, to graph
y = sin z, draw at the left of a sheet of (unruled) drawing paper a
circle of radius 1.15 inches, as the circle OPB, Fig. 59. Take O as
the origin and prolong the radius BO for the positive portion OX of
the X-axis. Subdivide this into 1/5-inch intervals, each corre-
sponding to 10° of angle; eighteen of these correspond to the
length =, if the radius BO (1.15 inches) be the unit of measure.
Next divide the Y-axis proportionately to sin z in the following
manner: Divide the semicircle into eighteen equal divisions as
shown in the figure, thus making the length of each small are
exactly 1/5 inch. The perpendiculars, or ordinates, dropped
upon OX from each point of division, divided by the radius a,
are the sines of the respective angles. Draw lines parallel to
OX through each point of division of this circle. These cut the
Y-axis at points A1, A5, . . . , such that 04, 04,, . . . are
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proportional to sin OBPy, sin OBP,, sin OBP;, . . . or in the
general case, proportional to sin z (for lack of room only a few
of the successive points Pj, Py, P, . . .,of division of the
quadrant OP3Ps;, are actually lettered in Fig. 59). These are the
successive . ordinates corresponding to the abscissas already
laid off on OL. The curve is then constructed as follows:
First draw vertical lines through the points of division of 0X;
these, with the horizontal lines already drawn, divide the
plane into a large number of rectangles. Starting at O and
sketching the diagonals (curved to fit the alignment of the points)
of successive ‘‘cornering’’ rectangles, the curve OCNTL is approxi-
mated, which is the graph of ¥ = sin z. This curve is called the
sinusoid or sine curve. The curve isof very greatimportance for
it 1s found to be the type form of the fundamental waves of science,
such as sound waves, vibrations of wires, rods, plates and bridge
members, tidal waves in the ocean, and ripples on a water surface.
The ordinary progressive waves of the sea are, however, not of
this shape. Using terms borrowed from the language of waves, we
may call C the crest, N the node, and T the trough of the sinusoid.

It is obvious that as x increases beyond 2x", the curve is re-
peated, and that the pattern OCNTL is repeated again and again
both to the left and the right of the diagram as drawn. Thus it is
seen that the sine is a periodic function of period 277, or 360°.

The small rectangles lying along the X-axis are nearly squares.
They would be exactly equilateral if the straight line 0 A, was equal
to the arc OP,. This equality is approached as near as we please
as the number of corresponding divisions of the circle and of 0OX is
indefinitely increased. In this way we arrive at the notion of the
slope of a curve in mathematics. In this case we say that the
slope of the sinusoid at Ois + 1 and at N is — 1, and at Lis + 1.
We say that the curve cuts the axis at an angle of 45°at O and
at an angle of 315° (or, — 45° if we prefer) at N. The slope at C
and at 7T is zero.

The curve y = a sin z is made from y = sin by multiplying
all of the ordinates of the latter by a. The number @ is called
the amplitude of the sinusoid.

56. Cosine Curve. If O’ be taken as the origin, the curve CNTL

is the graph of y = cos z. Let the student demonstrate this by
8
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showing that the distances BD;, BD;, . . . , BDy . . . in the
semicircle at the left of Fig. 59 go through in reverse order the
same sequence of values as P.D,, P,D,, . . ., and that if the
origin be taken at 0’ the successive ordinates of the sinusoid to the
right of O'C are equal to BDy, BD,, . . . respectively, and hence
are proportional to cos z.

It is best to carry out the construction of the sinusoid upon
unruled drawing paper as described above. The curve can readily
be drawn, however, upon form M2, which is already ruled in
1/5-inch intervals, or upon form M1 if the radius of the circle be
taken as 2.3 cm. and if 2/5 em. be used on OX to represent
an angle of 10°. A much neater result is obtained when
unruled paper is used for the drawing.

67. Complementary Angles. The graph y. = sin (—z) is
made from y; = sin z by substituting (— z) for z in the function

Y.
- ! ¥= sin x/ﬂ- sin (-z)
Fl SN SAL R ! TR //_\\ X
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T1g. 60.—Shows the Relation Between y¥ = sin z and y = sin (—z) and
Between y = sin (90° — z) and y = cos z, ete.

sin z; that is, by changing the signs or reversing the direction of
all of the abscissas of the sinusoid y = sin z; or, in other words,
Yy = sin (— ) is the reflection of y; = sinz in the Y-axis.
This is merely a special case of the general Theorem I on Loci,
§24. The former curve has a crest where the latter has
a trough and vice versa, as is shown by the dotted and full
curves in Fig. 60. Now, if the curve y, = sin (— z) (the dotted
curve in Fig. 60) be translated to the right the distance 7 /2,
the resulting locus is the cosine curve ¥ = cos . To translate
Y2 = sin (— z) to the right the distance 7 /2, the constant 7 /2
must be subtracted from the variable x in the equation of the
curve, as already learned in the last chapter. Performing this
operation we'hm'e, for the translated curve,

i (== )
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(Note that /2 is subtracted from x and not from — z.) Or,
removing the brackets,

Y2 = sin (g — x)

But, as stated above, the curve in its new position is the same as
the cosine curve

Y = coszT
Hence, for all values of z:
sin (; - x) = COS X (1)
In the same manner it can be proved that cos (g - x) = sin «,

and the other results of §54 follow for all values of z.

58. Trigonometric Functions of Negative Arguments. First
compare the curves i, = sin 2 and y, = sin (— z) as has been
done in the preceding section, and as is illustrated by Fig. 60.
The curve y, = sin (— ) was described as the reflection of the
sinusoid 7, = sin « in the Y-axis. It is obvious from the figure,
however, that the dotted curve may also be regarded as the
reflection of the original curve in the X-axis; for the one has a

| crest where the other has a trough and the ordinates of the two

curves are everywhere of exactly equal length but opposite in
direction. This means that y;,= — y,, or,

sin (— x) = — sinx (1)
for all values of z.

If the origin be taken at the point O’, Fig. 60, the full curve
is the graph of ¥ = cos z. In this case the crest of the curve lies
above the origin and the curve is symmetrical with respect to the
Y-axis. This means that changing z to (— z)in the equation
Y = cos ¢ does not modify the locus. Hence we conclude that

ccos (—x) =cosx 2)
for all values of z. Hence by division
tan (—x) = —tan x (3

§9. Odd and Even Functions. A function that changes sign
but retains the same numerical value when the sign of the variable
is changed is called an odd function. Thus sin z is an odd function
of z, since sin (— 2) = — sin z. Likewise r3 is an odd function
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of z, as are all odd powers of z. Geometrically, the graph of an
odd function of = is symmetrical with respect to the origin O;
that is, if P is-a point on the curve, then if the line OP be pro-
duced backward through O a distance equal to OP to a point
P’, then P’ lies also on the curve. The branches of ¥ = 23 in
the first and third quadrants are good illustrations of this
property.

A function of z that remains unaltered (both in sign and
numerical value) when the variable is changed in sign, is called
an even function of z. Examples are cos z, 22, 22 — 3z .

Most functions are neither odd nor even, but mixed, like
22 + sin z, 22 + 3, ¢ + cos z, .

Exercises

1. Show from (1) and (2) §68 and the relations esec z = 51%17’
PR 2 = tan z, ete., that
cos
(a) esc (—z) = —cse z
(b)sec (—zxz) = sec =z
(c) tan (— z) = — tan z
(d) cot (—x) = — cot 2.

2. Is sin?z an odd or an even function of 2? Istan®z an odd or an
even function of z?

8. Is the function sin z + 2 tan z an odd or an even function? Is
sin 4+ cos z an odd or an even function of z?

60. The Defining Equations cleared of Fractions. The student
should commit to memory the equations defining the trigonometrie
functions when cleared of fractions. In this form the equations
are quite as useful as the original ratios. They are written:

y =asin § X =y cot @
X = a cos 0 a=xsecf
y =x tan @ a=ycsch

As applied to the right angled triangle, they may be stated in
words as follows:
Either leg of a right triangle is equal to the hypotenuse multiplie
by the sine of the opposite, or by the cosine of the adjacent, angle.
Either leg of a right triangle is equal to the other leg multiplied by th
tangent of the opposite, or by the cotangent of the adjacent, angle.
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The hypotenuse of a right triangle is equal to either leg multiplied
by the secant of the angle adjacent, or by the cosecant of the angle
opposite that leg.

These statements should be committed to memory.

61. Projections. In Fig. 52 the projection of OP in any of its

positions, such as OPy, OPs, OP3, . . . ,i80D;, 0D;, ODs, e
or is the abscissa of the point P. Thus for all positions:
z = acosf

The sign of « gives the sign, or sense, of the projection. In each
case 6 is said to be the angle of projection.

The above definition of projection is more general in one
respect than that discussed in §28. By the present definition
the projection of a line is negative if 90° < 6 < 270° (read,
“if § is greater than 90° but is less than 270°’). This con-
cept is important and essential in expressing a component of a
displacement, of a velocity, of an acceleration, or of a force.

The cosine of § might have been defined as that proper fraction
by which it is necessary to multiply the length of a line in order to
produce the projection of the line on a line making an angle 6
with it.

Exercises

1. A stretched guy rope makes an angle of 60° with the horizontal.
What is the projeetion of the rope on a horizontal plane? What is
the projection of the rope on a vertical plane?

2. Find the lengths of the projections of the line through the origin
and the point (1, 4+/3) upon the OX and OY axes, if the line is 12
inches long.

3. A force equals 200 dynes. What is its component (projection)
on a line making an angle of 135° with the force? On a line making
an angle of 120° with the force?

4. A velocity of 20 feet per second is represented as the diagonal
of a rectangle the longer side of which makes an angle of 30° with the
diagonal. Tind the components of the velocity along each side of the
rectangle.

6. Show that the projections of a fixed line OA upon all other
lines drawn through the point O are chords of a circle of diameter OA.
See Fig. 63.

6. Find the projection of the side of a regular hexagon upon the
three diagonals passing through one end of the given side, if the
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numerical value of cos 30° = 0.87, and if each side of the hexagon
is 20 feet.

62. Polar Codrdinates. In Fig. 61, the position of the point
P may be assigned either by giving the z and y of the rectangular
codrdinate system, or by giving the vectorial angle 8 and the
distance OP measured along the terminal side of 6. Unlike
the distance a used in the preceding work, it is found conven-
ient to give the line OP a sense or direction as well as length;
such a line is called a vector. In the present case, it is known as

the radius vector of the point P,
Py and it is usually symbolized by
, the letter p. The vectorial or
direction angle @ and the radius
P yector p are together called the
polar codrdinates of the point P,
and the method, as a whaole, is
4 ; known as the system of polar
P’ coordinates. In Fig. 61 the
, point P’ is located by turning
from the fundamental direction
P 0X, called the polar axis, through
an angle 0 and then stepping
backward the distance p to the
point P’; this is, then, the point (—p, 6). P’ has also the coordi-
nates (p, 8,), in which 8, = § + 180°; likewise P;is (+ p’, 8;) and
P'yis (—p/, 6;). Thus each point may be located in the polar
system of coérdinates in two ways, 7.e., with either a positive or a
negative radius vector. If negative values of 6 be used, there
are four ways of locating a point without using values of 6 >
360°. In giving a point in polar codrdinates, it is usual to name
the radius vector first and then the vectorial angle; thus (5, 40°)
means the point of radius vector 5 and vectorial angle 40°.

63. Polar Cotrdinate Paper. Polar cosrdinate paper (form M3)
is prepared for the construction of lociin the polar system. A re-
duced copy of. a sheet of such paper is shown in Fig. 62. This
plate is graduated in degrees, but a scale of radian measure is given
in the margin. The radii proceeding from the pole O meet all of
the circles at right angles, just as the two systems of straight lines

&P

6, 7

Fia. 61.—Polar Coordinates.
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meet each other at right angles in rectangular coérdinate paper.
For this reason, both the rectangularand the polar systems are
called orthogonal systems of coordinates.

We have learned that the fundamental notion of a function
implies a table of corresponding values for two variables, one called
the argument and the other the function. The notion of a graph
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Fie. 62.—Polar Codradinate Squared Paper. (From M3.)

implies any sort of a scheme for a pictorial representation of this
table of values. There are three common methodsin use:the double
scale, the rectangular codrdinate paper, and the polar paper. The
polar paper is most convenient in case the argument is an angle
measured in degrees or in radians. Since in a table of values for a
functional relation we need to consider both positive and negative
values for both the argument and the function, it is necessary to
use on the polar paper the convention already explained. The
argument, which is the angle, is measured counter-clockwise if
positive and clockwise if negative from the line numbered 0°
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Fig. 62. The function is measured outward from the center along
the terminal side of the angle for positive functional values and
outward from the center along the terminal side of the angle
produced backward through the center for negative functional values.
In this scheme it appears that four different pairs of values are
represented by the same point. This is made clear by the points
plotted in the figure. The points P,, Py, P3, P, are as follows:

Py : (6.0,40°%); (6.0, — 320°); (— 6.0,220°); (— 6.0, — 140°).
P, : (10, 135%; (10, — 225°); (— 10, 315°); (— 10,— 45°).
Py : (5, 230%; (5, — 130°); (— 5, 50°); (— 5, — 310°).

Py :(6.0,330%); (6.0, — 30°); (— 6.0, 150°); (— 6.0, — 210°).

The angular scale cannot be changed, but the functional scale
can be changed to suit the table of values by multiplying or
dividing it by integral powers of ten.

In case the vectorial angle is given in ra,dlans, the point may be
located on the polar paper by means of a straight edge and the
marginal scale on form M3.

Exercises

1. Locate the following points on polar coérdinate paper; (1, =/2);
(2, 7); (3, 60°); (4, 250°); (23, 1.8x).

2. Locate the following points: (0, 0°); (1, 10°); (2, 20°); (3, 30°);
(4, 40°); (5, 50°); (6,60°); (7,70°); . . . (36, 360°). Uselcm. = 10
units.

3. The equation of a curve in polar coérdinates is § = 2. Draw
the curve. The equation of a second curve is p = 3. Draw the
curve.

Notice that p = a constant is a circle with center at O, while
6 = a constant is a straight line through O.

4. Draw the curve p = 6 using 2 cm. as unit for p. Note that the
curve p = 6 is a spiral while the curve y = z is a straight line.

64. Graphs of p = a cos 6 and p = a sin 6. These are two
fundamental graphs in polar coordinates. The equation
p = a cos 0 states that p is the projection of the fixed length a
upon a radial line proceeding from O making a direction angle 6
with @, or, in other words, p in all of its positions must be the side
adjacent to the direction angle 0 in a right triangle whose hypote-
nuse is the finite length a. (See §61.) It must be remem-
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bered that the direction angle 6 is always measured from the fixed
direction OA. Hence, to construct the locus p = @ cos 6, draw
as many radii vectores as desired, asin Fig. 63. Project on cach
of these the fixed distance OA or a. This gives OP, or p, in numer-
ous positions as shown in the diagram. . Since P is by construction
the foot of the perpendicular dropped from A upon OP, it isalways
at the vertex of a right triangle standing on the fixed hypotenuse a,
and therefore the point P is on the semicirele AOP; for, from plane
geometry a right triangle is always inseribable in a semicircle.

Fi1g. 63.—The Graph of p = a cos 0.

When @ is in the second quadrant, as 6,, Fig. 63, the cosine is
negative and consequently p is also negative. Therefore the point
P is located by measuring backward through 0. Since, however,
ps is the projection of a through the angle 6, (see §61), the
angle at P, must be a right angle. Thus the semicircle
OP;A is described as 6 sweeps the second quadrant. When
§ is in the third quadrant, as 63, the cosine is still negative and
p is measured backward to describe the semicircle AP,0 a second
time. As 0 sweeps the fourth quadrant, the semicircle OP.4 is
described the second time. Thus the graph in polar codrdinates
of p = a cos 0 is a circle twice drawn as 0 vartes from 0° to 360°.
Once around the circle corresponds to the distance from crest to
trough of the “wave” y = a cos z, in Fig. 59 (0’ is origin).
The second time around the circle corresponds to the distance
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from trough to crest of the cosine curve. Trough and crest of all
the successive “wave lengths’’ fall at the point A. The nodes are
all at O.

The polar representation of the cosine of a variable by means
of the circle is more useful and important in seience than the
Cartesian representation by means of the sinusoid. The ideas
here presented must be thoroughly mastered by the student.

The graph of p = a sin 6 is also a circle, but the diameter is
the line OB making an angle of 90° with OA, as shown in Fig. 64.
Since p = a sin 6, the radius vector,
as @ increases to 90°, must equal
the side lying opposite the angle 8
in a right triangle of hypotenuse a.
Since angle AOP, = angle OBP;,
the point P may be the vertex of
any right triangle erected on OB or
a as a hypotenuse. The semicircle
BP,0 is described as @ increases
from 90° to 180°. Beyond 180° the
sine is negative, so that the radius
vector p must be laid off backward
for such angles. Thus P; is the
point corresponding to the angle 6, of the third quadrant. As 6
sweeps the third and fourth quadrants the circle OP,BP,0 is
described a second time. Therefore, the graph of p = a sin 6
is the circle twice drawn of diameter ¢, and tangent to OX at O.
The first time around the circle corresponds to the crest, the
second time around corresponds to the trough of the wave or
sinusoid drawn in rectangular codrdinates. The points corre-
sponding to the nodes of the sinusoid are at O and the points
corresponding to the maximum and minimum points are at B.

We have seen that the graph of afunction in polar coérdinates
is a very different curve from its graph in rectangular coordi-
nates. Thus the cosine of a variable if graphed in rectangular
coordinates is a sinusoid; but if graphed in polar codrdi-
nates the graph is a circle (twice drawn). There is in this case
a very great difference in the ease with which these curves can be
constructed ; the sinusoid requires an elaborate method, while the

Fig. 64.—The Graph of p = a
sin 6.

%
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circle may be drawn at once with compasses. This is one reason
why the periodic or sinusoidal relation is preferably represented
in the natural sciences by polar codrdinates.

65. Graphical Table of Sines and Cosines. The polar graphs
of p = asin 8 and p = a cos 6 furnish the best means of construct-
ing graphical tables of sines and cosines. The two circles passing
through O shown on the polar coérdinate paper, form M3, Fig. 62,
are drawn for this purpose. A quantity of this codrdinate paper
should be in the hands of the student. If the diameter of the
sine and cosine circles be called 1, then the radius vector of any
point on the lower circle is the cosine of the vectorial angle, and
the radius vector of the corresponding point on the upper circle
is the sine of the vectorial angle. As there are 50 concentric cir-
cles in Form M3, it is easy to read the radius vector of a point
to 1 /100 of the unit. Thus, from the diagram, we read cos
45° = (.70 ; cos 60° = 0.50; cos 30° = 0.866. These results are
nearly correct to the third place.

66. Graphical Table of Tangents and Secants. Referring to
Fig. 62, it is obvious that the numerical values of the tangents of
angles can be read off by use of the uniform scale of centimeters
bordering the polar paper (form AM3). The scale referred to
lies just inside of the scale of radian measure, and is numbered
0,2,4, . . ., at the right of Fig. 62. Thus to get the numerical
value of tan 40° it is merely necessary to call unity the side OA
of the triangle of reference OAP, and then read the side AP = 0.84;
hence tan 40° = 0.84. To the same scale (t.e., 0A = 1) the dis-
tance OP = 1.31, but this is the secant of the angle AOP, whence
sec 40° = 1.31. By use of the circles we find sin 40° = 0.64 and
cos 40° = 0.76.

In case we are given an angle greater than 45° (but less than
135°) use the horizontal scale through B. Starting from B as
zero the distance measured on the horizontal scale is the cotangent
of the given angle. The tangent is found by taking the reciprocal
of the cotangent.

Exercises

Find the unknown sides and angles in the following right triangles.
The numerical values of the trigonometric functions are td'be taken
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from the polar paper. The vertices of the triangles are supposed
to be lettered A4, B, C with C at the vertex of the right angle. The
small letters a, b, ¢ represent the sides opposite the angles of the same
name. :

By angle of elevation is meant the angle between a horizontal line
and a line to the object, both drawn from the point of observation,
when the object lies above the horizontal line. The similar angle
when the object lies below the observer is ealled the angle of depression
of the object.

The solution of each of the following problems must be checked.
The easiest check is to draw the triangles accurately to scale on form
M1 and use a protractor.

1. When the altitude of the sun is 40°, the length of the shadow cast
by a flag pole on a horizontal plane is 90 feet. Find the height of the
pole.

Outline of Solution. Call height of pole @, and length of shadow b.
Then A = 40° and B = 50°. Hence:

a = b tan 40°
Determining the numerical value of the tangent from the polar paper,
we find:
a =90 X 0.84 = 75.6 ft.

which result, if checked, is the height of the pole. To check, either
draw a figure to scale, or compute the hypotenuse ¢, thus:

¢ = 90 sec 40°
From the polar paper find sec 40°. Then:
¢ =90 X 131 = 117.9
Since a? + b = ¢%, we have ¢ — b =a? or (¢ — ) (c +b) = a2
Hence if the result found be correct,
(117.9 — 90)(117.9 + 90) = 75.62
5800 = 5715

These results show that the work is correct to about three figures, for
the sides of the triangle are proportional to the square roots of the
numbers last given.

2. At a point 200 feet from, and on a level with, the base of a tower
the angle of elevation of the top of the tower is observed to be 60°.
What is the height of the tower?

3. Aladder 40 feet long stands against a building with the foot of
the ladder 15 feet from the base of the wall. How high does the
ladder reach on the wall?
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4. From the top of a vertical cliff the angle of depression of a point
-on the shore 150 feet from the base of the cliff is observed to be 30°.
Find the height of the cliff.

6. In walking half a mile up a hill, a man rises 300 feet. Find the
angle at which the hill slopes. :

If the hill does not slope uniformly the result is the average slope
of the hill. :

6. A line 3.5 inches long makes an angle of 35° with OX. Find the
lengths of its projections upon both OX and OY.

7. A vertical cliff is 425 feet high. From the top of the cliff the
angle of depression of a boat at sea is 16°. How far is the boat
from the foot of the cliff?

8. The projection of a line on OX is 7.5 inches, and its projection
on OY is 1.25 inches. Find the length of the line, and the angle
it makes with OX.

9. A battery is placed on a cliff 510 feet high. The angle of depres-
sion of a floating target at sea is 9°. Find the range, or the distance
of the target from the battery.

10. From a point A the angle of elevation of the top of a monument
is 25°. From the point B, 110 feet farther away from the base of the
monument and in the same horizontal straight line, the angle of eleva-
tion is 15°. Find the height of the monument.

11. Find the length of a side of a regular pentagon inscribed in a
circle whose radius is 12 feet.

12. Proceeding south on a north and south road, the direction of a
church tower, as seen from a milestone, is 41° west of south. From
the next milestone the tower is seen at an angle of 65° W. of S.
Find the shortest distance of the tower from the road.

13. A traveler’s rule for determining the distance one can see from
a given height above a level surface (such as a plain or the sea) is as
follows: ‘“To the height in feet add half the height and take the square
root. The result is the distance you can see in miles.” Show that
this rule is approximately correct, assuming the earth a sphere of
radius 3960 miles. Show that the drop in 1 mile is 8 inches, and
that the water in the middle of a lake 8 miles in width stands 103 feet
higher than the water at the shores.

14. Observations of the height of a mountain were taken at A and
B on the same horizontal line and in the same vertical plane with the
top of the mountain. The elevation of the top at 4 is 52° and at B is
36°. The distance AB is 3500 feet. Find the height of the mountain.

15. The diagonals of a rhombus are 16 and 20 feet, respectively.
Find the lengths of the sides and the angles of the rhombus.
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16. The equation of a line isy = §x + 10. Compute the short-

est distance of this line from the origin.
17. Find the perimeter and area of ABCD, Fig. 65.

‘67. The Law of the Circular Functions. It will be emphasized
in this book that the fundamental laws of exact science are three in
number, namely: (1) The power function
expressed by y = az~ where n may be
either positive or negatlve, (2) the har-
monic or periodic law ¥ = a sin nx, which
is fundamental to all periodically occurring
phenomena; and a third law to be dis-
cussed in a subsequent chapter. While
other important laws and functions arise
in the exact sciences, they are secondary
to those expressed by the three funda-
mental relations.

We have stated the law of the power
function in the following words (see §34):

In any power function, if © change by a fired multiple, y is
changed by a fixed multiple also. In other words, if = change by
a constant factor, y will change by a constant factor also.

S IE s

Fia. 65.—Diagram for
Exercise 17.

Confining our attention to the fundamental functions, sine

and cosine, in terms of which the other circular functions can
be expressed, we may state their law as follows:?

The circular functions, sin § and cos 8, change periodically in
value proportionally to the periodic change in the ordinate and
abscissa, respectively, of a point moving uniformly on the circle
22 4y = a?

The use of the periodic law in natural science is, of course,
very different from that of the power function. The student will
find that circular functions similar to ¥ = a sin nz will be required
in order to express properly any phenomena which are recurrent
or periodic in character, such as the motion of vibrating bodies,
all forms of wave motion, such as sound waves, light waves, electric
waves, alternating currents and waves on water surfaces, ete.
Almost every part of a machine, no matter how complicated its
motions, repeats the original positions of all of the parts at

! Chapter X is devoted to a discussion of these fundamental periodic laws.

p—

R ——

— -
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stated intervals and these recurrent positions are expressible in
terms of the circular functions and not otherwise. The student
will obtain a most limited and unprofitable idea of the use of the
“circular functions if he deems that their principal use is in numer-
ical work in solving triangles, etc. The importance of the
circular functions lies in the power they possess of expressing
natural laws of a periodic character.

68. Rotation of Any Locus. In §36 we have shown that
any locus y = f(z) is translated a distance ¢ in the z direction by
substituting (zx — a) for z in the equation of the locus. Likewise
the substitution of (y — b) for y was found to translate the locus
the distance b in the y direction. A discussion of the rotation of
a locus was not considered at that place, because a displacement
of this type is best brought about when the equations are expressed
in polar coordinates.

If a table of values be prepared for each of the loci

cos 0 (1)
cos (6, — 30°) (2)

p
p

as follows:

RO "ag> 600 190° 1200 - 150° 180°
PN 1 /3 12 0" —1/2 —34/3 -1
S0P 160° 1 90°  120° ' '150° 180°

AR ] I3 1/2 0 —1/2 '— 33

and then if the graph of each be drawn, it will be seen that the
curves differ only in their location and not at all in shape or size.
The reason for this is obvious: The same value of p is given by
6, = 90° in the second case as is given by 6 = 60° in the first
case, and the same value of p is given by 6, = 60° in the second
case as is given by 6 = 30° in the first case, etc. The sets
of values of p in the two cases are identical, but like values corre-
spond to vectorial angles 8 differing by 30°. In more general
terms the reasoning is that if (8, — 30°) be substituted for 8 in any
polar equation, then since (8, — 30°) has been put equal to 6, it
follows that 6, = (8 4 30°), or the new vectorial angle 6, is greater
than the original § by the amount 30°. Since all values of 6
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in the new locus are increased by 30°, the new locus is the
same as the original locus rotated about O (positive rotation)
by the amount 30°.

The above reasoning does not depend upon the particular con-
stant angle 30° that happened to be used, but holds just as well
if any other constant angle, say a, be used instead. That is,
substituting (61 — «) for 6 does not change the size or shape of
the locus, but merely rotates it through an angle « in the positive
sense. The same reasoning
applies also to the general
case: If p = f(8) be the polar
equation of any locus, then p
= f(0, — «) is the equation
(o of the same locus turned
::3 about the fixed point O
8
A

852 (0-2) P=2sin (s,

through the angle «; for if
(6; — a) be everywhere substi-
tuted for the vectorial angle
6, 6; must be « greater than
the old 6. That is, each
point is advanced the angular
amount «, or turned that
Fic. 66.—Rotation of the Circles p = amount about the point O.
a cos 6 and p = a sin 6. The rotation is positive, or
anti-clockwise, if o be posi-
tive—thus, substituting (8 — 30°) for 8 in p = a cos 8 turns the
circle p = a cos 6 through 30° in the anti-clockwise sense, as is
shown in Fig. 66, but substituting (6 + 30°) for § in p = a cos 0
turns the circle p = a cos 8 through 30° in the clockwise direc-
tion of rotation, as shown in the same figure.
The four cireles

p=acos (0 + a) 3)
p=acos (§ —a) (€))
p=asin (0 + a) (5)
p=asin (0 — @) (6)

are shown in Fig. 66. Each has diameter a. The student must
carefully distinguish between the constant angle « and the variable
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angle 8, just as he must distinguish between the constant distance
a and the variable vector p.
The above result constitutes another of the

THEOREMS ON Locr

IX. If (0 — «) be substituted for 6 throughout the polar equation
of any locus, the curve is rotated through the angle o in the positive
sense.

Note that the substitution is (6 — «) for 8 when the required
rotation is through the positive angle o, and that the substitution
is (8 4+ «) for 8 when the required rotation is through the negative
~ angle a.

The rotation of any locus through any angle is readily accom-
plished when its equation is given in polar cooérdinates. Rota-
tions of 180° and 90° are very simple in rectangular codrdinates.
Let the student select any point P in rectangular codrdinates and
draw the radius vector OP and the abscissa and ordinate OD and
DP; then show that the substitutions z = —z,, ¥y = —y; will turn
OP through 180° about O in the plane zy, and that the substitutions
Z = y1, y = — & will turn OP through 90° about O in the plane zy.

Exercises
Draw the following circles:
1. p = 3 cos (8 — 30)°. 4. p = 2sin (6 + 135°).
2. p = 3 cos (6 + 120°). 5. p = 4 cos (o o ’?:)
3. p = 2sin (6 — 45°). 6.p=5 sin(g—o))-

7. Show that p=a sin 9 is the locus p=a cos ¢ rotated 90°
counter clockwise.

SoLuTioN: Write p=a cos (§—90°), then
p=a cos (90°—0) by (2) §68, then p=a sin ¢ by §57.

69. Polar Equation of the Straight Line. In Fig. 67 let M N be
any straight line in the plane and OT be the perpendicular dropped
upon MN from the origin O. Let the length of OT be a and let
the direction angle of OT be «, where, for a given straight line,

a and o are constants. Let p be the radius vector of any point
9
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P on the line MN and let its direction angle be 8. Then, by
definition, R

% = cos (0 — )
Therefore the equation of the straight line M N is
a = pecos (0 — a) (1)

for it is the equation satisfied by the (p, ) of every point of the
line. This is the equation of any straight line, for its location is
perfectly general. The
constants defining the line
are the perpendicular dis-
tance a upon the given line
from O and the direction
angle « of this perpendic-
ular. The perpendicular
OT or a is called the nor-
mal to the line MN and
the equation (1) is called
the normal equation of the
X \p straight line.

The equation of the eir-

cle shown in the figure is
Fig. 67.—The Circle p = a cos (§ — a)

and its Inverse, the line MN or a = Y P = = (0 —a) (2
pcos (6 — o). in which p; represents the

radius vector of a point P;
on the circle. From plane geometry OT or a is a mean propor-
tional between the secant OP and the ehord OP;, or,

pia=a:p

or,
pp1 = a? (3)
This gives the relation between the radius vector of a point on the
line and the corresponding radius vector of a point on the circle.
Now if on the radius vector p = OP, drawn from the fixed origi

2
O to any curve, we lay off a length OP; = p; = (Z— (where a is a

constant), then P, is said to describe the inverse of the given curv
with respect to O, In this special case the circle is the tnverse o



§70] THE CIRCLE AND THE CIRCULAR FUNCTIONS 131

the straight line and vice versa. If @ = 1 we note that OP; and
OP are reciprocals of each other.

It is important in mathematics to associate the equation of the
circle and the equation of its inverse with respect to O, or the line
tangent to it. Thus

)
Il

10 cos (0 — Z)

is a circle
10 = p cos (0— Z)

is a straight line tangent to it. i
70. Relation. between Rectangular and Polar Coérdinates.

Think of the point P whose rectangular codrdinates are (z, ¥).
If the radius vector OP be called p and the direction angle be
called 6, then the polar coordinates of P are (p, 8). Then z and
y for any position of P are the projections of p through the
angle 0, and the angle (90°—6), respectively, or,

X = pcosf (1)

y = psin @ 2)
These are the equations of transformation that permit us to express
the equation of a curve in polar coérdinates when its equation in
rectangular codrdinates is known, and wvice wversa. Thus the
straight line 2 = 3 has the equation

pcos =3
in polar codrdinates. The line z + y = 3 has the polar equation

pcos B+ psinf = 3.
The circle 22 + y2 = @2 has the equation
p?-cos?f + p?sin? 6 = a?
or,
p? = q?

or,

p=2a
etc.
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To solve equations (1) and (2) for 8, we write

S D
= the angle whose cosine is %

6 = the angle whose sine is 3

The verbal expression ‘‘the angle whose cosine is,” ete., are

abbreviated in mathematics by the notations “cos=1” read
“‘anti-cosine,” and ‘““sin-!,”’ read “anti-sine,” as follows:

f = cos™! (x/p) (3

= sin~! (y /p) (4)

Dividing the members of (2) by the members of (1) we obtain

tan 6 = % which, solved for 6, we write

0 = the angle whose tangent is ?;l;l
which may be abbreviated
6 = tan~! (y /x) (5)
and read “@ = the anti-tangent of y /x.”
The value of p in terms of z and y is readily written

p.= AN (6)
Exercises

1. Write in polar codrdinates the equation z? + y? + 8z = 0.

The result is p2 4 8p cos § = 0, or p = —8 cos 6.

2. Write in polar coérdinates the equations (a) z% + y2 — 4y = 0;
®) 2?4 y2 — 6 — 4y = 0; (c) z* + y* — 6y = 4.

3. Write in polar coérdinates the equations (a) z +y=1; (b) z+2y
= 1; (¢) x+\/§y=2.

4. Write in rectangular coérdinates (a) o cos 8 + p sin 8 = 4; (b)
p cos 0 — 3p sin 6 = 6.

6. Write in polar coérdinates 22 + 2y? — 4z = 0.

71. Identities and Conditional Equations. It is useful to make
a distinction between equalities like

(@ — 2)(a + x) = a2 — x? (1)
which are true for all values of the variable x and equalities like
22— 2x =3 2)
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which are true only for certain particular values of the unknown
number. When two expressions are equal for all values of the
variable for which the expressions are defined, the equality is
known as an identity. When two expressions are equal only for
certain particular values of the unknown number the equality is
spoken of as a conditional equation. The fundamental
formula
sin? ¢ + cos? ¢ = 1

is an identity.

2sin A + 3 cos A = 3.55
is a conditional equation. Sometimes the symbol = is used to
distinguish an identity; thus '

a® — 23 = (a — z)(a® + ar + z2)
Exercises

The following exercises contain problems both in the establishment
of trigonometric identities and in the finding of the values of the un-
known number from trigonometric conditional equations.

The truth of a trigonometric identity is established by reducing
each side to the same expression. This usually requires the applica-
tion of some of the fundamental identities, equations (1) to (5),
§63. Facility in the establishment of trigonometric identities is
largely a matter of skill in recognizing the fundamental forms and of
ingenuity in performing transformations. In verifying the identity
of two trigonometic expressions it is best to reduce each exp ression
separately to its simplest form. Unless the student writes the
work in two separate columns, transforming the left member alone
in one column, and the right member alone in the other column,
he is very liable to get erroneous results. All results should be
checked. The following worked exercises will aid the student.

(a) Prove that

(1 — sin % cos u)(sin » + cos u) = sin®u + cos®u
The sum of two cubes is divisible by the sum of the numbers them-
selves so that after division we have:
1 — sin % cos u = sin?w — sin u cos u + cos? u
Since sin? u + cos? » = 1, this equation is true and the original iden-
tity is established.
(b) Show that

sec?2z — 1 =sec?zrsin?x
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Substituting sec? z = on the right side
@

os?z
sin?
sectrx — 1 = = tan?z
cos?x
or } sec?r = 1+tan?zx

which is a fundamental identity.

Solutions to exercises in trigonometric conditional equations similar
to exercises 1, 4, 5, 9 below must be checked. The necessity for a
check is made apparent by the following illustration:

(¢) Solve for all angles less than 360° g

2sinz 4 cosz =2 (1)
Transposing and squaring we get:
cos?x =4 — 8sinz + 4 sin?zx (2)
since sin? z + cos?z = 1.
1 —sin?zx =4 — 8sinz + 4 sin? x 3)
5sin?z — 8sinz +3 =0 (4)
sin z = 1, or 0.6 (5)
z = 90°, 37°, or 143° (6)
Check: 25in 90° 4 c0s 90° =2 40 = 2 (7)
Check: 2sin 37° + c0s 37° =12 + 0.8 =2 (C
Does 2 sin 143° + cos 143° = 1.2 — 0.8 = 04 = 27 9)

The last value does not check. The reasons for this will be dis-
cussed later in §§93 and 94. Therefore the correct solutions are
90° and 37°.
1. Solve for all values of § < 90°:6 cos?28 + 5sin 6 = 7.
SvacceesTioN: Write 6(1 — sin? 6) + 5 sin 9 = 7 and solve the
quadratic in sin 6.
6sin? @ —5sing +1=0

or,
Bsing —1)2sind —1) =0
- sing =1/3or1/2
6 = 19° or 30°.

The results should be checked.
2. Prove that for all values of 8 (except /2 and 37r/2, for which
the expressions are not defined)

sect — tant @ = tan? @ 4 sec? 4.
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19. The line y = (3/2)x is to coincide with the diameter of the
circle:
p=10cos (6 — a)
Find a.
20. The line y = 2z is to coincide with the diameter of the circle:
p=10sin (8 + o)
Find «.
21. To measure the width of the slide dovetail shown in Fig. 68,
two carefully ground cylindrical gauges of standard dimensions are
placed in the V’s at A and B, as shown, and the distance X carefully

60/ S o —> 605

»

”

s

Fi1g. 68.—Diagram to Exercise 21.

taken with amicrometer. The angle of the dovetail is 60°. Find
the reading of the micrometer when the piece is planed to the required
dimension MN = 4 inches. Also find the distance Y. (Adapted
from ‘“Machinery,” N. Y.)
22. Show that:

p=sin 6 + cos 6
is a circle. >
23 Draw the curve:

y = sin 2 + cos Z.
24 Sketch
%
v=3
and
y =sinz
and then
Yy = g + sin z

and discuss.




CHAPTER IV
THE ELLIPSE AND HYPERBOLA

72. The Ellipse. If all ordinates of a circle be shortened by
the same fractional amount of their length, the resulting curve
is called an ellipse. For example, in Fig. 69, the middle points
of the positive and negative ordinates of the circle were marked
and a curve drawn through the points so selected. The result
18 the ellipse ABA’B’A.

If
2+ g = a M
is the equation of a circle, then
z? + (my)* = a® 2

in which m is any constant > 1, is the equation of an ellipse; for
substituting my for y divides all

of the ordinates by m, by Theo- c X

rem V on Loci, §27. The ellipse //"“r\\

may also be looked upon as the B

orthographic projection of the 1 T~

circle. See §28. Al %
It is easy to show, as a con- X 0 X

sequence of the above, that the

shadow cast on the floor by a ™~ é =

circular disk held at any angle

in the path of vertical rays of \\\__L//

light is an ellipse. Uy

The curve made by elongating Fie. 69.—Definition of the Ellipse.
by the same fractional amount

of their length all of the abscissas or ordinates of a circle is also
an ellipse, as the following considerations will show.
First let the ordinates of the circle (1) be shortened as before.
The result is
2t + (my)? = a* (2)
137
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If the abscissas of the same given circle be multiplied by m
to make another curve, the résult is

(;)2 + ¢’ = a? (3)

m

where m is supposed to be > 1 in both cases. If equation (3)
be multiplied through by m? we get:
z? + (my)® = a’m? (4)
This shows that the second curve can be made by dividing by m
all of the ordinates of a circle of radius ma. That is, (3) is an
ellipse made from a circle of radius ma in the same manner
that the ellipse (2) is made from a circle of radius a. Hence (3)
is an ellipse whose dimensions are m-fold those of (2).
Thus an ellipse results if all of the ordinates or if all of the ab-
scissas of a circle be multiplied or divided by any given constant m.
It is usual to write the multiplier m in the form a/b, so that
equation (1) may be written:
z? + (ay [b)* = a*
or:
x2/a? 4+ y2/b2 =1 5)
which is the equation of the ellipse in a symmetrical form. Apply-
ing the principles of §27, the locus (5) may be thought of as
made from the unit circle 22 + y* = 1 by multiplying its abscissas
by a and its ordinates by b.
When written:
y=+ (b/a) Va? — 2° (6)
y=1 Vo -z 0

the ellipse and circle are placed in a form most useful for many
purposes. It is easy to see that (6) states that its ordinates are
the fractional amount b /a of those of the circle (7).

In Fig. 69 the points A and A’ are called the vertices and the
point O is called the center of the ellipse. The line AA’ is called
the major axis and the line BB’ is called the minor axis. It is
obvious that A4’ = 2a, and from equation (5) or (6) it follows
BB’ = 2b.

The definition of the term function permits us to speak of y as a
function of x, or of x as a function of y, in cases like equation (5)
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above; for when x is given, y is determined. To distinguish this
from the case in which the equation is solved for y, as in (6), y, in
the former case, is said to be an implicit function of z, and in the
latter case y is said to be an explicit function of z.

If a circular eylinder be cut by a plane, the section of the
eylinder is an ellipse. For select any diameter of a ecir-
cular section of the cylinder as the z-axis. Let a plane be passed
through this diameter making an angle « with the circular section.
Then if ordinates (or chords perpendicular to the common z-axis)
be drawn in each of the two planes, all ordinates of the section
made by the cutting plane can

be made from the ordinates of | 5

the circular section by multiply- A 7

ing them by sec . Hence any : 2) &

plane section of a cylinder is an &EX 7ol

ellipse. D ::§§ N 4
73. To Draw the Ellipse. A * mS=z %:FL_; =

method of drawing the ellipse is §%;/ J @ Y *;

shown in Fig. 70. Draw con- V] B ><<ﬁF

centric circles of radii ¢ and b << J/ />/

respectively, a > b. Draw any VR

number of radii and from their ¥ :
intersections with the larger Y1670 A gﬁ?;:;“mon it
circle draw vertical lines, and :
from their intersections with the smaller circles draw horizontal
lines. The points of intersection of the corresponding horizontal
and vertical lines are points of the ellipse.
Proof. In the figure, let P be one of the points just described.
Then: ;
PzDz:PlD =P201P10
or, substituting PD for the equal P.D,
PDZP1D= P20:P10
Now OP; = a and OP; = b and P,D is the ordinate of the circle

of radius a or is equal to Vat — 22, Substituting these in the
last proportion and solving for PD we obtain:

PD=y= 4% ‘lll\/az—:z:2
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This is the equation of an ellipse. Hence the curve APB is an
ellipse.

The two circles are called the major and minor auxiliary circles.
The vectorial angle 6 of P, is called the eccentric angle or the
eccentric anomaly of the point P.

Exercises

1. Draw an ellipse whose semi-axes are 5 and 3, and write its
equation.
2. From what circle can the ellipsey = + 34/9 — 22 be made by
shortening of its ordinates?
3 Write the equation of the ellipse whose major axis is 7 and minor
axis is 5.
4, Find the major and minor axes of the ellipse z2/7 + y2/17 = 1.
6. What curve is represented by the equation #2/9 + y2/46 = 1?
74. Parametric Equations of the Ellipse. From Fig. 70,
OD and PD, the abscissa and ordinate of any point P of the
ellipse, may be written as follows:
X = a cos 0 (1)
y = b sin 0
for OD is the projection of OP; = a through the angle 6§ and DP
is the projection of OP, = b through the angle w /2 — 6. The
pair of equations (1) is known as the parametric equations of the
ellipse. The angle 6, in this use, is called the parameter. Writ-
ing (1) in the form:

= cos 0

SR !IR

= sin 0
squaring, and adding, we eliminate 6 and obtain:

x2 y2

ar T %
the symmetrical equation of the ellipse.

If the abscissa and ordinate of any point of a curve are ex-
pressed in terms of a third variable, the pair of equations are
called the parametric equations of the curve. Thus:

xz =4t
y=t+1
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9. Show that

is a line of slope b/a.

10. Write the equation of an ellipse whose major and minor axes
are 6 and 4 respectively.

11. What curve is represented by the parametric equations:

z =2-46cosé
y =5+ 2sin 0?2
12. Show that the curve
z =3+ 3cos @
y =24 2sin @
is tangent to the codrdinate axes. b

13. The sunlight enters a dark room through a circular aperture of
radius 8 inches, in a vertical window and strikes the floor at an angle
of 60°. Find the dimensions and the equation of the boundary of
the gpot of light on the floor.

14. The ellipse

y=% /92
is the section of a circular cylinder. Find the angle « made by the
cutting plane and the axis of the eylinder.

-75.1 Other Methods of Constructing an Ellipse. The following
methods of constructing an ellipse of semi-axes a and b may be
explained by the student from the brief outlines given:

1. Move any line whose length is @ + b (see Fig. 71) in such a
manner that.the ends A and B always lie on the X- and Y-axes,
respectively. The point P describes an ellipse. .

2. Mark on the edge of a straight ruler three points P, M, N,
Fig. 72, such that PM = b and PN = a. Then move the ruler
keeping M and N always on AA’ and BB’ respectively. P
describes an ellipse. The elliptic “‘trammel’’ of “ellipsograph”’ is
constructed on this principle by use of adjustable pins on PM N and
grooves on AA’ and BB’.

3. Draw a semicircle of radius ¢ about the center C, Fig. 73,
and produce a radius to O such that CTO = ¢ 4+ b. From C draw

1This gection may be omitted altogether or assigned as problems to various
members of the class.
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To prove the above, note that OD = a cos 8, PD = OD tan ¢/,
alsothattan® :tan 6': :a : b. Discuss the latter case when b = a
and also when b > a.

76. Origin at a Vertex. The equations of the ellipse (5) and (6)
§72 and (1) §74 are the most useful forms. It is obvious
that the ellipse may be translated to any position in the plane
by the methods already explained. The ellipse with center
moved to the point (%, k) has the equation:

z—=h?, (y=—Fk?*_
ey o =1 1)

Of special importance is the equation of the ellipse when the origin
is taken at the left-hand vertex. This form is best obtained from
equation (6), §72, by translating the curve the distance a in
the z direction. Thus:

b o Tl R
= i;\/a’—(x—a)2
or,

2b* b?
Yyt = o a‘zx’

or, letting I stand for the coefficient of z,
2
y:=lzx — ?szz = lz(1 — z/2a) (2)

For small values of z, x /2a is very small and the ellipse nearly
coincides with the parabola y2? = lz.

T7. Any equation of the second degree, lacking the term xy and
having the terms containing x® and y* both present and with
coefficients of like signs, represents an ellipse with axes parallel to
the coordinate axes. Thisisreadily shown by putting the equation

ax? + by? + 292 + 2fy+ ¢ =0 _ (1)
in the form (1) of the preceding section. The procedureis as
follows: :

a(z? + 221) + by + 2{):1/) = =2 2

2 2 2
a(@+2 o+ L)+ oy + 2+ 55) = L - e@)

P L 4 L N N N R I R IR ——————_——~,
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Let M stand for the expression in the right-hand member of (3),
then we get:

[:c k- '5‘]2 [y HE %]2
T LS e i
a b
This shows that (1) is an ellipse whose center 1s at the point
(— ’Z”: - %) and which is constructed from the circles whose cen-

ters are at the same point and whose radii are the square roots of the
denominators in (4). The major axis is parallel to OX or OY ac-
cording as a is less or greater than b. The cases when the locus
1s not real should be noted. Compare §42.
IrvusTtrAaTION: Find the center and axes of the elllipse
x? + 4y? + 6z — 8y = 23
Write the equation in the form
z? + 62 + 4y? — 8y = 23
Complete the squares j
22+ 6+ 9+ 4y — 8y + 4 =36
Rewriting (x + 3)2+ 4(y — 1)2 = 36
or (x+3)2/36 + (y — 1)2/9 =1
This is seento be an ellipse whose center is at the point (— 3, 1)
and whose semi-axes are ¢ = 6 and b = 3.
The rotation of the ellipse through any angle about O as a
center will be considered in another place. It should be noted,

however, that the ellipse is turned through 90° by merely inter-
changing « and y.

78. Limiting Lines of an Ellipse. It is obvious from the
equation

| S

vt Voo

S|

that z = ¢ and z = — a are limiting lines beyond which the curve
cannot extend; that is, z cannot exceed @ in numerical value
without y becoming imaginary. The same test may be applied
to equations of the form:

2+ 4dr+ 9 —6y+4=0
10
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Solving for y in terms of x:
3y=1% V1 - (@+2)?
The values of ¥ become imaginary when:
z+2)2>1
or,
z+2> +lor < —~1
or, 3
> =llor izt =t8
These, then, are the limiting lines in the z direction. Finding
the limiting lines in the ¥ direction in the same way, the rectangle
within which the ellipse must lie is determined.
In cases like the above the actual proeess of finding the limiting
lines and the location of the center of the ellipse is best carried
out by the method of §77.

Exercises

Find the lengths of the semi-axes and the coérdinates of the center
for the six following loci and translate the curves so that the terms in
z and y disappear, by the method of §77.

1. 1222 — 48z + 3y? + 6y = 13.
2. y* — 8y + 4z + 6 = 0.
3. 22 — 6z + 4y* + 8y = 5.
4, z2 + 9y — 12z + 6y = 12.
6. 422 +y2 — 122 4+ 2y — 2 = 0.
6. 22 + 2% — r — /2y = 1/2.
7. Show that z2 + 42 + 9y? — 6y = O passes through the origin.
8. Show that 22 — 42 + 4y? + 8y + 4 = 0 is an ellipse.
9. Discuss the curves:
x2 y2
R
12 y2
Wt
x? 2
TS
x2 y2
3783

D e e
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10. Discuss the following parabolas:

y = 2pz*
y = — 2pz?
k 2
Yy = 'h‘zx
= — 2px? + b.

What are the roots of the last function?
11. Write the symmetrical equation of the ellipse if its parametric
equations are:
B =-(3/2)-cos.0
y = (2/3) sin 6.
12. Discuss the curve y2 = (18/5)x — (9/25)z2.
13. Compare the curves y2 = z — z2 and ¥? = .
14. Find the center of the curve y% = 2z (6 — x).

79. Graph of y = tan x. If this graph is to be constructed on a
sheet of ordinary letter paper, 8% inches X 11 inches, it is desirable
to proceed as follows: Draw at the left of the sheet of paper a semi-
circle of radius 1.15 . . . inches, (that is, of radius = 18 /57), so
that the length of the arc of an angle of 10° or /18 radians will be
1/5inch. Take forthe z-axis aradius COX prolonged, and take for
the y-axis the tangent OY drawn through O, asin Fig. 74. Divide
the semicircle into eighteen equal parts and draw radii through the
points of division and prolong them to meet OY in points Ty, T,

T3, Ty, . . . Then on the y-axis there is laid off a secale
YY’ in which the distances OT;, OT;, . . . are proportional to
the tangents of the angles OCS;, OCS,, . . .; for the tangents
of these angles are 0T, /C0O,0T./CO, . . . and CO is the unit of

measure made use of throughout this diagram. Draw horizontal
lines through the points of division on OY and vertical lines through
the points of division on 0X, thus dividing the plane into a large
number of small rectangles. Starting at O, =, 2m, . . . —m,
~2r, . . . and sketching the diagonals of consecutive cornering
rectangles, the curve of tangents is approximated. Greater pre-
cision may be obtained by increasing as desired the number of
divisions of the circle and the number of corresponding vertical
and horizontal lines.

It is observed that the graph of the tangent is a series of similar
branches, which are discontinuous for = = 7 /2, —x /2, (3/2)m,
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—(3/2)r, . . . For these values of = the curve has vertical
asymptotes, as shown at AB, A’B’, in Fig. 74.

If the number of corresponding vertical and horizontal lines
be increased sufficiently, the slope of the diagonal of any rectangle
gives a close approximation to the true slope of the curve at that
point.

It has already been noted that all of the trigonometric functions
are periodic functions of period 27. It is seen in this case, however,

Ve M A M A
T
\ \
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T | |\ )
s/ T
T’f & \. N
& N
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0 RESRN ™ T
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\| \
\ [l
Y B N’ B N
Fic. 74.—Graphical Construction of the Curve of Tangents y = tanz.
For lack of room only a few of the points S1, Sz, ... T, T,, ... are lettere

in the diagram. The dotted curve is ¥ = cot z. -

that tan x has also the shorter period m; for the pattern MN
M'N’, M"N", of Fig. 74 is repeated for each interval = of th
variable z.

80. Ratio (sin x)/x and (tan x)/x for Small Values of x. Pri
cisely as in the case of the locus of ¥ = sin z, the rectangles alon,
and on both sides of, the z-axis in the graph of y = tan z, ar
nearly squares. In Tig. 74, the z-sides of these rectangles a
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1/5 inch, but the y-sides are slightly greater, since OT is slightly
greater than the arc OS; of the circle. To prove this, note that 0T,
is half of one side of a regular 18-sided polygon circumseribed about
the circle; since the perimeter of this polygon is greater than the
circumference of the circle, 0T, > 0S,, for these magnitudes are
1 /36 of the perimeter and circumference, respectively, just named.
| Likewise in Fig. 59, DS; < OS,, for DS, is one-half of the side of
an 18-sided regular polygon inscribed in the circle and 08, is
1/36 of the circumsecribed circumference.
Hence:

sinz < z < tanz 1)
or dividing by sin z, '

<

< < sec (2)

Now as z approaches 0, the last term of this inequality approaches
unity. Hence the second term, whose value always lies between

the first and third term of the inequality, must approach the same
value, 1. This fact is expressed in mathematics by the statement

the limit of §H;?: = 1 as « approaches 0
or, in symbols:
Dividing (1) by tan z,
i
cosx < g <1 (4)
Now as x approaches 0, the first term of this inequality approaches
unity. Hence the second term, whose value always lies between

the first and third term of the inequality, must approach the same
value, 1. This fact is expressed by the statement

the limit of pg;:_x = 1 as « approaches 0
or, in symbols:

lim tanx _
it = 1 (8)

Equations (3) and (5) express very useful and important facts.
Geometrically they state that the rectangles along the z-axis in
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Figs. 59 and 74, approach more and more nearly squares as the
number of intervals in the cirele is increased. Each of the ratios
in (2) approaches as near as we please to unity the smaller z is
taken, but the limits of these ratios are unity only when the angles
are measured in radians.

The word ‘““limit”" used above stands for the same concept that
arises in elementary geometry. It may be formally defined as
follows:

DEFINITION: A constant, a, is called the limit of a variable,
{, if, as t runs through a sequence of numbers, the difference
(a — t) becomes, and remains, numerically smaller than any pre-
assigned number. y

81. Graph of cot x. In order to lay off a sequence of values of
cot 6 on a scale, it is convenient to keep the denominator con-
stant in the ratio (abscissa) /(ordinate) which defines the cotangent.

Py Pw Py Py P, B Fpl P,
™~
Wi
Dy Dy DyDg D; o DsDy D; Do D,

Fic. 75.—Construction of a Secale of CAotangents.

The denominator may also, for convenience, be taken equal to
unity. Thus, in Fig. 75, the triangles of reference D,0P;, D;0OP,
.. . for the various values of § shown, have been drawn so that
the ordinates P,Dy, P,D,, . . . are equal. If the constant ordi-
nate be also the unit of measure, then the sequence OD;, 0D,, ODs,
. . 0D, ODyg, represents, in magnitude and sign, the cotan-
gents of the various values of the argument 6. Using OD;, ODs,
. as the successive ordinates and the circular measure o

0 as the successive abscissas, the graph of ¥ = cot z is drawn, as
shown by the dotted curve in Fig. 74.
The sequence OD,, OD., . . . Fig. 75 is exactly the same as the
sequence OT,, OT,, . . . Fig. 74, but arranged in the revers
order. Hence, the graph of the cotangent and of the tangent ar
alike in general form, but one curve descends as the other ascends
so that the position, in the plane zy, of the branches of the curv
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are quite different. In fact, if the curve of the tangents be rotated
about OY as axis and then translated to the right the distance

m /2, the curves would become identical. Therefore, for all values
i of z:

tan (w /2 — z) = cot x 1)
This is a result previously known.
% N A N
R P
SS9
Q ‘\ =
o
i i T EL3
\\ ‘ 3 2 2
/
7717
// / //
Y’ B N, N’

Fi1g. 76.—Graphical Construction of y = sec z.

82. Graph of y = sec x. Since sec 0 is the ratio of the radius
divided by the abscissa of any point on the terminal side of the
angle 0, it is desirable, in laying off a scale of a sequence of values
of sec 0, to draw a series of triangles of reference with the abscissas
in all cases the same, as shown in Fig. 76. In this figure the angles
were laid off from CQ as initial line. Thus:

CTs/CSs = sec QCSs
or, if CS; be unity, the distances like CT', laid off on CQ, are the
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secants of the angles laid off on the arc @S0 or laid off on the axis
0X.

The student may describe the manner in which the rectangles
made by drawing horizontal lines through the points of division on
CQ and the vertical lines drawn at equal intervals along 0X, may
be used to construct the curve. If the radius of the cirele be 1.15
inches, what should be the length of Or in inches?

The student may construct and discuss the locus of y = csc 2.

Compare with the locus
Y = secx

Exercises

1. Discuss from the diagrams, 59, 74, 76, the following statements:

Any number, however large or small, is the tangent of some angle.

The sine or cosine of any angle cannot exceed 1 in numerical value.

The secant or cosecant of any angle is always numerically greater
than 1 (or at least equal to 1).

2. Show that sec (;L - z) = esc x for all values of z.

3. If tan 0 sec § = 1, show that sin @ = (/5 — 1) and find ¢
by use of polar coérdinate paper, Form M3.
4, Describe fully the following, locating nodes, troughs, crests,

asymptotes, etec.:
. m
Yy = sin (a: - E)

cos (z Ak %)

y = tan (a: b })
y = tan (z 4+ 1).

83. Increasing and Decreasing Functions. The meanings of
these terms have been explained in §26. Applying these terms to
the circular functions, we may say that y = sinz,y = tanz,
y = secz are increasing functions for 0 < z < 7 /2. The co-
functions, ¥y = cosz,y = cotz, y = ecsc z, are decreasing functions
within the same interval.

Y

Exercises

Discuss the following topics from a consideration of the graphs of
the functions:
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1. In which quadrants is the sine an increasing function of the
angle? In which a decreasing function?

2. In which quadrants is the tangent an increasing, and in which a
decreasing, function of its variable?

3. In which quadrants are the cos 6, cot 6, sec 6, csc 6, increasing
" and in which are they decreasing functions of 6?7

4. Show that all the co-functions of angles of the first quadrant are
decreasing functions.

X v Lt

\ ' /
N Al
N N/ 1F
7 7 I~
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K
/ v’ \

/& e

’
Fic. 77.,—Construction of the Rectangular Hyperbola.

84. The Rectangular Hyperbola. We have seen that the circle
is the locus of a point whose abscissa is a cos # and whose ordinate
is asin . The rectangular, or equilateral, hyperbola may be
defined to be.the locus of a point whose abscissa is a sec 8 and whose
ordinate is @ tan §. To construct the curve, divide the X-axis pro-
portionally to sec 6, and the Y-axis proportionally to tan 6, as
shown in Fig. 77. The scale OX of this diagram may be taken
from OY of Fig. 76, and the scale OY may be taken from OY of Fig.
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74. The plane of zy may be divided into a large number of rec-
tangles by passing lines through the points of division perpendicu-
lar to the scales and then, starting from A and A’, sketching the
diagonals of the successive cornering rectangles.
The parametric equations of the curve are, by definition:
X = a sec
e
y = atan §
The Cartesian equation is easily found by squaring each of the
equations and subtracting the second from the first, thus eliminat- -
ing 6 by the relation sec? § — tan? 6 = 1:
2 — y? = a’(sec? § — tan? 6)
or,
St b4 (2)
This is the Cartesian equation of the rectangular hyperbola.
The equation of the rectangular hyperbola may also be written in
the useful form:

y=+ Vx: —a? 3)

Compare (1) and (3) with the equations of the circle.
The rectangular hyperbola here defined will be shown, in §86,
to be the curve 2zy = a? rotated 45° clockwise about the origin.
85. The Asymptotes. Let G'G be the line y = z, Fig. 77. The
slope of OP'is PD /OD or y [z or
a tan @
asec 6

The value of 8 corresponding to the point P is AOH. As the point
P moves upward and to the right on the curve, the angle @, or
AOH, approaches 90° and sin @ approaches unity. Hence the
line OP approaches OG as a limit, and P approaches as near as we
please to OG. The same reasoning applies to points moving out
on the curve in the other quadrants. The lines GG’ and JJ' are
called asymptotes to the hyperbola.

86. The Curves 2xy = a? and x> — y2 = a%. In Fig. 78, let
the curve be the locus 2z,y, = a?, referred to the axes X,'X, and
Y,'Y,. This curve has already been called the rectangular hyper-
bola. (See §23.) We desire to find the equation of the curve

- 1To avoid an excessive number of construction lines, OP is not shown in the
gure,

= gin 6.
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referred to the axes XoX'; and Y,¥’y. In the figure, y;is the sum
of the projections of z, and y; on PD;. The angle of projection is

45°, whose cosine is $4/2. Hence,

Y1 = 3V2(y2 + 2) 1
Likewise, x, is the difference in the projections through 45° of z,
and ¥, on X;X’;. Or:

1 = $\/2(x2 — y2) (2
Hence, multiplying the n
members of (1) and (2): Y,

22712!/1 = 1}22 — y22 (3)
Since by hypothesis 2z:y:
= a?, the equation of the
curve referred to the axes
XzYz iS

Tt — o = a?  (4)
Thus, 2zxy = a? is the
curve r2 — y? = a? turned
anti-clockwise through an
angle of 45°,

BZ §27, the curve 2zy Fic. 78.—Comparison of 2ry = a2
= a? may be made from G e
zy = 1 by multiplying
both the abscissas and the ordinates by a/A/2.

Are the curves zy = 1 and 22 — y% = 1 of the same size ?

87. Hyperbola of Semi-axes a and b. The curve whose ab-
scissas are proportional to sec 6 and whose ordinates are pro-
portional to tan @ is called the hyperbola. Its parametric
equations are, therefore:

a sec 0
] (1)

Xe

x
y =b tan 6

where a and b are constants.

To construct the curve, draw two concentric circles of radii @ and
b, respectively, as in Fig. 79. Divide both circumferences into
the same number of convenient intervals. Lay off, on X0X’,
distances equal to a sec 6 by drawing tangents at the points of
division on the circumference of the a-circle; also lay off distances
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equal to b tan @ on the vertical tangent to the b-circle by prolong-
ing the radii of the latter through the points of division of the cir-
cumference. Draw horizontal and vertical lines through the
points of division of MN and XX’ respectively, dividing the
plane into a large number of rectangles which are used exactly
as in Fig. 77 for the construction of the curve.

In the above construction, there is no reason why the diameter of
the b-circle may not exceed that of the a-cirele. '

N
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Fia. 79.—The Hyperbola z2/a? — y2/b% = 1.

Writing (1) in the form:

e sec 0
a
(I
p = tan 6
and eliminating 6 as before we obtain:
2 2
Sondhb ot @)

al b?
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the Cartesian equation of the hyperbola. This is also called the
symmetrical equation of the hyperbola.

The line AA’ = 2a is called the transverse axis, the line BB’
is called the conjugate axis, the points A and A’ are called the
vertices, and the point O is called the center of the hyperbola.
Let the line G’O@ be the line through the origin of slope b /a and let
J'0J be the line of slope — b/a. The slope of the radius vector
OP is:

PD vy btang b .

0D~z = asec g a*?
The limit of this ratio as the point P moves out on the curve away
from O is b Ja; for @ approaches 90° as P moves outward, and hence
sin 6 approaches 1. Hence, the line OP approaches in direction
OG as a limit. Points moving along the curve away from O in the
other quadrants likewise approach as near as we please to G’G' or
J'J. Thelines @G and J'J are called the asymptotes of the hyper-
bola. The equations of these lines are

y=+ 2x )

Solving the equation (2) for y, the equation of the hyperbola may
be written in the useful form

b
y'& T =g 4)

Compare this equation with the equation of the ellipse, (6) § 72.
It is easy to show that the vertical distance PG of any point of
the curve from the asymptote G'G can be made as small as we please
by moving P outward on the curve away from O.
Write the equation of the hyperbola in the form

b
%= V2% —a (5)
and the equation of the asymptote GG in the form
b
Yo =T (6)
Then:
PG =ys =y = o — /ot = a) ™
b a?
azx+ \z? — a? ®)
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by multiplying both numerator and denominator in (7) by
x + A/z* — a?>. Now, as = increases in value without limit the
right side of (8) approaches zero. Whence:

PG=0asz = @

Exercises

1. Write the symmetrical equation of the hyperbola from the
parametric equations r = 5 sec 9, y = 3 tan 4.

2. Find the Cartesian equation of the hyperbola from the relations
xz =T7sec 0, y = 10 tang. Note that the graphical construction of
the hyperbola holds if b > a.

3. What curve is represented by the equation

=3 W+ 1,
25 16 »

4. What curve is represented by the equation y = }+/2? — qa2?

6. Write the equation of a hyperbola having the asymptotes
y = * (3/4)x, and transverse axis = 24.

6. Show that the curves

224 6x —y*—4y+4 =0

and
(z+3)*—@w+2)2=1
are the same, and show that each is a hyperbola.
7. What curve is represented by the equations
z="h+asecl
y =k -+ btan 02
8. Discuss the curve 22 — 8z — 2y* — 12y = 0. .
88. Orthographic Projections. When the equation of the
hyperbola is written in the useful form
y==* %\/xz—tﬂ (1)
it is seen that the hyperbola may be looked upon as generated from
the equilateral hyperbola
y =t /2% —a? 2)
by multiplying all of its ordinates by b /a.
89. Conjugate Hyperbolas. Consider the hyperbola
W (1

a? b2
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Interchanging 2 and y in this equation gives, by Theorem III on
Loci, §24, a new locus which is the reflection of (1) in the line
y = 2. The new equation may be written in the form

gt g

B e Danp o

in which all signs have been changed after interchanging z and y.
Since (2) is the same curve as (1) but in a new position, it is still
a hyperbola; its vertices are located on the Y-axis instead of on
the X-axis. The asymptotes of (1) have been found to be

b
Yp= +>a-x (3)

Therefore the asymptotes of
(2) may be found by reflecting
(3) in the line y = x; hence
they must be given by:

a
Rk &% (4)

Now, if the constants a
and b in equation (2) be in-
terchanged giving thereby the
equation

A I )

then the shape of the hyper-

- Fi1g. 80.—A Family of Conjugate
.bola (2.).Wﬂl !)e changed but Pairs of Hyperbolas with Common
its position will be unazltere'dr Asymptotes. (An interference pat-
that is, its vertices will still tern made from a glass plate under

s compression. From R. Strauble,
be located on the Y-axis. “Ueber die Elasticitits-zahlen und

The asymptotes of (5) are moduln des Glases.” Wied. Ann.
found, of course, by inter- Bd. 68, 1899, p. 381,

changing @ and b in (4), which

gives an equation exactly like (3). Hence the hyperbola (5) has
the same asymptotes as the original hyperbola (1). When a
hyperbola with vertices on the Y-axis has the same asymptotes
as a hyperbola with vertices on the X-axis, and of such size that
the transverse axis of one hyperbola is the conjugate axis of the
other, then the two hyperbolas are said to be conjugate to each
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other. Thus (1) and (5) are two hyperbolas which are conju-
gate to each other. Obviously a hyperbola and its conjugate
completely bound the space about the origin, except the cuts or
lines represented by the common asymptotes.

Fig. 80 shows a family of pairs of conjugate hyperbolas.

Exercises

1. Sketch on the same pair of axes the four following hyperbolas and
their asymptotes:

2 yz_
1) =2 —y2 =25 (3)25—9—1

< 2y
2) 22 —y2=—25 (4)25— = —1.

9
2. Find the axes of the hyperbola y = + %\/x? — 64,
3. Compare the curves:

9

T3 y?

e
and

xZ y2

T T

4. Compare the curves:

LNt

9 16
and

22 2 ol

Jou =g =

6. Write the equation of the hyperbola conjugate to
y=+ 3V — 64
6. Compare the graphs of:

y=+3Var — 64
y=+3Vz — 16
y=t3Var —4
y=+3Va? -1
y= Vet — 1716
y=+2va2 —0.

7. Show that'3z? — 4y® — 7z + 5y + 2 = 0 is a hyperbola. Find
the position of the center and of the vertices. The vertices locate
the so-called “limiting lines” of the hyperbola.

IR p— v —






CHAPTER V
SINGLE AND SIMULTANEOUS EQUATIONS

90. The Rational Integral Function of x. The general form of
a polynomial of the nth degree is:
ager +art + azrt + L L L+ @em1® s
where the symbols, ao, a1, @, . . . , stand for any real constants
whatsoever, positive or negative, integral or fractional, rational or
irrational, and where n is any positive integer: The number of
terms in the rational, integral function of the nth degree is (n + 1).
91. The Remainder Theorem. If a rational integral function of
z be diwvided by (x — r) the remainder which does not contain x s
obtained by writing, in the given function, r vn place of z: This
theorem means, for example that the remainder of the division:
(3 — 622 + 11z — 6) + (z — 4) is 4* — 6(4)? + 11(4) — 6or6
Also that the remainder of the division:
(3 — 622 + 11z — 6) = (z + 1)
(=13 —6(—-1)2+ 11(—1)—6= — 24
The theorem enables one to write the remainder without actually
performing the division.
s prove the theorem, let
f@) = axr + awrt +ar 24+ . . . @it Fan (1)
and: f(r) = ag™ + ar* 1+ a2+ . . . F @e-r+ an (2)
then:
@ —Jr) = aez*'—rm) + a1 =)+ . ..
+ (@ —1) (3)
The right side of this equation is made up of a series of terms con-
taining differences of like powers of z and r, and, hence, by the
well-known theorem in factoring,! each binomial term is exactly
divisible by (x — 7). The quotient of the right side of (3) by
1 See Appendix.

is

162
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(x — r) maybe written out at length, but it is sufficient to
abbreviate it by the symbol @(z) and write:

1) ~ 1) -
1210 _ ) ST
or:
18w + 12 (5)

Now if N be any div1dend, D any divisor, and @ the quotient and .
R the remainder, then:

N/D=Q+R/D i)
This form applied to (5) shows that f(r) is the remainder when

f(x) is divided by (x — r). Thus the Remainder Theorem is
established.

92. The Factor Theorem. If a rational integral function of
x becomes zero when r 1is wriiten in the place of z, (x — r) is a fac-
tor of the function: This means, for example, that if 3 be substi-
tuted for z in the function 23 — 622 + 11z — 6 and the result
3% — 6(3)2 + 11(3) — 6 = 0, then (x — 3) is a factor of
3 — 622 4 11z — 6.

This theorem is but a corollary to the remainder theorem.
For if the substitution z = r renders the function zero, the
remainder when the function is divided by (z — r) iszero, and the
theorem is established.

The value r of the variable z that causes the function to take
on the value zero has already been named a root or a zero of the
function. The factor theorem may, therefore, be stated in the
form: A rational integral function of the variable x is exactly
divisible by (x — r) where r s any root of the function.

The familiar method of solving a quadratic equation by factor-
ing is nothing but a special case of the present theorem. Thus if:

22— 5z +6=0
then:
z—2(z—-3) =0
and the roots are z = 2 and x = 3. The numbers 2 and 3 are
such that when substituted in z? — 5z + 6 the expression is
zero; and the factors of the expression are z — 2 and z — 3
by the factor theorem,
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Exercises
1. Tabulating the cubic polynomial z3 — 622 + llz — 6, we
obtain: ‘
z -3 -2 -1 -01 1.5 2 2.5 3 4

fz), — 120, — 60, — 24, — 6, 0, + 0.375, 0, — 0.375, 0, 6

What is the remainder when the function is divided by z — 47
Byz+2? Byz+3? Byz — 1.5? Byz — 3?

Name three factors of the above function.

2. Find the remainder when z* — 523 + 1222 + 4z — 8 is divided
by z-— 2.

3. Show by the remainder theorem that z* 4 a* is divisible by
z + a when 7 is an odd integer, but that the remainder is 2a* when n
is an even integer.

4. Without actual division, show that z* — 422 — 7z — 24 is
divisible by =z — 3.

5. Show that a* + a? — ab® — b2 is divisible by a — b.

6. Show that b — ¢)(b + ¢)2 + (¢ — a)(c+ a)? + (a — b)(a + b)?
is divisible by (b — ¢)(c — a)(a — b).

7. Show that (z + 1)2(x — 2) — 4(z — 1)(x — 5) + 4 is divisible
by z — 1.

8. Show that (b —¢)® + (¢ —a)® + (@ — b)® is divisible by
b —c¢)(c —a)(a — b).

9. Show that 6z°% — 3x* — 5a% + 522 — 22z — 3 is divisible by
z + 1.

93. It follows at once from the factor theorem that it is possible
to set up an equation with any roots desired; for example, if we
desire an equation with the roots 1, 2, 3 we have merely to
write:

(@—1DEz—-2)(x—38) =0 (1)
Forming the product:

. z3 — 622+ 11z — 6

or transposing the terms in any manner, as:

234 11z = 62% 4 6
in no way essentially modifies the equation. If, however, the
equation (1) be multiplied through by any function of z, the
number of roots of the equation may be increased. Thus, mul-
tiplying (1) by (z 4+ 2) introduces a new root # = — 2. Likewise,

0
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dividing equation (1) through by the factor (z — 2), leaves an
equation:

=1)(z—-3)=0 2
which lacks the root 2z = 2.

By the principles or axioms of algebra, an equation remains
true if we unite the same number to both sides by addition or
subtraction; or if we multiply or divide both members by the
same number, not zero; or if like powers or roots of both
members be taken. But we have given sufficient illustrations to
show that these operations may affect the number of roots of the
equation. This is obvious enough in the cases already cited.
Sometimes, however, the operation that removes or introduces
a root is so natural and its effect is so disguised that the student
is not apt to take due account of its effect. Thus, the roots of:

3(x — 5) ==z(x — 5) + 22 — 25 (3)
are — 1 and 5, for either of these when substituted for z will
satisfy the equation. Dividing the equation through by z — 5,
the resulting equation is:

3=z4+z24+5 (4)
This equation is not satisfied by « = 5. One root has disappeared
in the transformation. This is easy to keep account of if (3)
be given in the form:

(—=5E+1) =0, (5)
but the fact that a factor has been removed may be overlooked
when the equation is written in the form first given.

A very important effect upon the roots of an equation results
from squaring both members. The student must always take
proper account of the effect of this common operation. To il-
lustrate, take the equation: \

z+5=1—22 (6)

It is satisfied only by the value z = — 4/3. Now, by squaring
both sides of the equation, we obtain:

2?24 10z 4 25 = 1 — 4z 4 422 (7

which is satisfied by eitherx = 6 orz = — 4/3. Here, obviously,

an extraneous solution has been introduced by the operation of
squaring both members.
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It is easy to show that squaring both members of an equation
is equivalent to multiplying both sides by the sum of the left and
right members. Thus, let any equation be represented by:

L(z) = R(z) (8)
in which L(z) represents the given function of « that stands on
the left side of the equation and RB(z) represents the given function
of x that stands on the right side of the equation.

Squaring both sides:

[L(2)]* = [R(=)]? 9)
Transposing:
[L(2)]* — [R(@)]* = 0 (10)
or factoring;
[L(z) + R(2)] [L(z) — R(x)] = 0 (11)
But (8) may be written:
L(z) — R(z) = 0 (12)

Thus, by squaring the members of the equation the factor
L(z) 4+ R(x) has been introduced.

The sum of the left and right members of (6), above, i1s 6 — z.
Hence, squaring both sides of (6) is equivalent to the introduction
of this factor, or, the operation introduces the root 6, as already
noted.

As another example, suppose that it is required to solve:

sin ¢ cos « = 1/4 (13)
for « < 90°. Substituting for cos a:

sin V1 —sin?q =1/4 (14)

squaring:
sin? ¢ (1 — sin? ) = 1/16 (15)
completing the square:
sin* ¢ — sin? @ + 1/4 = 3/16 (16)
Hence:
sina =+ V1/2 + (1/4)/3
= + 0.9659 or + 0.2588 )

Only the positive values satisfy (13); the negative values were
introduced in squaring (14). If, however, the restriction a < 90°
be removed, so that the radical tn (14) must be written with the double
sign, then no new solutions are introduced by squaring.
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94. Legitimate and Questionable Transformations. If one
equation is derived from another by an operation which has no
effect one way or another on the solution, it is spoken of as a
legitimate transformation; if the operation does have an effect
upon the final result, it is called a questionable transformation,
meaning thereby that the effect of the operation requires ex-
amination. : :

In performing operations on the members of equations, the
effect on the solution must be noted, and proper allowance
made in the result. It cannot be too strongly emphasized that
the test for any solution of an equation is that it satisfy the original
equation. ‘“‘No matter how elaborate or ingenious the process
by which the solution has been obtained, if it do not stand this
test it is no solution; and, on the other hand, no matter how simply
obtained, provided it do stand this test, it is a solution.”?

Among the common operations that have no effect on the solu-
tion are multiplication or division by known numbers, or addition
or subtraction of like terms to both members; none of these intro-
duce factors containing the unknown number. Taking the
square root of both numbers is legitimate if the double sign be
given to the radical. Clearing of fractions is legitimate if it be done
S0 as not to introduce a new factor. If the fractions are not in
their lowest terms, or if the equation be multiplied through by an
expression having more factors than the least common multiple
of the denominators, new solutions may appear, for extra factors
are probably thereby introduced. Hence, in clearing of fractions
the multiplier should be the least common denominator and the
fractions should be in their lowest terms. This, however, does not
constitute a sufficient condition, therefore the only certainty lies
in checking all results.

Exercises
SueeesTioNs: It is important to know that any equation of
the form
az» + bzn 4+ ¢ =0
can be solved as a quadratic by finding the two values of z=.
Frequently equations of this type appear in the form
dxn 4+ ex—n = f

1 Chrystal's Algebra.
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Likewise any equation of the form
af(x) + b Vi(x) + ¢ =0
can be solved as a quadratic by finding the two values of Vf(x)

and then solving the two equations resulting from putting Vf(x)
equal to each of them. One of these usually gives extraneous
solutions.

These two types occur in the exercises given below.

Since operations which introduce extraneous solutions are
often used in solving equations, the only sure test for the solution
of any equation is to check the results by substituting them in
the original equation.

Take account of all questionable operations in solving the following
equations:

3x 6 9
1'$—3=x+3+x—3.
2. (2> +52+6)/(x —3) + 42 — 7 = — 15.

3. 3(x —5)(x — 1)z —2) = (x — 5)(z + 2)(x + 3).
Note: Divide by (x — 5), but take account of its effect.
4. 22/a + axr = x2/b + bzx.
6. ax(cx — 3b) = 5a(3b — cx)..
6. 12 —n? =n — .
7. (x —4)8 + (x — 5) = 3ll(x — 4)? — (x — 5)?. Divide by
(x— 4) + (x—5) or 2z — 9

8. i = 3x — 4+ 2 + = 0. If the fra.ctlons be added, multi-

plication is unnecessary. There is only one root.

9.0=7—+/22-17.

10 vVz+20—+vz—1-3=0.

1. Vi5/4+2 =3/2 + va.

12. 20z/+v/10z — 9 — v/10z — 9 = 18/4/10z — 9 + 9.

13. j: __i__ \/:;: . o i 3 Consider as a proportion and take
by composition and division.

14, 2% + 5/2 = (13/4)z%%.

16. A/7% — 2+/z +x = 0. Divide by vz .

16. 24/2?2 — 5z +2 — 22+ 8 =3z — 6. Call 22 — 5z + 2 = w2
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17. 422 — 42 +20/2 2 — 5z + 6 = 6z + 66
18. z72 — 2z~ ! = 8.

19. ¥t — 5311 44 = 0.

20. 110z~* + 1 = 212

21. +/z + 4z~ = 5.

22. 82% —8z ¥ = 63.

23. (x —a)* — 3(x —a)™ = 2.

24, 2z — 3%+ x = 0.

95. Intersection of Loci. Any pair of values of z and y that
satisfies an equation containing z and y locates some point on
the graph of that equation. Consequently, any set of values of
z and y that satisfies both equations of a system of two equations
containing z and y, must locate some point common to the
graphs of the two equations. In other words, the codrdinates
of a point of intersection of two graphs is a solution of the equations
of the graphs considered as simultaneous equations.

To find the values of x and y that satisfy two equations, we
solve them as simultaneous equations. Hence, to find the points
of intersection of two loel we must solve the equations of the
two curves. There will be a pair of values or a solution for each
point of intersection.

Thus, the intersection of the linesy = 3z — 2andy = /2 + 3
is the point (2, 4) and z = 2, y = 4, is the solution of the simul-
taneous equations.

To find the points of intersection of the circle z2 + y? = 25
and the straight line z + y = 9 we solve the equations by the
usual method, as follows:

24 y? =25 (1)

.ty =7 } (2)
The graphs are a straight line and a circle, as shown in (1),
Fig. 81. Squaring the second equation, the system becomes:

o 4y = 25} (3)
2+ 2zy + 92 = 49 4)
The second equation represents the fwo straight lines shown in

Fig. 81,(2). The effect of squaring has been to introduce two
extraneous solutions corresponding to the points P; and P,.
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Multiplying (3) by 2 and subtracting (4) from it, the last pair
of equations becomes:

22— 2ry + ¥ = 1} 3 (6)

24 22y + y? = 49 )

which gives the four straight lines of Fig. 81, (4). Taking the

square root of each member, but discarding the equation z + y =

— 7, because it corre-

sponds to the extraneous

solutions introduced by

)

B P, ; .

/ \ / Py the questionable operation,
we have:

\/ [ Lt N

e z+y="17 )

(3)

(4) By addition and subtrac-
P, tion we obtain the results:
X .2 Ay aio)
e
P TR
3Pa N y=3 } (11)
represented by the inter-
sections of the lines parallel
Py to the axes shown in Fig.
(o] 81; (5)‘
This is a good illustra-
tion of the graphical

a 2)

Fic. 81.—Graphic Representation of changes that take place 3

the Steps in the Solution of a Certain set

of Simultaneous Equations. durlng the solution of sim-

ultaneous equations of the
second degree. The ordinary algebraic solution consists, geo-
metrically, in the successive replacement of loci by others of an
entirely different kind, but all passing through the points of in-
tersection (as P, P,, Fig. 81) of the original loei.

Exercises

1. Find the points of intersection of the cirele and parabola:

e R s
y? = 4zx.

R R R RO
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Note that of the two lines parallel to the y-axis, given by the equation
2? 4+ 4z — 5 = 0, one does not cut the circle: z2 4 y* = 5.

2. Find the points of intersection of 22 + y? = 5 and the hyperbola
z? — y? = 3.

3. golve, by graphical means only, to two decimal places:"

y=z*+z -1
zy = 1.
4. Solve in like manner:

z2 + y? 16
2 —2zy +y2 =9.
Reason out what each equation represents before attempting to
graph.
6. Solve in like manner:
RGN
2x? + 2y? — 4z + 4y = 8.
These loci should be graphed without tabulating numerical values
of the variables.
6. Solve graphically:

u? 02 =9
u? — v =4,

Norte. Draw the lines ¢ +y =9, and z — y = 4. The values
of z and y determined by the intersection of these lines are the
values of u? and »? respectively, from which » and v can be computed.

7. Solve the system:

2?2+ 9y =10

22/16 + y2/9 = 1.
96. Quadratic Systems.! Any linear-quadratic system of

simultaneous equations, such as:
y=mz+k
ax® 4+ by? + 2hzy + 29z 4+ 2fy +c =0

can always be solved analytically; for ¥y may readily be eliminated
by substituting from the first equation into the second. A
system of two quadratic equations may, however, lead, after
elimination, to an equation of the third or fourth degree; and,
hence, such equations cannot, in general, be solved until the

solutions of the cubic and biquadratic equations have been
explained.

1 A large part of the remainder of this chapter can be omitted if the students
have had a good course in algebra in the secondary school.
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A single illustration will show that an equation of the fourth
degree may result from the elimination of an unknown number
between two quadratics. Thus, let:

22— y= 5
22+ 2y = 10
From the first, y = 2 — 5. Substituting this value of y in the
second equation, and performing the indicated operations, we
obtain: '
x4t 4+ 2% — 5z 4+ 10 = 0.

While, in general, a bi-quadratic equation results from the
process of elimination from two quadratic equations, there are
special cases of some importance in which the resulting equation
is either a quadratic equation or a higher equation in the quadratic
form. Two of these cases are:

(1) Systems in which the terms containing the unknown num-
bers are homogeneous; that is, systems in which the terms con-
taining the unknown numbers are all of the second degree with
respect to the unknown numbers, such, for example, as:

22— 2zy = 5
3z2 — 10y% = 35

(2) Systems in which both equations are symmetrical; that is,
such that interchanging z and y in every term does not alter the
equations; for example:

32 Syt SRS
zy+z+y =239

97. Unknown Terms Homogeneous. The following work
illustrates the reasoning that will lead to a solution when applied
to any quadratic system all of whose terms containing « and y
are of the second degree. Let the system be:

22—y =2
202+ y2 =9 1)
Divide each through by 2 (or y?), then:
1— (y/z) = 2/s?
2+ (y/x)2 = 9 /[x? 2)
Since the left members were homogeneous, dividing by 2? renders
them funections of the ratio (y/z) alone; call this ratio m. Then
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equations (2) contain only the unknown numbers m and 22
The latter is readily eliminated by subtraction, leaving a quad-
ratic for the determination of m. When m is known, substituting
in (2) determines z, and the relation y = mz determines the
corresponding values of y.

The above illustrates the principles on which the solution is
based. In practice, it is usual to substitute y = mx at once, and
then eliminate z? by comparison; thus, from the substitution
y = mx in (1), we obtain:

z? — ma? =
222 + m*z? = 9 3)
Thence:
22=2/(1 — m)
z? = 9/(2 + m?) : (4)
Whence:
2/(1 —m) =9/2+ m? (5)
or:
2m? + 9m =5 (6)
Factoring:
@2m—-1)(m+35) =0 (7)
whence:
m=1/20r — 5 (8)
Hence:

z= 4 2o0r + (1/3)n/3

y=+1lor ¥ (5/34/3 (9)
These solutions should be written as corresponding pairs of values
as follows:

z =2 = —2 z (1/3)A/3 z=—(1/3)A/3
=1 y=-1 y=-0(BBV3 y= (5/3/3
This system can readily be solved without the use of the mx
'substitution by merely solving the first equation for y and sub-
stituting in the second.
Graphically (see Fig. 82), the above problem is equivalent to
finding the intersections of the curves:
iz —y) =2
(V2z)r4y? =9
The first is a curve with the two asymptotes z = 0 and z — y



174 ELEMENTARY MATHEMATICAL ANALYSIS [§98

= 0. Asa matter of fact, the curve is a hyperbola, although proof
that such is the case cannot be given until the method of rotating
any curve about the origin has been explained. The second curve
is obviously an ellipse generated from a circle of radius 3 by
shortening the abscissas in the ratio o/2:1. The two curves
intersect at the points:

=2 e 0.557 ... - 0.557 ...
y=1 = 2B A2 S

2=1/3 V3
y==-5/3Y3

Y

Fra. 82.—Solutions of a Set of Simultaneous Quadratics given graph-
ically by the cobrdinates of the points of Intersection of the Ellipse and
Hyperbola. .

The auxiliary lines, y = iz and y = — 5z, made use of in the
solution are shown by the dotted lines.

98. Symmetrical Systems. Simultaneous quadratics of this
type are always readily solved analytically by seeking for the values
of the binomials x 4 y and « — y. The ingenuity of the student
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will usually show many short cuts or special expedients adapted
to the particular problem. The following worked examples
point out some of the more common artifices used.

1. Solve '
t+y=26 (1)

xy =35 (2)
Squaring (1) .
2 4 2zy 4+ y? = 36 3)

Subtracting four times (2) from (3):
x? — 2zy + y2 = 16

whence:
r—y=+4
But from (1):
x+y=26
Therefore:
x=195 rz=1
y=1 y=2>5
2. Solve
2 +y* = 34 (1)
ry = 15 (2)
Adding two times (2) to (1):
x* 4+ 2xy + y? = 64 3)
Subtracting two times (2) from (1): :
22— 2xy 4+ y? = 4)
Whence, from (3) and (4):
o el
z—y=+2
Therefore:
r=35 z=3 r=—25 = —3
y=3 y=25 y=—3 y=—2>5"

The hyperbola and circle represented by (1) and (2) should be
drawn by the student.

35
72 (1)
6 (&)

x3+y8
z +y

|

Cubing (2):'
x3 + 32% + 3xy® + y® = 216 3)
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Subtracting (1) and dividing by 3

zy(z +y) = 48 (4)
whence, since
z+y=©6
we have aaThi— (5)
From (2) and (5) proceed as in example 1, and find:
. T =4 : z=2
y=2 y =4

Otherwise, divide (1) by (2) and proceed by the usual method.
4. Solve

z* +zy = (7/3)(x + y) 1)
y*+ay = (11/3)(z + v) (2)
adding (1) and (2):
+y)2t—6x+y) =0 (3)
whence:
x+y=00r6 4)

Now, because = + y is a factor of both members of (1) and (2),
the original equations are satisfied by the unlimited number of
pairs of values of  and y whose sum is zero, namely, the codr-
dinates of all points on the line z + y = 0.
Dividing (1) by (2), we get:
2 T [y =k
This, and the line z + y = 6, from (4), give the solution:
z="7/3
y=11/3
Graphically, the equation (1) is the two straight lines:
(@—78)z+y =0
Equatlon (2) is the two straight lines:
(y—113)=z+y) =0
These loci intersect in the point (7/3, 11/3) and also intersect
everywhere on the line z 4 y = 0.

Exercises
1. Show that:
25
1

z? + yt
z+y

o
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by properly drawing the appropriate straight line, or by properly
laying a straight edge across the graph of the cubic parabola.

In drawing the graph of the cubic parabola, it is desirable to
use, for the y-scale, one-tenth of the unit used for the z-scale, so as
to bring a greater range of values for y upon an ordinary sheet of

cobrdinate paper. The cubic parab-
2 ola graphed to this scale is shown
H in Fig. 83. The diagram gives the
solution of 3 — x — 1 = 0. The
graphs y = 2% and y = = + 1 are
seen to intersect at £ = 1.32. This,
: then, should be one root of the
! cubic correct to two decimal places.
= The line y = x + 1 cuts the cubic
parabola in but one point, which
shows that there is but one real root
of the cubic. To obtain the imagi-
nary roots, divide z3 — z — 1 by
z — 1.32. The result of the divi-

sion, retaining but two places of
i decimals in the coefficients, is:
. x? 4 1.32z + 0.7424 3)
Fic. 83.—A Graphical Putting this equal to zero and solv-

Scheme for the Solution of jne by completin he square. we
Cubic Equations. ﬁngd" y potiag. & 4 ?

= — 066 +V — 0.3068

4

71
T

or:
z=— 0.66 + 0.55% — 1 (4)
in which, of course, the coefficients are not correct to more than
two places.
The equation:

23— 10z — 10 = 0 j (5)
illustrates a case in which the cubic has three real roots. The
straight line ¥y = 10x + 10 cuts the cubic parabola (see Fig. 83)
at = — 1.2, x = — 24, and = = 3.6. These, then, are the
approximate roots. The product: '

(z + 1.2)(x + 2.4)(z — 3.6) = x3 — 10.08z — 10.37

i
:
4
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should give the original equation (5). This result checks the work
to about two decimal places.
It is obvious that a similar process will apply to any equation
of the form ‘
o+ ax+b=0

The z-scale of Fig. 83 extends only from — 5 to 4+ 5. The
same diagram may, however, be used for any range of values by
suitably changing the unit of measure on the two scales; thus, the
divisions of the z-scale may be marked with numbers 5-fold the
present numbers, in which case the numbers on the y-scale must be
marked with numbers 125 times as great as the present numbers.
These results are shown by the auxiliary numbers attached to
the y-scale in Fig. 83.!

Exercises

Solve graphically the following equations checking each result
separately.

1, 23 — 42 4+ 10 = 0.
2. 23 —-12z -8 = 0.
3. 224+ xx-—-3=0.
4. 28 —15z — 5 = 0.
6. 23— 3z +1=0.
6. 22 — 4r — 2 = 0.
7.2sin6 + 3 cosd = 1.5.

Note: Construct on polar paper the circles p = 2 sin § and
p = 3 cos 0.
8. 2r +sinz = 0.6.
Note: Find the intersection of ¥ = sin 2 and the line
= —2z+ 0.6. If 1.15 inches is the amplitude of y = sin z, then
1.15 must be the unit of measure used for the construction of the
line y = — 2z + 0.6.
9. 22 +z+1+4+1/z =0.
10. Show that 3 4+ ax + b = 0 can have but one real root if a > 0.
11. (a) Show that the graph of y = z* + bz is symmetrical with
respect to the origin. (See §37, equation (1).)

1For other graphical methods of solution of equaitons, see Runge’s ‘‘ Graph-
ical Methods,’’ Columbia University Press, 1912.
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(b) Show that the graph of y = z3 + bz + ¢ is symmetrical with
respect to the point (0, ¢).

(¢) If the substitution z = z; — a/3 removes the term az? from the
equation y = 23 4 ax? 4 bz + ¢, show thabt the graph of this last
equation must be symmetrical with respeet to some point.

12. On polar paper, draw a curve showing the variation of loeal or
mean solar time with the longitude of points on the earth’s surface.

If it be noon by both standard and mean solar (local) time at Green-
wich, longitude 0°, construct a graph on polar paper showing standard
time at all other longitudes, if the longitude of a point be represented
by the vectorial angle on polar paper and if time relative to Greenwich
be represented on the radius vector using 1 em. = 2 hours, and also if
it be assumed that the changes of standard time take place exactly at
15° intervals beginning at 73° west longitude.

If it be noon at Greenwich, write an equation which will express the
local time of any point in terms of the longitude of the point. Does the
expression hold for points having negative longitude? Does this
function possess a discontinuity?

Can a similar expression be written giving the standard time at any
point in terms of the longitude of the point?

If ¢ be standard time and 6 longitude, and if the functional relation
by expressed by f, so that:

t = f(6)
is f a continuous or a discontinuous function? Is the function f
defined for 6 = 15°, 30°, 45° etc., and why?

In actual practice, how is the function f given?

100. Method of Successive Approximations. The graphic
method of solving numerical equations, combined with the method
explained below, is the only method which is universally ap-
plicable. It therefore possesses a practical importance exceeding
that of any other method. An example will illustrate the method.

Suppose that it is required to find to four decimal places one
root of 8 —x — 1 =0. See §99 and Fig. 83. The graphic
method gives z = 1.32. This is the first approximation. A
second approximation is found as follows: Build the table
of values fory = 23—z — 1

AEON - 5~
1.32 — .0200
1.33 + .0226

0. 01[ .0426 Differences.
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Now reason as follows: The actual root lies between 1.32 and
1.33, and the zero value ‘of y corresponds to it. This zero is
200 /426 of the way between the two values of y; hence if the
curve be nearly straight between z = 1.32, and z = 1.33,
the desired value of z is approximately 200/426 of the way
between 1.32 and 1.33 or it is « = 1.324694. This value is
probably correct to the fourth decimal place.

To find a third approximation we build another table of
values:

R
1.3247| — .0000766

1.3248 + .0003499

0.0001] .0004265 Differences.
Reasoning as before, we get + = 1.324718 which is very likely
true to the last decimal place.
The above method is applicable to an equation like exercise
8 above. In fact it is the only numerical method that is
applicable in such cases.




CHAPTER VI

PERMUTATIONS AND COMBINATIONS;
THE BINOMIAL THEOREM

101. Fudamental Principle. If one thing can be done in n
different ways and another thing can be done in r different ways,
then both things can be done together, or in succession, in n X r
different ways. This simple theorem is fundamental to the work
of this chapter. To illustrate, if there be 3 ways of going from
Madison to Chicago and 7 ways of going from Chicago to New
York, then there are 21 ways of going from Madison to New
York.

To prove the general theorem, note that if there be only one
way of doing the first thing, that way could be associated with
each of the r ways of doing the second thing, making r ways
of doing both. That is, for each way of doing the first, there are
r ways of doing both things; hence, for n ways of doing the first
there are n X r ways of doing both.

ILLUSTRATIONS: A penny may fall in 2 ways; a common
die may fall in 6 ways; the two may fall together in 12 ways.

In a society, any one of 9 seniors is eligible for president and any

one of 14 juniors is eligible for vice-president. The number of

tickets possible is, therefore, 9 X 14 or 126.

I can purchase a present at any one of 4 shops. I can give it
away to any one of 7 people. I can, therefore, purchase and give
it away in any one of 28 different ways.

A product of two factors is to be made by selecting the first
factor from the numbers a, b, ¢, and then selecting the second factor
from the numbers z, ¥, 2z, 4, v. The number of possible products
is, therefore, 15. '

If a first thing can be done in » different ways, a second in r
different ways, and a third in s different ways, the three things
can be done in n X r X s different ways. This follows at once
from the fundamental principle, since we may regard the first
two things as constituting a single thing that can be done in nr

182
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ways, and then associate it with the third, making nr X s ways
of doing the two things, consisting of the first two and the third.

In the same way, if one thing can be done in 7 different ways, a
second in r different ways, a third in s, a fourth in ¢, ete., then all
can be done together in n X r X s X ¢. . . different ways.

Thus, n different presents can be given to x men and @ women
in (x + a)* different ways. For the first of the n presents can
be given away in (z + a) different ways, the second can be given
away in (z + @) different ways, and the third in (z + ) different
ways and so on. Hence, the number of possible ways of giving
away the n presents to (z + a) men and women is:

(x + a)(x + a)(x + a) . . .ton factors, or (z + a)~

102. Definitions. Every distinet order in which objects
may be placed in a line or row is called a permutation or an
arrangement. Every distinct selection of objects that can be
made, irrespective of the order in which they are placed, is called
a combination or group.

Thus, if we take the letters a, b, ¢, two at a time, there are six
arrangements, namely: ab, ac, ba, be, ca, cb, but there are only
three groups, namely: ab, ac, be.

If we take the three letters all at a time, there are six arrange-
ments possible, namely: abe, acb, bea, bac, cab, cba, but there is
only one group, namely: abe.

Permutations and combinations are both results of mode of
selection. Permutations are selections made with the understand-
ing that two selections are considered as different even though
they differ in arrangement only; combinations are selections made
with the understanding that two selections are not considered as
different, if they differ in arrangement only.

In the following work, products of the natural numbers like

1X2X3; 1X2X3X4X5; ete
are of frequent occurrence. These products are abbreviated by
the symbols 3! 5! and read “factorial three,” ‘“factorial five ”
respectively.

103. Formula for the Number of Permutations of n Different
Things Taken All at a Time. We are required to find how many
possible ways there are of arranging n different things in a line.
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Lay out a row of n blank spaces, so that each may receive one of
these objects, thus:

G R I R 0% il .- o Mk A R B
In the first space we may place any one of the n objects; therefore,
that space may be occupied in n different ways. The second
space, after one object has been placed in the first space, may be
occupied in (n — 1) different ways; hence, by the fundamental
prixciple, the two spaces may be occupied in n(n — 1) different
ways. Inlike manner, the third space may be occupied in (n — 2)
different ways, and, by the same principle, the first three spaces
may be occupied in n(n — 1) (n — 2) different ways, and so on.
The next to the last space can be occupied in but two different
ways, since there are but two objects left, and the last space
can be occupied in but one way by placing therein the last re-
maining object. Hence, the total number of different ways of
occupying the n spaces in the row with the n objects is the produect:

nn—1)Mm—2)...3:2-1
or,
n!

If we use the symbol P, to stand for the number of permutations.

of n things taken all at a time, then we write:
P, = n! (1)

104. Formula for the Number of Permutations of n Things
Taken r at a Time. We are required to find how many possible
ways there are of arranging a row consisting of r different things,
when we may select the r things from a larger group of n different
things.

For convenience in reasoning, lay out a row of r blank spaces,
so that each of the spaces may receive one of the objects, thus:

| 1 k2 |8 ooale=2] | ]

In the first space of the row, we may place any one of the n objects;
therefore, that space may be occupied in n different ways. The
second space, after one object has been placed in the first space,
may be occupied in (n — 1) different ways; hence, by the fun-
damental principle, the two spaces may be occupied in n(n — 1)
different ways. In like manner, the third space may be occupied
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in (n — 2) different ways, and hence, the first three may be
occupied in n{n — 1) (n — 2) different ways, and so on. The
last or rth space can be occupied in as many different ways as there
are objects left. When an object is about to be selected for the
rth space, there have been used (r — 1) objects (one for each of
the (r — 1) spaces already occupied). Since there were n objects
to begin with, the number of objects left is » — (r — 1) or
n — r + 1, which is the number of different ways in which the
last space in the row may be occupied. Hence, the formula:
P,,=nn-1)n-2) ... @m—-—r+1) 1)
in which P, ., stands for the number of permutations of n things
taken r at a time.
The formula, by multiplication and division by [ -7, becomes:

nn —1) ... @—r+Dn—-—1)n—-r—-1)...3-2-1
nm—r)(n—-r-—-1) ... 321
P n!
" (@-1)! @

This formula is more compact than the form (1) above, but the
fraction is not in its lowest terms.

Formula (1) is easily remembered by the fact that there are
just r factors beginning with » and decreasing by one. Thus we
have:

Puoy =10 X9 X8XT7X6X5X4

Exercises

1. How many permutations can be made of six things takenall at
atime?

2. How many different numbers can be made with the five digits
1,2, 3, 4, 5, using each digit once and only once to form each number?

3. The number of permutations of four things taken all at a time
bears what ratio to the number of permutations of seven things taken
all at a time?

4. How many arrangements can be made of eight things taken
three at a time?

6. How many arrangements can be made of eight things taken
five at a time?

6. How many four-figure numbers can be formed with the ten
digits 0, 1, 2, . . . 9 without repeating any digit in any number?
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7. How many different ways may the letters of the word algebra
be written, using all of the letters?

8. How many different signals can be made with seven different
flags, by hoisting them one above another five at a time?

9. How many different signals can be made with seven different
flags, by hoisting them one above another any number at a time?

10. How many different arrangements can be made of nine ball
players, supposing only two of them can catch and one pitch?

1056. Formula for the number of combinations or groups of n
different things taken r at a time.

It is obvious that the number of combinations or groups con-
sisting of r objects each that can be selected from n objects, is
less than the number of permutations of the same objects taken
r at a time, for each combination or group when selected can be
arranged in a large number of ways. In fact, since there are r
objects in the group, each group can be arranged in exactly r!
different ways. Hence, for each group of r objects, selected from
n objects, there exists r! permutations of r objects each. There-
fore, the number of permutations of » things, taken r at a time, is
r! times the number of combinations of n objects taken r at a
time. Calling the unknown number of combinations z, we have:

zrl = P, = S
(n — r)!
or, solving for x:
n!
ri(n —r)!
This is the number of combinations of n objects taken r at a time,
and may be symbolized:
n! (1)
ri(n — )!
This fraction will always reduce to a whole number. It may be
written in the useful form: .
c e (n = D) (1 R e T ) (2)
Mo 15283 ks T )

It 15 easily remembered in this form, for it has r factors in both

the numerator and the denominator. Thus for the number of

n, T
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combinations of ten things taken four at a time we have four
factors in the numerator and denominator, and
% e 10X 9X8X7
s BT

Exercises

1. How many different products of three each can be made with the
five numbers a, b, ¢, d, ¢, provided each combination of three factors
gives a different product.

2. How many products can be made from twelve different num-
bers, by taking eight numbers to form each product?

3. How many products can be made from twelve different num-
bers, by taking four numbers to form each product?

4. How many different hands of thirteen cards each can be held
at a game of whist?

6. In how many ways can seven people sit at a round table?

6. In how many ways can a child be named, supposing that there
are 400 different Christian names, without giving it more than three
names?

7. In how many ways can a committee of three be appointed
from six Germans, four Frenchmen, and seven Americans provided
each nationality is represented?

8. There are five straight lines in a plane, no two of which are
parallel; how many intersections are there?

9. There are five points in a plane, no three of which are collinear;

how many lines result from joining each point to every other point?

10. In a plane there are n straight lines, no two of which are parallel;
how many intersections are there?

11. In a plane there are n points, no three of which are collinear;
how many straight lines do they determine?

12. In a plane there are n points, no three of which are collinear,
except 7, which are all in the same straight line; find the number of
straight lines whch result from joining them.

13. A Yale lock contains five tumblers (cut pins), each capable of
being placed in ten distinet positions. At a certain arrangement of the
tumblers, the lock is open. How many locks of this kind can be made
so that no two shall have the same key?

14. In how many ways can seven beads of different colors be strung
80 as to form a bracelet?
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15. How many different sums of money can be formed from a dime,
a quarter, a half dollar, a dollar, a quarter eagle, a half eagle, and an

eagle?

106.* The Arithmetical Triangle. In deriving by actual mul-
tiplication, as below, any power of a binomial x 4+ a from the
preceding power, it is easy to see that any coefficient in the new
power is the sum of the coefficient of the corresponding term in the
multiplicand and the coefficient preceding it in the multiplicand.

Thus:
23 4+ 3ax?* + 3a%x + ad
z+a
x4 + 3ax® + 3a%2 + a%x
ax® 4+ 3a%r? 4+ 3adx 4 at

z* + 4ax3 4+ 6a%c? + 4a%x + at
or, erasing coefficients, we have:
1+34+3+1
141
1+343+1
1+3+341
1+4+6+4+1

from which the law of formation of the coefficients 1,4,6, . . .
is evident. Hence, writing down the coefficients of the powers

of z 4+ a in order, we have:

Powers k Coefficients
1 2 3 4 5 6 7 8 9 10 11
0 L
it 1 1
2 1 2 1
3 1 o3 3 1
4 1 -4 6 4 1
5 1 5 10 10 5 1
6 1 6F 355 20, 516 6 i
7 1 oid 77+ Dl S35 RERD . 7 1
8 i 8 28 56 v 05256 128 8 1
9 ik 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
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In this triangle, each number is the sum of the number above it
and the number to the left of the latter. Thus 84 in the 9th line
equals 56 + 28, ete. The triangle of numbers was used previous
to the time of Isaac Newton for finding the coefficients of any de-
sired power of a binomial. At that time it was little suspected
that the coefficients of any power could be made without first
obtaining the ocefficients of the preceding power. Isaac Newton,
while an undergraduate at Cambridge, showed that the coefficients
of any power could be found without knowing the coefficients of
the preceding power; in fact, he showed that the coefficients of
any power n of a binomial were functions of the exponent n.

The above triangle of numbers is known as the arithmetical
triangle or as Pascal’s triangle.

107. Distributive Law of Multiplication. The demonstration
of the binomial theorem may be based upon the following law of
multiplication: The product of any number of polynomials s
the aggregate of all the possible partial products which can be made
by taking one term and only one. from each of the polynomials.
This statement is merely a definition of ‘what is meant by the
product of two or more polynomials. (See appendix.) Thus:

(+ay+bd+o) =
zyz + ayz + bzz + cxy + abz + bex + cay + abe

Each of the eight partial products contains a letter from each
parenthesis, and never two from the same parenthesis. The
number of terms is the number of different ways in which a letter
can be selected from each of the three parentheses. In the present
case this is, by §101, 2 X 2 X 2 = 8.

108. Binomial Formula. It is required to write out the value
of (x + a)», where z and a stand for any two numbers and n is a
positive integer. That is, we must consider the product of the n
parentheses:

z+a)(z+a)(z+a) ... &+a
by the distributive law stated above.

First. Take an x from each of the parentheses to form one of
the partial products. This gives the term z» of the product.

Second. Take an a from the first parenthesis with an z from
cach of the other (n — 1) parentheses. This gives az~! as
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another partial product. But if we take a from the second paren-
thesis and an z from each of the other (n — 1) parentheses, we get
az*=! as another partial product. Likewise by taking a from any
of the parentheses and an z from each of the other (» — 1) paren-
theses, we shall obtain ax»~! as a partial product. Hence, the
final product contains n terms like ax»~!, or nax~~! is a part
of the product. ,

Third. We may obtain a partial product like a%z»~2 by taking
an g from any two of the parentheses, together with the z’s from
each of the other (n — 2) parentheses. Hence, there are as many
partial products like a2zn—2 as there are ways of selecting two a’s
from n parentheses; that is, as many ways as there are groups or
combinations of n things taken two at a time, or:

n(n — 1)

1-2
n(nl ;i) arz»~? is another part of the product.
Fourth. We may obtain a partial produect like a3z»—3 by taking
an a from any three of the parentheses together with the 2’s from
each of the other (n — 3) parentheses. Hence, there are as many
partial products like a3z»~2 as there are ways of selecting three a’s
from n parentheses, that is, as many ways as there are combing-

. H ot s
tions of n things taken three at a time, or M_)(n_g)'

1-2-3
Hence, 'r_z(_n_—_-l_lé(g;m a®c»~3 is another part of the product.

Hence,

In general, we may obtain a partial product like arz»—+ (where r
is an integer < n) by taking an a from any r of the parentheses
together with the x’s from each of theother (n — r) parentheses.
Hence, there are as many partial products like azz»— as there are
ways of selecting r ¢’s from n parentheses; that is, as many ways
as there are combinations of » things taken r at a time, or
_ﬁ(nL'—r)—' Hence, ;T@ﬁ.'__r)! arz~ stands for any term
in general in the product (z + a)=.

Finally, we may obtain one partial product like a» by taking an
a from each of the parentheses. Hence, a~ is the last term in the
product.
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Thus we have shown that:

(x+a)n-—-x»+naxn—l+_(__2.2 2xu-2+
n'
+m_r!(n r)|ax + ... +a

This is the binomial formula of Isaac Newton. The right side is
called the expansion or development of the power of the binomial.

It is obvious that the expansion of (z — a)» will differ from the
above only in the signs of the alternate terms containing the odd
powers of a, which, of course, will have the negative sign.

109. Binomial Theorem. The binomial expansion is a series,
that is, each term may be derived from the preceding term by a
deﬁmte law. This law is made up of two parts which may be
stated as follows:

(1) Law of Exponents. In any power of a binomial, x + a, the
exponent of x commences in the first term with the exponent of the
required power, and tn the following terms continually decreases by
unity. The exponent of a commences with 1 in the second term and
continually increases by unity.

(2) Law of Coeffictents. The coefficient in the first term 1s 1,
that in the second term is the exponent of the power; and if the
coefficient in any term be multiplied by the exponent of x in that
term and divided by the exponent of a, tncreased by 1, it will give the
coefficient in the succeeding term.

Exercises
1. Expand (v + 3y)’. Here z = wand ¢ = 3y. By the formula
we get:
u® + 5ut(3y) + 10ud(3y)? + 10u(3y)* + 5u(3y)i+ (3y)°
Performing the indicated operations, we obtain:
ub + 15u'y + 90udy? + 270u?y3+ 405uy* + 243y°
Expand each of the following by the binomial formula:

2. (r? — 2)°, 8. (1/2 + z)5.
3. (3b — 1/2)5. 9. (b2 — c2)s.
4. (c + z)°. 10. (3a + 1/2)%.
6. (222 — 1)°. 11. (5d — 3y)s.
6. (1 — a)~. 12. (3z% — 1)

7. (—z + 2a)". 13. (\/a + )%



192 ELEMENTARY MATHEMATICAL ANALYSIS [§110

14. (2% 4 2%8)s, 17. (a + [z + y])>
16. (a~2 — b¥)4, 18. (a + b — y)3.
16. (\/ab — {/ab)®. 19. (22 + 2az + a?)3.

110. Binomial Theorem for Fractional and Negative Exponents.
It is proved in the Calculus that:

n(n2;-1)gc2 i_n(n—;)!(n—Z)xa_‘_

lxa)r=1%nz+
is true for fractional and for negative values of n, provided z is
less than 1 in absolute value. The number of terms in the expan-
siont is not finite, but is unlimited, and ‘the series or expansion
converges or approaches a definite limit as the number of terms of |
the expansion is increased without limit, provided |z| < 1.

By the above formula, we have:

ViFz=1+1/2z+ ﬂ&%{ﬁ;l)xz

LT sl

=14 1/2)x — (1/8)a* + (1/16)z® — (5/128)z*

If
z=1/2
this becomes:

NV3/2=1+41/4—1/324 1/128 — 5/2048 + . . .

Therefore, using five terms of the expression:

2507
V3/2 = 2048 = 1.2241

The square root, correct to four figures, is really 1.2247. Thus the
error in this case is less than one-tenth of 1 percent if only five
terms of the series be used. The degree of accuracy in each case
is dependent both: upon the value of n and upon the value of z.
Obviously, for a given value of n, the series converges for small
values of x more rapidly than for larger values.

As another example, suppose it is required to expand (1 — )~
By the binomial theorem:
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TE (s g s
o o Di( =

4 ( 31')( . 2)(—-ar:)‘+, !
SN 0 o

If five terms of the series be used, the error is 1/16 for z = 1/2,
or about 3 percent.

111. Approximate Formulas. If z be very small, the expansion
of:

1—-2a)1

il

(—2)

(1+x)"=1+nx+~(—1) 224 ...

is approximately:
(1+x)"?1+nx ! (1)
since z2, z° and all higher powers of 2 are much smaller than z.

Thus, using the symbol = to express “approximately equals,” we
have, for example:

(1.01)* = 1.03
for (1 + 1/100)* = 1 + 3/100

The true value of (1.01)? is 1.030301, so that the approximation is
very good.
Likewise:

Al

1—-—x"=1—nx (2)
if z be small.

If z, y, and 2z be small compared with unity, the following
approximate formulas hold:

A+0Q+y~=1+x+y 3)
A+x/QA+y) =1+x—y )
QA+00+y)A+2)s1+x+y+z (5)

The approximation formulas are proved as follows:

A4+ 2)14+y)=14+z+y+2y=1+2z+y, for zy is small
compared to z and y.

14z
%1'*'?!; =14+z—y +Y Ty i & e y, for the fractionis

small compared to z and y.

A+ +A+2)dFQ+e+y) A+l +2z+y+e
13
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112.* The Progressive Mean. In using scientific data it is often
desirable to determine the so-called progressive mean of a highly
fluctuating magnitude. Thus if we wish to determine whether
or not the rainfall at New York has on the average been increasing
or decreasing in the last 100 years, we form an average for each
successive group of five or six or seven or other convenient number
of years, and tabulate and compare these averages. In finding
these averages, however, the various years are weighted as

30

25

rogressive Mean
1
]
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H-Medn Annual Rainfal
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i —f
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o
|

Incheslof Rainfall

Fic. 84.—Annual, Mean, and Progressive Mean Rainfall (by 5-yr-
Periods) at Dodge, Kansas.

follows: If the numbers whose progressive means are desired be
ay, as, a3, as, . . . , then the progressive mean corresponding
to a1o would be, for five-year intervals,
M= (aa + 4ag + 6ai0 + 4an + alz) /16

and for seven-year intervals,

m = (a-, +‘608 + 15&9 + 20(110 + 15(111 + 6(112 + (113) /64
In these expressions the coefficients are the binomial coefficients
and the divisors are the sum of the coefficients. See Fig. 84.
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4. On the ocean how far can one see at an elevation of k feet above
its surface?

Call the radius of the earth a(= 3960 miles), and the distance
one can see d, which is along a tangent from the point of observation

to the sphere. Since h isin feet, and e + 52’%, d, and a are the sides
of a right triangle, we have (a 4 %/5280)2 = d? + a?
or: a?(1 + h/5280a)2 = d? 4 a2

A 4]

roi
me
1T
u}

Fic. 85.—Graphical Representation of the Values of the Binomial
Coefficients in the 999th power of a Binomial. The middle coefficients are
taken equal to 5, for convenience, and the others are expressed to that
scale also. . 1

Expanding by the approximate formula:

a?(1 4 2h/5280a) = d* + a?

or.
d? = 2ah/5280
=2 X 3960h/5280
= (3/2)h
or:
d = /(3/2)h

where d is expressed in miles and h is in feet. See §66, exercise 13.
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6. How much is the area of a circle altered if its radius of 100 cm-
be changed to 101 ¢cm.?
6. How much is the volume of a sphere, $xa?3, altered if the radius

be changed from 100 e¢m. to 101 e¢m.?

334
7. If the formula for the horse power of a ship is I.H.P. = 8—2‘%

where S is speed in knots and D is displacements in tons, what in-
crease in horse power is required in order to increase the speed from
fifteen to sixteen knots, the tonnage remaining constant at 5000?
What increase in horse power is required to maintain the same speed
if the load or tonnage be increased from 5000 to 55007

113.* Graphical Representation of the Coefficients of any Power
of a Binomial. If we erect ordinates at equal intervals on the
z-axis proportional to the coefficients of any power of a binomial,
we find that a curve is approximated, which becomes very striking
as the exponent is taken larger and larger. In Fig. 85, the ordi-
nates are proportional to the coefficients of the 999th power of
( + a). The drawing is due to Quetelet.

The limit of the broken line at the top of the ordinates in Fig. 85
is, as n is increased indefinitely, a bell-shaped curve, known as
the probability curve; its equation is of the form y = ae>+2, as
is shown in treatises on the Theory of Probability.



CHAPTER VII
PROGRESSIONS

114. An Arithmetical Progression or an Arithmetical Series,
is any succession of terms such that each term differs from that
immediately preceding by a fixed number called the common
difference. The following are arithmetical progressions:

(1) 1’ 2) 3! 4! 5'

(2) 4,6, 8, 10, 12.

(3) 32, 27, 22, 17, 12.

(4) 23, 3%, 5, 63, 73

(5) (u — ), u, (u+ ).

®6)ae,a+da+2d,a+3d, . ..
The first and last terms are called the extremes, and the other
terms are called the means.

Where there are but three numbers in the series, the middle
number is called the arithmetical mean of the other two. To find
the arithmetical mean of the two numbers a and b, proceed as
follows:

Let A stand for the required mean; then, by definition:

A—a=b—-A
whence:

A=(a+0b)/2
Thus, the arithmetical mean of 12 and 18 is 15, for 12, 15, 18 isan
arithmetical progression of common difference 3.

By the arithmetical mean or arithmetical average of several
numbers is meant the result of dividing the sum of the numbers by
the number of the numbers. It is, therefore, such a number that
if all numbers of the set were equal to the arithmetical mean, the
sum of the set would be the same.

The general arithmetical progression of n terms is expressed by:
Number of

term: o N2 3 4 T n
Progression: a, (a + d), (@ + 2d), (@ + 3d), . . . (a + [n — 11d)

198

RTINS,
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Here a and d may be any algebraic numbers whatsoever, integral
or fractional, rational or irrational, positive or negative, but n
must be a positive integer. If the common difference be negative,
the progression is said to be a decreasing progression; otherwise,
an increasing progression.

From the general progression written above, we see that a for-
mula for deriving the nth term of any progression may be written:

l=a+ (n—1)d (1)
in which ! stands for the nth term.

115. The Sum of n Terms. If s stands for the sum of n terms
of an arithmetical progression, and if the sum of the terms be
written first in natural order, and again in reverse order, we have:

a+@+d)+@+2)+ ... +@+h—-1d Q@
RS =3 £ T B In =1 s (2)
Adding (1) and (2), term by term, noting that the positive and
negative common differences nullify one another, we obtain:

B=@@+h+@+h+@+D+ ... +@+1) @

or, since the number of terms in the original progression is n, we
may write:

S
S

2s = na + 1)
or: s=n(a+ /2 @

In the above expression, (a + 1)/2 is the average of the first and
nth terms. The formula (4) states, therefore, that the sum equals
the number of the terms multiplied by the average of the first and
last.

116. An arithmetical progression is a very simple particular in-
stance of a much more general class of expressions known in mathe-
matics as series. A series is any sequence of terms formed accord-
ing to some law, such as:

+1D)+ @+ 224 (x+3)3 . . .
24 3x® 4+ Sx5-F . . .
cosz +cos2x +cos3r + . . .
It is only in a very limited number of cases that a short expression
can be found for the sum of n terms of a series. An arithmetical
progression is one of these exceptions.
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117. The formulas (1) and (4) above are illustrated graphically
by Fig. 86. Ordinates proportional to the terms of a progression
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Fia. 86.—Graphical Determi-
nation of the Sum of an A.P.

are laid off at equal intervals on the
line OX. The ends of these lines, be-
cause of the equal increments in the
terms of the series, lie on the straight
line MN. By reversing terms and
adding, the sums lie within the rec-
tangle OK whose altitude is (a + 1).

The sum of an arithmetical pro-
gression is readily constructed. On
0Y, lay off the unit of measure O1;
and, to the same scale, n. On OX,
lay off (¢ +1). From 2 on OY draw
a line to (¢ + 1) on OX. From n on
0Y draw a parallel to the latter, cut-
ting OX in s, the required sum. This
construction has little value, except
that it illustrates that s, for all
values of a and d, increases indefi-
nitely in absolute value as n increases
without limit, or, using the equiva-
lent terms already explained, that
s becomes infinite as n becomes in-
finite.

118. Formula (1), §114,enables us to obtain the value of any
one of the numbers, [, a, n, d, when three are given. Thus:

(1) Find the 100th term of:

3+8+4+13+ . ..
Here: a=3,d=5 n=100
therefore, l=34+99X5=1498
(2) Find the number of terms in the progression:
547494 ... +39
Here: a=5d=21=239
whence: 39=5+(n—1)2
Solving for n: =418
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(3) Find the common difference in a progression of fifteen terms
in which the extremes are 1/2 and 42%:

Here: a=1/21=421n =15
whence: 423 = 1/2 + (15 — 1)d
Solving: : G

Formula (4), §115, enables us to find the value of any one of the
numbers s, n, a, I, when the values of the other three are given.
Thus:

(5) Find the number of terms in an arithmetical progression in
which the first term is 4, the last term 22, and the sum 91.

Here: Rl =R — 7 =R Ol
whence: 91 = n(4 4+ 22)/2
solving for n: n=7

The two formulas, (1) §114 and (4) §115, contain five letters;
hence, if any two of them stand for unknown numbers, and the
values of the others are given, the values of the two unknown
numbers can be found by the solution of a system of two equa-
tions. Thus:

(6) Find the number of terms in a progression whose sum is
1095, if the first term is 38 and the difference is 5.

Here: s = 1095, a = 38, and d = 5
whence: =38+ (n—1)5 (1)
1095 = n(38 + 1) /2 (2)
From (1): l=233+ 5n 3)
From (2): 2190 = 38n + nl 4)
Substituting the value of I from (3) in (4), we get:
2190 = 71n + 5n? 5)

Solving this quadratic, we find:
n = 15, or — 29.2
The second result is inadmissible, since the number of terms
cannot be either negative or fractional.

Exercises

Solve each of the following:
1. Given,a =7,d = 4,n = 15; find land s.
2. Given,a = 17,1 = 350,d = 9; find nand s.
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. Given, a = 3, n = 50, s = 3825; find [ and d.

Given, s = 4784, a = 41,d = 2; find [ and n.

Given, s = 1008, d = 4,1 = 88; find @ and n.

. Find the sum of the first » even numbers.

. Find the sum of the first n odd numbers.

. Insert nine arithmetical means between — 7/8 and + 7/8.
9. Sum (a + b)? + (a? + b2 + (a — b)? to n terms.

10. Find the sum of the first fifty multiples of 7.

11. Find the amount of $1.00 at simple interest at 5 percent for
1912 years.

12. How long must $1.00 accumulate at 3} percent simple inter-
est until the total amounts to $100?

13. How many terms of the progression 9 + 13 + 17 +
must be taken in order that the sum may equal 624? How many
terms must be taken in order that the sum may exceed 7502

14, Show that the only right triangle whose sides are in arithmetical
progression is the triangle of sides 3, 4, 5, or a triangle with sides pro-
portional to these numbers.

119. Geometrical Progression. A geometrical progression
is a series of terms such that each term is the product of the
preceding term by a fixed factor called the ratio. The following
are examples:

(1) 3, 6, 12, 24, 48.

(2) 100, —50, 25, —121.

(3) 1/2, 1/4, 1/8, 1/16, 1/32.

4) a, ar, ar?, ar®, art .

The geometrical mean of two numbers, ¢ and b, is found as
follows: Let G stand for the required mean. Then, by the
definition of a geometrical progression:

Gla =b/G
whence:
or: G2 = ab
G = A/ab

Thus, 4 is the geometrical mean of 2 and 8. The arithmetical
mean of 2 and 8 is 5. The geometrical mean of n positive num-
bers is the value of the nth root of their product. Thus the geo-
metrical mean of:

8, 9and24is12 = V8 X 9 X 24
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120. The nth Term and the Sum of n Terms. If @ represents
the first term and r the ratio of any geometrical progression, the
progression may be written:

Number ofterm: 1 2 3 4 . . .n—1 n
Progression: DR OB AT T s a2, dann 2
Therefore, representing the nth term by !, we obtain the simple
formula:
1 = ar»? 1)

Representing by s the sum of n terms of any geometrical pro-

gression, we have:

SE=Ra otV a st s ekare =2 o gl
Factoring the right member:
s=all+r+r24+ . . . Fre24 )

But, by a fundamental theorem in factoring, ! the expression in the
parenthesis is the quotient of 1 — r» by 1 — r. Hence:

s=al—-r")/1—1) (2)
Another form is obtained by introducing ! by the substitution:
arr1 = ‘
s=(@—1)/1 -1 (3)

121. Formula (1), or (2), enables one to find any one of the four
numbers involved in the equations when three are given. The
two formulas (1) and (2) considered as simultaneous equations
enable one to find any two of the five numbers a, r, n, [, s, when the
other three are given. But if 7 be one of the unknown numbers, the
equations of the system may be of a high degree, and beyond the
range of Chapter VII, unless solved by graphical means. If n be
an unknown number, an equation of a new type is introduced,
namely, one with the unknown number appearing as an exponent.
Equations of this type, known as exponential equations, will be
treated in the chapter on logarithms. The following examples
illustrate cases in which the resulting single and simultaneous
equations are readily solved.

(1) Insert three geometrical means between 31 and 496.

Here:
a=31, l=496,andn =5
1See Appendix.
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whence:
496 = 31 X r4
or:
r4 =116
therefore:
r =49

consequently, the required means are either 62, 124, and 248,
or — 62, + 124, and — 248.

(2) Find the sum of a geometrical progression of five terms,
the extremes being 8 and 10,368.

Here:
a=38, 1=10368 andn =25
whence:
10,368 = 8r* (1)

s = (10,3687 — 8) [(r — 1) (2)

From the first,
r==6
whence, from the second,
s = 12,440

(3) Find the extremes of a geometrical progression whose sum
is 635, if the ratio be 2 and the number of terms be 7.
Here:
§=0635,r=2andn =7
whence:
l=q-28 (1)
635 = (2l — a) /1 (2)
Substituting ! from (1) in (2), we get:
635 = 128a — a
whence:
a = 5, hence, I = 320

(4) The fourth term of a geometrical progression is 4, and the
sixth term is 1. What is the tenth term?
Here:
ar® = 4 1)
and:
ars =1 (2)
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whence, dividing (2) by (1):
r2=1/4,0orr= £1/2
therefore, from (1):
@ = A E¥— 30
Then the tenth term is:
+32( +£1/2)° = 1/1'6

Exercises

1. Find the sum of seven termsof 4 +8 + 16 + . . .
2. Find the sum of —4 +8 — 16 4+ . . . to six terms.
3. Find the tenth term and the sum of ten terms of 4 — 2 +

4. Find r and s; given @ = 2,1 = 31,250, n = 7.

6. Insert two geometrical means between 47 and 1269.

6. Insert three geometrical means between 2 and 3.

7. Insert seven geometrical means between a8 and b8,

8. Show that the quotient (e — b")/(a — b) is a geometrical
progression.

9. Sumar 1 4zt~ 2y 4+ 2ar~3y2 4 . . . ton terms.

10. Sum 2"~ t —zr~ 2y + 2"~ 3y — . . | to n terms.

11, Suma +ar~*4ar—24 . . . ton terms.

12. If @, b, ¢,d, . . . arein geometrical progression, then a? + b2,
b 4 ¢? ¢+ d? . . . are also in geometrical progression.

13. If any numbers are in geometrical progression, their differences
are also in geometrical progression.

14. A man agreed to pay for the shoeing of his horse as follows:
1 cent for the first nail, 2 cents for the second nail, 4 cents for the third
nail, and so on until the eight nails in each shoe were paid for. What
did the last nail cost? How much did he agree to pay in all?

122. Compound Interest. Just as the amount of principle and
interest of a sum of money at simple interest for n years is ex-
pressed by the (n + 1)st term of an arithmetical progression, so,
in the same way, the amount of any sum at compound interest for
n years is represented by the (n 4+ 1)st term of a geometrical pro-
gression. Thus, the amount of $1.00 at compound interest at
4 percent for twenty years is given by the expression:

1(1.04)2¢

The amount of d dollars for n years at r percent is:

d (1 8 1’30) v
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The present value of $1.00, due twenty years hence, estimating
compound interest at 4 percent, is:

1/(1.04)20

The value of $1.00, paid annually at the beginning of each year
into a fund accumulating at 4 percent compound interest, is, at
the end of that period »

(1.0 + (1.0d)2+ . . . (1.04)2

which is the sum of the terms of a geometrical progression of
twenty terms. i

Problems of this character in compound interest and in com-
pound disecount, and the more complicated problems that proceed
therefrom, are basal to the theory of annuities, life insurance and
depreciation of machinery and structures. The computation of
the high powers involved necessitates the postponement of such
problems until the subject of logarithms has been explained.

123. Infinite Geometrical Progressions. If the ratio of a
geometrical progression be a proper fraction, the progression is
said to be a decreasing progression. Thus:

1,1/2,1/4,1/8,1/16, and 1/3,1/9, 1/27, 1/81

are decreasing progressions. If we increase the number of terms
in the first of these progressions the sums will always be less than 2;
but the difference 2 — s will become and remain less than any
preassigned number. By definition, 2 is, therefore, the limit of
this sum.! The sum of n terms of this particular progression
should be written down by the student for a number of successive
values for n, thus:

Number of terms:

bl 3, 4, SR & ) cai ity

Sum: 1,14 1/2,1+ 3/4,147/8, 1+ 15/16,. . . 1+ 511/512,
The nth term differs from.2 by only 1/2» -1

1t is easy to show that the sum of every decreasing geometrical
progression approaches a fixed limit as the number of terms
becomes infinite. . For, write the formula:

18ee definition, §80.
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in the form:

a ar®
o b g ()

8

If we suppose that r is a proper fraction and that n increases with-
out limit, then r» can be made less than any assigned number, for
the value of any power of a proper fraction decreases as the ex-
ponent of the power increases. As the other parts of the second
fraction in (1) do not change in value as n changes, the fraction
as a whole can be made smaller than any number that can be
assigned. Hence, we write:

lim S VAT
Tl 1 o el @)
Exercises

As n = o, find the limit of each of the following:
1.1/2 -1/44+1/8 —1/16 +

Here:
a=1/2, r = —-1/2
whence, the limit s = S =1/3
: RS SNV :

270:3838 ) v
Here: a'=3/10,7,=1/10
whence, the limit: rEs __31%% =1/3.

S5 0 R e e

£ 0272727, .".

6. 0.279279279 . . .

6. 1/3 —1/6 +1/12 — . . .

7. 4408 +016 4 . . .

8. Express the number 8 as the sum of an infinite geometrical

progression whose second term is 2.

124. Graphical representation of the terms and of the sum of a
geometrical progression: If lines proportional to the terms
of an arithmetical progression be erected at equal intervals normal
to any line, the ends of the perpendiculars will lie on a straight
line, as already explained in §117. We shall now explain
a corresponding construction for a geometrical progression.
First, note that all the essentials of a geometrical progression may
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be studied if we assume the first term to be unity, for the number
a occurs only as a single constant multiplier in each term, and
also occurs in the same manner in the formulas for 7 and s. There-
fore, by taking a-fold these expressions in a geometrical series
whose first ‘term is 1, the results are obtained for the more
general case.

Torepresent the geometrical series 1 4+ r 472 4973 + . . . +
r»=1 graphically, lay off OM =1 on 0Y, OS; =1 on OX S1P1
r on the unit line, and draw MP;. Draw the arc P;S; and erect

O Sh S ¥ S 8 Sa Ss
Fia. 87.—Graphical Construction of the Sum of a G. P. r > 1,

P3S,. Draw the arc P»S; and erect P3S;. Continue this con-
struetion until you draw the arc P,-iS, and erect P,S,. The
series of trapezoids OMS:Pi, SiPiPaS:, S:P.P3Ss, . . .,
Sa-1Paw1P.S. are similar and, since PiS; = r X OM, it follows

that P,S, = TP;S], P3S; = TPgSz, Ty P.Sn = P18
Hence we have:
=0 S =5
PSS =88:=r ..0S:=1+r= sum of 2 terms
PSSy =88:=72..08;3=1+7r + 2 = sum of 3 terms
P3iS3=884=7r3..08:=1+7r+4r2 4 r3 = sum of 4 terms
PosSi-1=8a-18a=7108, =1+ r+r2 4+ ... rl=

sum of n terms.
Fig. 87 shows the series whose ratio is r = 1.2. Fig. 88 shows
the series whose ratio is 0.8.
The line MP; has the slope (r — 1) in Fig. 87 and the slope
— (1 — r) in Fig. 88. 1In both, its Y-intercept is 1. Its equation
Y

1 —
is, in both cases, y = (r— Dz + 1 or 2z = jiadgh In both
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figures, when y = P,S, = r~, # = OS,. Substituting these values
1 - A
for x and y, we get for the sum of n terms, S = Tely: Fig.
87 shows that when the number of terms is allowed to increase
without limit, the sum OS, also increases without limit. Fig.
88 shows that when the number of terms is made to increase
without limit, the sum OS. approaches OL as a limit. Now the

value of OL is the value of z when y = 0. Hence the limit
: 1
of the sum of the progression, or OL = e

Consult also §7, problem 6, exercise 5 and Figs. 13, 14.

In Figs. 87 and 88 the ordinates OM, Sy Py, S: P, . . . repre-
senting the successive terms of the geometrical progressions, were
not erected at equal intervals along OX. If the ordinates repre-
senting the successive terms of the progressions be erected at equal
intervals along OX, the line MP,P,P; . . . passing through
the ends of the ordinates will be a curve and not a straight line.

(o] S S, Ss S: Ss L
Fi1c. 88.—Graphical Construction of the Sum of a G. P. r < 1.

To construct this curve, a geometrical construction different from
that given above is to be preferred. Near the lower margin of a
sheet of 83 X 11-inch unruled paper lay off a uniform seale of
inches and draw vertical lines through the points of division, as
shown in Fig. 89. Select one of these for the y-axis, and on the
unit line lay off the given ratio of the progression 1N = r. Then
divide the y-axis proportionally to the successive powers of r,
either by the method of problem 6, §7, Fig. 11, or by the
method shown in Fig. 89. Through the points of division oo the
y-axis draw lines parallel to the z-axis, thus dividing the plane
into a large number of rectangles. Starting at the point M

(0, 1) sketch free hand the diagonals of successive cornering
14
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rectangles, rounding the results into a smooth curve as shown.
Then the relation between ordinate ¥ and abscissa x for the values
ofz = —2, —-1,0, 1, 2, 3, ete., is given by the equation y = r=.
Fig. 89 is drawn for r = 3/2 so that the curve is y = (3/2)=.

The method used in Fig. 89 may be explained as follows:
Draw the lines y =2 and y = rz. From the point (1, 7)
on y = rx draw a horizontal line to y = z, thence a vertical line
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Fia. 89.—Graphical Construction of the Successive Terms of a G. P.
In the diagram r = 3/2, and the curveis y = (3/2).

to y = rz, ete., thereby forming the ‘“‘stairway’ of line segments
between y =  and y = rz as shown in the figure. Then the
points, N, P, @, etc., have the ordinates r, 7% 73, etc., as required,
for, to obtain the ordinate of P, or PD, the value of z used was
OD = r, hence P is the point on y = rx for x =7, or y =
PD = r2 Likewise @ is by construction the point on y = rx
for x = r?, hence the y of the point @ = r X r? = r3 etec.

The figure shows the process for finding r-%, r=% etc. In
Chapter VIII a method will be explained for locating intermediate
points on the curve.
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The curve generated by the method described above is one of
the most important curves in mathematies.: In general,it is seen
that the points located on the curve MN always satisfy an
equation of the form .

Ye=WEE
where 7 is a constant. This is called an exponential equation
and the curve is known as the exponential or compound interest
curve.

Note that the ordinates y to the right of M increase rapidly as =
increases and that the ordinates to the left of M decrease very
slowly as x decreases; that is, the curve rapidly leaves the positive
z-axis, but slowly approaches the negative z-axis as an asymp-
tote. These results are exactly reversed in case r < 1.

125.* Harmonical Progressions. A series of terms such that
their reciprocals form an arithmetical progression are said to form
an harmonical progression. The following are examples:

(1) 1/2,1/3,1/4,1/5.

G RIE/5, 10, 1/13.

(3 1z — ), 1/z, 1/(x + y).

4) 1/3,1, — 1, —1/3.

(5) 4,6, 1‘)

(6) 1/a, 1/(@a+d), 1/(a+ 2d), .

Although harmonical progressions are of such a simple character,
no simple expression has been found for the sum of n terms. Our
knowledge of arithmetical progressions enables us to find the
value of any required term and to insert any required number
of harmonical means between two given extremes, as in the
examples below.

(1). Write six terms of the harmonical progression 6, 3, 2.

We must write six terms of the arithmetical progression,
1/6, 1/3, 1/2. The common difference of the latter is 1/6, so
that the arithmetical progression is 1/6, 1/3,1/2,2/3,5/6, 1, and
the harmonical progression is 6, 3, 2, 1.5, 1.2, 1.

(2) Insert two harmonical means between 4 and 2.

We must insert two arithmetical means between 1/4 and 1/2;
these are 1/3 and 5/12, whence the required harmonical means
are 3 and 2.4.
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126.* Harmonical Mean. The harmonical mean is found as
follows: Let the two numbers be @ and b and let H stand for the
required mean. Then we have:

1/H—1ja=1/b—1/H
That is:
2/H=1/a+ 1/b = (a + b) [ad
whence: )
H = 2ab/(a + b) (1)

Thus the harmonical mean of 4 and 12 is 96/(4 + 12) = 6. .
By the harmonical mean of several numbers is meant the reciprocal
of the arithmetical mean of their reciproecals. Thus the har-
monical mean: of 12, 8 and 48 is 13+%.

1)
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F1ec. 90.—The Relation Between the Arithmetical, Geometrical and Har-
monic Means.

127.* Relation between A, G, and H. As previously found:
A= (a+b)/2 G= Vab, H= 2ab/(a + b)

whence:
AH = ab
but:
ab = G2
hence:
AH = G?
or:

G = YAH (1)
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That is to say, the geometrical mean of any two positive numbers
1s the same as the geometrical mean of their arithmetical and
harmonical means.

The arithmetical, geometrical and harmonical means may be
constructed graphically as in Fig. 90. Draw the circle of diameter
(a +b) =0OM + MK. Then the radius is the arithmetical
mean A. Erect a perpendicular at M. Then MG is the geomet-
rical mean. MakeOG’ = MG and draw CQ’. Draw G'H perpen-
dicular to CG’. Then OH is the harmonical mean, since

06’ = NOC x OH
Now A > G > H;for from the figure, MG < CA. Therefore,
the angle G’CO is less than 45° and also its equal HG'O is less

than 45°. Therefore, HO < OG’ which establishes the in-
equality.

Exercises

1. Continue the harmonical progression 12, 6, 4.
2. Find the difference: (1.8 +1.2 + 0.8 + . . . to 8 terms)
—(18+12+4+06+ . . . to 8 terms).
3. If the arithmetical mean between two numbers be 1, show that
the harmonical mean is the square of the geometrical mean.



CHAPTER VIII

THE LOGARITHMIC AND THE EXPONENTIAL
FUNCTIONS

128. Historical Development. The almost miraculecus power
of modern calculation is due, in large part, to the invention of
logarithms in the first quarter of the seventeenth century by a
Scotchman, John Napier, Baron of Merchiston. This invention
was founded on the simplest and most obvious of principles, that
had been quite overlooked by mathematicians for many genera-
tions. Napier’sinvention may beexplained as follows:! Let there
be an arithmetical and a geometrical progression which are to be
associated together, as, for example, the following:

Ojedliien 255073, | 4, Saio e 7, 8, o 10
1, 2, 4, 8, 16, 32,° 64, 28, 256, 512, ‘1024
Now the product of any two numbers of the second line may be
found by adding the two numbers of the first progression above
them, finding this sum in the first line, and finally taking the num-
ber lying under it; this latter number is the product sought. Thus,
suppose the product of 8 by 32 is desired. Over these numbers
of the second line stand the numbers 3 and 5, whose sum is 8.
Under 8 is found 256, the product desired. Now since but a
limited variety of numbers is offered in this table, it would be
useless in the actual practice of multiplication, focr the reason
that the particular numbers whose product is desired would
probably not be found in the second line. The overcoming
of this obvious obstacle constitutes the novelty of Napier’s inven-
tion. Instead of attempting to accomplish his purpose by ex-
tending the progressions by continuation at their ends, Napier
proposed to insert any number of infermediate terms in each
progression. Thus, instead of the portion
0, 13, -aa
1,- 2, S BE6
of the two series we may write:

1 Merely the fundamental principles of the invention, not historical details, are
given in what follows.

214
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0, g2l i 20 (e 25, sl 3 3%, Jud
1, ' AZBMN2y WN/B, 4 X/8D; <8, A/128) 18

by inserting arithmetical means between the consecutive terms
of the arithmetical series and by inserting geometrical means
between the terms of the geometrical series. Let these be
computed to any desired degree of approximation, say to two
decimal places. Then we have the series

A.P. G.P.
0.0 1.00
0.5 1.41
1.0 2.00
1.5 2.83
2.0 4.00
2.5 5.66
3.0 8.00

Again inserting arithmetical and geometrical means between the
terms of the respective series we have:

A P, GRiet
0.00 1.00
0.25 i)
0.50 1.41
0.75 1.69
1.00 2.00
1.25 2.38
1.50 2.83
1.75 3.36
2.00 4.00
2.25 4.76

By continuing this process each consecutive three figure number
may finally be made to appear in the second column, so that, to
this degree of accuracy, the product of any two such numbers
may be found by the process previously explained. The decimal
points of the factors may be ignored in this work, as for example,
the product of 2.38 X 14.1 is the same as that of 238 X 14.1
except in the position of the decimal point. The correct position
of the decimal point can be determined by inspection after the
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significant figures of the product have been obtained. Using
the above table we find 2.38 X 14.1 = 33.6.

The above table, when properly extended, is a table of loga-
rithms. As geometrical and arithmetical progressions different
from those given above might have been used, the number of
possible systems of logarithms is indefinitely great. The first
column of figures contains the logarithms of the numbers that
stand opposite them in the second column. Napier, by this
process, said he divided the ratio of 1.00 to 2.00 into ““ 100 equal
ratios,” by which he referred to the insertion of 100 geometrical
means between 1.00 and 2.00. The ‘“number of the ratio”
he called the logarithm of the number, for example, 0.75 opposite
1.69, is the logarithm of 1.69. The word logarithm is from two
Greek words meaning “‘ The number of the ratios.” In order to
produce a table of logarithms it was merely necessary to compute
numerous geometrical means; that is, no operations except multi-
plication and the extraction of square roots were required. But
the numerical work was carried out by Napier to so many decimal
places that the computation was exceedingly difficult.

The news of the remarkable invention of logarithms induced
Henry Briggs, professor at Gresham College, London, to visit
Napier in 1615. It was on this visit that Briggs suggested the ad-
vantages of a system of logarithms in which the logarithm of
1 should be 0 and the logarithm of 10 should be 1, for then it would
only be necessary to insert a sufficient number of geometrical
means between 1 and 10 to get the logarithm of any desired
number. With the encouragement of Napier, Briggs undertook
the computation, and in 1617, published the logarithms of the
first 1000 numbers and, in 1624, the logarithms of numbers from
1 to 20,000, and from 90,000 to 100,000 to fourieen decimal
places. The gap between 20,000 and 90,000 was filled by a Hol-
lander, Adrian Vlacq, whose table, published in 1628, is the source
from which nearly all the tables since published have been
derived.

129. Graphical Computation of Logarithms. In Fig. 89 the
terms of a geometrical progression of first term 1 and ratio IN = r
are represented as ordinates arranged at equal intervals along OX.
T'ig. 89 is drawn to scale for the value of » = 1.5. Fig. 91 is
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a similar figure drawn for r = 2, in which a process is used for
locating intermediate points of the curve, so that the locus may
be sketched with greater accuracy. The linesy = zandy = rx
(in this case y = 2z) are drawn as before, and the “stairway”
constructed as before (see §124). Vertical lines drawn

throughz = — 2, — 1,0,1,2,3, . . . and horizontal lines drawn
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F1a. 91.—Graphical Construction of the Curve y = 27,

through the horizontal tread of each step of the stairway divides
the plane into a large number of rectangles. Starting at M
and sketching the diagonals of successive cornering rectangles
the smooth curve MNP is drawn. Intermediate points of
the curve are located by doubling the number of vertical lines by
bisecting the distances between each original pair, and then
by increasing the number of horizontal lines in the following man-

ner: Draw the line y = Vrax (in the case of the Fig., y = V2 z).
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At the points where this line cuts the vertical risers of each step
of the “stairway’ (some of these points are marked A, B, C
in the diagram) draw a new set of horizontal lines. Kach of the
original rectangles is thus divided into four smaller rectangles.
Starting at M and sketching a smooth curve along the diagonals
of successive cornering rectangles, the desired graph is obtained.

By the use of the straight liney = Vr z another set of intermedi-
ate points may be located, and so on, and the resulting curve
thus drawn to any degree of accuracy required. In explaining
this process, the student will show that the method of construc-
tion just used consists in the doubling of the number of horizontal
lines of the figure by the successive insertion of geometrical means
between the terms of a geometrical progression, while at the same
time the number of vertical lines is successively doubled by
insertion of arithmetical means between the terms of an arith-
metical series. Thus the graphical work of construction of the
curve corresponds to the successive insertion of geometrical and
arithmetical means in the two series discussed in the preceding
section.

As explained above, the ordinate y of any point of the curve
MNP of Fig. 91 is a term of a geometrical progression, and the
abscissa « of the same point is the corresponding term of an
arithmetical progression. Since, when y is given, the value of z
is determined, we say, by definition, that z is a function of y
(§4). This particular functional relation is so important
that it is given a special name: = is called the logarithm of y,
and the statement is abbreviated by writing

z = log Y,

but to distinguish from the case in which some other geometrical
progression might have been used, the ratio of the progression
may be written as a subscript, thus:

z = log,y

which is read: “z is the logarithm of y to the base r.”

If we assume that the process of locating the successive sets of
intermediate points by the construction of successive geometrical
means will lead, if continued indefinitely, to the generation of
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the curve MNP without breaks or gaps, then we may say that in
the equation:

; x = log,y (1)
the logarithm s a function of y defined for all positive values of y
and for all values of x.

As a matter of fact, both the arithmetical and the geometrical
method given above defines the function or the curve only for
rational values of z;that is, the only values of z that come into
view in the process explained above are whole numbers and
intermediate rational fractions like 23, 2%, 2%, 2%, 213, .

It is seen at once from the method of construction used in Fig.
91 that the values of y at z = 1, 2, 3, 4, ..., are respectively
y=r,1%1%r4 ..., and thevalues of y atx = 1/2,3/2,5/2, ...,
arey = r'% r’ r% respectively, and similarly for other inter-
mediate values of z. In other words, the equation connecting
the two variables  and y may be written

K Ry 2
Thus, when the values of a variable © run over an arithmetical
progression (of first term 0) while the corresponding values of a
vartable y run over a geometrical progression (of first term 1), the
relation between the variables may be written in either of the forms
(1) or (2) above. Equation (2) is called an exponential equation
and y is said to be an exponential function of z, while in (1) «
is said to be a logarithmic function of ¥. The student has fre-
quently been called upon in mathematics to express relations
between variables in two different or “inverse’” forms, analogous
to the two forms y = r= and = log, y. For example, he has
written either

y = x?
or:

T= 1Ay
and either

y = xn/z

T = y?/n

The graph of a function is of course the same whether the equation
be solved for z or solved for y.
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130. The student is required to construct the curves described
in the following exercises by the method of §129. The
inch, or 2 em., may be adopted as the unit of measure; the curves
should be drawn on plain paper within the interval from z =
—2tozx = 4+ 2.

If tangents be drawn to the curves at x = — 2, — 1, 0, 1, 2,
it 'will be noted, as nearly as can be determined by experiment,
that the several tangents to any one curve cut the X-axis at the
same constant distance to the left of the ordinate of the point
of tangency. This distance is greater than unity if r = 2 and less
than unity if r = 3. The value of r for which the distance is exactly
unity is later shown to be a certain irrational or incommensurable
number, approximately 2.7183 . . ., represented in mathematics
by the lelter e, and called the Naperian base. This number, and
the number 7, are two of the most important and fundamental
constants of mathematies.!

11t is not easy to locate accurately the tangent to a curve at a given point
of the curve. To test whether or not a tangent is correctly drawn at a point
P, a number of chords parallel to the tangent may be drawn. If the two end
points AB of the chord tend to approach the point of tangency P as the chord
is taken nearer and nearer to P (but always parallel to AB) then the tangent
was correctly drawn. If the two points A and B do not tend to coalesce at the
point P when the chord is moved in the manner described, then the tangent
was incorrectly drawn,

A number of instruments have been designed to assist in drawing tangents to
curves. One of these, called a ‘‘Radiator,’’ will be found listed in most catalogs

7
o

Fie. 92.—Mirrored Ruler for Drawing the Normal (and hence the Tan-
gent) to any Curve.

of drawing instruments. Another instrument consists of a straight edge provided
with a vertical mirror as shown in Fig. 92. When the straight edge is placed
across a curve the reflection of the curve in the mirror and the curve itself can
both be seen and usually the curve and image meet to form a cusp or angle.
The straight edge may be turned, however, until the image forms a smooth
continuation of the given curve. In this position the straight-edge is perpendicu-
lar to the tangent and the tangent can then be accurately drawn. See Gram-
berg, Technische Messungen, 1911.
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Exercises

Draw the following curves on plain paper using 1 inch as the unit
of measure; make the tests referred to in the second paragraph of

§130.

1. Construct a curve similar to Fig. 91, representing the equation

= log; y,fromz = — 2toz = 4 2,and draw tangents atz = — 1,
z=0,z=12=2.

2. Construct the curve whose. equation is # = logsy fromz = — 2
toz = + 2, and draw tangents at 2 = — 1,z =0,z =1,z = 2.

3. Construct the curve whose equation is z = logs.7 ¥, and show by
trial or experiment that the tangent to the curve at z = 2 cuts the z-axis
at nearly x = 1, that the tangent at £ = 1 cuts the z-axis at nearly
z = 0, that the tangent at £ = 0 cuts the z-axis at nearly z = — 1,
ete.

4. Draw the curve £ = logo.s ¥ and show that it is the same as the
reflection of z = log, y in the mirror z = 0.

Nore: The student must remember that the experimental testing
of the properties of the tangents to the curves called for above does not
constitute mathematical proof of the usual deductive sort familiar to
him. The experimental tests have value, however, in preparing the
student for the rigorous investigation of these same properties when
taken up in the calculus.

131. The Exponential Function. The expression a=, where a
18 any positive number except 1, has a definite meaning and
value for all positive or negative rational values of z, for the
meaning of numbers affected by positive or negative fractional
exponents has been fully explained in elementary algebra. The
process cutlined above likewise defines log, z for all rational
values of z, but the process would not lead to irraitonal values

of z, such as \/2: \3/5‘,‘etc. As a matter of fact the expression a=
has as yet no meaning assigned to it for irrational values of x;
thus 10V has no meaning by the definitions of exponents pre-
viously given, for /2, is not a whole number, hence 10V2 does
not mean that 10 is repeated as a factor a certain number of

times; also /2 is not a fraction, so that 10v? cannot mean a
power of a root of 10. But if any one of the numbers of the
following sequence

1 14 141 1.414 1.4142 1.41421
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be used as the exponent of 10, the resulting power can be com-
puted to any desired number of decimal places. For example,
101-41js the 141th power of the 100throot of 10;to find the 100th
root we may take the square root of 10, find the square root of
this result, then find its 5th root, finally finding the 5th root
of this last result.

If the various powers be thus computed to seven places we find:

TOES = 25.11887 . . .
10142 = 25.70396 . . .
LOKA = 25.94179 . . .
104142 = 25.95374 . .

1014141 = 25.95434 . . .
10141413 = 25 05452 . . .
1014142185 = 25 05455 . . .

Now the sequence of exponents used in the first column are
found by extracting the square root of 2 to successive decimal
, places. If the sequence in the second column approaches a limit,

this limit is taken by definition as the value of 10v2. 1 1s-shown
in higher mathematics that such a limit in this and similar cases
always exists and consequently that a number with an irrational
exponent has a meaning. In this book we shall assume, without
a formal proof, that az has a meaning for irrational values of z.

To summarize: In order logically to complete the definition of
a= for irrational values of z, and to set forth other important
properties, we would be required to proceed as follows:

(1) It must be shown that if x be an always rational variable
approaching an irrational number n as a limit, that the limit of
a® exists. The notation a*, where x is rational, is understood to
mean the positive value of a# so that the limit of a=, when it is
shown to exist, will necessarily be a positive number.

(2) The above described limit of az must be taken as the defini-
tion of a», where n is the irrational number approached by z as
a limit.

(3) It must be shown that a= is a continuous function of z.

(4) It must be shown that the fundamental laws of exponents
apply to numbers affected with irrational exponents.

When it is shown, or when it is assumed, that a value of
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always exists which will satisfy the equation az = y, where a
and y are any given positive numbers, then the expression a=
is called the exponential function of x with base a; otherwise a= is
defined only for rational values of . il

132. Definitions. In the exponential equation a= = y:

The number ¢ is called the base.

The number y is called the exponential function of z to the base
a, and is sometimes written ¥ = exp. .

The number z is called the logarithm of y to the base a, and
is written r = log,y. Thus in the equation a* = y, z may be
called either the exponent of a or the logarithm of y.

The two equations:

Yy =as

z = log.y
express exactly the same relations between z and y; one equation
is solved for x, the other is solved for y. The graphs are identical,
just as the graphs of y = 22 and ¢ = + A/¥ are identical.

See also Anti-logarithm, §142.

133. Common Logarithms. In the equation 10: =y, z is
called the common logarithm of y. It is also called the Brigg’s
logarithm of y. Thus, the common logarithm of any number is
the exponent of the power to which 10 must be raised to produce
the given number. Thus 2 is the common logarithm of 100,
since 102 = 100; likewise 1.3010 will be found to be the common
logarithm of 20 correct to 4 decimal places, since 101.3010
= 20.0000 to 4 decimal places.

134. Systems of Logarithms. If in the exponential equation
y = a% where a is any positive number except 1, different values
be assigned to ¥ and the corresponding values of  be computed
and tabulated, the results constitute a system of logarithms.
The number of different possible systems is unlimited, as already
noted in §128. As a matter of fact, however, only two
systems bhave been computed and tabulated; the natural or
Naperian or hyperbolic system, whose base is anincommensurable
number, approximately 2.7182818, and the common or Briggs’
system, whose base is 10. The letter e is set aside in mathematies
to stand for the base of the natural system.
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Natural logarithms of all numbers from 1 to 20,000 have
been computed to 17 decimal places. The common logarithms
are usually printed in tables of 4, 5, 6, 7 or 8 decimal places.

It will be found later that the graphs cf all logarithmic functions
of the form # = log. ¥ can be made by stretching or by contract-
ing in the same fixed ratio the ordinates of any one of the logarith-
mic curves. For that reason numerical tables in more than
one system of logarithms are unnecessary.

In the following pages the common logarithm of any number n
will be written log », and not log;o 7; that is, the base is supposed
to be 10 unless otherwise designated; In z for log. z and lg z for
logio z are also used.

Exercises

Write the following in logarithmic notation.

1. 102 = 1000.
2. 10-3 = 0.001.
3. 10° = 1.

4. 112 = 121.
b. 16¢-25 = 42

6. e = Y.

7. 100°-25 = 1.7783.
8. 100.3010 —_ 2.

9. ot = a.

10. 1012, v = 4,

Express the following in exponential notation:

11. lOglo 4 = 0.6021.
12. log 10000 = 4.

13. log 0.0001 = — 4.

14. log: 1024 = 10.
15. log. a = 1.

16. log?100 =  2/3.
17. logs7 (1/3) = —1/3.

18. logmo 10 = 1/2.
19. log 1 = 0.

20. log. 1 = 0.

135. Graphical Table. In Fig. 93 is shown the graph of the
function defined by the two progressions whose use was suggested
by Briggs to Napier, and which are referred to in the last para-
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graph of §128. By inserting means three times between 0
and 1 in the arithmetical progression and between 1 and 10 in the
geometrical progression, we get i

A P or G. P. or Exponential
Logarithms Numbers Form of G. P.

0.000 1.000 | (05000
0.125 1.334 J TR
0.250 1.778 1Q0-250
0.375 2.371 100-375
0.500 3.162 i) 0=500
0.625 4.217 11()0:525
0.750 5.623 (A
0.875 7.499 Li(JEEST>
1.000 10.000 1000

10y
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Fig. 93.—The Curve L = log;oN.

If we let L stand for the logarithm of the number N, the
functional relation is obviously L = log;o N or N = 10% The
curve (Fig. 93) may now be used as a graphical table of logarithms
from which the results can be read to about 3 decimal places.

15
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The logarithms of numbers between 1 and 10 may be read directly
from the graph. Thus, logi, 7.24 = 0.860. If the logarithm is
between 0 and 1, the number is read directly from the graph.
Thus if the logarithm is 0.273, the number is 1.87.

If we multiply the readings of the N-scale by 10", we must add
n to the readings on the L-scale, for 10"N = 10X + ™,

If we divide the readings on the N-scale by 10", we must
subtract n from the readings on the L-scale, for N /10" = 10% — 7,

This fact enables us to read the logarithms of all numbers from
the graph, and conversely to find the number corresponding to
any logarithm. Thus we have, log 72.4 = 1.860, log 724 = 2.860,
log 0.724 = 0.860 — 1, log 0.0724 = 0.860 — 2.

If the logarithm is 1.273, the number is 18.7.

If the logarithm is 2.273, the number is 187.

If the logarithm is 0.273 — 1, the number is 0.187.

If the logarithm is 0.273 — 2, the number is 0.0187.

We observe that the computation of a three place table of
logarithms would not involve a large amount of work: such a table
has actually been computed in drawing the curve of Fig. 93.
The original tables of Briggs and Vlacq involved an enormous
expenditure of labor and extraordinary skill, or even genius in
computation, because the results were given to fourteen places
of decimals.

136. Properties of Logarithms. The following properties of
logarithms follow at once from the general properties or laws of
exponents.

(1) The logarithm of 1 is 0 in all systems. For a® = 1, that
is, logs 1 = 0. In Fig. 91, note that the curve passes through
(0, 1).

- (2) The logarithm of the base itself in any system is 1. For
a'= 1, that is, log. a = 1. In Fig. 91, by construction N is always
the point (1, ), where r is the ratio of the first or fundamental
progression; in the present notation, this is the point (1, a).

(3) Negative numbers have no logarithms. This follows at
once from §131, (1). In Figs. 89, 91, and 93, note that the
curves do not extend below the X-axis.

Nore: While negative numbers have no logarithms, this does not
prevent the computation of expressions containing negative factors
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and divisors. Thus to compute (287) X (— 374), find by logarithms
(287) X (374) and give proper sign to the result.

137. Logarithm of a Product. Let n and r be any two positive
numbers and let: ‘

logsn = z and logs7 = ¢ (1)
Then, by definiticn of a logarithm: ;
n=asandr = av 2)

Multiplying:
nr = a‘q? = a=*v
Therefore, by definition of a logarithm §132:
loganr=2+4+y
or, by (1)
log, nr = log, n + log, r 3)
Hence, the logarithm of the product of two numbers is equal to
the sum of the logarithms of those numbers.
In the same way, if log.s =z, then:
nrs = q=tvte
that is,
log. nrs = log. n + log.r + log.s

Exercises

Find by the formulas and check the results by the curve of Fig. 93.

1. Givenlog 2 = 0.3010, and log 8 = 0.4771; find log 6; find log 18.

2. Givenlog 5 = 0.6990 and log 7 = 0.8451; find log 35.

3. Given log 9 = 0.9542, find log 81.

4. Given log 386 = 2.5866 and log 857 = 2.9330; find the logarithm
of the product.

6. Given log 11z = 1.888 and log 11 = 1.0414; find log z.

138. Logarithm of a Quotient. Let n and r be any two
positive numbers, and let:
logan = z and logsr =y (1)
From (1) by the definition of a logarithm,
n = q* ‘7= aqv
Dividing, :
nfr =a* <+ av = q= v
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Therefore by definition of a logarithm,

logo(nfr) =2 — y
or by (1)
log.(n/r) = log. n — log, r (2)

therefore, the logarithm of the quotient of two numbers equals the
logarithm of the dividend less the logarithm of the divisor.

Exercises

Check the results by reading them off the curve of Fig. 93.

1. Given log 5 = 0.6990 and log 2 = 0.3010; find log (5/2); find
log 0.4.

2. Given log 63 = 1.7993, and log 9 = 0.9542; find log 7.

3. Given log 84 = 1.9243 and log 12 = 1.0792; find log 7.

4. Given log 1776 = 3.2494 and log 1912 = 3.2815; find log
1776/1912; find log 1912/1776.

6. Given log /12 = 0.4321 and log 12 = 1.0792, find log x.

139. Logarithm of any Power. Let n be any positive number
and let:

logsn = (1)
From (1), by the definition of a logarithm,
n=a*

Raising both sides to the pth power, where p is any number what-

soever,
nr = qr*

therefore, by definition of a logarithm,

loga(n?) = pzx
or by (1):

log.(n?) = p log.n (2)
therefore the logarithm of any power of @ number equals the logarithm
of the number multiplied by the index of the power.

The above includes as special cases, (1) the finding of the
logarithm of any integral power of a number, since in this case
p is a positive integer, or (2) the finding of the logarithm of any
root of a number, since in this case p is the reciprocal of the index
of the root.
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Exercises

1. Given log 2 = 0.3010; find log 1024; find log +/2; ﬁncﬁl logd/2.

2. Given log 1234 = 3.0913; find log +/1234. Find log v/1234.

3. Given log 5 = 0.6990; find log 5%; find log 5%.

4. Simplify the expression log 30/+/210 . .

Express by the principles established in §§137-139 the following
logarithms in as simple a form as possible:

6. log (/9 + v/3).

6. log (2/12 =+ v/6).

7. log (u# + u%).

8. log (10a%%/a*t b?).

9. Show that log (11/15) - log (490/297) — 2 log (7/9) = log 2.
10. Find an expression for the value of x from the equation 3= = 567.
SovuTion: Take the logarithm of each side

z log 3 = log 567
But log 567 = log (3* X 7) = 4log3 +log 7
therefore:

zlog3 =4log3 +log 7
or:
z =4 4+ (log 7)/(log 3).

11. Find an expression for z in the equation 5 = 375.

12. Given log 2 = 0.3010 and log 3 = 0.4771, find how many
digits in 6'°.

13. Find an expression for x from the equation:

GESGI = /510

14. Prove that log (75/16) — 2log (5/9) + log (32/243) = log 2.

140. Characteristic and Mantissa. The common logarithm
of a number is always written so that it consists of a positive
decimal part and an integral part which may be either positive
or negative. Thus log 0.02 = log 2 — log 100 = 0.3010 — 2.
Log 0.02 is never written — 1.6990.

When a logarithm of a number is thus arranged, special names
are given to each part. The positive or negative integral part is
called the characteristic of the logarithm. The positive decimal
part is called the mantissa. Thus, in log 200 = 2.3010, 2 is
the characteristic and 3010 is the mantissa. In log 0.02 =
0.3010 — 2, ( — 2) is the characteristic and 3010 is the mantissa.

Since log 1 = 0 and log 10 = 1, every number lying between 1
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and 10 has for its common logarithm a proper fraction—that
is, the characteristic is 0. Thus log 2 = 0.3010, log 9.99 =
0.9996, log 1.91 = 0.281. Starting with the equation:

log 1.91 = 0.2810
we have, by §137,
log 19.1 =1log1.91 4+ log 10 = 02810+ 1
log 191 = log 1.91 4 log 100 = 0.2810 4 2
log 1910 = leg 1.91 + log 1000 = 0.2810 + 3, ete.
Likewise, by §138,
leg 0.191 =1log1.91 — log10 = 0.2810—1

log 0.0191 = log 1.91 — log 100 = 0.2810 — 2
log 0.00191 = log 1.91 — log 1000 = 0.2810 — 3, ete.

Since the characteristic of the common logarithm of any number
having its first significant figure in units place is zero, and since
moving the decimal point to the right or left is equivalent to
multiplying or dividing by a power of 10, or equivalent to adding
an integer to or subtracting an integer from the logarithm,
(§136): (1) the value of the characteristic is dependent merely
upon the position of the decimal point in the number; (2) the
value of the mantissa is the same for the logarithms of all
numbers that differ only in the position of the decimal point.
In particular, we derive therefrom the following rule for finding
the characteristic of the common logarithm of any number:

The characteristic of the common logarithm of a number equals
the number of places the first significant figure of the number is
removed from units’ place, and is positive if the first significant
figure stands to the left of units’ place and ts negative if it stands
to the right of units’ place.

Thus in log 1910 = 3.2810, the first figure 1 is three places from
units’ place and the characteristic is 3. In log 0.0191 = 0.2810
— 2 the first significant figure 1 is two places to the right of units’
place and the characteristic is — 2. A computer in determining
the characteristic of the logarithm of a number first points to
units place and counts zero, then passes to the next place and
counts one and so on until the first significant figure is reached.

Logarithms with negative characteristies, like 0.3010 — 1,
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0.3010 — 2, etc., are frequently written in the equivalent form
9.3010 — 10, 8.3010 — 10, etec.

Exercises

1. What numbers have 0 for the characteristic of their logarithm?
What numbers have 0 for the mantissa of their logarithms?

2. Find the characteristics of the logarithms of the following
numbers: 1234, 5,678,910, 212, 57.45, 345.543,7, 7.7, 0.7, 0.00000097,
0.00010097.

3. Given that log 31,416 = 4.4971, find the logarithms of the
following numbers: 314.16, 3.1416, 3,141,600, 0.031416, 0.31416,
0.00031416.

4. Given that log 746 = 2.8727, write the numbers which have the
following logarithms: 4.8727, 1.8727, 0.8727 —3, 0.8727 — 1, 3.8727,
0.8727 — 4.

141. Logarithmic Tables. A table of logarithms usually con-
tains only the mantissas of the logarithms of a certain con-
venient sequence of numbers. For example, a four place table
will contain the mantissas of the logarithms of numbers from
100 to 1000; a five place table will usually contain the mantissas of
the logarithms of numbers from 1000 to 10,000, and so on. Of
course it is unnecessary to print decimal points or characteristics.

A table of logarithms should contain means for readily obtaining
the logarithms of numbers intermediate to those tabulated, by
means of tabular differences and proportional parts.

The tabular differences are the differences between successive
mantissas. If any tabular difference be multiplied successively
by the numbers 0.1,0.2,0.3, . . . , 0.8, 0.9, the results are called
the proportional parts. Thus, from a four place table we find
log 263 = 2.4200. The tabular difference is given in the table
as 16. If we wish the logarithm of 263.7, the proportional
part 0.7 X 16 or 11.2 is added to the mantissa, giving, to four
places, log 263.7 = 2.4211. This process is known as interpola-
tion. Corrections of this kind are made with great rapidity after
a little practice. It is obvious that the principle used in the
correction is the equivalent of a geometrical assumption that
the graph of the function is nearly straight between the successive
values of the argument given in the table. The corrections
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should invariably be added mentally and all the work of interpolation
should be done mentally if the finding of the proportional parts
by mental work does not require multiplication beyond the range of
12 X 12.  To make interpolations mentally is an essential practice,
if the student is to learn to compute by logarithms with any sk111
beyond the most rudimentary requirements.

A good method to follow is as follows: Suppose log 13.78 is
required. First write down the characteristic 1; then, with the
table at your left, find 137 in the number column and mark the
corresponding mantissa by placing your thumb above it or your
first finger below it. Do not read this mantissa, but read the
tabular difference, 32. From the p. p. table find the correction,
26, for 8. Now return to the mantissa marked by your finger,
and read it increased by 26, t.e., 1393; then place 1393 after
the characteristic 1 previously written down.

The accuracy required for nearly all engineering computations
does not exceed 3 or 4 significant figures. Four figure accuracy
means that the errors permitted do not exceed 1 percent of
1 percent. Only a small portion of the fundamental data
of science is reliable to this degree of accuracy.! The usual meas-
urements of the testing laboratory fall far short of it. Only
in certain work in geodesy, and in a few other special fields of
engineering, should more than four place logarithms be used.

142. Anti-logarithms. If we wish to find the number which
has a given logarithm, it is convenient to have a table in which
the logarithm is printed before the number. Such a table is known
as a table of anti-logarithms. It is usually not best to print
tables of anti-logarithms to more than four places; to find a number
when a five place logarithm is given, it is preferable to use the
table of logarithms inversely, as the large number of pages required
for a table of anti-logarithms is a disadvantage that is not com-
pensated for by the additional convenience of such a table.

1 Fundamental constants upon which much of the calculation in applied
science must be based are not often known to four figures. The mechanical
equivalent of heat is hardly known to 1 percent. The specific heat of super-
heated steam is even less accurately known. The tensile, tortional and com-
pressive strength of no structural material would be assumed to be known to a
greater accuracy than the above-named constants. Of course no calculated

result can be more accurate than the least accurate of the measurements upon
which it depends.
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143. Cologarithms. Any computation involving multiplica-
tion, division, evolution and involution may be performed by
the addition of a single column of logarithms. This possibility
is secured by using the cologarithm, instead of the logarithm, of .
all divisors. The cologarithm, or complementary logarithm,
of a number n is defined to be (10 — log n) — 10. The part
(10 — log n) can be taken from the table just as readily as log n,
by subtracting in order all the figures of the logarithm, including the
characteristic, from 9, except the last figure, which must be taken
from 10. The subtraction should, of course, be done mentally.
Thus log 263 = 2.4200, whence colog 263 = 7.5800 — 10. It
is obvious that the addition of (10 — log n) — 10 is the same
as the subtraction of log n.

The convenience arising from this use may be illustrated as
follows:

Suppose it is required to find z from the proportion

37.42 1 1 :: 647 : V0.582.

We then have
2 log 37.4 = 3.1458
(1/2) log 0.582 = 9.8825 — 10
colog 647 = 7.1891 — 10
log [1.650] = 0.2174

Therefore z = 1.650.
It is a good custom to enclose a computed result in square
brackets.

144, Arrangement of Work. All logarithmic work should be
arranged in a vertical column and should be done with pen and
ink. Study the formula in which numerical values are to be
substituted and decide upon an arrangement of your work in the
vertical column which will make the additions, subtractions, ete.,
of logarithms as systematic and easy as possible. Fill out the
vertical column with the names and values of the data before
turning to the table of logarithms. This is called blocking out
the work. The work is not properly blocked out unless every
entry in the work as laid out is carefully labelled, stating exactly
the name and value of the magnitude whose logarithm is taken,
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and unless the computation sheet bears a formula or statement
fully explaining the purpose of the work.

Computation Sheet, Form M7, is suitable for general logarithmic
computation.

Exercises

1. From a four place table find the logarithms of the following
numbers: 342, 1322, 8000, 872.4, 35.21, 0.00213, 3.301, 325.67,
23, 3.1416, 0.0186, 250.75, 0.0007, 0.33333.

2. Find the numbers corresponding to each of the following
logarithms: 0.3250, 2.1860, 0.8724, 1.1325, 3.0075, 8.3990 — 10,
9.7481 — 10, 4.0831, 7.0091 — 10, 0.5642.

3. Compute by logarithms the value of the following: 2.56 X 3.11
X 421; 7.04 X 0.21 X 0.0646; 3215 X 12.82 + 864. w3

4. Compute the following by logarithms: 813 + 174; 158 v/ 0.52;
(343/892)%; V1893 V1912/4462,

5. Compute the following by logarithms: (2.7182)1-403; (7.41) ~ % ;
(8.31)0-27,

6. Solve the following equations: 52 = 10; 3=~ 1 = 4; log, 71 = 1.21
log: 5 = logio 4.822.

7. Find the amount of $550 in fifteen years at 5 percent com-
pound interest.

8. A corporation is to repay a loan of $200,000 by twenty equal
annual payments. How much will have to be paid each year, if
money be supposed to be worth 5 percent?

Let z be the amount paid each year. As the debt of $200,000 is
owed now, the present value of the twenty equal payments of z dollars
each must add up to the debt or $200,000. The sum of z dollars
to be paid n years hence has a present worth of only

z
(L.05)n
if money be worth 5 percent compound interest. The present value,
then, of z dollars paid one year hence, z dollars paid two years hence,
and so on, is

x T x T
Tos t@os: T s T - - - T @omm

This is a geometrical progression.

The result in this case is the value of an annuity payable at the
end of each year for twenty years that a present payment of $200,000
will purchase.
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9. It is estimated that a certain power plant costing $220,000 will
become entirely worthless except for a scrap value of $20,000 at the
end of twenty years. What annual sum must be set aside to amount
to the cost of replacement at the end of twenty years, if 5 percent

"compound interest is realized on the money in the depreciation
fund?

Let the annual amount set aside be z. In this case the twenty
equal payments are to have a value of $200,000 twenty years hence,
while in the preceding problem the payments were to be worth
$200,000 now. In this case, therefore,

£(1.05)" + 2(1.05)8 - 2(L.05) 4 . . .
+2(1.05)2 4+ 2(1.05) + = = $200,000.

The geometrical progression is to be summed and the resulting
equation solved for z.

10. The population of the United States in 1790 was 3,930,000 and
in 1910 it was 93,400,000. What was the average rate percent in-
crease for each decade of this period, assuming that the population
increased in geometrical progression with a uniform ratio for the entire
period.

11. Find the surface and the volume of a sphere whose radius is
28

12. Find the weight of a cone of altitude 9.64 inches, the radius
of the base being 5.35 inches, if the cone is made of steel of specific
gravity 7.93.

13. Find the weight of a sphere of cast iron 14.2 inches in diameter,
if the specific gravity of the iron be 7.30.

14. In twenty-four hours of continuous pumping, a pump discharges
450 gallons per minute; by how much will it raise the level of water in
a reservoir having a surface of 1 acre? (1 acre = 43560 sq. ft.)

145. Trigonometric Computations. Logarithms of the trig-
onometric functions are used for computing the numerical value
of expressions containing trigonometric functions, and in the
solution of triangles. The right triangles previously solved by
use of the natural functions are often more readily solved by
means of logarithms. (See §66.) The tables of logarithmic fune-
tions contain adequate explanation of their use, so that de-
tailed instructions need not be given in this place. Two new
matters of great importance are met with in the use of the loga-
rithms of the trigonometric functions that do not arise in the use
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of a table of logarithms of numbers, which, on that account, require
especial attention from the student:

(1) In interpolating in a table of logarithms of trigonometric
functions, the corrections to the logarithms of all co-functions must.
be subtracted and not added. Failure to do this is the cause of
most of the errors made by the beginner.

(2) To secure proper relative accuracy in computation, the
S and T functions must be used in interpolating for the sine and
tangent of small angles.

In the following work, four place tables of logarithms are
supposed to be in the hands of the students.

Exercises

1. A right prism, whose base is a square 17.45 feet on a side, is
cut by a plane making an angle of 27° 15’ with a face of the prism.
Find the area of the section of the prism made by the cutting plane.

2. The perimeter of a regular decagon is 24 feet. Find the area of
the decagon.

3. To find the distance between two points B and C on opposite
banks of a river, a distance CA is measured 300 feet, perpendicular
to CB. At A the angle CAB is found to be 47° 27’. Find the
distance CB.

4. In running a line 18 miles in & direction north, 2° 13.2’ east,
how far in feet does one depart from a north and south line passing
through the place of beginning?

6. How far is Madison, Wisconsin, latitude 43° 5/, from the earth’s
axis of rotation, assuming that the earth is a sphere of radius 3960
miles?

6. Find the length of the belt required to connect an 8-foot and a
3-foot pulley, their axes being 21 feet apart.

7. A man walking east 7° 15’ north along a river notices that after
passing opposite a tree across the river he walks 107 paces before he
is in line with the shadow of the tree. Time of day, noon. How far
is it across the river?

8. Solve the right-angled triangle in which one leg = 2+/3 and the
hypotenuse = 2.

9. The moon’s radius is 1081 miles. When nearest the earth, the
moon’s apparent diameter (the angle subtended by the moon’s disk as
seen from the position of the earth’s center) is 32.79’. When farthest
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from the earth, her apparent diameter is only 28.73’. Find the
nearest and farthest distances of the moon in miles.

10. A pendulum 39 inches long vibrates 3° 5’ each side of its mean
position. At the end of each swing, how far is the pendulum bob
above its lowest position? ;

11. If the deviation of the compass be 2° 1.14’ east, how many feet
does magnetic north depart from true north in a distance of 1 mile
true north?

12. Solve:

z:1.72 = 427 : \/29h

if g =322and h = 78.2,

13. The four strings of a violin are tuned in fifths; that is, for two
vibrations of any string there are three vibrations of the next higher
string. If the lowest or G string vibrates 196 times per second, find
the number of vibrations per second of the highest string.

14, A substance containing 20 percent of impurities is to be purified
by crystallization from a mother liquid. Each crystallization reduces
the impurity 88.6 percent. How many crystallizations will produce
a substance 0.9999 pure?

16. Compute the value of (1 — ae™®)* where a = 15.6, b =

A=10,n =2,y = 2.5.

16. Find the volume of a cone if the angle at the apex be 15° 38’
and the altitude 17.48 inches.

17. The angle subtended by the sun’s diameter as seen from the
earth is 32’.06. Find the diameter of the sun in miles, if the distance
from the earth to the sun be 92.8 million miles.

18. Compute by logarithms four values of p from the equation
p = 3224148 ford = 2, 3, 4, 5.

19. Solve 3 = 405 for the value of z.

20. Compute:

23.07 X 0.1354 X /234,
13.54

What advantage is there in using the co-logarithm of the denomi-

nator?

146. Logarithmic and Exponential Curves. The graphical
construction of the exponential curve has already been explained.
It was noted that curves whose equations are of the form y = r=
pass through the point (0, 1) and that the slope of the curves
for positive values of z is steeper the larger the value selected for




238 ELEMENTARY MATHEMATICAL ANALYSIS [§146

the number 7. See Fig. 94. In a system of exponential curves
y = r= passing through the point (0, 1) or the point M of Fig.
94, we shall assume that there is one curve passing through M
with slope 1. The equation of this particular curve we shall call
y = e*, thereby defining the number e as that value of r for which
the curve y = 1= passes through the point (0, 1) with slope 1. This
is a second definition of the number e; we shall show in this section
that it is consistent with the first definition of e given in §130.

M
X'/ X

o|l'T1DE

.

Y
Fic. 94.—Definition of Tangent to a Curve.

' The exercises of §130 developed experimentally the charac-
teristic property of the exponential curve to the base e:
The slope of the curve y = e at any point vs equal to the ordinate
of that potnt. This fact, developed experimentally in §130,
will now be shown to follow necessarily from the definition of e
just given.

Select the point P on the curve y = e* at any point desired.

Draw a line through P cutting the curve at any neighboring
point @. (Fig. 94.) A line like PQ that cuts a curve at two points
is called a secant line. As the point @ is taken nearer and nearer
to the point P (P remaining fixed), the limiting position ap-
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proached by the secant PQ is called the tangent to the curve at
the point P. This is the general definition of the tangent to any
curve. ’

The slope of the secant joining P to the neighboring point @
is HQ/PH. As the point @ approaches P this ratio approaches
the slope of the tangent to y = e at the point P. Let OD
=2z and PH = h; then OF = z + h, also DP = ¢ and EQ =
ez*h, Since HQ is the y of the point @ minus the y of the
point P, we have:

HQ - ¢ #th —gz = eh—1

PH™ A T T
Now the slope of ¥y = e* at P is the limit of the above expression
as @ approaches P or as h approaches zero. That is:

] e limit ¢* — 1
slope of ez at P = ¢ HER P v e8]
We now seek to find
limit e* — 1

h=0 &
if such limit exists. Since P is any point, consider the point M
where x = 0. The slope there is:

o limit e* — 1
h=0 h

That is, the slope of y = e= at M is:

limit e* — 1

h=0 h
But by the definition of e, the slopeof ¥ = ez at M is 1. Hence
we must conclude that the required limit exists and that

limit et —1

Y et (2)
Substituting this result in equation (1), we have

Slope at P = ¢= (3)

This expresses the fact that the slope of y = e+ at any pointis e=,
or is the ordinate y of that point, a fact that was first indicated
experimentally in §130. At that same place the approxi-
mate value of e was seen to be 2.7. A more exact value is known
to be 2.7183, as will be computed later.
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In Fig. 94 the slope of y = €= at P is given by PD measured by
the unit OM. The distance TD, called the subtangent, is
constant for all positions of the point P.

The slope of y = r# at any point is readily found. There
exists a number m such that e» = 7. Hence y = r* may be
written y = (em)* = em=. Now this curve is made.from y = e=
by substituting mz for , or by multiplying all of the abscissas
of the latter by 1/m. Therefore the side 7D of the triangle PDT
in Fig. 94 will be multiplied by 1 /m, the other side DP remaining

19
| 1D | hs
3 By
EEI O]
[} l“. 15) 2 ,'1
sll= [l Tolfly
1 hal [=3l]]S
I |
l‘ 11 |
0
| 91
t
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\ 5[ /
o 1
\E | y|=Tozez
2 e
1 1 x=eY
L |
—4]-3[-2[-1 4] /N2 (3 [# |5 6 [7 [8[910 11121314
-2 T~ Y=loge x|
-3, S —
-4 z=led¥
i

F16. 95.—Exponential and Logarithmic Curves to the Natural Base e =
; 2.7183.

the same. Therefore the slope of the curve, or DP/TD will be
multiplied by m, since the denominator of this fraction is multi-
plied by 1/m. Hence the slope of y = r= at any point is m times
the ordinate of that point, where m satisfies the equation em = 7.
The curve y = e¢~= is, of course, the curve y = e= reflected in
the Y-axis.! This curve, as well as the curve y = log. z and its
symmetrical curve, are shown in Fig. 95. Sometimes the curve
y = e* is called the exponential curve and the curve y = log, z
is called the logarithmic curve. This distinction, however, has
1 8ee §24.
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2. Draw the curve y = ¢# — ¢=2. Show that this is an odd funec-
tion of x, that is, that the function changes sign but not absolute value
when the sign of z is changed.

3. Draw the graphs of y = ¢#/2, and y = e*/2.

4. Draw the graphs of y = e#/2, and y = e~ /2,

6. Compare the curves: y = /4, y = /2 y = ¢%, y = €%,

6. Sketch the curves y = 1%, y =27, y = 3%, y = 4%, y = 57,
y=6%y =85y =10%fromz = —3tozx = 4 3.

7. From the graphs of '

y =z
and
i y = log 102 + 1.8
solve the equation
22 —logz — 1.8 =0.
8. Solve graphically the equation
S5loger — (1/2)z + 2 = 0.
9. Solve graphically:
10® = z2.
10. Solve graphically:
(1/2)= = log z.
11. Solve graphically:
10° = 58in 2.
12. Solve graphically:
sihz =z —0.1.
13. Solve graphically:
cosz = z2 — 1.

14. Solve analytically: :
e=1 = 107

147. The Exponential Curve and the Theorems on Loci. It has
already been shown (§ 146) that the curve y = a= can be derived
from the curve y = e* (a>e¢) by multiplying the abscissas of
the latter curve by 1 /m (m > 1), that is, by orthographic projection
of y = e upon a plane passing through the Y-axis. There exists
a number m (m >1) such that a = e». Hence, y = a* may be
written y = em= and, by §27, the latter curve may be made
from y = e by multiplying its abscissas by 1/m. Also note that
the slope of the curve y = e= at any point is equal to the ordinate
of the point, and that the slope of y = a* at any point is m
times the ordinate of that point. The number 1/m is called the
modulus of the logarithmic system whose base 1s a.
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The modulus of the common system is the reciprocal of the value
of m that satisfies e = 10, or it is the value of M that satisfies
e/M = 10, or that satisfies e = 10M. That is, the modulus M of
the common system is the logarithm of e to the base 10, or, to four
figures, equals 0.4343. The value of m or 1/M = 2.3026. Thus
we have the fundamental formulas:

100-4343 — ¢
@2:3026 — 10 ey
and
log1oN = 0.4343log.N | @

log.N = 2.3026 log ;0N |

Another remarkable property of the logarithmic curve ap-
pears from comparing the curves y = = and y = a=*!, or, more
generally, the curves y = a¢= and y = a=*», The second of these
curves can be derived from y = @+ by translating the latter curve
the distance 1 (in the general case the distance %) to the left.
But y = a**! may be written y = aaz, and y = a*** may be
written ¥ = a*a®. From these it can be seen that the new curves
may also be considered as derived from y = a* by multiplying all
ordinates of ¥ = a® by a, or in the general case, by a*.

Translating the exponential curve in the x-direction s the same as
multiplying all ordinates by a certain fixred number, or is equivalent
to a certain orthographic projection of the original curve upon a plane
through the X-awis.

Changing the sign of & changes the sense of the translation and
changes elongation to shortening or vice versa.

The exponential curve might be defined as the locus that
possesses the above-described fundamental property. There are
numerous ways in which this property may be stated. Another
form is this: Any portion of the exponential curve included within
any interval of z, may be made from the portion of the curve
included within any other equal interval of z, by the elongation
(or shortening) of the ordinates in a certain ratio, or, in other
words, by orthographic projection upon a plane passing through
the z-axis. This is illustrated by Fig. 97, which is a graph of an
exponential curve drawn to base 2. If the portions of the curve
PPy, PyP;, PsPy, . . . corresponding to equal intervals 1 of =



244 ELEMENTARY MATHEMATICAL ANALYSIS [§147

be changed by shortening all ordinates of P.P; measured above the
height of P; in the ratio 1/2, by shortening all ordinates of P,Ps
measured above P in the ratio 1/4, by shortening all ordinates of
PP, measured above Ps in the ratio 1/8, . . . the results are
the curves PiFi, PoFs, PsF3, . . . which are identical with the
portion P,P; of the original curve.
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Fic.” 97.—Ilustration of an Important Property of the Exponential
Curve.

This is also illustrated by Fig. 93, which is a small portion of the
curver = logioy drawn on a large scale, and, for convenience, with
the vertical unit 1 /10 the horizontal unit. From this small portion
of the curve we may read the logarithms of all numbers. For the
distances along the z-axis may be designated 0.0, 0.1, 0.2, . .
or 1.0, 1.1, 1.2, . . . or 2.0, 21,22, . . ., etc, in which case
weread1,2,3, . . . or10,20,30, . . . or 100,200,300, . . .
ete., respectively, along the y-axis. This, it will be observed, is
merely a geometrical statement of the fact that a table of man-
tissas for the numbers from 1.000 to 9.999 is sufficient for deter-
mining the logarithms of all four-figure numbers.
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Exercises

1. State the difference between the curves y = e¢* and y = 107

2. Graph y = ¢7%- where e = 2.7183. N

3. Graph the logarithmic spiral p = ¢, 0 being measured in
radians.

Note: The radian measure in the margin of Form M3 should be

used for this purpose.

4. Graph p = €7,

6. The pressure of the atmosphere is given in millimeters of mer-
cury by the formula:

y = 760-¢~= 3000

where the altitude z is measured in meters above the sea level. Pro-
duce a table of pressure for the altitudes z = 0; 10; 50; 100; 200; 300,
1000; 10,000; 100,000.

6. From the data of the last problem, find the pressure at an alti-
tude of 25 000 feet.

7. Show that the relation of Exercise 5 may be written:

z = 18,421 (log 760 — log ¥).

8. Determine the value of the quotient ig for the following

values of z: 2, 3, 5, 7.
9. How large is €°-%°1 approximately ?
10. What is the approximate value of 1002017

148. Logarithmic Double Scale. The relation between a num-
ber and its logarithm can be shown by a double scale of the sort
discussed in §§3 and 8. In constructing the double scale,
one may select for the uniform scale either the one on which the
numbers are to be read, or the one on which the logarithms are to
be read. A scale having a most remarkable and useful property
results if the logarithms are laid off on a uniform scale and the
corresponding numbers are laid off on a non-uniform scale, as
shown in the double scale of Fig. 98. This scale is constructed
for the base 10. The distances measured on the B-scale, although
it is the scale on which the numbers are read, are proportional to
the common logarithms of the successive numbers; that is, if the
total length of the scale be called unity, the distance on the B
scale from the left end to the mark 2 is 0.3010, the distance to the
mark 3 is 0.4771, ete.; also the distance on this scale from the left
end to the mark 6 is the sum of the distance from the left end to
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the mark 2 and the like distance to the mark 3; also the distance
to 8 is just treble the distance to 2.

Since log 10z = 1+ log z, it follows that, if the scales A and B,
Fig. 98, were extended another unit to the right,
this second unit would be identical to the first
one, except in the attached numbers. The
numbers on the A-scale would be changed from
0.0, 0.1, 0.2, . . . 1.0 to 1.0, 1.1, 1.2, 3
2.0, while those on the non-uniform, or B-scale,
would be changed from 1,2, 3, . . ., 10 to
10, 20, 30, . . . 100.

Passing along this scale an integral number
of unit intervals corresponds thus to change of
characteristic in the logarithms, or to change
of decimal pointin the numbers.

It is not, however, necessary to construct
more than one block of this double scale, since
we are at liberty to add an integer n to the
numbers of the uniform scale, provided at the
same time we multiply the numbers of the
non-uniform scale by 10. In this way we
may obtain any desired portion of the extended
scale. Thus, we may change0.1,0.2,0.3, . . .,
1.0 on 4 to 3.1, 3.2, 3.3, . . ., 4.0, by adding
3 to each number, provided at the same time
we change the numbers on the B-scale 1, 2, 3,
4, . . ., 10 to 1000, 2000, 3000, 4000,
10,000 by multiplying them by 10%. If n is
negative (say — 2) we may write, as in the
case of logarithms, 8.0 — 10, 8.1 — 10, 8.2 —
10, he 7 5 9.0 — 10, or, more simply, — 2, —

— 1.8, . . ., — 1.0, changing the
numbers on the non -uniform scale at the same
time to 0.01, 0.02, 0.03, . . ., 0.10.

To produce the scale of distances proportional to the logarithms
of the successive numbers as used above, it is merely necessary to
draw horizontal lines through the points 1, 2, 3, . . . of the
y-axis in Fig. 99, and then draw vertical lines through the points
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Fig. 98.—Logarithmic Double Scale.
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P,, P;, Py . -. . where the horizontal lines meet the curve; the
intereepts on the z-axis are then proportional to log z.

149. The Slide Rule. By far the most important application
of the non-uniform secale ruled proportionally to log z, is the com-
puting device known as the slide rule. The principle upon which
the operation of the slide rule is based is very simple. If we have
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8 [80] 800 20
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0
Fia. 99.—A Method of Constructing the Logarithmic Scale.

two scales divided proportionally to log z (A and B, Fig. 100),
so arranged that one scale may slide along the other, then by slid-
ing one scale (called the slide) until its left end is opposite any
desired division of the first scale, and, selecting any desired division
of the slide, as at R, Fig. 100, taking the reading of the original
scale beneath this point, as N, the product of the two factors
whose logarithms are proportional to AB and BR can be read
directly from the lower scale at N; for AN is, by construction,
the sum of AB and BR, and since the scales were laid off propor-
tionally to log z, and marked with the numbers of which the dis-
tancesare the logarithms, the process described adds the logarithms
mechanically, but indicates the results in terms of the numbers
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themselves. By this device all of the operations commonly carried
out by use of a logarithmic table may be performed mechanically.
Full description of the use of the slide rule
need not be given in detail at this place, as
complete instructions are found in the pamph-
lets furnished with each slide rule. A very
brief amount of individual instruction given to
the student by the instructor will insure the
rapid acquirement of skill in the use of the
instrument. In what follows, the four scales of
the slide rule are designated from top to bottom
of the rule, 4, B, C, D, respectively. The ends
of the scales are called the indices.

An ordinary 10-inch slide rule should give
results accurate to three significant figures,
which is accurate enough for most of the pur-
poses of applied science.

An exaggerated idea sometimes prevails con-
cerning the degree of accuracy required by work
in science or in applied science. Many of the
fundamental constants of science, upon which a
large number of other results depend, are known
only to three decimal places. In such cases
greater than three figure accuracy is impossible
even if desired. In other cases greater accuracy
is of no value even if possible. The real desid-
eratum in computed results is, first, to know by a
surtable check that the work of computation s correct,
and, second, to know to what order or degree of
accuracy both the data and the result are dependable.

The absurdity of an undue number of decimal
places in computation is illustrated by the orig-
inal tables of logarithms, which if now used
would enable one to compute from the radius
of the earth, the circumference correct to 1 /10,000
part of an inch.
< The following matters should be emphasized

in the use of the slide rule:

Lo e et b
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Fi1ag. 100.—The Theory of the Slide Rule.
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(1) All numbers for the purpose of computation should be con-
sidered as given with the first figure in units place. Thus 517
X 1910 X 0.024 should be considered as 5.17 X 1.19 X 2.4 X
102 X 10 X 10-2. The result should then be mentally approxi-
mated (say 24,000) for the purpose of locating the decimal point,
and for checking the work.

(2) A proportion should always be solved by one setting of the
slide.

(3) A combined product and quotient like

a X bXe > X a d

T rXsXt
should always be solved as follows:

Place runner on a of scale D.
Set r of scale C to a of scale D;
Runner to b of C;
s of C to runner;
Runner to ¢ of C;
t of C to runner;
at d of C find on D the significant figures of the result.

(4) The runner must be set on the first half of A for square
roots of odd numbered numbers, and on the second half of A for
the square roots of even numbered numbers.

(5) Use judgment so as to compute results in most accurate
manner—thus instead of computing 264 /233, compute 31 /233 and
hence find 264/233 = 14 31/233.1

(6) Besides checking by mental calculation as suggested in (1)
above, also check by computing several neighboring values and
graphing the results if necessary. Thus check 5.17 X 1.91 X 2.4
by computing both 5.20 X 19.2 X 2.42 and 5.10 X 1.90 X 2.38.

Exercises
Compute the following on the slide rule.

1. 3.12 X 2.24; 1.89 X 4.25; 2.88 X 3.16; 3.1 X 236.
2. 8.72/2.36; 4.58/2.36; 6.23/2.12; 10/3.14.

3. 32.5 X 72.5; 0.000116 X 0.00135; 0.0392/0.00114.
4. 3,967,000 + 367,800,000.

6.54 X 42.6. 8.75 X 5.25
325 .. " TRes

1Show by trial that this gives a more accurate result.
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78.5 X 36.6 X 20.8_

5.75 X 29.5
6.46 X 57.5 X 8.55,
* 3.26 X 296 X 0.642

8. Solve the proportion

z:1.72: = :4.14: \/2gh
where ¢ = 32.2 and h = 78.2.
V171 X 141,
166.7 X 4.5

10. The following is an approximate formula for the area of a seg-
ment of a circle: :

6.

7

9. Compute

A = h3/2¢ + 2¢h/3
where ¢ is the length of the chord and h is the altitude of the segment.

Test this formula for segments of a circle of unit radius, whose ares
are =/3, v/2, and = radians, respectively.

11. Two steamers start at the same time from the same port; the
first sails at 12 miles an hour due south, and the second sails at 16
miles an hour due east. Find the bearing of the first steamer as seen -
from the second (1) after one hour, (2) after two hours, and compute
their distances apart at each time.

The following exercises require the use of the data printed herewith.
An ‘“‘acre-foot’” means the quantity of water that would cover 1
acre 1 foot deep. ‘‘Second-foot” means a discharge at the rate of 1
cubic foot of water per second. By the “run-off” of any drainage area
is meant the quantity of water flowing therefrom in its surface stream
or river, during a year or other interval of time.

1 square mile = 640 acres

1 acre = 43,560 square feet.

1 day = 86,400 seconds.

1 second foot = 2 acre feet per day.

1 cubie foot = 7% gallons.

1 cubic foot water = 62% pounds water.
1 h.p. = 550 foot pounds per second.
450 gallons per minute = 1 second foot.

Each of the following problems should behandled on the slide rule as
a continuous piece of computation.

12. A drainage area of 710 square miles has an annual run-off of
120,000 acre feet. The average annual rainfall is 27 inches. Find
what percent of the rainfall appears as run-off.

13. A centrifugal pump discharges 750 gallons per minute against
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a total lift of 28 feet. Find the theoretical horse power required.
Also daily discharge in acre feet if the pump operates fourteen hours
per day. I

14. What is the theoretical horse power represented by a stream
diseharging 550 second feet if there be a fall of 42 feet?

16. A district containing 25,000 acres of irrigable land is to be sup-
plied with water by means of a canal. The average annual quantity
of water required is 3% feet on each acre. Find the capacity of the
canal in second feet, if the quantity of water required is to be delivered
uniformly during an irrigation season of five months.

16. A municipal supply amounts to 35,000,000 gallons per twenty-
four hours. Find the equivalent in cubic feet per second.

17. A single rainfall of 3.9 inches on a catchment area of 210 square
miles is found to contribute 17,500 acre feet of water to a storage
reservoir. The run-off is what percent of the rainfall in this case?

N i Q P
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Fic. 101.—The Theory of the Use of Semi-logarithmic Paper.

150. Semi-logarithmic Codrdinate Paper. Fig. 101 represents
a sheet of rectangular codrdinate paper, on which ON has been
chosen as the unit of measure. Along the right-hand edge of this
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sheet is constructed a logarithmic scale LM of the type discussed
in § 148, i.e., any number, say 4, on the scale LM stands opposite
the logarithm of that number (in the case named opposite 0.6021)
on the uniform scale ON.

Let us agree always to designate by capital letters distances
measured on the uniform scales, and by lower case letters dis-
tances measured on the logarithmic seale. Thus Y will mean the
ordinate of a point as read on the scale ON, while y will mean the
ordinate of a point as read on the scale LM. In other words, we
agree to plot a function, using logarithms of the values of the
function as ordinates and the natural values of the argument or
variable as abscissas.

Let PQ be any straight line on this paper, and let it be required
to find its equation, referred to the uniform z-scale OL and the
logarithmic y-scale LM. We proceed as follows:

The equation of this line, referred to the uniform X-axis OL
and the uniform Y-axis ON, where O is the origin, is

Y=mX+B
m being the slope of the line, and B its y-intercept. Now, for the
line PQ, m = 0.742 and B = 0.36, so that the equation of P@ is
Y = 0.742X + 0.36 (1)
To find the equation of this curve referred to the scales LM and
OL, it is only necessary to notice that
Y =logy

so that we obtain:
log y = 0.742z 4 0.36 2)

The intercept 0.36 was read on the scale ON, and is therefore the
logarithm of the number corresponding to it on the scale LM.
That is, 0.36 = log 2.30. Substituting this value in equation (2)
we obtain:

log y = 0.742z 4 log 2.30
which may be written

log y — log 2.30 = 0.742x
or,

log 2%) = 0.742x
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On changing to exponential notation this becomes:

y

07422
330 = 10

or,
y = 2.30(100-7422)
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Fie. 102.—Illustration of Squared Paper, Form M5. The finer rulings of
Form M5 have been omitted in Fig. 102.

In general, if the equation of a straight line referred to the

scales OL and ON is
Y=mX+B

(4)

its equation referred to the seales OL and LM may be obtained by
replacing Y by log y and B by log b in the manner described above,

giving
log y = mx + log b

(5)
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which, as above, may be reduced to the form
y = b10»= (6)
This is the general equaticn of the exponential curve. Hence:
* Any exponential curve can be represented by a straight line, provided
ordinates are read from a suitable logarithmic scale, and abscissas
are read from a uniform scale.
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Fie. 103.—Exponential Curves on Form M5. The curve — . . . is
y=1073%; — | isy = 1072%; — | . isy = 10°%°,

Fig. 102 represents the same line PQ (y = (2.30)10%74%), as
Fig. 101. The two figures differ only in one respect: in Fig. 101
the rulings of the uniform scale ON are extended across the page,
while in Fig, 102 these rulings are replaced by those of the scale
LM.

Coordinate paper such as that represented by Fig. 102 is known
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as semi-logarithmic paper. It affords a convenient coérdinate
system for work with the exponential function.
Every point on PQ (Fig. 102) satisfies the exponential equation
: y = 2.30(100.742<)
Thus, in the case of the point R,
3.98 = 2.30(109 742)0-320
= 2.30(100-238)

The slope of any line on the semi-logarithmic paper may be read
or determined by means of the uniform scales BC and A B of form
M5. The scale AD of form M5 is the scale of the natural loga-
rithms, so that any equation of the form y = em= can be graphed
at once by the use of this scale. Thus, the line y = e* (Fig.
103) passes through the point A or (0, 1), and a point on BC op_
posite the point marked 1.0 on AD. Note that 1.0 on scale AD
2.718 on the non-uniform scale of the main body of the paper
and 0.4343 on the scale BC all fall together, as they should.

To draw the line y = 10-=, the corner D of the plate may be
taken as the point (0, 1). On the line drawn once across the sheet
representing ¥ = 10™, y has a range between 1 and 10 only.
To represent the range of ¥y between 10 and 100, two or more sheets
of form M5 may be pasted together, or, preferably, the continua-
tion of the line may be shown on the same sheet by suitably
changing the numbers attached to the scales AB and BC. Thus
Fig. 103 shows in this manner y = 102 and y = 103=,

Remember that the line

_ y = bi0»= @)
passes through the point (0, b) with slope m. Note that

AT ®)
passes through the point (a, b) with slope m.

Exercises
On semi-logarithmic paper draw the following:
1.y =10% y = 10%, y = 10%, y = 10~%, y = 1072, y = 103,
2 Y =By =¢y =eF Yy =g,
3. 3z =log y, (1/2)x = log .
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4. y = 10°/2, y = 10/10,
6. Graphy = 2(10)7and J = 10=~=.

1561. The Compound Interest Law. Logarithmic Increment.
The law expressed by the exponential curve was called by Lord
Kelvin the compound interest law and since that time this name
has been generally used. It isrecalled that the exponential curve
was drawn by using ordinates equal to the successive terms of
a geometrical progression which are uniformly spaced along the
z-axis; since the amount of any sum at compound interest is given
by a term of a geometrical progression, it is obvious that a sum at
compound interest accumulates by the same law of growth as is
indicated by a set of uniformly spaced ordinates of an expo-
nential curve; hence the term ‘‘compound interest law,” from.
this superficial view, is appropriate. The detailed discussion
that follows will make this clear:
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