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PREFACE

THE heroic age of non-euclidean geometry is passed.
It is long since the days when Lobatchewsky timidly
referred to his system as an ‘imaginary geometry’,
and the new subject appeared as a dangerous lapse
from the orthodox doctrine of Euclid. The attempt to
prove the parallel axiom by means of the other usual
assumptions is now seldom undertaken, and those who
do undertake it, are considered in the class with
circle-squarers and searchers for perpetual motion—sad
by-products of the creative activity of modern science.

In this, as in all other changes, there is subject both
for rejoicing and regret. It is a satisfaction to a writer
on non-euclidean geometry that he may proceed at
once to his subject, without feeling any need to justify
himself, or, at least, any more need than any other
who adds to our supply of books. On the other hand,
he will miss the stimulus that comes to one who feels
that he is bringing out something entirely new and
strange. The subject of non-euclidean geometry is, to
the mathematician, quite as well established as any
other branch of mathematical science; and, in fact, it
may lay claim to a decidedly more solid basis than
some branches, such as the theory of assemblages, or-
the analysis situs.

Recent books dealing with non-euclidean geometry
fall naturally into two classes. In the one we find
the works of Killing, Liebmann, and Manning,* who

* Detailed rcferences given later.
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wish to build up certain clearly conceived geometrical
systems, and are careless of the details of the founda-
tions on which all is to rest. In the other category
are Hilbert, Vahlen, Veronese, and the authors of
a goodly number of articles on the foundations of
geometry. These writers deal at length with the
consistency, significance, and logical independence of
their assumptions, but do not go very far towards
raising a superstructure on any one of the foundations
suggested.

The present work is, in a measure, an attempt to
unite the two tendencies. The author’s own interest,
be it stated at the outset, lies mainly in the fruits,
rather than in the roots; but the day is past when the
matter of axioms may be dismissed with the remark
that we ‘make all of Euclid’s assumptions except the
one about parallels’. A subject like ours must be
built up from explicitly stated assumptions, and nothing
else. The author would have preferred, in the first
chapters, to start from some system of axioms already
published, had heo been familiar with any that seemed to
him suitable to establish simultaneously the cuclidean
and the principal non-cuclidean systems in the way that
he wished. The system of axioms here used is decidedly
more cumbersome than some others, but leads to the
desired goal.

There are three natural approaches to non-euclidean
geometry. (1) The elementary geometry of point, linc,
and distance. This method is developed in the open-
ing chapters and is the most obvious. (2) Projective
geometry, and the theory of transformation groups.
This methed is not taken up until Chapter XVIII, not
because it is one whit less important than the first, but
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because it seemed better not to interrupt the natural
course of the narrative by interpolating an alternative
beginning. (3) Differential geometry, with the con-
cepts of distance-element, extremal, and space constant.
This method is explained in the last chapter, XIX.

The author has imposed upon himself one or two
very definite limitations. To begin with, he has not
gone beyond three dimensions. This is because of his
feeling that, at any rate in a first study of the subject, the
gain in generality obtained by studying the geometry
of n-dimensions 1s more than offset by the loss of
clearness and naturalness. Secondly, he has confined
himself, almost exclusively, to what may be called the
¢classical’ non-euclidean systems. These are much
more closely allied to the euclidean system than are
any others, and have by far the most historical impor-
tance. It is also evident that a system which gives
a simple and clear interpretation of ternary and qua-
ternary orthogonal substitutions, has a totally different
sort of mathematical significance from, let us say, one
whose points are determined by numerical values in
a non-archimedian number system. Or again, a non-
euclidean plane which may be interpreted as a surface
of constant total curvature, has a more lasting geo-
metrical importance than a non-desarguian plane that
cannot form part of a three-dimensional space.

The majority of material in the present work is,
naturally, old. A reader, new to the subject, may find
it wiser at the first reading to omit Chapters X, XV,
XVI, XVIII, and XIX. On the other hand, a reader
already somewhat familiar with non-euclidean geo-
metry, may find his greatest interest in Chapters X
and XVI, which contain the substance of a number of
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recent papers on the extraordinary line geometry of
non-euclidean space. Mention may also be made
of Chapter XIV which contains a number of neat
formulae relative to areas and volumes published
many years ago by Professor d’Ovidio, which are not,
perhaps, very familiar to English-speaking readers,
and Chapter XIII, where Staude’s string construction
of the ellipsoid is extended to non-euclidean space.
It is hoped that the introduction to non-euclidean
differential geometry in Chapter XV may prove to
be more comprehensive than that of Darboux, and
more comprehensible than that of Bianchi.

The author takes this opportunity to thank his
colleague, Assistant-Professor Whittemore, who has
read in manuscript Chapters XV and XIX. He would
also offer affectionate thanks to his former teachers,
Professor Eduard Study of Bonn and Professor Corrado
Segre of Turin, and all others who have aided and
encouraged (or shall we say abetted?) him in the
present work.
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CHAPTER I

FOUNDATION FOR METRICAL GEOMETRY
IN A LIMITED REGION

IN any system of geometry we must begin by assuming
the existence of certain fundamental objects, the raw material
with which we are to work. What names we choose to
attach to these objects is obviously a question quite apart
from the nature of the logical connexions which arise from
the various relations assumed to exist among them, and in
choosing these names we are guided principally by tradition,
and by a desire to make our mathematical edifice as well
adapted as possible to the needs of practical life. In the
present work we shall assume the existence of two sorts
of objects, called respectively points and distances* Our
explicit assumptions shall be as follows : —

= There is no logical or mathematical reason why the point should be taken
as undefined rather than the line or plane. This iy, however, the invariable
custom in works on the foundations of geomeotry, and, considering the
woight of historical and psychological tradition in its favour, the point
will probably continue to stand among the fundamental indefinables, With
regard to tho others, there is no such unanimity. Veronese, Fondamenti di
geometria, Padua, 1891, takes the line, segment, and congruence of segments.
Schur, ¢‘Ueber dic Grundlagen der Geometrie,” Mathematische Annalen, vol.
lv, 1902, uses segment and motion. Hilbert, Die Grundlagen der Geometric,
Leipzig, 1899, uses practically the same indefinables as Veronese. Moore,
¢The projective Axioms of (eometry,” Transactions of the American Mathematical
Society, vol. iii, 1902, and Veblen, ‘A System of Axioms for Geometry,” same
Journal, vol. v, 1904, use segment and order. Pieri, ‘Della geometria
elementare come sistema ipotetico deduttivo,” Memorie della R. Accademia delle
Scienze di Torino, Serie 2, vol. xlix, 1899, introduces motion alone, as does
Padoa, ‘Un nuovo sistema di definizioni per la geometria euclidea,” Periodico
di matematica, Scrie 3, vol. i, 1903. Vahlen, Abstrakte Geometrie, Leipzig, 1905,
uses line and separation. Peano, ‘La geometria basata sulle idee di punto
o di distanza,” Atti della R. Accademia di Torino, vol. xxxviii, 1902-3, and
Levy, ‘I fondamenti della goometria metrica-proiettiva,” Memoric Accad.
Torino, Serie 2, vol. liv, 1904, use distance. I have made the same choice as
the last-named authors, as it seomed to me to give the best approach to the
problem in hand. I cannot but feel that the choice of segment or order
would be a mistake for our present purpose, in spite of the very condensed
system of axioms which Veblen has sot up therefor. For to reach con-
gruence and measurement by this means, one is obliged to introduce the
six-parameter group of motions (as in Ch. XVIII of this work), i.oc. base
metrical geometry on projective. It is, on the other hand, an inelegance to
base projective geometry on a non-projective conception such as ‘between-
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Axiom I. There exists a class of objects, containing at
least two members, called points.

It will be convenient to indicate points by large Roman
letters as A, B, C.

Axiom II. The existence of any two points implies the
existence of a unique object called their distance.

If the points be 4 and B it will be convenient to indicate
their distance by AB or BA. We shall speak of this also
as the distance befween the two points, or from one to the
other.

We next assume that between two distances there may
exist a relation expressed by saying that the one is congruent
to the other. In place of the words ‘is congruent to’ we

shall write the symbol =. The following assumptions shall
be made with regard to the congruent relation: —

Axrom IIL AB = AB.

Axiom IV, AA = BB.

Axiom V. If AB=CD and CD = EF, then AB = EF.

These might have been put into purely logical form by
saying that we assumed that every distance was congruent
to itself, that the distances of any two pairs of identical
points are congruent, and that the congruent relation is
transitive.

Let us next assume that there may exist a triadic relation
conneeting three distances which is expressed by a saying

that the first AB is congruent to the sum of the second CcD
and the third PQ. This shall be written AB = CD+ PQ.

Axiom VI. It AB = CD+ P(Q), then AB = P(Q+CD.
Axtou VIL 1If AB = CD + PQ and PQ = RS, then
AB =CD+RS.
Axiom VIII. If AB =CD+ PQ and A’B = AB, then
A’R" =D+ PQ.
Axronm IX. AB = AB+(CC.

Definition. The distance of two identical points shall be
called a null distance.

ness’, whereas writers like Vahlen require both projective and ‘affine’
geometry, before reaching metrical geometry, a very roundabout way to
reach what is, after all, the fundamental part of the subject.
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Definition. If AB and CD be two such distances that there
exists a not null distance P@) fulfilling the condition that 4B
is congruent to the sum of CD and P@), then AB shall be said
to be greater than CD. This is written 4B > CD.

Definition. If AB > CD, then CD shall be said to be less
than AB. This is written CD < AB.

Axiom X. Between any two distances AB and CD there
exists one, and only one, of the three relations

AB=CD, AB > (D, AB < CD.

Theorem 1. If AB = CD, then CD = AB.

For we could not have AB=CD+PQ where PQ was
not null. Nor could we have CD = AB+ PQ for then, by
VIII, 4B = AB+ PQ contrary to X.

Theorem 2. If AB = (D + PQ and ('’ = CD, then
AB=0CD +PQ.
The proof is immediate.

Axiom XI. If A and C' be any two points there exists

such a point B distinet from either that
AB = AC+CB.

This axiom is highly significant. In the first place it
clearly involves the existence of an infinite number of points.
In the second it removes the possibility of a maximum dis-
tance. In other words, there is no distance which may not
be extended in either direction. It is, however, fundamentally
important to notice that we have made no assumption as
to the magnitude of the amount by which a distance may
be so extended; we have merely premised the existence of
such extension. We shall make the concept of extensxon
more explicit by the following definitions.

Definition. The assemblage of all points C' possessing the
property that AB = AC +CB shall be called the segment of
A and B, or of B and A, and written (AB) or (BA). The
points A and B shall be called the extremities of the segment,
all other points thereof shall be said to be within it.

Definition. The assemblage of all points B different from

A and C such that AB = AC + CB shall be called the extension
of (40) beyond C.
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Axiom XII. 1f AB = AC+CB where AC = AD + DC,
then AB = AD+ DB where DB = DC +CB.

The effect of this axiom is to establish a serial order among
the points of a segment and its extensions, as will be seen
from the following theorems. We shall also be able to show
that our distances are scalar magnitudes, and that addition of
distances is associative.

Axtom XIIL If AB = PQ+ RS there is a single point
' of (AB) such that AC = PQ, OB = RS,

Theorem 3. If AB>CD and CD > EF, then AB > EF.

To begin with AB = EF is impossible. If then KF> 4B,
let us put £F = EG + GF, where EG = 4AB.

Then CD=CH+HD; CH = EF.
Then CD=CK +KD; CKk = AB
which is against our hypothesis.

We see as a corollary, to this, that if C and D be any two
points of (AB), one at least being within it, A58 > CD.

It will follow from XIII that two distinct points of a
segment cannot determine congruent distances from either end
thereof. We also see from XII that if ¢ be a point of (4B),
and D a point of (AC), it is likewise a point of (A4B). Let
the reader show further that every point of a segment, whose
extremities belong to a given segment, is, itself, a point of
that segment.

Theorem 4. If C be a point of (AB), then every point D of
(AB) is either a point of (AC) or of (CB).

If AC = AD we have C and D) identical. If AC'> AD we
may find a point of (AC) [and so of (4 B)] whose distance from
A is congruent to AD, and this will be identical with D. If
AC < AD we find C as a point of (4D), and hence, by XII,
D is a point of (CB).

Theorem 5. 1f AB = AC+CB and AB = AD+ DB while
AC > 4D, then CB< DB.

A'B = AB.

The proof is left to the reader.

Theorem 7. 1f AB = PQ+ RS and 4B = PQ+ LM, then
RS =LM.
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For if AB = 1—1—(J+—Q'_B', and AC = P(Q), then CB=RS =T1M.
If AB=PQ+RS
it will be convenient to write
PQ = (AB-RS),
and say that P(Q) is the diffcrence of the distances 4B and RS.

When we are uncertain as to whether _14__13 > RS or RS > AB,
we shall write their difference | AB—RS|.

while PQ=PQ,
then LM =1
Theorem 9. If AB= PQ +RS and AB= PQ +RS
while PQ > PQ,
then RS < R'S.

Definition. The assemblage of all points of a segment and
its extensions shall be called a line.

Definition. Two lines having in common a single point are
said to cut or intersect in that point.

Notice that we have not as yet assumed the existence of
two such lines. We shall soon, however, make this assumption
explicitly.

AxioMm XIV. Two lines having two common distinct points
are identical.

The line determined by two points 4 and B shall be written
AB or BA.

Theorem 10. If C be a point of the extension of (A4B)
beyond B and D another point of this same extension, then D
is a point of (BC) if BC' = BD or BC > BD; otherwise C is
a point of (BD).

Axiom XV. All points do not lie in one line.

Axiom XVI. If B be a point of (CD) and £ a point of
(A B) where A is not a point of the line BC, then the line DV
contains a point ¥ of (40).

The first of these axioms is clearly nothing but an existence
theorem. The second specifies certain conditions under which
two lines, not given by means of common points, must, never-
theless, intersect. It is clear that some such assumption is
necessary in order to proceed beyond the geometry of a single
straight line.

COOLIDGE B
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Theorem 11. If two distinet points A and B be given, there
is an infinite number of distinet points which belong to their
segment.

This theorem is an immediate consequence of the last two
axioms. It may be interpreted otherwise by saying that there
is no minimum distance, other than the null distance.

Theorem 12. The mainfold of all points of a segment is
dense.

Theorem 18. If A, B, C, D, E form the configuration of
points described in Axiom X VI, the point Z'is a point of (DF).

Suppose that this were not the case. We should either
have ¥ as a point of (DE) or D as a point of (#F). But then,
in the first case, ¢’ would be a point of (DB) and in the second
D would be a point of (BC), both of which are inconsistent
with our data.

Definition. Points which belong to the same line shall be
said to be on it or to be collinear. Lines which contain the
same point shall be said to pass through it, or to be con-
current.

Theorem 14, If A, B, C be three non-collinear points, and D
a point within (AB) while %/ is a point of the extension of
(BC) beyond C, then the line DE will contain a point F
of (40).

Take @, a point of (£D), different from % and D. Then AG
will contain a point L of 2BE'), while G belongs to (AL). If L
and C be identical, G will be the point required. If 7 be
a point of (CE) then EG goes through F within (A@) as
required. If L be within (BC), then BG goes through Il of
(AC) and K of (AL), so that, by 18, G and H are points
of (BK). H must then, by 4, either be a point of (BG) or of
(GK). But if H be a point of (BG), C is a point of (BL),
which is untrue. Hence I is a point of (GKX), and (AH)
contains F of (EG). We sec also that it is impossible that ('
should belong to (4F) or 4 to (#C'). Hence F belongs
to (4C).

Theorem 15. If A, B, C be three non-collinear points, no
three points, one within each of their thrce segments, are
collinear.

The proof is left to the reader.

Definition. If three non-collinear points be given, the locus
of all points of all segments determined by each of these, and
all points of the segment of the other two, shall be called
a Triangle. The points originally chosen shall be called the
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vertices, their segments the sides. Any point of the triangle,
not on one of its sides, shall be said to be within it. If the
three given points be A4, B, C their triangle shall be written
AABC. Let the reader show that this triangle is completely
determined by all points of all segments having 4 as one
extremity, while the other belongs to (BC).

It is interesting to notice that XVI, and 13 and 14, may be
summed up as follows ¥ :—

Theorem 16. If a line contain a point of one side of a
triangle and one of either extension of a second side, it will
contaln a point of the third side.

Definition. The assemblage of all points of all lines deter-
mined by the vertices of a triangle and all points of the
opposite sides shall be called a plane.

It should be noticed that in defining a plane in this manner,
the vertices of the triangle play a special réle. It is our next
task to show that this specialization of function is only
apparent, and that any other three non-collinear points of the
plane might equally well have been chosen to define it.{

Theorem 17. If a plane be determined by the vertices of a
triangle, the following points lie therein :—

(@) All points of every line determined by a vertex, and
a point of the line of the other two vertices.

(b) All points of every line which contains a point of each
of two sides of the triangle.

(¢) All points of every line containing a point of one side
of the triangle and a point of the line of another side.

(d) All points of every line which contains a point of the
line of each of two sides.

The proof will come at once from 16, and from the con-
sideration that if we know two points of a line, every other
point thereof is either a point of their segment, or of one of its
extensions. The plane determined by three points as 4, B, C
shall be written the plame ABC. We are thus led to the
following theorem.

Theorem 18. The plane determined by threc vertices of a
triangle is identical with that determined by two of their
number and any other point of the line of either of the
remaining sides.

* Some writers, as Pasch, Neuere Geometrie, Leipzig, 1882, p. 21, give Axiom
XVI in this form. I have followed Veblen, loc. cit., p. 351, in weakening the
axiom to the form given.

4+ The treatment of the plane and space which constitute the rest of thiy
chapter are taken largely from Schur, loc. cit. He in turn confesses his
indebtedness to Peano.

B2
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Theorem 19. Any one of the threo points determining & plane
may be replaced by any other point of the plane, not collinear
with the two remaining determining points.

Theorem 20. A plane may be determined by any three of
its points which are not collinear.

Theorem 21. Two planes having three non-collinear points
in common are identical.

Theorem 22. If two points of a line lie in a plane, all points
thereof lie in that plane.

Axtom XVII. All points do not lie in one plane.

Definition. Points or lines which lie in the same plane shall
be called coplanar. Plancs which include the same line shall
be called coaxal. Planes, like lines, which include the same
point, shall be called concurrent.

Definition. If four non-coplanar points be given, the assem-
blage of all points of all segments having for onc extremity
one of these points, and for the other, a point of the triangle
of the other threc, shall be called a tetrahedron. The four
given points shall be called its vertices, their six segments its
edges, and the four triangles its fauces. Edges having no
common vertex shall be called opposite. Let the reader show
that, as a matter of fact, the tetrahedron will be determined
completely by means of segments, all having a common
extremity at one vertex, while the other extremity is in the
face of the other three vertices. A vertex may also be said
to be opposite to a face, if it do not lie in that face.

Definition. The assemblage of all points of all lines which
contain either a vertex of a tetrahedron, and a point of the
opposite face, or two points of two opposite edges, shall be
called u space.

It will be seen that a space, as so defined, is made up of
fifteen regions, described as follows :—

(@) The tetrahedron itself.

(b) Four regions composed of the extensions beyond each
vertex of segments having one extremity there, and the other
extremity in the opposite face.

(¢) Four regions composed of the other extensions of the
segments mentioned in (b).

(d) Six regions composed of the extensions of segments
whose extremities are points of opposite edges.

Theorem 23. All points of each of the following figures
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will lie in the space defined by the vertices of a given
tetrahedron.
d(a) A plane containing an edge, and a point of the opposite
edge.

%b) A line containing a vertex, and a point of the plane
of the opposite face.

(¢) A line containing a point of one edge, and a point of the
line of the opposite edge.

(d) A line containing a point of the line of each of two
opposite edges.

(¢) A line containing a point of one edge, and a point of the
plane of a face not containing that edge.

(f) A line containing a point of the line of one edge, and
a point of the plane of a face not containing that edge.

The proof will come directly if we take the steps in the
order indicated, and hold fast to 16, and the definitions of
line, plane, and space.

Theorem 24. In determining a space, any vertex of a tetra-
hedron may be replaced by any other point, not a vertex, on
the line of an edge through the given vertex.

Theorem 25. In determining a space, any vertex of a tetra-
hedron may be replaced by any point of that space, not
coplanar with the other three vertices.

Theorem 26. A space may be determined by any four of its
points which are not coplanar.

Theorem 27. Two spaces which have four non-coplanar
points in common are identical.

Theorem 28. A space contains wholly every line whereof it
contains two distinet points.

Theorem 29. A space contains wholly every plane whereof
it contains threc non-collinear points.

PrACTICAL LIMITATION. Points belonging to different spaces
shall not be considered simultaneously in the present work.*

Suppose that we have a plane containing the point % of the
segment (AB) but no point of the segment (BC). Take F and
G' two other points of the plane, not collinear with Z, and
construct the including space by means of the tetrahedron
whose vertices are A, B, F, . As C lies in this space, it
must lie in one of the fifteen regions individualized by the

* This means, of course, that we shall not consider geometry of more than
three dimensions. It would not, however, strictly speaking, be accurate to
say that we consider the geometry of a single space only, for we shall make
various mutually contradictory hypotheses about space.
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tetrahedron ; or, more specifically, it must lie in a plane con-
taining one edge, and a point of the opposite edge. Every
such plane will contain a line of the plane EFQ, as may be
immediately proved, and 16 will show that in every case this
plane must contain either a point of (AC) or one of (BC).

Theorem 30. If a plane contain a point of one side of a
triangle, but no point of a second side, it must contain a point
of the third.

Theorem 31. If a line in the plane of a triangle contain
a point of one side of the triangle and no point of a second
side, it must contain a point of the third side.

Definition. If a point within the segment of two given
points be in a given plane, those points shall be said to be
on opposite sides of the plane; otherwise, they shall be said to
be on the same side of the plane. Similarly, we may define
opposite sides of a line.

Theorem 32. If two points be on the same side of a plane,
a point opposite to one is on the same side as the other; and
if two points be on the same side, a point opposite to one is
opposite to both.

The proof comes at once from 30.

Theorem 33. If two planes have a common point they have
a common line.

Let P be the common point. In the first plane take a line
through P. If this be also a line of the second plane, the
theorem is proved. If not, we may take two points of this
line on opposite sides of the second plane. Now any other
point of the first plane, not collinear with the three alrcady
chosen, will be opposite to one of the last two points, and thus
determine another line of the first plane which intersects the
second one. We hereby reach a second point common to
the two planes, and the linc connecting the two is common
to both.

It is immediately evident that all points common to the
two planes lie in this line.



CHAPTER 1II
CONGRUENT TRANSFORMATIONS

In Chapter I we laid the foundation for the present work.
We made a number of explicit assumptions, and, building
thereon, we constructed that three-dimensional type of
space wherewith we shall, from now on, be occupied. An
essential point in our system of axioms is this. We have
taken as a fundamental indefinable, distance, and this, being
subject to the categories greater and less, is a magnitude.
In other words, we have laid the basis for a metrical geometry.
Yet, the principal use that we have made of these metrical
assumptions, has been to prove a number of descriptive
theorems. In order to complete our metrical system properly
we shall need two more assumptions, the one to give us the
concept of continuity, the other to establish the possibility of
congruent transformations.

Axrom XVIIL. If all points of a segment (AB) be
divided into two such classes that no point of the first
shall be at a greater distance from A than is any point
of the second; then there exists such a point C of the
segment, that no point of the first class is within (CB) and
none of the second within (4C).

It is manifest that 4 will belong to the first class, and B to
the second, while C' may be ascribed to either. It is the
presence of this point common to both, that makes it
advisable to describe the two classes in a negative, rather
than in a positive manner.

Theorem 1. If AB and PQ be any two distances whereof
the second is not null, there will exist in the segment (AB)
a finite or null number n of points P;, possessing the following
properties :

PQ E:API = .IjlcP]{+1; A‘Pk*'l = ‘A‘Pk+PkPk+l; PnB< .PQ.

Suppose, firstly, that 4B < PQ then, clearly, n = 0. If,
however, 4B = PQ then n =1 and P, is identical with B.
There remains the third case where AB > P@. Imagine the

theorem to be untrue. We shall arrive at a contradiction as
follows. Let us divide all points of the segment into two
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classes. A point H shall belong to the first class if we may
find such a positive integer » that
P H<PQ, AH=AP,+ P H,

the succession of points P;, being taken as above. All other
points of the segment shall be assigned to the second class. It
is clear that neither class will be empty. If H be a point
of the first class, and K one of the second, we cannot have
K within (AH), for then we should find AK = AP, +P,K;
P,K < PQ contrary to the rule of dichotomy. We have
therefore a cut of the type demanded by Axiom XVIII, and
a point of division C. Let D be such a point of (AC) that

DC < PQ. Then, as we may find » so large that P, D < PQ,
we shall either have P,('< PQ or else we shall be able to
insert a point P,,, within (4C) making P, ,C < PQ. If,
then, in the first case we construct P, .,, or in the second

P,,,, it will be a point within (CB), as P, B> P(Q), and this
involves a contradiction, for it would require P,,, or P, ,,
to belong to both classes at once. The theorem is thus
proved.

It will be seen that this theorem is mercly a variation of
the axiom of Archimedes,* which says,in non-technical language,
that if a sufficient number of equal lengths be laid off on a
line, any point of that line may be surpassed. We arc not
able to state the principle in exactly this form, however, for
we cannot be sure that our space shall include points of the
type P, in the extension of (AB) beyond B.

Theorem 2. In any segment there is a single point whose
distances from the extremities are congruent.

The proof is left to the reader.

The point so found shall be called the middle point of the

* A good deal of attention has been given in recent yoars to this axiom.
For an account of the connexion of Archimedes’ axiom with the continuity
of the scale, see Stolz, ‘Ueber das Axiom des Archimedes,” Mathematische
Annalen, vol. xxxix, 1891. Halsted, Rational Geometry (New York, 1904), has
shown that a good deal of the subjoct of clementary geometry can be built
up without the Archimedian assumption, which accounts for the other-
wise somewhat obscure titlo of his book. Hilbert, loc. cit., Ch. IV, was
the first writer to set up the theory of area independent of continuity,
and Vahlen has shown, loc. cit,, pp. 297-8, that volumes may be similarly
handled. These questions are of primary importance in any work that deals
principally with the significance and independence of the axioms. In our
present work we shall leave non-archimedian or discontinuous geometries
entirely aside, and that for the reason that their analytic treatment involves
either a mutilation of the number scale, or an adjunction of transfinite
elements thereto. We shall, in fact, make use of our axiom of continuity
XVIII wherever, and whenever, it is convenient to do so.
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segment. It will follow at once that if £ be any positive
integer, we may find a set of points P P,... Py_; of the
segment (AB) possessing the following properties
AP, =P;P;, =Py B; AP, = AP;+P,P,,,.
We may express the relation of any one of these congruent
1 —

distances to 4B by writing PPy

Theorem 3. If a not null distance AB be given and a
positive integer m, it is possible to find m distinct points of
the segment (A4 B) possessing the propertics

AP = PPy, ; AP, = AP+ PP},
It is merely necessary to take & so that 28 >m+1 and
X SN [
find AP, = ok AB.
Theorem 4. When any segment (4 B) and a positive integer

n are given, there exist m—1 points D, D,... D, , of the
segment (4.B) such that

AD, =D;D;,, =D, B; AD;,,=AD;+D;D;,,.

If the distance AB be null, the theorem is trivial. Other-
wise, suppose it to be untrue. Let us divide the points of
(AB) into two classes according to the following scheme.
A point P, shall belong to the first class if we may construct
1 congruent distances according to the method already
illustrated, reaching such a point I, of (AB) that P, B> AP,;
all other points of (4B) shall be assigned to the second class.
B will clearly be a point of the second class, but every point
of (AB) at a lesser distance from A than a point of the first
class, will itself be a point of the first elass. We have thus
once more a cut as demanded by Axiom XVIIIL, and a point
of division D, ; and this point is different from 4.

Let us next assume that the number of successive distances
congruent to AD, which, by 1, may be marked in (4B), is k,
and let D, be the last extremity of the resulting segments,
so that D, B< AD,. Let D;_, be the other extremity of this
last segment. Suppose, first, that L <n. Let PQ be such
a distance that 4D, > PQ > D; B. Let P, be such a point of
(AD,) that AP, > PQ, kP,D, < PQ—D;B. Then, by mark-
ing k successive distances by our previous device, we reach
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Py, such a point of (4D;) that

P,B< D, B+(PQ-D;B)< PQ< AP,.
But this is a contradiction, for & is at most equal to n—1,
and as P, is a point of the first class, there should be at least
one more point of division P,,,. Hence k=n. But k>n
leads to a similar contradiction. For we might then find @,
of the second class so that (k—2)D,Q, <3 AD,. Then mark
k—2 successive congruent distances, reaching @ _, such a
point of (AD,_,) that Q,_,D;_, >3 AD,. Hence,

QoD >3 4D, + 4D, > 4Q,,

and we may find a (k—1)th point @,_,. But kt—1=n and
this leads us to a contradiction with the assumption that
@, should be a point of the sccond class; i e. £ =n. Lastly,
we shall find that D, and B are identical. For otherwise
we might find @, of the second class so that n),Q, <D, B
and marking n successive congruent distances reach ,, within

(D, B), impossible when @, belongs to class two. Our theorem
is thus entirely proved, and D, is the point sought.

. . R )
It will be convenient to write AD, = - AB.

Theorem 5. 1f AB and PQ be given, whereof the latter is
not null, we may find % so great that )1 AB < PQ.

v
The proof is left to the reader.
We are at last in a position to introduce the concept of

number into our scale of distance magnitudes. Let 4B and PQ
be two distances, whereof the latter is not null. It may be

possible to find such a distance RS that q RS =PQ ; pRS= A B.
In this case the number g shall be called the numerical

measure of AB in terms of PQ, or, more simply the measure.
It is clear that this measure may be equally well written
Zq-) or ’Z‘;) +  There may, however, be no such distance as RS.
Then, whatever positive integer ¢ may be, we may find LM so
that LM = PQ, and p so that LM >(AB—pLM). By this

process we have defined a cut in our number system of such

a nature thatg and E;—]i appear in the lower and upper
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divisions respectively. If 2 1o & number of the lower, and

p Tl one of the upper division, we shall see at once by

/
reducing to a lowest common denominator that P ]—O——t—-l- .

Every rational number will fall into the one or the other
division. Lastly there is no largest number in the lower

division nor smallest in the upper. For suppose that % is the
largest number of the lower division. Then if

LM > (AB—pLHM),
we may find » so large that };ZM— < (AB-pLM). Let us
put L, M, E%LM. At the same time as PQ =nqL, M, we
may, by 1, find k so large that L, M, > (AB—(np+k) L, M,).

Under these circumstances P +k

P,

i3 a number of the lower

division, yet larger than In the same way we may prove

that there is no smallest number in the upper. We have
therefore defined a unique irrational number, and this may be

taken as the measure of AB in terms of PQ.
Suppose, conversely, that 2;) is any rational fraction, and

there exists such a distance AB that ¢4B > pPQ. Then in

(AB’) we may find such a poiut B that AB Eg PQ,i.e. there
b

will exist a distance having the measure £ in terms of PQ. Next
let » be any irrational number, and let there be such a number
p+l in the corresponding upper division of the rational
number system that a distance 4B > ((p+1)Pg) may be
found. Then the cut in the number system will give us a cut
in the segment (4B’), as demanded by XVIII, and a point of
division B. The numerical measure of AB in terms of PQ)
will clearly be 7.

Theorem 6. If two distances, whereof the second is not null,
be given, there exists a unique numerical measure for the first
in terms of the second, and if a distance be given, and there
exist a distance having a given numerical measure in terms
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thereof, there will exist a distance having any chosen smaller
numerical measure.

Theorem 7. If two distances be congruent, their measures
in terms of any third distance are equal.

It will oceasionally be convenient to write the measure of PQ
in the form M.PQ.

Theorem 8. If » > n and if distances 7P’ and n @ exist,
then »PQ > n PQ.

When m and n arc both rational, this comes immediately by
reducing to a common denominator. When one or both of
these numbers is irrational, we may find a number in the
lower class of the larger which is larger than one in the upper
class of the smaller, and then apply I, 3.

Theorem 9. If AB > CD, the measure of AB in terms of

any chosen not null distance is greater than that of CD in
terms of the same distance.

This comes at once by reduction ad absurdum.

It will hereafter be convenient to apply the categories,
congruent greater and less, to segments, when these apply
respectively to the distances of their extremities. We may
similarly speak of the measure of a segment in terms of
another one. Let us notice that in combining segments or
distances, the associative, commutative, and distributive laws
of multiplication hold good; e.g.

r-nPY=n-rPQ=rnPQ, n(AB+CD) =nAB+nCD.
Notice, in particular, that the measure of a sum is the sum of
the measures.

Definition. The assemblage of all points of a segment, or of
all possible extensions beyond onc extremity, shall be called
a half-line. The other extremity of the segment shall be
called the bound of the half-line. A half-line bounded by 4
and including a point B shall be written | AB. Notice that
cvery point of a line is the bound of two half-lines thereof.

Definition. A relation between two sets of points (P) and
() such that there is a onc to one correspondence of distinet
points, and the distances of corresponding pairs of points are
in every case congruent, while the sum of two distances is
carried into a congruent sum, is called a congruent trans-
formation. Notice that, by V,the assemblage of all congruent
transformations form a group. If, further, a congruent
transformation be possible (P) to (Q), and there be two sets
of points (#’) and (§’) such that a congruent transformation
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is possible from the set (P)(F’) to the set (Q)(€'), then we
shall say that the congruent transformation from (P) to (Q)
has been enlarged to include the sets (') and (Q').

It is evident that a congruent transformation will carry
points of a segment, line, or half-hne, into points of a segment,
line, or half-line respectively. It will also carry coplanar
points into coplanar points, and be, in fact, a collineation,
or linear transformation as defined geometrically. In the
eighteenth chapter of the present work we shall see how the
properties of congruent figures may be reached by defining
congruent transformations as a certain six-parameter collinea-
tion group.

Axiom XIX. If a congruent transformation exist between
two sets of points, to each half-line bounded by a point
of one set may be made to correspond a half-line bounded
by the corresponding point of the other set, in such wise that
the transformation may be enlarged to include all points
of these two half-lines at congruent distances from their
respective bounds.*

Theorem 10. If a congruent transformation carry two chosen
points into two other chosen points, it may be enlarged to
include all points of their segments.

Theorem 11. If a congruent transformation ecarry three
non-collinear points into three other such points, it may be
enlarged to include all points of their respective triangles.

Theorem 12. If a congruent transformation carry four non-
coplanar points into four other such points, it may be enlarged
to include all points of their respective tetrahedra.

Definition. Two figures which correspond in a congruent
transformation shall be said to be congruent.

We shall assume hereafter that every congruent transforma-
tion with which we deal has been enlarged to the greatest
possible extent. Under these circumstances:—

Theorem 13. If two distinet points be invariant under a
congruent transformation, the same is true of all points of
their line.

Theorem 14. If three non-collinear points be invariant

* The idea of enlarging a congruent transformation to include additional
points is due to Pasch, loc. cit. He merely assumes that if any point be
adjoined to the one set, a corresponding point may be adjoined to the other.
‘We have to make a much clumsier assumption, and proceed more circum-
gpectly, for fear of passing out of our limited region.
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under a congruent transformation, the same is true of all
points of their plane.

Theorem 15. If four non-coplanar points be invariant under
a congruent transformation the same is true of all points
of space.

Definition. The assemblage of all points of a plane on one
side of a given line, or on that given line, shall be called
a half-plane. The given line shall be called the bound of
the half-plane. Each line in a planc is thus the bound of two
half-planes thereof.

Suppose that we have two non-collinear half-lines with
a common bound A. Let B and C be two other points of
one-half-line, and B’ and C’ two points of the other. Then
by Ch. I, 16, a half-line bounded by A which contains
a point of (BB’) will also contain a point of (CC”), and vice
versa. We may thus divide all half-lines of this plane,
bounded by this point, into two classes. The assemblage
of all half-lines which contain points of segments whose
extremities lie severally on the two given half-lines shall
be called the interior angle of, or between, the given half-
lines. The half-lines themselves shall be called the sides
of the angle. If the half-lines be | AB, | AC, their interior
angle may be indicated by . BAC or 4. CAB. The point 4
shall be called the vertex of the angle.

Definition. The assemblage of all half-lines coplanar with
two given non-collinear half-lines, and bounded by the
common bound of the latter, but not belonging to their
interior angle, shall be called the eaterior angle of the two
half-lines. The definitions for sides and vertex shall be as
before. If no mention be made of the words interior or
exterior we shall understand by the word angle, interior
angle. Notice that, by our definitions, the sides are a part of
the interior, but not of the exterior angle. Let the reader also
show that if a half-line of an interior angle be taken, the
other half-line, collinear therewith, and having the same bound
belongs to the exterior angle.

Definition. The assemblage of all half-lines identical with
two identical half-lines, shall be called their interior angle.
The given bound shall be the vertex, and the given half-lines
the sides of the angle. This angle shall also be called a null
angle. The assemblage of all half-lines with this bound, and
lying in any chosen plane through the identical half-lines,
shall be called their exterior angle in this plane. The defini-
tion of sides and vertex shall be as before.
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Definition. Two collinear, but not identical, half-lines of
common bound shall be said to be opposite.

Definition. The assemblage of all half-lines having as bound
the common bound of two opposite half-lines, and lying in
any half-plane bounded by the line of the latter, shall be
called an angle of the two half-lines in that plane. The
definitions of sides and vertex shall be as usual. We notice
that two opposite half-lines determine two angles in every
plane through their line.

We have thus defined the angles of any two half-lines of
common bound. The exterior angle of any two such half-
lines, when there is one, shall be called a re-entrant angle.
Any angle determined by two opposite half-lines shall be
called a straight angle. As, by definition, two half-lines form
an angle when, and only when, they have a common bound,
we shall in future cease to mention this fact. Two angles
will be congrucnt, by our definition of congruent figures,
if there cxist a congruent transformation of the sides of one
into the sides of the other, in so far ag corresponding distances
actually exist on the corresponding half-lines. Every half-
line of the interior or exterior angle will similarly be carried
into a corresponding half-line, or as much thereof as actually
exists and eontains corresponding distances.

Definition. The angles of a triangle shall be those non-
re-entrant angles whose vertices are the vertices of the triangle,
and whose sides include the sides of the triangle.

Defimition. The angle between a half-line including one
side of a triangle, and bounded at a chosen vertex, and the
opposite of the other half-line which goes to make the angle
of the triangle at that vertex, shall be called an exterior angle
of the triangle. Notico that there are six of these, and that
they are not to be confused with the exterior angles of their
respective sides.

Theorem 16. If two triangles be so related that the sides of
one are congruent to those of the other, the same holds for the
angles.

This is an immediate result of 11.

The meanings of the words opposite and adjacent as applied
to sides and angles of a triangle are immeodiately evident, and
need not be defined. There can also be no ambiguity in
speaking of sides including an angle.

Theorem 17. Two triangles are congruent if two sides and
the included angle of one be respectively congruent to two
sides and the included angle of the other.



32 CONGRUENT TRANSFORMATIONS CH.

The truth of this is at once evident when we recall the
definition of congruent angles, and 12.

Theorem 18. If two sides of a triangle be congruent, the
opposite angles are congruent.
Such a triangle shall, naturally, be called isosceles.

Theorem 19. If three half-lines lie in the same half-plane
and have their common bound on the bound of this half-
plane; then one belongs to the interior angle of the other
two.

Let the half-lines be | AB, | AC, | AD. Connect B with H
and K, points of the opposite half-lines bounding this half-
plane. If | AC, | AD contain points of the same two sides
of the triangle BIIK the theorem is at once evident; if
one contain a point of (BIH) and the other a point of (BK),
then B belongs to ¥ CAD.

Theorem 20. If | AB be a half-line of the interior ¥ CAD,
then | AC' does not belong to the interior - BAD.

Definition. Two non-re-entrant angles of the same planc
with a common side, but no other common half-lines, shall be
said to be adjacent. The angle bounded by their remaining
sides, which includes the common side, shall be called their
sum. It is clear that this is, in fact, their logical sum,
containing all common points.

Definition. An angle shall be said to be congruent to the
sum of {wo non-re-entrant angles, when it is congruent to the
sum of two adjacent angles, respectively congruent to them.

Definition. Two angles congruent to two adjacent angles
whose sum is a straight angle shall be said to be supple-
mentary. Each shall be called the supplement of the other.

Definition. An angle which is congruent to its supplement
shall be called a right angle.

Definition. A triangle, one of whose angles is a right angle,
shall be called a right triangle.

Definition. The interior angle formed by two half-lines,
opposite to the half-lines which are the sides of a given
interior angle, shall be called the vertical of that angle. The
vertical of a straight angle will be the other half-plane,
coplanar therewith, and having the same bound.

Theorem 21. If two points be at congruent distances from
two points coplanar with them, all points of the line of the
first two are at congruent distances from the latter two.
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For we may find a congruent transformation keeping the
former points invariant, while the latter are interchanged.

Theorem 22. If | AA, be a half-line of the interior
4. BAA,, then we cannot have a congruent transformation
keeping | AB invariant and carrying | A4, into | A4,

We may suppose that 4, and 4," are at congruent distances
from A. Let H be the point of the segment (4,4,") equi-
distant from A4, and 4, We may find a congruent trans-
formation carrying AA, HA, into AA,"HA,. Let this take
the half-line | AB into | AC (in the same plane). Then if

| A4, and | AA be taken sufficiently small, 4,4, will
meet AB or AC as we see by I. 16. This will involve a
contradiction, however, for if D be the intersection, it is easy

to see that we shall have simultaneously DA, = DA, and

DA, > DA/ or DA, < DA/, for D is unaltered by the con-
gruent transformation, while A, goes into 4.

There is one case where this reasoning has to bo modified,
namely, when | AC and | AB are opposite half-lines, for here
I. 16 docs not hold. Let us notice, however, that we may
enlarge our transformation to include the X BAA, and
X BAA/ respectively. If | AB, and | AC, be two half-lines
of the first angle, | AC, being in the interior angle of X~ BAB,,
to them will correspond | AB,” and | AC/, the latter being in
the interior angle of X BAB), while by definition, corre-
sponding half-lines always determine congruent angles with
| AB. 1If, then, we choose any half-line | AL of the interior
¥ BAA/, it may be shown that we may find two
corresponding half-lines | AL, | AL/ so situated that | AL,
belongs to the interior -6, BAL,” and 4. L AL is congruent
to LAL,. The proof is tedious, and depends on
showing that as a result of our Axiom XVIII, if in any
segment the points be paired in such a way that the
extremities correspond, and the greater of two distances from
an extremity correspond to the greater of the two correspond-
ing distances from the other extremity, then there is one
self-corresponding point.* These corresponding half-lines
being found, we may apply the first part of our proof without
fear of mishap.

Theorem 23. If | AC be a half-line of the interior ¥ BAJD),

it is impossible to have X BAC and X BAD mutually
congruent.

* Cf. Enriques, Geometria proiettiva, Bologna, 1898, p. 80.
COOLIDGE C
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Theorem 24. An angle is congruent to its vertical.

We have merely to look at the congruent transformation
interchanging a side of one with a side of the other.

We see as a result of 24 that if a half-line | A B make right
angles with the opposite half-lines | AC, | AC’, the verticals
obtained by extending (AB) beyond A will be right angles
congruent to the other two. We thus have four mutually
congruent right angles at the point A. Under these circum-
stances we shall say that they are mutually perpendicular
there.

Theorem 25. If two angles of a triangle be congruent, the
triangle is isosceles.

This is an immediate result of 18.

Given two non-re-entrant angles. The first shall be said to
be greater than the second, when it is congruent to the sum
of the second, and a not null angle. The second shall under
these circumstances, and these alone, be said to be less than
the first. As the assemblage of all congruent transformations
is a group, we see that the relations greator than, less than,
and congruent when applied to angles are mutually exclusive.
For if we had two angles whereof the first was both greater
than and less than the second, then we should have an angle
that would be both greater than and less than itself, an
absurd result, as we see from 23. We shall write > in place
of greater than, and < for less than, = means congruence.
Two angles between which there exists one of these threc
relations shall be said to be comparable. We shall later see
that any two angles are comparable. The reason why we
cannot at once proceed to prove this fact, is that, so far,
we are not very clear as to just what can be done with our
congruent transformations. As for the « priori question of
comparableness, we have perfoctly clear definitions of greater
than, less than, and equal as applied to infinite assemblages,
but are entirely in the dark as to whether when two such
assemblages are given, one of these relations must necessarily

hold.*

Theorem 26. An exterior angle of a triangle is comparable
with cither of the opposite interior angles.

Let us take the triangle 4 BC, while D lies on the extension
of (BC) beyond C. Let & be the middle point of (AC) and

let DE meet (AB) in F. If DE >EF find G of (DE) so
that £ = EG. Then we have ¥ BAC congruent to X ECQ

* Cf. Borel, Legons sur la théorie des fonctions, Paris, 1898, pp. 102-8.
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and less than X ECD. If DE < EF we have X BAC
greater than an angle congruent to ¥ KCD.

Theorem 27. Two angles of a triangle are comparable.
For they are comparable to the same exterior angle.

Theorem 28. If in any triangle one angle be greater than
a second, the side opposite the first is greater than that
opposite the second.

Evidently thesc sides cannot be congruent. Let us then
have the triangle A BG where X. BAG > X BGA. We may,
by the definition of congruence, find such a point C, of (BG)

that ¥ C, AG is congruent to ¥ C,GA and hence (14 = 6.
It thus remains to show that 4B < (4C,+C,B). Were such
not the case, we might find D, of (AB) so that AD, = AC,,

and the problem reduces to comparing BC, and BD,. Now
in A BD,C, we have X BD,C, the supplement of X AD,C,
which is congruent to X AC, D, whose supplement is greater
than X BC,D,. We have therefore returncd to our original
problem, this time, however, with a smaller triangle. Now
this reduction process may be continued indefinitely, and if
our original assumption be false, the inequalities must always
lie the same way. Next notice that, by our axiom of con-
tinuity, the points C; of (BG) must tend to approach a point
C of that segment as a limit, and similarly the points D; of
(AB) tend to approach a limiting point, D. If two points of
(AB) be taken indefinitely close to D the angle which they
determine at any point of (BG) other than B will become
indefinitely small. On the other hand as C; approaches C,
X APC; will tend to increase, where P is any point of (4B)
other than B, in which case the angle is constant. This
shows that C, and by the same reasoning D, cannot be other
than B; so that the difference between BC; and BD; can be
made as small as we please. But, on the other hand
(G = AC, = 4D, ; (BA-BG) = (BD,—BC,) = (BD;-BC;)

Our theorem comes at once from this econtradiction,

Theorem 29. If two sides of a triangle be not congruent,
the angle opposite the greater side is greater than that opposite
the lesser.

Theorem 30. One side of a triangle cannot be greater than
the sum of the other two.

Theorem 31. The difference between two sides of a triangle
is less than the third side.

The proofs of these theorems are left to the reader.

c2
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Theorem 32. Two distinet lines cannot be coplanar with
a third, and perpendicular to it at the same point.

Suppose, in fact, that we have AC and AD perpendicular to
BB at A. We may assume AB = AB so that by 1. 31 4D
will contain a single point % either of (UB) or of (UB’). For
definiteness, let & belong to (CB’). Then take ¥ on (BC),
which is congruent to (B’C), so that BF = B'L. Hence
X BB'F is congruent to X B’'BE and therefore congruent to
¥ BB’E; which contradiets 23.%

Theorem 33. The locus of points in a plane at congruent
distances from two points thereof is the line through the middle
point of their segment perpendicular to their line.

Theorem 34. Two triangles are congruent if a side and two
adjacent angles of one be respectively congruent to a side and
two adjacent angles of the other.

Theoren, 85. Through any point of a given line will pass
one line perpendicular to it lying in any given plane through
that line.

Let A be the chosen point, and (/ a point in the plane, not
on the chosen line. Let us take two such points B, B’ on the
given line, that A4 is the middle point of (BB’) and BB < CB,
BB < OB, 1If then CB=CH, AC is the line required. If
not, let us suppose that UB > CB. We may make a cut
in the points of (UB) according to the following principle.
A point P shall belong to the first class if no point of the
segment (PB) is at a distance from B greater than its distance
from B, all other points of (CB) shall belong to the second
class. It is clear that the requirements of Axiom XVIII are
fulfilled, and we have a point of division /). We could not
have DB < DB, for then we might, by 31, take /£ a point
of (DC') so very mnear to D that for all points P of DI
PB < PF, and this would be contrary to the law of the cut.

In the same way we could not have DB > DB’. Hence AD is
the perpendicular required.
Theorem 36. If a line be perpendicular to two others at

* This is substantially Hilbert’s proof, loc. cit., p. 16. It is truly
astonishing how much geometers, ancient and modorn, have worried over
this theorem. Euclid puts it as his eleventh axiom that all right angles
are equal. Many modern textbooks prove that all straight angles are equal,
hence right angles are equal, as halves of oqual things. This is not usually
sound, for it is not clear by definition why a right angle is half a straight
angle. Others observe the angle of a fixed and a rotating line, and eithet
appeal explicitly to intuition, or to a vague continuity axiom.
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their point of intersection, it is perpendicular to every line
in their planc through that point.

The proof given in the usual textbooks will hold.

Theorem 37. All lines perpendicular to a given line at
a given point are coplanar.

Definition. The plane of all perpendiculars to a line at a
point, shall be said to be perpendicular to that line at that
point. .

Theorem 38. A congruent transformation which keeps all
points of a line invariant, will transform into itself cvery plane
perpendicular to that line.

It is also clear that the locus of all points at congruent
distances from two points is a plane.

Theoremn 89. If P be a point within the triangle 4 BC' and
there exist a distance congruent to 4 B+ AC, then

AB4 AC > PB+.PC,

To prove this let BZI pass through D of (AC). Then as
AC > AD a distance exists congruent to AB+ AD, and
AB+AD > BP+PD. As AB+AD > PD there exists a dis-
tance congruent to PD+DC, and henee PD+DC > PC,

DC > PO—-PD; AB+ AC > BP + PC.

Theorem 40. Any two right angles are congruent.

Let these right angles be ¥ AOC and X A°0'C". We
may assume O to be the middle point of (AB) and O the
middle point of (A’B’), where 04 =0'A". We may also
suppose that distances cxist congruent to AC+CB and to
AC+("B. Then AC > A0 and A’C' > A'0". lastly, we
may assume that A = A’(". For if we had say, A > AC/,
we might use our cut proceeding in (OC). A point P shall
belong to the first class, if no point of (OPF) determines with A
a distance greater then A4’C”, otherwise it shall belong to the
second class. We find a point of division D, and see at once
that AD = A'C". Replacing the letter D by C, we have
AC = A’C", A ABC congruent to AA’B'(Y, hence ¥ AOC
congruent to X A'0°C’.

Theorem 41. There exists a congruent transformation carry-
ing any segment (AB) into any congruent segment (A’B’) and
;);nyA})glf-plane bounded by AB into any half-plane bounded

yWe have merely to find O and O’ the middle points of (A B)
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and (4’B’) respectively, and C and C’ on the perpendiculars
to AB and A’B’, at O and O’ so that OC = 0’C".

Theorem 42. If |OA be a given half-line, there will exist
in any chosen half-plane bounded by OA a unique half-line
. OB making the ZLXOB congruent to any chosen angle.

The proof of this theorem depends immediately upon the
preceding one.

Several results follogr from the last four theorems. To-
begin with, any two angles are comparable, as we see at once
from 42. We see also that our Axioms ITT-XIII and XVIII,
may be at once translated into the geometry of the angle
if straight and re-entrant angles be excluded. We may then
apply to angles system of measurement entirely analogous
to that applied to distances. An angle may be represented
unequivocally by a single number, in terms of any chosen
not null angle. We may extend our system of comparison to
include straight and re-entrant angles as follows. A straight
angle shall be looked upon as greater than every non-re-entrant
angle, and less than every re-entrant one. Of two re-entrant
angles, that one shall be considered the less, whose corre-
sponding interior angle is the greater. A re-cntrant angle
will be the logical sum of two non-re-cntrant angles, and shall
have as a measure, the sum of their measures.

We have also found out a good deal about the congruent
group. The principal facts are as follows :—

(@) A congrucnt transformation may be found to carry any
point into any other point.

(b) A congruent transformation may be found to leave any
chosen point invariant, and carry any chosen linc through
this point, into any other such line.

(¢) A congruent transformation may be found to leave
invariant any point, and any line through it, but to carry
any plane through this line, into any other such plane.

(d) If a point, a line through it, and a plane through the
line be invariant, no further infinitesimal congruent trans-
tformations arc possible.

The last assertion has not been proved in full; let the
reader show that if a point and a line through it be invariant,
there is only one congruent transformation of the line possible,
besides the identical one, and so on. The cssential thing
is this. We shall demonstrate at length in Ch. XVIII that
the congruent group is completely determined by the require-
ment that it shall be an analytic collineation group, satisfying
these four requirements.
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Suppose that we have two half-planes on opposite sides
of a plane « which contains their common boun(i) l. Every
segment whose extremities are one in each of these half-planes
will have a point in @, and, in fact, all such points will lie
in one half-plane of a bounded by /, as may easily be shown
from the special case where two segments have a common
cxtremity.

Definition. Given two non-coplanar half-planes of common
bound. The assemblage of all half-planes with this bound,
containing points of segments whose extremities lie severally
in the two given half-planes, shall be called their interior
dihedral angle, or, more simply, their dihedral angle. The
assemblage of all other half-planes with this bound shall be
called their exterior dihedral angle. The two given half-planes
shall be called the fuces, and their bound the edge of the
dihedral angle.

We may, by following the analogy of the plane, define null,
straight, and re-entrant dihedral angles. The definition of the
dihedral angles of a tetrahedron will also be immediately
evident.

A plane perpendicular to the edge of a dihedral angle will
cut the faces in two half-lines perpendicular to the edge.
The interior (cxterior) angle of these two shall be called a
plane angle of the interior (exterior) dihedral angle.

Theorem 43. Two plane angles of a dihedral angle are con-
gruent.

We have merely to take the congruent transformation
which keeps invariant all points of the planc whose points
ave cquidistant from the vertices of the plane angles. Such
a transformation may properly be called a reflection in that
plane.

Theorem 44. If two dihedral angles be congruent, any two
of their plane angles will be congruent, and conversely.

The proof is immediate. Let us next notice that we may
measure any dihedral angle in terms of any other not null one,
and that its measure is the measure of its plane angle in
terms of the plane angle of the latter.

Definition. If the plane angle of a dihedral angle be a right
angle, the dihedral angle itself shall be called riykt, and the
planes shall be said to be mutually perpendicular.

Theorem 45. If a plane be perpendicular to each of two
other planes, and the three be concurrent, then the first
plane 1s also perpendicular to the line of intersection of the
other two.



CHAPTER III

THE THREE HYPOTHESES

IN the last chapter we discussed at some length the problem
of comparing distances and angles, and of giving them
numerical measures in terms of known units. We did not
take up the question of the sum of the angles of a triangle,
and that shall be our next task. The axioms so far set up
are insufficient to determine whether this sum shall, or shall
not, be congruent to the sum of two right angles, as we shall
amply see by elaborating consistent systems of geometry
where this sum is greater than, equal to, or less than two
right angles. We must first, however, give one or two
theorems concerning the continuous change of distances and
angles.

Theorem ). If a point P of a segment (AB) may be taken
at as small a distance from A as desired, and € be any other
point, the - ACP may be made less than any given angle.

If C be a point of AB the theorem is trivial. If not, we
may, by IIL 4, find | CD in the half-plane bounded by CA
which contains B, so that ¥ ACD is congruent to the given
angle. If then | AB belong to the internal X ACD, we have
X ACEB less than ¥ ACD, and, « fortiori, X ACP < X ACD.
If | AD belong to the internal X ACB, | AD must contain a
point & of CAB, and if we take P within (4 %), once more

L ACP < 5 ACD.

Theorein 2. If, in any triangle, one side and an adjacent
angle remain fixed, while the other side including this angle
may be diminished at will, then the external angle opposite
to the fixed side will take and retain a value differing from
that of the fixed angle by less than any assigned value.

Let the fixed side be (AB), while €' is the variable vertex
within a fixed segment (BD). We wish to show that if B(
be taken sufficiently small, - ACD will necessarily differ from
X_ABD by less than any chosen angle.

Let B; be the middle point of (4B), and B, the middle
Eoint of (B, B), while B, is a point of the extension of (45)

eyond B. Through each of the points B,, B,, B, construct
a balf-line bounded thercby, and lying in that half-plane.
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bounded by AZB which contains D, and let the angles so
formed at B,, B,, B, all be congruent to £ ABD. We may
certainly take BC' so small that AC contains a point of each
of these half-lines, say C}, C,, C; respectively. We may more-
over take BC so tiny that it is possible to extend (B,(,)
beyond C, to I, so that B;C, = C,D,. AD, will surely meet
B,C, in a point D,, when {E_le is very small, and as AC,
differs infinitesimally from AB;, and hence exceeds AB by

L)

Va

By

Fie. 1.

a finite amount, it is greater than 2AC; which differs in-
finitesimally from 248, or AB. We may thus find ¢’ on
the extension of (4C,) beyond C, so that AC, = C,C". ¢ will
be at a small distance from C, and hence on the other side of
B,D, from A and D,. Let D,C" meet B,D, at H,. We now
see that, with rega,rh to the A AB,D,; the cxternal angle at
D, (ie. one of the mutually vertical external angles) is
X B, D, D, congruent to (B, D,C’+4C'D,D,), and B, D,C’
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is congruent to {. A B, D,,and, hence congruent to . A BD. The
4 "D, D, is the difference between X5, D, D, and ¥ B, D, H,,
and as H, and D, approach B, as a limiting position, the
angles determined by B,, D, and D,, II, at every point in
space decrease together towards a null angle as a limit.
Hence ¥ ("D, D, becomes infinitosimal, and the difference
between X B, DD, and ¥ ABD becomes and remains in-
finitesimal. But as AB, = B, B, and ¥ AB, D, and X.B, BD
are congruent, we see similarly that the difference between
¥.B,CD and Y. ABD will become, and remain infinitesimal.
Lastly, the difference between ¥.B,CD and . ACDis ¥{.B,CA
which will, by our previous reasoning, become infinitesimal
with B,C,. The ditference between X ABD and ¥ ACD will
therefore become and remain less than any assigned angle.
Several corollaries follow immediately from this theorem.

Theorem 3. If in any trianglc one side and an adjacent
angle remain fixed, while the other side including this angle
becomes infinitesimal, the sum of the angles of this triangle
will differ infinitesimally from a straight angle.

Theorem 4. If in any triangle one side and an adjacent
angle remain fixed, while the other side including this angle
varies, then the measures of the third side, and of the variable
angles will be continuous functions of the measure of the
variable side first mentioned.

Of course a constant is here included as a special case of
a continuous function.

Theorem 5. If two lines AB, AC be perpendicular to BC, then
all lines which contain A4 and points of B(' are perpendicular
to BC, and all points of BC are at congruent distances from 4.

To prove this let us first notice that our A A B( is isosceles,
and AB will be congruent to every other perpendicular
distance from A to BC.  Such a distance will be the distance
from A to the middle point of (BC) and, in fact, to every
point of BC whose distance from B may be expressed in the

form 7 BC where m and n are integers. Now such points

will lie as close as we please to every point of BC, hence

by II 81, no distance from A can differ from AB, and no
angle so formed can, by III. 2, differ from a right angle.

Theorem 6. If a set of lines perpendicular to a line , meet
a line m, the distances of these points from a fixed point of m,
and the angles so formed with m, will vary continuously with



111 THE THREE HYPOTHESES 43

the distances from a fixed point of ¢/ to the intersections with
these perpendiculars.
The proof comes easily from 2 and 5.

Definition. Given four coplanar points 4, B, C, D so situated
that no scgment may contain points within threce of the
segments (4.B), (BC), (CD),(DA). The assemblage of all points
of all segments whose extremities lie on these segments shall
be called a quadrilateral. The given points shall be called
its vertices, and the given secrments its sides. The four
internal angles LDAB J_ABC X BCD, ¥.CDA shall be
called its angles. The definitions of opposite sides and
opposite vertices are obvious, as are the definitions for
adjacent sides and vertices.

Definition. A quadrilateral with right angles at two
adjacent vertices shall be called birectangular. 1f it have
three right angles it shall be called trirectangular, and four
right angles it shall be called a vectangle. Let the reader
convince himself that, under our hypotheses, birectangular
and trirectangular quadrilaterals necessarily exist.

Definition. A birectangular quadrilateral whose opposite
sides adjacent to the right angles are congrucnt, shall he said
to be isosceles.

Theorem 7. Saccheri’s.* Inan isosceles birectangular quad-
rilateral a Jinc through the middle point of the side adjacent
to both right angles, which is perpendicular to the line of
that side, will be perpendicular to the line of the opposite
side and pass through its middle point. The other two angles
of the quadrilateral are mutually congruent.

Let the quadrilateral be ABCD, the right angles havin
their vertices at A and B. Then the perpendicular to A/
at /' the middle point of (4B) will surely contain ¥ point of
(CD). It will be casy to pass a plane through this line
perpendicular to the planc of the quadrilateral, and by taking
a reflection in this latter plane, the quadrilateral will be
transformed into itself, the opposite sides being interchanged.

This theorem may be more briefly stated by saying that

* Saccheri, Euclides ab omni naevo rindicatus, Milan, 1732. Accossible in
Engel und Stacckel, Theorie der Parallellinien von Euklid bis auf Gauss, Leipzig,
1895. The theorem given above covers Saccheri’s theorems I and 2 on p. 50
of the last-named work. Saccheri's is the first systematic attempt of which
we have a record to prove Euclid’s parallel postulate, and proceeds according
to the modern method of assuming the postulate untrue. He builded botter
than he knew, however, for the system so constructed is self-consistent, and
not inconsistent, as he attempted to show.
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this line divides the quadrilateral into two mutually congruent
trirectangular ones.

Theorem 8. In a rectangle the opposite sides are mutually
congruent, and any isosceles birectangular quadrilateral whose
opposite sides are mutually congruent is necessarily a rectangle.

Theorem 9. If there exist a single rectangle, every isosceles
birectangular quadrilateral is a rectangle.

Let ABCD be the rectangle. The line perpendicular to
AB at the middle point of (AB) will divide it into two
smaller rectangles. Continuing this process we see that we
can construct a reetangle whose adjacent sides may have any
measures that can be indicated in the form j‘r)r; AB, 27), i AC,
provided, of course, that the distances so called for exist
simultaneously on the sides of a bircctangular isosceles
(uadrilateral. Distances so indicated will be everywhere
dense on any line, hence, by 6 we may construct a rectangle
having as one of its sides one of the congruent sides of any
isosceles birectangular quadrilateral, and hence, by a repetition
of the same process, a rectangle which. is identical with this
quadrilateral. All isosceles birectangular quadrilaterals, and
all trirectangular quadrilaterals are under the present cirecum-
stances rectangles.

Be it noticed that, under the present hypothesis, Theorem 5
is superfluous.

Theorem 10. If there exist a single right triangle the sum
of whose angles is congruent to a straight angle, the same is
true of cvery right triangle.

Let AABC be the given triangle, the right angle being
4 ACB so that the sum of the other two angles is congruent
to a right angle. Let A A’B’C’ be any other right triangle,
the right angle being X A'C'B. We have to prove that the
sum of its remaining angles also is congruent to a right angle.
We sec that both ¥ ABC and X BAC are less than right
angles, hence there will exist such a point £ of (AB) that
¥ EAC and ¥ FKCA are congruent. Then X EBC =¥ ECB
since ¥~ ACB is congruent to the sum of . £AC and X EBC.
If D and ¥ be the middle points of (BC) and (AC) respee-
tively, as AKAC and AEBC are isosceles, we have, in the
quadrilateral EDCF right angles at D, , and F. The angle
at & is also a right angle, for it is one half the straight angle,
¥ AEB, hence X EDCF is a rectangle. Passing now to the
AAC'B we see that the perpendicular to A’C” at F’ the
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middle point of (A4’C’), will meet (A’B’) in L', and the per-
pendicular to £'F’ at £ will meet (B'C") in IV. But, by
an easy modification of 9, as there exists one rectangle, the
trirectangular quadrilateral Z/F'1'(" is also a rectangle. It
is clear that X D'E'B = 4 D'E'C’ since L F"E'D is a right
angle and X F'/A" = F'E'C’. Then AC'E’B’ is isosceles
like AA’E’C’. From this comes immediately that the sum
of X E’B'C' and X E’A’C’ is congruent to a right angle, as
we wished to show.

Theorem 11. If there exist any right triangle where the
sum of the angles is less than a straight angle, the same is
true of all right triangles.

We sce the truth of this by continuity. For we may pass
from any right triangle to any other by means of a continuous
change of first the one, and then the other of the sides which
include the right angle. In this change, by 2, the sum of the
angles will either remain constant, or change continuously,
but may never become congruent to the sum of two right
angles, hence it must always remain less than that sun.

Theorem 12. If there exist a right triangle where the sum
of the angles is greater than two right angles, the same is
true of every right triangle.

This comes immediately by reductio ad absurdum.

Theorem 18. If there exist any triangle where the sum of
the angles is less than (congruent to) a straight angle, then in
every triangle the sum of the angles is less than (congruent
to) a straight angle.

Let us notice, to begin with, that our given AAB(
must have at least two angles, say - AB( and X BA(’ which
are less than right angles. At each point of (AB) there will
be a perpendicular to AB (in the plane BC). If two of
these perpendiculars intersect, all will, by 5, pass through
this point, and a line hence to ¢ will surely be perpendicular
to AB. If no two of the perpendiculars intersect, then,
clearly, some will meet (AC) and some (BC). A cut will
thus be determined among the points of (4 5), and, by XVIII,
we shall find a point of division D. It is at once evident
that the perpendicular to AB at D will pass through €. 1In
every case we may, therefore, divide our*triangle into two
right triangles. In one of these the sum of the angles must
surely be less than (congruent to) a straight angle, and the
same will hold for every right triangle. Next observe that
there can, under our present circumstances, exist no triangle
with two angles congruent to, or greater than right angles.
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Hence every triangle can be divided into two right triangles
as we have just done. In each of these triangles, the sum of
the angles is less than (congruent to) a straight angle, hence
in the triangle chosen, the sum of the angles is less than
(congruent to) a straight angle.

Theorem 14. If there exist any triangle where the sum
of the angles is greater than a straight angle, the same will
be true of every triangle.

This comes at once by reductio ad absurdum.

We have now reached the fundamental fact that the sum of
the angles of a single triangle will determine the nature
of the sum of the angles of every triangle. Let us set the
various possible assumptions in evidence.

The assumption that there exists a single triangle, the sum
of whose angles is congruent to a straight angle is called the
Euclidean or Parabolic hypothesis.*

The assumption that there exists a triangle, the sum of
whose angles is less than a straight angle is called the
Lobatchewskian or hyperbolic hypothesis. T

The assumption that there exists a triangle, the sum of
whose angles is greater than a straight angle, is called the
Riemannian or elluptic hypothesis. ]

Only under the elliptic hypothesis can two intersecting
lines be perpendicular to a third line coplanar with them.

Definition. The difference between the sum of the angles of
a triangle, and a straight angle shall be called the discreparncy
of the triangle.

Theorem 15. If in any triangle a line be drawn from one
vertex to a point of the opposite side, the sum of the dis-
crepancies of the resulting triangles is congruent to the
discrepaney of the given triangle.

* There will exist, of course, numerous geometries, other than those which
we give in the following pages, where the sum of the angles of a triangle is
still congruent to a straight angle, e. g. those lacking our strong axiom of
continuity. Cf. Dehn, ¢ Die Legendre’schen Sitze tiber die Winkelsumme im
Dreiecke,” Mathematische Annalen, vol. liii, 1900, and R. L. Moore, ¢ Geometry
in which the sum of the angles of a triangle is two right angles,” Transactions
of the American Mathematical Society, vol. viii, 1907,

*+ The three hypotheses were certainly familiar to Saccheri (loc.cit. ), though
the credit for discoverigg the hyperbolic system is generally given to Gauss,
who speaks of it in a letter to Bolyai writien in 1799. Lobatchewsky’s first
work was published in Russian in Kasan, in 1829. This was followed by an
article ¢ Géométrie imaginaire ’, Crelle’s Journal, vol. xvii, 1837. All spellings
of Lobatchewsky’s name in Latin or Germanic languages are phonetic. The
author has seen eight or ten different ones.

- 1 Riemann, Ueber die Hypothesen, welche der Geomelrie zu Grunde liegen, first read
in 1854; see p. 272 of the second edition of his Gesammelte Werke, with
explanations in the appendix by Weber.
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The proof is immediate. Notice, hence, that if in any
triangle, one angle remain constant, while one or both of the
other vertices tend to approach the vertex of the fixed angle,
along fixed lines, the discrepancy of the triangle, when not
zero, will diminish towards zero as a limit. We shall make
this more clear by saying—

Theorem 16. If, in any triangle, one vertex remain fixed,
the other vertices lying on fixed lines through it, and if a
second vertex may be made to come as near to the fixed vertex
as may be desired, while the third vertex does not tend to
recede indefinitely, then the discrepancy may be made less
than any assigned angle.

Theorem 17. If in any triangle onc side may be made less
than any assigned segment, while neither of the other sides
becomes indefinitely large, the discrepancy may be made less
than any assigned angle.

If neither angle adjacent to the diminishing side tend to
approach a straight angle as a limit, it will remain less than
some non-re-entrant angle, and 16 will apply to all such
angles simultaneously. If it do tend to approach a straight
angle, let the diminishing side be (4B), while . BAC tends

to approach a straight angle. Then, as neither BC nor AC
becomes indefinitely great, we see that A4 must be very close
to some point of the extension of (4B) beyond A4, or to A
itself. If ' do not approach 4, we may apply 1 to show that
4§ ACB becomes infinitesimal. If ' do approach 4 we may
take D the middle point of (AC) and cxtend (/3D) to I beyond
D so that D = IB. Then we may apply Kuclid’s own
proof * that the exterior angle of a triangle is greater than
either opposite interior one, so that the exterior angle at A
which is infinitesimal, is yet grcater than ¥ ACB.

Theorem 18. If, in any system of triangles, one side of each
may be made less than any assigned segment, all thus
diminishing together, while no side becomes indefinitely
great, the geometry of these triangles may be made to differ
from the geometry of the euclidean hypothesis by as little as
may be desired.

A specious, if loose, way of stating this theorem is to say
that in the infinitesimal domain, we have euclidean geometry.{

* Euclid, Book I, Proposition 16,

+ This theorem, loosely proved, is taken as the basis of a number of works
on non-euclidean geometry, which start in the infinitesimal domain, and
work to the finite by integration. Cf. e. g. Flye Ste-Marie, Etudes analytiques
sur la théorie des paralléles, Paris, 1871,



CHAPTER [V

THE INTRODUCTION OF TRIGONOMETRIC
FORMULAE

THE first fundamental question with which we shall have
to deal in this chapter is the following. Suppose that we
have an isosceles, birectangular quadrilateral I BCD, whosc
right angles arc at A and B. Suppose, further, that AB
becomes infinitesimally small, AD remaining constant ; what

! ——
will be the limit of the fraction 5;1; where M XY means the
M
measure of XY in terms of some convenient unit.* But, first

of all, we must convince ourselves, that, when AD is given
we may always construct a suitable quadrilateral; secondly,
and most important, we must show that a definitc limit does
necessarily exist for this ratio, as AB decrcases towards the
null distance.

Thevrem 1. If AD and AX be two mutually perpendicular
lines we may find such a point B on either half of 4X bounded
by A4, that, a linc being drawn perpendicular to AB at any
point P of (AB) we may find on the half thereof bounded by
P, which lics in the same half-plane bounded by 4B as does D,
a point whose distance from P is greater than AD.

et I be a point of the extension of (4 D) beyond D. Draw

a line there perpendicular to AD. If B be a point of AX
very close to 4, and if a line perpendicular to AB at P

of (AB), meet the perpendicular at E at a point @, PQ differs
but little from A, and, hence, is greater than A D.

* The general treatment, and several of the actual proofs in this chapter
are taken directly from Gérard, La géomeétrie non-cuclidienne, Paris, 1892. It has
been possible to shorten some of his work by the consideration that we have
euclidean geometry in the infinitesimal domain. On the other hand, several
important points are omitted by him. There is no proof that the required
limit does actually exist, and worse still, he gives no proof that the resulting

function of m 4D is necessarily continuous, thereby rendering valueless his
solution of its functional equation.
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The net result of theorem 1 is this. If AD be given, and
the right X DAX, any point of AX very near to A may be
taken as the vertex of a second right angle of an isosceles
birectangular quadrilateral, having A as the vertex of omne
right angle, and (A.D) as one of the congruent sides.

Definition. We shall say that a distance may be made
infinitesimal compared with a sccond distance, if the ratio
of the measure of the first to that of the second may be made
less than any assigned value.

Theorem 2. If in a triangle whereof one angle is constant,
a second angle may be made as small as desired, the side
opposite this angle will be infinitesimal compared to the other
sides of the triangle.

Suppose that we have, in fact, A PQR with X PQR fixed,
while X PRQ becomes infinitesimal. It is clear that one
of the angles X PQR or X QPR must be greater than a right
angle. Suppose it be X QPR. Then, by hypothesis, no
matter how large a positive integer % may be, I may find such
positions for P and R, that » points ; may be found on | PQ
so that X PRQ =4 QRQ,=4Q,, KQ,.,, yet X1-QRQ, is less
than any chosen angle. Now if K¢ remain constantly greater
than a given not null distance, the thcorem is perfectly
evident. If, on the other hand, R dcercase indefinitely, we
may find S on | PQ but not in (1°Q), so that QR = @QS. Then,
as geometry in the infinitesimal domain obeys the euclidean
hypothesis, QRS will differ infinitesimally from one half
¥ PQR. If, then, we require X QRQ, to be less than this last-
named amount, ), will be within (@S), and PQ < @}, Q1

and PQ < '}—»QR A similar proof holds when Y. PQR is
greater than a right angle.

It will follow, as a corollary, that if in any triangle, one
angle become infinitesimal, and neither of the other angles
approaches a straight angle as a limit, then the side opposite
the infinitesimal angle becomes infinitesimal as compared
with cither of the other sides.

Theorem 8. If in an isosceles birectangular quadrilateral,
the congruent sides remain constant in value, while the side
adjacent to the two right angles decreases indefinitely, the
ratio of the measures of this and the opposite side approaches
a definite limit.

It will save circumlocution and involve no serious confusion
if, during the rest of this chapter, we speak of the ratio of two

COOLIDGE D
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distances, instead of the ratio of their measures, and write
such a ratio simply % . Let us then take the isosceles
birectangular quadrilateral A’ABB’, the right angles having
their vertices at A and B. Let us imagine that 4 and 4’ are
fixed points, while B is on a fixed line at a very small distance
from A. Let C be the middle point of (4B), and let the
gerpendicular to AB at C meet (A’B) at (', which, by -
accheri’s theorem, is the middle point of (4’B’). Now, by

IIL. 6, £ C"A’A differs infinitesimally from a right angle,
as AC becomes infinitesimal, so that if €] be the point
of (CC’), or (CC’) extended beyond (’, for which CC, = 44’,
.07 < L g, But 4¢ Eé—.g . Henee 201 _ AF <3?

n AC  AB AC  AB .
where 8 may be made less than any assigned number. By a re-
peated use of this process we see that if D be such a point of (4.B)

that 4D = é—"” AB and D, such a point of the perpendicular

at D that 44’ =DD,, then, however small ¢ may be,

A ) ’ 1’ R
“j,,‘ — jg < ¢ and, what is more, we may take AR so
AD  AB

small that this inequality shall hold for all such points D

_ D
at once, for, as 4B decreases, every ratio ij)l gets nearer and

rn

nearer to I}B - Lastly, if P be any point of (4B),and P, lie

on the perpendicular at P so that 44° = PP,, we may find
one uf our points recently called D of such a nature that DP,
and D, P, are infinitesimal as compared with AB. Hcnee
A'P, 4B e N .

1 — —— < ¢ where ¢ is infinitesimal with AB. This
AP AB

shows that %% approaches a definite limit, as 4B approaches

the null distance.

This limit is constantly equal to 1 in the euclidean case.
In the other cases it is a variable depending on the measure
of AA’. 1If this measure be @, we may call our limit ¢ (z).

Let us next show that the function ¢ is. continuous. Take
A’ABB’ as before, while A, and B, are respectively on the
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extensions of (A44’), beyond A’, and of (BB’) beyond B’. Let
the measure of 44’ be «, while that of A4, is Az,

AB A B

éA:_E fj((l))-l'f, jBl = ¢(w+Am)+n,

Now
A B, < (A, 4+ ZB)+FB, 044 > | 4,B,—-AF |,
and, however great m may be, we may take 4,4’ so small

that A& <L 4B,
2m
1

then Ag¢(x) < prole s 3,

and, hence, ¢ is a continuous function.
We shall find the actual form of ¢ from its functional

equation. Let @ be the measure of AC, (x—y) that of AC,,

and (z+y) that of AC,; where € and C, are points within
(AC,). Take a corresponding set of distances upon a line near

by, BD = AC; BD, = AC,; BD,= AC, while | AC and | BD
are in the same half-plane bounded by AB and perpendicular
thereto. We know, by 1, that this construction is possible.
We shall presently suppose AB to be infinitesimal. The
perpendicular to "D at ' will meet C,D, and €, D, in P and R
respectively, while the perpendicular to CD at D will meet
these lines at ¢ and S; the four last-named points will surely
exist, if AB be very tiny. X CC,P and ¥ CC/R will differ
infinitesimally from right angles, so that by 2
GP—GR
e, ,

This infinitesimal ¢ is, in fact, of the second order. For,
let us compare ACC,P and ACC,R. ¥ C,CR=XC,CP;
CC, = 00,. Also X CC,P and X CC,R differ infinitesimally.
Hence, if, on (CP) or (CP) extended beyond P, we take
CP' =CR we have (,I”=CR; C,P~C,R< PP". But
iil;—) <& as the angle opposite (PP’) is infinitesimal.
‘2

= €.

2 5 2 e -
56'2]) =3 C, R+ 2¢ where ¢ is infinitesimal, as compared with

M C,P meaning thereby the measure of (,P. Lastly, let us
D2
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use letters of the type 3, €, n, to indicate infinitesimals, and
remember that AB is an infinitesimal distance.

C,P =D,Q, C,R=D,S,
2(? = ]O:z‘ﬁz“_P—Q {: Q_OTR = 161—1)1_‘Rsl’
CD = ¢(x) AB+¢, 4B,
0D, = ¢ (o—y) AB-+, AT,
C,D, = ¢(v+y) AB+¢, AB,
PQ = ¢ (mCP)CD+35,0D,
RS = ¢ (wCR) 0D + 8, OD.
But C,P > OC,—CP and C,P is infinitesimal.
PQ = ¢ (y) CD+8,0D,
RS = ¢ (y)CD+5,0D.
Substitute in the first cquation connecting C, > and U, R
[P (z+y) +e—¢ (@) () — b @) 3,—b(y) e+ 85 6] M‘/TB_:
=[¢(@)p(y) + (), + d(y)e, + by, — (@ —y) —e,] MAB+ 2y e.

Hence ¢ (z+ )+ ¢(z—y)—2¢(x) p(y) < n where 1 may be
made less than any assigned value

b(z+y)+d@—y) = 2¢(x) $(y)- 1)
This well-known equation may be easily solved. Let us
assume that the unit of measure of distance 1s well fixed

$(0)=1 ¢(2z)=2[¢(2)]*-1
Let @, be a value for z in the interval to which the equation
applies, i.e. the measure of an actual distancc. We may find
o

k so that ¢(x,) = cos T We have immediately

2 N ne
¢ (2z) = cos =7 b (gw) = cos (z7p)-

We also know that ¢(m)—cos% is a continuous function.

If, then,  be any value of the argument, we may find = and
Ny

m such large integers that x— ;' is infinitesimal. Hence

¢(x --coxssg£ will be less than any assigned quantity, or
A Yy q y
x
P(x) = cos-,é . )
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The function cosine has, of course, a purely analytical

meaning, i.e. we wrile
a2 at
@ =1=F o *Eg

Of fundamental importance is the constant k. We shall
find that it gives the radius of a sphere (in our usual
cuclidean geometry) upon which the non-euclidean plane
may be developed. We shall, therefore, define the constant

1
s the Measure of Curvature of Space* To find the
nature of the value of &, we sce immediately that in the

parabolic case 7}_,: 0; in the elliptic ¢ is, at most, equal

1 . " .
to 1, hence yFIRG positive. In the hyperbolic case, 1 con-
. 1
stitutes & minimum value for ¢ and & is negative, or k a pure
v
imaginary. Under these circumstances, we may, if we choose,
remove all signs of imaginary values from (2) by writing

I =ik, 2
¢ (£) = cosh (7.:’) .

As a matter of fact, however, there is little or no gain in
doing this.

1t is now necessary to calculatc another limit, that of the
ratio of two simultaneously diminishing sides of a right
triangle. Let us, then, suppose that we have a right
A ABC whose right angle is X ABC. We shall imagine that

AB becomes infinitesimal while . BAC is constant. We
seek the limit of %T That such a limit will actually

exist may be proved by considerations similar to those which
established the existence of ¢(x). We leave the details to
the reader. The limit is a function of the angle - BAC, and
if 6 be the measure of the latter, we may write our function
f(6); including therein, of course, the possibility that this
function should be a constant.

First of all it is incumbent upon us to show that this
function is continuous. Take (” on the extension of (B(')
beyond C, and let A0 be the measure of X CAC’. If A6 be

* This fundamental concept is due to Riemann, loc. cit. We shall
consider it more fully in subsequent chapters, notably XIX.

+ It is strange that Gérard, loc. cit., assumes this ratio from the euclidean
case.
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infinitesimal, then, by 2 CC’ is infinitesimal as compared

with AC. Henee ‘—A__—(J- - A_—C will become and remain less
AB AB

than any assigned number, and f(6) is continuous.

Suppose, now, that we have two half-lines | 0Y, | 0Z lying
in a half-plane bounded by |OX. Let X X0Y and X X0Z
be each less than a right angle, and have the measures 6,0 + ¢ ;
¢ < 0. Take Fon|0Z, and find B, so that

OF=0B; {YOF =4 YOB,

| OB is within the interior angle ¥ XOY ; these points will
certainly exist if OF be very small. Connect # and B by a line
meeting |OY in D, and through F, D, B draw three lines per-
pendicular to | 0.X, and meeting it in %/, C, A respectively, which
points also are sure to exist, if OF be small enough. € will
be separated from the middle point of (£4) by a distance
infinitesimal compared with %A, for the perpendicular to 0.X
at such a point would mect (BF) at a point whose distance
from D was infinitesimal as compared with OF.

.

00 = 009D _ @ @)+

D j0=0-T DO+,

%= (0’_:2 =f(0+¢)+e

27_% = (0 /($)—F 0+ )+ &5 .% - ?g = , infinitesimal.

FO+)+f(0—¢) =27(0) ().
This is the functional equation that we had before, so that
f = cos 9 and ! must be real. If, then, we 8o choose it that the

{
measure of a right angle shall be g >

f(6) = cosé.
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Let us not fail to notice that since X ABC is a right angle
we have, by IIL. 17,

. BC n .
lim. =5 = % (§ —0) = sind. (8)

The extension of these functions to angles whose measures
are greater than "2—{ will afford no difficulty, for, on the one
hand, the defining series remains convergent, and, on the
other, the geometric extension may be effected as in the
elementary books.

Our next task is a most serious and fundamental one, to
find the relations which connect the measures and sides and
angles of a right triangle. Let this be the AABC with
X ABC as its right angle. Let the measure of X BAC be
while that of £_BCA is 6. We shall assume that both  and 6
are less than g, an obvious necessity under the euclidean
or hyperbolic hypothesis, while under the elliptie, such will
still be the casc if the sides of the triangle be not large, and
the case where the inequalities do not hold may be easily
treated from the cases where they do. Let us also call @, b, ¢

the measures of BC, C'4, AB respectively.

We now make rather an elaborate construction.¥ Take B,
in (4B) as near to B as desired, and 4, on the extension
of (AB) beyond A, so that A,A = B B, and construct
A A, B,C, = AABC, C, lying not far from ('; a construction
which, by 1, is surely possible if BB, be small enough. Let
B,C; meet (4C) at C,. X C,C,C will differ but little from
X BCA, and we may draw C,C, perpendicular to CC,, where
C, is a point of (CC,). Let us next find 4, on the extension
of (4C') beyond 4 so that 4,4 = C,C and B, on the extension
of (C,B,) beyond B, so that B, B, = C,(,, which is certainly
possible as C,(), is very small. Draw 4,B,. We saw that
4 0,C,C will differ from ¥ BCA by an infinitesimal (as B, B
decreases) and ¥-CC, B, will approach a right angle as & limit.
We thus get two approximate expressions for sin 6 whose
comparison yields @~

e ro7e GOS~1313l
C,C, CC, k
e +(l = +52,
c,Cc, CC, Ce,
for OC,—cos ;L- BB, is infinitesimal in comparison to BB, or

v

* See figure on next page.
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CC,. Again, we see that a line through the middle point,
of (AA,) perpendicular to AA, will also be perpendicular
to 4,C), and the distance of the intersections will differ in-

finitesimally from siny A4,. We see that C,C, differs by

a higher infinitesimal from siny cos %ﬂ;, so that

4 55
e s+ BB
b . AA1 COS T 1
COS/} siny == b= e+,
e, 00,
C,, c
0
Cz
Ay AW B, B
Ag B2

Fiac. 2.

Next we see that A4, = BB, and hence

b_ 1 (L-CI_UZ+6
cOSiS = sin\[/ cos '/: (7]_2 g
Moreover, by construction (;,C, = B, B,, OC, = A4,. A per-
pendicular to A4, from the middle point of (44,) will be
perpendicular to 4,B,, and the distance of the intersections

will differ infinitesimally from each of these expressions

sin\pm,
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Hence cos b cos % cos & <
T —C08 7 CO8 7 < €
k R
b a ¢
€08 7 = COS 7 COB ; » (4)
k kT k

To get the special formula for the euclidean case, we should
develop all cosines in power series, multiply through by %2,
and then put ]%- = 0, getting

b= a%+c?
the usual Pythagorean formula.

We have now a sufficient basis for trigonometry, the
development whereof merely requires a little analytic skill.
It may not perhaps be entirely a waste of time to work out
some of the fundamental formulae. Let A, B, ¢ be the
verticos of a triangle, and let us use these same letters, as
is usual in elementary work, to indicate the measures of the
corresponding angles, while the measures of the sides shall bo
@, b, ¢ respectively. Begin by assuming that - AB(' is a right
angle so that B = 7—: Let D be such a point of (A(') that BD
is perpendicular to AC'; the measures of AD and CD being
b, and b,, while the measure of BD is «,.

@ cos ¢
COS T
b, k R k
CO8 5~ = - — 5 COS~ = 3
k 0s o
k "k
b+, b . %acosc
COS|{ —5—" ) = COS 7+ = COS 79
( k k & k

0
@ ¢ 5 Uy 2 Uy N7 2 4y 2 ©
cos-cos—(l-cos‘-—): cos®~ —cos® -  [eos? 1 —cos? -,
k k k k L k L

cos? %’cosz % (cos® %—1 —2) = cosz%1 —cos‘z% -—coszl—(::
(1—COS2(;—;) (1 — cos? %0082]%) — (1_0082%) (1—005272) s
.ty b L@, ¢
sin sin; = sinysing
LWy
s]nE S]n]\_’,
=
su‘_)z Slnl;
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Now proceeding with the AADB as we did with the A ABC
we shall reach two more sines whose ratio is

.
Slnz*;
. b’

sin 7\7
and so forth. Continuing thus we have in (4B) and (AC)
two infinite series of points. Let the reader show that the
limit for each series cannot be other than the point A itself.
Now we have just seen in (3) that the limit of this ratio
is sin A4, hence

. b
sin 7 = sin -

k k
Let the reader deduce from (4) and (5) that

b

sin A. (5)

ta,nzc_- = tan 7. €08 A. (6)
cos B = cos ]1—' sin A. (7)

Let us next suppose that A ABC is any triangle. If none
of the angles be greater than a right angle, we may connect
any vertex with a point of the opposite side by a line
perpendicular to the line of that side, and we see at once that
/9_ =gind :sin B :sin C.

v

<, sinZl : sin
™7k

Let us show that this formula holds universally, even when
u

2

We may legitimately assume that A and C are less than :g,
for the extreme casc under the elliptic hypothesis where such
is not the fact may easily be treated after the simpler case
has been taken up. We shall still have

sin

this construction is not possible. Let us assume that B >

. a . . .
sin 7 @ 8in g = sin 4 : sin C.
Let £ be that point of (AC) which makes BE perpendicular

to AC. Let the measures of AE, BE, and CE be o/, ¥, ¢,
while the measure of X ABE is A’ and that of X CBE
is ¢V
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tan Ii tan ;’—
cos 4’ = y  cos(C = ; s
ta.n 7 tan i
. (l', . ’
sin - sin =
sind’'=—", snC=- -,
sin < sind
k I
tan 7 “ o
—_— 4 — e ——
sin B=sin (4" + (') = o (~ (coskSLnk+cosksm/ )
sin - sin
k™ k
’ 4 ’ b/

C a ’ a
COS 5+ = COS 5 COS -, -» CO8 + = COS ~— CO8 —+—
k 3 k k ko k’
4
sm =
]u (f’
sin B= —————~ sm 7.
a ( /v k) !

sm sm 7
/.

LU . C .
a'+c =b; smf_—:smksmC:sm FsmA,
v L3

sin & rsinli sin -

k" k k.

sind "~ sin B~ sinC

Once more let us suppose that no angle of our triangle

is greater than a right angle, and let D be such a point of
(BC) that AD is perpendxcula,l to BC:

oos MPC ¢
I_)__ 0 Tk ) 5T
T uMBD
[dOR]
k

(8)

cos % a M BD a . MBD
[COS — CO0S ]\" + sin — T sin —— k ]

a . ¢
= cos cos 7 + sin - sin — cos B.
% k k™ k
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If B> % this proof is invalid. Here, however, following

our previous notation

’ ’

4
tan2§— cos @ cos ¢ —sin 2 sin ¢
% k k

k k
cos B=cos(4'+C") = s
sin ad sin ¢
k k
co8 v cos ¢ cos cos v coS — a’ b=d +¢
"°S/b‘ T°% = Cos j cos o ’
. 21)’ o’ cos o sin a .nC
sin? - cos + — —gin —sin -
k k k k Ik
cos B = ——
. a sin C
S1N = § -
k™ k
cos cos ¥ cos <
k k k
= bl
sin @ sin i
SRRk
cos b cos ~eos - +sin Lgin S B. 9
08 — = in < cos
2 ;€08 +sin psing ©
A correlative formula may be deduced as follows : *
) ¢
Let qm ~ s8n-  sin-
]l/ ]b' /v

=A#£0,

sind = sinB_ sin(

b
cos? ~ A +A*sin?4 sin?C cos?B—2A2sin 4 sin C cos B cos ]{)

= cos? S cos?
k k

1—A2%sin? B+ At sin2A4sin?C cos* B—2A%sin 4 sinC cos B cos]{: =
= 1—A%sin? A — A? sin?C + A* sin® 4 8in*C,
sin? 4 + sin?C'—sin? B
= sin?4 sin®('sin® ; + 2sin AsinC cos B cos][: s
1—sin2A4 —sin%( 4 sin? A sin?C
= sin? A4 sin?C cos2% —2sin A sin C cos ? cos B + cos® B,

* I owe this ingenious trigonometric analysis to my former pupil Dr. Otto
Dunkel.
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b . .
cos AcosC = cosEsmA sinC —cos B3,

) . l
cosB = —cos A cosC +sin AsinC cos l)* (10)

If ABCD be an isosceles birectangular quadrilateral, the
right angles being at 4 and B,

MCD ‘M—AT(-)' SMF[) o%Mﬂ+sinD@' wBD
€08 = = €0S —7— €08 = €03 — —osin
(11)

The proof of this is left to the reader, as well as the task of
showing that the formulae which we have here established
arc identical with those for a cuclidean sphere of radius k.

. 1
Let him also show that when 2= 0, our formulae pass over
into those for the euclidean plane.

* In finding this formula we have extracted a square root. To be sure

that we have taken the right sign, we have but to consider the limiting
case 4 =0, B=r7~C,



CHAPTER V

ANALYTIC FORMULAE

AT the beginning of Chapter I we posited the existence
of two undefined objects, points and distances. Between the
two existed the relation that the existence of two points
implied the existence of a single object, their distance. In
this relation the two points entered symmetrically.

These concepts may be further sharpened as follows.
Leaving aside the trivial case of the null distance, let us
imagine that a distinction is made between the two points,
the one being called the énitial and the other the terminal
point. The concept distance, where this distinetion is made
between the two points shall be called a directed distunce,
or, more specifically, the directed distance from the initial
to the terminal point. Any not null distance will, thus,
determine two directed distances. The dirccted distance from

—
A to B shall be written AB. The relations congruent to
greater than, and less than, when applied to directed dis-
tances, shall mean that the corresponding distances have these
relations.

Suppose that we have two congrucnt segments (AB) and
(4’B’) of the same line. It may be that a congruent trans-
formation which carries the line into itself, and transforms
A and B into A’ and B, also transforms A’ into A. In this
case the middle point of (AA4’) will remain invariant, the
extremities of every segment baving this middle point will
be interchanged. Such a transformation shall be called a
reflection in this middle point. Conversely, we ecasily see
that a congruent transformation whereby A goes into A’,
and one other point of (44°) also goes into a point of that
segment, is a reflection in the middle point of the segment.

There are, however, other congruent transformations of the
line into itself besides reflections. For if A go into A4’, and
any point of (4.4’) go into a point not of (44’), then 4 will
be the only point of (4A4’) which goes into a point thereof,
there will be no invariant point on the line, and we have
a different form of congruent transformation called a ¢transie-
tion. Itis at onceevident that every congruent transformation
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of the line into itself is either a reflection or a translation.
The inverse of a translation is another translation ; the inverse
of a reflection is the reflection itself.

Theorem 1. The product of two translations is a translation.
The assemblage of all translations is a group.

We see, to begin with, that every congruent transformation
has an inverse. This premised, suppose that we have a
translation whereby A goes into A’, and a second whereby
A’ goes into A”. We wish to show that the product of
these two is not a reflection. Suppose, in fact, that it were.
A point P, of (AA4”) close to A must then go into another
point P, of (AA”) close to A”. If A’ be a point of (4.4"), the
first translation will carry P, into P, a point of (4’4”), and
as P, is also a point of (4’A”) the second transformation
would be a reflection, and not a translation. If 4 were
a point of (4’A”), P, would be a point of (AA) and hence
of (4’A”), leading to the same fallacy. If A” were a point of
(AA4"), P, would belong to the extension of (A’A”) beyond A’,
and P, would belong to (4’4" and not to (A4A4").

Let the reader show that the product of a reflection and
a translation is a reflection, and that the product of two
reflections is a translation.

Definition. Two congruent directed distances of the samne
line shall be said to have the same sense, if the congruent
transformation which carries the initial and terminal points
of the one into the initial and terminal points of the other be
a translation. They shall be said to have opposite senses
if this transformation be a reflection. The following theorem
is obvious—

Theorem 2. The two directed distances determined by a
given distance have opposite senses.

Suppose, next, that we have two non-congruent directed

distances A_1>3 A0 upon the same line, so that A°C" > AB.
There will then (XIII) be a smgle such pomt B’ of (A’C") that

AB=A'B. It then, AB and A’B’ have the same sense, we

shall also say that AB and A’(" have the same sense, or
like senses. Otherwise, they shall be said to have opposite
senses. The group theorem for translations gives at once—

Theorem 3. Two directed distances which have like or
opposite senses to a third, have like senses to one another,
and if two directed distances have like senses, a sense like
(opposite) to that of one is like (opposite) to that of the other,
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while if they have opposite senses, a sense like (opposite)
to that of one is opposite (like) to that of the other.

Let us now make suitable conventions for the measurement
of directed distances. We shall take for the absolute value
of the measure of a directed distance, the measure of the
corresponding distance. Opposite directed distances of the
same line shall have measures with opposite algebraic signs.
If, then, we assign the measure for a single directed distance
of a line, that of every other directed distance thereof is
uniquely determined. If, further, we choose a fixed origin D
upon a line and a fixed unit for directed distances, every
point P of the line will be completely determined by a single
coordinate s
MOLP

ko

In an entirely similar spirit we may enlarge our concepts of
angle, and dihedral angle, to directed angle. We choose an
initial and a terminal side or face, and define as rotations
a certain one parameter, group of congruent transformation
which keep the vertex or edge invariant. We thus arrive
at the concept for scnse of an angle, and set up a coordinate
system for half-lines or half-planes of common bound. If in
the X_ABC, | AB be taken as initial side, the resulting directed

angle shall be written §_A4 BC.

We have at last elaborated all of the machinery necessary
to set up a coordinate system in the plane, and nearly all that
is necessary to set up coordinates in space. Let us begin with
the plane, and choose two half-lines | 0.X, | 0Y making a right
angle. Their lines shall naturally be called the coordinate
axes, while O is the origin. Let P be any point of the plane,

the measure of OP being p, while those of zf_XZﬁ’ and X_ Yor
are a and 3 respectively. We may then put

L= SIn

f:/csin-]gcosa,
n = ksin ;; €os 3, (1)

® = C¢Os

’

RS

with the further equation
E+n’+ko? = k2
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In practice it is better to use in place of £, 5, ¢ homogeneous
coordinates defined as follows : —

f= ey (2)

l‘:z:2

'I] = ———orr—ree————

V) + x + a,t

What shall we say as to the signs to be attached to the
radicals appearing in these denominators? In the hyperbolic
case o is essentially positive, so that the radical must have the
same sign as x,. In the elliptic case it is not possible to have
two points, one with the coordinates £, 7, ® and the other with
the coordinates —§, —un, —ow, for their distance would be &,
and the opposite angle of every triangle containing them both
would be straight, i.e. they might be connected by many
straight lines. “On the other hand it is not possible that
£ 1, o and —§, —7, —o should lefer to the same point, for
then that point would determine with itself two distinct
distances, which is contrary to Axiom II. Hence, in every
case, the radical must have a well-defined sign in order that
equations should give a point of our space.

In the limiting parabolic case

§=pcosa, n=pcosB, =1

The formula for the distance of two points P and P’ with
coordinates (), (2) is

M PP p P . p P

co8 — 5 = €os - Cos + sin 7 sin & cos (o’ —a)
— (D(O’-f‘ ££ ]4;7171
ML z,x, + a2, + 2,

cos 0" 0 + 1“1 ’ 2 2 (3)

k7 Vaitatra; Va, 2+z ‘+a,z

\/ ’xo x, w,

sinMPP = L@y ) @y .

k Vaditat+at Vi a ) (4)

The signs of the radicals in the denominators are, as we
have seen, well determincd. The sign of the radical in the
numerator of (4), should be so taken as to give a positive

COOLIDGE E
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value to the whole. Should we seek the measures of directed
distances on the line PP’, then, after the adjunction of the
value of the sign of a single directed distance, that of cvery
other is completely determined. In the euclidean case

x ) V (@, — oy ) + (@) — @y )* -

00

Returning to (4) and putting o= x;+dx; we get for the
infinitesimal element of arc

| Xy Ty Xy
@ _ || dey day da, ||
k* (J;O + @, + w, )
A"u/ X
Put z="2, Y= ]—%’, =z+de, yY=y+dy,
@, Ly
_ 2
da? + dy? + (ydw—xdy) ]zocdy)
ds? = Ty ()
[+ S ol
In the limiting euclidcan case —; = 0,

LZ
ds* = da? + dy>

Returning to the general case, we may improve our formula
(5) as follows :—

let s= v+ + y' de = cc(lﬁyﬁly
\//u + Xt +y
It da? +dy?—d=* = do?, ds= ]L(;’
_ Rk 2ky
Put = k";.é ) V= /.;t.'z: .
w+v? 22
g =i

.2
du? + do? = -‘*L) [(k—2)2 [da? + dy?]
+ 2 (k—2z) (xdx + ydy) dz + (2* 4+ y*) d27],

(k ) 2 2_ 2 Rzdz?  k*—22
ek (du® + dv) [dac +dy*+ s (/c;?)dd ]
= da?.
du® + dv? = ds? 2 47

(k—2)*’
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242
ds? = [1 Tl ] (du? +dv?), (6)
Jomparing this with the usual distance formula
ds? = Edu® + 2 Fdudv + Gdv?,
u? 4 2
F= 0, E=@G =[1 + ~—;1~47\;2——-J
Now if K be the measure of curvature of the surface having
this distance formula
1 d%log . dlogk
58 (Tour )

K= —

w4+, 1 1 w v*
K= [1+u2+v2] [1+‘4k“ ](WJFW)‘W"W

4‘lu“ u2+v2 4
[1+ 5]

Theorem 4. The non-euclidean plane may be developed upon
a surface of constant curvature - = in euclidean space.

We shall return to questions of this sort in Chapters XV
and XIX * of this work.

Let us now take up coordinates in three dimensions. We
must make some preliminary remarks about the direction
cosines of a half-line. Suppose, in fact, that we have three
mutually perpendicular half-lines, |0X, |0Y, |0Z, and a
fourth half-line |OP. The an(r]es Y XOP, £.YOP, X ZOP
whose measures shall be a, 3, y respectively, shall be called
the direction angles of the half-line |OP. These angles are
not dirccted, but this will cause no inconvenience, as we shall
introduce them merely through the expressions cosa, cos g,
cosy. These shall be called the direction cosines of the half-
line, O shall be the origin, and OX, O0Y, OZ the coordinate
axes, whilo the planes determined by them are the coordinate
planes. Take a second half-line | OF”, with direction cosines

cos o, cos 3, cosy’. We shall imagine that OF and OF are

* The idea of interpreting the non-euclidean plane as a surface of constant.
curvature in euclidean space must certainly have been present to Riemann’s
mind, loc. cit. The credit for first setting the matter in a clear light is,
however, due to Beltrami. Sce his ‘Teoria fondamentale degli spazii di
curvatura costante’, Annali di Matematica, Serie 2, vol. ii, 1868, and * Saggio
d’interpretazione della geometria non-euclidea’, Giornale di Matematicke,
vol. vi, 1868.

E 2
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infinitesimal. Under these circumstances, we may find
A, B, C where perpendiculars to the axes through P meet
them, and A’, B’, C” bearing the same relation to /. Let ¢’ be
that point of | 0P’ which makes X PQ’0 a right angle, and let
X_POP’ have a measure §. Now we know that geometry
in the infinitesimal domain obeys the euclidean hypothesis,
hence we have
MOQ = MOLP cosf +e,

the e is infinitesimal as compared with MOZP. In the same
SPITt 0@ = w04 cos o + mOB cos B’ + 3 OC cosy’ +9.

But clearly  MOA = mOPcosa +¢, &e.
Hence

MOP cosd = MOP [cos a cosa’ + cos B cosf’ +cosy cosy’] +n,

or dividing out M OP,

cos6 = cosa cosa’ + cosB cos 3’ + cosy cosy’. (7)
In particular we shall have
1 = cos?a + cos®3 + cos?y. (8)
We now set up our coordinate system as follows :—
M OP
® = CO8 — >
k
. MOP
&= ksin —, " eosa,

. MOP

= ksin —5 o8 B, )

0P
(="rlsin -LLZ;I co8 y,

k= 24024 24+ K2
From these we pass, as before, to homogeneous coordinates
Xy : &, 1@, 5. But first we shall introduce a new symbol :

(xy) = Yy + 2,9 + 2,9, + 235 (10)
We then write

o=, g=_tT
V) T V)
ey el 1)
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Here, as in the case of the plane, there is no ambiguity arising
from the double sign of the radical. There is, however, one
modification which we shall occasionally make. We see,
in fact, that in the hyperbolic case, since k2 < 0; & 7, {, @ are
real, we must have (2x) < 0, and &, is a pure imaginary. To
remedy this let us write

kicy = xy, &) = @), T, = Xy, Ty = @,.
A point will now have real coordinates. This distinction
between coordinates (z) and coordinates () shall be con-
sistently maintained in the hyperbolic case.

The cosine of the measure of distance of two points (z) and
() is easily found. We sce at once that we shall have

3
M PP __(_wy) . (12)

B v(aa) gy

Let us now sce what effect a congruent transformation will
have upon our coordinates. First take a congruent trans-
formation keeping the origin invariant. We see at once that
the new direction cosines, and so the new coordinates (2”), will
be linear functions of the old ones; for a plane through the
origin will be characterized by a linear relation connecting
the direction cosines of the half-lines with that bound. The
variables £, 7, ¢ are thus linearly transformed in such a way
that £2+7*+ ¢? has a constant value, while ® is unaltered.
Hence 2, #,, ,, x, are linearly transformed so that (zx) is an
invariant (relative), i.e. they are subjected to an orthogonal
substitution.

Let us next suppose that we have a congruent transforma-
tion which carries the planes ¢ =0 and n = 0 into themselves,
and cvery half-plane with this axis as bound into itself.
The assemblage of all such transformations will form a one-
parameter group, and this group may be represented by

Ccos

, d . d
o= wcos 3 +§sm];,
&=¢
1=,

, . d d
(= —msmk~+§cos];.

We sce, in fact, that by this transformation every point
receives just the coordinates that it would obtain by a
translation of the axis OZ into itself through a distance d,
so enlarged as to carry into itself every half-plane through
that axis. Once more we find that, in the coordinates (),
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this will be an orthogonal substitution. Now, lastly, every
congruent transformation of space may be compounded out
of transformations of these two types. Hence:

Theorem 5. Every congruent transformation of space is
represented by an orthogonal substitution in the homogeneous
variables a2, ;.

In Chapter VIII we shall make a detailed study of these
congruent transformations. For the present, let us begin by
noticing that the coordinate planes have linear equations, and
as we may pass from one of these to any other plane by
linear transformations, so the equation of any plane may
be written

(ux) = uoxy+u, @, + Uy, + Uy, = 0.

We see that (xy), (ux), (uv) are concomitants of every
congruent transformation, and we shall use them to find
expressions for the distance from a point to a plane and the
angle between two planes. The existence of the former of
these quantities is contingent upon the existence of a point
in the plane determining with the given point a line perpen-
dicular to the plane.

Let the plane (u) be that which connects the axis , =2,=0
with the point (y). Its equation is #,x,—vy,@, = 0. The
cosines of the angles which this makes with the plane v,2,=0
are the @, direction cosines of the two half-lines of OP. If
then, the measure of the angle be ¢, we have

Ys "y (w)

1;4"7;2 ‘/y + Yyt Vo “/(7‘;) v (w)
But both sides of this equation are absolute invariants for all
congruent transformations. Hence, we may write, in general :

(uv) (13)

€osf = ——
v (uw) v () (vv)

We find the distance from a point to a plane in the same
way. Let the point be (x) and d the distance thence to the
point where a perpendicular to the plane u,z, = 0 meets it,
this being, by definition, the distance from the point to the
plane.

siny =% =+ —oL = i i W
k™ k™~ Vga) x/(vcw) & (wu)
Once more we have an invariant form, so that, in general :
sin= —_(um) (14)
kv (uw) v (ax) (xw)
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The sign of +/(xx) is determined. As for that of +/(uw), by
reversing it, we get opposite directed distances of the same line.

We have now reached the end of the first stage of our
journey. Our system of axioms has given us a large body
of elementary doctrine, a system of trigonometry, and a
system of analytic gcometry wherein the fundamental metrical
invariants are easily expressed. All of these things will be of
use later. At present our task is different. We must show
that the system of axioms which has carried us safely so far,
will not break down later; i.e. that these axioms are essen-
tially compatible. We must also grapple with a disadvantage
which has weighed heavily upon us from the start, rendering
trebly difficult many a proof and definition. In Axiom XI we
assumed that any segment might be extended beyond either
cxtremity. Yes, but how far may it be so extended? This
question we have not attempted to answer, but have dealt
with the geometry of such a region as the inside of a sphere,
not including the surface. In fact, had we assumed that every
segment might be extended a given amount, we should have
run into a difficulty, for in elliptic space no distance may have
a measure k7 under our axioms.

The matter may be otherwise stated. Every point will
have a set of coordinates in our system. What is the extreme
limit of possibility for making points correspond to coordinate
sets, and what meaning shall we attach to coordinates to
which no point corresponds? We must also adjoin the com-
plex domain for coordinates, and give a new interpretation to
our fundamental formulae (12), (13), (14) covering the most
general case. Then only shall we be able to continue our
subject in the broadest and most scientific spirit.



CHAPTER VI

CONSISTENCY A SIGNIFICANCE OF THE AXIOMS

THE first fundamental question suggested at the close of
the last chapter was this. How shall we show that thosc
assumptions which we made at the outset are, in truth,
mutually consistent? We need not here go into that elusive
question which bothers the modern student of pure logic,
namely, whether any set of assumptions can ever be shown
to be consistent, All that we shall undertake to do is to
point to familiar sets of objects which do actually fulfil our
fundamental laws.

Let us begin with the geometry of the euclidean hypothesis,
and take as points any class of objects which may be put into
one to one correspondence with all triads of values of three
real independent variables @, ¥, z. By the distance of two
points we shall mean the positive value of the expression

V(@ =)+ (y —y)* + (' —2)
The sum of two distances shall be defined in the arithmetical
sense. It is a perfectly straightforward piece of algebra to
show that such a system of objects will obey all of our axioms
and the euclidean hypothesis; hence the consistency of our
axioms rests upon the consistency of the number system,
and that we may take as indubitable. Be it noticed that
we have another system of objects which obey all of our
axioms if we make the further assumption that
2t yP+22 <.

The net result, so far, is this. If we take our fundamental
agsumptions and the euclidean hypothesis, points and dis-
tances may be put into one to one correspondence with
expressions of the above types; and, conversely, any system
of geometry corresponding to these formulae will be of the
euclidean type. The elementary geometry of Euclid fulfils
these conditions. In what immediately follows we shall
assume this geometry as known, and employ its terminology.

Let us now exhibit the existence of a system of gecometry
obeying the hyperbolic hypothesis. We shall take as our
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class of points the assemblage of all points in euclidean space
which lie within, but not upon, a sphere of radius unity.
We shall mean by the distance of two points one half the
real logarithm of the numerically larger of the two cross ratios
which they make with the intersections of their line with
the sphere. The reader familiar with projective geometry
will see that the segment of two points in the non-euclidean
sense will be coextensive with their segment in the euclidean
sense, and the congruent group will be the group of collinea-
tions which carry this sphere into itself. Lastly, we see that
we must be under the hyperbolic hypothesis, for a line is
infinitely long, yet there is an infinite number of lines through
a given point, coplanar with a given line, which yet do not
meet it.

The elliptic case is treated similarly. We take as points
tho assemblage of all points within a euclidean sphere of

small radius, and as the distance of two points %L times, the

natural logarithm of a cross ratio which they determine with
the intersection of their line with the imaginary surface
rl+a+ 422 =0.

By a proper choice of the cross ratio and logarithm, this
expression may be made positive, as before. The congruent
group will be so much of the orthogonal group as carries
at least one point within our sphere into another such point.
The elliptic hypothesis will prevail, for two coplanar lines
perpendicular to a third will tend to approach one another.

We may obtain a simultaneous bird’s-eye view of our three
systems in two dimensions as follows. Let us take for our
class of points the assemblage of all points of a euclidean
sphere which are south of the equatorial circle. We shall
define the distance of two points in three successive different
ways i—

(@) The distance of two points shall be defined as the
distance which the lines connecting them with the north pole
cut on the equatorial plane. A line will be a circle which
passes through the north pole. If we interpret the equatorial
plane as the Gauss plane, we see that the congruent group
will be d=az+p3, ca=]l,
or rather so much of this group as will carry at least one

oint of the southern hemisphere into another such point.
t is evident from the conformal nature of the transformation
from sphere to equatorial plane, that we are under the
euclidean hypothesis.



74 CONSISTENCY A SIGNIFICANCE CH.

(b) The distance of two points shall be defined as one half
the logarithm of the cross ratio on the circle through them
in a vertical plane which they determine with the two
interscctions of this circle and the equator. A line here will
be the arc of such a circle. The congruent group will be
that group of (euclidean) collineations which carries into
itself the southern hemisphere. A line will be infinitely
long, yet there will be an infinite number of others through
any chosen point failing to meet it; ie. we are under
the hyperbolic hypothesis.

(c) The distance of two points shall be defined as the length
of the arc of their great circle. Non-euclidean lines will be
arcs of great circles. Congruent transformations will be
rotations of thesphere, and it is casy to sce that the sum
of the angles of a triangle is greater than a straight angle ;
we are under the elliptic hypothesis.

We have now shown that our system of axioms is sufficient,
for we have been able to introduce coordinates for our points,
and analytic expressions for distances and angles. The axioms
are also compatible, for we have found actual systems of
objects obeying them. Compared with these virtues, all other
qualities of a system of axioms are of small import. It will,
however, throw considerable light upon the significance of
these our axioms, if we examine in part, their mutual
independence, by examining the nature of those geometrical
systems where first one, and then another of our assumptions
1s supposed not to hold.

Axiom XIX is popularly known as the axiom of free
mobility, or rather, it is the residue of that axiom when we
are contined to a limited space. It puts into precisc shape
the statement that figures may be moved about freely without
suffering an alteration either in size or form. We have defined
congruent transformations by means of the relation congruent
which is itself defined in the logical scnse, but not de-
scriptively. We might, of course, have proceceded in the
reverse order* The ordinary conception in the elementary
textbooks seems to be that two figures are congruent if they
may be superposed ; superposed means that they may be
carried from place to place without losing size or shape, and
this in turn implies that throughout the transfercnce, each
remains congruent to itself. T

With regard to the independence of this axiom, we have but

* Cf. Pieri, loc. cit.

1 Cf. Yeronese, loc. cit., p. 259, note 1, and Russell, The Principles of Mathe-
matics, vol, i, Cambridge, 1903, p. 405.
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to look at any system where the measure of distance in one
plane is double that of all the rest of space. A triangle having
two vertices in this plane, and one elsewhere, could not be
congruently transformed into a triangle of a different sort.

Axiom XVIII is the axiom of continuity. We have laid
special stress on it in the course of our work, although the
subject of elementary geometry may be pushed very far
without its aid.* We are not here concerned with the
question of the wisdom of such attempts, considered from
the didactic point of view. Systems of geometry where this
axiom does not hold will occur to every reader; e.g. the
Cartesian euclidean system where all points whose coordinates
are non-algebraic are omitted. It is interesting to note that
whereas the omission of XIX runs directly counter to our
sense experience, no amount of observation could tell us
whether or no our geometry were continuous.}

Axiom XVII is an existcnce theorem, not holding where
the geometry of the plane is alone considered. It is a very
curious fact that the projective geometry of the plane is not
entirely independent of that of space, for Desargues’ theorem
that copolar triangles are also coaxal cannot be proved
without the aid either of a third dimension, or of the con-
gruent group.f

Axiom XVI gives a criterion for circumstances under which
two lines must necessarily intersect. It is evident that
without some such criterion we should have difficulty in
proceeding any distance at all among the descriptive pro-
perties of a plane. It is diflicult to show the independence
of this axiom. The only dense system of geometry known
to the writer where it is untrue is the following. §

Let us denote by R the class of all rational numbers whose
denominators are of the form

(@2 +6.2) (2,2 + 0.7 ... (2,2 +0,2)
where a; and b; are integers or one may be zero. Let us
take as points the assemblage of all points of the euclidean
plane whose Cartesian coordinates are rational numbers
of the class R. The whole field will be transported into
itself by a parallel translation from any one point to any
other. Moreover, let @, y and «’, ¥ be the coordinates of two

* Cf. Halsted, loc. cit.

+ Cf. R. L. Moore, loc. cit.

+ Cf. Hilbert, loc. cit., p. 70 ; Moulton, ¢ A simple non-desarguesian plane
goometry,” Transactions of the American Mathematical Society, vol. iii, 1902;
Vahlen, loe. cit., p, 67.

§ Cf. Levy, loc. cit., p. 32.



76 CONSISTENCY AND SIGNIFICANCE cH. vI
points of the class, where 2?+ 3% = 2’2+ 3’2, We may imagine
in fact that

Y R
x_s, y—s X =

v, y_0, P+¢_pi+q?
P YEY T T
Then the cosine and sine of the angle which the two points
subtend at the origin will be respectively

P49y pe—Pq

- Rk P

PiEgt T P
and these are numbers of the class R. The whole field will
go into itself by a rotation about the origin. Our system
will, thercfore, obey XIX. It is of course two-dimensional
and not continuous. Moreover XVI will not hold, as the
reader will see by easily devised numerical experiments.

There are, also, plenty of geometries of a finite number
of points where this axiom does not hold.*

Axiom XYV is, of course, an existence theorem, untrue in the
geometry of a single line.

Axiom XIV gives the fundamental property of straight
lines. As an example of a geometry where it does not hold,
let us consider the assemblage of all points within a sphere
of radius one, and define as the distance of two points the
length of an arc of a circle of radius two which connects them.
The segment of two points is thus a cigar-shaped region
connecting them. We sce that the extensions of such a seg-
ment and the segment itself do not comprise the segment
of two points within the original, and the extensions of the
latter. Axioms XII and XIII are also in abeyance, and it
seems possible that these three axioms are not mutually
independent. The present writer is unable to answer this
question.

Axiom XTI implies that space has no boundary, and will be
untrue of the geometry within and on a sphere.

The first ten axioms amount to saying that distances are
magnitudes among which subtraction is always possible, but
addition only under restriction.

* Veblen, loc. cit., pp. 850-51.
i



CHAPTER VII

THE GEOMETRIC AND ANALYTIC EXTENSION
OF SPACE

WE are now in a position to take up the second of those
fundamental questions which we proposed at the close of
Chapter V, namely, to determine what degree of precision
may be given to Axiom XI. This axiom tells us that,
popularly speaking, any segment may be extended beyond
either end. How far may it be so extended? Arc we able
to state that there exists a system of geometry, consistent
with our axioms, where any segment may be extended by

any chosen amount? Or, in more precise language, if AB
and P be given, can we always find C so that
AC= AB+BC, BC=PQ.

We are already able to answer this question in the euclidean
case, and answer it affirmatively. We have scen that there
is no inconsistency in that system of geometry, where points
arc in one to one correspondence with all triads of (rcal and
finite) values of three coordinates x, y, 2, and where distances
are given by the positive values of expressions of the form

V(& —a)f+ @ — )P+ —2)
Here, if, as we have said, we restrict the values of z, 7, 2
merely to be real and finite, we have a space under the
euclidean hypothesis, where any segment may be extended
beyond either cxtremity by any desired amount. Such a
space shall be called euclidean space.

The same result will hold in the hyperbolic case. We shall
have a consistent geometrical system if we assume that our
points are in one to one correspondence with values

Xy, &y kg, k%<0,
k&l + @2 + &% + &% < 0.
Here, also, there will exist on every line distances whose
measures will be as large as we please. The space under the
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hyperbolic hypothesis, where any segment may be extended
by any chosen amount shall be called hyperbolic space. To
put the matter otherwise, we shall have euclidean or hyper-
bolic geometry if we replace Axiom XII by :—

Axiom XII’. If the parabolic or hyperbolic hypothesis be

true, and if AB and P be any two distances, then there
will exist a single point C, such that

AC = AB+ BC, BO=Tq.
When we turn to the elliptic case, we find a decidedly
different state of affairs. Suppose, in fact, that there is a one
to one correspondence between the assemblage of all points,

and all sets of real values 2,:2,:@,:2,. The distance of two
points will depend upon the periodic function

cos™! ‘—,.__T(_{-Eﬂ“t-_ .
V(@) v (yy)
If, to avoid ambiguity, we assume that the minimum positive
value should be taken for this expression, we should easily
find two not null distances, whose sum was a null distance,
which would be in disagreement with Axiom X.

The desideratum is this. To find a system of geometry
where each point belongs to a sub-class subject to Axioms I-XIX,
and the elliptic hypothesis, and where each segment may still
be extended by any chosen amount, beyond either end.

AxioM I. There exists a class of objects, containing at
least two members, called points.

Axiom II’. Every point belongs to a sub-class obeying
Axioms I-XIX.

Definition. Any such sub-class shall be called a consistent
PeGLON.

Axiom IIT'. Any two consistent regions which have a
common point, have a common consistent region including
this point and all others determining therewith a sufficiently
small, not null, distance.

Axiom IV'. If P, and P,,, be any two points there may
be found a finite number » of points I, P,, P’;...P, possessing
the property that each set of three successive ones belong to
a consistent region, and I’, is within the segment (P;,_, Py, ,).

Definition. The assemblage of all points of such segments,
and all possible successive extensions thereof shall be called
a line.
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An important implication of the last axiom is that any two
points may be connected (conceivably in many ways) by
a chain of consistent regions, where each successive pair
have a consistent sub-region in common. This shows that
if we set up a coordinate system like that of Chapter V in
any consistent region, we may, by a process of analytic ex-
tension, reach a set of coordinates for every point in space.
We may also compare any two distances. We have merely
to take as unit of mecasure for one, a distance so small, that
a distance congruent therewith shall exist in the first three
overlapping consistent rcgions; a distance congruent with
this in the second three and so on to the last region, and then
compare the measures of the two distances in terms of the
first unit of measure, and the unit obtained from this by the
series of congruent transformations. Let the reader show that

>
if once we find AB = PQ the same relation will hold if we
<
procecd by any other string of overlapping regions. Having
thus defined the congruence of any two distances, we may
state our axiom for the extension of a segment, as follows :—

Axrom V. If A and I’Q be any two distances, there
exists a single point C such that BC = P(), while B is
within a segment whose extremities are C and a point
of (ADB).

An important corollary from this axiom is that there
must exist in the elliptic case a point having any chosen set
of homogeneous coordinates (x) not all zero. For, let (y) be
the coordinates of any known point. Consider the line
through it whose points have coordinates of the form

A(y) +p(z). As we proceed along this line, the ratio A will

n
always change in the same sense, for such will be the casc
in any particular consistent region. Moreover we may, by
our last axiom, find a number of successive points such that
the sum of the measures of their distances shall be k.

Between the first and last of these points the value of A will

I
have run continuously through all values from —o to «,
and hence have passed through the value 0, giving a point
with the required coordinates.

The preceding paragraph suggests two interesting questions.
Is it possible that, by varying the method of analytic ex-
tension, we might give to any point two different sets of
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homogeneous coordinates in the same system? Is it possible
that two different points should have the same homogeneous
coordinates? With regard to the first of these questions, it
is a fact that under our hypotheses a point may have several
different sets of coordinates, as we shall see at more length
in Chapter XVIL. For the present it is, however, wiser to limit
ourselves to the classical non-euclidean systems, where a point
has a unique set of coordinates. ~We reach the desired
limitation by means of the following considerations.

A sufficiently small congraent transformation of any con-
sistent region will effect a congruent transformation of any
chosen sub-rogion, and so of any consistent region including
this latter. It thus appears that if two consistent regions
have a common sub-region, a sufficiently small congruent
transformation of the one may be enlarged to be a congruent
transformation of the other. Proceeding thus, if we take any
two consistent regions of space, and connect them by a serics
of overlapping consistent regions, then a small congruent
transformation of the one may be analytically extended to
operate a congruent transformation in the other. Will the
original transformation give rise to the same transformation
in the second space, if the connexion be made by means of
a different succession of overlapping consistent regions ¢ It
is impossible to answer this question a priori; we therefore
make the following explicit assumption:—

Axinm VI'. A congruent transformation of any consistent
region may be enlarged in a single way to be a congruent
transformation of every point.

Evidently, as a result of this, a congruent transformation
of one consistent region can be enlarged in only one way
to be a congruent transformation of any other. Let us next
observe that it is impossible that two points of the same
consistent region should have the same coordinates in any
system. Suppose, on the contrary, that P and ¢ of a con-
sistent region have the coordinates (x). There will be no
limitation involved in assuming that the coordinate axes were
set up in this consistent region, and the coordinates of P found
directly as inChapter V,while those of @ are found by an analytic
extension through a chain of overlapping consistent regions.
Now it is not possible that every infinitesimal congruent
transformation which keeps P invariant shall also keep @
invariant, so that a transformation of this sort may be found
transforming each overlapping consistent region infinitesimnally,
and carrying @ to an infinitesimally near point . But in
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the analytic expression of this transformation, in the form
of an orthogonal substitution (in the non-euclidean cases)
the values (x) will be invariant, so that @” will also have
the coordinates (z), and by the same chain of extensions as
gave these coordinates to . Hence, reversing the order of
extensions, when we set up a coordinate system in the last
consistent region, that which includes @ and @', these two
points will have the same coordinates. But this is impossible
for the coordinate system explained in Chapter V, for a con-
sistent region gives distinct coordinates to distinet points.
This proof is independent of Axiom VI

Our desired uniquencss of coordinate sets will follow at
once from the foregoing. For, suppose that a point P have
two sets of coordinate values () and (2), not proportional
to one another. Kvery infinitesimal transformation which
keeps the values (x) invariant, will either keep («’) invariant,
or transform them infinitesimally, let us say, to a set of
values (2”). But there is a point distinet from 2 and close to
it which has the coordinates (2”), and this gives two points
of a consistent region with these coordinates, which we have
Jjust seen to be impossible. Hence, the ratios of the coordinates
(z,/) must be unaltered by every infinitesimal orthogonal
substitution which leaves (x) invariant, i.e. «)= pw;. It is
evident, conversely, that if each point have but one set of
coordinates, Axiom VI’ must surely hold.

It is time to attack the other question proposed above,
by supposing that two distinet points shall have the same
homogeneous coordinates. They may not lie in the same
consistent region, and every congruent transformation which
leaves one invariant, will leave the other unmoved also.
Let us call two such points equivalent. XKvery line through
one of these points will pass through the other. For let
a point ) on a line through one of the points have coor-
dinates (). Wec may connect it with the other by a line,
and the two lines through (@) lie in part in a consistent
region, the coordinates of points on each being represented
in the form Ay, + pa;. The two lines are identical.

Let us consider the assemblage of all points whose coor-
dinates are linearly dependent on those of three non-collinear
points. This assemblage of points may properly be called
a plane, for those points thereof which lie in any consistent
region will lic in a plane as defined in Chapter II. It is
clearly a connex assemblage, and will contain cvery line
whereof it contains two non-equivalent points. Let (¥), (2), (¢)
be the coordinates of three points, no two of which are

COOL1DUE F
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equivalent. Let us consider the point (x) whose coordinates
are (uz) = |uyat|.
In the elliptic case, as we have seen, such a point surely
exists. In the hyperbolic or parabolic cases, there might not
be any such point. It is clear, however, that in these cases,
there can be no equivalent points. Suppose, in fact, L, and
P,,J,1 were equivalent. Connect them by a line whereon are
..P,. Move this line slightly so that the connecting
strmg of pomts are I/, P/ ]’n’, very near to the former
points. We have constricted two triangles, and (n—1)
quadrilaterals, and as we are under the hyperbolic or euclidean
hypothesis, the sum of the mecasures of the angles of all the
triangles and quadrilaterals will be less than, or equal to
7r+(n—1) m+m. But clearly the sum of the measures of
the angles at points £’; and P} is 2nm, so that the sum of the
two angles which the two lines make at P and P, is null
or negative; an absurd result. Equivalent points can then
occur only under the elliptic hypothesis, and there will surely
be a point P with the coordinates (x) above.

Let us next make a congruent transformation whereby P
goes into an equivalent point F’, the planc of (y) (2) () goes
into itself congruently, for it constitutes the assemblage of all
points satisfying the condition (xX) =0, and (xX) is an
invariant under every orthogonal substitution. After 7 has
been carried to I’’, each point of the plane may be returned
to its original position by mcans of a scries of congruent
transforma.tlons each too small to change P’ to an eqmvalent
point, yet kbepmg the values () 1nva.nant coupled, at the
end, with a retlection in a plane perpendicular to the given
one, in case the determinant of the original orthogonal
substitution is negative, and this too will leave P’ unchanged.
We may therefore pass from P to any equivalent point by
a transformation which leaves in place every point of a plane.
But there is only one congruent transformation of space
which leaves every point of a plane invariant, besides, of
course, the identical one. Hence every point in space can
have but one equivalent at most.

Our results are, then, as follows. Under the euclidcan and
hyperbolic hypotheses, there is but one point for each set
of coordinates, and our new Axioms I-VI" wili yield us
nothing more than euclidean or hyperbolic space. Under the
elliptic hypothesis there are two possibilities :—

Elliptic space. This is a space obeying Axioms I-VI’, and
the elliptic hypothesis. If n successive segments whose
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kw . . 1 .
measures are — be taken upon a lino as indicated in V’, the
{2

last extremity of the last segment will be identical with
the first extremity of the first. Two lines of the same plane
will have one and only one common point, so that no point
has an equivalent. We may take as a consistent region the
assemblage of all points whose distances from a given point

arc of measure less than -]%;1 If two points be of such a

nature that the expression for the cosine of the measure of
the Lth part of their distance vanishes, we shall say that the

measure of their distance is —‘&Z. Two points will always

.

have a determinate distance and a single segment, unless the
measure of their distance is ]%r , in which case they determine
two scgments with the same extremities. These last two
segments may also, with propriety, be called half-lines. The
definition of an interior angle given in Chapter Il may be
retained, but the concept of half-plane is illusory, for a line
will not divide tho plane. It may, however, be modified
much as we have modified the definition of a half-line, and
from it a definition built up for a dihedral angle. We leave
the details to the reader. "An example of elliptic geometry
will be furnished by any set of points in one to one corre-
spondence with all sets of homogcneous values z,: @, : v, @,
where also cos;l = —«—_.(fﬁ)_ - « Forinstance, let us take as

vV (we) Y (yy)
points concurrent lines of a four dimensional space (euclidean,

for example) and mean by distance the measure of the angle
< Zformed by two lines.

=9

Spherical space. This is also a space obeying Axioms I-VI”
and the clliptic hypothesis. Each point will have onc equiva-
lent. If n successive congruent distances be taken upon

. vy .
a linc whose measures are = - . the last extremity of the last

n

will be equivalent to the first cxtremity of the first. We
may take as a consistent region the assemblage of all points
the measures of whose distances from a given point are less

than /%r The measure of the distance of two equivalent

points shall be defined as the number k7. Any two non-
F2
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equivalent points will have a well-defined segment. We may
find a definition for a half-line analogous to that given in
the elliptic case, and so for half-plane, internal angle, and
dihedral angle.

An example of spherical geometry will be furnished by the
geometry of a hypersphere in four dimensional euckdean
space, meaning by the distance of two points, the length
of the shorter arc of a great circle connecting them.

A simple example of a two dimensional clliptic geometry
is offered by the euclidean hemisphere, where opposite points
of the limiting great circle are considered as identical. A two
dimensional spherical geometry is clearly offered by the
euclidean sphere.

The elliptic and spherical spaces which we have thus built
up are, in one respect, more complete than cuclidean or
hyperbolic space, in that there is in the first two cases always
a point to correspond with every set of real values, not all
zero, that may be attached to our four homogenecous coor-
dinates , while in the latter cases this is not so. We bring
our cuclidean and hyperbolic geometries up to an equality
with the others by oxtending our concept point. Let us begin
with the euclidean case where there is a point corresponding
to every real set of homogeneous values x,:,:x,:x;, pro-
vided that 2,7 0. Now a set of values O:y :y,:y, will
determine at cach real point (x) a line, the coordinates of
whose points are of the form Ay, +pa;, and if (x) be varied
off of this line, we get a second line coplanar with the first.
Our coordinates 0:%,:%,:%, will thus serve to determine
a bundle of lines, and this will have exactly the same
descriptive properties as a bundle of concurrent lines. We
may therefore call the bundle an <deal point, and assign to
it the coordinates (y). Two ideal points will determine a
pencil of planes having the same descriptive properties as
a pencil of planes through a common line. We shall there-
fore say that they determine, or have in common, an tdeal
line. Two lines whose intersection is ideal shall be said
to be parallel, as also, two planes which mect in an ideal
line. These definitions of parallel are for euclidean space
only. The assemblage of all idcal points will be characterized
by the equation @y = 0.
This we shall call the equation of the ideal plane which is
supposed to consist of the assemblage of all ideal points.
Ideal points and lines shall also be called infinitely distant,
while the ideal plane is called the plane at infinity. We shall
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in future use the words point, line, and plane to cover both
ideal elements and those previously defined, which latter may
be called, in distinction, actual. Actual and ideal elements
stand on exactly the same footing with regard to purely
descriptive properties. No congruent transformation can
interchange actual and ideal clements. We shall later return
to the meaning of such words as distance where ideal eloments
enter.

In the hyperbolic case we may apply the same principles
with slight modification. There will be a real point corre-
sponding to each set of real homogeneous coordinates (z) for
which K2a,2 +d,% +8,2 + 8,2 < 0.

A set of real homogeneous values for (z), for which this
inequality does not hold, will determine a bundle of lines,
one through every actual point, any two of which are
coplanar; a bundle with the same descriptive properties as
a bundle of concurrent lines. We shall therefore say that
this bundle dctermines an ideal point having the coordinates

(#). If K282 4 @2+ .2+ 8,2 = 0,
the ideal point shall be said to be infinitely distant. If
I2E2 &2 + it + a2 > 0,
the ideal point shall be said to be wltra-enfinite. Two lines
having an infinitely distant point in common shall he called

parallel.  Through cach actual point will pass two lines
parallel to a given line.  An equation of the type

. . 1 . 9 \J . e 2
(ug) = 0, 2 %o’ + W2+ w2+, > 0,

will give a plane. If the inequality be not fulfilled, the assem-
blage of all ideal points whosec coordinates fulfil the equation
(and there can be no actual points which meet the requirement)
shall be called an ideal plane, the coeflicients (&) being its
coordinates. There will thus be a plane corresponding to
each set of real homogeneous coordinates () not all zero.
An ideal line shall be defined as in the euclidean case, and
the distinetion between actual and ideal shall be the same
as there given. No congruent transformation, as defined so
far, can interchange actual and ideal elements.

Let us take account of stock. By the introduction of ideal
elements we have made each of our spaces a real analytic
continuum. In all but the spherical case there is a one to
one correspondence between points and sets of real homo-
geneous values not all zero, in spherical space there is a one
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to one correspondence of coordinate set and pair of equivalent
points. Each of our spaces will fulfil the fundamental
postulates of projective geometry, as we shall develop them
in Chapter XVIII, or as they have already been developed
elsewhere.* Let us show hurriedly, how to find figures to
correspond to imaginary coordinate values. Four distinet
points will determine six numbers called their cross ratios,
which have a geometrical significance quite apart from all
concepts of distance or measurement.f An involution will
arise when the points of a line are paired in such a reciprocal
manner that the cross ratios of any four are equal to the
corresponding cross ratios of their four mates. If there be
no self-corresponding points, the involution is said to be
elliptic. If the points of a line be located by means of
homogeneous coordinates A:pu, it may be shown that every
involution may be expressed in the form

AN +B (A +XNp) +C pp’= 0.

In particular if (y) and (2) be the coordinates of two points,
there will exist an involution on their line determined by the

ti ’
CqUAtons () — \(y)+ (), (€)' = w(y)—A(2),
and by a proper choice of running coordinates any elliptic
involution may be put into this form. Did we seek the
coordinates of self-corresponding points in this involution,

we should get (@) = (y) +2(2)-

Conversely, cvery set of homogenecous complex values (y) +¢(z)
will lead us in this way to a definite elliptic involution.
The involution may be taken to represent the two sets of
conjugate imaginary homogeneous values. We may scparate
the conjugate valucs by the following device. It is not difficult
to show that if a directed distance be determined by two
points, it will have the same sense as the corresponding
directed distance determined by their mates in an elliptic
involution. To an elliptic involution may thus be assigned
either one of two senses of description, and we shall define
as an imaginary point an elliptic involution to which such
a sense has been attached. Had we taken the other sense,
we should have said that we had the conjugate imaginary

* Cf. Pieri, ‘I principi della gcometria di posizione.” Memorie della
R. Accademia delle Scienze di Torino, vol. xlviii, 1899.

+ Cf. Pasch, loc. cit., p. 164, and Chapter XVIII of the presont work.
The idea of assigning to four collinear points a projectively invariant
number originated with Von Staudt, Beitrige zur Geometric der Lage, Part 2,
§§ 19-22, Erlangen, 1868-66.
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point. An imaginary plane may similarly be defined as an
elliptic involution among the planes of a pencil, with a
particular sense of description; an imaginary line as the
intersection of two imaginary planes. It may be shown
geometrically that by introducing imaginary elements under
thesc definitions we have a system of points, lines, and planes,
obeying the same descriptive laws of combination as do the
real points of lines and planes of projective geometry, or
the assemblage of all real homogeneous coordinate sets, which
do not vanish simultaneously.* Introducing these imaginary
expressions, and the corresponding complex values for their
homogeneous coordinates, we extend our space to be a perfect
apalytic continuum.

We must now see what extension must be given to the
concept distance, in order to fit the extended space with
which we are, henceforth, to deal. To begin with, we shall
from this time forth identify the two concepts distwnce and
measwre of distance. In other words, as the concept distance
comes into our work cffectively only in terms of its measure,
i.e. as a number, so we shall save circumlocution by replacing
the words measure of distance by distwnce throughout. The
distance of two points is thus dependent upon the two points,
and on the unit. In any particular investigation, howcver,
we assume that the unit is well known from the start, and
disregard its existence. We therefore give as the definition
of the distance of two points under the cuclidean hypothesis

1
d= " A @—y)+ (e —y) + (=) @)
Lo Yo

This is, at worst, a two valued function. When it takes
a real value, we give the positive root as the distance, when
it is imaginary we may make any one of several simple
conventions as to which root to take. If one or both of the
points considered be ideal, the expression for distance becomes
infinite, unless also the radical vanishes when no distance is
determined. Under these circumstances we shall leave the
concept of distance undefined, thus getting pairs of points
disobeying Axiom II'. Notice ‘also that whenever the radical
vanishes for non-ideal points we have points which are
distinet, yet have a null distance, and when such points
are included, Axiom XIII may fail.

We shall in like manner identify the concepts wngle and

* Cf. Von Staudt, loc. cit., § 7, and Liiroth, ¢ Das Imaginire in der (Geometrie
und das Rechnen mit Wurfen,” Mathematische Annalen, vol. ix.
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measure of angle in terms of the unit which gives to a right

angle the measure g
We may proceed in a similar manner in the non-euclidean
cases. If (z) and (y) be the coordinates of two points, we
shall define as their distance d, the solution of
(l (y)
—— 2
P V) V) @)
This equation in d has, of course, an infinite number of
solutions. Before taking up the question of which shall be
called the distance of the two points, let us approach the
matter in a different, and highly interesting fashion duc to
Cayley* This theory is of absolutely fundamental impor-
tance in all that follows.
The assemblage of points whose coordinates satisfy the

equation (@r) = 0, (3)

shall be called the Absolute. This is a quadric surface, real
in the hypelbohc case, surrounding, so to speak, the actual
domain ; imaginary in the elliptic and spherical cases ; in the
last- named it is the locus of points which coincide with their
equivalents. Every congruent transformation is an orthogonal
substitution, i.e. a lincar transformation carrying the Absolute
into itself. Let us, by definition, enlarge our congruent group
so that every such transformation shall be called congruent;
certainly it carries a point into a point, and leaves distances
unaltercd. In the cuclidean case we take as Absolute the

conie z, =0, z2+ul+z*=0, (4)

and define as congruent transformations a certain six-parameter
sub-group of the seven-parameter collineation group which
carries it into itself. We shall return to the study of the
congruent group in the next chapter.

Returning to the non-cuclidean cases, let us take two
points I’}, P, with coordinates (z) and (y), and let the line
connecting them meet the Absolute in two points @, @,. We
obtain the coordinates of these by putting A(x)+pu(y) into
the equation of the Absolute. The ratio of the roots of this
equation will give one of the two cross ratios formed by
the pair of points P, P, and the pair @,Q,; interchanging

* Cayley, ¢ A sixth memoir on Quanties,” Philosophical Transactions of the
Royal Society of London, 1859,
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the roots we get the other cross ratio of the two pairs of
points *. The value of such a cross ratio will thus be

(zy) + v/ (@) — (@) (yy)

()~ Ve~ (as) )

By interchanging the signs of the radicals we change this

cross ratio into its reciprocal, and this amounts to inter-

changing the members of one of the two point pairs. Let us
2id

denote this expression by e -

S o)+ V) () —(ay)?

V() v (yy)

« (zy)
COS 57 = -~ 5)
b V(ws) Vyy) (
If we write the cross ratios of the pair of points P, P, and
the pair @,Q, as (P, I’,, Q,Q,), we may re-define our non-
euclidean distance by the following theorem :—

Theorem. If d be the distance of two points P, and 2,
whose line meets the Absolute in @, and €),,

k
o = 2,[:10;_:6 (PP, Q,Q.,). (6)

The great beauty of this definition is that it brings into
clear relief the connexion between distance and the congruent
group, for the cross ratio in question is, of course, invariant
under all linear transformation which carry the Absolute
into itself, i.c. under all congruent transformations. Let the
reader show that a corresponding projective definition may
be given for an angle.

Our distances, as so far defined, are infinitely multiple
valued functions. There is no great practical utility in
rendering them single valued by definition. It is, however,
perhaps worth while to carry it through in one case.

If we have two real points of the actual domain, the
expression (I’,P,, Q,Q,) will have two values, real in the
hyperbolie, pure imaginary in the elliptic and spherical case,
and these two are reciprocals, so that the resulting expressions
for d will differ only in sign, for each determination of the
logarithm. We may therefore take the distance as positive.

* For the geometrical interpretation of a cross ratio when some of the
elements are imaginary, see Von Staudt, loc. cit., § 28, and Liiroth, loc. cit.
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Did we seek, not for a distance, but a directed distance, then
it would be necessary to distinguish once for all between
@, and @), and in each particular case between the pair P, P,,
and the pair P, P, the directed distance will have a definite
value sometimes positive, sometimes negative,

Let us specialize by confining ourselves to the hyperbolic
case. We have defined the distance of two actual points.
Still restrieting ourselves to the real domain, suppose that
we have an actual and an ultra-infinite point. Let us choose
such a unit of measure that 22 = —1. Our cross ratio is here
negative, with an absolute value 7 let us say, so that the distanec
expression takes the form 3[logr+ (2m +1)7i]. Let us choose
in particular

d:llo("l*}-';

Next consider two ultra-infinite points. 1f the line con-
neeting them meet the Absolute in real points, we shall have
a real cross ratio as before, and henee a real positive distance.
If, however, this real line meet the Absolute in conjugatc
imaginary points, the expression for the cross ratio becomes
imaginary, and the simplest expression for their distance is
pure imaginary. ’lhu absolute value of this expression will

run between O and T;, for the roots of 3logA = X differ

-~

by ni. We may, hence, represent all of these cross ratios in
the Gauss plane by points of the axis of pure imaginaries

between 0 and »7—7--

If the line connectlnrr two ultra-infinite points be tangent
to the Absolute, the cross ratio is unity, and we may take
the distance as zero. The distance from a point of the
Absolute to a point not on its tangent will be infinite;
the distance to a point on the tangent is absolutely inde-
terminate, for the cross ratio is indcterminate. We may,
in fact, consider the cross ratios of three coincident points
and a foulth as the limiting case of any cross ratio which
we please.

Leaving aside the indeterminate case, we are thus able to
represent the distance of any two real points of hyperbolic
space in the Gauss plane by a point on the positive half
of the axis of reals, by a point of the segment of the origin

and ;—;-i, or by a point of the horizontal half-line —727 i ® ,
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and as two points move continuously in the real domain of the
hyperbolic plane, the points which represent their distance
will move continuously on the lines described.

Let us now take two points of the hyperbolic plane, real or
imaginary. We sec that the roots of log A =X differ by
multiples of 74, so that we may assign to « an imaginary

w .
part whose Absolute value = ;- Moreover, by choosing
o~

properly between the two reciprocal values of the eross ratio,
we may censure that the real part of « shall not be negative.
If two points be conjugate imaginaries, while their line cuts
the Absolute in real points, the cross ratio is imaginary, and
the expression for distance is pure imaginary, which we may
represent by a point of the segment of the origin and
-5 If both pairs of points be conjugate imaginaries, the
cross ratio is real and negative, so that the distance may

be represented in the form X — 7—:0 We shall define as the

distance of two points that value of the logarithm of a cross
ratio which they form with the intersection of their line and
the Absolute, which in the Gauss planc is represented by

a point of the infinite triangle whose vertices arc oo, 0 + g s
0— g i. The possible ambiguities for points on the sides of

this triangle have already been removed by definition.

We have already scen that when cuclidean space has been
enlarged to be a perfect analytic continuum, imaginary points
and distances come in which do not obey all of our axioms.
In the hyperbolic case we shall find real, though ultra-infinite,
points which do not at all obey the principles laid down
for a consistent region.* Let us take three points of the
ultra-infinite region of the actual hyperbolic plane x, =0,
say (), (y), (). As these points are supposed to be real we
may assume that x,, x, are real, while z, 1s & pure imaginary,
and that a like state of affairs exists for (y) and (2). We
shall further assumc that the lines conmnecting them shall
intersect the Absolute in real, distinet points. We have then

(y2)*—=(yy)(z2) > 0, (az) > O,
(zz)* —(22) (xz) > 0, (yy) >0, (7)
(zy)?— (az)(yy) > 0, (22) > 0.

* The developments which follow are taken from Study, ‘ Beitriige zur
nicht-euklidischen Geometrie,” American Journal of Mathematics, vol. xxix, 1907,



9 THE GEOMETRIC AND ANALYTIC CH,

Let us, for the moment, indicate the distance from (z) to (y)
by dﬁ?/, and assume Wz = = z,/

We shall also take

. d
h =1. cos = coshd.

Under what circumstances shall we have ?
Yz Z T+ ay,
cosh (g2 —2x) = cosh 'r,//,

\/ (52" ' @_’1_ ()
(yy) (2) 23) () (wx) (yy)

oy =tyy) @) [Ga)i=(e) (am)
\/ (1) (22) \/ (33) ()

The terms on the left are cssentially positive as they repre-
sent hyperbolie cosines, those on the right are positive, being
hyperbolic sines; we may therefore square the inequality

) () (22)+ 2 12) (o) ) | ()
() Gy = (=) (g < 0. ()

