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PART IIL

MAGNETISM.

CHAPTER L

ELEMENTARY THEORY OF MAGNETISM.

371.] CerraIN bodies, as, for instance, the iron ore called load-
stone, the earth itself, and pieces of steel which have been sub-
Jected to certain treatment, are found to possess the following
properties, and are called Magnets.

If, near any part of the carth’s surface except the Magnetic
Poles, a magnet be suspended so as to turn freely about a vertical
axis, it will in general tend to set itself in a certain azimuth, and
if disturbed from this position it will oscillate about it. An un-
magnetized body has no such tendency, but is in equilibrium in
all azimuths alike.

872.] It is found that the force which acts on the body tends
to cause a certain line in the body, called the Axis of the Magnet,
to become parallel to a certain line in space, called the Direction
of the Magnetic Force.

Let us suppose the magnet suspended so as to be free to turn
in all directions about a fixed point. To eliminate the action of
its weight we may suppose this point to be its centre of gravity.
Let it come to a position of equilibrium, Mark two points on
the magnet, and note their positions in space. Then let the
magnet be placed in a new position of equilibrium, and note the
positions in space of the two marked points on the magnet.

Since the axis of the magnet coincides with the direction of
magnetic foree in both positions, we have to find that line in
the magnet which occupies the same position in space before and

VOL. II., . B
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2 ELEMENTARY THEORY OF MAGNETISM. [373.

after the motion. It appears, from the theory of the motion of
bodies of invariable form, that such a line always exists, and that
a motion equivalent to the actual motion might have taken place
by simple rotation round this line.

To find the line, join the first and last positions of each of the
marked points, and draw planes bisecting these lines at right
angles. The intersection of these planes will be the line required,
which indicates the direction of the axis of the magnet and the
direction of the magnetic force in space.

The method just described is not convenient for the practical
determination of these directions. We shall return to this subject
when we treat of Magnetic Measurements.

The direction of the magnetic force is found to be different at
different parts of the earth’s surface. If the end of the axis of
the magnet which points in a northerly direction be marked, it
has been found that the direction in which it sets itself in general
deviates from the true meridian to a considerable extent, and that
the marked end points on the whole downwards in the northern
hemisphere and upwards in the southern.

The azimuth of the direction of the magnetic force, measured
from the true north in a westerly direction, is called the Variation,
or the Magnetic Declination. The angle between the direction of
the magnetic force and the horizontal plane is called the Magnetic
Dip. These two angles determine the direction of the magnetic
force, and, when the magnetic intensity is also known, the magnetic
force is completely determined. The determination of the values
of these three clements at different parts of the earth’s surface,
the discussion of the manner in which they vary according to the
place and time of observation, and the investigation of the causes
of the magnetic force and its variations, constitute the science of
Terrestrial Magnetism.

873.] Let us now suppose that the axes of several magnets have
been determined, and the end of each which points north marked.
Then, if one of these be freely suspended and another brought
near it, it is found that two marked ends repel each other, that
a marked and an unmarked end attract each other, and that two
unmarked ends repel each other.

If the magnets are in the form of long rods or wires, uniformly
and longitudinally magnetized, (see below, Art, 384,) it is found
that the greatest manifestation of force occurs when the end of
one magnet is held near the end of the other, and that the
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phenomena can be accounted for by supposing that like ends of
the magnets repel each other, that unlike ends attract each other,
and that the intermediate parts of the magnets have no sensible
mutual action.

The ends of a long thin magnet are commonly called its Poles.
In the case of an indefinitely thin magnet, uniformly magnetized
throughout its length, the extremities act as centres of force, and
the rest of the magnet appears devoid of magnetic action. In
all actual magnets the magnetization deviates from uniformity, so
that no smgle points can be taken as the poles. Coulomb, how-
ever, by using long thin rods magnetized with ecare, succeeded in
establishing the law of force between two magnetic poles*.

The repulsion between two magnetic poles is in the straight line joining
them, and is numerically equal to the product of the strengths of
the poles divided by the square of the distance between them.

374.] This law, of course, assumes that the strength of each
pole is measured in terms of a certain unit, the magnitude of which
may be deduced from the terms of the law.

The unit-pole is a pole which points north, and is such that,
when placed at unit distance from another unit-pole, it repels it
with unit of force, the unit of force being defined as in Art. 6. A
pole which points south is reckoned negative.

If m, and m, are the strengths of two magnetic poles, / the
~ distance between them, and £ the force of repulsion, all expressed
numerically, then e M

But if [%], [L] and [F] be the concrete units of magnetic pole,

length and force, then
ml mz

SF] = [ ]
whence it follows that

[n] = [22F] = [ 75

or [m] = [LET2 MY,
The dimensions of the unit pole are therefore % as regards length,
(—1) as regards time, and % as regards mass. These dimensions
are the same as those of the electrostatic unit of electricity, which
is specified in exactly the same way in Arts. 41, 42.

]l[l}

* His experiments on magnetism with the Torsion Balance are contained in
the Memoirs of the Academy of Paris, 1780-9, and in Biot’s Traité de Physique,
tom. iii.

B2



4 ELEMENTARY THEORY OF MAGNETISM. [375.

875.] The accuracy of this law may be considered to have
been established by the experiments of Coulomb with the Torsion
Balance, and confirmed by the experiments of Gauss and Weber,
and of all observers in magnetic observatories, who are every day
making measurements of magnetic quantities, and who obtain results
which wculd be inconsistent with ecach other if the law of force
had been erroneously assumed. It derives additional support from
its consistency with the laws of electromagnetic phenomena.

876.] The quantity which we have hitherto called the strength
of a pole may also be called a quantity of ¢ Magnetism,” provided
we attribute no properties to ¢ Magnetism’ except those observed
in the poles of magnets.

Since the expression of the law of force between given quantities
of ‘Magnetism’ has exactly the same mathematical form as the
law of force between quantities of ¢ Electricity’ of equal numerical
value, much of the mathematical treatment of magnetism must be
similar to that of electricity. There are, however, other properties
of magnets which must be borne in mind, and which may throw
some light on the electrical properties of bodies,

Relation between the Poles of a Magnet.

377.] The quantity of magnetism at one pole of a magnet is
always equal and opposite to that at the other, or more generally
thus :—

In every Magnet the total quantity of Magnetism (veckoned alge-
braically) s zero.

Hence in a field of force which is uniform and parallel throughout
the space occupied by the magnet, the force acting on the marked
end of the magnet is exactly equal, opposite and parallel to that on
the unmarked end, so that the resultant of the forces is a statical
couple, tending to place the axis of the magnet in a determinate
direetion, but not to move the magnet as a whole in any direction.

This may be easily proved by putting the magnet into a small
vessel and floating it in water. The vessel will turn in a certain
direction, so as to bring the axis of the magnet as near as possible
to the direction of the earth’s magnetic force, but there will be no
motion of the vessel as a whole in any direction ; so that there can
be no excess of the force towards the north over that towards the
south, or the reverse. It may also be shewn from the fact that
magnetizing a piece of steel does not alter its weight. It does alter
the apparent position of its centre of gravity, causing it in these
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latitudes to shift along the axis towards the north, The centre
of inertia, as determined by the phenomena of rotation, remains
unaltered.

878.] If the middle of a long thin magnet be examined, it is
found to possess no magnetic properties, but if the magnet be
broken at that point, each of the pieces is found to have a magnetic
pole at the place of fracture, and this new pole is exactly equal
and opposite to the other pole belonging to that piece. It is
impossible, either by magnetization, or by breaking magnets, or
by any other means, to procure a magnet whose poles are un-
equal.

If we break the long thin magnet into a number of short picces
we shall obtain a series of short magnets, each of which has poles
of nearly the same strength as those of the original long magnet.
This multiplication of poles is not necessarily a creation of energy,
for we must remember that after breaking the magnet we have to
do work to separate the parts, in consequence of their attraction
for one another.

379.] Let us now put all the pieces of the magnet together
as at first. At each point of junction there will be two poles
exactly equal and of opposite kinds, placed in contact, so that their
united action on any other pole will be null. The magnet, thus
rebuilt, has therefore the same properties as at first, namely two
poles, one at each end, equal and opposite to each other, and the
part between these poles exhibits no magnetie action.

Since, in this case, we know the long magnet to be made up
of little short magnets, and since the phenomena are the same
as in the case of the unbroken magnet, we may regard the magnet,
even before being broken, as made up of small particles, each of
which has two equal and opposite peles. If we suppose all magnets
to be made up of sueh particles, it is evident that since the
algebraical quantity of magnetism in each particle is zero, the
quantity in the whole magnet will also be zero, or in other words,
its poles will be of equal strength but of opposite kind.

Theory of Magnetic ¢ Matter.

880.] Since the form of the law of magnetic action is identical
with that of electric action, the same reasons which can be given
for attributing electric phenomena to the action of one ¢fluid’
or two ‘fluids’ can also be used in favour of the existence of a
maguetic matter, or of two kinds of magnctic matter, fluid or
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otherwise. In fact, a theory of magnetic matter, if used in a
purely mathematical sense, cannot fail to explain the phenomena,
provided new laws are freely introduced to account for the actual
facts.

One of these new laws must be that the magnetic fluids cannot
pass from one molecule or particle of the magnet to another, but
that the process of magnetization consists in separating to a certain
extent the two fluids within each particle, and causing the one fluid
to be more concentrated at one end, and the other fluid to be more
concentrated at the other end of the particle. This is the theory of
Poisson.

A particle of a magnetizable body is, on this theory, analogous
to a small insulated conductor without charge, which on the two-
fluid theory contains indefinitely large but exactly equal quantities
of the two electricities. When an electromotive force acts on the
conductor, it separates the electricities, causing them to become
manifest at opposite sides of the conductor. In a similar manner,
according to this theory, the magnetizing force causes the two
kinds of magnetism, which were originally in a neutralized state,
to be separated, and to appear at opposite sides of the magnetized
particle.

In certain substances, such as soft iron and those magnetic
substances which cannot be permanently magnetized, this magnetic
condition, like the electrification of the conductor, disappears when
the inducing force is removed. In other substances, such as hard
steel, the magnetic condition is produced with difficulty, and, when
produced, remains after the removal of the inducing force.

This 1s expressed by saying that in the latter case there is a
Coercive Force, tending to prevent alteration in the magnetization,
which must be overcome before the power of a magnet can be
either increased or diminished. In the case of the electrified body
this would correspond to a kind of electric resistance, which, unlike
the resistance observed in metals, would be equivalent to complete
insulation for electromotive forces below a certain value.

This theory of magnetism, like the corresponding theory of
electricity, is evidently too large for the facts, and requires to be
restricted by artificial conditions. For it not only gives no reason
why one body may not differ from another on account of having
more of both fluids, but it enables us to say what would be the
properties of a body containing an excess of one magnetic fluid.
It is true that a reason is given why such a body cannot exist,
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but this reason is only introduced as an after-thought to explain
this particular fact. It does not grow out of the theory.

381.] We must therefore seek for a mode of expression which
shall not be capable of expressing too much, and which shall leave
room for the introduction of new ideas as these are developed from
new facts. This, I think, we shall obtain if we begin by saying
that the particles of a magnet are Polarized.

Meaning of the term ¢ Polarization.

When a particle of a body possesses properties related to a
certain line or direction in the body, and when the body, retaining
these properties, is turned so that this direction is reversed, then
if as regards other bodies these properties of the particle are
reversed, the particle, in reference to these properties, is said to be
polarized, and the properties are said to constitute a particular
kind of polarization.

Thus we may say that the rotation of a body about an axis
constitutes a kind of polarization, because if, while the rotation
continues, the direction of the axis is turned end for end, the body
will be rotating in the opposite direction as regards space.

A conducting particle through which there is a current of elec-
tricity may be said to be polarized, because if it were turned round,
and if the current continued to flow in the same direction as regards
the particle, its direction in space would be reversed.

In short, if any mathematical or physical quantity is of the

-nature of a vector, as defined in Art. 11, then any body or particle
to which this directed quantity or vector belongs may be said to
be Polarized *, because it has opposite properties in the two opposite
directions or poles of the directed quantity.

The poles of the earth, for example, have reference to its rotation,
and have accordingly different names.

% The word Polarization has been used in a semse not consistent with this in
Optics, where a ray of light is said to be polarized when it has properties relating
to its sides, which are identical on opposite sides of the ray. This kind of polarization
refers to another kind of Directed Quantity, which may be called a Dipolar Quantity,
in opposition to the former kind, which may be called Unipolar.

When a dipolar quantity is turned end for end it remains the same as before.
Tensions and Pressures in solid bodies, Extensions, Compressions, and Distortions
and most of the optical, electrical, and magnetic properties of crystallized bodies
are dipolar quantities.

The property produced by magnetism in_transparent bodies of twisting the plane
of polarization of the incident light, is, like magnetism itself, a unipolar property.
The rotatory property referred to in Art. 303 is also unipolar.
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Meaning of the term © Magnetic Polarization.

382.] In speaking of the state of the particles of a magnet as
magnetic polarization, we imply that each of the smallest parts
into which a magnet may be divided has certain properties related
to a definite direction through the particle, called its Axis of
Magnetization, and that the properties related to one end of this
axis are opposite to the properties related to the other end.

The properties which we attribute to the particle are of the same
kind as those which we observe in the complete magnet, and in
assuming that the particles possess these properties, we only assert
what we can prove by breaking the magnet up into small pieces,
for each of these is found to be a magnet.

Properties of a Magnetized Particle.

383.] Let the element dadyd: be a particle of a magnet, and
let us assume that its magnetic properties are those of a magnet
the strength of whose positive pole is 7, and whose length is ds.
Then if P is any point in space distant 7 from the positive pole and
# from the negative pole, the magnetic potential at P will be

? due to the positive pole, and ——;Z, due to the negative pole, or

m
H= e (¥ —7). (1)
If ds, the distance between the poles, is very small, we may put
¥ —r = dscose (2)

where ¢ is the angle between the vector drawn from the magnet
to P and the axis of the magnet, or
mds

V= 72— COs €. (3)

DMagnetic Moment.
384.] The product of the length of a uniformly and longitud-
inally magnetized bar magnet into the strength of its positive pole
is called its Magnetic Moment.

Intensity of Magnetization.
The intensity of magnetization of a magnetic particle is the ratio
of its magnetic moment to its volume. 'We shall denote it by 1.
The magnetization at any point of a magnet may be defined
by its intensity and its direction. Its direction may be defined by
its direction-cosines A, y, v.
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Components of Magnetization.

The magnetization at a point of a magnet (being a vector or
directed quantity) may be expressed in terms of its three com-
ponents referred to the axes of coordinates. Calling these 4, B, C,

4 = 1A, B =1y, C = I,
and the numerical value of 7 is given by the equation (4)
12 = A*+ B2 4 C2, (5)

385.] If the portion of the magnet which we consider is the
differential element of volume dzdy dz, and if I denotes the intensity
of magnetization of this element, its magnetic moment is Idwdydz.
Substituting this for mds in equation (3), and remembering that

reose = A (§—2)+u (n—2)+v({—2), (6)
where §, 7, ¢ are the coordinates of the extremity of the vector #
drawn from the point (z, 7, 2), we find for the potential at the point
(& m, ) due to the magnetized element at (2, g, 2),

{A(E—0)+ B (1—9)+C((—2)} o, dudyds. (7)

To obtain the potential at the point (¢, 5, {) due to a magnet of
finite dimensions, we must find the integral of this expression for
every element of volume included within the space oceupied by
the magnet, or

7= [[[ 4 (=) + Blr—g) + C(¢—2)} S dwdyiz. (5)

Integrated by parts, this becomes

V=ffA;(Iydz+//B;dzd$+/ 0%(1&0(@

1,d4 dB dC

where the double integration in the first three terms refers to the
surface of the magnet, and the triple integration in the fourth to
the space within 1t.

If 7, m, » denote the direction-cosines of the normal drawn
outwards from the element of surface dS, we may write, as in
Art. 21, the sum of the first three terms,

[[wtsnsrac)}as,

where the integration is to be extended over the whole surface of
the magnet.
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If we now introduce two new symbols o and p, defined by the
equations o =14 +mB+nC,
d4 dB  dC
=~ +tgy tH)
the expression for the potential may be written

7’://E(ZS+f/f&erdydz.
7 r

386.] This expression is identical with that for the electric
potential due to a body on the surface of which there is an elec-
trification whose surface-density is o, while throughout its substance
there is a bodily electrification whose volume-density is p. Hence,
if we assume o and p to be the surface- and volume-densities of the
distribution of an imaginary substance, which we have ealled
‘magnetic matter,” the potential due to this imaginary distribution
will be identical with that due to the actual magnetization of every
element of the magnet.

The surface-density o is the resolved part of the intensity of
magnetization 7 in the direction of the normal to the surface drawn
outwards, and the volume-density p is the ‘convergence’ (see
Art. 25) of the magnetization at a given point in the magnet.

This method of representing the action of a magnet as due
to a distribution of ¢magnetic matter’ is very convenient, but we
must always remember that it is only an artificial method of
representing the action of a system of polarized particles.

On the Action of one Magnelic Molecule on another.

387.] If, as in the chapter on Spherical Harmonies, Art. 129,
we make d d d d
(lezl%_}’m@ﬂzﬁ’ (1)
where 7, m, n arc the direction-cosines of the axis 7, then the
potential due to a magnetic molecule at the origin, whose axis is
parallel to Z;, and whose magnetic moment is ), is
g d my oy
NEgn o e @)
where A, is the cosine of the angle between 4, and 7.

Again, if a second magnetic molecule whose moment is ,, and
whose axis is parallel to %,, is placed at the extremity of the radius
vector 7, the potential energy due to the action of the one magnet
on the other is
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ar
2, = — g1, T, (;) ’ (3)

= % (12— 3 1)), (4)
where py, is the cosine of the angle which the axes make with each
other, and A, A, are the cosines of the angles which they make
with 7.

Let us next determine the moment of the couple with which the
first magnet tends to turn the second round its centre.

Let us suppose the second magnet turned through an angle
d¢ in a plane perpendicular to a third axis Z,, then the work done

77=m

against the magnetic forces will be Z - d¢, and the moment of the

forces on the magnet in this plane WIH be
_aw _ mlmz (@_ dxyy | (5)
d¢ d¢

The actual moment actinw on the second magnet may therefore
be considered as the resultant of two couples, of which the first
acts in a plane parallel to the axes of both magnets, and tends to

increase the angle between them with a force whose moment is
17%_ sin (%, 4,), (6)

while the second couple acts in the plane passing through 7 and

the axis of the second magnet, and tends to diminisi the angle

between these directions with a force
2T cos (1) sin (1), (7)
where (7/y), (rhy), (%,/;) denote the angles between the lines 7,
gy By
To determine the force acting on the second magnet in a direction
parallel to a line 4;, we have to calculate

anw a3 1
= (= 8
ah, = T dﬁld@dﬁ?,( ) (8)
3
=y My —— by Art. 128¢,
m
=32 2{)\1;1234-)\2;/.31—}-)\3;112—5)\ A}, by Art. 133, (9)
1 772,
= 3\, 2(,112 5)\>\)+3p13 772 Mg+ 3pigg f L2, (10)

If we suppose the actual force compounded of three forces, R,
H, and 77,, in the directions of 7, #; and 4, respectively, then the
force in the direction of /Z, is

Ay R+ pyg I + prog I, (11)
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Since the direction of 4, is arbitrary, we must have

R = 37771mz ( - _5 )\)
= — = (uy, %
12)
31ty ity 3y M, (
=072 Hy=—22. )

The force R is a repulsion, tending to increase »; /I, and 17,
act on the second magnet in the directions of the axes of the first
and second magnet respectively.

This analysis of the forces acting between two small magnets
was first given in terms of the Quaternion Analysis by Professor
Tait in the Quarterly Muth. Journ. for Jan, 1860. See also his
work on Quaternions, Art. 414.

Particular Positions.
388.] (1) If A, and A, are cach equal to 1, that is, if the axes
of the magnets are in one straight line and in the same direction,
=R and the force hetween the magnets is a repulsion

(S

R4 Iyt M, = — =272 (13)

The negative sign indicates that the force is an attraction.

(2) If A; and A, are zero, and py, unity, the axes of the magnets
are parallel to each other and perpendicular to 7, and the force
is a repulsion

P 3 7/7:47722 (14)
In neither of these cases is there any couple.
(8) If A =1 and A, = 0, then p;, = 0. (15)

ey My

The force on the second magnet will be 3 iy the direction

of its axis, and the couple will be zm;mz . tending to turn it parallel

to the first magnet. This is equivalent to a single force — o ”1 3

acting parallel to the direction of the axis of the second magnet,
and cutting  at a point two-thirds of its length from 7z,.

B(

Fig. 1.

Thus in the figure (1) two magnets are made to float on water, 7,
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being in the direction of the axis of m,, but having its own axis
at right angles to that of ,. If two points, 4, B, rigidly connected
with 7, and m, respectively, are connected by means of a string 7,
the system will be in equilibrium, provided 7 cuts the line u, m,
at right angles at a point one-third of the distance from ; to m,.

(4) If we allow the second magnet to turn freely about its centre
till it comes to a position of stable equilibrium, # will then be a
minimum as regards /,, and therefore the resolved part of the force
due to #,, taken in the direction of Z;, will be a maximum. Hence,
if we wish to produce the greatest possible magnetic force at a
given point in a given direction by means of magnets, the positions
of whose centres are given, then, in order to determine the proper
directions of the axes of these magmets to produce this effect, we
have only to place a magnet in the given direction at the given
pomt and to observe the direction of stable equilibrium of the
axis of a second magnet when its centre
is placed at each of the other given
points, The magnets must then be
placed with their axes in the directions
indicated by that of the second magnet.

Of course, in performing this experi-
ment we must take account of terrestrial
magnetism, if it exists.

Let the second magnet be in a posi-
tion of stable equilibrium as regards its
direction, then since the couple acting
on it vanishes, the axis of the second magnet must be in ’che same
plane with that of the first. Hence

(g hiy) = (My7) + (7 hy)s (16)
and the couple being

7.’11
SEZIN

Fig. 2.

—'@ (sin (4y h,) — 3 cos (% 7) sin (r 4y)), (17)

we find when this is zero
tan (%, 7) = 2 tan (r 4,), (18)
or tan H, my R = 2 tan Rm, H,. (19)

‘When this position has been taken up by the second magnet the

value of 77 becomes
av

szZ—Z;’
where %, is in the direction of the line of force due to ,; at m,.
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arv\* arf* av
o T I + L (20)
Hence the second magnet will tend to move towards places of
greater resultant force.

The force on the second magnet may be decomposed into a force
R, which in this case is always attractive towards the first magnet,
and a force I/, parallel to the axis of the first magnet, where

2
Hence W=—um,

wy iy 4AZ41 7 g N
4 l\/ﬁl2+—1 ? 7+ Jm ] (21)

In Fig. XIV, at the end of this volume, the lines of force and
equipotential surfaces in two dimensions are drawn. The magnets
which produce them are supposed to be two long cylindrical rods
the sections of which are represented by the circular blank spaces,
and these rods are magnetized transversely in the direction of the

=—3

=3

7

Arrows.
If we remember that there is a tension along the lines of force, it
is easy to see that each magnet will tend to turn in the direction
of the motion of the hands of a watch.
That on the right hand will also, as a whole, tend to move
towards the top, and that on the left hand towards the bottom
of the page.

On the Potential Energy of a Magnet placed in a Magnetic Field.

389.] Let 7" be the magnetic potential due to any system of
magnets acting on the magnet under consideration. We shall call
7 the potential of the external magnetic force.

If a small magnet whose strength is #, and whose length is ds,
be placed so that its positive pole is at a point where the potential
is 7, and its negative pole at a point where the potential is 7, the
potential energy of this magnet will be u (V'—7"), or, if ds is
measured from the negative pole to the positive,

av
m— ds. (1)
If T is the intensity of the magnetization, and A, y, v its direc-
tion-cosines, we may write,
mds = Idvdydz,
and 2l =)\d—V+u—d—Z+ v-(zz’
ds dx dy dz
and, finally, if 4, B, C are the components of magnetization,
A=Al B=ul C = vl
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so that the expression (1) for the potential energy of the element
of the magnet becomes

(AZV+BdV+ 0—-) dx dydz. (2)
To obtain the potential energy of a magnet of finite size, we

must integrate this expression for every element of the magnet.
We thus obtain

w=[[[ (2% +3 ofg) dwdydz (3)

as the value of the potential energy of the magnet with respect
to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the components
of magnetization and of those of the magnetic force arising from
external causes,

By integration by parts we may express it in terms of the
distribution of magnetic matter and of magnetic potential

= [[(r+Bu+omyas—[[[7 22 + 22 4 N aayas, (1

where 7, m, # are the direction-cosines of the normal at the element
of surface 8. If we substitute in this equation the expressions for
the surface- and volume-density of magnetic matter as given in
Art. 386, the expression becomes

w=[[rois+ [[[roacayae. (5)

We may write equation (3) in the form

W=—[[[(10+ B8+ Op)dwdya, ()

where a, 3 and y are the components of the external magnetic force.

On the Magnetic Moment and Awis of @ Magnet.

890.] If throughout the whole space occupied by the magnet
the external magnetic force is uniform in direction and magnitude,
the components a, 8, y will be constant quantities, and if we write

f/fAdxdydz =K, f/dew({ydz = mK, ffdemdydz =K, (7)

the integrations being extended over the whole substance of the
magnet, the value of # may be written

W=—K(lat+mpB+ny). (8)
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In this expression /, m, # are the direction-cosines of the axis of
the magnet, and K is the magnetic moment of the magnet. If
¢ is the angle which the axis of the magnet makes with the
direction of the magnetic force ), the value of /" may be written

W=—KS cose. (9)

If the magnet is suspended so as to be free to turn about a
vertical axis, as in the case of an ordinary compass needle, let
the azimuth of the axis of the magnet be ¢, and let it be inclined
0 to the horizontal plane, Let the force of terrestrial magnetism
be in a direction whose azimuth is 8 and dip ¢, then

a=§coseosd, PB=9&eos(sind, y=Hsin{; (10)
! = cosOcos¢p, = cos0sind, 7 =sind; (11)
whence W= —KJ$) (cos {cos 0 cos (¢—29) +sin {sin 0). (12)

The moment of the force tending to increase ¢ by turning the

magnet round a vertical axis is
anw . .
——?l(—/)—:—-lx&j cos { cos 0 sin (¢—3). (13)

On the Expansion of the Potential of a Magnet in Solid Harmonics.

391.]7 Let 7 be the potential due to a unit pole placed at the
point (&, 7, ¢). The value of 7" at the point 2, 7, 2 is
V= {(§—a)+(n—g)*+ (=2} H (1)
This expression may be expanded in terms of spherical harmonies,
with their centre at the origin. We have then
V=Vy+ 7+ 7V, +&e, (2)

where V= ;, 7 being the distance of (£, », ) from the origin, (3)

Vl = ——————fw+jz+§z ) (4)
7, = 3(§x+ny+g‘z)2_(x;;y2+z2) (82472 +C2) ’ )
&e.

To determine the value of the potential energy when the magnet
is placed in the field of force expressed by this potential, we have
to integrate the expression for ¥ in equation (3) of Art. 389 with
respect to #, 7 and z, considering &, 1, ¢ and 7 as constants.

If we consider only the terms introduced by ¥, 7, and 7, the
result will depend on the following volume-integrals,
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lK:fffAdmdydz, mK:f/f.dedydz, nK:f/demdydz; (6)
L =fffodwdydz, ]l[:fffodmdydz, N:fffOzdxdydz; (7)
p=[[[Ber cpyaniyas, Q= [[[(Co+a)iniye,

R =ff/(Ay+Bx) de dydz. (8)

We thus find for the value of the potential energy of the magnet
placed in presence of the unit pole at the point (¢, 7, ),
w— glétmntnl

7.3
EQQL—M—N)+n?*(2M—~N—-L)+ (2 N—=L—M)+3(Pnl+ QL&+ Rén) (9)
7-5
+ &e.

This expression may also be regarded as the potential energy of
the unit pole in presence of the magnet, or more simply as the
potential at the point & 1, ¢ due to the magnet.

On the Centre of a Magnet and its Primary and Secondary Axes.

892.] This expression may be simplified by altering the directions
of the coordinates and the position of the origin. In the first
place, we shall make the direction of the axis of z parallel to the
axis of the magnet. This is equivalent to making

l=1, m=0, »n=0. (10)

If we change the origin of coordinates to the point (2, 5/, #), the
directions of the axes remaining unchanged, the volume-integrals
[K, mK and #K will remain unchanged, but the others will be
altered as follows :

I'=L—IK, M=M—-nKy, N'=N-nK7; (11)
P=P—KmZ+ny), Q=Q—K(na/+17), R=R—K(ly+ma’). (12)
If we now make the direction of the axis of # parallel to the

axis of the magnet, and put

, 2L—M—N o ,

w=——2K ) . y:—K—; z=%, (13)

then for the new axes 3/ and N have their values unchanged, and
the value of 1’ becomes % (M +XN). P remains unchanged, and ¢
and R vanish, We may therefore write the potential thus,
%(1)2—C2)(ﬂ[—N)+3Pnf’ (14)‘

5

r -

ng+

VOL. II. C
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We have thus found a point, fixed with respect to the magnet,
such that the second term of the potential assumes the most simple
form when this point is taken as origin of coordinates. This point
we therefore define as the centre of the magnet, and the axis
drawn through it in the direction formerly defined as the direction
of the magnetic axis may be defined as the principal axis of the
magnet.

We may simplify the result still more by turning the axes of y
and z round that of # through half the angle whose tangent is

P ..
=7 This will cause P to become zero, and the final form

of the potential may be written
2—{2)(M—N
K¢%+g(" ”rg ) 4 ete.

(15)

This is the simplest form of the first two terms of the potential
of a magnet. When the axes of 7 and 2 are thus placed they may
be called the Secondary axes of the magnet.

We may also determine the centre of a magnet by finding the
position of the origin of coordinates, for which the surface-integral
of the square of the second term of the potential, extended over
a sphere of unit radius, is a minimum,

The quantity which is to be made a minimum is, by Art. 141,

4 (L2 + M24- N2 —MN—NL—LM)+ 3 (P2 + Q+ R?). (16)

The changes in the values of this quantity due to a change of
position of the origin may be deduced from equations (11) and (12).
Hence the conditions of a minimum are

2/ (2L—M—N)+32Q +3mR = 0,
2m(2M—N—-L)+3IR+3nP =0, }
2n(2N—L—3)+3mP+31Q = 0.

If we assume / = 1, m = 0, #=0, these conditions become

2L—~M—N=0, =0, R=0, (18)
which are the conditions made use of in the previous investi-
gation,

This investigation may be compared with that by which the
potential of a system of gravitating matter is expanded. In the
latter case, the most convenient point to assume as the origin
is the centre of gravity of the system, and the most convenient
axes are the principal axes of inertia through that point.

In the case of the magnet, the point corresponding to the centre
of gravity is at an infinite distance in the direction of the axis,

(17)
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and the point which we call the centre of the magnet is a point
having different properties from those of the centre of gravity.
The quantities Z, M, N correspond to the moments of inertia,
and P, @, E to the products of inertia of a material body, except
that Z, 21 and &V are not necessarily positive quantities.

When the centre of the magnet is taken as the origin, the
spherical harmonic of the second order is of the sectorial form,
having its axis coinciding with that of the magnet, and this is
true of no other point.

When the magnet is symmetrical on all sides of this axis, as
in the case of a figure of revolution, the term involving the harmonic
of the second order disappears entirely.

393.] At all parts of the earth’s surface, except some parts of
the Polar regicns, one end of a magnet points towards the north,
or at least in a northerly direction, and the other in a southerly
direction. In speaking of the ends of a magnet we shall adopt the
popular method of calling the end which points to the north the
north end of the magnet. When, however, we speak in the
language of the theory of magnetic fluids we shall use the words
Boreal and Austral. Boreal magnetism is an imaginary kind of
matter supposed to be most abundant in the northern parts of
the earth, and Austral magnetism is the imaginary magnetic
matter which prevails in the southern regions of the earth, The
magnetism of the north end of a magnet is Austral, and that of
the south end is Boreal. When therefore we speak of the north
and south ends of a magnet we do not compare the magnet with
the earth as the great magnet, but merely express the position
which the magnet endeavours to take up when free to move. When,
on the other hand, we wish to compare the distribution of ima-
ginary magnetic fluid in the magnet with that in the earth we shall
use the more grandiloquent words Boreal and Austral magnetism.

394.] In speaking of a field of magnetic force we shall use the
phrase Magnetic North to indicate the direction in which the
north end of a compass needle would point if placed in the field
of force.

In speaking of a line of magnetic force we shall always suppose
it to be traced from magnetic south to magnetic north, and shall
call this direction positive. In the same way the direction of
magnetization of a magnet is indicated by a line drawn from the
south end of the magnet towards the north end, and the end of
the magnet which points north is reckoned the positive end.

C2
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We shall consider Austral magnetism, that is, the magnetism of
that end of a magnet which points north, as positive. If we denote
its numerical value by #, then the magnetic potential

V= 2(?-:?):

and the positive direction of a line of force is that in which 7
diminishes,

.
>4
i)



CHAPTER IL

MAGNETIC FORCE AND MAGNETIC INDUCTION,

395.] WE have already (Art. 385) determined the magnetic
potential at a given point due to a magnet, the magnetization of
which is given at every point of its substance, and we have shewn
that the mathematical result may be expressed either in terms
of the actual magnetization of every element of the magnet, or
in terms of an imaginary distribution of ¢ magnetic matter,” partly
condensed on the surface of the magnet and partly diffused through-
out its substance.

The magnetic potential, as thus defined, is found by the same
mathematical process, whether the given point is outside the magnet
or within it. The force exerted on a unit magnetic pole placed
at any point outside the magnet is deduced from the potential by
the same process of differentiation as in the corresponding electrical
problem. If the components of this force are a, 3, y,

av
ZZ—:I,‘- s B=— % 9 = (_;;V-. (])
To determine by experiment the magnetic force at a point within
the magnet we must begin by removing part of the magnetized
“substance, so as to form a cavity within which we are to place the
magnetic pole. The force acting on the pole will depend, in general,
on the form of this cavity, and on the inclination of the walls of
the cavity to the direction of magnetization. Hence it is necessary,
in order to avoid ambiguity in speaking of the magnetic force
within a magnet, to specify the form and position of the cavity
within which the force is to be measured. It is manifest that
when the form and position of the cavity is specified, the point
within it at which the magnetic pole is placed must be regarded as

a = —
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no longer within the substance of the magnet, and therefore the
ordinary methods of determining the force become at once applicable.

896.] Let us now consider a portion of a magnet in which the
direction and intensity of the magnetization are uniform. Within
this portion let a cavity be hollowed out in the form of a cylinder,
the axis of which is parallel to the direction of magnetization, and
let a magnetic pole of unit strength be placed at the middle point
of the axis,

Since the generating lines of this cylinder are in the direction
of magnetization, there will be no superficial distribution of mag-
netism on the curved surface, and since the circular ends of the
cylinder are perpendicular to the direction of magnetization, there
will be a uniform superficial distribution, of which the surface-
density is I for the negative end, and — I for the positive end.

Let the length of the axis of the eylinder be 24, and its radius a.
Then the foree arising from this superficial distribution on a
magnetic pole placed at the middle point of the axis is that due
to the attraction of the disk on the positive side, and the repulsion
of the disk on the negative side. These two forces are equal and
in the same direction, and their sum is ;

R=4nI(1 Ja2+&2) (2)

From this expression it appears that the force depends, not on
the absolute dimensions of the cavity, but on the ratio of the length
to the diameter of the cylinder. Ience, however small we make the
cavity, the force arising from the surface distribution on its walls
will remain, in general, finite.

897.] We have hitherto supposed the magnetization to be nniform
and in the same direction throughout the whole of the portion of
the magnet from which the cylinder is hollowed out. When the
magnetization is not thus restricted, there will in general be a
distribution of imaginary magnetic matter through the substance
of the magnet. The cutting out of the cylinder will remove part
of this distribution, but since in similar solid figures the forces at
corresponding points are proportional to the linear dimensions of
the figures, the alteration of the force on the magnetic pole due
to the volume-density of magnetic matter will diminish indefinitely
as the size of the cavity is diminished, while the effect due to
the surface-density on the walls of the cavity remains, in general,
finite.

If, therefore, we assume the dimensions of the cylinder so small
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that the magnetization of the part removed may be regarded as
everywhere parallel to the axis of the cylinder, and of constant
magnitude I, the force on a magnetic pole placed at the middle
point of the axis of the cylindrical hollow will be compounded
of two forces. The first of these is that due to the distribution
of magnetic matter on the outer surface of the magnet, and
throughout its interior, exclusive of the portion hollowed out. The
components of this force are a, 8 and y, derived from the potential
by equations (1). The second is the force &, acting along the axis
of the cylinder in the direction of magnetization. The value of
this force depends on the ratio of the length to the diameter of the
cylindric cavity.

898.] Cuase I. Let this ratio be very great, or let the diameter
of the cylinder be small compared with its length. Expanding the

expression for & in terms of %’ we find

2 4
R=4ﬂz{lf‘_—§“—+&c.}, (3)

a quantity which vanishes when the ratio of 4 to & is made infinite.
Hence, when the cavity is a very narrow cylinder with its axis parallel
to the direction of magnetization, the magnetic force within the
cavity is not affected by the surface distribution on the ends of the
cylinder, and the components of this force are simply a, 3, y, where

arv arv av

a:-—%, ﬁz—@'a 7=_%' (4)

We shall define the force within a cavity of this form as the
magnetic force within the magnet. Sir William Thomson has
called this the Polar definition of magnetic force. 'When we have
occasion to consider this force as a vector we shall denote it
by H. :

899.] Case II. Let the length of the cylinder be very small
compared with its diameter, so that the cylinder becomes a thin

b
disk. Expanding the expression for Z in terms of e it becomes

b 163 }

R=4WI{1—;+§‘Z—3_&0. (5)

the ultimate value of which, when the ratio of a to ¢ is made
infinite, is 47 7.

Hence, when the cavity is in the form of a thin disk, whose plane
is normal to the direction of magnetization, a unit magnetic pole
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placed at the middle of the axis experiences a force 47J in the
direction of magnetization arising from the superficial magnetism
on the circular surfaces of the disk *.

Since the components of I are 4, B and C, the components of
this force are 4w4, 47 B, and 47 C. This must be compounded
with the force whose components are a, 3, y

400.] Let the actual force on the unit pole be denoted by the
vector B, and its components by «, & and ¢, then

e = a+47md,
b = B+47B, (6)
6 = y+47r0. [

We shall define the force within a hollow disk, whose plane sides
are normal to the direction of magnetization, as the Magnetic
Induction within the magnet. Sir William Thomson has called
this the Electromagnetic definition of magnetic force,

The three vectors, the magnetization J, the magnetic force 9,
and the magnetic induction B are connected by the vector equation

B = H+473. (7)

Line-Integral of Magnetic Force.

401.] Since the magnetic force, as defined in Art. 398, is that
due to the distribution of free magnetism on the surface and through
the interior of the magnet, and is not affected by the surface-
magnetism of the cavity, it may be derived directly from the
general expression for the potential of the magnet, and the line-
integral of the magnetic force taken along any eurve from the
point 4 to the point Bis

f ( ds +’B ds ) A= H s (8)
where 7, and /3 denote the potentials at 4 and B respectively.

* On the force within cavities of other forms.

1. Any narrow crevasse. The force arising from the surface-magnetism is
471 cos € in the direction of the mormal to the plane of the crevasse, where e is the
angle between this normal and the direction of magnetization. When the crevasse
is parallel to the direction of magnetization the force is the magnetic force §; when
the crevasse is perpendicular to the direction of magnetization the force is the
magnetic induction 9B.

2. In an elongated cylinder, the axis of which makes an angle e with the
direction of magnetization, the force arising from the surface-magnetism is 2« I sin e,
perpendicular to the axis in the plane containing the axis and the direction of
magnetization.

3. In a sphere the force arising from surface-magnetism is 47 I in the direction of
magnetization.
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Surface-Integral of Magnetic Induction.

402.] The magnetic induction through the surface § is defined
as the value of the integral

Q= ff% cos €dS, (9)

where B denotes the magnitude of the magnetic induction at the
element of surface 48, and e the angle between the direction of
the induction and the normal to the element of surface, and the
integration is to be extended over the whole surface, which may
be either closed or bounded by a closed curve.

If a, b, ¢ denote the components of the magnetic induction, and
f, m, n the direction-cosines of the normal, the surface-integral

may be written
@ = [[Catmiine)as. (10)

If we substitute for the components of the magnetic induction
their values in terms of those of the magnmetic force, and the
magnetization as given in Art. 400, we find

Q =ff(la+mﬁ+_ny)dS+4w//(lA+mB+n0) ds.  (11)

‘We shall now suppose that the surface over which the integration
extends is a closed one, and we shall investigate the value of the
two terms on the right-hand side of this equation.

Since the mathematical form of the relation between magnetic
force and free magnetism is the same as that between electric
force and free electricity, we may apply the result given in Art. 77
to the first term in the value of @ by substituting a, 3, v, the
components of magnetic force, for X, ¥, Z, the components of
electric force in Art. 77, and 2/, the algebraic sum of the free
magnetism within the closed surface, for ¢, the algebraic sum of
the free electricity. )

We thus obtain the equation

[[ta+np+nyyas = 1z, (12)

Since every magnetic particle has two poles, which are equal
in numerical magnitude but of opposite signs, the algebraic sum
of the magnetism of the particle is zero. Henece, those particles
which are entirely within the closed surface § can contribute
. nothing to the algebraic sum of the magnetism within §. The
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value of 3/ must therefore depend only on those magnetic particles
which are cut by the surface S.

Consider a small element of the magnet of length s and trans-
verse section %2, magnetized in the direction of its length, so that
the strength of its poles is 7. The moment of this small magnet
will be ms, and the intensity of its magnetization, being the ratio
of the magnetic moment to the volume, will be

I=7- (13)

Let this small magnet be cut by the surface S, so that the
direction of magnetization makes an angle ¢ with the normal
drawn outwards from the surface, then if 48 denotes the area of

the section, k2= dScos¢€. (14)

The negative pole — of this magnet lies within the surface S.
Hence, if we denote by dM the part of the free magnetism
within § which is contributed by this little magnet,
dM = —m = — Ik?,
=—1Icos d8. (15)
To find J/, the algebraic sum of the free magnetism within the
closed surface 8, we must integrate this expression over the closed

surface, so that
M =—ff[cos €ds,

or writing 4, B, C for the components of magnetization, and 7, m,
for the direction-cosines of the normal drawn outwards,

]l[:——f/(lA+mB+nO)dS. (16)

This gives us the value of the integral in the second term of
equation (11). The value of @ in that equation may therefore
be found in terms of equations (12) and (16),

Q=dnM—4sM=0, (17)

or, the surface-integral of the magnetic induction through any closed
surface is zero.

403.] If we assume as the closed surface that of the differential
element of volume dz dy dz, we obtain the equation

da db  de

— 4 — - —=0. 18

ot dy Mz (18)

This is the solenoidal condition which is always satisfied by the
components of the magnetic induction.
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Since the distribution of magnetic induction is solenoidal, the
induction through any surface bounded by a closed curve depends
only on the form and position of the closed curve, and not on that
of the surface itself.

404.] Surfaces at every point of which

la+mb+ne =0 (19)
are called Surfaces of no induction, and the intersection of two such

surfaces is called a Line of induction. 'The conditions that a curve,
s, may be a line of induction are

lde 1dy 1dz
et ¥ (20)

A system of lines of induction drawn through every point of a
closed curve forms a tubular surface called a Tube of induction.

The induction across any section of such a tube is the same.
If the induction is unity the tube is called a Unit tube of in-
duction.

All that Faraday * says about lines of magnetic force and mag-
netic sphondyloids is mathematically true, if understood of the
lines and tubes of magnetic induction.

The magnetic force and the magnetic induction are identical
outside the magnet, but within the substance of the magnet they
must be carefully distinguished. In a straight uniformly mag-
netized bar the magnetic force due to the magnet itself is from
the end which points north, which we call the positive pole, towards
the south end or negative pole, both within the magnet and in
the space without.

The magnetic induction, on the other hand, is from the positive
. pole to the negative outside the magnet, and from the negative
pole to the positive within the magnet, so that the lines and tubes
of induction are re-entering or cyclic figures.

The importance of the magnetic induction as a physical quantity
will be more clearly seen when we study electromagnetic phe-
nomena, When the magnetic field is explored by a moving wire,
as in Faraday’s Bzp. Res. 3076, it is the magnetic induction and
not the magnetic force which is directly measured.

The Vector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art. 403, the magnetic in-
duction through a” surface bounded by a closed curve depends on

¥ Fxp. Res., zeries xxviii,
t)
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the closed curve, and not on the form of the surface which is
bounded by it, it must be possible to determine the induction
through a closed curve by a process depending only on the nature
of that curve, and not involving the construction of a surface
forming a diaphragm of the curve,

This may be done by finding a vector  related to B, the magnetic
induction, in such a way that the line-integral of 9, extended round
the closed curve, is equal to the surface-integral of B, extended
over a surface bounded by the closed curve.

If, in Art. 24, we write F, G, H for the components of 9I, and
a, b, ¢ for the components of B, we find for the relation between
these components

daH czg b_(lF dil _4G _ar -
Sy T d @ T dm T dy (21)

The vector 2, whose components are F, G, M, is called the vector-
potential of magnetic induction.

If a magnetic molecule whose moment is # and the direction of
whose axis of magnetization is (A, g, ) be at the origin of co-

ordinates, the potential at a point (z, 7, z) distant » from the origin
is, by Art. 387,

d d\1
_m()\ +“dy+vd)r
a2
c—m()\dwtlz p’dydz-,-vcﬁ);’

which, by Laplace’s equation, may be thrown into the form
a1 d d\1
"w e P E)

The quantities @, & may be dealt with in a similar manner. Hence

d d\1
m (pz—vy)
=7‘—3.

From this expression G and I7 may be found by symmetry. We
thus see that the vector-potential at a given point, due to a
magnetized particle placed at the origin, is numerically equal to
the magnetic moment of the particle divided by the square of the
radius vector and multiplied by the sine of the angle between the
axis of magnetization and the radius vector, and the direction of
the vector-potential is perpendicular to the plare of the axis of
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magnetization and the radius vector, and is such that to an eye
looking in the positive direction along the axis of magnetization
. the vector-potential is drawn in the direction of rotation of the
hands of a watch.

Hence, for a magnet of any form in which 4, B, C are the
components of magnetization at the point 2y 2z, the components
of the vector-potential at the point £74 ¢, are

F:ff/(]ﬂ‘%—@%)dmdydz,
i d

¢=[[f(c2- gg)dwdydz,JS (22)
o

H:fff(A[éi— DY dwdy az

where p is put, for conciseness, for the reciprocal of the distance
between the points (&, 5, ¢) and (2, 7, 2), and the integrations are
extended over the space occupied by the magnet.

'406.] The scalar, or ordinary, potential of magnetic force,
Art, 385, becomes when expressed in the same notation,

_ dp dp
V= fff(A +de+0%) dz dy dz. (23)
o dp _ _dp VI
Remembering that &= g and that the integral

ff/A (de —£+—)dmdydz

has the value —4 7 (4) when the point (¢, 9, ) is included within
the limits of integration, and is zero when it is not so included
(4) being the value of 4 at the point (¢, 1, {), we find for the value
of the #-component of the magnetic induction,

dH dG

s
i cw,, W) B o b dinyi
=" df./-./f{A (zg ~}dwdydz

—f/f (d;cz +g§§£)dmd9dz' (24)

The first term of this expression is evidently ——Z—g , or a, the
component of the magnetic force.
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The quantity under the integral sign in the second term is zero
for every element of volume except that in which the point (&, #, ¢)
is included. If the value of 4 at the point (¢, », ¢) is (4), the
value of the second term is easily proved to be 47 (4), where (4) is
evidently zero at all points outside the magnet.

‘We may now write the value of the #-component of the magnetic
induction a=a+4m (A), ) (25)
an equation which is identical with the first of those given in
Art. 400. The equations for 4 and ¢ will also agree with those
of Art. 400.

We have already seen that the magnetic force § is derived from
the scalar magnetic potential 7 by the application of Hamilton’s
operator V, so that we may write, as in Art. 17,

H =-V7, (26)
and that this equation is true both without and within the magnet.

It appears from the present investigation that the magnetic
induction B is derived from the vector-potential ¥ by the appli-
cation of the same operator, and that the result is true within the
magnet as well as without it.

The application of this operator to a vector-function produces,
in general, a scalar quantity as well as a vector. The scalar part,
however, which we have called the convergence of the vector-
function, vanishes when the vector-function satisfies the solenoidal

condition dF 46 d4di
e+ % +ii=o. (27)
By differentiating the expressions for ¥, G, I in equations (22), we
find that this equation is satisfied by these quantities.
We may therefore write the relation between the magnetic

induction and its vector-potential

B=vV
which may be expressed in words by saying that the magnetic
induction is the curl of its vector-potential. See Art. 25.



CHAPTER III

MAGNETIC SOLENOIDS AND SHELLS ¥,

On Particulor Forms of Magnets.

407.] Ir a long narrow filament of magnetic matter like a wire
is magnetized everywhere in a longitudinal direction, then the
product of any transverse section of the filament into the mean
intensity of the magnetization across it is called the strength of
the magnet at that section. If the filament were cut in two at
the section without altering the magnetization, the two surfaces,
when separated, would be found to have equal and opposite quan-
tities of superficial magnetization, each of which is numerically
equal to the strength of the magnet at the section.

A filament of magnetic matter, so magnetized that its strength
is the same at every section, at whatever part of its length the
section be made, is called a Magnetic Solenoid.

If m is the strength of the solenoid, s an element of its length,
7 the distance of that element from a given point, and e the angle
which 7 makes with the axis of magnetization of the element, the
potential at the given point due to the element is

mdscose _mdr

2 rds

Integrating this expression with respect to s, so as to take into

account all the elements of the solenoid, the potential is found

Tk V=m (l e l~ )
Ty

7, being the distance of the positive end of the solenoid, and 7,
. that of the negative end from the point where 7 exists.

Hence the potential due to a solenoid, and consequently all its

magnetic effects, depend only on its strength and the position of

ds.

* See Sir W, Thomson’s ¢ Mathematical Theory of Magnetism,” Piil. Trans., 1850,
or Reprint.
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its ends, and not at all on its form, whether straight or curved,
between these points.

Hence the ends of a solenoid may be called in a strict sense
its poles.

If a solenoid forms a closed curve the potential due to it is zero
at every point, so that such a solenoid can exert no magnetic
action, nor can its magnetization be discovered without breaking
it at some point and separating the ends.

If a magnet can be divided into solenoids, all of which either
form closed curves or have their extremities in the outer su