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PREFACE.

THE scope and intention of this volume need some explanation.

It was begun with the idea of providing a text-book from
which students, well grounded in the elementary branches of
physics, might obtain some knowledge of the later developments;
there is no doubt that such a book is needed urgently. But, in
the course of writing, departures from the original scheme have
been made. There are lengthy descriptions of theories which
may be assumed to be familiar to such students, and there are
discussions of controversial questions which may be thought
undesirable in the early stages of study: it is improbable that a
reader, who could gain much new information from the first
chapter, could gain much benefit from the last. On the_ other
hand, the book does not aspire to the dignity of a treatise
designed to bring the results of the latest original research to
the notice of those who have made a special study of the newer
branches of physics: there is little that is not well-known to all
professed students of the subject.

However, I hope that the following pages are not wholly
without use or interest. I have attempted to expound the
subject in its logical order, to analyse the arguments by which the
various phenomena are correlated, to draw special attention to the
assumptions that are made, and to show which of these assumptions
are fundamental in the modern theory of electricity and which may
be expected to be abandoned in the further progress of investigation.

a3
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vi PREFACE

The distrust of the more advanced developments of the electron
theory, which is displayed in some quarters and is apt to extend to
its simplest and most certain results, arises in part from the failure
of many eminent writers on the subject to distinguish clearly
between the two classes of hypotheses. Though the distinction is
doubtless clear to their minds, their writings are apt to convey the
impression that the assumption of the discontinuous distribution
of electric charges must stand or fall with those concerning the
nature of electromagnetic mass or the structure of the positively
electrified portion of the atom. The exposition which is offered
here is marred by traces of the original purpose of the book, but
it may be of some service to those who have felt such difficulties.

It is with this object in view, and not with the idea of
making the work accessible to those who are capable only of
so-called ¢ elementary methods,” that all mathematical analysis has
been excluded. My principle, which has not been followed quite

- consistently, has been to resort to calculation only when, and so
far as, it is necessary in order to show the nature of the argument.
It is easier to point out the stage at which the various hypotheses

“have been introduced, if only the simplest algebraical processes are
employed : a page of symbols covers a multitude of assumptions.
To all but a few students the treatment of electrical vibrations is
nothing but a juggle with differential equations: in Chapters II.
and III an attempt is made to deduce the most important results
directly from the fundamental conceptions of the science. In the
last chapter I have tried to disentangle our knowledge of the
properties of moving systems from the maze of analysis which has
been woven round it by the physicists of the German school.

The same principle has determined for the most part the
selection of the material to be treated. Subjects have been
selected not for their intrinsic importance or for the interest of
the accessory studies with which they are connected, but for the
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light which they throw upon the central problem, the relation of
electricity and matter. The references at the end of each chapter
are intended not as a complete bibliography, but as an outline
sketch of the history” of our present conceptions.

In a book which professes no originality it is unnecessary to
give a detailed list of acknowledgments. But I must offer my
best thanks to Prof. Thomson, who, although he has had no part
in the preparation of the book and is not responsible for any of the
errors of fact or opinion which it contains, has inspired this and
every other portion of my scientific work. My gratitude is also
due to Mr Whetham, who suggested the book, and to Mr Alexander
Wood for their revision of the manuscript and proofs, and for the
correction of many blunders: and, lastly, to Mr Crowther and many
other fellow students, whose views expressed in conversation have
modified profoundly the scheme of the work. Indeed, if any reader
shall learn from studying the book half as much as its author has

learnt” from writing it, no further justification of its production
will be needed.

N. R C

CAMBRIDGE,
November, 1907.
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PART 1.

THE ELECTROMAGNETIC FIELD.

CHAPTER L

FARADAY’'S THEORY OF THE ELECTRIC FIELD AND THE
BASIS OF MODERN ELECTRICAL THEORY.

1. It is not mere historical interest which makes it desirable
it cd iy to be.gin our study of 'the most modern I.)hysical
£ dew theories with the consideration of the views of

] an author who died two generations ago. The
connection of Faraday with modern physics is closer than that of
any of his contemporaries and predecessors, and, indeed, of many
of his successors in time. Men of his own and of the preceding era
had founded ‘natural philosophy’: they had made discoveries and
had elaborated theories which still form part of the frame-work of
the physical sciences. But their work has little interest for us
to-day. Their aims, their conceptions, their whole attitude toward
the problems which they investigated differ so widely from our own,
that, while their results may be the basis of modern research,
their methods afford little inspiration for it. But though the
development of the views which we shall consider in this volume
can be traced continuously back to the Experimental Researches
in  Electricity and Magnetism, it is not only the results of
Faraday’s work that are of interest at the present time: even if his
observations had never led to any conclusions of fundamental
importance, the spirit of his work would entitle him to be
regarded as the founder of modern electrical theory. Since the
object of this book is to present that theory as a connected whole

C.E. T 1



b4 THE ELECTROMAGNETIC FIELD [PART I

it will not be out of place to notice briefly what were the qualities
characteristic in so marked a degree of the work of Faraday, which
distinguish the newer from the older science.

At the end of the eighteenth century, when first experimental
physics began to make any considerable advance, the study of
mathematics was already in a high state of development. The
labours of the great mathematicians from Newton to Laplace had
brought the science to such a state of perfection that its further
growth, at least in those aspects which concern the physicist, has
been merely the continuation of their work. It was natural that the
younger of the two closely connected branches of knowledge should
be considered as subsidiary to the older, and that the growth of the
former should be determined by the actual state of the latter. To
Coulomb, Ampére or Gauss, experimental physics was useful
mainly because it provided them with material on which to exer-
cise their great analytical skilll

Electrical problems appeared to be suited admirably to their
needs. Here were new problems in attractions similar to those
which had led Newton to his greatest achievements: indeed when
it was known that two small charged bodies exerted on each other
forces which varied as the inverse square of the distance between
them, the problem of electrostatics differed only from those of
gravitation in the choice of the particular cases which it was
convenient or desirable to investigate. Later, it was felt that the
chief problems of electromagnetism had been solved when the
classic work of Ampere reduced the mechanical forces between
current circuits to actions between the elements of the circuits,
which could be studied by similar mathematical methods. About
the time that Faraday began to write it must have seemed to the
mathematical physicists that the problems which electricity had to
offer were almost exhausted.

This earliest school of physicists regarded physical forces as a
series of ‘actions at a distance —to use a phrase which had been
in vogue since the time of Newton ; the total force between two
reacting systems was viewed as the sum of forces between particles
of the systems which depended only on the relative position and
condition of those particles. But it had always been objected to
this view by a minority, who were not for the most part professed
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students of science, that a direct action of one body upon another
distant from it was impossible and unthinkable: that some medium
occupying the space between the distant systems must be involved
in the process. To the theory of ‘action at a distance’ was
opposed the theory of ‘action through a medium.

We need not consider the long controversy that raged between
the supporters of the rival theories: it is sufficient for our
purpose to note that the two views are not always, if ever, incom-
patible, and may be entertained simultaneously as affording different
interpretations of the same facts. All that is assumed by the
‘action at a distance’ theory is that the forces between two bodies
can be described in terms of the states (including relative position)
of the bodies at the moment of observation. Even if the bodies
are known to be connected by a material medium, the properties
of which exert an influence on the forces between the bodies,
it will still be possible to use the conception of ‘action at a
distance, if the forces can be defined in terms of the states of the
bodies. Long after Faraday had rediscovered the difference in the
dielectric constants® of different materials, a theory of electro-
statics was employed and developed, which, though based upon
‘action at a distance, took into account the variable effect of the
material medium separating the charges. The choice between
the rival theories cannot be determined by experiment, but mainly
by the view that we take of the object of physical science.

In cases where both of the two theories which we have con-
trasted are applicable each has its peculiar advantages. ‘Action at
a distance’ is especially suited for mathematical treatment, chiefly,
perhaps, because of the large part which it has actually played in
the development of our mathematics: it permits accurate predic-
tions of the results of certain distributions of the attracting bodies
to be made. For such purposes it is indispensable: though
Ampere’s ideas on the nature of the electric current have been
long superseded, no one would think of employing for the
practical calculation of the constants of electrical instuments any
methods which were not similar in principle to those which he
brought into prominence. But the conception of action through a

1T shall use the term °dielectric constant’ in place of °specific inductive
capacity,” which is commonly employed in English.

1—2



4 THE ELECTROMAGNETIC FIELD [PART I

medium also has advantages of its own; it enables us to visualise
the changes in the electrical system. In everyday experience the
action of one body upon another at a distance always takes place
through the agency of some material medium, which may be con-
tinuous (like fluid) or discrete (like elastic strings). Accordingly,
if we find that the medium which it is necessary to introduce, in
order to account for the forces in the electric field, has properties
similar to those of some medium with which we are familiar, we
shall be able to predict roughly from ¢ common sense’ and without
detailed calculation the action consequent on any given distribu-
tion of the electric charges. In addition, it might be urged that
the mere fact that the introduction of a medium allows us to form
a mechanical picture of electrical phenomena is of overwhelming
importance : but to discuss this view would lead us too far. For
our present purpose it is only important to notice that the two
views which have been held as to the nature of electrical forces
are not mutually incompatible, but that one is especially suited
for the needs of the mathematician, the other for the needs of the
non-mathematician.

Now Faraday was no mathematician: his knowledge of analysis
scarcely extended beyond the processes of elementary algebra.
But he had unrivalled mechanical insight—a power of devising
mechanisms which would simulate the behaviour of the observed
systems and of seeing how they would work in any particular case:
in his hands the ‘medium’ interpretation of physical forces became
as fruitful as the older theory. The researches which he based
upon it are the foundation of the science which is the subject of
this book.

The new method of physics has had other and much more
important uses than that of merely allowing persons devoid of
mathematical instinet to study the subject. The new view has
proved, as we shall see, much more suggestive than the old: it has
led to investigations which would never have been undertaken by
the adherents of the older conceptions: and it has also led to the
development of the experimental side of the subject. To the
mathematician the difference between various material substances,
such as the difference in the dielectric constant, is not a source of
great interest: it merely introduces into his work a quantity,
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which, if it is constant, is unimportant, and, if it is variable, leads
to complications which cannot be resolved by exact methods. Buf
to the mechanist, if I may so term the holder of the contrasted
view, this difference is essential : it is the clue to the nature of the
mechanism. The mathematician is concerned with the resem-
blances between different materials, the mechanist with their
differences: it is to the latter that we owe the great development
of experimental physics, which has made such enormous advances
in recent yearsk.

It has been my object in the foregoing paragraphs to sketch the
fundamental distinction between the older and the newer physics.
We must now descend from vague generalisations and examine in
greater detail the views to the publication of which such funda-
mental importance has been attributed.

2. The outlines of Faraday’s theory of the electric field and its
Faraday’s application to the simpler problems of electrostatics
lines of force.  are described so fully and completely in many well-
known text-books that a mere sketch will be sufficient.

If iron filings be scattered on a card resting on the poles of
a horse-shoe magnet, they will arrange themselves in chains
stretching from one pole of the magnet to the other. The
direction of the chain at any point represents the direction of the
magnetic intensity (sometimes called the ‘ magnetic force’) of the
field of the magnet at that point; so that a small single pole would
tend to move along the chain to one or other of the poles. Faraday
imagined that the distribution of the iron filings reproduces a real
structure in the space covered by the field of the magnet: that
there exist in that space lines joining the two poles, which had
properties different from those of the surrounding region. A line
along which the filings accumulate coincides with one of these
characteristic lines of the magnetic field, and a magnetic pole is

1 It should be mentioned that much of Faraday’s work was anticipated by
Cavendish, but since Cavendish took little interest in the publication of his results,
they did not become known generally till after the lapse of 70 years, and exerted no
influence on the history of the science. It would be extravagant to class among the
moderns one :vho was ready to perform research without caring to obtain ¢priority !
for it. ’
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that portion of a body towards which the ends of the lines of
force converge.

Further he pointed out that the peculiar properties of these
‘lines of force, which distinguish them from the surrounding
medium, could be deduced, at least qualitatively, from a consider-
ation of the mechanical stresses on bodies placed in the field.
Every line must tend to contract in the direction of its length,
like an elastic string, and must also exert a lateral pressure on its
neighbours. Since the ends of the lines are attached to the poles
of the magnet, a tendency of the lines to contract is equivalent to
a tendency of the poles to approach, or, in other words, to an
attraction between the poles.

Though it is less easy to produce in the case of the electric
field an experiment analogous to that of the distribution of the
filings, the close resemblance between the laws of magnetism
and of electrostatics led Faraday to extend to the latter his
conception of lines of force. He supposed that in the neighbour-
hood of charged bodies lines in the medium exist following
at each point the direction of the electric intensity, tending
to contract in the direction of their length and to repel their
neighbours.

What is usually termed a charged body is a body on which
the ends of lines of force are situated. The arrangement of the
lines of force around a few simple distributions of electric charges
can be drawn by calculating the direction of the electric intensity
at each point in the field: a glance at the resulting diagrams will
show that the properties which have been attributed to the tubes
account for such simple actions as the attraction of opposite
charges, Fig. 1 A, and their repulsion of like charges, Fig. 1 B.

The discovery that the force between two charged bodies
varies with the nature of the material surrounding them shows
that the properties of the lines of force depend on the substance
through which they pass. But since it is well known that
electric and magnetic actions can take place across vacuous spaces,
from which all known substances have been extracted, it is clear
that the lines of force cannot be regarded as part of such substances.
Accordingly there has been introduced the conception, already
familiar in the theory of light, of an ‘aether,’ or substance present
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universally, in which the lines of force could exist in the absence
of matter. I shall have more to say of this conception in the last
chapter. ‘

@)=

A Fig. 1. B

3. Faraday’s theory as it was left by its author is adapted
admirably for visualising the processes in the electro-

S Fachment  static field and predicting their general tendency :
theory. Tubes  but it affords no basis for quantitative calculation.
The quantitative development of Faraday’s funda-

mental notion of the importance of the medium in electric or
magnetic action was carried out by Maxwell: but that author
abandoned completely Faraday’s terminology and made little
attempt to retain a visualisation of electrical processes. His
arguments could not possibly be rendered comprehensible to
readers untrained in analysis. However J. J. Thomson has
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shown that a slight extension of Faraday’s original scheme will
render it suitable for quantitative treatment and for application
to phenomena other than those considered by its author, without
the use of any but the simplest mathematics. A brief sketch of
this development will be of advantage here, both because of its
intrinsic interest and because of the importance of the results
attained for the investigations to be described in later chapters.

Though ‘lines of force’ were originally developed from a
consideration of magnetic phenomena and only extended later to
electricity, it will be found advisable to abandon the conception of
magnetic lines of force, except for a few special cases, and to
attempt to explain all electromagnetic actions in terms of
electric lines of force.

Imagine the surface of every charged body to be divided up
into small areas such that the total charge upon each of these
areas is the same in magnitude. The series of lines of force which
start from points in the boundary of any one of these areas enclose
a tubular region, which we shall call a ‘Faraday tube. The
other ends of the lines of force enclosing a Faraday tube rest upon
some body possessing a charge opposite in sign to that of the
charge from which the tube starts: these ends will lie on a closed
curve bounding a definite area on the second body. It is easily
shown that the total charge on this area is equal in magnitude to
that on the area which forms the first end of the tube. A Faraday
tube, then, is a tubular region the sides of which consist of lines
of force following at each point the direction of the electric
intensity, and the ends of which are small areas on oppositely
charged bodies such that the magnitude of the total charge on
each of these areas is the same.

If the distribution of lines of force is that which obtains in the
space between two very large, parallel plates bearing equal and
opposite charges, the tubes are right cylinders the axes of which
are perpendicular to the plates. In the case of a conducting
sphere insulated at a great distance from all other bodies, the
lines of force are the radii of the sphere and the Faraday tubes
are cones of which the apical angles are all equal and the apices
lie at the centre of the sphere.

One definition and four fundamental propositions define the
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relations between Faraday tubes and the quantities which appear
in the usual mathematical theory of electrostatics. They will be
quoted here without formal proof, for such proof may be found in
many well-known text-books, e.g. Thomson’s Elements of Electricity
and Magnetism, Chapter 1L

DEFINITION. Since the magnitude of the charge on the end
of every Faraday tube is the same, the total charge on any area is
proportional to the number of tubes which have their (like) ends on
it. Nothing has been said yet as to the absolute value of the
charge on the end of a single tube: if we make this charge equal
to the unit of quantity of electricity in the system of units
employed, the charge on any area will be equal to the number of
tubes which have their (like) ends on it.

Throughout this volume the electrostatic ¢.G.S. system of units
will be employed, in which the units of length, mass and time are
the centimetre, gramme and second, and the unit of electricity
that which placed at unit distance from a similar charge repels it
with unit force’. The choice of these units will lead to the
occurrence of fractions in the numbers representing the charges
upon various areas, so that the definition that all tubes have the
same charge on their ends cannot be maintained strictly. But
the relations about to be stated will not be invalidated: the
equations are true even if IV is not integral.

Of course the conception of tubes of force suggests that if the
charge on the end of a tube were defined rightly, the number of
tubes would always be integral: that is, that there is an atomic
charge of electricity of which there can be no submultiples. We
shall see that there are cogent reasons for believing that there is
such a natural unit and, if it were not for the objection that its
value is not known with sufficient accuracy, it would be desirable
to make that charge the basis of electrical units.

The direction of a tube is usually taken as from its positive
to its negative end.

11 would draw the attention of the reader to this statement, for with two
¢ scientific’ and one *practical’ system of units in common use there is great
danger of confusion. The choice that has been made seems the most logical in
developing electrical theory from the electrostatic standpoint, but it has the

disadvantage that almost every formula, when put in a form suitable for treating
experimental results, is cambered with ‘¥ ’s.’
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ProposiTioN I. If a closed surface be drawn in the electric
field, the excess of the number of tubes passing out through the
surface over that of the tubes passing in through the surface is
equal to the total charge contained within the closed surface.
In particular, if the number of tubes passing through the surface
in each direction is the same, there is no total charge within the
surface.

Prop. II. The electric intensity (called by some writers the
“electric force’) coincides in direction with the tubes passing
through the point where it is measured. In magnitude it is
proportional to the number of tubes passing through a surface of
unit area drawn about the point at right angles to the direction of
the tubes at that point. This number of tubes is called the
electric polarisation at the point and will be denoted by N: it is
equivalent mathematically to the quantity which Maxwell called
the ¢ electric displacement.” If R is the electric intensity, K the
dielectric constant of the medium

In the present chapter the only medium considered is a vacuum,
so that K =1. In a later chapter the interpretation in terms of
Faraday’s theory of a value of K greater than 1 will be con-
sidered.

Prop. ITII. The tension along the length of a Faraday tube
can be shown to be of an amount }R, where R is the electric
intensity at the point considered. If IV is the electric polarisation

R=4xN,
and the pull on unit area drawn at right angles to the tubes is
Fl=2% XAz o Ni= 20 N2 L celabir it oo bie (2).

In a similar manner it may be proved that the lateral
pressure which a tube exerts on its neighbours perpendicular to
the surface of the tube is of an amount 27.N? per unit area of
the surface of the tube. A knowledge of these stresses is
important for some essential calculations in Chapter IL.

Pror. IV. The energy in the electrostatic field is usually
represented as 34 Ve, or the sum of half the product of the charge
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on each body by its potential. Since we are now viewing electric.
processes as determined by the properties of the medium and not
by the properties of the charged bodies immersed in it, we must
find an equivalent expression for the electrostatic energy in terms
of the medium. It may be proved that the electrostatic energy
of any system may be represented by attributing to each tube

: 27 N*? 3
energy amounting to —— per unit volume of the tube.

From these propositions all the results of electrostatics might
be deduced by appropriate mathematical reasoning. But it is not
in the treatment of electrostatics that the highest importance of
Faraday’s theory for our present purpose consists. We must now
turn to the logical extension of Faraday’s views beyond the point
to which they were carried by their author.

4. For the purposes of electrostatics all materials may be
roughly divided into two great classes, conductors
Faraday s S
Tubes in and insulators. A conductor, according to the
language of the older theory, is a body along which
a charge of electricity can move from one place to another: an
insulator is a body along which electricity cannot move. According
to Faraday’s view a charge on a body means that Faraday tubes
end on that body. Accordingly a conductor is a body along the
surface of which the ends of Faraday tubes can move.

Now a tube is subject to tension in the direction of its length
and alwaysfends to become shorter: sometimes it is unable to
contract because its ends are fixed to points from which they
cannot escape, v.e. the ends lie on an insulated body. But, if both
ends of a tube lie on the same conductor, there is nothing to
prevent them from moving to any part of that conductor, and the
tube, under the influence of its tension, will contract until the
opposite ends meet and the tube ceases to exist for the purposes
of electrostatics.

Suppose that the two plates 4 and B (Fig. 2) carry charges of
equal magnitude but opposite sign. The arrangement of the
tubes is indicated in the figure where the lines drawn between
the plates represent lines of force’ or the cross sections of the
tubes by the plane of the figure. Now let the points M, N be
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Jjoined by a conducting wire MPN. Since both the ends of the
tube MON lie on this conductor, the tube will contract and
collapse. The removal of this tube will relieve the neighbouring
tubes M'O'N’, M"O”N" of the lateral pressure which it has

A B

-

|

P
Fig. 2.

exerted previously. Accordingly they will move in towards the
wire: in course of time, their ends will reach the wire and they
also will collapse. The process will be continued until all the
tubes joining A and B have disappeared and the system is
‘ discharged.’

If by some means or other, such as a Voltaic cell, fresh tubes
are produced continually stretching from one plate to the other,
there will be a continuous movement of the tubes from their place
of production to their place of disappearance, in which the
velocity of the tubes will be such that the number disappearing
by collapse is equal to the number produced by the cell in the
same time.
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Now the discharge of such a system through a wire is
accompanied by all the phenomena which are described as the
‘passage of a current of electricity.” Heat will be developed in
the connecting wire and a magnetic field will be established in the
neighbourhood of the circuit. The passage of an electric current
is the motion of Faraday tubes, and the conductor ‘through which
the current flows ’ is the surface along which the ends of the tubes
move., Since the end of each Faraday tube is attached to unit
charge, the quantity of electricity which has flowed round the
circuit is the number of tubes which have crossed any closed
curve drawn round the conductor and the strength of the current
is the number of tubes which cross such a curve in unit time,

The chief results of the passage of the current or the motion
of the tubes are

(1) the production of heat in the conductor, and

(2) the establishment of a magnetic field.
The former is outside the scope of this chapter, for it depends
greatly on the nature of the material of the conductor, and for the
present we are leaving out of consideration the electrical properties
of material bodies. But the latter does not depend on the nature
of the conductor but only on its form and on the strength of the
current: it is of the utmost importance for our present purpose.

5. Let us first attempt to
Magnetic  establish a quantita-
Intensity.  tive relation between
the motion of the tubes and the
magnetic intensity produced by
them.

Let 4 (Fig. 3) represent the
cross section of the conductor
MPN of Fig. 2 through which a
steady current is flowing per-
pendicularly to the plane of the
paper in such a direction that
positive electricity is passing
through the paper away from the
reader. Let PQR be any closed s T
curve in the plane of the paper, Fig. 3.

R
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enclosing A but not any other portion of the ecircuit of which
MON is part. Then all the tubes which finally collapse into
MON must pass across the curve PQR: and since the current
is measured by the number of tubes collapsing into MON per
second, it is also equal to the total number of tubes passing
across PQR -per second; for it is assumed that the current
is steady. The direction of the tubes passing across PQR is
such that their + ends are on the same side of the paper as the
reader.

Let PQ be a portion of the curve so small that it may be
considered a straight line. Draw PS8, QT outwards from 4 parallel
to the direction in which the tubes are travelling across PQ and
of a length equal to the velocity of the tubes, or the distance
travelled in one second. Draw PU, QV, SW, T'X, parallel to the
tubes themselves (not in the plane of the paper) and of a length
equal to the electric polarisation or the number of tubes passing
through unit area perpendicular to PU. Complete the paral-
lelopiped PQTSWUVX.

Then the number of tubes included within the curve
PQTS = N x area PQTS x sin 0, where 6 is the angle between PU
and the plane PQTS. In one second all these tubes will pass
across PQ), since they travel a distance PS in one second.
Accordingly the number of tubes passing across PQ per second is
N sin @ x area PQTS = Nsin 6 x PS x P() x sin ¢, where ¢ is the
angle SPQ. If v is the velocity of the tubes this quantity is

Nv.PQ.sin fsin ¢.

But by a well-known geometrical theorem this quantity
represents the volume of the parallelopiped PQTSW UVX, which
1s also given by the expression PS.PU sin x x PQ) sin o, where y
is the angle UPS and o the angle between PQ and the plane
PSWU.

Hence the number of tubes crossing P per second is

Nvsin y x PQsin o,
and the number of tubes passing across the whole curve PQR is
the sum of the analogous quantities for each of the elements of the

curve similar to £@. But the whole number is equal to %, the
current through MON. Hence

1 =sum of quantities Nvsiny x P@sin e......... (3).
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Now the fundamental proposition of electromagnetism states
that the work done by taking a single magnetic pole round the
circuit PQR is 4mi. If H is the magnetic intensity (also called
‘ magnetic force’) at any element P@), this work is the sum of the
quantities H sin ¥ x PQ), where + is the angle between the
direction of the magnetic intensity and the element PQ. Hence
we may write

sum of H sinyr x PQ =47 x sum of Nvsin y.PQ sin @...(4).

Now if we suppose that the moving tubes produce a magnetic
intensity perpendicular to the plane PSWU, w=+ and if we
suppose further that H, the magnitude of this intensity, is
4 Nvsin y, the two sides of (4) become identical. Hence we can
represent the magnetic effects due to the current by the motion
of the tubes if we suppose that the tubes produce a magnetic
intensity in their neighbourhood of an amount 4w Nvsiny, the
intensity being perpendicular both to the direction of the tubes
and to the direction of their motion.

When the tubes are moving perpendicularly to themselves so
that siny =1, the expression becomes very simple. Each tube
moving at right angles to itself produces a magnetic intensity
47rv, perpendicular both to itself and to its direction of motion.
On the other hand, if the tubes move along their own axes
siny=0, and no magnetic field is produced.

The relation between the directions of the tubes and their
motion and that of the magnetic field which they produce may be
worked out from this simple case. It will be seen that if the tubes
are directed upwards and are moving from West to East, the
magnetic intensity is from North to South.

6. We must notice now some of the consequences that follow

_ from the view that a magnetic intensity is the result
Sondustion Lokt presence of moving Faraday tubes.

fo3me Yo Between the enunciation by Ampeére of the

fundamental principles of electrodynamics and the

publication of Maxwell’s treatise which expressed in mathematical

language the view that we are considering, an interminable

1 This proof was given by Prof. J. J. Thomson in his lectures and is reproduced
with his kind permission.
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controversy raged as to the magnetic action of ‘open circuits.
An ‘open circuit’ is a system of conductors carrying a current,
which do not form a closed curve. A condenser in the process of
being charged by a battery is an instance of such a circuit. The
battery, the plates of the condenser and the wires connecting them
are conductors through which a current flows: but there is no
conductor joining the plates of the condenser, and accordingly, it
seemed natural to suppose, there is no current flowing between
them. In this instance, the open current is only transient, but
continuous open currents can be produced. Thus, if a continuous
succession of insulating bodies is shot across from one plate of
the condenser to the other, each will carry across a certain charge
which will be given up on reaching the further plate. According
to the older view there is a current circulating through the
plates of the condenser but, since there is no conductor between
the plates of the condenser, there can be no current there.

Many views were held as to the magnetic action of such ‘open
currents, and it was difficult to distinguish between them by
actual experiment, since the currents were either so weak or so
transient that it was impossible to find sufficiently delicate means
of detection.

But on Faraday’s theory the distinction between an open and a
closed current in respect of magnetic action is altogether meaning-
less. The magnetic intensity is due to the motion of Faraday
tubes and will be the same for the same motion of those tubes,
whether the ends of the tubes rest during the whole of their
passage on conducting bodies (closed circuits) or for part of their
passage on insulators (open circuits). For consider the disposition
of the tubes in the two cases mentioned. The process of charging
a condenser consists in the production of tubes by the battery,
which move down with their ends on the connecting wires and
the plates of the condenser until they have accumulated in the
condenser to such an extent that the lateral pressure due to their
mutual action is sufficient to prevent any further motion. The
motion of the tubes is precisely the same as that which we noted
when the plates of the condenser were joined by a wire, except
that the final stage of that motion, the collapse into the wire, is
omitted.
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The second case is even more instructive. When one of the
insulated bodies which are shot across is in contact with one of the
plates (A) some of the tubes which proceed from A will end on it.
As it moves across it will carry these tubes with it ; when it touches
the other plate (B), the ends of the tube will be joined and the
tube will collapse. Hence the effect of the passage of the insulated
body from A to B is exactly the same as that of joining A and B
by a wire. In both cases the tubes running from A to B are
continually collapsing and making room for other tubes to come
down and fill their places. If the stream of insulated bodies and
the nature of the wire are adjusted so that the same number of
tubes collapse in a given time with either arrangement, the motion
of the tubes will be precisely similar in the two cases, and, if our
view is correct, there will be no difference between the magnetic
effects.

The conclusion appears so obvious that it is well to insist that
it is not certain without further experimental proof. In our
calculation of the magnetic effect of a moving tube it was assumed
that the strength of the current—the quantity to which the
magnetic intensity is proportional—depends only on the number of
tubes crossing a closed curve round the circuit and not on what
happens to them inside the curve. But it is conceivable, though
it is not likely, that the magnetic effect of the tubes depends,
not on their motion, but upon their collapse into the conductor:
if this were so, there would be a difference between the magnetic
effects of the ‘open’ and ‘closed’ circuits. This question can only
be settled by observation. The adoption of a new point of view
cannot prove anything apart from experiment—the importance of
the point of view lies in the experiments which it suggests. It
was a direct consequence of Faraday’s view to imagine that
moving charges are equivalent in their magnetic effects to
currents in conducting circuits, whereas the Amperean theory not
only failed to suggest such a proposition but actually indicated
that it was untrue by connecting too closely the idea of a current
and of a circuit. '

The actual experimental proof of the magnetic action of charges
in motion was first carried out by Rowland of Baltimore in 1876
shortly after the publication of Maxwell’s treatise. The observa-

C.E. T 2
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tions require extraordinary care and delicacy, and doubt has been
thrown on them from time to time. But they have now been
repeated by several observers, among whom Roentgen, Pender and
Cremieu are prominent, and there is now no doubt of the correct-
ness of Rowland’s conclusions. The principle of the experiment
is extremely simple. Two discs of insulating material bearing
metallic sectors, which are kept at a large difference of potential
by periodical contacts with brushes, are spun very rapidly in the
neighbourhood of a sensitive magnetic needle. The rotating
charged sectors are equivalent in magnetic effect to a current
flowing in a circular circuit, and produce a corresponding deflection
of the needle. For a full description of the experimental arrange-
ments the reader should refer to Rowland’s own account.

No magnetic effect of an open current of the first kind—a
‘displacement’ current—has been detected directly: but on the
assumption of its existence Maxwell based his prediction of the
velocity of electromagnetic waves, which was confirmed by the
experiments of Hertz. The importance of the proofs of the
existence of these magnetic effects of ‘convection’ and ‘displace-
ment’ currents cannot be overestimated: for on them rests the
whole structure of the modern science of electricity.

7. As an instance of the actual calculation of the magnetic
2 field of a moving charged body the case of a moving
oving 5 2 ~ 3 !
e sphere may be considered in further detail, since it

will be of especial importance in later chapters.

Let O be the centre of the sphere which is moving with a
velocity » in the direction OX. Then the magnetic intensity at
any point P outside the sphere is 4mwNv siny, where N is the
electric polarisation, and 1 is the angle between the direction of

the tubes and OX. If OP=r, N =Ei;2’ where ¢ is the charge on
the sphere, or the number of tubes issuing from it. Hence the

o2 SI:I X . The direction of the magnetic
r

magnetic intensity at P is

intensity is perpendicular both to the tubes and to their direction
of motion, that is, perpendicular to the plane POX. But it
is well known that the magnetic intensity due to a current element
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of strength 7 and length ds at a point distant from it r in a

direction making an angle @ with the direction of the current, is

sin 6
/,ﬂ

ds. Hence the magnetic effect of the moving charged

sphere is the same as that of an Amperean current element of
strength 1, coinciding in position at each instant with the sphere
and in the direction in which the sphere is moving, where 7ds = ev.
All the conclusions applicable to the current element may be
applied to the moving sphere: thus we find that if the sphere
move in a magnetic field of intensity H, it is subject to a force
wHevsin ¢, where ¢ is the angle between H and v, u the per-
meability, tending to deflect it in a direction perpendicular both to
the field and to the direction of its motion. This result will be
quoted frequently in later chapters.

If a charged body is moving in a closed orbit it is often
desirable to find the Amperean current flowing in a circuit
coincident with that orbit, the magnetic effect of which is the
same as that of the moving sphere. (It must be noted that the
magnetic intensity due to the sphere at any point varies with the
position of the sphere in its orbit, while that of the current is
constant. We have to find a current such that its magnetic effect
at any point is the same as the average effect of the moving charge
at that point.) For this purpose the principle may be used that
the magnetic intensity produced by a current is proportional to
the rate at which electricity is carried round its circuit. If the
charge on the sphere is ¢ and the time in which it travels round

: 4 e . ’ sype. role g
its orbit 7' a charge ipls carried across any point in its orbit every

second. But, if ¢ is the equivalent current, ¢ units of electricity
must be carried across any cross section of the current circuit in
one second. Hence

8. A difficulty in this view of magnetic action may have

occurred already to the reader.
Electrostatic

and electro- We have attributed both electrostatic and electro-
o magnetic action to the properties of the same tubes:

the former has been attributed to the presence of

2—2
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tubes at rest, the latter to the presence of tubes in motion. It
would seem, then, that, if any region is by any means cut off from
the electrostatic influence of any system, it must also be cut off
from its electromagnetic influence; for the absence of electrostatic
influence means that the tubes from the system do not reach that
region, and if there are no tubes in it there can be no effects
which are due to the motion of tubes. But it is well known that
any region surrounded by a closed conductor is isolated completely
from the electrostatic influence of any system outside that con-
ductor, while the presence of the closed conductor has no effect
whatever on the magnetic action of steady currents outside it.

This apparent contradiction can be overcome by altering
slightly our notion of the relation of a tube to its charge.
Hitherto we have regarded each tube as joining two opposite
charges, to both of which it belongs equally. The difficulty which
has just been pointed out forces us to the conclusion that each
charge carries its own tubes with it independently of the presence
of the other charges, and that tubes attached to charges of opposite
sign have oppositely directed properties.

The use of an analogy will enable me to make my meaning -
clearer: we will take a hydrodynamical analogy which we shall
find very useful in dealing with the magnetic properties of Faraday
tubes!. Let us suppose then that the tubes are in some way like
‘vortex filaments’ in a fluid. Such filaments are tubular portions
of the fluid which have a rotary motion different from that of the
remainder. We will imagine that the electrostatic properties of
the tubes, their tension and their pressure at right angles to their
length, is determined by the velocity of the rotation. Then, by
the tubes attached to the positive charges possessing ‘ oppositely
directed properties’ to those attached to the negative charges, I
mean that if the rotation in the former is related to the axis of the
tube, drawn outward from the charge, as rotation to translation in
a right-handed screw, the rotation in the latter is related to the
axis as rotation to translation in a left-handed screw (Fig. 4).

1 I must point out that it is not pretended that the analogy is complete even in
the aspects which are mentioned here : and that we are not committing ourselves
to the extravagant statement that the ‘ aether is & perfect fluid’ or anything of the
kind.
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Consider then the case of parallel plates carrying equal and
opposite charges. The same number of tubes radiate from each of
the plates and these tubes will stretch out from both sides of the

rotation

charge
tube
+
charge rotation
& ats ()

Fig. 4.

plates at right angles to them, so that the whole space, both
between the plates and outside them, is occupied by coincident
positivé and negative tubes. (In Fig. 5 the positive tubes are
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Fig. 5.

represented by continuous, the negative by dotted lines) A
reference to the figure will show that in the space between the
plates the direction of absolute rotation in both classes of tubes is
the same, whereas in the space outside the plates the direction of
absolute rotation is opposite in the opposite classes. Hence
between the plates the tubes will reinforce each other’s action in
respect of any property which is determined by the magnitude of
the rotation, and in the space outside they will neutralise each
other with respect to such properties. Since we have supposed
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that the electrostatic effects of the tubes are determined by this
rotation, there will be electrostatic effects due to the tubes in the
space between the plates but none in the space outside it, precisely
as is found in experiment. '

But, if one of the plates is moved relatively to the other, carry-
ing its tubes with it, any effect which is due to the shearing of
the positive and negative tubes past each other will be the same in
the space outside the plates as in the space between them. It is to
this relative motion of the tubes that we have attributed electro-
magnetic action: hence the electromagnetic action of one set of
tubes will not be altered by the presence of the other set, and the
magnetic effect of moving charges will be observed in places where
there is no electrostatic effect.

We have not attempted hitherto to visualise the magnetic
action of the tubes, but have been content to obtain the mathe-
matical relation between the velocity and the magnetic intensity.
Indeed it is difficult to devise any adequate mechanical analogy to
this action. It is probably best to imagine that the relative motion
of the tubes changes in some way the attraction between tubes
of opposite sign, so that the electrostatic effects are diminished.
Consequently if one electric charge is moving relatively to another
charge of the same sign the electrostatic repulsion between the
charges is less in virtue of the motion than it would be if the
charges were at rest: the motion will cause an apparent attraction
between the charges such as is known to exist between two
currents in the same direction. It should be pointed out that
an electrically neutral system, from which radiate an equal number
of tubes of opposite sign, will exhibit no magnetic effects when
it is set in motion, for these effects depend on the shearing of
tubes of one sign past those of the other sign, and no such relative
motion exists if both sets of tubes are attached to the same body
and move with it.

It is necessary to alter slightly our ideas of the electrostatic
action of the tubes in order to bring them into harmony with the
view that we have taken of their electromagnetic action. We
must suppose that all tubes, both those which are attached to
positive and those which are attached to negative charges, have
the same tension in the direction of their length, but that, while
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like tubes (z.e. tubes in which, according to our analogy, the
direction of absolute rotation is the same) repel each other as
before, unlike tubes (those in which the direction of absolute
rotation is opposite) attract each other and tend to coincide.
Imagine then that a small positively charged particle from which
tubes are radiating equally in all directions is brought close to a
similar negative charge. On that side of the negative charge
which is remote from the positive charge the tubes from the two
charges are unlike and tend to coincide and to neutralise each
other’s electrostatic action: accordingly in this region the tubes
from the positive charge will be bent down towards the negative
charge and, when equilibrium is reached, they will all pass through
the negative charge. But in the space between the two charges
all the tubes are like and will distribute themselves in the manner
that is shown in the ordinary diagrams of the lines of force
between opposite charges, and the electrostatic effects of the tubes
will be precisely the same as those which were deduced from our
earlier conception.

Nor is there any need to change the quantitative formulae
given on p. 10. For the number of tubes radiating from a
charge of magnitude e will still be e, so that there are 2e¢ tubes
connected with the two charges of our illustration. But the
electrostatic action of half of the tubes from each charge is
neutralised by their coincidence with unlike tubes, and hence the
number of tubes that have to be taken into account for electro-
static purposes is, as before, e.

Similarly the calculation on p. 14 of the magnetic effects of
the motion of the tubes will remain unaltered. For, though
there are twice as many tubes in the field as there were according
to our earlier conception, half of these are to be considered
stationary, while the others move past them: it is to this shear of
unlike tubes past each other that the magnetic effect is attributed.
Since, therefore, our calculations will be precisely the same
whether we consider the tubes attached at both or only at one
end to charges, the first conception will be used in all cases where
the difference is not essential: a little consideration will enable
the reader to translate the arguments into terms of the more
accurate conceptions.



24 THE ELECTROMAGNETIC FIELD [PART 1

One difference between the two views should be pointed
out. If positive and negative charges are considered as merely
manifestations of the two ends of the same tube it is clear that
the production of a positive charge without an equal negative
charge is impossible. But, if the tubes attached to the two
charges of opposite sign are quite independent, the experimental
fact that opposite charges are always produced in equal quantities
must be regarded as requiring further explanation.

9. The hydrodynamic analogy is useful in representing the
g distribution of the energy in the magnetic field. It
the magnetic  is proved in any treatise on the theory of electro-

magnetism that the energy contained in unit
wH?
87
the medium and H the magnetic intensity at the point round

which the unit volume is taken. If the magnetic intensity is due
to the presence of moving Faraday tubes, H = 4mwNvsin yr, and
the energy is

volume of a magnetic field is , where u is the permeability of

B =Py NI ST T e SR (6).

The occurrence of the quantity v* suggests that the energy
may be represented as the kinetic energy of some moving system,
for the kinetic energy of a body of mass m moving with velocity
v is 3mw?® If the unit of volume taken be a cube of unit side
with its edges parallel and perpendicular to the tubes, there will be
N tubes, each of unit length, within this volume. ;

If each unit length of a tube be supposed to possess a mass
47rpN sin? ¥, the kinetic energy of all the tubes will be

3N x (4mplN sin? ) x v* = 2rplN % sin? r,
which is the magnetic energy in the field.

At first sight the supposed distribution of mass among the
tube appears so arbitrary and so unlike that which occurs in any
mechanical systemn that it might be thought that the analogy was
misleading rather than useful. But it will be seen that the
analogy used in the previous section puts the matter in a new
light. It is a well-known result of hydrodynamics that a body
moving in a fluid behaves as if it possessed, in addition to its own
mass, the mass of a certain volume of the fluid. The magnitude
of this volume depends on the shape of the moving body : if it be
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a sphere, the additional mass is that of a portion of the fluid of
the same volume as the sphere: if it be a right cylinder moving
perpendicularly to its axis the volume is that of the cylinder: if
the cylinder be moving along its axis the volume will diminish
with the area of the cross section of the cylinder and will be nil
if the cylinder is sufficiently thin.

Now the vortex filaments to which we have likened Faraday
tubes will resemble in some respects cylinders moving in a fluid ;
if they move at right angles to their axes the additional mass
which they derive from the disturbance which their passage
causes in the fluid will be different to the mass which they gain
when they are moving along their axes. If they are regarded as
very thin cylinders the additional mass which they gain when
moving along their axes will be very small. Accordingly the
apparent mass of the tubes will vary with the direction of their
motion in much the same manner as that given by the occurrence
of the factor sin?4r in the expression for the mass of the tubes in
the preceding section.

Again, if several bodies be moving together through a fluid the
additional mass which must be attributed to each will be different
from that which would be attributed if each were moving singly
remote from all other bodies. The apparent mass of each body
will depend on the distribution of the surrounding bodies, just as,
according to (6), the mass of each tube depends upon N, the
concentration of the tubes around it.

There is nothing extravagant in attributing to each tube a
4rpN sin® A

mass of per unit length, and in regarding the magnetic

energy in the heighbourhood of moving Faraday tubes as the
kinetic energy of those tubes. The conception will be found of
the greatest value in the next chapter, and when we come to
consider the present views which are held as to the relations
between electricity and matter.

10. Hitherto we have only considered the production of a -
il magnetic intensity by an electric current: there is
il aets, another branch of electromagnetism which deals
with the currents produced by a variation of the magnetic field—
or the ‘induction of currents.
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It was discovered by Faraday that when a current in one circuit
was started, stopped or varied in any way, a transient current
was produced in any neighbouring closed circuit. The direction
of the induced current was such that it tended to counteract the
change in the magnetic field of the first circuit due to the
variation of the current in it. Let us consider how this induction
of currents is to be explained in terms of the mechanical analogies
which have been adopted.

Let PQRS and P'QR'S’ (Fig. 6) be two circuits lying one
inside the other in the same plane. P@QRS con-
tains a battery or some other source of the pro- Bteéry
duction of Faraday tubes so that a current flows Y
in it accompanied by the motion of tubes. These p | | .
tubes may be imagined to stretch across from
PQ(+) to SR(-) and to move down the circuit Pl
from top to bottom with their axes parallel to
the portion QR into which they collapse at the end
of their passage. Under the influence of these
tubes there will be ‘induced electrification’ in
PQR'S, or, in the terms of Faraday’s theory, the
tubes of the metal of the circuit (see Chap. IIL.)
will be orientated in such a way that there is no
electric intensity in the substance of the conductor.
Now suppose that the conductor QR is removed
and the circuit broken. The tube which was just
about to collapse into @R will now be unable to do 5 R
so: it will remain stretching across the gap and Fig. 6.
exerting a lateral pressure on the tubes above it
tending to prevent them from moving down the circuit. But it
must be remembered that the tubes possess mass and that a finite
force will require a finite time in order to reduce them to rest.
For a short interval the tubes will continue to move down the
wires PQ and RS, but, being unable to escape at the ends, they
will remain piled up about the region QR. The distribution of
the tubes over the area of the circuit is changed: there are,
relatively to the former condition, more tubes in the lower part of
the circuit than in the upper.

This change in the distribution of the tubes will cause a

192
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readjustment of the ‘induced electrification’ in the circuit P'Q'R’S".
It was in equilibrium previously, but now the number of tubes in
the region Q'R’ is greater relatively to that in the region P'S".
Accordingly there must be a movement of electricity in the sense
determined by the action of the tubes in the lower part of the
circuit : that is to say, positive electricity will move in' the
direction @"R’S’P’ and tubes having their positive ends on the
part P’Q’ must move down the circuit. The motion of these tubes
will give rise to a magnetic intensity, and since the motion of the
tubes is in the same direction as that of the tubes in PQRS before
the circuit was broken the magnetic intensity will be in the same
direction as that due to the current in the inducing circuit. But
this latter intensity has disappeared by the breaking of the
circuit: hence the intensity due to the induced current will be
such as to counteract the change in the field due to the stoppage
of the inducing current.

The reader may work out for himself the processes which
occur when the current is started in PQRS, and he will find that
they are such as to give rise to the effects which are observed
experimentally. It will be noted that no attempt has been made
to prove that the quantitative relations obtained are the same as
those given by the usual theories: the calculations would be
exceedingly complicated, and since they are not required for future
reference and would not throw further light on Faraday’s concep-
tions of the electromagnetic field, they may be omitted without
detriment. For a consistent mathematical development of Fara-
day’s theory the reader is referred to Prof. Thomson’s Recent
Researches in Electricity and Magnetism, Chap. L.
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CHAPTER IL
THE ELECTROMAGNETIC THEORY OF LIGHT.

1. WE have already noticed one important discovery which
Finite velocity  Was suggested by Faraday’s theory of electric action
of propagation 1.t concealed by the older theories—the magnetic
B effect of moving charges. We must now turn to
another such discovery of equal importance—the finite velocity of
propagation of electromagnetic action. It has often been said that
this discovery was necessarily the death blow of the ‘action at a
distance’ theories and the final vindication of ‘action through a
medium.” So it has proved historically, but logically the result
could not have been predicted with certainty. Weber tried to
reconcile ‘action at a distance’ with such effects as the induction
of currents by supposing that the effect of one charge on another
depended not only upon the position of the charges but upon their
velocity, acceleration and other characteristics of their motion.
The attempt might have been successful ; but we know now that
the analytical expression necessary for the accurate definition of
such action must be so complex, that, even if it could be found
successfully from the experimental data, our mathematical powers
would be insufficient to enable any results to be deduced from it.
‘Action at a distance’ has been shown to be totally useless as a
description of electromagnetic phenomena.

It was stated in the previous chapter that a Faraday tube is
subject to stresses both in the direction of its length and at right
angles to it, and further that it must be regarded as possessing a
definite mass when it moves in a direction perpendicular to its
length, Suppose then that a Faraday tube stretches between two
points 4 and B and that the end A is moved in a direction
perpendicular to that of the tube. The tube is distorted and
the stresses on it are no longer in equilibrium: there is a
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resultant force on it. But, since the tube possesses a finite mass,
it requires a finite time for a finite force to set up a finite
displacement in it: the parts of the tube remote from the end 4
will not take up the positions corresponding to the new conditions
immediately, but require a finite time after the motion has
been given to the end A. That is to say, the action will be
transmitted from 4 to B with a finite velocity.

An analogy may make the process clearer and will help us in
our subsequent investigations. If one end of a rope is tied to a
heavy body and the other end shaken at right angles to its length,
the disturbance caused by the shaking may be seen to travel out.
along the rope and, after a definite time, reach the body and cause
it to move. A Faraday tube is very like a rope in that it has a
tension along its length and possesses mass: the action of one
charged body on another will be transmitted along the Faraday
tubes joining them in just the same way as the action is
transmitted from the hand to the heavy body along the rope.
But there is an important difference between the rope and the
tube. If the rope be stretched taut and jerked in the direction of
its length, a compressional disturbance will travel out along the rope,
the velocity of which is, in general, different from that of the
transverse disturbance. Such longitudinal disturbances cannot be
propagated along a Faraday tube, for the tension of the tube is
independent of its length. If one of two infinite parallel charged
plates be moved in a direction perpendicular to its plane and
parallel to the tubes attached to it, the force acting on the other
plate is not changed and there is no disturbance of equilibrinm.
Only transverse disturbances can be propagated along Faraday
tubes.

2. The use of this illustration will enable us to calculate from
Calculation of UD€ known relation between the tension and mass of
ety the rope and the velocity of the disturbances along
) it, the velocity with which the transverse disturbances
are propagated along the Faraday tubes.

Consider a tube ABCDEFGH slightly displaced into the posi-
tion AB’C'DEF'Q’H and let us calculate the forces tending to
restore the portion B'C’F’'G" to its normal position.
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These forces will be due (1) to the tension along the tube and
(2) to the hydrostatic pressure
on its surface. Take (1) first 8’ X
and consider a portion o'f the B % r_jc “
tube of small cross section AI G\ /FN
represented by the line H G F E
AB’C’D. The tension along
this line is 7w and the com-
ponent of it acting at B’ along
B'B is Twcos LB’'B, where
B’L is the tangent at B’. But o
cos LB'B =sin B'LB Fig. 7.

=sin BB'0
where B’O is the normal at B’: therefore the force along B'B is
Tosin BB’0O. But the angle BB’O is small, since the displace-
ment is small, and sin BB’O may be put equal to BB’0, so that
the force is Tw.BB’0. Similarly the force at C" acting in the
direction CC" is Tw . CC’0, hence the total force tending to restore
B’C’ to its normal position is Tw (BB'0+CC'0)=Tw.B'0C’
and the force on the whole portion of the tube B'C'F'G’ is
T.B'0OC" x area of the cross section of the tube or
T.B'OC".B'G'.t,

where ¢ is the thickness of the tube perpendicular to the plane
of the paper.

Now consider (2). There is a hydrostatic pressure R per unit
of surface all over the tube. Hence the pressure on the upper side
of the portion of the tube B’C"F’'G’ forcing it down is R.B'C’.t,
since B'C’.t is the area of the upper portion of B'C'F'(.
Similarly the force on the lower side of the tube forcing it upwards
is R.F'G’.¢, and the resultant force tending to restore the tube to
its normal position is
R.t.(BC'-F'GQ)=R.t.B'0C" (BO-G'0)=R.t. B'G'.B'0C".
The whole force due to (1) and (2) is (T+ R).t.B'G’. B'OC".
But 7, the tension along the tube per unit area of cross section, is
_equal to R, the pressure on the tube per unit area of surface, and both
2N

K

are equal to , where K is the dielectric constant of the medium
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surrounding the tube. Hence the whole force tending to restore
B C'FG is 2T.t. B'G’. B'OC’ and is equivalent to the force that
would act if there were only a tension 27'.¢. B’G’ acting along the
tube.

But it is well known that the velocity with which a disturb-
ance is propagated along a rope of mass m per unit of length and

under a tension P is \/ % Hence the velocity of the disturbance

ST
along our tube is ,\/ %ﬁg , where m is the mass of the tube

per unit length. But it was shown on p. 24 that the mass of the
tube per unit volume is 4mulN (since each point of the tube is
moving at right angles to its length and sinyr=1): therefore the
‘mass of the part B'C’'F'G’ is 4wuN.t.B'G’'.F'G’, and the mass
per unit length is 4muN.t. B’G’. Therefore the velocity V' with
which electrical effects will be propagated along the tube is given

by

/477N %

V=\/2.T.t.B’G’= 5 e |

m druN.t . B'G’

1
Vim o= iencedvnsvnonusininsedonn 1).
or ’\//J,K ( )
8. The next step is to measure the value of —— «/__ for some
,U.

e 12 A medium, say a-ir. Of course the value.of either p or
e e K will vary with the system of electrical units that
we adopt, but the value of the product wK will
depend only on the units of time and length that are adopted.
This statement can be proved readily by considering the dimen-
sions of the quantities concerned, but all arguments from
dimensions, though perfectly conclusive, seem unconvincing to so
many, that it is worth while to sketch the principle of the entire
method by which the measurement may be made and to show that
the value obtained is independent of the electrical units used.
The value of the dielectric constant for a medium'is most easily
ascertained by finding the capacity of a condenser of known
dimensions of which that medium is the dielectric. The value of
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the permeability p is most easily ascertained by measuring the
magnetic induction through a circuit of known dimensions, and
this induction is ascertained by observing the electromotive force
which a known variation of the induction produces in a closed
circuit. We have then to compare the capacity of a condenser
with the E.M.F. in a circuit: but, when the condenser is discharged
or the E.M.F. applied to a conducting circuit, a current is obtained,
and the comparison which has to be effected will be made most
conveniently in terms of this current.

Suppose then that we take a parallel plate guard-ring
condenser, in which the plates have the area A and are-a distance

d apart. The capacity of that condenser is ﬁ—rg, where K is the

dielectric constant of the dielectric (air): the formula is true
whatever system of units is employed so long as the same system
is used for all the quantities concerned. If a potential difference
V is established between the two plates, the charge in the
condenser will be %I{ If the condenser is charged n times in ¢

seconds and discharged each time through a conducting circuit, a
quantity of electricity % will flow through the circuit at each
AKV

discharge, equivalent to an average current % e We have
thus got an expression for K in terms of a current: let us turn
to pu.

Take a long solenoid (4) with NV turns in L units of length,
filled with the same medium (air) as the condenser. Inside this
place a second solenoid (B) with M turns on it and let the area of

its cross section be s. If the axes of the solenoids are parallel
there is a total magnetic induction 4mu -‘ZLY .MsC through (B)

when a current (' flows through 4. If B be rotated round an axis
perpendicular to the axis of (A) through »’ complete revolutions
in ¢ seconds, then the rate of change of induction through (B)

: 167uNMsC »n’
will be e
will be equal to the E.M.F. between the terminals of the coils

and this quantity again, by Faraday’s law,
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of (B). (The E.M.F. is supposed to be commutated, as in the
direct current dynamo, so as to be always in the same direction.)

If the same current C flows through a resistance R, the
potential difference between the ends of the resistance is RC.
This p.D. can be compared with that due to the change of
magnemc induction in (B) by a potentiometer method let the
comparison be made with the result that

i 167r;1.NMsO’n
RC= T
_ 16amuNMsn/
Then R= s Baou

Now apply to the terminals of R the p.D. V which was used in

charging the condenser: a current K will flow and this current

R
may be compared with that due to the discharge of the condenser:
let the ratio_of the second current to the first be 8.

n AKV BVLt
ghneq t 4dwd 'BR 16mapNMsn'’
e dLtt’
= ey a " ANMsnn'A

All the quantities on the right-hand side of this equation can
be measured in terms of the units of time and length without any
reference to the electrical units which have been employed in the
experiments. n,n, a, 8, N and M are numbers or ratios and have
no dimensions, ¢ and ¢ are times, A and s are areas, d and L are
lengths. Thus the dimensions of K are found to be

(length)® x (time)*  (time)* 1
(area) "~ (length)? ~ (velocity)?”

Therefore —— ,\/__ 1s a velocity.

The measurement has been actually carried out by methods
that differ only in detail from that just described, and it has been

found that V%—E, the velocity calculated for the propagation of

electrical disturbances in air, is very nearly 3:0 x 10 centimetres

C.E.T. c 3
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per second and is equal within the limits of experimental error to
the velocity of light in air as deduced from the best results of
Fizeau, Newcomb, Michelson and the rest. This velocity will
henceforth be always denoted by the symbol V.

Some twenty years after Maxwell had published his deduction
of the velocity of propagation of electrical disturbances his results
were confirmed by the brilliant experiment of Hertz. His classical
research is described in all recent text-books of electrical theory?
and a sketch of the principle of his method will suffice.

Suppose that one end of a pair of charged condenser plates are
connected momentarily by a conductor, as when a spark passes
through the dielectric medium between the plates. The Faraday .
tubes in the region of the spark are annihilated and the tubes
from the other end of the condenser move down to fill their
place. Since the tubes possess mass, their motion will not
cease immediately the distribution corresponding to the new
position of equilibrium has been reached: their inertia will carry
them a little further. Too many tubes will accumulate at the end
of the condenser at which the spark had passed, and, when the
tubes have come to rest, there will be a force urging them
to move back towards the other end of the conductor. The
tubes will be set into oscillations, which will gradually die
away owing to the damping effect of the resistance of the con-
denser circuit. According to the theory which has been put
forward in the foregoing paragraphs these transverse vibrations of
the ends of the tubes attached to the condenser plates should be
propagated out along the tubes with the velocity V. Hertz
succeeded in measuring the wave length (A) of the vibrations and
in calculating their frequency 7. Since these quantities are
connected with V by the relation

his experiments led to the determination of V. He found that its
value agreed with that predicted by Maxwell within the limits of
error of observation. The correctness of Maxwell’s theory could
be doubted no longer and was admitted by the entire scientific
world.

1 See for example Whetham’s Experimental Electricity, § 70.
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4. This coincidence of the values of the velocity of propaga-

tion of electrical and optical effects led Maxwell to

e ewiae” suggest that the vibrations which constitute light

i are nothing but vibrations of the Faraday tubes
which stretch throughout all space.

It has been said that this conclusion was in some measure
anticipated by Faraday, and certainly the writer of the letter to
Richard Phillips (Ewzperimental Researches, vol. 11 p. 477) came
very near to anticipating Maxwell’s theory. But I think that
his search after an effect of electrical conditions on optical
phenomena show that his ideas were not quite clear and that in
this instance his intuition, the most marvellous in the history of
physics, must be judged to have been at fault. His famous
sentence at the beginning of the third volume gives us his
reasons for undertaking that search. “I have long held an
opinion,” he says, “ almost amounting to a conviction, in common
I believe with many other lovers of natural knowledge, that the
various forms under which the forces of matter are made manifest
have one common origin.” Now that expression of opinion is
certainly an anticipation of the Principle of the Conservation of
Energy, but it is not an anticipation of the electromagnetic theory
of light. The most convincing evidence of the intimate connection
of electrical and optical phenomena is that in both cases the
effects are propagated through a vacuum in which there is no
matter and that they are the only known effects (except gravita-
tion) which are so propagated. If, then, there is not a close
connection between electricity and light we shall have to attribute
to vacuous spaces two sets of entirely distinct and mutually
independent properties. In other words, both electrical theory
and optical theory require an aether, and if there is no connection
between the electrical aether and the optical aether, space will
have to be filled twice over with distinct aethers—an assumption
so complicated that every effort ought to be made to render it
unnecessary.

If we are going to look for a relation between electricity and
light, we should search first among the effects of these agests in
a vacuum (or in those media, such as gases, which differ but
.slightly from vacua). Faraday, on the other hand, tried the

3—2
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effect of passing light through dense media in a magnetic field.
He was rewarded by finding an effect, but it is of so complex a
nature that his theory was quite incapable of explaining it with-
out the introduction of subsidiary hypotheses. It is difficult to
imagine what experiment he could have tried in which vacuous
spaces were concerned, unless it were some modification of Hertz’
research ; but the fact that he does not appear to have attempted
to devise such an experiment would seem to show that his
insight into the connection was not so deep as has been
imagined frequently.

5. Let us now investigate whether the known properties of

Faraday tubes will enable us to deduce the optical
Optical laws

from the from the electrical laws.

electro- .

magnetic In the first place it may be noted that the ex-
standpoint.

planation of a great many optical phenomena, in fact
of all those which are concerned with interference or diffraction
and among them the rectilinear propagation of light, follows
directly from the theory that light is a form of wave disturbance
and makes no assumption whatever as to the physical nature
of the waves. All interference and diffraction laws are conse-
quences of our theory as they are of the older elastic solid
theory of light or of any other wave theory, such as that which
deals with sound or water waves. The only reason why some
laws are regarded as optical laws and not as acoustic laws is
that the smallness of the wave length of light makes some
phenomena important in optical theory which are not important
for the longer waves of sound. But of course the wave length on
the electromagnetic theory is identical with that of the elastic solid
theory or any other theory: the hypothesis which distinguishes
the different theories concerns only the physical nature of the
vibration that is taking place.

The laws of refraction and reflection are also common to all
forms of vibration. It can be shown that a periodic dis-
turbance falling on the bounding surface between two media,
in which the velocity of the disturbance is different, is broken
up into a reflected portion travelling back through the first
medium and a refracted part travelling on through the second
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medium. Further Huyghens’ well-known construction shows that
since the velocities of the incident and reflected disturbances
(travelling in the same medium) are the same, the angle of
reflection is equal to the angle of incidence: while the angle of
refraction is connected with that of incidence by the familiar
¢sine law,” in which the index of refraction is the ratio of the
velocity of the disturbance in the second to that in the first
medium.

Now according to our theory the velocity of light in a medium
of which the dielectric constant is K and the permeability w is
\71_?—: hence the refractive index of any medium (4) relative to

7
another (B) is ,\/

pak 4
peKp
meability of every medium, including even substances which are
classed as magnetic materials, is the same, when the medium is
subjected to very rapid alternations of magnetic intensity such as
occur in light waves. Accordingly we may write u = pp

and Nap= %f; :

=n,p. Experiment shows that the per-

If the medium A be a vacuum, for which on the electrostatic
system of units K =1, the quantity n,p becomes that which is
usually called the refractive index (n) of the medium A : and
we have

n=VE or K=n%..ccccoeerererruaarrnn. (3).

Here we have an opportunity of subjecting our theory to
experimental verification. Both K and n may be measured for
the same material, and the relation between the values obtained
compared with that predicted by (3). Table I gives the results
of a few such experiments.

It will be seen that in some cases the agreement is excellent,
but in other cases there is a large discrepancy. It is clear that
the relation cannot be universally true, for the value of n is not
constant but varies with the frequency of the light vibrations, and
the value of K also is different for steady fields and for very rapid
oscillations. In order to make the comparison quite fair, K and »
should be measured for oscillations of the same frequency, a con-
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dition that is impossible in practice; but it is found that the
values of K and #? become more nearly equal when » is measured
for the slowest possible light vibrations and K for the most rapid
electrical oscillations. The rough agreement between physical
constants apparently so diverse as the dielectric constant and the
refractive index must be judged to afford some support for our
theory, but we cannot rest content until the reason for the
variation of K and n with the frequency has been elucidated
completely.

TABLE I
Substance K n?

Air f 1-000590 1000588

Hydrogen 1-000264 1-000276

Benzol 2:21 2-20

Carbon bisulphide 265 2'69

Paraffin wax 201 2-28

Quartz 46 2:39 (ordinary ray)
Alcohol 250 1-85

Water 760 1-78

The values of n given above are measured for yellow light.

6. It is in dealing with the polarisation® of light that the
SRy necessity first arises of introducing an hypothesis as
- to the nature of light vibrations. It is found that
there are certain light waves, known as plane polarised waves,
which have not the same relation to all planes drawn through the
direction of propagation. If light reflected from one glass surface
be reflected subsequently at a similar surface, the intensity of the
doubly reflected light varies not only with the angle of incidence,
but also with the angle between the planes of the reflecting
surfaces; for a fixed position of the first surface, the plane con-
taining the direction of the ray and the mormal to the second
reflecting surface, when the intensity of the light reflected from
it is a maximum, is called the plane of polarisation of the light.
These phenomena are explicable, if the vibrations which constitute

1 T hope it is unnecessary to point out that the ¢ polarisation’ of light has
nothing to do with * electric polarisation,” which has been mentioned so often. It
is unfortunate that the same word has to be used in two different senses, but I do
not think that any ambiguity need arise.



CH. I1] THE ELECTROMAGNETIC THEORY OF LIGHT 39

light do not take place (like those of sound) in the line of pro-
pagation, but in a direction at right angles to that line. Light
must consist of ‘ transverse’ vibrations such as we concluded could
be propagated along Faraday tubes.

But further information is necessary before the direction of the
vibrations with regard to the plane of polarisation can be fixed.
Two hypotheses concerning this direction have been put forward :
one, connected with the name of Fresnel, that the vibrations are
perpendicular to the plane of polarisation; the other, due to
MacCullagh, that the vibrations are in that plane. In order to
consider these hypotheses in the light of the electromagnetic
theory, we shall have to examine more closely the processes
associated with the vibration of a Faraday tube.

Let a train of regular transverse vibrations such as are
indicated in Fig. 8 be travelling out along a series of parallel

Fig. 8.

tubes. In any plane at right angles to the direction of propagation
the vibrations of all the tubes are in the same phase: such a
plane is a wave front and the disturbance is a plane wave.
The electric polansatlon at any point P is in the direction PT
and may be regarded as compounded of the undisturbed polarisa-
tion N in the direction N7 and a polarisation D due to the
vibration, in the direction PN, where %=%~TV Since the
undisturbed polarisation is supposed to be the same all along the
path of the wave, if a curve (Fig. 8 A) be drawn such that the
abscissae represent distances along the direction of propagation
' N
7 i
ordlnate pn will be proportlonal to the magnitude of the transverse
polarisation D at the point n in the path of the wave. If the wave

and the ordinates represent the values of the ratio
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is a periodic disturbance such as is shown in the figure, the
disturbance may be regarded as a distribution of polarisation
given by the portion of the curve aa’ travelling out with the
velocity of light in the medium considered (v). If the wave is a

Fig. 8 A.

simple harmonic vibration, the value of D at a point at a
distance # from the origin of the vibrations and at a time ¢ is
given by!

D=D, sin%;,f(t—g ..................... (4),
where T' is the frequency of the vibrations, connected with the
wave length A by the relation

Riwwy T0ErS et B ek (5)
The vibrating polarisation will give rise to a vibrating electric
intensity Y, where ¥'= %, or
4:7rD : 277'
Y="""sin 77 (t " -) .................. (6).

The direction of Y coincides with that of D.

Again, at any point the tubes which give rise to the polarisation
D are travelling at right angles to their length with velocity w.
Hence they will give rise to a magnetic intensity A where

Hi= A B, 2, IR nel v sk ("),
or since V= __';—K )
4«n'.D ; 271'

b ——) .................. 8).

% T3 8)

1 See R. W. Wood, Physical Optics, p. 7.
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The direction of H is at right angles both to the tubes and to
their motion, that is, in the wave front perpendicular to the plane
of Fig. 8, which contains the direction of the electric polarisation
and the electric intensity.

Hence we see that there are at least three important quantities
which are vibrating transversely in the wave front, of which two,
the electric polarisation and the electric intensity, are in the
same direction, while the magnetic intensity is in a perpendicular
direction.

The energy of the light disturbance is made up of two parts:
(1) electrostatic energy due to the displacement of the tubes, and
(2) magnetic energy due to their motion. The magnitude of the
former is given by the usual formula as

27;?2 (see p. 11):
that of the latter is :
2
%i_i =2mu. D%? by (7),
2w D?

or TR since v=;/“l—_T{.

The energy of the light wave at every point is equally divided
into electrostatic and. magnetic energy: the two forms of energy
are propagated together, and if we determine the distribution of
one form, the distribution of the other is known.

In order to determine the relation of the direction of the
vibrating quantities to the plane of polarisation, let us calculate
the intensity of the reflected and refracted rays consequent on the
incidence of plane polarised light (that is light the vibrations of
which, like those of the wave under consideration, take place
along straight lines in the wave front). The relative intensity of
these rays varies according as the plane of polarisation coincides
with, or is perpendicular to, that of incidence, and by comparing
the formulae which we deduce with experiment the solution of the
problem may be found.

Let the reflecting surface be perpendicular to the plane of
Fig. 9: and let the electric polarisation of the incident light ray 40
be in the plane of incidence, 7.e. in the direction PQ. Let 04’, 0B

f
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be the reflected and refracted rays, < and » the angles of incidence
and refraction, P’'Q), P,Q, the direction of the electric polarisation
in the reflected and refracted rays. Let D,, D/, D, be the

N
A o A’
Q /
& i P
7/
&
Q

p.l

Fig. 9.

amplitudes of the vibrating electric polarisation in the incident,
reflected and refracted rays respectively, K, and K, the dielectric
constants of the first and the second medium. The electrostatic
conditions which must be satisfied at the bounding surface are?
(1) The electric polarisation normal to the surface must be
the same in magnitude and direction on both sides of the surface

and
(2) The tangential electric intensity must be the same on

both sides of the surface.
Since the electric intensities in the three rays are

4D, 47D/ 4ar D,
K] 3 K, and '72 5
respectively, these two conditions give the equations
(Dy+D)sini=D,sInT .ccoovvrrnnininnns (9).
4 ; R
—]—{:cosz(Dl—D,)—-»K—?D2 cosw MR, 2L, (10).

Solving these equations and remembering that

sin ¢ n—«/K’
sin 7 K’

1 See for example J. J. Thomson’s Electricity and Magnetism, 3rd ed., § 74.
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we find
SRR G DA 5=

tan (1 —7) 2 sin®7 cos v
tan (2 + ) " sinrsin (¢ +7) cos (1 — )
But if V, and V, are the velocities of light in the first and second

’ . V; i sl
-medium respectively, so that n = 71’ the intensities of the three
2
rays are in the ratio!

21'@.12_15 CcoS 7 : 27TD1’2171 CcoS 1 : 2_7% cos r
K, ey e,
Jtan?(v—r) sin 24 sin 2r

£y “tan?(v+7) " sin? (24 7r)cos* (v —1r)’

Now experiment shows that this ratio holds between the inten-
sities of three rays when the plane of polarisation is perpendicular
to the plane of incidence: but the electric polarisation is in the
plane of incidence in the case which we have investigated. We
may conclude—and a rigorous investigation would confirm the
conclusion—that the electric polarisation is perpendicular to the
plane of polarisation of plane polarised light and agrees in direction
with the ¢ vibration’ which Fresnel used in developing his theory
of light. Since the magnetic intensity is perpendicular to the
electric polarisation, it must lie in the plane of polarisation and is
identical with MacCullagh’s vibration. The settlement of the
long controversy between these distinguished physicists is found,
like that of most of the great disputes of science, in the conclusion
that both of the disputants were right. The ‘vibration of the
light’ is both in and perpendicular to the plane of polarisation, for
there is more than one vibrating quantity concerned in the
propagation of a light disturbance.

7. The conditions described in (9) and (10) which must hold at
Ao the boundary between two media become especially
ptical 2 o Jeis 5

properties  Interesting when one of the media is an insulator and
the other a conductor. There can be no electric

intensity in a conductor, and hence, from (10),

D = -D 1,1
and the intensity of the reflected is equal to the intensity of the
incident ray : that is to say the conductor acts as a perfect reflector.
! See Preston, Theory of Light, 2nd ed., §68.



! THE ELECTROMAGNETIC FIELD [PART I

This conclusion agrees with experiment to the extent that the
best conductors of electricity (metals) are also the best reflectors
of light: but different metals differ in reflecting power and none
of them are perfect reflectors. Indeed, if the matter be considered
more closely, such variations are to be expected. When a con-
ductor is subjected to an electric intensity a current flows in
such a direction as to neutralise that intensity, but, unless the
conductivity be infinite, the neutralisation will not be instantaneous.
Accordingly, when a light wave falls on a conductor, vibrations of
electric intensity will be set up in it; some portion of the
energy will travel into the conductor and will not be reflected.
But the refracted wave will be able to travel only a very short
distance before the electric intensity is neutralised by currents in
the metals and the energy of the wave is ¢ absorbed.’

It is possible to calculate the relation that should hold between
the conductivity of the metal and its optical properties. The
calculation will not be given here because we shall have to
consider the matter in greater detail in another chapter. It is
found that if o be the conductivity, 7' the period of vibration of
the light, n the refractive index of the metal, a its coefficient
of absorption, the relation that should hold between these four
quantities is

s G e e (11).

Table II gives the values of the two sides of this equation
determined experimentally for several metals. The quantities
n and « can be measured by making measurements on extremely

TABLE IL
Substance nla T
Silver 066 36
Gold 1-04 24
Platinum 88 525
Copper 168 35
Iron 82 44
Sodium 0013 1153)
Mercury 86 60

The measurements are made with yellow light for which T'=2x 101 secs.
It should be remembered that ¢ is expressed in electrostatic units: the electrostatic
unit of resistance is 9 x 10'! ohms.
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thin films of metals and also indirectly from observation on the
elliptic polarisation of light reflected from metals.

It will be seen that the agreement and the discrepancy of the
experimental values compared with the calculated formula are
similar to those which were noticed when we considered the
refractive index of transparent bodies: there is a general con-
cordance but no numerical identity, Even the general concordance
vanishes when conductors other than metals, such as electrolytic
solutions, are taken into account. The conductivity of a solution of
sulphuric acid is much nearer to that of silver than to that of the
most highly resistant liquids, but, while copper is almost perfectly
reflecting, the reflecting power of the aqueous solution is no greater
than that of the many insulating liquids.

8. There are other optical phenomena of which the simple
W L electromagnetic theory of light can offer no explana-
fschery tion whatever. Of these the ‘Faraday effect ’—the

rotation of the plane of polarisation of light travelling
through a material medium 1n a magnetic field—is perhaps the
most striking: Maxwell considered it at length but failed to bring
it into harmony with his hypothesis. It was certainly unfortunate
that Faraday, when searching for an experiment which should
prove conclusively his cherished conviction that light and electricity
were intimately connected, should chance on one of the few
phenomena on which the view of the nature of electrical action
associated with his name could throw no light. But when all its
failures are set in array, the fundamental truth of the electro-
magnetic theory becomes yet more certain. So long as the
behaviour of light in a vacuum is considered the harmony of theory
and experiment is complete: it is only when material media are
taken into account that difficulties arise.

Like all the truly useful theories of science, the Maxwellian
theory of light introduced more problems than it removed. It
answered the question as to the physical nature of the vibrations
in a light wave, but it raised the vast question of the rela-
tion of electricity to matter. Instead of being content with
representing the properties of the extremely complex systems
which we call material bodies by the introduction into our
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equations of three constants, we ask ourselves what are the
processes which give rise to the necessity of those constants.
From that question start all the investigations with which we
shall be concerned in the rest of this volume. Logically and
historically the development of the ‘electron theory’is based on
the discrepancy between the values of K and »?; but it was aided
by researches of a totally different nature which at first had no
connection with this problem. At the present time the lines of
inquiry have converged, but as far as possible we shall keep them
separate. In the next part we shall sketch the optical and allied
investigations: we ‘shall then turn to the second investigation,
which concerns the electrical properties of gases: and finally we
shall consider the results, still awaiting completion, which are due
to the combination of evidence from all sources.

REFERENCES FOR CHAPTER IL

Since the only subject treated in this chapter is the simple electromagnetic
theory of light, the development of which by more advanced analytical
methods is given in every modern text-book of optics, it is unnecessary
to give detailed references.
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PARP*TY

THE ELECTRON THEORY. DEDUCTIVE METHODS.

CHAPTER IIL
THE DIELECTRIC CONSTANT AND THE REFRACTIVE INDEX.

1. Ir there be brought near to a charged body 4 a rod
Electric composed of material of which the dielectric constant
L i is different from that of the medium surrounding 4,
the phenomena of electric induction are observed. The ends of
the rod near to and remote from the charged body appear to carry
respectively charges of the opposite.and of the same sign as that
upon A. If the rod is made of conducting material it can be
charged permanently ‘by induction’: on cutting the rod at any
point between its two ends and removing it from the neighbour-
hood of A4 the separated fragments are found to retain the charges
which they appeared to carry under the influence of the charge
on A. But, if the rod is made of insulating material, the
separated fragments will be without charge at whatever point the
rod be cut.

The earliest theories of the nature of electricity—the ‘fluid’
theories for example—offered an obvious explanation of these
observations. The neutral rod is supposed to contain equal
quantities of electricity of opposite sign which normally counter-
balance each other exactly. But when the body is brought into
the neighbourhood of a charged body, the electricity on that body
attracts that one of the two fluids contained in the neutral body
which is of opposite sign, and repels that which is of the same



48 THE ELECTRON THEORY [PART 11

sign. But no clear account of the difference in physical constitu-
tion which distinguishes a conducting from an insulating material
could be offered. A well-known hypothesis connected with the
name of Mosotti suggested that a substance having a dielectric
constant greater than that of a vacuum consists of conducting
molecules immersed in a perfectly insulating medium : but such a
view emphasises rather than removes the distinction between con-
ductor and insulator. Moreover it is perfectly incapable of offering
any solution of the immediate problem before us—the explanation
of the observed relation between the dielectric constant and the
refractive index.

2. The hypothesis that was to lead to a complete explanation
of that relation was first made—or at any rate first
iy podnsis. utilized—by H. A. Lorentz, the great Dutch physicist,
72 in a memoir published in 1878. Iorentz assumed
that the electricity of opposite signs, whether in a charged or
in a neutral body, is not distributed continuously through the
body as supposed by the two fluid theory, but is concentrated on
a large number of discrete particles scattered through the body ;
further he assumed that all these particles bear charges of the same
magnitude but of either sign. A body is charged or uncharged
according as it contains unequal or equal numbers of particles of
opposite sign.

The charge on one of these particles is an ‘atom of electricity,’
for, since the particles cannot be subdivided, no submultiple of that
charge can take part in any change. The idea of such an atom of
electricity was not new to physics: it had been employed by several
earlier writers, including Maxwell. We noted in Chap. I. that
Faraday’s theory leads to the conception of such an atom, the
charge on the end of a single tube, but the strongest support for
the hypothesis comes from observations made by the same great
philosopher upon electrolytic conduction.

The proportionality of the quantity of electricity which has
passed through an electrolyte and the mass of any element
liberated at an electrode indicates that all atoms of the same
element must carry the same charge: the examination of the
masses of different elements liberated by the same quantity of
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electricity shows that the magnitudes of the charges upon the
atoms of different elements bear a simple relation to each other—
they are all either equal to, or a small integral multiple of, the
charge carried by an atom of hydrogen. This charge carried by
an atom of hydrogen, when in the form of an electrolytic ion, is the
smallest charge which can take part in electrolytic conduction: it
is the electrolytic ‘atom of electricity. The magnitude of this charge
has been estimated from several sources of evidence that will concern
us later. The most probable value is 3'4 x 107 electrostatic C.G.s.
units : this quantity of electricity will be represented by the
symbol e.

In his earliest memoir Lorentz did not state explicitly that he
regarded the charge on one of his hypothetical particles as identical
with the electrolytic atom of electricity: he made no supposition
concerning the magnitude of that charge for his theory was not
applied immediately to numerical calculations. But as soon as
the question was raised, the answer was obvious: the charge on
each of these particles is the quantity e. Johnstone Stoney had
suggested the use of the word ‘electron’ to denote the ‘atom of
electricity : when the importance of Lorentz’ theory was recognized,
the word was transferred to denote one of his charged particles
carrying an ‘atom of electricity.” In a later chapter we shall
have to add a further connotation to the term electron, but for the
present we will use it to indicate one of the hypothetical charged
particles of Lorentz.

3. On this view a neutral body is one which contains equal
numbers of oppositely charged electrons: a charged

Distinction 1 1 i
el body is one which contains an excess of electrons of

conductor 224 one sign. The forces acting on the electrons in a

neutral body, due to their mutual attractions and
repulsions, depend on many factors which cannot be taken into
account at present. We will consider only two simple cases:—(1)
when the mutual actions neutralise each other and the electrons
are free to move without restraining forces, and (2) when each
electron is attached to one of opposite sign by a force which varies
directly as the distance between the electrons.
In the first case, if the body be placed in an electric field, the

C. E. T. . 4
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electrons of opposite sign move to opposite ends of the body, until
the number of Faraday tubes connecting them is equal at each
point to the number of ¢ unlike’ tubes of the external field. The
electric intensity of the field is then neutralised at all points inside
the body and further action ceases. By cutting the body at any
cross section and separating the fragments they will be found to be
charged. Such a body wn which the electrons are free to move
behaves as a conductor in electrostatic experiments.

In the second case, the separation of the electrons will be
opposed by the restraining force between opposite pairs, and it will
cease, not when the electric intensity in the body is zero, but when
the force on any electron due to the external field is equal and
opposite to that due to the attraction of the attached electron: the
body behaves as a dielectric with a constant greater than 1. It
might seem at first sight that, since the electrons of opposite sign
are separated to a finite distance, it must be possible by choosing
suitably the plane of section to divide the body into two oppositely
charged portions. But it must be remembered that there is a limit
to our powers of mechanical division : we cannot divide a molecule.
If the pair of electrons are contained within the same molecule and
are not dragged out of that molecule by the external field, no process
of mechanical division can separate them and, wherever the section
of the body be made, the two fragments will be neutral. In a
daelectric®, then, we must imagine that the electrons are contained
within the molecules and cannot be dragged out of them by an
external electric field.

4. A simple calculation enables us to establish a relation
between the dielectric constant and the circumstances

s e of the electrons contained in it.
Pepst s Let a slab of the dielectric be placed in a uniform
field of electric polarisation ¥ in a direction from left to right
perpendicular to the face of the slab. Let the electric intensity
in the slab, when equilibrium is reached, be X : then the action

1 Of course the distinction between a conductor and aninsulator is quite arbitrary,
for bodies can be found having any conductivity intermediate between those of silver
and sulphur. But it is important for electrostatics. In the next chapter we shall
consider more closely the nature of conductivity.
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of the external field will cause the electrons of opposite sign in the
slab to be displaced relatively to each other along the direction of
the external field. Let the force of attraction between connected
pairs of electrons be fa, where z is the distarice between the electrons.
Equilibrium will be reached when the relative displacement of the
electrons is such that this restoring force is equal and opposite to
the force exerted on the electrons by the electric intensity in the
slab, 7.e. when

Let IV be the number of electrons of either sign in unit volume
of the slab; this quantity will be termed the concentration of the
electrons; let A be the area of the faces of the slab. Before the
external field acted, the electrons of opposite sign were distributed
uniformly through the slab: by its action all the negative electrons
have been displaced a distance x# to the left relatively to the posi-
tive electrons. Consequently there will be a layer of thickness z,
covering the left face of the slab, which contains only negative
electrons, and there will be a similar layer on the right side of the
slab containing only positive electrons. The charges on these
layers will be Az x N x (—¢€) and Az x N x (+ ¢) respectively, and
they are equivalent to charges of surface density F Nawe.

The electric intensity in the slab is made up of two parts: (1)
that due to the external Faraday tubes and (2) that due to these
induced surface charges. The medium surrounding the electrons
is, of course, supposed to have a dielectric constant 1, for it is the
deviations from this value due to the presence of material bodies
that we are investigating. Since the electric polarisation of the
external field is F, the part of the electric intensity (1) will be
47 F in a direction from left to right. A well-known electrostatic
proposition states that the electric intensity in the space between
parallel opposite surface charges of denslty ¢ is 4aro: consequently
the part of the electric intensity (2) is 47 Nwe and is directed from
right to left. The whole electric intensity in the slab is given by

X =47F — 4w Noe=4mwF — 47 Ne. TR (2),

J
hence AmrF=X (1 + 4’”;%2) ................. S0 LN
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But the dielectric constant of a body is defined by the
statement that the electric intensity in that body due to a

polarisation D is 4—”—12 Consequently if K is the dielectric

K
constant of the slab containing the electrons
2
K=1 +4”;V Bl vl Antimn, S (4).

We have then interpreted the dielectric constant in terms of
the number and properties of the electrons in the medium. Since
we do not know anything yet about these electrons from other
sources, it is impossible to test the result directly. But an indirect
test is available. If the dielectric is a gas, in which the molecules
are so far apart that they exert no appreciable action on one
another except in collision, the only quantity which will vary with
the density of the gas is N. N will be simply proportional to
the density; for an increase in the density of the gas means a
proportional increase of the number of atoms in unit volume.
The quantities e and f do not depend on the density, and hence
we may write K =1+ ad, where a is a constant given by

The experiments of Boltzmann have shown that this relation
holds for gases with great accuracy.

Formula (5) cannot be applied to substances of which the
density is so great that the molecules are sufficiently near to exert
appreciable forces upon one another. For the restraining force fx
on an electron is made up of two parts :

(1) the part due to the action of electrons in the same
molecule: we will call this f'a.

(2) the part due to the action of the electrons in other
molecules. If the simplest assumptions are made as to the
distribution of the molecules and the electrons in them, it appears

that this part amounts to —%Nem. Since N is proportional to

the density, part (2) depends on the density while (1) is indepen-
dent of it. :
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Since fomfo-2New .oocovrecrrrenrrinn 6),
we obtain from (4) K=—— i (M),
, 4
- Ne
3
K-1 d4xNe
therefore T2 s {2,/ PpR et et gy B0 (8),

where B is a constant, since N is proportional to d and e, f” are
constants.

Table IIL. shows how far this relation agrees with that found
experimentally for the change of the dielectric constant with the
change of density due to rise of temperature.

TABLE IIL
d K (observed) K (calculated)

Water

09971 757

09954 737 72:6

09988 787 79-2

09997 80-2 81-2

1-0000 823 818
Benzol

0-883 2:336

0841 2:243 2:246
Alcohol

08009 257

0-8129 275 296

It should be noted that both formulae (5) and (8) can:be
deduced equally well from other hypotheses concerning the
physical nature of the dielectric constant ; for instance, from that
of Mosotti. As yet we have found no evidence which supports
Lorentz’ theory rather than any other: but, as soon as we turn
our attention to the refractive index, the superiority of the
electronic hypothesis is apparent.

5. When the light wave falls on an insulator and the periodic

: electric intensity in its wave front acts upon the
Calculation of 5 o 4 .

the _ refractive electrons contained in it, these electrons will be set

: into motion. The characteristics of that motion will

be determined by two factors—the restraining force fx acting on
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the electrons and the mass of the electrons. Hitherto nothing
has been said or implied about the mass of the electrons: we will
assume henceforward that the electrons possess mass, but we will
leave open for the present the question whether they all possess the
same mass. This assumption is the basis of our whole theory of
the relation of light to material media.

The calculation of the refractive index on this assumption
requires merely the application of well-known results in the
dynamics of vibrations. These results will be stated without
proof: any reader to whom they are not familiar will find an
excellent elementary treatment of the subject in Poynting and
Thomson’s Sound.

It is known that, if a particle of mass m, subject to an attraction
pux towards a centre of force which varies directly as its distance
from that centre, be disturbed from its position of equilibrium, it
will execute a simple harmonic vibration of which the period p is

given by
.
m
=2 e R AR L e P 9);
P 771\/“ 9

p is termed the ‘natural’ or ‘free’ period of vibration of the
particle. But if the particle, in place of being merely disturbed,
is acted upon by a periodi¢ force with a period 7' it will execute
¢ forced vibrations,” not in its own period, but in the period of the
force. It can be shown that if the periodic force P varies
harmonically so that it can be represented by

P=P°sing;,—r(t+a),

the displacement of the particle in the forced vibration will be
represented by?

L9
—Posm—;,r(t+ a)

) = —
47°m (Z% — Tl—,‘,)

1 The expression given in Poynting and Thomson’s Sound, Chap. IV., is incotrect
in sign.
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Now the electrons in the molecule possess a mass m, and they
are subject to a force fr varying directly as the distance from a
centre : accordingly they have a free period of vibration p where

p=2m 1}’ ........................ (11).

When a light wave of period 7' falls on such electrons they will
be subject to a periodic force eX, or

eX, sin 2—; t+ B),

where X is the electric intensity at a point inside the medium
containing the electrons. They will be set into forced vibrations
of period 7, and their displacement « at any time will be given by

eX, sin 2—17: t+B)
L= e e (12).

1 1
2 I
4 m( 3 T”)

In the last paragraph we saw that, if the electrons in the body
were displaced a distance # when the medium is under the action
of an external field of electric polarisation F, the electric intensity
X 1n the interior of the slab is related to the external polarisation
by the relation

X=4nwF —4nlNex...cococvvvvnenene... (13).
Accordingly, if the polarisation D in the incident light wave is
given by

D= D,sin —-(t+;8)

we must have
X sin = T 7 (t+ B) = 47D, sin T 7 (¢+8)
2 2
bR oy 29 Y gy 2014
4a°m (1 = "1— ) %
p T
and 47D, = X, 411 —Nezp_zj}

2
m (1-———E

Tz
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But the polarisation and the electric intensity in the wave
front of the light wave must be connected by the equation

_4nD,
_¥D,

Nep?
Tm (1 - Z;;)

Since the wave is propagated with & velocity%, the
7

X,

Thus K=1+4

_refractive index n of the medium is given by n=vF,
Ne2p2

'n'm(l - g—;)

or =1+

6. Perhaps a little further examination is required to make
A the foregoing calculation quite convincing, for it might
insnes - be doubted whether the quantity which has been

introduced as the dielectric constant is identical
with that which was used in calculating the velocity of propagation,
and further, whether the value of x may not be changed by the
presence of the electrons in the material. If we turn back to p. 30
where the velocity of propagation was deduced, any such difficulties
will vanish. The dielectric constant was introduced in estimating
the tension of the Faraday tubes, which depends on the electric
intensity in the field: if the arguments advanced be analysed, it
will be seen that it has precisely the same physical significance
as the quantity K which is calculated above; it is defined by the
relation

electric intensity = % x electric polarisation.

On the other hand u occurs in the expression for the mass of
the tubes. We have already concluded (p.23) that while the
electrostatic properties of Faraday tubes—including their tension
—may be influenced by the presence in their neighbourhood of
other tubes belonging to independent systems, the magnetic
properties of the tubes, which are determined by their motion,
will be uninfluenced by the presence of other tubes which are
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not in motion relative to them. The induced charges in the
dielectric will change the electric intensity, but it will be without
influence on the magnetic intensity.

We see then that the difference in the value of the dielectric
constant measured for steady fields and its value for the rapidly
varying field in light waves is due to the influence of the free
periods of vibration of the electrons. The direction of the electric
intensity changes so rapidly that the electrons cannot follow its
variations and fail to take up the same positions as they would
occupy if a steady electric intensity of the same magnitude were
applied. If we make the period of the incident light vibrations
very long compared to the free period of the electrons, formula
(16) becomes

L G A an

=1+ 4or ! since 27 «/
Y AT 8 1 vl

as might be expected the expression for K for such long period
vibrations is the same as that which was deduced previously for
steady fields.

It is interesting to consider the mechanism of reflection and
refraction of light at the inter-surface between two media in the
light of our hypothesis. The vibrations of the tubes along which
light is travelling set up vibrations in the electrons of the medium
through which they pass. Disturbances are set up in the
Faraday tubes attached to these electrons and new light vibra-
tions will be propagated along them. That part of the dis-
turbance which travels forward in the direction of the original
light combines with that light giving rise to the refracted ray:
while that portion which travels backwards emerges from the
medium as the reflected ray.

7. It will be observed that if 7, the period of the incident
Rt light, is equal to p, that of the free vibration of the
fﬁlﬁiﬁt‘izn. electrons, n? becomes infinite. The occurrence of

an infinite quantity in a physical equation always
means that some factor of importance has been neglected, and
that we must investigate the matter further,
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When any system whatever is acted upon by a force, the
period of which coincides with the period of free vibration of the
system, a forced vibration of very great amplitude is set up.
‘¢ Resonance '—as the occurrence of this large amplitude is called—
is of especial importance in the theory of sound and the con-
struction of musical instruments, but it is well illustrated by many
experiences of common life: there is no better example than a
swing. If a small impulse be given to the swing at the same
instant in successive vibrations, so that the period of the impulse
coincides with that of the swing, a large vibration can be set up in
the swing by a very small impulse. But the amplitude of the
resonant vibrations never becomes infinite, for the motion is
opposed by a frictional force which increases with the velocity of
the swing: the maximum amplitude, that can be attained is such
that the energy communicated by the impulse in each vibration is
equal to that lost in overcoming the frictional forces.

Now we have reasons for believing (Chap. VI.) that the motion
of electrons is opposed by forces which resemble frictional forees,
in so far that their magnitude increases with the speed of the
electron. When the period of the incident light is far removed
from that of the free vibrations of the electrons, the amplitude
and the maximum speed of their motion is comparatively small
and this frictional force is of little importance: but when the
amplitude of vibration becomes large, owing to resonance, the
effects of these forces mnst be taken into account. The amplitude
of the vibration will not be fixed by the considerations which
led to the deduction of (10), but will continue to increase until
the energy communicated to the electron in each vibration by
the electric intensity in the light is equal to the amount of energy
spent in overcoming the frictional forces. The electrons behave
as if the restraining force which we have supposed to act on
them were removed : they move like the electrons in a conductor
(Chap. VI). They will follow the vibrations of the tubes and
neutralise the electric intensity due to them as the electrons
in a conductor neutralise the electric intensity in a steady field.
But we saw (p. 44) that a body in which there can be no electric
intensity does not transmit light incident upon it but reflects it;
the substance will act as an almost perfect reflector for light, the
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period of which s the same as that of the free vibration of its
electrons. The reflecting power will not be quite perfect, because
the frictional forces on the electrons prevent them from following
the vibrations of the tubes perfectly: a small fraction of the
light will travel into the substance, but it will be absorbed
rapidly and its energy used to maintain the vibration of the
electrons against the frictional forces.

Instances of such ‘selective absorption’ for visible light are
very common: every transparent coloured body shows such
absorption. A -solution of potassium permanganate is transparent
for most visible light but shows strong absorption for green light.
In a colourless body the region of absorption lies outside the visible
spectrum : glass and water are transparent for all visible light but
the former absorbs strongly light of very short wave length (ultra-
violet light), the former absorbs strongly light of very long wave
length (ultra-red). We conclude, therefore, that there are electrons
in the permanganate which have free periods identical with that
of green light, that glass contains electrons with free periods in
the ultra-violet, that water contains electrons which have periods
in the ultra-red. The study of the selective absorption of a sub-
stance gives us information as to the period of free vibration of the
electrons contained in tt.

Formula (16) for the refractive index must only be applied to
light, for which the medium considered is transparent: it becomes
inaccurate when applied to light which falls within an ‘absorption
band’ of the medium. It would be possible, by making suitable
assumptions about the nature of the frictional forces which impede
the motion of the electrons, to deduce a corrected formula which
would be correct for light of all wave lengths: but it would serve
no useful purpose. We shall see that the formula which has been
given already represents with qualitative accuracy all the
phenomena of dispersion: to attain to quantitative accuracy
we should require to know the exact relation between the speed
of the electron and the frictional forces acting on it. Such
information we do not possess: indeed it seems probable that the
relation is so complex that if it were introduced into our equations
they would no longer be capable of exact solution.
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8. The hypothesis that the dispersion of a substance, or the
g variation of its refractive index with the period of
ellmeyer’s e ¥ 5 e s

inperaion the incident light, is due to the existence of natural

periods of vibration in the substance is not peculiar

to the electronic hypothesis of Lorentz: it had been introduced

previously by Maxwell and developed by Sellmeyer, who showed

that the connection of the refractive index with the wave length
should be given by a formula of the form

Bz

B L vy SR

where B is a constant, A the wave length of the incident light and
A\i the wave length (4n vacuo) of light, the period of which is the
same as that of the natural period of the substance.

An extension of this formula, associated with the names of
Helmholtz and Ketteler, takes into account the possibility of more
than one natural period :

B A? B\ B\

n—B+ 7\2+>\2—)\q2+>\,2—7\32 ......... (19),

which we may write
Xﬂ

=B +3575 g

..................... (20).

It would be no test of the accuracy of this formula to
determine experimentally the values of n for various values of A
over a range for which the substance had no absorption band:
for if we have enough undetermined constants A, A, ete. we can
always find values for them which make any reasonable formula
agree with the observed values within the limit of experimental
error. The only way to test the formula is to determine first the
values of A, A, ele, t.e. the wave lengths of light which has the
same period as the free vibrations of the substance; the other
constants B must then be determined from the observed variation
of the refractive index with the wave length, but unless the values
of the periods of free vibration have been chosen correctly, it will
be impossible to fit the formula to the observations.

Such a test has been.applied to the formula by Rubens
working in conjunction with Aschkinass and Nichols. In order to



CH. III] THE DISPERSION OF LIGHT 61

determine the wave length of the light which has the same period
as the free vibrations of the electrons, he made use of the metallic
reflection described in §7. If a beam of light containing rays of
all wave lengths falls upon a medium such as we considered, which
is transparent for most vibrations but exhibits selective absorption,
all the rays will be transmitted with very slight reflection except
those the period of which coincides with the free periods of the
electrons: these rays will be reflected with little loss. If the
beam is subjected to several such reflections at the surface of the
medium, the resulting beam will consist almost entirely of vibrations
for which the medium exhibits selective absorption. Measurements
of the wave length of the vibrations in this reflected beam—‘rest-
strahlen’ as they were called by Rubens and Nichols—give directly
the wave length in air of the vibrations which have the same period
as the free vibrations of the electrons contained in the medium :
that is, they will give us the quantities A.

In this manner Rubens and Nichols showed that quartz (the
‘ordinary ray’) has selective absorption for vibrations of wave
length 885 x 10~® em. and 2075 x 107° cm., far away in the
ultra-red.

Hence A, =885x10—° and A, = 2075 x 10—,

It is well known that quartz absorbs also ultra-violet light of very
short wave length and that, consequently, there must be a
quantity Ax corresponding to this part of the spectrum. The
exact position of this absorption band could not be measured by
the same methods as were employed for the infra-red bands by
reason of experimental difficulties: it was deduced from an
application to measurements of the dispersion for short wave
lengths of a simple Sellmeyer formula (18) suitable for a single
free period. The natural periods in -the ultra-red were so far
removed from the period of this light that they had no influence
on the dispersion in this region, and the observations were found
to agree well with the presence of an absorption band at

1:0309 x 10—° cm.
Thus A= 10309 x 10—,
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The constants By were calculated from the observed dispersion and
the following values found : '

B, =135428
B, = 100254
B, = 056549
B, = 165646.

On comparing the value for the refractive index given by formula
(19) with the use of these constants the results given in Table IV.
were obtained. It will be seen that the agreement is remarkably
good and justifies entirely the use of the Ketteler-Helmholtz
formula.

TABLE 1V,
A% 10° (cm.) n (obs.) n (cale.)
1-98 1-65070 1:65077
29 § 5048 L 50pap } visible spectrum
534 154663 1-5466
NG1T 16271 1:5271
260 1-5099 15111
367 14790 1-4861
645 1-274 1234
5600 218 2:14

9. At the same time it confirms the accuracy of the formula
(16) which we deduced from our electronic hypothesis.
Comparison % A g shctds
§5.T Decrpwich In deducing it we only considered the possibility of
the presence of one kind of electron: if there are
several kinds having different masses, different values of f and
therefore different free periods p, it is easily seen that

Neﬂ 2 lVe’ 2
n?=14 D e P2 TR T
Tm, (1 - T‘) TN, (1 ~7s)
2 2 .
or =143 i SR s el (241)8
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Now pi =27 \/ ?—k, and if A is the wave length wn vacuo of
k
light with the period py

A= Vpk ........................... (22),
also P N A Pragt Al (23).
Nepd .,
e ™y

Hence nw=1+3 g e (24),

N YD

epit Tmy
2 1=

or =145 roos +3 TS e (25).

Now by a simple transformation we can write the Ketteler-
Helmholtz formula (19)

M
n?=b+ 2 o w RO D S (26),
where =B, + Bl + B,......
and Mk = Bk . 7\,1,2.
Comparing (25) and (26) we see that they are identical if we
put 1+ 3% AL p" ¥ s it ca Tl (1),
NE Pk
and S NG M B R (28).

From Rubens’ measurements we can obtain the values of * and
M;, which are expressed by (27) and (28) in terms of the propertles
of the electrons. We find for quartz
b*=458 M,=-0106 M,=44224 M,="71355.

It will be observed that if we put A=< in (26) we obtain
n? =b? hence b? is the refractive index for infinitely long waves,
that is those of which the period is infinite. Hence we must have
*= K, where K is the dielectric constant for steady fields. The
same conclusion arises directly out of (27), for putting

pk=27\/7ﬂc,
Je

we have B=1+2% @-&

Ji
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This is the value that would have been obtained for K in (4) if
more than one kind of electron had been taken into account.

The value of b? is not known for many substances, but in such
cases as it has been ascertained, it agrees well with K. Thus we

find

b2 K
Flint-glass 677 67-91 -
Fluor spar 609 67-69
Quartz 4'58 455 -473
Rock salt : 518 581 —-6-29
Sylvine . 4-55 494
Again we see from (27) and (28) that
M N
LeesDIEEsimi 0, il geses, .00 L
b2 — oW (29)

M :

Testing this relation for quartz we find »*—1 = 3-58, E = 322,

Hence the expression on the left of (29) becomes + 0r 36. It is
found that for all substances this quantity has a small positive
value—a result the meaning and importance of which will be
discussed in a later chapter (Part IV.).

Another dispersion formula which has been used for expressing
empirically the relation between the refractive index and the
period T of the incident light is the following : —

B C

T e
Let us put (21) in a form suitable for comparison with this
formula.

The electrons in the refracting medium may be divided into
two classes, those which have free periods longer, and those which
have free periods shorter than that of the incident light: the
former will be denoted by the suffix r, the latter by the suffix v.
We shall suppose that the period of the refracted light is so far
removed from any free period in the medium that all the quantities

Sl 7 Py S (30).

p + and 2 may be considered small compared to 1. Then we have

from (21)

Sl HE e S e (31).

fv< [2> fr( T2) p\
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Expanding in powers of }%’ and . and neglecting powers higher

than the third we have ‘
4 N,e¢ T?

4ar N, 4 Nye*  py’ .
2=14+3 = 3 L 2 . —=...(32).
TSRS TRt L A
Comparing (30) and (32)
4nN,e 1 ‘ 4ar N, é?
A'=3"7FT"—.=, A=1+% LA
I ot ! Jo
Now by (4) the dielectric constant K is given by
, 4ar N, € 47 N .
K=1+% —+ 3 .
Jo Jr
Hence oy siimdliot botuiwoluy s (33),
_ S
and pi= I—{Z,il- ........................ (34).

4 is the part of n? which is independent of the period of the light:
and since, for a substance which shows ‘normal dispersion’ (see
next paragraph), the variation of n with I' over the range of the
visible spectrum is not a large fraction of the values of n within
this range, A will be the most important term of the sum (30).
Hence A will be nearly equal to the values of the refractive index
given in Chap. I1.Table I.,and we see from (33) that the discrepancies
there noted between the values of K and n*are due to the presence in
the medium of electrons having free periods in the ultra-red part of
the spectrum. The conclusion might have been anticipated on
general grounds, for since these periods are long compared with
that of the visible light vibrations, but are short compared with that
of the electrostatic fields used in the measurement of K, they
will influence the values of n? and K in opposite directions: while
free periods in the ultra-violet, which are short compared with the
periods both of visible light and of the electrostatic fields, influence
both quantities in the same direction.

Further, we can use (33) and (34) to determine from the dis-
crepancy between the values of K and n? the free period in the

C. B:. T, 5
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ultra-red. For water, which shows the greatest discrepancy of any
substance measured,

K=76 A=177 A4A'=01152'x 10%;
)I\;” , where A, is the wave length in vacuo of light having the

same period as the ultra-red absorption band.
7423

gl 20 5 28
Hence A2=9 x 10 01152><10
=58 x 107% cms.,
and A =261 x 108 cms.

[The wave length of yellow light is about 5 x 10~ cms.]

As a matter of fact water has been shown to possess several
absorption bands in the ultra-red, so that the value which has
just been calculated cannot be expected to be more than an
average, agreeing in order of magnitude with the wave lengths
determined by experiment. Paschen has found that the wave
length corresponding to the most marked absorption band is
4 x 1073, which is not very far from the value found above,

10. The general nature of the relation between the refractive
index and the wave length of the incident light

Normal and ) . .
foatpitou denoted by formula 21 is worthy of a brief notice.
It will be observed that m increases as 7T decreases,
provided that 7' does not become equal to one of the quantities
pr.  As the value of T decreases past one of these values, the

2N 5
quantity ( - %) “changes from a very large positive value to a

very large negative value and the refractive index undergoes a
large decrease. Of course, we have noted that, when 7' is very
near to pg, the formula ceases to hold accurately, but it still
represents roughly the nature of the variation of n: that quantity
will not change from an infinite positive value to an infinite
negative value, but we may be certain that it will change from a
large to a small value. The variation of the refractive index with
the wave length of the incident light must resemble that repre-
sented in fig. 10, where the abscissae ON,, ON, represent wave
lengths corresponding to the free periods of the electrons.
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Such variations are actually observed. For colourless sub-
stances, that is those which have no absorption band within the
visible spectrum, the refractive index increases with decreasing

|

gl
=
=
*EI Py
—
s
=
- N, TWave length - Ny

Fig. 10.

wave length throughout that range. This so-called ‘normal dis-
persion’ is characteristic of a substance over a range in which it
has no absorption band. Substances, such as fluorescein, which
have an absorption band in the visible spectrum exhibit ‘ anomalous
dispersion’: the refractive index increases regularly with decreasing
wave length on either side of the band, but undergoes a large
decrease as the wave length of the incident light passes through
the band. Thus if a spectrum is formed on a screen by means of
a prism of fluorescein, which has an absorption band in the green,
the colours from the red to the green will be arranged in their
normal order. But the rays which are of a wave length just
shorter than those corresponding to the absorption band will be
refracted less than the red rays, and will appear on the side of
the red remote from the rest of the green rays. As the wave
length is decreased still further, the refractive index increases
rapidly : some of the blue-green rays will overlap the red rays and
the violet rays will appear in their normal position on the more
refrangible side of the red.

It is to be noted that normal and anomalous dispersion are not
entirely different phenomena each of which is characteristic of
certain bodies : they are different aspects of the same phenomenon,

5—2
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All substances show ‘normal’ dispersion in some parts of the
spectrum and ‘anomalous’ dispersion in others: the difference
between various substances, which has given rise to the use of the
distinguishing terms, lies in the fact that for some substances the
part of the spectrum in which anomalous dispersion occurs lies
within, in others without, the visible spectrum.

Several recent memoirs by R. W. Wood of Baltimore have
increased considerably our knowledge of anomalous dispersion:
the ingenuity and resource displayed by the author in meeting
the appalling difficulties which appear at every turn render his
experiments some of the most interesting examples of physical
research published. The refractive index of sodium vapour has
been measured throughout the absorption band of that substance
and the results obtained are in entire concordance with those
predicted by theory.

11. In the present state of our knowledge a detailed discussion

7 2L of the optical properties of crystals cannot lead to
e Optical 5 3

Rropertiesof  any important results: only the barest outline of an
explanation of those properties can be given.

In a doubly-refracting crystal light of the same wave length
travelling in the same direction through the crystal is propagated
with a different velocity according as it is polarised in or
perpendicular to a certain plane which is determined by the form
of the crystal: that is, according as the electric intensity in the
wave front is perpendicular to or in that plane. Now the motion
of the electrons in the refracting medium coincides in direction
with the electric intensity in the light wave, and the velocity of
the light in the medium is determined by the free periods of
vibration of the electrons. Accordingly we must conclude that in
a doubly refracting medium the electrons have different periods of
free vibration for different directions of motion relative to the
crystallographic axes of the crystal. But of what determines this
difference in period we have at present no certain knowledge : it
must be related in some way to the structure of the molecule in
which the electrons are contained, but our information concerning
that structure is too fragmentary for any speculations on the
subject to be useful.
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The rotation of the plane of polarisation which occurs when
light is propagated along the axis of quartz and other crystals is
still more mysterious. Drude has attempted to calculate the
relation that must hold between the forces acting on an electron
and the direction of its motion in order that such a rotation should
occur, but at present the results of his calculations remain without
any definite physical meaning.

12. In metals there are present, according to the hypothesis
Disbersion of p. 50, electrons which are subject to no restraining
Ryt oe force tending to resist a displacement: the electrons
when disturbed will not vibrate about positions of equilibrium.
If their motion be not impeded by a frictional resistance, they will
move under the periodic electric intensity in the light wave, as
they move under the steady electrostatic field considered in § 4:
the electric intensity in the metal is neutralised completely, the
light cannot travel forward through the conductor but is reflected
at its surface. But, since the metals of our experience do not
behave as perfect reflectors, we must. suppose that the motion of
the electrons is impeded by a frictional resistance: the neutralisa-
tion of the electric intensity is not quite complete: a small fraction
of the incident light travels into the medium, but its energy is
absorbed speedily in maintaining the vibrations of the electrons.

The frictional resistance increases with the velocity of the
electrons and, therefore, with the rapidity of their vibrations.
We find accordingly that metals reflect light of long wave length
better than light of short wave length. Silver reflects very nearly
all of the long heat waves investigated by Rubens and Nichols,
absorbing only about } °/,, but it absorbs about 25°/, of the
shortest ultra-violet rays on which measurements can be made
conveniently.

But in some metals the reflecting power does not simply
decrease with the wave length of the incident light: there is a
distinct selective absorption: such metals are those which show
a surface colour—copper and gold for example. A leaf of gold so
thin as to be transparent appears green by transmitted light—the
colour complementary to its red surface colour: the substance
has a strong absorption band in the red. In transparent bodies



»

70 THE ELECTRON THEORY [PART 11

we attributed the presence of these absorption bands to the action
of electrons having definite free periods, and there is no reason
why the explanation should not be extended to metals. These
‘bound’ electrons, as they may be called in distinetion to the
‘free’ electrons which are subject to no restraining force, take
no part in electrostatic actions, or, as we shall see in the next
chapter, in the conduction of currents: the number of free
electrons is always sufficient to neutralise the intensity of an
external field within the metal, and there is no residual force
acting on the bound electrons.

It is only in optical phenomena that the actlon of the bound
electrons appear, and it must be taken into account in calculating
the optical constants of the metal in terms of the properties of its
electrons. This calculation has been performed by Drude, but we
shall not attempt to reproduce it here: for without further
knowledge concerning the nature of the frictional forces which
impede the motion of the free electrons, such as we shall attempt
to obtain in the next chapter, the necessary hypotheses must
appear somewhat arbitrary. Drude assumes that an electron
travelling with a velocity v is subject to a retarding force v, and
he finds the following relation between the refractive index n of
the metal, its absorption coefficient a and the period T of the
incident light:

2
Nkl 4 7
n(l-a’)=1+ EM— 4SS — — (35),
o Pﬁ) T_k>2+ 2metmy’
m(1-T5) ()« CF)
LY
o= TY — £ g RTINS (36),

rE\: 2memy,
(&) (=)
where the suffix % denotes the various groups of bound electrons
and the suffix &’ the groups of free electrons.

Measurements on the optical properties of metals are so
difficult that the necessary facts are not available for subjecting

this formula to tests of the same nature as those applied in § 9:
such comparison of experiment with theory as is possible will be
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postponed until we have investigated further the nature of the
conductivity of metals and other conductors of electricity.

13. We are not yet in a position to consider fully the mechanism
The emission  Of the emission of light, but our investigations have
i led to one conclusion so obvious that it is desirable
to notice it.

The light emitted by a body constitutes, in general, either a
continuous spectrum, containing rays of all wave lengths, or a
bright line spectrum, consisting of rays of a few definite wave
lengths. The former is emitted by the body under the action of
heat, the latter is never excited by heat alone. It is well known
that in many cases the light for which a body shows selective
absorption is identical with that for which it shows selective
emission, z.e. with the light that is found in the bright line spectrum
emitted by it. (This generalisation is not, as is sometimes thought,
universal and deducible from Kirchhoff’s law, for that principle
applies only to temperature radiation emitted under the action
of heat.) Now we have found that the selective absorption of a
body is conditioned by the free periods of its electrons, and that
the light which it absorbs has a period identical with that of its
free vibrations. It is unnecessary therefore to insist further on
the obvious conclusion that the bright line spectrum of a body
consists of light emitted by the free vibrations of its electrons.
The manner in which those electrons are excited into vibration
must be considered later, but it will be assumed henceforward as
indubitable that the spectrum of a body represents the radiation
set up by the vibrations of the electrons contained in it along
lines at right angles to the direction of propagation of the light.
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