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PUBLISHERS NOTE.

IT is scarcely five years since the original work of Pro-
fessor Gerard appeared, but in that time it has reached the
fourth edition in the French, and has been translated intc
the German., The work has evidently become a classic in
Europe ; and in view of this fact, and of the further consider-
ation that it occupies a place by itself in electrical literature,
the publishers have deemed it wise to bring out an Amer-
ican edition.

The original intention of the author was to produce a
work which, while avoiding on the one hand the shortcom-
ings of the more elementary works, would not, on the other
hand, be so difficult to read as to be only intelligible to the
favored few. How well he has succeeded in this intention
may best be judged by the favorable reception of the book
abroad.

The present work is a translation of the fourth French
edition by Mr. J. P. Duncan, under the supervision of Dr.
Louis Duncan of the Johns Hopkins University and pres-
ident of the American Institute of Electrical Engineers. All
parts of the work relating to the general subject of elec-
tricity have been retained, but the chapters on special sub-
jects, such as storage batteries, transformers, and other
electrical machinery, have been omitted for two reasons: first,
because the information contained in them is easily acces-

sible in other well-known works (which is not the case with
iii
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the parts that have been retained) ; and second, because the
descriptions of particular machinery and apparacus refer
almost exclusively to European practice, which is in some
cases quite different from American practice. Again, the
saving of space made by these omissions allows the publish-
ers to add much valuable new matter. There is a chapter
on hysteresis and molecular magnetic friction by Mr. Charles
P. Steinmetz, a well known authority on the subject. The
short section of the original work on units and dimensions
is replaced by a chapter written by Dr. Cary T. Hutchin-
son, which gives a comprehensive view of the theory. A
chapter on impedance by Dr.  A. E. Kennelly, is another
valuable addition to the work, as it makes plain those points
in the theory of alternating currents which give the average
student the most trouble.
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THERMO-ELEETRIC COUPLES.

INTRODUCTION.

UNITS OF MEASUREMENT.

A phenomenon is well known only wken it is possi-
ble to express it in numbers. (KELVIN.)

1. Fundamental Units.—All electrical actions are re-
ferred to forces, and are consequently expressed by the aid
of the three fundamental quantities, length, mass, and time.

To measure these quantities electricians have chosen the
centimetre, the gram, and the second as units,

The centimetre is approximately the billionth part of the
terrestrial quadrant ; rigorously speaking, it is the hundredth
part of the standard metre measured by Delambre and
Borda, and kept at the international conservatory at Sévres.

The gram represents about the mass of a cubic centi-
metre of distilled water at its maximum density. There is
also a standard kilogram at Seévres.

The second is the 86,400th part of the mean solar day.

These units, called fundamental, are represented by the
symbols [L], [#], [T].

The numerical value of a quantity is expressed by its ratio
to the unit chosen. A length measured by a number / will
have a concrete value equal to /[L]. If we adopt another
unit [L’], there will be a numerical value /, such that

L g

J[L'] = [[L], whence P
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We see, therefore, that the numerical value of a quantity
is in inverse ratio to the magnitude of the unit chosen.

2. Derived Units.—In order to express the various
physical quantities, arbitrary units might be chosen quite
independent of each other. This method, which was long
followed, presents no inconvenience when the measures are
relative, that is, when they are directly compared with their
units. But more often quantities are measured by units of
other kinds, making use of the inter-relations between the
different quantities. Such a system of measurement is called
absolute. For example, to measure a surface we do not com-
pare it directly with a standard area, but determine its linear
elements, by aid of the unit of length, and then apply the
relation existing between an area and its linear dimensions.

For a square s, with a side /, the relation is s = &2, If
= I,s = /B

The arbitrary factor £ which represents the area of a
square having unit side, may be put equal to 1. The unit
of area thus determined is the square whose sides are equal
to one centimetre; it is connected with one of the funda-
mental units, and for this reason is called the derived unit of
area.

In the same way the derived unit of volume is the cube
having sides of one centimetre.

We can thus define derived units for all the physical mag-
nitudes, getting rid of the arbitrary coefficients in the rela-
tions which unite these magnitudes together.

The system of units determined in this way is called by
the initials of the fundamental units chosen.

The C. G. S. system of units, adopted by electricians, has
as its basis the centimetre, the gram, and the second.

3. Example of a Derived Unit.—The velocity of a mov-
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ing body, traversing a path / in a time ¢, is given by the
equation

£ expresses the velocity ofa moving body traversing unit
length in unit time. This velocity is chosen as unity, thus
eliminating a factor inconvenient in calculation. This unit
is the velocity of one centimetre per second; it may be ex-
pressed in symbolic form

[LT-"]

4. Dimensions of a Derived Unit.—Such an expression,
which shows the dependence of the derived unit on the
fundamental units, exhibits the dimensions of the derived
unit. It enables us to follow the variation of the derived
unit when the fundamental units are changed. If, for ex-
ample, we measure the time in hours and the length in
metres, the derived unit of velocity will be [L'7’ -"] = 100
X 3600~ 1[L7-1], or the thirty-sixth part of the unit defined
above.

Every relation between physical quantities is independent
of the units chosen to measure it, therefore this relation
must be homogeneous with regard to the fundamental
units.

Thus the equation v = &/, in which v represents a veloc-
ity, / a length, and & an abstract number, is inconsistent,
for only the first member would vary with the unit of time.

5. Mechanical Derived Units.—Following the line of
reasoning used above, it is readily secen that the unit of an-
gular velocity is the velocity of a moving body which passes
over unit angle in unit time. As the unit angle or radian
(arc equal to the radius) is defined by a simple numerical
ratio, the dimensions of angular velocity reduce to [7~7].
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The wunit of acceleration is the acceleration by which the
velocity is increased by one unit per second.. Dimensions
[

The unit of quantity of movement (momentum) is the mo-
mentum of unit mass moving with unit velocity, Dimen-
sions [LMT ~1].

The wunit of force, which has received the name dyne, is
the force which, applied to unit mass, impresses upon it unit
acceleration. Dimensions [LM7T—"].

The ordinary unit of force is the weight of the gram,
that is, the force capable, in our latitude,* of impressing on
unit mass an acceleration approximately equal to 981 cm.
per second. The gram is consequently equal to 981
dynes.

The wnit of work, called erg, is the work done by unit
force on a body moving in the direction of its action over
unit length. Dimensions [L*M 7]

The ordinary unit of work is the kilogrammetre, which is
equal to 981 X 10° ergs, in our latitude.*

The wunit of power, or erg per second, is the power de-
veloped when unit work is done in unit time. Dimensions
el

The ordinary units of power are the cheval-vapeur (French
horse-power), which is equal to 75 X 981 X 10° = 736 X 10’
ergs per second, and the poncelet, defined by the Congress in
Mechanics, 1889, as equivalent to 100 kilogrammetres per
second, or g81 X 10’ ergs per second.

The unit of density is the density of a body which con-
tains unit mass in unit volume. Dimensions [L-*4/].

The unit of modulus of elasticity is the modulus of a body
which, supporting unit force per unit of section, receives

* Liege, lat. 50° 45’ approx.



UNITS OF MEASUREMENT. 5

an elongation equal to its original length. Dimensions
FREREVEL .

6. Principle of the Consetrvation of Energy.—Work ap-
plied to a system is capablegof various effects. It may be
used : (1) To increase the active energy of the masses, or, to
use Rankine’s expression, to develop kinetic energy, repre-
sented by the product of half the sum of the masses into the
square of their velocity. (2) To overcome the friction of
the system ; it was long believed that this effect represented
a loss of energy, but thermodynamics has shown that in
such a case there is generated an amount of heat equivalent
to the work expended. (3) To overcome molecular forces,
such as elasticity, chemical affinity ; or to overcome natural
forces, such as gravitation, magnetic attraction, etc. In this
case the work is stored up in the system in the form of po-
tential energy, which is again transformed into kinetic energy
or heat, when the system is abandoned to the reaction of
the forces concerned.

Let us suppose, for example, that we raise a weight or
stretch a spring which sets a clockwork in motion. The
potential energy given to the weight or spring is trans-
formed into kinetic energy when the mechanism is allowed
to operate, and this kinetic energy is itself reduced to heat
by the friction of the wheelwork.

The tendency of modern science is to refer these diverse
varieties of energy to a single one, kinetic energy ; calorific,
luminous, or electrical radiations, for example, which to us
seem potential forms of energy, might be reduced to special
modes of motion of the ez/er.

The study of physical phenomena has given us a natural
law of the highest importance. T7/e energy of a system is a
quantity which cannot be either increased or diminished by any
mutual action between the bodies whick compose the systeme.
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This law of the conservation of energy, together with that of
the conservation of matter, rules supreme in physical science.

From this principle it results that a system cannot of it-
self produce more than a limited quantity of external work,
whence the impossibility of perpetual motion.

The persistence and the indestructibility of energy make
it as much a physical entity as matter is, and give it a
leading place among the magnitudes considered in me-
chanics. Energy assumes indifferently a mechanical, elec-
trical, thermic, or chemical form. Experiment shows that
the two former are capable of being entirely transformed
into one of the two latter, but that only a portion of ther-
mic or chemical energy can be made to assume a mechan-
ical or electrical form.

In whatever form energy may be, it possesses a mechani-
cal equivalent; it is therefore homogeneous with work
[L*MT-*], and may be measured in mechanical units. It
follows that the C. G. S. unit of heat equals the erg.

One gram-degree, or lesser calorie (caloriegram), rep-
resents 4.2 X 10" C. G. S. units of heat.

The electrician has constantly occasion to apply the
principle of the conservation of energy, which we have just
defined, for the essential role of electricity is to serve as
agent for the transformation of energy. The energy of the
electric current is produced from the work done by chemi-
cal affinity in batteries, by using up heat in thermo-electric
couples, or by an absorption of mechanical power in
dynamos.

The energy of the current is, in its turn, transformed into
heat and light in the conductors and electric lamps; it is
capable of decomposing an electrolyte or of overcoming the
resistance offered to the motion of an electromotor.

The marvellous facility with which electricity lends itself
to the transmission and transformation of energy, and which
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justifies the increasing number of applications of this agent,
leads the electrician to compare phenomena of very diverse
kinds, the measurement of which demands such a system as
the C. G. S., embracing all;physical magnitudes.

v. Multiples and-Submultiples of the Units.—The use
of the units just described leads sometimes to very large or
very small numerical values. By way of abbreviation we
make use of multiples or submultiples designated by such
prefixes as kilo-, mega- (one million), milli-, micro- (one
millionth).

Thus, one megadyne = 10° dynes;
one microdyne = 10~° dynes.

8. Application of the Dimensions of Units.—The di-
mensions of the units are of use not only in verifying the
homogeneity of formulz, but they allow us, as Bertrand
has shown, to predict the form of a function when the physical
quantities which enter into it are known. Suppose, for ex-
ample, that experiment has shown that the velocity of prop-
agation of an undulatory movement in a medium depends on
the modulus of elasticity and the density of the medium.

Then the velocity v is a function of the elasticity ¢, and
the density &;

v = @e, d).

If we consider the dimensions of the quantities which
enter into this equation, we have

vLT~ = (e L7'MT *, dL*M).

As M is wanting in the first member, the homogeneity of
the function requires it to be eliminated from the second,
which is obtained by adopting the form
eL“MT") fio ¢(

gﬂ -3
i) = G

wLT":qb( 4



8 INTRODUCTION.

To bring L and 7 to the same degree in both members,
it is clear that the function must be a radical of the second
degree. From what precedes we conclude that v is a linear
function of

And in fact experiment shows that the relation sought is

3 SEVRIAES
v = 2

GENERAL THEOREMS RELATIVE TO CENTRAL FORCES.

9. Definitions.—Forces are called cenzral whose direction
passes through definite points, called centres of force, and
whose intensity is a function of the distance between those
points.

The Newtonian central forces, such as gravitation, electric
and magnetic attraction, are inversely proportional to the
square of the distance between the acting centres.

In studying the effects of these forces, it is a matter of
indifference whether they emanate from the centres them-
selves or have their seat in the medium which separates
these centres. Thus, to account for the universal attrac-
tion of matter, the simplest way is to assume that the
attractive force is a property of all ponderable bodies, which
act upon each other at a distance. This hypothesis has
the advantage -of lending itself readily to calculation. It
has sufficed as a basis for celestial mechanics.

Nevertheless it does not satisfy the intellect. The ordi-
nary methods used in the transmission of forces show us the
necessity of an intermediary, such as a tense cord, air or
water under pressure, and this permits us at least to limit to
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intermolecular space the idea of action at a distance.
Again, the direct action of one body on another takes for
granted an instantaneous effect. Now physical phenomena,
even the most rapid, have a finite time of propagation.

To account for observed phenomena, physicists have been
led to suppose the universe filled with an ocean of et/er,
whose waves, representing heat, light, and electrical energy,
are propagated with a velocity of 3 X 10" centimetres per
second, so that they take about eight minutes to reach us
from the sun.

However, for simplicity of treatment, we shall admit pro-
vistonally that central forces are due to the bodies from
which they seem to emanate, or to an agent diffused through
these bodies.

In the case of gravity the observed actions are attributed
to the mass of the body.

In the case of the electrical phenomena that are mani-
fested between bodies that have been rubbed, we shall
say that an agent, called electricity, has been developed on
these bodies, and, without making any supposition as to its
nature, we shall speak of guantity, mass, or charge of the
agent, these terms expressing merely a factor proportional
to the effects produced.

Thus we shall say that two bodies possess equal guantities
of the agent when they produce equal effects on a third
body. The quantities of the agent will be doubled, or
tripled, when the forces developed are double or triple.

The quantity of agent per unit of area or per unit of
volume is called, the surface density or volume density.

10. Elementary Law Governing the Newtonian Forces.
—The preceding definitions amount to saying that the force
exerted between two quantities of the agent is proportional
to the product of these quantities, since it is proportional



10 INTRODUCTION.

to each one of them. Itis also a function of the distance
between the masses concerned. In the case of Newtonian
forces it is inversely proportional to the square of the dis-
tance.

If, then, we express by », 7’ two quantities of the agent,
and by / their distance, the force

e’

f=/ZT.

The action exerted on one of the masses considered as
unity would be expressed by

m
H_.kl_,.

In the case of electric and magnetic actions, masses of the
same nature repel each other, contrary to what holds in case
of gravitation.

In a logical system of units, the constant £ is not asimple
numerical factor. Consider the attraction of heavy bodies
and replace force, mass, and distance by their dimensions:
then the condition of homogeneity demands that Z have
dimensions [L°M =T ™"].

11. Field of Force.—Let us suppose that the quantities
m, m’, m'”’ of the agent are concentrated in physical points,
occupying given positions in space. If we bring into their
vicinity a mass of the agent equal to unity, it is acted upon
by the forces emanating from s, m’, "', which form aresult-
ant having a definite direction and intensity. By changing
the position of the point charged with unit mass of the
agent we can obtain the intensity and sign of the resultant
force for every point in space.

The space in which such forces are manifested is called a
field of force, and the resultant force, just defined, is the
intensity of the field at the point where the unit mass is
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Likewise the work done by 7 is

b’
5 =il
by mu’
km
1//1
These single expressions for the work done are to be
added, since they are taken in the same direction ; the total
work is therefore expressed by
md{
12
This sum is the differential of the function

dl//

3

m
= k27 -} const.

The expression—]—kZ‘?, whose differential, taken with the

contrary sign, represents the elementary work of the forces
of the field, has been given the name of potential by Gauss.
We shall designate it by the letter U:
U=+ 2375

For a point in space, therefore, t/ze potential is proportional
to the sum of the ratios of the acting masses to thetr distances
Srom the point.

The potential permits us readily to define the work ac-
complished by the forces of the field.

Thus, if we integrate the expression
d/
,éEmz—a =—dU

between two positions O,, O,, occupied by the unit mass,

we get
0, dl 0,
kZm / —dU=U,—~U,
0.
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The work done by the field on unit mass displaced from the
point O, to O, is equatl to the difference of the values of the
Sunction U at the two potnis.

The work depends solely, upon the position of the initial
and final points, and not on the path followed by the unit
mass between these points.

If the unit mass should pass from the point O, to an in-
finite distance from the acting masses, we would have

ksz%l-zf—duzzf,.
0, o,

Hence we see that the potential at any point is measured
by the work done by the field in displacing unit mass from
the given point to an infinite distance from the acting masses,
that 1s, to the limit of the field.

The potential function furnishes a simple expression for
the intensity of the field.

Let A be the component of intensity in a direction /.
The elementary work /Ad/ is likewise expressed by the dif-
ferential, taken with contrary sign, of the potential in this
direction:

au

Hdl =1 dldl;
whence
dU
Tl

The component of field intensity tn a given direction is ex-
pressed by the derivative, taken with contrary sign, of the po-
tential in that direction.

The force is directed towards the points where the poten-
tial diminishes.
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13. Equipotential Surfaces.—Put
U = ¢(x, y, 2) = constant,

#, ¥, and 2 representing the points of the field by rectangular
co-ordinates.

This equation represents a surface at every point of which
the potential has the same value. Consequently the forces
of the field have a zero resultant along this surface, the
normal to which represents the direction of the field at each
point. '

The surfaces thus defined are called equipotential surfaces
or level surfaces, by analogy with the free surface of a
liquid, everywhere normal to the force of gravity.

Designating by # a direction normal to the equipotential
surface, the field intensity in a point of the surface is ex-
pressed by

aUu
H=— 9

We can get a representation of the distribution of the
forces of the field by imagining in the field a series of
similar surfaces sufficiently near to each other and corre-
sponding to potentials which increase in arithmetical pro-
gression.

A mass free to move in the field will follow a path cutting
the equipotential surfaces perpendicularly. This curve,
whose tangent represents in each point the direction of the
field, has been named by Faraday a /ine of force.

The field intensity is obviously in inverse ratio to the seg-
ment of line of force comprised between two consecutive
equipotential surfaces.

14. Case of a Single Mass.—The case of a single acting
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mass gives an example of a field easily defined. The equi-
potential surfaces are concentric spheres, whose radii repre-
sent the lines of force.

Let us suppose a mass #, such that £z = 6, concentrated
in a point 4. 4 &

The concentric circles represent the intersection by a plane
passing through the mass 7 of the equipotential surfaces 1,
2, 3,4, 5, 6. The radii of these circumferences are respec-

tively 6/1, 6/2, 6/3, 6/4, 6/5, 6/6.

15. Uniform Field—We see that as the potential de-
creases the equipotential surfaces are successively further
and further apart. At a sufficiently great distance from the

Fie. 2.

centre the lines of force drawn through a region of small ex-
tent are practically parallel, and the equipotential surfaces
are comparable to planes in this region. In the case of
gravitation, for example, no appreciable error is caused by
taking, in the space occupied by a laboratory, the verticals
as parallel.

A field represented in this manner by equipotential planes
and lines of force perpendicular to them, whose intensity is
constant in magnitude and direction, is called a uniform field.

16. Case of Two Acting Masses.—Let us consider the
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case of two acting masses, such that for one of them Am =
20, and for the other " = 5.

To determine the intersection of the equipotential sur-
faces due to the two centres by a plane passing through
these centres, commence by tracing the circular equipoten-
tial lines due to each centre considered separately.

Let #»,, n,, n,, n, . .. be the circles drawn around the first,
and #n/, n/, n, . . . those enveloping the second.

F1c. 3.

The equipotential line of the order 5 will evidently pass
through the intersections of the circumferences #,, 7,"; #,,
n’/; n” nﬂl; ”l’ n("

The equipotential line of the order 4 will pass through
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the intersections of the circumferences #,, #/; n,, n,/; »
and so on for the other orders.

1?

n,

3
The lines of force will be curves normal to the equipoten-
tial lines obtained. yif
In Fig. 3, taken from Maxwell’s Electricity and Magnetism,
the two masses above mentioned are concentrated in the
points 4 and B. The full lines are equipotential ; the lines

of force are shown by dotted lines.

17. Tubes of Force.—Trace any closed curve in a field,
and imagine that a line of force passes through each point
of this curve. All these lines taken together form a tubular
surface, called a tube of force. In the case of a single
centre of {orce the tubes of force are conical. In a uniform
field they are cylindrical.

18. Flux of Force.—The intensity of any field is con-
stant over an infinitely small surface ds. The product of
this surface into the component of the intensity normal to
the surface is called the flux of force across the surface.

Let a be the angle of the direction of the field with the
normal, the flux of force will be represented by

dN = H cos wads.

The flux of force across a finite surface is given by

N:chos a ds,

the integration being extended to every element of the sur-
face under consideration.

In the case of a closed surface the flux is said to be zssuing
when the lines of force are directed towards the exterior of
the surface, and entering in the opposite case.

By considering the angle a to be made by the direction of
the field with the normal exterior to the surface, the change
of sign of cos « allows us to distinguish the issuing from the
entering flux.
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19. Theorem.—7%e flux of force which traverses a tube
of infinitely small section s independent of the inclination of
the section to the axis of the tube.

Thus, dH = H cos ads = Hdo,

do representing the section of the tube normal to the axis,
and / the intensity of the field at this point.

20. Gauss’ Theorem.—Between the masses of a field and
the flux traversing a surface which envelops these masses
there exists a simple relation, very frequently used, as fol-
lows:

The flux of force traversing a closed surface in a field is
equal to Amk times the sum of the masses enveloped by this sur-

Sace.

I. Let us first consider a single mass s, concentrated in

F16. 4.

a point P, within a surface which, to make our treatment
more general, has a re-entrant portion (Fig. 4).

From the point P as apex draw the elements of a cone
corresponding to a solid angle dw, which is measured by
the surface intercepted by the cone on a sphere of centre P
and radius equal to unity.

Call ds, ds”, ds”” the areas bounded by the intersections of
the cone with the surface described; dw represents the
apparent surface of these intersections as seen from the
point 2. Call /, 7, /” the distances of the intersected ele-
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ments from the point P; and a, &, a”’ the angles of the
axis of the cone with the normals to the elements.
The flux of force traversing these elements are respectively

- 'éT’ cos ads, -|— 1,2 cos &'ds’, 4 i”’ cos ads”.

But

dscosa _  ds’cosa’ _ ds” cos a”
Tre v b

'T_ ] 1//2

since these expressions, by definition, measure the solid
angle dw. The flux reduces then to Amde, whatever be
the number of intersections, provided that the number is
uneven.

The total flux across the surface is given by the sum of
all the elementary cones that can be drawn about 2; thus

47
/ kmde = gmkm.
/0

4m represents the total surface cut by the cones on a
sphere of unit radius.

II. If we had considered a mass 72, outside of the closed
surface, the elementary cones can traverse this surface only
an even number of times, and would thus give a zero re-
sultant.

IT1. Finally, if we suppose in the field masses, », , m,, m,,
some of which are in the interior and others on the exterior
of the surface, the total flux through the surface will be the
sum of the flux due to the masses within, =z :

fHds cos a = 4AmkZm.

21. Corollary I.—Suppose that the closed surface be
bounded by the lateral walls of a tube of force and by two
sections of this tube, s and s'.
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As the walls of the tube cut no lines of force, the flux of
force traversing the closed surface is limited to the flux

/Hds —fH’ds’, ds and ds’ being normal equipotential

sections of the tube. Consequently,
J s — [H'ds = 4zkZm.

If there are no masses within this closed region,

f Hds = f H'ds'.

The flux entering by one base issues from the other, that
is to say that the fux is constant in a tube of force, as long
as the tube does not encounter acting masses.

This property, comparable with that of fluid circuits in
which the flow remains constant as long as no outflowing
sources are met, justifies the name fxx, given to the mathe-
matical expression which we have been considering. We
shall see that this property, known by the name of continuity
of flux, plays an important part in electric and magnetic
phenomena.

22. Corollary II.—If the tube of force were infinitely
thin, we should have
HS = s =N
whence
H_ds
WL i
In such a tube the intensity of the field is in inverse ratio
to the section normal to the axis. In a uniform field the
tubes of force are necessarily cylindrical.

23. Corollary IIl.—The expression 7 = %]?Vshows that

the utensity of a field is the flux per unit equipotential sur-
face at the point under consideration.
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24. Unit Tube. Number of Lines of Force.—A tube
chosen so that the expression /Hds = 1 is assumed a wnit

tube. P9

Following a convention due,to Faraday and admitted by
many authors, the number of lines of force of a field, which
in reality is indefinite, is limited to the number of unit
tubes of which they form the axes.

In accordance with this convention, Gauss’ theorem is
enunciated as follows: The number of unit tubes or lines of
force traversing a closed surface in a field is equal to 474
times the sum of the quantities of the agent enveloped by
this surface.

25. Potential Energy of Masses Subjected to New-
tonian Forces.—In consequence of the repulsion exerted
between masses of the same kind, a certain amount of
work must be done to bring the masses m, 7/, m'' to the
neighboring points o, o', 0. This work is stored up in the
system in the state of potential energy, and is restored when
the masses, being set free, separate indefinitely from one
another under the effect of their mutual actions.

To determine the expression for the work done, suppose
that the masses are formed by means of elementary masses
brought up successively to the given points o, o/, 00”.

To bring an element dm to a point o whose potential is
U, we must by definition do an amount of work equal to
Udm. :

For the other points we obtain in the same way the
elements of work U’dw’/, U"'dw".

But in proportion as the masses increase the potential of
each of the points rises. At the point o, for example, it
passes from the value zero to the value

G



22 INTRODUCTION.

We may suppose that the progressive increase of the
masses takes place in a constant ratio, so that at a given
instant the masses accumulated at the various points reach
the same fractional part of their full values. In these con-
ditions the potentials increase in the same ratio; the

mean value of the potential at the point o is g, corre-
2

U
sponding to elementary work, = drm.

The work necessary for the formation of the mass » is

U/’” Um
w=— dm= —.
=T 2

The sum of the work expended on the various masses of
the system will be

W= 1Z'UM.
2

Hence we see that the potential energy of the system is the
kalf sum of the products of the masses by their potentials.

The above assumption of proportional increments of the
masses does not in the least invalidate the generality of
the conclusion. For the potential energy is measured by
the work stored, which depends only on the final state of
the system, and is in no way dependent on the method by
which the masses have come to this state. We shall also
give a demonstration quite independent of such hypothesis.

When two masses m, 7/, at a distance /, separate still
further by a length d/, the increase of potential energy is
equal and of opposite sign to the work accomplished. We
have therefore

dw = — k’i’./’f’_dl.
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When the masses move to an infinite distance from each

other, the work done represents their total initial energy,
that is

s 5 mm
w=~r
- -/

For a system of masses we get an expression of the
form

4

mm’

W=Fkrk= 7

Observe that
ml
_1"’

the factor 4 being necessary in order to avoid taking each
couple of quantities twice.

7
W S NS
/ 2

But kEm—l- represents the potential of the point at which

the mass m is situated. We get, therefore,

I
W=_-ZmU.
2
APPLICATIONS.

Before going further let us apply the properties just

FiG. 5.
demonstrated to some simple cases which we shall later on
meet with in certain electric and magnetic combinations.

26. I. An infinitely thin homogeneous spherical shell
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exercises no action upon a mass within it.—A mass

equal to unity being concentrated at 2, draw from this point

as apex an elementary cone cutting two surfaces ds and ds’

on the sphere at distances Zand /. Let o be the surface

density, or quantity of the agent per unit of surface. The

elements ds and ds” are consequently charged with masses
dm = ods,

dm’ = ods’.

Their actions on the unit mass at 2 are

kdm _ kods
AR
,édmj _ kods’
Zu o= /” %

But the elements ds and ds’, making equal angles with the
axis of the cone, are to each other as their projections per-
pendicular to this axis, and as these latter are themselves
proportional to the square of their distances from the apex
of the cone, we have

0% 3 o
kel
whence
kdm _ kdm'
oo

As the whole surface of the sphere can be divided into
pairs of elements like ds and ds’, whose actions neutralize
each other, the total effect of the shell on the point 2, or on
any other internal point, is zero.

We conclude from this that t/e potential is constant in all
points inside of a spherical shell.

This potential is therefore the same as that of the centre,
which is expressed by

M

m
(=22 7 :éT = qnwkLo.
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Corollaries—(a) The surface of the shell under consider-
ation is equipotential.
M2
i

(¢) The potential energy of the shell is ;—k
£33

(¢) This conclusion would §till hold in the case of a series
of concentric shells acting upon an internal point, which
may, at the limit, be situated on the internal surface of the
innermost shell.

27. I1. The action of a homogeneous spherical shell
on an external point is the same as if the whole mass

P

Fic. 6.

were concentrated at the centre of the sphere.—If unit
mass be concentrated at 7, it is evident that by symmetry
the resultant action must be directed along OF. An ele-

ment ds at 4 exerts on unit mass a force whose component
along OP is

d
dAH = .éo-—l':— cos a.

P’ being the conjugate point of P, such that OP’ x OP
= R’ connect 4 and P’. The triangles OAP’ and OAP
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are similar, for they have the angle 40P in common and
the adjacent sides proportional ; whence

LA i
Db P S
and, substituting,
ds cos a i
= k0 ——7 e
A = ko B X T

But
ds cosa __ d

Al)/a N 4
@ being the solid angle subtended by the element ds at the
point £’; therefore

AL G
0P

The action of the whole shell will be
< 4 2
Vo= Vau 5% »R——g/‘ dm:@:g—-
VR opP* oP
This action is the same as if the entire mass were concen-
trated in the point O.

Corollary.—For a point infinitely near to the surface the
action of the shell would be 4740

28. Action of a Homogeneous Sphere upon an Exter-
nal Point.—If the sphere were composed of a number of
similar shells superposed, this conclusion would still hold.
We can therefore say that @ homogeneous sphere, or sphere
composed of homogencous shells, acts upon an external point as
if the mass were concentrated at the centre of the sphere.

Calling in this case & the mass per unit volume, we
have

7 S A i S
g oP*
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This property justifies the hypothesis of the concentration
in physical points of masses which in reality occupy definite
volumes around these points.

As a particular case, if the point is at the surface of the
sphere, the preceding expression reduces to

) ‘;_n/ézea.

29. Action of a Homogeneous Sphere upon an Inter-
nal Point.—If the point were inside of a homogeneous
sphere, this latter could be divided into two parts, separated
by a concentric sphere passing through the given point.

The action of the external portion is null; the action of
the sphere internal to the point is equal to that of an equal
mass concentrated at the centre. Denoting by / the dis-
tance of the point 2 from the centre,

H = 3716,
3
30. Surface Pressure.—In the case of a homogeneous
C
ds’
o
@ P/
ds
Fic. 7.

spherical shell the component due to the element ds de-
pends only on the solid angle subtended by it at the point
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P’. It is therefore equal to that of the element ds’, corre-
sponding to ds.

The same holds for all the elements of the segment adb,
taken in pairs with those of the segment acbd. The plane
projected on aé divides the sphere into two zones exercising
the same actions upon £, equal to

2nkR’c
'UPI

If the point Pis removed indefinitely from the sphere, the
two segments tend to become equal. If, on the other hand,
the point P approaches indefinitely to the spherical shell,
one of the segments has as its limit the entire sphere, while

the other tends towards zero.
In this last case the preceding expression becomes 274g.

Now we have just seen that the whole shell exerts upon
unit mass, situated infinitely near to its surface, an action
equal to g7ko. It follows from this that the infinitely
small element adjoining the point exercises an action equal
to that of the entire sphere; and in fact when the point P
traverses the shell the force acting upon it becomes zero;
during this infinitesimal displacement the action of the
spherical shell has remained constant, but that of the sur-
face element next to the point has changed sign, so that the
resultant is zero.

If the action of the spherical shell on unit mass situated
at its surface is 2740, it will be 2740s on the mass o which
charges unit surface. ‘

This force, with which the shell acts upon the charge of
unit surface, is called surface pressure.

The intensity of the field infinitely near the surface being
H = 4mko, the surface tension is expressed indifferently by

8k

2mxko, or by
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the action of an element ds of the disk upon unit mass.
Calling a the angle of the axis with the right line which
joins the element to the point O, the projection of the force
due to this element along the direction of the axis is

dH = ,écrd.s‘-;—2 cos @ = kode,

dw expressing the solid angle subtended by the element at
the point O.

The action of the whole disk is # = Zow.

When the unit mass is infinitely near the disk, the force
" is 2wko. Moreover, it is the same at all points of the disk.
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i
PROPERTIES OF MAGNETS.

32. Definitions.—The name wmagnet' is given to those
bodies which possess the property of attracting iron filings.
The lodestone or magnetic oxide of iron possesses this
property by nature, but it is artificially acquired in a much
higher degree by iron and its derivatives, steel and cast iron.
Tempered steel is the substance which retains in the great-
est degree the attractive power developed by magnetization.

When a magnetized steel bar is thrust into iron filings, it
is noticed that the filings cling by preference to certain
parts of the bar, designated by the name of poles. These
bars generally present two poles separated by a neutral
region having a feeble or no action upon iron filings.

33. Action of the Earth on a Magnet.—When a magnet
is suspended by its centre of gravity, one of its poles is in-
variably directed towards the north, the other towards the
south. For this reason the first pole is called the norz% or
N-pole, thz second, the soutl or Spole.

34. Law of Magnetic Attractions.—If several magnets
are placed near each other, it is observed that the poles of
the same name repel each other and that those of contrary
name attract each other. The study of these actions pre-
sents some difficulties, because it is not possible to investi-
gate the reciprocal action of two isolated poles.

Coulomb, however, observed that long magnetized rods
have their centres of action near their extremities. By
bringing the poles of two of these rods sufficiently near
together he was able to almost entirely eliminate the action

31
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of the opposite poles. He discovered experimentally that
magnetic forces decrease in tnverse ratio to the square of the
distance between the acting poles.

We shall see further on that this law has been rigorously
verified by Gauss.

Magnetic actions are theretore to be classed among the
Newtonian forces, and we may apply to them the general
theorems demonstrated in the introduction to this work,
the agent acting in' this case being magnetism.

We shall designate by guantity of magnetism or mass of a
pole a quantity proportional to the force which it exerts
upon neighboring poles.

Let s and 7 be the quantities of magnetism of two
poles: their mutual reaction is by definition proportional to
m and m’, and consequently to the product ',

The expression of the force is therefore

mne’

f= kT’
/ expressing the distance between the two poles.

35. Unit Pole.—The coefficient £ in the preceding ex-
pression may be considered arbitrary and taken equal to
unity. In reality, the coefficient £ varies with the medium
in which the magnetic bodies are situated, but the differ-
ences in the various gaseous media in this respect are
very smallat ordinary temperatures, Consequently the unit
quantity of magnetism is the quantity which repels an equal
quantity, at a distance of one centimetre, with the force of
one dyne; its dimensions are

(LT 1.
If the poles are of contrary name, the force becomes

attractive. To deduce this from the preceding formula, we
need only give opposite signs to poles of contrary name. It
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has been settled that the /V pole shall have the 4 sign, and
the S pole the — sign:

36. Definitions. — Applying the general definitions
adopted in the Introduction, we will call the space in which
magnetic forces existra magnetic field, The intensity at a
point of the field is measured by the action it exerted there
on positive unit mass. The direction of this action gives
the direction of the field. A magnetic line of jforce repre-
sents the path of an infinitesimal positive mass free to move
in the field. The field possesses a potential called magnetic
potential, whose expression for a point situated at distances
. ', 0" . .. from masses m, m', m' . ..is

o
U= 27,
each mass being given its own sign.

By this definition the dimensions of magnetic potential
are

ELIMAT 7).

The component of field intensity in a direction /, at a

point where the potential is U, is expressed by

dU
It
dimensions,
FLENIEST =01,

This expression represents, as we have seen in §23, the
flux of force per unit of surface normal to d/

The dimensions of field intensity differ from those of a
force. It is the force per unit pole, and its dimensions are
those of a force divided by those of a magnetic mass.

The most intense fields that have been produced up to
the present reach about 30,000 C. G. S. units, or 30 kilo-
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gausses ; such a field develops a force of 30,000 dynes, or
about 30 grams, upon unit pole. '

37. Action of a Uniform Field on a Magnet.—Consider
a uniform field, in which the intensity 3¢ is constant in
magnitude and direction. Experiment shows that in such
a field a magnet is not subjected to any force of translation,
but that it simply tends to place itself in a definite direc-
tion. Hence we conclude that the sum of the positive
masses of the bar is equal to the sum of the negative
masses, since the resultant of the actions ot the field on the
first, or 33, is balanced by the resultant 3¢=(— ) of the
actions on the second.

These resultants are applied at two points which, in the
mathematical theory of magnetism, receive more particularly
the name of poles. It must be observed, however, that the
poles which are thus defined have no more physical exist-
ence than has the centre of gravity of a body. An imagi-
nary line passing through the poles is called the magnetic
axis of the magnet. The distance / between the poles is
the true lengt/ of the magnet.

The product of the magnetic mass at one pole by the dis-
tance between the poles is the magnetic moment of the bar
(om):

[Zm =M.

Designating by g the angle of the magnetic axis with the
direction of the field, the couple-acting on the magnet is ex-
pressed by

3 lsin BZm = JeIM sin S.

If the magnet be suspended by its centre of gravity, the
duration of a complete oscillation of small amplitude is

\/E_’
=27, oty
w
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where K* is the moment of inertia of the magnet,and w
the maximum couple, equal to JeIMn.

38. Terrestrial Magnetic :Field— Experiment shows
that the duration of the osc1ila.t10n of a magnet is constant
within the limits of a"laboratory room, provided that there
be no other magnetic mass in the room or near by. It may
therefore be assumed that, in a space of small extent, the
earth develops a uniform field. The vertical plane passing
through the axis of a magnet hanging freely is called the
magnetic meridian of a place.

The declination is the angle of this plane with the geogra-
phical meridian; the zuclination, the angle of the axis of the
magnet with the horizontal. In our hemisphere the north
pole of magnets dips below the horizon, so that a weight
must be placed on the south pole to make the oscillations
take place in the horizontal plane. The component of the
intensity of the terrestrial field in this plane is called the
horizontal component.

The terrestrial lines of force, which, in a limited space,
may be considered as parallel, really converge towards
points called magnetic poles, which oscillate in the neighbor-
hood of the geographical poles.

The following numerical data, due to Airy, show the
mean magnetic values for Greenwich, # being the date :

Declination : 19° 12.1" — (¢ — 1876) X 7.38".

Horizontal component: 0.1797 + (¢ — 1876) X 0.00027.

Inclination: 67° 40.3" — (¢ — 1876) X 2.04.”*

We see from this that the terrestrial magnetic field has
only a feeble intensity. It will be shown later on that it is
possible to produce very much intenser fields in the interior

* For the study of terrestrial magnetism consult Gauss, Aligemeine Theorie
des Erdmagnetismus; Mascart et Joubert, Legons sur IElectricité et sur le
Magnétisme, Vol. 1.
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of a bobbin of wire traversed by an electric current. In
such a bobbin, if the length is very great in proportion to the
cross-section, the field may be considered uniform,

39. Weber’s Hypothesis.—When a magnet is broken
across its neutral region, we do not get two isolated poles,
but two new magnets. The original magnet can be restored
by joining the broken pieces together again; the poles
which were developed at the surfaces of rupture neutralize
each other. This fact of the division of a magnet always
urnishing complete magnets, however small the fragments,
may be, has led Weber to suppose that the polarization
takes places in the molecules composing the bar, each one
of them being a complete magnet possessing two poles.*
The neutral state, by this hypothesis, results from the non-
orientation of the molecules, whose poles mutually neutral-
ize each other. But if a neutral bar is placed in a field, the
magnetic axes of the molecules are drawn into their proper
positions: the N-poles in the direction of the field, and the
S-poles the opposite way. To explain the observed varia-
tions in the degree of magnetization, we have to assume that
the molecules oppose a certain resistance to this alignment,
varying according to the physical condition of the bar, and
to which the name coercive force has been given.

This resistance, an explanation of which by Ewing will be
seen latter on, is feeble in annealed or soft iron, so that
when a bar of this metal is introduced into a magnetic field
of medium intensity it becomes strongly magnetized. But
it readily loses its magnetization when removed from the
field and retains only traces of residual/ magnetism. The
name magnetizing force is given to the intensity of the field
which induces the magnetization.

* See Maxwell, Zlectricity and Magnelism, Vol. 11,
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Cold hammering increases the coercive force of iron, but
this force is especially increased by combining the metal
with certain foreign substances, such as carbon, tungsten
and chromium, in small propoftions. A steel bar attains its
maximum coercive force whenst has been heated to a bright
red, and Zfempered either by sudden chilling in oil, water, or
mercury, or by powerful pressure under an hydraulic press
during its cooling. This last method gives the metal a more
uniform hardness than tempering by immersion. The degree
of annealing may be estimated by the electric conductiv-
ity of samples. This conductivity increases from its original
value for soft steel to three times that value for steel tem-
pered in mercury. A tempered steel bar is more difficult to
magnetize than iron, but it retains a considerable perma-
nent magnetization.

Different facts tend to corroborate Weber’s hypothesis.

1. The magnetization in a field which is increasing in in-
tensity tends towards a limit called safuration, which prob-
ably corresponds to the parallelism of the molecular axes
with the direction of the field.

2. Every cause of molecular disturbance favors the mag-
netization of a bar subjected to a magnetizing force, and
also favors its demagnetization after it has been withdrawn
from the field. Thus a bar of soft iron placed vertically is
magnetized by the action of the vertical component of ter-
restrial magnetism when it is struck lightly.

The bar retains its magnetization when placed in a differ-
ent position, provided it be kept free from vibrations, but a
slight blow is sufficient to dissipate its magnetism. Vibra-
tions have a specially marked effect upon iron. Ewing has
shown that if a bar of this metal be kept from the slightest
vibration one can obtain residual magnetizations much
greater than those shown in steel bars; but the least vibra-
tion causes the acquired magnetism to vanish almost com=- -



38 MAGNETISM.

pletely. A violent blow can likewise take from a recently
magnetized bar of steel more than half its magnetic moment,
but successive blows produce a more and more feeble effect.

The same holds for variations of temperature. Raising
the temperature weakens the power of a magnet. At a
bright red heat the magnetization disappears entirely.

If a magnetized and tempered bar is annealed at a tem-
perature of 100° for example, constancy of the magnet-
ization for lower temperatures is secured; that is to say,
variations less than 100° cause only a temporary change in
the magnetic moment of the bar, which resumes the same
value at the same temperature. z

The variations of the magnetic moment are then sensibly
a linear function of the temperature ; let 9L, be the moment
at 0° C., 9, the moment at 6° C.:

M, = M, (1 — ab).

3. Magnetization produces a slight progressive elongation
of the magnetized bars up to a certain limit, beyond which
a contraction takes place, as if the molecules, after being
oriented, tended to approach each other and to diminish the
intermolecular space (Bidwell).

When a bar is subjected to variable magnetizing forces, it
produces a sound, which may be attributed to the displace-
ments of air-molecules caused by the dilatations or contrac-
tions of the magnet.

4. Beetz has shown that a feeb/e magnetizing force applied
to iron at the moment of its precipitation by electrolysis
magnetizes it to saturation, which is the result of the fact
that the molecules of the metal change their position freely
at the moment of reduction.

40. Elementary Magnets. Intensity of Magnetization.
—The hypothesis just developed leads us to analyze the
properties of elementary magnets, whose length is taken as
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infinitely small in comparison with the finite distances of the
field. :

Intensity of magnetization of an elementary magnet is the
name given to the ratio of its magnetic moment to its
volume. ¥ -

5= *’IL‘; dimensions, [L-iM3iT-1],

Elementary magnets are, by assumption, cylindrical in
form, with their poles concentrated on the two ends. Under
these conditions we call the ratio of the. magnetic mass of
the poles to their surface the densizy of the poles:

m
o= _.,

s
Now, calling the length of the magnet /, we have »/ = 9,
s/ = V; it follows that the density and intensity of magnet-
ization have the same numerical expression and the same
dimensions. '
Let S/ (Fig. 9) be an elementary magnet whose poles of

(L
P
'8

%

S

N
F1G. 9.

mass m are at distances Z, L’ from a point 2. The magnetic
potential in this point is
I TS — 7.

T

As L differs from L’ by only an infinitely small quantity,
we can replace LL by L', and L — L' by / cos f3, 8 being the
angle made by the axis of the magnet S/V with the right line
drawn from S to Z. Consequently

U=2_7§=m(

U_mlcosﬁ__im,cos(i
TNl 5,
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41. Magnetic or Solenoidal Filament.—If we place ele-
mentary magnets of equal intensity of magnetization end to
end, the adjoining peles neutralize each other, and there re-
main only two resultant poles at the ends of the chain,
which is called a magnetic filament or solenoidal filament.

SO
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The potential at a point P, situated at distances L and L’
from the resultant poles, is

= n(}y-1)

which expression is independent of the form of the mag-
netic filament, but depends solely on the position of its
extremities. Consequently a magnetic filament forming a
closed chain has a zero potential for all external points; that
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elements cut the surface of the sphere normally. At other
points the density decreases as the cosine of the angle «, a
representing the inclination of the filaments to the radii of
the sphere. It is zero along the great circle normal to MVS.

Such a distribution may be represented by slipping a
positive sphere, with centre O, over an equal sphere, but of
contrary sign, with centre at O’ the distance between the
centres being infinitesimal, so that OO’ represents the maxi-
mum thickness of the magnetic shell. '

In the meridian section represented in Fig. 11, the shells
bounded by the surfaces of separation of the two spheres

Fic. 11.

have a thickness decreasing as the cosine of the angle a.
The region common to the two is evidently neutral.

The effect of the system on an internal point 2 is equal
to the resultant of the actions of both spheres.

Now calling J the cubic density of the masses, the effect
of the sphere O on unit pole situated at 2 is (§ 29)

476 x OP.
3
This action, directed along OF, may be represented by

the length of this line. The negative sphere exercises an
action equal to

AR OP
3

and represented by PO’.
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turned towards the interior. The potential at a point O is
the sum of the potentials due to the component elementary
magnets. For an element ds, whose axis makes an angle 8
with the right line joining it to the point O, situated at a
distance Z, the potential is

dU = €9ds So_sﬁ ;

)

but ds zc:s 0
surface ds at the point O. In order to make this notation
uniform with that which will be met with in electromagnet-
ism, we shall consider the solid angle as positive when the
point O faces the S pole of the magnetic element.

We have then

represents the solid angle subtended by the

dU = — §dg.
Extending the integration to all the elements of the shell,
and observing that all the elementary cones which cut the

Fic. 13.
shell twice give equal and contrary elements of potential,
we get for the total potential
' U= —§&.p.
The potential due to a shell at any point is equal to the
product of the strength of the shell by the solid angle subtended
at that point by the contour of the shell.

44. Corollary.—If the point O were at the interior of the
shell, the solid angle would be 4 (47 — g’). Consequently,
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if the point passes from a point O to a point O’ infinitely
near on the other side-of the shell, the potential varies from
+ §.(47 — B') to — F 6, that is, by the quantity 42 7.

The work done by unit ppsitive mass, in passing from a
point on the surface of a shell to a point infinitely near
situated on the other side, is equal to 47 multiplied by the
strength of the shell. This work is, moreover, independent
of the path followed between these two points (§ 12).

45. Energy of a Shell in a Field—Let us consider a
field of force due to a pole 7 situated at a point O (Fig. 12);
the work expended to bring the shell to its present position
represents the relative energy of the shell and the field. It
is equal to the work required to bring the mass » to the
point O whose potential is U, or

mU = — mT L.

Now 7/ is the flux of force from the pole across the solid
angle limited by the contour of the shell.

We will call this flux @, considering it as positive when it
enters by the negative face of the shell, and as negative
when it enters by the positive face:

W= —¢,0.

If the field is produced by several poles 2, w/, m'’, the
total energy will become

W= —F3mp = — 0.

The relative energy of a shell and a field is therefore equal
20 the product of the strength of the shell by the flux included
within the contour of the shell.

If the flux penetrates, as in Fig. 12, by the positive face,
& is negative, and the product takes the plus sign.

When a shellis free to move in a field, it tends to move so that
the expression for the potential energy becomes a mintmum ;
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that is, the flux entering by the negative face tends towards
a maximum. It will easily be shown that this condition is
satisfied in the case of a shell and a positive pole when the
latter touches the negative face. A plane shell situated in
a uniform field will take up a position normal to the direc-
tion of the field, so that the lines of force penetrate it by
the S-face.

46. Relative Energy of Two Shells.—Let us consider
two neighboring shells 4, A, of strengths &, and /. Let &’
be the flux of force from A’ across the section of A entering
by its negative face. The energy of the shell 4 is, as we
have just seen, expressed by

W= —g%.

Now the flux @' may be represented by the product of F'
into a factor Z,,; whence

2 1 RO SRRTREIT R0 1 VTSR 4

This expression must evidently represent the energy of
the shell 4’, for the same work is expended to bring the
shell A" up to A4 as to bring 4 up to A’. But as the
energy of A’ is also given by the product of &/ into the
flux @ passing from 4 to A4’, we see that & = F,L,,, just

as we found & = §,/L,,; whence we obtain
o @’

P, e,
o g

The factor L,,, called coeﬁcz'ent' of mutual induction of the
two shells, represents, as seen above, the ratio of the flux
across one of the shells to the strength of the neighboring
shell. Equation (1) shows that the dimensions of Z,, reduce
/B

47. Artificial Magnets.—Instead of presenting, like uni-
form magnets, a surface distribution of magnetism, magnet-
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ized bars possess free magnetic masses internally. We can
even superpose opposite magnetizations in a steel bar by
submitting it successively to magnetizing forces of opposite
directions. When such a bar is dissolved in an acid, there
appear progressively layers magnetized in opposite direc-
tions. &

This experiment proves that the magnetization affects at
first the superficial layers of the bar, which are moreover
tempered harder than the inner layers. Hence the utility
of employing thin plates of steel, separately magnetized, in
order to obtain powerful magnets.

We can show in a striking way the form of the magnetic

Fic. 14.

field due to a bar magnet by placing over it a sheet of
paper covered with iron filings. The particles of iron be-
come magnetized by induction, orient themselves along the
directions of the field, and arrange themselves in continuous
rows, representing the lines of force.

The image thus produced may be fixed if sensitized pho-
tographic paper be used and then exposed to the actinic ac-
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tion of light while covered with the filings. The develop-
ment of the image shows the shadows produced by the
filings. Fig. 14 thus represents the magnetic field of two
adjacent bar magnets.

By observing the distribution of iron filings in the field of
a single or of several magnets, and the curious patterns re-
produced by the particles, Faraday was led to the idea that
the seat of the magnetic forces is in the medium which
separates the acting poles. According to him, lines of force
are not a mere mathematical conception, but have a real
existence corresponding to a particular state of the space
around the poles. Faraday imagined this medium as being
strained along the lines of force, and he readily substituted
mentally for these lines elastic threads having a tendency to
contract and thus cause neighboring poles to approach.

To explain the curvature of the lines of force, Faraday
assumed that they repel each other when they proceed in
the same direction, so that each of them takes a curved
form whose tendency to return to a rectilinear form
balances the repulsion of the neighboring lines.

Although experiment shows that a magnetized bar has
free magnetic masses within it, it is possible to imagine a
surface distribution of magnetism producing the same exter-
nal field as the actual distribution. Suppose the magnet,
for example, to be formed of longitudinal magnetic filaments
some of which end on the end faces of the magnet and
others on its lateral surfaces. Then the poles of the fila-
ments constitute the surface charges of the magnet, as we
have seen in the case of a magunetized sphere (§ 42), and the
curves taken by the iron filings (Fig. 14), may be considered
as the prolongation of the axes of the filaments.

To determine the imaginary distribution of magnetism
giving the same external results as the real distribution, we
measure the variation of the field intensity around the mag-
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net along its axis. To do this, we determine the period of
oscillation of a small magnetized needle moving on a pivot,
and which is brought successively to the various points
where it is desired to know the intensity. This means is
not, however, rigorous, because the force is not the same at
both poles of the needle, and the latter’s magnetism may be
altered under the influence of the field that is being investi-
gated. By this experiment we find that the field decreases
rapidly from the extremity of the magnet towards the mid-
dle, unless there be intermediate or consequent poles. Inlong
needles of hard steel the poles are very near the ends, and
the neutral line extends over the greatest part of their
length. In every case the neighborhood of the edges gives a
more intense field than the neighborhood of the plane surfaces.

\

Fic. 15.

Fig. 15 shows the curves obtained by marking off on the
perpendiculars to the axis of the bar lengths proportional to
the components of the field along these lines. The ordinates
are inversely proportional to the square of the periods of os-
cillation of the magnetized needle opposite various points of
the axis and at the same distance from it, and oscillating in a
plane normal to the magnet. These ordinates may be con-
sidered as proportional to the thickness of the magnetic
shell having the same external effect as the real distribution
of magnetism.

Magnets undergo a slow demagnetization, which may be
explained by the repulsion exercised between poles of the
same name in neighboring molecules. This loss is retarded

by joining the poles by a piece of soft iron called armature or
keeper. Opposite poles are developed in this latter which
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retain the magnetization of the magnet, since closed mag-
netic filaments are formed through the armature, and the
poles of the elements composing these filaments attract and
neutralize each other in couples.

The best steels for permanent magnets are those capable
of acquiring the hardest temper.

The addition of 3 per cent. of tungsten increases the
coercive force of steel very perceptibly. The tempering
may be done in oil, water, or mercury. The bath should be
of sufficient volume to prevent great rise in temperature
and splashing of the liquid. According to Strouhal and
Barus, the best way to obtain a powerful and constant mag-
net is to make the steel as hard as possible by tempering,
and then to anneal it for 20 to 30 hours in steam at 100° C.
It is next magnetized by placing its extremities on the poles
of a powerful electromagnet, and finally annealing it again
for at least g5 hours in steam. This method secures a
magnetization which resists, as far as is possible, both blows
and the daily variations of temperature.

According to Preece, the intensity of permanent magnet-
ization obtainable in prisms of 1 cm section and 10 cm
length, made of good magnet steel bearing the stamp Mar-
chal, Clémandot & Allevard, varies from 100 to 225 C. G. S.
units. These numbers express the ratio of the permanent
moment of the magnets to their volume.

48. Determination of the Magnetic Moment of a
Magnet. Magnetometer.—When we cause a magnet to
oscillate horizontally in the earth’s magnetic field, the mag-
net being hung by a thread having no sensible torsion-pull,
the duration of a complete oscillation, of sufficiently small
amplitude, is

Tkt
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The unit angle employed in absolute measurements is the
radian, or arc equal to the radius and corresponding to

o

360
27

= 57° 17 44"

The simplest way is to affix to the needle a slender pointer
which moves over a horizontal scale. The error of parallax
is avoided by placing a mirror in the plane of the scale and
putting the eye of the observer in such a position that the
pointer coincides with its reflection in the mirror. The
reading is thus made in a plane perpendicular to the scale.
This mode of reading does not allow of great precision;
when the angles are small, the relative error may be consid-
erable.

Greater exactitude is obtained by reflection methods
recommended by Poggendorff and Lord Kelvin.

In the first, called subjective method, a small plane mirror,
M, is attached to the axis of suspension of the needle, Fig.
17, and at a certain distance, varying from 3 to 10 feet, is

A
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placed a reading-telescope with micrometer threads, sup-
ported on a tripod with adjustment screws. Above and be-
low the telescope is a horizontal scale, graduated decimally.
Before each measurement the apparatus is adjusted to thas






56 MAGNETISM.

The movable mirror may be plane, as in the preceding
case, but a convergent lens must then be placed in the path
of the ray of incident light.

INDUCED MAGNETIZATION.

51. Magnetic and Diamagnetic Bodies.— We have
seen, § 39, that molecules of iron placed in a field tend to
place themselves along the magnetic lines of force. The dif-
ferent varieties of iron, cast iron and steel (with the excep-
tion of manganese-steel), together with cobalt and nickel,
show an energetic magnetization in a magnetic field. Some
other bodies, such as magnetic oxide, perchloride and sul-
phate of iron, exhibit the same properties, but to a much
smaller degree.

Bismuth is also magnetized in a very intense field, but a
bar of this metal tends to place itself perpendicularly to the
lines of force. In sufficiently powerful fields all bodies ex-
hibit magnetic properties, but to an incomparably smaller
extent than iron.

Those bodies whose magnetic orientation is the same as
that of iron are called ferromagnetic or magnetic,; those
which act like bismuth are called dzamagnetic.

52. Coefficient of Magnetization or Magnetic Suscep-
tibility. — The problem of magnetization by induction
amounts, in fact, to determining for the various parts of the
magnets the ratio of the intensity of magnetization to the
field-intensity or magnetizing force.

This ratio
J

K= —

Je

is called the coefficient of magnetization or the magnetic
susceptibility.
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It is easy to see from the dimensions of 3 and 3¢, §§ 36,
40, that this coefficient simply represents a numerical factor.,

If an isotropic body, whose magnetic susceptibility is the
same in all directions, is submitted to a magnetizing force
that is constant in every ps&int of the body, it tends to
acquire a constant intensity of magnetization. But the
magnetic poles induced in the body modify the field, so that
if the field were uniform before the introduction of the body,
it becomes non-uniform in consequence of that introduction.
It is very difficult in the majority of cases to determine the
resultant field and, consequently, the actual intensity of the
magnetizing force in every point. Thus the problem of the
distribution of magnetism in a short cylinder, whose axis is
parallel to the direction of the field, has never been solved.

Certain cases, however, are easily calculated. The prac-
tical way of obtaining a uniform field of a given intensity
consists, as will be seen further on, in sending an electric
current through a very long cylindrical bobbin, in the in-
terior of which is placed the body to be magnetized.

53. Cases of a Sphere and a Disk.—Let an isotropic
sphere be placed in a uniform field of intensity 3¢. The
various elements of the sphere tend to assume a uniform
magnetic orientation, in consequence of which there are
developed, on the two hemispheres limited by the great
circle normal to the direction of the field, such magnetic
shells that the resultant internal action on unit pole is con-

stant and equal to

;—7[5.........(§42)

The intensity of the field in the interior of the sphere is
therefore constant in magnitude and direction and equal to

J‘C—im’};
3
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54. Case of a Ring.—A ring subjected to magnetizing
forces, constant in magnitude and directed in every point
of the ring along the tangent to the parallel circle passing
through that point, will assume a constant magnetization
without free poles, since theyrows of magnetic molecules
will form closed circular chains.

The original field will not, therefore, have its distribution
modified by the presence of the ring, and the intensity of
magnetization will be simply expressed by

= IC,

¢ representing the intensity of the field.

A conductor coiled round an iron ring, and traversed by
an electric current, approximately realizes the above condi-
tion, as will be shown later. After the stoppage of the cur-
rent, the annular core retains the greater part of its mag-
netism in the permanent state, for, in the absence of free
poles, there is no demagnetizing force.

55. Case of a Cylinder of Indefinite Extent.—A third
solution is furnished by a cylinder of indefinite extent,
placed parallel to the lines of force of a uniform field. The
intensity of the field in the interior of the cylinder is the re-
sultant of the original field and of the action of the poles
induced at the extremities of the cylinder.

The longitudinal magnetization that can be given to an
iron cylinder, whose axis is placed parallel to the direction
of the field, increases as the length of the cylinder is in-
creased, since the effect of its poles then produces less and
less diminution of the intensity of the field inside the cylin-
der. Short steel cylinders cannot, therefore, make good
permanent magnets, for they become only slightly magnet-
tized, and the reaction of the poles tends to rapidly change
the molecular orientation after taking away the magnetizing
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force. On the other hand, long cylinders become strongly
magnetized and retain their magnetism.

When an iron cylinder is of indefinite length, the demag-
netizing action of its poles becomes negligible for points
situated in the accessible region of the cylinder where the
intensity of magnetization is uniform and expressed by

S G0

It has been shown experimentally that this formula is
still applicable when the length of the cylinder is equal to
400 or 500 times its diameter.

56. Portative Power of a Magnet.—Let us consider a
cylinder of indefinite length, magnetized parallel to its axis.
If we imagine a narrow crevasse cut out normal to the axis,
the opposite walls will be covered with magnetic masses
whose density is equal to the intensity of magnetization,
oc=2J. y

The force with which unit mass, situated near the face
whose density is — ¢, is attracted by this latter, is expressed
by 2za, § 31.

Consequently the mass -} o, which covers unit surface on
the opposite wall, is attracted with a force

2mwo’ =27 3.

This is the portative force of the magnet per unit surface.

If, moreover, the cylinder is under the action of a field of
intensity J¢,—that is, a field capable of exercising a force 3¢
on unit pole, and directed parallel to J,—the portative force
must be increased by

o =233
The total portative force will then be

34273
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ing intensity, the magnetization 3 varies as shown by the
curve 04, Fig. 18, whose abscissa represent the values of 3.
We see that for very small forces the magnetization increases
slowly. Beyond 3 = 1 C. G. S. unit, the curve shows a
point of flexion beyond which the ordinates grow rapidly
larger up to a point corresponding to values of J& comprised
between 5 and 10 C. G. S. units, where the curve makes a
sharp turn. The increase of the ordinates then becomes
smaller and smaller and the bar reaches the state commonly
known by the name of saturation, which corresponds rigor-
ously to the ordinate of a horizontal asymptote to which the
curve approaches indefinitely. The magnetizing forces
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shown here are obtained in practice by placing the bar in a
very long solenoid traversed by an increasing current. The
intensity of the field inside the solenoid is proportional to
the current.

According to Ewing and Low, the intensities of magnet-
ization corresponding to saturation are approximately, in
C. G. S. units, for wrought iron 1700, for cast iron 1240, and
for nickel 513.
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Steel, which can attain the same magnetization as iron
under very powerful magnetizing forces, scarcely retains
more than half in the form of permanent magnetism.

The magnetization-curve sshows that the susceptibility

J o S g : .
= % is at first very feeble; then it increases rapidly with

¥ and attains for iron a value varying from 200 to 300. It
then decreases progressively to a very small value.

For slightly magnetic bodies the susceptibility is always
less than 0.00001 in absolute value; in these conditions it
may practically be considered as zero compared to the
susceptibility of iron, for moderate magnetizing forces.

Let us suppose that the bar, after having reached the
point 4 corresponding to saturation, be submitted to mag-
netizing forces decreasing from OB to zero. The mag-
netization does not pass again through the intermediate
states first observed, but varies according to the curve AC,
OC corresponding to the residual magnetism.

If the magnetizing force changes its direction and takes
a negative value OB, equal to OB, the intensity takes the
successive values shown by the curve CA’. Finally, the
magnetizing force repassing through the consecutive values
between B’ and B, the magnetism of the bar will return to
the value AB by a curve A'C’A.

The cycle ACA’C'4 can be reproduced indefinitely by
causing the field-intensity to vary periodically between the
values OB and OZF’, which is obtained by giving to the
current traversing the magnetizing solenoid values oscillat-
ing between two equal limits of contrary sign. The curves
joining the points 4,, 4/, Fig. 18, show the variations of
the magnetic state of the same iron bar hardened by the
application of a tractive force greater than the limit of
elasticity of the metal. It will be observed that the maxi-
mum magnetization is less than when the metal is annealed.
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Moreover, the susceptibility of the hardened metal is con-
siderably diminished.

It will be seen by the above that the magnetization of a
bar is capable of assuming very different values for the same
magnetizing force; it depends not only on the actual mag-
netizing force, but also on the preceding magnetic condi-
tions. The intensity of magnetization of an iron core is a
complex function of the magnetizing force and the preced-
ing condition of the iron.

During the period of decrease in the cyclic curve, the
values of the intensity of magnetization are always larger
than those given by the curve O4, while during the period
of increase they are smaller. This phenomenon, due to the
coercive force, has been called by Ewing /Zysteresis (from the
Greek, lagging behind).* ;

The ordinate at the origin, OC, represents the residual
magnetism of the bar. When soft iron is kept from all
vibrations, this ordinate equals nearly three fourths of the
maximum ordinate of the curve.

Dr. Hopkinson has especially designated by the name
coercive force the magnetizing force, OD, which must be ap-
plied to the bar (in reverse direction) to destroy its residual
magnetism. The bar is then not, however, in the neutral
state, for it has a very different susceptibility from that ob-
served on beginning the magnetization; for it is readier to
take a negative magnetization than when it was in the neu-
tral state. In the hardened metal the coercive force, OD,,
is appreciably increased.

The form of the curve 4CA’C” shows that to bring a bar
back to the neutral state it must be subjected to periodic
forces of decreasing intensity. The cycles then described will
approach nearer and nearer to the origin. Itis for this reason

* See Ewing, Magnetic Induction in Iron, elc., p. 93 et seq.
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origin. At the moment of passing through the origin, the
bar is not in the neutral state, for if the magnetizing force
be increased, the curve continues along OF and not along
OA. On completing the cycle of the field-intensity, we
return to a point which does not coincide with 4 unless this
latter corresponds to the point of saturation of the bar.

58. Frolich’s Formula.—Various writers have tried to
represent, by empirical formule, the variation of the
intensity of magnetization as a function of the magnetizing
force.

If we suppose that the susceptibility is proportional to
the difference between the maximum intensity of magnetiza-
tion and the actual intensity, we have
= A3, —3),

J
K = J—C
whence

A3,3 adl

d=T¥awx STFox

a and & being constants for a given bar.

This curve represents an hyperbola passing through the
origin and one of whose asymptotes is parallel to the axis
of x. ’

By choosing the parameters @ and & suitably, we can, for
approximate calculations, substitute this curve for the true
one obtained by experiment. Frolich and S. P. Thomp-
son have applied this formula to the theory of dynamos.

59. Miiller, von Waltenhofen, and Kapp have adopted a
formula of the form

3. = atanz "o Ic;

which can likewise furnish approximate values of intensities
of magnetization of soft iron by a suitable choice of param-
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eters, This formula is not so convenient in calculating as
the preceding one. It:will be noticed that the above equa-
tions represent curves passing through the origin and that
they consequently leave out the phenomenon of hysteresis.
They give, at the most, a curge intermediate between the
two curves obtained in a magnetic cycle.®

60. Another Way of Looking at Induced Magnetiza-
tion, Magnetic Induction, and Permeability. —Let us
consider a uniform field, in which the intensity 3 represents
the flux of force across unit equipotential surface, which is
measured by the force exercised on unit pole. If we place
an indefinitely long cylinder parallel to the direction of the
field, the space occupied by the cylinder becomes the seat
of a different flux, that is, the force exercised on a unit pole,
hypothetically placed inside the cylinder, is modified in a way
that will appear later on. This flux, ®, per unit section is
sometimes called the magnetic induction across the cylinder.

* Drs. Houston and Kennelly have recently pointed out that from the
researches of Ewing, Klaassen, Fessenden, and others

(1) An approximate linear relation exists between remanance and maxi-
mum cyclic intensity in iron and steel, or, symbolically,

(Bn =ea + o (Bmax.

where B, is the remanance or residual cyclic magnetic flux when the mag-
netizing force is zero, and ®max, is the maximum cylic intensity. This can
only be regarded as an empirical formula, holding between Bmax. = 500 and
®max. = 9000, in some cases up to ®max. = 16,000.

(2) An approximate linear relation exists between coercive force and maxi-
mum cylic intensity in iron and steel; or, symbolically,

3(:0 =a + él(Bmax.

where JC, is the cyclic coercive force or the value of JC at which B = o, and
®max. is the maximum cyclic intensity. This can only be regarded as an
empirical formula, holding above ®Bmax. = 4000.

(3) As a consequence of the preceding relations an approximate linear
relation exists between remanance and coercive force in the cyclic magnet-
ization of iron and steel between the limits above defined.
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The ratio

sl e

$= (1)
between the magnetic induction and the magnetizing force
is the coefficient of permeability (or simply permeability) of
the cylinder. It follows from this definition that the perme-
ability of the medium into which the substance is introduced,
generally the air, is taken as unity.

The permeability depends on the nature of the substance
and, in highly magnetic bodies, on the intensity of the field.
The values of & and u may be determined directly by
electric measurements. These quantities are rendered im-
portant by the fact that they are connected by a simple
relation with the intensity of magnetization and the suscep-
tibility.

In order to estimate the flux of force inside the cylinder,
let us suppose, as in § 56, that an infinitely narrow crevasse
be cut in the cylinder perpendicularly to its axis. We can
consider that this operation does not modify the total flux
across the cylinder. The walls of the crevasse normal to
the direction of the cylinder are charged by induction with
free magnetism having densities + o and — &, such that

o=

3 being the intensity of magnetization of the cylinder.

The effect of these surface-charges on unit pole, supposed
to be introduced into the middle of the crevasse, is to pro-
duce two components in the same direction, equal to

2r0 = 27 3,

having a direction parallel to the axis of the cylinder, § 31.
Besides this we must add to these components the force 3¢
due to the field. Since the two components are parallel by
hypothesis, the resultant will be
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B=3+473=R1+47k) . . . . (2)

Comparing equations (1) and (2), we see that

”=p_f_47tk. gt S N, (o)
i

It follows from the preceding equations that we can
express the magnetization of a body in a field by the
intensity of magnetization or by the magnetic induction
indifferently. It seems at first sight that one of these
expressions is superfluous, and that the use of both can
only produce a confusion of ideas. But, as will be seen
more clearly further on, there are cases where it is more
convenient to use the first expression, and other cases where
the second expresses the phenomena more clearly. Thus,
when we counsider a magnetized bar, the moment of which
is determined by the magnetometer, § 48, the intensity of
magnetization is expressed by the ratio of its moment to its
volume. But in the case of a ring, § 54, in which the lines
of force are closed, the external magnetic effect would be
zero, as would the moment also, for the ring has no free
pole and its magnetism cannot be called into action except
by making a section in a plane passing through the axis of
revolution. The walls thus exposed present poles of con-
trary name and whose density represents the intensity of
magnetization of the body. Between these poles a uniform
field is developed in which there is a flux equal to 473 per
unit of section and which is to be added to the flux 3¢ in
the same direction due to external causes. It will be seen
in the part on Electromagnetism that the total flux, called
magnetic induction across the ring, is capable of being deter-
mined directly. The intensity of magnetization is deduced
from this quantity by subtracting the value of 3 and divid-
ing the remainder by 4.

Some authors estimate the magnetism of magnetized bars
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in units of magnetic induction. In this case it is only
necessary to multiply by 47 the mean value of the intensity
of magnetization found by means of the magnetometer.

While, in the case of a ring, the flux of magnetic force
remains in the iron, in the case of a straight magnet the
flux leaves the iron and is closed through the surrounding
air. In the first example the medium is homogeneous, in
the second heterogeneous, being composed partly of iron
and partly of air; but in both cases the flux should be con-
sidered as continuous and closed on itself. This way of
looking at the matter has helped to simplify the conception
of magnetic phenomena. - It will appear in the course of
this work how much has been gained by extending to cir-
cuits traversed by magnetic fluxes the conditions shown to
exist for circuits traversed by electric currents.

By definition, the permeability of air is unity. Experi-
ments show that the permeability of a vacuum is sensibly of
the same value. Magnetic bodies are those of which the
permeability exceeds that of air; diamagnetic bodies, those
of which the permeability is less than that of air. This can
also be expressed in the statement that magnetic bodies
conduct lines of force more readily, and diamagnetic bodies
less readily, than air.

From the relation

H=4rk+1
we have

m—1
4m

This shows that the susceptibility of magnetic bodies for
which p>1, is superior to zero, while the susceptibility of
diamagnetic bodies is negative.

The susceptibility and permeability of iron, cobalt and
nickel at ordinary temperatures are so superior to those of
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If 1 were a constant factor, as is the case for slightly
magnetic substances, the integral would reduce to
¥ ;
M g;y

for a variation extending between o and 3¢,

Let us suppose that an indefinitely long bar, after having
reached the magnetic state A4, traverses a cycle ACA’'C'A,
Fig. 20, the intensity of the field passing from the value OB
to o, and then returning to O5.

The integral
. f@ =AB
A I A (e
47 o — oa

®

representing the area of the surface 4’C'AC divided by 4=,
expresses the work expended in order to cause unit volume
of the bar to pass through the given cycle. This work is
transformed into heat in the substance, and is the loss due
to hysteresis. : '

‘In the case where the cycle through which the magnet-
ized bar goes is produced by forces oscillating between
values OB and OBF’, Fig. 21, the loss by hysteresis is repre-
sented by the area ACA'C’A.

In the case of a completed cycle the expression for the
energy dissipated is susceptible of a simpler expression.
Thus, replacing ® by 473 + 3¢, we get

ﬁf&d&:/ﬂ@dﬁ—f—i—r‘f{}cdw

Now the second integral is cancelled for a completed
cycle and the energy is then expressed by

fac da.
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62. Numerical Results.—The preceding equations show
that the values of the permeability of an iron bar pass
through variations analogous to those of its susceptibility.
At first very small for small values of the magnetizing force,
the permeability grows rapidly towards a maximum, then
decreases indefinitely towards a value but slightly differing
from that of air. :

The curves, Figs. 18 and 19, showing the variations of
intensity of magnetization of a bar in terms of the mag-
netizing force, also show, very sensibly, the magnetic induc-
tion referred to this same force if we regard unity on the
scale of the ordinates as representing the number 47.

Below is a table of magnetic values as found for two
specimens of annealed soft iron, and one of gray cast-iron.

Annealed Soft Iron. Gray Cast-iron.
® M ® M ® M
1,000 560 11,000 1,692 4,000 800
2,000 880 12,000 1,412 5,000 500
3.000 1,160 13,000 1,083 6,000 279
4,000 1,400 14,000 823 7,000 133
5,000 1,600 15,000 526 8,000 100
6,000 1,800 16,000 320 9,000 71
7,000 1,960 17,000 161 10,000 53
8,0co 2,120 18,000 90 11,000 37
9,000 2,280 19,000 54
10,000 2,000 20,000 30

Very pure soft iron shows the greatest permeability of
any metal. It is followed, in descending order, by soft
steels (Thomas-and Bessemer), malleable iron, and gray cast-
iron, the magnetic qualities of which are very variable ac-
cording to its composition. Tempered steel, in which the
iron is in an especial condition, has a very low permeability,
while steel containing 12 per cent. of manganese is hardly
more magnetic than air.






76 MAGNETISM.

10,000 and 15,000 ergs for specimens of iron and soft steel
subjected to magnetizing forces oscillating between values
high enough to produce saturation, it attains 216,000 ergs
in tungsten-steel (Hopkinson).

The permeability of annealed soft iron decreases very
nearly in proportion to the increase of ®, between values
corresponding to & = 7 kilogausses and ® = 16 kilogausses.
Between these limits the mean values of the permeability
are approximately given by the empirical formula, deduced
from Hopkinson’s curve,

®
= JSemr 8 o
K 3.5-+-450

Figure 23 presents a curve determined by Ewing and show-
ing the loss in a soft-iron bar subjected to increasing alter-
nating magnetizing forces. The ordinates of the curve
denote ergs per cm® and the abscisse give in C. G. S. units
the extreme values, positive and negative, of the magnetic
induction through the metal.
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According to Steinmetz, the loss of energy in ergs is
represented by the expression® g

w = 7705r.6’

* Steinmetz, L'/ndustrie dlectrigue, March 6, 1892.
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where #, the coefficient of hysteresis, may have the following
values: ;

; s Coefficient

Material. to:::position and State. Hys:)efresis.
SaltEIronkErecleite slareresaniels Annealed .00202
Soft Bessemer steel .| .045 per cent. of carbon, annealed .00262
Whitworth steel. ORI Lol PR S R o .005G8
“ %1 SOL T il T tempered .00954
Manganese-steel........] 4.73 “ ‘“ ‘° manganese, forged .05963
Tungsten-steel....veeo.| 3.35 “ ‘“ ‘° tungsten, tempered .05778
Gray cast-iron.......... Bgs % M T4 icarbon .01826

With the magnetizing forces that can be obtained in
dynamo-electric machines, their iron cores seldom exceed
an induction of 20,000 C. G. S. units, or gausses, but by estab-
lishing particularly powerful fields Messrs. Ewing and Low
have succeeded in communicating to very soft iron an in-
duction of 45 kilogausses. Under high inductions, the in.
tensity of magnetization has a constant value of about 1700
C.G. S. units, corresponding to saturation, and the per-
meability falls to a constant value of between I and 2.

We then get the relation

® = 3 + 47 3 = I 4 constant.

In very intense fields cobalt is capable of attaining the
same maximum intensity of magnetization as cast-iron, or
about three fourths of the magnetization of soft iron. Nickel
never exceeds one third of the maximum intensity of
magnetization of soft iron.

Lord Rayleigh has found that in very weak fields the per-
meability can be expressed by a formula

u=a-+ o3k

For a specimen of soft iron he has found =81 and 5=64.
He has also established the fact that hysteresis is absent
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when a bar is subjected to magnetizing forces varying be-
tween very narrow limits, whether the metal already possesses
any magnetization, or if it has been taken in the neutral
state; in these conditions the permeability is constant.
When these small variations occur near a magnetizing force
of 29 C. G. S. units or gilberts, he has found that the per-
meability of soft iron is only 80 per cent. of the permeability
near the neutral state.

63. Effect of Temperature on Magnetism. Recales-
cence.—We have already made allusion to the influence of
the temperature on the magnetism of iron and its deriva-
tives, steel and cast-iron, whose magnetism disappears com-
pletely at a bright red heat.

Dr. Hopkinson, to whom we are indebted for precise
experiments on this thermic effect,* has observed that in a
feeble and constant field of 0.3 gauss the permeability of
a soft-iron bar, heated gradually, increases progressively
from 500 to 11,000; but at the temperature of 775° C., the
permeability falls suddenly to a value very close to 1.

When the intensity of the field increases, the increase of
permeability is much less sensible and the fall is less sudden.
Finally, in an intense field, the permeability decreases con-
tinuously with the rise of temperature. In every case the
iron becomes completely demagnetized at a temperature
in the neighborhood of 785° C.; Dr. Hopkinson calls this
thermic point the critical temperature of the metal

For exceptionally soft iron the critical temperature may
rise as high as 880° C.,while in steel it falls to 690°. For
nickel] the critical temperature is about 310° C.

The critical temperature seems to correspond to a mo-
lecular change in the substances, shown likewise by other

* See Hopkinson, Magnetism, Journal of the Institution of Electrical
Engineers, vol. xix.
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phenomena. Kohlrausch has observed that at this temper-
ature the electrical ‘resistance of iron shows a sudden
variation.

According to Tait the thermo-electric power of iron is
also modified in a profound dggree towards this point; and
lastly, Barrett has discovered a very characteristic effect, to
which he has given the name of recalescence. 1f we allow a
piece of iron or steel to cool down after having heated it to
a bright red, there comes a certain stage where the process
of cooling stops and where the piece becomes slightly
heated again, after which the decrease of temperature goes
on again regularly. This recalescence is shown in hard steel
by a very visible luminous effect, the color of the metal
passing from a dull red to very bright red at the moment
when the critical temperature is reached. This experiment
succeeds very well when a knitting-needle is used, first heat-
ing it to a bright red by passing an electric current through it.

It is very surprising that magnetic qualities should be
clearly exhibited by only three metals—iron, nickel, and
cobalt. The other elementary bodies are so little capable
of magnetization that they are ordinarily considered as non-
magnetic. It may be that it is only a mere question of
temperature, the three metals mentioned being the only
ones which manifest decided magnetic properties at the
ordinary temperatures. This was Faraday’s opinion, who
thought that all substances would become magnetic at a
sufficiently low temperature. The following fact discovered
by Dr. Hopkinson seems to support this opinion: An alloy
of iron containing 25 per cent. of nickel is non-magnetic like
all alloys. But if this alloy be cooled to slightly below 0°
C,, it is capable of becoming magnetized in a very marked
degree. It possesses, therefore, a low critical temperature.
If the alloy be afterwards reheated, it remains magnetic and
its susceptibility increases up to about 525° C., at this point
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the susceptibility falls rapidly and becomes zero at 580° C.
Upon recooling the metal, it does not reassume its suscep-
tibility until below o° C.

64. Ewing’s Addition to Weber's Hypothesis.*—In
order to explain in Weber’s hypothesis of the molecular
constitution of magnets, § 39, the coercive force and the
loss due to hysteresis, it has been supposed that the ele-
mentary magnets (or magnetic molecules) offer a resistance
to orientation in the nature of friction and that it is the
work spent in overcoming this friction which constitutes the
loss by hysteresis. The existence of such a passive resist-
ance enables us, up to a certain point, to account for the
effect of vibrations and temperature on magnets, but it does
not at all explain the changes in susceptibility especially
shown in the regions 4, B and C of the magnetism-curve,
Fig. 24.

F1G. 24.

Ewing has found experimentally that the observed phe-
nomena are to be explained without bringing in the supposi-
tion of friction, by the simple effect of the mutual reactions
of the elementary magnets. He has reached this conclusion
by investigating the way in which a system of magnetic
needles acts, when they are arranged regularly one next the

* Ewing, Contributions to the molecular theory of induced magnetism, Roy,
Soc. 1890 ; also Magnetic Induction, etc., pp. 287-8 et seq.
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other so as to be able to oscillate in the same horizontal
plane without touching each other. These needles are sub-
jected to a magnetizing force obtained by rolling coils of
wire, carrying an electric cugrént, around the case enclosing
them. When the needles are left to their own reactions,
that is, when the field produced by the current neutralizes
the earth’s field, it is observed that they form more or less
complex geometrical combinations with each other in stable
equilibrium. If one of the elements of this combination is
slightly altered from its position, it immediately returns to
it ; but if the alteration of position is considerable, the com-
bination is not formed again, and new combinations are
formed between the neighboring magnets. If a progres-
sively increasing directive force is applied to such a system,
it is seen that the various combinations are at first slightly
deformed without being destroyed. This, which might be
termed an elastic deformation since it is reversible by with-
drawing the magnetizing force, is comparable to the state of
the molecules of a magnetized bar in the region A4 of the
magnetism-curve, Fig. 24.

If the current through the coils is continuously increased,
a point is reached where one of the combinations of the
magnets exceeds the limiting deformation which it can
stand. There is then produced a sudden change in. this
combination, and, by the mutual action, the whole system
enters on a state of unstable equilibrium, so that a very
slight increase in the directive force is sufficient to align all
the magnets in a direction approaching to that of the direc-
tive force itself. This period corresponds to the region B
of the magnetism-curve. The observation of the propaga-
tion of the new groupings from one group to the next one is
eminently suggestive as explaining the necessity of a definite
interval of time for the molecules of a magnet to assume
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their positions of equilibrium under the action of a magnet-
izing force.

When, after this, we still continue to apply increasing
forces, we observe that the mutual reactions of the magnets
are more and more overpowered and that they align them-
selves in a direction which eventually coincides with that of
the acting field. This is the state designated under the
name of saturation and shown at C in the curve.

Figures 23, 26, and 27 show three successive states of the
system of magnets; Fig. 25 corresponding to the end of
state A, Fig. 26 to the end of state B, and Fig. 27 to the
end of state C. 'If we diminish the intensity of the field, the
magnets still maintain their general orientation, but become
slightly displaced by the effect of their own reactions.
When the directing field becomes zero, the magnets remain
more or less aligned in the direction of the field, which
accounts for the residual magnetism. But if the directing
field changes sign and increases in the opposite direction,
we soon observe a sudden return to the state of unstable
equilibrium, and then an orientation in the opposite direc-
tion. .

According to the curve ACA’, Fig. 18, annealed soft iron
is in a state of unstable equilibrium when the magnetizing
force becomes zero, since the elbow of the curve is on the
side of the positive magnetizing forces. With tempered
steel, on the contrary, this elbow is produced on the side of
the negative abscissa, which accounts for the aptitude of this
metal for retaining its residual magnetism. In fact, at the
moment when the magnetizing force becomes zero, the state
of the metal is shown by a point of the curve situated in the
region corresponding to stable equilibrium.

If, instead of placing the magnets regularly, we arrange
them at varying distances, we observe that the duration of
the state corresponding to unstable equilibrium (B) is in-
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A rise in temperature produces analogous effects when
the magnetizing force is feeble ; we have already seen, how-
ever, that heating reduces the permeability when the mag-
netizing force is intense. Ewing explains this fact by
considering that the molecular agitation caused by a rise in
temperature corresponds to oscillations of the magnets about
their axes. When the magnets are already oriented, these
oscillations result in a diminution of the mean external action
of the system. Or we can admit, with Dr. Hopkinson, that
the magnetic moment of the elementary magnets decreases
when the temperature increases.

Lastly, the absence of hysteresis, observed by Lord
Rayleigh in the case of very feeble variations in the magnet-
izing force, can be explained if we observe that such varia-
tions produce only feeble displacements of the elementary
magnets about their positions of equilibrium; such dis-
placements are reversible without break of equilibrium and
consequently without the extensive movements which give
rise to the development of heat.

The irreversible variations, which are made evident by
the separation of the ascending and descending curves of
magnetism, are the only ones which give rise to the evolu-
tion of heat.

65. Equilibrium of a Body in a Magnetic Field.—
We have seen, § 45, that a shell free to move in a magnetic
field moves so that the flux entering by its negative face
may be a maximum. This conclusion extends to any mag-
netized body whatever which may be considered as formed
by superposed shells.

Thus in a uniform field the axis of an iron cylinder of
clongated form aligns itself parallel to the lines of force of
the field, in such a way that the flux of force enters by the
induced south pole.
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]

HYSTERESIS AND MOﬁECULAR MAGNETIC
FRICTION.*

66. Hysteresis.—Some materials, such as iron, nickel, etc.,
when exposed to the action of a magnetomotive force, that
is, when in a magnetic field, have induced in them a mag-
netic flux far in excess of that set up under the same
conditions in air or other materials. The former are there
fore called magnetic materials.

In airand other non-magnetic materials the magnetic flux,
®, varies proportionally to the magnetomotive force, &, or to
the field intensity, 3¢. In magnetic materials, such as iron,
the magnetic flux is proportional to the M. M. F. only for
very low values of the latter. With increasing M. M. F.’s it
begins to increase at a greater rate than the M. M. F., be-
comes proportional again to it at still higher values, and
for very high M. M. F.’s increases more and more slowly until
ultimately its further increase with increase of M. M. F.
approaches a limit where it is not greater than in non.
magnetic materials; or, in other words, the difference
® — 3¢ approaches a finite limit, called the absolute magnetic
saturation of the material,} which in soft iron corresponds
to about ® = 20,000, in nickel to & = 6000, in cobalt to
® = 13,000, etc.

The curve indicating the variation of the magnetic flux
® with the M. M. F. or field intensity is of a form shown

* By Chas. Proteus Steinmetz.

»

t ¢“Magnetic Reluctance,” by Kennelly. Z%ansactions of the American

Institute of Electrical Engineers, 1891.



88 HYSTERESIS—MOLECULAR MAGNETIC FRICTION.

in Fig. 29 by the full line. This curve is obtained if the
M. M. F. acting upon the iron is made to gradually increase
from zero to a maximum. If now the M. M. F. is gradually
reduced again from the maximum to zero, the correspond-
ing values of magnetic flux, ®, are not the same, but
considerably higher than for increasing M. M. F., and are
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F1G. 29.—RISING AND DECREASING MAGNETIC CHARACTERISTIC.

shown in Fig. 29 in dotted line. Thus the magnetic char-
acteristic is different for decreasing and for increasing mag-
netism; or, in other words, the magnetic flux, ®, in mag-
netic materials, such as iron, depends not only upon the
present value of M. M. F., but also upon the previous values,
and thus lags behind the M. M. F.

This lag of the magnetic flux & behind the M. M.F. is
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practically independent of the time; that is, independent
whether the change of M. M. F. takes place rapidly or very
slowly. It is called Aysteresis.

The effect of hysteresis upoh 'fche magnetic characteristic
is most pronounced in gcyclic ‘cﬁhnges of flux as produced
by cyclic changes of M. M. F. Thusif the M. M. F., &, or the
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Fic. 30.—HysTERETIC LooP OR MAGNETIC CYCLE.
field intensity, 3¢, is varied periodically between a maximum
value -}- 3¢, and an opposite value — 3¢ , the magnetic flux
will vary between corresponding maximum values 4 ®, and
— ®,, describing a loop-shaped curve called the magnetic
cycle or hysteretic loop, as shown in Fig. 30.
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It follows that when the M. M. F. has been reduced to
zero, the magnetic flux has still a considerable value, which
is called the remanent magnetism, R in Fig. 30.

The magnetism will reach zero only after the M. M. F. has
been reversed and increased to a considerable value @, in
opposite direction. Thus the iron acts as if an internal
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F1G6. 31.—MAGNETIC CYCLES OF SOFT SHEET-IRON OR SHEET-STEEL.

M. M. F.,, @, tends to maintain its magnetic flux. This
M. M. F. @ is called the coercive force of the iron.

The shape of the hysteretic cycles varies with different
magnetic materials, and even with the same magnetic
material in different physical conditions, and is different for
different values of maximum magnetic flux, ®,. A number of
such magnetic cycles are shown in Figs. 31, 32, and 33. Fig.
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31 gives the magnetic cycles of sheet iron or soft sheet steel
for different values of magnetic flux,

® = 2000, 6000, 10p00, and 16000.%*
i

Fig. 32 gives cast-iron cycles for ® = 6800 and ® = 10300.}
Fig. 33 gives cycles of tool-steel at different degrees of hard-
ness. / is a sample hardened in water, O one hardened
in oil, and S an annealed sample, all three of the same
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F16. 32.—MacNETIC CYCLES OF CAST-IRON.

material.} As may be seen, the harder the material the
lower and wider in general is the hysteretic loop ; that is, the
lower the maximum and remanent flux, the higher the coer-

* ¢“On the Law of Hysteresis,” Part III, A. 1. E. E. Z7ansactions, 1894,
p. 717.

t 25id., Part 1, A. 1. E. E. 7ransactions, 1892, p. 40.

Y Bid., Part 11, A. 1. E. E. Transactions, 1892, p. 653.
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cive force. In the cycles of Figs. 31 to 33, the abscissa are
not the field intensities 3¢, but the ampere-turns per centi-
metre length of the magnetic circuit, expressed by

e 10X

S
4

’
which is sometimes used as a practical unit of M. M. F.

If an air-gap is introduced into the magnetic circuit—that
is, if the magnetic circuit is partly of iron and partly of air,
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F1G. 33.—MAGNETIC CYCLES OF WELDED STEEL AT DIFFERENT DEGREES
OF HARDNESS.

as for instance in dynamo machinery—the hysteretic cycle
changes to the shape shown in Fig. 34, in which the straight
dotted line represents the M. M. F. required for the magnet-
ization of the air-gap, and the hysteretic loop has the same
relative position—that is, the same horizontal distance from
this dotted line—as it had from the vertical line in the
circuit consisting entirely of iron.
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In the hysteretic loop with field intensity 3¢ as abscisse,
of dimension
L

and magnetic flux density ® as ordinates, of dimension
O T % A

the area has the dimension

energy
volume’

LMT =

thus representing an energy per unit volume.

Let /= instantaneous value of M. M. F.,
¥ = maximum L i3 e
¢ = instantaneous value of magnetism produced there-
by,
¢ = maximum value of magnetism produced thereby.

If the M. M. F. f is produced by an alternatmg current, 7,
flowing through # turns, then

do
e = —-nd—t-_EMF

induced by the magnetism 7, and
dw = ¢idt = — nido

= energy expended by the change of magnetic conditions.
Since 7z = [,

dw = — fdo,

& e
W=/ fd¢+f SAdp =
-~ +&F

and
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total energy expended during the cyclic change of mag-
netism ; but ;.

Fe & £ - i
f fd¢+f fd¢@ = area of the hysteretic loop.
~F +& - ‘

Therefore, the area of the hysteretic loop, with the
M. M. F. in ampere-turns as abscissz, and with the magnetic
flux in volt-lines (= 10" lines, or one hundred mega-
webers) as ordinates, is equal to the energy expended by
hysteresis, in coulombs. With lines of force as ordinates,
and tens of ampere-turns as abscissa, the area is the hyster-
etic energy in ergs.

The area of the hysteretic loop, with field intensity, 3¢, in
tens of ampere-turns per unit length of magnetic circuit, as
abscissz, and with magnetic flux density, ®, as ordinates, is
equal to the loss of energy by hysteresis in ergs per unit

nF
volume. With field intensity 3¢ = 41—0 as abscissz, and

with lines of force per cm.?, ®, as ordinates, the energy
expended by hysteresis during a complete cycle of magnet-
ization is = 47 X area of hysteretic loop.

Hysteresis thus represents an expenditure of energy by
the M. M. F. and is measured by the area of the hysteretic
loop or magnetic cycle.

68. Molecular Magnetic Friction.—If by an alternating
M. M. F. an alternating magnetic flux is produced in iron
or other magnetic material, a loss of energy takes place
in the iron by a kind of frictional resistance of the molecules
against the change of their magnetic condition. This phe-
nomenon is called molecular magnetic friction. Therefore,
to alternate a magnetic flux, energy has to be expended
upon the iron.
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If the alternation of the magnetic flux is produced by
an alternating current, and the condition is such that no
energy is expended upon the magnetic circuit by any other
source, nor external work done by the magnetic circuit, the
energy consumed by molecular magnetic friction has to
be supplied by the alternating current. Consequently, the
magnetic flux cannot follow the M, M. F., but must lag
behind it so far that the hysteretic curve of magnetic flux
and M. M. F. represents the energy expended by molecular
magnetic friction.

It follows that in an alternating magnetic circuit which
neither produces external work nor receives energy from
another source than the alternating M. M. F., the energy con-
sumed by molecular magnetic friction is equal to the energy
expended by magnetic hysteresis.

If, however, external work is done by the magnetic circuit,
or work expended upon it by an external force, the identity
between the energy of molecular magnetic friction and the
energy of magnetic hysteresis no longer exists. Thus, if
the magnetic circuit is vibrated mechanically during the
cycle of magnetization, the hysteretic loop collapses more or
less completely, and the rising and decreasing magnetic
characteristics coincide ; the energy consumed by molecular
magnetic friction being supplied in this case from the mechan-
ical source vibrating the magnetic circuit. Conversely, if
mechanical work is done by the magnetic circuit, as, for in-
stance, if the magnetic circuit consists of iron filings or
loose laminations which can vibrate and rearrange them-
selves, the hysteretic loop is greatly extended and represents
not only the energy consumed by molecular magnetic fric-
tion, but also the mechanical work done.*

* For proof and discussion of the distinction between hysteresis and mo-
lecular magnetic friction see: ‘“ On the Law of Hysteresis,” Part II, Chap.
V, A. L. E. E. Zransactions, 1892, p. 711, and *‘ On the Law of Hysteresis,”
Part I11, Chap. 11, A. 1. E. E. Zransactions, 1894, p. 706.
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It follows that in determining the energy loss by-molecular
magnetic friction from the hysteretic loop of the material,
care must be taken that neither external work is done nor
absorbed by the magnetic c’irguit while the hysteretic loop

is being determined. 5

69. Determination of Hysteresis and Molecular Mag-
netic Friction.—The different methods of determining the
value of hysteresis and molecular friction are as follows:

(@) Ballistic Method.— A magnetic circuit is built up of the
iron to be tested, a magnetizing coil wound around it as
uniformly as possible, and a second or exploring coil em-
ployed, connected to a ballistic galvanometer. The current
in the magnetizing coil is varied step by step, and the
time integral of E. M. F.induced in the exploring coil by
the variation of current, and consequently the change in
magnetic flux, is observed by means of the ballistic galvanom-
eter. In this way a complete cycle of magnetism is plotted
and from its area the loss of energy determined. This
method does not give the energy of molecular friction
directly, but gives the energy expended by hysteresis. It
can be used for the determination of the saturation curve
also, and is suitable for the investigation of solid materials,
as well as of laminations, etc. In determining the saturation
curve by this method, it is desirable to dissipate the remanent
magnetism previous to the test, by applying a strong alternat-
ing current through the magnetizing coil, and gradually re-
ducing this current to zero. In determining the hysteretic
cycle, a greater number of cycles between the same maxi-
mum values should be described before taking readings, so
as to make the cycle symmetrical and independent of rema-
nent magnetism due to the previous history of the iron.

(6) Alternate Current Method.—The energy expended by
magnetic hysteresis can be determined directly by sending
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an alternating current through a magnetizing coil surround.
ing the magnetic circuit, and taking readings of an ammeter,
a voltmeter, and a wattmeter. The M. M. F. is determined
from the ammeter reading, the magnetic flux by calcula-
tion from the voltmeter reading, number of turns, fre.
quency and shape of the magnetic circuit, and the energy
loss by hysteresis from wattmeter readings.

This method is applicable only to laminated material, and
measures not only the energy expended by hysteresis but
also the energy loss by eddy or Foucault currents. Conse-
quently, either the material has to be subdivided so as to
make the latter negligible, or hysteresis and eddy currents
have to be separated from each other afterwards.

Since the maximum flux and maximum M. M. F. in this
method are obtained by calculation from the effective
values read on the instruments, the wave of E. M. F. should
be as near as possible a sine wave. Owing to the distortion
of the current wave by hysteresis, the maximum value of
current, even with a sine wave of E. M. F., is not through.

out the whole range equal to /2 times the effective value.
Calculating the M. M. F. under the assumption of a sine
wave of current, therefore, gives a magnetic characteristic,
which, while practically coinciding with the true magnetic
characteristic within a range up to ® = 10,000 or 14,000, yet
differs greatly therefrom beyond this range, showing appar-
ently very high values of flux. In Fig. 35 is shown the
true magnetic characteristic in full line, the magnetic char-
acteristic as determined from an alternating current test
in dotted line, and the loss of energy by hysteresis in ergs
per cm® and cycle in the full line of single curvature.®
Instead of connecting the voltmeter and the potential
coil of the wattmeter across the magnetizing coil of the

* ¢« On the Law of Hysteresis,” Part 111, A I. E. E. Zransactions, 1894,
p. 722. v
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magnetic circuit, it is preferable to connect it across a
second or exploring coil wound uniformly over the magnetic
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F16. 35.—MAGNETIC CHARACTERISTIC FROM BALLISTIC AND ALTERNATING
CURRENT TESTS, AND MOLECULAR MAGNETIC FRICTION CURVE.

circuit, as shown diagramatically in Fig. 36, and thereby
eliminate the error due to the drop of voltage and loss of
energy in the resistance of the magnetizing coil.
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(¢) Power and Torque Tests—The loss of energy by mo-
lecular magnetic friction and eddy currents may be deter-
mined by moving the material to be tested in a uniform
magnetic field, and measuring the power required theretor.

This method is commonly used in determining the hyster-
etic loss in the armatures of dynamo machinery. In this
case the armature is turned, first in an unexcited magnetic
field, and then in a magnetic field of various degrees of

Alternator
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add. add.

R <l <hy

J L

O—

Fic. 36.—INSTRUMENT CONNECTIONS FOR ALTERING CURRENT HYSTERESIS
TEsTS.

excitation. The difference in work consumed in these cases
is the energy expended in molecular magnetic friction and
eddy currents in the armature.

A similar method suitable for testing of iron, is the
following :

A uniform magnetic field is set in rotation, and in the
centre of the field the iron to be tested is suspended by a
torsion spring. Owing to the hysteretic loss in the iron, the
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rotating field tends to turn the iron in its direction of rota-
tion, and the torsion given to theé spring to counterbalance
this torque is directly proportional to the hysteretic loss per
cycle in the test-piece. The magnetic flux is measured by
the E. M. F. induced in an exploring coil surrounding the
test-piece.* This method has the advantage that the torque
exerted upon the iron by molecular magnetic friction is
independent of the speed of the rotating field.

70. Loss of Energy.—The hysteretic cycle has been
found identically the same from very slow alternations, up to
the highest frequencies reached by dynamo-electric machin-
ery—beyond 200 cycles per second. It can, therefore, be

.said that hysteresis and the loss of energy by molecular
magnetic friction per cycle are independent of the frequency,
and consequently the loss of power is proportional to the
frequency, that is, to the number of cycles.

No difference between the value of hysteretic energy and
loss by molecular magnetic friction has been found between
rotating and reversing fields, and therefore it is permissible
to use the values found in alternating fields for losses in
rotating fields, and conversely.

The hystere*ic loop increases with increasing maximum
magnetic flux density &; that is, the energy expended by
hysteresis per cycle, and the energy absorbed by molecular
magnetic friction, both increase with the magnetic flux.
Plotting the loss of energy as a function of the magnetic
flux, the curve thus obtained rises uniformly, and does
not show any marked features at the critical points of the
magnetic saturation curve, following the same law at satu-
ration and below saturation.

Approximately, the loss of energy by molecular magnetic

* Holden, 7%e Electrical World, June 15, 1895,
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friction can be expressed by the empirical formula,*
Wy=n®",

where W, = loss of energy in ergs per cycle and cw’, +-® =
maximum values of magnetic flux between which the mag-
netic cycle is performed, and # is the coefficient of molecular
magnetic friction.

The same empirical function of the 1.6 power holding for
reversals of magnetism, holds also for cyclic changes of
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flux between any two limits ®, and ®,, whether these
two limits be of the same direction and same sign or of
opposite direction. Thus, in general form the empirical law
of molecular magnetic friction can be expressed by the
formula :

®, — (Bl)w.

WH = 7/( 2

*¢On the Law of Hysteresis,” A. I. E. E. Zvansactions, 1892, p. 3 and
p. 621; 1894, p. 702.
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absolute saturation, while & increases indefinitely with in-
creasing J¢.*

71. Coefficient of Hysteresis.—The coefficient of mo-
lecular magnetic friction varies very greatly with different
materials and even with different conditions of the same
material.

In iron, the loss by molecular magnetic friction seems to
depend comparatively little upon the chemical constitution.
In general, the purer the iron is, the lower the co-
efficient #, and the less the loss by molecular friction.
Frequently, however, very pure samples of iron show com-
paratively high values of #, while impure samples show re-
markably low hysteretic losses.” A large percentage of
carbon, silicon, and phosphorus seems to be objectionable,
while manganese in small percentages appears comparatively
harmless. Even here, however, the effect of impurities
seems to be indirect, and due to changes in the physical
constitution of the material.

Of the greatest importance regarding hysteretic loss is the
physical condition of the material, one and the same material
in a hardened state occasionally showing a hysteretic loss
many times larger than when in annealed state. Annealing
is always found to reduce the loss by molecular friction
more or less, while hardening increases it. With tool steel,
for instance, the coefficient of hysteresis has been varied from
14.5 to 75 by annealing and hardening, respectively. (See
Fig. 33.)

Break of continuity of the material usually greatly in-
creases the loss by molecular magnetic friction. Thus, gray
cast-iron, even when very soft, shows a comparatively high

* ¢ On the Law of Hysteresis,” Part 11, A. L. E. E. ZTransactions, 1892,
Chap. III, pp. 678 seg.
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coefficient, #, due to the interposition of graphite in the
metallic structure.

The temperature affects the loss of energy by molecular
magnetic friction very little, within the range of atmospheric
temperatures, the hystereticiloss decreasing considerably
only at high tempgratures. If iron is heated and then
cooled, the loss by molecular friction is much smaller when
hot, and is not increased again to the same value as before
when cooled ; a part of the decrease due to the heating be-
comes permanent, probably due to a change of physical
condition. This is especially noticeable with steel. After
repeated heating and cooling, the variation becomes reversi-
ble and the hysteretic loss decreases with increasing temper-
ature and increases again to the same value with decreasing
temperature, approximately as a linear function of the
temperature.®

Mechanical action affects the energy expended by hystere-
sis very greatly, and causes the hysteretic loop to collapse
more or less, but apparently does not affect the loss of
energy by molecular magnetic friction; a distinction thus
exists between hysteretic loss and molecular magnetic
friction loss.

Very long-continued exposure of iron in alternating mag-
netic fields seems in some cases to increase the loss by
molecular magnetic friction through what has been called
ageing of the iron, which has been observed especially in
iron with very low coefficient #. Other careful tests, how-
ever, have not shown any trace of an increase of hysteretic
loss during continuous use in alternating fields, and the ob-
served increase thus appears to be due to secondary causes,
probably to a continued heating in the alternating field
beyond a critical point of the iron, and a change of the

* W. Kunz, Electrotechnische Zeitschirift, Berlin, April 5, 1894.
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physical condition caused thereby. An effect similar to
that observed in the crystallization of wrought-iron in
bridges, etc., under vibrating stresses, may also account for
the so-called ageing.

The following values of the coefficient of molecular mag-
netic friction have been observed in different materials.*

COEFFICIENT OF HYSTERESIS, AND ABSOLUTE MAGNETIC

SATURATION.
Absolute
Magnetic Satu-
Coefficient in Average ration,
Milliunits. ® - JC=4ns
in Kilolines.
Soft sheet-iron ‘and sheet-steel.........| 1.24~5.5 | 2.5-3.5 17-20
Castriron . AN T BTN S8 S STIRI =16 2 13 10-1I
Cast-steel of low permeability.... ....| 12 51 I I1
i of high L8 SOfthyrory: 3.32—9 6 12-19.5
£ ofdigs & hard....| 28 18.5
Welded Steeliannealeaihry.ryrnte e i 14.5 85800 5 o 17.4
‘“  oil hardened......... havems | ¥297 16.7
€6 t pyenyahard,, STaSekl R 155 75 8.3
Manganese steel annealed, 4.7% Mn...| 41
£ 8.74% Mn..| 82
o ‘¢ oil hardened, 4.7% Mn 67
Chrome steel, annealed, 1.2% Cr ...... 16
e Vol hardened T2EIC Y 4
Wolfram steel, annealed, 4 64 Wo..... 14
4= ol hardened 3.44% Wo.| 48
W B el T Ze S SIS 060 6.0 50 00 Go, 86 6. 50,0 20.4-23.5 {seeen.. 4.7
Nickelswireyf softir rsi b wl o ot 12.2-15.6 13 5.9
% v s hardeneds s Atrg. et ey 38.5
Cobalt)icast. i Sl PRSI S AR 11.9
Amalgamyofiicon, 114 Fes- . Shss o 1 TE SRR i o 9

While the loss of energy by hysteresis and by molecular
magnetic friction.is independent of the frequency within a
very wide range, for extremely slow variations of M. M. F.
a time lag exists, especially for very low M. M. F.’s. That

* ¢“On the Law of Hysteresis,” Part 11, A. 1. E. E. Z7ansactions, 1892, p.
680; Part I1I, 1894, p. 705.
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is, after the application of the M. M. F. the magnetism rises
quickly to a certain value and then keeps on rising slowly
for seconds and even minutes until a final second value is
reached. Inalternating current machinery this phenomenon
of magnetic sluggishness is of, no importance.

#2. Eddy Currents.—In magnetic materials exposed to
an alternating magnetic field, besides the loss of energy
by magnetic hysteresis or molecular magnetic friction, a
further loss of energy takes place by eddy currents or
Foucault currents. The eddy currents are not a magnetic
phenomenon like hysteresis, but a purely electrical phe-
nomenon. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>