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The proof holds in any number of dimensions, if the constant in Ham-
ack's inequality is changed properly.
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1. The purpose of this note is to prove and to generalize the quasi-
ergodic hypothesis of classical Hamiltonian dynamics' (or "ergodic hy-
pothesis," as we shall say for brevity) with the aid of the reduction, recently
discovered by Koopman,2 of Hamiltonian systems to Hilbert space, and
with the use of certain methods of ours closely connected with recent in-
vestigations of our own of the algebra of linear transformations in this
space.3 A precise statement of our results appears on page 79.
We shall employ the notation of Koopman's paper, with which we

assume the reader to be familiar. The Hamiltonian system of k degrees
of freedom corresponding with the Hamiltonian ftnction H(qj, ..., qk,
pl, .. ., pk) defines a steady incompressible flow P - Pi = SIP in the
space P of the variables (ql, ..., qk. pi, ....pk) or "phase-space," and a
corresponding steady conservative flow of positive density p in any in-
variant sub-space Q C 4' (Q being, e.g., the set of points in 'I of equal
energy). The Hilbert space p consists of the class of measurable functions
f(P) having the finite Lebesgue integral ]a If 12pdw, the "inner product"4
of any two of them (f, g) and "length" Ilft! being defined by the equations

(fU g) = J ffgpdA; Ilf l = x/u,f). (1)

The transformation Ut is defined as follows:

UJ(P) = f(StP) = f(Pt); (2)

obviously it has the group property
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UlU,= Ut1+. Uo=I; (3)

and in virtue of the conservative character of the flow, and the resulting
invariance of (UJ, Utg), it is unitary. The spectral reduction of U1 in
terms of its "canonical resolution of the identity" E(X)6 is furnished by a
theorem due to Stone,6 and gives us

r+ co

u1 = f e dE(X), (4)

this being the symbolic expression for the fact that, for all f, g of ID, we
have, in terms of Stieltjes integrals,

{+ c

(UJ, g) = J ieX d(E(X)f, g). (4')

The pith of the idea in Koopman's method resides in the conception
of the spectrum E(X) reflecting, in its structure, the properties of the
dynamical system-more precisely, those properties of the system which
are true "almost everywhere," in the sense of Lebesgue sets.
The possibility of applying Koopman's work to the proof of theorems

like the ergodic theorem was suggested to me in a conversation with that
author in the spring of 1930. In a conversation with A. Weil in the
summer of 1931, a similar application was suggested, and I take this
opportunity of thanking both mathematicians for the incentive which
they furnished me for undertaking the investigations of this paper.

2. For the sake of brevity, we shall introduce the following notation:
We shall replace pda by dv, writing ]Q -pdw = -dv. By the

"weight Iu 0 of the Lebesgue-measurable set 0(C Q) with respect to the
density p" will be meant the quantity J, 0 = fe pdw = Jew dv. By a
"zero set" we shall mean a set of zero weight, and hence, since throughout
Q2, 0 < pi < p < P2, a set of zero Lebesgue measure.

If 0 is a set of points P of Q or 4, we shall denote its characteristic
function by xe = xe(P); i.e., Xe(P) = 1 or 0 according as 0 does or
does not contain P. If f(P) is any measurable function, the set of points
for which f(P) > X, etc., will be denoted as usual by [f(P) > X], etc. We
have the identity [[Xf>x] = 1] = U > X], etc.
By the strong convergence of a sequence fi, f2, ... in ! (f, - f) will

be meant that lifn- f >- 0 as n >- co. By weak convergence
(f,, -4 f) we mean, on the other hand, that for an arbitrarily chosen g
of !, (fn, g) )- (f, g) as n - co. It is shown thatfn )- f implies
f-*') f, but not conversely.7 In general, expressions depending for
their precise meaning on the nature of the convergence considered will
be suffixed by the corresponding convergence symbol, thus we shall write
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"separable (-*)," "everywhere dense (-4)," etc. All these notions
subsist if n is replaced by one or more continuously varying parameters.
By ,u-convergence of a sequence of point sets e1, 02, . . . (C Q or 4') will

be meant the strong convergence of the corresponding measure functions:
ox -*0> if Xon ) xe, or, what is the same thing, ju[0. +0 - 0e.]

)-O as n--* C. Clearly 0, lim ., and lim ", will all differ by at
most zero sets.
The greatest lower bound and least upper bound of a set [ will be

denoted, as usual, by inf [ ] and sup [ ].
3. The starting point of our investigations is the construction of the

operator

O'5S s- Urdr (s < t), (5)

this being, as before, but the symbolic expression of the fact that for all
f,gin f,

(t,sf, g) =
s (UTf, g)dT; (5')

the existence of o-t,, is easily proved.8 We will show that, for each f of
!D, oTt,sf is convergent (-*) as t - s -* C, irrespectively of the mode
of variation of s, t.
We have from (5'):

11 O_,sf 112 = (1,sf = t ± S (U,f, og,fd
1 rP ft

(t -s)2J5J2 (U7f, Uf)deda;
since U, is unitary and U: = U,-' = U- 9

J|T. 112 - ( S)2 S.f (U _,f,f)drda,

which reduces, on making the change of variables r- = x, X + ! = y, to
1 +(-s) (2t- xi dx(dy

(t-S)2J.c.. J2+ii Uxf,.f)2

(t s)2 J/(t-S) (t -s - Ix)(U2.ff)dx.
This may be calculated with the aid of (4'), inasmuch as the various
changes in the order of integration are permissible, on account of the
uniform convergence of the Stieltjes integral in (4')10 (for all values of
t-at present, x). Thus:
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11 f = (1 )2j1 (t1-2s- I2 [J eiXX d(E(X)f, f)]dx

=-(-2 J X eX (t-s-|x|)dxldF(X'^)f. f)
(t rl-s)J....L -s-

-(t-S)2ji J§O cos (xo)(t-s-x).dx d(E(X)f, f)

2f r+ 1 -cos (t-.s)X(t-2 - s-2d(E(X)f,f)
ft [S 1/2(t2s)X ] d(E(X)fDx

This integral has a non-negative integrand and a non-decreasing expres-
sion after the d-sign; hence we may obtain an upper bound for it as follows:

First, break it up into f and J' + ; (e > 0, to be considered

of integration in the second by We shall then have

rf 4 r
atsf -2< 2 +

d
d(E(X)f f)

.Jd~~Eq~~)f,f) (EtXf )

= {t(E(e)f,f)- (E(-E)f,f)J} + _ )e(ff.

co 1/2(t S) (t

Hence, as t - s -* + ~, lim II Sf 112 < (E(e)f f) - (E( -e)f,f)
and if, as e -a 0 {E(e) - E(-e)i } fit 0, we shall have, on letting
e -* 0,OI||f 1|2 > 0, so that ot.f -* 0.
We now introduce the projection operator Eo defined as follows:

(E(e) - E(-e))fi Eof as e n 0. The existence and projective
nature of Eo is easily deduced from the fact that E(e)- E(-E) is a non-
increasing "function" ofrelc Thus, we are able to express the condition
thaton f- O as(t- S O inthe form: Eofi=0 .

SupposegthatEo f = f; then, sinceE(E)-E-E)t E, wehaveE(e)f =
f,E(-e)f 0,112 i.e., E(X)f =f for > 0, = 0for < 0. Hence, for allg,

(Uf,g) = Jf e° fd(E(-)f g) = (f, g),

_.co, 1__ -,f 12 <

so that, for all values of t, U,f = f.
Let ) be the linearmanifold in corresponding with E. For every
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f of 9), Eof = f; hence Ulf = f, and q,f = f, so that as t - s - o we
have

-atsf - f = Eof. (6)

For all f orthogonal to 91 on the other hand, we have

,sf 0O = Eof. (6')
Now let f be an arbitrary point of ); we can write f = fi + f2, where

fi is in 91, and f2, orthogonal to 91. Then it will follow from (6), (6'),
that we still have, as t - s > 0,

',sf-s Eof. (6")

Throughout 9)1, Utf = f. Conversely, if Utf = f, it will follow that
¢t,sf = f, and hence by (6"), f = Eof, i.e., f belongs to 9). Thus, 9)1 is
the class of all solutions of the equation Ulf = f (i.e., the identity in t).

4. Let us examine more closely. Its elements f are characterized
b3 Utf = f, and hence, in virtue of (2), by

f(P) = f(Pt), (7)
the = sign holding for all t but with the possible exception of a zero set of
points P (in general, dependent on t). Hence, if f is in 9), a(f) will be
also, provided f a(X) I 2f is finite.
Now f can be expressed as the limit (-*) of functions of the form

j(f) where a is susceptible of but a finite number of values, and these,
in their turn, are linear combinations of similar functions susceptible only
of the values 0 and 1.13 The latter, being of the form a(f), belong to W.
If we denote by S the class of all functions belonging to 9) and taking on
only the values 0 and 1, we may say that S spans (->) the closed (-*)
linear manifold 9D?.

If f belongs to f, we shall write [f(P) = 1] = A, and f = fA( = XA),
(cf. § 2). Since AA = I1f 11 2, andf is in !, AA must be finite; and since
f is in S:D 9), it follows from (7) that the transformation P -- PI changes
A by at most a zero set. These two properties, its finite weight and in-
variance under P >o Pi, characterize A. We shall call any set having
these properties a A-set. Evidently Q will be a A-set if and only if ,u
is finite.
The class of all A-sets, being a subclass of the class of all measur-

able sub-sets of Q, is separable;14 that is, there exists a sequence Al,
A2, . . . of A-sets such that any A-set can be expressed as the limit (in the
sense of ,u-convergence) of a subsequence of A1, A2, .... By methods
which we have used in another connection,15 we are able to replace
the sequence Al, A2, ... by another sequence of A-sets, A1', A2',
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such that, firstly, any member of one sequence may be expressed in
terms of elements of the other with the finite repetition of the operations
of taking the logical sum (+), the logical product (X) and the logical
difference (-); secondly, A1', A2', ... may be set into one to one corre-
spondence with certain rational numbers pn = p(A'), A' = A(pn), 0< pn < 1,
in such a manner that Pm < Px implies A(pm) CA(p.); and, thirdly, inf pn = 0
and sup Pn = 1.
We now define the function G(P) as follows:

G(P) = inf[px for which P is in A(p)J;
= 1, when no such p, exists.

By its construction, G(P) is invariant under P > Pt (remaining un-
changed apart from zero sets); and inf G(P) = 0, sup G(P) = 1. Since
[G(P) < pn] = A(px), it follows thatfA' = fA,(,) = F(G) (for we may set
F(X) = A for X < px, = 0 for X > pn); and therefore this property remains
true for every fA.,16 and any fA of 2 (cf. definition of > for sets). And
since every f of 9) is the limit ( - ) of a sequence of linear combinations
of functions of S, it follows that every such f is a function of G.17 Finally
if X < A, ,u[G(P) ( X] is finite. For a Px > X may be found, whereupon
[G(P) < X]C [G(P) pPn] = A(pn) = A , and AA' = IIf' 112, which is
finite for any fA' of t(CO
Any function G(P) like the above, such that G(Pt) = G(P) for all t

except perhaps at zero-sets, such that X' = inf G(P) and X" = sup G(P)
exist, and that, if X < Xf, Iu[G(P) $, X] is finite, and which possesses the
property that every f of 9)1 may be expressed as a(G), shal be called a
universal integral. We have shown that one universal integral always
exists; obviously there are infinitely many.18
The class 9) coincides with the totality of expressions a(G) (with

fn |(G(P)) 12dv finite). This makes it possible to express Eof in terms
of G. We shall give below, instead of our original method of computation,
an abbreviated method for which we are grateful to Mr. M. H. Stone.

5. For an arbitrary f of I, Eof belongs to 9, and is, accordingly, of
the form a(G). Let X < X\ (= sup G), and define t(X) to be 1 for X < X
and 0 for X < X. Let us set A(X) = [G(P) <X ] (we have seen thatuA(X)
is finite). Then we have, on the one hand,

foEof(P) (G(P))dv = JQ(G(P))v(G(P))dv2O

= fI aj(X)C(X)dj.&A(X) = j:a(X)d/Ap(X),

and, on the other hand,
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faEof(P)v(G(P))dv = (Eof, t(G))
= Uf Eo(G))2) = (f, r(G))

= faf(P)r(G(P))dv = fA() f(P)dv.
Thus:

/8(Xv)dpA(XA) = J _ f(P)dv. (8)
J BW JA(~~~AX)

As X increases from X' to ", xA(X) goes in a non-decreasing fashion
from 0 to ,u; and jAA(X + 0) = 4jA(X). In intervals X1 < X < X2 where
,A(X) is constant, A(X) changes at most by points P of a zero set, i.e.,
X1 < G(P) < X2 can be true at most on a zero set; thus the behavior of
!(X) in such intervals does not affect the relation Eof = 85(G)-we may
take j(X) constant upon them. It follows that the familiar theorems on
the differentiation of Lebesgue integrals may be applied, the independent
variable being here x = 4uA(X). From such considerations it follows that

d I{ (pAf(X)vI exists for all X inX' < X < X', except for a set of values

of X for which the-corresponding set of valuesx = AA(X) is of zero measure,22
and this derivative is equal to 0(X). The correspondence P - xI
obtained by setting X = G(P), x = 4A(X), carries a set 0 C fl into a set
O on the x-axis so that MAO = measure of 0.23
Thus we have, except for at most a zero set on Q,

Eof(P) [d {JfA(x)f(P)dv } (9)

This is naturally true for X = X' only when x = sA(X') exists, i.e., when
An is finite.
In the case X = G(P) = X', we carry out the above process with r(X) = 1

for X = X', = 0 for X $ X'. On setting A = [G(P) = X"], the following
becomes clear: If MA = 0, a(X') does not affect Eof(P). If MA = COF
Eof(P) must be zero; for it is constant on A, and belongs to !. If MA is
> 0 and finite, the considerations which lead to (8) show that

(r)-AA = faf(P)dv. (8')
Since A = A(X') - A(X' - 0) = - A(X' - 0), it follows that

Eof(P) = .fQMA(X-o)f(P)dV (for G(P) = X') (9')
;&Q- A(X' - 0)]

This formula subsists when ,u[Q - A(X' - 0)] = 0 or co, provided we
agree to replace the right-hand member by 0 in the case where the de-
nominator vanishes (and hence the numerator also) or is infinite.
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When A42 is finite, (9') leads to (9) (cf. 22); otherwise, it forms its natural
generalization.

6. Let M and N be any measurable sub sets of Q, with pM, pN finite.
Then xM(P) and XN(P) are in I, and we may apply our results to them.
It follows from (5') that (t,s XN, XM), which equals fMal,s xN(P)dv, is
equal to

d- S,, j UxNUP)NxM(P)dvjdr

-s I (S7N X M)dr (StP = Pi, etc.)

= fmZs,t (P, N)dv,

where we have set Zs,t (P, N) equal to times the linear measure of

the set of T-values for which S__P (= P-J) is on N.24 That is, Z,,t(P, N)
is the mean time of sojourn of P in N between the times s and t (actually,
with the sign of r changed, but this is immaterial). Since the above is
truerfor?all M, we have

(T:,SXN(P) = Zs,,(P, N), (10)
and7in virtue of (6"),

ZS,t(P, N) - EoXN(P) = XN(P) as I - s -: co, (11)
in the sense of strong convergence in t.

On applying (9), (9') to f = xN, we have

o (P) [dd{[A(X) X N] (12)

when G(P) < X', and

X°(P) - - N X A(X# - 0)] (12')
1[2- A(X" - 0)]

when G(P) = X'. The right-hand members have a meaning except
possibly for P on a zero set: in (12), cf.;22 in (12'), we take 0 when the
denominator is infinite, or when it (and hence, the numerator) vanishes.
Let us express the content of (11) in the following three ways: (A)

explicitly as strong convergence in t; (B) as point convergence of a sub
sequence;"7 (C) as weak convergence, or rather as the implication of -the
latter regarding the inner product of (11) with an arbitrary Xm (Am, finite).

A. J Vs,8 (P, N) -X (P)]2dv -o O as t-s O. + 0.
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B. For every sequence tl,sl; t2, s2; ... with t,,- sn + o, there is
a sub sequence t,,, s,, (V = 1, 2, . . . ) such that for all P of Q with
the possible exception of a zero set, Zs, t,t (P, N) -* XO (P) as

v-~~~~~~.~~ ~ ~ ~x.q

C. For each subset M of Q2 of finite ,uM, fmZs,K(P, N)dv >
JfMxo (P)dvas t - s o + 0 .
We observe that although XN is expressed in (12), (12') in terms of the

non-uniquely letermined universal integral G, its dependence upon G is
only apparent: each of (11), A, B or C, determines xN uniquely.

7. The existence, for each point P, of the limit of the mean sojourn
Zs,t(P, M) is a consequence of A, B or C, and applies to any Hamiltonian
system. Our system is ergodic if and only if this limit, X'(P), is inde-
pendent of P, i.e., when

XN(P) = C,, a constant. (13)
When this is true, we must have in the case AQ = o that C. = 0; for
otherwise, 11 xN il = X, whereas XN is in t. But when A1 is finite, we
have: JfxN(P)dv = (xN, 1) = (EOXN, 1) = (XN, Eol) = (xN, 1) =
fXN(P)dv = ;1N. Hence, by (13),

Cn = IN (13')

This is obviously true, from what was said earlier, when jAu = x.
It is now a simple matter to tell whether the system is ergodic or not,

and we do not even need the more complete results of § § 4 and 5.
First, suppose that (13) (and consequently (13')) is true for arbitrary

N. Let f be an element of 9W. Then, on the one hand, we have

jfX&(P)f(P)dv - 6PJ0f(P)dv = CwN,

and, on the other hand,

.I0xN(P)f(P)dV = (XN, f) = (EOXN, f) = (XN, Eof) = (XN, f)

- fXN(P)J(P)dv = fN(P)dv.

From the equality of the final expressions for all N, we conclude that
f(P) = C. Secondly, suppose that, conversely, every function of S) is
a constant. Then x2r, belonging to 9), is a constant, and (13) is true.
Thus the system will be ergodic if and only if 9) consists exclusively of

constants. This will be true if and only if S consists exclusively of con-
stants, 3 i.e., that the A-sets all differ from 0 or from Q at most by zero sets.
Thus we have proved the theorem:
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E. The system is ergodic if and only if every measurable set A remaining
invariant under St (except for points of a zero set) reduces to 0 or
to Q (except for points of a zero set).25

Since in E the ergodic condition is the non-existence of any measurable
A-sets (4z0, Q), one might be tempted to suppose that the ergodic condition
as stated in (13) would have to hold for a correspondingly broad class of
sets. This, however, is not the case: If (13) is true for all open sets
N of finite ,N, it will be true, by continuity, for all ,-limits of such sets
(cf. §2),-i.e., for all measurable sets N of finite ,uN.26 Indeed, it is only
necessary to require its truth for sets N which are the sums of a finite
number of the neighborhoods of an arbitrary "topologically equivalent
system of neighborhoods" in Q,26 for instance, for sums of finite numbers
of spheres.

8. From a purely mathematical standpoint, the question as to the
validity and most appropriate generalization of the ergodic hypothesis
has been fully answered: these special problems have been reduced to
the general problem of the integrals of the system-the structure of G(P).
Thus, the system is either ergodic, or else there is a non-constant G(P),
in which case Q is decomposable into subsets like [G(P) = Xii, [Xi <
G(P) < X2], etc., upon which the flow has a sort of ergodic character, as is
easily shown by means of (12), (12').
But from the point of view of physics, there remains the difficult question

as to the existence and nature of G(P) in each particular case. It might
happen that there are integrals of the system in the classical sense, i.e.,
analytic, or at least continuously differentiable, as would be true, for
example, if G(P) were of this character; in which case they could be used
for the reduction of the dimensionality of Q (cf.,2 p. 315, last line). Or
it might happen that no such integrals exist, in spite of the fact that
G(P) is non-constant. Conceivably this last situation is impossible when
the Hamiltonian H is analytic (or even continuously differentiable); if
so, the proof of this fact would be most useful. But it appears that the
proof could not be obtained alone from the general formal considerations
in Koopman's method, i.e., from (3) and from

UtF(fi(P), f2(P), .. .) = F(Ulfi(P), UJf2(P), .. .)' (14)
(cf.,2 p 318). For (4), (14) remain true in the case that the one to one
map P - > Pt of Q upon itself is any one-parameter group of the following
properties:

a. Pt is a measurable function of t,
b. P > PI maps every measurable P-set in a measurable P1-set

with the same measure.
Since a, b permit of discontinuities of Pi, it is easy to give examples with
only discontinuous integrals.

79VOL. 18, 1932



MATHEMA TICS: J. V. NEUMANN

Indeed, even when P 3- PI is defined by means of equations of the
type

atxI = al(xl, . .. AL) . .. I atxI = ai(xl, ... ., xI), (16)

(P:(xi, ..., xi)), and when b is valid-when P - P1 is indeed an
"incompressible continuous flow"-there are examples where all the
integrals are discontinuous, and yet are not constants. (In an example,
I = 2, el/a2 is continuous in P, but a,, aC3 themselves, discontinuous.)
We shall not pursue this question further.
We may observe, in conclusion, how remarkable it is that the concept

of Lebesgue measure should play so important a r6le in a so essentially
physical a question as the validity of the ergodic hypothesis, or, more
generally, in the value of the limit of the mean sojourn, lim Z(P, N).

t-s*+ co

Even in the case where N is an open set or, indeed, the sum of a finite
number of spheres-which has an immediate physical significance-
the function A;(P) given by the above limit does only need to be measur-
able! In the last analysis, one is always brought to the cardinal question:
"Does P belong to e or not?" where the set e is merely assumed to be
measurable. The opinion is generally prevalent that from the point of
view of empiricism such questions are meaningless, for example, when
o is everywhere dense-for every measurement is of limited accuracy.
The author believes, however, that this attitude must be abandoned,
and gives the following reason as an argument:
Suppose that QI, in which P varies, have a finite measure, mQ. Since

o is measurable, it follows from a familiar theorem of Lebesgue that

im m[O X K(P,)J
e*O mK(P, e)

(where K(P, e) is a sphere of centerP and radius e), exists at each point of
0, and = 1 with the exception of a zero set." Similarly for all points of
- 0, where it is zero, with the same exception. The same is true when

the spheres are replaced by many other sorts of figures, e.g., cubes."
Consider a sequence of partitions of Q into systems of disjoint cells, Z('),
**XZ*) (n = 1, 2, ...), such that the maximum diameter en ofZ,

Z(n) approaches zero as n - . The limited accuracy of measurements
finds its expression in the fact that we have to consider different order of
accuracy (viz., 1, 2, . . .); where, by an experiment of order of accuracy
n, shall be meant the mere process of distinguishing in which Z(') (v =
1, . k..k) P lies.
Suppose that a measurement of order n has established that, for in-
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stance, P lies in z(n); then the (geometric) probability that P belong to
m[Z(X) X e]i m[Z xej So that if

m[Z(^w X ]< or > 1-a (6 > 0), (15)

we know with a probability > 1 - 8 the answer to the question, "IsP in
o or not?" The fact that we will be able to answer this question with a
probability > 1 - of being right has the a priori probability (i.e., before
the observation is made) of

- '(x') m Z _x m Zx
Kun=K n mS2

where , represents the summation over all values of v satisfying (15).
If we could prove that w(^-* 1 as n > x, it would become clear
that, granted a sufficiently high accuracy of experiment, the above question
could be answered with an arbitrarily great degree of certainty-i.e.,
the question has physical meaning. (This is seen by taking, e.g., w$x >
1 - 8).
Suppose that w(6-* 1 as n -' co is untrue. Then for infinitely

many values of n, w (a) < 1 -v (for a certaini > 0); so that if E
implies summation over all values of v for which (15) is violated, we shall
have

mE ,,) Z(,,) > .4 mo.

The set : of all points P which belong to infinitely many such sets E (.X)
Z(') will then also have a measure > vng > 0, in virtue of a theorem of
Arzela's.28 If P is on ¢, it lies on infinitely many sets E(nZ(nJ; suppose
it to be, for example, on Z(n. Since v,, belongs, for infinitely many values

of n, to E (15) is violated for these values, the ratio -___ n_*-

determines neither the limit 0 nor 1. But this is in contradiction with the
theorem of Lebesgue, in the case where the Z(x's are such that its hy-
pothesis applies (e.g., when Z(x)'s are cubes).

1 For the formulation and critique of this theorem, cf., e.g., Entykl. d. Math. Wiss.,
4, Art. 32 on Statistical Mechanics, by P. and T. Ehrenfest, specially 30-36. The
original formulations are to be found in Wien. Ber., 63, [2] 679 (1871) (Boltzmann),
and Cambr. Phil. Soc. Trans., 12, 547 (1879) (Maxwell).

2 These PROCEEDINGS, 17, [5] 315-318 (May, 1931).
3Cf., e.g., the discussion in the author's paper, "Allgemein Eigenwerttheorie

Hermitescher Funktionaloperatoren" (Math. Ann., 102, [1] 108-111 (1929)). This
paper, as well as the author's paper, "Zur Algebra der Funktionaloperatoren und
Theorie der normalen Operatoren" (Math. Ann., 102, 3 (1929)), will be referred to in
the present paper under the abbreviations E and A, respectively.
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4Cf. E, 54-55, 109.
-'Cf. E, 91-92.
6 These PROCEEDINGS, 16, [2] 172-175 (Feb., 1930); also, cf. a paper soon to appear

in the Ann. Math.
7Cf., regarding these concepts, the article of Hellinger and Toeplitz in the Math.

Encyklopddie, 2, c. 13, 1435 (1928); further, cf. A, 378-381.
8Cf., e.g., the similar proof in E, 112, top.
9 R* is the adjoint of R in the terminology of matrices: the conjugate-transposed

matrix. Cf., e.g., 112.
10 The integrand, e;X, is uniformly bounded, the expression after the d-sign, (E('y), f).

of bounded variation: fit' d(E(-y)f, f) = (f, f).
IE, 91, 77-78.
12 Cf. the theory of projection operators outlined in E, 74-78; similarly for the

discussion to follow.
13 Cf. E, 110.
14 Cf. Hansdorff, Mengenlehre, 127 (1927), line 6; or E, 110.
15 Cf. E, 110.
16 Cf. the corresponding construction in the proof of theorem 10; in A, 401-402.

There, the permutable projections El, E2, ... and F1, F2, ... took the place of the
A-sets Al, A2, . . . and A1', A2' . . .; but this distinction can be abolished by replacing
each A-set by the operator, Es: f(P) > XA(P)f(P)-

17 For clearly, XA+M = XA + XM - XA XM, XAXM = XAX-MP XA-M = XA -XAXM-
18 If the sequency fi, f2, . . . converges (-*), a subsequency will converge in any

point, excepted a 0-set (cf., f.i. E, 111). Therefore a limit of functions of G is a function
of G.

19 Thus, e.g., each T(G) is one, if T(-y) is a monotonically increasing function.
20 On the other hand, our construction shows that it suffices to confine W to the second

Baire class (the convergence is pointwise convergence except for zero sets).
21 This transformation from Lebesgue to Stieltj&s integrals goes back to Lebesgue.

Cf. Ann. de l'Plcole Normale, 3, 27 (1910), p. 407. It is sufficient to establish it for a
real variable, for it is then easily extended to an arbitrary Ql, which may always be
mapped in a measure-preserving manner upon the real axis. Maps of this sort are
given by Lebesgue (loc. cit.) for n-dimensional space, and may easily be extended to Q.

22 Since t(G) belongs to 9N, it is left unchanged by Eo.
23 At points of discontinuity of x = ,A(X), where x experiences a jump of a whole

interval, the differential quotient has a meaning, and is equal to the difference quotient
between X + 0 and X - 0:

fA(X+o)-A(X-o) f(P)dv
I1[A(X + 0) -A(X-0)]

24 Cf. the author's paper, "CTber Funktionen von Funktionaloperatoren," Ann. Math.,
32, [21 196 (1931), (Satz 3), as well as the reference (20).

25 This transformation consists in a change in the order of integration; since in the
Lebesgue integrals that appear, everything is bounded, it is permissible.
" For AUi = c, naturally only the former will come into question.
27 Cf. E, 110.
28 The generalization to other figures is to be found in its broadest form in Caratheo-.

dory, Vorlesungen uber reelle Funktionen (Leipzig-Berlin, 1918), 492-494, in particular,
Theorem 3. The function f(P) appearing there is to be defined as f(P) = Xo(P).

29 Cf., e.g., de la Vallee Poussin, Cours d'Analyse infinithsimale, 1, 2 (Louvain-Paris,
1909), pp. 68-69.
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