5l AE3LEZ[:659.F

S392%

&
i

"d:f
bl )l 8

N,
,}":'R.f'
I P B

A

IMPERIAL AGRICULTURAL,
RESEARCH INSTITUTE, NEW DELMI.

MGIPC—84-—TIT-1-93—22-8- £5—5.000),
17 358



&9 631 421 | 6347
83928

SAMPLING METHODS IN FORESTRY
AND RANGE MANAGEMENT



ol - 5 ,
:}:‘} At
[33300) d Fx4

‘VIMPERI‘;AL AGRICULTURAL
'RESEARCH INSTITUTE, NEW DELHI.

MG PO §4~TI1 19322 8- 1325 i,



DUKE UNIVERSITY
SCHOOL OF FORESTRY
BULLETIN 7

SAMPLING METHODS IN FORESTRY
AND RANGE MANAGEMENT

BY
I X SCHUMACIHER,

Prafessor of Forestry, School of Fovestry
Duke University

AND
R. A. CHAPMAN

dssociute Silviculturist, Southern Forest Experiment Station, Forest Service,
{Tnited Stutes Department of Agriculture

mmin

1ARI

Duruaam, Norrr CAROLINA

JANUARY, 1942

\\ 5%



CopvricuT, 1942, BY DUKE UNIVERSITY

PRINTED IN THE UNITED STATES OF AMERICA BY
THE SEEMAN PRINTERY, DURHAM, NORTH CAROLINA



PREFACE

The concept of sampling error is essentially simple. It implies that
the discrepancy—real, but unknown— bhetween a true magnitude, which
is the subject of inquiry, and the sampling estimate thereof, may be
evaluated precisely.

The practice of forestry is replete with problems of sampling. In
many of them, however, as in timber cruises, the essential simplicity of
the concept of sampling error is obscured by failure on the part of forest-
ers to recognize that the body of data gathered from a systematic pattern
of strips or line-plots, upon which estimates of timber volumes and values
are commonly based—and which they have been taught in their college
courses in forest mensuration—does not contain information on sampling
error.!  Unquestioning acceptance of the systematic pattern as the only
kind worthy of consideration hasresulted in attempts to extract sampling
error that are more akin to the art of the conjurer than to scientifie assay.

The development of mathematical statistics, particularly of that part
concerning the theory of small samples, 1s exerting remarkable influence
upon the scientific endeavor of research foresters and range ecologists,
by making available experimental methods of logical structure which are
at onece capable of yielding efficient estimates of effects, and valid tests
of hypotheses pertaining thereto.

Less apparent, perhaps, but nonetheless genuine, is the growing in-
fluence of mathematical statistics upon the everyday work of practicing
foresters and range examiners. Administrative decisions pertaining to
management of o forest or range business commonly rest upon estimates
of the amount, or condition, of forest or range values. Thus the maxi-
mum nuuher of cattle a range can support without deterioration; or the
volume of a given clags of timber which may be removed from a forest
compartment without harm to the residue; these are deduced from esti-
mates of existing magnitudes of forest or range values, arrived at by
means of some planned sampling procedures.

While each such estimate is obviously encumbered with a real error,
it has not been universally recognized that it is the job of practicing
foresters, or range technicians, to acquire the art of planning—and
executing—suitable sampling procedures, such that (1) the real exrvor may

be assessed unambiguously; and (2) the best estimate is obtainable (and,

' One of us (F. X, 8.) takes this occagion to indiet himself as co-guthor of a text an
forest mensuration in which systematic cruise patterns are the only kinds discussed.

(5]
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consequently, the real error is least) consistent with the time and funds
available for the sampling work.

It is the purpose of this treatise to discuss this twofold aspect of the
problem of sampling, of the kind encountered in the practice of forestry.

Such use as is made of mathematics in the following pages presup-
poses no special training in the subject beyond the modest requirements
of a forestry curriculum. Oceasionally, when a needed demonstration
seemed to become heavy, or to distract attention from the main theme,
it, has been relegated to the Appendix.

We are indebted to Professor 1. 8. Pearson, of University College,
London, for permission to reproduce a page of Tippett’s Randon Sam-
pling Numbers; and to R. A. Fisher, and his publishers, Messrs. Oliver
and Boyd, for permission to reproduce the table of &, But we cannot
adequately express our appreciation of the work of those mathematicians
and scientists—particularly of Professor Iisher and his associates—to
whose vision and insight the development of small-sample theory is due.
Without the foundation of their labors the present work would not have
been attempted.

We are also deeply indebted to James G. Oshorne, Chief of T'orest
Measurements, Division of Forest Management Research, United States
Torest Service, for a critical reading of the manuscript and many valuable
suggestions.

DurnaaM, Norrx CAROLINA I, X. SenuMacner
January, 1942 R. A. CHAPMAN
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CHAPTER I

INTRODUCTION

1.1 The Art of Sampling. A sample is a part or portion of any-
thing presented as evidenee of the quality of the larger whole from which
it has been drawn. Thus if the timber volume on 2 acres of a 10-acre
woodlot is 8 M feet board measure, it is a sample, and from it something
is known about the volume of the whole woodlot.

But how much? XEven if the volume on 2 acres is 8 M feet b.m.,
questions immediatcly arise concerning the sample. Is 8 M feet b.m.
the volume of a single 2-acre area of, perhaps, the best timber? Or the
poorest? Or ia it, perhaps, the aggregate volume of 20 square chains of
arca scattered throughout the 10-acre woodlot?

Questions such as these are essential features of every inference con-
cerning the populaiion as may be derived from the sample; for the volume
on the 10-acre woodlot may be considered as the aggregate, or population,
of voluines according to 2-acre subdivisions; or, again, as a population of
volumes according to the 100 square chains of area into which the wood-
lot may be subdivided.

Were other samples presented, volume would vary among them.
Now the only means of quantitatively appraising variation is by the use
of statistical methods, which is the process of extracting from one or
more samples all the information they contain concerning the popula-
tion they represent. Turthermore, when combined with professional
experience in populations such as are met with in forestry and range
management practice, statistical methods give rise to the art of sam-
pling them.

The art of sampling eonsists in making the most efficient use of avail-
able resources so as to afford the best possible estinate concerning the
quality of a population under consideration as is consistent with the
ever-present limitation in time and funds.

It is therefore apropos that 5 measure of statistical background be
acquired by way of introduction to practical problems in sampling.

1.2 The Mean and the Standard Deviation of the Sample.
A line is drawn from pith to cambium on the surfaced cross-section of a
tree stem. The width of a particular annual ring is then measured along
the line by an experienced observer using a microscope-caliper, the least
count of which is 0.01 mm. Tollowing are four measurements:

[15]
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227, 226, 227, 230.

As the conditions for precise work are favorable, and the observer is
experienced and careful, it is to be assumed that the diserepancies among
the several observations are beyond his control.

When a set of discordant observations, which have becn taken on
some physical magnitude, are all supposed equally good, their arithmetic
mean is generally accepted as the best single value characteristic of the
set.  The mean of the four observations on annual ring width is

(2274-226+-227--230) =227.5

ol

in units of 0.01 mm,

Conventionally, the arithmetic mean, 7, of a set of n values of y is
expressed

I 4
g=".8@)

n
where S denotes summation over the » values of the enclosed quantities
following it.

But the mean alone is not enough; for the degree of confidence it in-
vites depends not only upon its weight in number of observations but
upon the variation among individual observations as well. It is neces-
sary therefore to give some special attention to variation,

The difference between the observed values of the sample and their
arithmetic mesn, that is, quantities expressed individually in the form

(y—9)
are called residuals. "Thus the observations which exceed the mean sup-

ply positive residuals, and those which fall short of the mean supply
negative residuals.

Two important properties of residuals are the following:
1. The algebraic sum of residuals ©s zero. This follows at once, for

n n
Sy—g)=8)—ng=0
since the product of the mean and the number of observations upon

which it is based is equal to the sum. Tn the ease of the sample of four
annual ring measurements the sum of the residuals may be expressed

(227 —227.5) 4 (226 — 227.5) + (227 — 227.5) + (230 — 227.5) ;
and this may be written

(=0.5)+(—1.5)+(~0.5)+(2.5) =0,
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or, in alternative form, as
22742264 227230 —4(227.5) =0.

2. The sum of squares of residucls is minimum. If a set of n measure-
ments of ¥ is to be characterized by some unknown constant, say «, the

sum of squares
n
S [ (y~a)’*]

is a minimum when « is the mean value of the set. Tor upon differenti-
ating the above expression with respect to the (as yet) unknown a, and
equating the first derivative to zero, it follows that
n
—2 S(y)+2na=0
whence, after dividing by 2

1 7 -
== S =g

and this is the mean value of the set. Therefore

§ [(y—ﬂ)"]

is the minimum sum of squares which can be derived from the sample.
The average value of the squared residuals of a sample of » observa-

tions, that is
n
S[(y—g)zl

is known as the variance of the sample. Iis square root, taken positively,
is called the standard deviation of the sample.

The standard deviation of the sample of four tree ring measurements,
i, accordingly, the square root of

=

i[( —0.5)24(—1.5)2+(~—0.5)2+- (2.5)2] =2.25.
"This form, which follows directly from
4
8| -9

2 This definitioen of the variance (or standard deviation) of the sample should be
kept clearly in mind. Later it is to be distinguished from estimates of the pepulation
variance (or standard deviation) as derived from the sample.
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is simplest, for purposes of calculation, only when the sample is small,
and when the arithmetic mean does not contain continuing decimals.
With larger samples, particularly if a caleulator or table of squares is at
hand, the preferred method of caleulation is indicated by the cxpansion
of the sum of squares of residuals; that is,

.on

S[(y—ﬂ)”l =§(y2)—21] g(y)*!*nﬂ“

which may be written

®

n n
S[(y—g?] =S =8 . . &)
after noting that

n
ngt=g(ng) =g S(y).
Upon applying the right-hand member of equation (1) to the four annual
ring observations, we have
(227)24-(226)2-- (227)2-4 (230)2 — (227.5)(910)
and this is equal to
207,034 — 207,025 =9.00.
The variance of the sample is (1/n)th of the sum of squares aud the
standard deviation of this sample is therefore the square root of 2.25, as
before.?

The standard deviation is, accordingly, a measure of dispersion
among the observations. Its range is from zero, in which case the ob-
servations are all identical, through small values if they are fairly con-
sistent, to high values as they become discordant. It is through the
standard deviation that onc arrives at the accuracy of the observations
or the degree of confidence one is entitled to place in conclusions drawn
from them.

1.3 The Sample and the Population. The four measurements
on annual ring width used in the previous section comprise a sarple of ob-
servations drawn from a hypothetical infinite population of such measure-
ments of the same physical magnitude, as might occur under essentially
the same conditions. In this case the population is wholly the outcome
of accidental errors of hypothetical measurements. In this sense, the
numerical value of the population mean cannot be known exactly. It

? Certain shorter methods of caleulating the mean and standard deviation of the
sample have been found useful when samples are large.  See, for example, Bruce, D,

and F, X. Schumacher, Forest Mensuration, McGraw-Hill Book Co.,, New York,
1935, Chapter VI,
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does not follow, however, that the population mean is the irue magnitude,
unless bigs, or systematic errors which tend to atfect all observations
alike, have been completely eliminated. Sources of bias and their
elimination will be discussed in See. 12.2.

The following discussion is not concerned with systematic errors. It
should be stressed, however, that it is the part of any worth-while oh-
servational program to climinate systematic errors insofar as possible.

An accidental error, accordingly, may be regarded as an observed
value, say ¥, as a deviation from the mean, g, of the population from
which it is drawn; hence, symbolieally,

Yy—n
is an aecidental error. An accidental error may be considered as the
effect of a multiplicity of causes, each of which contributes independently
either a positive or a negative portion, the error itself being the sum of
the contributed portions.

In forestry, and other biological work, however, one is not usually
concerned with populations of aecidental errars due to measurements
taken on the same physical magnitude. One deals most commonly with
populations of measurements taken on different magnitudes of the same
class, as for instance, the population of individual tree diameters which
occur in 4 forest. Such populations are the outcome of biological vari-
ation, the causes of which are not entirely independent of one another.

Any population may be considered as characterized by certain nu-
merical constants, or parometers—such as its mean or its standard
deviation—the exact values of which, in the case of infinite populations,
cannot be known, except perhaps with cerfain games of chance. Iroma
gample, however, one may calculate exact numerical constants, or
statistics, ag cstimates of corresponding parameters of the population.
An illustration will elarify the distinetion.

A population is chosen the parameters of which are known a priori.
Suppose a pack of 10 playing cards is made up of an ace, 2, 3, 4, 5,6, 7,
8, 0, and one other to represent zero. If the pack be shuffled so that a
card (say the top one) to be drawn therefrom has exactly the same chance
of selection as any other of the ten, 1t can he sald that the card selected
has been drawn af random from the pack; hence, the probability that it
represents any particular digit of the supply

0,1,234,56,7,8,9
is exactly 1/10. If the card be replaced, the pack reshuffled, and a sec-
ond draw made, the value of this draw is quite independent of that of
the first, and the probability is, again, exactly 1/10 that the new card
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represents a particular digit. It can be said that the two cards were
drawn independently and at random from the infinite population of digits
represented; for the drawing of a card with replacement from a finite
population is tantamount to the drawing of a card without replacement
from an infinite population.

If the game now be carried on; that is, after shuffiing the pacl, lot
the top card be withdrawn, its value noted, and replaced in the pack.
In n such draws the expected frequency of oceurrence of each digit is, of

course, -—n, and the distribution in the population is said to be rectilinear.

1
10
Since each card is drawn independently and at random, the # observations
together make up a random sample from the unlimited supply, or infinite
population of such digits.

In this game of chance the exact values of the paramceters are known.
The population mean, u, is the arithmetic average! of the digits
0,1,2,3,4,5,6,7,8,9,
and therefore
pw=4.5 exactly;

while the variance of the population—commonly symbolized as o?—is
the average of the squares of the 10 quantities (0—4.5), (1—4.5)....
(9—4.5), or,

o?=8.25 exactly.

Sampling the digits by means of the card game becomnes tedious.
Recourse will therefore be had to Tippett’s Random Sampling Numbers,
a collection of over 40,000 digits which have been taken at random from
census tracts and reports.? Tippett's numbers are particularly suited to
the great variety of problems designed to test statistical theorems hy
means of artificial random gamples. Tigure 1 is a reproduction of the
first page. The tract consists of 26 such pages. Until these numbers
were available, artificial sampling was based upon drawing varieolored
balls from an urn, cards from a shuffled pack, or the tossing of coins or
dice. Such methods are not always free from bias and they are usually
time-comsuming. The labor of drawing random samples by means of
Tippett’s numbers is trifling by comparison.

Another set of random numbers is that of Fisher and Yates (1038,
Table XXXIII). They constructed the set from the 15th to 19th digitg
of a 20-figure logarithm table.

¢ The authors will usually adhere to the convention of denoting parameters of the

infinite population by Greek symbols, and sample statistics by Roman symbols,

¢ Tippett, L. H, C., Random Sampling Numbers. Tract '
Cambridge ['Tniversity Press, 1927. ping Sumhe ruets for Computers XV.
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Tic. 1. A page of Tippett’'s Random Sampling Numbers.
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Using Tippett's Random Sampling Numbers by way of illustration
the sampling of the population i easily performed by noting the digits
ag they oceur, commencing, for instance, with the first column of page 1
(Fig. 1). The actual frequency distribution of the 100 digits in the
first two colunns is shown graphically in Figure 2, and is tabulated in
Table 1. If this is, in fact, a random sample, the deviations of the ob-
served frequencies from the expected frequency of 10 of each digit is
entirely fortuitous.

Denoting the individual observations by ¥, and the mean of the sam-
ple by 7, we have

7= L80)=-L 435 =135
n 100 "
as the estimate of the population mean, a statistic of 4.35 as an estimate
of the parameter 4.50.
The variance of the sample, that is,

1 n 1 " 7!/ |
7 S| =9 | =~ | 84" —7-8@) |,

FREQUENCY
[

o 1 2 3 4 5 5 1 8 9
VALUE OF DIGIT

Fia. 2. The observed distribution of digits in a sample of 100,
drawn from Tippett’s Random Sampling Numbers.
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is, numerically,
1
100

whereas the corresponding population parameter ig 8.2500. Calculations
leading up to these values are given in Table 1.

(2,805 —1,892.25) =9.1275;

Tasne 1, Frequency Distribution of a Random Sample of 100 Digits, and
Caleulation of Mean and Sum of Sgunares of Residuals

Digit Value Trequency
y S Jy y-fy
0 11 0 0
1 11 11 11
2 15 30 60
3 7 21 63
4 10 40 160
5 9 45 225
[ 5 30 180
7 12 84 588
8 6 48 384
9 14 126 1,154
Sum 100 435 2,805
Calceulation of
Mean Sum of Squares of Residuals
100
= 1“16 (435) S G = 2,805
100
=435 7 S @) = 1,802.25

912.75

i

100
8 [(y—@)“]

|

1.4 The Distribution of Means of Independent Observa-~
tions and the Norrnal Curve of Exrror. As each of the digits in
the population just used occurs with equal frequency, the distribution of
digits is rectilinear. But the distribution of means, of two or more digits,
takes on a different form, as we may observe by direct sampling.

In Figure 3 the frequency distribution of the means of 550 samples of
five digits each, taken from Tippett’s Random Sampling Numbers, is
presented ;and in Figure 4 the distribution of the means of 550 samples of
10 digits each, from the same source.

Trom these distributions it is apparent that the sample means tend
to cluster around the population mean of 4.5, the larger of the two sam-
ple sizes (Tig. 4) with noticeably less dispersion.
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50

40

N1
]
5
e

W
(=]

FREQUENCY
]
1
|
]

W
(=)
P

Qe ) a0

0 20 30 40 50 6D
SAMPLE MEAN
. 3. The distribution of 550 sample means, each based upon a random
sample of five observations from & rectilinear population.

|
29) 1]
AT\ i
20 ] F _1 n
il
15 L] )
g 7 :
| M - |
NP il
(o] 20 3.0

40 50 80 70 8.0
SAMPLE  MVEAN

Fre. 4. The distribution of 550 sample means, each based upon a random
sample of ten observations from a reetilinear population.

These observations conform with experience. A great number of
investigations of a wide variety of kind has demonstrated that the dis-
tribution of sample means, when each is based upon a given number of
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independent observations, tends to a definite form, in common with the
distribution of accidental errors of measurements taken on a given
physical magnitude. Certain general features of such distributions are
the following:

1. Positive and negative errors are equally likely to occur.

2. Small errors are considerably more likely than large errors.

3. Errors beyond some undefined magnitude do not oceur.

The distribution of accidental errors has led to what is known ag the
normal curve of error, or the normal distribution.® The curve repre-
senting it is symmetrieal about zero, relatively high in the center, and
falls off to exceedingly small values at any considerable distance from

the center. Tts equation is

Ay—we
1 R

where Y, the ordinate of the eurve, is the relative frequency, or probabil-
ity, of an error in the infinitesimal range dy; (y—u) is the error; and o,
called the standard deviation, is a meagure of the dispergion of the in-
dividual errors. The numerical equivalents of p and ¢ are the only
characteristics of a normal population that are needed to define its dis-
tribution completely. These will be further discussed shortly.

In Figures 3 and 4 the distributions of observed sample means are
compared with the normal curve of error fitted thereto.”

The great utility of the normal curve of error lies in the fact that the
distribution of many statistics—such as means, or sums, of random sam-
ples—tends to the normal form as the size of sample is increased, even
though the distribution of single observations—or single variates, as
they are called—be of radically different form.

Insofar, then, as a single sample, of size n, supplies a satisfactory
estimate of the standard deviation of means of n single variates, the
sample statistics can be made to afford the information concerning the
probable discrepancy between the true, but unknown, population mean
and the cstimate thereof as derived from the sample.

1.5 Variance of the Sample and of the Population. The
variance of the population is the numerical value towards which the
variance of the sample tends as the size of the sample approaches that of

¢ The development of the normal curve of error may be found in any complete
text on least sguares, such as Brunt, 1931,

7 Methods of fitting the normal curve of error $o observational data need not he
given here, For details, see, for example, Bruce, D., and F. X. Schumacher, TForest
Mensuration. MeGraw-ITill Book Co., New York, 1935.
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the population from which it is drawn. In unlimited natural popula-
tions—such as oecur in forestry, or biology generally—the exact value of
the population variance, o2, is not known, just as the exact value of the
population mean, u, is not known. It is required, however, to make
unbiased estimates of these parameters through the device of drawing
one or more random samples.

The sample mean is in itself an unbiased estimate of the population
mean. The sample variance, on the other hand, is not an unbiased
estimate of the corresponding population parameter, ¢*. In order to
clarify the nature of the bias—which is particularly acute when samples
are small—we need to distinguish, again, between n residual, the devi-
ation of an observed value, y, from the mean of the sample, §, that is,

y—1,
and an error, which is the deviation of the observed value from the mean
of the population, or

Y—

This distinetion may be illustrated by moeans of a sample from the
hypothetical supply of digits 0, 1, 2,...., 9, for it is known, in this game
of chance, that p=4.5 exactly. Turning to page 1 of Tippett’s Random
Sampling Numbers (reproduced in IMgure 1), the first five digits of
column 1 are found to be

2,4,2,0,2.
Caleulations baged upon this sample are shown in Table 2, the first
column of whieh lists the numbers in the order of draw. In the second
coluun are the squares of the residuals, and in the third column the
squares of the errors.

The mean square of the errors, 7. 85 in this case, is entirely indepen-
dent of the sample mean and is, therefore, an unbiased estimate of 8.25,
the population variance.

The mean square of the residuals, 1.60, which is the minimum mean
square to be derived from these numbers (Sce. 1.2) is immediately rec-
ognized as the variance of the sample. It cannot be greater than the
mean square of the errors; and it is less than the latter whenever the
sample mean differs from the population meun, regardless of whether in
positive or negative direction. This bias in the sample variance-—cor-
rection of which will be treated shortly—becomes of little practical
importance with sufficient inerease in sample sizc; for in large samples,
residuals tend toward errors by the fact that the difference between sam-
ple and population meang tends toward zero. The difference between
the variance of the sample and the mean square of the errors is precisely
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the square of the difference between sample and population means, This
may be checked in the table,

TapLe 2. A Random Sample of Five Digits
from a Population of Known Mean

Sample Squared Squared
digits residuals errors
Y (y—2.0) (y—4.5)*
2 0.00 6,25
4 4.00 0.25
2 0.00 6.25
0 4.00 20.25
2 0.00 6.25
Mean 2.0 1.60 7.85

Tor the sake of simplification in later work, the poputation variance
will be expressed in slightly different symbolic form. Let € be a devi-
ation from the population mean, that is, an error; let n be the sample
size in number of observations of e; let NV be the total (indefinitely large)
number of hypothetical samples of gize n in the population. Then the
population of errors consists of N sets of » values of ¢, and the population
variance, ¢%, may be written
Na=n
S 8(e)

ot b

" Nn
Non

where the double summation, S S, denotes summation over the N sam-

ples, of the sums over the n observations of € in each sample, The above

may algo be expressed
1 1 o]
aP= N - S(e )|,

and this is the average value of the squares of all errors in the population.
An unbiaged estimate of the population variance, as afforded by a ran-
dom sample of n observations of ¢, may therefore be expressed

where st is the variance of the errors of a sample and an unbiased esti-
mate® of the population variance, a2, since the latter is the average of s
over all samples.

8 The symbol — is read “is an estimate of.”
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Expression (2) is not a practical estimate of a population variance
because no sample contains, in itself, the crrors e. The expression is,
however, a logical step in the elucidation of estimates of population vari-
ance, useful in practice. As sueh, it will be used in the next two sections.

1.6 Variance of Sums and of Means of Independent Ob-
servations. It has been noted that if every single variate of a
population is regarded as having an equal and independent chance of
being drawn, one that is actually taken may be said to have been drawn
independently and at random. This particular one may, of course, have
a positive or negative error, high or low. But whatever its error, it in-
dieates nothing eoncerning the error of a second—or any suceceding—
observation drawn under the same conditions. A sample of such oh-
servations is a random sample.

The implication contained in a random sample may be readily illus-
trated. Suppose, for instance, all the samples of a very large population
are available, each congisting of just two observations drawn indepen-
dently and at random. Suppose, further, that the first observation of
each sample is plotted upon the second in a system of rectangular co-
ordinates, the ordinate of the graph representing the scale of error of the
first observation, and the absecissa that of the second. It is not at all
necessary that the crrors be normally distributed.

Before a sample is drawn, then, each of the four quadrants has pre-
cisely the same chance of receiving it. Consequently, after all sample
points have been plotted the graph exhibits a eircular cluster with center
at the zero origin of coordinates. If, now, one caleulates the product of
the two errors representing each sample, that is, the product of ordinate
and abseissa of each point, those which fall within the first and third
quadrants are positive, while those within the second and fourth quad-
rants are negative. And the sum of produets over the four quadrants is
zero because of the symmetry of the cluster.

From the above discussion it follows that in random samples of two
errors, € the average value of the square of their sum, over the entire
population, is equal to the average value of the sum of their squares,
since the average value of the product of the two errors is zero. Ix-
tending this line of reasoning to random samples of any size n, each of
the n(n—1) products of errors of different order of draw in the same
sample, totals to zero exactly, over all samples in the population. Clon-
sequently, the average value of

(eteat.. .. e
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where the subseripts represent the order of draw, is, over all random sam-
ples of size n in the population, equal to the average value of

n

S(%).
The importance of these deductions lies in the fact that the variance of
the sample sum, or sample mean, is immediately expressible in terms of
the variance of single variates. Given a population of single variates
¥, cach of which has a true error, ¢, such that

e=(y—p)
then the variance of y is the variance of e. And the sampling variance—
that is, the estimate of the average variance over all samples of the popu-
lation—of the sum of » random values of ¥, which we may symbolize

Viptyet.... +yn) = V[S (y)J

where V denotes the sampling variance of the enclosed terms following
it, may be written (expression (2), Sec. 1.5)

Vlig (y)] =g () —>mna ...l (3)

The sampling varianee of a sum of n single variates is therefore n times
the variance of single variates.

The sampling variance of a mean follows at once. By definition, the
mean of n values of  is
1

n
-8 W),

and the variance of this mean is the average over all samples of
2

{% (ateat....4e€) =%‘;S ().

g:

Comparing this with cquation (3), it is evident that the sampling vari-
ance of mean y may be expressed

that is, the sampling variance of mean ¥ is the variance of y divided by
the number of observations upon which the mean is based.

1.7 Estimate of Population Variance from a Sample.
While dealing with estimates of the population variance, and the sam-
pling variance of sums and means, it has been supposed that the popula-



30 Samrrivg MerHops N ForpsTrY AND RANGE MANAGEMENT

tion mean was & known parameter; hence, we were enabled to make
unbiased estimates of population variances directly from the known
ervors. In practice, however, the individual errors are not known be-
cause the population mean is unknown. The sample itself merely supplies
residuals as estimates of corresponding errors.

The problem now pertains to the estimation of the mean square of
errors—the population variance—from the mean square of residuals—
the sample variance.

Suppose one has at hand a random sample of # values of y drawn
from a population whose mean value, g, is unknown.  The sample mean,
7, is an observable statistic and an unbiased estimate of u. Let each

e=y—p
be the unknown error of an individual . And let
E=—u
he the unknown error of mean ¥, that is, of . Then, of course, each
Y—f=e—4§

the right-hand member being the expression of an ervor in terms of eorre-
sponding vesidual. The variance of the sample of # is then

L §[<y—w] -1 é‘[(e—aﬂj

Upon comparing the right-hand member with equation (1), Sec. 1.2, the
above identity may he written such that

7}? S[(y~?j)2] = %—[g () —n é”}

n
S(e) —e

2|~

Il

e

8g— @&

where sZ is the estimate of the population variance o2, it heing the mean
square of the n errors, And & is the square of the error of the sample
mean.

Now the average of s¢ over all samples of the population is ¢ (Seec.
1.5), and the average value of & is the variance of the sample means,

. . .1
which from equation (4), Sec. 1.6, 1s—n~02. Hence, over all samples of size

n in the population the average variance of the samples is the average of
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1 n

= — )2

5| (y~9)

over all samples; and this average may be expressed

It follows, then, that the variance of a sample, as calculated from the
n observations of a single sample, is

*71; 8 [(y—ﬂ)z] — g? (n; 1)-

Upon multiplying both sides by (51—7_1?1-) we find that

1 7 _ o
e [(U*ﬂ)z} =5 —g"
Hence an unbiased estimate of the population variance, ¢, is obtained
by dividing the sum of squares of residuals of a single sample by one less
than the number of observations. And it is said that this estimate of o?
is based upon {n—1) degrees of freedom. The equivalent of one observa-
tion has been sacrificed since the sample does not directly supply the
sum of squares of the errors.

Tt is helpful to bear in mind that onc degree of {reedom is sacrificed
because the sample mean is taken as the estimate of the population
mean and, consequently, that the estimate of the population variance is
based upon the squares of residuals, that is, of deviations about the sam-
ple mean., If the deviations are measured from any locus, the choice of
which is quite independent of information contained in the sample, the
degrees of freedom and number of observations are identical.

Consider, by way of illustration, a sample of original observations

3, 4, 5.

Fach of these is, by definition, a deviation from zero. Their sum of
squares
9-+16-+25=>50

rests upon three degrees of freedom. Should the sum of squares about
zero be adjusted to the sum of squares about the sample mean of 4, by
deducting the product of mean and sum, that is

4(344-+5) =48,
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this correction term is itself based upon onc degrec of freedom, so that
the sum of squares of residuals

rests upon

degrees of freedom.

TFrom a slightly different point of view it may be construed that since
the estimate of the population variance must rest upon the squared
residuals, which depend in turn upon the sample mean, there are but
(n—1) independent comparisons in & sample of n observations. In par-
ticular, there are two independent comparisons in the saraple

3, 4, 5,

for two of these observations can take on any value whatever but the
third must thereby be fixed in order that the mean be 4.



CHAPTER 1I

OBSERVATION AND EXPECTATION

2.1 A Few Points about the Normal Curve of Error. It
was brought out in the preceding chapter that if the varianee of the
population of single observations is o2, then the means of random samples

of n observations tend to be distributed normally with variance -7]—7;0'2,
even when the original observations are not so distributed.
The great utility of the normal curve of error in the biological sciences

follows directly from this fact.
The equation of the normal curve was given in Sec. 1.4 as follows:

Ll y—we
y=—Ll 73 @
T/ 2m

This form may be appreciably simplified if the error (y —p) is measured
in units of the standard deviation, o; that is, let
Y—r

o

i=

be an ervor cxpressed in standard units, or units of . In these units,
distributions of errors of entirely different order of absolute magnitude
are comparable. If the frequencies are expressed as relative parts of
the total, the area under the normal curve is unity, and the curve may
be expressed

1

— i

1 2
—¢
V27
This equation is shown graphically in Figure 5, the abseissal units being
identical with units of ¢.

Interest lics more commonly in the area under certain sections of the
curve than in its ordinates; for the area bounded by a segment of the
base line—that is, between two values of i—and corresponding ordinates
is proportional to the expected frequency of observations between the
same limits.

Areas beneath the normal curve of error are listed in Table 3 ac-
cording to selected values of .  As the curve is symmetrical about =0,

Y=
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047

0.31

0.21

0.1

~3 -2 - 0 ! 2 3
UNITS OF THE STANDARD DEVIATION ¢
T16. 5. The normal curve of error.

the positive half alone is given, but the area as listed is the accumulation
from the left extreme of the curve up to the given positive ¢ Sub-
traction of a listed area from total area, unity, leaves the area which
lies to the right of the selected positive value of ¢, or to the left of the cor-
responding negative value.

Tt is ugeful to remember that 32 percent of the area lies outside the
limits bounded by plus and minus one standard unit; hence, the odds are
68 to 32, or about 2 to 1, that an observed value drawn at random from
a normally distributed population is within these limits.

Three standard units mark the practical range of the curve for most
purposes, since only 0.3 percent lie in the tails beyond ¢= 3 on both sides
of the zero origin.

Tasrg 3. Area Under the Normal Curve of Trror from the
Left Txireme to Given Positive Values of ¢

Number of Number of
standm;d units Area standard units Area
12

0 0.5000 1.6 0.9452
0.2 0.5793 1.8 0.9641
0.4 0.6554 2.0 0.9772
0.6 0.7257 2.2 0.9861
0.8 0.7881 2.4 0.9918
1.0 0.8413 2.6 0.9953
1.2 0.8849 2.8 0.9974
1.4 0.9192 3.0 0,99187
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Another form of tabulation of the area under the normal curve of
error is according to Table 4. In the use of this table one starts with a
selected relative area in both tails of the normal curve and reads off the
number of standard units, ¢, which divides the area into this, and the
remaining, proportion.

The use of these table will next be illustrated.

TasLe 4. Values of #, Outside the Range of Which, in Both Tails, Lie Se-
lected Proportions of the Avea Under the Normal Curve of Hrror*

Relative arca Relative area
in both tails { in both tails !
1.0 0 4 0.8416
.0 0.1257 .3 1.,0364
.8 0.2533. .2 1,2816
Vi 0.3853 .1 1.6449
.6 0.5244 .05 1.9600
] 0.6745 .01 2.5758

*This table is taken from the bottom line of Fishor’s Table of . See Table 7.

2.2 Calculation of Expected Frequencies of Normally Dis-
tributed Variates. By way of illustration of the use of Table 3, con-
sider the following problem: On the supposition that for practical
purposes the means of samples of five digits taken from Tippett’s Ran-
dom Sompling Numbers are distributed normally, in what proportion
should the mean be 6.0 or less?

The observed distribution of 550 means of five are listed in Table 5.

Tapir 5. Distribution of 550 Means of Five Digits from
Tippett’s Random Sampling Numbers

Mean |Frequency | Mean |Frequency | Mean | Frequency | Mean | Frequency
.6 1 2.8 19 5.0 33 7. 4
.8 3.0 14 5.2 25 7.4 7

1.0 1 3.2 20 5.4 45 7.6 1
1.2 2 3.4 14 5.6 22 7.8 3
1.4 3 3.6 17 5.8 22 5.0 2
1.6 2 3.8 32 6.0 12 8.2

1.8 3 4.0 37 6.2 22 8.4

2.0 9 4.2 26 6.4 9 8.6 2
2.2 7 4.4 45 6.6 9

2.4 7 4.8 24 6,8 7

2.6 8 4.8 30 7.0 4

The mean of the population is 4.5 (Sec. 1.3). The population of
single digits has & variance of 8.25 (Sec. 1.3). Hence the standard devi-
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=
ation of means of five is the square root of §—52——) or 1.285 (See. 1.6). These

parameters, 4.5 and 1.285, are all that are needed to define a normal
curve of error completely. But the actual distribution is not continuous.
It is a series of discrete classes, 0.2 units wide. In order to compare it
with the continuous curve, we note that 6.1 would be the upper limit of
the class 6.0, and the lower limit of the class of 6.2. Hence the number
of standard units which divides the distribution into elasses 6.0 and less,
on the one hand, and 6.2 and greater, on the other, is

6.1—4.5

=185

=125 approximately.

Referring this positive value of ¢ to Table 3, the area to the left of it is
found to be 0.89 approximately, Hence 89 percent of the means of ran-
dom sarmples of five digits should in the long run be less than 6.1, and 11
percent should be greater. In 550 such samples, these percentages cor-
respond to frequencies of 490 and 60 respectively. The observed fre-
quencies {Table 5) are 480 and 70.

As another illustration, the expected proportion whose means are
between 3.0 and 6.0 inclusive, might be calculated.

The lower limit of a contingous variate grouped into classes of 0.2
units interval whose mid-point is 3.0 is, of eourse, 2.9. The correspond-
ing standard unit is

2.9—4.5

=285

= —1.25 approximately.

In this case we need the relative area under the normal curve between
the limjts {= —1.25 and t= +1.25. Evidently 89 — 50 =239 percent of the
area is between the zero origin and ¢=-+1.25. Because of the sym-
metry of the curve this proportion also lies between {=—1.25 and the
origin. Hence 78 percent lies between the standard units of plus and
minus 1.25. In a total of 550 samples, then, about 429 should have
mean values between 3.0 and 6.0 inclusive. By direct observation in
Table 5, we have 418.

As an illustration of the use of Table 4, let it he required to calculate
the range within which 95 percent of the means of five digits should fall.
One needs therefore a value of ¢ which encloses, between its positive and
negative values, just 95 percent of the area under the normal curve of
error, and outside of which in both tails of the normal curve lies 5 percent
of its area. The proper value of ¢ from Table 4 is 1.9600.
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Since the standard deviation of the distribution under discussion is
1.285, the range we seek is from

4.5—1.9600(1.285) =1.98
to
4.5-4-1.9600(1.285) =7.02

or approximately from 2 to 7 inclusive. Henee in 550 samples we should
expect—on the supposition of a continuous digtribution—95 percent of
550 or about 522 to have means between the classes 2.0 and 7.0 inclusive.

The corresponding observed frequency, from Table 5, is 519.

2.3 Sample Size and the Normality of Distribution of
Sample Means. The above illustrations are concerned with prob-
lems of distribution. We have supposed that means of random samples
of five single digits from a rectilinear population of digits is distributed
according to the normal curve of error. Such an hypothesis in not un-
tenable unless attention is focused upon comparigsons between observa-
tion and expectation near the extremes of the distributions. In these
regions the hypothesis that the observations are normally distributed is
incompatible with faet; for the actual distribution is limited between 0
and 9, whereas the normal curve is unlimited.

T he criterion as to whether the normal eurve of ervoris g satlsf&ctmy
description of the distribution of means of random samples, is a praectical
one. It depends upon the number of standard units between the popu-
lation mean and the limit of its range that is considered to be a sufficient
approach to infinity. This number may be conveniently set at 4 for
most purposes, for the area in both tails beyond ¢=4 is only about 64
parts in a million,

How a knowledge of the distance between known limits of a range is
useful may be illustrated by means of a conerete example.

Suppose an estimate of the number of 1-year-old seedlings on a forest
floor is needed. It would be convenient to conceive the area as sub-
divided into many small quadrats, each of which contains onc of the
numbers, 0, 1, 2, ete., of seedlings. If, now, the population mean be 1.0
seedlings to the quadrat, and the standard deviation of quadrats be also
1.0 seedlings, what should be the minimum number, n, of quadrats in a
random sample such that the sample mean be normally distributed?

The standard deviation of the sample mean, based upon » guadrats,

will be —= \/_, (Sec. 1.0) smce o=1 seedling. This is one standard unit
n



38  SamrriNg MerEODS 1IN FOoRESTRY AND RaNGE MANAGEMENT

of such sample means. The distance from the mean, 1.0, to the zero
limit, is next equated to 4 of these, that is,

1.0=-2
AN
whenece
n=16,

It should be kept in mind that this problem is not concerned with
precision of sample means, but only with the estimate of minimum sam-
ple size such that the mean is distributed in a known way, that is, accord-
ing to the normal curve of error.

.« . . N . . a .
Precision is to be gained by incressing = to a size such that — is
n

sufficiently small for the job at hand. Should an estimate of the average

number of seedlings to the quadrat be required with a precision such that
. N | . -

the chances are 2 to 1 that it be correct within E-seedhng, this is tanta-

mount to the requirement that the standard error of the mean of an

unknown number of quadrats be 0.10 seedlings; that is, that

Z_=0.10
VN
and since ¢=1, in the problem under discussion, we find that n=100.

2.4 Estimate of the Mean of an Infinite Population from
a Large Sample. In the applications of the normal curve of error in
Bec. 2.2 we starbed from a population of known parameters, u and o, and
inguired about the distribution of the means of random samples drawn
therefrom. Our object was merely to show that the distribution of such
means is sufficiently normal for the practical purpose at hand.

The deductive procedure from population to sample is, however, of
only trifling value except, perhaps, in the use of gambling devices. Sel-
dom can we specify biological populations with sufficient exactitude to
deduce the digtribution of random samples therefrom. The practical
object in the sampling of populations is the application of the reverse
process—that of specifying unknown population parameters, as nearly
as may be done, from known statistics as derived from random samples
of the population.

Let us now try this latter process. Suppose one is given the data of
Table 5 and all that is known is that they are a single random sample of
550 observations from some population. The problem is to specify, as
nearly as one can, the mean of the population represented.
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The data are presented again in Table 6, together with a shorteut
scheme, leading to the calculation of the mean and variance, in coded
Upon comparing the first and third columnsg of Tahle 6, the

units, 2.
code is found to be

=5 (y—4.4)

TapLe 6. Caleulation of the Mean and Standsrd Deviation

of Coded Observations

Y I x fz .fx
.6 1 —19 - 19 361
.8
1.0 1 -17 — 17 289
1.2 2 —16 ~ 32 512
1.4 3 —15 — 45 675
1.6 2 —14 — 28 392
1.8 3 —13 — 39 507
2.0 9 —-12 —108 1,296
2.2 7 —11 - 77 847
2.4 7 —-10 — 70 700
2.6 8 -9 — 72 648
2.8 19 ~ 8 —152 1,216
3.0 14 -7 — 98 636
3.2 20 -~ 6 —120 720
3.4 14 - 5 — 70 350
3.6 17 -4 — 68 272
5.8 32 - 3 — 96 288
4.0 37 - 2 - T4 148
4.2 26 -1 — 26 26
4.4 45 0 0 0
4.6 24 + 1 24 24
4.8 30 + 2 60 120
5.0 33 + 3 99 297
5.2 25 + 4 100 400
5.4 45 + 5 225 1,125
5.6 22 + B 132 792
5.8 22 + 7 154 1,078
6.0 12 + 8§ 96 768
6.2 22 + 9 198 1,782
6.4 9 +10 90 900
6.6 9 +11 99 1,089
6.8 7 +12 84 1,008
7.0 4 +13 52 676
7.2 4 +14 56 784
7.4 7 415 105 1,87
7.6 1 +16 16 256
7.8 3 +17 51 867
8.0 2 +18 36 648
8.2
8.4
8.6 2 +21 42 882
Sum 550 +508 | 25,004

In Units of =:

4508 -
S(fa) = 25,004.
£.8(/2) = 469.2
S[f(x—;t-)ﬂ] =24,534.8

1 _ .
Sz = 6.685
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and the decoding equation is
y=4.44022

The value of a code, in cases such as this, lies in the simplification of
the arithmetic involved in the caleulation of the mean and standard
deviation in the coded units ». These statistics are conveniently tran-
seribed to the original units of ¥ at the end.

As worked out in the table, mean x is

£=0.9236;
hence, mean y is

§=4.440.2(0.9236)

=4.585
Next is needed the precision of this estimate of the population mean,
From Table 6,
8,=0.685

and upon multiplying by the class interval,

3,=0.2 (6.685)
=1.337;
hence, the sampling error, or standard error, of §, that is, of 4.585,
1.337

SE(4.585) = —22L
/550

=(.0570

This is the estimate of the standard deviation—or one standard unit—of
the distribution of means of 550 observations each. Combining it with
the mean of 550 observations, one may now make exact probability
statements concerning the range within which the population mean, p,
must lie. Tor instance, the probability is 0.68 that

u=4.585+0.0570.

This meang that the probability is 0.08 that the true population
mean lies between 4.585—0.0570, and 4.585-40.0570, because 0.0570 is
the value of one standard unit of the distribution of means of 560 random
observations of the population, and the area under the normal curve
between the positive and negative standard unit is 68 percent of the
entire area under the curve.

2.5 The Probability of Discrepancy. An estimate of the popu-
lation mean based upon a large sample—of the order, say, of hundreds of
observations—is made with considerable confidence of precision, because
the sampling variance of the means of samples of size n is always equal to
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1 . e .
- of the variance of the individual variates; and a large sample supplies

an exact, or nearly exact, value of the true variance, 62 In such cases
the distribution of ¢, where

t"'—*g—-pl,_. )

0'/ V'n,
follows the normal eurve of ervor with unit variance. This expression is
of utmost importance in sampling work; for the numerator represents
the real, but unknown, error of the sample mean. It is, of course, as
likely to be negative as positive, for the normal curve is symmetrical.
One may therefore write

t=| Y—u '

="
the numerator being enclosed between bars to indicate that it is taken
without regard to sign. It is thus the real discrepancy between sample
and population means.
The use of this expression with large samples may be illustrated by
means of the sample of 550 observations of the previous section, for which

i =4.585, SE (4.585) =0.0570.
Inserting these into the above, we have
fe |4.585 —
0.0570

and, by transposition,
|4.585 —u| =0.0570(t)
Now the numerical cquivalent to ¢ depends only upon the degree of con-
fidence we wish to express. Suppose, for example, we set the chance at 1
in 20 that
|4.585 —ul > 0.0670().
This® eorresponds to a probability of 0.05, and from Table 4 the prob-
ability is 0.05 that ¢ > 1.9600. Consequently, with probahbility of 0.05
|4.585 | >0.0570(1.9600)
that is, that the real, but unknown, diserepancy exceeds 0.112. Another
way of stating this result is that the probability is 0.95 that
w=4.585+0.112,

for this is the range which encloses p with the given probability.
2.6 Small Samples and the Probability of Discrepancy.
With small samples, on the other hand, the estimate s, of o, defined by

o The symbol > is read “is greater than.”
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1
n—1

n

F=—= 8| (y—§)
while entirely satisfactory, will, nevertheless, differ more or less from the
true value, ¢. Turthermore, the distribution of

1=

$/A/n

for small samples does not follow the normal law of error, although it
approaches it vapidly as the number of degrees of freedom upon which s
is based exceeds 30—50. The exact distribution of ¢ depends upon the

Tasue 7. Table of £, Values of ¢, Outside the Range of Which in Both Tails
Lie Sclected Proportions of the Total Area®

RELATIVE Aunvas 1N Bory Tans

168 |.825 [|.510 |.727 |1.000 |1.376
142 1,289 |.4456 |.617 816 |1.061

1.063 |3.078 [6.314 [12.706 [31.821 [63.657
1.
A37 1,277 1424|684 765 978 |1,
1
1

386 [1.886 |2.020 | 4.303 | 6.965 | 9.

0 |L.638  |2.35: 3.182 | 4.541 | 5.811
L84 [.271 414 [.580 741 P41 L1000 [1.533 (2,132 | 2,776 | 3.747 | 4.604
132 |.207 |.408 [.55D 127 920 L1686 [1.476 [2.015 | 2,571 | 3.365 | 4.032
L1831 [.265 [.404 |.553 718 L0086 |1.134 [1.440 [1.943 | 2.447 | 3.148 | 3.707
L1830 1.263 |.402 |.549 711 896 [1L.119 [1.415 [1.895 [ 2.365 | 2,998 | 3,499
L1380 [.262 |.300 |.546 706 880 1,108 (1,397 IL.860 | 2.308 | 2.896 | 3.855
129 261 (398 [.643 703 883 |1.100 |1.383 [1.833 | 2.262 | 2.821 | 3.250
10 |.129 [.260 |.307 [.542 700 870 (1083 [1.372 J1.812 | 2.228 | 2.704 | 3,164
11 ,120 |.260 |[.306 |.540 697 876 (L.088 |1.365 [1.796 | 2.20L 2.718 | 3.106
12 |.128 |.259 |.405 |.539 .695 878 (1.083 [1.356 |L,782 | 2.179 | 2.081 | 3.055
13 |.128 |.259 |(.384 |.638 094 870 [1.079 [1.350 [L.771 2.160 | 2.650 | 3.012
14 [.128 |[.258 |.303 |[.537 602 L8088 [1.076 ([1.345 [1.701 2,145

o gp =3 &t & e0 ke = | Degrees of freedom,

ta
o
j &g
¢
[
]
3
-3

15 ].128 [.258 |.303 |.536 601 .BBG 1,074 |1.341 [1.753 | 2.131 | 2.602 | 2.947
16 |.128 [.258 |.302 |[.535 600 8056 [1,071 11,337 [1.746 | 2,120 | 2.583 | 2.92)
17 1128 |.257 [.302 |.534 .689 -803 [1.069 1,338 |1.740 | 2.110 | 2.567 | 2.80%
18 1,127 |.257 {.302 [.534 688 -862 [L.0G7 [1.330 ([1.734 | 2.101 |[2.652 |2.878
18 |.127 |.257 |[.301 |.583 688 800 [1.066 [1.328 [L.720 | 2.003 | 2.539 | 2.801
20 (127 |.257 |.301 |.533 687 800 [1.064 [1.325 [1.725 | 2.086 | 2.528 | 2.845
21 |.127 [.257 |.801 |.582 .UB6 859 [1.063 |1.323 {1,721 | 2,080 | 2.518 | 2.831
221,127 |.256 ].300 |.532 - 688 858 11.061 |1.321 1,717 | 2.074 | 2.508 | 2.819
23 |.127 |.258 (.890 |.532 G8A 858 [1.060 |1.310 [t.714 | 2.068 | 2.500 |2.807
24 127 |.256 |.390 |.531 . U85 857 |1.069 [1.318 |L.711 | 2.064 | 2.402 | 2.797
25,127 [.286 |.300 |.681 .084 858 [1.058 [1.316 [1.708 | 2.060 | 2.485 | 2.787
26,127 |.256 |.390 |.631 -084 (866 1,068 |1.315 |1.700 | 2.056 | 2.479 | 2.779
27 |.127 |.256 |.389 [.631 .684 JB55 [1.087 [1.314 [1.708 | 2.062 | 2.473 | 2.771
28 1,127 |.256 (.880 |.530 683 835 [1.056 1,313 |1.701 | 2.048 | 2.467 | 2.763
29 |.127 |.266 |.389 [.§30 .683 854 11.055 (1,311 [1.699 | 2.045 | 2.462 | 2.756
30 |.127 [.2p6 |.889 |.530 . 083 854 (1,055 [1.310 |1.697 | 2.042 | 2.457 | 2.750

« |.12566]. 25385). 38632(. 52440] . 67440| .84102|1.03643[1.28155|1. 64485 1.95006] 2.32634 2.67682

. *This table is taken by consent from Statistionl Methods for Research Workers by Professor R. A.
TFighor, published at 15/~ by Oliver and Boyd, Kidinburgh, Attention is druwn to the larger gollection
in Statistical Tables by Prolessor R. A. Fisher and F. Yatos, published by Oliver and Boyd, Lidinburgh,
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number of degrees of freedom available. It was first investigated by
Student (1908) and has been tabulated by R. A. Fisher. Itis given in
Table 7, and also in the Appendix.

The relative areas listed correspond to those of Table 4. The bot-
tom line of Table 7, in fact, contains the same entries as ‘Table 4 (except
that the latter have been rounded off to four decimals) for the degrees of
freedom upon which § is based are here faken as infinity, and, con-
sequently, s, for these values of ¢, is ¢ exactly.

PFigure 6 shows a graphic comparison of the distribution of ¢ corre~
sponding to four degrees of freedom with that of the normal distribution.

T, 6. Comparison of the distribution of ¢ (4 degrees of
freedom) with the normal eurve of error.

Suppose, now, one is given the observations
64, 42, 49, 39, 49;
and the only other pertinent information is that they are a random sam-
ple from an infinite population, hypothetically of normal distribution.
Let it be required to make an exnct probability statement, consistent
with the hypothesis, concerning the population mean.
Denoting the separate numbers by y, the sample mean becomes

5
g= % S) —~=%(64+42+4-9+39 +49) =~;—(243)

=48.6
The sumn of squares of the deviations from the sample mean,
5 5 5
S| w~3*|=80»—7 S
is numerically
(64)*+ (42)--(49)*+(39)+ (49)*— (48.6) (243)
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or

12,183 —11,809.8=373.2
As there are four degrees of freedom among the five observations, the
estimate of the population variance (Sec. 1.7) is

sz=%(373.2) —03.3

whence, the estimate of the varianece of the sample mean
2
V(48.6) =‘°’5= 18.66,
where V denotes the sampling variance of the enclosed term following it.
The standard error of the sample mean is the square root of this, or 4.32.
Hence the mean with its standard error may be expressed

48.6+4.32

and since the number of degrees of freedom upon which s is based is
known, one needs only to choose the numerical equivalent of the con-
fidence to be placed in the statement in order to complete it. Should the
chance of error be fixed at 5 out of 100, then the probability with which
Table 7 is entered is 0.05, and the value of ¢ corresponding to this prob-
ability and four degrees of freedom is 2.776. Hence with probhability
of 0.95
w=48.6+4.82(2.776)
=48.6+12.0

Suppose, as an alternative, one is willing to take a 50-50 chance of
error. This eorrespends to a probability of 0.5, and the value of ¢ for this
probability and four degrees of freedom is, from Table 7, 0.741. Hence
the chance is even that the true mean of the population

p=48.64+4.32 (0.741)
=48.6+3.2

Each observation of the sample is, in fact, the sum of 10 digits from
Tippett’s Random Sampling Numbers whose population mean is 45.0.
The estimates thereof are reasonable.



PART 2
DIRECT ESTIMATES BY SAMPLING






CHAPTER 111

SIMPLER CASES OF SAMPLING FINITE POPULATIONS

3.1 Infinite and Finite Populations. In the previouschapters
it was supposed that the populations sampled are made up of an infinite
number of variates. This is the usual conception and a very common-
sense one. Hypothetically there is an infinite number of measurements
an observer may make on the same physical magnitude under a given
set of conditions; his sample, however large, representing only an in-
finitesimal part of the whole. In like manner there is, hypothetically,
an infinite number of digits, ranging from 0 to 9, represented by 2 ran-
dom sample of them.

In games of chance the distinetion in conception between an infinite
and a finite population is easily made. Imagine an urn eontaining 100
marbles of the same size and consistency, indistinguishable to touch. If
a number is painted upon each, the urn may be said to contain a popu-
lation of such numbers. Now suppose a random sample of size n he
drawn from this population. Each draw must, of course, be made such
that each marble in the urn has exactly the same chance of being drawn
as any other. If after drawing a marble and recording its number that
marble is replaced before the next draw, the » draws supply a random
sample from the hypothetical infindte population. Butf if the sample
marbles are not roplaced during the course of the » drawings, the ran-
dom sample is from the finite population of 100 numbers. In the latter
case 7 is, of course, legs than 100.

Finite populations are the rule in most of the sampling problems with
which forestry is concerned. Timber cruising is a sampling job on a
finite area of timber stand or forest. The estimate of natural reproduc-
tion on logged-over areas, and the evaluation of forage in the meadow,
are everyday problems of the forester in sampling finite populations.

It often happens that the distinction between a population known
to be finite and the hypothetical infinite population is of no practical
congequence. If N, the population size, is considered a sufficient ap-
proach to infinity, and if ﬁ—is sufficiently close to zero, where » is sample
size, the distinction, as will be seen in later sections, is inconsequential.
Fortunately, the practical consequences of neglecting the distinetion
where it should be reecognized, become readily apparent in every case.
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3.2 Sampling Units. Suppose one needs to know with fair pre-
cision the number of pine seedlings on a sample plot, one sguare chain in
area. If the plot is covered with herbaceous vegetation so that it is
difficult to distinguish the pine therefrom without diligent attention to
detail of observation, a sampling job is indicated; unless, perforee, the
time and expense involved in obtaining a complete tally of the entire
population of pine seedlings is not a consideration.

In sampling an area, the constituent parts of the sample are to be
located independently and at random. But as these constituent parts
may be visualized in a variety of ways, the sampling units to be used
hercafter are defined and illustrated as follows:

Ultimate Unit. The small plot or area that is not subdivided. For
the square-chain population of pine reproduction it is the smallest
practicable unit of aresa upon which counts are made, as for instance, the
quarter milacre square.

Random Sampling Unit. A constituent part of the sample, which is
drawn independently and at random. It consists of one or more ulti-

mate units, as for example g strip, 2~10-chain wide and one chain long,

across the square chain of pinc reproduction referred to above; this strip
containing 20 ultimate units of a quarter milacre each.

Sample. The set of random sampling units. The sample must con-
tain a minimum of two random sampling units, for a single random
sampling unit does not contain the information on sampling error.

3.3 Sampling a Small Rectangular Area. The use of the
above terms is easily demonstrated by means of a simple experiment.
Let it be required to estimate the sum of the 100 numbers in Figure 7
from just 20 of them.

The ultimate unit in this case is the cell, a particular one of which
will be referred to by its column and row number. Thus cell 50 is that
of column 5 and row 0, and its observed value is 47; whercas the ob-
served value of cell 05 is 61.

BEven a hasty perusal of the figure discloses that the numbers which
make up this population are not scattered wholly at random among the
cells, for there is greater varistion among cells of the saine column than
among cells of the same row. The middle rows run to higher numbers
than the top and bottom rows. This effect of layers is called strati-
fication. Stratification is 2 common characteristic of populations in
nature. In the forest, for example, the better sites are usually found
along the lower slopes, while the poorer sites arc commonly along the
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91324014037 (44145|140]132(39(39

81421384046 147|50145/3748(44

TISV[85(51]|59|55[55|53|53(52|57

6151 [55|60(58]|64|56(58[56!157]62

516116269 |65(65/61|66|[66[67|66

4165162 72|75 73] 7364667368

ROW NUMBERS

3(62|62[67|64|71|66|59]61)|63|61I
2159152 57/64{62[59|55(58|57]58

LI S1| 55151 | 57|56 |58 54|49 |59 |54

045 |49 | 47|50 |52 |47[49 43|48 |50

o I 2 3 4 5 6 7 8 8
COLUMN  NUMBERS
Fia. 7. The population of 100 numbers,

ridges. When ohserved, even in its broader effects, stratification may
be made to enhance the efficiency of sampling. In practice the timber
cruiger acts upon his recognition of stratifieation by conducting strips, or
lines of plots, at right angles to the direction of general drainage, that is,
across the strata.

Of the great many methods which may be devised for sampling the
numbers of Figure 7, two are chosen for certain distinetive features,
although both are forms of unrestrieted random sampling.

Strip Method. If the column is taken as the random sampling unit
it follows that the population of 100 numbers is to be visualized as 10
numbers, each a column sum. The population of columns is presented
diagrammatically in Figure 8. As a sample of 20 percent is required,
the process of sampling these 10 column sums is analogous to drawing
two marbles—without replacement—from an urn containing 10 of them,
each representing a particular column. In practice two numbers from O
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to 9 are drawn from Tippett’s Random Sampling Numbers in some pre-
assigned order, such as the first two digits of column 1 of a given page.
Should the second number be a duplicate of the first, it is, of course, re~
jected and the next one taken, as a finife population of 10 separate strips
is to be sampled.

The numbers 4 and 8 happen to be drawn. These indicate the
columns whose sums (of 10 ultimate units each) are taken as random
sampling observations. They are 589 and 563, which total to 1,152, or
one-fifth the estimate of the population sum. The latter, then, is 5,760,

Stngle Plot Melhod. The ultimate unit, the cell, is also taken as the
random sampling unit. The population is visualized as made up of 100
of these. Itispresented diagrammatically in Figure 9. Twenty of the
numbers from 0 to 99 are drawn by the aid of Tippett’s Random Sam-~
pling Numbers, the first digit indicating the column and the seecond the

o I 2 3 4 35 6 7 8 9
COLUMN  NUMBERS

Fic. 8. Graphic representation of the population of Iigure 7 as that of
10 strips. The shaded strips comprise two random
sampling units of a sample.
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Fra. 9. Graphic representation of the population of Figuve 7 as that of

100 cells. The shaded cells comprise 20 random
sampling units of a sample,
row. A possible second draw of any cell is rejected, and another num-
ber taken in its place.

Following are the cell numbers and observations in orvder of draw:

Cell number Observation Cell number Ohservation
12 52 56 a6
05 61 87 52
92 58 73 01
07 51 40 52
28 40 70 43
21 51 25 69
16 55 84 3
44 73 19 40
60 49 22 57
37 69 46 64

Total 1,116
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From the total of 1,116 the estimate of the population sum is 5,580.

Other sampling designs, of only slightly greater complexity, might be
applied to the sampling of this population. Those just illustrated are
among the simpler ones.

3.4 The Variance of the Mean of a Random Sample from
a Finite Population. When a random sample of n observations of y
is drawn from an infinite population, the estimate of the variance of y
was given in See. 1.7 as

1 n
32=n—__i (y—)* |,

where 7 is the mean of the sample. The sampling variance of mean y as
given in See. 1.6, is
V@)

But when the sample consists of # random sampling units of ¢, from a
finite population of just N such values of y, we require to adjust the
sampling variance of mean y as follows:!?

(5

g

7

& (N—-n
It is at once cvident that as the population size, N, approaches in-

finity the quantity <N]; n) approaches unity and the varinnee of the

mean is identical to that from an infinite population. On the other
extreme, as sample size, n, approaches and becomes population size, N,
the variance of the mean approaches and hecomes zero, since there can
be no sampling error if the entire population is enumerated.

The tools are now available for estimating the limits of the probable
diserepancy between the estimate of the population agpregate, aceording
to each of the sampling designs of the previous section, and the cor-
responding true value.

According to the strip method, the mean of the two random sampling
units, 589 and 563, is 576. Hence the estimate of the population vari-
ance of random sampling units is

(589 —576)?+ (563 —576)2 =338
on one degree of freedom. Were the sample from an infinite population,
the estimate of the variance of the mean of the two random sampling
1 The derivation of the sampling variance of the mean of o random sample from

finite population is somewhat cumbersome to be included here. It is given in detail
in the Appendix, See. 3.4.
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units would be half of this, or 169. But since in this case n=2, and
N =10, we have

1aaf10—2

576) = J| ——

V(576) 169( 10 )
=135.2

on one degree of freedom. The standard error of the mean is the square
root of this or 11.6. Hence, on the random sampling unit basis

7=576+£11.6,
and the estimate of the population aggregate is ten times this quantity or
5,7604 116
on one degree of freedom. Hence, as discussed in See. 2.6, the prob-
ability equation appropriate to the estimate of the population aggregate is
5,760 116(1)

where the numerieal value of ¢, to be taken from Table 7, corresponds to
the probability chosen. 1If the probability of error is set at 0.05, ¢ is
12.706 on one degrec of freedom. Hcnee with probability of 0.95 the
population agpregate is
5,760+ 116(12.706)
or
5,760+ 1,474

In other words, with probability of 0.95 this estimate is subject to an
error not to cxceed (%%%) or 26 percent of the estimated value.

This would not scem to be very satisfactory estimating, and we shall
compare it with the single plot design used in sampling the same popu-
lation. The estimate of the mean and variance of random sampling
units according to this design is given in Table 8. The mean of the 20
random sampling units is 55.8, while the estimate of the variance of
random sampling units is 89.642 on 19 degrees of freedom. Since N =100,
and n=20, the estimate of the variance of the sample mean is

89.642 /100 —20\
a0 (~m100 > =3.586

and its standard exror is the square root of this, or 1.89. Hence on the
random sampling unit basis
7="55.8+1.89
and the estimate of the population aggregate is 100 times this number or
5,580 4+ 189
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TapLe 8. Caleulation of the Mean and Varianec of 20 Random Sampling
Units (Cells). Data from I'igure 7

Observation

¥ y?

52 2,704 Caleulaiton of mean:

61 3,721

58 3,364 Lo ”

51 2,638 3}=m(1,1lb) = 55.8

40 1.6 2

51 2,601

55 3,025 ‘ _ ,

73 5,329 Caleulation of varianee:

49 2,401

59 3,481 20 ‘

56 3, 13;2 S = 043,976,

52 2,704

) 27 20

o B 7. 8() = 62,272.8

43 1,849 ”

i ) “ A ey N

0 4101 S[@_m-] - s

40 1,600

57 3,249 1 20

64 4,096 pore 8| -7 | = 89,642
1,116 63,976

on 19 degrees of freedom, and the probability equation appropriate Lo
this estimate is

5,580 4 189(¢).
If the probability of error is set at 0.05, the corresponding valuc of ¢
based upon 19 degrees of freedom is 2.093. Therefore with probability
of 0.95, the population aggregate is within the limits

5,580 1 189(2.093)
or
5,580 + 396.
"This is an estimate of considerably more precision than that of the strip

method, for the probability is 0.95 that the error does not exceed ( B%Q_g)() )
bl

or 7.1 percent of the estimated aggregate.

The estimate of the Jimits of diserepancy hetween sample and popu-
lation is equally valid in both of these sampling methods. Their magni-
tudes, however—1474 and 396 on a probability of 0.95 that the real dis-
crepaney is not exceeded by these estimates—are very discordant, reflect-
ing as they do the efficiency of the sampling designs used. The seemingly
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abnormal 1474 of the strip method is due to the paucity of degrees of
freedom available for its estimate. This becomes evident upon a glance
at the table of ¢ (Table 7). TFor a single degree of freedom the value of £
(the ratio of discrepancy to its standard error) is 12.706 at the 5 percent
level. It drops abruptly to 4.303 for two degrees of freedom, and for 19
it is 2.093. Tor an indefinitely great number of degrees of freedom, #
approaches its limiting valuec of 1.960. Consequently, if only very few
degrees of freedom are available for the estimate of sampling error, the
discrepancy hetween the sample mean and corresponding population
parameter is likely to be too large for practical sampling work.

3.5 Sampling a Small Area of Irregular Boundaries. The
two sampling designs used above may be applied very widely. They arc
not at all confined to populations which are distributed over a rectangular
area, although their application is most advantageous in populations of
simple geometrical outline.

A small population of irregular outline is presented in Figure 10. In
this case, the strip (for example, column) method would be somewhat
less simple, for the different strips are of variable lengths and, conse-
quently, the strip means are of variable precisions. Special cases hav-
ing to do with variable precision involving weighted observations will be
treated later (Chapter VII).

The single plot sampling design, as illustrated in Sce. 3.3, might also
be somewhat, troublesome to apply to this population, for it would
require advancc information—invelving, perhaps, a map-—concerning
the exact number and location of the plots in the population before the
draw, in order to assure equal echance for every plot to make the sample.

But a class of sampling design, analogous to the strip method used
previously, is easily applied to populations of irregular outline.

Returning for the moment to the strip method of Sec. 3.3, the reader
will remember that the random sampling unit consisted of the 10 ulti-
mate units of the same designation (for example, column 4) one taken
from each row.

By analogy, a population of irregular outline, as in Figure 10, may be
considered as containing N—not very large——random sampling units,
where cach random sampling unit consists of an (as yet) unknown num-
ber of ultimate units of cells. For instance, if the population of Figure
10 is traversed by moving up the first column on the left, down the sec-
ond, up the third, and so on, until N ultimate units have been encoun-
tered, numbered in order,

1,2,....,N;
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Te. 10. A small population on an area of irvegular outline. The upper
figure of each cell represents the ultimate unit number
in each set of 12 units of strip.

then upon continuing in this fashion, the population is found to be made
up of a number of sets of N ultimate units. Suppose, now, that all ul-
timate units numbered 1 be taken as the first random sampling unit, all
ultimate units numbered 2 as the second, and 50 on to the Nth random
sampling unit. Thus the population is eonceived as made up of N ran-
dom sampling units, of an unknown number—until the observational
work is complete—of ultimate units each,

As a concrete illustration, let the random sample to be drawn from
Tigure 10 contain three random sampling units and 25 percent of the
population. Thus N is fixed at 12.  Accordingly, three random num-
bers, from 1 to 12, are drawn, to represent the ordinal number of ultimate
unit in each and every set of 12 units of strip. The entire population is
then traversed by moving up the first column on the left, down the sec-
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ond, up the third, and so on; and record is made of the indicated ultimate
unit observations ag encountered.

The ultimate unit numbers within each set have heen selected by
running down two adjacent columns of Tippett's Random Sampling
Nurnbers (columns 7 and 8 of page 1 in this case) and listing the first
three different numbers of value 12 or less. They happen to be 11, 7,
and 8, as may be checked by referring to Figure 1. Accordingly, the
sum of every 7th, every 8th, and every 11th cell value in the sets of 12
units of strip make up the three random sampling units of the sample.
These are recorded in Table 9, while Figure 11 gives a good idea of how
well the sample represents the population.

From Table 9, then, the three random sampling observations are

308, 304, and 261

out of & possible 12 such numbers in the population. The mean of the
sample, 7, is 201. As deviations therefrom, the obscrvations (y —7) are

17, 13, and —30,

whence the estimate of the population variance among random sampling
units is 1
5 =E(289+169+900) =§79

on two degrees of frcedom. In accordance with the sampling design
used, the population size, N, is 12, and the sample size, n, i8 3. The
estimate of the variance of the mean from this limited population

o _SE(N—n\_0679/12-3\ _
V(v)~;(~N )— 3 <~——12 >-169.75
The mean of the the three sampling units with its standard error is,
accordingly,

2014+13.0

and as this is one twelth of the estimate of the population aggregate, the
latter is
3,492 4 156 (%)
where ¢, on two degrees of frecdom, eorresponds to the probability selected.
With the probability of greater error fixed at 0.05, ¢, is 4.303 from Table
7. With probability of 0.95, then, the estimate of the population ag-
gregate is
3,492 + 156(4.303)

or
3,492 671
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Tanup 9. Ultimate Unit Observations whose Sums Supply Three
Random Sampling Units from the Population of Tigure 10

Ordinal number of ultimate unit in
each 12 units of strip

7 8 11
Observations on ultimate units
35 30 14
27 25 27
22 21 18
19 25 29
10 15 20
19 33 32
34 31 9
26 26 37
42 23 22
9 0 a0
31 30 9
34 45 0
Sum 308 304 2061

As indicated above, the sampling scheme used here is distinct from
that of the strip method as applied to the rectangular area in Sec. 3.3,
only because the present population is distributed over an area of ir-
regular boundaries.

3.6 Systematic Versus Random Sampling. The question
may be raised as to why a systematically chosen sample does not have
all the virtues of a random sample as a method of estimating population
means or aggregates.

In the early application of the theory of errors to problems of sam-
pling populations in confined areas—such as the timber volume of a
forest—major emphasis was placed upon the necessity of selecting a
sample free from personal bias. So simple an expedient as the mere
mechanical selection of plots or strips at equidistant intervals solved this
difficulty entirely. Unfortunately, however, it was not at once diz-
covered that the removal of the personal equation does not entirely ful-
fill the condition of sufficiency.

The mathematical requirements for the solution of sampling prob-~
lems imply that the constituent parts upon which sampling error is based
—the random sampling units as defined above—be located indepen-
dently and at random.
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Fic. 11. Bael aggregate of the eells designated alike, represents a random
sampling unit of a sample of three observations
of the population of Figure 10.

The failure of the systematic pattern of plots or strips to provide
information concerning the probable discrepancy between the estimated
and the true characteristic may be clarified in the light of the simple
experiments used in this chapter. Should the numbers which make up
the populations illustrated, have been assigned to the cells strietly at
random, any systematic sample would clearly have contained all the in-
formation of a random sample of equal weight. The systematic sample
would, indeed, have been a random sample as well, just as a system-
atically chogen set of digits from a page of random numbers is a random
sample of digits.

It follows, therefore, that when the caleulator derives what he con-
siders the standard error from & body of data taken systematically in
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nalural populations, such as the forest, he assumes that Naturc hag
been obliging enough to have randomized for him. But foresters, like
naturalists, know that the components of any characteristic of forest
populations they may wish to examine, are perhaps never arrenged in-
dependently and at random within a forest. Their only alternative, if
they are at all concerned about the probable discrepancy between the
true values sought and their estimates thereof, is to base the estimates
upon samples drawn independently and at random from the population.



CHAPTER IV

REPRESENTATIVE OR STRATIFIED RANDOM SAMPLING

4.1 The Principle of Representative Sampling, The sam-
pling designs illustrated in the preceding chapter are forms of unre-
gtricted random sampling of populations distributed over confined areas.
A population was conceived as made up of numbers, or magnitudes of
a certain characteristic, whieh occurred on the N subdivisions into which
the whole ares was partitioned. Iach of these subdivisions was then a
possible random sampling unit. The sample consisted of n of them,
drawn independently and at random, from the entire number, N.

Now stratification is a well-known property of practically all forest
and ficld populations. Yiclds of different parts of the same subdivision
of Iand tend to be more uniform than yields of different subdivisions.
Under these conditions, the precision of an estimate of a population mean
may be appreciably enhanced by recognizing stratifieation and modi-
fying the sampling design accordingly.,

The area to be sampled is subdivided into strata, or blocks, and a
random sample of the characteristic to be estimated is drawn from each
block. No great care need be taken to have block boundaries coincide
with visual limits of soil fertility gradients, or density changes in vegeta-
tion. The exigencies of the problem usually demand that a balance be
struek between the theoretically desirable and the practically feasible.
Precision is gained by dividing the population into as many blocks as
expedient, even though the number of random sampling units taken
from each block is the minimum of two.

Representative sampling, then, is the process of drawing a representa-
tive set of samples, consisting of a random sample from each block, or
stratuin, of the population sampled. Tt may be illustrated by means of
the population of Figure 12, which contains 200 numbers, divided into
10 blocks of 20 numbers each. There is obvious stratification here as the
top tier of blocks runs to lower numbers than the bottom, and the left-
hand block of cach tier runs to lower numbers than the right-hand one.

By way of illustration, let a representative set of samples be drawn
from the population of Figure 12, by direct observation of just 10 percent
of the entire population. Taking the cell to be the random sampling
unit as well as the ultimate unit, two numbers are drawn between 1 and
20, independently and at rundom for each block, by means of Tippett's
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Random Sampling Numbers. These and the observations they supply
are listed in Table 10. The general mean of the 10 samples is 95.2.
Complete analyses of these will be treated shortly.

In the meantime we shall show the comparison of resulis between
representative and unrestricled random sampling of the same population.

48| 23|64 50 | 38087 |54 |65|58|45
34 (48 (81| 67160860 71|91 tl08]88
BLOCK BLOCK
i T8 (74| 46| 62| 52852 94)82)94]|76 2
36 140 35|61 |82048(83)| 87 92]82

44| 51| 5665 72473 84| 77| 90|95

60 | 60107187 |84480|111]091]82]/104
3 4

46 [ 72] 76|52 1801890 | 74 | 124|114

LEGEND OF

62| 7843 17| 78108 (15| 99 | 122|116 SAMPLING NUMBERS

4419762977 904103| 94¢i23)108(117 | 5719 1317
. 44 | 66| 65 75| 981186 103| 99 | 136|144 5 216 IO[M 18
J

66 [ 78( 8080 9olite| nz(izo| 108|146 3 T 1519

52 | 641119109 964 118] 125] 115] 130{ 120 4181121620

46 | 85|86 [ 85 [ 9gfl 117} 140] 137]124 (151

B4 19291 |89 ]84H98|123(147]140|150

141 72| 72| 96 [128F 114] 130(122] 148184

94 | 76 | 101| 89 [126§94 | 125153} 154178

68 |67 |94 | 103)1461135] 1481571170179

60 (100(113| 101 136)136( 145147170 18G
16 | 16 |122| 120] 1320142 | 160 | 174 | 182] 184
104106 | 129

=)
w

VABH 130T 149 | 165 ] 192 150

Fre. 12. A population of 200 cells, divided into 10 blocks of 20 eells cuch.

4.2 Comparison of Representative with Unrestricted
Random Sampling. The efficiency of representative sampling as
compared to unrestricted random sampling of stratified populations
may, perhaps, be most convineingly demonstrated by graphic compari-
son of estimates of the population mean as based upon repeated sampling
trials,

In Figure 13A ave plotted 11 estimates of the mean of the population
of the 200 numbers of Figure 12. Each estimate is the mean of 20 cell
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TapLe 10. A Representative Set of Samples from
the Population of Figure 12

Random sampling
Block unit members Observations

1.. 4 18 36 60
2.. 10 11 01 82
B 2 14 60 87
4., 7 11 90 74
a.. 20 10 96 65
6...... ... 20 5 120 94
7.. 8 17 76 98
8.. 8 9 125 137
9.. 10 14 113 101
10. . 3 20 149 150

Sum. L e e e 1,504

Meam. ...oo vt i e 95.2

values, drawn at random from the population as a whole according to the
single plot method used in Sec. 3.3.

Figure 13B shows 11 estimates of the mean of the same population
according to the representative sampling design of the preceding section.
Each mean is again based upon 20 cell values, but the drawing was made
with the restriction that two cells be taken independently and at random
from each of the 10 blocks.

Clearly the means of samples drawn by unrestricted random sam-
pling as used here, are dispersed more widely around the true popula-
tion mean of 98.015 (also shown in Fig. 13) than arc the means of the
representative sampling trials.

The variance of the 11 means of Figure 13A is 129.65 by direct cal-
culation, while that of the 11 means of Figure 13B is 15.44. Bince

A
]
. i) . 0 . T ] -] . i} IE ? ' 0] \
80 85 20 95 100 105 110 15 120
B
] ]
aE Ein e @
f T T N - Y T T T 1
80 85 90 95 100 105 {0 1K) 120

F16. 18, Distribution of eleven estimates of a population mean hased upon
20 random sampling units, In A, by unrestrvicted random sampling;
in B, by representative random sampling of two units in each bloek.
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129.65
15.44

one cstimate according to representative sampling is worth about eight
estimates of unrestricted sampling of this population.

4.3 The Variance of the Mean of a Representative Set of
Samples. Detailed observations of representative sampling of the
population of Figure 12 are given in Table 10. The general mean is 95.2,
and we require the variance of this estimate of the population mean.

Consider, first, block 1 alone. The observations, 36 and 60, arc a
random sample of the population of this block, and the cstimate of the
bloek mean is, therefore, 48.0. The sum of squares of deviations is

(36—48.0)2- (60 —48.0)*=288

and sinee it is based upon a single degree of freedom, this is also the
estimate of variance among the random sampling units of block 1, though
not yet adjusted for the finite population sampled.

When an estimate of variance is based upon just two random sam-
pling unit observations, a short-eut method of caleulation is to be pre.
ferred. Let x; and z; be two such observations from an infinite popula-
tion of z. Their mean is

=§ approximately,

*(11_1—12)3

and the sum of the squares of deviations from this mean is
1 2 : 1 2
wl“‘g(fvl’l‘l‘z) + Ivz‘—“2-($1+ll?2) )

which may be written
2 2
1 1
[-g(fﬂl—wz)j' +["2~($2*$1)]
or, since these two terms are identical, as
1
-2—(:31—-:1:2)2

on one degree of freedom. The estimate of the variance of the mean of
the two observations is (Sec. 1.6) 15 of this, that is,

1 1 1 .
VI:—Z*(ﬂil-l‘xz)J = Z(-’El"l}g)z,
and the variance of the sum of the two is twice the variance of single

observations, or

V(@120) = (21— 20)2
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Tor block 1, then, the variance of the mean, 48.0, is
(36~ 60)7= 144

whereas the variance of the sum of the two observations, that is,
V(364-60) = (36 —60)2=576
not yet corrected for the finite population of the block.

It is somewhat simpler to caleulate the variance of the individual
block sums, as shown here for the first block, rather than of the block
means. Having a separate and independent sample from each block in
the population, the variance of the sum over all blocks is the sum of the
separate variances,

The caleulations are given in Table 11, The sum over all 10 samples
is 1,904, and the variance of this sum is 4,052, not yet corrected. Since
in each block N =20 and n=2, we have

V(1,904) = 4,052(
—3,646.8

on 10 degrees of freedom, as each one of the blocks supplies a single
degree of freedom. The standard error of the observed sum is the square
root of this variance, or 60.4; whence the observed sum is
1,904 1+60.4
on 10 degrees of freedom. As the samples compose 10 percent of the
population, the estimate of the population aggregate iz
19,040 4 604(t)

TanLe 11. Analysis of a Representative Set of Samples

20~ 2)
20

Random Sampling Variance of
Block observations Block sum sum
T L2 (:El‘l'it-_)) (2:1——11)2
| U 36 60 96 576
2 9l 82 173 81
S 60 87 147 729
do e 90 74 164 256
5. 96 65 161 961
O 120 94 214 676
e 76 03 174 434
8 125 137 262 144
Q. 113 101 214 144
10, ... .0l 149 150 299 1
Bum. . 1,904 4,052
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where ¢, taken from Table 7, is for 10 degrees of freedom on the prob-
ability chosen.

If one prefers to work through the mean of the random sampling
units rather than their sum, one should note that 1,904 is the sum of the
20 observations whose mean is 95.2. TFurthermore, if ¢? is the variance
of single observations, the variance of the sum of n observations (Sec.
1.6) is .

nat
whereas the variance of the mean of n observations is

g2,

n

Consequently, the variance of the mean of » may be derived from the
variance of the sum of n by dividing the latter variance by n*

on
29); and as the

In block 1, by way of illustration, the block mean is ( 5

estimate of the varianee of the bloek sum is
T (96) =576

the variance of the mean may be written

Similar calculations performed on the other blocks and added together
provide the sum of the 10 block means and the variance of this sum;

that is,
96 173 299 576 81 1

whenee the mean of these, that is, the general mean, and its variance

may be written
V[ 1,904 ]= 4,052

2)(10) | (@*10)?

not yet corrected to the finite population sampled. Upon applying the
correction, we have

4,052/20—2
V(95.2)= 400( 20 )
=9.117

on 10 degrees of freedom; and its square root iz 3.02. The estimate
of the mean of the 200 numbers is then

95.24-3.02
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Upon multiplying by 200, the same estimate of the population aggregate
as given above is obtained.

4.4 Disproportional Sampling by the Representative
Method. In the representative sampling treated above, the blocks
were of exactly the same size, and the same proportion (10 percent) of the
block populations was sampled in each. It was then necessary merely
to sum the observations over all blocks and to multiply the grand sum by
10, the product being the estimate of the population aggregate.

The necessary variances were calculated almost as easily.

It may happen, however, that the practical requirements of sampling
a given population preclude the direct observation of the same propor-
tion of all block areas. There may be greater interest in certain blocks
than in others, or, perhaps, irregular boundaries of the population may
not readily permit its division into equal parts. As an outcome, sam-
pling may be more intensive in some blocks, and the several samples may
have different precisions.

The populations of irregular outline used previously (Fig. 10) will
serve to illustrate the case. It is reproduced in Figure 14, and is sub-
divided into five blocks of different numbers of ultimate units or cells.
Necessary information concerning the population, as well as the ob-
servations following from disproportional random sampling of the several
blocks, are given in Table 12. The variation in the number, %, of obser-
vations to the block is introduced only for illustrative purposes.

TapLe 12. Disproportional but Representative Sampling
of the Population of IFigure 14

Block Random sampling Factor | Tigtimate
number N n observations Sum N of total
n
1 26 2 38, 50 88 13 1,144
9 28 4 | 26,81, 8,26 91 7 637
3 30 3 4, 5, b 14 10 140
4 28 2 21, 21 ) 42 14 588
5ooviiiin, 32 4 9,14, 25, 23 71 8 568
Istimate of population aggregate. .................... 3,077

The second column is the listing of the area of each block in number
of cells, or ultimate units, which are again taken as random sampling
units; while the third column gives the number of these which malke up
the samples. The random sampling observations follow, and then their

sums. In the next to lagt eolumn is the factor (—]nz) by which the sam-
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4849
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Fig, 14. A population of eells, irvegular in outline, and subdivided into
blocks of different areas.

ple sums are multiplied, the products affording the estimates of the block
totals, in the last column. The grand sum of these, 3,077, is, of course,

the estimate of the population aggregate. And it is the precision of this
estimate that is now required.

Since 3,077 is the sum of independent estimates of each of the five

block sums, its variance is the sum of the five separate variances of the
same block sums.

For block 1, the variance of the sample sum, 88, is
(838—50)2=144
its standard error being the square root of this, or 12. Since
13(88) =1,144
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is the estimate of the block population, the standard ervor of this esti-
mate is

StrATIFIED RANDOM SAMPLING

(13)(12) = 156,
and its variance, being the square of the standard error, is
(13)2(144) = 24,336

based upon onc degree of freedom, though not yet corrected for the
limited population of the block. The correction factor, based upon the
sample number, n=2, out of the population numher, N =26, is

N—n_2

"N %
for this particular block. Applied to the uncorrected estimate, 24,336,
the estimate of the variance of the limited population of block 1 is 22,464.

These values are listed in the first line of Table 13. The results of

corresponding operations upon the observations of the other blocks are
given in the succeeding lines of the table. Tor block 2, as another exam-
ple, the estimate of the variance of 91, is, from Table 13, four times the
variance of the individual observations, or, since this vepresents three
degrees of freedom, it is 4/3 times the sum of squares of deviations from
the block mean. Numerically, this is 4/3 of

(264 (8L)*+ (8 (26~ (91
or 409, based upon three degrees of freedom. As the sample consists of
one seventh of the block population, the estimate of the latter is
7(91) =637
and its variance is
(7)2(409) = 20,041

TspLE 13. Estimate of the Variance of a Finite Population Aggregate,
from Disproportional, but Representative Sampling

Estimate Estimate of | Correction | Estimate of

Block|Sample of N | Estimate | variance of factor variance of

num-| sum | variance | 7 | of block block N—n finite block

ber of sample populations | populations N populations

sum (uncorrected)
1.. 88 144 13 1,144 24,336 24 /26 22,464
2., o1 409 7 637 20,041 24728 17,178
3.. 14 1 10 140 100 27/30 90
4., 42 0 14 588 0 26728 0
5.. 71 228 8 568 14,592 28/32 12,768
Estimate of population sum

and its variance......... 3,077 | ... | el 52,500
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on three degrecs of freedom. The correction factor for this block being
@%>, the corrected estimate of the variance of the block population is
17,178,

The sum of the variances of the block populations is the variance of
the sum of the block populations; hence, from the bottom line of Table
13, the variance of our estimate of the population aggregate, that is, of
3,077, is 52,500, based upon 10 degrees of freedom; the degrees of free-
dom in the total over all bloeks being the sum of those in the individual
blocks. Out of the 15 random sampling units of the five blocks, one degree
of freedom was used in the estimate of cach of the five block means.

The estimate of the population sum with its standard error is

3,077+229
or, with probability of 0.95, the population aggregate is

3,077 + 229(2.228)
= 3,077 & 510,

for which 2,228 is the value of £ on 10 degrees of freedom.



CHAPTER V

SIMULTANEOUS SAMPLING OF MORE THAN ONE
POPULATION

5.1 The Problem and an Illustration. In the previous chap-
ter it was shown that an efficient estimate of a population mean (or sum)
is the outcome of suitable sampling design. As the populations of forest
and field are characteristically—one is tempted to say universally—hetero-
geneous and stratified, the area to be sampled is divided into sub-areas,
or bloeks, such that the variation among random sampling units of the
game block is less than variation among random sampling units of dif-
ferent blocks. Then each block is sampled so as to provide the necess-
ary and sufficient conditions for exact evaluation of the limits of the
probable discrepancy between the magnitude of a true, but unknown,
mean (or sum) of the population sampled—such as the timber volume of
a forest property—and the estimate of it as derived from the samples.

The problem may be extended to more than one population of the
forest or range. 1If, for example, the timber volume of g forest property
is distributed over a number of timber-species groups, it may be re-
quired to estimate the volume of each group separately, as well as the
combined volumes of any two or more groups, together with exact
evaluation of the limits of probable discrepancy between the true, but
unknown, volume of each group, or any combination of two or more,
and the corresponding estimate of their magnitudes as derived from the
samples.

The problem may be illustrated for the area represented diagram-
matically in Figure 15. The cells contain two populations. These may
be construed as the volume, on the cell area, of each of two gpecies
groups, made up, respectively, of the upper and lower numbers. Let it
be required to estimate the total volume of each group separately, and
of both groups combined from direct observation of 20 percent of the
populations.

Four blocks are delineated. The random sampling unit of each
population will also be the ultimate unit, that is, the eell. Four of the
20 cells of each block are drawn, independently and at random, by means
of a set of random sampling numbers, and the observations are listed,
aceording to group z (upper cell number) and group ¥ (lower cell num-
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ber) in Table 14. The sample totals, which are 20 percent of the estimate
of the population aggregates, are the following:

Group z: 474

Group 3 302

Both Groups: 776

BLOCK | BLOCK 2
23] 20]25] 20 30 3547
30| 24[20] 27013 2| 1
29 | 38 [ 32| 45 || 40 34 |43
26 125] 18181 7 13 | -
29[ 263539 [ 31 36 | 31
16|20 16 13 6 | -
21 | 47 4 27 48 | 42
25| 13] 13 12 =] 6

38 32

6|15 39
54 | 4] 1119 == |-
16 ] 13 33| 37 | 33 | 38
35| 28 L1a 19|11 f--
8 | 2l | 282330 [45
49 | 29 L 0] 16| - |-
20 | 25 [35[ 28 |41 |25
39 | 38 13012 - |-
9 |23 35 24 4230
32| 29 Hi6] 3 |--|--
BLOCK 3 BLOCK 4

Fig, 15. Two populations—upper and lower numbers within the eells—which
are not known to be distributed independently of one another.
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Only the variances of these estimates are now neceded in order to com-
plete the solution.

Tapre 14, Representative Sampling Observation of the
Populations of Figure 15

Group Group
Block Total Block Total
number x Yy r+y number x y z+y
47 13 60 15 41 56
1 29 26 55 3 9 32 41
38 25 G3 25 38 63
24 28 52 35 14 49
35 2 37 23 11 34
2 42 6 48 4 30 0] 30
27 17 44 33 14 47
27 19 46 35 16 51
Totals. . . .| 474 302 776

5.2 Variances and Covariances Inveolved. The variance of
each group is calculated in the usual way. Given n random sampling
unit observations of  in one of the blocks, the estimate of the variance of

n
S(),
uncorrected for the finite population of the block, is
n oz g
o S|:(:c~—:c) ]

where Z is the mean of the observed random sampling units of z in the
block. In like manner, the estimate of variance of

n
S(y)
of the same block is

2 éb[(y—g)ﬂ}.

The corresponding estimate of the variance of both groups combined,
that is of (z-+3), where z and y are observed values of the two groups on
the same random sampling unit, is based upon the sum of squares of
deviations of (z+%) around the block mean of the n random sampling
observations of (z+1). Since mean (z+y) is mean = plus mean y, the
variance needed is
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—nj g 2(054-?/)— (-’Hﬂ)%

n—
L i

which, for convenience, may he written

% n(g(w—:i:)-l—(y-.ﬁ)g .

n-—lS

Upon expanding, this becomes

s[u—w] - s[(;:/—w} +

2n
n—1

n
n—1

g’[(m—f)(z/ﬂ?)J

The first term of this expanded form is immediately recognized as the
variance of the sample sum of 2; and the second term as the variance of
the sample sum of . The third term-—disregarding the factor 2—is
known as the covariance of the sample sums of 2 and 4. Obviously it
may be positive or negative. In general, then, the variance of (z+y) s
the vartance of x, plus the variance of y, plus twice the covariance of x and y.

The term covartance designates a mean product in the same senge that
variance designates a mean square.

If two variables, such as x and y, are distributed independently over
the area sampled, their covarianee in the population is zero. Now while
the random sampling units in each block are drawn independently, there
is no assurance whatever that the magnitude of 2 on any random sam-
pling unit is independent of the magnitude of y on the same random
sampling unit. In variables such as timber volume according to species
groups, it is, indeed, to be expected that the greater the volume of one
of the groups, on plots or strips of given area, the less will be the volume
of some, or all, of the remaining groups. Covariances among groups,
consequently, ought usually to be negative.

In the caleulation of sum of products upon which covariances are
based, short-cut methods are available, quite analogous to computation
schemes already used in arriving at the sum of squares of deviations
about the mean of a sample. In the latter case it was noted that

n

S[(y—g)ﬂ] = S4Y)—780)

n K 2
=8 =~ S¥)
where either of the two forms
n ' 1 n 2
gS(y) or — {S (?/)]

which are known as correction terms, are deducted from the sum of
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squares of the original values of y, the residue being the sum of squares of
deviations about the mean.

The appropriate correction texm to be applied to the sum of products
becomes apparent upon expanding the expression which represents the
gum of products; that is,

S[ (a:—-a":)(yw)} ~ 8(ay) ~78(2)

=§(wy) —w‘g(y) ]
-——&my)ﬁ[&@“g(yﬂ

]

The three forms of the correction term—the second term of each right-
hand member—are identical. In computational work one should choose
that form which is handiest.

Calculations leading to the variances of the three sums at the bottom
of Table 14 are given in Table 15. Taking the data of block 1, by way
of illustration, it is found that the sums of 22, 3% and 2y, are

5,070, 2,254, and 2,987,
respectively. The corrections to these, in turn, are

71-(138)2, 2 (92), and %(138)(92),

4,761, 2,116, and 3,174;
hence, the corresponding sums of squares and products of deviations
about the sample means are
309, 138, and —187,
as given in the table. Kach of these is based upon three degrees of
freedom among the four random sampling unit observations involved.
Similar operations upon the observations of the remaining blocks are also
given in Table 15; and these are combined in Table 16 in the second
line from the bottom. In order to convert these sums of squares and
products into variances and the covariance of the sample totals which
are given in the bottom line of Table 14—listed again in Table 16—they

are to be multiplied by the factor 4/3; that is, the factor (1—;7?—1) Tinally,

the corrcetion factor for the finite populations sampled is
N~n_16
N 20

the product of the two factors being ‘

-

or
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TapLg 15. Calenlation of Sums of Squares and Produets among the Random
Sampling Unit Observations of Tuble 14

x Y a? ¥ Ty
Biocx 1

47 13 2,209 169 611

29 26 S41 676 754

38 25 1,444 625 950

24 28 576 784 672

Sums. ..o 138 02 5,070 2,254 2,987

Corrections. . ......... 4,761 2,116 3,174

Deviations............ o . 300 138 —187
Buocx 2

3¢ 2 1,225 4 70

42 4] 1,764 306 252

27 17 729 289 459

27 19 720 361 513

SUmS. .o 131 44 4,447 690 1,204

Corrections. . ......... 4,290.25 484 1,441

Deviations,........... .. .. 156.75 200 —147
Brocx 3

15 41 225 1,081 615

9 32 81 1,024 288

25 38 625 1,444 950

35 14 1,225 196 490

SUMS. .o oeeeeee 84 125 2,156 4,845 2,843

Corrections. . ...... .., 1,764 3,906.25 | 2,625

Devintions............ .. . 302 438.75 | —282
Brocx 4

23 11 529 121 253

30 0 900 0 0

33 14 1,089 196 462

35 16 1,225 256 560

Sums................ 121 41 3,743 573 1,275

Corrections........... 3,660.25 420.25 | 1,240.25
Deviations............ .. e 82.75 152.75 34.75
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Tapre 16. Assembly of Sums of Squares and Produets, and Calenlation
therefrom of Varianees and Covariances of the Totals of Tahle 15

) Observed sums Sums of squares and products | Degrees
Block of
number © y z+y 2 y? Ty freedom
1......... 138 92 230 309 138 -~ 187 3
2.0 131 44 175 156.75 206 —147 3
3. 84 125 209 392 438,75 |—282 3
dooo, .. 121 41 162 82.75 152.75 34.75 3
Total. . ... 474 302 776 940.50 935.50 |—581.25 12
Variances and covariances of sample
sums (16/15 of above). .. .........[1,003.2 997.9 |—-620.0

Sinece the samples make up 20 percent of the population, the estimates
of the population aggregates, with their standard errors, are five times
the following:

Tor z: 4744+ +/1,003.2; or 4741 31.67
For y: 302t~/ 997.9; or 3021 31.59

Tor (+y):  776++/(1,003.2)+ (997.9) +2(—620.0) ;
or 776+ 27.59.

Thus the estimates of the population aggregates are

For z: 2,3701+158.4
For y: 1,510+ 157.9
For (z+y): 8,880+137.9

5.3 Simultaneous Sampling of More than Two Popula-
tioms. Although practical congiderations may prescribe otherwise, the
most efficient class of sampling designs appropriate to stratified popu-
lations on confined areas of land, secure representativeness by subdivid-
ing the whole area into as many blocks as a minimum of two random
sampling units to the block will permit. The computational operations
to be performed upon samples of two submit to systematic and compact
tabulation as well.

The necessity for systematic and self-checking computational work
can hardly be overemphasized, particularly when the characteristic
sampled is distributed over several populations, and it is required to
estimate it according to each population separately, as well as according
to combinations of any two or more of them.

Let it be required to sample the type areas of Figure 16 by direct
observation of 5 percent of the population within the large rectangle.
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gwfoz!f;qco.vfgaw: B81.0CR NUMBLRY
B ([l PINE-HARDWOOD
C [ HARDWOLO Lf‘ o

p O open

F1a. 16. The type map, subdivided into blocks and showing the two
random sampling units of each block.

The objective is to estimate the area of each of four types, and of com-
binations of any two or three of them, so as to provide exact meagures of
the probable discrepaney between the true value and the sampling
estimate thereof.

The map from which Figure 16 was made is on a secale of 1 inch
to 800 feet. The first problem is the division of the area into blocks,
cach of which is to furnish a separate sample of two random sampling
units. While representativeness would be assured by dividing the map
into as many blocks as possible, yet a balance must be struck between
desirable precision and the labor of acquiring it. Tor present purposes
10 square blocks, 2 inches to the side, are used. These arc shown in the
figure.

Sinee the sample is to cover 5 pereent of the area, a practicable scheme,
and one of minimum labor, follows from conceiving each block (these
being 2 inches square) as made up of 40 contiguous strips, each 1/20-
inch wide and extending the length of the block. It is handy, therefore,
to consider the ultimate unit as a small square area, 1/20-inch on the
side, and the random sampling unlt as the sum of the 40 ultimate units
of a single strip.

The pattern of cover types seems to extend vertically rather than
horizontally. Accordingly, there should be less variability, hence small-
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er sampling errors, between strips run horizontally, Then the remain-
ing part of the observational program is the identification of the two
strips, out of the 40 of each block, which are to supply the samples.
This work is easily effected by means of any random sampling scheme,
such as a page of random sampling numbers.

The strips which supply the samples are shown in Figure 16; and
the observationg, consisting of the number of 1/20-inch squares, accord-
ing to type, out of the 40 of each strip, are given in Table 17. They
contain their own checks. Since the length of each strip is 40 units, the
sum of the type observations in each and every strip is 40. Likewise,
Tasre 17. Direct Observations on the Populations of Figure 16, Cover Type

Areas According to Random Sampling Units (Strips) and Blocks.
Units of 1/20-ineh Sguares

Srrir 1 STrIv 2
Blod Number of 1/20-inch squares according to cover type
Slock
A B C D A B C D
1.... 18 9 13 14 11 .. 15
2,. 5 .. .. 35 .. .. 8 32
3... 17 9 2 12 19 7 11 3
4... 12 6 9 13 5 8 11 16
5... 1 b 31 3 31 .. .. 9
6... 11 22 .. 7 3 32 . ..
7... 3 4 8 25 6 5 3 26
8... 11 3 3 23 14 2 7 17
9.... 13 b 9 13 11 3 4 20
10... 33 G .. 1 32 1 4 3
Sum..| 106 78 71 145 140 71 48 141

the sum of all the observed values over all 10 blocks is 800, sinee 800
units of strip were run.

Denoting the first and second random sampling units by subseripts
1 and 2, respectively, the sample sums of cover type nrveas in units of
1/20-ineh squares are the following:

10
Cover type A: S(A;-4A4,) =106-4140 =246

10

Cover type B: S(B(+By) = 784+ 71=149
10

Cover type C: S(C1+C3) = 714+ 48=119
10

Cover type D: S(D,+Ds)~145-+4+141 =286

All cover fypes: 800
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These estimates may be expressed, if so desired, either in proportions
of total area, by dividing by 800; or in acres, by multiplying by the factor
derived from the map scale; that is, since a 1/20-inch square corresponds
to (800/20)2 square feet, these estimatos are to be multiplied by (40)%/
43,560 =0.03673 to give acres of observed area.

Tor purposes of caleculating their probable diserepancies from the true
type areas, however, it is preferable for the present to maintain the units
of 1/20-inch squares.

5.4 S8ystematic Reduction of Observations. The observed
values of Table 17 are in handy form for drawing up a work sheet of
caleulations upon which to basc the errors of estimate. There are two
conditions to the experiment, however, and these are of the same kind as
encountered previously; namely, (1) the samples are small, for each block
supplics a single sample of just two random sampling units; and (2) the
population is a finite one—an area 10x4 inches on the original map—of
which 5 percent is contained in the observations, and variances are to be
adjusted accordingly.

As before, the firat of these conditions requires that strict account be
kept of the degrees of freedom available for the estimate of the variances
involved. 'There iz a single degree of freedom between the two inde-
pendent observations of any once or more types in each block. The
estimate of the variances of the sum of two independent numbers, say
(A1+4s), where these are the observed values of cover type 4 on the
first and second strips, respectively, of any block, is the square of their
difference (See. 4.3), that is,

V(A1+A2) = (Al"—Az)e

in which V denotes the variance of the enclosed terms following it. In
like manner, the estimate of the varianece of, say, the combined areas of
cover types A and B in one block, may be written

V] (it B+ (et By | = (4ut B ~ (4ot B ||

This may be expressed in a form to facilitate later numerical calculation
as follows:

V] it B+ (et B) | = (=) +Bi=B) |
=(A1—A2)?+(B1—By)?+2(4 1 — As) (B, — Bs).
The terms in the expanded right-hand member are, in order, the
variance of 4, the variance of B, and twice the covariance of 4 and B, 4

and B denoting the observed block sum according to cover type. It is
necessary to recognize and calculate all the variances and covariances
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among the types of the present problem. For conciscness, notation may
be simplified as follows: In a given block, let

A=(A1+4,); and a=(4,—A4,)

B=(B1+B>); and b= (B~ By)

ete.
Then in this block
V() =q?
V(B) =bh?
V(A4 B)=a*+0b*-1+2ab
etc.

These equations hold for the pair of random sampling units of each block.
In k blocks, the k pairs are independent of one another. Hence over all
blocks, the variances of observed sums are

[& ] k
VIfS(A) =S(«?)
k k
VLS(B)] =5(b°)
k : k &
V[S(A +B)] =g(fb'“’)+S(b2) -l-ZISCGb)

ete.,

because the variance of the sum of independent quantities is the sum of
their separate variances, the sampling of the individual blocks having
been done independently and at random.

Table 18 is the work sheet upon which have been performed the
necessary calculations leading to the estimates of the variances of the
observed sums of each type area and of possible combinations of areas of.

Tapin 18. Caleulation of Varianees and Covariances of the Data of Table 17

1 2134 5 6 7 8 9 10 11 |12 13 14 [ 15
Block| ¢ | b | ¢ | d a? ab ac ad | b | be | bd | ¢ ed | d®
1...0—14 7 9— 2 196 — 98 —120 28 49 63|—14 81]—- 1§ 4
2.. 5 of— 8§ 3 25 0 - 40 15 0 0 0 64— 24 9
... — 2 22— 9 9 44— 4 18— 1§ 4 — 18 18§ S81|— 81 8t
4., 7N— 2|— 2|— 3 49— 14| — 14— 21 4 4 6 4 6 9
5...]1-30 5| 31— 6] 900|—150 —930( 180| 25 155{—30 961|—186] 36
6.. 3| 10| 0 7 9— 30 0 21( 100 0|—70) 0) 49
7...]— 3~ 1 5(— 1 9 3 — 15 3 i~ 5 1 25— 5 1
8...1— 3 1{— 4 6 9— 3 12— 18 - 4 6 16|— 24| 36
9,. 2 0 58— 7 4 0 10— 14 0 0 0 25— 35 49
10.. 1 b— 4~ 2 1 5 — 4 — 2 25~ 20i—1Q 16 8 4
Sum.f.... ....[....]....[1,206(—291|—1,089 174] 209 175(—99[.,273 359 278
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two or more types. In the columns 2 to 5 are listed the differences be-
tween the magnitudes of type areas on the two random sampling units
of each bloek. A check is afforded in that

a+b+ctd=0

because of the constant strip length. As these numbers are multiplied
through by the value of e in the same block, the resulting produets are
listed in columns 6 to 9. Again a check of the arithmetic is available; for

ala+b-+c+d) =0=a*+aeb+actad.
In columns 10 to 12, operations of the form
b(a+b+ct+d)=0=ab4-0*+be+bd

arc performed and checked, although the product ab is not repeated,
since its numerical value has already been caleulated and checked. In
the remaining columns, operations of the same kind are performed by
using as multiplicrs, ¢ and din turn.  No product already performed and
checled by means of the check sum zero, nced be repeated.

The totals in the bottom line of the table are, accordingly, the esti-
mates of variances and covariances of observed cover-type areas, al-
though not yet corrected for the finite population sampled. The corrected
values are 38/40 times these tabular totals, since in each bloek the sample
size, 7=2, and the population size, N =40, produce the factor

N—n_40-2 38

"N T 40 40
Upon applying this factor, the corrected values are assembled in Table
19 in handy form for inspection and use.

By way of illustration, from Table 17 the observed area of type 4 is
246; its variance, from Table 19, is 1,146. The observed area of types
(B4-C) is 268; its variance is ‘

1994-1,209-+2(166) =1,740.

TanLe 19. Variances and Covariances of Area Sums.*
Corrected from the Limited Populations Sampled

A B C D
Ao 1,146 —~276 —1,035 165
B 199 166 — 88
Coveveneel o 1,209 —341
Do ‘ 264

J¥Numbers at intersections of eolumns and rows of like designation are variances;
at intersections of unlike designations, they are covariances.
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The observed area of types (4 +C) is 365; its varianee is
1,146 41,200+2( —1,035) = 285.
As a final illustration, the observed ares in types (A -+-B+C) is 514 its
variance is
1,146+1994-1,2094-2(—276) +2(~1,035) +2(166) =264

It is to he noted that the variance of the sum for any three types is equal
to the variance of the fourth. This follows from the fact that the true
area of all four cover types is known exactly as 10x4 square inches, for
which the sample supplied 800 square 1/20-inches. Inspection of Table
19 demonstrates that the sum of all variances plus twice the sum of all
covariances tallied thevein, is zero, that is, the sampling error of all types
combined is zero.

The standard error of an area estimate is the square root of its sampling
variance. A standard error is, accordingly, a measure of discrepancy of
the occurrence of a cover type between the two strips within the blocks.
Had each standard error been based upon many degrees of freedom—
rather than the 10 actually available for its estimate—it would have
implied that the real error would have exceeded the standard in 32 out of
100 sets of samples, based upon the same sampling design.

With but 10 degrees of freedom available for its estimate, as in this
case, a standard error is, itself, subject to appreciable sampling error.
Consequently, the discrepancy between the population parameter and
the sampling estimate thereof as a ratio of its standard error—produeing
the statistic {—is distributed as ¢ on 10 degrees of freedom. If the prob-
ability be fixed at 0.05 that the real discrepancies of these sums exceed
their caleulated values, the latter in each case is

ts/ln =2.228(s)4/(2)(10)

for which 2.228 is the value of ¢ at this probability on 10 degtees of frec-
dom and s+/kn is the standard ervor of a particular estimated sum under
discussion, s being the standard deviation of random sampling units
within the blocks. Several of these are listed in Table 20 according to
certain types and type classifications; in the second and third columns
according to the units of observation, and in the fourth and fifth columns
they are given as proportion of total area, by dividing the observed units
by 800. 'These figures may be transeribed to acres by multiplying those
of the second and third columns by 0.7346—that is, by 20(0.03673). In
the fifth column the limits of probable discrepancies as percentages of
observed areas are listed. '
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In conclusion, it is worth remarking that while this problem deals with
arcas as delineated on a map, no new principle would have been involved
had the data been timber volume by types or age classes, reproduction
counts hy speeies classes, forage areas by density classes or types, or any
ather forestry data as observed by a representative sampling method in
the field,

TasLe 20. Partial Summary of Results

In 1/20-ineh squares Proportion of total aren, Limit of
discrepancy
Type - in percent
Observed Limit of Oservecl Limit of of observed
aren diserepaney® | proportion |discrepancy* area™
Ao 246 +75.4 308 +.,094 +30.7
B .. 149 +d1.4 .186 +.039 +21.2
oo 119 +77.5 149 +.007 +65.1
Do 236 +36.2 358 +.045 +12.7
A+B.. ... 304 +62.7 194 +.078 +15.9
A+00 365 +37.6 456 +.047 +10.3
B+cC.. .. .. 268 +92.0 335 + . 116 4+34.7

*The probability is 0.05 that the real diserepancies exceed those listed.



CHAPTER VI

THE METHOD OF SUB-SAMPLING

6.1 Distinctive Feature of the Method. This chapter treats
of an extension of the representative sampling method, the distinetive
feature of which is that the actual measurements, or observations, are
taken from a portion only—and not the whole—of each random sam-
pling unit. In other words, each random sampling unit drawn for
observation from a block—and which is now termed major random sam-
pling unit—is sampled in turn. This is effected by drawing therefrom,
independently and at random, & portion of the minor rendom sampling
wntts into which each major random sampling unit may be divided, and
confining the direct observations, or measurements, to these. The minor
random sampling unit may or may not be the ultimate unit.

In consequence of the sub-sampling procedure involved, the sampling
error of the population estimate within the blocks is made up of contribu-
tions from two sources of variation, namely: (a) among major random
sampling units of the same block, and (b) among minor random sampling
units of the same major random sampling unit.

The sampling error will be discussed in some detail later. For the
present, an llustration of the method as applied by Hasel! to the timber
cruise may be helpful.

6.2 An Illustration of the Method. Nine square miles (sec-
tions) of the ponderosa pine type of California were divided by Hasel
into 18 blocks, each a half-section of 320 acres (Fig. 17). The popu-
lation is volume in M feet b.m. to the 214 acre plot, and consists of 2,304
such volumes altogether, or 128 to each bloek. The major random sam-
pling unit is the strip, 214 by 80 chains in dimension, running the length
of the block, there being 16 such strips to the block. ach stiip is sub-
divided into eight plots of 214 acres. The plot dimensions are 214 by
10 chains and lie end to end on the strip.

Hasel drew two strips, out of the 16 within each block, independently
and at random. Hach of these was then sampled in that only four of its
eight plots were drawn, again independently and at random, their vol-
unes in M feet b.m. supplying the observations.'* The strip is thus the

it Hasel, A. A.  Arrangement of eruise plots to permit o valid estimate of sam-
pling {3633(%1' California Forest and Range Experiment Station. Multigraphed re-
port, 1937, ‘

12 Ag applied to timber estimation Iasel has called the method the “random line-
plot eruige.”’
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major random sampling unit, the plot is the minor random sampling
unit and also the ultimate unit.

Figure 17 shows the ground plan of the 18 blocks as well as the location
of the strips, and plots on each strip, which were drawn on one trial. As
the sample cruise consists of volume on one-half the plots on one-eighth
the strips, the eruise covers 14 x 1§ or 614 percent of the population.
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Fia. 17. Arrangement of the four minor random sampling units (of plots)
within each of the two major random sampling units (of strips) on 18

blocks in & timber eruise aceording to the method of sub-sampling.
/

In order to arrive at the sampling error appropriate to the method of
sampling a limited population of plots within a limited population of
strips of the same block, the components of such sampling error will first
be discussed somewhat in detail,

6.3 Components of Sampling Error. Assume that a pop-
ulation is distributed over B blocks and that each bloek contains Q
major divisions, say of contiguous strips; while each strip contains P
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subdivisions, say of plots. Then the population of each bleek is dis-
tributed over QP plots.

Suppose, in the Orst case, that there is drawn from one of the blocks
a random sample of p plots out of the P contained on a single strip.
Then each real error, ¢, between the plot observation, v, and the true
mean, g, of the strip is

E=Y— g

and the variance among plots of the same strip may be denoted as o3
It follows that the exact variance of the mean of p values of y is

&(h)
p\P—-1

including the adjustment to the finite population of P plots to the strip.
This expression is taken from equation (7) of Sce. 3.4, the Appendix.

. P—p\. .
The correction factor < -P—p is not to be used here, sinee ¢ represents

the population variance.

Suppose, a8 2 second case, there is drawn a randomn sample of g com-
plete strips out of the @ in the block, each strip value, denoted by u,,
being expressed on the plot basis; that is, a random sample of ¢ values
of u, wherc each

1 r
P-qSPV S().

Then if the real error, A, between the strip mean, u,, and the {rue mean,
up, of the block be denoted

D = (pg—ps),
the population variance among strips of the same bloek may be denoted
as o}, and the exact variance of the observed block mean, that is, the
variance of

1 g

7 S

including the adjustment to the finite population of @ strips to the block.

Suppose, finally, that for a given block, there is drawn a random
sample of ¢ values of y,, each y, being the mean of a random sample of p
plots from the same strip. In this case, there are two sources of error
contained in the variance among strips of the same block; for each

(Yq—10) = (g —p0) +(Yq—ite),
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the first term on the right being the real error, A, among the true strip
means, the population variance of which we have designated as o4 ; while
the second term on the right represents the real error of the observed
strip mean, the population variance of this mean being

o3P —
p\FP—1
as given ahove. As these two errors are independent, the variance nmong
strips of the same block is the variance of
Ha— )+ (Yo—ttg),
whicli may be expressed®s

V(o) aA+"6(P p)

P—1

It follows that the sampling variance of the block mean, y,, where
=— S(yq) =L '5 S(y),

is the variance of y, when c11v1ded by g, and then applymg the faetor
(0 q‘) to (LA. Henece
4

Q-1
v Y (=)

while the variance of the general mean of B block means, that is, the
variance of

_1Z 1 £4F
=5 (yb)—BpASA(y)

is the variance among block means when divided by the number of

blocks, B. Hence
7 Th Q q P—p>
Vig)— Bq(Q 1) qu(P i e (D

The estimates of ¢} and of ¢ which this expression requires may be
made in orderly fashion through the procedure known as the analysis of
variance. This procedure will be treated next.

6.4 Analysis of Variation among Sampling Units, Given a
single bloek made up of any number, @, of major random sampling units,
say of strips, each containing any number, P, of minor random sampling
units, say of plots, let there be drawn ¢ strips, independently and at
random, and on each of these let there be drawn p plots, also independent-

1 The symbol — is read ‘“is an estimate of.”
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ly and at random. If, then, y represents the observation on a single plot,
14 the average of the p values of y on 2 single staip, then

Y==W—yo) Y=y . ... (2)
where y, represents the block average, that is, the average y, of the ¢
strip averages. The quantity (y,—y»), being the deviation of the strip
mean from the block mean, is the “strip effect”’; and (y—y,) is the devi-
ation of y from its own strip mean. Thus each residual (y~y.) about
the block mean may be analyzed into two portions which are assignable,
with more or less accuracy, to their causes; namely, to the average con-
tent of the strip from which y is drawn, and to the consistency with
which individual values of y express the strip average.

The analysis of the data of the method of sub-sampling into these
two classes of information—both of which are needed to evaluate sam-~
pling error—is readily performed through the arithmetical arrangement
known as the analysis of variance.* Upon squaring the identity (2) for
a single plot within a particular strip,

W —y)*= W= y)*+ Y~y + 2y~ y)(y—y,)
and after performing like operations upon each of the p plots of the same

strip, and noting that (y,—ys) is identical over all the observations of
this strip, their sum is the following:

5{@—%)2} =p<yg—yb>2+§[<y—yq>2] 2y S —us).

The third term of the right-hand member is zero, since g (y —vy,) is zero
by definition.

Upon ealeulating sums of squares like the above according to each of
the ¢ strips of the block and adding together, we have for the block

qp q qp
S S[(y—~ya)2] =pS[(yq—yb)2]+S S[(y—-yq)2] .............. 3)

The total sum of squares of (3) is based upon ¢p observations and
(gp—1) degrees of freedom. These are divided into (¢g—1) degrees of
freedom among the ¢ strips for the first term of the right-hand member,

14 The analysis of variance, introduced by R. A. Fisher, is a general method of
sorting out the various classes of information an experiment or investigation is de-
signed to test. It provides estimates of experimental and sampling errors, Together
with the known distribution of the statistic z—also due to Fisher—of which the
statistic ¢ is a special case, it provides tests of a great variety of statistical hypotheses.
Professor Fisher (1936) (1938) treats elegantly of the analysis of variance.

Three well-known American authors who deal largely with the methods of Pro-
fessor Fisher are the following: Snedecor (1937), Goulden (1938), and Rider (1939).



00 SanpLiNg Meriiops 1IN ForREsTRY AND RANGE MANAGEMENT

which is due to variation among the major random sampling units of
strips: and into the ¢ sets of (p—1) degrees of freedom for the second
term, which is due to variation among the minor random sampling units
of plots of the same strip.

If, now, the population is made up of B blocks, each of which is sam-
pled in the same way as this one, there will be B sums of squares, each of
the form of equation (3). When these are summed over all B blocks,
we have, finally,

B q p[ | B¢ Bagp
S 88| (y—yu)?|=0 88| (Ya—un)? |+S 88| (y~y,)?

This identity may be tabulated in analysis of variance form, as in
Table 21, The first two colums ghow the division of the total sum of
squares of plots, within the blocks, into portions due, respectively, to
variation between, and within, strips of the same block. The third
column contains the degrees of freedom. These are each B times the
number for a single block.

Tanui 21. Analysis of Variance Appropriate to the Method of Sub-Sampling

Source of Degrees of
variation Sum of squares freedom Mean square

Among strips, B q[ ]
same block. . .| p 8 S| (yg—10)?

B~ | ¢ pod( 2 )+el( 22E)

-1 P_1
Anong plots, |5 ¢ 17[ ] P
same strip. .. .| 88 S| (w—pq)? Bg(p—-1) | D— u%(P———l)

Among plots, (B a0 [ ]
same block. .. {88 SL(y—wy)" Bgp—1)

The last column on the right containg the pertinent mean squares,
symholized as €' and D. As these mean squares contain the estimates
of ¢ and of af of equation (1) of the preceding section, they need to be
analyzed into their components.

The mean square, D, among plots of the same strip, is the mean
square of the residuals (y —y,), each of which is a part of the correspond-
ing real (but unknown) error (y—pu,), such that each

W=k =Y~y +Ys—ug)-

The second term on the right, in this expression, is the true (also un-
known) error of the observed strip mean, y,. Upon squaring and sum-
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ming over the p plots of a single strip, and noting that the eross-produect
term of the expression is zero,

v P
S[(ywq)ﬂ] =S[(y—yq)2]+p(yq—uq)”-

There is, of course, an expression of the same form for each of the ¢ sam-
pled strips in the particular block. Summing over all ¢ expressions
within a given block, and then over all B blocks,

Bgyp W B qp[ W B ¢
SSSL(?’“““)E =88 8| (y—y)* [+p S 8| (wa~pd* |-

Finally, upon transposing so ag to have the sum of squares of the ob-
served residuals on the left

Bygp Baqop| By
SSS[(y—y*|=SS8| (w—r?*|—p 8 8 (g—p?*|........(4)

The left-hand member of equation (4) is the sum of squares among plots
of the same strip as given in Table 21. The expressions on the right of
equation (4) are sums of squares of real (but unknown) errors, the first
containing the individual errors ¢, and the second containing the mean
of p such errors. Hence equation (4) may be expressed

Bagp ol
8 88| (y—yq)? [—Bap aé—qu—pE

provided the number of sampled plots, p, is a small proportion of P. If

this proportion is not small, the adjustment (1;;1) is to be applied to

the estimate of the variance of the strip means, y,, in which case

54 S[(y ym]—» Bop a2—Bap % (55)

and this simplifies to the following:

B
88 5[@—@/92}-» Bato—1) ot )

Upon dividing by Bg(p—1), the mean square, D, among plots of the

game strip is
__ 1 Barp 2( P )
—W SSSI:(!I yQ).{l_)o-é, P-1

as given in the mean square column of Table 21.
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The mean square, C, among strips of the same block, in Table 21, is
the mean square of the vesiduals (y,~vs), each of which is a part of the
corresponding real (but unknown) error (y,—us) among strips of the
same block, such that each

(Ya—wo) = Yo—yu)+ (yo—1a).
The second term on the right is the frue (also unknown) error of the
observed block mean, y,. Squaring and summing over the ¢ strips of a
single block

q q
S[ (Wa —-ub)z} =S[(yq—yb)2] Fg{ys—ps)?

There is an expression of this same form for each block. Summing over
all B expressions,

B q B g B
S S| (yo—po)* | = S 8| (g—yn)* |+ 8| Wo—ws)?* |-

Upon transposing so as to have the sum of squares of the observed
residuals on the left, and multiplying by p,

B gq B g B
8 S[(yq—yb)ﬂ] =p S S{(yq—uo)g] —pq Sl(yb—ub)‘*] BN €:))

The left-hand member of equation (5) is the sum of squares among
strips of the same block, as given in Table 21. The expressions on the
right of equation (5) are p times the sums of squares of the real (but
unknown) errors, the fivst containing the individual strip errors of the
form

Wo—mb) = (Ug— 1)+ (Yq—1q)

A+ e
so that

B g ol
D S 8| (yg—ms)? |— pBy| c A+ ;E ,

without adjustment to the finite populations of P plots to the strip;
while the sccond term on the right in equation (5) is pg times the sum of
squares of the ¢rue (also unknown) errors of the observed block means
¥y Now each

1¢ 19
(?/b_l«"b) = "é" S(ﬂq_ﬂb) +*q— S(yq'—l*"q)
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=% <A>+-— S 8(9

so that
B
pq S| (yu—us)? |- peB A+pql’3 G

although not yet adjusted to the finite populfx,tlom either of @ strips to
the block, or of P plots to the strip.

Assembling these portions of the right-hand member of equation (5),
we find that the sum of squares among strips of the same bloek, as listed
in Table 21, contains an estimate of variances as follows:

B g 2 2 2
P SS[(yq—yb)ﬁ]ﬁ quz[afs-}— % ] —[ ‘Iqé + %H

The adjustments to finite populations have not yet been applied. If the
number of sampled strips, ¢, is not a negligibly small proportion of the

entire number, @, within the blocks, the factor <g 1) is to be applied to

the variance of block means, while if the corresponding proportion of

plots to the strip is not small, the factor Gz 1) is to be applied to the

variance of strip means. Applying these factors,

pgS[(Jq yo)?* ]—>qu3[%+ (P 11))} {af(g—(f% G’:?)H

which may be simplified to the following:

P g g[(yq—yb)2]—> pB(g—1) [UE(Q(:) 1)+"—§(1;—:71))]-

Finally, upon dividing by B(¢—1), the mean square, C, among strips of
the same block 18

¢= Jgé—*__l)p s 5[ (yq—yb)zJepag(Cf—ii)w@(?:?l’)

as given in the mean square column of Table 21.

It should be noted at once, that one cannot separate, exactly, the two
variances, o} and ¢, involved in the mean square, C, among the strips
of the same block. The analysis of variance table, however, supplies
an independent estimate of o2, in the mean square among plots of the
same strip, for which as shown above,
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. 1 ‘%z%’ . 2( P )
D=W)L S 8| (y—1yo)* | oé P/

The estimate of ¢4 may therefore he caleulated from the mean square C,

upon inserting D ({)-[:}1) for og therein.  With this substitution

= ei(gms o (F=E)

: P— p) @1 ‘
v—-.-
s34
We now have all the materials needed to estimate the variance of the

gencral mean, 7. As given in equation (1) of the preceding section, it
may be expressed as follows:

_ 1 ofQ— of P~
R = ]

, P . Li-
Upon substituting expression (6) for pe}, and D(—-P—} ) for o, this

and accordingly,

becomes

e e K FEle =y

and this may be simplified to the following:

V(ﬂ)=]3—;p[0(%)+])(l)%))(%)} .............. )

6.5 Application to an Insect Population. Table 22 shows the
distribution of Colorado potato beetles (Leptinotarsa decemlineata) in a
heavily infested field according to each 2-fect of row (the ultimate unit)
of potatoes for entire rows in the field. Let it be required to estimate
the population of beetles from an examination of 1/16 of the 2304 ulti-
mate units according to a sampling design based upon the method of
sub~-sampling,

Yo this end the field is arbitrarily divided into 12 blocks of equal
aren, such that they constitute a system of four tiers—or rows of blocks
in the table—of three blocks to the tier. Then each block consists of 12
rows of potatoes of 16 ultimate units to the row, or 192 to the block.
Designating the potato row of a block as the major random sampling
unit, we shall draw three of them, independently and at random, from
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Taens 23. Ohservational Program for Sampling the Beetle Population
of Tahle 22, Accovding to the Method of Sub-Sampling

Random Sampling Unit Numbers

Major* Minort Major Minor Major Minor
2 4,8 5 2,5 3 4, 6
7 3 4 7 A7 7 5 8
0 3,8 8 16 1 )

1 4, 6 5 1,7 4 2, 3
3 {7 8 7.8 5 1.3
12 5. 6 ) 2.5 8 6. 8
1 3, 8 1 2, 5 n 4,7
2 6 8 6 1,3 6 1,8
8 1,8 12 14 9 3,8
4 2, 8 1 4, 5 9 2, 6
7 2 6 8 1,4 5 5.7
8 48 9 1,5 ) 6, 8

*Row number within the block. .
FEach minor random sampling unit munber is the two nllimate uuits of the given
designation in the row of a block,

TasLe 24. Sample Census of the Beetle Population of Table 22
Aceording to the Program of Table 23

Observations Sums Observations Sums Observations Sums
1h, 7 22 16, 14 30 h, 7 12
25, 30 55 10, 20 30 11, 8 19
10, 12 29 16, 24 10 6, T 13

99 100 44

5, 4 9 11, 14 25 8, 17 25
4, 15 19 10, 16 26 11, 10 21
15, 1 19 7. 0 16 2, 4 6
47 67 52

17, 7 24 6, 4 10 6, 5 11
2, 9 11 16, 9 25 6, 9 15
15, 19 34 9, 8 17 6, 16 22
69 52 48

12, 12 24, 10, 5 15 8, 14 22
6, 5 11 3, 3 6 4, 8 12
, 1 7 5 4 9 1, 2 3

42 30 37
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each block for sampling in turn. Let the minor random sampling unit
be the two ultimate units of the same ordinal number in each half row of
potatoes into which the row of 16 ultimate units has been divided. There
are thus eight minor random sampling units, each of two ultimate units,
to the potato row of a bloek. By drawing two of them, independently
and at random, from each of the three potato rows which are to supply
the samptes of the blocks, the observations will comprise 3/12 x 2/8 of
each block, or 1/16 of the entire population as required. .

The observational program according to this scheme, worked out
with the aid of a set of random sampling numbers, is given in Table 23,
and the observations themselves are presented in Table 24. The grand
sum is 687 or an average 9.542 among the 72 minor random sampling
units observed, and an estimate of 16(687) or 10,992 heetles in the popu-
lation. The sampling errors of these estimates are needed.

6.6 Analysis of Variance and the Sampling Error. It has
heen pointed out (Sec. 6.4) that the sampling variance appropriate to
the method of sub-sampling may be derived from the arrangement of
pertinent contributions thereto into an analysis of variance table. It
has also been shown how the total sum of squares among minor random
sampling units within the blocks is analyzed into its relevant portions,
namely, the sum of squares among major random sampling units within
the blocks, and the sum of squares among minor random sampling units
within the major random sampling units. Symbolically

Bgrp Dy Baqgwyp ]
SS 8| (y—yu)?* [=p S S| (y,—ys)* |+8 S S (y—yq)”J-

In the beetle sampling problem, the number of blocks, B, is 12; the
number of major random sampling units of rows, ¢, is 3 in each block;
and the number of minor random sampling units, p, is 2 in each sampled
Tow.

The total sum of squares among minor random sampling units within
blocks may be expressed as follows:

Baygp Bgp B ‘
SS8| y—ys)?|=888 () —qpSyh).

Squaring each of the 72 values of y, the grand sum is found to be
9,019, that is,

B gzyp
88 8(y*) =9,019.
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The caleulation of the correction to be applied to this, the numerical
equivalent of

B
gpS(y3)
may be simplified upon noting that

B 1 B
gpS(y?) = S| (apys)?

each value of gpys, being six times the block mean, is the block sum, each
of which is given in Table 24. Upon performing the operation indicated,
the numerical equivalents become

"2_(13—)[(99)2'*‘(100)”‘ oo (30 (37)2] =7,490.167

whenee the total sum of squares among minor random sampling units
within the blocks is

Bgp
S8 S[(y—yb)‘*"] =90,019~7,490.167

=1,528.833

This is based upon a total of 60 degrees of freedom; that is, five degrees
of freedom among the six minor random sampling unit observations in
each of the 12 bloeks. These values are entered in the bottom line of the
analysis of variance Table 25.

Upon turning now to the sum of squares among the major random
sampling units within the blocks, the expansion of its symbolic form
shows that

B q[ B q B
S SL(yq—yb)” =p 8 8(y%) —qpS(y})

TapLm 25, Analysis of Variance of the Random Sampling Units of Table 24

Degrees of Sum of Mean
Source of variation frecdom SOUATES square
Among major rsu*, same block...... ... 24 085.333 | 41.056=C
Among minor rsu®, same major rsu.. ... 26 543.500 15.087=D
Total, arnong minor rsu*, same block. . . 80 1,528.833

*Random sampling units.
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giving the same correction factor as beforve, or 7,490.167; furthermore, the
firat term of the right-hand member may be simplified for numerieal
work, since

B
S é(yﬁ) =l I[(M) ]

the individual values py, being in the present case twice the row
means, are the row sums as listed in Table 24. Numerically this is

%[(22)ﬁ+(55)2+(22)2+ .. .+(22)2+(12)2+(3)2] =8,475.5,

Hence
B q(—
p S ;SI-(yq—yz,)2 =8,4756.6 —7,490.167

=085.333.

This is based upon a total of 24 degrees of freedom ; that is, two degrees
of freedom among the three major random sampling unit values of rows
in each of the 12 blocks. These are entered in the first line of Table 25.

The sum of squares among minor random sampling units of the same
major random sampling unit—the middle line of Table 25—is ealculated
by subtraction.

The right-hand column contains the two pertinent mean squares.
One may now calculate the sampling variance of the mean number of
beetles to the minor random sampling unit—which in Sec. 6.5 was given
a8 9.542—directly from equation (7) of See. 6.4. The number of blocks,
B, is 12; and in each block, ¢g=3 and @ =12; while within each major
random sampling unit, p=2 and P=8. Upon applying these numbers,
as well as the pertinent mean squares to the equation,

V()= qu[ (QQQ)+D( )(%)]

the variance of the general mean is estimated to be the following;:

V(. 042)_-[41 O56<12 3)4—1’097( )(132)}

=0.467.
The square root of 0.467 is 0.683. Hence, on the minor random sam-
pling unit basis, the mean number of beotles observed, together with its

standard error, is
9.542 +0.683

based upan 24 degrees of freedom.
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6.7 Efficiency of the Method. In measuring the effectiveness
of methods of estimation, an appropriate scale, proposed by R. A. Tisher
(1937, Sec. 60) is provided by the reciprocal of the variance of the mean.
Thus in an agricultural experiment it is convenient to consider a stan-
dard error of 10 percent of the mean as supplying one unit of information,
and one giving 5 percent as supplying four units. Or, in general, if U is
the number of units of information,

@*
V=100 vy
The number of units of information elicited in the beetle sampling is then
U= (9.542)? ~1.95
10000.467) 77

An estimate of the efficiency of the method of sub-sampling, as used,
might be based upon the comparison of these, the number of units
actually elicited, to the number available had the beetles on the three
major random sampling units of rows within each block been enumerated
completely. Since the true variance among rows is a2 of equation (6),
Hee. 6.4, its value may be estimated upon inserting the pertinent numeri-

cal equivalents in
o _l'p) Q-1 s 2

This gives
13.628 — ¢}
whence the expected value of V(5) as based upon the 36 rows is
13.628
. =0.379

and the number units of information which should be expected to have
been available under these conditions is
(9.542)
{06(0.379) ~ >40-
Tinally, then, the efficiency of the method used, in which only one-
quarter of the row-lengths were observed with its resulting 1.95 units of
information, is
1.95
m—O.Sl
or 81 percent of what would have been expceted had the sample rows
been observed throughout their lengths. As this would have involved
about four times as much field work, more information for the time
expended might evidently be obtained by examining more rows rather
than more complete examination of the rows which have supplied the
samples.



CITAPTER VII

REPRESENTATIVE BAMPLING OF IRREGULAR BLOCKS

7.1 Proportional Sampling of Blocks of Known, but Di-
verse, Areas. Chapters IV, V and VI—with the exception of Sec. 4.4
——treat of representative sampling within limited areas which have been
divided, for purposes of assuring representativeness, into blocks of iden-
tical size and shape. The division into blocks with such ready nicety,
however, is not practicable whenever the area of forest or range, which is
to be sampled, is irregular in outline.

In the infrequent case when the areas of blocks, though diverse, are
known in advance, sampling may be carried out without regard to
equality, or proportionality, in number of random sampling units to the
block. An illustration of disproportional sampling is that of Sec. 4.4.

It is usually preferable, however, that the number of random sam-
pling units, drawn from each block, be proportional to block area. Repre-
sentative sampling is then truly representative and as simple in con-
ception as when blocks are identical in size and form. Tor if the total
area of all & bloeks, expressed in number of random sampling units, N, in
the population, is expressed

N=N1+N2++Nk

where Ny, N3, .. .., Ny represent the population number of random sam-
pling units in the blocks individually; and if the representative set of
samples is to make the proportion, p, of N, then a sample of n; random
sampling units from block 1, 75 from block 2, and so on, can be drawn
sueh that

ny=pN1; ng=pNs; ..... Np=pNp.

Suppose the characteristic to be sampled is the timber volume on a
forest property, the various compartments (blocks) of which are made
up of known, but diverse, areas in number of random sampling units such
as square chains. If y is then the volume on a random sampling unit,
the total volume on the #; units of the sample from block 1 is the sum of
the n; values of y, or

n
S ().
The estimate of the variance of this sum, corrected at once for the finite
population of the block is
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R e e

where y; is the mean of the »n, values of y.

The observed sum of y over all blocks is then p times the estimate of
timber volume on the forest property. The estimate of the standard
error of the observed sum is the square root of the sum of the variances
of the block sumas; there being k of these, the first one of which is written
above. It is based upon (ni+ne+. ... +nx—Fk) degrees of freedom, and
it is p times the estimate of the standard error of timber volure on the
forest property.

There is & limitation to the feasibility of strictly proportional sam-
pling of irregular blocks. For in order that each random sampling unit
which is to enter the block sample be given exactly the same chance of
draw, block maps, showing the location of all random sampling units on
the ground, are prerequisite to the draw.

7.2 Proportional Sampling of Blocks of Diverse, but Un-
known, Areas. Asa consequence of the limitation just cited we shall
consider a modification in which the number of random sampling units of
the block samples are proportional to the existing number within the
blocks, although in area the sampling may be more or less dispropor-
tional.

Usually it is quite feasible to divide the general area to be sampled,
into blocks as diverse in area as might be, but with one side of constant
length, asg illustrated in Figure 18. The division is effected by a base
line—real or imagined—across the general area, at equidistant points
along which perpendicular lines, extending to the outside boundaries,
divide the whole into two tiers of blocks of equal width.

It was required to design, from the original map of Figure 18, a sam-
pling technique covering 5 percent—rmore or less—of the entire bounded
universe. Its object was the estimation of the area of each of the four
cover types, and of combinations of any two or three among them, so as
to provide exact measures of the probable discrepancy between the true,
but unknown, value and the samnpling estimate thereof.

The scale of the original map of Figure 18, is 1 inch to 800 feet. In
scale units, the bage line through the length ol the area is just 14 inches.
Perpendicular lines at each 2-inch point and extending to the outside
boundaries delimit 12 blocks as shown in the figure. It may be noted
that a small portion of blocks 6 and 7 extend over the base line. Fad
these portions extended across the base line over the entire width of
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SYMOOL  COVCR TvPE BLOCK rUMBERS

A BT g
B Ml PIKE WA RDWOOD 1 (2l3 “[{[Bb
¢ =1 waADWOD \.g el
0 2 orPeN
Fig. 18. A population of irregular boundaries subdivided into blocks of

constant width, and showing the random sampling units
of the block samples.

their respective blocks, they might have been considered as separate
blocks, just as bloek 12 is separate from block 5.
Since each block is two inches wide, its area is conceived as the sum of

areas of 40 contiguous strips, each é%—inch wide, and extending the length

of the block. If the random sampling unit is now defined as the strip,
two of them supply an estimate of 5 percent of the block area from which
they are drawn. It is not to be expected that they supply the exact
proportion because variation in their lengths precludes the possibility
that the preassigned proportion be free from sampling error. In other
words, each block sample contains just 5 percent of the number of ran-
dom sampling units of the block, but these are of different lengths,

This is an illustration of a elass of sampling problems among the most
commmon in forestry practice. Except in experimental work, it is not
often that a forester or range examiner knows the precise area, one or
more of whose characteristics of timber or range he is required to esti-
mate. It may be the watershed of & small ereek or large river; or it may
be the area occupied by certain plant associations, such as timber type,
the outlines of which have been but roughly sketched. A necessary con-
dition however—and an obvious one—is that he recognizes the boundary
of the area as he eomes upon it.
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Preliminary reconnaissance, even if cursory, should afford sufficient
information as to the best position and direction of the base line from
which the blocks emanate. The length of base line need not be an exact
multiple of block width as in this illustration. If, for example, block
width has been decided upon before the base line has been run, there will
almost certainly be some remainder less than block width. The area
traversed by this remaining part of the base line may then require a
distinet sampling design and separate analysis, yet the final estimates of
its characteristics and their variances can be combined with those of the
main portion.

7.3 The Observations and the Estimate of the Population
Mean. The requirements of randomization—that is, that the con-
stituent parts of the observational program upon which estimates are to
be based, be drawn independently and at random-—are completely met
hy identifying the two strips, which are to supply the samples, out of
the 40 of each block, by means of random sampling numbers.

The strips actually drawn are shown in Figure 18. The ultimate
unit is taken as a square, %—inch to the side, and the observations are
recorded in number of ultimate units according to cover type (4, B, C,
and D) and all types (L) in each random sampling unit (strip) of the
block sample, in Table 26.

TapLE 26, Direct Observations. Cover Type Areas According to Random
Sampling Unit (Strip) and Block

Strip 1 Strip 2

Block Number of 1/20-inch squares according to type
A,y B, Cy Dy I A, By Cs Dy Ly
1o........ 1 1 2 5 5
2. ... 15 14 1 19 49 3 17 8 23 51
3. 27 17 9 8 61 10 22 7 29 68
4.. 18 26 9 19 72 15 20 7 24 66
5.. 23 2 2 30 57 16 19 3 18 56
6......... 44 1 5 50 32 9 16 &7
Tovi . 35 2 12 49 15 8 23
8. ... 17 2 10 12 41 19 5 16 15 56
9........, 19 18 4 41 15 8 2 6 31
10, . 9 3 2 24 38 10 1 21 32
1......... 15 15 5 10 15
12......... 5 5 20 20
Sam........ 208 at 52 149 420 135 125 44 175 479
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If the first and second random sampling units be denoted by sub-
seripts 1 and 2, respectively, the numbers of ultimate units according to
type, separately and combined, are the following:

12
Cover type A: S (Ad1+4,) =208+135=343
12

Cover type B: S (B1+Bs) = 714125=196

12

Cover type C: S (C1+Cy) = 524 44= 96
12

Cover type D: S (D, +Dy) =1494+175=824

12
All cover types: 'S (In+1Ly) =480+4479=959

Upon dividing any one, or combination of two or more type sums, by
059, the estimate of the population mean on the ultimate unit basis is
obtained. This is also the estimate of type area as a proportion of total
aves.

There is still required the estimate of the variances of such means.

7.4 The Weighted Mean of a Sample and the Estimate of
Its Variance. In the present problem, each random sampling unit is
based upon a different number of ultimate units. The random sampling
units, accordingly, have different weights.

The meaning of weight is casily shown by a simple example. Given
five values of equal reliability, say,

Y, Yz Ysy Ya Us;
their mean is

1
g= 5 (n+yatys+yatus).

Suppose, now, that for some reason or other, these are recorded as only
two separate observations, say, y1 and y’ where

1
Y =7 Wetyst+ystys).

Then 1 and ¥’ have different weights; 9 having unit weight, and y’ a
weight of 4. The weighted mean of these

o ity
=11

is, obviously, the mean of the original five separate values.
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If, then, y is the sum of the observations on the w ultimate units of a
random sampling unit, the observed value on the ultimate unit basis is
Y

Yw=—

w
and w is the weight of y,. Let the block sample consist of n random
sampling units of variable weight w. The weighted block mean is then

n L
- Slwy.) _ SW).

v n n
S(w) S(w)
This is the value of §, which gives a minimum sum of weighted squares of
residuals; that is, 2 minimum value to

. .
S[w(yw—gjw)"} .
The first derivative of this expression with respect to 7, is
n
=2 8| w@w—7Fu) |-
Equating this to zero and dividing by 2, we have

n n
o S(w) = Swyu)
or

n
o= S(wyw) ,

w n
S(w)
and this is the weighted mean as given above.
The sum of weighted squares of residuals, therefore, contains V(y),
the variance among observations of unit wetght; and V (3,), the variance
of the weighted mean #,. The estimate of the first of these is the mean

of the (n—1) independent squares among the n, weighted squared
residuals, or

V(y) =n%1 g[w(yw—z?w)”]

whence, the variance of the weighted mean is the varianee of y of unit
weight divided by the sum of the weights. Accordingly,

Viga =1 lvce»]
S(w)
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is the estimate of the variance of the weighted mean. Or, if the variance
of the sample sum is required, its estimate is

v[’é@)] - §<w>[V(y)]

that is, the product of the sum of the weights and the variance of unit
weight.

For purposes of computation, the sum of weighted squares of resid-
uals may be put in either of the two forms,

k3 i 1
S| w(yw—1T7.)%] or S E(y—w'zj,,,,)2

which are identities.

7.5 Simplification of Computational Work with Samples
of Two Random Sampling Units. In the special case when n=2,
as in the observations of Table 26 for which the number of sample strips
in each block is equal to 2, there is but one degree of freedom to the
block; hence, the sum of weighted squares of residuals is also the vari-
ance of y of unit weight. Ience,

1 ey L .
Viy)= u—)l(yl_wlyw) + v (Y —waffw)
in whieh the subseripts 1 and 2 refer to the first and second random sam-
pling units, respectively. In this special case the numbers
(h—wiFw) and (Ya—wof.),

although differing in sign, are identical in absolule value; hence, their
squares are identical, and therefore
1

1 1 ~ 1 -
Viy= ;U—l(yl - wlyw)lﬂ-ﬁ(yz—wzyw)* = (E"'—E) (W — Wi e)?

as the estimate of the variance of y of unit weight. Then the estimate of
the variance of the sample sum is the sum of the weights times the vari-
ance of unit weight, that is,

1 1
V(y1+y2)=(w1+wz)<w—l+;u-2)(y1—wlﬂw)'~‘

= (oW Wi\ i)
—<2+w1+w2)(?!1 wlyw)



108 SaMPLING METHODS IN FORESTRY AND RANGE MANAGEMENT

By way of illustration consider the observations of block 7 of Table
26. The weights of the cover type observations in length of the two
random sampling units differ considerably. For type 4, in fact,

(A1+A2) = (35+15)-

Here A, and 4; correspond to 1, and y, of the diseussion above. In this
same block, the total length of the random sarapling units is

(Ln+Ly) = (494-23),
which corresponds to (w;--w.) of the preceding discussion. The weighted
block mean, then
7 _Ai+d. 35415
“ Ln+Le 49423
to the ultimate unit. Hence the estimate of the variance of (35415),
that is,

=0.694

; 2
L )
1 42
is numerically

23 49

=4.60
on one degree of freedom.

The operations to be performed upon the ohservations of Table 26,
including the caleulation of variances and covariances, may be stated
most coneisely by simplifying notation. Tor a given block, let

A=(411+4;); B=(B,+By); etc.,

A A1+A2)_ o (M)
CL-—A;[ Ll(_——-—L1+L2 ,b—B1 L1 L1+L2 ,etc.,

where, of course, a, b, etc., may he either positive or negative. Finally,
let

and let

gyl In
Z—2+L1+Lz

be the weighting factor. Then it follows that
V(4)=la?; V(B) =I?; V(44 B) =la>+1b*+2lab; ete.,
where lab is the covariance which may, of course, be positive or negative.
Table 27 is the work sheet upon which have been performed the
calculations leading to the estimates of the variances of the observed
sums of each cover type area and of combinations of areas of two or more
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cover types. The numerical values of [, ¢, b, ¢, and d are listed in
columns 2 to 6. It is worth noting that

a+b+et+d=0,

thus affording a check upon the calculation of these values. Columns 7
to0 10 are merely computational steps, in which the values of o, b, ¢, and d
are multiplied by the weighting factor, [, of the same line. A check on
the arithmetic is again available, since

a+b4c+d)=0=Ila+1b+Ic+t1d.

Variances and covariances involving 4, given in columns 11 to 14,
are the products of a by la, I, lc, and Id in turn. Again a check of the
arithmetic is available; for

a(le+1b4lc3-1d) =0 =la2 +lab-+ lac-+lad.

The operations indicated by the remaining columns are of the same
lkind, but using as multipliers, b, ¢, and d, in turn. No product already
performed, and checked by means of the check sum, zero, need be re-
peated.

The totals in the third line from the hottom are the estimates of
varianees and covariances of the observed type sums, although not yet
corrected for the finite population sampled. The corrected values are

times these totals. These are given in the second line from the bottom
of the table.

It should be recalled, at this point, that although the recorded type
areas have occurred on exactly two to each 40 of the random sampling
units, or § percent, it is hardly to be expected that they represent exactly
5 percent of the total area; for the random sampling units used supply
only an estémate of 5 percent of the total area. The sampling error of
this estimate will be treated in Sec. 7.6.

On the other hand, cover type areas as percentages of total area are
quite independent of the absolute magnitude of cover type areas. Since
the percentage of any type area to the total area ohserved is 100 times
the ratio of the former to the latter—that is, to 959—the variances and
covariances of these percentages are the products of variances and co-
100
m .
recorded in the bottom line of Table 27, and they are assembled in handy
form for inspection and use in Table 28.

variances of the observed type areas to the square of They are



REPRESENTATIVE SAMPLING 111
By way of illustration, the observed proportion of cover type 4 is,

from Table 26, rg%g or 35.8 percent of the total area; its variance, from

Table 28, is 9.04. The obhserved proportion of cover types B and C

combined is 292 or 30.4 percent; its variance is

959
5.35-+2.50+2(—0.95) =5.95.
635

The observed proportion of types (A+B~-C) is 959

variance of this percentage is
9.044-5.3542.50+2(—3.49)+2(—0.40)+2(~0.95) =7.21

which is also, except for the errors due to dropping deecimals, the variance

of the percentage in the remaining type D.

The square root of each of these variances is the standard error of the
type percentage concerned.

or 66.2 percent; the

TarLp 28. Variances and Covariances of Type-Area Percentages®

Type A B c D
R 9,04 —3.49 —0.40 —5.15
B e 5.85 —-0.95 -0.90
C.o........oo 2.50 -1.15
Do 7.20

*Numbers at intersections of columns and rows of like designation are variances;
at intersections of unlike designation, they are covariances.

7.6 TheEstimate of Total Area and Its Sampling Variance.
The evaluation of sampling errors of cover type percentages is but part
of the problem at hand. The estimate of type areas in abgolute units is

required, such as in ultimate units of —217)—inch squares. This is, evidently,

the produet of total area, in these same absolute units, and type propor-
tion. Were the former known exactly, the standard error of area esti-
mate of a given cover type would simply be the produet of total area by
the standard error of the type proportion. With the present dats,
however, the total area is itself subject to an error of estimate. As this
enters into the calculation, we shall evaluate it at once.

Bach block has supplied two random sampling units of block area,
namely Ly and L, of Table 26. Hence for a given block, the variance of

the observed area is v (LH- Lg) = (Ly—La)?
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on onc degree of freedom. The variance of the observed area over all 12
blocks is then the sum of the variances of the individual blocks, and is
hased upon 12 degrees of freedom.

The calculations are performed in Table 29. Corrected for the finite
population sampled, the estimate of the variance of the 959 ultimate
units on all random sampling units is 1,312. The square root of this
number is the estimate of the standard error of 959. Hence the cstimate
of the total area of the population is

20(959 4 +/1,312) = 19,180 +724
in %—inch gquares; and this may be converted to acres by multiplying by
the conversion factor contained in the map seale.

Tapre 29, Caleulation of the Variance of the Swn of
12 Sample Sums of Area

Variance of

Block number Observations (Ly+ L2, ie.,
L L, (L1—La)?
Lo 2 5 9
72 49 51 4
B 61 68 49
4. . 72 66 36
B e 57 56 1
B 50 57 49
T 49 23 G676
8. . 41 %3] 196
9.. 41 31 100
00 38 32 36
5 15 15 0
120 . 5 20 225
Sum............... 959 1,381
38/40 of above. .. ... Ll 1,312

7.7 The Sampling Variance of Cover Type Areas. If M is
the proportion that the area of a given cover type is of total area N,

where N 'is in absglute units, such as the %—inch squares of our data, the

aren of this same type in these absolute units is MN. Turthermore, if
M and N are independently subject to sampling errors, of variance V(M)
and V() respeetively, it is easily shown' that the variance of the prod-
uct MN may be expressed

V(MN)=M2[V(N)J+N2[V(M)J.

¥The development is given in the Appendix, Sec. 7.7.
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If this notation be referred to the present problem, the estimate of
the variances of each cover type, or combination among them, is readily
calculated in absolute units. In fact, the numerical equivalents of the
second term of the above expression for the variance of the produect,
that is,

N‘Z[V(M)}

are given in the third line from the bottom of Table 27; while in the next
line of the same table, they are adjusted for the finite population. These
latter values would need no further adjustment if it were known that the
random sampling units observed were not only 5 percent of the popu-
lation number, but 5 pereent of the population area as well. However,
as the aggregate arcas are but an estimate of 5 percent of the total area,
the term

M{V(N)]

is to be added, after applying the factor 2—(8) on account of the limited

population sampled. Thus for cover type 4,

343

M =55 =03577; and V() =1,812,

whence

Mﬂ[V(N)] =167.9.

This has been done according to individual cover types and certain
combinations among them. The results are listed in Table 30. The

numbers in the column headed Nﬁ[V(M )] would have been the esti-
mates of the variances of the observed areas MN, had block areas been
known exactly, Under the circumstances, however, the values M 2[ V(N )]

are added thereto, the sum of the two terms being the estimate of the
variance of MN.

The standard errors of the last column are bagsed upon 12 degrees of
freedom. By means of these, the observed eover type areas, MN, and
the table of £, the usual probability statements may be made concerning
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the range which encloses the population vatlues. And these may be put
on an acreage basis for the population by multiplying by a factor derived

from the map seale. Thus each ultimate unit is the square of 5 -inch,

0

Tty 30. Partial Swnmary of Observed Cover Type Aveas, and Their
Staudard Errovs. Units of %o-inch Squares

Standard

Variance of error of

Type Observed observed observed
area aren area

e V(M)] M V(N)J

MN V(MN) SE(MN)
;D 343 831.5 167.9 999.4 31.61
B......... 196 491.7 54.8 546.5 23.38
Coo. 96 230.1 13.1 243.2 15.59
Do 324 662.0 149.8 811.8 28 49
A+B...... 539 681.2 414 .4 1,095.6 33.10
A+C... .. 439 987.5 275.0 1,262.5 35.583
B+C...... 202 546.8 121.6 668.4 25.85

and as the map scale is 800 feet Lo the inch, an ultimate unit contains

(—80—0 2%( re feet or —-1—(8—09 ’ res
gp ) SAuare lesh oF 1z geo\ 20 ) ATOS-

As 5 percent of the strips were taken, each ultimate unit of the samples

represents
20 /R00\?
:B,_W)(?O-) =().7346 acres
of the population.

‘When total aren is not known precisely, some information is sacri-
ficed. Caleulation of the information lost may indicate at once whether
it is trivial in quantity or whether steps should be taken to recover it, in
whole or in part.

The amount of information provided by an estimate is proportional
to the reciproeal of its variance; and the ratio of the amount extracted to
the amount available under the condition to be tested is ealled the ef-
ficiency of the method of estimation under discussion. Consider cover
type A as an illustration. Were the map area known exactly, the
amount of information available for the estimate of A, under the samn-
pling design used, would have been proportional to

1
831.5
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where 831.5—taken from the third ecolumn of Table 30—is the estimate
of the variance of 4 on the supposition that bloek areas are known. But
on account of the sampling error to which the estimate of total area is
subject, the amount of information actually obtained councerning the
area of A is proportional to .

099.4

where 999.4—taken from the fifth column of Table 30—includes the
sampling variance of total area. The efficiency of this method of esti-
mating 4 is thus

831.5

999.4

or 83 percent of what 1t would have been had the block areas been known
precigely. The loss of information is 17 percent.






PART 3
INDIRECT ESTIMATES THROUGH REGRESSION






CHAPTER VIII

THE MEANING AND USE OF REGRESSION IN SAMPLING

8.1 The Problem of the Present Part. The sampling prob-
lems dealt with in Part 2 were based upon direct observations in particular
populations; the estimate of one or more of whose parameters was needed.
Thus in a timber eruise each of the random sampling units was regarded
as supplying a measured quantity directly of timber volume; hence,
timber volume was the only variable analyzed.

Direct measurement of timber volume, however, implies direct meas-
urement not only of the diameters. but of the height of all trees which
contribute volume to each random sampling unit observation as well
Now accurate measurement of tree height is time-consuming. Turther-
more, if the measured volume of the treesis to be in board fect, considera~
ble experience isrequired in order to recognize the limit of merchantability
to which height is to be measured on the upper stem of individual trees,
Consequently, the direet measurement of timber volume on random
sampling units is & relatively expensive operation. In view of the
variability of volume among random sampling units, the sample may
appear too small to yield an estimate of the desired degree of accuracy.

It is known that the timber volume of a random sampling unit is
proportional to the basal area—or sum of the squares of the diameters—
of the trees thereon. Basal area is thus completely determined by the
frequency distribution of tree diameter alone.

If, therefore, a portion of the random sampling units iz made to
supply both volume and concomitant basal area; and if this portion is
used to determine the expression of volume in terms of basal area; and if,
finally, a more accurate estimate of basal area is contained in the entire
body of random sampling units; then the total information on volume is
greater than the information on only that portion of the random sam-
pling units upon which it is measured directly. 'The additional informa-
tion on hasal area is obtained with relatively little expense.

It is the purpose of the present part to show how such added in-
formation may be extracted from the samples.

8.2 The Regression Equation. Suppose that from each of n
random sampling units of a block, direct measurements have been made
on the variable y, say volume b.m., and on z, say basal area; and that it
is required to express v in terms of =.
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If variation in y is, in part at least, proportional to variation in z,
this portion, denoted by Y, may be expressed in terms of z, as

where a and b are constants which may be determined from the sample of
(y, =) by the method of least squares.

The coefficient, b, is the average rate of change of ¥ to unit change
in z; and b is known, in the biological sciences, as the regression coeffi-
cient. 'The constant, a, is the value of ¥ when z is Z.

As yis expressed, partly at least, in term of z, y is called the dependent
variable, for its caleulated values depend upon given values of the in-
dependent variable, x.

The equation is called the regression equation, or the regression of y
on x. The sample of (y, ) supplies the numerical equivalent of Z. The
unknowns, ¢ and b, may be caleulated from the data by the method of
least squares, if ¢ and b are defined as numbers which will render a
minimum sum of squares to the residuals, that is, o minimum value to

g[(y" Y)z}-

Upon substituting a-+b(z—z) for ¥, this is equivalent to making
n 2
Sg[(y—a)—b(:c—a‘;)} % ................ (2)

a minimum. Upon differentiating with respect to the unknown e and
equating to zero, the expression becomes

n
28%{@;——&) —-b(x—:ﬁ)}(-—l)é ={
whence )
n n
S(y—o) =bS(z—1%).
Now the sum of residuals of z around the mean of @ is zero; hence, the

right-hand member is zero. Accordingly,

K
S(y—a)=0
hence, as in Sec. 1.2,

o= g(y)=ﬂ-

S|
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Next, equation (2) is differentiated with respect to the unlnown b,
and equated to zero; that is,

253{(y—a)~b(x—i)][-—(a:—;i)]i =0

~—§[(y—-a)(a;—:ﬁ)]+b‘§[(m—£)21 =0

and upon substituting 7 for e, and rearranging,

n
n
e
1f the denominator of this expression were divided by the {(n—1)
degrees of freedom upon whiech it is based, it would be the estimate of
the variance of z. In like manner, were the numerator divided by
{n—1), it would be the estimate of the covariance of x and y. The ve-
gression coefficient may thus be regarded as the ratio of the covariance of

the two variables to the variance of the independent variable.
One may caleulate at once the sum of squares of residuals upon ex-

panding \
é;[(y-—ﬂ%b(x—i)] i

the result of which is the following:
n n 113
S[(y—W] ~2b S[ (y—ﬂ)(w—i)] +b? S[(m-ﬂ?)“}-

This may be somewhat shortened since, from the definition of the re-
gresgion coefficient b,

B §[<x—z>=]=b §[<y—g)<m~ﬁ)],

so that the sum of squares of residuals may be expressed in any one of the
following forms:

§[(y—y>2} b §[<y—z7><m—:z>J; or
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g[(?/"w] —b? gll:(m—:ﬁ)z]; or
al i ) {2

S[(U-ﬁ)ﬂ] —{S .ﬂa’—y) (ﬂ»-—:c)](

SL(x—:z)z]

The left-hand term of each of these is, evidently, the total sum of squares
of 7 around the mean of . Each right-hand term is, consequently, that
portion of the total sum of squares of ¢ which is due to z.

These results may be put concisely in analysis of variance form as in
Table 31. The degrees of freedom for the total sum of squares around
the mean of y is, of course, (n—1) among the n observations, as one is
used in the estimate of §. The residuals arc then based upon (n—2)
degrees of freedom since the estimate of the regression coefficient b has
also required a degree of freedom.

TasrLe 31. Division of the Sum of Squares of u into Portions Due to, and
Independent of, @, with Degrees of Freedom and Mean Squares

Degrees
Due to Sum of squares of Mean square
freedom
n n n|' ‘l
Regression on z. b2 SI_(I—E)E 1 |g 8] (2—2)% [ +e} SL (z—£)2_|
— nol
n 21
Residuals. .. ... 8<l (y—7) —b(z—%) n—2 |83 n
f — 8| (e—~2y |0
n

Total......... SY (y—i)2 n—1 53

The last column on the right contains the mean squares. As the test
of significance of the regression coefficient, as well as the sampling vari-
ances of the statistics ¢ and b, are based upon these mean squares, we
need to consider them somewhat in detail. Tor this purpose the sample
is considered as drawn at random from a population of samples of y
which have the same values of the independent variable as represented
by the sample of » at hand. The mean square due to regression may
then be regarded as made up of two components, namely the true (but
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unknown) portion of the sum of squares due to z, and the real (also un-
known) error of its estimate. Numerically, these components cannot
be separated with exactness, but symbolically the observed statistie, b,
may be expressed
b=ﬁ+ €p

where § is the irue coefficient, the unknown population parameter cor-
responding to the observed statistic, b; and ¢, is the real error of the
estimate of 8. This real error, €, may, of course, be positive or negative.
The sum of squarcs due to the regression of 3 on x may therefore be
expressed

b* g{(a:—n‘:ﬁ] = (B4€s)? §|: (x—:E)E]

=f g[(m—j)ﬂ]-}—e% g[(m»—n‘:)a}.

The cross-product term of the expanded form is not listed, since the
population average of €,is zero. As the expression is based upon a single
degree of freedomm, it is recorded in the mean square eolumn of Table 31.

The mean square independent of the regression, on the other hand,
is the estimate of the varianec of the residuals around the true equation;
that is, it is an estimate of the variance of that part of the individual
observations, y, which is independent of . Symbolizing it as s%.,, it
may be written

1 n
sjo=—5 5| W=7 .

The sampling variances of the statistics @ and b of the regression
equation
Y=a4b{z—3%)

can be computed from si.,. In the first place, the mean square of the
residuals contains an estimate of the variance of @, that is

st — n ol
whence the sampling variance of @ is represented by the expression
2
8y
Viag) =222,
(a) =2

It should be noted that although
a=j
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its sampling variance is not that of the mean of y when no information is
at hand regarding 2. For in the latter case, as in Sec. 1.6, the sampling
variance of the mean of y may be cxpressed,

V@)=

but the sampling variance of a is, rather, that of ¥ when x is Z.
In the second place, the mean square of the residuals is an estimate of

€l g[('u —-;E)"]

which containg the real error, e, of the calculated regression coefficient,
b. Now the expected value of ¢, is zero; and the expected value of its
square is the variance of b. Accordingly,

) .
§hp—> 0} S[(x-a})zJ

where ¢} denotes the population variance of b, having the same weight in
sum of squares of z. 'The estimate of this variance—that is the sampling
variance of b—is then the following:

2
V)=t
n
S[(m—i)“]
These developments will next be applied to a numerical example.
8.3 A Numerical Example. Volume in M feet b.m. and basal
area in square feet of each of six half-acre random sampling units of a
40-acre tract of upland hardwood are listed in the first two columns of
Table 32. The problem is the calculation of the regression of volume
Tanwe 32, Caleulation of Sums, and Sums of Squares and Produets, of

Volume and Basal Area among Six Random Sampling
Units of Upland Hardwood

Basal area in Volume in
square feet M feet b.m.
z y z? zy ¥

11 1.22 121 13.42 1.4884

14 1.43 196 20.02 2.0449

5 0.67 25 3.35 0.4489

11 1.28 121 14.08 1.6384

15 1.74 225 26.10 3.0276

18 1.62 324 29.16 2.6244

74 7.86 1012 106.13 11.2726
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() on basal area () of these data, and the standard errors of volume
involved in the regression equation.

For the sake of simplicity, adjustments of estimates to the finite
population sampled will be neglected for the present. They will be taken
up separately in a later section (See. 8.5).

The sum of products of deviations about the means of y and z, needed
in the caleulation of b, may be expressed, for purposes of numerieal eal-
culation, in one of the following ways:

n

S [(?r-ﬂ) (x—%) } = § (yx)—g g(x)

7 7%
= S(yx)—2 S(y)
n 1 n n
= S(yz)——- SO || )
Upon ingerting the appropriate numbers from Table 32, this becomes
of
S[(y—ﬁ)(m——:ﬁ)} - 106.13——3—(74)(7.96)

=7.9567

Similarly, since
7 7 1= 2
Sl (a—®)?2 = S(:cﬂ)——ﬁ~ S(@) |,

the sum of squares of bagal areg is
5 1
S| (x~&)? | =1,012~- F(M)Z
=49.333.

The regression coefficient, therefore, is

b= g[(z;—z?)(w-«a‘:)] _7.9567
g[ (z-a-,-)z] 99.333

This means that there is an average inerease of 0.0801 M feet b.m. to the
square foot Increase in basal area.

=0.0801,
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From Table 32, the numerical equivalents of 7 and & are as follows:

— |

J=--(7.96)=1.327

F=—(T4) =12.333.

6
Upon inserting these means in the regression equation
Y=g4+b{z—23)
we have
Y =1.327-+0.0801 (z—12.333);
and this is presented graphically in Figure 19, together with the observed
points upon which it is based.

20 7
z
Y
-
L
Hoe
S 141
Z 12
Y 10-
D
)
Q 0.8

O-G Y T T T T T ¥ T 1
4 6 8 0 12 14 16 8 20
BASAL AREA INSQ. FT.

Fie. 19. The regression of volume (y) on basal arca (z) compared with the
direct observations of six half-nere random sampling
units upon which it is based.

The sum of squares of the residuals,

g[(y"- Y)z] = g[(y—-ﬂ)ﬂ]—b g[(yﬂﬂ)(x—i)],



REGRESSION IN SAMPLING 127

is calculated by deducting from the total sum of squares, that is, from
n
S[(yag)ﬁ] =11.2726—-(7.96):

= 0.7123,

the portion due to the regression on z, which with the present data is
n
b S[(y—g) (:c——a:')] =(.0801(7.9567)
=(.6373.

These quantities are tabulated in the analysis of variance of Table 33,
together with their mean squares and degrees of freedom upon which
they rest. The mean square of the total is the estimate of the variance
of volume without any regard whatever to basal area. The mean square
of the residuals, on the other hand, is the estimate of the variance of that
part of the sample plot volumes which is quite independent of basal area.
It is thus the variance of volume to be expected of random sampling
units which have identical basal area.

The variance of the regression coefficient, 0.0801, expressed as in the
preceding section

8%,
V(b)= T vz
S[(w—ﬂ'«')g]
0.01875
99.333

on the four degrees of freedom used in the calculation of si..; the egti-
mate of the standard error of b being the square root of 0.000189, or
0.01375 M feet b.m.

Taprk 33. Analysis of Varianee of the Volume Data of Table 32

is, numerically,

V() =V (0.0801) = =0.000189

Due to Degrees of freedom | Sum of squares Mean square
Regression......... 1 0.6373 0.6373
Residuals.......... 4 0.0750 0.01875
Total. . ........... 5 0.7123 0.14240

8.4 Application of the Distribution of ¢ to the Regression
Coefficient. In preceding chapters use was made of the distribution of
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the statistic ¢ (Table 7) for the purpose of delimiting the range which, on
8 given probability, encloges the true mean of the sampled population.
These methods apply equally to regression coefficients, in which case

i=-p) [ [
/\//g[(w—fi)z]

where the denominator, as given in Sec. 8.2, denotes the estimate of the
standard error of b,  Although the parameter 8 is unknown, yet a range
may be caleulated, corresponding to any chosen probability, such that it
contains—or does not—the true coefficient. 1f, for example, the prob-
apility be fixed at 0.05 that

b e
s ‘\/g[<x~=s>2]

one takes from the table of ¢ the value corresponding to this probability
and the number of degrees of freedom upon which the standard error of &
ishased. With the four degrees of freedom of the present data, t=2.776.
Hence with probability of 0.95

$=0.0801(2.776)(0.01375)
=0.080110.03817.

Previous experience with regressions of volume and basal area has
established beyond question that the parameter 8 must be a positive
number; but in many other problems involving regressions there is no
advance knowledge of the magnitude of 8. Under these circumstances
it is customary to test the hypothesis that §=0 in the sampled popula-
tion. By way of illustration the test will be performed on the volume-
basal area data.

The analysis of variance of Table 33 contains the materials for the
test. The ratio of the mean square due to regression, to the mean square
of the residuals is, in fact,

f= big_[(“:'_@z_]
s,

for, as given in the preceding section, the estimate of the sampling vari-
ance of b ig

V(@)= S
Sl e—ar).
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The observed value of ¢ is thus

_ [06373
= 001875

Upon reference to the table of ¢, it is ascertained that with four degrees of
freedom ¢ is expected to exceed 4.604 only once in 100 such samples from
the same population. Consequently, the hypothesis that =0 is un-
tenable in the face of the observed ¢ of 5.83.

8.5 The Variance of Y. Given the numeriecal equivalent of z, the
corresponding value of Y of the regression equation

Y=a+b(x—%)

may be calculated readily. Often however, and particularly in sampling
work, the estimate of the variance of the ealeulated ¥ is needed as well.
Since Y is the sum of two independent quantities, ¢ and b(z—Z), the
variance of ¥ is the sum of the variances of these two quantities. Hence

=05.83.

V(Y)= V(a)+V[b(:v—a';):| .

The second term of the right-hand member of the expression, V(Y),
i8 the variance of the product of the two factors, b and (x—%). As both
factors may be subject to sampling errors, the varianece of their product
is analogous to that of SBec. 7.7. Accordingly,

V[b(x-:i)] - (x—j)ﬂ[V(b)]+b2[V(x—:z)],

but as £ is not variable in this equation, V(z—3%) is V(z).
In general, then, if

Y=a4b{z—%)

the variance of ¥ may be expressed
V() =V(ay+(z -—:‘t){V(b)jl +b2[ V(:c)] .

This expression brings out that the accuracy of an estimate, Y, de-
pends, in the first place, upon the amount of information contained in
the regression equation. If this is considerable, the variances of the
equation constants, a and b, are relatively small and the estimates of ¥
are correspondingly precige. Now the amount of information on 2
statistic varies inversely with its variance; and since (See. 8.2)
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Via) =52, and V() = ——Siz__
@ =252 on T
S| (x—z)*

the amount of information on these constants is increased if the individ-
ual observations of y fit closely around the regression line, that is, if
5., is small; and also as n, the nurber of observations of (y, ) used in
caleulating the regression equation, is increased. Furthermore, the in-
formation on the regression coefficient, b, becomes greater as the range
of the independent variable, x, is extended; for the magnitude of the sum
of squares of n residuals, (x—%) depends considerably upon the range
encountered, as we shall see in Chapter IX.

In the second place, the accuracy of an estimate, ¥, depends upon
the particular value of x for which it is an estimate, and, in turn, upon
the amount of information on this value of z. If one considers that z is
given exactly, its variance—that is, V(z—x)—is zero, and the variance
of ¥, then, becomes least as = approaches the mean of xz. But if z is
itself an estimate, hence subject to sampling error, the estimate of ¥ is,
of course, made at some additional sacrifice of precision.

The distinction between finite and hypothetically infinite populations
is seldom recognized in estimating the variances of the regression con-
stants ¢ and b. In practice, the regression equation is rarely based upon
an appreciable proportion of the population concerned. If needed, how-
ever, the usual factor Ne—n

N

may be applied to the variance of hoth a and b.

8.6 The Variance of Y when xis Free of Error. Suppose the
estimate is required of the average volume in M feet b.m. (¥) to the half-
acre, of that part of the population of y for which basal area (z) is exactly
16 square feet. Upan putting this basal area for x into the regression
equation of Sec. 8,3, which is,

¥ =1.32740.0801(z—12.333),
the equivalent volume then becomes

¥=1.3274-0.0801(16—12.333)
=1.621 M feet b.m.

The variance of this estimate may be calculated by means of the general
expression for V(Y), for which

V(¥)=V(a)+ (m-—:ﬁ){V(b) J +b2[ V(:c)}.
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However, V(16 —12.333) is zero, since z is 16 exactly ; whence, from the

preceding section

2 =4
V() =S - 001875

n 6
=0.003125,
and
sh.g _0.01875
V)= n[ ] ~59.333
Sl (z—%)?
={.000189.

It follows, then, that

V(1.621) =0.003125+(16~12.333)*(0.000189)
=0.005666

the square root of which, or 0.0753, is the estimate of the standard error.
If preferred, one may compute & range such that

lY——,u > sy

with probability of, say, 0.05. In this, u is, of course, the population
mean of volume in M feet b.m. when basal area is exactly 16 square feet,
With the four degrees of freedom upon which sy=0.0753 is based,
t=2.776. Hence with probability of 0.95

#=1.6214(2.776)(0.0753)
=1.621+0.2090 M feet b.m.

when basal area is exactly 16 square feet.

If corresponding limits, caleulated in the same way, for other values
of z are plotted on coordinate paper, as in Figure 20, the graph exhibits
a band, covering the regression symmetrieally, within which lies the true
volume for given values of z according to the probability upon which it
is construeted. This band, known ag the confidence band, is relatively
narrow for =3, and widens as the extremities of the range of x are
approached, indicating that the accuraey of the estimate of ¥ is lessened
as = diverges from its mean. ‘

8.7 The Variance of Y when x is Subject to Sampling
Error. Suppose, now, that by means of the regression equation it is
required to estimate ¥ corresponding to the best estimate of 2. This

latter is, obviously,
£=12.333
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T1g. 20. The eurve of volume, ¥, on basal area, x, and the
95 percent confidenge band.

and its sampling variance is contained in the sum of squares used in See.
8.3. Accordingly, upon applying the correction factor for the finite
population of z,

6[
NG SL(m—:E)ﬂ]/SO—ts _99.333/74\ _,
Upon putting x=12.333 into the regression equation
Y =1.3274-0.0801(z—12.333),
the calculated volume obviously becomes
Y =1.327 M feet b.m.
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The variance of this estimate may be calculated from the general
expression

V(¥)= V(Cb)+(w~i)2[V(b)] +b2[V($)]

for which, however, the second term is zero, as x=3%. Then

V(1.327) =0'0é875 +(0.0801)2(3.063)
—0.003125+0.010652
- 0.022777.

Now 1.327 M feet b.m. is, of course, the mean of . It would seem
that the common-sense approach to the estimate of ils variance is to
disregard « entirely. Under this condition the variance of 7 may be
estimated directly from the formula

n
sy N—n)_ S[(?/—?J)Z]<N~%)
vo-2*5 )= w1\ N )
and upon taking the sum of squares from the bottom line of Table 33,
the numerical equivalent reduces to

0.7123/74

This estimate is, in fact, somewhat better than that already derived
strictly from the regression equation. The difference in its favor, that is,

0.022777 —0.021963 =0.000814,

is due to the fact that it does not at all involve the regression coefficient,
b, which in itself is subject to sampling error.

The instructive feature of the application just illustrated is that the
regression equation can add no new information concerning the popula-
tion mean of y when no more is known about the independent variable,
z, than is contained in the random sample of (y, @) upon which the re-
gression is based. Under these circumstances there may be no point in
calculating the regression equation at all.

Fullest use can be made of regression when the sampling work is so
planned as to supply more information on the independent variable, =,
than is contained in the sample upon which the regression is based.

It was remarked in Sec. 8.3 that the volume and basal area data of
the regression were six half-acre random sampling units from a 40-acre
tract of upland hardwood. As it happened, however, basal area was
meagured on 20 half-acres drawn by a random sampling device from the

) =0.021963.
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80 half-acres of the tract; but the volume data were taken from just six
out of the 20; these six values of volume and concomitant basal area
supplying the information on the regression.

The problem now is the estimate of volume on the 40-acre tract from
all the information at hand. According to the regression ecquation,
mean volume in M feet b.n. to the half-acre is

¥ =1.327+0.0801 (v —12.333)

where 2 is basal area in square feet. Now the mean basal area among
the 20 random sampling units is 13.853 square feet, and the variance of
this mean, not corrected for the finite population sampled, is 0.550. Upon
applying the correction,

V(13.853) =o.550<80“20

80
Upon putting the best estimate of the population mean of basal area,
13.853, for = in the equation,
Y =1.32740.0801(13.853 —12.333)
=1.3274-0.122
=1.449 M feet b.m.

The variance of this estimate may be calculated directly from the vari-
ance of ¥, that 1g,

V(¥)=V(a)+ (x“i)z[V(b)] +b2[V(w)]-

) =(.4125.

As given asbhove, the necessary contributing variances, corrected to the
finite populations, are the following:
V{x)=V(13.853)=0.4125
Via)=V(1.327) =0.003125
V(b)=V(0.0801)=0.000189

(z—1) =1.520.

and

Finally, then,

V' (1.449) =0.003125 - (1.520)2(0.000189) +- (0.0801)2(0.4125)
=0.0031250.000437 +-0.002647
=0,006209

on four degrees of freedom. The square root of this is 0.0788 in M feet
b.m. Hence mean volume with its standard error is
1.4494-0.0788 M feet b.n.

to the half-acre. By using the additional information on basal area the
cstimated mean volume has been changed from 1.327 to 1.449 M feet h.m.,
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while its standard error has been reduced from 0.1482—that is, from
1/0.021963—to 0.0788 M feet b.m.

Sinee ¢ on four degrees of freedom is 2.776 at the 5 percent level, then
with probability of 0.95, the mean volume is

1.449£0.219 M feet b.m.

to the half-acre. The estimate of the entire volume on the 40-acre tract
is therefore 80 times this quantity, or

115.94+17.5 M feet b.m.

8.8 TheUtility of Regression in Sampling. Ithasbeenshown
how the method of regression may be of service in estimating a popula-
tion mean. It does not follow, however, that it always adds to the
aceuracy of estimate. There is no gain in the estimate of mean y through
regression if it costs no more to measure y directly than it costs to measure
the independent variable, z; or if the variance of mean y for constant x
is not substantially less than the variance of mean ¥ when 2 does not
enter into its estimate.

The method of regression is of greatest utility, therefore, when the
character y, the mean or aggregate of which is needed to be estimated,
is difficult or expensive to measure directly, and where it is known that
y is correlated with a second charaeter, x, which, in turn, is relatively
inexpensive to measure.

These conditions hold not infrequently in problems of sampling a
forest or range. Foresters and range ecologists still need to rely largely
upon eye-estimates of timber or forage crop, preliminary to administra-
tive decisions pertaining thereto. In such cases the method of regression
may be particularly valuable for the purpose of adjusting an eye-estimate.
If on relatively few random sampling units the eye-estimate, 2, is taken
independently of the measured, y, the latter may be expressed in terms
of the former by the regression equation

Y =a+b(z—~3).

"Then if the mean of z is established by ocular estimate on the remaining
random sampling units, the precision of the estimate, ¥, may, indeed, be
purchased cheaply.

Furthermore, the method of regression may often be usefully com-
bined with the method of representative sampling, with an efficiency
which exceeds the contribution of either method alone. This feature
will be diseussed in Chapter XI.



CHAPTER IX

PURPOSIVE SELECTION IN SAMPLING

9.1 Exemption of the Independent Variable from the Re-
striction of Randomization. It wasshown inthe preceding chapter
that if one is required to estimate the population mean, or aggregate, of
a variable, say vy, which is diffieult—and conscquently expensive—to
measure directly, it may be more expedient to confine the double sam-
pling to 2 comparatively small sample of (y, ) and to gather the great
bulk of observations on an casily measurable variable, say x; thenee to
use the mean of z indireetly to estimate the corresponding mean of y,
provided that y can be expressed reliably in terms of x. The method
implies the regression of y on & and the statistics pertaining thereto.

The illustrations used involved the regression of volume b.m. {y) on
basal area () according to six half-acre sample plots, drawn independ-
ently and at random from the population of 80 half-acres.

Now it ig a pecessary condition that the estimate of the population
mean of a—with which the regression equation is entered—be based
upon one or more random samples of . But it is not at all necessary
that the basic data upon which the regression is built be drawn strictly at
random from the population of sampling units. In fact, certain ad-
vantages—both theoretical and practical—may often be gained by pur-
posive goleetion of these particular sampling units.

What is involved may, perhaps, be best brought out by considering
afresh what is sought in sampling work, from the regression equation.

When y is to be expressed in terms of z, it is required (1) that the
calculated value, ¥, be the best estimate obtainable, from the sample of
(y, x), of the mean of y for a given value of x; and (2) that the mean square
of the residuals—which has been symbolized s?..—be the best estimate
obtainable from the sample of (y, =) of the variance of ¥ when « is some
given value.

It is to be noted that an estimate of the general mean of either of the
associated populations is not required from the sample of (y, 2). It
follows, then, that one may choose at will the values of the independent
variable @, to which the sample of (y, z) is to be confined, provided the
observations taken on the associated y supply & random sample within
each value of « gelected. This provision is extremely important. The
regression value, ¥, corresponding to any z, eannot be expected to be an
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unbiased estimate of the population mean of y for this class of z, unless
the sample of y according to each class of z selected, has been drawn
independently and at random.

The practical consequences of this limitation is the common prefer-
cnece for mechanical selection whereby the regression sample is drawn
aceording to some prearranged, usnally geometrical, pattern which has
the virtue of assuring representativeness.

9.2 Effect on Pertinent Statistics. If each ghservation on the
dependent variable, ¢, has the same precision; and if it is known that ¥
varies directly with x, then the sampling variance of ¥, that is, of the
estimate of y corresponding to a particular x in the regression equation

Y=g+blz—3)
is, as in Sec. 8.5,

V(¥)=V(a) +(m—i)”[ V(b)] +b2[V(~’v)}-

The sampling variance of the equation constant, a, and of the regression
coefficient, b, in this expression are contained in the sample of (y, z)
upon which the regression equation is based. As given in Sec. 8.2,

V=t yey-— ke
n n
S [ (z—2) 2]

It was brought out in the preceding section that the purposive choice
of & does not affect the mean square of the residuals, s2.,. Consequently,
it does not affect the sampling variance of the constant, ¢; for this varies
inversely only with sample size, n.

On the other hand, the sampling variance of the regression coefficient,

b, decreases with increase in the range of r as well ag with increase in the
size of sample; for upon writing

V(b= Shs :*_,‘2,,-1 y
P

it is apparent, from the expression on the right, that the sampling vari-
ance of b varies inversely with the mean square, s%, of the sample of x.
The latter, in turn, increases approximately as the square of the range of z.

9.3 Experimental Verification. A two-variate population is
chosen from which observations on y and 2 may be drawn by means of
random sampling numbers. Let

2=10(sum of five random digits);
y=2z+(sum of five random digits).
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As the digits are

0,1,2,3,4,5,6,7,8 and 9,
one may observe sums of five random ones at will, for example, in Tip-
pett’s Random Sampling Numbers. The population mean of the sum of
five random digits (Seec. 1.3) is 22.5, and the population variance is 41.25;
while the range is from 0 to 45.

These definitions involve the following conditions:

(1) The independent variable, z, which is limited between 0 and 450,
occurs only according to the discrete values

0, 10, 20, ....440, and 450.
The population mean of 2 15225, and the population variance of x is 4125.

(2} The population mean of y in any given class of x-~which is
symbolized, u,. ,—may be expressed exactly in terms of z; that is,

Ly =22.542.
Thus the population value of the regression coefficient is unity.

(8) The true variance of y in each class of x is 41.25, and this is, of
course, the population value of the mean square of the residuals about
the regression.

The object, then, is to compare the observed regression coeflicients
with their true value, unity, and to note how the dispersion of individual
coefficients is affected by the purposive choice of z, within which random
observations on y are confined. To do this, two random observations
are drawn from each of two arrays of z; thus each regression coefficient is
based upon four observations.

Choosing for the first comparison

z =130, and =340
four sums of five digits are read from Tippett’s Random Sampling Num-
bers as follows:
33, 25, 18, 29.
Thus the two observed values of ¥ when © = 130, are
1304-33=163, and 130-4+25=155,
the average of which is 159.0.
The corresponding observations when z = 340, are
310+18=358. and 340429=2369,
with an average of 363.5. As the regression line must pass through the
mean y of these two z-arrays there are two observaticn equations,
a+b(130) =159.0
a+b(340) =363.5
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whence
o 363.5—150.0
T 340130

Altogether, ten regression coeflicients were calculated in the same way
for these two values of x, and they are shown graphically in Figure 21A.

In the second comparison, two observations were taken on g when
2=170; and two when £=300. Repeated in ten independent samplings,
the regression coefficients are presented in Figure 21B.

In the third comparison, two observations were taken on y when
=210, and when x=260. Ten regression coefficients resulting from as
many samplings are presented in Tigure 21C.

Finally, ten samples of four were drawn, each sample consisting of
one observation of y corresponding to each of four random values of z,
The ten regression cocfficients are plotted in Figure 21D.

All of the regression coefficients of Figure 21 show satisfactory clus-
tering around the true value of unity. The dispersion, however, of indi-
vidual cocflicients in the several groups, is evidently markedly influenced
by the range in the selected z, the gain in precision becoming particularly
effective as the range of sampled 2 is lengthened.

x={5%0 A

=0.974.

| X={57c‘)oo | B
NETH 1
X RANDOM D

u T

84 88 o2 96 100 104 198 Uz us
OBSERVED REGRESSION COEFFICIENTS

I'e. 21. Showing the effect of purposive choice in the independent variable
on the preecision of regression coefficients. The range of z is 210 in A,
130 in B, 50 in C; while in D the observed values of & are random.

9.4 Limitation to Purposive Selection. These experiments
show that under the conditions to which they apply, increase in precision
of the egtimate of the dependent variable, y, for given values of the in-
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dependent variable, 2, may be gained by confining the sample of (y, z)
to outlying values of . The gain, however, is at the sacrifice of other
information on both variables.

A completely random sample of the population (y, ) contains in-
formation on (1) the general mean of z; (2) the general mean of y; (3)
the variance of z; (4) the variance of y; (5) the regression of x on y; (6)
the variance of the a-residuals, that is, s%.,; (7) the regression of y on z;
and (8) the varlance of the y-residuals, that is, s...

By the purposive choice of = information is saerificed on the first six
of these items in order to gain preecision on the seventh—the regression of
yon 2. The eighth item, s2.., is not affected by the method of selecting .

As the object of sampling is to arrive at the general mean of the
dependent variable, ¥, the general mean of x is estimated from a new set
of one or more random samples of the population of x; and it is inserted
in the regression equation of y on . The operation supplies the esti-
mate of the general mean of 3.

There is no value to the regression of x on ¥, ag it is not pertinent to
the estimate of y.

As the purposively seleeted sample does not contain estimates of
either the population means or the population variances of the variables
concerned, purposive selection should be resorted to only when the
estimate of the regression equation of ¥ on a and of the variance of the
residuals (sj.) are all that are required of the sample of (y, ).

‘When practiced, it is not to be reecommended that only two values of
z be selected as was done in the preceding section; for it is not always
known with sufficient assurance that y varies directly with z. It is
usually preferable, therefore, to sample y according to each of several
classes of 2, and to plot the mean of 7 in each class of & on coordinate
paper before caleulating the regression equation. The true form of the
regression equation—straight line or curve—is best indicated when each
plotted mean of ¥ is based upon the same number of observations.

It should be kept in mind, of course, that with certain kinds of data,
the variation of y around the regression curve is not constant over all
values of 2. In these special cases the variation in y, as well as the
number of observations upon which the means are based, enter into the
weights of the plotted points.

The use of weights in regression will be treated in the following
chapter.



CHAPTER X

CONDITIONED REGRESSION AND THE USE OF WEIGHTS

10.1 The Sample Census of a Forest Nursery. This chap-
ter deals with aspects of the sample census of u forest-tree nursery as an
illustration of the use of regression in sampling when special conditions
are imposed by the nature of the data or by the choice of sampling design.

In certain districts the season for planting forest-tvee stock is rela-
tively short. If quantities of seedlings, of the order of hundreds of
thousands, are to be planted, the administrative planning of the planting
program becomes an exceedingly important part of the project. Precise
information on the seedling production of a forest nursery is required,
by species and grade of stock, prior to the time of commercial lifting of
the stock from the seedbeds.

A standard nursery seed bed is 4 feet wide and 50 or more feet long.
The common random sampling unit—which is also the ultimate unit—
is the strip, one foot wide by four long, extending across the width of
the bed.

The sample census of “plantable” seedlings consists of two operations,
ag follows:

(1) The establishment of the proportion plantable, based upon the
count of the number plantable, and of total number of seedlings, on
relatively few random sampling units. The sampling unit is lifted, and
a skilled inspector identifies the plantable seedlings according to specifi-
cations regarding root as well as shoot.  This operation is destructive
in part, and takes time; hence, it is comparatively expensive.

(2) An independent sample census of the entire number of seedlings
on a larger body of random sampling units. Care, but no degree of skill
is required, as the sampling units are not lifted. This operation is com-
paratively cheap.

The first of these operations has for purpose the establishment of
the regression of number of plantable seedlings, y, on entire number of
seedlings, z, of the sampling units. As it gives rise to a regression of con-
dition, and to observations of variable weights, it will be treated at once.

10.2 Conditioned Regression and the Weights Involved.
The number of plantable seedlings, ¥, is plotted in Figure 22, on total
number of seedlings, z, according to each of 54 sampling units, one from
each seed bed of l-year-old longleaf pine in a given nursery. If the
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plantable number varies directly with total number, the regression
equation of the form used heretofore, that is,

Y=a+blz~%)
is subjeet to a speeial condition; for it is certain that each y is limited in
the values it can take, between zero and corresponding #. Consequently,
when

x=0, ¥Y=0.
Upon putting this condition into the regression equation,
0=a+b(0—g),
whence,
a=bz
and the equation takes the simpler form
Y=bx.

The next question has to do with the weights to be assigned to the
observed coordinates of the sarmple (y, «) in Figure 22. Since an esti-
mate of the absolute numbers of plantable seedlings is required, the
regression equation should be made to satisfy the condition that the
sumn of the estimated values of ¥ be equal to the sum of the actual values;
that is, that

b 8x)= (),

for which, accordingly,
n
»o 5@
n
S(2)
But if each observed y be given unit weight, then the ensuing regression
coeflicient, b', is a proportionality factor such that

g [(y—- Y)ﬂ] = g[(y—b’x)z] ig minimum.

Upon differentiating this sum of squares of residuals with réspect to ',
and equating to zero,

2 g[(y—-b’w)(—-w)] ==} g(:cﬂ) - g(wy)
whence
b §(wy)_
S(z?)
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Fra, 22. The relation of number of plantable seedings (y) to the entire
number of seedings (z) on 54 selected sampling units of nursery seed bed.
The 45-degree line expresses the upper limit of plantable seedlings,

This does not satisly the condition imposed, for
n n
b’ S(z)y= S(y)
but its result is, rather, that
n n
b 8{z®) = S(zy).
On the other hand, if each observed y he given a weight of —-:;— —pro-

vided  # O0—the regression coefficient, b, is a proportionality factor
such that
n

1, ol g g
S -~x~(’y——1"J2 =8 TL;(;L/—Zm:)‘a is minimum,

1¢ The symbol 3£ is read ‘‘is not equal to.”
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Upon differentiating this sum of weighted squares of residuals with
respect to b, and equating to zero,

o3 s o-s3(2)-3(2)
g(a:)

which is the needed regression coefficient, for it satisfies the condition

and

b g(m) = g(y).

If the outeome of the above discussion be compared with that of Sec.
7.4, it will be recognized at once that the regression coefficient, b, is
nothing more than the weighted mean number of plantable trees, per
tree of total production. Indeed, the problem of sampling irregular
blocks might have been treated from the viewpoint of regression.

In the present case, however, the notion of regression is fundamental
to the extension of the problem of sampling plantable trees when the
proportion plantable is not constant (See. 10.4).

The sampling variance of b is derived from the sum of the weighted
squares of residuals,

n

SL%@—bmﬂ==g(%w)+m§@o~2b§w»

This may be somewhat shortened for purposes of numerical ealeulation
Since, according $o the definivion of the regression coefficient, b,

b8@)= @),

the above is conveniently expressed as follows:
n 1 n 1 n
S ?(y—-b:v)2 = S(?gf)—b? S(x).

This identity may be put up in analysis of variance form as in Table
34. The degrees of freedom for the total of the weighted squares of ¥
around zero, are .  As the regression coefficient, b, has used one degree
of freedom, the weighted squares of residuals rest upon the remaining
{n—1) degrees of freedom.
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Tapue 34. Division of the Sum of Weighted Squaves of y into Portions Due
to, and Independent of, &, with Degrees of Freedom and Mean Squares

Degrees of
Due to Sum of squares | freedom Mean square

n T n

Regression on z. . b2 S(z) 1 8 8(z) +e§ S(z)

. o . n

Residuals........ ] ;(y«-bz) n~1 s2.. (of unit weight) — ¢} S(z)
n 1

Total. .......... S-:;y'* n

The last column on the right shows pertinent mean squares quite
analogous to the unweighted mean squares discussed in connection with
Table 31. Accordingly, the mean square of the residuals of unit weight,
as given in Table 34, contains the sampling variance of the regression co-
efficient; hence . i .

V() = :_Ui (of unit weight).
S(z)

These results will next be applied to the nursery census.

10.3 Application to the Forest Nursery Sample Census.
The data of Figure 22 are given in Table 35. With regard to the in-
dependent variable, z, they were not taken at random. A sampling
unit, 1 x 4 feet, extending across the bed, was lifted from each bed at a
place, designated by the inspeetor, who immediately counted the entire
number of secdlings, and—upon examination of root and shoot—the
number of these he judged plantable. The arbitrary choice of situation
of each sampling unit was adopted in an effort to have approximately
equal representation of sampling units according to classes of total pro-
duction, z. The resulting sample of 54 paihs is called the “Sample of
Plantables.”

Conecurrently, two random sampling units, of the same size, drawn by
means of a random sampling device, were examined on each of the 54
beds. As the beds were 100 feet long, these samples make up 2 percent of
the entire population of random sampling units. In this part of the job,
the population of total production alone was sampled, and the random
sampling units were not lifted. This set of 54 samples of two random
sampling units each, is called the “Samples of Density.”
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The analysis of variance of the samples of density is given in Table 36.

All the materialg are now available for the estimate of the production
of the 54 sced beds in total population of seedlings, as well as in the
population of plantable seedlings.

Tastw 35. Total Number of Seedlings (x), and the Number of These Con-
sidered Plantable (y), on Sampling Units of Four Square Feet, Taken
One from Bach of 54 Sced Beds of Longleaf Pine

z j z Y z ¥ b Y z ] 2 y

21 14 32 27 38 36 45 40 53 39 60 51
24 21 32 31 39 32 45 41 53 40 61 38
27 19 33 27 40 26 45 42 53 47 61 44
27 22 33 30 41 25 46 30 54 38 61 50
27 24 34 31 41 35 46 30 54 50 62 31
25 22 35 19 41 37 46 34 Hd 50 62 47
29 26 35 29 42 39 47 45 55 45 64 54
31 29 36 34 43 37 48 40 55 48 74 61
32 24 33 26 44 36 51 38 58 48 77 75

hd

54 b4 1
8(x) =2,413; S(y)=1,954; S| 5w )=161324

TasLk 36. Analysis of Varviance of the Samples of Densify*

Source of variation Degrees of freedom | Sum of squares | Mean square

Among beds. . ........... 53 11,534.75

Between random sampling
units (same bed). .. ..., 54 6,260.50 115.94

Total, among random
sampling units. . ...... 107 17,795.25

*Total number of seedlings over all 108 random sampling units, 4,527.

Turning firet to the samples of density, one finds the ohserved number
of all seedlings on the 108 random sampling units is 4,527, as given at the
bottom of Table 36. The sampling variance of this number is 108 times
the sampling variance of the random sampling units within the beds,
that is,

V(4,527) =108(115.94) = 12,522,
the standard error being the square root, of this, or 112,  Asthe observed
random sampling units are but 2 pereent of the entire area of the 54 seed
beds, the sum, and its standard error, should be multiplied by 50, that is,

by ( 1—30—) The correction for the finite population within the beds—



CoNDITIONED REGRESSION 147

that is, Jiol%;?' —is negligible, and is not applied. The best estimate,
then, of the population of all seedlings is
50(4,527 +112) =226.4 -+ 5.60 M scedlings.
The estimate of the number of plantable seedlings is to be derived

from the regression of plantable number, y, on entire number, . From
the totals of Table 35, the regression coeflicient is

n
= 5@ _195% _; g8

b 2413

7
S(z)
whence
Y =0.8058z2.

The division of the sum of weighted squares of y into portions due to,
and independent of, z, is given in Table 37. The mean square of the
weighted residuals is the variance of unit weight, and therefore

TapLs 37. Analysis of Regression of Plantable Seedlings on Total Seedlings

Due to Sum of squares Degrees of freedom | Mean square
54
Regression. .. .. bt 8(x) =1,582.31 1
4] 4
Residuals...... S —E(y—bm)ﬂ = 30.93 53 0.5836
ad/ g
Total.........| 8 jo—yﬁ =1,613.24 54

2., (of unit weight) =0.5836
on 53 degrees of freedom. Then the sampling variance of the regression
coefficient, b, which was given in the preceding seetion as

V() = 2?,., (of unit weight)
S)

0.5836
7 (0.8098) = 2413 =0.000242.
The number of plantable seedlings corresponding to the observed
total number of the density samples is
Y =0.8098(4527)
=3,666 plantable seedlings.

&

18
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Sinece this estimate is the product of two numbers, each of which is
subject independently to sampling error, its sampling variance is the
sampling variance of ¥. Hence

108 108 108 ]* 108 )]
V[ S (Y)}=V[b S (:v)}=[ S (a;)] [V(b)}%—bﬂ[vg S (a:)H

and
V(3,666) = (4,527)2(0.000242) + (0.8008)2(12,522)

=13,171
its standard error being the square root of this, or 115.  As before, this
estimate is based upon 2 percent of the entire arca of the 54 seed beds.
Accordingly, the estimate of the population of plantable seedlings is
50(3,666 £ 115) =183.3+5.76 M seedlings.

Had the correction factor on account of the finite population of ran-
dom sampling units within the beds becn applied, the standard error of
5.75 M seedlings would have been multiplied by the factor

100-2
100
an adjustment of less than 1 percent. This appears entirely negligible.

10.4 The Introduction of a Second Independent Variable.
It was pointed out in See. 10.2 that the regression coefficient which
expresses the number of plantable seedlings in terms of the entire number
of scedlings is merely the weighted mean number of plantable seedlings
per tree of total production; and that the notion of regression is not
essential when the proportion plantable is constant, that is, when it is
independent of the entire number on the sampling units.

It is common nursery experience, however, that the proportion of
plantable seedlings falls off as seedling density becomes excessive. In
such cases, the regression of the number plantable, y, on the entire
number, ¢, is not a straight line.

Tigure 23 shows the coordinates of 23 sampling units of slash pine.
They do not represent a random sample of z.  Effort was made to collect
an approximately equal number of sampling units aecording to class of z,
so that any nonlinearity which might characterize the truc relationship
of y to z, would be emphasized. The broken line is the representation of

the regression line,
¥Y=0.7694x
for which

=50
0.7694=D =g s
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T1g. 23. The relation of number of plantable seedings () to the entire
number of seedlings (2) on 23 selected sampling units of nursery seed
bed. The broken line represents the best fit on the supposition
that the proportion plantable is independent
of the entire number.

By comparison with the plotted points upon which it is based, it
seems too low for low density and too high for high density. 1t is to be
expected, therefore, that a better estimate should be obtained were a
regression curve of the form

Y =biz+bex?

fitted to the data, subject to the conditions used previously; namely,
that the sum of the estimated plantables be identical with the sum of the
pbserved plantables upon which the regression is founded; hence that

by S(@) -+ 8 = (1) = S(p)-

This condition will be fulfilled, if b, and b; are so chosen that the sum of
the weighted squares of residuals

»1 .
S 76-(_7;—-Y)2 is minimum.
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This is equivalent to making

n

S [715‘(21 —bir— bnxz)z} 2 minimum,

Upon differentiating this expression with respeet to each of the un-
knowns, b, and b, in turn and equating to zero—following the process
as explained in Sec. 10.4(A) of the Appendix—there are the two normal
equations,

7 b3 n
by S(2)+-b2 S(x%) = S(y)
by g(:ﬁ)—}—bz g(gﬁ) = g(ly)

The simultaneous solution of these equations affords the regression co-
efficients.

The division of the sum of weighted squares of y into portions due to
and independent of the regression on z, is effected by expanding the sum
of weighted squares of residuals. For, as developed in Sec. 10.4(B) of
the Appendix,

n 1 T 1 n )
S[;(y—-blx—bzmﬂy] = 8(4%) =t Sw) —ta SCay).
It is convenient, for purposes of computation, to put this identity in
analysis of variance form, as in Table 38. It is to be noted that the sum
of weighted squares of residuals is based upon (n—2) degrees of freedom
among the n observations of (y, ) as one degree of freedom is used in the
estimate of each regression coeflicient.

TasLe 38. Division of Sum of Weighted Squares of y inlo Portions Due to,
and Independent of, the Regression on z, when the Regression Takes
the Yorm ¥ =b,a + b,a?

HSource of variation Sum of squares Degrees of freedom
n n
Regressionon zand 2. .. ......... b8 (y) +baS(xy) 2
. . %1
Residuals independent of z and 22...} 8 = (g = b1z — baz?)? n—2
T 1
Total.................0. e S-m—y2 n
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TarLe 39. Total Number of Secedlings in Hundreds (), and the Number of
These (also in Hundreds) Considered Plantable (y), on Sampling Units of
Four Square Feet, Taken One from Each of 23 Seed Beds of Slash Pine

z Y x Yy z Y T Yy
1.55 1.37 2.55 2.28 2.84 1.81 3.36 2.79
1.80 1.62 2.55 2.15 3.08 2.11 3.40 2.30
1.96 1.73 2.58 2.38 3.20 2.58 3.47 2.82
2.21 1.67 2.64 2.25 3.21 2.44 3.64 2.04
2.24 1.62 2.67 2.16 3.27 2,50 3.95 2.46
2.36 1.85 2.68 2.05 3.34 2.66

The result of the above discussion will next be applied to the ob-
servations presented in Figure 23. These are listed in Table 39. Upon
performing the operations on these observations which lead to quantities
to be substituted in the normal equations,

23 23

S(z) = 64.52; S(y) = 49.64;
23 23

S{x?) =189.4010; S(zy) =143.6000;

23
S(a¥) =577.5079.

The normal equations, then, are the following:
64.52005,--189.40100,= 49.6400
189.40108,4-577.50795h, = 143.6000
whence
by = —0.,09855.

The regression equation of the number of plantable seedlings on the
entire number on the sampling units is

Y =1.05872z—0.0985522,

and this is the eurve of Figure 23.

The results of calculations leading to the mean square of the residuals
——that is, the variance of y of unit weight—are given in Table 40. The
bottom three lines are the numerical equivalents corresponding to Table
38. The sum of weighted squares of y, without any regard to the in-
dependent, variables, is

g
S(;gﬂ) =38.7771;
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while the portion of this which is due to x and 2?, is

n n
by S(y)+ba S(zxy) = 1.0587(49.64) —0.09855(143.60)
=38.4021.

The sumn of the weighted squares of residuals, therefore, is

n

S[%(y—blwbgmﬂ)?} 38,7771 ~38.4021

=0.3750

on 21 degrees of freedom. The variance of the residuals (of unit weight)
is 0.01786. These values are given in Table 40.

TapLe 40. Analysis of Regression of Plantable Seedlings on Total Seedlings;
and Test of Curvilinearity of Regression

Due to Degrees of freedom | Sum of squares | Mean square
Regression on  alone. . .., 1 38.1917
Additonal effect of z2. .. .. 1 0.2104 0.2104*
Regression on = and at. ... 2 38.4021
Residuals................ 21 0.3750 0.01786™ =355.1
Total................... 23 38.7771
0.2104

* =4[ = 3.43; expet 1 per 33,

Observed ¢ 0.01756 3.43; expected ¢ at 1 percent level, 2.83

The question might logically be raised: Is the difference between the
curve and the straight line as fitted to these data—both of which are
presented in Figure 23—a significant difference? TIn other words, is the
contribution of the second independent variable, z?, real, and not merely
an accident of sampling? The test will be performed at once.

If the reiationship were adequately deseribed by the straight line, the
regression equation—the broken line of Figure 23—would be of the form

Y=bx
where
_ §_(1£ _ 40.64
b= Sx) 6450 =076%

and the sum of squares due to = alone would be

s US| _wse
B 8@="g5 = 5im
S(z)

=38.1917
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on one degree of freedom. These values are listed in the top hne of
Table 40. Trom the same table, the sum of squares

Due to z and 2?=38.4021 on 2 degrees of freedom

Due to z alone =38.1917 on 1 degree of freedom.

Consequently, the contribution of 22, over and above that ascribable to
alone, is the difference, that is,

Due to 22=0.2104 on 1 degree of freedom,

and this is listed in the second line of the table. Were this merely a
chance contribution, its value, in the average, should be the same as the
mean square of the residuals, 0.01786. In fact, however, the diserepancy
is such that
0.2104
0.01786

on 21 degrees of freedom. Referring to the table of ¢, one notes that,
due to sampling only, ¢ should exceed 2.831 on 21 degrees of freedom,
only onge in 100 trials. The observed ¢ of 3.43 is therefore highly signifi-
cant, and the contribution of 2?2 is unquestionably real. The hest
expression, then, for the number of plantable seedlings in terms of the
entire number is

=343

Y =1.0587x—0.09855z2,

and this will be applied to the independent estimate of z and 22 of the 23
seed beds.

10.5 The Variance of the Conditioned Regression Curve
and Its Application. The application of the regression involves the
variance of the ealeulated Y. Developments leading to V(¥) are some-
what lengthy to give here; hence, they are presented in See. 10.5 of the
Appendix. There it is demonstrated—Sec. 10.5(D)—that the variance
of ¥ is made up of contributions from two sources, one of which, sym-
bolized as s?R, is ascribable to the sampling errors of the regression
equation itself, while the second, symbolized as S% is ascribable to the
sampling errors of the values of the independent variables inserted into
the equation, Thus in the regression equation of the preceding section,
of the form

Y =bha+ba?
we have
V(¥Y)=8R+5
in which §* is the mean squave of the residuals (of unit weight) inde-
pendent of the regression; and in which

) R= 0112':2 + 022(332)2 +2012(m:n2)
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also, in which
St = b’%[V(w)] +b§[ V(xz)} +2b1b2[00v(m2)].

If the variance of the residuals of unit weight be symbolized as &2,
then it is shown in Sec. 10.5(C) of the Appendix that the estimates of the
variances and covariance of the regression coefficients b; and by may be
stated

V(bl) = 82011; V(bz) = 82022; CO‘D(blbz) = 82012.
The derivation of the c-multipliers, ¢y, cx, and ¢, is given in Sec. 10.5(B)
of the Appendix. Their numerical equivalents are computed from the
sums of squares and products among the independent variables only,
In the case of the data of the preceding section, they are to be evaluated
from the following two sets of expressions:

n n
Cu S(’B) "I-Cm S(!E2) =1

T n
en S@®) +en 8(2%) =0
and

n n
¢ya B(x) +can S(z2) =0

n n
Ci2 S(’BQ) +L‘22 S(wa) =1.
Turning, now, to the numerical work, the ec-multipliers ¢y and ¢;e are
given by
64-5200011+ 1894:010012 =]
189.4010¢1,+577.5079¢1, =0
whence
, Cn=0.4c].6051, Cin= —‘0.13644:9;
and upon calculating ¢i; (as a check) and ¢ from the expressions
64.5200¢15+189.4010¢, =0
189.4010¢324-577.5079¢ =1
the results are,
cin=—0.136449;  ¢»=0.046482,

If the values of = (and z*) which are inserted into the regression
equation
Y=b1:v+b2rc9
are free of error, then 8?=0, and

V({¥)=shk= 52':0115132‘}'022 ()24 2c50(za?)
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the square root of which is the standard error of the regression function.
This has been done for a number of values of  in the regression equation

Y =1.05872—0.0985522

The 95 percent confidence band, which has been derived therefrom, is
presented in Figure 24.
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Fig, 24. The regression eurve of plantable seedlings on the entive number,
and the 95 percent confidence band.

The regression cquation is to be applied to the independent samples
of deusity taken on the 23 sced beds. Two random sampling unit ob-
servations of density were taken on each of the heds, of number of seed-
lings (x), and of the square of this number (z?). These are listed in
columns 2-5 of Table 41. Subseripts 1 and 2 refer to the first and seeond
random sampling unit, respectively, of each bed.

Calculations leading to the estimates of the variances and covariance
of the sample sums arc also shown in the table. 1f one denotes the
individual sums of = as X, and of 2* as X,, the sample sums over all
beds, which are 2 percent of the estimates of the population aggregates,
are the following:

23
S(X)= 5820 < 57.82 =116.02
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23
8(X2) =159.7296-155.1162 = 314.8458.

Upon substituting these for = and »? of the regression equation, one

obtains
Y = 1.0587(116.02) —0.09855(314.8458)

=01.802

in hundreds of plantable seedlings. The variance of this estimate may
now be calculated readily, From the values of the c-multipliers, given
above and from s* = 0.01786 from Table 40.

s?R=0.01786 [0.416051(116.02)2+0.046482 (814.8458)*

+2(—0.136449)(116.02) (314.8458) ]
= 4,276,

TasLe 41. Samples of Density ; Number of Seedlings («), and their Squares
(x), onn Bach of Two Random Sampling Units to the Seed Bed.
And Caleulation of Variances and Covarianee Within Beds

Random sampling units of
Bed Cov.
num- ] z* V(X)) | (X1Xy) V(X
ber
A . (2r-ty).
mo | i o (g (2T23) |22 | (afad) | @hed)?

1... 2.42 3.03| 5.8564| 9.1809 -0.61|-3,3245| 0.3721] 2.0279| 11.0523

2..... 1.83| 2.57) 1,7689 6.6049 -1.24(-4,8360| 1.5376| 5.9966] 23.3869

3... 2.12( 1.43| 4.4944| 2.0449| 0.69| 2.4495| 0.4761| 1.6902| 6.0001

4... 2.04| 1.62| 4,1616| 2.6244| 0.42] 1.5372| 0.1764| 0.6456( 2.3630

5... 3.06| 1,97| 9.3636] 3.8800| 1.00| 5.4827| 1.1881 §.9761| 30.0600

6... 1.23] 1.72| 1.5129| 2.9584| -0.49|-1.4455| 0.2401| 0.7083| 2.0895

7.. 2.32| 1.47| 5.3824] 2.1609| 0.85| 3.2215( 0.7225 2.7383; 10.3781

8... 2.88| 2.33| 8.2044) b5.4289| 0.55| 2.8655( 0.3025 1,5760] 8.2111

9. 3.62| 3.91| 13.1044) 15.2881| ~0.29|-2,1837( 0.0841| 0.6333] 4.7685
10.....] 1.76| 3.25 3.0976| 10.5625| -1.49/-7.4649| 2.2201| 11.1227| 55.7247
11 .| 4.07] 8,43| 16,5649| 11.7649| 0.64| 4.8000| 0.4096 3.0720( 23.0400
12 | 1.63| 2.94) 2.6569| 8,6436| ~1.31|-5.9867| 1.7161| 7.8426( 35.8406
13 .| 2.87| 2.48| 8.2369| 6.1504| 0.39| 2.0865| 0.1521 0.8137| 4.3535
14 .| 8.56( 2.31) 12.6736| 5.3361| 1.25] 7.3375| 1.65625| 9.1719| 53.8389
15..,.. 2.49| 2.62] 6.2001| 6.8644) -0.13(-0.6643| 0.0169| 0.0864| 0.4413
16..... 2.22( 1.85| 4.9284| 3.4225 0.37| 1.5059| 0.1369| 0.5572 2.2077
17..... 2.48! 2.62| 6.1504{ 6.8G44| -0.14;-0.7140{ 0.0196) (.1000| 0.5098
18..... 2.69| 3.24| 7.2361| 10.4976| -0.55-3.2615( 0.30256| 1,7938| 10,6374
19..... 3.42| 2.33| 11.6964 5.4289| 1.09| 6.2675( 1.1881| 6.8316] 30.2816
20..... 3.21 2.67| 10,3041 7.1289 0.54| 3.1752| 0.2916 1.7146| 10.0819
21...., 1.68] 3.33| 2,8224[ 11.0889| —-1.65-8.2665( 2.7225| 13.6397| 68.3350
22..... 2.88| 2.62| 8.2044| 6.8644| 0.26| 1.4300| 0.0676| 0.3718| 2.0449
28..... 2,22| 2.08| 4.9284| 4.3264| 0.14| 0.6020] 0.0196] 0.0843| 0.3624
Totals . |58.20(67.82(159.7296(155.1162| 0.38| 4.6134(15.9252| 79.1046)405.0692
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From Table 41,

23 23
VI S(Xy) [=156.9252; V| S(X,) |=405.0692;

23

neglecting the trivial adjustment to the finitc seed bed populations, since
the samples contain only 2 percent thereof.  The numerieal equivalent
of St is, therefore,

2= (1.0587)2(15.9252) -+ (— 0.09855)2(405.0692)

-+-2(1.0587) (—0.09855)(79.1946)
=5.258

Upon combining the two contributions one has
V' (91.802) =4.276--5.258
=0.534
on the 21 degrees of freedom upon which the estimate s*=0.01786 has
been based. The standard error is the square root of this variance, or
3.088. Hence, the population estimate of the number of plantable seed-
lings in the 23 seed beds is

50(91.802 +-3.088) =4,590+ 154

plantable seedlings in hundreds. With the 21 degrees of freedom avail-
able, t=2.080 at the 5 percent level; hence, the probability is 0.95 that
the population aggregate consists of
4,500 +320
in hundreds; or
459432

in thousands of plantable seedlings.

10.6 Certain Remarks Concerning Regression in Sam-
pling. It should be pointed out that the data from which the regression
equations of this chapter were derived, were taken in such a way that
the effect of variation among the blocks (beds) could not be climinated
from the regressions; for only a single sampling unit, out of the numbers
upon which the regressions were based, was taken from each bed. Hence
the sums of weighted squares of plantable seedlings contained, in cach
case, a portion due to variation among the beds.

This portion, the numerical equivalent of which is unknown, was,
nevertheless, believed to be negligibly small in each of the nursery prob-
lems cited. It would have been eliminated from the sampling error had
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it been feasible to dig up and inspect a minimum of two sampling units
to the bed rather than the single one as actually inspected. Such an
expanded program, however, would have at leagt doubled the inspection
labor. Under the circumstances, any additonal gain in precision ex-
peeted thereby was considered more costly than warranted.

The next chapter treats of the problem of eliminating variation
among blocks from the regression equation.



CHAPTER XI

REGRESSION IN REPRESENTATIVE SAMPLING

11.1 The Problem. The present chapter deals with a timber
cruise for which the sampling was so designed that the effect of variation
among the blocks is removable from the regression equation; and the
latter then is used to adjust the ocular estimate of timber volume.

A quarter-section of pine-hardwood timber is divided into eight
blocks of 20 acres each, the block dimensions being 10 x20 chains. In
each block, two cruise strips, each 1 x 20 chains over the length of its
block, have been selected, independently and at random, from among
the 10 in the block area, and the ocular estimate of hardwood volume
confined to these. Separate record, however, was kept aceording to cach
guarter-strip, or subplot of 1 x 5 chains, within the sample strips. The
results of this eruise are listed in the left half of Table 42, each entry
being the whole-strip sum. Tigure 25 shows the distribution of the
strips over the blocks.

Upon the completion of the ocular estimates,one of the quarter-strips
(1 x 5 chains) of each sample strip was re-run and the hardwood volume
thereon measured carefully. Thus the volume of two quarter-strips of
each block is represented by a direct meagurement (y) and a coneomitant
ocular estimate (z). Their locations are also shown in TFigure 25, while
the right-half of Table 42 contains the observations.

The problem is to ealculate from the data submitted, the best esti-
mate of the hardwood volume in M feet b.m. together with an evaluation
of its probable accuracy.

I'rom a practical standpoint, a simpler sampling design might, indeed,
have proven just as efficient. Had the volumes over the entire lengths
of the two strips of each block been carefully measured, there need have
been no ocular estimate; hence no adjustments by regression. And
while the entire field time might have doubled, the job is a relatively
small one and the difference in field time perhaps of little consequence.

The principle of the example, however, is useful in practice. If, for
instance, a large tract of timber has been cruiged by a group of inex-
perienced men (such as student assistants), the chief of party, or perhaps
an independent cheek cruiser, may need to re-run s sample of the cruised
strips in order to determine the accuracy of the work. If necessary, a
correction factor may be evaluated so as to eliminate such part of the
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Tasrs 42, Ocular Estimate of Hardwood Volume in M feet ham. on Two

Random Strips in Each of Eight Blocks; and Coneemitant Observations of

Hardwood Volume in M feet b.m. Aeeording to Dirveet Measurement (y), and
Ocular Bstimate (z), on Two Seleeted Quarter-Strips of the Bloek

On whole strips On quarter-strips
Block QOcular Direct .
QOcular estimate estimate Measurement
% v

i 19.10 5.02 4.63
16,50 4.03 3.82
- 8.74 1.45 1.63
5.12 0.83 0,60
S 21.22 5.37 4.36
12.56 2.67 3.38
4o 6.88 1.99 1.67
7.51 1.63 1.58
> S 16.56 3.60 3.49
19.93 4.52 4.07
6., o 6.22 1.01 0.97
0.96 0.00 0.00
A 9.60 2.41 2.00
13.42 3.67 3.55
< T 8.06 1.39 2.38
9.40 2.52 2.33
Sam. ............. 181.78 42.11 40.46

Mean............. 11.361 ©2.632 2.529

variation as might be ageribed to the idiosynecrasies of the different
cruisers. :

Or, again, suppose & large number of woodlots have been hastily
examined by a fairly reliable cruiser. His estimate of the aggregate
volumes may be adjusted to measured volumes, from which the variation
between neighboring groups of woodlots have heen eliminated; provided
only that o small pereentage of the area of the woodlots within each
group is revisited, and the timber thereon accurately measured.

Whenever a population to be sampled is subdivided into blocks, vari-
ation between blocks can be eliminated from the regression analyses by
a procedure known as the analysis of covariance. This procedure is
discussed in the next section.



REGRESSION IN REPRESENTATIVE SAMPLING 161

z 6 8

2
N
)

/7 NSNS

SN AN

SINN NN

S ANV

N
N
N
”
/]
L
l

NMANNZFPFANNNNN
AN\ /7 7 A

4 J I 7

Fig. 25. Diagram of a sampling desigp of ecight 20-acre blocks, each with
two random sampling units of whole-strips upon which ocular
estimates of timber volume have been made. On the shaded
quarter of each strip, volume has also been measured.

11.2 The Analysis of Covariance. The covariance of two vari-
ables, say » and y, has been used in earlier chapters (e.g., Sees. 5.2 and
8.2). Tiis derived from the sum of products of paired residuals. Thus
the sum of products

§[<z-—:-c>(y-z7>]

when divided by the number of degrees of freedom involved, is an esti-
mate of the eovariance of = and y.
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If a sample of n values of y and of concomitant z is drawn from each
of % strata, or blocks, of a general 2-variate population, the deviations
of each from its general mean, § (or Z), may be analyzed into a portion
due to the stratification, and a remaining portion independent of the
stratification. Thus

) =(y—yb)+(yb—z7)§
(2~2) = (@—a0)+ (@2—2)
in which y, and @ represent the block means. The sum of squares of

each of these over all kn observations are the identities used in the
analysis of variance of each variable. As developed in Sec. 6.4, it follows

that
kEn En k
SS[(y-—g)z] =8 S[(ywyb)zl "!‘NS[(yb—g)z] ]

i ST )
kn En k
SS[(Q:—~:Z)2] =8 S[(a:——wb)zl —}—nS[(a::;*:E)"J J

If, however, equations (1) are multiplied together and summed over all
kn values,

n 1]

En k n
8 S[(y—ﬁ)(w—i)] =8 S[(y—yb)(m—wb)]-l- S[(yb—ﬂ) S(m—wb)]

k n k
+S[(xb—a‘:)8(y——yb)l -i-nS[(yb“Z?)(xb*iE)w-
But since h ]

n n
S@—z3) = Sy—ys) =0,
the second and third terms of the right-hand member are zero; hence

kn En k
S S[(y—@) (fc-i)] =8 S[(y—-yb)(x~xb)]+nS[(yb—@7)(a:b-—:E)] - (3).

The sum of products of = and y, then, like the sum of squares of each,
may be divided into two portions, as follows:

(1) A portion independent of the stratification; that is, the first term
of the right-hand member of equations (2) and (3).

(2) A remaining portion due to the stratification.

Equations (2) and (3) may be econveniently assembled ag in Table 43.
Inspection of the table makes evident that there must be a minimum of
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two sampling units to the block in order to permit the division illus-
trated. Tor if n = 1, the first and third lines of each column would he
numerically identical, and the middle line would become zero.

TasLe 43. Division of Sum of Squares of Hach of Two Correlated Varviables,
and of Their Sum of Products, into Portions Due to, and
Independent of, Stratification

Degrees Sum of squares
Source of of Sum of products
variation freedom z° y? 2y
1B 7 k[ =l
Among blocks. k-1 nSL(:cb—;E)2 n SL(u;,—]j)2 n SL(m1,~:E)(yb»—37)

Eal knl
Within blocks.| k(n—1) |88 (x-—-zb)2‘| S SL(ymyb){I 88 (:a-—a:a)(y-y{)"

Enl kEn kool
Total......... kn—1 |8 8| (x—2)* 88| (w—p)* S 8| (z—-&)y—i)

Buch was the case in the regressions of the nursery problems of the
preceding chapter.

But when variation can be eliminated from the sum of squares of
both variables, and from the sum of their cross-products, it can also be
eliminated from the regression equation of ¥ on z, by the simple deviee
of caleulating the regression from those portions which have been freed
from block effects.

11.3 The Adjusted Estimate and Its Variance. It is to be
expected, of course, that the measured quarter-strip volume of Table 42
varies directly with corresponding ccular estimate ; hence, the regression
of ¥ on % is of the form

Y=a4+b(z—%)
where ¢ and £ are, respectively, the general means of ¥ and z. Their
- numerical equivalents, from the data of Table 42, are the following:

a=g= ‘3‘91'%9 ~2.520 M feet b.m.
:E=421'é1=2.632 M feet b.m.

If these be substituted into the general regression equation, we have
Y =2.529+4b(x—2.632)
and the regression coefficient alone is needed in order to complete it.



164 SampriNg Meraops IN IPORESTRY AND RANGE MANAGEMENT

The sums of squares and products of the quarter-strip data are listed
in Table 44, Confining the calculations to those portions which have
been freed from block effects, one obtains the weighted average regres-
sion coefficient of y on z, that is

and the sum of squares due to the regression is

Tapri 44. Division of Sums of Squares, and Sum of Products, of the
Quarter-Strip Data of Table 42, into Portions Due fo,
and Independent of, the Bloeks

Sum of squares Sum of
Source of Degrees of products
variation freedom e z* ay
Among blocks. . . 7 26.6501 31.19007 28,5535
Within bloeks. . . 8 3.1839 6.7575 3.7644
Total........... 15 29.8340 37.9572 32.3179
(3.7644)%
e =2.097
6.7575 ~ 20970,

the analysis of the regression being completed in Table 45. The cquation,
then, is the following:

Y =2.52940.5571 (x—2.632)

in which ¥ is volume in M feet b.m. to the quarter-strip.

The ocular estimate may now be adjusted by inserting the general
mean of the whole-strip volumes for x, though we need to express the
latter in the quarter-strip unit of area so as to be consistent with the avea
unit of the regression equation. From Table 42 this value is

181.78
4(16)

to the quarter-strip. Hence the best estimate of the hardwood volume 7,
of the tract from the data submitted is
Y =2.529-+0.5571(2.840 — 2.632)
=2.645 M feet b.m.

to the quarter-strip, or half-acre of area.

The sampling variance of this estimate follows at once. It was
shown in Sec. 8.7 that if

=2.840 M feet b.m.

Y=a4b(x—3)
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the sampling variance of ¥ may be expressed

V()= Tf'(a)-{-(;v-—m")i[V(b)} —!—b”[V(a;)l.

TABRLE 45. Division of Sum of Squares of Measured Volume within the
Blocks into Portions Due to, and Independent of,

Ocular Iistimate off Volume

Source of variation Degrees of freedom Sum of squares
Regression. .. .............coon... N 1 2.0970
Residuals. ......... . ...l 7 1.08069
Within bloeks. . ............. .. 8 3.1839

The variance of @ may be estimated from the data of Table 45; that is,

1.0869

Via) =V({@) =F77-=0.009704

7(16)

while for the variance of b, which in See. 8.2 was expressed

V() =t Sizs T
S[(mﬂi)‘ﬂ

the sum of squares of 2 is taken from Table 44, and the mean square of
the residuals independent of x, from Table 45. Accordingly,

1.0869
V) = 557575 = 0022978,

It should be noted that V(a) and V(b) might be corrected to the
finite block populations sampled. But as only two quarter-strips, out of
a total of 40 within each block, constitute the regression data, the cor-

rection factor, (2%), has not been applied.

s  The variance of the general mean of the whole-strip volumes is taken
* from the analysis of variance of these ocular estimates, presented in
Table 46. But as it is to be expressed on the quarter-strip basis, the
variance of the general mean of the whole-strips is to be divided by the

square of 4. Therefore

V(2.840) = 9.4168(10 -2

16(45\ 10

> =0.029428

to the quarter-strip, and corrected for the finite population of 10 strips

to the block,
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TasLE 46. Analysis of Varianee of Ocular Estimate of the Whole-Strip
Volume of Tahle 42

Source of variation Degrees of freedom | Sum of squares | Mean square
Among blocks............ 7 447 .4843 63.9263
Between strips, same block. 8 75.3347 9.4168
Total, among strips....... 15 522.8190

Tinally, then, the estimate of the variance of the adjusted volume,
Y =2.645 M {eet b.m., which is expressed

V<Y)=V(a)+(m~z)2[V(b) J+b2[v<x)]

is, numerically,

V(2.645) =0.009704 -+ (2.840 — 2.632)2(0.022978)
+(0.5571)2(0.020428)
=0.009704+0.000994 +0.009133
=0.019831

on seven degrees of freedom. To the quarter-strip of half-acre in area,
therefore, the best estimate from the data submitted is

2.645 +£0.1408 M feet b.m.

on seven degrees of freedom, for which £ = 2.365 corresponding to a
probhability of 0.05. Hence with probability of 0.95, the tract of 160
acres contains

320[2.645i-0.1408(2.365)J =846 4107 M feet b.m.

of hardwood volume.

11.4 The Adjustment of Ocular Estimates of Correlated
Populations, The sampling unit observations of the timber eruise
are usually tallied according to certain pertinent species groups within ©
mixed types. Accordingly, the adjustment of ocular estimate by the
method of regression, ag illustrated in the preceding section, when ap-
plied to species groups in combination as well as singly, involves not
only the variances of the adjusted volumes of individual groups but also
the covariance among them.

The data of the preceding section, taken according to the observa-
tional plan of Figure 25, were confined to the hardwoods of the pine-
hardwoods timber-type. The complete volume record, however, is that
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of pine as well as hardwoods, within the same sampling units, for which
the quarter-strip data are presented in Table 47; the ocularly estimated
volumme (x) and the measured volume (), are listed according to hard-
woods (subseript H), and pine (subsecript P).

The problem now is the adjustment of the ocular estimate of volume
according to the species groups, singly and combined, for the entire tract
of 160 acres.

TasLe 47, Coneomitant QObservations of Volume in M feet ban. to the

Quarter-Strip, in Pine and Hardwoods, Aceording to Ocular
Estimate (x) and Diveet Measnrement ()

Ocular estimate Direct measurement
Block Hardwoods Pine Hardwoods Pine
£y zp YH Yp

1.. 5.02 4,49 4.63 4,27

4.03 2.87 3.82 2.97

2., 1.45 1.13 1.63 1.22

0.83 1.94 0.60 1.95

3.. 5.37 2.84 4.36 2.73

2.67 3.49 3.38 3.30

4, . 1.99 1.16 1.67 1.43

1.63 0.70 1.58 0.90

5.. 3.60 6.87 3.49 4.74

4.52 3.60 4.07 3.73

[ J . 1.01 3.17 0.97 2.834

0.00 1.80 0.00 1.59

7. 2.41 4,52 2.00 3.92

3.67 4,12 3.56 3.49

B 1.39 1.71 2.38 1.36

2.52 3.30 2.33 3.48

Sum........... 42.11 47.71 40.46 43,42
General mean. . . 2,632 2.982 2.529 2.714

Having already the solution for hardwoods slone, it may seem that
the problem merely implies the adjustment of the ocular estimates of
pine by the same method. Such would, indeed, be the simplest solution
if the main interest was centered in either group alone, with no more
regard for the possible influence of other groups of timber upon that
group than the cruiser normally has for the influence of grass, brush, or
timber reproduction upon the merchantable volume of a given group.
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As adjustment is to be applied to the ocular estimate of both groups
together, as well as of each group separately, the three regression equa-
tions required should be made to express the adjustments in terms of the
same independent variables; namely, the ocular estimate of hardwood,
and of pine.

The method to be used eontains the supposition that measured pine
may be associated with the eye-estimate of hardwoods; and that meas-
ured hardwoods may be associated with the eye-estimate of pine. While
such suppositions may seem to border on the ridiculous, since anyone can
distinguish a pine from a hardwood at a glance, yet it is easy to imagine
conditions for which the associations might be expected. If, instead of
pine and hardwood groups, we were concerned with two groups of pine,
say loblolly and shortleaf pines, and if the ocular estimator tended to
confuse lurge shortleaf pine with loblolly pine, there would then be such
an agsociation,

In the present case the regression for adjusting the ocular estimate
of hardwood is of the form

Y =0u+hu(en—Zu)+helep —Tp)

in which the regression coefficients are symbolized by 4, sinee hardweood
volume is the dependent variable; the subscripts thereto (H or P) vefer-
ring to the associated independent variable (hardwoods or pine, as the
case may be). The corresponding regression for adjusting the ocular
estimate of pine, in terms of the same independent variables, is

Ye=gp+pu(ty—Tu)+pelzp—ir)

in whieh the regression coefficients are symbolized by p, since pine is the
dependent variable. The regression for adjusting the ocular estimate
of hardwoods and pine together, is then the sum of these two, or

(Yu+Yp)=@u+7r) + ha+pa) (g — &) -+ (hp+pp) (@~ Zp)

and this is in terms of the same independent variables. Consequently,
only two of these three equations need be calculated.

Applications of the equations involve, at one stage or another, all the
sum of squares and products, within blocks, among the four variables of
Table 47. Thesc are presented in Table 48. Each entry is, of course,
based upon eight degrees of freedom.

In order to simplify the algebra, let 2y, 2p, Y5, and yr denote devi-
ations from block means. Then the coefficients in the first regression
equation above, for which

(Ya~3n) =hgzp+hexe
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may be derived from the two normal equations
b3 . ki) n
haS(zf)  4-hpS(zyep) =S (Tuym)

n n n
]L]]S (.’UH.’UP) + ]LPS (Z;‘x) =8 ((Cp’yn)

Tasurk 48. Sums of S¢uares and Produets within the Blocks, among the
Quarter-Strip Ubservations of Table 47

TH *p ¥u yp
TH o 6.7575 —0.4099 3.7644 0.5842
Ep. 9.5863 —0.6924 5.5923
YH oo 3.1839 --0.4203
YP oo 4.5453

*Sums of squares are at intersections of rows and columuns of like designation; sums
of products among variables are at intersections of uulike designations.

‘Whenever the same set of values of the independent variables applies
to more than one dependent variable, it is usually preferable to solve for
the ¢-multipliers, which involve the independent variables only, and to
use them to obtain the regression coefficients and the necessary variances.

This scheme has been used in Sec. 10.5. The theory behind it, for
the case when the regression equation constant, a, is zero, is discussed in
See. 10.5(B) of the Appendix. Further development which provides
for the present case—in which a is not zero—is treated in Sec. 11.4 of the
Appendix.

Solving first for ¢yx and cup, we have

n n
CHHS (LL;Z,) -I— CHPS(QJH:UP) =] l

.............. (4a)
’(b n
crrS (atp) - capS(zE) =0 J
and for the solution of cyp (as a check) and cpp
n n
CHPS (SL,;Z,) +CP1>S(:EHIBP) =0 (41_))

n n
CHPS (LEHLE p) “+-cp pS (wj%) =]
whence the regression coefficients for the hardwood equation are ob-
tained as follows: » n
har = cunS(@rya) +eppS{Tpyn) 1

T n
he=cupS(zayn) +crpS(@pym)
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In the numerical work, one takes the sums of squares and produets
among 2y and zp from Table 48. Then cyx and crp ave caleulated from

the equations (4a)
6.7575cg —0.4099¢cp=1

—0.409901[H—f- 9.58636HP ={)
whence
¢ =0.148369 H cgp=0.006344.

The multipliers cxp and cpp are next caleulated from the equations (4b)
6.75756})}»— 0.40996}\1’ =0
—0.4099%¢cHp+9.5863¢cpp=1
whence
e p=0.000344; cpp=0.104587.
n n
Now if one takes the sums of products, SGeayy) and S(@pyy) from Table
48, the regression coefficients for the hardwood equation are, from equa-~
tion (5), the following:
har = {0.148369) (3.7644) 4- (0.006344)( —0.6924) =  0.55413
hp==(0.006344)(3.7644) 4 (0.104587) (—0.6924) = —0.04853.

Thus the regression equation for the hardwood adjustment is
Yir=2.52940.55413(xg —2.632) —0.04853(xp — 2.982)

on the quarter-strip basis; the means Jg, Ty, and Zp having been taken
from Table 47.

The regression coefficients for the pine equation are calculated from

n n
the c-multipliers, and the sums of products S(zrye) and S(zeyp) of Table
48. We have

pp=(0.148369)(0.5842) - (0.006344) (5.5028) =0.12215
pp=(0.006344)(0.5842) 4 (0.104587)(5.5923) = 0.58859.

Then the regression equation for the pine adjustment is
Yp=2.71440.12215(xg —2.632)40.58859(xp — 2.982)

also on the quarter-strip basis. Finally, the regression equation for the

adjustment of the combined groups is the sum of the two separate equa-~

tions, so that
For the hardwoods:

Yy =2.529-4-0.55413(wy —2.632) —0.04853(xp —2.982)
For the pine:
Yp=2.71440.12215(xy — 2.632) +0.58859 (xp — 2.982)
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TFor both groups:
Yu+Yp=5.243+0.67628(vy —2.632) +0.54006 (xp — 2.982).

The ocular estimates of hardwoods and pine, as taken on the eight ran-
dom samples of whole-strips, are listed in Table 49. As these represent
a separate and more accurate estimate of each independent variable,
they are symbolized by Xx and X p for hardwoods and pine, respoctively.
Upon inserting the quarter-strip means as given in the bottom line of the
table—2.840 for hardwoods, and 2.446 for pine—for 2 and xp, respec-
tively, in each of the three regression equations, the adjusted volumes
are the following:

Tor the hardwoods: Yu=2.670 M feet b.m.
For the pine: Vp=2.424 M feet b.m.
For hoth: Yu+¥Yp=5.004 M feet ban,

Each of these is aceording to the quarter-strip of half-acre in area.

TspLe 49. Oculur Estimate of Volume in M Teet h.m., According to Hard-
wood and Pine Giroups, on two Random Whole Strips in
Fach of Eight Blocks

Block Hardwoods Pine
Xg Xp
O 19,10 15.37
16.50 10.32
N 8.74 7.61
5.12 7.70
. A 21,22 10.54
12.56 13.17
L N 6.88 7.70
7.51 2.72
5 1G6.66 11.54
19,93 8.27
2 2 6.22 6.46
0.96 5.23
T e e e 9.60 19.03
13,42 15.84
B e e e 8.06 3.41
9.40 11.62
Whole-strip means. ............. 11,361 9,783
Quarter-strip means. ............ 2.840 2,446
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The next section treats of the estimates of the variances of these
adjusted volumes.

11.5 Variances of the Adjusted Estimates. The three re-
gression equations of the preceding section are of a eommon form,

Y:a+b1(x1—i‘1)+b2(mg—@) .............. (6)

The variance of the caleulated value—that is, V(¥ )—in an equation of
this form may be expressed in the same general form used in Seec. 10.5,
that is,

V¥)=¢R4+8. ... . )

where §2I¢ is the contribution to ¥ (¥) ascribable to the sampling ervor of
the regression equation itself; and S is the contribution to V(T) aserib-
able to the sampling errors of the values x; and z, inserted into the
equation.

Trom the development given in See. 11.5(A) of the Appendix, one
may write

5% R=5‘2{—;--{—011(1:1-If71)2+022(.’v2"“.7:‘2)3-(—2012(1131—Q_,‘L) (wz—fg)] ...(7a2)

as the contribution aseribable to the sampling ervor of the regression
funetion itself. Furthermore,

82 = b%l: V((Ll) :| +b%|: V(xg) ] +2b1b2[000(ﬂ)1$2) :I ........... (7b)

is the additional contribution ascribable to the sampling errors of the
values &, and =, inserted into the equation.

As each of the three regression equations of the preceding section are
not only based upon the same independent variates, but as there were
also inserted into them the same values—the quarter-strip means of the
independently sampled ocular estimates—the numerical equivalents of
(t1—%1) and (22—%,) of equation (6) are, in each case,

(zn—2.632) = (2.840—2.632) = 0.208
and

{2r—2.982) = (2.446 —2.982) = —0.536,
respeetively, Furthermore, cu, ¢, and 2 of equation (7a) are cyy,
¢rp, and cpp of the preceding section; and, finally, since each of the three

regression equations were caleulated from the data of the same 16 sam-
pling units of quarter-strips, n=16. Consequently, the numerical value
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of R of equation (7a) applies equally to the three regression equations;
hence

k= i%—}- (0.148369) (0.208)2-+(0.104587) (—0.536)2

+2(0.006344)(0.208) (—0.536)
=0.097551.

This leaves the coefficient of B—that is, s®—alone to be determined in
order to arrive at the contribution to V(¥) of the sampling errors of the
regression equations. In equations (7) and (7a), s* denotes the mean
square of the residuals of unit weight about the regression equation under
consideration. With the three regression equations there are, then,
three separate equivalents of % one with respect to each equation. These
are derived from the sums of squares and products of residuals about the
hardwood and pine regression equations, as listed in the middle line of
Table 50. Here the sum of squares of the hardwood residuals is the
numerical value of

n

S’V (Z/H bt huCDH bl }mep)2]
in which the variables are taken as deviations from block means. Upon
expanding and simplifying according to Sec. 10.4(B) of the Appendix,
this may be written

n n n

N (yﬁ) - hHS (a:HyH) - hpS(:l?PyH)
for which the numerieal equivalents of the summations are taken from
Table 48.

In like manner, the sum of squares of pine residuals independent of
the pine regression is
n

n n n
S [ (yp—puza— PP«’CP)Z} =8yp) —puS(auyr) — ppS(@ryr).

The sum of products of corresponding residuals about the regressions
7

S[ (yu = hutyg —hprp) (Yp~ Putn —Proe) ]

containg the covariance of the hardwood-pine residuals. Upon expan-
sion and simplifying according to Sec. 11.5(B) of the Appendix, it may
be expressed in either of the following forms:

n n n
S(ynyr) —haS(@ayr) —heS(@eyr)

n T n
S(ynyr) — vaS(@ayn) —ppS(Trys)-
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TasLE 50. Division of Sums of Squares and Produets of Measured Volume
within Blocks, of Hardwood (y5) and Pine (yp), into Portions Due to,
and Independent of, Regression on Ocular HEstimate of Volume
of the Same Quarter-Strips

Sum of squares Sum of
Due to Degrees of - products
freedom ) yp YrUP
Regression on zy and ap. . 2 2.1196 3.3629 0.0523
Residuals. .............. 6 1.0643 1.1824 —0.4726
Total, within blocks.. .. .. 8 3.1839 4.5453 ~0.4203

With six degrees of freedom, then, the mean squares, s, may be cal-
culated at once; accordingly,

Tor the hardwood: s2= %(1.0643) =0.1774

For the pine: 8= ! (1.1824) =0.1971

For both: §t= [1.0643—}—1.1824—[—2(—0.4726)] =0.2169.

The numerical equivalents of 82, appropriate to the three regression
equations, are next required in order to complete the estimates of the
variances of the adjusted volumes, Tach S* contains the regression
coefficients, which are already available, together with the quarter-strip
variances and covariance among the whole-strip means. These latter
are calculated from the whole-strip data of Table 49, the sums of squares
and products within blocks, on the whole-strip basis, being the following:

(] n
S(X3)=175.3347; 8(X 2) =173.5069;

k(]
S(XpXp)=—0.4218.

As these are each based upon eight degrees of freedom among the 16
whole-strip observations, the estimates of the variances and covariance
of the means to the guarter-strip, including the correction for samples of
two random sampling units from blocks of 10 are ag follows:

753347 (10—2\ .
73.5069 (10—2 .
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- 9%( 10—2
8(16)(4) \ 10
whence, for the numerical equivalents of S* in equation (7b),
Tfor the hardwoods:

S = (0.55413)(0.020428) - ( —0.04853)2(0.028714)
+2(0.55413)(—0.04853)(—0.003680)
=0.009302;

Cov(XnXp)= ) = —(.003680;

For the pine:
8= (0.12215)*(0.029428) 4-(0.58859)2(0.028714)
-+2(0.12215)(0.58859) (—0.003620)
=(.009858;
For both:
5= (0.67628)2(0,029428) + (0.54006)*(0.028714)
=+ 2(0.67628) (0.54006) (-- 0.003680)
=(.019146.

Upon assecmbling the values for the solution of the estimates
V(Y)=s5R+8?
appropriate to each of the three regression equations,

V(Yu) =V(2.670) =0.1774(0.097551)4-0.009302 = 0.026608
V(Yp)=V(2.424) =0.1971(0.097551) +0.009858 == 0.029085
V(¥u+Yp) =V (5.094) =0.2169(0.097551)+-0.019146 = 0.040305

The square roots of these variances arc the estimates of the standard
errors of volume in M feet h.m. to the quarter-strip of half-acre. Each
is based upon the six degrees of freedom appropriate to the estimate of s

of equation (7a). To the half-acre, then, the estimates of the population
means are
For hardwoods: 2.670+0.163 M feet b.m.

For pine: 2.424+0.171 M feet b.m.
For both: 5.094 +0.201 M feet, b.m.

while the volumes on the entire tract of 160 acres are 320 times these.

11.6 Reconciliation of the Conflicting Requirements of
Mapping and Sampling in Forest Surveys. The two major
objectives of forest surveys of many properties are the estimation of the
timber volume and the construction of a contour map. Field work is
commonly carried out according to the plan known as the lwo-run map-
cruise. Bach 40-acre square is traversed by two lines, at 10-chain inter-
val, with the aid of staff-compass, Abney hand-level, and 2-chain trailer
tape. These lines serve the twofold purpose: (1) to establish locations
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and clevations for fitting contours on a sketch-map of the area traversed,
to 5 chains on either side of the line, and (2) to determine lor the timber
cruiser—a, member of the party—the location of sampling units of timber
volume.

In certain surveys the sumpling unit is the eontinuous strip, usually
one chain wide, centered along the survey line; in others it is the sample
plot, perhaps }4-acre in area, and a series of such plots are located at
uniform distances along the survey lines. Consequently, the sampling
units describe a systematic pattern of strips, or line-plots, on the map of
the property in question.

Under such conditions the probable discrepancy between the volume
as estimated from the direct measurements and the corresponding true
but, unknown volume cannot be asscssed unequivocably; for the math-
ematical requirements for the solution of the problem of probable dis-

Fre. 26. Showing systematically-located cireular sample plots along survey
lines, 10 ehains apart; and the loeation of four random strips,
3p-chain wide, in each block. Tho data of the eircular plots
are nsed only for the regression of
volume on basal area.
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crepancy imply that the constituent parts upon which sampling error is
to be based be located independently and at random.

Now it has frequently been urged, and it is rather generally accepted,
that when the timber eruise and map construction are joint projects, the
exigencies of the latter leave no praetical alternative to the systematic
pattern of sampling units.

Regression, however, offers the opportunity to reconcile the opposing
requirements. One scheme is illustrated in Figure 26. In this case
there are four 40-acre squares, with two lines at 10-chain interval across
each. If the circles represent systematically located sample plots upon
which volume has been measured, basal arca will have been measured as
well.  These plots contain the materials for the regression of volume on
basal area. Trurthermore, if as many random sampling units as feasible
—pictured in Figure 26 as strips, 14-chain wide—are run in each 40,
these supply the independent set of samples of basal area, with which the
regression equation is entered.

Sampling designg which are efficient and at the same time adapted to
the practical requirements of a forest survey, have rarely, if ever, been
tried. Yet there is every reason to suppose a great variety of them
waiting to be explored.



CHAPTER XII

ON CERTAIN PRACTICAL ASPECTS OF SAMPLING

12.1 Definition of Sampling Objectives. Before starting the
field work for a sample inventory of any considerable population it is
esscntial that objectives be clearly defined, and that definitions of terms
appropriate thereto be speeifiec and free from ambiguity of interpretation.

If, for instanee, information is needed on the present stocking of two
sgquare miles of area that were planted to slash pine several years pre-
viously, the general objective “‘information on stocking” is, in itself, not
very clear. It is not sufficiently free from miginterpretation on the part
of the field men. Should the latter confine their observations to planted
slash pine, the samples would contain nothing concerning the number
of natural seedlings.

More specifically, the objeetives of the sample inventory might be as
follows:

“To obtain an estimate of the number of seedlings to the acre of (1)
planted slash pine, (2) natural slash pine, and (3) natural longleaf pine.
Assurance is required that the estimated number of planted slash pine
be within 10 percent of the true number, with probability of 0.95.”

When several correlated populations are to be sampled simultane-
ously, as in this case, the standard of precision is usually referred ex-
plicitly to one of them, or a combination of two or more. Others then fall
in line, their preecisions depending upon their frequencies of oecurrence,
and their variances and covariances of unit weight. In this case, planted
slagh pine has been selected to bear the test of precision.

The next step is to learn what one ean, perhaps by preliminary
reconnaissance, concerning the population to be sampled. Such infor-
mation is often helpful in sampling design.

12,2 Bias. A constant error that affects all observations alike is °
called bias. Its magnitude is not lessened with increase in sample size,
for it may be encountered in the complete enumeration as well as in the
sample survey.

Bias may be introdueed into meagurements through instrumentation,
the personal equation, or instability of the population being sampled.

Bias of instrumentation is the effect either of improper use of an
instrument, or use of an instrument not in adjustment. Thus if the
diameters of trees are measured with a diameter tape and reasonable
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care ig not excreised in holding the instrument horizontally, diameters
will be overestimated.  Bias of this kind, improper use of an instrument,
can readily be corrected by training in attention to detail. If, however,
diameters are measured with a caliper that is out of adjustment, bias is
again introduced into all diameter measurements. This same type of
error may be encountered in the use of a hypsometer, or, indeed, with one
or more volume tableg which do not apply to the timber at hand ; for the
volume table itself may be regarded as an intrument. Such errors can
be eliminated by frequent instrumental checks.

The personal equation as a source of bias appears frequently in the
estimate of timber volume. Should the voltume on sampling units be
recorded according to eye-estimate, it is very likely that the cruiser will
consistently over- or under-estimate the real volune, unless he is familiar
with the tree-form, cull, and utilization practices of the region. It was
shown in preceding chapters that systematic error of ocular estimation
may be climinated through the method known as regression. The prac-
tice of check cruising, however, goes a long way toward the elimination
of another cominon systematic error of ocular estimate—that of judging
the boundaries of sampling units, and recording, in consequence, esti-
mates of volume, the errors of which vary directly with the correspond-
ing errors of sampling unit areas.

The third type of bias, instability of the population, requires careful
consideration. For instance, the viability of seed sown in most nurseries
is estimated from samples of the seed prior to sowing time. But viability
tests are carried out under conditions more nearly ideal than are en-
countered in the field. They are usually performed in the greenhouse:
In seedbed sowing, then, due allowance should be made for the effects
of differences in growing conditions as well as of storage on the viability
of the seed.

The forest-tree nursery problem serves to illustrate the instability of
certain populations. The sample census of a nursery, or parts thereof,
supplies an estimate of the number of seedlings available for distribution.
This estimate, however, is made a month or so before the stock is lifted.
In the interim, some of the seedlings, culled because of size, may have
become plantable. Insofar, then, as the sample census is taken as a
forecast, it is subjeet to the error of forecast as well as to sampling error.

Tree-growth data are often collected as part of the sample inventory
of forest properties, primarily by means of increment cores. But the
use of the inerement borer is time-consuming; henee it is not feasible to
bore all trees on the sampling units. Sub-samples of trees are therefore
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used in determining growth. How, then, should each be taken? Should
the borings be taken on all trees of & sub-plot, or will it do as well to take
a core from one tree to the plot, let us say that one which is nearest the
plot center? If the latter alternative is chosen, a higher proportion of
measurements from relatively open-grown trees will fall in the samples
than oceurs in the population, and an over-estimate of growth would be
the result.

One is oceasionally tempted to discard increment core measurements
of certain hardwood species with indistinet annual rings. But slow
growth is often associated with difficulty in measuring it; hence the re-
sulting bias of the practice is apparent.

When increment core rmeasurements have been taken properly, the
growth within recent decades on trees of various sizes may be estimated
unambiguously. However, the forecast of future growth from that of
the past must rest upon certain assumptions, and it will be markedly
influenced by the particular assumptions chosen.

12.3 Size, Shape, and Structure of Sampling Units. Two
classes of sampling units have been defined (See. 3.2) as follows:

Ulkimate unit. The smallest plot, or arca, that is not subdivided.

Random sampling unif. A constituent part of the sample which is
drawn independently and at random. It consists of one or more ul-
timate units.

If the population to be sampled is homogencous, there might be little
reason for choosing one particular size, or shape, of either the ultimate
unit or the random sampling unit, in preference to any other. As a
general rule, however, the populations of forest and field are hetero-
geneous to such an extent that the shape of the ultimate unit and the
structure and size of the random sampling unit may easily affect the
precision of the work, In choosing these two units one should make use
of all information available concerning the pattern and causes of vari-
ation within the population.

Imagine, for example, a nursery seedbed, 4 by 100 feet in dimension,
for which the number of plantable seedlings is known for each square-
foot ulbtimate unit of the 400. Variation in the yields of the ultimate
units may be due to

(1) Variation across the bed;

(2) Variation along the bed;

(3) Residual variation.

Now it is known from the nurseryman’s experience that there are more
geedlings to the square foot in the interior of the bed than there are near
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the bed boundaries, though they may not be the sturdiest, stock. Hence
variation in number of plantable seedlings across the bed is commonly of
considerably greater magnitude than along its length; and the logical
random sampling unit is the narrow plot of four ultimate units extending
across the bed.

It thus appears that the greater the variation among ultimate units
within the random sampling units, the less, in general, becomes vari-
ation among random sampling units themselves.

In the forest plantation, as another example, varistion in survival of
individual trees may be assigned, with more or less aceuracy, to

(1) The larger subdivisions, or blocks;

(2) Topographic position within bloecks:

(3) Care of planting;

(4) Residual variation.

Planting of nursery-grown stock is commonly done by erews of 10 to 15
men, each crew member being assigned a row, in a set of 10 to 15 parallel
rows across the principal drainage.

Suppose a 40-acre tract had been planted in parallel rows six feet
apart, and also with 6-foot spacing between trees of the same row. As-
suming a square pattern, the plantation would contain 220 rows of 220
trees in each row. If planted by an 1l-man crew, the erew as a whole
would have planted 20 sets of rows, of 11 rows to the sct. Thus the
variation in survival between sets is due primarily to heterogeneity of
soil fertility and moisture, and the oceurrence of competing vegetation
among the 2-acre subdivisions upon which the sets had been planted.
The 20 sets may therefore be taken as 20 separate blocks, and if a sample
is drawn from each and every set, variation among sets is completely
eliminated from the estimate of the number, or proportion, of survivors
as well ag from its sampling error,

Varlation among the 11 rows within each set, however, is due pri-
marily to care of planting on the part of the individual planters, as each
has eontributed one row to the set. Variation among trees of the same
row, on the other hand, is assignable to topographie position within the
set, as each row extends alike across the drainage.

The problem is to define the ultimate unit, and the random sampling
unit, so as to eliminate, in so far as practicable, these two sources of vari-
ation from the estimate of survival, and from its sampling error. One
might, for example, define the ultimate unit as an area 6 by 66 feet ex-
tending across the rows of a set, o as to include one tree planted by each
crew member. Effects of variation in care in planting would thus be
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eliminated. The ultimate unit observation would then be the number of
survivors out of 11 trees planted.

If marked changes in topography occur from one end of a set to
another, much of the variation among ultimate units of the same set is
assignable to topographie position. And this should also be eliminated,
in so far as practicable, by sampling design.

Suppose it were feasible to make direct observations on 10 ultimate
units from among the 220 in each set. As one alternative, then, we
might conceive the ultimate unit and the random sampling unit as iden-
tical. Under this condition, a single random sample of 10 units from
cach set would contain all the variation due to topography. Obviously
it would be preferable to eliminate most of this by dividing each sct into
five blocks of 44 units each, and then draw an indepcndent random sam-
ple of two units from each block. Sampling the entire plantation in this
manner would involve 100 samples of two sampling units each, and the
sampling error would be founded upon onc degree of freedom from each
block, or 100 in all.

Should such a procedure seem somewhat too detailed, one might
define the random sampling unit as the sum of the five ultimate units
having the same ordinal number, over the five blocks of a set. Thus if 6
and 32 represent two random numbers out of 44, the first random sampling
unit is the sum of the ultimate units number 6 over the five blocks of a
set. By this device the variation assignable to topography is mostly
within the random sampling units, and not between them. The sampling
job of the plantation would then involve a sample of two random sam-
pling units from each of the 20 sets, and the sampling error of the number,
or proportion, of survivors would rest upon 20 degrees of freedom.

Sometimes it may happen that the sampled areas are irregular in
shape, such as those shown in Figure 18. YFor that illustration the ulti-
mate unit was a square of 1/20-inch on the side, and the random sampling
unit was a line of these ultimate units. The resulling inequality in
weight was due o variation in the number of ultimate units to the ran-
dom sampling unit.

A certain amount of generalization may be drawn from the above
discussion. Sampling units should be formed in such a manner as will
eliminate as much heterogenecity as practicable—to be accomplished by
long, narrow plots that extend across variability trends, or by using more
or less complex random sampling units the ultimate units of which lie at
various intervals along this trend. If the population were strictly homo-
geneous, the shape of the ultimate unit would not affect the accuracy of
the results.
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Irregular areas can be sampled in the same manner as vectangular
areas. The disproportionality in weighting of random sampling units
arises, not on account of variation in size of ultimate unit—for ultimate
units are always constant in size—but from variation in the nwumber of
ultimate unitg to the random sampling unit.

12.4 The Sample. A sample may consist of a set of random sam-
pling units drawn from the supply of such units in the population as a
whole; or, in representative sampling (Sece. 4.1) from each stratum, block
or sub-population into which the general population has been separated.

In all the illustrations thus far used, the sample was drawn in such a
way that each and every part of the population, or sub-population, had
an equal chance of being included in the sample. Insofar as this con-
dition of randomization is fulfilled, the sample statistic—such as the
mean—supplies not only an unbiased estimate of the corresponding
characteristic of the population, but it also supplies a valid estimate of
the probhable discrepancy between the true, but unknown, population
characteristic and the sampling estimate thereof.

It may be argued that the purposive choice of such sampling units
which, by eye-estimate, seem to contain better approximations to the
population characteristic should also supply a better estimate of it than
ig contained in any random sample. If the sampler has had considerable
experience with particular kinds of populations, and is not subject to
personal bias, he may, indeed, be very successful in sampling them by
purposive choice. But should the sample of purposive choice be con-
sidered a random sample, the hypothetical sampling error calculated
therefrom would foster overconfidence by its abnormally low value. For
the very high—and the very low—sampling unit observations would
have been denied the chance of inclusion in the sample.

On the other hand, certain practical sub-sampling designs may impose
restrictions whereby a large proportion of the population be denied the
chance to appear in the samples. The significance of such restrictions
is, perhaps, best shown by a concrete illustration. A county of North
Carolina contains 280 square miles of farmland and woodland. This
area was sampled so as to provide an estimate of its forest area and tim-
ber volume according to major forest types. To start with, an excellent
map of the county was available. Based upon an aerial survey, it por-
trayed the location of farm buildings, schools, ehurches and highways,
as well as the network of secondary and woods roads. One can go
readily to any designated point marked on the map.

Each of the 280 square miles was taken as a block, and each block
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was conceived as subdivided into 64 square plots—as on a chesshoard—
of 10 acres. Two of the 64 plots of each block were then drawn, inde-
pendently and at random, and examined in the field to ascertain timber
volume and subdivision of land area thereon, acecording to major forest
type. Rach random sampling unit of 10 acres had, of course, precisely
the same chance of making the samples.

Each of the selceted random sampling units, however, was not ex-
amined throughout its extent, but was systematically sub-sampled by
confining the direct measurements to two parallel strips, of 14 by 10
chains in dimension, and 5 chains apart. Thus each sub-sample was
made up of but 1 acre out of the 10 of the plot, its location within the
plot fixed by the sampling design; and the remaining 9 acres were gimply
denied any chance whatever of being included in the observations repre-
senting the random sampling unit coneerned.

It has been assumed, in this case, that failure to randomize the sub-
samples can introduce only a negligible bias to the estimates and to their
sampling variances. Should the assumption have been considered un-
warranted, the possibility of bias might have been completely eliminated,
upon selecting & random sub-sample of 1 acre, from among the 10 acres
of each plot, independently. In either case the variance of the general
mean is contained in the mean square between plots within the blocks.

The use of circular plots in sampling forest and field populations is
another example of gystematic sub-sampling of random sampling units.
Thus while the latter unit might be an area of 2 chains square, there are
practical advantages in confining observations to the inscribed cirele of
3.1416 square chains, or 78.4 percent of the entire random sampling unit.
Any loss in information which might adhere to this scheme should, in-
deed, be more than recovered by the additional number of circular plots
it may be made to provide.

The importance of random selection lieg in the fact that the sample
supplies all the information necessary to evaluate its own aceuracy. One-
or more systems of sampling, more accurate, perhaps, than random sam-
pling, might be designed; but unless the sampling distributions of their
statistics are known, the only way to test accuracy is by comparison
with the complete canvass, that is, with corresponding population param-
eters. This can be done for a few populations only. Thus any use
of statistics obtained from a system of sampling, other than random
sampling, must be predicated on the similarity between the population
sampled, and others for which an accurate check is at hand. Samples
collected by such procedures do not, therefore, supply all of the informa-
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tion necessary for evaluating sampling reliance, and inferences drawn
from them are weakened.

12.5 The Determination of Sampling Intensity. The
amount of time and funds to be applied to sampling any considerable
population is usually preassigned. It isthen the sampler’s job to provide
a sampling design which will provide the maximum amount of informa-
tion as well as an estimate of the precision of the sample statistics.

Often, however, it is required to estimate in advance the amount of
time and funds which will purchase statistics of given precision. Thus
if the variance of unit weight in a population is known, the expression of
the variance of the mean of weight » is

7y

n
and this may be used to determine n. Should one strive for a standard
error of the mean of y equal to 10 percent of the mean itsclf, then

V(@) =(0.19)
Upon substituting this in the expression above, and solving for n,
o3
"= 0age

Obviously this expression calls for an estimate both of ¢} and 7.

A rough estimate of the standard deviation may be had by making use
of an ocular estimate of the range, obtained, perhaps, in a preliminary
reconnaissance of the population. In the normal curve of error the
range which encloses 99 percent of the distribution is 2.576¢ on either
side of the mean, where 2.576, taken from Table 7, is { at the 1 percent
level when based upon any considerable number of degrees of freedom.

One may, aceordingly, take the range, R, to be 2(2.576¢). If, then,
a rough estimate of R is obtained by direct observation,

~5—?5—2 is a rough estimate of o.

By way of illustration, the random sampling unit of the plantation
population of See. 12.3, contains 55 trees, divided among the survivors
and the dead. In counting the survivors, according to the random sam-
pling unit, the range in possibilities is from 0 to 55. Hence a rough
estimate of o may be taken to be

65
T 10.7.

Such rough schemes should be used only in the absence of better in-
formation.
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In order to complete the estimate of what sumpling intensity to apply,
there is needed an estimate of the mean number of survivors in 55 trees
planted. This estimate may be had in the same preliminary reconnalis-
sance which includes the location of the plantation boundaries. Suppose
one guesses the survival to be between 35 and 55 percent, that is, between
19 and 30 survivors to the random sampling unit of 55 trees. If the
standard error of the mean is to be of the order of 10 pereent of the mean,
then, roughly,

SE(§) is to be between 2 and 3 trees,
whence the number of random sampling units to be included in the 20
sets of samples—onc sample from each block—lies between

<£~72 d(lQZZ
5 ) A9\

or between 13 and 29. Onec judges, therefore, that if each of the 20
sarmples is made up of two random sampling units, the resulting precision
will be at least as good as cxpected.

12.6 Allocation of Costs in Double Sampling. The use of
regression is to be recommended in sampling whenever (1) the direct
measurement of the variate, i, whose mean is to be estimated, is relatively
costly; and (2) the variate y is associated with, or dependent upon, an-
other variate, z, which costs relatively little to observe, or measure
dircetly.

Under these conditions comparatively few observations are taken on
the 2-variate population of (y, x), and the regression of ¥ on 2 is cal-
culated therefrom. Then a random sample, or a set of random samples,
is drawn from the population of z, and the general mean of z is inserted
into the regression equation, the solution affording the best estimate of
the mean of y under the conditions.

The decision to employ the method of double sampling implies that
the cost of the field work is to be allocated between the two parts of the
job. Suppose, by way of illustration, that a sample census of the plant-
able seedlings of a given species in a nursery is required. The regression
of the number of plantables, ¥, according to the sampling unit, on the
entire number of seedlings, z, of the form used in Sec. 10.3, was

Y=bz
for which
2
i Oaes
Y

based, in that case, on 54—or, in general, on n—sampling units from the
2-variate population of (y, ). There is substituted for z, in the re-
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gression equation, the general mean of a set of random samples from the
population of », based upon m random sampling unit observations over
the entire set. Thus if 2’ denotes this general mean,

o

" 0%
V(a:)-—)m.

The best estimate, Y, of the mean of 7 is then
Y =ba,
and the variance of this estimate may be expressed (Sec. 10.3) as
9 _ bt U‘i (12’)"" a'?l-a:
O'Y—-T T...(l).
Now it should he kept in mind that, at best, the allocation of sampling
costs rests upon one’s judgment and experience with the particular kind
of population concerned. In the present case, it seems reasonable that
any difference between the mean of 2 in the regression sample—that is,
Z—and the general mean of the independent random samples of a—that
is, 2'—should be negligible. If, then, & be substituted for 2’, one may,
for present purposes, simplify equation (1) to the following:
b*el Eo}is
m +_n—
Consider next the second phase of the problem. The field cost of
sampling, say T, is to be distributed between (1) the n observations on
the relatively costly sampling for the regression, the charge for which,
is, say, ¢, to the sampling unit observed; and (2) the m observations on
the relatively inexpensive work of collecting the independent set of ran-
doin samples of the independent variate, 2, at a cost of ¢, to the random
sampling unit observed. 1t follows, then, that
T=nCy+mMtm. ... (2).
The values m and n are to be chosen, so that equation (la) is minimum,
subjeet to the condition of equation (2). TFrom the latter equation
e T— nc",

and substituting this for m in equation (1a), the latter may be expressed

O.Z_bz 0'%; Cm_*_j G'%.,—,
L n

oi= approximately........... (1a).

approximately.

The value of n which makes this & minimum is required. Upon differ-
entiating with respect to n, and equating to zero, it follows that
emtnb?a __:Eaﬁ., _0
(T'—nec.)* n?
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and after substituting mc,, for (T —ne,), this may be expressed as

m_ —é<___ﬁb°" ) (3)
R Nmkgr ) .

It is now apparent that the most efficient allocation of costs rests to o
large extent upon experience with the particular kind of population con-
cerned, since the numerical equivalents of the factors within the paren-
thesis are to be obtained only after the completion of the job. But
budgeting of funds requires some advance guess of their expected values.

The forester in charge of the sample census in Sec. 10.3 estimated
the parenthesized factors of equation (3) to be 24. From past experi-

ence, he knew that
¢, =156 and ¢, =2

to be a satisfactory approximation, so that by applying equation (3) he
arrived at
m_

2 15 .
- ?\/? =2 approximately.

This turns out to be not the best ratio, however, for the observed equiv-
alents of the parenthesized factors of equation (3) obtained after the
completion of the field work, taken from Sec. 10.3, are the following:

116 — o%; 0.81 — b;
2,413 .
0.58 — 0}.; g ==

whence

bo . _ Wu
ay.ﬂ/;—f‘J sy L7

from which it appears that
m 15 :
= 1 .7,\/ 5= 5 approximately.

Thus a set of random samples containing, in all, five times as many ran-
dom sampling units as the number of sampling units in the regression
sample—instead of twice as many, as actually obtained—might have
been a happier choice.

Another type of adjusting equation, applicable to timber cruising,
is the regression of measured volume on either basal area, or the eye-
estimate of the same volume, for which

Y=a+b(z' —3).
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The variance of a and of the inserted mean (2')of the independent set of
samples of x, are, in this ease,
2 2
2 _Tys, n_%=,
Te=y Vi) m '
for which, as before, n is the number of sampling units of the regression,
and m is the total number of random sampling units upon which 2’ is

based. The variance of V" as estimated from the equation is, from See.
8.5, the following:

9 o
2 0'!7-3 2 Oz ’ =\ o2
gp=—"24b> =+ (2’ —T)* gi.
¥y + m+‘ ) 7%

In practice, the third term of the right-hand member is disearded as it
should be close enough to zero to be negligible. Then
g Opg, V2o .
U'Y=T+"7,T' approximately........... ... (4).

If, as before,
T =nca+mem
one may replace m of equation (4) by
T—ne,
Cin

and (4) may be expressed ag follows:

D 2 .
a%=a§.z+b2 TE Cpn

n o T-—ne,

approximately.

Upon equating the frst derivative of this (with respect to ») to zero and
then substituting mc., for (T'—nc,), as before, one may express the result

as follows:
m_ \/c" bo s
n Co\Cy.z)

Experience in timber eruising indicates that the numerical equivalent
of the parenthesized factor is 2, approximately, provided the regression
is one of measured volume on basal area of the same sampling units.
Should the regression equation express measured volume in terms of eye-
estimate of the same volume, the parenthesized factor varies from 1 to 4,
depending upon the accuracy and consistency of the eye-estimate of
volume.
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TecaNical Noros
The section numbers correspond to the sections of the text wherein
reference is first made to this Appendix.

3.4 The Sampling Variance of the Mean of a Random
Sample of n Values from a Finite Population of N. Let each
of the n observations be expressed as errors, that is, let each

(y —p) =
be a deviation from the population mean. Then the mean error of a
sample of size n is

€ =%(el+ez FooF et e,

and its square is

O =L@ttt gt )
- L [ﬁga + 2"g%re0] (1)
_n‘l|_ 2 i) |
in which
nl
aCa = m=2)2

Now in g finite population of N values of ¢ there are xC, possible
values of &, each based upon n observations. Upon summing (1) over
all xC, possibilities, we have

NCn 1 NCp n NCr "1102
S (&)= s S | SE|+2 S| Slaie) |p-vvnvn.. 2).
The first term within the braces of equation (2) is the sum of (5C,) (n)
values of &, Since there are only N distinet values of ¢, some of these

(wC4) (n)

have been used more than once. They have, in fact, been used N
times. Thus one may write

NCn| n n N
S[m@}sﬁwmw@) ............... 3).

Furthermore, the second term within the braces of equation (2) may

be expressed
NCn | nC2 C C" NC2
S [ S (fifj)] = %N—) S (eieg) oo ... 4)
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because it is the sum of (,C2)( NC’,L) values, there being ~Cq possible com-

binations of (e;¢;), and each product is used ~Cn) (nCo) different

(
times. C
Upon putting the forms (8) and (4) into equation (‘7),

2 C'n v
V [(ey}"i%z\r(wnw( 2) 4202 “)(@ 8 <eie;~>§

the average of which is the exact value of the variance of means of weight
n. This average is

NC'
. S [( o ] : 3 s@+2:8 ' e,)g ).
NLa
The part within braces may be simplified; for
Ly 7! N=2)12! n(a-1)
nCr (n—2)12] N T NWN-1)
TFurthermore,
N 2
S(e D4+2 S (ee) = S(e)} =0
N

since S(e;) is the sum of residuals by definition. Hence

nCs N
2 8 (eig) =—8(€).
Equation (b) may therefore be written as follows:

1 NC 1 o (n=1)¥
~Ca [(6>J % S(e) — NV =1) S(é€ )g ..... (ha).

Now

Hence, the exact value of the variance of means of 7 observations of y,
from the finite population of N, is

1 o n(n D . (_difN—n
7—#%‘"6” N=1) 1) % (N 1) ............... (7).

In practice, one cannot obtain, from a sample of n values, the exact
ol of equation (6) which this expression requires. Neither ean one sub-
stitute, for it, the estimate
2
pevy [(y ) ]

2
‘SII
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which applies to hypothetically infinite populations. Consequently, it
is necessary to consider the estimate sj of ¢ afresh.

Regardless of whether the sampled population is finite or hypothet-
ically infinite, each real error (y —u) may be expressed as the sum of two
contributions, as follows:

=) =Wy—7+G—w.

Upon squaring, then adding over all n values of the sample, and remem-
bering that the error of the sample mean (§—u) is constant for the sample,

é’[(y—w] =§[(y—z7)2]+n(ﬂ—u)2+2(ﬁ—u)§(y~ﬂ)-

The third term on the right is zero, as one of its factors, being the sum of
residuals, is zero. Upon dropping this term and then transposing so as
to express the errors in terms of the residuals,

n n

S{(y—ﬂy] =S[(y—~u)2J ~n(f—p)*.

It is known, from See. 1.7, that the first term on the right is an unbiased
estimate of no?; and that (§—p)? is an unbiased estimate of -:‘L—a'ﬁ. Thus,
the above equality may be written

2

i (23
St (y—9)* —»naﬁ——n—ﬁ'—’.

But should the sample be drawn from a finite population of just N values
of y, the variance of the snmple mean requires the adjustment factor
N-—n
N~1
of equation (7) as developed above. Therefore the sum of squares ob-

tained from a random sample of size n, when drawn from a finite popula-
tion of size N, should be expressed

n _ T 2N —
S| (y—9)? “’no’ﬁ‘n%(ﬁ) ...... e (8)

and this may be written

8 =9 — (n—~1) 63( N );
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whence, upon dividing by (n— 1)(%), the estimate of the variance

of the finite population may be expressed,

v-1\Sl—grl_(w—i
(M) = (s -

Upon insgerting this estimate of ¢} into equation (7) above,

V()= 83(N = ") ..................... ®).

n

This is the estimate of the variance of the mean of a random sample of
size », drawn from a finite population of N values of y.

7.7 The Variance of the Product MN, when M and N Are
Independently Subject to Sampling Error. Suppose the ob-
observed M and N contain errors ey and e, respectively, such that

M =pa+ex

N =py+ey
in which uar and px are the true characteristies of the populations of M
and N. The real errors ey and ey are independent of one another, and
cach is, of course, as likely to be positive as negative. Then the produet

18
MN = (uar+ear) (uv+en)
= Uyt paen +pvertearen

and the error eyy of the product is
exn = (MN —puzin) = paren+uneset+esren.

The average value of the square of this expression is the variance of the
product. But the average value of the square of (eyen) is negligible by
comparison with the average value of the square of upey and of pxear;
furthermore, the errors are independent; hence in the average

0 v =uiof+uio .
In practice, M and N are estimates of uar and pw, respectively. If M and

N are independently distributed, and V(#) and V() are estimates of
their sampling variances, then

V(MN) =M2[V(N)]+N2[V(M)}

in which V(MN) is the estimate of the sampling variance of MN.,
10.4(A) Derivation of Normal Equations. If an estimate,

¥, corresponding to an observed dependent variate, y, is to be expressed
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in terms of, say, the three independent variates ;, ¥, and w3, such that
Y =bu1+bao-bazs

the numerical equivalents of the regression coeflficients, b, bs and by, may

be calculated aceording to the method of least squares. The application

of the method of least squares consists in the evaluation of the unknowns,

by, b, and bs, such that the sum of squares of residuals

g[(y—Y)Z]

is minimum. Given » independent sets of observations on the popula-
tion (y, xy, 23, w3), this is equivalent to setting

n

S[(y—blxl—bgmg—b3x3)2] ................... (1)

to a minimum; or if the obsgervations do not all have the sanme weight,
but each is assigned a weight w, then the sum of weighted squares of
residuals, that is,

g’[w (_7] — Dyt — boo — b;glva) 2] .................. (2)

is to be minimum. With the three unknowns of equations (1) and (2),
their sums of squares are based upon (n—3) degrees of freedom. Con-
sequently, n must exceed three observation equations, in these cases, in
order to provide for 2 mean square of the residuals. As equation (1) is
a special case of equation (2) with w=1 throughout, the latter will be
used for purposes of illustration.

From the caleulus it is known that the minimum value of (2) will be
obtained if its first derivatives with respeet to by, be, and b, are zero.
Upon differentiating equation (2) with respect to each unknown in turn,
and equating each first derivative to zero, we have

n
28 (W(y—"bﬂil—-bzxz—" bgiﬂs) ( —Qh)J =0

28 W(y—bxﬂil—bzfl?z'—bama)(—xz) =()

n

2 ;SL’l.l)(y—-blil’:l’"*()2-”02“(3333:’:>(“33:3)1 =0

and upon dividing by 2, and carrying through the products and sum-
mations indicated, the three normal equations are the following:
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n n ] [ n i} n 7
bl[ Swa) } +ba [S (wzsws) | +bs| S(waws) | = |:S(wa:1y)}

" n n n
bl[S(‘wmm:g)}—I—Z)E[S(wmg) ~+bs| S(wors) =[S(wzgy)] - .. (3).

mn n n n
I {S (wanes) } +b2|:S (wzgws) | +ba| S(wad) |= |:S (wasy) }

Quantities derived from the observations are enclosed within brackets.
The simultaneous solution of these three equations renders the unknowns
bl, bf_> and Z);;.

Should all the observation equations be assigned the same weight,
then w may be taken as unity, and deleted from each term of the normal
equations (3). The remaining part would, indeed, be the normal equa~
tions as derived directly from equation (1).

Should there be but two unknowns such that the regression equation

takes the form
Y= b_\fvl-l-bzil:z ....................... (4:),

one would merely delete from the normal equations (3), the third column
and the third line. In this case one should have the two normal equa-

tions, " n N
bl[s (wa}) ] -+ bzlS (w.’cl:vz)] = [S(wxly)]

bl{:‘;’(wxlxz)} —H;z[g(wm%) ] = [?g (wmy}]

Specifically, the regression equation of Sec. 10.4 in Chapter X is that
of equation (4) above, with the difference that z; and 2, of this equation
are x and 22 of the nursery seed bed data; and the weights, w, of equations

(5) are the values % of the seed bed data. Inserting these for w, x, and

2y of the normal equations (5), the latter take on the form used in Seec.
10.4 of Chapter X.

10.4(B) The Sum of Squares Independent of the Regres-
sion. This is the sum of squares of equation (1) or (2) above. Upon
expanding equation (2),
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n n

n n
S [w(y — by —bytta — bams){l = S(wy*)+b} S(wat)+b2 S(wad)

n n (] n
+-b2 S(wal) —2by S(wary) — 2bs S(wray) —2bs S(wsy)

n n n
+2b1b2 S(’w.’lilib'z) +2b1b3 S (wxlms) +2b2b3 S(wmga:;,) .
This is rather unwieldy, but, fortunately, it submits to considerable
simplification. The above expression may be written
n

n n
S [w (y — b1ty — by — b:gfl?a)g—Jl = 8 (wy?) + bl{ by S(wa?)
n n ]
+ sz (wxlmg) -+ baS (‘w.’l)]ﬂ}a)
n n n
by [b 1S (waymy) +beS (wad) 43S (wres)
n n n |
+bs [ S (wxyz3) + beS (wea) +baS (wa3)

n n n
—2b,8(wz1y) — 26,8 (wray) — 2038 (waay).
Now the expressions of the right-hand member which are enclosed

within brackets are, respectively, the left-hand members of the normal
equations (3) in Sec. 10.4(A) above. Thus

n n n n n
S [w(’y — byt — baa— baxa)ZJ = S(wy?) -+ b8 (wry) + baS(wrggy) -+ baS (waay)

n n n
—2b1S (W) — 2baS (wasy) — 2638 (wasy),
and the sum of weighted squares of residuals may be stated as follows:
T

n n n n
N [w(y — b1 — baty— bawS){' = S(wy?) — buS(wzy) — baS(waey) — baS (wesy).
In this form it becomes evident that the sum of weighted aquares of y

n
S(wy?)
on 7 degrees of freedom is divisible into a portion due to regression,
that is, n n n
biS (wzyy) + 028 (wxey) +beS (wagyy)
on three degrees of freedom, and the residue portion, independent of the
regression, n

Sl:’w(y — by~ bare bazs)z]

on (n—3) degrees of freedom.
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Should there be but two unknowns, as in See. 10.4 of Chapter X for
which z; and x; of the above discussion are z and 22, respectively ; and for

which the weights, w, are taken ag %, it follows that the division of total

sum of weighted squares of y, into portions due to, and independent of,
the regression, takes the form presented in Table 38.

10.5 The Variance of the Regression Function Y=bx;+bx;
+b3x;, and Developments Leading Thereto. Many applications
of multiple regression involve eertain coeflicients, known as c-multipliers,
which depend upon the independent variables only (Tisher, 1936. Secs.
29 and 29.1). But in order to show the meaning and uge of the c-multi-
pliers, it is desirable to develop (1) the solution of normal equations by
determinants; (2) a convenient method of ealeulating the c-multipliers;
(38) through them, the estimate of variances and covariances among
regression coefficients; and (4) the variance of the regression funection.

These will be taken up in order.

10.5(A) Solution of the Normal Equations by Determi-
nants. Given the regression equation

Y= b1$1+b2$2-|—b3173,
notation may be changed for purposes of condensation, to the following:

T.et 0, 1, 2, and 3, denote y, x1, %, and x,, respectively, such that

SaA)=00); Se)=(00; Ste)=02); Stym)=(03);
g(m‘f) = (11); g(azla:g) =(12); g(wlm3)=(13);
S =@2); S =(23);

@D =(33);

the parentheses of the right-hand members signifying summation over
all the n independent pairs. In this notation the normal equations may
be expressed as follows:

L b1(11)+bz(12)+ba(13)=(01)‘L
I 5y(12)+5a(22) +bs(28) = (02) & .. ... ... .. (1)
I by(13)+0:(23)+0a(33) = (03) J
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Now the determinant of the system, involving only the independent vari-

ables, is
11y (12) (13)

D=12) ©22) ©@3)|=01)Au+12)An+(13)Axn. ... .. ()

(13) 23) (33)
in which Ay, A., and Ay, are cofactors, respectively, of the elements
(11), (12), and (13).
Upon multiplying I, IT, and TIT of equation (1), by An, A, and A,
respectively,

b](].].)A.n"I‘bg(lz)Au'I—b;;(].B)A,u: (01)/111
b1(12)Am+b2(22)A12+ b3(23)A12= (OZ)Am s (3)
51(13)A13+b2(23)A 1+ 1’3(33)&413 = (03)A 13]

If these three equations are added together,

b{(ll)Au+(12)Au+ (13)A4 +bg|:(12)An"l‘ 22)4+ (23)A13;‘

-}—b{(lB)Au—{—( 3)A12+(33)A;3]

= (01)A11+ (02)A12+ (03)A13.
Now the second and third of the bracketed terms are zero because they
represent a determinant in which two rows are identical. Hence equation
(3) may be expressed

b;[ (11)A11+(12)A12+(13)A13} =(01)An+(02) A1+ (03)A

and

_(01)A1+(02)A1,+(03) 4 19
(11)Au+(12)Ap+(13)A s

or, in determinant form,

(01) (12) (13) (01) (12) (13)
0 @) @3] |02 @ @)
©3) (23) (33) (03) (23) (33)
a 12 a3 D '
(12) (22) (23)
(13) (23) (33)

b,

b=
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The regression coefficients & and b; may he derived along the same
lines; for the determinant of the system of cquation (2) may also be
expressed in either of the following forms:

D = (12)A12+ (22)A23+ (23):’123
D=(13)Au+(23)dn+ (33) Az
These equations lead to the determinant expressions for b: and b3 in

which (11) (01) (13)
b=t |02 © @3
(13) (03) (33)
and
(11 (12) (01)
1 :
ba=—5 (12) (22) (02)|.
(13) (23) (03)

These expressions may be put in slightly different form, for purposes
of immediate use, so that

b1=—15 [(01)!111"[‘ (02)A 3+ (03)A13} .......... (4a)
ba =—% [ 01 A+ (02)Ax-+(03)4 23] .......... {(4b)
by = —15 |: (0 1)A13+ (02)A23+ (O3)Ada:| .......... (40)

10.5(B) Calculation of the c-Multipliers. The c-multipliers
may be defined in terms of the symbols used above. For, in fact,

An_ . __Al‘z_ __A13.
011=~5, 012—-5, Cm—*IT,
A22 Aza_

Co2= 37 g
D ! Ly = D,
C33=j.

Hence, upon substituting the c-multipliers for their equivalents as given
in equations (4a), (4b) and (4c) above, these equations may be expressed
in the following form:

br=¢1(01) 4-¢12(02) +c1:(03) 1
b= 012(01) + 622(02) +Cga(03) .............. (5) .
ba=c13(01) +¢23(02) +c25(03)
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The b-regression coefficients may thus be readily calculated provided
the numerical equivalents of the c-multipliers are known. These may be
deduced from the digeussion above. Irom equations (2) and (3),
(IDAu+ (12 A+ (13)Aw=D
(12)A11+ (22)4‘1 1a+ (23)A13 =)
(13)An-+(23) A+ (33)41a=0.
Upon dividing each of these by D and remembering that
A A An
"Dl‘]=011; T)@=Cm; ﬁ=013,
one may write

b‘u(ll) ‘}‘012(12) "'813(13) = 11
011(12) 4"612(22) '|-013(23)=0J e i e s (6&).

en( 13)+ 012(23) Fe(33) =0
These equations, involving only the independent variates, may thus be
made to supply the numerieal equivalents of cu, ¢ and ¢;3.  In like man-
ner it can be shown that

12(11) 4 c22(12) F55(13) = 01

012(12) +022(22) -+ 023(23) = .I.J ............... (()b)

612(13) +022(23) +023(33) =40
and that
¢13(11) +623(12) +c33(13) = 0\[

c13(12) +¢23(22) +-¢53(23) = 0 J ............... (6c).

013(13) + 023(23) +033(33) =1

10.5(C) Variances and Covariances of Regression Coeffi-
cients. As an example the estimate of the variance of b—that is,
V(br)—will be derived in detail.

In the regression equation

Y= bl.'l?].“{"'bzfvz‘I‘ baxs

each observed value of the dependent variable, y, may be conceived as
the sum of two components, namely, (1) the true value of the dependent
variable—which we may designate uo.1zz—corresponding to a given com-
bination of the independent variables, £;, z: and x3; and (2) the real error,
€o.23, Of the observed . Thus each

Y = M98+ €0.123.
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Let b, be defined according to equation (5) of See. 10.5(B) above, that is,
b= Cn(Ol) +C12(02) +C13(03).

The sums of products in this equation may, for the present purposes, be
expressed as follows:

0= g[ﬁh(ﬂn.mr}'éo.ms)]; 02)= g[ivz(l-l-n.lza-l-eo.ma)J‘;

n

(03) = Sl::va([-to.ma’f'Eo.ma) } .

The statement for b;, above, may now be given as

n n n
b= [Clls (@1p40.128) €125 (Tapty.123) -+ €138 (Tapso 123) :l

n T n
- [Cus (2160.123) 1~ €128 (@a€0.123) 155 (a0 103) ]

for which the exprossion within the first brackets is the true (population)
regression coeflicient, B1; while the expression within the second brackets
represents the real error of by, being the exact value of (bi—pBi). Thus

n n n
(b1~ B1) = c118(T1€0 128) F 128 (Te€o 193) + 138 (T3€0.128)
and this may be written,

n
(bl - Bl) =8 3 €0.123 [Cuxl—l‘cm.’vrl-cmwa:l g

Now the varianee of b, is the average of the square of (bh—8:) over all
sets of samples, each of size n and with the same distribution of inde-
pendent variables as this one. Upon squaring the above equation and
remembering that the square of a sum of independent values is the sum
of their squares,

n 2
(b1—B1)t= S%Gﬁ.m[011$1+612$2+013$3] %

and this, upon expansion, may be written ag follows:
T

(01—p1)?= 8 [ €5.123 % eu| euxd - crrire+ s 11113—‘

+ 1o entaa+t 123+ Craans

- e8| en®iat Cromats+casah

e
| ASEN—|
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Since the individual values of &3 are independent of the independent
variables, the above may be expressed as the average €12, or of i,
multiplied by the sums of the remaining terms. Expressing these latter
in the notation of Sec. 10.5(B) above, that is

g(x%) =(11); gccla:z) =(12); ete,

the above may be written

(by—B1)2 =0 108 %Cl1l011(11) +c10(12) +013(13):|
+Cx2[011(12) +12(22) - 013(23)]

+Cls[011(13) +c12(23) +013(33)] i

= 2
=01 00.128

sinee, from equation (6a) of See. 10.5(B), the quantity within the first
square bracket is unity, and the others are zero.

In practice the exact ¢f.15 is not known; but the mean square of the
residuals around the regression equation—that is, s§.1;;—is an unbiased
estimate of it. Hence the estimate of the sampling variance of the
regression coefficient, b, is

V(bl) = 0118(21.123-

In like manner it can be shown that

V(bz) = szS%.m; V(ba) = 03333.123;
C Ov(blbz) =195 103 5 Cov(bybs) = 1385128 3 Cov(bsbs) = C23S3 123

10.5(0) The Variance of the Regression Function. In the

regression equation
Y = b1+ bezo+by2s

the variance of the caleulated ¥ is the variance of the funection, that is,
V(Y) =V (biz1-+bawa-+baxs).

Since this is the variance of the sum of three terms which are not nec-
essarily independent of one another, it may be written

V(Y)=V (bsz1) +V (baa) + V (bss) +-2 Cov[ (bizy) (bz:vz)]
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Suppose, on the one hand, that the values of 1, 22 and x; with which the
equation is entered—and which supplies the particular value of ¥ whose
variance is sought—are themselves free of sampling error. It would
then follow, for example,

V(blxl) = x? [ V(b1) :| = il?%cllﬁ‘é 123

or, as another example,
Cov[ (b)) (bgl“z):, = mlxz[Cov(bxbz) } = 21TeC1255. 12

and the remaining terms would submit to analogous expressions.
It thus follows that when each independent variable is free of sam-
pling error, the variance of Y in the regression equation

Y =b21-+-botte-+byzs
is

V(Y)=sb1s l cn®i+ aotd - caai 210212+ 201513+ 20235112533]' ....... (8)
=gR

where, in general, $* denotes the mean square of the residuals, of unit
weight, which are independent of the regression, and I denotes the
quantity within brackets. Thus 2R represents the contribution to V(Y)
of the sampling errors ascribable to the regression equation itself.

If the independent variables with which the equation is entered are
subject to sampling errors whose variances and covariances are

Viz); Viw); Cov(mas);
Vizs); Cov(zira);
Cov(xezs);

then the terms of equation (7) represent variances or covariances of
products, both factors of which are subject to sampling error. One
should then have, for example,

V (bim) =2t LV(bl)] +b?[V($1)]

and, as another example,

Cov[ (bib2) (:clzvg)] = 21T LC’ov (b]_bz):\ +b1bz[Cov (zu’vz)}
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the remaining terms supplying analogous expressions, the first term of
each right-hand member being already contained in equation (8). The
sum of the second terms of the right-hand members, symbolized as S?, is
the following;:

N2 == b‘%

- V() } -f-b%[ -V(Il'g)} —I-bg{ V(a:g)_} +21)1bg[001;(m]a:g)

+ 21)11)3 [CO‘U ($1$3> | —l-gbgbg [001}(.’1&.’53) } ......... (9) .

It is apparent that S? is due to the sampling errors of the independent
variates.
In general, then, the variance of Y, where

Y =Dy Dywe - bas
is given by the addition of equation (9) to equation (8), that is,
V(Y)=s*R-} 8.

11.4 The c-Multipliers Appropriate to the Regression
Function, Y=a+b1(x1~&) + b2 (x2~%2) + b3(x3~%3). The vegression
equation

Y =a+bu(ri— 1) +balas — &) -+ Ua(2s — Ts)

differs essentially from the regression equation treated above only in the
appendage of the constant . As in Chapter XTI, however, when written
in this form,

-

a=1{,

Consequently, the regression equation may he written in the alternative
form,

(Y = §) = by(21~— Z1) ~+ba(wa — F2) +bs(as — Ty)
and upon changing notation, such that each (¥ —§) be denoted by 0, each
(z1— %) be denoted by 1, cte., the sums of squares and products among
the variables may be expressed as follows:

é[(y—w] ~ (00); 5[@—@)(@%)] ~ (01); ete.

n

S[ (-’1’1‘—5:‘1)(2-'2—5'2)] =(12); ete.

The parentheses again signily summation over all the n independent
pairs. The normal equations, then, appropriate to the solution of the
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regression coeflicients are of the same form as those of equation (1) of
Sec. 10.5(A) above. In consequence,
I b:(11) 4-04(12) +ba(13) = (01)
IT. 5.(12) +5a(22) +05(23) = (02)
IIL.  bu(13) 4 Db2(23) +b:(83) = (03).
The c-multipliers may therefore be calculated quite in accordance with
equations (6a), (6b), and (6¢) above.

11.5(A) The Variance of the Regression Function, Y=a
+ bi(x1~&1) + baxy—%2)+ ba(xz—x3). Given the regression equation
Y = a+by (1 &1) +-bo(@s — Za) + ba(0y— T3),
it follows that the variance of ¥ may be expressed:

V(Y)=V(a)+V| bul(wr—&1) +bo(zz— Fo) + ba(2s ~ )
that is, it is completely given as the variance of o plus the variance of
the remaining portion of the regression equation, since the constant ¢ is
independent of the remaining portion.
Now the variance of @ is the variance of ¥ when i, 2, and a3 are
#1, Tz, and Zg, respectively. IHence

.12
V(a) = T

where s3.15: is the mean square of the residuals of unit weight. The vari-
ance of the remaining portion of the regression equation, that ig,

V |:b1(.’61 - 11-21) —I" bz((l:z - :EQ) +b3 (:E;; — J_Ja)

being the variance of the sun: of terms which are not necessarily independ-
ent of one another, may be expanded to the following:

V[bl(wl—fﬁ)] -+ V]:bg(:vz-fz):\ + Vl:b;;(xs—.fa)w

42 C’ov[lnbg(ah-~£Y31)(1132-"J752)-|

]

+2 COU'I:blba(xl—'f:l) (:Ua —"‘l-?q)jl +2 Covll:bgba(.’lig—“f)g) (fl:;;—‘f;;) :l .

If the values of x;, =2, and 23 with which the regression equation is
entered, are subject to sampling error, each of the above terms is the
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variance (or covariance) of a product, both factors of which have sam-
pling error. Consequently,

thl(ml—@ﬂ (z1-21)%| V(by) | +b3| V(1)

It

14 bn(-’ve—-??z)W (@a-%2)?| V (Do) +b§LV("U2)
L J l. n n
i ] [ ] B T
V1 bs(s~s) (xa=T3)?| V(ba) |+b3| V (s)

il

= (1),

Cov b1bg (:‘01—:1-}1) (552—52) =($1—IE1) (.Tn-ja) LOOD(ZMZ}Q) + lhbg Cov(mlxg) 1

1l

b1b3 (1131"'1)—31) (173-11"}3) =(1U1‘"21_31) (373—"1-33) COU(blbs) +b1b3 Cov (5131(123)
L ~ L. i

Co

=

COU bzba (mz—.’fg) (1133—523) =($2—fz) (ﬂ?a—a_ia) LCO?) (bgba) 1 + bgba Cov (mzxa) W

L -~ -~ L. )

Upon adding the column of first terms of the right-hand members, after
multiplying the covariances by 2, and remembering that

V(b)) =cnsiam;  Cov(bbe) =cusiam; ete.,

the sum may be expressed:
88108 [Cu(ivl — T1)2+ Con (e — o) 2} Cag (Ta — 3)*+ e (B1—~F) (X2 — )

+2e1s (s — E1) (33— Fy) - 20 (23— ) (w3 — fﬁs)] .
This expression, plus the variance of a, for which

8.103
V(a)="a2,

is the variance of the regression function, provided the independent
variables with which the equation is entered are free of sampling error.
Combining them,
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1
SR = Sg.mliﬂ 1 (s — 1)+ con{wa — En) 2+ Cas (s — F5)

F2c0(ay — F1) (o — &) + 2e15(201 — Fr) (W5 — Es) + 2cos (o — Fp) (T~ Fg) ]

as the contribution to V(Y) ascribable to the sampling errors of the
regression equation.

The column sum of second terms of the right-hand members of
equations (1), after multiplying covariances by 2, is due to the sampling
errors of the independent variables; whence, upon denoting it by 82,

Si= b%[V(xl)] —l—b%[V(:vz):l +b§[V(x3)} +2b1b2[00v(z1x2)]

|

+ 2b1b3 [002) (271:‘0;1) } +2b2b3 \:000 (1172.’!73) } .

11.5(B) The Covariance of Paired Residuals Which Are In-
dependent of Regressions on Identical Independent Variates.
Given the regression of yx on 2y and zp, such that the sum of squares of

residuals is
ki

S[ (yn—~ hugrn— hPivP)z}

it was shown in Sec. 10.4(B) above that the expansion leads to the ex-
pression

n n K
S(y#) —haS(wayn) —hpS(@ryn)
that is, the sum of squares of the residuals is the residue after deducting
the portion
n n
harS(xryn) +heS(@ryn)

which is due to the regression on zx and xp, from the total sum of squares
Of Yu.
The sum of produects of corresponding residuals as applied in Chapter
X1 rests upon the expansion of
n

S[ (yr— hpxa—hpzp) (Yp —paty—Dpp2p) :\ H

and this may be expressed
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n n n 1 n
S(yuiyp) ~haS(xayr) — heS(@pyr) +hupuS(ah) +heppS(@yzp)

n n T n
— S (xayn) — 2eS @ eyn) +happS(Erta) -+heppS(zd)

or in aliernative form:

n 7 n n
S(yuyr)+ {hﬂpus (@) +hppuS(@arpe) — paS(@uyy) J
n n n
+| huprS(zeza)+heppS@i) — peS(xpyy)

n n
—*]LHS(mHyp) —'inS(IEpyp) ...................... (1).

Now the two bracketed expressions of the latter form are zero, as be-
comes evident upon factoring pg out of the first, and pp out of the see-
cond, and comparing with the normal equations. Therefore,

n
S [ (g — heon ~Rpxp) (Yo — Putn — ppiy) ]

2 n n ‘
=S(yuyr) —huS(zayr) — hpS(@rys),

or, by another rearrangement of the terms in expression (1), one may

also write
n

8 { (yu—hatn— hpﬂlp) (?/P — Pt —Prip) _'

n n n
=8 (yyyp) - PHS (Inyy) - PPS (-’BPUH) .
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Tapup 7. Table of 7. Values of ¢, Outside the Range of Which in Both Tails
Lie Selected Proportions of the Total Area®

g

—% Revavrve Anua 1Ny Bora Taiws

é

3| .9 .8 .7 N 5 .4 .3 .2 .1 05 .02 N
a

£

ol Values of ¢

=]

1[.158 |.326 [.810 |.727 |1.000 (1.376 (1.963 [3.078 [6.314 (12.706 |31.821 |63.756
2 [.142 |.289 |.445 |.617 .816 (1.061 |1.386 (1.886 ([2.920 | 4.303 | 6.0656 | 9.025
3 (.137 |.277 |.424 |.584 | .765 L978 1,250 [1.638 ([2.353 | 3.182 | 4.541 | 5.841
4 134 [.271 |.414 [.569 L7141 L0401 1,180 [1.533 [2.132 [ 2,776 | 3.747 | L.604
5(.132 |.267 |.408 |.539 | .727 .920 1,156 [1.476 [2.015 | 2.571 | 3.365 | 4.032
6 [.131 ).265 [.404 1,553 .718 006 [1.134 |1.440 |1.943 | 2.447 | 3,143 | 3.707
71,130 |.263 |.402 |.549 | .711 L8086 11,110 [1.415 [1.895 | 2.365 | 2.998 | 3.499
8 (.130 [.262 |.399 |[.546 706 .880 [|1.108 (1.307 |1.8060 | 2.306 | 2.806 | 3.355
9 [.129 |.261 |.308 |.543 .703 .883 [1.100 [1.383 [1.833 | 2.262 | 2.821 | 3.230
10 [.129 [.260 [.307 |[.542 .700 L8879 |1.003 [1.372 |1.812 | 2.228 | 2.764 | 3.16D
11 [.1290 ].260 |.396 |[.540 697 876 |1.088 [1.363 [1.706 | 2.201 | 2.718 | 3.106
12 ).128 [.259 |.895 |[.539 695 873 |1.083 |1.356 |1.782 | 2.170 | 2.681 | 3.055
13 |.128 [.259 .39+ |.338 604 J87¢ |1.070 (1.350 [1.771 | 2.160 | 2.650 | 3.012
14 |.128 [.258 [.893 [.537 602 L8068 |1.076 ([1.345 |1.761 | 2.145 | 2.62% | 2.977
15 |.128 [.258 [.393 [.536 691 L8066 [1.074 |L.341 |[1.753 | 2.131 | 2.602 | 2.047
16 |.128 |.268 [.892 [.535 . 690 L8653 |1.071 [1.337 [1.746 | 2.120 | 2.583 | 2.921
17 |.128 [.2587 |.392 |[.534 .68% 863 JL.069 |1.333 (1.7¢0 | 2.110 | 2.567 | 2.808
18 |.127 |.257 |.302 [.034 .688 862 [1.087 |1.330 (1.73¢ | 2.101 | 2.552 | 2.878
19 |.127 [.267 [.891 [.533 658 861 JL.066 |L.328 |1.729 | 2,008 | 2,539 | 2.861
20 |.127 1.267 [.301 [.533 087 | .BG0 [1.064 [1.3256 (1.725 | 2.086 | 2.528 | 2.845
21 [.127 [.257 |.391 [.532 686 L850 J1.063 |L.323 |1.721 | 2,080 | 2.518 | 2.831
22 1.127 |[.256 |.3080 |.532 .G86 L858 [1.081 |1L.321 |[L.717 | 2.074 | 2,508 | 2.819
23 |.127 |.256 |.390 [.532 .G85 .B58 (1.060 [1.319 (i.714 | 2,080 | 2.500 | 2.807
24 [.127 [.286 [.300 [.531 .685 L857 [1.049 |L.318 [L.711 | 2.064 | 2.402 | 2.797
25 |.127 |.266 |.380 [.531 .684 L85G [1.058 [1.314 [1.708 | 2.060 | 2.485 | 2.787
26 |.127 |.256 |.390 [.531 .G8¢ .856 [1.058 |1.315 |L.708 | 2.066 | 2.47@ | 2.779
27 [.127 1.266 [.389 |[.531 .64 855 [1.057 |1.314 [L.703 | 2.062 | 2.47: 2.771
28 [.127 |.256 [.380 |.530 .683 .855 [1.056 |1.313 |1.701 | 2,048 | 2.167 | 2.763
29 [.127 |.256 |.389 [.530 .083 854 [1.055 |1.311 |1.609 | 2.045 | 2.462 | 2.750
30 [.127 |.266 |.380 [.530 683 .864 1,065 |[1.310 [1.607 | 2.042 | 2.437 | 2.750
« |,12566(.25336).38532,52440] .67440] .54162]1.03643|1.2815511.64485! 1.95006] 2.32634] 2.57582

*This table is taken b;
Fisher, published at 15/-

by

Oliver and Boyd, Edinburgh.

onsent from Statistical Methods for Research Workers by Professor B. A.
Attention i drawn to the larger collection

in Statistical Tables by Professor R. A. Fisher und F, Yates, published by Oliver apd Boyd, Ldinburgh.
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