
MATHEMA TICS: M. A. BASOCO

the magnitudes of the given P. E.',S, as common sense would indicate.

The proper application of the formula ro = 0.6745
M,

E ) is to

a set of direct measurements to which weights are arbitrarily assigned.
It is not applicable to the type of problem considered in this paper, for it
would give the same result if all the given P. E.'s were ten times as great
or only a hundredth part as great as they actually are in any given case.
The inherent character of this formula may be concisely stated in the
language of biology, as follows:

Theformula ro = 0.6745 i Eu takes account of the errors arising
( - 1),w

in its own generation, but takes no account of those inherited from preceding
generations.
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It is a well-known fact that the Fourier series expansions of the doubly
periodic functions of the first (i.e., elliptic), second and third kinds (in
the sense of Hermite) yield, when subjected to appropriate methods, im-
portant results in the theory of numbers. The purpose of this paper is to
indicate the derivation of such expansions for certain doubly periodic
functions of the third kind of a type having a larger number of zeros
than poles.2

Hermite3 defines a function sp(z) to be doubly periodic of the third
kind if it is meromorphic and satisfies two periodicity relations of the form

p(z + 2w) = ea + b f(Z)
o(z+ 2w') =e's + d Po(z) f' (1)

where a, b, c, d, w, w' are constants and w'/w is a complex number a + id3,
# 0. It may be shown that the properties of sp(z) as defined may be

obtained from those of a suitably defined function F(z) which also is
meromorphic and satisfies the simpler periodicity relations
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F(z + r) = F(z),
2

F(z + irr) = e-2miz F(s), i = / (2)

where r is a complex number a + if3, B # 0 and m is an integer (not zero).
It can be proved that m is the excess of the number of zeros over the
number of poles of the function in a period cell. Thus, the functions
under consideration may be classified into two groups (A) and (B) ac-
cording as m is positive or negative. As mentioned above, this paper
deals with functions of type (A) only.

In a series of papers, Appell4 has developed a theory for obtaining the
Fourier expansions of these functions. He introduces a certain function
Xm(x, y), which in his theory plays a r6le analogous to that of the zeta
function in Hermite's decomposition of an elliptic function into simple
elements. It is found that his theory is applicable in a practical manner
to functions for which m is less than zero, while for functions such that
m is positive, the theory, while complete from a function theoretic point
of view, does not lead, in general, to arithmetically useful results, since
it leaves certain constants expressed in the form of definite integrals, the
actual evaluation of which is quite impracticable.
Owing to this difficulty in Appell's theory when applied to functions of

type (A), it was found necessary to use another method in obtaining the
expansions of the functions under consideration. This method was first
indicated by Liouville and has been utilized by C. Biehler5 and G. Hum-
bert6 to derive similar expansions.
The members of the class of functions considered are exhibited as quo-

tients of products of Jacobi theta functions, there being a larger number
of theta factors in the numerator than in the denominator. The notation
adopted is that of Jacobi,? except that his d(z) is replaced by 0o(z). In
this notation the argument of the circular functions does not, as in some
others, contain the factor 7r.
The following is a brief account of the method used. Let

F(z) = 6k'(z) lyk(Z) t4k(Z) lk4(z) =- (a, y, 6; kl, k2, k3, k4), (3)

where a, t3, -y, 6 may take any of the values 0, 1, 2, 3 and where k1, k2,
k3, k4 are positive or negative integers or zero such that m = k1 + k2 +
k3 + k4 is positive. Associate with F(z) the function G(z) obtained from

F(z) by replacing z by z + 7r and neglecting the exponential multiplier

which appears when this substitution is made. It follows from the
properties of the theta functions that both F(z) and G(z) have real periods.
The application of Fourier's theorem to these functions now leads to the
following two cases:

CASES I. All the ki, (i = 1, 2, 3, 4) are positive.-In this case F(z) and
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G(z) are integral functions and are representable by sine or cosine series,
depending on their oddness or evenness. The coefficients in these series
are then determined by means of the solutions of certain linear difference
equations which arise from a comparison of the coefficients in F(z) and
G(z) when the relation existing between these two associated functions is
taken into account. The initial constants which appear in the solutions
of the difference equations may be determined either by substituting
special values of the argument into the series expansions, or else, by the
multiplication of known expansions of less complicated functions whose
product is either F(z) or G(z), and the comparison of particular coefficients
in the product with the corresponding coefficients in the expansion of
F(z) or G(z), as the case may be. For m > 3 this process becomes quite
laborious and thereby is limited in its usefulness.
CASE II. Some of the ki are negative; m > O.-In this case it is possible

for either F(z) or G(z) to remain finite in a strip of the z-plane bounded
by lines parallel to the axis of reals and symmetric therewith; for con-
creteness let F(z) remain finite. Then G(z) will possess poles at points
occurring at regular intervals along the real axis. It follows that G(z)
does not fulfil the hypotheses of Fourier's theorem and cannot be expanded.
However, the function G(z) - T(z) has a Fourier series expansion pro-
vided T(z) is a trigonometric expression having the same period, parity
and Laurent expansion in the neighborhood of the pole of smallest affix

(either z = Oor z = -), as G(z). From here on the process is the same as

in the preceding case; the constants appearing in the solution of the linear
difference equations are determined as before. For this purpose, the lists
of known expansions, such as Biehler's,5 Humbert's,6 Hermite's8 and
Bell's9 are of assistance.

It should be noticed that for certain combinations of theta functions
in F(z), the process described is not applicable. This may best be seen
from an example. Thus, let

F(z) = o(z) and G(z) 2- tt4)?00(z) t01(z) NWtOZ 'C(s' 4

then

C( + r= -eC g1'F(z). (5)

Now, in a strip bounded by lines parallel to the axis of reals and passing
through the points z = !r2 the following hold

2
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t0061 F(z) = O3 cscz + E C,, sin (2n + 1)z,
0 (6)

600' G(z) = O' cotz + E B,, sin 2nz.
1

However, it is not possible to make use of (5) and (6) simultaneously in
order to obtain the relations between the B,, and the C,, since the argument

z + 'rr which appears in (5) may lie outside the strip in which (6) is valid.2
This difficulty will always appear whenever the strips in which the ex-
pansions for F(z) and G(z) are valid coincide, as they do in the above ex-
ample. However, in this and other similar cases it is still possible to ob-
tain the expansions sought by making use of the expansions of certain
other functions which do not offer the above difficulty, in conjunction
with the well-known relations which exist between the squares of the
theta functions. Thus, for F(z) above we have

02#2(Z) = t326(Z) ?2#(Z), (7)

so that

?y2#(Z) /0(Z)1y (Z) = #260(Z)ta3(Z)/?y (Z) _-92t7 (Z)73 (Z) /6o(Z)* 803 3= 2t~)(~)()to~ (8)

Hence,

6061F(z) = 43(p(z) - t&(z), (9)

where

pO(Z) = 0t240(Z)tY3(z)/d1(z) and +(z) = 3t1(Z)03(Z)/6(z).
The expansions for sp(z) and +i(z) have been given by Hermite and may
be found in Biehler's thesis (loc. cit.).

Using the methods indicated above, the writer has calculated some two
hundred expansions which are believed to be new. In a paper of this
sort it is clearly impossible to list them in full and hence only the general
types will be indicated. To do this, the following notation is introduced.
Let

F(z) =O - (,XAf, y, 5; ki, k2, k3, k4)
(k1, k2, k3, k4).

Thus, the set of twenty-four functions of which F(z). = t73 (Z)/o(Z)d2(Z)
is one, is represented by the symbol (3, 1, -1, -2).
The expansions of the functions represented by the following symbols

have been calculated:
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(2,0,0,0); (1,1,0,0); (1,1,1,0); (3,0,0,0); (2,1,0,0); (3,-2,0,0); (3,-1,-1,0);
(2,1,-1,-1); (2,1,1,-3); (3,1,-3,0); (3,1,-1,-2); (4,-3,0,0); (2,2,-3,0);
(2,2,-1,-2); (3,1,-1,-1); (3,1,-2,0); (2,2,-2,0).
The complete details of these expansions may be found in a dissertation

by the writer which is deposited in the library of the California Institute
of Technology.

1 Presented to the American Mathematical Society, Oct. 27, 1928.
2 In a California Institute dissertation, Mr. J. D. Elder has obtained expansions for

the case where the functions have more poles than zeros.
3Hermite, Comptes Rendus, 1861, 1862; Crelle, 100; Oeuvres, tome II, p. 109;

tome IV, p. 223.
4 Appell, Ann. Sci. I'.cole Normale, Sup., 1, 2, 3, 5, series III, 1884 to 1888; Acta

Mathematica, 42, 1920.
5 Biehler, C., Th~se de Doctorat de la Faculti des Sciences de Paris; Gauthier-Villars,

1879.
6 Humbert, G., J. d. Math. Pures et Appl., Series VI, 3, 1907.
7 Jacobi, Werke, Bd. I, p. 501.
8 Hermite, Oeuvres, t. 2, p. 245.
9 Bell, E. T., Messenger Math., 53, 1924; Quarterly J., 49, 1923.
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Any automorphism of any group G may be obtained by making each
operator of G correspond to itself multiplied by some operator of G. These
multipliers will be called in what follows automorphism commutators of G,
and unless the contrary is stated it will be assumed that all of them appear
on the same side of the operators of G and relate to a single automorphism
of G. They will be called right or left automorphism commutators as
they appear on the right or on the left of the operators of G to which they
relate. When G is abelian some of the fundamental properties of these
automorphism commutators have been noted at various places and a
necessary and sufficient condition which these commutators must satisfy
has been formulated.' In particular, in this case they always constitute
a subgroup of G and no commutator is the inverse of the operator to which
it relates except when this operator is the identity. The latter condition
must also obviously be satisfied when G is non-abelian, but for such a
group the former condition is not necessarily satisfied as will be seen later.

All of the operators of G for which the automorphism commutators are
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