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PREFACE.

THE importance of Graphics in modern mathematical training,
and its numerous uses in practical work, render unnecessary
any excuse for the publication of an elementary account of
some of its applications, provided these applications are chosen
with discretion and treated with clearness.

The author is hopeful that competent judges will consider
that the present book fulfils these requirements. It has not
been written with a view to any particular examination ; but the
easier parts will be found to meet the needs of secondary schools
and of candidates in military and naval examinations; while
students in technical colleges and candidates in the examinations
of the University of London will, it is believed, find most of
the chapters of definite use to them.

All sections and exercises marked with an asterisk should be
omitted in a first reading of the volume; students who wish
further to curtail the course of work will find an easy First
Course mapped out on page ix.

Special attention is directed to the large number of concrete
examples, worked out in detail, which are supplied in the
various chapters. It is essential that the student should himself
" work out the graphical constructions according to the instrue-
tions given, and afterwards compare his results with those
obtainable by measurement of the figures in the text. To
avoid the tendency to produce very small figures, which
characterise the work of almost all students, the instructions
supplied will be found to determine large drawings in nearly
all cases. An endeavour should be made so to construct the
diagrams that all lengths are correct to at least three numerical
figures ; it is hoped that this degree of accuracy has been attained
in the answers given at the end of the book. Owing to slight,
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perhaps very slight, errors in construction the final result,
obtained hy measurement, will often he slightly incorrect in
the third figure.

The student is strongly urged not to confine himsclf to
graphical methods only in statics and mensuration. The
employment of calculation and graphics may be likened to
the use of our two hands; no matter how highly developed
one instrument may be, much more can be done with the two
conjointly than with one alone. Of necessity, in this hook
analytical methods and calculations are only incidentally
touched upon, but students with a knowledge of Trigonometry
will see that even roughly drawn vector polygons can easily
be used for purposes of calculation.

This opportunity is gladly taken to acknowledge a debt
of gratitude to Prof. Henrici, F.RS., of the Central Technical
College, London to whom the author’s first knowledge of the
true value of Graphics is due. His teaching showed Statics
and Dynamics not merely as a branch of somewhat unsatisfying
Mathematics, but as a real and interesting subject with important
applications. Those acquainted with Prof. Henrici’s work and
lectures will appreciate the author’s obligation to him.

Thanks are also due to Mr. E. F. Witchell of the Central
Technical and Goldsmiths’ Colleges for reading most of the
proof sheets, suggesting improvements, and correcting some of
the answers; to Prof. R. A. Gregory and Mr. A. T. Simmons
for their unsparing trouble during the preparation of the MSS.
and while the hook was passing through the press; and finally
to the Senate of the University of London and the Controller of
H.M. Stationery Office for permission to make use of problems
set in various University, Civil Service, Naval, Military, and
Board of Education examinations. The source of each such
problem, and the date when subsequent to 1902, has been
given after the question.

G. C. TURNER.

Sivcup, November, 1907.



CONTENTS.

CHAPTER L
GRAPHICAL ARITHMETIC,- - -

Miscelluneous Faeamples 1., - -

CHAPTER II
GRAPHICAL MENSURATION, - -

DMiscellaneous Examples II., -

CHAPTER IIL

VECTORS AND THEIR APPLICATION TO
ACCELERATIONS AND MASS-CENTRES,

Miscellaneous Examples 111, -

CHAPTER 1IV.
CONCURRENT FORCES, - - -
Miscellaneous Examples IV., -

CHAPTER V.
Tue LNk PoLveon, - - - -

Miscelluncous Examples V., -

VELOCITIES,

PAGE

41

43
65

69
115

119
166

173



viil CONTENTS.

CHAPTER VI
PAGE
StrEss DIAGRAMS, - - - - - - - - 210

Miscellaneous Examples VI, - - - 252

CHAPTER VIL

FricTiON, . - - - - - - - - 956
Miscellaneows Ezamples VIL, - - - - 281

CHAPTER VIIL

MowmeNTS, - - - - - - - - - 284

Miscellaneous Examples VIIIL, - - - - 305
CHAPTER IX.

BeNDING MOMENT AND SHEARING FORCE, - - - 307

Miscellaneous Eramples IX., - - - - 33D
CHAPTER X.

STRESS DIAGRAMS (continued), - - - .- 33T

Miscellaneous Ezamples X., - - - - 353
CHAPTER XI.

Work, - - - - - - - - - - 354

Miscellaneous Examples XI., - - - - 367

APPENDIX. EXPERIMENTS ON MOMENTS, - - - 368



INSTRUCTIONS TO THE STUDENT.

Yor the construction of the figures required in this book a set square
with a 3-inch side is useless. The side of the 45° set square should be at
least 6 or 7 inches.

The standard scale used should be flat on oune side and bevelled on
the other and the scale divisions should reach to the edge. One edge
should be divided into fiftieths of an inch and the other into millimetres
or half-millimetres. Scales of this description can be obtained from
Messrs. Aston & Mander, Old Compton Street, London, W., and other
makers, at 1s. 6d. each.

An angle is best set off or measured by means of its tangent or by a
scale of chords. If a protractor is used it should be a large semicircular
one of transparent material.

Hard chisel-pointed pencils should be used for all the constructions.

A FIRST COURSE OF STUDY.

Ch. L, pp. 1-17, 28-30, 33-35, 37-40.
Ch. IL, pp. 43-48, 50, 53-50.

Ch. IIL., pp. 69-78, 84-92, 95-111.
Ch. IV., pp. 119-134, 137-162.

Ch. V., pp. 172-200.

Ch. VI., pp. 210-222, 236-245.

Ch. VIL, pp. 256-264.

Ch. VIIL, pp. 284-303.

Ch. XI., pp. 354-367.



viii CONTENTS.

CHAPTER VL

PAGE
StrEss Diagrams, - - - - - - - - 210

Miscellaneous Ezamples VI, - - - 252

CHAPTER VIL

Friction, - - - - - < - - 256
Miscellaneows Examples VIL, - - - - 281
, CHAPTER VIIL
MOMENTS, - - - - - - - - - 284
Miscelloneous Examples VIIL, - - - - 305
CHAPTER IX.
BeNDING MOMENT AND SHEARING FORCE, - - - 307
Miscellameous Evamples I1X., - - - - 33
CHAPTER X.
STRESS DIAGRAMS (continued), S 1]
Miscellaneous Examples X., - - - - 353
CHAPTER XI.
Worg, - - - - - - - - - - 354
Miscellancous Eazenples X1, - - - - 367
APPENDIX. EXPERIMENTS ON MOMENTS, - - - 368



INSTRUCTIONS TO THE STUDENT.

For the coustruction of the figures required in this book a set square
with a 3-inch side is useless. The side of the 45° set sguare should be at
least 6 or 7 inches.

The standard scale used should be flat on one side and bevelled on
the other and the scale divisions should reach to the edge. Omne edge
should be divided into fiftieths of an inch and the other into millimetres
or half-millimetres. Scales of this description can be obtained from
Messrs. Aston & Mander, Old Compton Street, London, W., and other
makers, at ls. 6d. each.

An angle is best set off or measured by means of its tangent or by a
scale of chords. If a protractor is used it should be a large semicircular
one of transparent material.

Hard chisel-pointed pencils should be used for all the constructions.

A FIRST COURSE OF STUDY.

Ch. I, pp. 1-17, 28-30, 33-35, 37-40.
Ch. II., pp. 43-48, 50, 53-59.

Ch. IIL, pp. 69-78, 84-92, 95-1il.
Ch. IV., pp. 119-134, 137-162.

Ch. V., pp. 172-200.

Ch. VI., pp. 210-222, 236-245.

Ch. VIIL, pp. 256-264.

Ch. VIIL, pp. 284-303.

Ch. XL, pp. 354-367.






CHAPTER L

GRAPHICAL ARITHMETIC.

Scalar Quantities. In Mechanics and Physics, quantities
such as numbers, volumes, masses, time, temperature, dis-
placement, velocity and force are dealt with. Some of these
quantities are related to direction in space and cannot be defined
without reference to direction, others have no such relation to
space.

Mass, time, temperature, volume and number are examples
of quantities which are completely given when we know the
kind of quantity and how much there is of it; they are called
Scalar Quantities.

To specify the amount needs reference to some unit, a gramme,
a degree centigrade, a cubic centimetre, the number 1..., so
that Scalar Quantities are specified by giving

(1) the unit quantity, (2) the number of units.

Vector Quantities. Those quantities which require for their
specification some reference to direction in space are called
Vector Quantities. Examples of these are displacement, velo-
city, acceleration, foree, ....

An hour differs from a minute only in amount, but the
pull of the earth on a book differs from the pull of a locomotive
on a train not only in amount but also in direction.

Time is a scalar quantity and force a vector quantity.

Quantities to Scale. The word scalar is used because these
quantities can be graphically represented to scale by lengths
(Latin scalae—a ladder —divided into equal parts by the rungs).

Thus, if we agree to represent unity by a length of 3 cms. then
the number 3 would be represented by a line 9 cms. long, and a
line of length 10-5 ems. would represent the number 3-5.

T.G. A . €
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In all cases of the representation of physical quantities by
lengths, the scale of the representation, ¢.c. the length repre-
senting the unit quantity, must be given either directly or by

implication.
Masses to Scale.

ExampLE. 7o consiruct o scale of masses so that the mass
corresponding to any length, and the length corresponding to any

mass, can be read off of once.

The given line » (Fig. 1) represents 1 lb. mass. Transfer this
length to your drawing paper, by pricking through with needle
points or by the aid of dividers (having fine adjustment), and
mark the end points O (left) and 1 (right). Mark off on this
line produced, lengths giving 2, 3, 4, ... 10 lbs., as follows:

In the figure O1 is (intentionally) not the same length as w.

(i) With dividers accurately adjusted to the length », and with
the right-hand point as centre (marked 1 in figure) describe a
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Fre. 1.

semicircle clockwise, pricking a slight mark at the point (marked
2 in figure) where the semicircle cuts the line. With 2 as
centre describe a semicircle contraclockwise, pricking through
at 3, and so on by alternate clock- and contraclockwise half
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revolutions, pricking through points 4, 5,...10. With a properly
adjusted straight edge and set square draw fine sharp, short
lines perpendicular to 01 through the points marked.

(ii) Draw a straight line through O making some angle
between 20° and 60° with Ol, and mark off from O inches
1,2, 3, ... 10" along it.

Adjust a straight edge and set square with one edge of the
latter passing through 1 and 1', so that when the set square
is moved parallel to itself along the straight edge to 10" it
still intersects O1 produced. Mark the points on 01 produced
when the set square passes through 2/, 8/, ... 10" by short, sharp,
fine lines.

These points so determined should coincide with the points
already marked on O1 produced ; why ¢

We have now 01 representing 1 lb. mass, and 07 a mass of
7 1bs., ete.

(iii) To obtain, by method (ii), the division marks perpendicular
to OL.

Draw a fresh straight line and mark off Ol=w on it. Place
the inch scale and set square so that 1’ 1 is perpendicular to 01
when the scale edge passes through 0, and mark off the points
2, 3, ... as before.

EXAMPLE. 70 find the length which represents 3-7 1bs.

(¢) With a scale, adjusted at O as before, mark the point
37" from O along the scale, and with set square adjusted at
this point parallel to 33, mark a point on Ol produced 37,
then the length from O to 3-7 represents 3-7 lbs.

(b) Produce 10 and 1’0 backwards through O, and with an
inch scale mark tenths of inches along the latter up to 1 inch,
and from these points draw parallels to 3 3’ cutting O1 produced
in points marked 01, 02, 03, ... 09. Then the distance
between 0-7 and 3 represents 3-7 Ibs.

The final result in (b) is a scale of masses from which the
length corresponding to any mass between O and 11 lbs. or the
mass corresponding to any length may be found.
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(1) With squared paper or straight edge ruled in mms. or 2 mms. find the
number represented by the line a, if (i) 1 cm. (ii) 2 cms. represents unity.

a

Fi. 2.

(2) Make a scale for numbers from 0 to 10 on squared paper, the length
representing unity being w.

(22

Fia. 8.
(3) On aplan of a house } inch represents 3 feet. Draw a scale giving
feet and % feet. What length represents 7 ft. 6 in., and what length is
represented by 32 ins., and by the line o ?

a

Fia. 4.

(4) The areas of certain fields are represented by lengths to the scaie
of 6 cms. to an acre. Draw a scale giving 1 to 5 acres, tenths of an acre
and hundredths of an acre. Read off from your scale the area represented
by 178 cms. and the length which represents 425 acres.

Addition.
ExaMpLE. The lines a, b, ¢, d, represent numbers to the scale of
% an inch fo unity. Find the sum of the numbers.
a

[

c

d

0 A

0o

c D

Fic. 5,

Take a strip of paper with a straight edge and apply in turn to
the lines, marking with a fine sharp line the beginnings and ends
of the segments so that the segment 04 is equal to a, 4B is
equal to b and so on.

The edge, then, is marked 04 BCD as in Fig. 5.

In Fig. 5, OD is one-half the true length.
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Measure 0D in half inches (or in inches and multiply mentally
by 2), this number of half inches is the required sum.
Notice that the order of addition is immaterial.

(5) A scale pan is suspended from the hook of a spring balance, and it is
loaded with small shot. The shot is put in by means of a small scoop.
The weight of shot added each time is given by the lines a, b, ¢, d, ¢, and
the line u represents 1 oz.

F1a. 6.

Find graphically the reading of the spring balance at each addition to
the load.
d(Add the lengths as above and then draw the u scale along the straight
edge.)
(6) A weight of shot given by the line in Fig. 7 is taken out of the
scale pan ; what is the reading of the balance?

Fi1c. 7.

(7) What is the peri-
meter of the room of which
the accompanying figure is
the plan, drawn ‘to a scale
of 0'6” to 11 ft.

Fi6. 8.
Subtraction.

ExaMmpLE.  The lines a, b, ¢, d, (Fig. 9) represent numbers to the
scale of 15 ems. to unity. Find the difference between the second
number and the sum of the rest.

Add the lengths a+c+d as before and obtain 0D on the
straight edge, cut off from D to the left DB=0, then OB is
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the length representing the required number. (In Fig. 9,
04, ... are half their true lengths.) Read off the length of
OB on the 1'5 cm. scale.

a

o A B c D
F1c. 9.

Notice that since addition is performed as a continuous process
by adding lengths from left to right, subtraction must be
performed by setting off distances from right to left, if we wish
to measure our result from O.

EXAMPLE. Required the number equal to the swm of the first and
third numbers minus the sum of thé second and fourth.

Mark, as before, on a straight edge, 04 =q, AC=¢, then to
the left, CD=d and DB=0b. The point B comes to the left of

L 1 1 1 1
B (o] DA C
Fre. 10.

the starting point O (the origin), and the length OB, measured
to the left instead of the right, corresponds to the fact that the
required difference is negative. Measure OB on the proper
scale and prefix a negative sign to the number.

If distances to the right of O represent positive numbers,
distances to the left must represent negative numbers.

Scale of Numbers. Such a line as BODAC (Fig. 10) when
produced both ways represents numbers to the scale of 1'5 cms.
to unity. Every distance to the right of O represents some



SUBTRACTION. 7

definite positive number, every distance to the left represents
some definite negative number; conversely, to every number
corresponds a definite point in the line.

(8) Find the sum of the numbers represented by a, b, ¢, d, the scale
being 04 inches to unity.

a

[

c

d

Fre. 11

(9) Find the algebraic sum corresponding to a+b - c+d.
(10) Find the algebraic sum corresponding to ¢ —b-c—d.
(11) Shew by actual measurement that

a+b-c+d=a+d-c+b,
and that a-b-c-d=-b-c+a-d.

Similar Triangles. The construction on page 3 depended
for its validity on a property of similar triangles, viz. the ratios
of the sides, taken in order, about the equal angles are equal.
For triangles we can always ensure similarity by making them
equiangular. Generally, one figure is similar to another when
it is a copy of the second drawn to the same or a different
scale (In the first case the figures are congruent, i.e. identically
equal).

(12) Draw any triangle A BC and by the aid of the right angle of a set

square and a straight edge construct another triangle 4,8,C;, whose sides
are perpendicular to those of the first. Scale the sides and calculate the

ratios AB BC (A
4,8, B0, Cd;

(13) By aid of the 30° set square construct 4,B,C, such that 4,B, is
turned clockwise through 30° from A4 B, and so on for the other sides.
Verify again that the triangles are similar.

A property of similar triangles often useful in graphical work
is that the ratio of their altitudes is equal to that of their bases.

(14) Verify this fact for the triangles drawn in the last exercise.
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The graphical constructions for multiplication, division, ete.,
depend on these properties of similar triangles. It should be
borne in mind that if the only object is to obtain the product,
quotient, root, or power of numbers, the graphical constructions
are but poor substitutes for abridged arithmetic, the slide rule
and logarithms ; it is only when in the course of other graphical
work it is found necessary to obtain, say, the product of two
numbers represented by lengths that the full advantage of the
methods becomes apparent.

Notation. To avoid circumlocutions and the constant repeti-
tion of ‘the number represented by the length,” it is convenient
t0 use small letters a, b, ¢, ... for the lengths of lines, the numbers
represented by these lines being denoted by the corresponding
capitals 4, B, C,.... When the lengths a, b, ... are set off from
an origin O or U, they will be lettered 04, OB, ...or U4, UB, ....
The line representing unity is designated by w, unless some
measure in inches or centimetres is given.

Multiplication.

ExampLE.  The lengths a (5-98 cms.) and b (8:84 e¢ms.) represent
numbers to the scole 1'5" to unity. Find, (i) the length which gives
the product of the numbers, (ii) the product dtself.

(i) Draw any two intersecting lines (Fig. 12). From the point
0 of intersection set off OU=15" and OB =>5 along one, and on
the other set off 04 =a. Place a set square along 4U and
move it parallel to itself until it passes through B, mark C
on 04 where the set square cuts it. '

0C is the required length, measure it by setting off the u scale
along OC and obtain the product.

0C OB

Proof. 4= 01"

and, using 4, B, C'and U as numbers,

C B
5=7 C=4.B.



MULTIPLICATION.

12.

Fic.
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(i) The construction given involves the transfer of lengths
from the given to the drawn intersecting lines. If the lines
o and b be already on the drawing paper this can be avoided.

F1c. 13.

From one extremity of a draw u perpendicular to o (Fig. 13).
From one extremity of b draw a line ¢ perpendicular to b, and
from the other a line perpendicular to the hypotenuse of the first
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right angle constructed. Then two similar triangles have been
drawn, the sides of the one being perpendicular to those of the
other.

Construct the u scale along ¢ and measure ¢ on that scale; it
gives the product required.

Proof. From Fig. 13 f:%, or g—_—é, and ... O=4.8.

b B 1
If the lines ¢ and b are not parallel, draw u at one end of a
parallel to b, and complete the triangle; then from the extremities
of b draw lines parallel to a and to the third side of the first
triangle. ‘

- %

Fic. 14.

The two triangles are similar (since they are drawn equi-
angular) and the line ¢ giving the product is parallel to a.

For g=_c or ab=cu, and 4.B=C.

b!
Measure ¢ on the u scale and compare with the previous
results.

*(15) Vary the construction in the case where @ is parallel to b, by
drawing u at an angle of 60° with a.

(16) Draw two lines of lengths 7-2 and 3'9 cms. Let these represent
numbers to the scale of 0°7” to unity. Find the product by the methods
given. If unity be represented by 1°1”, find the product of the new
numbers represented by the old lengths 72 and 3'9 ems.
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Multiplication on Squared Paper.

ExamplE. Ifu=2",a=2838 ¢cms, b=682 cms., find the product
AxB.

Take a sheet of ordinary squared paper (inches and tenths).
Mark off as indicated in Fig. 15, 04 =a, OU=w, and UB=0.
Join OB and produce. Read off at once by the aid of the ruled
lines the length of 4C (AC being parallel to UB) on the 2 inch
scale ; it measures the product of 4 and B.

y N
Pl
2 H
1
/ H
o T
/ ]
1:5 '
- 1]
B 1
'
1 /| H
T
: :
1
/ H
5 4 !
1
H
/ 1
L1 1
AT H X
-5 QO 5| M 11U 15 A 2
/|
7 5 -
A~
2
I
Fie. 15.

The side of each small square represents the number 0-05.
With a little practice a fifth of this, or the number 001, can be
estimated by the eye. To render the figure clearer in its
reduced size, the side of the smallest square shewn represents
01 and not 0-05.
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Mark the points on 04 and 0A produced corresponding to
the numbers, 0-5, 1, 1'5, 2, 25, 3, 3-6 and 4, and to —1 and - 2.
On the line through O perpendicular to 04 mark off the
points corresponding to the same numbers.

This method is exceedingly convenient when more than one
number has to be multiplied by the same factor. Any other
number being given by a length a;, we set off 04, =a,, and then
read off the length of the corresponding perpendicular 4,(,
which is the produect 4, x B.

(17) Read off the products of B and 27, 31 and 0°6.

(18) What number is represented by b? Read off the products of this
number and 1-4, 2-3, 238 and compare the results with those obtained by
actual multiplication.

(19) Multiply graphically 175 by 116, 2-35, 4-64, 3-88 and 526, using a
scale of 27 to unity.

(20) Multiply graphically 0°18 by 5°'6, 2-4, 78, 6°9, using a scaie of
1" to unity horizontally, and 10” to unity vertically. Read the products off
on the vertical scale.

Equation to a Straight Line. Let any distance 0/ along
the line 04 (Fig. 15) be #, and the corresponding perpendicular
distance PM be y. Then, wherever M may be along 04 or 04
produced, y_b always
z U

=134
=tangent of the angle OP makes with OM
(called the slope of the line).

The equation y=1-342 is called the equation to the straight line
OP. =z and y are called the coordinates of the point P, and the
lines 04 and its perpendicular through O (lettered Oz and Oy in
Fig. 15) are called the axes of coordinates. PM or ¥ is called the
ordinate, OM or z the abscissa of the point P. 0 is the origin.

The straight line is called the graph of the corresponding
equation y=1-34z, and any number of points on it could.have
been obtained by giving « values 1, 2, 3, ... , and calculating the
corresponding values of y and marking* the points having these

*The points should be marked with a X, the two limbs of which must be fine
and sharp and intersect at the point.
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coordinates, or at once by drawing a straight line through O
at a slope = 1-34.

Take any point 4, on 04 produced to the left, then 04,
represents a negative number (4,). Read off what this number
is. Produce OB backwards through the origin and read off the
length on the 2” scale of the perpendicular line 4,0, This
number is the product Bx 4, How does the figure shew that
the product is negative ?

(21) Find the product of B and -0'8, -15, —23.

(22) Find the product of - B and 0°8, 1'5, 2-3 directly from a figure,
(set off b downwards).

Since distances upwards along Oy represent positive numbers,
distances downwards along Oy produced must be considered
negative.

Note also that since :—;{:% the equation g=1'34 represents

the line POC, produced indefinitely both ways.

(23) Draw the straight lines whose equations are
y=3x
y=x
y=15x
y=05z
y=01x
i.e. draw lines through the origin the tangent of whose angles with the
axis of x are 3, 1, ....

(24) In the third equation of the last exercise suppose 2 to have values
-2, -1,0, 1, 2, 3, in turn ; calculate the corresponding values of %, and
shew that the points having these numbers as coordinates lie on the line
already drawn.

Notice that y=0'1z, y=001lz, y=0001z, y=00001z are
successively nearer to the axis of 2, and hence y=0.z or y=0
must be the axis Oz itself. Similarly =0 must be the axis of .

(25) The lines a and b represent numbers to the scale u to unity.

a
b
u

Fic. 16.

Find by method (ii) the product of the corresponding numbers, con-
structing the u scale along c.
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(26) Find the product by method (i).

(27) Using paper divided into mms. or 2 mms., find the product of
1-74 and 0-82, 1-67, 231, 0'63, - 1-31 and - 2°36.

Different Scales. It is not necessary to use the same scale
horizontally and vertically. Suppose we wish to multiply 0-27
by 6'6; it would be better to represent the first number to a
scale 10 inches to unity, and the latter to a scale 1 inch to unity,
than to take the same scale and have lines differing greatly in
length. If the vertical scale be chosen as 10" to unity, then
the product must be read on that scale, for

¢4 04

BUTO0U
and if 04 and OU be measured on the same scale so must C4
and BU.

Perform this multiplication graphically ; mark points U where
0U=1, and 4 where 04 =66"; set up, perpendicular to 04,
UB=2-7", i.e. 0-27 of ten inches; join OB and produce and read
off on the ten inch scale the length of 4C.

(28) Multiply 0-037 by 8-1, 7°3, 56, 29 and 10°3.

.-:%; and, therefore, to find
the quotient %, we have to make but a slight modification in
our construction for multiplication.

Division. If C=4. B then 14

EXAMPLE. a and b represent numbers to the scale 2 ems. to wnity.

Find the line representing the quotient A and the mwmber itself.

a=392", b=1-34", B

‘Notice that if we do not wish to find the line representing the
quotient, but only the number itself, we may take any length
whatsoever to represent unity. This follows from the fact that

o_4 hatever the scale may be.

b B
(i) Draw any two intersecting lines (Fig. 17), from the point O
of intersection set off 0U=2 cms. along one, and 04 =a and
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OB=0 along the other. Mark the point C' on OU produced
where the line through A4
parallel to BU cuts it. Then
0C is the required length ¢;
read the length on the 2 cm.
scale and the required quotient
2-93 is obtained.

5 U c
Fia. 17,
(ii) Draw u (Fig. 18) perpendicular to & at its extremity. On
& construct a triangle similar to the one on 0 having its sides

Froe. 18.
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parallel to those of the first.
Then ¢ being the side corre-
sponding to % we have

%:é, .e. i4—=—B— or C=4.

w c 1 B

(iii) On squared paper
(mm.) take two axes at right
angles. Set off OU =2 cms.
(Fig. 19) and 0B=10 along
the axis Oz (the axis of z),
B4 =a parallel to the axis
Oy (the axis of y). Finally,
UC, perpendicular to Oz,
cutting 04 in C, is the
length  representing the
quotient. Read this length
off on the 2 cm. scale and
obtain the quotient C.

(29) Using squared paper find
the quotient corresponding to

3 g and & (Fig. 20),
where 5 cms. represents unity.
(30) Find by aid of squared
paper the quotients of 56, 47,

17

28, 1'8, -2'6 and —1'5 by 26, [
(The negative o’s must be set off v
downwards.)

(31) What are the equations O
to the sloping lines used in the Fre. 19.
two previous exercises ?

a

5

¢

d

Fic. 20,

T.G.
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(32) Find by method (ii) the quotient representing % where u represents
a
(nea
u
a
(22
u

Fra. 2L

unity. Change the length of % to 2” and
see that the quotient is the same, but

that the line representing it is altered.

(33) Find by direct graphical con-
struction the quotients of 28, 57, 4°5,

377, -211and -18 by -33.
Combined  Multiplication
and Division.

ExXAMPLE. a, b and c represent
three numbers and u represents
unity.  Find the line which
represents

itself. C

and the mumber

\

\

Y

\

[}

\ :

' \

' \

1

\ \

' \

M -

\‘ \

\ \

\ \
\ Y

o} u D A

[
a
]

Fic. 22,
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(i) Draw two intersecting lines and set off along one 0U=uw
(Fig. 22), 04 =u, and along the other OB=5 and 0C=¢. Mark
the pomt D on 04 where BD, parallel to AC, cuts it, then 0D is
the required length.

Proof. 0D OB 4.8

0~ g¢ 4 D=~
Construct the u scale along 0D and read off the number D.

(if) Multiply the ratio % by a set of numbers B, B,, B,, ..

unity being represented by 0-5 inches.

On squared paper mark two axes Oz and Oy (Fig. 23); set off
along Oz the distance ¢ and draw CA =a parallel to Oy.

J
c
2
“1
.
b3 7
A
3
P
A1
Lt
)
P L
Ll \
A i
yd H H
A ! !
% : H
pd : :
A i !
Z M [l
3 : :
: H !
Il ] H
P4 v v i
/' 1 : H
| | | X
o C B.
3 | 1 2
Fre. 28.

Join 04 and mark the points on it where the y ordinates through
By, B,, B, ..., cut it, viz. D,, Dy, D;. Then B,D,, B,D,, B,D,
are the required lengths. Read off the corresponding numbers.
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(34) Draw four lines of lengths 78, 2'6 and 3°1 cms. and 04 inch. If
the last represents unity, find the product of the numbers represented by
the third and the ratio of the first to the second.

Continued Multiplication.

ExAMPLE 1. Find o line representing the product A.B.C.D
where u represents unity, the numbers being given by the lines a, b, ¢, d.

Set off along any line 0U=u (Fig. 24),

04 = a,
0B=15,
0C=c,

and along an intersecting line 0D =d.

Mark X where 4X,, parallel to UD, cuts 0D produced.
w Xy 5 BX, » vx, ,, OD.
w X3 o5 CX; ’ UX, ,, 0D produced.

Then 0X, is the length required. Measure 0X,; on the u scale
and obtain the product 4. B.C. D.

0X, 04
Proof. ~0_D‘1 =00
0X,_0E
0x, or
ox, oo
0X, 0U"
Multiply these ratios together and obtain
0X,.0X,.0X,
0D.0X,.0X,
_04.0B.0C
A

or X,=4.B.C.D.

ExaMpuE 2. The scale being 1 duch to unity, find, on squared paper,
the continued product of the mumbers represented by a, b, ¢ and d,
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CONTINUED MULTIPLICATION.

123

Fic. 24.
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Mark positions for U, 4, C and D along Oz (Fig 25), and
set up UB; =0, parallel to the axis of 7.

Join! OB, and produce. Mark the point 4, on OB, where the
ordinate at 4 cuts it. Mark the point 4, where 4,4,, parallel
to Oz, cuts UB,. Join! 04, and produce and mark on it C,
where the ordinate at C cuts it. Join! OC, and mark Cj on
UB where C,C,, parallel to Oz, cuts it. If OC; be joined, the
ordinate at D would not intersect it on the paper, so mark O,
on the ordinate at 20U and join OC;, marking D, where the
ordinate at D cuts it. Then 2DD, gives the product required.
Measure this on the u scale and write down the product.

04 0U 0oC 0U 0D 20U,
44,"UB CC,” U4y DD, UGy°
04.0C.0D 2003
" A44,.CC,. DD, UB,.UA4,.UC;
But 44,=0U4,, CC,=UC,;
. 4.C.D 2
" DD, B’
. 4.B.C.D=2DD,.

Do the multiplication again, taking 4, B, C, on Oz and UD,
vertically. When the construction lines go off the paper use
the 2w line instead of the w line.

Proof.

Change of Scale. When the lengths a, b, ¢, etc., are long
compared with u, or when there are many multiplications to be
performed, the lines OC, 0D, ... in (ii) become so steep that their
intersections with the verticals CC, DD, ... will not be on the
paper. Similarly in (i) X, X,, X, ... get farther and farther
along 0D, and the lines joining them to U become more and
more nearly parallel to OD.

When this is the case the triangles become ill-conditioned.
To avoid this difficulty the scale must be changed. Thus, in
(i) if OCX, becomes an ill-conditioned triangle in consequence of
0 being much larger than in Fig. 24, either halve 0.X,, or double

1The lines need not actually be drawn, it is sufficient to mark the points.
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CHANGE OF SCALE

.

U

Fic. 25.
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OU, and proceed as before ; the resulting length 0X," must now
be measured on the scale of Ju.

Should OCX," be still an ill-conditioned triangle, take } of
0X, or quadruple OU; if still ill-conditioned take {5 of 0X; or
ten times OU, and read the answer on 1 or ;% of the u scale.

A similar change can be made in method (ii) if necessary.

4.B

(35) Find the value of , where

a=>572",
L=2"7",
c=14",
=4 cms.

(36) Find, on squared paper (mm.), the value of gx B, . B,. B;, where

% =1",
o =57 cms.,
¢ =68 cms.,
b, =28 cms.,
by=56 cms.,
b;=92 cms.
: 6:8x27x19x34
53
(38) Find the value of 4. B. (. D. H, where
a=63 cms.,
b=51 cms.,
¢=2'7 cms.,
d=3'8 cms.,
e=59 cms.,
and ©=2".

(37) Find the value o

graphically.

Continued Product of Ratios.

ExXAMPLE.  Find the line representing to the scale u to unity the

product % % %, the numbers being given by the lines
a=99 cms., =106 cms,,
b=>552 cms., f=1305 cms.,
¢=6"3 cms., = 165 inches.

d =346 cms.,
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Set off 04, 0B, 00, 0D, OF, OF from O along any convenient
line and OU along an intersecting one (Fig. 26).

Mark on OU the points X;, X,, X, where 4X, is parallel to
BU, (X, is parallel to DX,, EX} is parallel to F.X,.

Then 0X, gives the required product; measure this on the
u scale.

. 0X, 04 0X, 0C 0X, OF.
Proof Gp=0B 0X.-0D 0X, 0F
0X, 04 0C OF A ¢ E ~°

. _O‘ﬁzma—ﬁw or _X2= _____

(89) Draw lines of lengths 108, 78, 6°5, 43, 3'9, 2°7 cms., and find-the
continued product of the ratios of the first to the second, the third to the
fourth, ete., if 07" represents unity.

(40) Find the continued product of the first four numbers in Ex. 39 and

the value of (W)
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Integral Powers (Positive and Negative). Since 4* means
1 1 o .
AxAxAdxAd and 478 means —. =, -———, it is evident
o BT AxAxL
that the constructions already given cover the cases in which
numbers have to be raised to positive or negative integral
powers. It is, however, simpler to use the subjoined con-

struction.

ExaAMPLE.  Gaven a (1°62") and the unit line u (3-08 cms.) to
BT 11 1
construct lines giving A2, A3, A4, ... and TAPRP

Draw any two lines intersecting at right angles. Set off along
these 0U=u and 04 = 4.

Join Ud, and draw A4, A,A4,. A,4, ... so that each line is
perpendicular to the one drawn immediately before it, as in
Fig. 27.  Also, draw UB,, B,B,,
B,B, ... where the lines are
parallel to 44,, A,4,, ...

As
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Construct the u scale along a straight-edged piece ot paper.

Measure 04,, 04,, 04, ... on the u scale; they are 42, 43,
A%

Measure OB,, 0B,, OB, ... on the same scale; they are
1 1 1
iy

Proof. All the triangles drawn are similar, and hence

04, _04; 04, 04

04, 04\
OU (0 U) ’
but OU represents unity,
Lo4,=44
Similarly, 0‘4 <g‘2{> and
—A3, ete.

For the reciprocals we have
0B, 0B, 0B, 0B, _0U

Multiplying together
0B, (0 AN
o0~ (04)
. 1
‘o By=—y
Similarly, By=—5, et

For positive powers the construction stops at 4, since A4
would not be on the papei. Take, then, ;% of 04, and proceed
as before ; then

04, 04, .
504, 04,’
. 04,y
.04 =—1( <
5 10 0A3

A5=154°
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The succeeding intercepts must, therefore, be read on the
oth v scale.

Again 0B; is too small to measure accurately, take 10 0B,
and read on the 10 u scale.

The points ... B,, By, By, By, U, 4, 4,, 45, ... are points on
a curve called the equiangular spiral. The intermediate points
on this curve would give fractional and decimal powers, and
would thus enable one to find the values of such expressions
as A% A% Tt is not difficult to construct such a curve geo-
metrically.

Square Roots.
EXAMPLE. Find the square root of A, given a and u.
Set off 0.4 =a (Fig. 28) and 0U=w in opposite senses along

C

U o A
Frc. 28.
a straight line. On UA describe a semicircle UC4, and measure
0C where 0OC is perpendicular to UA.

Then C=W4.
Proof. Since UA is a diameter of a circle and OC a semi-
chord perpendicular to it ;
002=0U .04 ;
S 02=4 or C=iA.
By repeating this process we can find rapidly 4%, 43, ....

(41) Draw a line 6'5 cms. long. If unity be represented by 2, find the
powers of the number up to the 6%, and their reciprocals.

(42) Draw a line 6'5 crms. long. If unity be represented by 8, find the
square, cube and 4%t power of the number, and their reciprocals.

(43) Find the square and 4t roots of the given numbers in (41) and (42).
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Powers by Squared Paper.

ExaMpLE.  Construct « curve which gives by inspection the squares
of all numbers, integral and decimal, from — 3 to + 3.

Take two axes (Fig. 29) along the thick lines of the squared
paper, the axis of # horizontally and the axis of y vertically.
Mark the large divisions along the axis of 2z 05, 1, 1'5, 2, ...,
and those along the axisof y 1, 2, 3, .... Draw OP through 0,
and the point =3, y=3. In Fig. 29 part only of the squared
paper and the curve is shewn.

/
4
5 B/
B
4/ M
7T
1
i H
4 3 1
I’ :
K '
’ 1
4 1
3 , H
i / H
¥ ! P
/’ )
=295 T
2 K4 / Bt
, v
7/ [ L]
A 4 H
4 ]
1 ’ v
I. P A :
S3x ’ p + A H
' 54 PZid |
1 T PTA H
1 DTSy H 1
' 05 1 1|5 2| Bl 1215
1
H
1 Th
1
Fia. 29.

Mark any point 4, on OP by a sharp short line perpendicular
to OP.

From A4, go horizontally to 4, a point on the ordinate at 1,
put a straight edge along 04,, and mark the point 4, where
it cuts the ordinate through 4,.
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Proceed similarly with points B, (i, ..., along OP, taking at
least twelve points. In Fig. 29, to save confusion, the construction
lines for only 2 points 4, and B, have been shewn. With a
little care and practice the points 4, B, ... can be marked
accurately without actually drawing any construction lines
except OP, the ruled lines in the paper being a sufficient guide
for the eye. )

Take points also on OP, produced backwards through the
origin, such as Z,, and repeat the construction and find a
number of points like Ly. Join all the points so obtained by a
smooth curve drawn by freehand ; see that it 4s a smooth curve
by looking along it, and smooth down any humps and irregu-
larities that appear on it.

The curve thus constructed is such that the ordinate for any
point on it represents the square of the number given by
the corresponding abscissa. .

Proof. 0AA,is similar to 014,, and 04 =244, as lengths;

. ddy_04_Ad,

T 14, 01 A4d4;
But 44, and 04 represent the same number, viz. 4, though
to a different scale ; hence 4, being the number given by 44,
Ag=A2 ie. AA, represents the square of the number 4, the
scale being one half that on which 4 is measured.

A similar proof holds for negative numbers, and the construe-
tion shews that the square of a negative number is positive.

(44) Read off from the curve as accurately as possible the squares of 052,
068, 084, 175, 1-98, 2-24, 2°5, 2-85.

(45) Read off the square roots of 0-55, 0'85, 2'54, 3-8, 3°6, 4'54.

(46) Find the squares of the numbers given by lengths, 1, 1-8, 23, 4°6,
5, 6°7 and 7 em. if unity be represented by 2",

(47) Find the square roots of the numbers given by the lengths, 2, 3°8,
47, 6°9, 8'5, 103, 111 cms. if 2” represents unity.

Evidently the curve as drawn is not adapted for finding the
squares of numbers much greater than 3. To find the squares of
greater numbers, the scale of numbers along Oy must be made
still smaller than that along Oz. Thus for numbers from 0 to
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100 take 1 inch to represent 10 along Oz, but along Oy take 1 in~h
to represent 1000. The construction is almost exactly the same ;
the line OP joining O to the point for which z=100, y=100.

(48) Find graphically the squares of 2'7, 36, 77, 9'8, using a tenth scale
along the y axis. Find the square roots of 87, 73, 60, 31, 20 and 12.

(49) Construct a curve giving + of the squares of the numbers ranging
from -4 to +4. (The line O must now go through the point (7, 1).)

Equation to Graph. The curve just constructed (p. 30) is
such that every ordinate like BB, represents a number which is
the square of the number represented by the abscissa 0B. If,
then, y and z are these numbers, y=2? and since this equation
holds for all points on the curve it is called the equation to the
curve, and the curve is the graph of the equation.

It must be clearly understood that the equation y =22 is only
true if, by y and 2, we mean the numbers represented by the lines
and not the actual lengths of the lines themselves.

If y and z denote the lengths representing the number then
the equation y =22 is not true.

Let w be the unit length along Oy, and 2u the unit length along
Oz, then, referring to Fig. 29, we have 04 =2, 44,=y, and

since A4, A4,
04 01’

1 2

we get . g:%g, or y:%bw‘?, or (g>=(%>

The last form of the relation brings us back to the original
equation ; for g is the number represented by the length y, and

TZ% is the number represented by the length 2.

(50) If the scale along y had been 1” to unity, and 5” to unity along =,
what would have been the equation connecting the lengths z and y of the
coordinates of any point on the curve, and what would be the relation
between corresponding numbers? What length would represent the
square of the number 3?

(51) If @ be the unit of length along x, and b that along v, what is the
equation connecting the lengths z and y? If ¢=23"and b=1"5", what are
the lengths representing the squares of 1 and 3?

Another construction for the curve y=22 follows from the
geometrical method explained on p. 26,
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Take two axes on squared paper (Fig. 30); let unity be repre-
sented by 1" along Oz and }" along Oy.
Take any point A4 on Oz and

by the aid of set squares draw [ {% A
A A4, perpendicular to the line 1;,) )
joining 4 and — 4 (on Oy). -,

Mark on the ordinate at 4 8 AN
the point A, where 4,4, \‘\
parallel to Oz, cuts it. kS

Repeat this construction for [J6 v
a number of points like 4, and e
join the points like 4, by a 3
smooth curve; this is the 4 ] N
curve of squares. X

Proof. Asonp. 28, R

042=04, x 0(~4). 2

Taking all measurements -
in inches, we have, if 04 =g 17
and 04,=y, [6) 1 2 T3FA

2=y et

(z and y being in inches). > T

Hence, if the axis of ¥ be P
marked }" to unity, we have, ot
as numbers, v E

y=a2%
Fa. 80.

(52) Construct, by a similar method, a curve giving directly 1'6 times the
square of numbers from -3 to +3.

Cubes and Cube Roots.

EXAMPLE. From the curve y=x2 construct a curve giving the cubes
of members from —2 fo +2.

First construct the curve of squares, the origin being in the
centre of the squared paper, and the y scale % that of the z.

2

Take any point 4, (Fig. 31) on the curve, go horizontally to
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A4, on the vertical through 1, mark 4, on 4.4, where 04, cuts
it, then 4.4, gives the cube of 4.

Proceed similarly with a number of other points like 4,. Join
all the points similar to 45 (for negative as well as positive 2’s) ;
this is the curve giving the cubes.

i
3
3 7]
3
7. :
d 1
4 I 1
o 1
A T
2 o= Al
d T
y; JEA
’ T
b +
5 +
¥ 7
¥ -
7 +
(1 5l 4 4 R 0
P p: T
3 | M
7 7
T~ 2 - P » 1 :
| 210 5 1
T A
1 Eiai
_J D
i
I
It
Fie. 81,
Proof. AA,=04? (as numbers)
- ]-Ao and _1_12.:‘_%,
‘ 01 04

. 04%= 4.4, (as numbers).
If, then, y denote the number corresponding to any ordinate
AA,, and z the number for the corresponding abscissa, y=2?
is the equation to the curve.

Notice that for a negative number z, y is negative.
T. G C
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(53) Fin_d_thc_cubt;s_of 03, 05, 1-4, 147, 1°9, 2°1, 2'8 and 3°1, and the
values of V2, /375, V/87.

(54) From the curve y=2? construct the curve giving the fourth powers
of numbers from -1-8 to +18.

(55) Read off from the curve y=ax% the values of
42, &/8, VG, (1:22)%, (1'85)%.
(56) Draw a curve by the above construction giving % of the cubes of
numbers from 0 to 10. What is its equation ?

o
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+ & —7 0 e
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N
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TN Fid-E44 P
"')
|
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Curve giving Reciprocals. Let 1 inch represent unity.
Take the origin at the centre of the squared paper. Mark any
point 4, (Fig. 32) on the unit line parallel to Oz, mark also 4,
where 04, cuts the unit line parallel to 0y. Go horizontally to



CURVE OF RECIPROCALS. 35

A, the point where 4,4, cuts the ordinate through 4;. Then
A A, represents the reciprocal of the number 4.

Repeat this process for a number of points like 4; on the
positive and the negative sides of Oy. Join all the points like
A, by a smooth curve. This curve is such that the ordinate at
any point A, gives the reciprocal of the corresponding abscissa
number.

Proof. A4A,=14, and 44,=01.

14, A4,
Also —OT—‘(—)Z— >
AA:;———D% (as numbers).

(57) Read off from the curve the reciprocals of 035, 075, 12, 185, 2°15,
275, 384, ~0'65 and ~2-78.

(68) Using a construction similar to that on page 32, draw the curve of
reciprocals. [Take O4 =1 always, make O(-4)=z, then 04,=y.]
Equation to Curve of Reciprocals. Let y be any ordinate
number, and 2 the corresponding abscissa number; then evidently
from the construction
»714_—: %c or zy=1,
which is the equation to the curve drawn.
Since —p.~y=xy=1,
we see that the two parts drawn by graphical construction are
really branches of the same curve.
Notice also that for very big #'s the #’s are very small, and
vice versa, hence as we travel along 2 in the positive sense the
. curve approaches nearer and nearer to the axis but never crosses
it. Similarly, for very large negative 2’s the curve gets very
near to the axis of z (negative side) but is below it.
(59) Construct the curve which gives } of the reciprocals of numbers.
What is its equation ?

(60) Construct the curve giving 17 times the reciprocals of all numbers
from 1 to 100. What is its equation ?
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1
Curve of Reciprocals Squared. From the curve y=c,

construct the curve y=}~1{—2, giving the squares of the reciprocals of
numbers.

The construction is very similar to the last. Put a straight
edge along 04, where A4, is any point on the curve wy=1,
mark A, where the straight edge cuts the ordinate at I, go
horizontally to 4, on the ordinate 44, then 4.4, gives the
required reciprocal squared.

2 ., .
How does the construction shew that <—$) is positive ?

(61) Construct from the curve y:glc the curves

1 4
y:-z—'i—g and :I/:z_).
(62) Construct from y=£§ the curves
1 3
y:;s and z/:F
(63) From y=a* construct z2=x% or y:x%.

So far multiplication, division, etc., have referred to numbers,
represented by lengths. On page 1 it was pointed out that
a length may represent any other scalar quantity, the length
representing the unit quantity being given.

Areas to Scale. The product of two lengths o and b is
defined as the area of a rectangle having o and b as adjacent
sides '

The product of two unit lengths is unit area. To represent
the product of two lengths by a line, we must first choose a line
to represent unit area. This line may be the unit of length, or,
if more convenient, some other length.

The methods, for finding the lines representing areas or volumes,
are exactly the same as for multiplying numbers together ; it is
only the interpretation that is different.
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EXAMPLE.  Represent the product of axb by a line, unit areu
being represented by u, the unit of length.
Set off 0U=u (Fig. 33), 04 =a along any line, and UB=?
perpendicular to it, then
AC.0U=04.UB
or AC. u=a.b.

40 is the height of a rect-
angle having unit length as
base. Measure this on the
w scale; it gives the number
of unit areas contained in
a.b 0 u A

Note that although the
same line % represents unit
area and unit length, it is not
correct to say that lengths %
and areas are represented to
the same scale. They are different physical quantities, and all
we can say is that the same length represents the same number of
units of length as of units of area.

Cc

a

Fia. 83.

EXAMPLE. Lines of lengths T and 15 cms. represent the sides of o
rectangular room to the scale of 1" t0 10".  Find a line giving the floor
area, when the unit area is

(i) 10 sq. ft., (i) sq. yds.,,  (iii) 17 sq. ft.

(i) Draw, as in Fig. 33, 0U=1", 04 =15 ecms., UB="7 cms.;
produce OB to cut 4C, the perpendicular at 4 to 04, in C.
Then, as before, AC.0U=04.UB.

This equation remains true whatever the scale on which we
measure the lengths. If, then, we measure on the tenth inch
scale, each tenth represents one ft. (for O U represents 10 ft.), and
AC represents the height of a rectangle of base 10 ft. and area
equal to the given floor, i.c. gives the floor area in 10 sq. ft.

(if) Set off 0U =0-9" and measure 4C in tenths of inches.

(iii) Set off OU=1"7" » » ’
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Any Scale. Suppose the given lengths 04 and UB repre-
sented lengths to the scale 1” to z ft. and we want to find the
area represented by 04 x UB in sq. yds.

z being a number we can always set oft a line representing

that number of feet, and 2 of this will be OU, and 4C must be

measured on the scale Gj) to 1 sq. yd.

Thus, if 2=17 we must divide 1”7 into 7 equal parts (or if
more convenient 10" into 7 equal parts), 9 of these will equal
QU. Make the construction as before, and measure 4C on the
scale of 3" to 1 sq. yd.

(64) Lines of lengths 2:3 and 47 inches represent, to the scale of 10 cms.
to 7 ft., the sides of a rectangular room. Find by construction the floor
area in sq. yds.

(65) Lines of lengths 1'82 and 365 inches represent the altitude and
base of a rectangle to the scale of 1 inch to 350 ems., find geometrically the
area in 100 sq. cms.

*(66) Find a line representing the volume of a rectangular box, in ¢b. ins.,
whose edges are 7, 15 and 17 cms. in length, unit volume being represented
by 0°1 inch.

*(67) Find graphically the volume of a rectangular room whose dimensions
are given by lines of 32, 53 and 67 cms., the scale being 1” to 10,
(1) in cb. yds; (2) in 10 cb. ft.

Work done. The work done in lifting a body vertically
upwards is defined as the product of the weight of the body
and the vertical distance moved through. If the weight be
expressed in pounds and the distance in feet, the product is in
foot-pounds (ft.-lbs.). The work done in lifting a 1 Ib. weight
vertically through 1 ft. is thus 1 ft.-lb., and is the unit of work.
Obviously the work done in lifting 10 lbs. through'1 ft. is the same
as that done in lifting 1 Ib. through 10 ft. or 1 oz. through 160 ft.

EXAMPLE.  w represents the weight of o body to the scale u to a 1.
weight, s represents the vertical distance moved through, to the scale £ to
a fi.; find graphically the work done in ft.-1bs.

Notice that wx f is the area representing a ft.-b., and wx s
the area we wish to find in terms of u x f.
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We can most conveniently do this by finding the rectangle
whose base is © or f and whose area is w x s.

(i) Set off 0U=u (Fig. 34) and OW =w along one axis, and
OF=f and 0S=s along an intersecting one.

Draw # X parallel to US and measure 0X on the f scale.

This gives the work done in ft. 1bs.

u
w
S
s
Fic. 84.
0X oW _
Proof. ~0—S=W or. 0XOU=OWOS,
L O0X . u=w.s.

Hence OX is the altitude of a rectangle whose base is u and
whose area is w.s; and therefore OX represents the vertical
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distance through which 1 1b. weight must be raised in order that
the given work may be done. If, then, OX be measured on the
f scale the number of units in OX will be the
number of ft -lbs. represented by w. s.

% d

(ii) Set off OF=f (Fig. 35) and OW =w along
any line, OS=s along an intersecting line, and
draw X parallel to FS.

ow _OF X

Th —— = —

o ox=Us’
SO OF. 0X=0W.08;
te. f.OX=w,s. /
Fic. 35.

OX therefore measures the weight which, lifted
vertically through 1 ft., requires an expenditure
of work represented by w.s. Hence measure 0X
on the u scale; it gives the number of ft.-lbs.
represented by w. s.

Fic. 36.

(68) If s is actually 6", which construction, (i) or (ii),
would be most convenient ?

(69) In the c.c.s. system the unit of work is an erg=dyne x centi-
metre. If d (Fig. 36) is the weight of a body in dynes and 1,000,000 dynes
é&; represented by u, find the work done in lifting the body through the

istance c.
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¥(70) The speed of a body is given by v (Fig. 37), where w represents a
foot per second. Find the time the body takes to go a distance D, repre-
sented by d ; f represents a foot.

v

Fic. 37.

(71) The weight of a body is given by a line 4” long, the lb. being
represented by 13 ems. If 1 ft. is represented by a line of length 47,
find the work done in lifting the body through a distance given by a line
of length 15"

(72) Find graphically in ft.-tons the work done in raising a body, weight
075 ton, through a distance of 23-2 ft.

Moment of a Force. If a force be applied to the arm of a
lever, the turning moment or torque of the force about the axis
(fulerum) of the lever is measured in magnitude by the product
of the force and the perpendicular on its line of action from the
axis. The geometrical representation of a moment is (like that
of work done) an area. The difference between the two products
we shall see later.

(73) A straight bar PQ, 12 ft. long, is hinged at @, a force of 13 1bs. is
applied at P making an angle of 35° with PQ. If a force of 1 1b. be
represented by a line 1 em. long and if 1 ft. be represented by 0°1”, find in

two ways a line which represents the moment about @, and read off the
moment by scale.

MISCELLANEOUS EXAMPLES. L

1. Draw the lines a, b and ¢ of lengths 47, 3'9, and 52 cms. Find

lines representing %, A. B, Ag , to the scale of 05" to unity, and the
numerical values of those quantities.

2, Find a line which represents the fraction & to the scale of 9 ems.
to unity.

3. Determine graphically the value of 6 and /6.
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4. Find a line whose length represents ~/7°2 to the scale of 07 inch
to unity, and read off the value of the square root.

5. Construct the line whose equation is 17y =58, and from the line
3x58 37x58 and 46x5°8
177 17 17
6. Construct geometrically the curve y=2'72% and find the values of

27x 412, 362x27 and \/;_g

read off the values of z

7. If a line of length 72 cms. represents unity, find the product of the
ratio % and C, where a =348, b=1-85" and ¢=1-62", 208", 855", 4'28"
in turn.

8. In constructing the curve of cubes, unity is represented along Ox by
2" and along Oy by 05”. What is the relation between the lengths
« and y for any point on the curve ?

9, Find the product 4 . Bin three ways, where ¢ =87 cms., b=4"8 cms.
and w=1-62".
10, w=2-3"represents, to the scale 2 cms. to 1 lb., the weight of a body ;
h="7-2 cms. represents, to the scale 1 cm. to 1’, the vertical distance the
body is moved through ; find the work done in ft.-lbs.

11, Construct geometrically the curve xy=3'2, and find the values of
3°2 times the reciprocals of 1-3, 27, 4'2 and 0°8.
12, By aid of a straight line divide 2-72, 0-85, 364, 1'88 in turn by 1-35.

*18, The volume of a pyramid being % base area x height, find graphically
the volume in cubic feet when the base is a rectangle, the sides of the
rectangle being given by lines of 7-2 and 39 cms. and the height by a line
of 4'3 cms., the scale being 2" to 1 foot.

14, To divide a set of numbers by 544 use a straight line graph, taking
the vertical scale (for the numbers to be divided) as'1 quarter-inch for 10,
and the horizontal scale (for the quotients) as 1 quarter-inch for 1. Obtain
‘from your graph the quotients of 60 and 218 by 5-44, and verify by
calculation with the tables. Explain why the graphical method gives the
result. (Military Entrance Examination, 1905.)

0 %é’;g Find graphically the values of 238, 18°3, 47°5 when multiplied by

547"



CHAPTER IIL
GRAPHICAL MENSURATION.

THE chief problem studied in this chapter may be concisely
stated as follows : Given an area bounded by straight or curved lines, to
Jind a length which will represent fo a given scale the magnitude of the
area.

The process for effecting this is called reducing the given area
to unit base. The required length is the altitude of a rectangle
whose base is the unit of length and whose area is equal to the
given area.

The Triangle. The area of a triangle being half the pro-
duct of the base and altitude, if we can find another triangle
of equal area having one side twice the unit of length the
altitude of this second triangle measures the area.

Method I. Transfer 4BC (Fig. 38) to drawing paper. Draw
through A a line
parallel to BC; --------------
with B as centre,
describe an arc of
a circle of radius
2 inches cutting
A4, at 4, (or
put. a scale at B
in such a position
that BA, = 2").
By the ald of set
squares, draw CD
perpendicular to
B4,. Put the
mch scale along
CD and read off p, the number of square inches in ABC.

Fia. 38.
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Proof. Since 44, is parallel to BC, the area of 4B(C=area
of 4,BC; and, since B4, =2 inches,
the area of 4BC=%x2xp=p (sq. ins.).

(1) Draw a triangle having sides 3-7, 2'8 and 4°3 inches, and find a line
giving its area in sq. ins. (In this case 2 inches is less than any perpen-
dicular from a vertex to the opposite side, so take 4 inches for B4, and
read p on the " scale.)

(2) Draw a triangle having sides 9, 7'3, 56 cms. and find a line giving
the area in sq. cms.  (Take BA4,, 10 cms. and read p in mms.)

Method II. Since the lengths of B4, and CD may be inter-
changed without altering the area (i.e. we may make CD=2
inches or in general=2u), if BDC be kept a right angle, the
line from 4 to the base, parallel to BD, measures the area.

Transfer 4BC (Fig. 39) to drawing paper. With (' as centre
describe an arc of a circle of radius 2 units. Place the set
squares, in contact along one edge, so that an edge of one going
through B is perpendicular to an edge of the other going through
C'; a position can easily be found for the set squares in which
these edges intersect on the arc at D (say). In this position BD
is the tangent to the arc at ) and CD is the radius to the point
of contact.* Move the B set square, parallel to itself, until the
edge passes through 4, and draw A4FE to cut the base in E.

Measure 4E (=p); it gives the area of 4BC (328 sq. ins.).

Proof. From (Fig. 39) we see that the areas 4BC and 4,BC
are equal, and that the area of the latter is
14,0 xaltitude=44E . 2,
and hence 4E measures the area in sq. units.
‘When does this construction fail? See that the difficulty can
be got over by taking u, $u, }u, ... instead of 2u.

(3) Repeat this measurement by describing a semicircle on BC and
setting off a chord, CD=2u, in it, and then proceed as before.

(4) Find the area in sq. inches of the triangle whose sides are 7°5, 63
and 47 cms.

Method III. Transfer 4BC (Fig. 40) to drawing paper. Set
off along BC, BD=2u. Mark the point E on 4B where CE,

*D could be found with the right angle of one set square only if the corner
were perfect and not rounded by use.
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Fia. 40.

parallel to 4D, cuts it ; measure EF (=p), where EF is perpen-
dicular to BC'; p gives the area (158 sq. ins.).
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Proof. Join DE;
then (as areas) 4EC=DEC, .. ABC=EBC+DEC=EBD,
and the last triangle has 2u for its base.

(5) Repeat the construction, taking B4 and 4C as bases. Is this
construction always possible ?

Rectangle. Parallelograms and rectangles can be treated by
the method given for quadrilaterals in the next section ; but the
following way is a little simpler.

Draw a rectangle ABCD whose height B4 is 8'5 cms. and
hase BC is 32 em. To find its area in sq. inches, set off along

A

BA, BU=1" (Fig. 41) and draw 4F parallel to UC. Measure
BE in inches, and the number so obtained is the area of 4BCD
in sq. inches.

This is like the old construction of pp. 8 and 9 over again
and needs no further demonstration.

Quadrilateral. Transfer the quadrilateral 4BCD (Fig. 42)
to drawing paper. With B as centre, describe an arc of radius
29 (27), and draw the tangent DE to it from D (or describe a
semicircle on BD, and set off BE=2y in it). From A4 and C
draw 44, and CC| parallel to BD, and measure 4,C| which
gives the area of 4 BCD (257 sq. inches).

Proof. Join B4, and BC; ; then (as areas) 4BD=_4,BD and

BDC=BDC,, .. ABCD=4,BC,, a triangle whose altitude is
2u and base 4,0;.
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(6) The sides of a quadrilateral, taken in the order ABCDA, are 37,
2, 4 and 2'8 inches, the angle 4 BC is a right angle; find the area (i) by
using the diagonal 40, (ii) %y using BD.

(7) From a point O in a field lengths are mecasured 04 =35 ft.,
OB="72 ft. and 0C=51 ft., the angles A0B and BOC being 55° and 50°
respectively. Draw the figure O4BC to scale (2 cms. to 10 ft. say).
Reduce the figure to unit base, and determine the area marked out on the
field by the contour 04 BC.

Fic. 42.

Re-entrant Quadrilateral. The construction already given
holds for a re-entrant quadrilateral. Transfer 4BCD (Fig. 43)
to drawing paper and proceed exactly as before. In this case,
using the diagonal BD, 4, and (; are on the same side of E.

Measure 4,C; in inches, this gives the area in sq. inches (0-97).
Notice that 4,C; is now the difference between 4D and CyD
instead of the sum

Proof. Join BA, and C4,; ABCD is now the difference between
the triangles 4BD and CBD, and B4AD=BA,D, BCD=BC,D.
Hence BADC=BA,D-BC,D=BA4,(C;,

a triangle of altitude BE (2u) and base 4,C;.
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#If C, in Fig. 42, be moved nearer and nearer to BD, BCD
gets smaller and smaller and vanishes when C is on BD. If C be
moved still further, so that it crosses BD, the triangle becomes
negative and has to be subtracted from 4BD. Corresponding to
this change of sign of the area, there is a change in the sense of
the boundary as determined by the order of the letters. In
Fig. 42 the boundary, in the order of the letters BCD, is described

Fie. 48

clockwise, whereas, in Fig. 43, the boundary, taken in the same
order, is described contraclockwise. On changing the sense of
the boundary of an area, we must, therefore, change the sign of
the area The equation 4BCD=4BD+ BCD holds, therefore,
for both Figs. 42 and 43, and since BCD= — CBD, we have
ABCD=ABD- (BD,

where the three areas have the same sense to their boundaries.
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It is usual to consider an area, whose boundary is described
contraclockwise, as positive, one with a clockwise boundary as
negative. In Fig. 43 4BCD is a negative area, but BADC is
a positive one.

(8) Given BAD=60°, AB="72, AD=6, BC=5 and CD=3"3 cms., find
the area in sq. inches.

* Cross Quadrilateral. If Cis taken on the other side of
AB or AD the figure is called a cross quadrilateral, and the
area is still the difference between 4BD and CBD.

C

- W

e e m e ————— e ——— =

Fic, 4.
. Transfer the annexed figure 4BCD (Fig. 44) to paper and
reduce to unit base as before. See that 4,C; (0-65") still repre-
sents the area 4BD —the area DCB. Hence the area 4BCD is
that of the triangle 40D — the triangle BOC. On going round the
figure 4BCD in the order of the letters from 4 back to 4, it is

seen that 40D is described clockwise and BCO contraclockwise.
7.6, D
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The triangle 40D being greater than BOC, the figure 4 BCD,
taken in the order of the letters, is negative, but ADCE is
positive.

(9) Given 40=12, D0O=21, C0=04 and BQO=0'8 inches, and
COB=110°; find the area of the cross quadrilateral in sq. ins.

Polygons (including the quadrilateral as a particular case).

Transfer ABCDEF (Fig. 45) to drawing paper. Produce
4B both ways. With set squares mark C; on 4B so that CC,
is paralle]l to DB ; mark D, so that DD, is parallel to C,E,

E

1
i
1
1
1
I
'
1
'
[
1
'
T
i
'
'
1
'
v
1
'
v
[l
|
i
1
1
'
'

Pyl

Fia. 45.

then on the other side mark F, so that #,F is parallel to 4F ;
find the area of EF,D, by reducing to unit base; this is the
area of ABCDEFA (19 sq. cms.).

In general, to reduce any polygon to a triangle having its
base on a side 4B of the polygon, put a set square along the
line joining B to the next but one vertex D, and bring down the
omitted vertex (' to C; on 4B by a parallel to BD.

Then put the set square along the line joining C{ to the next
but one vertex E, and bring down D to D; on AB as before.
This process is to be continued until only one vertex is left
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above AB. Should the construction lines become awkward, the
transformation can be transferred to the end A4 of 4B, or a
new base line may be taken on another side of the polygon.

Proof. Since BCD=BCD in area
the hexagon 4 BCDEFA = the pentagon 4C;DEFA.
Join D\ E ; then, since C,DE=C.DE
the pentagon AC;DEFA =the quadrilateral 4D, EFA.
Join FE ; then, since ~AEF=AEF,
the quadrilateral 4D, EFA =the triangle F\.D E.
(10) Reduce the same polygon to a triangle having its base (i) on BC,
(ii) on AD.
(11) Reduce the re-entrant pentagon 4 ZDCEB (Fig. 46) to unit base.
AB=45", B(O=288", AE=606", ED=3§"

F1c. 46.

ExampLE.  To find the area between o polygon and one enclosed
within it.

Instead of reducing the two polygons separately, the mensur-
ation may be effected by a continuous process.

Transfer the figure 4BC... (Fig. 47) to drawing paper.
Produce KH to cut F4 at L, then ABCDEFA - HKJIH =the
re-entrant polygon ABCDEFGHIJKLA when G and L are
coincident.

Reduce this polygon to unit base as before (32-3 sq. cms.).
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For many-sided figures the process is tedious and errors may
easily accumulate unless very great care is taken. In such cases,
and for curved boundaries, the strip division method (p. 58) may

B

F

FiG. 47.

be used. The planimeter, where one is obtainable, is, however,
best for such cases.

(12) ABCDEA is a small pentagonal field, the sides 4B, BC and AF
were measured and found to be 136, 52 and 95 yds. long respectively, and
the angles ABC, BOD, DEA and BAB had magnitudes 75°, 70° 60° and
50°. Draw a plan of the field to a scale of 1 cm. to 10 yds., reduce the area
to unit base and determine the area of the field in sq. yds.

Circular Arc. Draw a circular arc AB (Fig. 48) of radius
3 inches subtending 90° at the centre. Draw the tangent 425,
to this at 4. Set the dividers so that the distance apart of the
end points is about 1'5”. Step off the arc from B towards 4
with alternate clock- and contraclockwise sweeps, prick a point
on 4B, where the last semicircular sweep would cut it. From
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this point make as many steps along 4B, as were taken for
the arc, mark B; the end of the last step. Then AB, is very
roughly the length of 4B.

Adjust the dividers again so that the length of step is about
3" (roughly), and
repeat the operation;
you will come to a
point B, near B.

‘Which most nearly
gives the length of
the arc B4, BA, or
B4,, and why?

Adjust the dividers
again so that length
of step is about 4"
(roughly).  Repeat
the operation again,
and find a point B, A B
on 4B. Can you F1c. 48
distinguish between B, and B,!

AB, is approximately the length of the arc AB.

Professor Rankine gave the following construction for finding

as a straight line-
the length of a
circular arc 4B.
Produce the
y chord 4B (Fig.
49) to € making
BC=%4B. Draw
the tangent at B,
and with C as
A B ¢ centre  describe
Fuc. 49. the arc 4D cut-
ting BD at D, then BD is the length of the arc 4B approxi-
mately.
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For an angle of 90° the error is about 1 %, so that the method
should not be used for arcs greater than a quadrant.

(13) Draw a circular arc of radius 4” and subtending 50° at the centre.
Measure the length of the arc in ecms. by the two methods given.

(14) Draw the circular arc whose base is 105 cms. and arc length 11°4 cms.

In this problem the length 4B is given and therefore AC is known.
The point D is therefore given by the intersection of two circles. The
centre of the circular arc AB is therefore found as the point of intersection
of the perpendicular at B to BD, and the perpendicular to AB at its
mid-point.

For the arc of a semicircle there is a method due to & Polish
Jesuit, Kochansky (circa 1685).

Draw a semicircle 4BC (Fig.
50) of radius 3”. Draw a tangent
at one end of the diameter (B);
set off BD so that BOD=30"
From D step off DE=three
times the radius, then AE is the
length of the arc 4CB nearly.! c
Any arc greater than a semi-
circle can be now found by first L
finding the length of the semi-
circle by the above construction
and the remainder by Professor
Rankine’s construction.

Fie. 50.

(15) Find the length of a semicircular arc of 472" radius and compare
with twice the length of the corresponding quadrant given by Rankine’s
rule and the length given by stepping off the arc along a tangent.

1The theory of the construction gives a value of m=3814153 instead of 3:14159.
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Area of Circular Sector. Draw a circular arc 4B (Fig. 51)
of radius 35" subtending at the centre an angle of 70°. At any
point C of the arc draw a tangent, and step off C'B; equal to the
arc OB, and (4, equal to the arc C4.

Reduce the tri- B,
angle 4,05 to unit '
base by one of the
given methods, and
measure the alti-
tudeininches. This
number is the area
of the sector A0B
in sq. inches.

Proof. If the arc
be supposed divided Q
up into a very great Fra. 51.
number of small parts LM (LM as drawn is not very small, but
this is only because if it were very small the points L and M
would seem to the eye coincident). LM heing very small, it is
very nearly straight, and its area is therefore approximately
1 LM x the perpendicular (p) from O on it.

In addition, if all the chords like LM are equal, the per-
pendiculars are all equal, and therefore

Area of sector 40B is approximately equal to

1p x (the sum of the steps LIM)
=1pSLM. (Read: “the sum of all terms like LIL.”)

As the number of steps increases indefinitely the length LM
diminishes without limit; but SLM approaches and ultimately
becomes the arc 4B, p becomes the radius r of the are, while
1p=LM becomes the area of the sector.

Hence, area of the sector=area of 4,0B5,.

The formula for the area is: Area=$7%0,
where 7 is the radius, 8 the circular measure?! of the angle, and 76
the length of the arc.

1See Note 4, p. 374.
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(16) Draw a cireular sector of radius 8 vms. such that the base of the
segment is 9 cms.  Find the area in sq. inches.

(17) Find the area of a quadrant of a circle of radius 3-4 inches.

Area of a Segment of a Circle.

(i) Segment less than a semicircle. Draw a sector A0BC
(Fig. 52) of angle 75° and radius 4"; join 4B, cutting off the
segment 4 BC. Set off the arc along the tangent at C, CB,=CB
and C4,=C4.

Join BB, and draw
OB, parallel to it;
similarly, draw 04,
parallel to 4.4, then
A,4,B,B, has the
same area as 4BC.

Reduce this quad-
rilateral to unit base,
and measure the area
in sq. inches.

Fie, 52.

* Proof. Since segment 4CL
=sector 0ACB-AOAB=n04,B,- AOAB
= AOALBy+A 04y dy + 50BB + 4,4, BB, ~ A0AB
=N0A,By+0 044+ 0BB—n0AB+4,4,B\B,
. segment= A,4,B,B,.
A simplification is effected by taking C'at 4, so that 4, is at

4 and the quadrilateral reduces to a triangle 4B, B,. Draw the
figure and make the construetion. The proof then simplifies to:

segment 4 BC =sector 40BC - A 0BA
=2 A40B,- »r40B,- OBB,
=AA0B, - A 40B,—» 0B, B,
=nA4B,B,.
Find the area of this triangle and compare it with the previous
result.
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(18) Take A0B=60°, 04 =3". TFind the area graphically, and com-
pare with the value of 4'5 < 73" - %§)

2
(The formula giving the area is A:% (o ~sin2a), where » is the radius
and 4 0B =2 in circular measure.)

(ii) Segment greater than a semicircle. Draw a segment
ACB (Fig. 53) of a circle such that 40B=150°, and repeat the

A B, A, B
Fic. 53,
previous construction (p. 56). A crossed quadrilateral 4,4,B,B,
is obtained. Reduce this to unit base.
Verify, by means of the formula in Ex. 18.
#*Proof. This is very similar to the preceding one.
Segment 4 CB=sector 0ACB+ A A0B
=A,4,B.By+A0,B, - 04,4, - 0B,B,+ AOB
=A,4,BBy+04,B,- 04,4 - 0BB,+ A0B
=4,4,B,B,.
For the same segment, draw the tangent at 4 and step off the arc
along it. The area is thus reduced to a triangle 4B5,B;. Find
the area of this triangle and compare it with the previous result.

(19) Reduce a semicircle of radius 7-3 ems. to unit base.

(20) Reduce a segment having three guadrants to its arc to unit base,
the radius being 3-2”.

Irregular and Curved Figures. The areas of figures
bounded by curves or many straight lines are best obtained by a
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planimeter. The method of strip division gives, with care, a
very good approximation.
Place a sheet of tracing paper over the accompanying figure
and draw its outline. Divide the distance between the two
O, Y

F1g. 54.

extreme points O and 0, into 12 strips of equal width. To do
this, set a scale slantwise between two parallel lines drawn at
0 and O, (the whole figure must lie between these parallels),
in such a position XY that there are 12 equal divisions between
X and Y.
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Mark the mid-points X;, X,, ... of these divisions, and
through these points draw lines parallel to X0.

Take a long strip of paper with a straight edge and add up
graphically the segments of the mid-lines intercepted by the curve.

The given area is approximately that of a rectangle whose
base is the width of the strips and whose altitude is the length
on the long strip. Calculate this in sq. ems. (53-2).

The approximation made is in the assumption that each strip
has the area of a rectangle whose height is the line through the
mid-point (the mid-ordinate) and of the given width, and this,
again, assumes that the little shaded areas outside the figure are
just balanced by the shaded areas inside.

A more accurate value of the area is obtained by using
Simpson’s Rule, viz. 3

i
Area—@[y0+1n+4(yl+y3+ D2y + Y+ . )];c%&

where the area is divided into an even number of %}}fy wide
strips of width #; y, is the length of the firsgpadid y, the
length of the second side of the first strip; 2 rly, y, I
the length of the first, and 7, the length o second side
of the second strip, and so on; shortly putﬁ%,s Y Yo Y YO
the lengths of the bounding straight lines of*the strips. 'Since
the number of strips is even, n must beﬁe@%ﬂ l‘he rule only
holds for an even number of/strips. .

Apply the rule to detegﬁune th a:'\ijq: of Flg 54. Here,
taking the strips from bop’com to t =0, _/1 is the length of
the first dotted line w1t]i1n the curvexy, the 'second ; the other
¥’s are not shewn:?% Y12=0 12)+.45Add the ordinates

E?g’

according to the rulegand com e result with that obtained
by the mid-ordinatefirule

Place the tracing paper o heet of gquared mm. paper and
count up the number of la quares wholly within the curve,
" and then the number of small ones between these squares and
the curves, estimating for any decimals of a small square. Find
the area by this means and compare with the previous results.

%
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(21) Obtain the area of the hexagon on p. 50 by the strip division method.
(22) Draw a semicircle of radius 3-1” on squared paper.
Find the area by

(1) The mid-ordinate rule. (2) Simpson’s Rule.
(8) Counting the squares. (4) Calculating from formula : Area=rr2

* Another Method for Figures bounded by Curved Lines.
For these figures it is usual to assume that the boundary can be
divided into parabolic arcs. In most elementary text books on
Geometrical Conics, it
is shewn that the area
of any parabolic seg-
ment, such as ACB
(Fig. 55), is equal to %
of the triangle having
as base the base of the
segment, and having
its vertex on the tan-
gent to the curve A
parallel to the base.

In Fig. 55 & of triangle 4CB=area of segment.

We may, therefore, choose any convenient point P on the
tangent, divide 4P into three equal parts, produce to @, where
PQ=one of these parts, and join @B. Then the area of 4GB is
the parabolic segment area

(23) Find the area of the circular segment of Exercise (16) by treating it
as a parabolic segment.

Any curved area such as 4BCDEA (Fig. 56) may be divided
into a number of approximately parabolic arcs, 4B, BC,....
Each arc must be curved in one way only (i.e. must not contain
a point of inflexion) and through considerably less than 180°:
the procedure is as follows. Start with the base BC say ; draw
a tangent parallel to BC and produce 4B to cut it at X ; divide
BK into three equal parts and make BB, equal to four of these;
join CB;. Then CBB =given parabolic segment in area.
Again, produce B,C to cut the tangent parallel to CD, and take
the & point €] on B,C and join C\D. Then CC,D =area of corre-

Fic. 55.
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Fic. 56.

sponding segment. Proceed in this way round the curve and
reduce the curved area to the rectilinear one B,C\.D,E;4,B.
Reduce this to unit base in the usual way (69 sq. ins.).
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This method is, however, rather tedious, and errors due to want
of parallelism may, unless very great care be taken, lead to
considerable final error. It is generally better to use the method
of strip division and either the mid-ordinate or Simpson’s Rule
for such cases.

Volumes of Revolution. Any such volume may be found
by a double reduction. Suppose the given area in Fig. 57 to
revolve about the line X.X'; then it will generate a figure called
a volume of revolution. In particular, if a right-angled triangle
ABC revolve about its base 4B, it will generate a cone ; if a
semicircle revolve about its diameter, it will generate a sphere;
a rectangle about its base will generate a cylinder ; any triangle
about one side will generate a spear-head volume ; a circle about
an exterior line in its plane will generate an anchor ring; and a
rectangle about a line parallel to its base will generate a figure
like the rim of a fly-wheel.

The construction to be explained is one, therefore, of great
generality.

Make a tracing of the outline of the given figure.

Divide the area up into 10 equally wide strips, parallel to XX,
and draw the mid-lines for each of these as in Fig. 57. Only
the mid-lines are shewn.

Draw a line YV above XX and parallel to it at a distance

¢ inches, given by a=1;_(—) (that in Fig. 57 is purposely not at
the correct distance).

Project the end points, like 4B of each mid-line up to 4'B,
on YY, A4’ and BB being perpendicular to YY. Join 4" and
B to any fixed point 0 on XX, cutting 4B in 4, and B,
Connect all the points like 4,B; by a curve. The area of this
curve is proportional to the volume. If a planimeter is not
obtainable, add up all the mid-lines like 4,B; of the new figure
(called the Pirst Equivalent Figure) by the straight-edged paper
method, and obtain the area approximately in square inches;
multiply this by 20; the result is the volume of revolution in
cubic inches.
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*Proof. Suppose the area divided up, not into 10 only, but
into a very great number of equally thin strips, of which 4B
may represent any one. The strip must be considered infinitely
thin, so that it is all at the same distance from XX. Let z be
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Fiac. 57,

the length 4B, and % the width of the strip, then, however small
h may be, Zhx (read : “the sum of all terms like hz”) will be the
area.

Let y-be the distance of 4B from XX, then when the strip
revolves round XX, keeping always at the same distance y from
it, it will generate a very thin hollow cylinder. The height of
this eylinder is #, its circumference is 2wy and its thickness is % ;
its volume, therefore, will be 2zyzh,
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All the other strips into which the area has been divided, will,
on revolution about XX, also generate very thin hollow cylinders,
and the sum of all these hollow cylinders is the volume of
revolution of the original area. Hence the

volume of revolution = 22ryhz.

In this sum, » and y change from term to term, but 2=/ is the
same, and is therefore a common factor to all terms in the sum.
Hence, if 7 is the volume,

V= 2xh Zay.

Let o be the distance of Y'Y from XX, then, from the method
of constructing the First Equivalent Figure, we see that 04,B,
and 0A’'B are similar triangles, and therefore

AB, A'B AB =z
Ty a o @
hence wy=a.AB,.
A similar equation holds for all the strips like 4B, and hence
Zhay =Zah A, B,
=0 Zhd,B,.
But 7.4, B, is the area of one strip of the Equivalent Figure,
and ZhA4, B, is therefore the whole area.
. Zhay or hZzy =« x area of Equivalent Figure,
. 9wh Zay = 2ma x area,
i.e. V'=2ma x area of Equivalent Figure.
If, then, in our special case

’”

=", 2wa=20"
m

and V=20 x area of Equivalent Figure,
and is in cubic inches if the area be in square inches.

(24) Find the volume generated by a right-angled triangle 4BC in
revolving about its base 4 B, if 4 B=4", BC=3".

*(25) Find the volume of a sphere of radius 1-73".

*(26) The coordinates of three points 4, B, ¢ are, in inches, (05, 0°6),
(1, 2°5), (3'5, 0). Find the volume generated by the revolution of 4 BC
about the axis of . Take point (3'5, 0) as O.

*(27) Draw a segment of a circle of base 44" and height 2-9”. Find the
volume generated by revolving the segment about its base,
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MISCELLANEOUS EXAMPLES. IIL

1. Reduce an equilateral triangle of side 91 cms. to unit base u=1" by
the three methods given, and compare these determinations of the area
with those obtained by (i) measuring the base and altitude and taking
half the product, (ii) by calculation from the formula.

"
Area:% .a?. \?3,

a being the length of a side in inches. (1 inch=2-54 cms.)

2. The coordinates of four points 4, B, 0, D are (2-3, 0), (4'1, 2°1),
(12, 4°9), (-0°8, 2'2) in inches. Find the areas of the quadrilaterals 4 BCD
and ACDB.

D

3. Find thearea of the figure 4 BCDE
(Fig. 58) in square inches, where 4 B=57
cms., BC=9'8 cms., and 4ED is a cir-
cular arc for which ZF =3 cms.

mi-----17

B c
Fic. 58.

4, The coordinates of 5 points 4, B, C, D, E are (1'1, 2-2), (49, 0'8),
(7°3, 5'8), (5°1, 7'3), (08, 5-2) cms. Find the area of A BCDF in sq. ins.

5. Find also the area of ACDEB.

[If O be the point of intersection of 4C and BE, then A
the difference of the areas OCDE and 4ABO has to be
found; the construction for effecting the reduction to
unit base is exactly as on p. 50.]

6. Reduce to unit base the area of the lens section Cp---=f--4D
shewn (Fig. 59), AB=4", CE=1'8", ED=1'5", (i) by E
drawing the figure to scale on squared paper and counting
up the contained squares; (ii) by reducing the segments

separately to unit base.

B
Fic. 59.

7. Draw a circular sector of radius 12 ems. and angle 150 degrees. Find
the area of the segment (i) by the construction given in the text, (ii) by
treating it as a parabolic segment, (iii) by dividing it up into eight strips
of equeﬁ width and adding the mid-lines.

T.G. E
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*8. The circular segment of question 7 revolves about its base ; find the
volume of the solid generated.

9. One side of a field is straight and of length 200 ft. At distances
increasing by 20 ft. from one end, the width is measured and found to be
70, 100, 100, 130, 137, 180, 130, 145, 100 ft. Find approximately the area
of the field.

10. Reduce to unit base the arca 4 BCD, where 4 B=59, AD=8"7 cms.
and 4B is perpendicular to 4D, and BCD is a circular arc of 125 ems.
length, convexity outwards. (The arc may be drawn by reversing
Rankine’s construction.)

11. The corners of a triangular field PQR are determined with reference
to a base line 4B by the dimensions PAB=57°, PB4 =94, QAB=64°
QB4 =111°, RAB=130°, RBA =47°. 4B is 50 feet long. Drawa diagram
to a scale of an inch to 100 feet, and determine the area of the field.

(Military Entrance Examination, 1905.)

12. A triangle has sides of 3'9, 3'2 and 4'2 inches. Draw the triangle,
measure each of the angles with a protractor and find the area.

13. Test or prove geometrically the accuracy of the following graphical
method of determining the area of a quadrilateral ABCD: ““Join BD;
through C draw CE parallel to BD meeting 4B, produced if necessary,
in Z; with centre Z and radius equal to twice the unit of length, describe
a circle; from 4 draw a tangent to this circle, to meet DX, which is
parallel to 4B, in X. Then the number of units of length in 4X is the
number of units of area in ABCD.” Data for the test figure: BD=2 in.,
AB=16in., BC=18in., CD=16in., DA =13 in.

(Military Entrance Examination, 1905.)

Cc

Fia. 60.

14, In a survey of a field 4 BODE, of which a sketeh is given (Fig. 60),
the following measurements were made: AB=84 yards, AC=173 yards,
4AD=175 yards, AE=130 yards, L BAC=42°, LCAD=36°, LDAE=20",
Draw a plan to a scale of an inch to 30 yards, and find the area of the field
from your plan. (Naval and Engineer Cadets, 1904.)
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E
A
D 90 Ed F
90° 920°
C B

Fia. 01.

15. Above (Fig. 61) is a rough plan of the city of Paris drawn to the
scale of 1 centimetre to the kilometre. Find the area of the city in square
kilometres by measuring any lines you like. (Naval Cadets, 1903.)
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Fia, 62.

16. In any way you please, find the area of the given figure (Fig. 62)
to the nearest square inch., State your method.
(Naval and Engineer Cadets, 1905.)



CHAPTER IIIL

VECTORS AND THEIR APPLICATION TO VELOCITIES,
ACCELERATIONS, AND MASS-CENTRES.

Displacement. If a point moves from O to 4 (Fig. 63)
along some curved or straight path, the line drawn from O to 4
is the displacement of the point. This displacement is inde-
pendent of the actual path of the point, and depends only
on the relative positions of the new and the initial points.

B A;
Fic. 63.

To specify the displacement, there must be given not only
the magnitude of 04 (e.g. 1'32 inches), but the direction or lie
of the line (e.g. the North-South line) ; and not only the direction
of the line, but the sense of the motion in that line (e.g9. towards
the North).

The displacement OA,; though equal to OA in magnitude and
direction is of the opposite sense.

Displacements may be represented by lines drawn to scale, if
the lines be placed in the proper directions and given the required
senses. The sense of the displacement is indicated by an arrow
head on the line.

To indicate that the line from O to A4 involves direction and
sense as well as magnitude, it is convenient to print the letters
in block type; thus OA means the length OA in its proper
direction and with its correct sense.
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In writing it is extremely difficult to keep the d.stinction
between the block and the ordinary capital, and so, when writing,
it is better to use a bar over the letters; thus, 04 (*Maxwell”
notation) means the same thing as OA.

Sum of Two Displacements. If the point moves trom
0 to 4 and then to B, the final displacement from O is OB,
while the displacement from 4 is AB and that of 4 from 0 is
OA. These f-cts are symbolised by the equation

OB=0A + AB.

Such an equation does not mean that the length OB is the
sum of the lengths 04 and 4B; but simply, that the final
position of the moving point is the same whether displaced
directly from O to B, or first to 4 and then from 4 to B.

Sense and Sign. If the second displacement brings the
point from A to O (so that B is at 0), then the final displace-
ment is zero, and

0A+A0=0, or OA= - AO.

Hence, changing the sense of a displacement changes the sign
of its symbol. (See also p. 6.)

ExaupLE. A4 train travels due N. for 20 miles, then N.E. for
10 miles, what s ifs displacement? — Amother train goes 10 miles
N.E. and then 20 miles N., show that s tvtal displacement is the
same as that of the first train.

Represent 10 miles by 0°5 in.

(i) Set off 04 =4" (Fig. 64) vertically upwards and 4B=2"
making 45° with 04 produced. Measure OB in {% in. and
divide mentally by 2; this gives the magnitude of the displace-
ment (28). With a good protractor (the vernier protractor is
best), or by aid of a scale of chords, measure 6 (15°); then the
displacement of the train is 28 miles 15° to the East of North
(approximately). Measure ¢ also by the aid of p and a table of
sines.

Notice that OB ifself with the arrow head gives the displace-
ment, but, if it is necessary to state the displacement in words,
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we must give not only its magnitude but also the direction and
sense compared with some standard direction and sense—in this
case the line drawn fowards the North.

[It is perhaps as well to notice that, drawing
0A parallel to the bound edge of the paper
and towards the top of the page, is only the
conventional way of representing *towards
the North.” The line 04 will only represent
the true displacement when the book is placed
so that the arrow head on 04 does point
due North. ]

(o)

Fic. 64.

. (ii) Set off OB, =2" at 45° with the N. line, then 4" due N.;
arrive at B as before, for 0B, B4 is a parallelogram.

Order of Addition. The order in which two displacements
are added is immaterial ; as an equation

OA +AB=0B, +BB,

and the displacement B,B is equal to OA and OB, is equal to AB.

(1) A circus horse trots with uniform speed round a circus of radius
80 feet in 1 minute. Starting from the south position, give the displace-

ment in 15, 80, 45 and 60 seconds. Make the drawing to the scale 2 mms.
to a foot.

(2) A ring slides 5 ft. along a 7 ft. rod from E. to W. whilst the rod
moves parallel to itself 7 ft. S.F. Find the total displacement of the ring.
The rod now rotates through 70° about its West end in a clockwise sense,
the ring remaining in the same position relatively to the rod ; find the
total displacement of the ring, if it starts at the E. end of the rod.
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Addition of any number of Displacements.

ExAMPLE. A point is displaced successively from O to A, from
A to B, to C and to D, the displucements being given in magnifude,
direction and sense by O,A;, 0,B;, 0,C;, 0,D,. Find the resultant
displacement.

0,4,=42, 0B =792, 0,0,=105, 0, D;=4%1cms,
A4,0,B,=25° B,0,0;=120" and (,0,D;=80"

From any point O draw 04 (Fig. 65) equal and parallel to

0,4,; from 4 draw 4B equal and parallel to 0,B;; from B
B

Fie. 65.

draw BC equal and parallel to 0,C; ; and, finally, CD equal and
parallel to 0,D,. Then OD is the sum of the displacements
0D=0A+AB+BC+CD=0,A, +0,B,+0,C, +0,D,.
Measure 0D and the angle 40D ; these measurements give
the displacement in magnitude, direction and sense.

(3) From the same point O add the displaeerﬁents in a different order,

e.g. find
O,Al + 0101 + 01D1 + 01B1
0,D,+0,B,; +0,A,+0,C:,

and shew that the same resultant displacement is obtained.

(4) Find the sum of the displacements
O1A1 - OB] + 001 - OD]
and 0.~ 0,B;-0,D, +0,4;.

Since QA =-AO, to subtract a displacement AQ we have only to
change the sense and add.
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Relative Displacement. All displacements are relative, for
there is no point in space known to he fixed. The earth turns
on its axis, the axis moves round the sun, and the sun itself is
moving in space.

EXAMPLE  Guven the displacement of two poinis A and B relative
to O, to find the displacement of B relative to A.

In Fig. 66 OA and OB are the displacements relative to O;
then AB is the displacement of B relative to .

By B
But
AB=A0+0B;
. AB=0B-0A4,
o} A
Fia. 66.

and AB is the difference of the displacements of 4 and B
relative to 0.
If the displacement of 4 relative to B, viz. BA, had been
required we should have had
BA=B0O+0A=0A -0B.
Complete the parallelogram 04 BB; then
AB-0B,=0B+BB,.

The displacement of B relative to 4 may therefore be regarded
as follows. Give to both 4 and B a common displacement
BB, = A0, making the total displacement of 4 zero; then the
total displacement of B is the relative displacement required.

Vectors and Vector Quantities. Displacements are
examples of directed, or vector quantities. The magnitude of
the quantity—e.g. how many feet displaced—heing represented
to seale by a length, then, if this length be placed in the proper
direction and given the proper sense, we have a complete repre-
sentation of the vector quantity. Velocities of 20 and 30 miles
an hour due N. and E. respectively are represented by lines of
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lengths 2 and 3 inches respectively, if the lines be placed in the
given directions and arrow heads marked on them to give the
senses : the scale is 1 inch to 10 miles an hour.

To specify a vector, magnitude, direction and sense must be
given, and a vector is defined as a geometrical quantity (e.g. a
line) which has magnitude, direction and sense.

Position. A vector has no definite position, it may be con-
ceived as occupying any one of an infinite number of parallel

positions. )
In Fig. 67 AB and CD are equal vectors, and we write
AB=CD.
—
A B
—_—
C D
Fic. 67.

But by changing the sense of CD we have
AB= -CD, or AB+CD=0.
The connection between sense in geometry and sign in algebra
was considered on p. 70.

Notation. In order to avoid the repetition of the word
vector, Greek letters will often be used to symbolise them, the
corresponding English letter denoting the magnitude; a, b, ¢,
d, e denote the magnitudes of a, 8, v, 8, €1 Block letters are often
used in books to denote vectors—A, B, .. —this is the “Heavi-
side ” notation. Owing to the difficulty of wrifing these, small
Greek letters are to be preferred—‘ Henrici ” notation. When
the vector is denoted by the letters placed at its ends, block
letters will be used ; in writing, use the Maxwell notation.

Addition of Vectors. The process is exactly the same as
for displacements, the formal enunciation is: To add vectors,
place the first anywhere, at the end of the first place the
beginning of the second, at the end of the second the beginning

1For the pronunciation see Note B, p. 374.
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of the third, and so on; then the vector from the beginning of
the first to the end of the last is the sum of the given vectors.
The vector giving the sum is often called the resultant vector,
and in relation to this the vectors are called the components.
When the end of the last and the beginning of the first vector
coincide, the sum is zero and the vectors are said to cancel.

(5) Draw any five lines and give them senses. Denoting these lines by
o, B, v, 0, € prove that

a+fB+y+0+e=B+0+et+ty+ta=6+y+pB+ate
(6) Find the vector sum of
a- B+y-0+e=y-06-B+e+ta.

(7) T.he lengths of five vectors are 3'5, 26, 47, 62 and 7'8 cms.
respectively, and they point N., S.W., 20° 8. of E., 25° E. of 8. and E.
Find. the resultant vector, taking care to give its magnitude, direction and
sense.

Order of Addition. The order in which vectors are added
is immaterial.

In Fig. 68,
o=a+B+y+3,
but B+y=y+p,
oo=a+y+S+86.

By changing the order two at a time, any desired order may
be obtained, and hence the theorem is established.

(8) Draw a regular hexagon OABCDE, find the vector o such that
a+B+y+0+e+0o=0, where a =0A, 3=0B, .......

Average Velocity. When a body moves, its displacement,
from some standard point or origin, changes with the time.

The total displacement in any time divided by the time is
defined as the average velocity for that time.

This average velocity is then measured by a displacement and
is therefore a vector quantity.



76 GRAPHICS.

ExAMPLE. A train at 10 a.n. is 100 miles N.E. of London, at
noon it is 80 miles 15° N. of E. What is its average velocity ?

Draw OP, (Fig. 69) and OP, to scale, giving the displacements ;
measure P, P, on same scale and find its direction. Bisect PP,

N R

»U

o E
F1G. 69.
at M. Then P.P,is the total displacement, and P,M gives the
average velocity in miles per hour.

It should be evident, that, as nothing is known of the motion
between 10 a.m. and noon, the displacement in one hour is not
necessarily 4P, P,.

The average velocity means only that velocity which, if it
remained constant, would give the actual displacement in the
given time.

The average speed of a point for any interval of time is
defined as the distance traversed divided by the time.

(9) A man walks from O towards the S.W. for 4 miles and arrives at
A4 in 65 minutes, he then walks for 8 miles W. to B in 40 minutes, then
6°5 miles due N. to ' in 105 minutes. What are his average velocities
from O to 4, 0 to B, O to C, and what are his average speeds?

(10) A man walks round (clockwise) a rectangular field ABCD in
27 minutes. Starting at 4 he is at B (due E. of 4), distant 200 yds.,
in 7 minutes; at C, distant 150 yds. from B, in 16 minutes ; and at D in
21 minutes. What are his average velocities and speeds from 4 to B,
4 toC, 4 toDand trom 4 vack to 47?
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Speed and Velocity. A point moves on a curve from P
(Fig. 70) to P, in time f. Its displacement in that time is the
chord PP, and its average velocity is PTPl

During this time it travels over the distance PP; (arc) and
are T4 tP 21 is defined as the average speed.

If we take ¢ very small, then the are, the chord, and the
tangent at P become indistinguishable
the one from the other at P. At the
limit, when P, approaches nearer and
nearer and finally comes up to P, the
chord P, P produced becomes the tangent
at P, and the magnitude of the velocity
is the speed at P. The direction of P
motion is therefore always tangential to
the path.

At every instant of the motion the
point is moving with a definite speed in
a definite direction.

The smaller the time interval, the
smaller will be the vector PP;, and the
more nearly will the average velocity be o}
the same as at the beginning or end of Fua. 10.
the time interval. The problem of finding, in particular cases,
to what fixed value this average velocity tends, as the interval
of time is taken smaller and smaller without limit, belongs to
the Caleulus and cannot be discussed here. This limiting value
of the average velocity is evidently the velocity at the instant
under consideration, and its magnitude is the speed of the point
at that instant.

A velocity is specified by giving the speed, the direction and
the sense of the motion.

Speed is constant only when the point passes over equal
distances in equal times, no matter how small the equal times may

<U
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be, or the average speed is always the same whatever the time
interval.

Velocity is constant only when the speed is constant, and the
direction and sense of the motion remain unaltered.

A point moving along a curved path may have constant speed
but cannot have constant velocity.

Units. The unit of length being a foot, and the unit of time
a second, the unit of speed is a ft. per sec. often written 1 ft./sec.
Other units in common use are 1 mile per hour, or 1 m./hr., and
1 em. per sec. or 1 cm./sec.

DzriviTioN. The Velocity of a point is its rate of displace-
ment and is measured by the displacement in unit time, or the
displacement that would have taken place if the velocity had
remained constant.

Velocity is, therefore, a vector quantity and can be represented
by a line vector ; the length of the vector represents to scale the
magnitude of the velocity (the speed), the direction and sense of
the motion heing shown by the direction and sense of the vector.

Velocities are added or compounded like vectors since they
are measured by displacements.

ExaAMPLE. A ship 4s moving due W. at « speed of 15 miles an
hour ; « passenger Tuns across the deck from S. to N. at T miles an
hour, find the velocity of the passenger relative to the earth.

a
Fre. 71

Set off a (Fig. 71) from right to left of length 15 cms.; add
B of length 7 cms. drawn vertically upwards; then y the sum
(y =0+ B) gives the magnitude, direction and sense of the velocity
required. Scale y in cms. and measure the angle 6.
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(11) A ship sails N. relative to the water at 5 ft. per sec. whilst a
current takes it E. at 3 ft. per sec.; what is the velocity of the ship
relative to the earth?

(12) A river current runs at 2 miles an hour ; in what direction should
a swimmer go, who can swim 2°5 miles an hour, in order to cross the river
perpendicular to the banks? [Draw the vector of the velocity of the
current ; through the beginning of this, draw a line perpendicular to it,
and with the other end as centre, describe a circular arc of radius 25 to
cut the perpendicular. This construction gives the velocities of the
swimmer relative to the water and to the land. There are two solutions,
giving the directions from both banks.]

(13) A boat can be rowed at 6 miles an hour in still water, a river
current flows at 3 miles an hour; how should the head of the bhoat be
pointed if it be desired to cross the river at an angle of 45° up stream ?

(14) A train travels E. at 65 miles an hour, a shot is projected from the
train at an angle of 30° with the forward direction and at a speed of 200 miles
an hour relative to the train ; what is the velocity of the shot relative to the
earth ?

(15) A ball is moving at 10 miles an hour S.W. and is struck by a bat
with a force which would, if the ball had been at rest, have given it a
speeg of 8 miles an hour due S.; with what velocity does the ball leave
the bat ?

* Relative Velocity. A point at any instant can only have
one definite velocity ; it is impossible to conceive it as moving in
two different directions, or with two different speeds, at one and
the same instant. Relative to other moving points it may have
all sorts of velocities.

* EXAMPLE. A4 train moves 20° E. of N. at 50 mdles an hour ;
another train is moving W. at 22'6 miles an hour, and o third is
travelling due S. at 352 miles an howr. What are the velocities of
the first and third relative to the second ?

Notice that the relative motions of two or more bodies are
unaffected by any motion common to them all ; thus, the relative
motions of trains, people, ships, ete., are quite independent of the
motion of the earth round the sun. 'We may, therefore, suppose
any common velocity given to the trains.

In Fig. 72, a represents the velocity of the first train, 8 and y
those of the second and third.
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Add - B to o, then the sum o gives the relative velocity of the
first to the second train, for — 8 reduces the second train to rest,
and then « — B is the velocity of the first relative to a supposed

B

)

+
™

Fie. 72.

fixed point. Scale o) and measure the angle it makes with the
E. line (61-8 miles an hour 50-3° N. of E.).

Similarly, add -8 to y and obtain o, the relative velocity
of the third to the second.

(16) Two cyeclists meet on a road, one is going S. at 10 miles an hour, the
other N. at 12 miles an hour ; what are their relative velocities ?

(17) A cyclist travels N.W. at 12 miles an hour, the wind is due E. and
travels at 20 miles an hour; what is the apparent direction and speed of the
wind to the cyclist? [Add to the wind velocity one of 12 miles an
hour S.E.]

(18) A train travels due W. at 40 miles an hour; the smoke from its
funnel makes an angle of 157° with the forward motion; the wind is
blowing from the N., what is its speed ?

(19) In the last example if the speed of the wind had been 20 miles an
hour, what are the possible directions whence it could have come ?
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* EXAMPLE. Two ships are 20 miles apart, one (A) s then due E.
of the other (B), and is steaming due N. at 18 miles an howr,; B is
steaming E. at 15 miles an hour.  Find when they will be nearest one
another, and their distance apart at that time.

Suppose a speed of 18 miles an hour due 8. is given to both,
then A is reduced to rest, and the relative motion of 4 and B

B 75 A
.
.
.
.
.
.
.
.
.
B
L
18 el
.
.
.
’
-
.
-
.
P
)
-
D
-
C
/"
-
D,
>
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is unaltered. Hence, add the vectors (Fig. 73) representing the
velocities 15 due E. and 18 due S. and obtain a resultant vector
BC(y). From 4 drop a perpendicular on BC. and measure its
length on the scale to which the distance 4B was drawn; it is
evidently the shortest distance the ships will be apart. BC is
the relative displacement in one hour; in order to find the time
for the relative displacement BD, set off BC; =10 cms. in any
direction to represent 1 hour; then, if DD, be drawn parallel to
CC,, BD, gives the time in hours.

* EXAMPLE.  Find by construction the actual positions of the two
stewmers, in the last exvmple, when ot their shortest distance apart.
To do this, draw through D a line due North cutting B4
1.6, by
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at B, then B, is the required position of 5. Through B, draw
B4, parallel to DA cutting the N. line at 4 in A, ; then 4, is
the required position of 4.

(20) Two ships are 11 miles apart, and both are steaming direct towards
the same point distant 11 and 7 miles from them respectively. They both
travel at 14 miles an hour. Find their shortest distance apart and the
corresponding time.

#*Total Acceleration. When the velocity of a body changes,
the motion is said to be accelerated. This acceleration may be
due to the velocity increasing or
diminishing (retardation), or to
the change in the direction of
the motion or to both. Thus, if
a; (Fig. 74) gives the velocity
at one instant and a, at a subsequent one, the magnitude only
has changed, and the total acceleration is «,— «, and is negative.

If 3, and B, (Fig. 75) denote the velocities at two instants,
then the change in the velocity is y, where

Bity=p; or y=0,~B;.

a.

1 o

Qo

Fic. 4.

v, the change in the velocity, is
simply the velocity which must be
added on—as a vector—to the
initial velocity 3, to give the final
velocity B,. Change in velocity is
then a vector quantity and must be
represented by a vector.

Fie. 75.

The velocity has changed both in magnitude and in direction
and 7y is the total acceleration.
. (21) A cyelist at noon is travelling N. at 12 miles per hour ; at 1 p.m. he
is travelling 10 miles an hour 75° E. of N.; what is his total acceleration ?
* Average Acceleration. Dividing the total acceleration by
the time we get the average acceleration,
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* Acceleration. Notice that hoth total and average accelera-
tions are vector quantities, and the latter gives the average
velocity added per unit of time.

If the acceleration is constant, 4.e. if the same velocity be
added during equal intervals of time, no matter how small the
latter may be, then the velocity added per second is the
acceleration.

If the acceleration changes, then the value to which the
average acceleration approximates, as the time interval hecomes
smaller and smaller without limit, is the acceleration at the
instant (cf. Velocity, on p. 77).

#* DEFINITION. Acceleration is the rate of change of velocity,
and is measured by the velocity added per unit time, or the
velocity that would have been added if the acceleration had kept
constant.

Acceleration is therefore a vector quantity, and accelerations
are added (or compounded) as vectors.

It can be shewn by experiment that bodies falling freely under
the influence of gravity have a constant acceleration directed
towards the centre of the earth, and measured by a velocity of
322 ft. per second added per second, or 32-2 ft. per sec. per
sec. (at Greenwich). This avceleration is usually denoted by the
letter g.

(22) A train at noon is moving 35° E. of N. with a speed of 32 m./hr.
At 12 h. 35 m. p.m. it is moving with a speed of 27 m./hr. 50° E. of N.
What are its total and average accelerations during this time?

(23) A point moves in a horizontal circle of radius 53 ft. in the contra-
clockwise sense. When at the most northern point its speed is 11°3 ft./sec.,
when at the W. point it is 12-7 ft. /sec., and when at the S. and E. points
its speed is 14'8 und 11-3 ft. /sec. If the time taken to move through each
quadrant be 12 minutes, find the average and total accelerations for
1, 2, 3 and 4 quadrants.

(24) Two trains are moving towards the same point in directions in-
clined at 70° with one another. One train is increasing speed at the rate
of 33 ft. per sec. per sec. ; the other is diminishing its speed at the rate
of 17 ft. per sec. per sec. Find the acceleration of the first relative to the
second.

Components of a Vector. Finding the sum of a number of
yectors is a unique process; i.e. one and only one resultant
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vector is obtained. The converse, .. finding the components
when the resultant is known, is not unique in general. The
components of a vector in two given directions are, however,
uniquely determined.
ExaMPLE.  Find the components of a in the two given directions.
From the ends of a (Fig. 76), draw lines parallel to the two
given directions, these determine two vectors a, and a, which are

Fic. 76.

the components. The construction can be done in two Wways
as indicated, but the component vectors are the same in both
constructions.

(25) Draw any vector a and any three lines; shew that any number of
components of a can be found in the three directions.

(26) « represents a velocity of 10 ft. per sec. due N.; find the component
velocities N.W. and N.E.

(27) Find the components of a displacement 15 ft. E. in direction,
making angles 15° N. and 30° S. respectively with this line.

*(28) A falling stone has an acceleration of 322 ft. per sec. per sec.
vertically downwards ; find the components along and perpendicular to a
line making an angle of 60° with the horizontal.

*(20) A train has an acceleration of 5 ft. per sec. per sec. down an
incline of 1 in 6 (1 vertical 6 along the incline); find the component
accelerations horizontally and vertically.

When only one component is spoken of, the other is supposed
to be at right angles to the first component.
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(30) A ship journeys 50 miles 20° N. of W.; what is its displacement
due W.

*(31) A bead slides freely down a straight wire making 65° with the
horizontal ; what is the acceleration of the bead down the wire?

*(32) A cable car fails to grip on a down incline of 10 in 73; if the
retardation due to friction be equivalent to a negative acceleration of
2-8 ft. per sec. per sec., what is the actual acceleration of the car?

*(33) If in question 32 a man jumps up from his seat so that his body
has a vertical acceleration (relative to the car) of 1'9 feet per sec. per sec.,
what is the real acceleration of his body ?

Multiplication of Vectors by Scalars. Multiplying a
vector by a number merely multiplies the length of that
vector, thus na means a vector n times as long as a.

Similarly multiplying a vector by any scalar quantity multiplies
its length by that quantity.

A

1

04B (Fig. 77) is any triangle. A
If 4,B, be drawn parallel to the
base 4B, cutting 04 and OB pro-
duced in 4, and B;, then we know
that 04B and 04,B; are similar
triangles. Hence :4, B, is the same
multiple of 4B that 04, is of 04.

(o)

Fie. 77.

If 0A=a and OB=p3, be the two sides of the triangle,
then if OA,=na and OB,=nf3
we have AB=f~a and A B, =n(B8-a),
so that from A B, =0B,-0A,,
we have the vector law,

(34) Establish the equation na+nf=n(a+pg) by (i) adding to the sum
of n vectors a the sum of n vectors 8, and (ii) adding B to a and then
adding n of these vectors together.

Centre of Mean Position. Given two points 4 and B,
the point M bisecting the line 4B evidently occupies a mean
position with regard to 4 and B.
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Choose any two origins O and O, (Fig. 78), let OA=a and
OB =}, and from 0, draw « and add (8 to it, then the sum

atf=0;
A

o,

Fia. 78.

from O set off Jo and shew that the point 3/ thus determined

is the mid-point of A4B. (This is also obvious from 0A4B, for

AB =3 -aq, and, therefore, the vector to the mid-point of 45 is
ot 3(B-a) =25 =4,

proving, incidentally, that the diagonals of parallelograms bisect

one another.)

Take any three points 4, B, C (Fig. 79), and a point of
reference 0. Find the sum a+B+7y (=0) as indicated (away
from 4, B, C). From O set off 1o and determine thus the
point A, the centre of mean position.

Instead of O take other origins 0; and 0, and shew by a
similar construction that the same point M is obtained. This
shews that J/ depends on 4, B and C, and not on the origin
used to determine it. Draw the medians of 4BC and see that
M is their point of concurrence.

(35) Draw a regular hexagon, take any origin (not the centre) and find
in a separate figure the sum of the six position vectors of the vertices. Set
off from the origin # of this sum, and thus find M, the centre of mean
position of the vertices.

Perform a sinilar construction when the origin is at the centre.
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(36) Draw a parallelogram and find the centre of mean position of the
vertices by taking the origin (i) outside, (ii) at the intersection of the
diagonals.

In each case the centre of mean position is the end point of the
vector, drawn from the origin, which is % of the sum of the position
vectors of the vertices.

Fi1a. 79.

(87) Take any five points and any origin, find % of the sum of the
position vectors ; set this off from the origin and determine thus the point
M. Choose another origin and show, by a similar construction, that the
same point M is determined.

DEFINITION. Generally, if there are n points 4, B, C, ... whose
position vectors with reference to some origin O are e, 8, 7, ...,
+0+

then E_ﬁ.lj:__

q

the centre of mean position.

is the position vector of a point M called
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Let a, B3, 7, ... (Fig. 80) be the position vectors of the points
relative to 0, a,, By 71, - their position vectors relative to 0y,
and let p=00,, then

0M=“_~_,_.+ﬁ;7+"' and OIM'=_~_“1+/31;H71+"'.

A
a
0 ? 0,
Fic. 80.
But = = pay By = pt By e
)
olM'=“_+_/iili___p=0M_p;
Co M is at M.

The centre of mean position s thus @ point dependent only on the
relative position of the points themselves and not on the origin used
to defermine it.

The points 4, B, C, ... need not be in a plane.

(88) The coordinates of five points are (1, 1'2), (-1, 1'5), (21, 1-3),
(3'3, —1'4) and (~2, —38+4); find the centre of mean position. (Add the

vectors and divide by 5; set off this one-fifth vector from the origin, and
measure the coordinates of its end point Af.)
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Centre of Figure. In the case of a line, curve, area or
volume, the centre of mean position of all the points in it is
called the centre of figure or centroid. In many cases we can
determine the centre of figure by inspection.

A straight line. Choosing the origin at the point of bisection
we see that to every point P, having a position vector p, there is
a point P, having —p for its vector, hence, Zp =0, and 0 is the
centre of mean position. Where is the centre of figure for
lines bounding a square, a rectangle, a parallelogram, a circle,
respectively, and why ¢

Area of a Parallelogram. Taking the origin at the intersection
of the diagonals, to every point P or @ (Fig. 81) there is a corre-

Fic. 81.

sponding point P, or ¢, such that OP + OP, or 0Q + 0Q, =0, and,
therefore, the centre of mean position of figure is at this point
of intersection.

(39) Where is the centre of figure of the area of a rectangle, of a circle,
of a regular hexagon?

(40) Shew that the centre of figure of a regular pentagonal area cannot
be proved to be at the centre of the circumscribing circle by this argument
alone.

(41) Mark the positions of any seven points on your drawing paper.
Find the centre of mean position of any four of them and then of the
remaining three, and mark these two points. Find the centre of mean
position of these two points, counting the first one four times and the last
three times. Is this final centre of mean position the same as would be
determined directly from the position vectors of the seven points?
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Theorem on Centres of Mean Position. In finding the
centre of mean position of a system of points, any number or
them may be replaced by their centre of mean position, if the
position vector of that point be multiplied by that number.

Let there he m; points whose position vectors are a;, By, ¥y, ... -
My ' ' 5 Gy Boy Yoy eee

5 » g ’ . ' ag, Bss Vo oe-

Then the position vector o of the centre of mean position for

the whole 1, +m, +m, points, is given by

2 »”

(my + my +mg) o == (ay + ay + ag)
=Za; + Za, + Zag.

If o, is the centre of mean position for the m, points, oy that
for the m, points and o, that for the m, points, then

myoy=Za;, Myoy=1a, and mgoy= Sag;
So (g g+ g) O =10y Mgy -+ M0y,

The m, points may therefore be treated as if concentrated at
their centre of mean position, provided the position vector of the
latter be counted m, times, and so on for the other points.

Evidently the argument holds however many partial systems
of points we suppose the whole system divided up into.

Mass-Centres. Let there be n points having unit mass at
each point, then the centre of mean position of the points is
called the mass-centre of the masses. If a;, «,... are the position
vectors of the points, and o that of the mass-centre, then

no = Za,.
Divide the points up into groups, m, points having mass-centre
. o, M, points mass-centre oy, ... then, since n=2m,, we have

(Mg + Mg+ Mg+ ) O =TO + MO+ oo e (1)
This equation remains unaltered however the m, points be
moved, provided that their mass-centre given by o, remains

unaltered ; we may, therefore, suppose them to come together and
coincide at o, and so for the other partial systems.
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At the end point of o; we have now a mass m, units, at =, a
mass m, units.... Moreover, equation (1) remains true when
multiplied throughout by the same scalar quantity, and hence
My, My, ... may be taken as the masses at the points.

Hence, given a number of points M, M,,... having masses
My, My, ... concentrated there, and having position vectors oy,
oy, ... the mass centre of the system is given by the position
vector o, where

C
=
oZm, = Zm,o;.

Mass-Points or Particles. We
have thus arrived at the conception
of points with masses concentrated
at them; such points are called
mass-points, and have exactly the
same meaning as the more usual
term particles. /

To find the Mass-Centre (31.C.) of B
a number of mass-points: Choose
any convenient origin 0, multiply
each position vector by the mass at
its end point, add all these mass-
vectors, and divide the resultant
mass-vector by the sum of the
masses. Set off from O the vector
so determined; its end point will
be the M.C. required.

ExAMPLE. Find the Mass-centre
(M.C.) of three particles of masses 1, 2
and 3 grammes placed af the vertices
of an equilateral triangle.

Draw any equilateral triangle 4BC (Fig. 82). Take any
origih 0. Draw a equal to OA, add 28 (where B8=OB), and
3y (where y=00C). Then, if o=a+28+3y, set off ¢ from O,
and find M the M.C. required.

Fie. 82.
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(42) Find the m.c. of four particles of masses 1, 2, 3, 4 grammes, placed
at equal intervals round a circle of radius 3 inches.

(43) Find the m.c. of five particles of masses, 2, 3, 1'8,' §3, and 47 lbs.
placed in order at the vertices of a regular pentagon of 15" side.

(41) Take the m.c. as found in Ex. 43 as origin, repeat the construc-
tion, and show that the vector polygon is closed, ¢.e. that the origin is
the M.c.

Mass-Points in a Line. For two points, 4 and B, having
masses 3 and 2 lbs., we have, by taking the origin O in the line

(Fig. 83), 30A +20B=50M.
If M be now taken as origin,”
3MA + 2MB =0,
B‘l
(o) A M B
A1
Fra. 83.

and therefore M divides 4B inversely as the masses. Hence
the siraplest construction would be: Set off BA; =3", and 4B,
parallel to BA; and of length 2”. Put a straight edge along
4,B;, and mark the point M where it cuts 4 B.

(45) At 4 and B, distant apart 3”, are masses given by lines of length
71 and 56 cms.  Find the m.c.

(46) If in Ex. 45 the masses at 4 and B are given by (i) the squares,
(ifi) the cubes of the lengths, determine graphically in each case the position
of the m.c.
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(47) Draw any line and mark an origin O and four points in the line.
Suppose masses of 2, 3, 1, and 4 grammes to be at the points. Construet
the position of the M.c., and measure its distance from O. Shew that
this position could have been calculated by multiplying each mass by its
distance from O (positive if to the right, negative if to the left), adding
the products together, and dividing by 10, the sum of the masses.

Formula for the mc. of Points in a Line. Let @, #,, @5, ...
be the distances of a number of points in a line from an origin 0
in that line, and m,, m,, m,, ... the masses at those points.

Then, all the position vectors being parallel, they are added as
scalars, one sense giving a positive scalar, the opposite a negative
one. If, then, Z denote the distance of the ».C. from O, we have

S, — _ »
ZEMy =My + Mgy + ... = Sy,

If this sum is negative, it shows that the M.c. lies on the
negative side of the origin.

(48) Find by calculation the position of the m.c. of masses 27, 36, 4°7
and 6°9 grms. situated at points in a line distant 117, 1'6, 1'2 and 9-3 cms.
from an origin O in the line.

(49) Calculate the position of the m.c. of masses 10, 5, 3, 8, and 1 lbs.
situated in a line, the position c¢f the points from a fixed origin in the line
being 1, 5, -2, - 3, and 4 ft. respectively.

Graphical Construction.

EXAMPLE. Muasses given by lines m;, m,, m, and m, are concen-
trated at points X, X,, X5, X, @ o line, to construct the position of
the mass-centre.

Draw my, m,, ... and the distances X, X, ... twice the size of
‘those in Fig. 84.

Through any point O in the line draw Oy perpendicular to it,
set off from O along this perpendicular OM,, OM,, OM,, OM,
and OM equal to my, my, mg, my, and m; +m, +mg+m, (=Zm).
OM should be found by the strip method of addition.

Through M, draw Mz, parallel to MX,.

w My s Mom, » MX,

. M, o, Mg, » MX,.

M, ,, Mgz, » MX,

3
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By the strip method find the sum of Oz,, Oz, O,, Oz,, and set off
0X equal to this sum, then X is the 11.C. of the four mass-points.

Mt
ny
7y
723
7t
M.
M,
\‘ ‘\
MS' \\“\ * S,
VR AN
SO
“\ A AN
\ ‘\ . I\\ ! 1 I
(o) Ty Xy X1 s xo X xs X4
Fic. 84.
oM 0X
roof. = ot
E 0I,~ 0r,°
5 OM. 0z, =0MM,. 0X,.
Similarly, OM . Oz,=0M,. 0X,,

OM.Oz,=0M,. 0X,,
0M . Oz,=0M,. 0X, ;
" by addition OM .30z, =30M,.0X,.

The right-hand side of this equation is the sum of the products
of each mass and its distance from O, the left-hand side is OX
multiplied by the sum of the masses, hence 0X is the distance
of the ».c. from 0,
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(50) Repeat the construction as above, drawing Oy through 3, If, and
M, in turn. Notice that this simplifies the work, since only three
parallels have to be drawn.

(51) Masses given by lines of lengths 2-8, 5, 7'8, 85 cms., scale 1” to
5 1bs., are at points (in a straight line) whose distances apart are 0°3, 1, 17,
0-8 inches taken in order. Find the m.c. graphically, and test by caleu-
lation from the formula of p. 93.

Non-Collinear Mass-Points. For points not in a line and
having masses given by lines, general constructions are given
(i) on page 112, (ii) on page 299.

A few simple cases may be treated by repeated constructions
similar to that on page 92.

(52) Find the m.c. of three masses given by the lines m;, my,, m,
sitnated at 4, B, C respectively, where A B=5%, BC=7'5 and C4' =598

cms. First, find the m.c. G, of m; and m,, and then the m.c. Gy of my at
C, and m,; +m, at Gy.

(53) Masses given by lines of lengths 47, 2'3 and 3'8 cms. are situated at
points whose coordinates in inches are (1, 0), (2, 3), (3, ~1). Find the
mass-centre by construction, and give its coordinates.

Mass-Centre of a figure with an axis of Symmetry. If
any curved or broken zig-zag line has an awis of symmetry the mass
centre of the line must lie on that axis.

For to every point P distant MP from the axis of symmetry
there is a point P; at the same distance

on the other side of the axis (Fig. 85). "
Choosing any origin O, then, for two °
such points,
OP+0P,=0M+MP+0M+MP, R
~20,
and as this holds for every pair of points, 5”:
the M.C. must lie on the axis. <
When the axis of symmetry is per- 2
pendicular to the lines joining corre- L

sponding points, it is called an axis of

right symmetry, otherwise it is an axis of skew symmetry. The
line joining the mid-points of opposite sides of a rectangle is an
axis of right symmetry, a similar line in a parallelogram is
an axis of skew synmmetry.
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M.C. of any number of equal consecutive lines inscribed
in a circle. Draw a circle of radius 4" (Fig. 86), and set off in
it six chords, each of length 15", forming an open polygon
Ay A, 4,4, 4,4,4;. Draw the axis of symmetry 0A4,, O being
the centre of the circle, and join 4,4;.

o X, X X, X
Fic. 86.

Bisect 4,4, at M and set off 04 along the axis of symmetry
equal to OM,. Draw 4B parallel to 4,4,=% the sum of the
sides. Join 0B, and draw 4.D parallel to 0.4, and DG parallel
A4, as in Fig. 86, then the point ¢ so determined is the
mass-centre of the six lines.

Proof. Draw through O, OX parallel to 4, 4., and through
A, and A, lines parallel to 04 and OX as in Fig. 86. Through
the mid-points M;, M,, M, of the lines draw M X,, etc., parallel
to 04.

Then, by construction, 0M X, is similar to 4,4,C;;

oM, A4,

T MX, A4,C°
oo A4y M X, =0M,. 4,C,.
In the same way — A,4;. M,X,=0M,. 4,C,,
A4, M X, =0M,. 4,C,.
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But 4, Ay=A,Ad;=A, A, and OM,=0M,=0M,;

. by addition 4, A,(M X, +M,X,+MX,)=1A4.4,.0M,.
Now, for finding the mass-centre, we may suppose the mass of
each line concentrated at its mid-point, and since 04 is the axis
of symmetry, the pairs of mass-points M,, M ... have their mass-
centres on 04, and at distances M, X, ... from 0X.

But the distance ¥y of the M.c. from O is given by

A, A (MX, + M, Xy + Mo X,)=34,4,.7 5

84 Ay y=5A A OMy ;i (1)
.. AB.y=GD.0A,
y GD
or 04 = a5
and y=0G.
If there had been eight sides instead of six, equation (i) would
have been 44,4, .y=4%4,4,. OM,,
if 2n sides, nd\ Ay . y=%4A4,40,:. OM,,
or semi-perimeter . j = semi-closing chord . perpendicular
from centre on polygon,
or ° perimeter . § = closing chord . perpendicular. (ii)

(54) Find by this method the m.c. of any six sides of a regular heptagon.

Mass-Centre of a Circular Arc. The formula embodied
in equation (ii) is independent of the number of sides to the
polygon. When the number of sides becomes very large, the
sides themselves being very small, the polygon becomes nearly the
same as the circular arc, and the perpendicular O}, becomes nearly
the radius of the circle. The limiting case, when the number of
sides becomes infinitely large and their size infinitely small, is
the arc itself, and hence for any circular arc

perimeter . j = closing chord . radius.

Construction for the mc. of a Circular Arc. Draw a
circular arc BCD (Fig. 87) of radius 4” and angle 135°% and its
axis of symmetry OC. Construct the tangent at C, and step off

CD'=arc CD

T. G. G
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along it. Join O, and draw DL and L& parallel and per-
pendicular to OC, then & is the mass-centre.

)

C D
G L
D, D
o
F16. S7.

Proof. This follows at once from the equation
y _ closing chord
radius  perimeter
From this result a formula for calculation can be deduced,
for if » =radius and 2a the angle BOD,

¥y rsina
we have y_ 5
r ra
. - sina
. Y=r—ry
which, in the case of a semicircular arc, becomes
_ o
Y = —"
T

(55) Construct the M.c. of a semicircular are, and compare the measured
v with the calculated value %::
(56) Construct the M.c. of a circular arc subtending 270° at the centre.

(57) Find the M.c. of the lines bounding a circular sector of angle 75°

(58) Find the m.c. of a uniform U-rod formed of two parallel pieces, each
of length 6", connected by a semicircular piece of radius 8”.

Mass-Centres of Areas. If mass be supposed distributed
uniformly over an area, the preceding processes enable us to find
the mass-centre (or centroid) in many cases.

The principles of general use are :

(i) If the area has an axis of symmetry, the M.C. must lie on
that axis.
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(ii) If the area can he divided into parts, for each of which
the M.C. can be seen by inspection or easily found, then the M.C.
of the whole is found by finding the M.C. of these points, each
point having a mass proportional to the corresponding area.

ExampLi. o find the M.C. of @ triangular lomina ABC.

Draw the median 4 M, (Fig. 88) ;
this bisects all lines parallel to BC,
i.e. the M.c’s of all lines (or very
narrow strips) parallel to BC lie in
AM,. Hence to a mass m at P;
there is an equal mass m at P,
where P,OP is parallel to BC and
OP,+0P=0. AM, is an axis of
skew symmetry; BC is called the
conjugate direction.

Draw a second median BM; the point of intersection is
the M.c.

(59) Shew, from the property of the M.c., that the three medians mect
in a point.

3 (60) Shew that the triangle and three equal masses
A 7 placed at the vertices have the same axes of skew

\ / symmetry. Hence prove that m.c. of the triangle
\ ! lies on the median M4, % of the way up from base.

ExXAMPLE. Find graphically the
M.C. of the area in Fig. 89.

Draw the figure to scale.

Find the mass-centres ¢y and G,
72 of the two rectangles as indicated.
\ Join @,%,, and divide G,@, in the
K Y ratio of 16 to 9.

|
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Quadrilateral

EXAMPLE. Find graphically the M.C. of o quadrilateral.

Draw any quadrilateral 4 BCD (Fig. 90) and its diagonals 4C
and BD intersecting in O.

Cut off 4E=C0. Find the ».c. of BED, it is the same point
as the M.c. of 4 BCD.

A B
Fra. 90.

Proof. Since 4 E =0, the medians through D of C4D and
OED are coincident. But the M.C. of a triangle (Ex. 60) lies 1 up
the median from the base, hence the M.C. of OED is that of CAD.

Similarly, the M.c. of OEB is that of CBA. Also, the masses
of AED and BEA, DOC and BOC, DEO and BEQ are propor-
tional to their altitudes, which are proportional to DO and OB,
4BC BO BEO
ACD™ D0~ DEO
hence the m.c. of 4 BCD is that of BED.

ExAMPLE. Find the M.C. of the aren of the re-entrant quadrilateral
ABED (Fig. 90).

Set off 4E,=FE0 along EA4 produced, and find the M.C. of the
triangle DE\ B ; it is the M.C. of the re-entrant quadrilateral.

Construct also the m.c. by finding separately the M.C.’s of
ADE and 4ABE.

* LXAMPLE.  Find the M.C. of a cross quadrilateral 4 BED.

Draw a cross quadrilateral from the re-entrant quadrilateral
(Fig. 90) by taking E on the other side of 4D, and follow out
the construction just given ; the M.c. of the triangle DE, B is the
M.C. of the cross quadrilateral.

i.e.



MASS-CENTRE OF QUADRILATERAL. 101

Proof. The cross quadrilateral has an area 4BE - ADE;
the M.C. of 4 BE is that of £ B0 and the M.c. of ADE is that
of £,D0. The areas added are in each case proportional to
the original areas and hence the d.c. of ABE — 4DE is that of
E\BO-E DO, i.. is the 1.C. of E,DB.

91(6]6)1 Find the mass-centres of the areas of the following figures (Figs.
-101).

The figures must be drawn full size according to the dimen-

sions given. The angle 6 in Fig. 101 is equal to the same
lettered angle in Fig. 100.

4 ? A e R — >
1 1
\ ! Tl
! X i
| B v
; Ry T
3 1 ]
3 | !
' 1
: [e--=7-18"-=+ i
: 1
! i
! !
1 3"
1
Y ]
~-0-82"> !
Fre. 01, {n
)
i
S
A 1
0.6\ v
- Gl
Fic. 92.
A
0
M
1
1
1
H
1
1
1
H
It
% 3
% H
¥ !
H N
: ™~
! ~
! i
! H
%I i
Y
2-43" -

ri1G. 98.
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2.82"
Fic, 99

282"
Frc. 100.
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M.C. of Trapezoidal Area. Draw any trapezium 4BCD
(Fig. 102) where BC' and DA are the parallel sides.

Produce DA to 4, and BC to B; in opposite senses, so that
Ad4,=BCand CB;=A4D.
A,

B, C M,
Fic. 102,
Find the point of intersection @ of the line 4,5, and the line
MM, joining the mid-points of the parallel sides 4D and BC.
G is the M.C. of the area.
Proof. The triangles DBC, 4 BD being of equal altitude have
areas proportional to their bases BC and 4D. We may, there-

fore, replace the two triangles by mass-points %—q at D, B and O
AD

and =5 at 4, D and B.
", in the line 4,D there is a mass given by _‘ﬁ*_'jﬂ
” 3 BBI ' ’ . AD -; QBC.

But the m.c. must lie on M, M,
". @, the mass-centre, must divide M, M, so that
GM, AD+2BC BC+34D M4,
GM, BC+324D AD+3BC M,B,
Notice that the distance of the mass-centre of a number of
points from a given line is unaltered by any movement of the
points parallel to that line.

(62) Find the m.c. of the trapezium for which BC=4'3, 4AD=6"1,
AB=58 and CD=4T cms., (i) by this method and (ii) by the general
quadrilateral method.

(63) Divide the trapezium into a triangle and parallelogram, and find the
m.C. of the whole by finding in what ratio it divides the line joining the
M.C.%s of the triangle and parallelogram.
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M.C. of a Circular Sector.

ExaMpLE.  Construct the M.C. of a civeular sector of radius 4
inches and angle 120°.

Draw the axis of symmetry OC (Fig. 103).

Set off 0B, = 30D and draw the concentric arc 4,B;.

Fic. 103,

Step off the arc C,B, along the tangent C\B,; draw BB,
vertically to cut 0B,, and B,& horizontally to cut 0C at G. G is
the M.C.

Proof. Suppose the sector divided into a great number of
very small sectors, of which OLM is a very enlarged copy, then
OLM is at its limit a triangle, L} being a tangent to the circle,
the n».c. of this triangle is at g, where Og=320L. The sector
0ACB may therefore be replaced, as far as the M.C. is concerned,
by a circular arc of radius 04 (p. 97).

The y for the circular sector is, therefore, given by

_ sin a
7 y
a

<l

4r

which, in the case of a semicircle, becomes 3
wT
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(64) Find the m.c. of a semicircle and compave your result with the
calculated position.

(65) Construct directly from the semicircle the position of the Mm.c. of
a quadrant of a circle, and from that the M.c.’s of 3,  and § of a quadrant.

Negative Mass and Area. )
ExaMPLE. To find the M.C. of the area ABCDD,C B A, given
that AB=6", BC=8", AA,=1", A;B,=5", B,C;=5".

Fie. 104.

Find the mass-centres ¢, and @, (Fig. 104) of the rectangles
ABCD and 4,B,C;D,. Join GG, and produce. Set off along
parallel lines &, K, proportional to 4BCD, and G4K; proportional
to 4,B,C,D; both in the same sense. Where K, X, cuts G,6, is
the point @, the mass centre of the area.

Since the given area is the difference between two rectangles,
the smaller rectangle (a square) must be considered as a negative
area or as having negative mass, and hence &,K,, G, K, instead
of being sev off in opposite senses must have the same sense.
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Proof. In order to justify the construction on p. 106 refer to
Fig. 105. Let M denote the mass of the whole area enclosed by
the outer boundary, and m the mass of the shaded area enclosed
by the inner curve.

Let @, and @, be the mass-
centres of the area hetween the
two curves (M -m) and of the
shaded area. Then, to find @ the
M.C. of the whole area M, we have

to divide &G, at @ so that &@
W

=

66 _M-m
GG m
The Graphical construction for
effecting this division is indicated \
in Fig. 105.

Fic. 105.

On the other hand, if & and &, be known, G; can be deter-
mined.
Add unity to each side of the last equation ; then since

M-m . M
m T m’
e 6,0+69,_6,6,_M

GG, GG, m
This shews that G,@ has to be divided externally at G, in the
ratio ]l—{
m
Hence, from @ and &, set off parallel lines, in the same sense,
representing the masses to scale. Join their end points and

produce the line to cut G,& in Gy, the M.C. required. This
was the construction made in the example.

Mass-Centre of a Segment of a Circle. Draw a circular
sector 04 CB (Fig. 106) of radius 45" and angle 150°. Construct
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the d.c. G, of this sector as before. Divide OM (Fig. 106)
into three equal parts and take OG,=30M. Through G, and G,
draw parallels and set off ¢, K, =p, the perpendicular from M on

9]

Fia. 106.

04 and &,K,=the are 4C.* (In Fig. 106 § of these distances
are set off.) Join K,K; cutting OC at &, the M.C. of the segment.

Proof. The problem is to find the M.C. of the sector area and
the negative area of the triangle 0.4 B.
The area of the sector=1 radius x arc (p. 55)
=04 xarc 4AC.
The area of the triangle = OM . MA

. 4 O
=04.p; (smce %ﬂ-{:—);
area of sector _arc 4C
" area of triangle  p

Since the area of the triangle must be considered as negative,
p and the arc 4C must be set off in the same sense.
(66) Construct the m.c. of a circular area of radius 3 inches having a

circular hole of radius 1” cut out, the distance apart of the centres being
1'5”. (Areas are proportional to radii squared.)

* These distances must be set off very carefully, especially when the angle of
the sector is very small or nearly 180°
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(67) Construct the m.c. of the area as above, the radii being R and 7,
and the distance apart of the centres being c. Construct the ratio of the

squares as in Fig. 107.
r Bz B
BTz T RTE)

hi

Fia. 107,
(68) Construct the m.c. of the figure shewn (Fig. 108).

“2-2-> <--4em--—>
om
Fic. 108.

(69) Find the m.c. of a rectangle of sides 564" and 7-85” with a square of
side 2'88” cut out, the distance apart of their centres being 1-5”, and the
line of centres being a diagonal of the rectangle. (Use a similar con-
struction to that in Ex. 67 for getting lines proportional to areas.)

(70) Find the m.c. of a rectangle (5:64” x 4'85”), having a circular hole of
radius 14" cut out, the distance apart of the centres being 15".

(71) Draw a rectangle of sides 4 and 3 inches. On the 3" side as diameter
describe a semicircle inside the rectangle; now suppose it cut away.
Find the m.c. of the remaining area.
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Vectors in a Plane. Parallel vectors are said to be LIKE
vectors, they can all be expressed as multiples of any other
parallel vector.

Two non-parallel vectors are independent, ¢.c. one cannot be
expressed in terms of the others.

Draw any two non-parallel vectors a and 3; see that the sum or
difference of any multiples of these is the third side of a triangle,
which can only be zero when o and 3 have the same direction, or
the two multiples are zero. If, therefore, we have an equation
ae=>5f3, where « and (3 are independent, it can only be satisfied
when a=0=0.

Similarly, if Ta+3B=a0+0p,
then (T-a)a=(b-3)B,
and e must be 7 and b must be 3 if the vectors are not parallel.

1. 109,

Scalar Equations for Mass-Centre. A number of masses
My, My, My, ... aTe at points whose position vectors are p,, p,, pg, -.. -
Take any two axes through O (Fig. 109), and let the

components of p; parallel to the axes be o, and 3,

’ P2 ’ » O and /82,

............................................................
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Then p1=a.1+,81,
py =y + By,

Let p be the position vector of the mass-centre and @ and 3
the components of p.

Then, for the mass-centre,

p=my =2Zmyp; ;
S (@4 B)2my = (myog +my By + Mgty + Moy + ...
=3Zmya, +Zm, By,
by rearrangement of the terms.

But g, aj, a,, ... are like vectors, and so are S, By, By, .., and
a; and S, are independent.

Hence aSm, =Zmya, and BEm, =Sm,pf,.

If, then, 2, is the length of a,, 7, of B, Z of 4, ete.,

Z3my =Zmyz, and 72m, = Zmy;,
two scalar equations, each of which determines a line on which
the mass-centre must lie, the point of intersection of the two
lines being G the mass-centre.

Generally, it is convenient to take the axes perpendicular, and
in this case my, is the mass at a point multiplied by the per-
pendicular distance of the point from the axis of «, and is called
the mass moment about Oz.

Smyy, is then the sum of the mass moments about the axis of .

The whole mass Zm,, supposed concentrated at the mass
centre, is called the resultant mass.

We have then the theorem :

The sum of the mass moments about any line is equal to the
moment of the resultant mass.

Graphical Construction for mc. The construction given
on p. 94 for the position of the M.C. of points in a line can be
applied to points in a plane, the construction being made for two
intersecting lines. A better method, however, is the link polygon
construction, given on p. 299.
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EXAMPLE. Find the M.C. of masses 2, 3, 5, and 1 Ibs. at points
whose coordinates are (1, 1), (2, 3), (4, 1) and (3, 2).

Draw the axes of coordinates (Fig. 110), and mark the co-
ordinates of the points on each axis; draw a line bisecting the
angle between them, and set off along this line the masses to any
convenient scale

T TT T T T T w7}

- : : t i

Y,

Ya

=
g
Ea

T
T

I T
T T

[OJEEN Ky X

NENENEn Sk

u

Xy X
F1c. 110.

In Fig. 110, 0X,=1, 0Y;=1 and OM;=2 (on mass scale);
0X,=2, 0Y,=3 and OM,=3 .... (0X,=4 is not shewn.) The
suffixes indicate the order of the points in the example.

Join M (OM =11, the sum of the masses) to 1, 2, 4, 3 on the
# axis, and mark the points where parallels to these lines from
2, 3,5, 1 on the mass axis respectively cut the « axis, Ty, By, Fgy Tye

oM, 11
Then —O—x_]l=T or 1lz;=2.1.

1 2 Xa
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Similarly %fl{" = l} or 11z,=3.2,
2 -

11z,=5.4,

llz,=1.2.

Hence 11 (%) + &, +2,4+2)=2.1+3.2+5.4+1.2=3mz,.
Add by a straight edged strip z;, #,, 2, and z,, the sum is .
Make a similar construction on the % axis and obtain 7.

Mark the point whose coordinates are Z and 7% ; it is the mass
centre, G.

(72) Masses are given by lines of length 51, 2:3, 1'5 and 215 cms. ; the
coordinates in inches of the points are (0, 1°'1), (23, 0), (32, 17), (22, 4°3).
Find the mass-centre by construction, and test by caleulation from the
<. b
Smzy o Dmy

formula z= ST =,

Graphical Construction for the m.c. of any area,
irregular or otherwise. Transfer the figure given in Fig. 111
to your drawing paper, and draw its axis of symmetry X7.
Divide it up into strips parallel to the base, and draw the first
equivalent figure as in the construction on p. 62, only take the
point O in the base and « equal to the height of the figure.
Divide the height at @ so that

x6_d,

Xy 4’
where 4 and 4, are lines proportional to the areas of the given
and the equivalent figure. & is the M.C.

#*Proof. This is very similar to the proof on p. 63.

In Fig. 111, 4B is one of the very thin strips, parallel to the
base, into which the area is supposed to be divided. The mass
of each of these strips may be supposed concentrated at the
mid-point, 7.e. in the axis of symmetry, XV.

If m is the mass of any one of these strips and y is the distance
froin the base, then, if 7 is the distance of the M.C. from the base
y2m = Zmy.

But m is proportional to the area of the strip, hence if 4B=2a
and % is the thickness of the strip, m is proportional to Az, and
therefore 7 Zhax = Shay.

7.8, H
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Now (see Fig. 57) z_i-: %/l’ hence zy = az,
and yZhe = Zhar, ;

. 7.area of given Fig. =ahz
=g . area of first equivalent figure,

and y= aﬁ.

FIG 111
If the area has not an axis of symmetry, ¥ only determines the
distance of the m.c. from XX. The process must therefore be
repeated for another line which intersects XX (preferably at
right angles to it), and the distance of the M.c. from this line
must be determined. From these two distances the M.C. can
be determined as the intersection of two lines.

Another method is given on p. 299 in connection with the
Link Polygon.
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MISCELLANEOUS EXAMPLES. IIL

1. Draw a square 4 BOD of side 3 inches to represent a square field of
side 300 yards. A man starting at 4 walks round at 80 yards a minute,
another man starting at D at the same instant, and walking at 100 yards
a minute, begins to overtake him. Construct the relative displacements
at the end of the 1st, 2nd, 3rd, 4th, 6th, 9th, 12th and 15th minutes.

2. Construct the minimum relative displacements when the men are on
adjacent sides.

3. A toy gun is pointed at an elevation of 45°; on firing it begins to
recoil with a speed of 5 ft. per sec. (horizontally), the speed of the shot
relative to the gun is 30 ft. per sec., construct the true velocity of the
shot.

4, A sailing hoat is going N.W. at 8 miles an hour, a sailor moves
across the deck from the 5. W. at 2-7 miles an hour, a current is flowing at
36 miles an hour 15°S. of E.; what is the velocity of the sailor relative
to the current ?

5. Find the centre of mean position of five points whose coordinates
in ems. are (21, 3-3), (47, 1'8), (2°6, 1'75), (1'95, 4°6), (0-75, 6-25).

6. Find the mass-centre of the above points supposing masses of 3, 4°1,
28, 7'3 and 4'6 grammes to be concentrated at the points, first by the
vector polygon method, secondly by the graphical construction of p. 113,
and finally by calculation.

7. Find the a.c. of the part of a circular area between two parallel
lines at distances 3-74 and 266 inches from the centre, the radius of the
circle being 4'5 inches. Tirst treat it as the difference between two
segments and then by the strip division method.

8. Find the m.c. of a circular arc and its chord, the arc subtending an
angle of 135° at the centre of a circle of radius 3-7".

9. Masses of 3, 8,7, 6, 2,4 grammes are placed at the vertices 4, B, ...
of a regular hexagon ; construct the position of the m.c.

10. Draw a circular arc of radius 3” and one of radius 27, the distances
apart of the centres being 2. Find the M.c. of the lens shaped area between
the two arcs by the method of strip division.

11. A horizontal wooden cylinder rests on the top of a rectangular block
of wood, the radius of the cylinder=width of block=252 ft., the height
of the block is 786 ft., and the length of the cylinder and depth of block
are the same. Find the m.c. (Treat as a circle on a rectangle.)

12. A steamer which is steaming in still water due S.E. at a speed of
14 knots enters a current flowing due W. at a speed of 2 knots. Deter-
mine in any way you please the actual velocity of the steamer when in the
current and the direction in which she will travel.

If it is desired to maintain a due S.E. course and to cover exactly as
much distance per hour in this direction as when in the still water, what
course would the steamer require to steer, and what must be the speed of
the ship in regard to still water? (Military Entrance, 1905.)
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A
13. A uniform iron girder has a cross- i
section of the given form (Fig, 112). | 14 wide

Determine the position of the centre of
gravity of the section. !

(Naval Cadets, 1904.) ! 7z j

-¥d 7 T

[k 4T =

Frc. 112.

14, Fig. 113 represents a figure formed of a rectangle and an isosceles

triangle.  Find and mark the position of its centre of gravity.
(Naval and Engineer Cadets, March, 1904.)

Fic. 113. Fic. 114.

15, The letter T in the diagram (Fig. 114) is made of wire of uniform

thickness. Find its centre of gravity (m.c.), stating your method.
(Naval Cadets, 1903.)

5 ¢

16. Fig. 115 represents a hexagon
frame, the length of each side being
2 inches ; equal masses of 4 pounds each
are placed at the four corners a, b, d, e,
and a mass of 8 pounds is placed at the
corner ¢. The mass of each of the six
sides of the hexagon frame is 13 pounds.
Find the common centre of gravity (m.c.)
of the whole system.

(Military Entrance, 1905.) p
(3

Fra. 115,
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17. A cistern, without lid, whose thickness may he neglected, measures
3 ft. 6 in. in height by 2 ft. 3 in. by 3 ft. 3 in. Find the position of its
centre of gravity.

18. 4 and B are two points 20 miles apart. At noon one man starts
from A4 to walk to B at the rate of 4 miles an hour, and at 2 p.m. another
man starts after him on a bicycle at 10 miles an hour. Draw a diagram
on your ruled paper to show how far they are apart at any given time,
and at what times they pass any given point between 4 and B. [Scale to
be 5 mile=1 inch, and 1 hour=1 inch.]

Also, find from your diagram or otherwise when and where the cyclist
overtakes the man walking. (Engineer Students, Navy, 1903.)

19. Two small spheres, of weights 4 ounces and 7 cunces, are placed so
that their centres are 5 inches apart. How far is their centre of gravity
from the centre of each ? (Engineer Students, 1903.)

20. Given the centre of gravity of a body, and that of one of its parts,
explain how to find the centre of gravity of the remaining part.

ABDC is a rectangular lamina of uniform density; Z is the middle
point of AB; join D& ; find the perpendicular distances of the centre of
gravity of BCDE from the sides BC and CD. (B. of E., II.)

21. A river which is 2 miles wide is flowing between parallel straight
banks at the rate of 4 miles an hour. A steamer starts from a point 4 on
one bank and steers a straight course at 7 miles an hour. Show on a

raph the distance above or below 4 of her point of arrival at the other
%a.nk, as a function of the inclination of her course to the direction of the
river. (Naval Cadets, 1905.)

22. Explain the method of determining the motion of one body relative
to another. To a passenger on a steamer going N. at twelve miles per hr.,
the clouds appear to travel from the E., at 8 miles per hr. ; find their true
velocity.

Two steamers are at a given instant 10 miles apart in an E. and W.
line ; they are going towards each other, one N.E. at 20 miles per hr., and
the other N.W. at 16 miles per hr. Find how near they approach.

(Inter. Sei., 1901.)

23. Find the centre of gravity of a triangular frame formed of three
uniform bars of equal weight. Where must a mass equal to that of a
uniform triangular plate be fixed on the plate so that the mass centre
of the whole may be at the middle of the line joining a vertex to the point
of bisection of the opposite side. (Inter. Sci., 1901.)

24, Explain the phrase velocity of one body relatively to another
body.”

25. Two level roads are inclined at an angle of 60°. Two motors, each
half-a-mile from the junction are being driven towards it at speeds 10
and 11 miles an hour. Find the velocity of the first motor relative to the
second, and the distance the motors are apart after 2 minutes 50 seconds.

(B. of E., IL., 1904.)
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26. A ship 4 that steams 23 knots sights another ship B to the N. at a
distance of 1'4 sea miles, and steaming E. at 19 knots. In what direction
must 4 steam in order that her motion relative to B may be directly
towards B? and in what time does she rcach B? A knot is a speed of 1 sea
mile per hour.

Shew that if 4 does not know B’s speed she can deduce it from her own
by steering in such a direction as to keep due S. of B. If this direction
is 78° E. of N., and the other data are as already given, what is B’s speed ?

(Military Entrance, 1906.)

27. Find the position of the centre of gravity of a circular sector. Find

the distance of the centre of gravity of a circular segment from its chord.
(B. of E., II., 1906.)

28. Oz and Oy are two lines at right angles; P and § are points
moving from O to z and from O to y, with speeds 7 and 12 respectively.
At the same instant OP=8 and OQ=5. Find the velocity (speed) with
which they are separating from each other, and explain whether or not the
velocity of separation is their relative velocity. (B. of E., II., 1903.)

29. Give an instance of a moving hody that is at rest relatively to
another moving body. State how the relative velocity of one point with
respect to another point can be found.

Two points A and B are moving with equal speeds and opposite senses
round a given circle; at the instant that the arc between them is a
quadrant, find the relative velocity of 4 with respect to B.

(B. of E., II., 1905.)
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CONCURRENT FORCES.
EXPERIMENTS.

Expr. I. Lay an envelope or sheet of paper on a fairly smooth table.
Push it by a pencil parallel to the shorter edge (i) near one corner,
(ii) near the middle. Notice that the motion is quite different in the two
cases, even though the push is otherwise the same. Does the effect of a
force on a body depend on its line of action (axis)? Think of other simple
experiments illustrating this point.

For the remaining experiments the following apparatus is
necessary : A vertically fixed drawing board and paper; light
freely-running pulleys which can be clamped round the board in
any desired positions ; a set of weights from 5 to 1000 grammes ;
one or two scale pans of known weight ; some light, tough, stiff
cardboard ; strong, black, fine thread ; some small polished steel
rings, about the size of a threepenny piece; some thin, strong
wire (for making little hooks); and a spring balance.

Expr. II. TFasten, by means of loops, two threads to one of the steel
rings, and attach 100 gramme-weights to the other ends. Put the threads
over two pulleys as indicated in Fig. 116, and let the whole come to rest.
Take another piece of thread in the hands, and, stretching tightly, see if
the two threads are in a straight line.

The function of the pulleys is only to change the directions of
the forces due to the weights; any effect due to their having
friction may be minimised by good lubrication.

‘What are the forces acting on the ring, neglecting its weight, in magni-

tude, direction and sense? Draw lines representing these in magnitude,
direction and sense; these are the vectors of the forces. Add these
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vectors. What is their sum? Why may the weight of the ring be left
out of consideration? See if equilibrium is possible with different weights
W, and W,.

©

W,

Fic. 116.

What is the pull at B on the part BA? What is the pull at B on the
part between B and the ring? In what respect do these pulls differ ?

Exer. III. Replace the ring by a piece of cardboard and attach.the
threads by wire hooks passing through two holes punched in the card.
See that the sum of the vectors of the forces is again zero. Mark on the
card, points 4, B, C, in a line with the threads. Punch holes at these

oints, and insert the lower hook in turn through each of these holes.
s equilibrium still maintained? Does it matter at what point in its axis
a force may be supposed applied to a rigid body ?

(1) Four hooks 4, B, C, D are connected together by three strings 4 B,
BC, CD, Fig. 117. Weights W, =100 grammes, W,=>50 grammes, W,=150
grammes are attached by long strings to B, ¢ and D, and the whole is
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suspended from the hook A fixed to a beam or wall. If 37y, 3, and M,
are points in 4B, BC and €D, what is the pull at M, on C, M, on B, and
at Myon 47

Verify at 3, by inserting a spring balance there.

Exer. IV.  Attach three threads by loops to one of the rings and sus-
p.end weights 200, 150, and 100 grammes as indicated (Fig. 118). Let the
ring take up its position of equilibrium. Mark two points on the drawing

o

FER

Fic. 117 Frc. 118.

paper under each thread. A set square does very well for this purpose, if
placed approximately perpendicular to the plane of the board, but a small
cube or right prism is better. Indicate the sense of each pull on the ring.
Remove the drawing paper and draw to scale the vectors, a, 8 and 4,
of the forces acting on the ring, and find their sum.

Are the lines of action of the forces concurrent ?

Repeat the experiment and drawing for other weights.
Is equilibrium possible with 50, 60 and 150 grammes ?
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%

Exper. V. Use three pulleys and four threads with attached weights
of 80, 120, 200 and 120 grammes. Mark the axes and the senses of the
pulls on the ring as hefore, and find the sum of the vectors.

Perform a similar experiment and construction using five
different weights. Notice in each case whether the forces are

concurrent or not.

Expr. VI. Draw a triangle 4 BC (Fig. 119) on cardhoard having sides
344, 36 and 52 inches, and give the boundary a clockwise sense. Dre_tw
concurrent lines parallel to these sides, indicating the senses as in Fig.
119. Punch holes on these three lines and cut away the card as indicated

B

.
]
1

|

'

'

'

1
'
]

I

Fic. 119.

by dotted lines. Fix the card, with one axis vertically downwards, on the
drawing board by pins. Adjust the threads, hooked through the holes,
so as to lie over the lines and attach weights proportional to the corre-
sponding sides of the vector triangle. Remove the pins and notice if the
card remains in position.

Perform a similar experiment starting (i) with a quadrilateral
of sides 5, 3, 2 and 6 inches, the senses being the same way round,
(ii) with a pentagon ; the axes must be concurrent in both cases.

Bxrr. VII.  Attach three weights to a card (one thread hanging verti-

cally and two passing over pulleys). The card will take up some position
of equilibrium. See if the axes of the forces are concurrent. Attach four
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weights to the card, and after the card has taken up its position of
equilibrium see if the axes are concurrent.

Perform a similar experiment with five weights.

ExXAMPLE. 4 student repeating Eaxpt. IV. has o vertical pull of
40 grms. weight on the ring, the two paris of the left-hand thread
supporting 25 grms. weight muke an angle of 45° with one another.
What was the third weight used, and what was the angle between the
two parts of its thread ?

Set off 04 =4" (Fig. 120) vertically downwards, OB=2'5" at
an angle of 45° with 04. Join 4B. Then 0AB is the vector
triangle of the forces, and 4B =2-85" gives the third pull on the
ring of magnitude 285
grms. weight (nearly). The
direction is given by the
angle 045 and the sense
is from 4 to B.

Measure 04 B () with
a protractor, (b) by a scale
of chords, (¢) by means of
the tangent of the angle
(i.e. measure p on the 2-inch
scale, p being the perpen-
dicular to 4B drawn at 2"
from 4, and find the angle
from the table of tangents).
See that these three results
are approximately 387°
each.

0o

Scale of Forces
10 5 [¢] 10 20 30

grammes wt.
F1e. 120.
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EXAMPLE. Another siudent used weights 20, 30 and 32 grms.,
the lust giving the vertical pull. What were the angles between the
threads attached to the ring ?

Set off 4B (Fig. 121) vertically downwards =32"; draw
circles with 4 and B as centres and of radii 2 and 3 inches to
intersect in C. Draw concurrent lines P;0, P,0, W0 parallel to
the sides of this triangle.

A
|4
C
E\
(o]
B
w
Ibs. wt.
2 3 g P i il
Force Scale
Fra. 121.

Evidently the angles between the threads are the supplements
of the angles of the triangle ; measure the angles of 4 BC by the
scale of chords. Approximately they are 37-5°, 65-8° and 76-7°.

Notice that since the construction may be done in two ways,
viz. the 2" circle from either 4 or B, it is impossible to say
which weight was put on the left-hand pulley.

In all solutions of statical problems by graphical methods it is
necessary to complete the solution either by drawing out the
force scale or by giving it in cms. or ins.
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EXAMPLE. 4 weight of 206 fons is suspended by ropes of length
T and 8 ft. from two hooks in o horizontul line distant apart 5 fi.
Find the pulls of the ropes on the weight (the tensions in the raopes).

First draw a figure 4BC (Fig. 122) representing the position
of the ropes to scale (1" to 1').

o)

A B

Position Scale C
D' l, 2/ }I
Force Scale
hwd 1020304 05 ¢ 7 8 9
P tons
Fic. 122,

Then set off OP downwards to represent 20-6 tons weight
(1 em. to 1 ton). From the ends of 0P draw 0@ and PQ,

parallel to 4C and BC, and measure P and @O on the ton scale,
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ExavPLE. From o telegraph pole radiate five lines (in the same
horizontal plang). The pulls of four of them on the pole are known,
find the pull of the fifth, given o pull due E. of 30 Ibs. weight, one
due S. of 40, one S.WV. of 25, one N.W. of 41+4.

I o) P
el S ———
5!‘3.;8‘ b
<
l'l
,I
K
J
/
J
II
14
7
S\
Q
Force Scale
fo o 10 20 30 40
Ibs. wt.
Fia. 123,

Set off 0P (Fig. 123) horizontally to the left = 3", PQ) vertically
downwards = 4, QR=25" so that PQR=135°, QR perpendicular
to RS=4'14", then 8O gives (3-2” in length) the fifth pull in
magnitude, direction and sense.

2) In a tug-of-war 4, B, C, D are opposed to 4,, By, C;, D,, D and
D, being the end men. The pulls of 4, B, C, D are given by lines of lengths
28, 3'4, 3'5 and 39 cms. respectively, those of 4,, B, and C; by 245, 325
and 375; scale 1”7 to 100 lbs. wt. What is the least pull that D; must
exert in order that his side may not be beaten? If D, exerts this force,
give the tensions of the rope at points intermediate between the men.

(3) Three strings are fastened to a ring as in Expt. IV., two pass over
smooth pulleys and bear weights P and @), the third string hangs vertically
and supports a weight R. If 6 and ¢ denote the angles between the
vertical and the threads attached to P and @, find

(i) 6 and ¢ when P=@Q=5lbs. wt. and R=8 lbs. wt.;
(ii) R and ¢ when P=Q=5 and §=30°;
(iii) 6 and ¢ when P= 4, Q= 5 and R=7;
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(iv) @ and ¢ when P= 7, R= 9 and 0=60°;
(v) P and ¢ when Q=12, R=11 and 0=55";
(vi) P and @ when R= 7, 6=35"and ¢p=>50°;
(vii) 6 and () when R=13, P= 8 and ¢=35";
(viii) @ and P when R=11, Q= 6 and ¢=30";
(ix) P and @ when R=14, 6=40°and @ is perp. to P;
(x) R and @ when =33, ¢=70° and P=55. (Notice that
the angle between P and ¢ in the vector triangle is 75°.)

(4) Three threads fastened to a ring bear weights of 35, 27 and 25 grammes
as in Expt. IV.; draw the vector triangle of the forces, and by measure-
ment determine the angles between the threads.

(56) Three threads are fastened to a ring, as in Expt. IV., the vertical
load is 135 grammes weight, the acute angles the sloping strings make with
the vertical are 25° and 50° ; find the other two weights.

(6) A load of 27 lbs. is supported by two strings attached to hooks;
if the strings make angles of

(i) 27° and 48°; (ii) 40° and 70°; (iii) 50° and 50°;
with the vertical, determine the pulls on the hooks.

(7) To two hooks 4 and B are fastened ropes which support a load of
3 cwts. The distance apart of 4 and B is 7 ft. and 4 is 3 ft. higher than
B ; if the lengths of the vopes attached to 4 and B are 5 ft. and 4 ft., what
are the tensions in the ropes, 7.e. what are the pulls of the ropes on the
load and on the hooks?

(8) A weight of 12,000 grammes is supported by strings from two hooks
A and B in the same horizontal line. The distance apart of 4 and B is
15 ft. and the string attached to B is 122 ft. Find the pulls on the hooks
when the length of the string attached to 4 is

(i) 15; (i) 144; (iii) 10; (v) 5; (v) 4; (vi) 3 ft.

(9) Draw a graph shewing the relation between the pull on the hook in
Ex. 8, and the length of the string attached to it, as the string varies
in length from 3 to 15 ft.

Take two axes on squared paper and an origin. From the diagrams of
position and of vectors, the pull corresponding to the string length 3, 4, 5,
10 and 144 ft. can be found. Plot points having as abscissae the lengths of
the string and as ordinates the corresponding pulls. Join the points by a
smooth curve. From the graph read off the pulls corresponding to string
lengths of 12 ft. and 7 ft., and the lengths corresponding to pulls of 5000
and 17,000 grammes weight.

If the string could stand a pull of 12000 grammes only, what would be
the least length of string that could be used ?

(10) Draw a graph shewing the relation between the length of the
variable string and the pull on the other hook.

(11) Draw a graph shewing the relation between the two pulls on the hooks,
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(12) In repeating Expt.
V. a student used five
weights. The directions
and magnitudes of four of
the pulls being as given in
Fig. 124, what was the
magnitude of the fifth
weight, and in what direc-
tion and sense was the pull
exerted by it ?

Fic. 124.

(13) Four concurrent forces are in
equilibrium and act in the lines indi-
cated (Fig. 125). If P=18 and (=25
Ibs. weight, find 2 and S in magnitude
and sense. (Find the vector giving the
sum of the two known vectors, from its
end points draw parallels to R and 8.
This can be done in two ways; but the
vectors parallel to £ and S are the same
in each case. Since the forces are con-
current and the vector polygon is closed,
these vectors must give the forces in
magnitude, direction and sense.)

Fic. 125

(14) A wheel has six central equi-spaced spokes, in four consecutive spokes
the pushes on the axis are 032, 072, 1°15 and 0-84 lbs. wt. ; what are the
actions of the remaining two spokes on the axis ?

(15) A weight of 10 Ibs. hangs vertically by a string from a hook. The
weight is pulled horizontally so that the string makes an angle of 37° with
the vertical. What is the magnitude of the horizontal pull and what is
the pull of the string on the weight ?

(16) Draw a graph shewing the relation between the pull S on the hook
8nd thewzlorizouml pull H in Ex. (15) as H increases gradually from
to 10 W.

For any given value of H the vectors form a triangle 0A4B (say), OA
representing the weight W, 48 the pull 2 and BO the pull of the string
on W. At B draw BP perpendicular to 45 and of length BO. Go
through this construction when A4 B represents 1, 2, ... 10 Ibs. weight, and
join the points P so obtained by a smooth curve. This curve is the one
required, for 4 being the origin of coordinates and 4B and A0 the
axes, the coordinates of P are the values of H and S necessary to give
equilibrium,



EXERCISES. 129

A
(17) In Fig. 126 45 is a light rod with !

a weight of 11 lbs. at B ; the rod can turn !
freelyround 4. B ispushed perpendicularly !
to 4 B with a force of 4 lbs. weight. Find t
the position of 48 and the pull on 4. \
i

i

i

1

1

(Since the angle at B is a right angle,
describe a semicircle on the vector repre-
senting 11 lbs. weight, and set off in this
a line representing a force of 4 Ibs. weight; 1
the closing line of the triangle gives the Vertical /

direction of AB and the force it exerts
on B].

Fie. 126.

(18) Draw a graph shewing the relation between the push at B (P) and
the pull Son 4 in Ex. (17) as P increases from zero to 11 lbs. weight.

(19) In Fig. 127 4 is a
fixed hook and C' a smooth
pulley, B a smooth ring to
which the threads AB, BC
and BW are attached. If

A A
BCD=30°, ABC=85°, find
the pull on 4 and the weight
w.

w
Fic. 127.

The angles remaining constant, draw a graph shewing the relation
between @ and W.

(20) Two cords are fastened to a ring at C, and, hanging over pulleys at
A and B, bear weights of 12 and 17 lbs. Find the force in magnitude,
direction and sense, with which ¢ must be pulled in order that, with 4C
and BC making angles of 60° and 80° with the vertical, there may be
equilibrium.

(21) A load of 5 cwts. is suspended from a crane by a chain of length
20 ft.; a doorway is opposite the load and 5 ft. distant; with what force
must the load be pulled horizontally to cause it just to enter the doorway ?

(22) Strings of length 5 and 3-2 ft. respectively are fastened to a floor
at points distant 43 ft. apart; the other ends are attached to a smooth
ring which is pulled by means of a string making 30° with the vertical
with a force of 50 Ibs. weight. The three strings being in one plane, find
the other pulls on the ring.

T.G. I
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(23) OA and OB (Fig. 128) are the axes of two forces, a is the vector of
the force in 04, ¢ is the magnitude of a third force which, acting through
0, is in equilibrium with the other two forces. Find the vectors of the

A

Fic. 128.

other forces. How many solutions has the problem? Can you choose a
magnitude for ¢, so that there shall be only one solution ? Can you choose
a magnitude for ¢ so that equilibrium is impossible? What is the least
magnitude of ¢ consistent with equilibrium ?

(24) A weight of 50 lbs. is supported from 4 and B as in Fig. 129.

A

(i) Find the pulls on 4
and B.

(ii) If a man pulls in the
direction and sense
OC with a force of
10 Ibs. weight, find
the alteration in the
pulls on 4 and B.

(iii) If he pulls in the
opposite sense, find
the alteration in the
pulls on 4 and B.

(iv) Find the pull so that
there may be no
tension in 0.
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The Foundation of Statics. - Such experiments as have
been performed cannot be considered in themselves as the Dest
foundation for the science of mechanics, the true basis for which
must be sought in far more generalised experience. Such
generalised experience was summed up by Newton (p. 135).
Deductions made from such experiments as those detailed must
consequently be regarded as tentative only. The experiments,
however, have the great advantage of giving a reality to
notions concerning the action of forces which descriptive matter
fails to impart.

Deductions from Experiments. The experiments now
performed all relate to the action of forces on rigid bodies.
Force without some body (mass) acted on is a meaningless term ;
forees do not act on points but on masses, and such an expression
as “forces acting at a point” means only that the lines of action
of the forces are concurrent.

Expt. I. shewed that a force is determined only when we
know some point in its line of action in addition to its magni-
tude, direction and sense

Expts. II. and IIL shewed (i) that a body under the action of
two forces is in equilibrium when, and only when, the forces
differ in sense alone; (ii) a force acting on a rigid body may be
supposed to act anywhere in its axis.

By a rigid body is meant one which retains the same relative
position of its parts under the action of all forces. Any body
which maintains its shape unaltered, or for which the change is
too small to be measurable under the action of certain forces, may
be considered as rigid for those forces. The paper in Expt. I.
was practically rigid for the forces acting on it; it is, however,
quite easy to apply forces to it that would change its shape. If
a set of forces deform a body, but after a time the body takes
up a new shape which does not alter while the forces are
unchanged, such a body after deformation may be treated as
rigid for those forces. For non-rigid bodies we must know not
only the axis of the force, but also its point of application.
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Expts. IV. to VL shewed that if a rigid body, acted on by
coneurrent forces, is in equilibrium, the sum of the vectors of
the forces is zero; and conversely, when the sum of the vectors
of the forces is zero and the axes concurrent, the body is in
equilibrium.

Expt. VII. shewed that when a body is in equilibrium under
the action of three forces, their axes are concurrent; but that
in general for four or more forces the axes are not concurrent
when there is equilibrium.

Rotors. Any quantity which, like a force, requires for its
specification the magnitude, direction, sense and a point on its
axis, is called a rotor quantity (Clifford). '

Such quantities may be represented geometrically by rotors,
i.e. vectors localised in definite straight lines. The rotor may
be specified by giving its vector and a point on its line of
action. It is, however, usual and convenient to give

(i) the axis, (i) the vector,
so0 that the direction is given twice over.

To avoid confusion in graphical work, the axes of the forces
(rotors) should be drawn on a different part of the paper from
the vectors giving the magnitudes, direction and senses of the
forces.

Equilibrant. When a body is in equilibrium under the
action of a number of forces, the forces themselves are, for
shortness, often spoken of as being in equilibrium. For such
a system of forces any one may be said to be in equilibrium
with the rest, and from this point of view is callea the equilibrant
of the others.

Resultant. The equilibrant of such a system of forces would
be in equilibrium with a certain single force differing from it
only in sense (Expt. IL.), and this reversed equilibrant would
have the same effect, so far as motion is concerned, as all the
rest of the forces together. The equilibrant reversed in sense
is called the resultant of the forces.
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It should he noticed that it has not been shewn that any
system of forces has a resultant, but simply that if a system of
forces is in equilibrium any one of them reversed in sense is the
resultant of the rest, and would produce the same effect as
regards motion as all the rest together.

Resultant of Concurrent Forces. To find the resultant
of & number of concurrent forces acting on a body, add their
vectors to a resultant vector and through the point of con-
currence draw the axis of the resultant force parallel to its

vector.
b

Force Scale
? I o

09876543

Ibs. wt.
Fic. 180.

Exavpir 1. Find the vesultant of two forces of magnitude 9+
and 121 lbs. weight acting towards the E. and towards a point 66-5°
N. of E.

Draw the axes ¢ and & (Fig. 130) and add the vectors « and 8
of the forces (scale 17 to 5 Ib.), e+ B =1, then ¥ is the vector of
the resultant force. Through the point of intersection of  and &
draw the axis ¢ of the resultant.
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Notice that if y he set off along ¢ and « and S along ¢ and b,
they form two adjacent sides and the concurrent diagonal of
a parallelogram. That the magnitude, direction and sense of
the resultant of two intersecting forces can be found, by adding
the forces as vectors, is often, hut badly, expressed by saying
that forces are combined by the parallelogram law.

ExANMPLE 2. Find the resultant of fowr forces of magnitudes 13, 11,
9, T Lilogramanes weight whose awes are the lines joining a point O fo
points A, B, C, D, the five points being the wvertices in order of o
requlur pentagon, and the senses being from O to A, O fo B, O fo C
und D 1o O.

Draw a civele of radius 27, divide the circumference into five
equal parts with dividers by the method of trial. Mark the five
points in order O, 4, B, C, D, then draw the vector polygon,
a of length 13 cms. parallel to 04, 8 of length 11 cms. parallel
to 0B, y of length 9 cms. parallel to OC, and, finally, 8 parallel
to 0D, hut having a sense from D to 0. The vector o joining
the beginning of a to the end of & is the resultant force in magni-
tude, direction and sense. Finally, draw a line through O parallel
to o, this is the axis of the resultant force.

(25) Find the resultant of two forces of magnitudes 16 and 18 kilogrammes
weight, if they are directed N. and 75° E. of N.

(26) Three concurrent forces have magnitudes 23, 18, 15 lbs. weight, find
their resultant in magnitude, direction and sense when the angles between
them are 120° and 100°, and the forces all act outwards.

(27) If two forces are equal, shew that the resultant must bisect the angle
between them.

(28) If the magnitudes only of ¥
two forces are given, in what
relative directions should they
act so that the resultant is (i) as
big, (ii) as small as possible.

(29) « (Fig. 131) acts in the axis
Ox, another force in Oy; find
graphically the magnitude and
sense of this force so that the O
resultant may be as small as
possible.

(30) Concurrent forces of magnitudes 12, 17, 10 and 8 Ibs. weight are
directed towards N., N.E., S.E. and 30° W. of 8. respectively ; find the
resultant in magnitude, direction and sense.

Fic. 131
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(31) A wheel has six equi-spaced radial spokes; four consecutive spokes
are in tension and pull on the hub with forces of 10, 15, 12 and 7 Ibs.
weight ; find the resultant pull on the hub due to these spokes.

(32) A string 4BC is fastened to a hook at A, passes round a free
running pulley at B (4B horizontal), and is pulled in the direction BC
where 4 BC=105" with a force equal to the weight of 17 lbs. Find the
resultant force on the pulley at B.

(33) ABCD is a square of side 2”, a force of 11 lhs. weight acts from 4
to B, one of 7 lbs. from D to A and one of 3 lbs. from C to A4 ; find the
resultant force.

FORCE, MASS AND ACCELERATION.

Newton’s Laws of Motion. The laws for the combina-
tion of concurrent forces deduced from Expts. I. to VIL are
immediate deductions from Newton’s famous Second Law of
Motion. Stated shortly in modern language the law is—a force
acting on a particle (or body, if the axis passes through the
M.C.), is measured by the product of the mass of the body and
the acceleration produced.

Acceleration being a vector quantity, force is a vector quantity,
and since the force must act on the mass moved, it is a localised
vector quantity or rotor.

The effect of two or more concurrent forces is found, therefore,
by adding the corresponding accelerations as vectors. The single
force, which would produce this resultant acceleration, is called
the resultant force, and is measured by the product of the mass
and this acceleration. To find, then, the resultant of a number of
concurrent forces, add the forces as vectors; the sum gives the
vector of the resultant force, and the axis of the force passes
through the given point of concurrence.

A mass being in equilibrium when it has no acceleration, we
see this will be the case, when, the axes being concurrent, the
vector sum of the forces is zero, and conversely.

The equation connecting the three quantities, mass, force and

acceleration is
Force = Mass x Acceleration.
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# Mass and Weight. If a foot and a second are units of
length and time, a foot per second is the unit of speed, and
a speed of a foot per second added per second (or a ft. per sec. per
sec.) is the unit of speed acceleration. Further, if the unit of
mass be a 1b. mass, the unit of force must be that force which
would give a lb. mass a speed acceleration of a ft. per sec. per
sec. ; or which would increase its speed every second by a ft.
per sec. This follows at once from the equation: if the mass=1
and the acceleration = 1, then the force must=1.

We know that a body falling freely has a speed acceleration
of 322 ft. per sec. per sec; hence if the mass be a lb. mass, the
force acting on it is the 1b. weight and is given by the equation,

Ib.-wt. =force =1 x 32-2.

In this system, then, the force on a falling 1b. mass would
be 1x 322 units of force; this is the weight of a lb. mass
in these units. For statical purposes it is better, however, not
to use this system, but to take the weight of the Ib. mass as the
unit of force.

The expressions 1b. weight, force of a Ib. weight, and Ib. mass
will often be met with; the first denotes the force with which
the earth attracts the lb. mass; the second a force equal in
magnitude to the weight of a l1b. mass, but usually having a
different direction.

In the C..s. system, similar double terms occur. The unit of
mass is here a gramme, and the unit of length and time a
centimetre and a second.

Unit force is then =gramme x an acceleration of a centimetre
per sec. per sec., and is called a dyne.

The acceleration due to gravity in centimetres per sec. per sec.
is 981, and, therefore, the weight of a gramme mass is 981
dynes. In statics, however, it is usual to consider the gramme
weight as the unit of force, and thus we meet with the terms,
gramme weight, force of a gramme weight, and gramme (or
gramme mass).
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Action and Reaction. In Expt. IL (p. 119) the ring was
found to be in equilibrium under the opposite pulls of the
threads B4 and CD. Consider the bit of thread 4B, it is in
equilibrium under the pull (= /7)) from 4 upwards and the pull
(=Ww,) from B downwards. At B the action of the thread on
BC is equal and opposite to that on BA4. At every point of the
thread a similar argument holds, i.e. there are two equal and
opposite forces pulling away from each other. This double set
of forces is called a stress, tensile stress in this particular case.

If a column (Fig. 132) supports a load 77, then the action
of the upper portion on A7 is (neglecting the weight of the
column itself) a downward push= 77, and the
upper part is in equilibrium under the load 7 w
and the reaction of 4P. The action at P,
therefore, on the upper part must consist of
an upward push=/”. Whatever part of the
column be considered, the result is the same, at

every point there are two equal and opposite P
pushing forces. This double set of forces is
called a compressive stress.
No force can be exerted without the presence A
of an equal and opposite one. If a body be F1o. 132.

pushed, the body will push back with a force (called the resist-
ance) equal in magnitude and opposite to it in sense.

If a spiral spring be pulled out beyond its natural length it
tends to shorten and pulls back with a force of equal magnitude.
Again, the wind only exerts force in so far as its motion is
resisted, and the resisting obstacle reacts on the moving air with
a force of equal magnitude.

Put shortly as in Newton’s Third Law of Motion : the action
of one body on another (or of one part of a body on another
part) is equal in magnitude and opposite in sense to that of the
second body on the first, or still more shortly : action and re-
action are equal in magnitude, have the same axis, but are of
opposite sense.
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ExavrLE. A book is in equilibrium on a hovizontal table, not
because there is mo force acting on it, but because the pressure of the
book on the table, due to its weight, is exactly equal in magnitude and
opposite in sense to the reaction of the table on the book.

R
R
G
w
w

Fia. 133.

Suppose the table to be tilted ; then if the book still remains in
equilibrium it must be because the reaction of the table is still
vertical, and of the same magnitude as before.* The reaction is
therefore no longer normal to the table, and hence there must
be some force along the common surface of table and book; in
fact, there is friction.

Ideal surfaces hetween which normal action alone is possible
are called frictionless or smooth. Smooth as applied to one body
only is, strictly speaking, meaningless; it is a term relating to
the action and reaction of two bodies. If in any problem one
surface is spoken of as being smooth. it is meant that the action
between that surface and any other body considered in the
problem is wholly normal.

Since the action between any two bodies is never wholly
normal, problems involving the supposition that certain surfaces
are smooth are to a great extent academic, and the results
obtained must be regarded as only first approximations to the
real state of things.

Note. In this chapter the weight of a body will be supposed
to act through its mass-centre.

*If a body is in equilibrium under two forces—the weight and the table
reaction —these forces can only differ in sense.
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ExAMPLE. 4 body of weight W (25 kilogrins.) is Lept in position
on @ smooth plane of inclination 30° by a horizontal force a. What
must be the magnitude and sense of «, and what is the reaction of the
plane?

The body is in equilibrium under the action of three forces,*
viz. the weight, the force o, and the reaction y of the plane.
The latter is perpendicular to the plane, since the plane is
smooth.

30"

Set off 4B=25" (Fig. A
134) vertically downwards,
draw through A, 4C mak- |3
ing 30° with the vertical,
and through B, BC hori-
zontal. v

Then 8

B(C measures the pull
=1-44 kilogrms.,

and
CA4 measures the reaction
=2-89 kilogrms. B 3 c
Force Scale
ST 4 H 2 3
Kilogrammes wt.
Fic, 134

*The axes must be concurrent. v. 132.
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=0

(34) If the plane is inclined at 75°, find a and v.

(35) If the plane is inclined at 30°and the direction of a makes 15° above
the horizontal, find a and .

(36) If the plane is inclined at 30°, and o’s direction is 15° below the
horizontal, find « and 7.

(87) Shew from the vector polygon that, whatever the inclination of the
plane, the pull will be a minimum if it be applied parallel to the plane.

(38) A garden roller of weight 2 c¢wts. is hauled up a slope inclined 1in 5
(1 vertically to 5 horizontally) and held with the handle horizontal. What
is the horizontal pull on the handle ?

(39) A body weighing 7 cwts. is kept in position on a smooth inclined
plane by a force of 2 cwts. parallel to and up the plane and another force
inclined at 15° below the horizontal. The ratio of the height and the
base of the plane being 07, find the force inclined at 30° and the reaction
of the plane.

ExAMPLE. A mass of 5 Ibs. weight is attached to a string of length
1/t Thestring is fastened to a point on the circumference of a smooth,
fiwed horizondal cylinder of radius 2 ft.  The point of attachment being
12 fi. from the top of the cylinder ; find the tension in the string and
the reaction of the cylinder.

The direction of the string at C is along the tangent to the
circle, the string being supposed quite flexible.

The tension in the string being the same at all points of BC
(see formal proof on p. 162) it is immaterial at what point we
suppose it fastened to the cylinder; in fact the length of the
string may be anything, provided one end is at C and it is
wound on the cylinder from the fastened end towards C in a
clockwise sense. .

Draw a circle of radius 2” to represent the vertical section of
the cylinder containing the weight and string. Step off, from
the highest point 4 (Fig. 135), the arc AC=22". Join C to
the centre O of the circle. Then draw the vector polygon of the
forces ; a vertically downwards of length 5 cms., y parallel and S
perpendicular to OC. Then measure y and B in ems to obtain
the reaction of the cylinder and the tension of the string.
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A )
B ¢,
C
(o]
Position Scale
° 'y 2! 3’ 4 4 4
L [ | ] I I J
Force Scale
i - . )

Fia. 135.
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ExAMPLE. A body of 15 lbs. weight is sustained on @ smooth
inclined plane by o horizontul force of T-2 lbs weight and o force
purallel o the plane of 37 Ibs. weight, What is the inclination of the

plane und its reaction ? Draw 04 (Fig 136)
r O downwards of length 15
cms., then 4 B horizontally
of length 7-2 cms. With B
as centre, describe a circle
of radius 37 cms., and,
= by the aid of set squares,
a draw a tangent to it from
0; let BD and 0D be the
radius and tangent.

-

o

el

o

F~

“IMsqp

A B
Fic. 186.

Measure OD on the cm. scale, this gives the reaction ; measure
the slope of DB by finding how many inches it rises for 1”
horizontally, or use a protractor and obtain the angle DBA.
(Reaction = 1625 Ibs. and angle of plane 38-2° approximately.)

(40) A mass of 7 Ibs. weight is to be attached to the highest point of a
smooth horizontal cylinder (radius 2') by a string which can only bear a
tension of 4 Ibs.; what is the greatest length of string that may be used ?

(The reaction being perpendicular to the tension, the vector triangle is right-
angled, and since « is known and the magnitude of 8, y is determined.)

(41) Find the inclination of a smooth plane so that a body of 5 kilogrms.
weight may be supported on it by a horizontal push of 2 kilogrms. weight.
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(42) Find the inclination of a smooth plane so
that a body of 17 1bs. weight may be supported
on it by a force of 7 Ibs. weight applied parallel
to the plane. (In this case we know the reaction
of the plane is perpendicular to the applied force R
of 7 lbs., so set off 17 cms. vertically down-
wards for the weight. From the lower end of 7]
this line describe an arc of radius 7 cms. as in
Fig. 137, and draw a tangent to it from the
upper end. The length of the tangent gives
the reaction R. The reaction, and therefore
the normal to the plane, is now known.)

7

Fic. 137.

(43) A body of weight 15 lbs. is supported on a smooth inclined plane by
a horizontal force of 7 lbs. weight together with a force of 4 lbs. weight
acting parallel to and up the plane; find the inclination of the plane
and the reaction. .

(44) A truck weighing 15 cwts. is kept at rest on an incline of 1 in 5 (one
vertical to five horizontal) by a rope 6 ft. long attached to the truck 3 ft.
above the level of the rails and fastened to a hook midway between them.
Find the pull on the rope.

(45) A smooth ring weighing 3 kilogrms. can slide on a vertical circular
hoop of radius 2 ft. It is attached to the highest point of the hoop by a
string 3 ft. long. Find the tension in the string and the reaction of the
hoop on the ring. (The reaction is along a radius of the circle since the
ring is smooth.)

(46) A string with equal weights of 11 lbs. attached to its ends is hung
over two parallel smooth pegs 4 and B in the same horizontal line ; find
the pressures on the pegs. (The tension of the string is the same through-
out ; the concurrent forces at each peg which are in equilibrium are the
reaction of the peg and the two pulls of the string, one on each side of
the peg.)

(47) If in Ex. 46 the line 4 B makes an angle of 40° with the horizontal ;
find the pressures on the pegs.

(48) A string with equal weights of 750 grms. attached to its ends
passes round three pegs in a vertical plane at the vertices of an equilateral
triangle. Find the pressures on the pegs when one side of the triangle is
horizontal and (i) the third vertex above, (ii) the third vertex below the
horizontal side, the string passing under this vertex and over the other two.
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Simple Bar Frameworks. In problems on the equilibrium
of very simple frameworks of rods we suppose at first that
(i) the weight of the rods may be neglected ;
(ii) the joint connecting two rods is made by a perfectly
smooth circular pin ;
(ii) the loads are applied only at the joints.

The action of the pin on the rod must then pass through the
centre of the pin (why ¢ ; hence, any rod is under the action of
two forees passing through the centres of the end pins, and for
equilibrium these forces must be equal and opposite, i.e. in the
line joining the centres of the pins. The bars may therefore
be represented by the lines joining the pin centres.

ExAMPLE. 4 wall crane consists of two bars AC and BC pin-
jointed together at C and to the wall at A and B. (BC is called the
beam, AC the tie vod.) A load of 402 fons is suspended from C.
Find the stresses in BC and AC and whether they are tensile or
compressive, given that BC=10"1 ft.,, AC=15 fi.

Since the forces on the pin at ' are 402 tons downwards and
pulls or pushes along BC and (A4, we have simply to find the
forces in the directions C'4 and CB which will be in equilibrium
with 4-02 tons downwards.

Draw first the crane to scale and then set off 0P =402 cms.
(Fig. 138) vertically downwards and draw P horizontally and QO
parallel to 4C.  The forces at C are given by OP, PQ and QO in
magnitude, direction and sense. Scale these vectors; P@ gives
364 tons. Notice that OPQ is similar to 4BC, hence, if 4BC
be supposed the vector polygon for the forces at C, then 4B
represents 4:02 tons. Measure the length of 4B, and from this
determine the forces represented by BC and CA.

At C the beam BC pushes from left to right, and, therefore,
since C is in equilibrium, the pin must push the beam C from
right to left and exerts a compressive force on it. Again, the
beam is in equilibrium and hence the pin at B must also exert a
force on the beam from left to right. Hence, BC is in a state of
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compression and the compressive stress is measured simply by

the force at either end.
T,G. b4
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Again, QO measures the action of the bar 4C on C, and since
it is upwards, the bar evidently pulls at C; and further, since the
bar is in equilibrium it must also pull the pin at 4, and hence
the bar AC is pulled at C and 4 with forces tending to lengthen
it and must therefore he in a state of tensile stress or (shortly) in
tension.

(49) If BC=9 ft. and 4C=12 ft., and the load suspended from C is
378 tons, find the stresses in AC, and BC.
(50) Ti ABC=60°, BOA=45°, and the load is 63 tons, find the stresses.

(31) If BC'=10 ft. and AB=12 ft., and BC slopes downwards at an
angle of 30°, find the stresses in 4B and BC due to a load of 28 tons wt.

(52) If BC=10 ft. and is horizontal, find the stresses in BC and AC
when AB has the following lengths 10, 8, 6, 4 and 3 ft. ; the load is 17
tons wt. Draw a graph shewing the relation between the length of 4B
and the stress in BC.

Exampri,  In o wall crane ACB (Fig. 139) the chain bearing the
load W passes over a smooth pulley at C and is fiwed fo the wall af B
find the stresses in AC and CB given that AC s horizontal and
of length 9 ft., BC=12 fi., AE=4-4 ft., and W=37 tons.

Draw the frame to scale, say 1 em. to a foot. Since the pulley
is smooth, the pull on Z, and therefore the tension in CE, is
measured by 37 tons weight.

Hence, set off OP=3-7" vertically downwards to represent the
load ; then P@=3'7" parallel to CE. Through @ draw QR
parallel to 4C, and through O draw OFE parallel to BC'; then
OPQR is the vector polygon of the forces keeping the pin in
equilibrium at C.

Measure the lines to scale. The senses in which the vectors
must be taken at C are decided by OP and PQ. QR acts from 4
to C, and the bar pushes at (' and is therefore in compression.
RO acts from C to B, and the bar pulls at C and is therefore in
tension.

(53) Find the stresses when 4 F=3 ft.

(54) Find the stresses if 4C=4B=9 ft., AB=4"5 ft., and AC slopes
upwards at an angle of 20° with the horizontal,
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ExaAMPLE.  Two equal rods AB and AC are pin-jointed together
at A and their other ends connected by a cord BC ; the whole rests on
smooth table in a vertical plane with « weight W =294 Ibs. suspended
from A, Given AB=AC=39 ft. and BC=59 ft., find the stresses
wn AB, AC and BC.

First draw the frame 4BC (Fig. 140) to seale (1”7 to 1'), and
then the vector polygon: OP =588 inches, PQ parallel to A,
QO parallel to 4C. Then these vectors measured on 3" scale
give the stresses in the bars in lbs. weight. Are the rods 4B
and AC in compression or tension ?

For the joint B the force QP pushes. Draw PR parallel to
BC and QR vertical, then the sense of the vector triangle for
B is QPR, and PR measures the tensile (why tensile?) stress in
BC. Why was EQ drawn vertically upwards, and what does it
measure ?

(55) If AB=3 ft., AC=2 ft., BC'=3"5 ft. and W =23 kilogrms., find all
the stresses and the reactions of the table at B and C.

(56) The Derrick Crane. BC (Fig. 141) is the A
post (kept vertical by some means not shewn),
AC the jib, 4B the tie rod. Given 48=6 ft., B
AC=13 ft. and BC=10 ft. A load W=74 tons
iz guspended from 4, find the stresses in AB and

(57) If the supporting chain passes over a smooth
gulley at 4 and is fixed at D, where CD=3"5 ft.,
nd the stresses in 4B and AC.

(58) Given 4B=17 ft., AC=25 ft., BC'=16 ft.,
CD=5 ft. and W=14'5 tons, find the stresses in
ABand AC.

(59) A picture weighing 65 lbs. is hung by a
wire over a smooth nail. ~If the distance apart of Fra. 141
the points 4B at which the wire is fastened be
1 ft. 7 in. and the length of the string 2 ft. 3 in., find the pressure on the
nail and the tension in the string.

(60) If the length of the string in Ex. 59 vary, draw a graph shewing
the relation between the tension of the string and its length.

(61) Light rods 4C, CB, of lengths 72 ft. and 5°7 ft. are pin-jointed
together and to two fixed points 4 and B distant 63 ft. apart. AB is
inclined to the horizontal at an angle of 25° (4 being the higher) a load
of 47 cwts. is suspended from the pin joining the two rods; find the
stresses in the rods.
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(62) ABC (Fig. 142) is a wall crane pin-
jointed at 4, B and C; a load W of 5 tons
is suspended from a pulley D, which is
attached to the crane at B and C by a chain A
BDU. ABD=72, AC=T5 ft., AB=129
ft.; find the stresses in 4 Band BC. (Notice
that BD and CD must be equally inclined
to the vertical, since the tension throughout
the chain is constant. Hence first draw the
vector triangle for the forces at D, and
determine this tension. Knowing the pull
of the chain at B, the stresses in 4B and
BC can be found.)

D
w
Fie. 142.

(63) A picture, of weight 11 1bs., is suspended from a smooth nail by a
continuous string passing through two smooth rings on the picture frame
distant apart 1 ft. 7 in. If the height of the nail above the two rings
be 3 ft., find the tension in the string and the pressures on the nail and
rings.

(64) AB and BC (Fig. 143) are light rods pin-jointed together at B, and
to fixed points at 4 and C. A load W

(7 cwts.) is suspended by a chain which B
passes over a smooth pulley at B and is
attached to 3/, the mid-point of 4C. The
load is pulled by a horizontal rope until
the chain makes an angle of 30° with the
vertical. Find the stresses in the rods and
chain, given that 48=10 ft.,
B(O=54 ft. and 40=622 ft.

A M c

Horizontal
Fie. 143.

Components of a Force. In relation to their resultant the
forces of a given system are called the components. Finding
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the resultant of a set of concurrent forces is a unique process ;
the converse problem of finding the components when the
resultant is known is not in general unique.

A force may be decomposed into two components having
given directions and passing through any point on the axis, in
one and one way only.

The proof is exactly the same as that for the decomposition
of vectors, on p. 84.

When the component of a force in a given direction is spoken
of without reference to the other component, it is always implied
that the two components are perpendicular.

Scalar Conditions of Equilibrium for Concurrent Forces.
For equilibrium under concurrent forces, it is a sufficient and
necessary condition that the vector polygon of the forces should
be a closed figure.

Let the axes of the forces be supposed concurrent, and let
o, B3, ... o be their vectors whose sum is zero (i.e. the vector
polygon is closed). Draw any line XX ; project the vectors on
to this line by drawing parallels through the end points of
the vectors. If aj, B, ... be the projections, Fig. 144 shews that

o+ B+ +8 +oy=0.
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Similarly project on ¥V a line parallel to the former direction
of projection, and establish a similar theorem for the projection
on it, viz.

g+ Byt vy + 8yt =0.
Then «, and «, are the components of o in the directions XX
and J'7, and so for the other components, and the sum of the
components in any two directions is zero.

Conversely, if the sum is zero in any two directions the vector
polygon is closed, and the forces (if concurrent) are in equi-
librium. One direction is not sufficient, for it might happen,
as in Fig. 145, that though the polygon is not closed, the first
and last points of the projections are coincident

Frc. 145.

The two directions being at right angles we have the theorem :
The sum of the components in any direction of all the forces
acting on a body in equilibrium is zero.

Again, -o is the resultant of a+ B+ y+96, and hence we get
the theorem: The sum of the components in any direction of
any number of concurrent forces is equal to the component of
the resultant in that direction.

(65) Five concurrent forces in a horizontal plane have components 3-7,
21, 1'8, 1'7 and 2°9 towards the N., and components 1-2, 37, 2+4, 8 and

32 towards the E. Find the resultant in magnitude, direction, sense and
position,
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(66) Mark on squared paper the four puints whose coordinates are (1, 0),
(1'7, 2), (2'3, 1), (32, 4) inches, and let the lines joining the origin to these
points represent concurrent forces to the scale of 1 em. toakilogrm. Find
the resultant by (i) the vector polygon method, (ii) the component method.

(67) Forces of magnitude 5, 28, 31, 47 are concurrent and make angles
of 15°, 30°, 60° and 75° with a line through the point of concurrence. ¥ind
the forces in this line and a line perpendicular to it which would be in
equilibrium with the given forces.

ExampLE 1. A4 horse begins to pull o small tramcar with a
force P =500 bs. weight. The traces muke an angle of 25° with
the horizontal, find the component of P in the direction of motion.
If the weight of the car be % « ton, what is the reaction of the
ground ?  (Suppose no friction.)

[¥]
A
(o] B ~
Force Scale
R PR i 2% 30 4°
Ibs. wt.
Fic. 146.

Draw 04 =5" (Fig. 146) making 25° with Oz, and draw 4B
perpendicular to Oz; then, since as vectors OA =0B+BA, OB
represents the forward pull on the car.

From B along B4 set up BC=112", then AC gives the
reaction of the ground, for it represents the weight of the car,
less the vertically upwards component of the pull of the traces.
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ExAMPLE 2. The points A and B are 5" apart and distunt 1 and
37" respectively from the line CD, and hoth on the sume side of it.
Find the componenis through A and B of « foree of 8 bs. in CD, when
(i) the component through A is perpendiculur to CD; (ii) the com-
ponents through A and B are mutually perpendicular ; (ii1) the
components are equal in magnitude.

(i) Draw, through A, 40 perpendicular to CD. Join B0, and
find the components of the 8 Ibs. weight along 04 and OB.

(i) Draw a semicircle on 4B, cutting CD in O and O ; then
04, OB, 0, and 0,B are possible directions for the components.
There are thus in this particular case two sets of components
which will satisfy the conditions of the problem. Find these
components.

(iii) Draw M perpendicular to CD and produce it to A,
where 4M=MA,. Join 4,B, cutting CD in N; then AN
and NB are the required directions. Find the components
in these directions.

(68) In the ahove example, if B is on thc opposite side of CD to 4,

determine the components in the three cases (i), (ii) and (iii).

(69) The pressure of wind on a sail when the sail is perpendicular to the
wind is 500 1bs. weight ; find the normal pressure on the sail when the wind
makes angles of 15°, 40°, 65° and 75° respectively with the sail.

(70) Find the components of a force of 11 lbs. weight making angles of
30° and 75° with it.

(71) A force of 17 lbs. weight is directed due N. ; find the components in
%]‘}e dirl%ctions (i) N.E. and N.W., (ii) E. and N.W., (iii) S.E. and 30°

. of N.

(72) Two ropes are attached to the coupling of a railway van and are
ulled horizontally with forces of 200 Ibs. and 270 lbs. weight. The
engths of the taut ropes are 18 ft. and 21 ft. and their ends remote from
the truck are at distances of 10 ft. and 7 ft. respectively from the centre
line of the rails. Find the forward pull of the van and the side thrusts
on the rails when (i) both ropes are on the same side, (ii) on opposite sides
of the rails.

(73) On squared paper mark the positions of two points whose coordinates
are (1, 2) and (24, 1-2) inches; find the components through the origin
and these points of a force of 7 1bs. weight acting (i) along the axis of z,
(ii) along the axis of y, (iii) along the line bisecting the angle xQOy.

(74) On squared paper mark the point whose coordinates are (27, 1°1),
and draw a line parallel to Oy and distant 1” from it on the negative side.
Find the components of a force of 5 lbs. weight, one of which is along this
parallel and the other passes through the given point when the axis of the
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foree is (i) along Ow, (ii) along Oy, (iii) a line making 30° with Oz and cuts
Ox at 1°5" from the origin on the positive side.

(75) A smooth inclined plane (Fig. 147) rising 1 in 3 has a smoothly

running pulley at the top.

A body of weight W (116

lbs.) is kept in equilibrium

by the pull of a string

parallel to the plane. The

pull being produced by a

freely hanging weight P, P
find P and the reaction of

the plane.

What is the component of w
the weight parallel to the
plane ? What is the vertical
component of the reaction of Fie. 147.
the plane?

(76) A man distant 13°5 ft. from a tree pulls at the upper part of the trunk
by a rope of length 40 ft. His pull is equal to a weight of 80 Ibs. What is
the horizontal pull on the tree, and what is the force producing compressive
stress in the trunk ?

(77) A barge is towed by a horse with a pull P of 152 Ibs. weight making
an angle of 20° with the direction of the bank. What is the force pro-
ducing forward motion, and what would be the side thrust of the water on
the barge if there were no side motion ?

(78) A block is partly supported by a smooth right-angled wedge of
weight 18 Ibs. (as in Fig. 148) the height and base of the wedge being

— -

Fic. 148.

32 ft. and 6 ft. respectively. If, to maintain equilibrium, the wedge has
to be pushed with a horizontal force of 28 lbs. weight, what are the
reactions of the wedge on the body and on the horizontal table ?

(79) A uniform cylinder of
weight 57 lbs. rests on two
inclined planes as indicated
in Fig. 149. The planes are
hinged together at 4 ; what
is the tension at 4, and what C C
is the pressure of each plane
on the ground, given that the
wedges are equal in all re-
spects, each weighing 15 lbs.,
and that l
BC_3, B, A - B
AB=F° Fic. 149.




156 GRAPHICS.

ExamprLeE. OF (Fig. 150) represents the crank of an engine, F
moving in the circle DFE and O being fized. CF is the connecting rod,
C being the cross head of the piston rod which moves to und fro along AB
(AB=DE). C is kept in the line AB by guides. The forward
thrust on C being 5000 Ibs. weight, find the force transmitted along
the conmecting rod CEF and the side pressure on the guides at C
(assuming mo friction ) given that CF =65 fi., DE=3 ft. and AC=6"
the direction of motion F being as indicated.

Find also the components of the force transmitted along CF in the
direction of the forward motion of F and perpendicular to i, (i.e., along
the tangent and radius of ¥ ).

First draw the position diagram to scale, say 2 cms. to 1 ft.
Next construct the vector diagram P@ =25" to represent 5000 lbs.;
then QB and PR are perpendicular to 4B and parallel to CF
respectively. QR is the thrust on the guides (and RQ is the
reaction of the guide on C keeping it in the path ACL) and PR
is the force transmitted along the connecting rod.

Draw PS perpendicular and RS parallel to OF, then PR acting
along CF is equivalent to PS acting along the tangent at F and
SR acting from 7 to 0. PS then gives the forward thrust of F.

(80) Find the force on & urging it round the circle when 4C=02, 04,
06 and 08 times 4.5.

EXAMPLE. Drow o graph shewing the comnection between the
position of C (Fig. 150) and the thrust on F urging it round the circle.

Divide 4B into ten equal parts and draw ordinates at 4 and B
and the points of division. Produce C'F to cut the ordinate at O
in (. Project G horizontally on to the ordinate at C. Do this
for the eleven marked positions of ¢ and join the points so deter-
mined by a smooth curve. The force scale for this representation
is OF to 5000 Ibs.

Compare the results with those ohtained by the vector polygon.

* Proof.

From the construction of Fig. 150 we have the following
relations between the angles :

RPQ=GC00=90°-0GF, PRS=GFO,



FORCE ON ENGINE CRANK. 157

and hence ;% =cos RPQ = cos (90° - OGF)=sin 0GF,
% —sin PRS =sin GFO ;

. PS_sinGFO_0G
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Fra. 150.
Hence, if OF be taken to represent PQ or 5000 lbs. wt., OG
will represent PS or the forward thrust on the piston.
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*(81) If the force on the piston decreases uniformly from 5000 lbs., at 4
to zero at B, find by a graphical construction the forward thrust on
P when the cross head is at ¢'and 4C=0445.

#(82) Construct the curve giving the relation between the forward
thrust on F and the displacement of (' for the variable force given in
the last example. Set up, perpendicular to 4B, 44,=radius of crank
circle and project from G to Gy on A4, and join G4B; the point of inter-
section of Gy 5 and CC) gives the force required for displacement 4 C.

Exampre. AB (Fig. 151) represents o sail of a ship whose keel
line is as shewn. The thrust o of the wind on AB if perpendicular to
the wind would be 500 Ibs. weight. If AB males an angle of 30° with
the keel line and the relutive velocity of the wind to the ship be in
direction CM, making 45° with keel line, find the thrust urging the ship
forward.

Resolve « into B and y perpendicular and parallel to the sail
AB. vyhas no effect on the ship’s motion. Find the components
of B along and perpendicular to the keel line; the former, 8
(approximately 647 lbs. weight) is the thrust urging the ship
forward, the latter, ¢, tends to produce lee-way and in good sailers
is nearly balanced by the resistance of the water to side motion
and the force of the current on the rudder.

In the vector diagram, since RPQ is a right angle, a circle
described on RQ as diameter will pass through P. Draw this
circle. As the direction of the sail line 4B is changed the
point P will move on this circle. Evidently as P changes, the
length QT will alter and it will be greatest when PT is a tangent
to the circle.

Now, the radius being perpendicular to the tangent at any
point, the line joining P (when PT is a tangent) to the mid-
point S of RQ must be perpendicular to PT and therefore parallel
to the keel line. Hence, to find the best position for the sail,
bisect 2@ at S and describe a circle of radius S§ ; then draw SP
parallel to the keel line cutting the circle at P. EP gives the
direction in which the sail should be set and the greatest

possible forward thrust is given by @7. Since S?ZP=%Q§’P we
may give this direction as the one bisecting the angle between
the keel line and the direction of the relative wind.
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No matter how small the angle between the keel line and the
wind direction, there will always be a force urging the vessel
on. Ifthere be much lee-way, sailing close to the wind is impossible.

C

45°

307 A Keel line

Fic. 151

(83) Draw a figure for the case when the sail is set on the other side of
the keel line, and shew that this case is an impossible one.

(84) The keel line being from W. to E. and the relative wind from the
N.W.; find the forward thrust on the ship when the sail is set 25° 8. of W.

(85) Shew from the vector diagram for given directions of the keel line
and stern wind that the greatest forward thrust would not be obtained
by putting the sail as nearly perpendicular as possible to the keel line.

(86) The keel line being from N. to S. and the relative wind from E. to
W., find the forward thrust when the sail makes an angle of 20° with the
keel line. Find the angle at which it should be set to give maximum
forward thrust on the ship.
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(87) The force of a current on a rudder when placed perpendicular to the
stream is 50 1bs. ; find the retarding force on the ship when the rudder
makes angles of 20°, 30° and 60° with the keel line. Shew that, in a race,
the rudder should be used as little as possible.

{88) Explain how it is that a kite, though fairly heavy, is enabled to rise
in the air.

(89) The force of the wind on a kite if placed perpendicular to it would
be 5 1bs. When the kite makes an angle of 35° with the horizontal, find
the force due to the wind urging it upwards.

(90) In Ex. 89 if the kite be stationary and its weight 10 ozs., what is
the pull of the string on the kite in magnitude, direction, and sense.

Body in Equilibrium under Three Non-Parallel Forces.
Experiment VIL on p. 122 shewed that when a body is in equili-
brium under three non-parallel forces, the axes of the forces are
concurrent. The same result follows from the combination of
concurrent forces, deduced from Newton’s Second Law of Motion,
since equilibrium is only possible under three forces when the
resultant of any two differs only in.sense from the third.

This consideration enables us to draw the axes of those forces
in equilibrium when one force is unknown in direction.

ExAMPLE. A uniform beam rests with one end against a smooth
vertical wall and the other on rough ground. Defermine the reactions
of the ground and wall. N

AB (Fig. 152) is the beam of length 25 ft., 4BC=60" and
the weight is 0-505 cwt.

Draw the beam in position (scale 1 in. to 5 ft.), then draw a
vertical through @ the M.C. of beam, and a horizontal through
A, intersecting in 0. Join OB, then BO is the direction of the
ground’s reaction.

Construct the vector polygon (scale 10 cms. to & cwt.).
Draw PQ=10 cms. downwards; then @QF horizontal and EP
parallel to BO. Scale the lengths, @ and PE giving the re-
actions (Q2=0145 cwt., RP=0525 cwt. approximately). Why
is A0 drawn perpendicular to 4(C'*

(91) Determine the reactions of the wall and ground if 4B is inclined at
45° to the horizontal.

{92) Determine the reaction of the wall and ground if 4B is inclined at
40° to the horizontal and the mass centre @ of the beam is at 9 ft. from
the ground, reckouned along the beam.
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(93) A uniform beam A B hinged at 4, is supported in an inclined
position to a vertical wall 4C by a string CB fixed to the wall at C.
The weight of the beam is 17 kilogrms., A B=4 ft., AC=2 ft., BC=52ft.,
find the tension in B(C and the reaction at 4 on the beam.

(94) With dimensions as in Ex. 93, find the stress in BC if the mass-
centre of the beam be 3 4B from 4.

(95) Draw a graph shewing the connection between the distance of
G from B and the tension of the string BC.

(96) In Ex. 94, if 4B =30 ft. and 4 BC'=75", find the reactions.
A 0

C B Q R
Force Scale
A e P S L3 A 3
cwits.
Fic. 152.

(97) A uniform beam A4 B of length 25 ft. and weight 70 Ibs. is hinged to
a wall at 4 (19 ft. above the ground at O), the other end B rests on a
smooth inclined plane OB. Find the reactions at 4 and B when the
inclination of the plane is 30°, 15° and 60° respectively.

(98) Draw the two sides and base of a rectangle, the sides being 3" and
base 2”; draw a diagonal and produce it 4'5”.  Let the two sides of the
rectangle represent vertical boards securely fixed in the ground (base), and
the diagonal produced a uniform beam. The beam being smooth, find the
reactions at its points of contact : weight of beam 2 cwis.

T.G. L
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(99) A uniform beam of length 3 ft. is hinged at one end to the lowest
point of a horizontal hollow circular cylinder of inner radius 2'5 ft. The
other end of the beam rests against the inner smooth surface of the
cylinder in a plane perpendicular to the axis of the cylinder. Find the
reaci:;)ons at the two ends of the beam, the weight of the beam being
530 Ibs.

2
v \\

N
s o A
A /;‘? , 1\ B

Fic. 153.

(100) 4B (Fig. 153) is a weightless rod 5 ft. long, which can turn
about C as a fulerum; AC=32 ft.; it is acted on by two forces P
and ¢ as shewn. P=1001bs.; find ¢ and the reaction at C.

A (e}
FiG, 154.

(101) A uniform beam 4B (Fig. 154), 13 ft. long and of weight 80 lhs.,
rests against a smooth inclined plane BC (rising 4 ft. vertically to 7 ft.
horizontally) and is prevented from
sliding by a peg at 4, A0=9 ft. Find ¢
the reaction of the plane and the tota:
reaction at 4.

The Smooth Pulley. A flex-
ible string of negligible weight is
fastened at B to a smooth pulley
(Fig. 155) and passing over it bears
aload /7. Consider the equilibrium
of any part QP of the string. The
forces acting are the pulls (tensions)
at @ and P and the reactions of the
surface YP. The former are tan-
gential and their axes intersect at Fre. 155.

C, the latter are normal and have therefore a resultant passing
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through 0. Since three forces in equilibrium must be concurrent,
the resultant reaction must pass through (' as well as 0. But
00 bisects the angle QCP, and hence, from a trial stress diagram,
we see that the tensions at @ and P must be equal in magnitude.

In some problems the axes of one, two, or more of the forces
are unknown in direction, hut other geometrical conditions are
given which, with the aid of a trial diagram, will enable the
solution to be found.

ExAMPLE 1. A uniform heavy rod, of weight 9 lbs. and length 3 fi.,
is suspended from a point by two sirings of length 2-5 and 2 fi.
respectively attached fo dis ends. Find the equilibrium position, and
the stresses in the strings.

If 4B, 4C, BC (Fig. 156) be the two strings and the rod,
then_on the system of strings and rod.act two forces, the
weight of the rod at J/, its mid-point, and the reaction at A.
These must be in a line, since there is equilibrium, and hence

A

B M C
Fic. 156.
AM must be vertical. Draw the triangle 4 BC, in any position,
and its median 4M. Then, if 4M be vertical we have the
required position, and the vector polygon can be drawn. (The
usual convention in books is to represent the vertical in space
by a line parallel to the bound edge of the paper; if this
convention be adhered to, another triangle A4,B,C;, must be
drawn with AJM vertical, and this can easily be done by con-
strueting a parallelogram, whose diagonal is vertical and equal to
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24 M, and whose adjacent sides are equal to 4B and AC.)
Complete the solution.

*BEXAMPLE 2. 4 heavy uniform smooth ving weighing 17 Ibs. slides
on a string of length 492 fi.; the ends of the string are fastened fo
twn hoolks A and B, whose distance apart is 3-95 fi., A being 098 fi.
above B ; find the position of equilibrium and the tension of the string.

Since the ring is smooth the tension of the string must be the
same on hoth sides, and hence from a trial stress diagram we
see that the two parts of the string must be equally inclined
to the vertical. Draw 4DB (Fig. 157), where 4D =098" and
is vertical, 4B = 395" and DB is horizontal. With B as centre,
describe a circular arc of radius 4-92” cutting 4D produced in Z,
or set an inch scale so that BE=492". Bisect 4F at M and
draw MN parallel to DB, then 4NB is the form assumed by
the string.

A

Position Scale
¥ z

r
o

k3 5

Fie. 157.

For AN=EDN, and therefore AN+ NB=4'92", and AN and
NB make equal angles with the horizontal. To find the tension,
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draw, in the vector diagram, lines parallel to 4N and NB from
the extremities of the vector, giving the load of 17 Ibs.; complete
the solution.

*EXAMPLE 3. A4 uniform beam weighing 105 bs. rests with one
end A in contact with a smooth plane of inclination 35°, the other
end B rests on a smooth plane of inclination 50°. Determine the
reactions of the supporting planes and the position of the beam.

Draw first the vector polygon of the forces, /@ representing
105 Ibs. weight to scale, then draw QR and PR making angles of
31° and 50° with P@. These lines give the reactions at 4 and B.
Draw two lines 4 and BC for the planes and at any two points
4 and B, their normals intersecting in 0. Join O to the mid-
point M of 4B. Complete the parallelogram 0ATB of which
04 and OB are adjacent sides. Then O7'B and 04T should
be similar to DR@; hence if P be hisected at S, CB should be
parallel to SE, hence SE gives the inclination of the beam.

(102) A rod of length 7” lies in a smooth hollow horizontal cylinder,
perpendicular to its axis, of radius 9”. The mass-centre of the rod is at a
Eoint distant 25" from one end; draw the position of fhe rod in the

owl when in equilibrium, and measure its slope.

Nore. The m.c. of the rod must be vertically under the axis of the
cylinder.

*(103) A uniform rod, of weight 7 kilogrms., can turn freely about one
end in a vertical plane ; it is pulled by a horizontal force of 43 kilogrms.
weight at its free end. Draw the rod in its position of equilibrium, and
measure its slope.

Nore. Three forces act on the rod and must pass through a point;
knowing the vertical and horizontal forces, the reaction at the hinge can
be found. From any point O draw two lines: (i) OB parallel to the
reaction, and (ii) 04 horizontally. Bisect 04 at M, and draw verticals
from M and 4. Where the former cuts OB (at B say) draw BT, cutting
the vertical through 4 in 7', then O7'is the direction of the beam. Measure
O7 in cms. or inches, and determine the scale to which the figure is drawn.

*(104) Solve the previous exercise if the rod is not uniform and the
M.C. is at a distance of } of the length from the lower end.

*(105) A rod of length 6 ft. has its M.c. at a distance of 2 ft. from the
end which rests on a smooth plane of inclination 30°, the other end rests
on another smooth plane whose inclination is 45°. Draw the rod in its
position of equilibrium ; its weight being 5 cwts., find the reactions of the
planes.
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*(106) A uniform beam 4B (Fig. 158), of length 7 ft. and weight 27
kilogrms., can turn frecly, in a vertical plane, about 4 ; to its upper
cxtremity B is fastened a cord which runs over a smooth pulley at C,
9 ft. vertically above A, and carries a weight of 11 kilogrms. Find the
position of the beam and the reaction at the hinge.

G

Fic. 158.

Draw a trial figure 4 BC and a stress diagram PQR, where P() repre-
sents the weight of the beam, RP the tension of the cord (=11 kilogrms.)
and QR the reaction at 4. Then PQR should evidently be similar to 40C
(O being point of concurrence of the axes of the forces). Hence

co_PR_11

C4A-PQ™ 2T
and hence €O and therefore 0B (=2C0) is known, and hence the triangle
ACB can be constructed to scale. Do this construction and determine

QR.
MISCELLANEOUS EXAMPLES. IV,

1. With the aid of your instruments find the resultant of the two forces
represented in magnitude and direction by the straight lines shewn in the

Fic. 159.
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diagram (Fig. 159). Assuming that one inch represents 10 lhs. weight,
write down the magnitude of the resultant. Also, express in degrees the
angle the resultant makes with the greater of the two forces.

(Engineer Students, 1903.)

2. Draw diagrams to shew the directions in which each of the following
sets of forces must act so as to maintain equilibrinm, if they can do so.

Set A. 3, 4, 5. Set B. 1, 1, 3. Set C. 4, 1, 3.
(Naval Cadets, 1904.)

3. Two men, who are lifting by ropes a block of wood, exert pulls of
45 1bs. and 65 lbs. respectively.  The ropes are in the same,vertical plane ;
the rope to which the smaller pull is applied makes an angle of 25° with the
vertical, and the rope to which the other pull is applied makes an angle of
33° with the vertical on the opposite side. Determine graphiecally, or in
any other way, the actual weight of the block of wood if it is just lifted by
these two men. (Naval Cadets, 1904.)

4, One of two forces, which act at a point, is represented numerically
by 7; the resultant is 14 and makes an angle of 3(° with the force of 7;
find graphically the magnitude and line of action of the second force. Also
calculate the magnitude to two places of decimals, and measure the angle
between the two forces as accurately as you can.

5. Three forces, acting in given directions, are in equilibrium at a
point 3 shew how to find the relative magnitudes of the forces. What
additional information suffices for the determination of the absolute
magnitudes ?

Two small equal brass balls, each weighing -; oz., are suspended by equal
silk threads, 12 inches long, from a single point ; the balls being electrified
there is a force of repulsion between them so that they separate and remain
in equilibrium 4 inches apart ; find the force of repulsion and the tension
of each thread. (B. of E., 1., 1904.)

6. A weight of 1 ton is hung from two hooks 20 ft. apart in a horizontal
platform by two chains 15 and 10 ft. long; find by construction and
measurement the tension in each chain. (B. of E., I1., 1903.)

7. A chain weighing 800 lbs. is hung from its two ends, which are
inelined to the horizontal at 40° and 60° respectively. What are the forces
in the chain at the points of suspension ? (B. of E., A.M. 1., 1903.)

F1c. 160.

8. The figure (Fig. 160) shows a bent lever 40B with a frictionless
fulerum 0. 4O is 12", BO is 24". The force @ of 1000 lbs. acts at 4 ;
what force P acting at B will produce balance? What is the amount
and direction of the force acting at O? (B. of E., A.M. IL, 1904.)
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9. A thread is fastened by one end to a fixed point 4, and carries at its
other end a weight W of 201bs. Toa point B of the thread a second thread
B( is fastened and this second thread is pulled at the end C' by a force
equal to the weight of 81bs. ; when the system comes to rest it is found that
BC is horizontal. Shew the system when at rest in a diagram drawn to
scale, find the angle which 4 B makes with the horizon and the tension sct
up in 48. (B. of E., L., 1904.)

A

10. Draw two lines O4 and OB and let 40B be an angle of 37°; suppose
that R, the resultant of two forces P and @, is a force of 15 units acting
from O to B; suppose also that P is a force of 8 units acting from O to 4.
Find, by a construction drawn to scale, the line OC along which @ acts,
and the number of units of force in Q. (B. of E., I., 1904.)

11. In a common swing gate the weight is borne by the upper hinge.
The distance between the upper and lower hinges of such a gate is 3°5 ft.
If a boy weighing 119 lbs. gets on the gate at a distance of 8 ft. from the
post, find the magnitude and direction of the pressure he exerts on the
upper hinge. (B. of E., IL., 1905.)

12. A machine of 5 tons in weight is supported by two chains; one of
these goes up to an eyebolt in a wall and is inclined 20° to the horizontal ;
the other goes up to a roof principal and is inclined 73° to the horizontal ;
find the pulling forces in the chains. (B. of E., A.M. 1., 1907.)

13. Fig. 161 shows a weight
of 500 lbs. supported by two
equally inclined poles. Find

the thrust on each pole. o
(Naval Cadets, 1903.) 2
g
=3
3
Fro. 161
A 5% C

14, The bracket shewn in the
sketch (Fig. 162) carries a load of 100
kilogrammes at C. Find whether the
stresses in 4C and BC are thrusts or
pulls and the amount. B

(Military Entrance, 1905.)

37

Fie 162.
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15. Draw a triangle 4 BC with AB vertical, and let 4 C'and BC repre-
sent two weightless rods, joined together by a smooth hinge at ¢ and
fastened by smooth hinges to fixed points at A and B: a weight W is hung
from C'; shew that one of the bars 1s in a state of tension, and the other of
compression ; also shew how to calculate the stresses.

Ohtain numerical results in the following case: AB=4, BC=3, (4=2,
and W'=18 tons. (B of E., IL., 1905.)

A

16. In Fig. 163 11" is a weight of 170 1bs.
hanging from a joint at A by a chain that
weighs 20 lbs. The joint is supported by
rods AB and AC fixed at B and . Find
the stress in each rod, and say whether it
is a thrust or a pull. (Naval Cadets, 1904.)

F1G. 163.

(o]

17. The two bars AC
and BC (Fig. 164), hinged
at 4 and B, and hinged to-
gether at C, carry a load
of 170 lbs. at C. Find the
stress in each bar.

(Inspector of Ordnance
Machinery, 1904.)

/ 170 Ibs.

A B
F1e. 164.

18. A body whose mass is 2 cwts. rests on a smooth inclined plane ; it is
maintained in position by a force of 40 lbs. acting parallel to the surface
of the plane, and by a horizontal force of 110 Ibs. Determine in any way
the angle of inclination of this plane. (Military Entrance, 1905.)
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19. A weight slides freely on a cord 2:6 metres long, the ends of which
are attached to fixed pegs P and @; P is 1'4 metres from the vertical
through @ and 30 cenfimetres below the horizontal through . Draw to
a scale of Tlath a diagram shewing the position of equilibrium. Determine
the tension in the cord and the proportion of the weight borne by each

eg.
P Denoting the span or horizontal distance between the pegs by S, the
height of one peg above the other by A, and the length of rope by L, find
expressions for the horizontal and vertical distances of the weight from
the lower peg. (Military Entrance, 1905.)
20. A weight is supported by a tie and a horizontal strut ; find how the
pull in the tie varies as the inclination changes, and plot a curve giving
the pull as a function of the angle of inclination of the tie.
(Military Entrance, 1905.)
21. Fig. 165 represents a vertical section (drawn to the scale of 1 inch
to a foot) of the roof of a building, 4CB being a window which can turn
ahout a hinge at 4 and which is opened by means of a rope tied to the end
F of a light iron bar CF, which is firmly fixed to the window at C. The

1
1

1

'

1

1

[l
'
)
1
1
1
i
]
1
'
'

v
i
'
]
'
)

Vertical line

Fic. 165.

rope from /" passes over a smooth pulley at K and is fastened to a hook
in'the roof. "Find the tension in the rope when the position of the window
is that indicated in the figure. The weight of the window is 30 lbs. and
may be taken as acting at G. (Military Entrance, 1905.)
22. A uniform bar 4B of weight W is freely movable round a smooth
horizontal axis fixed at 4. It is kept at a fixed inclination 7 to the horizon
by resting against a peg P whose position along the under surface of 48
is varied. Represent in a diagram the various magnitudes and directions
of the pressures on the peg ang the axis 4 as P is moved along the bar.
(Inter. B.Sec. (Eng.), 1906.)
23. Enunciate the triangle of forces. Shew how to find, by a graphical
construction, the angle at which two forces, each equal to 50 lbs. weight,
must act on a point that they may have a resultant equal to 75 Ibs.
weight. (Inter. Sci., 1900.)
24. Draw a triangle 4 BC with AB vertical and 4 above B to represent
two bars AC' and BC freely jointed at C and attached at 4 and B to
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points of a wall in the same vertical line. A given weight heing suspended
from C, determine the natures and magnitudes of the stresses in AC
and BC. (Inter. Sci., 1900.)

25. Draw a triangle 4 BC having the vertical angle 4 large and the
base BC horizontal ; produce BC to D. Let 4B denote a rod connected
by smooth hinges to a fixed point B and to the end 4 of a rod 4C, whose
other end C can move in a smooth groove BCD ; the weight of the rods
being negligible, a force # is applied in the plane 4 BC at right angles to
AB at 4; find the force transmitted by the rod 4 (' along the groove.

(Inter. Sci., 1900.)

26. A light cord attached to a fixed point O, passes over a fixed
pulley @ at the same level as O and at a distance ¢ from it, and supports a
weight W attached to its end; another weight w smaller than 20 is
slung freely over the cord between O and @) ; determine the depth below
0@ at which this weight will rest in equilibrium. (Inter. Sci., 1900.)

27. Explain a graphical method of finding the resultant of a number of
given forces acting on a particle. A light string of length / has its ends
fixed at 4 and B at a horizontal distance ¢ apart, and a heavy ring of
weight W can slide along the string. Prove that the ring can rest

vertically beneath B if a force W2 be applied parallel to 4 B.
l (Inter. Sci., 1904.)

28. A uniform bar 4B, 10 ft. long, of weight ¥V is freely movable in a
vertical plane, about a smooth axis fixed at 4 ; it is sustained at an angle
tan~1% to the horizon by resting against a fixed (smooth) peg at C, where
AC=6 ft. TFind the magnitude and exhibit the lines of action of the
pressures at 4 and C. (Inter. Sei., 1904.)

29. A man stands on a ladder which leans against a vertical wall.
Assuming the pressure on the wall to be horizontal, find geometrically the
horizontal thrust of the foot of the ladder on the ground. Length of
ladder 15 ft., foot of ladder 5 ft. from wall, total weight of man and ladder
3 ewts. acting 5 ft. from the ground (reckoned along the ladder).

(Inter. Sci., 1904.)

30. A drawbridge 4B, hinged at 4 (the axis of the hinge being hori-
zontal and perpendicular to 4 B), is to he raised by a chain attached at B
and carried over a pulley C fixed vertically over 4 at a height AC=4B.
The resultant weight of the bridge acts through the mid-point of 4B.
Shew in a diagram how to find the varying tension in the chain due to the
weight of the bridge as it is slowly lifted, neglecting the weight of the
chain and all friction.

If the bridge weighs 2 cwts., find the tension of the chain and the
direction and magnitude of the reaction of the hinge when the bridge is
half-open, that is, when 4B is at 45° with the horizontal.

(Home Civil, I., 1905.)

31. A light bar 4B can move freely about the end A4, which is fixed,
and is supported in a horizontal position by a string OB, C being a fixed
point vertically above 4. If a weight W be suspended from any point P
of the bar, find geometrically the direction and magnitude of the reaction
at 4 and the tension in the stay. W=10, AB=18", AP=12", AC=9".

(B.Se., 1904.)



CHAPTER V.
THE LINK POLYGON.

Resultant of three Coplanar Forces (non-parallel).
ExaMpLE. Drow u triangle ABC (Fig. 166) whose sides are 3, 4,
and 6 inches long. Take these as the aaes of forces whose magnitudes
are T, 2, 5 Ibs. weight, and whose senses are given by AB, BC, and
CA. To find the resultant of these forces in magnitude, direction,
sense and position.
Draw the vector polygon for these forces
a, B, ¥, finding
gy =0a + ﬁ,
0‘=c'1+7=a+/3+7.
Through B draw BD parallel
to o, cutting AC at D.
Through D draw DE parallel
to o cutting BC'in Z.

\?\ Y

F1c. 166.
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Then DE is the axis and o the vector of a force called the
resulfunt of the given forces. Measure the magnitude of o and
the angle it makes with BC, and the position of £ with reference
to B and C.

Note that o is independent of the order of addition of a, 3, v;
it is not evident that £ is independent of the order in which we
suppose the forces combined.

(1) Combine the forees in two different orders, viz. (i) @ and v to a
resultant through 4 and combine this resultant with 8; (ii) 8 and ¥ to
a resultant through ¢ and then combine this with a. Shew in each case
that the resultant always cuts BC at Z.

Resultant of any number of Coplanar Forces (non-
parallel). When there are more than three forces the process
for finding the resultant, if there is one, is simply a continuation
of the process explained for three forces, and consists in finding
the resultant of two intersecting forces, then the resultant of this
and a third force intersecting it, and so on. The whole con-
struction is a repetition of that for two concurrent forces; its
validity depends on the truth of the assumption that the order,
in which we suppose the forces combined, is immaterial.

(2) Draw an equilateral triangle 4 BC of side 4" ; forces of magnitudes
2, 5, 1 lbs. weight act in these sides with senses 4B, BC, C4A. Find the
resultant in magnitude, direction, sense and position.

(3) On squared paper take axes Ox and Oy. Mark the points whose
coordinates are (3, 2), (1, —1), (2, 3) and (-4, 2). Forces of 3, 5, 1'54 and
2 lbs. weight act through these points, their directions and senses being
in order.

(i) parallel to Ox and in the positive sense.

(ii) making 45° (iii) making 75°, (iv) making 120° with Ox and with
senses upwards.
Find the magnitude, direction and sense of the resultant and where it

cuts the axis Oz.

Resultant by Link Polygon. The construction in the
previous examples fails altogether for parallel forces and in many
cases involves finding the point of intersection of lines which
are nearly parallel.

These difficulties can be overcome by the introduction of two
new forces which differ only in sense.
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The construction now to be explained depends for its validity
on the truth of the suppositions, (i) that such a pair of forces
will not affect the equilibrium, (ii) the order of the combination
is immaterial.

EXAMPLE. On any straight line mark four points an inch apart,
and draw lines a, b, ¢, d through these as indicated. o, 3, 7, 8 are the
vectors of the forces acting in these lines of magnitudes 198, 3-3, 4°15,
and 2:05 lbs. weight.  Find the resultant.

Draw the vectors, to the scale 2 cms. to 1 Ib. weight, and add
them to a resultant vector o (Fig. 167).

oc=a+B+y+6.

Mark a point O on the concave side of the vector polygon
(called the pole). Join this point to the vertices of the vector
polygon P,P,P,P,P;. The point O should be chosen so that
these joining lines are not nearly parallel to any of the vectors.
For this reason the concave side is the better position for 0.

Mark any point 4 on & and through it draw a line, ¢, parallel
to OP,. "The latter line is a vector, call it e

Throucrh A draw AB (cutting b at B) parallel to

OP,(=¢+a).
Throucrh B dxaw BC (cuttmv ¢ at C) parallel to
OP;(=c+a+f3).
'Throuvh C draw CD (cutting d at D) parallel to
. OP(=ct+atf+y)
Through D draw DE (cutting e at E) parallel to
OP,(=c+a+B+7y+9).
Through E draw r parallel to
PP (=c=ct+a+p+y+d—-e=a+p+y+39).

Then 7 is bhe axis and o the vector of the resultant of the

given forces.

Proof. Let two forces differing only in sense act in ¢, and
suppose their vectors to be e and —e At 4 there are two
concurrent forces e and o ; these are combined to e+ o acting in
AB. At B there are two concurrent forces S and €+ o; these
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Link Polygon
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are combined to e+a+f8 ae&% in BC. At“C there are two con-
current forces y and e+a+ f3; these are combined to e+a+ B+
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acting in CD. At D there are two concurrent forces & and
e+a+f+y; these are combined to e+a+[B+y+0 acting in
DE. TFinally, at E there are two concurrent forces —e and
e+a+f+y+0; these are combined to a force a+fS+y+38
acting in ». Hence 7 is the axis of the resultant and o is its
vector.

Note that the construction is always possible and never
awkward if the pole O is chosen properly, for this means that
ADB, BC, ... always intersect 0, ¢, ... at angles never very acute.

(4) Repeat the construction, using a different pole. Is the same axis »
obtained ?

(5) Repeat the construction, choosing a different point 4 on a.

(6) Repeat the construction, adding the vectors in the order

a+y+8+6.

The figure A, B, C, ..., constructed on the azes a, b, c, ..., is culled
the link polygon (sometémes the funicular polygon); the vector
polygon is often (but wrongly) called the force polygon.

(7) Find the resultants in Exx. 2 and 3 by the link polygon method.

(8) A wheel has eight tangent spokes placed at equal distances round
the hub. The tensions in five consecutive spokes are 3°1, 27, 3+3, 1-8 and
2-4 lbs. weight. Find the magnitude, direction, sense and axis of the
resultant pull on the hub due to these five spokes, the spokes being
tangents to a circle of radius 2:5”.

Equivalent Forces. Any set of forces which would produce
the same effect, so far as motion is concerned, as a given system
of forces is called equivalent to the latter.

Resultant Force. If a single force would produce the same
effect as a given system of forces this equivalent force is called
the resultant of the given system.

Not more than one single force can be equivalent to any given
set of forces, otherwise forces differing in magnitude or direction
or sense or position, or in all together, could produce the same
motion in a body. The latter supposition is inadmissible (see
Expt. 1, p. 119, and Newton’s Second Law of Motion, p. 135).
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Equilibrant. Look at the matter a little differently. Sup-
pose a set of forces to be in equilibrium, then any one of the
set may be considered as the equilibrant of the rest. A force
differing only in sense from the equilibrant is the only force that
could produce equilibrium with it, and hence is the only single
force equivalent to all the rest (Expt. IL., p. 119).

Unique Resultant. If, then, a set of forces has a resultant,
it can have one only.

That any set of forces has a resultant has not been proved ;
as a matter of fact, two forces, which differ only in sense and
position have no resultant.

The construction given for finding the resultant of any number
of coplanar forces consists in finding one after another the single
forces equivalent to 2, 3, 4, ... up to the last of the given set,
and including in this set two forces differing only in sense. At
each step of the process we find the resultant in conformity with
experimental results and with Newton’s Second Law of Motion.
Since there can be one resultant only, the order in which we
suppose the forces combined is immaterial.

Expr. VIII. Punch four holes in a piece of cardboard,
and suspend it as in Expt. VL., Chap. IV. Mark the lines

of the forces and the corresponding magnitude and sense of A
each pull.

By vector and link polygons construct the resultant of
three of these, and hence shew graphically that this
resultant differs only in sense from the fourth force.

Notation (Bow or Henrici). For graphical
work it is often (but not always) convenient to
have a different notation from that used hitherto. B
The axis of the force is indicated by two letters
(or numbers), one on each side of the force, whilst Fro. 165,
the vector of the force is indicated by the same
two letters in capitals placed at its ends. Thus ab (Fig. 168) is
the axis, and AB the vector, of a force. )

.G, M
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ExampLE. Mk five points P, Q, R, S, T 3 cms. apart on o
straight line, and draw lines through these poinis wt angles 65°, 90°
70°, 90° und 65°, as indicated in Fig. 169.  Letter the spaces between
the Tines a, b, ¢, d, e, f, as indicated. The forces in these lines are
given, by the vectors AB, BC, CD, DE, EF, and represent 3, 2:15,
2:08, 27, 2:85 Ibs. weight respectively. Find the resultant force.

Choose a convenient pole O (Fig. 169). Through the space a
draw R, parallel to 04 ; through the space b draw R, R, parallel
to OB ; through ¢ draw £, R, parallel to OC; through ¢ draw E,R,
parallel to 0D ; through ¢ draw R J2; parallel to 0. ; and finally
through f draw R,E parallel to OF. The lines through the first
and last spaces, .. E R and By, intersect at [, a point on the
resultant.

Draw, then, through R a line parallel to 4F; it is the axis,
and AT is the vector of the resultant.

Note that it is not necessary to draw the radial lines
04, OB, 0C, ... ; in fact it is better not to do so, as the crossing
of the lines at O tends to make the exact position of the pole
doubtful.

The advantage of the space notation consists in its rendering
mechanical the order of drawing the lines. 4 corresponds to g,
B to b, and so on. - The more important advantage of uniqueness
of construction will be better seen when stress diagrams are
under consideration.

In some cases where the axes of the forces cross, some little
care is necessary in choosing a good order in which to take the
lines and a convenient pole, so that the construction lines may
not intersect off the paper.

EXAMPLE. Draw o parallelogram having adjacent sides of 276
and 253 inches, the included amgles being T5° and 105°.  Letter the
spaces as indicated (i.e. taking the parallel sides in order and not the
adjacent sides). The forces acting in the sides are given by the vectors
AB, BC, OD, DE, and are of magnitudes 10-3, 42, 31 and 56
Filogrms. weight.  Find the resultant.

Choose a pole O somewhere near the position indicated (Fig. 170)
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and construct the link
polygon and the axis
of the resultant as
shewn.

In Fig. 170 the lines
from O to 4 and 4 to
0O are the arbitrary
vectors. The first line
in the link polygon is
drawn parallel to 04,
and the second is drawn
through the space b

parallel to OB. AE, “,‘% N

shewn dotted, is the §~:§ \\‘ P o
vector of the resultant  “ [, 3 Y *
force; its axis is the - 5

dotted line in the link M .

€
[
m

polygon.

ox

Fia. 170.

(9) Take the order in which the forces are combined differently, e.g.
take the adjacent sides in order contraclockwise.

(10) Combine the forces directly without using a pole.

Parallel Forces (Like). Parallel forces are but a particular
case, and the construction for their resultant does not differ in
any respect from that given for the general case.

Parallel forces having the same sense are said to be like;
if they have opposite senses they are unlike.

ExampLe.  Fig. 171 is o diagram of the four poirs of driving
wheels and the trailers of o modern locomotive. The weights borne by
the wheels, taken in order from left to vight, are 15, 17, 17, 17 and 13
tons weight, their distances aport are 6, 5' 87, 6" and 7' 6”. Find
the axis of the resultant thrust on the rail.

Letter the spaces as indicated, and draw the vector and link
polygons. Fig. 171 shews R, a point on the axis of the resultant,
distant 1” to the right of the centre of the third pair of wheels.
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(11) Find the resultant of two weights of 5 and 7 Ibs., distant apart 117,
hung from a horizontal rod.

(12) Find the resultant of six equal weights (123 1bs. each) hung from a
horizontal rod at distances, from left to right, of 17, 1-04, 1-83, 202, 0°97
inches apart.

(13) Three men pull at parallel ropes attached to a block in a horizontal
plane with forces 5177, 652 and 554 lbs. weight ; the first two ropes are
2 ft. 8 in. apart; where should the third rope be so that the resultant
pull should be in a line midway between the first two ropes.

(14) Three weights T,, W,, W, are placed in a line on a table, the
distance apart of W, and W, is 2 ft., and of W, and W, 32 ft. If W=7
Ibs. and Wo=4 lbs., find W, if the resultant push is to be midway between
W, and W,.

Parallel Forces (Unlike). Should some of the parallel
forces he of opposite sense to the rest, the corresponding vectors
in the vector polygon must be drawn in their proper sense, the
construction is otherwise exactly the same.

EXAMPLE. Five men pull on @ yacht which is stuck on a mud bank
by parallel ropes (in the same plane). Find the resultant pull on the
yacht, the distances apart of the ropes in ft. and the magnitudes in Ibs.
weight and senses of the pulls being as given in Fig. 172.

Set off 4B=58, BC="T71, CD=T79 cms. downwards; and
DE=6'3 and EF=55 cms. upwards. The vector sum is AF
and represents the resultant in magnitude, direction and sense.
Draw the link polygon as before, keeping to the order of the
letters ; finally, 2 is found as the point of intersection of the first
and last lines of the link polygon and therefore is a point on
the axis (r) of the resultant.

(15) Find the resultant of two parallel forces 10 and — 15 Ibs. weight, the
axes being 3 ft. apart.

(16) Six parallel forces act on a rod ; the magnitudes are 10, - 15, 8, —12,
7 and -20 lbs. weight at distances 2, 8, 9, 11, 12, 15 inches from one end ;
find the resultant force and where its axis cuts the rod.

(17) PQRS is a square of side 3"; a force of 15:3 Ibs. weight acts along
PQ, one of 82 1bs. weight along QR, one of 9-8 lbs. weight along SR and
one of 184 lhs. weight along SP. Find the resultant in magnitude, direction
and sense, and the point where its axis cuts QR.
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(18) Find the equilibrant of three parallel forces of magnitudes 8, -7 and
-2 cwts., the distances apart of their axes being 1 and 16 yards.

(19) In a certain locomotive there are four pairs of driving wheels whose
distances apart are all 5 8”; the distance hetween the last wheel and the
The truck has three pairs
of wheels whose distances apart, from front to rear, are 6’ 3" and 6'.

first wheel of a coupled goods truck is 9" 10

B

Noseommm e m ey

63

K 71
&
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-8
5 1F
)
+C
1E
5
ip
Fie. 172,

79

The thrusts of the wheels taken in order from the leading driving wheel
are 12 tons 10 cwts., 14 tons 8 cwts., 12 tons 14 ¢wts., 9 tons 13 ewts., 9 tons

12 cwts., 9 tons 15 cwts. and 7 tons 5 cwts.
thrust on the rails.

Find the axis of the resultant
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Vector Polygon Closed. Two Forces. When the vector
polygon is closed there is evidently no resultant force, but it does
not follow that the forces are in equilibrium.

ExAMPLE. Draw two parallel lines ab and be 3 inches apart,
and suppose forces of 10 and — 10 1bs. weight to act in these lines ; go
through the construction for finding the axis of the resultant.

Draw the vector polygon (Fig. 173), 4B=10 cms. downwards,
BC=10 cms. upwards; it is of course closed, since the starting
and ending points are the same. Choose a pole O and draw
04, OB, 0C. Through space a draw K;P, parallel to 0.4 ;
through & draw P P, parallel to OB ; and through ¢ draw P,K,
parallel to CO.

h
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R
alb ~\\~\
. P AC
\/ s
4
K
BRI~ q [ ? >0
\\{,
R B
<'--‘:p---->
Fie 173.

The theory of the construction is: in X, P, we suppose two
forces OA, CO differing only in sense ; OA is combined with AB
to the resultant OB acting along P, P, ; then OB is combined with
BC to the resultant OC in P,K,; and we have, finally, CO in K, P,
and —-CO in P,K,.

DEFINITION.  Two forces which- differ only in position and sense are
called « couple of forces or shortly a couple.
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The construction on p. 184 shews that the given couple is cqui-
valent to the final couple, and, since the pole  may he anywhere,
there is an infinite number of couples equivalent to any one couple.

To see the connection between the couples, measure the per-
pendicular distance between the forces. Shew that the product,
force x the perpendicular distance between the couple, is the
same, i.c. shew that 4B x p=0C x ¢ where p and ¢, the distances
hetween the axes, are called the arms of the couples.

AB.p measures the area of a parallelogram whose opposite
sides are AB and - AB, and is called the momental area of
the couple, if account he taken of the sense of the area.

An area is considered positive if its boundary is given a
contraclockwise sense, and negative if the boundary is clockwise.
Taking the sense of the momental area as given by the sense
of one of the forces we see that the momental area has the same
sense in the two cases.

(20) Use in turn four other poles for the vector polygon, taking at least
one pole on the opposite side of 4B to that in Fig. 173. Calculate in
each case the momental area of the equivalent couple, and see that it is
equal to A B . p, and of the same sense.

Proof that the construction does give couples of equal
momental areas. Produce K, P; to cut bc in Pj, and K,P, to
cut @b in P,. Then P,P,P,P, is a parallelogram, and P,P,P;and
P,P,P, arc similar to the vector triangle 0.1B.

The area of P,P,P,P,=P,P,.q=P,P,.p;

p_Ply_04.
" q PP, AB’
S pdB=q.04;
or, denoting by Fand P the magnitudes of the forces represented
by AB and AO pF=qP,

i.e. the momental areas of the two couples are equal in magni-
tude. A simple inspection of Fig. 173 shews that the senses are
the same.

Unit of Momental Area. This unit has no special name ;
if the force be measured in 1bs. weight, and the distance in ft.,
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the momental area would be in lbs. ft. (Not ft. Ibs.—a term
which has a totally different meaning.) The units employed
must always be distinctly stated.

Vector Polygon Closed (General Case). The vector
polygon being closed, the first and the last lines of the link
polygon are of necessity parallel, and the simplest equivalent
set of forces is a couple (except in the special case when the
first and last links are coincident). '

ExaMPLE. Draw o closed wvector polygon ABCDEA such that
AB=29", BC=182", CD=28", DE=1" and EA=4" and
BE=41" and CE=3-2".

Draw any line cd (Fig. 174) parallel to CD, and (on the lefi-hand
side of the paper) ab parallel to AB cutting cd at P.  On cd mark
points Q, R and S where PQ=264", PR=4-61" and PS=593".
Through Q, R and S draw be, de and ef parallel to BC, DE and
EF respectively.

Let the vectors represent in magnitude, direction and sense forces
o the scale of 1 cm. to 1 b, and let the lines drawn through’
P, Q, R, S be their axes.

Find the equivalent couple to the forces whose vectors are AB, BC,
CD, DE and EA, and whose axes are given.

Choose some convenient pole O within the vector polygon.

Through any point B, in ab draw R, R parallel to 04, and
B, R, parallel to 0B, and proceed as usual with the link polygon
construction until I, on ¢f is reached, and R,E, is parallel to OE.
Finally, draw RE.R parallel to 04.

The theory of the construction is just as before: in B, R we
suppose two equal and opposite forces OA and AO; the former
we combine with AB to a resultant OB in R, R,; OB is combined
with BC to a resultant 0C in E,R,; OC is combined with CD to
a resultant OD in E,R,; OD is combined with DE to a resultant
OE in B R; and, finally, OE is combined with EA to a resultant
OA in ER.

The given set of forces has thus been replaced by a force AO
or —0A in R R and AO in R,R, i.e. by a couple.
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Measure the perpendicular distance hetween R, R and E,R in
inches, and multiply the result hy the number of lbs. represented
by 04 (either graphically or by actual multiplication of numbers).

A

+o0

T 4 H 2 3 4 inches

e B e B s m e

t o x 2 3 a4 5 6 7 8 o rolbs.wt.
Fio. 174

The product is the momental area of the couple in Ibs. and
inches. Notice that the sense of the couple is contraclockwise
and therefore the sign of the momental area is positive.
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(21) With the same vector polygon and axes, take a new pole O; outside
the vector polygon and shew that the momental area of the couple obtained
is the same in magnitude and sign to that obtained previously.

(22) Draw four lines at distances apart of 0-5, 1 and 1°5 inches, and
suppose parallel forces of 2-3, 37, -1'8 and —4'2 lbs. weight to act in
them.  Go through the process of finding the resultant and shew that the
given set of forces is equivalent to a couple, and find its momental area.

Closed Vector Polygon and Couples. Since the pole O
may be taken in any position, 04 may have any magnitude and
direction, and £, may be any point on ab; hence the couple
equivalent to the given set of forces may have any position in
the plane and the forces constituting it may have any magnitude
and direction. All the couples found by changing O and R, are
therefore equivalent, and the connection between the couples is
that they all have the same momental area.

Momental Areas are Vector Quantities. Since a
niomental area has no definite position in space, but is fixed
when its magnitude, direction (or aspect of its plane) and sense
are given, momental areas are vector quantities.

For coplanar forces the momental areas are all in one plane,
and hence they are added by adding their magnitudes alge-
braically.

Addition of Momental Areas. EXAMPLE. 7o find a couple
equiralent to three couples having the same sense.

The magnitudes of the siz forces of the three couples are given by
lines of length 10°7, 8:65 and 12-8 ems. (fo a scale of 1 kilogrm. weight
to an inch) the perpendicular distance between the forces constituting the
couples are 12-5, 108 and 625 ems.  The senses of the couples are all
clockwise.

Mark off along any line on a sheet of squared paper (Fig. 175)

04 =125, 0B=10'8, 0C=6'25 cms.,
and on a perpendicular line through O
04,=10"7, OB, =865 and 0C,=128 cms.
On the former mark off 0U =10 cms.

Draw A4A, parallel to 4,U, BB, parallel to B, U, and CC,
parallel to C,U, cutting the force axis in 4,, B, and C,. Add
by the strip method 0C,+0B,+ 04, and scale this with the
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tenth of an inch scale. It is the momental area of the resultant
couple in kilogrms.-cms. (viz. — 121 approximately).

Proof. A couple may be supposed to occupy any position in
the plane, hence all the couples may be supposed placed so that
one force of each lies along 04, the other forces will then be
parallel to O4, and pass through 4, B and C respectively.
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Figc. 175.

Further, a couple may be replaced by any other of equal
momental area, hence the couple of force OA, and arm 04
may be replaced by one of force OA, and arm OU. Similarly,
the others may be replaced by forces OB, and OC, and arm OU.

The construction is simply our old construction (p. 46) for
reducing an area to unit base (in this case 10 unit hase).

Finally, we have forces given by OA,, OB, and OC, along 04,
and parallel forces of opposite sense through U, and the three
couples have been replaced by one of force given by

0A,+0B;+00C, and arm OU (10 ems.).
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Should all the couples not have the same sense, the distances
04,, 0B,, ... must be set ofl from O with their proper senses and
the corresponding subtraction made by the strip method.

Force. | Arm.
(23) Couples having positive momental areas are
given by the annexed table; find the resultant couple 236 | 284
(i) geometrically by reducing ecach couple to . )
® forces distant apart 17, 79 | 465
(i1) algebraically by adding the momental areas. 154 | 226
108 | 192
(24) The couple given in the first and last lines of the above table are
negative. Find the resultant couple and its momental area in 1b. inches.
Vector and Link Polygons Closed. Refer back to Fig.
174 on p. 187. Imagine R L, produced to cut £ f2 in Ry, then
if ¢f be supposed moved parallel to itself to cut By R in By, B R
would be the same line as B, £, and hence the forces OA and AO
would cancel and there would be equilibrium.

Exanvpre.  Parallel forces act in the lines and have magnitudes and
senses s wdicated in Fig. 176.  To show graphically thut the forces
are in equilibrium (approximately).*

Draw the vector polygon starting with the downward forces
BC, CD, DE, then EF and FB upwards (Fig. 176). The upward
force AB is the same as FB. Hence 4 and F are coincident,
and ¢ and f must be considered the same space. The vector
polygon is closed. Choose a convenient pole.

Draw through the space a P P, parallel to 04.

” » ’ b PP ” 0B.
2 R ’” ¢ P1P2 " 0cC.
» ’ ’ d P,P, " 0D.
kbl bH ” e 'P3‘P4 » O‘E'
’ ’ ’ faline 04.

The construction (if properly done) gives the first and last
lines identical, viz. PP, and P,P,. But in PP, acts the force

* Graphical work will not as a rule give results correct to more than 3 figures,
the numbers given in the example are correct to 1 in 1200,
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whose vector is AO, and in P P, the force whose vector is — AO.
Two such forces in the same axis must be in equilibrium, and
therefore the whole set of forces is in equilibrium. The
cancelling of the forces in P P, is due to the fact that the first
and last lines of the link polygon are coincident, 4.e. the link
polygon forms, like the vector polygon, a closed figure.
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If both the vector and the link polygons for a set of forces
are closed, the forces are in equilibrium.

Proof. The general proof of this theorem is seen easily from
the construction when the vector polygon is closed,
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Let A BCDEA (Fig. 177) be the closed vector polygon for certain
forces. Then if O be the pole, the first link for the link polygon
is parallel to 04, and has,
finally, a force whose vector is E
AQacting init. The last link
is also parallel to 04, and has
a force whose vector is — AO
acting in it. These form a A
couple (in general), but if the ’ 0
first and last links coincide,
the forces whose vectors are
AO and OA cancel, and the 5 C
whole set must be in equili- ‘ Fra. 177,
brium.

Exer. IX. Punch four holes in an irregular shaped piece of cardboard,
and suspend it in front of a drawing board, as in Expt. VL, p. 122.

Mark on the card the lines of actions of the forces, and their magnitudes
and senses. Remove the card, and draw the vector and link pelygons.
Both will be found closed; or as nearly closed as one can expect from
the errors incidental to the experiment.

Perform an experiment similar to IX., with five forces.

Expr. X. Draw a closed four-sided vector polygon on cardboard, the
sides being of such lengths that they represent to scale obtainable
weights. Draw on the card four non-concurrent lines parallel to these.
Fix the card to the drawing board by two pins. Adjust the position of
the pulleys so that the corresponding weights may pull on the card along
these lines. Remove the pins and see if the card moves.

Exer. XI. Draw on stiff cardboard a closed four-sided vector polygon
ABCDA (Fig. 178), the sides being of convenient lengths to represent to
scale obtainable weights.

Draw three non-concurrent lines ab, be, cd parallel to the corresponding
vectors. Take a pole O inside the vector polygon (say the point of inter-
section of the diagonals).

Mark any point R, on ab, and through it draw R, R, parallel to 04 ;
draw R)R, parallel to OB, and cutting be in R,; draw R,R, parallel
to OC, cutting c¢d in R,; then draw R,R, parallel to OD, cutting R R, in
R,. Through R, draw the axis ad parallel to 4D.

Then R,R, cuts ad at R, and on drawing through R, a line parallel to
0.4 we come to R R again. Hence the first link R, R,, in which lies the
force given by A(), coincides with the last link R, Ry, in which lies the
force given by OA4. Hence both the vector and the link polygons are
closed. Fix the card (with the axes of the forces marked on it) on the
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drawing board by two stout drawing pins, and adjust the pulleys so that
the threads (with their proper weights attached) lie over theaxes. Remove
the pins, and see that the card doc:,not move.

Devise an experiment for shewing that couples of equal momental arcas
are equivalent.

A

2/

Fre. 178.

Expt. X. shews that in general there is not equilibrium when
the vector polygon only is closed.

Expt. XI. shews that there is equilibrium when the link and
vector polygons are both closed, and Expt. IX. shews the con-

verse.
T.G. N
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Determination of Reactions.

Exavrre. A locomotive has three pairs of driving, one pair of
leading, and one pair of trailing wheels, and is stopping on @ short
bridge of 40 ft. span.  The centre of the leading wheels is 6" 8" from
one end of the ridge (the left in Fig. 179) and the distance between
the centres of the whesls are, from the leading to the trailing wheels,
89, 7,7 9" and 8 3”. The load each pair of wheels carries s, in
the same order, 9 tows, 17 tons 13 cuts., 18 tons 4 cwis., 18 tons
4 custs. and 11 tons 9 cwis. Determine the reactions of the supports
(supposed vertical).

A

o
¥
QN

182

¥
*

©w
<
~

9-0

FL
Fre. 179.

Draw the position diagram (Fig. 179) to scale, say 1 cm. to 20
inches, with the reaction and load lines, and letter the spaces
o, a, b, ¢, d, ¢ f, o referring to the spaces outside the reaction
lines. Draw next the load vectors, say to the scale 0-1 inch
to 1 ton, so that AB is of length 09", BC of length 1-765 inches
(i.e. nearly 1-77 inches), ete. Choose some convenient pole P and
draw through the space o a line parallel to P4 cutting the
reaction line os in R;; through the space b draw a link parallel to
PB, and so on to the link through the space f parallel to PF cut-
ting the reaction line fo in R,. If the reactions in oo and of to
maintain equilibrium had been known, the first line of the link
polygon would have been through E; and the last through E,,
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and these would have been coincident and therefore would have
been the line B, I, itself.

Hence join B R,, i.e. close the link polygon, and through P
draw a line parallel to this closing line cutting the load vectors
in O; then FO is the reaction in j» and OA that in e, and these
are the forces necessary to maintain equilibrium.

Three cases have now been considered :

(i) If a set of forces acts on a body, and the vector polygon
is not closed, there is a resultant force whose vector is the sum
of the given vectors and whose line of action is determined by
the link polygon.

(i) If the forces have a closed vector polygon they are (in
general) equivalent to a couple whose momental area can be
found from the link polygon.

(iii) If the forces have both the vector and link polygons
closed, the body is in equilibrium.

Incidentally (ii) shewed that all couples which have the same
momental area are equivalent.

The third case enables an unknown reaction (or reactions)
which keeps a body in equilibrium when under the action of
known forces to be found.

(25) A horizontal beam 17 ft. long is loaded with weights distributed as
in the Table. The beam being supported on knife edges* at its ends, to

find the reaction of these knife edges (neglecting the weight of the beam
itself).

Weight in tons, - - -] 32| 35 | 21| 19

Distance from left end in feet, | 4-2 7~3| 86 | 123

(26) A horizontal beam is supported on knife edges at its ends; the
length of the beam is 60 ft. and at distances 7, 20, 25, 32, 40 and 49 ft.
from the left-hand end are hung weights of 3, 10, 8, 7, 12 and 6 cwts.;
find the reactions of the supports.

(27) A beam loaded as in Ex. 26 is supported at the left end and at a
point distant 36 ft. from it ; find the reactions due to the loads.

1
*The knife edge, shaped like A, is simply to ensure that the end is { eely
supported at one point only or (taking into account the breadth of the beam)
on a line perpendicular to the length of the beam.
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(€3) The beam, loaded as before, is freely supported at a distance of
30 ft. from the left end; can it be supported in equilibrium at the left
end, and what is the reaction (given by the polygons) there ?

(29) The centre lines of the wheels of a locomotive and tender are from
the leading wheel backwards 12/, 9, 10’ 325", 6’ 10°5” and 6" 10-5” apart ;
the loads on the wheels are 20 tons 14 cwts., 19 tons 11 cwts., 19 tons
11 ecwts., 14 tons 5 cwts., 14 tons 5 cwts. and 14 tons 8-5cwts. The engine
and tender are stopping on a bridge of 60 ft. span and the leading wheel
is 7 ft. from one support of the bridge; find the reactions (supposed
vertical) of the supports of the bridge.

Non-Parallel Reactions.

EXAMPLE. A4 beam is pin-jointed to a supporting woll. Iis
length is 25 feet and it is supported af the other end by a chain of
length 37 ft. attached to a wall hook 21 fi. vertically above the joind.
Weights of 54, 585, and 45 Ibs. are hung from it af points distant
(ulong the beam) 7, 12, and 20 ft. from the pin. Find the tension of
the chain and the reaction of the pin.

Draw first to scale the position of hook, pin-joint and chain
Z, X and TZ (Fig. 180).

Then draw the axes ab, bc and ¢d of the forces; then the vectors
of the forces AB, BC, CD acting in ab, b¢, cd, and, finally, the
link polygon corresponding to any pole 0. The resultant of the
loads is thus obtained and its axis passes through .

In Fig. 180 the line ZX gives the vertical. To obtain the conventional
position, the book must be turned round.

Find the point P where this axis cuts the chain ZY. Join
XP, and in the vector polygon draw 4E and DE parallel to
XP and PY respectively.

Then DE gives the tension in ZY (why tension and not
compression ?) and BEA the reaction of the hinge.

Since the force whose vector is AD and axis PR is equivalent
to the given three loads, the beam may be supposed to be in
equilibrium under the action of this force, the tension in the
chain and the reaction at the pin.

These forces must pass through a point, viz. P, and then the
necessary and sufficient condition for their equilibrium is that
their vector polygon should he closed. Hence DE must give the
force along YZ, and EA that along XP.
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Find the vertical reactions through X and ¥ that would he in
equilibrium with the given loads in @b, b¢ and «l. Project £
horizontally to E;, on 4B and sec that DE, and EA give these

N

vertical reactions.

1
Xo
Id

feet

Ibs. wt.
i

P,%0,32,40 5
2

o
111
0o 8 6 4

10
v

Fic. 180.

(80) Produce the first and last links to cut X P and PY, and hence shew
that the closing line of the link polygon is parallel to OF. ‘Why is this
necessarily so?
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(81) A horizontal beam 45 ft. long is pin-jointed to a supporting pier at
pne end (the left), and rests on a smooth horizontal roller at the other.
Forces of 12, 8, 20 and 15 cwts. act downwards at points distant 6, 10, 28,
and 32 ft. from the pinned end and make angles of 30°, 45°, 90° and 60°
with the beam line from left to right. Find the reactions at the ends.

Nore. The object of the roller is to make the direction of one reaction
known, viz. vertical; if neither reaction be known in direction the
problem is indeterminate.

First draw the line of the beam and the axes of the known forces, add
the vectors of the forces, draw the link polygon and obtain the position
of the resultant force of the given set. Mark the point of intersection of
the vertical reaction and this resultant, and join this point to the pin.
The last line gives the direction of the reaction at the pin. The unknown
reaction may then be found from the vector polygon.

(32) Solve the problem in Ex. 31 by projecting the vectors on to a
vertical line and drawing the link polygon for these vertical components.
Determine thus the reaction of the roller and the vertical component of
the pin reaction. The latter combined with the reversed horizontal com-
ponent of the vectors gives the pin reaction.

(33) A swing gate is hinged at 4 (Fig. 181) to a post and rests against
a smooth iron plate at B. ~ AB=3"5 ft., (D=6 ft. and the gate weighs
200 1bs. Supposing the weight of the gate to act at the centre of the
rectangle CD, find the reactions at the hinge and plate. The distance
between 4 B and the gate is 8"

C D

E F
Fre. 181.

(34) A boy of weight 100 lbs. hangs on the gate at D. Find the total
reactions at 4 and B.

(85) The post 4 B is not vertical, but inclined at an angle of 15° to the
vertical, so that €D slopes (i) downwards, (ii) upwards. Find the reaction
when the boy is on the gate in the two cases, if AC=BE=9".

(36) In a wall crane 4 BC the beam BC is loaded at equal distances as
in Fig. 182. Find the tension in the tie rod 4 C and the reaction at 4 and
B. (The beam BC and the tie rod AC are pin-jointed at 4, B and C.)

(37) AB is auniform beam hinged at 4 (Fig. 183) and weighing 16 cwts.
It rests on a smooth fixed cylinder D, and a load of 07 cwt. is suspended
from B. If AF is horizontal and if 4AB=10", AC=T and DE=2', find the
reactions at 4 and C. '
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(38) A uniform ladder rests against a smooth vertical wall at an angle
of 27° with the vertical. The wi urrht of the ladder is 69 Ihs, and may e
supposed to act at its mid-point. Find the reaction of the 'rzuuu(l when a
man weighing 12 stones and a boy weighing 7 stones are % and } up the
ladder respectively.

7 fi)
: 15 ft. _
% B C
Y
0-7ton  0-21ton 0-363ton 0-478ton 0-53ton
Fic. 182.
B
- (o]
G
oD
A
E
Fia. 183,

Decomposition of Forces. Any force may be decomposed
along any two given axes if they intersect on the axis of the
force (see p. 151). Any force may be decomposed into two
forces parallel to it, having axes in assigned positions.

Draw any line bc (Fig. 184) as the axis of the force, and BC
its vector. Draw two lines parallel to lc, viz. ¢b and cu, on
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opposite sides of be. Choose any pole 0, and draw through any
point P of b, PP, and PP, parallel to OC and OB respectively.
Join P P,, and in the vector polygon draw 04 parallel to P;P,.
Then BA and AC are the vectors of the required components.

a & c a B
R
A
—— —
(o]

2

P C
Fia. 184.

Proof. At P, BC may be decomposed into two, BO and 0C,
acting in PP, and PP,. At P,, OC may be decomposed into two,
OA in PP,and AC inac. At P, BO may be decomposed into
two, BA in ¢b and AO in PP, OA and AO in P, P, cancel, and
we are left with BA in ab and AC in ca.

Shortly put, the construction is that for finding the reaction
in ab and ca which will be in equilibrium with the given force
in be. These reactions will be the same in magnitude but of
opposite sense to the components.

(39) Choose two other poles (one on the side of BC opposite to 0) and
see that the construction gives the same components.

(40) D compose a force of given axis and vector into two parallel axes,
both axes being on the same side of the force.

.(41) Find graphically the comgonents of a force which pass through
given points, one direction being fixed
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Find the components, passing through tuo given points
of @ force when one of the components has the least possible value.

EXAMPLE.

X
X
7 ,
I
t
1
B i
| —7 ’
/ !
7 1]
A/ I I
< . ' o}
s
AN ’ /"’f‘rfz
AN ’ 1
N ’ 1
s ‘ \
\\ .l )
N ’ )
N , It
\\ ’ 1
~ ’ 3
AN ’ [}
\\ l, H
) \
[}
P i
1
1
1
1
|
Y
Frc. 185.

Let oy (Fig. 185) be the axis and XY the vector of the force,
and suppose 4 and B to be the given points. Join any point
P on zy to 4 and B.

Through X and ¥ draw XO and YO parallel to P4 and PB
respectively. Through O, the point;' of intersection, draw 0Z
parallel to 4B, cutting XY in Z.

If the component through B is to be a minimum, draw YT

perpendicular to 0Z and join X7'; then XT and TY are the
required components.

Proof. To find components through 4 and B parallel to zy,
we may, instead of taking any pole O for the vector polygon,
first draw from any point P in a7, P4 and PB, and then find
the corresponding pole 0. The closing line of the link polygon
is 4B ; and hence, on drawing 0Z parallel to 4B, we get the
reactions YZ and ZX at B and A4 in equilibrium with XY in zy.
These reactions must evidently be independent of the pole
used to find them, i.e. Z is a fixed peint on XY. If any other
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point P on zy be chosen, then the new pole must be on Z0, for
Z is fixed, and Z0 is a fixed direction parallel to 45

Further, XO and YO are two components of XY through
A and B, hence the smallest component through B will be such
that it is perpendicular to Z0.

Note that since Z0 is a fixed line, a simple construction will
give the components through 4 and B which have any desired
relation, say that of equality, or the B component twice the
A component, ete.

(42) Solve graphically the example on p. 201 when 4 and B are on the
same side of xy.

(43) Find components of a given force stich that one has an assigned
direction and the other is to be as small as possible.

(44) Decompose a given force into two forces equal in magnitude passing
forces through points 4 and B when 4 and B are (i) on the same,
(ii) on opposite sides of the given force. (See also Chap. IV., p. 154.)
When does the construction fail ?

(45) Decompose a given force into two passing through two given points,
the magnitudes of the forces having the ratio of a to b.

(46) A man carries a pole across his shoulder at an angle of 25° with the
horizontal. The pole is of length 15 ft., and the distance of the mid-point
of the pole from his shoulder is 5 ft. He keeps the pole in position by
hard pressure on the front end. In what direction should this pressure be
applied so that it may be as small as possible? What direction would
make the pressure on his shoulder as small as possible? (Assume that
there is sufficient friction at the shoulder to prevent the pole sliding.)
Find the pressures in the two cases.

Any force may be decomposed into three forces lying in non-
concurrent and non-parallel axes.

Draw any straight line ab (Fig. 186) for the axis and a parallel
line 4B for the vector of a force. Draw any three non-con-
current lines b¢, ¢d and da forming a triangle X¥Z.

Suppose ab cuts XV in P. Then, at P, AB may be decomposed
into two, AC and CB, acting along PZ and PY. At Z, AC may
be decomposed into two, AD and DC, acting along XZ and YZ.

Hence, AB has components AD, DC and CB having ad, d¢ and
¢b as axes.

Evidently unless ab is parallel to one of the sides of the triangle
XYZ, we may take as the starting point for the decomposition
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any of the three points in which «b intersects the sides. If the
decomposition is unique, the components determined in the three
ways should be the same.

The proof that the decomposition is unique will be found in
the Chapter on Moments (p. 297).

Fic. 186.

(47) Start the decomposition at (i) @, (ii) R, the points of intersection of
ab with ¥Z and X Z, and shew that the same components are obtained.

(48) Draw any four non-concurrent lines. Assign any value to the force
in one, and find the forces in the other three so that the four forces may be

in equilibrium.
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(49) A weight of 10
tons is suspended from
acrane 4 BCD (Fig. 187)
at 4. Find the com-
ponents along BC, CD
and DB; find also the C
vertical components of
W through B and C,
and shew that the com-
ponent along CD is the
same as that found by ./
the first method.

Also, resolve the B
component along BC
and BD and compare
with previous results.

D

Fic. 187.

(30) 4B, BC, CA (Fig. 188) are three light rods pin-jointed together and
supported at B and C in a horizontal line. Find graphically the com-
ponents along the rods due to a load of 1 ewt. at [. Find also the
loads at 4 and C equivalent to
that at D, and hence find the A
components along the rods. Com-
pare the two sets of results.

B 137 " C
Fia. 188,

(561) ABC (Fig. 189) is a wall
crane, find the components in 4 B, 259
B(C and C4 due to a load of 1 ton
applied at D; (i) by resolving W
along 4D and CD and (ii) by
finding the parallel components 13-9
of W through 4 and B. A D 47 B

w
Fra. 189,
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(52) In Exercise 51 decompose the load at D into equivalent loads
at A and B and find the components of the latter along BC and L.
Compare with the previous results.

*(53) AB and AC (Fig. 190) are rafters of
a roof ; find the total thrust on the walls
due to loads of 10 tons at the mid-point of
each rafter. (Resolve the load at M in
directions M B and MC, and at C resolve
the latter along OB and C4. The com-
ponent along U5 gives the outward thrust.

Fic. 190.

ExAMPLE. (The Toggle Joint.) AB is @ beam linged af A to
Sixed masonry. CD is a bar pingointed to C (in AB) and to D.
D is constrained to move along AD by means of smooth guides. A
force P is applied at B perpendicular to AB, and a force Q at D along
AD so that there is equilibrium. AB=3-58", BC=1-64", CD=2-7"
and DA=39". P=10 lbs. weight. Find the components of P along
AC, CD and DA.

Fie. 191.

The beam 4B (Fig. 191) is in equilibrium under P, a force
along CD, and the reaction at 4. These must be concurrent;
find the point of concurrence, and hence, in the vector polygon,
find the reaction at 4 and shew that this reaction is the equi-
librant of the forces at 4 found by resolving P along AC and
AD and CD.

Find the value of @ and the reaction of the guides on the
slide at D. .
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(54) Decompose P into parallel forces at ¢'and 4. Find the components
of the former along CD and CA4, and the resultant of the latter and the
force along C4. Compare with the former result.

(55) AB (Fig. 192) represents an open French window (plan or trace of
on a horizontal plane). It is kept in position by a bar CD, freely jointed
at . The bar has a number of holes in it, any one of which can be fitted
over a peg at D so that the angle BAD may have any value from 0 to 120°,

The wind is blowing parallel to B
AD and would exert a force of
30 lbs. weight if 4B were perpen-
dicular to 4D. Suppose the re-
sultant force of the wind on the C
door to act at the mid-point M of M
AB.

Find the pull in CD, given that
AB=27", AD=1'385"=AM, and

BC=1 ft. when
(@) CAD= 20, A D
) CAD= 45,
() CAD= 90°,
(d) CAD=120". D,

)
Fre. 192,

GENERAL ANALYTICAL THEORY OF THE COMPOSITION
OF COPLANAR FORCES.

*Theorem. .Any force is 2, a
equivalent to a force through
any assigned point together
with a couple, if the forces
have the same vector.

If o (Fig. 193) is the axis
and o the vector of the given
force, and O any assigned
point, draw through O the
axis ay parallel to a.

Then we may suppose abt
O in a, forces a and —qa,
.e. at O we have a force a Fra. 195.
which together with the couple aina and —a in @, are equivalent
to aina. The couple is called the couple of transference.
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#%Theorem. Any set of coplanar forces is equivalent to a
resultant force through some assigned point and a couple.

By the previous theorem each force of the set may be replaced
by an equal vectored force through O and a couple. The forces,
being now concurrent, have in general a resultant found by the
vector polygon. The momental areas of the couples may be
added to the momental area of a resultant couple, i.e. the couples
are equivalent to a resultant couple.

*Theorem. Any set of forces reduces to
(i) a single resultant, or
(ii) a couple, or
(iii) is in equilibrium.

Since a couple may have any position in its plane and may
have its forces of any magnitude, provided the momental area is
constant, we may replace the
resultant couple of the last
theorem by an equivalent couple
having its forces o (Fig. 194)
and — o, where o is the resultant
of the concurrent forces at 0.

If the arm of the couple is p,
and S is the magnitude o, then
S.p=M,

M being the known momental
area.

If, now, the couple be sup- Fie. 194,
posed placed so that its force
- o passes through 0 and is in a line with the resultant force o
there, then o and —o cancel, and we have a single resultant
o at a distance p from 0.

Should the resultant of the concurrent forces at 0 be zero, the
set of forces reduces to the couple of momental area M.

If M is also zero, there is equilibrium.
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These theorems are only what we had before as direct
deductions from the geometrical constructions. The actual
determination of the resultant, or the resultant couple, should
be effected by the link polygon construction.

MISCELLANEOUS EXAMPLES. V.

1. Draw a triangle 4 RC, having an angle of 45° at B and one of 30° at
C. et forces of 9, 7 and 4 units act from 4 to B, B to C and C'to 4
respectively. By construction or otherwise, find their resultant com-

pletely, and shew it in the same diagram as the triangle.
(B. of E., Stage II.)

2. Draw a square 4 BOD and a diagonal 4C'; forces of 1, 2, 3, 4 units
act from A4 to B, from B to C, from C to D and D to A respectively ;
find the sum of their components along AC, and also the sum of their
components at right angles to 4C. © (B. of E., Stage IL)

8. Draw a triangle 4BC, and take D and % the middle points of BC
and CA respectively; if forces P, @, B act from 4 to B, A to C and
(' to B respectively, and are proportional to the lengths of the sides alon
which they act, shew that their resultant acts from Z to D, and is equa
to 2P. (B. of E., Stage II.)

4, Define a couple. Explain how to find the resultant of two forces
which form a couple and a third force.

Draw a square 4BCD; a force of eight units acts from 4 to B and
C to D respectively; find the resultant. Also find what the resultant
would be if the first force acted from D to 4. (B. of E., Stage II.)

5. A horizontal beam 20 ft. long is supported at its ends, loads of

3, 2, 5 and 4 cwts. act at distances 3, 7, 12, 15 ft. from one end. TFind,
by means of a funicular (link) polygon, the pressures on the two ends.

(Inter. Sci. (Eng.), 1904.)

6. Find the resultant of two parallel forces by a graphical construction.
Extend this to find the resultant of three or four parallel forces.
(Inter. Sci., 1902.)

7. Find the resultant of three parallel like forces of 2, 4 and 3 lbs.
weight acting through points in a straight line, distant 1, 3 and 7 ft.
from an origin in that line. (Inter. Sci. (Eng.), 1905.)

8. Drawa triangle 4 BC, such that 4B=10cms., BC=14and C4 =12;
take B’ in AC, such that 4B'=3; and 4’ in BC, such that B4'=8. A
force of 20 1bs. weight acts in B’4’; shew how to replace this force by three
forces acting along the sides of a triangle by simple drawing, without using
any of the numerical data concerning lengths.  (Inter. Sci. (Eng.), 1906.)

9. ABC is a right-angled triangle, 4B=12 and BC=5. Forces of
52, 24 and 27 lbs. weight act from 4 to C, Bto 4 and (' to B. Find the
resultant of the forces and exhibit its line of action. (Inter. Sci., 1900.)
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10. ABC is an equilateral triangle, P is the foot of the perpendicular
from C on AB. Find in magnitude and line of action the vesultant of
forces: 10 from 4 to B, 8 from B to C, 12 from 4 to €' and 6 from C to P.

(B.Se., 1905.)

11. A locomotive on a bridge of 40 ft. span has the centre line of its
leading wheels at a distance of 11 ft. from one abutment, the distance
between the centre lines of the wheels are, from the leading wheel back-
wards towards the far abutment, 9 107, 6’ 8" and 6’ 8”. Find the pres-
sures on the abutments if the loads on the wheels be 15 tons 10 cwts.,
17 tons 10 cwts., 17 tons 10 cwts. and 16 tons 10 cwts.

12, State and prove the rule for finding the resultant of two unlike
parallel forces.

Given a force of six units, shew how to resolve it into two unlike parallel
forces, of which the greater is ten units; and explain whether the resolu-
tion can be made in more ways than one. (B. of E., IL., 1904.)

13. Let a horizontal line 4C represent a rod 12 ft. long, resting on two
fixed points 4 and B, 10 ft. apart. Each foot of the length of the rod
weighs 12 ozs. ; a weight of 16 lbs. is hung from €. Shew that the rod will
stay at rest, and find the pressure at each of the points of support.

(B. of E., I, 1904)

14. ABC is an equilateral triangle, and forces P, P; and 2P act from
Bto C, Cto 4 and 4 to B respectively. Find their resultant, and shew,
in a carefully-drawn diagram, its direction and line of action.

(B. of E., L., 1903.)

15. Forces P, @ and 3R act in order along the sides BC, C4, 4B of a

given triangle. If P, @, R are proportional to the sides respectively, find
completely the force which would balance the three given forces, and shew

your result in a carefully-drawn diagram. (B. of E., IL., 1907.)

T, G. Q



CHAPTER VL
STRESS DIAGRAMS.

IN Chapter IV. the stresses in simple frames, due to loads applied
at the joints, were considered. The present chapter is a con-
tinuation of the subject. It is shewn that the vector polygon
for the forces acting at a point is the stress diagram for the
bars meeting there, and that the space notation enables us to
draw in one figure—the stress diagram—Ilines giving the stresses
in all the bars of more complicated frames.

Three Bar Equilateral Frame.

ExaMPLE.  Three bars, each 3 ft. long, are pin-jointed together to
Jorm an equilateral triangle. The frame is suspended by one vertez,
and 55 1b. weights are hung from the others ; to determine the stresses in
the bars due to the weights.

Draw the frame PQR (Fig. 195) to scale (say 1”7 to 1") and letter
the spaces as indicated.

Draw the vectors of the two external forces at 2 and @ (scale
say 2 cms. to 1 lb. weight); then, without drawing the link
polygon, notice that the upward reaction CA at 2 (=11 lbs.
weight) will keep the frame in equilibrium.

Draw 4D and BD parallel to ad, bd, then CD is parallel to cd;
and 4D, DB, and DC measure the magnitudes of the stresses in
the corresponding bars. Scale these lines and tabulate the
stresses.

Bar, - - -1 ad -| bd cd

Stress in 1bs. wt., | 6:35 | 3°18 | 635

At the point P of the frame act three forces, viz. the reaction
CA vertically upwards, and the pushes or pulls of the bars ad and
cd. Hence CADC is the vector polygon for P. The sense of
the force at P due to ¢d is given by DC, and hence the bar must
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pull at P. Similarly,
the sense of the foree
in ad is given by AD,
and hence this bar
also pulls at P.

Now consider the
cquilibrium  of R.
The forces there are
the weight of 55 1bs.
(AB) downwards and
the forces due to ad
and id. The vector
polygon is ABDA,
and, since AB is

Ty
I

o

IO

sqp

Fic, 195.

downwards, the force

in Ud is given by BD

and pushes at R;
similarly, DA pulls at Z.

Thus, in the vector polygon the
line 40 gives the pull at P or at
I according to the sense it is taken
in.  This is as it should be, for the
bar ad is in equilibrium and must
be pulled with equal and opposite
forces at its ends. The line 4D
thus gives the stress in ad, and the
figure 4BCD is called now, not
the vector polygon, but the stress
‘diagram of the frame PQR and the
forces acting on it.

Finally, consider the point . It
is in equilibrium under BC, and the
forces along ¢d and db; the corre-
sponding lines in the stress diagram,
have been already drawn, and it
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only remains to determine the senses of the forces at ¢. The
vector polygon for @ is BCDB, hence a force in ¢d (CD) pulls at
@ whilst DB pushes. Hence &d pushes at its two ends, @ and R,
and is therefore in compression, whilst P@ and EP pull at both
ends, and are therefore in tension. As vectors, therefore, the
lines 4D, DC and DB should have double arrow heads; this
may easily lead to confusion, and it is, therefore, better to avoid
them altogether and to indicate in the frame those bars which
are in compression by drawing fine lines parallel to them. Mark
the bar bd as being in compression.

Change of Shape in Frames under Forces. The simple
triangular frame, just considered, was treated as a rigid body ;
this was justifiable, since, although some bars may elongate a
little and others contract, yet the bars will always adjust their
positions to form a closed triangle, and when once the deformation
has taken place, the parts retain their relative positions unaltered.
That is, for the given forces the frame—after the elongations, etc.,
have taken place—is like a rigid body. In nearly all prac-
tical cases the elongations, etc., are so small that the frame may,
so far as change of form is concerned, be regarded as unaltered.

Only frames which have just a sufficient number of bars or
strings to keep them rigid under the given applied forces will
be considered, and of these only simple cases which can be solved
directly by vector polygons will be taken.

The weight of the bars will be neglected unless expressly
included in the problem. 4

Exampre. Three bars, PQ, QR and RP, of lengths 4, 7, and
6 ft., are freely pin-jointed together to form a triangular frame amd
the frame is suspended by P. Weights of 4 and 6 Ibs. are
suspended from Q and R. Draw the frame in iis position of equi-
libriwm and find the stresses in the bars.

The resultant of the weights 4 and 6 at @ and R (Fig. 196) must

@S _,

act through a point S such that Sp=% hence, by construction,
find the position of S in @R,
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Fic. 190.

Then, if S be regarded as vertical, the angles the sides make
with the vertical or horizontal can be measured. (If the con-
ventional position be desired, the length PS must be set off
vertically and then the triangle drawn in.)
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Letter the spaces as in Fig. 196 and draw the vector polygon
ABD for Q.

Draw next the vectors for the forces at R ; the vector triangle
is DB(C where DC is parallel to de. 4DC is then the vector
triangle for the point P. See that C'4 gives 10 lbs,, the reaction
at P, and that the senses of the forces at the joints are consistent
with one another.

Measure the stresses and see which bars are in compression
and which in tension, and tabulate the results. Measure the
angle @R makes with the vertical

(1) Determine the position of QR (Fig. 196) and the stresses in the
bars if the weights at ¢ and R are 7 and 4 lbs.

(2) An equilateral framework PQR of three bars is suspended by means
of two vertical strings attached to P and @ so that P is horizontal. A
load of 17 lbs. is suspended from R. Find the stresses in the bars of the
frame, stating which are in compression and which in tension.

(8) The equilateral frame of Ex. 2 being suspended from a hook at P
and a vertical string at @, so that P@Q makes 15° with the horizontal,
determine, by the link polygon, the reaction at P, the tension in the
string, and find the stresses in the bars. Determine also the reactions at
P and @ from the stress diagram.

Braced Quadrilateral Frame.
ExAMPLE. Draw fo scale the frame PQRS (Fig. 197), supported
at Q and R in the same horizontal line, given that PQ=15, PS=2,

QR = 37 metres, and PS is parallel to QR and PQR=60°. A load of
121 1Bs. is placed at P ; determine the stresses in the bars due to this load.

Letter the spaces as indicated and draw in the stress diagram
AB=121 cms.; then BD and 4D are parallel to bd and ad.
ABDA is the vector polygon for P and gives the stresses in
the bars bd and ad. BD evidently pushes at P, so that, since
b is in equilibrium, it must push at both ends and be in com-
pression. Similarly, DA pushes at P, and hence ad must also
be in compression. At S we know the force AD (pushing at 9),
hence we can find the stresses in d¢ and cz which will give
equilibrium. Draw DC and 4C, parallel to dc and ar, intersecting
at C'; then 4DCA is the vector polygon for S, in which we know
the sense AD of the force in d at S.



BRACED QUADRILATERAL FRAME.

o
bt
T

Qv
IS8
S
/(n
2

b

Hence, the force DC
pulls, and the force CA
pushes at S, .and the bars
de and ca are consequently
in tension and compression
respectively.

At R, 4C pushes and
the forces in oc and ao
must, therefore, be given
by ACOA where (0 is
parallel to co.

Hence, CO pulls at &,
and OA pushes upwards,
so that co must be in
tension, and OA must be
the reaction at E.

Finally, at @ we have
CO pulling, CD pulling,
DB pushing and the reac-
tion, which must therefore,
be BO.

Notice that given the reaction BO, the senses of all the other

Fic. 197.
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forces necessary to produce equilibrium are consistent with the
senses previously obtained.
Scale all the lines in the stress diagram and tabulate the

stresses.

ac |ad | bd | dc | co | Bar.

Stress in lbs. wt.

In the frame diagram mark those bars which are in compression.

The reactions BO and OA have been obtained, without drawing
the link polygon, on the supposition that there is equilibrium.

(4) Find the reactions in ob and oa due to the load in ab by the link
polygon, i.e. find the components of AB in two parallel lines through
() and R, and compare with the previous results.

Cantilever.

ExaveLe. PQRST (Fig. 198) represents a cantilever pinjointed
to « wertical wall ot R and S. RS=5, ST=225 SP =825,
PQ=588, QOR=44 ft. The loads ut T and P are 2300 and 3400
Ibs. weight respectively.  Find the stresses in the bars.

Draw the load vectors AB and BC. Then, since there is
equilibrium at P, draw BD and CD parallel to &d and ¢d. BCDB
gives rd in tension and db in compression.

For @, draw CE and DE parallel to ce and de. Then, from
CDEC, we know that DC gives the sense of the force in dc on @,
and hence DCED is the correct sense of the diagram, and ce is
in tension and ed is in compression.

Finally, for T draw AF and EF parallel to af and e¢f. We
may determine the senses of the forces at 7" either from knowing
that in ab or that in ed. The vector polygon is 4 BDEFA in the
sense given by the letters, and hence of is in tension and fo in
compression.

Indicate on the frame figure the bars in compression, measure
the stresses from the stress diagram and tabulate the results.

Bar, - - -led | bd | ce| ef|fa

Stress in lbs. wt.,
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(5) Four equal bars are pin-jointed together to form a square and a
fifth bar is introduced diagonally. The frame is suspended by a vertex so
that the diagonal bar is horizontal, and the three remaining vertices are
loaded with 7 lbs. weight each. Find the stresses in all the hars.

(6) As in previous exercise only the diagonal bar is vertical.

Ar

‘ P
S a lT b lc
1bs.
e f 1000 EOpo 3900 49pe  sope
F\ A
D, B
E
Fre. 193,

*(7) If the weights at the two vertices, where threc hars meet, be 4 and
8 lbs., and a third vertex sustain 7 Ibs., find the position of equilibrium
when the frame is suspended by the remaining vertex. Find also the
stresses in the bars. (Draw the frame with the diagonal bar, find the
M.C. of the three masses. Join the M.c. to the fourth vertex, this line
relatively to the frame is the vertical line. The formal proof for the
Centre of Parallel Forces is on p. 298.)

#(8) Five bars of lengths 1-2, 12, 16, 1'6 and 2 ft. respectively when
jointed together form a rectangle PQRS and one diagonal @S. The frame
is suspended by P and loaded at @, R, S with weights of 7, 5 and 11 lbs.
Find the position of the frame and the stresses in the bars.
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(9) Three rods 4B, BC, C4 of lengths 7, 62 and 58 ft. respectively are
pin-jointed together. 4 is fixed and B rests on a smooth horizontal
plane so that -4 is 2 ft. above B, and a load of 70 Ibs. weight is hung
from (. Determine the stresses in the bars and the reactions of the
supports on 4 and B.

P 25

(10) The frame PQRS (Fig. 199) is
loaded at ¢ and R with 100 lbs. weights
and supported at Pand 8. If PN=15,
OR=8 and PQ=SR=66, find the
stresses in the bars.

Fi1c. 190,

Bridge Girder.

ExampLe. PQRSTUYV (Fig. 200) represents a short N girder,
the bars forming right-angled isosceles triangles. It is freely supported
at P and T and loaded at each of the joints Q, R, and S with 15
fons. Determine the reactions at P and T and the stresses in the bars.

The loading heing symmetrical, the reactions at 7 and T must
each be equal to 2:25 tons and there is no occasion to draw the
link polygon.

Letter the spaces as indicated and draw the vectors AB, BC
and CD of the loads; then, bisecting 4D at O, DO and OA
must be the reactions at 7" and P. At P the known force OA
acts and the forces in aj and ¢ ; these being in equilibritm
draw J parallel to aj and OJ parallel to ¢j; then 0AJ is the
vector triangle for P. The force AJ pushes P, and JO pulls,
hence aj is in compression and ¢f in tension.

At @ there are three bars with unknown forces, and as
resolution into three concurrent straight lines is not unique, we
must try some other point U. At U one known force OJ acts
and two unknowns ; draw, then, in the stress diagram O parallel
to oz and JT parallel to ji ; then OJI gives the stresses in the bars
meeting at U. Also OF gives the sense of the force at U along
o ; JI pushes at U and IO pulls, hence ji is in compression and
%0 is in tension.

Now return to @, where there are only two unknowns remain-
ing, and draw the vector polygon 4BHIJA (most of it is already
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drawn, IH and BH heing the only two lines necessary). See

from the sense of this polygon that 5k and ji must be in
compression and <k in tension.

=
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i
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Fic. 200.

Draw the rest of the stress diagram, noticing, from the
symmetry of the loads and the frame, that the stress diagram
must also be symmetrical. In consequence of this symmetry the
points I and F of the stress diagram are coincident.
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[Towever many bars the frame contains, the method of solution
always follows the same lines. The stress diagram is started by
drm:ing the vector triangle for three concurrent forces, of which
one is known and the directions of the other two are given by
bars in the frame. Sometimes this start can be made at once,
but more gencrally the reactions at the points of support have
first to be determined, either by drawing the link polygon for the
external forces or by taking moments. For the latter method
see Chap. VIIL

Roof Truss.

ExaMpLE. The frame dingram shewn (Fig. 201) represents a
howstring roof truss supported freely at P and T in « horizontal line ;
PQ=27, QR=19, PU=194, RV=114" and PT =63, and the
wgle UPT=44°. The loads at Q, R and S are 1'5, 2 and 25
tons ; determine the weactions at the supports and the stresses in
the letrs.

Draw the frame to scale. Set off the vectors of the loads
AB, BC, CD, and number the spaces of the frame as indicated.
Choose any pole 0, and through @, any point on the vertical
@@, draw @, P, parallel to 0;4, cutting the reaction line in
P,. Then draw @ R, parallel to OB, RS, parallel to 0,C, and
S, T, parallel to 0,D cutting the reaction line at 7. Join P,T},
thus closing the link polygon, and draw 0,0 in the vector poly-
gon parallel to P,T;. The reactions at P and I are, therefore,
OA and DO.

Now draw the stress diagram, starting with the vector
triangle for the forces at P. The vectors are OA, AJ and JO,
shewing that the bar aj is in compression and jo in tension.

At the point ) are three unknown forces ; and since the known
foreces in aj and ab cannot be decomposed in three directions,
nothing can be done there at present. But at U we have only
two unknowns; hence draw OI parallel to ¢i and JI parallel to
jt to determine the point J; and the stresses in of and 4 are
found. The point ¢ may now be attacked, for there are now
only two unknown forces there.
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Fia. 201.

Complete the stress diagram, mark the bars which are in
compression, scale the lines in the stress diagrams and make a
table of the stresses as before.
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(11) The frame PQRST (Fig. l l
202) is loaded at 7' and S with T S
1 ton weights and supported at
P and R. Find the stresses in
the bars if

PT=T8=8R=9 ft.
and RPQ=30" Q

Fie. 202

(12) PQRST (Fig. 208) is a short Warren girder consisting of three
equilateral triangles. A load of 4 tons is suspended from R and the
girder is supported at @ and S.  Find all the stresses.

K Y

Fic. 203. Fia. 204.

(13) PQRST (Fig. 204) is a short Warren girder of three equilateral
triangles supported at P and S, and with loads of 2 tons at ¢ and R.
Find the reactions of P and S, and the stresses in the bars.

Fic. 205.

(14) The figure PQRST (Fig. 205) represents a king post (roof) truss
supposed freely jointed at all the points and supported at P and ¢. If
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and SPQ =30 find the stresses in all the bars when the loads

PO =25 t.
a S, R, are 3, 4 and 3 tons respectively.

>

(15) Find the stresses in the bars of the roof truss shewn in Fig. 206
when loaded at R, S, and 7" with 3, 4 and 2 tons respectively.
PT'=T8=85.
PQ=295.
PU=108.
SU=T-8.

Irg. 206.

(16) Fig. 207 represents a queen post (roof) truss, supposed freely
jointed at all points, supported at P and 8, and loaded at 7', U, V, W and
X, with 2,2, 3, 2 and 2 tons. Find the stresses in all the bars if

PX=XW=WV and VPS=30"

\%
N U

Fia. 207.

(The figure shewn is not rigid for anything but symmetrical loads; in
practice the stiffness of the joints prevents distortion when the loading is
not symmetrical.)



224 GRAPHICS.

(17) PQRSTU (Fig. 208)

represents a non-symmetrical T

king post truss loaded at @,

S, 7, U with 1, 2, 2, 1 tons

weight.  Find, by the link u s

polygon, the reactions at the
points of support P and R,
and then determine the stresses
in the bars ; given that PR=19, R
RT=16%, PTR=90", and QU P Q

pa}"’allel to RT, (S parallel to

PT.

Fic. 208

Fia, 209.

(18) Fig. 209 represents a short N girder consisting of right-angled
isosceles triangles. Find the stresses in the bars when supported at
Fand 7, and loaded at @, R, S with 2, 3 and 4 tons weight.

) U T

Fia. 210.

(19) PQRSTUV (Fig. 210) represents a short Warren girder of five
equilateral triangles, loaded at @ and R with 7 and 10 tons. Find the
reactions at the points of support P and S, and the stresses in all the bars.
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(20) Find the stresses in the bars
of the cantilever in Tig. 211, loaded
at @ and 2 with 2 and 3 tons, and
supported by a vertical wall at P
and U; given

PU=8,
PT'=PS=82,
UTr=718=3,
PQ=5,
QS:‘L;,
PR=8"8 ft.

(21) The qucen post truss of Ex.
16, with a diagonal bar WR, is
loaded at 7', U, J, Wand X with
2, 3,3, 1'5 and 15 tons; find all
the stresses.

Fie. 211.

Weight of Bars in a Framework. In many engineering
structures, the weight of the framework is very small compared
with the loads it has to carry, and in such cases no appreciable
error is made by neglecting the weights of the various parts.
If the weights of the bars are not small in comparison with
the loads, we shall suppose half the total weight of each bar
concentrated at its ends.

Every particle of a body is acted on by a vertical downward
force ; the resultant of all these parallel forces is a parallel force
through the M.c. of the body equal to the whole weight (see
Chap. VIIL, p. 307). This resultant is merely the single force
which would produce the same motion as the actual forces on
the particles, and it by no means follows that the other effects
produced by it would be the same, e.g. as in bending the body
or in producing internal stresses. Consider a vertical uniform
column ; the resultant force is a force through the mid-point of
the column equal to the total weight. This force, if it acted at
the m.c., would not produce any stress at all in the upper half,
and a uniform stress for all sections in the lower half, whereas

T.G. 2
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the actual stress must vary gradually from zero at the top to
the total weight at the hottom. The average value of the
compressive stress for the whole column would be the same in
the two cases, viz. half the total weight.

The simplest way to suppose this average but constant stress
produced would be to consider half the total weight concentrated
at the top and half at the hottom, giving a constant stress
measured by half the total weight and a pressure on the
supporting ground equal to the total weight.

This is the approximation we shall adopt: by the stress in a
bar of a framework, due to its own weight, we shall mean the
average stress, produced by a load of ha.lf the total weight of
the bar concentrated at each end.

When the bar is a sloping one, the weights of the various
particles tend to bend the bar, and thus set up additional stresses.
Except in Ch. IX. on Bending Moments, the bars of the frame
will be supposed straight, and these additional stresses neglected.

A similar supposition will be made as to the effects produced
by other forces acting on the bars at points other than the ends,
viz. they will be supposed replaced by parallel and equivalent
forces at the ends. Such suppositions have the additional
advantage of making all the forces act at the joints of the
framework, where they may he combined directly by the vector
law of addition.

(29) Find the average stresses due to the weights of the bars set up in
the Warren girder of Ex. 13, each bar weighing 530 1bs.

Reactions at Joints (two bars). Consider the simple
cantilever PQR (Fig. 212), PQ and PR being uniform equally heavy
rods of equal length. Suppose the weight of each bar to be /77
(15 Ibs. weight). Replace the bars by weightless ones, having

5 Ibs. weight concentrated at each end; then at P a verti-
cally downward force of F7 {15 lbs. weight) acts. The average
stresses BC and (.4 are obtained in the usual way, and are
exactly the same as if the bars were weightless and a load BA
were suspended from 2,
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To find the reactions of one body on another we may suppose
the second body removed ; then the force which has to he applied
at the old point of contact, to maintain equilibrium, is the reaction
of the second body on the first.

Hence the reaction of ¢4 at P is found by supposing the bar
¢b removed, and secing what force must he applied at P to keep
the rest of the frame in equilibrium.

7

e

w A
Force Scale

0 rs3ese78or zp Ibs.

F1e. 212,

But if we remove cb we must suppose the load 4/ also removed
from P, hence we bisect 4B at I, and CB+BM or CM is the
reaction of ¢b on the pin at P; similarly, the reaction of the pin
on bc is MC.

If the bars had been supposed weightless and a load 7 1b.
suspended from P, then the stresses found in #: and ce would
have been the same as before, but the reactions of the pin on
bc and ca would have heen quite different. For, on removing
be, no weight is taken away from P, and the reaction of ¢b on
P would be simply CB. Similarly, on removing ar, the reaction
on ca is seen to be CA.
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(23) If PQ=721ft., PR=56 ft. and QR =63 ft., find the reaction at P
on P if each bar weighs 3724 Ths.

(24) As in the previous question if, in addition, a load of 40 Ibs. hangs
from P.

Reaction at a Joint (two unequal bars). PQR (Fig. 213)
is a small wall crane; the s PQ and QR are uniform and the
weights ave 2 Ibs. per foof.  Find the pin reactions af Q given
PR=9, RQ=39 und QP=T7-1".

Draw the total load vector AB of length proportional to
half the weight of P@ and @R, and draw the stress diagram

P ) - i AD P .
ABC as usual. Divide 4B at I, so that TE=OR Join CD,

and measure it by the force scale; it gives the reaction of the pin.

Suppose the bar PQ removed, then the force that must be
applied at () to maintain equilibrium is given by the resultant of
the force CA and the weight AD (half the weight of P@), .. by
CD.

a

4 ,

Fia. 213.

This vector CD gives, therefore, the reaction of the bar PQ on
the pin at ¢, and DC gives the action of the pin at @ on the
bar PQ.

Similarly, if we suppose @F removed, we must remove the
forces BC and DB and replace them by their resultant DC.
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Hence DC is the reaction of the bar RQ on (), and CD is the
action of the pin at ) on the bar.

Evidently these results are consistent, for, the pin at @ heing
supposed weightless (or so small that its weight may he neglected),
the total forces acting on it, viz. DC and CD, must be in equi-
librium.

(25) Find the reaction of the pin on be if a load equal to half the total
weight of the bars he suspended from it.

Reactions at a Joint (three bars). If the bars have no
weight, the reactions are simply along the bars; if they have,
then the reactions of the pin on the three hars may be found
as above hy supposing the bars removed one by one, the reaction
being the sum of the remaining forces, or the sum of the half
weight of the bar and its force on the joint reversed in sense.

A
M
D
C
Wty
B
Fra, 214

Thus, suppose be (Fig. 214), ¢d, da arve the bars, and w,, w,, w,
their half weights, and that the vector polygon for P is as
shewn, where 4 =w,, MN=uw,, NB=w,.

To find the reaction of the pin at P on le, suppose be
removed, i.e. remove NB and BC in the vector polygon ; then NC
is their resultant and CN the resultant of the remaining forces
and is the reaction of the pin on ke. :

Similarly, remove DA and AM (the force in da and half its
weight) ; the sum of the remaining forces is MD and gives the
reaction of the pin at P on ad.
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Finally, remove MN and CD and the sum of the remaining
forces is given by the sum of DM and NC.

Hence the sum of the three reactions of the pin is zero as
it should be.

(26) Find the reactions of the pin at I", of the girder of Ix. 18, on the
three bars meeting there, if the bars weigh 25 bs. each.

ExaypLE.  ABand AC (Fig. 215) represent heavy uniform beams,
earh T ft. long, pin-jointed at A and resting on rough walls at B and
C i the sume horizontal line. If BC=9 fi. and the beams weigh 500
and 700 1bs., determine the reactions at A, B, und C, und the average
stresses in AB and AC.

It is assumed that the walls are sufficiently rough to prevent
the heams sliding down.

Suppose the heams replaced by light rods loaded at their ends
with 250 and 350 lbs. weight respectively. Then at 4 there is
a load of 600 Ibs. weight, at B 250 and at C' 350 lbs. weight.

Draw the beam diagram to scale and letter the spaces as
indicated ; then draw the vector polygon XYZU for the loads.
Then for the point 4, ¥V7Z is the stress diagram, and 7Y and
VZ give the average values of the stresses in 45 and 4C. For
B, XYV is the stress diagram. Since XY is the load at B and
YV the push of the beam there on the wall, therefore VX gives
the reaction of the wall at / on the beam 4B. Similarly, UV
gives the reaction at . To find the reaction at 4 on 4B suppose
AC removed, then we must also suppose a weight of 350 Ibs.
removed from 4 ; set off then ZM =ZU and the resultant of the
weight MZ and of the force ZV is the force MV, which is the
reaction at 4 on the bar A4B.

Measure the magnitudes of the reactions and the angles they
make with the horizontal ; measure also the average stresses in
the beams.

Find the resultant of the weights of the beams (supposed to act
through their mid-points) and shew by construction that the re-
actions at B and C, previously determined, are concurrent with it.

Of what general theorem is this concurrency an example ¢
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It the walls were smooth and B and (' were connected by a

light rod, what would he the stress in that rod?

(27) Find the reaction
on the bar 4C at 4.

(28) Shew (by drawing)
that the reactions at B
and 4 on AB are con-
current with the vertical
through the ».c. of 4B,

Fie. 215

00
1

Ibs. wt.
o o 30 4% s

O

100
1
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Quadrilateral Frame and Reactions at Joints.

ExAMPLE. Four equal bars, each of weight 05 ib. and length 6",
are pin-jointed together to form « square. It is suspended by ome
vertex and its form maintained by a light string connecting the upper
and lower vertices.  Determine the stresses in the string and rods and
the reactions of the pins on the burs.

Each har may be supposed replaced by a weightless rod if
half the weight be supposed concentrated at its end. This
reduces the case to a frame loaded at the joints only. Further,
if the string be supposed cut, the geometrical form will he
maintained if we suppose a force equal to the tension in the string
to he applied upwards at the lowest joint and downwards at the
highest one. Letter the spaces as in the diagram (Fig. 216) and
draw the vector polygon for the loads at @), E, S, viz. 0-5 1b. at
each ; then the reaction, due to these, of the support at P is AB
or 15 lbs. upwards.

At @ we have a force 0-5 Ib. downwards (BC) and the forces
due to the rods 4f and ¢f. Draw, then, BF and CF (parallel to
these rods) to intersect in F, the sense of the vectors being
BCFB. Hence cf is in compression and bf in tension. Similarly,
at § we get DAED for the vector polygon.

At R we have then FC, CD, DE and the tension in ef. Join,
therefore, £ and F and CDEFC is the vector polygon for the
point. The tension in the string is twice the weight of a rod.

Tabulate the stresses and mark the bars which are in com-
pression.

(29) Shew that the stress diagram for the point P gives results consistent
with those already obtained. Find the stresses if PR=2¢s5.

For the reactions of the joints on the bars all we have to do is
to suppose the corresponding bar removed and find the resultant
of the forces acting at the joint, or find the force which would
produce the same action on the joint as the bar, and then change
its sense. It must be remembered that when a bar is supposed
removed, we must take away the half load concentrated at the
end under consideration.
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At @, suppose the
bar bf removed, i.e.
take away the pull
FB and one half of
BC ; the resultant of
the remaining forces
GC and CF is GF, the
reaction of the joint
on the bar of. The
reaction on ¢f is simi-
larly seen to be FG.

At R. suppose the
har e removed ; then,
in the stress diagram,
take away DE and
1CD and there re-
mains EFCH, the re-
sultant vector being
EH. Similarly, the K

H
. . ) 5
reaction on¢fis found A L B
. ! 2
by removing FC and s
30D, and is therefore I
’ -
HF ,’r ; D ©
’ ,' w4
17 S
't
e 2
E bo)
pd
T
1
wy
A 6

Fie. 216.
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These results contrast with the case in which the joints
are loaded and the weights of the bars are negligible, for in this
latter case the action on any har must be equal and opposite to
the force of the bar on the joint, and is therefore given hy the
stress in the bar itself.

#Pentagonal Frame and the Reactions at the Joints.

EXAMPLE. . regular pentugonal framework is suspended by one
verte, the regular form being maintained by o light string joining the
top wvertex to the middle point of the opposite side. Each bar weighs
1 1h.; find the stresses in the bars and string and the resctions of the
pins on the burs.

Proceed as in previous example, but now the pull due to the
string at the mid-point of the lowest side must be replaced by
equal upward forces at £ and S (see Fig. 217) of magnitude to be
determined. Letter the spaces as indicated, and draw the vector
polygon BODE AR for the external forces. Then draw BCH for
the point () and EAF for T, then HCDGH for E. The last
gives GH as half the tension in the string. Complete the stress
diagram and see that the part for the point P gives results con-
sistent with those obtained before.

The reaction at § on ch is HL, where L is the mid-point of BC.
For the reaction at B on ¢k we must not only remove half the
weight of the bar RS and its stress, but also half the tension of
the string (since the string does not really pull at E); the
reaction is therefore KH on ¢k, where K is the mid-point of CD.

Tabulate the stresses as usual.

(30) Two heavy uniform bars 4B and BC are jointed together at B and
to sufports at 4 and Cin the same horizontal line. If 4B=8, BC=4'5
and 4 (C'=7 ft., and the bars weigh 7 lbs. per ft., find the average stresses
in 4 B and BC, and the reaction at B, 4 and C.

(31) A rectangular framework of four heavy bars is hung by one
vertex, the rectangular state is maintained by a light non-vertical rod
joining two vertices. The sides of the frame being 7 and 45 ft., and the
bars weighing 25 and 16 Ibs. respectively, find the average stresses in the
bars and the compressive stress in the light rod.

(32) 4B, BC and CD (Fig. 218) are three uniform heavy iron bars of
weights 15, 10 and 15 lbs., hinged at 4, B, ' and D, and hung from 4
and D in the same horizontal line. Find the average stresses in the bars
and the reactions at 4, B, C'and D if the bars weigh 1 1b. per ft.
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Fig. 217.

B C
Fic. 218.
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(33) AB=6, BC=45, D=0, Pooopomommoocmmmemmeos D
BD =95 and DAB=45°. The shape
in Fig. 219 is maintained by a light
string BD ; find the average stresses
and the reactions if the bars weigh
3 Ibs. per ft.

B c

Fie. 219.

(34) Five equal bars are freely jointed to form a pentagon, which is
suspended by one vertex. The frame is maintained in the regular penta-
gonal form by a light horizontal bar connecting two vertices. If the five
bars weigh 71bs. cach, find the stresses and the reactions at the joints.

(33) As in the previous example, only the bars are light and weights of
7 Ibs. are suspended from the five vertices.

(36) A heavy triangular framework is suspended by one vertex, the sides
are 3, 4 and 3°5 ft. long. The bars arc uniform and weigh 02 1b. per foot.
Find the position of equilibrium, and the stresses in the bars and the
reactions at the joints.

(37) Three equal rods each weighing 2°5 1bs. are freely jointed together.
The frame is supported at the mid-point of a horizontal side. Find the
stresses in the hars and the reactions of the hinges on the bars.

(38) A regular hexagon of uniform bars, each of weight 3 1bs., is suspended
from two vertices in the same horizontal line, the form is maintained by a
light string connecting the mid-points of the top and bottom bars. Find
the tension in the string and the reactions at the vertices.

(39) Find the average stresses in the bars of the king post truss of
Ex. 13 due to the weight of the bars alone if they weigh 10 1bs. per ft.

The Funicular Polygon. The link polygon for like parallel
forces can easily be constructed by means of weights and strings.
The actual string polygon is called a funicular polygon (funi-
cula =a little rope), and sometimes the meaning is extended to
cover all the geometrical figures we have called link polygons.

ExamprLe. BC and CD (Fig. 220) are the vectors of forces whose
azes ure he und cd.  Choose any pole O between the perpendiculars at
B and D to BD. Through the space b draw a line parallel to OB,
through ¢ a line parallel to OC and through d a line parallel to OD.

In Fig. 220, PR,R,Q is the link polygon, P and @ being any
points on the first and last lines drawn.

If the paper, on which the drawing has been made, be fixed to a
vertical drawing board, so that be is vertical, and a string of length
PRy + R\ R, + R, be fixed to the board by stout pins at P and ),
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then if weights proportional to BC and CD be fixed, hung hy threads
knotted to the string at 12, and £, the forces acting on the string
will cause it to be in equilibrium in the given position PR, 1,Q.

To prove this requires merely a statement concerning the
equilibrium of concurrent forces. R, is in equilibrium if three
forces BC, CO and OB act there ; the last two will therefore give
the pulls which must be exerted on £, to balance BC and can he
supplied by the tensions of the strings attached to R; in the
positions given.

On joining P@ the link polygon is closed, and by drawing 0.4
parallel to it in the vector polygon we get AB, the vertical

Ry

D

Frc. 220.

reaction at P, and DA the vertical reaction at € ; moreover,
AO gives the components of the reaction at P and @ along the
line PQ. Hence, if PQ be a light rod suspended by vertical
strings at P and @, then 40 would give the stress in PQ.

Notice carefully that we are able to draw the correct position of
the funicular polygon corresponding to a certain arbitrary vector
polygon, we can also, with certain exceptions, do the converse
construction ; 4.c. given an arbitrary form PR RE,Q for the string,
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we can determine the weights BC and CD which will produce
equilibrium and find the corresponding tensions in the- string.
It is essential that the form of the string polygon assumed be
such that equilibrium can be obtained by tensile stresses only ;
hence in the arbitrary vector polygon the angles at B and D must
be acute. Hence, the limitation as to the position of 0. It i,
of course, true that an infinite number of weights can be found,
but the sets will all be proportiohal ; .. taking the first, BC,
arbitrarily, the other, CD, is fixed by the construction.

We cannot assume both the form of the string and the
magnitudes of both the weights.

ExampLE. PQRS (Fig. 221) represents a string attached to the
points P and S, P being 3 fi. above S, and PS=15 fi., PQ=5,
QR=8D and RS="1T ft. At Q is tied a weight of 47 Ibs.; find
the weight which must be attuched to R so that the angle QRS may
be 120°.

Draw first the polygon PQRS to scale; to do this construct
the triangle ¢, £,)S;, where .

@By =QR, BS =RS and QRS =120°;
this gives the length of @S, and hence the point ¢ can he
constructed.

Construct next the vector polygon for ¢, viz. BCAB. At R
we know the pull AC in ac, and can therefore complete the
diagram for that point, viz. 4CD4. The weight at R is
therefore given by CD, the other lines give the tensions in the
three parts of the string.

Notice that the horizontal components of all the tensions are
equal.

(40) PQRST (Fig. 222) is a funicular polygon, P7 is horizontal ; a load
of 5 lbs. is suspended at @ ; find the loads at R and S necessary to maintain
the given shape. P@=35", QR=4'5", RS=6", PT=17".

(41) If the strings P@ and ST be suspended from a light rod P7 hung
bg' ve(;r(tiiﬁglﬂstrings, find the tension in the strings and the compression in
the r 7. ’

(42) The tension in P@ heing 18 lbs., what must be the weights suspended
from @, Rand S§?
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Ibs. wt.
o 1 2 3 4 3 7 8 o9
L 1 1 Il 1 A L 1 1 J

Fie. 221,

F1c. 222,
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Funicular Polygon for Equal Loads, the axes being at
equal distances.

ExaMpLe. P and Q (Fig. 223) ure two fired points in a
horizontul line, distant apart 275 ft.; a string is to be fived to P and
Q, and lowled with weights 2, 25, 15, 3 lbs., whose axes are
equidistant (viz. 8").  The purt of the string attached to P s fo
make 30° with the verfieal.  Find the length of string necessary,
the form of the funicular polygon and the points on it where the
weights have to be fustened.

Draw first the vector polygon of the weights BCDEF, choose
a pole 4 for the vector polygon, and find the position of the
resultant by the link polygon. Find the point 12 of intersection
of the known dircction of the string at P and the axis of
the resultant. Join R to Q; then RQ is the direction of the
string at Q. Draw, then, BO and FO parallel to LI and @E to
intersect at 0. O is then the pole of the vector polygon, and by
joining 0 to CDE we get the directions of the remaining segments
of the string. Draw these directions on the link polygon, and
measure the segments between the given vertical lines.

It may appear at first sight that, although we can determine
the point O in the manner given, yet when we come to construct
the corresponding link polygon — PR, parallel to 05, R, R, parallel
to (O, B,R, parallel to D0, RyR, parallel to EO—the last link
through 12, parallel to UF would not necessarily go through ¢.

A little consideration of the properties of the link and vector
polygons will shew the necessity of this.

We have a number of parallel forces in be, ¢, de and ef, and
BF is their vector sum; through b draw PR, parallel to BO,
and suppose in PR, two forces OB and BO, differing only in
sense, to act. The resultant of OB and BC is OC along R, R,
and so on to the resultant of OB, BC, CD, DE and EF is OF
acting along R,(;, where ¢, is the point on the vertical through
@, where R,Q,, parallel to OF, cuts it. Combine, then, BO in PR,
with OF to a resultant BF acting through the point of intersection
of PR, and @R,. But the point in PR, where this resultant
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cuts it, has heen determined already, viz. the point R, and RQ
is parallel to OF, hence RQ and E@, must be both parallel to

OF, ie. @, is at .

P
/ c d
~—— |
a A a
R Th

F

Fic. 223.

f/?Q

e a

Ra

(43) The distances apart of
the verticals are 1’, 6", 4", 4"
and 8", PR, is to be inclined
at 45° to the horizontal, and
the weights are all equal;
find the form of the suring
polygon, the total length of
string and the tensions.

(44) The loads being 2°1, 22, 1-8 and 29 lbs., and the vertical axes
equidistant (6”), find the form of the link polygon and the total length of
string necessary if ad is to be horizontal ; PR, makes an angle of 45° with
vertical and @ is fixed only inasmuch as it must lie in a certain vertical.

(45) As in Ex. 43, but now ac and ae are to be equally inclined at

45° to the horizontal.
T.G,

Q
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The theory of the funicular polygon is of great practical
importance, since it is immediately applicable to the deter-
mination of the form and stresses of suspension bridges.

Funicular Polygon satisfying prescribed conditions.
A funicular polygon is to be constructed between two points,
P and (), distant 3 ft. apart in a horizontal line. It is to be
loaded with seven equal weights of 5 Ibs., the axes are to he
equidistant and the lowest vertex, ¥, 11} inches below A7, the
mid-point of PQ.

Since the axes and loads are symmetrical with regard to M7,
only half the funicular and stress diagrams need be drawn.

Set off PA and MV (Fig. 224) to scale (say half full size) and
letter the spaces.

Set off to scale AB, BC, CD for the loads in ab, be, cd, and
DE=1A4B; draw K0 perpendicular to 4K ; then the pole of
the vector polygon must be in K0O. This follows from the
known symmetry of the funicular polygon. Take any point 0
in K0 as pole, and proceed to draw the link polygon, starting
at ¥, viz. VP, parallel to 0D, ViV, parallel to OC, 7,7,
parallel to 0B and V7,7, parallel to 0A.

If 7, is at P we have solved the problem.

Evidently by taking different poles along KO, and constructing
the corresponding link polygons, we should get a series of points
like 7,, and by trial we could find the position of the pole so
that 7, should he at P.

Through 7 draw a line Vu, parallel to PM and produce the
links V,V;, V.V,, V,V,, to cut it ab u,, u,, us.

Join P to u, cutting ab in /7, ; join W, to u, cutting ¢ in
W,5 join W,y to uy cutting ed in /7, ; and, finally, join 77 to 7.
Then PIV,JV 7,1 is the half funicular polygon required.

Through 4, B, ¢ and D draw lines parallel to PW, W IV,
W, WV these should all be concurrent to a point 0,
in KO.

Measure 40,, BO,, CO, and DO, on the force scale ; these are
the tensions in the various parts of the string polygon.
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Fie. 224,
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*Proof. Suppose that corresponding to the two poles O and 0,
there are two link polygons V77, ...and V7, .... Through 7/
draw a line Pu, parallel to 00,, cutting W/, .. . in g, ug and u,.

Let 00, be the vector of a forece in Pu,, then 00;, O;D and
DO in Iy, 7. 7, and PV, arc in equilibrium. To O,D add DC
and to DO add GD hoth forces acting in o, then 00I , 0,C and
CO are in Py, Wy, and V,7, are in equilibrium.  But three
forces in equilibrium must be concurrent, hence 7,7, must pass
through #,. A similar argument shews that 7,7, and V7,
pass thIOLwh 1y and respcctlvely

(zeneulh then, we see that wherever the pole 0 of the vector
polvgon be taken in the line KO, the corresponding lines of
the link polygon must intersect on the line through 7~ parallel
to UU,. This is really a special case of a more O'eneral theorem :

(r’iren the axves and vectors of a set of forces, if two link polygons be
drawn for poles O and Oy, then the corresponding sides of the link
wolyygons intersect on a line parallel to OO, .

The Funicular Polygon and Parabola. The vertices V,
W, Wy, W, ooy of po 243, lie on a parabole having 'V as s
verter and VM as its axis of symmetry. Construct the links of the
JSunicular as follows :

Fig. 225 shews the right-hand half of the funicular of which
the left half has already heen constructed. P,M; or ¢f, P,M, or
f7 are the load lines on which the vertices are to be found.

Join 7@ and construct the vertices on P M,, P,M,, ... of the
parabola going through @ (see pp. 29-31).

Curves whose equations ave like y=22 y=22? or y=A42? are
called ¢paraholas.’ '

Go vertically from A, to ¢, horizontally to B, and mark P,
where VR, cuts M, P,. Similarly, determine the points P, and Pg.

Set off the load vectors vertically downwards DE, EF, FG and
GH, and mark K, the mid-point of DE. Then draw, through E,
F, @ and H, lines parallel to the links of the funicular and see
that they all intersect {or nearly so) on the lme KO perpendicular
to DH,
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(46) Draw to scale the funicular polygon joining two points P and @ in
the same horizontal line, PQ =25 ft. The string is to be loaded with six
equal weights (15 1bs. cach), and the axes are to be equidistant and the
lowest link is to be 2 ft. below P¢). Find the tensions in the various string
segments.

(In this case the lowest link is horizontal, and if the pole of the vector
polygon be chosen on the perpendicular through the mid-point of the
resultant load vector, the corresponding sides of the two link polygons
must intersect on the lowest link.)

D M Q
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Fic. 225.

*(47) Draw to scale the funicular polygon joining two points P and @
where @ =4 ft., and makes an angle of 30° with the horizontal through P
and below it. There are to be six equal loads in equidistant axes, and the
first link is to make an angle of 40° with the vertical. Find also the
tensions.

(In this case, through the beginning of the total load vector draw o
line making 40° with the vertical and take the pole on this. Draw the
first link of the funicular through P, then wherever the pole of the vector
polygon be taken on the line drawn, the corresponding sides of all funiculars
starting at P must intersect on the first link. Hence it is easy to draw
that particular funicular which will pass through @.)

*(48) Funicular as in Exercise 47, but the vertex bearing the middle load
is to be 2 ft. below the mid-point of PQ.

*The Funicular Polygon and Parabola. The vertices
of a funicular polygon for which the loads are all equal and
at equal distances apart lie on a parabola.

(¢) Suppose the number of loads odd.

Let w be the load at each vertex, & the distance apart of the
loads, 7 the lowest vertex and ) any other, say the n**. Take
the axes of coordinates as the horizontal and vertical through 7
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(Fig. 226) and suppose the coordinates of Q, »and y. Between @
and ¥ are n—1 loads and 2 spaces, hence the resultant load is
7 — 1w whose axis is mid-way between 7 and €.

The part of the chain between 7 and @ is in equilibrium under
the load 7 — 1 and the tensions in the lowest and highest links.
Hence, since three forces in equilibrium must pass through a

T @ (7-7)

T

w8

T

o
Fia. 226.

point, these links must intersect on the axis of the resultant load,

viz. at 3 in Fig. 226 whose abscissa is Z.

In the stress diagram 7 and T are the supposed tensions in
the links, then 7, 7', and w(n ~ 1) form the vector triangle for M.

For the point ¥, T}, w and by symmetry a force of magnitude
7, form the vector triangle. Hence T, denoting the horizontal
component of all the tensions, we have I equivalent to 7,
and Jw.

Comparing the similar triangles of the funicular and vector
polygons we have at once
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3
w
M\N 2°
z 7,

Therefore, by the properties of fractions (adding numerators
and denominators),

y oown
YN
But nh=ua;
1w
J= 507 f !

This is the equation to a parabola, the axis of y being the
axis of symmetry. Hence all the vertices lic on the parabola,
for the equation remains exactly the same whatever particular
value n may be supposed to have.

When the dip and span of the funicular and the number of
loads are known, 7, can be caleulated.

Let 2s=the span,
d=the dip,
N=number of loads (h = Nl_: 5 )
Then (zﬁ%sz:@%’%})s
or T, —_—ﬁ%j—l—) . %

(b) Suppose the number of loads even, then the middle link is
horizontal. First take the origin at the middle point of this
link. Then for the equilibrium of the piece between V- and @
the link through @ must, when produced, pass through M the
mid-point of the space hetween the 1% and n — 1™ verticals.
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(n=1)h=2z~ g,

h T (n-1)w
and nk=a;+55 )

. w o[ s B\,
. y=h‘—ﬂ,~0<ﬁl‘—':> s

. wh w Fic. 227.
- Yt T =30, ™

If the origin O be taken at a distance éb—]]é below 7, the
equation becomes y=,)-hl%,~ 4%, a parabola. '

“hdy

*Method of Sections. If any closed curve be drawn
cutting some of the bars of a frame in equilibrium, then the
part inside the curve may be looked upon as a rigid body
in equilibrium, under the action of the known external forces
on that part of the frame, and certain forces acting along the
bars at the points where the curve cuts them. If the forces
necessary to produce equilibrium acting along these bars can be
found, they will give the magnitude of the stresses in those
bars, and whether the stresses are tensile or compressive can be
determined by the senses of the forces.

Fig. 228 represents an ordinary queen post truss. If we -
consider the part enclosed by the dotted curve on the right, it
will be in equilibrium under the action of the external forces in
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oa, ab and be, and certain forces in ch, hi and 0. Suppose these
bars cut; then, to maintain this right-hand portion in equilibrium,
we must apply to the cut surfaces of the bars forces equal in
magnitude to the stresses in them hefore cutting, and of the
proper sense. For instance, if ¢h he in compression we must
take the sense of the force at the cut surface from left to right ;

’/,, .\“
S C .
I v .
d 7 AN
; A \\.
e . ( ™
7 E & a N\
\
) z 1
B | f ,
P Q
N ’d
[N @
\x -
Fre. 228.

if in tension, from right to left. Conversely, if we can find the
forces in these cut bars which will keep the right-hand portion
in equilibrium, these forces with their proper senses will give the
stresses in the bars.

If the curve can be drawn so as to cut only three non-
concurrent and non-parallel forces, we can always find by this
means the stresses in the three bars. (In special cases we may
be able to find the stresses in one or more bars when more
than three are supposed cut).

The method of sections enables us (i) to test the accuracy of
the stresses already found by independent means; and (ii) to
draw stress diagrams for various frames in which the ordinary
method of procedure fails.

To determine the stresses, we either use the construction for
resolving a known force into three components acting in three
non-concurrent and non-parallel lines, or the construction for
finding the sum of the moments of a number of forces. The
latter method will be explained in Chap. X.
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*EXAMPLE.  Determine the stresses in the bars ¢h, hi and io of the
queen post truss (Fig. 229) if VZ =40, VW =12, UW =12 f1, the
loads in ed, de, cb and ba being 05, 0°6, 15 and 1 fons.

Draw the truss to scale and the load and reaction lines.

Draw the vectors ED, DC, CB and BA of the loads in ed, de,
¢b and hu. Take any pole P of the vector polygon and construct
the link polygon in the usual manner. Close the link polygon
and draw P() in the vector polygon parallel to the closing line.

Draw any closed curve cutting the bars ¢k, hi and 0. Then
the forces acting on the enclosed body are OE, ED and DC and
the forces in the hars supposed cut. For these forces the first
line of the link polygon drawn is parallel to PO, and the last is
parallel to PC; these lines intersect (when produced) at £,
consequently the resultant of OE, ED and DC, viz. OC, acts
through 2 parallel to OC.

Produce 70 to cut the axis of this resultant in @. Join ¢ to U,
the point of intersection of i and ¢h. From C and O draw lines
parallel to i0 and QU, viz. CX and 0OX. Then CX and XO are
in equilibrium with OC, their axes being io, QU and Q).

From ¢ and X draw OF parallel to ch and XY parallel to i ;
then OC acting along 2@ is in equilibrium with CX, XY and YO
acting along 4o, ik and ch respectively.

Since CX pulls at the cut end of the bar o (enclosed by the
curve in Fig. 229) io must be in tension. Similarly % is in
tension and ¢/ is in compression.

When the angle is small between the sides of the link
polygon, for which the point of intersection is required, the
method becomes untrustworthy. In that case the moment
method explained in Chap. X. is used.

Cases in which the method of sections enables us to draw
stress diagrams for which the ordinary method fails will be
considered also in Chap. X.

(49) Draw the frame in Fig. 230 and determine the stresses in by, gf and

jd by the method of sections. The load at P=1 ton and at @ =05 ton,
RS=30, RP=21, RQ=QP=11 ft.
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Fi1G, 229.

Fic. 230.

(50) Find the stresses in bj, ji and ko in the queen post truss of
Fig. 229.
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MISCELLANEOUS EXAMPLES. VL

1. ABCis a triangle having a right angle at B. The sides 4 B=12",
BC=3". A force of 52 1bs. weight acts from .1 to C, one of 24 acts from
B to 4 and one of 27 from (' to B. Find the magnitude and line of action
of the resultant. Draw the figure to scale and exhibit the resultant.

(Inter. Sci., 1904.)

2. 4 B('is a light frame in the form of a right-angled triangle, 4 being
the right angle. It can turn in a vertical plane about a fixed horizontal
axis at 4: and, when a weight W is suspended from C, the corner B
(which is vertically below .1) presses against a fixed vertical plate. Find
graphically the stress in cach rod and the reactions at 4 and B.

(Inter. Sci., 1906.)

3. The pair of rafters shewn in Fig. 231 carry a load equivalent to
150 Ibs. at the middle of each. Find the direction and magnitude of the
thrust on cach wall.

Fic. 281.

If the walls are relieved of horizontal thrust by a rod joining the lower
ends of the rafters, what is the pull on the rod ? (War Office, 1904.)

4, A triangular frame 4 BC can turn freely in a vertical plane about 4
(the right angle). The side 4B is horizontal, and the corner C rests
against a smooth vertical stop below 4. Find, graphically or otherwise,
the stresses in the various bars due to a weight W suspended from B.
AB=3 ft., AC=1 ft., =50 lbs. weight. (Inter. Sei., 1903.)

5. The beams .4 B and 4C (Fig. 232) are part of a roof and carry a load
of 160 kilogrms. at the ridge. The span of the roof is 10 metres, and the
beams make 28° with the horizontal. Find the thrust this load causes
on each wall.

160 Kilos

A

|

If the walls are relieved of the outward thrust by a rod joining the ends
Band C of the beams, what is the thrust in this rod, and what thrust do
the walls still bear? (Military Entrance, 1906.)

Frc. 232.
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6. A heavy straight rod 4B, 12 ft. long, turns on a pivot at 4, and is
supported in a horizontal position by a vertical force of 15 lbs. weight
applied at B. If the weight of the rod is known to be 90 lbs., find the
pressure on the pivot and the position of the centre of gravity.

(Naval Cadets, 1904.)

7. A heavy uniform beam AB rests in a vertical plane against a
smooth horizontal plane C4 and a smooth vertical wall C'B, the lower
extremity 4 being attached to a cord which passes over a smooth pulley
at C and sustains a given weight . Find the position of equilibrium.

(B. of E., IL}

8. Find the stresses in the bars of the short Warren girder PGRST
figured (Ex. 12, p. 222). Loads of 2 and 1 tons act at P and 7, and the
frame is freely supported at ¢ and S in same horizontal line.

(Inter. B.Sc. (Eng.), 1905.)

9, ABCD is a thread suspended from points 4 and D, and carrying a
weight of 10 1bs. at B and a weight H™at €'; the inclination to the vertical
of AB and CD are 45° and 30° respectively, and A BC is an angle of
165°. TFind, by construction or caleulation, JI"and the tension of BC.

(B. of E., II.)

10. A uniform bar is bent into the shape of a V with equal arms, and
hangs freely from one end. Prove that a plumb line suspended from this
end will cut the lower arm at } of its length from the angle.  (B.Se., 1904.)

11. Fig. 233 shews (drawn to scale) a rectangular framework of four bars
freely hinged. It is supposed to lie on a smooth table with 4B fixed.
A piece of elastic cord is stretched, and its ends fastened at Z and F.
For what positions of £ and F will the frame remain rectangular, for
what positions will the frame move to the right and for what positions
to the left? Justify your statements.

D c
AF
Ef”
A B

Fic. 233.

If the frame is held rectangular by a pin driven through the corner C,
and the elastic cord stretched till it exerts a pull of 10 lbs., and fastened
to the frame at the corners 4 and C, what force does the pin at C exert
on the frame? (Military Entrance, 1905.)
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12. Fig 234 is a rough
sketch of a crane. If the
weight hanging at the point
A 151000 1bs., find, graphie-
ally or otherwise, the forces
acting along the bars 4C
and AB; and if the post
BC is free to move in the
vertical plane, find the pull
in the tie CD which will
prevent the crane from top-
pling over.

(Military Entrance, 1905.)

Y
7000 fvs

D

Fic. 234.

13. 4B and BC are two uniform rods fastened by smooth joints to each
other at B, and to fixed points 4 and C'; the point C being vertically
above 4 and (/A=A B; given that the weight of BC is twice that of 45,
tind the reaction at €' and 4 by which the rods are supported.

(B. of K., III., 1904.)

14. Draw a circle and from a point A outside the circle draw two
tangents and produce them to B and C. Suppose that 4B and BC are
two equal uniform rods connected by a smooth hinge at 4 at rest on a
smooth vertical cirele ; find the position of the rods when 4 B is 10 times
as long as the diameter of the circle. (B. of E., III.)

15. 4, B, C are fixed smooth points, such that 4BC is an equilateral
triangle, with BC horizontal and above 4. A fine thread is fastened to
A, passes over B and (' and carries a weight of 10 lbs. ; find the pressures
on B and C produced by the weight. (B. of E., I., 1903.)

16. A uniform rod 4B can turn freely, in a vertical plane, about a
hinge at 4 ; the end B is supported by a thread BC fastened to a fixed
%)oint C; AC is horizontal and equal to 4B. Draw a triangle for the
orces which keep the rod at rest, and shew that in any inclined position
of A B the reaction of the hinge is greater than the tension of the thread.

(B. of B., IIL., 1903.)

17. A, B, C'and D are four points in a horizontal line. Two weights,
P and @, are to be supported by three strings, 4P, P and Q.D, in such
a way that P is vertically below B and ) below . Give a construction
for finding suitable lengths of string for the purpose.

Also shew that in any configuration in which the stated condition is
satisfied, the string PQ will intersect 4D produced in a fixed point.

(Patent gﬁice, 1905.)

18, The outline of a crane is as follows: A BC is a right-angled triangle,
A B heing horizontal and AC vertical, and 4B is equal to AC; on the
other side of 4 C'is a triangle 4D, the angle 4 being 45° and the angle ¢
being 120°. A Toad of 10 tons hangs from D), and the crane is supported
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at 4 and anchored at B. Find the reactions at the supports, and the
stresses in AC, CD and BC. (Patent Oftfice, 1905.)

19, Draw five parallel lines at distances apart 4, 5, 3 and 6 inches from
left to right. Construct a funicular polygon for loads 21, W, 31, 211"
and W suspended from vertices on these lines, the sides of the polygon
which stretch across from the middle line to its neighbours heing each
inclined at 60° to the vertical. (Inter. Sci. B.Sc. (Eng.), 1904.)

20. Draw the stress diagram for the following truss, Fig. 235, indicating
which members are in tension and which in compression. Assume equal
vertical loads. (Admiralty Exam., Assistant Engineer, 1904.)

Fic. 235.

21. A king post roof truss is loaded with 1 ton at each of the five joints;
find graphically the amount and nature of the force acting in each member.
Span=30 ft., pitch="T7"6".

A B
Fie. 2306.
22. Draw the stress diagram for the frame shown in Fig. 236, assuming
the joints to be loaded with equal weights in the direction of the arrows.

The arrows .4 and B indicate the direction of the reactions.
(Admiralty, 1905.)



CHAPTER VIL
FRICTION.

HoweveR carefully the Experiments I-VI. are performed, there
are sure to be some slight divergencies from the results stated.
These discrepancies are chiefly due to the friction at the pulley,
and but to a very small extent to the weight of the ring or card.
Resistance to Motion. In all cases where one body slides
or tends to slide on another, a resisting force called friction is
called into play. This force has the same direction as that of
the motion, or attempted motion, hut is of the opposite sense.

Expr. XIL.  Apparatus: A board with a smoothly running pulley
serewed or elamped on to one end ; an open box with a hook for fastening
a string a set of weights and a scale pan. A board of varying width is
best, as this will give different areas of contact between the box and the
board.

Arrange the board horizontally and the box, ete., as in Fig. 237. See
that the hook is serewed in a position so that the pull of the string is

\ Lok ]| — z
r-f—- e - - ‘;:Z,u;,,,,,.\'\r,f/]

]
f!I-
]

horizontal. Put a 500 gramme weight in the box and load the scale
pan 20 grammes at a time until motion ensues. Find the greatest weight
that can be put into the pan without moving the box.

Starting with no weights in the box, increase the load by 100 grammes
at a time up to 800, and find in ecach case the maximum weight that can
be placed in the scale pan without moving the box.

Fic. 237,
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Tubnlation of Eesults. Add to each load put in the box the
weight of the box itself, and similarly the
weight of the scale pan to its load in each Normal | Pull of
case, and tabulate the results as indicated. fresere | T2

Graph. On squared paper take two axes
Oz and Oy and represent on these, to scale,
the loads.

Plot points like P (Fig. 239) where OM
represents the weight of the box and its load,
and P the pan weight and its load to scale.
All the points like P will be found to lie approximately on a
straight line.

By aid of a stretched black thread, determine the straight line
lying most evenly amongst the plotted points, and draw this
line. From this line find the greatest load that can be placed
in the pan so that the box will not move when it contains
270 grammes, and test the result by experiment.

Deductions. In the first experiment with 500 grammes load
in the box, at every instant before motion there was equilibrium.
For equilibrium the vector polygon must be closed, and there-
fore the sum of the components of the forces in any direction
must be zero. Hence, the friction resisting the motion of the
box must have been always equal to the pull of the string on
the box. Hence, for a given pressure between the box and
plank, the friction may have any value from zero up to a certain
maximum value, called the limiting friction. If there was no
friction at the pulley, the load due to the scale pan and its
contents would measure the friction; if there was friction at
the pulley, the pull of the string on the box—which measures the
friction between the box and the board-- would be slightly less
than the load. If the straight line goes through the origin, it
shews that the pull necessary to turn the pulley is too small
to be measurable; if it does not, then the intercept on the
y axis gives the friction due to the pulley (04 in Fig. 239).

Draw through A a line parallel to Oa.

T.G. R

Fic. 238,
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Distances measured upwards from this line to the sloping one
give to scale the pull on the hox. In Fig. 239 P2/ is the pull
on the box for a normal pres-
sure .{JM,, and P therefore 7
meastres the limiting friction
in this case.

Coefficient of Friction.
Since .{P is a straight line, the
PM, . limiting friction
A, normal pressure
is always the same, no matter
what the pressure. This ratio M
is called the coefficient of fric- A .
tion for the two surfaces, and is  © o 0324 #
always denoted by the letter p. T

Expr. XIII. Place the box at the narrow end of the board so that it
overlaps and the area of contact is less than before ; shew that u is
unaltered.

Expr. XIV. Pin a sheet of paper to the board and shew that « has a
different value from that formerly obtained.

Laws of Statical Friction. The laws thus roughly estab-
lished are :

(i) Friction is  passive force, only called into play by the action
of other forces ; it tends to prevent motion and may have any value from
zero up to a certain mazimwm, depending on the normal presswre and
the natwre of the surfaces.

(ii) Limating friction is independent of the areq of contact.

(iii) Limiting friction is dependent on the nature of the surfaces.

(iv) Limiting friction is proportional to the normal pressure,
F=pW.

Friction and Stress. If F is the force of friction on the
box, — F is the force on the plank, and friction is therefore of
the nature of a stress.

Angle of Friction. Draw PQ (Fig. 240) vertically down-
wards to represent to scale one of the normal pressures, and QR
horizontally for the pull on the box (-the limiting friction);

QL

ratio
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then, since there is equilibrium, the closing line P must
represent in magnitude, direction, and sense, the total reaction
of the plank on the bhox.

The angle ¢, between RP and
the normal to the plank, is called
the angle of friction, and p=tane.
Measure ¢ and p. ¢ is always the
same, no matter what the pressure,
if the box is on the point of

It

. F .
moving, for = is constant.

w

‘When there is no pull on the
box, RP is vertically upwards ((P);
as the pull increases, AP slopes
more and more away from the
normal and away from the sense
of the attempted motion, until
the maximum angle ¢ is reached. Q
Expressed in slightly different
words, the total reaction of the surface may be inclined to the
normal at any angle between zero and e.

(1) If the box weighs 6 ozs., and it is loaded with 1'5 Ibs., and the
horizontal pull on it when on the point of motion is 15 ozs., find e and pu.

(2) If the box weighs 10 ozs. and is loaded with 1 Ib., and the coefficient
of friction is 3, find the pull on the box and the total reaction of the
surface of the plank when motion is about to take place.

(3) If the box weighs 15 lbs. and p=%, would equilibrium be possible
with a horizontal pull of (i) 3 Ihs. weight, (ii) 6 lbs. weight?

(4) A block of stone weighs half a ton and rests on a fixed stone with a
horizontal top ; a horizontal push of 500 lbs. weight just canses the block
to be on the point of motion. What is the angle of friction and what is u?

(5) A 1000 gramme weight rests on a table ; the angle of friction is 25°.
What is the least horizontal force that will produce motion?

(6) A cube of side 2” rests on a horizontal plane. The weight of the
cube is 7 lbs., and it is pushed with a horizontal force of 3 lbs. weight
without producing motion. The line of action of the force passes through
the centre of the cube and is perpendicular to one face. Draw a diagram
of the axes of the forces acting on the block (they are concurrent), and find
the reaction of the surface.

(7) Draw a diagram of the forces in Ex. 6 when the applied force is
1 of the way up, and find the surface reaction.

Normal

m
o (i PR,

Fic. 240.
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Force not Parallel to the Surface. If the string in the
friction experiment is not quite horizontal, the normal pressure
hetween the surfaces in contact is no longer the weighted box.
Knowing, however, the slope of the string, the normal pressure

and the friction can be found.
A

ExavprLe.  The string slopes up-
wands «t an angle of 15° with the
horizontal, the weight of the box, ete.,
is 17 Wbs., and a pull of 55 lbs.
weight causes the box to be on the
puint of motion. Find the angle of
friction € and the frictional force
rualled into play.

Draw AL (Fig. 241) vertically
downwards of length 17 cms.,
BC=55 cms. sloping upwards at
an angle of 15°. Then CA is the
total reaction of the plank on the

box, and 02 B=e

Scale C4, and measure Uf?B
by a scale of chords. Set off E
AE =10 cms. along 4B, and draw
EF perpendicular to AE; then
EF on the 10 cm. scale measures
p (=tane). Look up a table of
tangents, and compare e thus
determined with the value ob-
tained by the scale of chords.

Draw CD perpendicular to
AB; then BD and DC are the
vertical and horizontal compon-
ents of BC; hence the friction B
on the box is given hy CD.

BD is the upward pull on the hox, due to the string tending

Fic. 241.
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to lift it off the plank; hence the normal reaction of the plank
is not BA but DA. .

Draw BG perpendicular to 4C. If the inclination of the
string had been that of B(, the force given by BG would have
been the pull that would have caused the hox to be on the point
of motion.

Evidently, this is the least pull possible when the hox is in
limiting equilibrium. Any force greater than BG, if in the same
direction, will cause motion; any force less than BG will not
cause the box to be on the point of motion. Scale BG and
measure the angle it makes with the horizontal.

(8) The box, ete., weighs 11 Ibs. ; the coefficient of friction is 0°4. TFind
the least pull on the box that will cause it to be just on the point of
motion, and the amount of friction called into play.

(9) The box, etc., weighs 21°5 1bs. ; a pull of 12 lbs. applied at an angle
of 20° with the horizontal just causes the box to be on the point of motion.
Find the least force that will move the box, and the corresponding normal
pressure and friction.

(10) The hox weighs 9 lbs. and u=0-3. A horizontal forcé of 27 lbs. is
applied to the box. Is there equilibrium; and if so, what is the angle the
total reaction of the plank makes with the vertical ?

(11) A harrow weighs 6 cwts., the chains by which a horse can pull it
along make 20° with the horizontal. If the horse exerts a pull of 2 cwis,
along the chains, find the total reaction of the ground in lbs. wt., the
angle it makes with the vertical, and the resistance corresponding to
the friction between harrow and ground.

(12) A block weighing 37 lbs. is to be pulled along a horizontal plane by
a rope; find the least possible pull and its direction if the coefficient of
friction is 0-37.

(13) The least force that will move a chair weighing 10 lbs. along a
rough floor is 6 lbs.; find the angle and coefficient of friction and the
reaction of the ground.

(14) Two men push a side-board along, the side-board weighs 75 cwts.
and the angle of friction is 25°. Find the force the men must exert if
(@) they push horizontally, (b) downwards at an angle of 20° with the hori-
zontal, (¢) upwards at 20° with the horizontal, (d) find the direction in
which they must push in order that the force they exert may be as small
as possible.

(15) A block weighing 17 kilogrammes rests on a rough horizontal table,
the angle of friction being 37°. If a horizontal force of § kilogrammes
weight acts on the block, find the least additional force that will cause
motion. What is the greatest horizontal force that can be applied
without motion taking place ?
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The Inclined Plane with Frictioa.

ExXAMPLE L A bock rests on « bourd ; the latter is tilted. about
a horizontul wris throngh its end.  The cocfficient of friction being 0°2,
firud the angle at which the block begins to slide and the greatest friction
called into ploy.

Whilst there is equilibrium, the reaction of the board on the
Wlock must be equal to the weight of the block and in the same
line (since these are the only two forces acting). The angle
between the vertical and the normal to the plane is the same as
the angle between the plane and the horizontal, and as the
former is equal to e when the block is on the point of sliding
the angle of the plane must also be ¢ and tane=0'19. Draw
AB( E‘w 242) horizontally of length 10 cms., and BC vertically
of luwth 1'9 ems. ; then CARB is the angle of the plane.

me any length AR

L vertically | c
downwards to re-

present /7, LN ab €

an angle ¢ to LM, A lw B

and M N perpen-
dicular to LN, as
indicated in Fig.
243. MN is the
friction and NL the
normal reaction.
Measure the fric-
tion as a decimal
of 7.

To do this, set
off as indicated
MW=ML, MI=5
inches, and draw
through N a line
parallel to I Measure the intercept on ML on the 3"
scale.

.

P

Fia. 242.
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Examere 2. .1 block of weight 10 Ibs. is supported on an inclined

plane by a horizontal force.

If n=03, and the plane rises 1 vestically

in 2 horizontally, find the value of the horizontal force that will just
cause the block to be on the point of mation, (1) upwards, (1) downwards.

First draw the plane
AC (Fig. 243) by drawing
AB=4" horizontally, and
BC=2" vertically, then a
normal MN to the plane.
Set off along the normal
MN=2" and (i) NK=06"
down, and (ii) NK;=06"
up the plane.

‘When the body is about
to move up the plane, the
total reaction of the surface
has the direction J/K, when
down the direction is M K.

Next draw the vector
polygon, a line P@ verti-
cally downwards 10 cms.
long, to represent the
weight 77 of the block,
then from the two ends of
PQ, a horizontal line QR
and one PR parallel to
KM. Then QR gives the
horizontal foree which will
just cause the block to be
on the point of motion up

Q R, R

Fic. 243.

the plane, and RP is the total reaction of the swface.

Draw PE, parallel to MK,. Then QR, measures the horizontal
force which will just cause the block to be on the point of motion
down the plane, and R,P the corresponding reaction. Would the
block rest on the plane if the horizontal force were zero?
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ExAMPLE 3. The problem as before, but the slope of the plane
is now 1 in 8.

The graphical work is as in the previous example, but notice
now that I, comes to the left of /7 and QR is from right to left,
shewing that the pull is to be replaced by a push down.

Notice that whether the force pulls up or pushes down depends
on the relative magnitudes of ¢ and a, where ¢ is the angle of
friction and « the inclination of the plane.

Minimum Force and Inclined Plane. If a>e then the
hody will not rest on the plane without a supporting force.
(Why % This condition being fulfilled, the total reaction QR
(Fig. 244) of the surface makes an angle of a—e with the
vertical when sliding down is about to take place; hence the
least force RP, which will prevent motion down the plane,
must be perpendicular to R or make an angle o —e with the
horizontal, or € with the plane and helow it

G€

RS S R

R

XE"
o _
R -

Fro. 244.

When motion is about to take place up the plane, the total
reaction makes an angle a+e with the vertical, and the least
force is perpendicular to this reaction and makes an angle a+e¢
with the horizontal, or ¢ with the plane and above it.
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It a<e (Fig. 245), then, when the body is on the point of
motion down the plane, the total reaction makes ¢ — o with the
vertical, and the least force makes e—« with the horizontal, or
€ with the plane downwards but above the plane.

PR P

Fig. 245.

When motion is about to take place up the plane the least
force makes ¢ with the plane upwards.

(16) A gun has to be dragged up a steep hill (slope 1 in 5) ; the surface
resistance 1s equivalent to an angle of friction 40°. Find the best angle to
which the ropes should be adjusted. If the gun weighs 1 ton find the value
of the least force. What force would have to be applied if the ropes were
pulled (a) parallel to the ground, (b) at an angle of 20° with the ground ?

(17) A weight of 3 kilogrammes is supported on an inclined plane (rising
1 in 4) by a force parallel to plane. Find the greatest and least values this
force can have so that the weight may not move if u=02.

(18) A weight of 7 cwts. is supported on an inclined plane, rising 1 in 1;
if u=0-3 find the least force that can support the weight.

(19) In the last example find the least and greatest forces parallel to the
plane so that the weight may be (i) on the point of moving up, (ii) on
the point of moving down.

(20) Find the least horizontal force that can move a block weighing
11 1bs. up an inclined plane of inclination 30°, the angle of friction being 15°.

Find also the least force that will prevent motion downwards and cause
motion upwards.

‘What are the values of the friction called into play in the three cases?
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(21) Pind the force parallel to a plane of inclination 60° that will
support a block of weight 15 Ibs. on the plane, the coefficient of friction
being 1/3. Find also the least force that can move the block up the plane.

(22) A force of 17 Ibs. weight will just support a block of weight 40 Ibs.
on a plane inclined at an angle 55° if applied parallel to the planc. What
is the greatest force that can be applied parallel to the plane without
causing motion ?

(23) What is the inclination of a plane, coefficient of friction 4§, if the
minimum foree necessary to move a block weighing 25 Ibs. up it is 15 Ibs. ?
(Remember the direction of the minimum pull is perpendicular to the
total reaction of the surface and this makes an angle e with the normal.)
For this plane what is the force that will just support the block ?

(24) A block of weight 5 cwts. is kept at rest on a rough inclined plane
by a rope A B fastened to a point 4 on the block and to a point on the
plane. The plane rises 3 vertically to 5 horizontally and x=038. Find
the length of the rope .4 B that will give the least tension if 4 be 1 foot
distant from the plane.

(25) Two light rods are pin-jointed together and rest in a vertical plane
on a rough board (u=04). “A weight W=9 Ibs. is suspended from the joint ;
tind the greatest angle between the rods consistent with equilibrium.

(26) In the example on p. 156, if the coefficient of sliding friction for the

piston be }, find the total reaction of the guides and the force transmitted
along the connecting rod. Find also the tangential force urging the crank
forward for the various positions given.

Harder Problems on Friction. In some cases a little
ingenuity is necessary to effect the graphical construction.

EXAMPLE. A uniform beam, of length 17 fi. and weight 3 cuts., rests
against & smooth vertical wall and o rough floor for which the coefficient
of friction is 0-4.  Find the position of the beam when it is just on the
point of slipping down, and the friction which prevents the motion.

Notice first that the reaction at A is horizontal, and that at
B inclined at e to the vertical. First draw the vector polygon,
XY (Fig. 247) vertically down, of length 15 cms.; ¥YZ hori-
zontally, of length 6 cms.; and join XZ. Join Z to the mid-
point A7 of XT"

From any point 4 draw 4F parallel to MZ (Fig. 246) and of
length 1-7”, AC vertical and C'B horizontal. Then 4B gives the

position of the beam relative to the wall 4C and the ground CB.

*Proof. Sinceh ZI%—Z,=%=0'4, and YZ is horizontal, ZX gives

the direction of the reaction of the ground at B, and XYZ
must be the vector triangle for the forces on the beam.
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.The three forces on the heam, viz. the weight through & (the
mid-point) and the reaction at 4 and B, must pass through a
point 0. Produce OG to K (as in Fig. 246), then OKB and XVZ

j;e similar; .. %=%’§ ; if, then, XY be bisected at I/,
_Y.ZI{ =f_{]_f,, and therefore M7 is parallel to 4B,
e X
)

<

Fig. 246. F1c. 247,

A Simpler Proof. Replace the uniform heavy beam by a
light rod having 1'5 cwts. concentrated at its ends; then for the
equilibrium at 4 we have the load given by MY, the reaction
at 4 given by Y2, and therefore the push of the beam along
B4 must be parallel to ZM the closing line of the vector
polygon for 4. YZ is known because it equals 04 X7V.

Similarly, at B we have the load XM, the ground reaction ZX
and the push MZ of the beam along 4 B.
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Exavrre. A waiform ladder vests aguinst o wall at an angle of
30°  If it be just on the point of slipping down, and the angle
of friction is the sume for wull and ground, find the coefficient of
[friction.

Fic. 248.

AFB (Fig. 248) represents the ladder and G its M.C. through
which its weight is supposed to act. Then, since B is on the
point of moving to the right, the friction acts from right to left
and the total reaction at B makes some (unknown) angle with
the normal, and slopes towards 4. At A, the total reaction
slopes upwards, for the friction acts upwards. Since the angle
of friction is the same at 4 and at B, these reactions must
intersect at right angles; the point D of intersection, therefore,
lies on a semicircle having 4B as base. For equilibrium, the
vertical through ¢ must be concurrent with the reactions, hence :

Describe a semicircle on 4B, draw the vertical through & to
intersect it at I, draw 4D and BD the reaction lines, and
measure p (= tan e).

(27) As in previous example, only the m.c. of the ladder is } of the way
up from the bottom.
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(28) Find where the wm.c. of the ladder must he if the coefficients of
friction for the wall and ground are 0°83 and 0°5 respectively.

(29) A uniform bar 4B of weight 27 lbs. rests on rough ground at A,
and against a smooth bar at ¢. The inclination of the Tar is 307 to the
horizontal ; AB=8 ft., AC'=5 ft. ; find the reaction of the ground and the
coefficient of friction if the bar is about to slip.

ExAMPLE.  The coeflicients of friction for o ladder resting against a
wall and on the ground are 0-3 and 06.  Find the limiting position of
the ladder supposed wniform, and the friction on the wall, if the ludder
weighs 120 b,

________________________ P

|

Draw a vertical line P(Q
(Fig. 249) of length 12 cms. R
to represent the weight, and
from the ends draw PR and
QR parallel to the reactions of
the wall and ground. Bisect
PQ at S and join RS; then
RS is the direction of the
ladder.

Proof. Replace the beam
by a light rod with equal
loads at the ends.

In Fig 249 5@ is the load
at the bottom, @R the reaction
of the ground, and, therefore,
RS must give the push of the
beam on the ground. Hence
RS is parallel to the heam.

[0 )

Fic. 249.

(30) Shew, by drawing 87 parallel to RQ, and TG parallel to PQ, that
RS will represent the beam position. Notice that the reactions R7" and
TS are in the right directions, and are concurrent with the vertical through
@ the mid-point of RS.
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# Beam on Two Rough Inclined Planes.

ExXAMPLE. A boum vests on fwo planes of inclinations 30° and 45°
Jor which the coefficients of friction are 0-12 aund 0-2.  Find the two
positions of the beam when in limiting equilibrivm, the mass-centre
of the beam being % of its length from the 30° plane. If the beam
weigh T00 Lilogrammes, find the friction on the planes in the two cases.

(The vertical plane of the beam is supposed to intersect the
planes in their lines of greatest slope.)

Suppose the 30° plane to be on the left.

R

Q

Fre. 250

Set off PQ (Fig. 250) downwards of length 7 and draw PS and
@S parallel to the normals to the planes, 4.e. PS making 30° and @S
making 45° with the vertical. Mark the point R where PR=4"
and @QE=3". Then set off the friction angle ¢, where tan e=0-12,
on both sides of PS, and, similarly, set off ¢, on both sides of @S.

When the beam is about to slide down the 45° plane the
reaction of the plane tends to prevent the sliding and is, there-
fore, to the right of the normal ; at the same time the reaction of
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the 30° plane tends to prevent sliding up and is, therefore, to the
right of its normal. For this case then QU, and P0, (Fig. 250)
are the directions of the reaction lines.

When the beam is about to slide down the 30° plaue the
reaction lines will be parallel to PO and QO for the 30° and
the 45° planes respectively.

Now suppose the beam replaced by a light rod having 400 kilo-
grammes concentrated at its end 4 in contact with the 30°
plane, and 300 kilogrammes at the other end B. Then for
the equilibrium at 4 we have PR (=400 Ibs.), the reaction of
the 30° plane and the push of the rod.

When 4 is about to slide up, the reaction of the plane is O,P,
and hence RO, gives the push of the rod at 4 ; therefore the rod
must be parallel to 0, R.

Similarly, when A is about to slide up, PO is the reaction and
RO must give the push of the beam at 4 ; hence the heam must
now be parallel to OF.

Draw the planes X4 of 30° inclination to the left, and XB of
45° inclination to the right. At any point 4 on the former,
draw AY parallel to PO;, and 4B parallel to O,R. From B on
the plane XB draw BY parallel to Q0,. Then through Y, the
point of intersection of 4Y and BY, draw a vertical cutting 4B
in Z. See that 4Z/ZB=4%.

In a similar manner, draw the other limiting position of the
beam A4,B,, and verify the accuracy of the vector polygon
construction again.

To determine the friction in the first case, draw O, F perpendicular
to PS; then FP is the normal reaction and O,F the friction at 4.

It is evident that there are net always two positions of
limiting equilibrium, e.g. if RO is steeper than 45°, or RO, steepey
than 30°, there will only be one position ; if both happen together
there is no position of limiting equilibrium.

(81) A ladder rests against a vertical wall. The angles of friction for
the wall and ground with the ladder are 20° and 40°. Find the position of

the ladder when just on the point of slipping down, if the position of the
M.C. is § up the ladder from the ground,
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(82) A heavy heam weighing 1000 lbs. rests in limiting equilibrium with
one end on the ground and the other on a plane of inclination 30° If the
coefficient of friction=0-4 for both ends, and the heam be about to slip
when inclined at 20° to the horizontal, find the position of the M.c.

1(33) As in previous exercise, only u is 04 for the ground and 0-3 for the
plane.

(34) A heavy uniform beam A B weighing 700 Ibs. rests with its end 4
on a plane of inclination 30° and coefficlent of friction 0-3. The other end
B is on a plane of inclination 46 and coefficient of friction 0-4. If the end
B is about to slide down when the beam is horizontal, find the position of
its ».c.

(85) A uniform rod of length 7" rests inside a vertical rough hoop of
radius 5. It is found that the greatest inclination that the rod can have
to the horizontal is 30°. Find the coefficient of friction. »

(If O is the centre of the hoop and AB the rod inclined at 30° to
horizon, draw the circle circumseribing 045 ; this cuts the vertical
through 3/ (the mid-point of 4 B) in ¢'; then 4 and CB are the reaction
lines at 4 and B. Measure the tangent of the angle between each of these
lines and the corresponding radius.)

(36) In the previous exercise if the coefficient of friction at the ends are
0-3 and 02 (lower and upper ends), find the position of the m.c.

(87) The angle of friction being 20° at each end, and the rod uniform,
find the position of the rod in the loop when on the point of slipping down.

Draw A B in any position in the circle. Join 04 and OB and draw the
reaction lines at 4 and B. Join the point of intersection of these lines
with J/ the mid-point of 4B ; this last line represents the vertical
Measure the angle between it and 4B ; this gives the position of the beam.

(38) The angle of friction being 25° at each end, find the limiting position
of the rod when the mass-centre is distant 2” from the upper end of the
rod.

(39) A heavy beam weighing 1050 Ibs. rests in limiting equilibrium with
one end on the ground and the other on a plane of inclination 60°. If the
coefficient of friction is 04 for both ends, and the M.c. is £ up from the
ground, determine the position of equilibrium and the frictions at the ends.

(40) As in previous case, but the coeflicient of friction for the end in
contact with the inclined plane is 0-25.

(41) A heavy uniform beam weighing 570 lbs. rests with one end 4 on
a plane of inclination 30° and the coefficient of friction 0-2. The other end
B'is on a plane of inclination 50° and the coefficient of friction is 0-4. If
the end B is about to slip down, find the position of the beam and the
friction on the two planes.

o Find if another position of limiting equilibrium is possible.

ExAMPLE. Fig. 251 represents part of an ordinary bicycle screw-
spanner. By meuns of the screw thread S amd the rack BO,, an
upwurd force a is given to the movable piece. If a short rod DE is
placed between the jows, required to find the force 3 which is exerted on
the rod when the magnitude of o 4s 3 lbs. weight, and the coefficient of
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Jriction between the movable and fized parts is 0+ The distunce
between the azes of o and f3 is 1", between A and G 15", between B
and G 06"

The effect of - 3 downwards on the movable piece, is to press
the latter against the fixed part at 4 and B, and since the lower
jaw is tending to move upwards the friction acts downwards, and
hence the total reactions at ./ and B slope as in Fig. 251.

Draw the axes of the four forces, o, 8 and the two reactions,
the distances being taken double the actual ones. Find the points

%

Fro. 252.

Fie. 251

of intersection O and O, of 8 and the reaction at B, and « and the
reaction at 4. For equilibrium, the resultant of « and the reaction
at 4 must balance B8 and the reaction at B, hence this resultant
must have the direction 00,.
Draw « vertically upwards of length 3”, and through its end
points draw o and o, parallel to 40, and 0O, respectively. This
T.6. s



274 GRAPHICS.

gives o the reaction at 4. From the ends of o, draw o and —f3
parallel to OB and P respectively. Then a+o~[8+0;=0 and
/3 is the force of the moving piece on the rod.

Another, and perhaps. slightly simpler, way of solving the
problem is as follows. Find the point F of intersection of the
reactions at 4 and B. Resolve a acting along B0, into two
parallel forces along ED and the parallel through . The former
component is the reaction of the movable piece on the rod.

Compare the results obtained by the two methods.

ExXAMPLE.  Flig. 253 represents the load stage and part of the
rack of a screw jack for raising loads eccentrically. AB is the pitch

line of the rack along which the lifting force A
a acts, the lond 3 is carried by C. D and - A
E are parts of the casing against which the D] P

vack presses when o load s being raised.
AD=05", DE=5" and the distance of
the loud line from AB is 35". When the
load is 2'6 cuts., find the smallest magni-
tude of a necessary to raise the load if the
coefficient of friction between the rack and
casing is 0°3.

Draw the axes of the forces a and 8
and the reaction lines of D and E.
Find the point F of intersection of the
two latter, and resolve 8 through (' into
two parallel forces, one through the
point F and the other along 4B. The
component along 4B is a. Fie. 258.

(42) Find a also by the method first given for the previous example and
compare the results.

(43) Find the least value of a necessary to prevent the load descending.

Exampre. ABCD (Fig. 254) represents o horizontal drawer. It
is attempted to pull the drawer out of its case by a mon-central handle
P.  Neglecting the friction at the bottom of the drawer, how far may
the drawer be pulled out before jomming, if p=06?

B S it T

B
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Suppose the drawer is pulled out a distance .7.4; ; then, owing
to the pull being non-central, the drawer is pressed at ¢ aguinsi
the right slide, and at ., to the left. The reaction at (' makes
angle ¢ with CD (tan e=06: actually e for motion is a little less
than e for rest) ; the axis of the pull meets this reaction line at
0. At A4, the reaction is along .k, making e with 4 5.
Neglecting the weight of the drawer there are three forces, and
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three only, acting on it, viz. the pull and the two reactions.
For equilibrium these must pass through at point.

Now O is fixed relatively to the drawer, hence 4, moves until
A,K passes through O, ie. the drawer can be pulled out a
distance A.A4,, where 0.4, makes an angle ¢ with CD.

Hence to find point A,: Divide CL into 10 equal parts, set
off LO=6 of these. Mark N on CD, where LN=LC; join ON,
cutting 4D at A,; then the drawer can be pulled out a distance
AA,.
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(44) Find the farthest distance that the handle may be from the centre
line in order that the drawer may be pulled out to within a quarter of its
length, n=06.

(45) The handle being midway between the centre line and a side, find
w if the drawer jams when pulled out half its length.

Examrre. ABC (Fig. 255) represents o wedge, DE a uniform
iron rod of weight 7+ lbs., hinged at D and resting on the wedge at E.
The cogfficient of friction between the rod and wedge is 0°3, and, between
the wedge und ground it is 0-4.  The wedge s pushed by a horizontal
Sorce o so that it is just on the point of motion ; determine o if the
weight of the wedge may be meglected ; given

DE=46 ft., DB=19 ft, AC=32ft, BC=4 ft.

D B C
Fie. 255.

The line of the reaction at Z is known, also the weight of the
rod acts through its mid-point, and since the rod is in equilibrium
the direction of the reaction at D is known; hence find the
forces by the vector polygon. The force at E on the wedge is
now known, the axis of  is known, and also the angle the
reaction of the plane makes with the vertical ; hence draw the
vector polygon for the wedge, and determine o from it.

(46) The weight of the wedge being 3 1bs., acting through the ».c. of the
triangle 4 BC, determine a.

(47) Determine a when AC'=B(C=1 ft. ; uis the same for both surfaces,
and the weight of the wedge is 4 lbs,
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In the problems on friction so far discussed it has been
supposed that the body considered remains in equilibrinm until
the total reaction of the surface makes the angle of friction with
the normal. This is not always possible, as the body may hegin
to turn ahout some point or edge hefore sliding commences.

ExAMPLE. A cube of 2" side rvests on a rough hovizontul pline,
for which p=0°6; it is acted on by a horizontul jorce perpendivular o
o face and passing through the mid-point of the top face.  Shew that,
however large this force, the cube will not slide, but that equililrium
will be broken by the cube turning about an edge.
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F16. 256.

Draw a square of 2” side to represent the central section of
the cube containing the axis of the horizontal force.

While the cube is in equilibrium the three forces—horizontal
push, weight, and reaction of the plane—pass through a point.
This point 0, Fig. 256, is determined by the intersection of the
horizontal axis and the vertical through the M.C. of the cube.
If about to slide, the reaction of the surface makes an angle with
the vertical whose tangent is 06 ; draw this line 0., through
O; it cuts the plane outside the base of the cube. But
the plane reaction must act within the base, and hence it is
impossible for the cube to be on the point of sliding.

As the push o increases from zero, the total reaction of the
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surface makes a larger and larger angle with the normal until
it comes to the position 0. Evidently when the reaction is
at 4, AU must barely touch the ground except at 4, and the
cube must be on the point of rotating about the edge through A.

Draw the vector polygon of the forces when O4 is the line
of reaction of the ground, and determine the greatest value of «
consistent with equilibrium.

ExAMPLE 2. A cable reel has an outside diameter of 4 ft.; the
radius, from which the cable s uncoiled, is at a certwin moment 1:36
ft.  The veel is placed on the ground (coefficient of friction=028) ;
find the point at which the cable must be taken off, and the direction
of the cable at that point, so that the reel may be just on the point of
slipping, and find the force necessary to effect this if the reel and
cable weigh 032 3
tons.

Draw (Fig. 257)
to scale circles
representing  the
reel AB which
rests on the
ground, and the
layer from which
the cable is being
uncoiled.  Then,
since hoth the
weight and the
reaction of the
ground must act
through 4, so
must the pull of A
the cable. Draw
AB; a tangent to
inner circle, which gives the direction in which the cable is taken
off, and the point B, (there are two such points) at which the
cable leaves. The vector polygon must now be drawn, the three

a
Fre. 257.
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sides being parallel to «, B and y respectively ; € is the angle of
friction.

Measure the pull of the cable and the reaction of the ground.

Since for equilibrium the three forces must pass through 4 if
the cable be taken off at any other point thau B, the reel will roll.

Try an experiment, illustrating this, with a reel of cotton.

ExampLE.  The ground slopes at an angle of 30 and the reel
is just on the point of sliding down, find the point i which the
cable leaves the reel and
the direction and magni-
tude of the pull on it.

Draw (Fig. 258) the
plane and reel in posi-
tion as shewn, also
the vertical through
the centre G of the
reel. Since the reel is
by supposition about
to slide down the fric-
tion must act upwards;
draw then, at 4, a line
making the angle of
friction with the nor-
mal. This line cuts
the vertical through ¢
at a point O; from 0
draw tangents to the
inner circle touching
it at points B and B, ;
these points of contact
are the points at which
the cable may leave the reel, and the tangents themselves are the
directions of the cables.

Now draw the vector polygons for the two cases and determine
the senses of the pulls and their magnitudes.

F1gc. 258.
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(48) One end of the cotton on a large reel is fixed to a vertical rough
wall ; if the reel rests in equilibrium against the wall and is just on the
point of slipping down, find the point at which the cotton must leave
the reel; given p=06, the outer radius of reel=1", the inner radius at
which the cotton unrolls =0-45".

If the reel weigh 7 ozs. find the tension in the cotton.

(49) One end of the cotton is fastened to a rough plane, ©=0-3, of
inclination 45°. Find the inclination of the cotton if the reel is about to
slide down the plane.

(50) Why is it not possible to cause the reel to be about to slide up the
plane by pulling at the cotton.

(51) Stand a thick book upright on a table and push it, perpendicular
to the cover, with a pencil, first near the table and gradually increasing
the distance until the book topples over. Measure the thickness of the
book and the height of the push and calculate p.

(52) Draw a rectangle of height 4" and base 2" to represent the right
section of a cuboid through its centre, at points distant }, %, %, ... inches
from the base ; suppose horizontal forces applied in turn until equilibrium
is broken. Mark the corresponding points on the base where the total
reaction of the surface cuts it, the coefficient of friction being 0-3. Find
the highest point at which the force may be applied.

(53) Draw a square of side 3” to represent the section of a cube through
its centre, and a line through a top corner inclined at an angle of 30° with
the horizontal, to represent the line of action of a pull on the cube. The
coefficient of friction being 0-4, find the greatest possible pull, if the
equilibrium remains unbroken. Draw the axis of the total reaction of
the surface. Weight=107 Ibs.

(54) In the last example, if the pull be exerted at an angle below the
horizontal, find the greatest angle for which sliding is possible and the
greatest pull possible if the cube does not move.

(55) ABC (Fig. 259) is the right central section of a triangular prism,
AB(C being a right angle. BC rests on rough horizontal ground. A rope
is fastened to 4 and pulled horizontally as indicated parallel to BC. If
AB=41, B0=35', and ©=0-3, determine if sliding is possible. If so,
find the least value of a that will cause sliding.

(56) If a be reversed in sense and w=0'4 will sliding be possible?
Give reasons. What value of o will cause the equilibrium to be broken
in this case, and what value of u would cause it to be broken by sliding
with this value of a?

(57) BC (Fig. 260) is part of an inclined plane of inclination 20°. 4 BCD
is a cube kept in position by a string parallel to BC and fastened to .D.
What is the greatest value of u consistent with equilibrium? If u has
this value find the greatest value of the pull in the string consistent with
equilibrium if the cube weighs 11 1bs.

(58) As in last example, but let string slope upward at an angle of 45°
with horizontal.
(59) In Fig. 260 make AB=2BC. If n=0'3, find the direction of the

string attached to D so that the prism may be on the point of turning
about the edge at C.
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A @

Fia. 250.

Fre. 260.

MISCELLANEOUS EXAMPLES. VIL

1. An experiment was performed in which a loaded slider was, hy a
suitable horizontal force P, caused to he just on the point of motion.
Plot the values of P and the weight of the slider 1" given in the table on
scti\%a,red paper, and determine approximately the value of the coefficient
of frietion.

Pinlbs. wt. -| 045 | 065|084 | 111 | 18 | 14 1-7‘

Winlbs. wt. - |23 |33 |43 53 | 63 | 73| 83 I
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Direction of Motion
2. In Fig. 261 the circles represent -~
the coupled griving wheels of a railway
engine. If the engine is starting, show
roughly the direction of the pressure
between the wheels and the rail. Give
a reason for your answer.

(Naval Cadets.)

Fic. 261

3. A particle whose weight is 10 1bs. is placed on a rough plane inclined
at an angle of 30° to the horizon; it is acted on by a force up the plane
equal to the weight of 6 lbs., acting along the plane ; the particle does not
move ; find the friction between the particle and the plane.

If the particle is just on the point of sliding, find the coefficient of
friction. (B. of E., IL)

4, A uniform rod rests with one end against a smooth vertical wall,
and the other end on a rough horizontal plane; it can just stand without
sliding when its inclination to the horizon is 45°; find the coefficient of
friction ; also find the inclination when the friction called into play is one-
half of the limiting friction. (B. of E., I1.)

5, If the angle of friction for an inclined plane be 45°, determine
completely the least force that will drag a weight of 100 lbs. down a plane
inclined at 30° to the horizontal. (B. of E., IL, 1906.)

6. Find graphically the magnitude of the least horizontal force which
will support a weight W on a rough plane whose inclination a < tan=! .
(B.Se., 1904.)

7. Define the coefficient and the angle of friction. A body weighing
500 Ibs. is sustained on a rough inclined plane (base twice the height) by a
rope pulled in a horizontal direction. Prove that the greatest and least
tensions of this rope consistent with equilibrium are about 389 and 134
1bs. wt. (Inter. Sci., 1904.)

8. Find, graphically by preference, the direction in which a force of
given magnitude must act if it is just able to move a body of given weight
up a rough inclined plane, the coefficient of friction being known.

Shew that when motion is possible there are in general two such
directions. (Inter. Sei., 1900.)

9. A beam rests against a smooth vertical wall and a rough inclined
plane of inclination a passing through the foot of the wall. Determine the
greatest angle the beam can make with the vertical.

(Inter. B.Sc. (Eng.), 1905.)

10. Define friction and limiting friction. Explain briefly what is
meant when friction is said to be a passive force.

4 B is a uniform rod of weight 10 Ibs. ; it lies on a rough horizontal table,
and is pulled at the end B in the direction of its length by a force of 2 lbs.
If 4 B stays at rest, how much friction is called into play ?

Everything being as it was, a thread is tied to the end B and is pulled
vertically upwards by a gradually increasing force P; find the least
coefficient of friction for which P will begin to lift the point B. How will
the rod begin to move if the coefficient of friction equals 0252 (B. of E., IL.)
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. 11. A body is placed on an inclined plane and the coefficient of frietion
is &5 it is acted on by a force along a line of greatest slope; find the force
when it is on the point of making the body slide up the plane.
(B. of E., IL., 1903.)
12. A ladder 4 B rests on the ground at 4 and against a vertical wall at
B. If 4B is inclined to the vertical at an angle less than the angle of
friction between ladder and ground, shew geometrically that no load, how-
ever great, suspended from any point in the ladder will cause it to slip.
(B.Se., 1905.)
13. A weight rests on a rough inclined plane, whose inclination (a)
exceeds the angle (\) of friction, being prevented from sliding by a force P.
Find (geometrically or otherwise) the direction and magnitude of the
least force which will suffice for this purpose. (Inter. Sci., 1906.)
14. A uniform circular hoop is weighted at a point of the circumference
with a mass equal to its own. Prove that the hoop can hang from a rough
peg with any point of its circumference in contact with the peg, provided
the angle of friction exceeds 30°.
(Relative to the point of support the m.c. of the hoop and particle lies
on a circle of radius half that of the hoop.) (Inter. Seci., 1905.)

15. Draw a horizontal line 4BC, AB=1" and BC=3". Let ABC
denote a uniform beam of weight w resting on a rough prop at B, and
underneath a rough prop at A. Find the direction and magnitude of the
least force applied at the end C which will just begin to draw out the heam
from between the props. (B. of E., II., 1906.)

(Draw the reaction lines at the points 4 and B to intersect in D,
resolve the weight of the beam acting at its M.c. into two, one passing
through D and the other through C, the latter component to the
least possible.)

16. Prove that a sash window of height @, counter-balanced by weights,
cannot be raised or lowered by a vertical force, unless it is applied within
a middle distance a cot ¢ (¢ the angle of friction).

If the cord of a counter-balance breaks, the window will fall unless the
width is greater than a cot ¢. (B.Se., 1902.)

17. A square window sash weighing 30 lbs. slides vertically in grooves.
From the two upper corners sash cords are carried over pulleys and carry
two counterpoises each of 15 lbs. Shew in a diagram the forces acting
on the sash when one of the sash cords breaks, and find the least coefficient
of friction between sash and grooves that will keep the sash from sliding
down, if all other friction may be neglected. (C.8., Div. L., 1905.)

18. If a body having a flat base is placed on a rough inclined plane of
inclination 7 and angle of friction A, and the body is pulled by a horizontal
force P, prove that for equilibrium P must lie between the values
Wtan (i+X) and Wtan(i—\) where A=weight of the body. If A >4,
explain the second case. (Inter. Sci., 1906.)

19. Define the coefficient of friction and the angle of friction for two
rough bodies. A mass of 500 Ibs. on a rough inclined plane for which the
coefficient of friction is 1 and whose inclination is tan~!} is sustained by a
rope which is pulled in a horizontal direction ; prove that the greatest and
least tensions of this rope are about 389 and 136-4 lbs, wt. respectively.

(Inter. Sci., 1904.)



CHAPTER VIIL
MOMENTS.

To obtain a real grasp of the theory of moments the experiments
described in Appendix I. should be performed. It is only by
actually performing such experiments that the physical meaning
of turning moment or torque hecomes realised.

DEFINITION. The moment of a force about a point is the
product of the force and the perpendicular distance of its axis
from the point. It is positive if the direction and sense of the
force relative to the point is contraclockwise, negative if clock-
wise.

Geometrical Representation. From the point draw any
line to the axis, then the area of the parallelogram which has
this line and the vector of the force as adjacent sides, measures
the moment. If the sense of the bhoundary, as given by the
vector, is contraclockwise, the moment is positive.

Thus, if 0 (Fig. 262) is the point, ¢ the axis, and a the vector
of the force, the positive area 04 BC measures the moment.

‘Whatever the direction of 04, the area and the sense of the
boundary remain the same.

For a given force, the moment in general changes when the
point is changed in position. In Fig. 262 the farther O is to
the left of « the greater the positive moment. When Ois on a
the moment vanishes, and on O crossing to the right of 4.B, the
moment is negative. If, however, O moves on a line parallel to a,
the moment remains unaltered.
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It is important to notice that when the moment of a force is
zero about a point 0, we may have either 04 or 4B zero, i.e.,
the force itself may be zero, or it may pass through the point 0;

to decide which alternative is correct further information is
necessary.

Fic. 262.

Taking account of sense, O4BC or an area equivalent to
it is called the momental area of the force a in a about the
point O.

Unit Moment. There is no special name in general use for
the unit moment. If we use a lb. wt. as the unit of force and a
ft. as the unit of length, then the unit moment may be called
one 1b. ft. moment. This of course might mean a force of 1 1b. wt.
at a ft. distance, or 2 Ibs. wt. at 6” distance, etec.; later we shall
see that these are really equivalent. Whatever the units of force
and length used, it is necessary to specify them in giving a
number as the measure of a moment.

Graphical Measurement of a Moment.

ExampLr. ab (Fig. 263) is the aris, AB the vector of a force.
Required the measure of the moment of the force about a point O

(distant p from ab). AB=2-65", scale 1 em. to 1 Ib. wt, and
p=436"
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Take a pole P of the vector polygon at a distance A (2”) from
AB. Through O draw a line 4B, parallel to ab, and through
any point @ in ab draw @A, parallel to P4, and @B, parallel
to PB, cutting 4,B; in 4, and B,.

Measure 4,B, on the } cm. scale; it is the moment of the
force AB about O in Ibs. inches.

Ibs. inches (moments)
2.9 7 ¢4 § § el
1

o r 2z 3 4 5 6 7 8 9 10
Ibs. wt

F1c. 263.

Proof. PAB and QA,B, are similar triangles, and therefore
Pt |
AB, 4B’
" 4364B=24,B,.
From the ratios it is seen that p and % being in inches, 4,B,
must be measured on half the 4B scale.
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(This is really our old argument of p. 46; the moment is represented by
a rectangle p. 4B, or by an equal rectangle 4,B;%h. If the hase k is the
unit of length then the altitude 4, B, measures the area ; if 2 be twice the
unit of length, the altitude is only 4 what it was before, and to obtain
the old altitude we must multiply by 2, or use a scale with } the old unit.)

Sense of a Moment. If the vector polygon and moment
diagram be drawn according to rule, an inspection of the latter
will shew whether the moment is positive or negative.

The radial lines of the vector polygon are always supposed
drawn in the order of the vectors, and the link polygon lines in
the same order.

Hence the order in which the points 4, B;, ... are drawn gives
the sense of the intercept—downwards in the case considered.

The force being in ab and downwards, the moment about 0 is
negative ; hence the rule: if the intercept has a downwurd sense the
moment s negative, if upwards, o positive sense.

(1) Verify this rule by taking O on the other side of ab.
(2) Verify again by taking P on the other side of 4B.

(3) A force is given by a length 3-48 inches (scale 10 lbs. to 125 em.),
find graphically its moments about points distant 672 ft. from it on
opposite sides of the force axis.

(4) Find the moments in Ex. 3 by drawing through O lines parallel to
P4 and PB and measuring the intercept on ab.

Another Graphical Construction. With O as centre—on
your drawing for Fig. 263—describe a circle of 1” radius. From
any point @ on ab draw QO and a tangent QT to this circle.
Find the components of AB in ab along @0 and @7. Measure
the latter component on the cm. scale; it is the moment of AB
about O in Ibs. ft. units.

Proof. The sum of the moments of the components of a force
is equal to the moment of the force itself (see p. 296). As one
component passes through O and the other is at unit distance
from it, the second component must measure the moment.

Sum of Moments of Like Parallel Forces.
ExXAMPLE. Draw four parallel lines distant apart 1-22, 238 and
194 inches, and let downward forces represented by lines of 3, 4, 25
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and 3°7 ems. (scale 1" fo 10 1bs. weight) act in these. Tuke a point O
143 inches to the left of the first awis. Find the sum of the moments
of these forces about O.

Add the vectors of the forces, and choose a pole P distant
3 inches from the vectors (Fig. 264).

‘Draw the link polygon R E,R,E,E in the usual way and

produce the links to cut the line through O parallel to «b in
XL, X, ol X
Measure XX in inches and multiply by 30 ; the product is the
sum of the moments in lbs. inches.
Proof. Let 2y, #,, 2, and «, be the distances of 0 from @b, be,
ed, de. Since the A PAB is similar to B X, X,,
o AB_X\Xy e AB.z=hX.X,.

h x
Again, PBC, PCD, PDE are similar to R,X,X,;, RE,X.X,,
R, X, X, respectively;
o BC.wy=0h. X,X,,
CD.ig=h.X,X,,
DE .a,=h.XX,.
Adding, we get
Sum of the moments of the forces about O
=h(X X, + X, X, + X X, + X, X,)
=hX,X;.

And since X, X, is downwards, the sum is negative and the
moment clockwise.

Obviously, for more than four forces we only need to extend
the construction ; the method will be exactly the same.

The sum of the moments is thus represented by a rectangle of
height X; X; and base h. The moment of 1 Ib. inch is represented
by a rectangle of height 0-1” and base 1”; hence, since /= 3",
to reduce k.X;X; to unit base we must treble the altitude,
i.e. 3. XX, measured on the tenth inch scale gives the sum of
the moments in Ih. inches,
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The moment of the resultunt force AR acting through R ds equal to
the sum of the moments of the components.
If is the perpendicular distance from O on the axis of 4E,

then 5 _AE o 4B a=h XX,
z h °
x1 d eA
)(2 Ra \
B
X, \

60 90 120 150 180
Ibs. inches (moments)

Fic. 264.

Xs

If the point about which moments are to be taken is at 0y, in
the space ¢, then the moment of AB is %.8,S, and is positive; the
moment of BC is %.8,S, and is positive ; the moment of CD is
h.S,S, and is negative; and the moment of DE is %.S,S; and
is negative : the algebraic sum of the moments is thus 4 .S,S; or
the intercept between the first and last lines of the link polygon
multiplied by A.

For all positions of O then, the intercept, between the first and
last lines of the link polygon multiplied by %, measures the sum
of the moments.

A simple inspection of the figures shews that this sum must
always be equal to the moment of the resultant.

T.C. T
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Fig. 264 has heen drawn for parallel forces having the same
sense ; the conclusion applies to all parallel forces which have
a resultant.

The sum of the moments of a number of parallel coplanar
forces about any point in their plane is equal to the moment
of the resultant about that point. The algebraic sum of the
moments is given by the intercept, between the first and last
lines of the link polygon, on a line drawn through the point
parallel to the forces.

Notice that, the sum of the moments about any point in the
resultant s zero.

(5) Find the sum of the moments about points in the spaces a, d and e.

Sum of Moments of Unlike Parallel Forces.

ExaMPLE.  Drww siz parallel lines ab, be, cd, de, ef (from left to
right), the spaces b, ¢, d, e and f being 0-82, 1-2, 1-46, 1-79 and
1-13 idnches wide ; forces of 46 (down), 15 (up), 545 (down),
2:8 (down), b (up) and 32 (down) Ibs. weight act in these Iines.
Find the sum of the moments about o point distant 1-18 inches to
the left of ab.

Take a pole P (Fig. 265) at 2 inches distance from the sum AE
of the vectors, and proceed exactly as hefore, the only difference
being that the link polygon is now re-entrant. Measure XX,
on the force scale and double the number obtained ; the result
is the sum of the moments in lbs. inches.

(6) Parallel forces of 3-3, 41, 2:3, 15 and 2'8 tons weight act on lines
distant 7, 8, 4 and 6 ft. apart from left to right, the first and last forces

being downwards and the rest upwards; find the sum of the moment
in ton ft. units about the points,

(i) distant 3 ft. to right of axis on extreme right,
(ii) distant 45 ft. from first and 2'5 from second axis,
(iii) distant 1'8 ft. from third and 2-2 ft. from fourth axis.

(7) Find separately in cases (ii) and (iii) the sum of the moments of all
the forces on the left and on the right of the point.
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(8) The distances apart of the centres of the wheels of an express engine
and tender are 987, 5 37, /0%, 11' 25", 6’ 6" and ' 6" from the leacling
wheels backwards. The loads carried by these wheels are 14 tons 10 ewts.,
17 tons 8 ewts., 14 tons, 14 tons 10 cwts., 12 tons 5 cwts., 12 tons 10 ewts,
and 13 tons 5 cwis. The engine is partly on a bridge, one bridge support
being mid-way between the centres of the fourth and fifth wheels. Find
the sum of the moments of the loads about the support.

R
a b c a e g A
! //R5
>(1 //E/ C
Xe ! \
X, H B\\
X, : R, T xp
R,%Rz ! F—
; Rs D/
/ : )
E
Xa
Ibs. wt.
L2, r.2.7.4.8.6.7.8. 9%
X, 2 0 2 4 6 8 10
Ibs. inches (moments)
Xy

Fie. 265.

Sum of the Moments of Parallel Forces in Equilibrium.
The sum of the moments of such a set of forces is zero for all
points in their plane, and the sum of the moments of all the
forces on one side of a point is equal in magnitude—but opposite
in sense—to the sum of the moments of all the forces on the
other side.

Any one force of the given set reversed in sense is the resultant
of the rest. Its moment, for all points, is minus the moment of
the resultant and this is equal to the sum of the moments of the
rest. Hence the sum of the moments of the given set of forces is
zero. A proof from the link polygon is given on p. 292.
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ExAmMPLE. 4 locomotive has the centres of the wheels from front
to rear at the folloeing distances apart, 8 9", 5" 5", 5" 5", 6'0".  The
loads horne by these wheels are 6 tons 8 cwts., 14 tons 6 cwts., 14 fons
8 cuts., 16 fons 7 cwts., 16 tons T cwis.; the engine s on a freely
supported bridge of length 40 ft., and the leading wheel is at a distance
of 9" from the left-hand pier. Find the sum of the moments of all the
Sorces to the left of a point mid-wey between the third and fourth
wheels alout that point.

Draw the reaction and load lines of the bridge to scale (say,
1 em. to 1 ft.) ; then set out the load vectors AB, BC, CD, DE and
EF to a scale of (say) 1 inch to 10 tons (Fig. 266). Take a pole
P at a distance of 20 cms. from 4F, and draw the link polygon
XRR,B,E,RY ; X and ¥ being the points on the reaction lines.

Since there is equilibrium, XY must he the closing line, and
the reactions are determined by drawing PO in the vector
polygon parallel to X'F.

Through Z, the mid-point of the space d, draw a line parallel to
the axes and cutting XV in M and R,R, in NV.

Measure IV on the force scale and multiply by 20; the pro-
duct is the sum of the moments, about Z, of all the forces to the
right or left (taking account of sense) of Z.

Proof. To find the sum of the moments of all the forces to
the left of Z, we find the intercept between the first and last
line of the link polygon. The first force (the reaction) has OA
as its vector, and therefore the first line of the link polygon
(drawn according to rule) is XY, the second is X,R,, the third
B\ R,, the fourth is ByR; and the final (taking into account only
forces to the left of Z) is R,R,. Hence MN gives the sum of the
moments of all forces to the left of Z, its sense is downwards and
the moment therefore negative.

The unit moment of a ton ft. is represented by a rectangle of
height 0-1 inch and base 1 em., the sum of the moments is given,
from the construction made, by a rectangle of height MN and
base 20 cms. If we measure MN, therefore, on the force scale and
multiply by 20, we have the sum of the moments in tons ft.
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(20 cm. was taken as & instead of 10 to avoid the lines of the
link polygon being too steep.)

For the sum of the moments about Z of all the forces on the
right we have I,I2; as the first link, and since FO is the last
force, X1 is the last link, and the intercept is now NAM. The
sum of the moments is, therefore, of the same magnitude, hut of
the opposite sense.

The total sum of the moments is therefore zero.

Evidently, the deduction is true for all paralldl forces in equilibriuin.

Zl
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Fr1c. 266.

(9) The distances apart of the centres of the wheels of an express engine
and tender are (from the leading wheel backwards) 12’ 07, 10" 0", 8’ 7-25",
6’9" and 6’ 9. The loads borne by these wheels are * 21 tons 15 cwts.,

*This load of 21 tons 15 ewts. is really that borne by the two pairs of bogie
wheels ; they are taken as one load to make the example simpler. The first
distance, namely 12’ 07, is from the centre of the bogie truck to the front driving
wheel.
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19 tons, 19 tons, 12 tons, 12 tons 5 cwts., 12 tons 15 cwts. The engine
stands on a bridge, the left-hand support being 117 6” from the leading
wheel (centre), and the bridge is 75 ft. long. Find the sum of the moments
of all the forces to the left of the centre of the bridge about the centre.

Two Parallel Forces. (i) Of swme sense. This is only a
special case of the general construction, but it is worthy of
separate consideration.

Draw (Fig. 267) any two al|s ble
parallel lines «b and be, and
vectors AB, BC of the forces R, R, R
supposed to act in those lines. Y7 *B
Construct the axis of the R
resultant in the usual way
and mark 2, B,, It and R,
where the axes of the forces
cut the links. PR,Rx7% then
gives the moment of the force P Ec,-
in fe about any point in axis S
of resultant, and ZE; x & gives the moment of the force in ab.

From the triangles R,B,R and R,ER,, which are similar to
triangles in the vector diagram, we obtain
{'),Lli*=_b_)l? and &&:B;P,

R B BB BC

R, BC

R.R, AP
or, the resultant divides the distance between the axes inversely
as the magnitudes of the forces.

Notice that R R, is any line ; if, then, the axes turn round any
points R, and £, and remain parallel, the axis of the resultant
turns round a fixed point in B R,, viz. .

(i) Of opposite semses. Construct as in the previous case;
now BC is upwards and the axis of the resultant is external
to the other axis and nearer the greater force.

See from the similar triangles that the axis of the resultant
divides externally the distance between the other axes inversely
as the magnitude of the forces.

and therefore
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(i1) Eyual in magnitude but opposite in sewse.  This is the
case already considered in the chapter on the link polygon (p. 184).

- g]()) The axes uf’ a_couple are 3-76"” apart, each force is of magnitude
-, 3 r0]¢ V! ) 3 3 e £ . R
721 1bs. weight.  Take the pole at unit distance from the vector lne and

find a line giving the momental arca of the couple in b, inches.

(11) With the same forces as in Ex. 10 find a line uviving the momental
(2) If a kilogramme=2-204 Ibs. find the momental area of the couple in
Ex. 10 in kil-centimetre and kil-inch units.
moments of «a couple of forces is the sume for all points in the plane
and is equal to the momental area of the couple.

(Fig. 268) any point, the moment B c E
of o about 0 is given hy 0./ BE(),
-a
OECDO. The algebraic sum of
these is 4 BCD, which is the mo Py 5) 0
result is quite independent of O.

The moment and the couple are two distinct things. The
couple measures the sum of the moments of the pair of forces
about every point in the plane.
parallelogram 04 CB (Fig. 269) and let .
0.4 and OB represent concurrent forces,

Take points P, P, and P, as indicated, x
and measure the perpendiculars from R
algebraic sum of the moments of 04 R

L7
and OB about P, P, and P,, and com- Fc. 260

(13) Draw any three non-concurrent lines and take an arbitrary vector
polygon for the forces in them. Find the axis of the resultant hy the

area of the couple in Ib. centimetres,
Moments of a Couple.—Direct Proof. The suui of the
a and - a being the forces and 0
that of —a about O is given hy 3
mental area of the couple, and this F1e. 268,
couple is simply the pair of forces, the momental area of the
Sum of Moments for Concurrent Forces. Draw any
then OC represents their resultant. P
them on 04, OB and OC. Find the o A
pare with the moments of the resultant OC about those points.
link polygon. Measure the forces and resultant to any scale. Mark some
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point on the paper and measure the perpendiculars from the point on the
four forces and caleulate the moments. What is the connection between

these moments ?

The algebraic sum of the moments of two concurrent forces
is equal to the moment of the resultant about all points in
their plane.

Proof. Let a, b and ¢ (Fig. 270) be the axes of the two forces
and their resultant, the senses being as indicated. 2 is any point
in their plane.

Through P draw a
line parallel to ¢, cutting
@ and b in A4 and B.

Then AB may he
taken to represent the
resultant in magnitude,
direction and sense, and
AOB is the vector poly-
gon for the forces.

Then the moment of
AO about P is twice
AOP and is positive, the moment of OB about P is twice OBFP
and is negative ; therefore their algebraic sum=twice 0B and
is positive.

(Notice that the sum is the same for all points in 4B or 4B
produced, and that, whatever the position of P, it is always twice
the area of 40B and in the sense of the letters.)

Draw B0, parallel to 40; then twice 40B=A400,B and
therefore measures the moment of AB in ¢ about 4, B or any
point P in AB.

It will be seen that the proof is perfectly general for all
positions of P.

Fie 270.

For any system of coplanar forces the sum of the moments
of the components is, for all poles, equal to the moment of
the resultant (if there is one), or to the momental area of
the resultant couple (if there is one) or is zero.
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Proof.  This result follows at once from the link polygon
construction, which consists in finding the resultant of concwrrent
forces two at a time, and since the theory of moments holds
at each new composition it must hold at the final step when the
rvesultant or resultant couple is found.

As a particulur case consider the decomposition on p. 203.
Taking moments about X, we have mowment of AB=moment
of AD, and hence AD is uniquely determined.

Sum of the Moments of any Number of Forces about
a Point. If the forces have a resultant, take the pole of the
vector polygon at wnit distance (or a simple multiple thereof)
from the resultant vector. Mecasure, on the force scale, the
intercept between the first and last lines of the link polygon
on a line drawn through the given point parallel to the resultant
vector.

If the forces are equivalent to a couple (the vector polygon
closed) take a ferce of unit magnitude (or a simple multiple
thereof) as the arbitrary force vector and measure, on the
distance scale, the perpendicular between the first and last lines
of the link polygon.

(14) The magnitudes of five forces are given by 37, 48, 6°1. 28 and
53 ems., the scale being 17 inches to 10 Ihs. weight.  The coordinates of
points on their axes are (0, 0), (1, 2), (3, 2), (1, 4), (2, 3) inches respectively,
and the forces ave directed towards N. (the y axis), N.E., 15° N. of K.,
S.W.and W, Find the sum of their moments in lbs. inches about a point
whose coordinates are (1'5, 2°7), the coordinates being all measured in
inches.

(15) Choose the magnitudes of the first and last forces in Ex. 14, so

that the vector polygon is closed. Find the momental area of the
equivalent couple.

(16) Find the sum of the moments of three forces of magnitudes 3, 7-2
and 5 lbs. weight acting along 4B, BC, C4 the sides of a triangle about
a point whose coordinates are (4. 2) inches. The coordinates of the vertices
4, Band C of the triangle are (2, 2), (1, 3), (3, 4) inches.

(17) Draw a triangle ABC of sides AB=3, B('=35 and CA =4 inches:
through the vertices draw three parallel lines, and suppose forces of
magnitudes 62, 74 and 9 1bs. to act in these lines through 4, B and ¢
and to have the same sense. Construct the line of action of the resultant
in the usnal way. Draw three more parallel lines through 4, B, C, making
45° with the first set, and suppose forces of the same magnitude as before
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to act in them; construct the new axis of the resultani. Repeat the
construction for parallel lines which ave perpendicular to the first set.

See that the three axes of the resultants are concurrent. This point of
concurrence is called the centre of the parallel forces.

(18) The coordinates of four points are (1, 2), (0, 3), (4, 0) and (2°5, 3°6).
Parallel forces of like sense act through these points and are of magnitudes
22, 3-5, 18, 3 1bs. weight. Construct, as in previous example, three link
polygons, the sides making 45° with each other respectively, and shew that
the three axes of the respective resultant forces arc concurrent.

(19) Three parallel forces equal in magnitude and of same sense act

through the vertices of a triangle. Shew by three constructions that the
resultant passes through the arc. of the triangle.

Centre of Parallel Forces.

A number of parallel forces pass through points 4, B, C, ...
respectively. If the axes turn about these points so as all
to remaijn parallel, then the axis of the resultant turns about
a fixed point in itself, the centre of the parallel forces.

Suppose masses to be at A4, B, C, ..., whose magnitudes have
the same numerical values as the forces acting through the
points. The mass-centre of these mass-points must lie on the
axis of the resultant force, for the sum of the moments of
the forces and of the masses have exactly the same numerical
value. Supposing, then, the axes of the forces to have a different
direction, the M.C. of the mass-points must be at the intersection
of the axes of the resultants. But the masses can have only one
M.C., and, therefore, whatever direction the parallel forces may
have, the resultant must always pass through a fixed point, viz.
the mass-centre of the masses.

Since the mass-centre theorem remains true if some of the
points be considered as having negative masses, the above theorem
remains true if some of the forces have a different sense from
the rest.

(20) Pﬂ.r.a,llel forces of like sense and of magnitudes 127, 2-18, 324,
4°1 Ibs. weight act through the corners 4 BCD of a square of side 8-35 cms. ;
find the centre of the parallel forces.

(21) Find the centre of the parallel forces in the last exercise if the 3:24
Ibs. weight force be reversed in sense.

(22) Draw a triangle 4 BC having A B=10-2, BO=11'8, C4A =648 cms.
Parallel forces act through 4, B and € of magnitudes (in Ibs. weight) given
by the opposite sides. Find graphically the centre of the parallel forces
and shew that it is the centre of the circle inseribed in 4 BC.
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Mass-Centres by Link Polygons. The mass-centres of a
number of mass-points can he accurately and expeditiously
found by the aid of the link polygon construction.

ExXAMPLE.  Musses of 132, 166, 215 and 167 Ibs. are
concentrated at points whose coordinates in inches are (114, 0),
(22, 1°13), (3-36, 2:87), and (4, 2), respecticely.  Find the position
of the muss centre.

Plot the points on squared paper (Fig. 271), and through them
draw lines parallel to the axes of coordinates; lahel those parallel
to the y axis m,, m,, m,, m, in order from left to right, then
those parallel to the » axis from top to bottom must be labelled
Mgy My, My 1.

m, ” my n,
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Fro. 271
Set off the masses m; (=132), m, (=166), my (=215),
m, (=167) to scale along a line parallel to the y axis, and
choose some convenient pole P’ for the vector polygon.
Using one side of a set square bounding a right angle, draw
through P, any point in the vertical m, line, a link PP,
parallel to the first line of the vector polygon. With the other
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edge of the set square draw through any point @, in the hori-
zontal line wm,, a link @, perpendicular to the first line of the
vector polygon.

In this way it is quite easy to draw correctly and quickly
two link polygons P P,P,P,, §0,0;¢, whose vertices lie on
the vertical and horizontal m lines, and whose corresponding
links are perpendicular.

The intersection at P of the first and last links of the polygon
P,P,P,P, gives a line PR, parallel to 0y, on which the M.C. of
the points must lie, and the intersection at € of the first and
last links of the polygon @;0,¢@;0, gives a horizontal line QF,
on which the 1.c. must also lie. The point I of the intersection
of these lines is therefore the M.c.

Proof. Since the M.c. of a number of masses is the same as
the centre of the parallel forces whose magnitudes are pro-
portional to the magnitude of the masses, all we have to do to
find the former point is to find the axis of the resultant force
in two cases. This is done most conveniently by supposing the
forces acting through the mass-points to be (i) parallel to the
axis of y, (ii) parallel to the axis of z.

To find the axis in the first case the vectors of the weights
are drawn parallel to the y axis, and a link polygon constructed,
and the resultant force has PR as its axis.

To find the axis in the second case, the vectors of the loads
may be drawn parallel to the 2 axis and a second link polygon
constructed. It is, however, more convenient, instead of drawing
a fresh vector polygon, to suppose the first one turned through
a right angle. To construct the second link polygon, therefore,
we have only to draw links perpendicular to those of the first
link polygon. There is less chance of error if the two link poly-
gons be constructed simultaneously, by aid of two perpendicular
edges of a set square, than if one be drawn completely first.

To find the ».C. it will, in general, be necessary to draw two
link polygons, preferably at right angles, each determining a hne
on which the M.C. must lie.
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(23) Masses 3, 2-3, 5, 4, 3'7 lbs. arc concentrated at points whose co-
ordinates are (1, 0), (2, 3), (1, 1), (3, 2) inches. Draw two link polygons
at right angles and find the mass-centre.

Test the accuracy of your results by taking moments about the axes of
coordinates.

(24) Choose another pole for the vector polygon in the previous question
and see that the same point is obtained for m.c.

(25) Masses given by lines of length 2-7, 1-86, 3-1, 172, 0°04 inches are
concentrated at the vertices, taken in order, of a regular pentagon of side
3 inches. Find graphically the position of the m.c. and test roughly by
measurement and by calculating the moments.

(26) Draw as follows five straight line segments to form a broken or
zig-zag line: (i) horizontally a length of 48 ems., (ii) sloping upwards at
45° a length of 375 ems., (ii1) sloping downwards at 15° a length of 53 cms.,
(iv) sloping downwards at 60° a length of 2'8 ems., (v) horizontally a length
of 4-25 ecms. Find graphically the position of the ».c. of the zig-zag line.
(Suppose each line to be concentrated at its mid-point.)

(27) Find graphically the m.c. of six sides of a regular heptagon. (Notice
there is an axis of symmetry in which the ».c. must lie.)

M.C. of Areas by the Link Polygon. When the area can
be divided up into parts for which the M.C.’s are found easily we
may apply the link polygon to find the d.C. of these mass-points.

At each of these M.C.’s we must suppose a mass concentrated
proportional to the corresponding area.

EXAMPLE. Find the M.C. of the arvea given by Fig. 272.

 Draw the figure to scale and mark its axis of symmetry.

0-75"{

Fia, 272.

Divide the area up into top and bottom rectangles and
construct their M.C.s.

Construct the M.c. of the central trapezium.

Draw horizontal lines through the M.C.’s of the two rectangles
and the trapezium. Reduce the areas of the three parts to unit
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base and draw a vector polygon for masses proportional to the
areas, and finally, hy a link polygon, determine the horizontal line
on which the M.c. of the whole must lie.

(28) Find the ».c. of the double angled iron in Fig. 273. (Divide up into
four rectangles and use two link polygons.)

(29) Find the mass-centre of the bar shewn in Fig. 274; the ends are
semi-circles of radii 29 and 2°1 cms., the distance of the centres apart
being 12°1 cm.

(30) Find the m.c. of the area in Ex. 29 when a circular hole of radius
1 em. is cut out as indicated by dotted circle.

4.9"

ra

'

Fia. 278. Fre. 274,

Irregular Areas. When the area is irregular, or cannot be
divided into parts for which the M.c.’s are known, we may resort
to the method of strip division. Divide the area up into a
number of equally narrow strips, take the mid-point of the
middle line of each of these strips as the M.c. of the strip, and
draw two link polygons for these mass-points. The masses at
the points are approximately proportional to the lengths of the
mid-lines of the strips. If the area has an axis of symmetry
only one link polygon need be constructed.

(31) Draw a semi-cirvle of radius 4”, divide up into ten equally wide
strips parallel to the base, and determine the m.C. of these strips by the
link polygon method.

(32) Find the m.c. of the irregular figure given on p. 58.
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Centre of Gravity, Centre of Parallel Forces, Mass-
Centre, Centroid, Centre of Figure, Centre of Mean
Position. Every particle of a body near the carth’s surface is
attracted towards the centre of the earth. The hody being
small compared with the earth, the axes of these forces ave
parallel (or nearly so). The centre of these parallel forces is
called the centre of gravity of the hody. The centre of gravity
as thus defined is the same as the mass-centre of the hody.
Moreover, if the mass be uniformly distributed throughout the
volume, it is the same as the centroid or centre of figure, and as
the centre of mean position.

Centre of gravity is not, however, a good term to use, since it
denotes a point whose position depends not only on the hody
but on the earth also, whereas the mass-centre depends on the
body alone and would remain unaltered if the body could be
taken right away from all external forces.

Since the mass-centre or centre of gravity of a hody is the
point through which the resultant of the weights of the particles
always acts no matter what the position of the body (near the
earth’s surface), the body, if supported at that point, would be in
equilibrium.

This consideration leads to an easy experi-
mental way of finding the ».c. of many
bodies. Suppose a triangular board 4BC
(Fig. 275) suspended by a string attached,
to any point D of it; then, since only two
forces act on the board, viz., the pull of the
string and the resultant weight, these must
be in a line, and therefore if a line is drawn
on the board in continuation of the string
it will pass through the a.c. By suspending
the board from another point D), and mark-
ing the point where the vertical through D, cuts the line already
on the board, the position of the M.C. is determined.

The M.c. of such bodies as cardboard or wooden triangles,

Fie. 275.
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quadrilaterals, circular sectors, ... should be determined experi-
mentally, and the results compared with the graphical deter-
minations.

*Moment and Couple. The moment of a force o in 4B
about a point O is the same as the momental area of the couple
a in AB and — o in (0 (where (U is parallel to 4B5), since hoth
are given in magnitude and sense by the parallelogram 04 BC.

#Resultant Couple and Moments. Any set of forces
(coplanar) can be reduced to a resultant force through any
chosen point O and a number of couples whose momental
areas are added algebraically to the momental area of the
resultant couple. This couple has therefore a momental area
given by the sum of the moments of the forces about 0.

*Moments and Equilibrium. If there is cquilibrium, the
resultant force and the resultant couple must vanish for any
point O, hence the sum of the moments about any point must
be zero.

*Moments of Resultant and Components. If a system
of forces has a resultant, this resultant reversed in sense must
be in equilibrium with the components, and therefore the
sum of the moments of the given forces minus the moment
of the resultant must be zero for every point. Hence,

2 moments of components =moment of resultant for all points.

#Theory of three Moments. Any system of coplanar
forces can be reduced to either
(i) a resultant force,
(ii) a resultant couple,
(iif) or there is equilibrium.

If, then, the sum of the moments of the forces about one
point be zero, there is either equilibrium, or there is a resultant
force passing through the point. (There cannot be a resultant
couple hecause the sum of the moments=the momental area
of the couple.)
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If, then, the sum of the moments is zero for three non-
collinear points, the forces are either in equilibrium, or there is
a resultant passing through three nou-collinear points. The
latter alternative being impossible the forces must be in equili-
brium.

MISCELLANEOUS EXAMPLES. VIIL

1. ABCD is a rectangle, AB=12, BC=8. At 4, B, C and D are
masses 8, 10, 6 and 11 lbs. Find the m.c. by the funicular polygon.
(B.Sec., 1905.)
2. Prove that the sum of the moments of two forces in a plane about
any point in their plane is equal to the moment of their resultant about
that point. Can the conditions of equilibrium of a body acted on by a
system of forces in one plane be expressed solely by the principle of
moments ? (Inter. Sci., 1906.)

3. What do you understand by *‘ the moment of a force ”? A down-
ward push of 40 lbs. acts on a 6" bicycle crank which is 50° below the
horizontal position. What is the magnitude of the moment produced
about the axis? If, by suitable ankle action, a push is produced at right
angles to the crank in the same®position, how great must this be to
produce the same moment as the downward push of 40 lbs. ?

(Naval Cadets, 1904.)

4. Indicate the method of finding the resultant of two parallel, unequal,
unlike forces acting upon a rigid body.

A uniform bar 12 feet long, weighing 56 lbs., rests horizontally upon
two supports, one being under one end 4 and the other being 5 feet from
the other end B; supposing a weight of 10 1bs. to be hung from the end
B, find the pressures on the two supports. (B. of E., %bage I, 1904.)

5. Define the moment of a force about a point and state any theorem
concerning moments.
ABC is a triangle with a right angle at 4, AB is 2 feet and 4C is
3 feet ; a force of 5 lbs. acts from 4 to B and
one of 4 lbs. from 4 to C; find the moment
of the forces about the middle point of BC.
If the point in question were fixed, indicate
on a diagram the direction in which the tri-
angle (supposed to be a lamina) would revolve.

6. When a body capable of turning about
an axis is at rest under the action of two
forces perpendicular to the axis, what is the
relation between these forces? (State the 2 pounds
relation, no proof is wanted.) weight

The disc in Fig. 276 weighs 2 lbs. and turns
about the point O. What force P, acting in
the position shown, is required to hold the
disc in the position shown ¢

(Naval Cadets, 1903.) F1e, 276,

TG, U
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7. Fig. 277 represents a form of wheel and
axle, drawn to the scale of one-tenth., A man
sits on a platform suspended from the end 4 and
raises himself by pulling on the end B. What
force must he exert to support himself, and how
much work must he do to raise himself a distance
of 2 metres¥ The weight of the man with the
platform is 100 kilogrammes, and the pull at

either end of the tackle to raise a given weight B
at the other is twice as much as it would be
without friction. (Military KEntrance, 1905.)

A

Fic. 277.

8. An hexagonal table, diameter 3 ft. and weighing 50 Ibs., has weights
5, 10, 15, 20, 25 1bs. placed in order, ete. at five of the angles. Determine
the centre of the parallel forees, and its distance from the centre of the
table. (B. of E., II., 1904.)

9. Mark five points in a line PQRST, the distances apart representing
32,47, 1'8, and 26 ft. from left to right. Through P, @, R, S and 7'
act forces of magnitude 1510, 2150, 750, 1830 and 1980 lbs. weight. The
forces make angles of 157, 50%, 807, 140° and 250° with P7 reckoned contra-
clockwise.

Find the sum of their moments in Ihs. weight about a point U, distant
7 ft. to the left of P, (i) by decomposing each force into two components,
one of which is parallel to 7", and the other passes through the point U ;
(ii) by finding the resultant force.

. On squared paper mark five points whose coordinates are (21, 3-3),
(0-3, 5:2), (3-7, 2:1), (3'9, 4°5), (57, 0-8) inches. Masses given by lines of
length 2:35, 1°82, 4°16, 3:05, 2°18 centimetres (scale 15 cms. to 10 lbs.) are
at these points. Find the coordinates of the mass-centre by construction.



CHAPTER IX.
BENDING MOMENT AND SHEARING FORCE.

Hooke’s Law. If a bar be subjected to tensile or com-
pressive stress its length changes; the relation between the
stress and the elongation, or compression, was discovered by
Hooke, and is usually called Hooke’s Law. The law is purely
an experimental one.

If 7 be the original length of the bar, I' the force producing

extension, and e the elongation, then T is proportional to f;, or
T= )\;, (Hooke’s Law)

and A is called the modulus of the bar.
If A4 is the cross sectional area of the bar, then

E is the stress per unit area,

A
T X e

and J=7

4 1

If %=E then F is called Young’s Modulus for the material
of which the bar is made.

An exactly similar law holds for compression. Always, then,
if a bar is in a state of compressive or tensile stress it is shorter
or longer than its natural length, and this stress is proportional
to the compression or extension.

For very large forces the law ceases to hold and the elastic
limit of the material is said to have been passed,
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This law is of great importance in many ways; it has
important bearings on the stresses set up in many frames as
well as on the bending of beams.

Simple Cantilever. 4B (Fig. 278) represents a horizontal
beam fixed in a wall at 4 and loaded at its free end B with a
weight J7. (The weight is supposed so large that the weight of
the beam itself may he neglected in comparison with it.) Consider
the equilibrium of the part B of the beam. It is evident that

YW

F16. 278,
the force or forces which the part 4P exerts on PE must be in
equilibrium with the load /7 at B. Suppose the beam cut
vertically through at P, then the forces which we have to apply
to the cut surface at P to keep PB in equilibrium must be
equivalent to the reactions of /P on PB.

No single force at P can be equivalent to /7 at B; if we
suppose a force — W to act at P, then PB is under the action of
a couple whose momental area is — 7. PP (clockwise). Hence
for the equilibrium of PB, we must apply at P an upward force
of magnitude 7 and a couple of momental area /7. PB. The
reaction forces of AP on PB must therefore be equivalent to
~ 7 at P and a couple whose momental area is /7. PB.

This is simply another way of looking at the theorem on
p. 206, viz. a force /7 at B is equivalent to a force /7 at P and a
couple of transference — W.PB; it is this force and couple
which are equivalent to the reaction forces of PB on 4P,

This theory can actually be demonstrated by connecting the
two parts of the heam by a rod EF, hinged at its ends, (see
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Fig. 279) and a horizontal string D(! passing over a pulley ¢ and
bearing a load @, whilst a vertical string at D passes over another
pulley and hears a load E.

When the vertical and horizontal pulls on D are adjusted so
that BD is horizontal and in a line with €, it is found that the
vertical pull I0 is of magnitude 77, and the horizontal pull ¢
is such that Qx DF=W x PB.

.
i

Since the part PB, under the action of R, 77, Q and the force
in EF, is in equilibrium, and since £ and /¥ constitute a couple,
@ and the force in EF must also form a couple, and therefore
EF is in compression and the stress in it is measured by .

The upper fibres of the beam (Fig. 278) must therefore be in
tension and the lower ones in compression, and hence the upper
fibres are elongated and the lower ones shortened. The bheam
itself must therefore be bent more or less, the loaded end being
lower than the fixed one. It is these tensile and compressive
forces in the fibres of the beam itself that prevent further
bending, and it is the moment of # about P which tends to
produce the bending. Hence W x PB is called the Bending
Moment at P.

The upward force 7 at P, of AP on PB, prevents PB sliding
downwards relatively to 4P, whilst the external load # tends
to make it do so, hence /7 is called the Shearing Force at .

For the portion 4P on the left the shearing force and bending
moment at P have the same magnitude but are of opposite senses
to those on the right.

w

mp—{0
.n"UU
w

w
Fic. 27,
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Bending Moment and Shearing Force Diagram for a
Simple Cantilever.

ExAMPLE. o horizontal beam is fized in o wall, the length from
the wall A fo the loaded end B is 19-4 ft. If the load be 5°18 fons
druw disgrams giving the bending moment and shearing force at every
point of the beam. ,

Draw 4B (Fig. 280), of length 3-88”, to represent the beam
(scale 1” to 5 ft.), and then PQ the load vector, of length
518 ems. (scale 1 em. to a ton).

R P 0
; w
is
A : B @
| 2lg
1
A
w
1c
Fic. 280.

Through P draw PO, of length 2", perpendicular to PQ.
Through B draw BC parallel to 0@, and above 4B draw a
rectangle of height P@ (RS in Fig. 280) and hase AB.

The triangle 4BC is the bending moment diagram and the
rectangle ES is the shearing force diagram.

The bending moment at any point S of the beam is given in
tons ft. by ST' measured on the mm. scale.
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Draw the force and moment scales and measure the hending
moments at points 5-36 and 10-28 ft. from A.

Proof. Consider any point S of the heam ; the moment of the
load W at B about S is given by (Chap. VIIL., p. 288) ST . PU
where ST is parallel to 4C.

Since PO represents 10 ft., if S7 he measured on the force scale,
é.e. i centimetres, and multiplied by 10 the result will be the
bending moment at .S in tons ft.

Hence, wherever S may he in 4B, the vertical intercept S7'
of ABC gives the bending moment (B.)M.) in tons ft.

Again, since the load to the right of S is always P(), the
shearing force (S.F.) is constant and, therefore, the diagram for
all points is the rectangle RS.

At S the part on the left tends to slide upwards relatively
to the part on the right and we may regard SI! as being drawn
upwards to indicate this. If we wished to indicate that the
part on the right tends to slide downwards relatively to the
left part then SI} would have heen drawn downwards.

Authorities differ in this matter. In Cotterill’s Applied
Mechamics the S.F. ordinate, at any point, is set upwards when
the part on the left tends to slide upwards relatively to the
right hand part and is set downwards in the other case. In
the article “Bridges” in the Encyclopeedin Britannica, on the other
hand, the ordinate is set upwards or downwards, at any point,
according as the right hand portion tends to move upwards or
downwards relatively to the left.

Fig. 281 is an example of Cotterill’s method of construction,
Fig. 282 an example of the Encyclopedic method. With the
exception of Fig. 282 we shall adhere to the former way, i.e. to
Cotterill’s method.

B.M. and S.F. diagrams for a beam freely supported
at the ends and loaded at any one point.

ExaMPLE. 4 beam LM (Fig. 281), of lengih 215 fi., is sup-
ported freely at ils ends in a horizontal position. It is loaded with
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a weight W (3470 1bs.) at « point distunt 13-2 from L. Draw the
bending moment and shearing force diagrams.
Draw LM to represent to scale the beam length, and mark the

point N on it where the load acts. Choose a pole P for the
vector polygon at 10 units of length from the load vector AB.

A
M
v; 0
5 ) \
X
P
v, IB
. Ibs. wt.
T ey 1900 po 390 490 sope
10,000 Yo 10,000 20,000 30,000 40,000 50,000

1bs. ft. (moments)

F1c. 281.

Draw the link polygon and close it ; in the vector polygon draw
PO parallel to the closing line, so that OA is the reaction at L,
and BO that at M. s

At N, a point on LM -where LN,="7-72 ft., draw a vertical
cutting the link polygon:in S and T.
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Measure ST on the force scale and multiply by 10, this product
is the bending moment at IV in Ibs. ft.  Draw a scale of bending
moments and measure the moment at a point distant 157 ft.
from L.

Draw a horizontal line U¥ hetween the reaction lines at L and
M, V being vertically below 4. Set downwards V7, = 0B, and
upwards UU, = 0.

Complete the rectangle PV, JV XU, U as indicated ; this is the
shearing force diagram. The shearing force at any section is
the ordinate of this diagram reckoned from U7V

Proof. Suppose the beam cut through at A7, then the external
vertical force acting on LNV, is OA, and on N,/ it is AO, hence
the part LV, tends to slide upwards relatively to &V, /.

To keep N\M in equilibrium, we must replace OA at L by
OA at IV, (the shearing force at &V;) and a couple whose momental
area is 0.4 . LN,. Since this momental area is medsuged by the
moment of 0.4 about WV, it is given by S7 and 1053¥ measures
the moment. 3

Similarly, to keep LN, in equilibrium, we mum%lace AB at
N and BO at M by AB+BO (=AO0) at IV, alitka cou
momental area 4B . NN+ BO(. J\GB,) i.c. biv a‘3011ple E’&E:
momental area is the sum of the moments of AB~find, BO '-:.T,’B,gut;
N, and this moment is measured by 10. ST. E,;

Herce, before cutting, the material of th%mﬁf J\’{;}‘ﬁusﬁ
exert shearing stress given by A0 or 0,4?5,03;1}7 sfikess :\;g:ﬁples
whose momental area is measured by 10 . 8B, %

The shearing stress prevents the sheari thg beam at IV},
LN, upwards N M downwards; the st-remmp A prevent the
part N, M rotating contraclockwise, i.c.Cpmpvefrts N, sagging.
Hence the measure of the momental are@‘f thejst18s8 couples
at N,—which prevent the beam bendingais, 10 78T. =

Similarly, the shear stress at IV, is m ed by 0’
The maximum bending moment is a where t-IE:Ibad is, the
shearing force is constant from L to ranges s&lenly at V

and is constant again from N to M.
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However complicated the loading on a beam or girder, the
process for finding the shearing force and bending moment at
any section is similar to the above.

DrriNiTION. The shearing force (S.F.) at any section is
defined as the sum of all the external forces perpendicular to
the beam on one side of section, and is considered positive when
the right-hand part tends to move upwards relatively to the
left-hand part.

DEFINITION. The bending moment (B.M.) is defined as the
sum of the moments of all the external forces perpendicular to
the beam on omne side of the section, and is considered positive
when the right-hand part tends to rotate or bend contra-
clockwise.

B.M. and S.F. Diagrams when there is more than one
Load.

ExAMPLE. A lridge S0 fi. lony is supporled freely ai ifs ends.
The leading puir of wheels (centre line) of « locomotive and tender s
15 ft. from one support (abutment) of the bridge, the distances apart of
the centre lines of the wheels are 10" 5”, 8 9", 10" 8", 6’ 6” and 6’ 6",
reckoned from the leading wheels. The louds borne by the wheels are
16 fons, 17 fons, 16 fons, 10 fons 7 cwis., 9 fons, 9 fons. The engine
and tender being wholly on the bridge, draw the B.M. and S.F. diagrams.

Set off the load wvectors AB, (Fig. 282), BC, CD, DE, EF, FG
to scale. Choose a convenient pole P and draw the link polygon
as usual. Close the link polygon and draw PO in the vector
polygon parallel to the closing line. The intercept on any vertical
line between the first and last lines of the link polygon gives the
sum of the moments of all the external forces, including the
reaction, on either side of the vertical line.

Hence the link polygon gives the B.M. at any point of the
bridge. In this connection the closed link polygon is called the
bending moment diagram.

In Fig. 282 the pole P is taken as four units of length from
@, and hence the B.M. diagram must be measured on the force
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scale and the measurement multiplied by +; this gives the B.L
in ton feet.

Draw a horizontal line X¥ for the datum line of the shearing
force diagram. At ¥ set ¥Z upwards (see p- 311), equal to G0 ;
ab ¥, on fg set upwards ¥,Z,=F0; at ¥, on «f set upwards
Y,Z,=E0; at ¥; on de set upwards ¥,Z,=D0; at X, on cd set
downwards X,/7,=0C; at X, on be set downwards X, V,=B0;
and at X; on ab set downwards X, /7, = 40.

Ar
V4
\ o
Br |
|
| [
| 1
Ch ! 7. 1.~
X el v
. % T T 1
ok ! X:} "P A :Y'z :Y1 :
1 I : | 3 :
DF : W3 ! : : '
| l ! i | '
| ! oy |
EF i ! Lo '
1
W,
Fr ' Tons wt.
rnad o 2 3 4 5 60 e
L 200 0100200 ' 400 ' 600 @ 800 ' 1000 | 1200 1400
Tons ft. (moments)
w w,

Fic. 282.

Complete the zig-zag ZZ,Z,Z, X,V ,W,IV, IV ; it is the shearing
force diagram.

Evidently, for the space g, the shearing force is G0= 17, for
the space f the sum of the forces to right is FG+GO, and the
shearing force is 0, and so on all along the bridge.

It will be noticed that the maximum bending moment is along
¢d, and the maximum shearing force is through the space «.

(1) A horizontal beam fixed in a wall projects 12 ft., and it is loaded at
its far end with 500 lbs. Draw the B.M. and s.F. diagrams and measure
the B.M. and s.¥. at a point distant 4 ft. from the wall.

(2) A cantilever, whose horizontal distance between the free end and
the point of support is 25 ft., is loaded at distances of 5, 10, 15 and 25 ft.
from its fixed end with 500, 300, 700 and 1000 lbs. weights. Draw the
diagrams of B.M. and s.F., and measure these quantities at distances of 8,
15 and 20 ft. from the fixed end.
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(3) A heam of length 30 ft. is supported freely at its ends in a horizontal
position. Loads of 1, 25, 3, 2 tons weight are applied at distances of 6,
10, 20, and 25 ft. from the left-hand end ; the beam is propped at the
centre, the upward thrust there being equal to a force of 1-8 tons.

Draw the B.3. and s.F. diagrams and measurc the B.M. and S.F. at
distances of § and 20 ft. from the left-hand end.

Bending Moment for non-parallel Forces. In such cases
the forces must he resolved into components along and per-
pendicular to the beam. The former tend to slide the heam
off the supports, consequently the beam must be fixed at one
end (say by a pin-joint) and supported at the other. The com-
ponents perpendicular to the beam are alone considered as
producing hending moment.

It is not necessary, before attempting to draw the B.M. diagram,
to find the reactions at the supports ; the B.M. diagram itself deter-
mines the components perpendicular to the beam.

(4) A horizontal beam P@Q, of length 25 ft., is pin-jointed to a support at
P, and rests freely on the support at (. Forces of 2500, 2000, 1500 and
3000 Ibs. weight act at points distant 5, 13, 18 and 20 ft. from P, and are
inclined to the vertical at angles of 15°, 30°, 60” and 45° towards §). Draw
the p.. and S.F. diagrams, and measure their amounts at points distant
7 and 19 ft. from Q.

(5) A beam PQ, of length 18 ft., is pin-jointed to a wall at P and
supported at ¢ by a chain of length 27 ft. which is fastened to the wall
at a point R, vertically P, and distant 12 ft. from it. Loads of 1, 12, 23
and 18 tons are hung at equal intervals along PQ. Draw the B.M. and
s.F. diagrams.

Reactions non-terminal. Occasionally it happens that the
order in which we have to draw the vectors in the vector
polygon, to determine the reactions of the supports on the
heam, is different from the order of the points on the beam
at which the forces are applied. In such problems it is necessary
to take care that the links of the link polygon, or B.M. diagram,
are drawn between the proper lines. If the diagram is too com-
plicated to be read easily the vector polygon must be re-drawn,
so that the vectors follow in the order of the points.

Examrre. PQ (Fig. 283) is a horizontal beam of length 253 fi.,
it is pin-jointed at P, and rests on a knife edge at R, and is partly
supported by @ rope fastened to it at Q. The rope QU passes over a
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smooth pulley at U, vertically above P, and « weight IV is attached to
the end.  The beam being loaded at S, T and V, required o find the
bending moment and shearing foree ut any point.

PQ=253 i, PU=121 ft, PS=436 ft, PT=10 ft,
PR=197 ft., PV'=222 ft.; the loads at S, T and ¥ are 1650,
1890 and 1340 Ibs. weight, and the weight suspended at the
end of the rope is 3740 Ihs.

A
U\
B r .
F K2t bttt St "i\ - “\
D’\X':P s T RV S
El -0 . P e ot
Cr d,| e |f
E,r- E\\
.l T8 =9
b S LV Q.
1\/F‘"z Ve
1

Ibs. wt.

1000 o I000 2000 3000 4000  §OOO
[AATERTIN N 1 1 I L i
10,000 o 10,000 20,000 30,000 40,000 50,000
Ibs. ft. (moments)

Fro. 283,

Draw the vectors of the loads at S, I and 7, viz. AB, BC and
CD; then DE, (E, is not shewn in Fig.) parallel to QU for
the tension in the rope. Project horizontally E, to E on AD.
Notice that the space ¢ in the beam diagram must go from 7
to /. Take the pole O of the vector polygon 10 units of length
from 4B. Draw the link polygon P,S; parallel to 04, S,T;
parallel to OB, I'}7; (through whole space ¢) parallel to OC,
V@, parallel to OD, Q,R, parallel to OF (so that the space e
must be considered as going from Q@; round the top of the
beam to the vertical through &). Close the link polygon by
PR, and draw OF in vector polygon parallel to it. Then EF
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is the reaction at R, and FA the vertical component of the
reaction at 2. (The space f must be considered as going round
from PP, over the heam to the vertical through £.)

The vertical intercepts of P.S;T,7,Q, R, give the bending
moments in lbs. ft. when measured on the force scale and
multiplied by 10. '

For the s.F. diagram set downwards from PQ at @ a
distance= DE, at V7 a distance=CE, at B a distance=FC; at
T set upwards a distance=BF and at S, at distance AF,
complete the rectangles as in the figure. The vertical intercept
at any point between P@ and the thick horizontal lines gives
the s.F. at that point.

As regards the B.M. ; the fact that D R, is (if we start with
OF in the vector polygon) the first and the last line of the link
polygon, and yet for the space ¢ we measure intercept from
I,Q, is perhaps a little difficulty. The difficulty is due to the
links not being drawn in the order of the points. When we
come to the right of R the intercept between PR, and I,7,
does not take account of the B.M. due to the reaction at R, but
the intercept between R, and PR, (produced) does so, and,
since, coming backwards from the right, Q, R, is before P, R,, the
intercepts have to be added.

It is, however, clearer to redraw the latter part of the link
polygon by taking the forces in order. Letter the spaces
between £ and 7, ¥V and @, d, and ¢;, respectively, and the space
¢ will now end at R.

In the vector polygon, from € draw (D, upwards, equal to
the reaction at B, viz. EF; from D, set D,E, downwards, equal
to the load at 77 (=CD); then E,F is the vertical reaction at Q.
The vector polygon is now FA4, AB, BC, CD,, D\E, and E,F.
The link polygon is as before up to the space d;; 7,7, stops at
R, ; the next link through the space d, is R,V parallel to 0D, ;
and then 7,0, through e, is parallel to 0E,. P,@, should be the
same line as PR, if the construction is accurate. The B.M.
diagram is now P;S; T\ R V,Q,P,.
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What are the B.M. and S.F. at distances of 12 and 321 ft.
from I’?

(6) The span of a roof truss is 40 ft. : three equal loads are placed at
equal intervals of 10 ft., each load being 17 tons weight. The resultant
wind pressure on the roof is equal to a force of 1 ton, and makes an angle
of 45% with the horizontal, and its line of action passes through the
mid-point of the line joining the points of support. The roof being
supposed pinned at the end facing the wind and freely supported at
the other, draw the diagram of the e and s.r. for the forces perpen-
dicular to the line joining the points of support.

A

(7) Find the .. and s.F. diagrams for the
vertical post of the derrick crane in Fig. 284, w
due to a load W (3 tons) suspended at 4.
Length of jib AC=168 ft., length of tie rod
AB=14ft., BC=10 ft., BE=20 ft. The post
is kept vertical by a smooth collar at D and a
cup-shaped socket at #, and DE=4 ft.

D

el
Fro. 284,

(8) Find the B.M. and 8.F. diagrams if the chain supporting W is carried
over a smooth pulley at 4, and is fastened to the post at £ the mid-point
of BC, and the collar at D is replaced by a tie rod at Dy, sloping down-
wards at an incline of 30°, ZD;=12 ft.

(9) Find the p.mM. diagram in Ex. (8) if the load is suspended from a
point 4, in B4 produced, where BA,=17 ft.

Beam uniformly Loaded.

ExaMpLE. A heam 20 fi. long is uniformly louded with 50 Ibs.
per foot vun ; draw the shearing force and bending moment diagrams,
the beam being supported at its ends.

Draw a line P@, 20 cms. long, to represent the heam ; draw a
vertical upwards from the beam 1” long to represent the load per
ft. run. Complete the rectangle of base 20 cms. and height 1".
The area of this represents a load of 20 x50 Ibs. weight.
Divide the rectangle into ten equal parts. Suppose the load on
each of these parts concentrated at its M.C.

The reaction at each end is 500 Ihs. weight,



320 GRAPHICS.

Draw the link polygou for loads each of 100 lbs. weight
concentrated at the M.C.’s of the rectangles.

Then draw the b diagram. This diagram gives only
approximately the BAL at the various points, because the real
loading is uniform and not ten equal detached loads. But, the
vertices of the diagram are points on the true B.M. diagram.
For consider any point X on one of the M.C. lines on the beam,
the hending moment there = moment of reaction at />~ = moments
of all the weights along PX. This last quantity is equal to the
weight of PX multiplied by the distance of its M.c. from X,
which is the sum of the moments of the partial system ; and
this difference is exactly what the b diagram does give. On
the other hand, for points between two of the M.c. lines, the
diagram is wrong, since it neglects the load between them. The
true B diagram is a curve passing through all the vertices of
the constructed diagram. Draw a smooth curve through the
vertices and measure to scale in Ibs. ft. the B.M. at points distant
3, 11 and 15 ft. from oune end of the heam.

To draw the shearing force diagram. At @, the right-hand
end point of the beam, set downwards Q@ representing 500 Ibs.
to the proper scale. Join ¢ to the mid-point of the beam and
produce it to cut the vertical through P. This line, with the
datum line P@Q, forms the shearing force diagram; for the S.F.
must decrease uniformly from 500 Ibs. weight at € to zero at the
centre.

Beam continuously but not uniformly loaded. The
method of the previous section applies to this case also.

ExAMPLE. A horizontal beam PQ (Fig. 285) supported ab the
ends is continuously louded, the load per foot run at any point being
given by the ordinates of the triangle PQC. Find the 8.F. and B.M.
dingrams—the scale of the figure being horizontally 117 to 100 ft., and
vertically 1 cm. to 05 tons per ft. run.

Divide the load curve into eight equal parts; find the
vertical M.c. line of each part, and the load represented by the
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area of each part. Set these off to scale and draw the vector
and link polygons as usual. Draw a curve through the vertices
of the link polygon—this curve will be approximately the B.3L
diagram.

Fic. 285

Draw ordinates for the shearing forces at the end points of
the sections from right to left, and draw a smooth curve through
their end points.

(Remember that the s.F. diagram is such that the ordinate at
any point gives the sum of the forces on one side of the beam.)

(10) Draw the B.M. and s.r. diagrams for a horizontal beam fixed in a
vertical wall and projecting 25 ft., the load being uniform and 500 lbs.
per ft. run.

(11) Draw the B.M. and s.F. diagrams for a cantilever due to its own
weight and a load of 3 tons av its end, the length of the cantilever being
30 ft. and its weight 100 1bs. per ft. run. (Draw the diagrams separately
and add the ordinate.)

(12) The length of a beam is given by P@Q (7”) (scale 1” to 8’) the load
per, foot run is given by the ordinates from PQ to a circular arc on P,
the maximum ordinate being 4 ems. (scale 1 ecm. to 05 ton per ft. run).

Draw the B.M. and s.7. diagrams and measure the B.M. and s.F. at points
distant 21 and 15°3 ft. from the centre.

(13) Draw a right-angled triangle ABC having BC horizontal and
of length 6-72”, and BA vertical of length 4-3”. Tet BC represent the
length of a cantilever from the fixed end B to the free end C, scale 1” to
10 ft. Let the ordinate of the triangle at any point M of BC represent,
to the scale of 1 em. to 100 lbs. weight, the load per foot run there. Draw
the diagrams of the bending moment and shearing force.

Travelling Loads. We have now to consider how the B.M.
and S.F. at any point of a beam, bridge, or cantilever changes as
one or more loads travel along it. Many structures of large span
are now made with cantilevers connected by comparatively short
girders ; perhaps the best example of this kind of bridge is seen
in the Forth railway. The whole bridge consists of two spans of

about 1700 ft. each, two of 675 ft. each fifteen of 168 each and
T.G. X
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five of 25 each. For the main spans there are three double
cantilevers, like scale beams, on supporting piers, and these
cantilevers are connected by girders each 350 ft. long; the
length of the double cantilever is 1360. For such massive
cantilevers as those of the Forth bridge, the B.M and s.F.
due to the travelling train are small compared with those due
to the weight of the structure itself.

As the B.M. diagram is more easily constructed for a canti
lever than for a girder, it is advisable to commence with the
consideration of the former.

B.M. and S.F. Diagrams for a Travelling Load on a
Cantilever.

ExAMPLE. A4 cantilever 1s of length 250 ft. from pier to free end.
Required dingrams giving the B.M. and S.F. at any point as o load of
173 tons travels from the free end towards the supported pier.

In Fig. 286 PQ represents the length of the cantilever, @
being the free end, L the given point at a distance of 87 ft.
from P.

AB is the load vector. Suppose the load at @. Choose a pole
0 at a convenient distance from 4B. Through R, a point on
the vertical through L, draw B@, and E(), parallel to 04 and
0B. Then @@, gives the moment at L of the load at . When
the load is at S, the intercept S,S, on the vertical through §
gives the B.M. at L; hence, R;(, gives the BM. at L for all
positions of the load between L and ¢.

‘When the load passes L the B.M. vanishes.

The shearing force at L is constant for all positions of the load
between L and @; when the load passes L, the S.F. vanishes,

At all points, therefore, the maximum S.F. is the same and
is equal t- the load.

To find the B.M.s for points other than L we have only to
notice that moving L to the left is equivalent to moving @ an
equal distance to the right. Through any point E on the
vertical through P, draw BP, and RP,, parallel to 04 and OB
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and cutting the vertical through @ in P, and L,. The triangle
P\EP, gives the BM’s at P as the load travels from up
to P. For a point L, distant = to the right of P, mark a point
L', © to the left of @, and draw the vertical L L'L,; then L,RL,
is the B, diagram for L as the load moves from ¢ up to L (i.c.
in new figure from L’ to P).

Q,
S,
i
L | Q
S A
:
]
;
? o)
R § X
: B
82
Q
Frc. 286.

(14) What are the B.M.’s at points distant 30, 40, 100 and 150 ft. from
P when the load is 30, 50, 80 and 100 ft. from Q.

(15) Find the maximum bending moment at ten points between @
and P. Set up, at these points, ordinates giving the maximum bending
moments to seale, and thus find the curve of maximum B.M.’s.
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#*B.M. Diagram for Several Travelling Loads on a
Cantilever.

ExAMPLE.  Loads of 3, 52, 4°7 and 3'3 tons weight travel along
« cantilever of length 57 ft. The distances apart of the loads being
53, T7 and 53 fi. from the foremost loud of 3 tons backwards,
determine the BOM. and S.F. af any point s the loads travel from the
frree end up to the swpporting pier or weall.

Draw a line PQ (Fig. 287) to represent the length of the
cantilever having @ for the free end, and mark the point L on
it where the B.M. is required. PL represents 15 ft. Choose a
pole O at, say, 10 units of distance from the load vectors AB... E.
Draw the axis ab of the load AB in its farthest position from Z,
and then on the other side of L draw axes b;¢;, ¢;d; and dye; at
the proper distance of the loads apart from the axis through L
(i.e. draw the axes as if the leading load was at L, and the loads
were travelling towards @).

Through any point 4, on the axis «b, draw 4,X; parallel to
A0, and 4,X, parallel to BO. Produce the latter line back-
wards to cut by, in B;; from B, draw B.X,; parallel to CO;
produce this line backwards to cut ¢d; in C; and draw C X,
parallel to 0D ; produce this line backwards to cut de, in D,
and draw D,X; parallel to OF.

Then X,X,D 0B, 4, is the B.M. diagram for L as the leading
load travels from A7 («b) up to and past L, and the last load
comes up to L (the first load being then at M,).

When the leading load is at M, the B.M. is given by X X ;
when at M, it is given by ¥,Y;; when at M, by Z,Z,; and when
at M, it is zero.

Proof. Since 4,X,X, is similar to 04 B, the vertical intercepts
of the former give (p. 322) the B.M. at L due to the first load as
it travels from A/, up to L

Again, B, X, X, is similar to 0BC ; and since the distance from
bye, to ab is equal to that between L and the second load when
the first load is at M/, the vertical intercepts of B X,X, must
give the BM. at L due to the second load, as it travels from ¢
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up to L A similar argument shews that C\.X,X, and DX X
give the B.M. due to the third and fourth loads, as these loads
travel from their initial positions up to L.

rA
B
MeP M, L M, M Q
aldl| & | & ! alé c | dle
E | E/ )
! 3 X
' <O 2
: // -C
D,| |1 A
\1 C.Zs B, 2
N X3
Z, \\
\ \ -D
\ .
Y,
5 L
Xs
Tons wit.
2adal t 23040567 8 9wy
100 50 o© 100 200 300 400 500 350
Tons ft. (moments)
Frc. 287.

Since on passing L the load ceases to have any BM. at L, the
sum of the vertical intercepts of these triangles must give the
total B.M. at L as the loads travel.

(16) Find the bending moment in tons ft. when the leading load is at
(1) 215, (2) 11°8 ft. from L.

(1'7) Shew how to find the B.M.’s at L as the leading load travels from ¢
to M, (the loads may be supposed travelling from a second cantilever over
a connecting girder to the one under consideration). Find the B.M. in
tons ft. when the leading load is 7-2, 141 and 16 ft. from ¢ respectively.

To find the B.M.’s at points other than L it is not necessary to
draw a fresh B.M. curve, because the lines 4,X,, B.X, ... are all
fixed relatively to one another ; and, therefore, instead of moving
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L, it is sufficient to move the line X, X;. Thus, supposing the
p.a. diagram for the travelling loads are required for a point
10 ft. to the right of L, then X;X; must be drawn 10 ft. to the
left, of M, ; if for a point 10 ft. to the left of L, X, X, must be
drawn 10 ft. to the right of J7;, and the lines 4,X, ... produced
to cut it.

The matter is thus mainly one of relettering the diagram
originally drawn. Change L to P (the fixed end of the canti-
lever) and move 1, to the right a distance LP, and change the
letter to 2. Produce all the lines 4,X;, BX; ... Dy X to cut
the vertical through 7 in PP, ... P;. Then P14, B, ... Py is the
B.M. diagram for P as the last load moves from the free end up
to the fixed end. For any point L, distant z ft. to the right of
P, draw a vertical through L', = ft. to left of P’ and cutting
A, X,, BY,...in LiL, ... Ly; then L,4,B,C,D,L; is the B.M. for
L (at P) as the last load travels from the free end up to L.

(18) Find the maximum B.M.’s at points distant 5, 10, 15, 20, 25, 30, 35,
40 and 45 ft. from the pier, and draw the maximum B.M. curve.

(19) Draw the shearing force diagram for the point L as the loads travel
up to and past the point.

(Up to the leading load being at L the s.F. is 4H; immediately it passes
L, the s.F. drops to BE and so on.)

(20) Loads of 10 tons 175 cwts., 10 tons 17'5 cwts., 19 tons, 19 tons,
12 tons, 12 tons 5 cwts. and 12 tons 15 cwts., due to an engine and tender,
travel from a girder over a cantilever of length 150 ft. (from free end to
pier). The distance apart of the loads from the leading one backwards
are 6/ 6", 8' 9", 10’, 8 725", 6/ 9” and 6’ 9” respectively

Draw the diagram of the B.M. for a point distant 25 feet from the pier as
the engine and tender travel over the cantilever.

(21) Alter the lettering so that the diagram will give the B.M’s. at any
point of the cantilever, and determine the B.M. at points distant 50 and
75 ft. from the pier when the leading wheels of the engine are at 110, 100,
90, 75, 50, 10 and 5 ft. from the pier.

Travelling Loads on a freely supported Bridge.

ExamrLE. AB (Fig. 288) is o beam freely supported at its ends.
A load W travels from A to B; required the B.M. at any point Q for
every position P of the load W. -

The reactions B, and B, at 4 and B, due to /7 at P, are given
by RB.AB=1W.PB and E,. AB=W. AP,
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and the bending moment at ¢ is

w
R,.QB=—77. 4P .QB.
A P_Q B
R:\ \l, ]Rz
F1c. 288. '

Now suppose 7 at @, then the reactions R, and L, are given
by
R/'.AB=W.AB and R, . AB=W. AQ,

and the bending moment at P is

, 4
R/ AP_Z?' AP.QB.
Hence the B.M. at Q due to the load W at P is the same as the B.M.
at P due 1o the load W af Q.

B.M. and S.F. Diagrams for a Travelling Load on a
freely supported Bridge. '

EXAMPLE. A horizontal beam AB (Fig. 289), of length 50 ft., is
freely supported at its ends ; a load of 3-38 tons travels from A to B
required diagrams giving the B.M. and S.F. at a point Q (QB=164 fi.)
Sfor all positions of the load.

Draw the B.M. diagram for a load of 3-38 tons at @, and
through any point P in 4B draw a vertical PP,P, cutting the
B.M. curve at P, and P,. Then the intercept P,P; gives, to
scale, the B.M. at @ due to the load 3-38 tons at P.

Set upwards from 4, to scale, 4('=the load, join BC cutting
the vertical at @ in @, From 4 draw 4@, parallel to B,
cutting the vertical at @ in @,. Then 4Q,@,B is the S.F. diagram
with 4B as base line.

The vertical at P cuts the diagram at P;, and PP, measures the
S.F. at @ due to the load at P.

Proof. That for the B.M. has already been given.
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For the s.F. we notice that when the load at P is between
A and @ the s.F. at ( is the reaction at B, and when P is between
@ and B the S.F. at Q is the reaction at 4.

If B, is the reaction at 4 when the load is at some point P’
between @ and B, then R, . 4B=W .P'B

. P’ PP/
. . SF at Q=R = W =W —= e C
hence P'P," measures to scale the S.F. at @, and therefore the S.F.
at @, when the load is between @ and B, is given by the ordinate
of the diagram BQQ),.

C,.
e
.
: .,
X H ™~&
Z E-4 P xy P Z
1
*x0
Y R 9,
i
2 |
Tons wt.
w2 02 3 ¢4 %
20 o 20 40 60 80 100

Tons ft. (moments)
Fra. 289.

Similarly, if the load is at P between 4 and @, and R, is the
reaction at B, By,. AB=W. AP

. A
. SF at @Q=R,=W A—; A C’ (since 4 @, is parallel to BC);

therefore the S.F. at (), when the load is between 4 and ¢, is
given by the ordinate of the diagram 4@,Q.
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Immediately before P comes up to @ the S.F. is Q0,, and
immediately after it is Q),.

The maximum s.F. is therefore immediately hefore the load,
travelling from 4, comes up to @.

The maximum B.M. is when the load is at §.

(22) What are the B.M. and s.¥. at @ when the load is at P and

(i) AP=25"Tft., (ii) AP=41"6 ft.

Curve of Maximum Bending Moment for a Travelling
Load. To find the maximum bending moment for other
positions of @, it is not necessary to redraw the whole hending
moment diagram. A new closing line only is wanted.

Keeping the pole O fixed, the lines 2 R, and R,R, (Fig. 290),
being parallel to OX and 0V, must always have the same
directions, and hence, instead of supposing @ moved relatively
to 4 and B, we may suppose 4 and B moved relatively to .

A, A Q B B

F16. 290.

Suppose the maximum bending moment were required at a
distance » from 4. Set off QA;=2 from @ towards 4 and
make 4,B,=4B. Mark the points S; and S, where R R, and
By Ry cut the verticals through 4; and B;, join SS; cutting
the vertical through @ in 8. Then SR, gives the maximum B.M.
at a distance z from 4.

(23) Find the maximum bending moment due to the load at points
distant 5, 10, 15, 20, 25, .., 45 ft. from A4 (Fig. 289). Set up at these
points ordinates giving the maximum B.M.’s to scale and join them by a
smooth curve, which must evidently pass through 4 and B This curve
is the maximum B.M. curve for a single travelling load.
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# B.M. due to several Travelling Loads.

Exavrie. To find the B.M. af amy point of a bridge, freely
supported at its ends, as an engine travels from one end (abutment)
to the other.

A lridge 1s 50 fi. long and an engine fravels over it; draw a
dingram giving the B.M. at the mid-point of the beam for all positions
of the engine whilst wholly on the bridge. The load on the leading
wheels is 17 tons 18 cwis., and on the following ones 19 tons 16 cwis.,
19 fons 16 cwts. and 17 fons respectively. The distances between the
centre lines of the wheels are, from rear to front, 8 3", 7 0" and
9" 0" respectively.

Draw the bridge length, XY (Fig. 291), to scale and mark the
load lines when the engine is in one definite position, say with
the centre of the trailing wheels 27" from the left abutment.
Draw the load vectors ABCDE and take a pole P at a convenient
distance. Construct the link polygon B R, R,E. B, R, in the usual
way, close it by the link ByR,, and draw in the vector polygon
PO parallel to EyR;. Mark the point E where the first and last
lines of the link polygon intersect. Bisect B R, at M ; mark the
point M, on RE; so that the horizontal distance between R and M,
is half the span (25 ft.); join M and M and produce both ways.

From the line ab mark off to the right horizontally a distance = §
span and determine a point L; similarly, from de mark off
horizontally to the left the same distance and determine a poing
K ; draw verticals through K and L; then the figure between
these verticals, MM, and RR,... R;, is the bending moment
diagram for the mid-point of the beam, from the trailing wheel
leaving X to the leading wheel reaching Y-

Maximum Bending Moment at the Centre. An in-
spection of Fig. 291 shews that MR, is the greatest value
of the BM. and this occurs when the third wheel of the
engine is just over the mid-point of the bridge.

When the leading wheel is over the mid-point, the B.M. is
given by M,R,; when the trailing wheel is over the mid-point
the B.M. is given by MR, ; and so for all positions of the engine.
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(24) Find the p.M. diagram for a point distant 15 ft. from the left
abutment.

Mark the point on X ¥, project vertically to RyR; cutting it at §, from
R go horizontally 35’ and then vertically to Sy on RR;. Join S85; then
the vertical distances between 88, and Ry R ... R; give the B.M. ab the
point required. The horizontal distances hetween which this will hold
are 15 ft. to the right of ab and 35 ft. to the left of de.

(25) What is the maximum B.3. at this point?

If the pole P be kept fixed, then, whatever the position of the
engine on the hridge, the link polygon R, E,R,E, and the lines
ER, and IR, will be in exactly the same relative positions. The
only things that alter as the engine moves are the reactions at
the ends, which alter the direction of the closing line £yE;.

Instead, therefore, of supposing the loads to move, we may
suppose the supports moved. Thus, to get the second pair of
wheels ¢d over a point @ (distant z from X) of the bridge, we
have only to set off  to the left and 50 -« to the right of ¢d, and
the points so determined are the new position XY, of the
supports. The verticals through X; and ¥, cut R,R and ER,
in, say, G, and @, and GG is the closing line. GG, cuts ¢d in
Gy, say, then G,R, gives the B.M. at of (which is now the
vertical through @).

Now @, divides G,¢; in the ratio 2:50 - 2. If, therefore, we
could find the locus of the points dividing the closing chords in
this ratio, we could read off at once the vertical distances between
the locus and R, R, ... R,, giving the B.M. at the point required
as the engine travels along the bridge.  This locus is @ straight line.

(26) Find the closing lines of the B.M. diagrams for points distant 10,
20, 30 and 40 ft from X, and measure the maximum B.M. at those points.

(27) Set up ordinates at points along X ¥ corresponding to the maximum
B.M.’s determined, and join the end points by a straight line. It is the
maximum B.M. diagram for all points on the bridge, as the engine, being
wholly on the bridge, travels from left to right.

*A straight line of variable length moves so that its end
points describe straight lines, the ratio of the distances moved
through by these end points being constant, the locus of the
point dividing the moving line in a constant ratio is a straight
line.
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EyE; and G( (Fig. 292) are any two positions of the moving
line.

As @ and G move goﬁo is always the same.
55

S divides B R in a given ratio.

Join G4 R;, and draw SS, parallel to G R, cutting G, RB; in S;,
then draw S,S, parallel to B,G; cutting G, in S,.
RS_GS G55,
SE; SR, S,G;

Then, since

F1e. 292.

S, must divide GG in the given ratio.

But S8, bears a fixed ratio to G R,,
and S5, » » G Ry ;

51152 is constant if gzgz is constant.

Also the angle 8,8,8 is equal to the angle at R, and is there-
fore constant. Hence, whatever the position of S; and S,, the
triangle SS.S, retains the same shape; the angle S,98; is
therefore constant; and since SS is always parallel to By R, S,
lies in a fixed direction from S, i.e. the locus of S; is a straight
line through S.

Referring back to the B.M. diagram, we see that this locus
may be drawn by finding out where it cuts B £ or E;E, and
joining the point so determined to the given point in E,R,.

When @, comes to R, then G; must be 50 ft. horizontally
to the right of R, and hence where the locus cuts I is deter-
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mined by dividing RG, in the given ratio. Since, for the special
case drawn, the ratio is unity, S is at M and S, is at M, where
the horizontal distance between B and M is 25 ft.

Similarly, if the point for which we want the B.M. is at a
distance z from the left-hand abutment, then, when G, comes
to R, G; must be 50 ft. horizontally from R, and the point
required must be z ft. from R (horizontally); hence set off z
ft. horizontally from R, and project vertically down to ER;.

As regards the limits within which the straight line locus
is available, we must remember that unless all the loads are
on the bridge, the link polygon will not be the same. When
the leading wheels come to the right-hand abutment, ¢.c. when
the right-hand abutment is at de, the point distant « from the
left-hand abutment will be 50 —2 from de, and when the last
pair of wheels is just on the left-hand abutment (i.c. when the
left-hand abutment is at ab) the point required is at # ft. to
the right of ab.

When only part of the train is on the bridge, only the part
of the link polygon corresponding to the load actually on the
bridge must be taken. Thus, if the leading wheels have passed
the right-hand abutment, B,RE, is the last line of the vector
polygon, and the line joining R; to the intersection of E,R,
and eo is the closing line. Similarly, if the first two pairs of
wheels have passed the right-hand abutment, B,RB, is the last
link, and the line joining B, and the point of intersection of
R,R, and eo is the closing line.

By dividing these closing lines in the ratio z to 50 - 2, points
on the locus from which the B.M.’s are measured may be found
for the various cases when all the engine is not on the bridge.

*8.F. Diagra.m for more than one Travelling Load.
The s.F. is determined at any point when we know the closmcr
line of the link polygon.

Take the case of the S.F. at the mid-point.

When the leading wheel is just coming up to the mid-point, M,
is a point on the closing line (Fig. 291); draw then in the vector
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polygon PO, parallel to the closing line through M, (this closing
line cuts EER, at a point distant 25 horizontally from M,).
The s.7. is then O,F; immediately the leading wheel passes the
mid-point, the 8.F. drops to 0,D.

When the second wheel is over the mid-point, }, is on the
closing line; draw then PO, parallel to this line. Just before
the second wheel reaches the mid-point, the s.¥. is 0,D; and
just after passing it the s.F. is 0,C and has changed sign.

Similarly, when the third wheel is just coming to and just
going from the mid-point, the s.F.’s are 0,C and 0,B, and when
the fourth wheel is just going to and from the mid-points, the
$.F.’s are 0,8 and 0,4 respectively.

Draw a horizontal datum line 4,E; for the S.F. perpendicular
to the load lines ab, bc, cd and de. At E, (on de) set down-
wards E;D, and E,D, equal to 0, and 0,0 respectively, at C;
(on ¢d) set downwards C,Dy=0,D, and upwards C;C,=0,C. At
B, (on k) set downwards 0,C, and upwards 0,B. At 4, (on ab)
set up 4,B;=0,B, and 4,4,=0,4.

Then E,D,D,B,C,C;B,B, 4,4, is the shearing force diagram
for the mid-point of the bridge as the engine travels over the
bridge from left to right, from the moment when the trailing
wheel is on the left‘hand abutment to the moment when the
leading wheel is on the right-hand abutment.

The maximum value of the S.F. at the mid-point is seen
from Fig. 291 to be when the trailing wheel has just passed
the mid-point.

MISCELLANEOUS EXAMPLES. IX,

1. A beam 30 ft. long, supported at the ends and weighing 1000 lbs.,
carries a load of 1500 lbs. 10 ft. from one end. Shew how to find the
moment of the force tending to bend the beam at any point ; shew in a
graph this moment for all points of the beam and find where the beam
is likeliest to break. (Home Civil, L., 1905.)

2. A beam 40 ft. long is loaded with three weights of 5, 15 and 10 tons
placed 10 ft. apart, the 15 ton weight being at the centre of the span.
Draw the diagram of the bending moments and the shearing stresses.

(Admiralty, 1904.)
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3. A beam is in equilibrium under any system of parallel forces, acting
in a plane which passes through the axis of the beam. Explain what
is meant by the shearing force and the bending moment at any section,
and shew how to determine their values.

The beam 4B is 20 ft. long, and rests horizontally on two supports,
one at A, the other 5 ft. from B. There is a load of 2 tons midway
between the supports, and a load of 1 ton at B. Draw a diagram for the
bending moments along the beam. (Patent Office, 1905.)

4. TFind the stress diagram of a triangular crane 4 BC, of which 4B is
the vertical post, AC a horizontal beam supported by a tie rod BC, due to
a load of ¥ tons carried at a point D of AC. Prove that the bending

7
moment at D is W 4 ‘[)4.0‘[26 ft.-tons. (Inter. Sci., 1902.)

5. Draw a rectangle A BCD and its diagonals AC, BD intersecting at
&, the lengths of 4 B and AC being 6 ft., and let its plane be vertical and
AB horizontal. Let 4C and BD represent two weightless rods, turning
freely round a pin at &, with their lower ends 4, B connected by a thread,
and standing on a horizontal plane. If a weight is hung at C, find the
pressure on the ground, the tension of the thread, the stress on the pin at
£, and the stresses in the rods themselves.

How would the results be affected if ¢ and D were connected by a
thread instead of 4 and B? (B. of E., II., 1902.)

6. BC, C4, AB are three weightless rods formed into a triangular
frame ; their lengths are respectively 10, 8, 6; the frame is hung up by
the angular point 4 ; a weight of 100 1b. is hung from the middle point of
BC. Find the stresses in BC.

Find also what difference it would make in the stresses if 50 lb. were
hung at B and 50 1b. at C, instead of 100 1b. at the middle of BC.
(B. of E., IL., 1903.)

7. Draw bending moment and shearing force diagrams for a beam
loaded as follows:

A uniformly distributed load of 3 ecwt. per foot run covers % of the span

from one abutment, and the span is 60 ft. Mark on your drawing the

position and amount of the maximum bending moment.
(B. of E., ITI., Applied Mechanics, 1904.)

8. A bridge has a span of 72 ft. Draw the bending moment and
shearing force diagrams for a point distant 9 ft. from the right-hand
abutment as an engine travels from the left to the right-hand abutment.
The distances apart of the centre lines of the wheels are 7', 5" 67, 7' and
8 3” from the leading wheels backwards, whilst the loads on the wheels
are 8§ tons 19 cwts., 8 tons 19 cwts,, 19 tons 16 cwts., 19 tons 16 cwts. and
17 tons 0 ewt. in the same order.



CHAPTER X.
STRESS DIAGRAMS (Continued).

IN designing roof trusses, etc., the engineer has to take into
account not only the permanent loads but also the pressures due
to wind and snow.

Indeterminate Reactions. The wind pressure, being normal
to the roof, has a horizontal component tending to slide the
- roof off its supports. This is, of course, resisted by the walls,
but how much is borne by each wall it is generally impossible to
say, since a given force may be resolved into two passing through
fixed points (the points of support) in an infinite number of ways.
This does not mean that the reactions of the supporting walls are
indefinite, but simply that further information is necessary to
determine them.

A similar difficulty occurs in the attempt to determine how
much of the weight of a door is borne by each of the two hinges.
Here the indeterminateness is due to not knowing the exact
relation between the parts of the hinges serewed to the door and
the parts screwed to the door post.

‘When the door is put into position, it may happen that the
upper hinge parts only come into contact, and then the whole
weight of the door is borne by the upper hinge ; similarly for the
lower hinge. Again, if the upper hinge parts come into contact
first, the wood may give slightly, so that finally the lower hinge
parts come into contact ; in this case we must know a good deal
about the elastic properties of the wood and hinge before the
hinge loads can be determined.

T.G. ¥
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‘The hinge parts on the post being at slightly different distances
apart from the corresponding parts of the hinges on the door, the
latter may have to be forced into position and any amount of
compressive or tensile stress may thus be brought into play at
the hinges. Finally, change of temperature, or accident, may
alter the initial positions of the various parts.

Reactions made determinate. In heavy gates it is mnot
uncommon to have one hinge only near the top, the lower
being replaced by a vertical iron plate against which the lower
part of the gate (or rather a rounded iron fixed to the gate)
presses. The forces in this case are determinate, since the
reaction of the plate must be horizontal.

A similar device is sometimes used for large roof trusses. The
truss is hinged (pin-jointed) to one wall, the other end of the
truss forms an iron shoe jointed to the axle of an iron roller,
which rests on a horizontal iron plate on the top of the wall.
The reaction of the plate on the truss is therefore vertical and
the resultant of the external forces being known, the reaction at
the hinge can he determined, and therefore the stresses in all
the bars.

Reactions and Stresses due to Loads and Wind
Pressure.

ExavpLE. PQRST (Fig. 293) represents o roof truss, pinjointed
at P, with an sron roller shoe at Q. The loads at T, S, and R due
to the roofing and snow are 1, 1-3 and 175 tons.  The wind pressure
is equivalent to forces of 0-25, 05 and 02 tons at 8, R and Q
perpendicular to the roof. Determine the veactions at P and Q, and
the stresses in the bars.

Given PQ=30 ft, QR=RS=19 ft., and that the base and
altitude of the central triangle are 113 ft. and 8 ft.

Draw the truss to scale and letter the spaces; then draw the
vector polygon AB, BC, CD, DE of the forces to scale.

Project on to the vertical and obtain 4 BC\D,E,; then EE is
the horizontal force borne by P.
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Take any pole P, of the vector polygon and draw the link
polygon for the vertical forces AB, BC;, C,D,. Determine the
vertical reactions at P and @ due to these hy closing the link

TTTTTTTTTT
o

®]

T
xI
‘1A SUOJ,

I

E
Fic. 293,

polygon. In Fig. 293 these are D,;0, and OA. The total
vertical reaction at @ is E,0,. Draw 00, equal and parallel to
EE,, then OA is the total reaction at P, and EO that at ¢.
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The vector polygon for the external forces is now 04 BCDEO.

Another way would be to letter the spaces between the
vertical loads and the wind pressures as indicated, ¢, and d,, and
draw the link polygon for all the forces AB, BC,, C,C, CD,, D,D,
DE and determine the axis of the resultant. Then find the
point of intersection of this axis and the known line of reaction
at @ and join P to this point. The reaction at P is thus
determined in direction, and the forces at'P and ¢ will be given
in the vector polygon by drawing lines from 4 and E parallel to
the reaction lines.

Draw now the stress diagrams for the bars in the usual way,
and tabulate the results. Shew in the frame diagram those bars
which are in compression. .

(1) Find the stresses in the bars if @ be pin-jointed and P be on a
roller. Tabulate the results.

(2) Find the stresses in the bars on the supposition that P and ¢ each
bear half the horizontal thrust of the wind.

(3) Find the stresses on the supposition that P and @ are fixed and the
wind pressures at § and R can be replaced by forces through P and @
parallel to them.

(Fixing @, in addition to P, renders the frame over rigid, and merely
putting the frame in position may set up large stresses. Again, suppose
the temperature rises, then the bars tend to elongate whilst the fixed
points P and @ resist these elongations. Hence, stresses will be set up
quite independently of the loads. We are, therefore, driven to further
assumption that the truss can be fixed in position without causing stress,
and that the temperature does not change. These suppositions are some-
times made in books dealing with actual engineering structures, but there
is no real justification for them, see also pp. 337 and 338.)

(4) Find the stresses in the bars of the queen post truss of Ex. 21,
Chap. VL. (p. 225), if @ be pin-jointed, and P on rollers, and if the normal
pressures due to the wind at 7, 8, B, @ be 025, 0'5, 0'5 and 025 tons
weight.

Stresses found by Moments. On p. 248 was given a
method of sections for finding the stresses in one or more
particular bars by the resolution of forces into three components
lying along three non-concurrent lines. A similar method of
sections combined with the moment construction will also often
give the stresses in particulars bars.

For this method to be effectual we must be able as before to
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make an ideal section of the frame cutting the particular bar
for which stress is wanted, whilst the rest of the cut bars are
concurrent.

A good example of this moment method is afforded by the
suspension bridge problem already considered from another point
of view in Chap. VL, pp. 242-248.

Suspension Bridges. In suspension bridges, the roadway is
supported by two sets of eguidistant vertical rods (tie-rods) which
are attached, at their upper ends, to the pins of long linked
chains supported on pillars at the ends of the bridge. The
pillars are kept vertical either by passing the chains over their
tops and fixing them to blocks in the ground, or by means of
separate tie-rods (hackstays).

In Fig. 284, PQ represents the roadway supported by eight
tie-rods (only a few are taken for the sake of simplicity). PR and
SQ are the supporting pillars, BT and SU the tie-rods keeping
the pillars in a vertical position.

The problem is : Given the span PQ (60 fi.) of the bridge and the
dip of the chain, i.e. the vertical distance of the lowest point L from
the highest S (15 ft1.), fo find the lengths of the various links, their slopes
and the stresses in them.

If the roadway be uniform, each vertical tie-bar bears an equal
fraction of the total weight. Let this be w (3'5 tons).

Since the position of the chain cannot depend on the slope of
the tie-rods, we may suppose these rods replaced by a light rigid
strub joining BS. In this case PR and @S must react on E and S
with equal forces of 4w (14 tons).

Number the spaces as indicated and set out the load vectors
AB, BC, CD, DE, EF, .... From E draw EO perpendicular to
AE, and make EO represent 10 ft. to the scale to which the span
and dip were drawn.

Draw the link polygon for the pole 0, starting with the first
link, parallel to 04, through B. The middle link eo will
evidently from symmetry be horizontal, but in all probability
will not go through L.
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Through any point Z in the lowest link draw the vertical
X17 cutting RS in X and the desired position of the lowest
link in Y.

In the vector polygon draw OZR perpendicular to ¥'S, and RO,
perpendicular to ZS. Then 0, is the correct position of the pole
and B0, is the stress in the lowest link.

This last construction is simply to find E0; so that £0,_XzZ

E0 XY
and this is done by making the sides of REO and REO,
perpendicular to the sides of XV and XZS.

R M X S
T Al
LA
N .
z
i %
'd
0
!
T B QpF U
o
Tons wt.
8 10 12 14

Fic. 204.

Draw the link polygon with O, as the pole of the vector
polygon, and see that if the first link be drawn through R the
middle one will pass through L.

Now draw to scale the supporting pillars EP and 8¢, length,
say, 18 ft, and the tierods R7 and SU making 40° with the
vertical. In the vector polygon 40, gives the tension in the link
oa: hence draw through 0, a line parallel to RT (link polygon)
cutting A% in N ; then N4 is the reaction along PE and O,V is
the tension in RT.

Proof. If O be the pole giving Z for the lowest link, and
0, the pole for ¥, then XV. EO; measures the sum of the
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moments of all the forces to the right of XV about any point
in XYZ (Chap. VIL, p. 291). Sinilarly, XZ. E0 measures
the sum of these moments, and, therefore, XV EO,=XZ. EO.
0, was determined from this equation; therefore EO, gives
the stress in the link LY and the other links must be parallel
to the corresponding lines of the vector polygon.

The position of 0, may also be determined hy calculation.
The distances of the load lines from the middle point of the
lowest link are all known; the reaction at S is also known,
viz. half the sum of the loads. Hence, taking moments about
the middle point of 2S, we have the sum of the moments of the
external forces=stress in the middle link multiplied by X7V.
This stress must be set off from Z along EO on the force
scale ; it should come to 0.

Notice also that the horizontal component of all the tensions
is the same in magnitude, hence the forces in the cut hars at
X and ¥ must form a couple of momental area equal in magni-
tude and opposite in sense to the couples formed by the reaction
at § and the resultant of the loads ¢f, fg, gh and Ai.

If the number of the rods be odd no link will be horizontal.

The construction for finding the pole of the vector polygon
is still the same. Z must be taken on the middle load line,
and O on the perpendicular through the mid-point of the
resultant load vector.

(5) Draw the stress diagram for the same span, dip and load per
vertical tie-rod if there be 9 vertical tie-rods and 10 spaces.

(6) The span is 100 metres, the dip 8 metres, and there are 12 vertical
tie-rods each bearing a load of 20,000 kilogrammes. Draw the chain to scale.

The Suspension Bridge and Parabola. The connection
between these was given in Chap. VI, p. 247. A much simpler
proof by moments can now be given.

Let 7 (Fig. 295) denote the lowest vertex and @ the #™ one
from 7, so that between 7 and @ there are n— 1 equal loads each
of magnitude w. Since the loads are equidistant, the resultant
load must be vertical and midway between 7 and Q. Take the
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horizontal and vertical through / as the axes of coordinates.
Then if z and y are coordinates of @, the resultant load is at

a distance % from V.

Let QM and VM be the ~ E
direction of the links at @ |
|

|

|

n-rn
1

Q

and 7'; then since the chain
between 7 and @ is in equili-
brium under three forces, the Lo
total load and the tensions :
along VM and MG, these v |
must meet at a point on the (D
resultant load, i.e. at 2, whose Fro. 295.
abscissa is 4o

Take moments about @, then the moment of the total load
acting through J is equal to the moment of T, in VM ; but

1
T, M :‘Uz)

T, is equivalent to T horizontally and %” vertically, hence,
taking account of sense,

w(n-1)3 =Ty —4uz;

ow. ng =T,
and if 4= distance apart of tie rods
nh=1.
.owa? w a2 .
--';Z'E= oY 0ry=§—170'z', ............. (l)

a parabola.
T, is determined when the span and dip and number of
spaces are known. Say span=100 ft., dip=20, A =5,

h 902 . (507,
then 0=37" 55
L Ty=125w.
If the middle link be horizontal (Fig. 296),
then MN= nh
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and, taking moments about @,

nh

w(n—l)——2—=]’07j; E

. }L E

and since z-3=(n-1)h, |

$+ZL»—7L]L- |
2 > T, J((n-f)'w N x*

2 Fic. 206.
n(n—l)]ﬂ_xg___’
_w [, W

y_ZhTO (x 4> ......................... (11)

as on p. 248.

Links forming a continuous Curve. However large =
may be (i) will be true always, but both / and w become smaller
and smaller as the number of links is increased. When the

loading is continuous, %’ is the load per horizontal unit of

length (or foot run), and the chain assumes a continuously
curved form.

Such a loading and chain cannot be obtained easily but very
near approximations are possible. Telegraph and telephone
wires, for which the sag in the middle is small, are cases in
point. The sag being small, the distance between the points
of support is approximately the same as the length of the wire,
and hence the load (which is continuously applied) may be
taken as constant per ft. run.

If the wire or cable were of variable section, so that the
weight per horizontal ft. run was constant, the above supposition
would hold whatever the sag.

w

It 7

The equation to the curve assumed by the chain may also be
determined directly, as in the following article.

=W then y =0—]plf—z2.
<40
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Uniformly loaded Chain. In this case the number of
vertical tierods is supposed so great that the roadway may
be regarded as being continuously supported. Let /7 =weight
of roadway per unit length ; then the weight of any length
is Wz, and the axis of the resultant weight acts through the
mid-point of the length z.

! Q
i
1
AT
i
vV T, M N
Ywx
T,
wx
T
Fic. 297.

Let V' (Fig. 297) be the lowest point of the chain, then the
chain is horizontal at that point. Let ¢ be any other point on
the chain. Take the horizontal and vertical through 7 as axes
of coordinates, # and y being the coordinates of ¢. Then, for
the equilibrium of the bit of chain 7, the tensions at @ and V7
must intersect on the axis of # mid-way between ¥ and N, i.c.

tZ
a 2-
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Draw the vector polygon for J/ ; then, from the similar triangle,
Wa

>

72

"ﬁ [ TR B B
SO

0

[We might have established this by taking moments about ¢
when T.y=Wax. %ﬂil

The above construction shews us how to draw a tangent to
a parabola (for the tension T' at @ is in the direction of the
tangent at @), viz. to draw the tangent at @), first draw the
ordinate QN, bisect VN at M, and join @ to M ; then QM is the
tangent at Q.

(7) A cable is to be made so that when erected its span will be 50 ft.
and dip 15 ft. It is to be of variable section so that the weight per
horizontal ft. run is constant and equal to 100 lbs. Draw the tangent at
the highest point, and determine the tension at the highest and at the
lowest point of the cable.

(8) The span of a suspension bridge is 100 ft., the dip 20 ft., the
number of vertical tie-rods for each chain being 8, and the load on each
5 tons ; determine the stresses in the links and their lengths.

(9) In Ex. 8if the tie-rods RU and SV be inclined at 45° to the vertical,
determine the stresses in them, and in the supporting pillars PR and QS.

(10) The span being 100, the dip 30, and the number of vertical tie-rods
13 each bearing a load of 4 tons, determine the stresses in them, and the
lengths of the links.

(11) Construct the parabola of Ex. 7 and find approximately the ratio of
the cross sectional areas at the highest and lowest points. (If O is the
lowest and H the hi%hest point, join OH and take any point P; on it.
From P; go horizontally to P, on the ordinate at H ; mark P where OP,
cuts the ordinate at P;. Then P is a point on the parabola. The ratio o
a small length of the curve at A to its horizontal projection is approximately
the ratio of the cross sections at O and H).

(12) The dip being 5 ft. and the span 100, draw the parabola. The
load being 10 lbs. per horizontal foot, find graphically the stresses at the
lowest and highest points of the chain. This example is approximately
the telegraph line problem.

(13) The span being 50 ft. and the load per horizontal foot run being
15 11s., and the greatest tension allowable being a force of 500 lbs. weight,
find the dip, tension and lowest point, and draw the curve assumed by
the chain.
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Stresses in Frames by Moments.

ExaMPLE. The frame QRSTUVW (Fig. 298) is freely supported
at Q and T. The bars QV and UT simply cross at W and are not
pinned there. The loads at R and S are 48 and 6°2 fons respectively.
If QT =30 fi., QV =225 ft., VI =115 ft. and SV =4 fi.; find the
stresses in the bars.

Draw the frame to scale and letter the spaces. Choose a pole
P and draw the vector and link polygons. Close the link polygon,
and in the vector polygon draw PU parallel to the closing line.
In Fig. 298 the reactions at 7' and @ are C0 and 04.

It will be noticed that at all the points QRSTU and ¥ there
are three bars meeting (double joints), and that therefore the
usual method of resolution is not applicable.

The construction for determining the stress in bg will first be
given and then the proof of its correctness.

Fia. 298.

Draw a vertical through 7 cutting the link polygon and
RS (by).

Measure p, the length intercepted on this vertical between 7
and RS, and £, the intercept cut off by the link polygon.

In the vector polygon draw BG horizontal, and construct (as
in Fig. 298) BG, such that é’kg: g.
BG must be drawn from right to left, not from left to right

as BG,.
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Then BG is the force exerted by by on I, and GB is the force
on 8. The stresses in the other bars meeting at £ or S may
now be determined, viz. draw G'F parallel to gf, and CF parallel
to ¢f, intersecting at F. The vector polygon for S is then BCFGB.

For the equilibrium at 7, draw FH parallel to fk, and GH
parallel to gh, determining H, and the polygon for ¥ is GFH.

For the equilibrium at 7, we have €O, OH, HF, FC, and since
H and O are already marked we must have HO parallel to Jo.
If it is not so, some mistake must have been made in finding BG.

Since @7 and UT have two pairs of letters to denote them,
eo and gh and ge and ho, the stresses in these bars will be given
twice over in the stress diagram. See that the results are
consistent.

Proof. Suppose the frame cut through as indicated by the
dotted curve (Fig. 298). Then any rigid body within may be
considered as in equilibrium under the action of the load at R,
the reaction at ¢, and forces in the bars RS, UT and QV applied
at the cut ends of the bars. The sum of the moments of these
forces about any point must be zero; hence, taking moments
about 77 :

Moment of force at @ +moment of force at B+ moment of force
in BES must be zero. :

The algebraic sum of the first two is given by

bk,
and from Fig. 298 this moment must be negative or clockwise.
Hence if 5 denote the magnitude of the force in by acting on the

body hk=p.s,

and the force must push towards R, since its moment is positive
or contraclockwise.

The bar by or RS must therefore be in compression. If, now,
we consider the equilibrium at S, the force at S must push, and
therefore, since BC is downward, GB must be from left to right
as indicated.

(14) Find the compression in by by resolving the resultant of the external
forces at @ and R into three along RS, @V and UT.
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ExaMPLE. The frame PQRST (Fig. 299) ts freely supported at
P and Q, and loaded at T, S and R with 1, 2 and 1-5 tms. Find
the stresses in the bars.

PT=TS=8E=RQ=9 and TPQ=45°
PU=106 and UPQ=13",
SV=63 and VSW=46".

Draw the frame to scale and then determine the reactions
at P and @ by the link polygon. It will be seen that the
usual process for determining the stresses stops at 7 and U,
since at those points are three bars with unknown stresses in them.

If we make an ideal section, as in Fig. 299, then any rigid body
within the dotted curve may be considered as in equilibrium
under the vertical forces at 7' and P and forces in the bars
bj, fi, io, and the sum of their moments about S must be zero.

The vertical through S cuts the link polygon in M and N;
and hence the sum of the moments of the vertical forces at P
and T is given by MN. P, X, where P X is the perpendicular from
P, the pole of the vector polygon, on to the load vector 4.D.

Also two of the bars §j and ji pass through S; hence, if s is
the stress in 40 and SZ the perpendicular from S on the bar,
oi the sum of the moments of the stresses in the three bars
about S is given by s.SZ, and hence

s.8Z=MN.PX.
Construct, then, s=XY,
XY MN
so that X7, =7

and the stress in 40 is determined.

Again, the sum of the moments of the external forces at T
and P is clockwise or negative, hence the moment of T' must
be contraclockwise, or I' must pull on the body enclosed by
the dotted line and the bar 70 must be in tension.

Hence set off O parallel to oi and of length X7

The point L is determined by drawing 4L and OL parallel to
al and ol. Hence K is determined by drawing LK and IK
parallel to % and ik Since for the point L the action of the
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bar lo is given by LO (0AL being the vector triangle), for the
point U we must have the sense OL, and since oi pulls at U,
I must be on the left of o, as in Fig. 299, so that the vector
polygon for U is IOLKI.

E
Tons wt.
Lo i i 3 ki 3
Fic. 299.
The point J is determined by KJ and IJ parallel to % and 4.
Hence B and J are known, and if the drawing has been done
correctly, BJ will be parallel to &.

Notice that, if a mistake had been made in deciding whether
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70 is in tension or compression, the direction of BJ would have
been totally different from & ; this, then, gives a test as to the
correctness of the reasoning and of the drawing.

For the theory of reciprocal figures as applied to stress diagrams
the student is referred to Cremona’s Graphical Stutics,* edited by
Professor Beare, and to a very elementary work by Professor
Henrici and Mr. Turner on Vectors and Rotors.t

(15) Fig. 300 gives a not unusual form of truss supporting the roof
shelter on a railway platform.

The loads at P, ¢, R, S, T, U, V due to the roofing and snow are
0-8, 27, 3'8, 52, 5, 4'7, 1'5 cwts. Find by moments the stress in WX and
compare with that obtained by the usual graphical method. R7T=5,
PW=385 RW=23.

(16) Find the stress in SR, of the cantilever (Fig. 301), by the method of
moments. The load at @ is 3 tons. Test the result by resolving the load
at @ into three components lying along 7V, 7Q and SR. SR=52,
RV=55, TV=595, 1S=11, SV=94, RQ)=13'5, 7Q=11'4. Determine
the stresses in all the other bars.

(17) Asin the previous example, only the load is suspended from a chain
which passes over a smooth pulley at ¢ and is fastened to 2/, the mid-
point of 7'S.

MISCELLANEOUS EXAMPLES. X.

1. Prove that a chain made of equal links will hang in equilibrium
in a vertical plane with the links parallel to lines drawn from a point
to cquidistant points on a vertical line; and determine graphically the
stress at a joint. (Inter Sci., 1902.)

2. A heavy chain is supported by its ends 4 and B, which are 12 ft.
above the lowest part of the chain. The horizonal distance between
A and B is 66 ft. and the weight of the chain is 20 lbs. per ft. of its
horizontal projection. Draw out to scale (10 ft. to an inch) the shape
of the chain and find the force on the chain at the lowest point. What
is the maximum foree in the chain. (A.M. II., B. of E., 1903.)

3. A suspension bridge two hundred feet span between the centres of
the towers has cables having a dip of 30 feet ; the backstays are anchored
at a distance of 60 feet from the centres of the towers; the load on each
cable is 4 tons per foot run. What is the stress on the cables at the centre
of the bridge, at the towers, and in the backstays ?

(Admiralty Examination, 1904.)

4. Find the stresses in the bars of the trusses shewn, Figs. 302 and 303
for equal loads.

5, Find the stress in ZY of the French roof truss, Fig. 304, by the
method of moments and thence the stresses in all the bars. The loads
at R, S, T, U, V, W, X being 1500, 2700, 1600, 3400, 1800, 3250, 1750
Ibs. weight respectively, YZ=QZ=2ZU=47, QU=8'5, and QR=14, and
the loads are equidistant.

* Clarendon Press. +Published by Mr. Edward Arnold,
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Fra. 300.

Fra. 301

Fia. 302 l
S

Fi1c. 304.
T.G, Z



CHAPTER XL
WORK.

A FORCE acting on a body is said to do work when the body is
displaced.

The work done by a constant force acting on a body is
defined as the product of the displacement of any point on the
axis of the force, and the force component in the direction of
the displacement.*

Thus, if in consequence of the motion of the body, the point
A (Fig. 305) on the axis of the force OF moves from 4 to A4,
the work done by F is the product A4A4;.OF,. where OF, is
the force component in the direction of 4.

If the force component has the same sense as the displacement,
work is said to be done 0y the force, and it is considered positive.

If the force component has a sense opposite to that of the
displacement, work is said to he done against the force, and this
is considered as megative work done by the force. The reason
for this sign convention is not difficult to see; suppose two
forces differing only in sense act on the body, then, so far as
motion is concerned, these are equivalent to no force at all,
and therefore in any displacement no work is done on the whole.
But the components of the forces in the direction of any dis-
placement are equal in magnitude, and opposite in sense, hence
the work done by each force must be equal in magnitude, and
if one be considered as positive the other must be negative.

* The other component is supposed perpendicular to the first one.
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Unit of Work. In Statics the unit of work is usually taken
as the foot-pound, or the work done hy a force of 1 Ih. weight
when the body is moved 1 ft. in the direction of the force.

If the unit of force be a dyne, the unit of work is called an
erg, and is the work done by one dyne when the body is dis-
placed 1 centimetre in the direction of the force.
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Graphical Representation. Work done is represented
graphically by the area of a rectangle of which one side represents
to scale the displacement, and the adjacent side the force com-
ponent in the direction of the displacement. To measure this area
the rectangle is reduced to unit base either (i) the unit of length,
when the altitude is measured on the force scale, or (ii) the unit
of force, when the altitude is measured on the length scale

(pp. 38-40).

Moment of a Force and Work done by a Force. These
are both represented graphically by an area, but have totally
different physical interpretations. The moment of a force is a
vector quantity, its plane is determined by the plane of the force
and the point, and its sense by the sense of the force. The area
representing the work done by a force has no special plane,
and may be supposed anywhere ; it is a scalar area though it
may be positive or negative.
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Exampie.  The shafls of @ cwrringe are inclined ab an angle of
15° to the horizontal.  If the pull transmitted «long the shafts from
the horse be 123 Ubs. weight, find the work done by this force in
moving the carriage through 137 f.

Draw vertically upwards a line 0.0 (Fig. 306), of length 685",
and set up along it 0U=5". Through 0 draw (i) a horizontal
line OF,, and (ii) OF sloping at 15° and of length 12:3 cm.
Draw FF, perpendicular to OF;, and mark on OF; the point
W, where DW, parallel to UF}, cuts it.
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Measure OW on the force scale, and multiply by 10; this gives
the number of foot-lbs. in the work done by the horse on the
carriage.

Proof. OF, is the component of OF in the direction of the dis-
placement, and hence the work done is measured by OF;. 0D, i.e. by
the area of the rectangle having OF; and 0D as adjacent sides.

This rectangle is equal in area to OU. 0%, and OU represents
10 feet ; hence measuring O/ on the force scale gives the work
done in 10 ft.-1bs., and therefore 10 x O on the force scale gives
the work done in ft.-bs.
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(1) The weight of a bucket of water is given by a line of length 47 cm.
(scale 1”7 to 10 1bs.). Find the work done in ft.-lbs. against gravity in
raising the bucket from the bottom to the top of a well 76} ft. deep.

(2) A horse pulls a canal boat with a force of 151 lbs. weight, the tow
rope makes an angle of 25° with the bank. Find the work done in ft.-1bs.
on the boat in pulling it along 117 ft.

(3) If a hole is punched through a metal plate 0-78 inches thick, and
the average resistance to the force of the punch is of magnitude 23700 Ibs.
weight, find the work done in ft.-1bs.

(4) A weight of 1720 1bs. by falling through 27-8 ft. lifts, by means of
a machine, a weight of 970 Ibs. through 47-3 ft. Find the total work
done by gravity.

(5) The inclination of a plane is 25°; find the work done against gravity
in pushing a body weighing 7'3 ecwts., 157 ft. up the plane.

(6) If the body be pushed up the plane by a horizontal force of 8-2 cwts.,
find the work done by this force.

The work done by a force when a point in its axis is
displaced, is the product of the force and the component
displacement in the direction of the force.

This is really an alternative definition to that given on p. 354.

Let OD (Fig. 307) represent the displacement, and OF the
force under consideration ; then, according to the first definition,
the work done=OF, . 0D, where FF, is perpendicular to O.D.
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According to the alternative definition the work done = OF. 0D,
where DD, is perpendicular to 0D;.
But OF,F and 0D, D are similar triangles,
OF, 0D,

and hence P00 " 0D.OF,=0D,.0F.
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More shortly, if 6 is the angle between the force and the
displacement, and f and d are their magnitudes, then the

work done = f. d cos d (according to second definition)
=fcos 6. d (according to first definition).

Work and Motion. It should be observed that for a force
to do work or work to be done against a force, motion is essential.
Unless some point on the line of action of a force moves, and
the displacement has a component in the direction of the force,
no work is done by or against the force. Thus, however great
the force which a horse exerts on a cart in trying to start
it, no work is done by this force on fhe cart unless the cart
moves. If by means of a second horse the cart be made to
move, then the first horse does work on the cart, the amount
being his pull multiplied by the component displacement. If
a force acts on a body at right angles to its displacement, no
work is done by the force; thus in the case of a body pushed
along the surface of a horizontal table no work is done by the
weight of the body because its line of action is perpendicular
to the displacement.

If, then, we know the work done by a force to be zero, we
may have either (i) no displacement, or (ii) a displacement
perpendicular to the force.

We are not here directly concerned with the force or forces
to which the motion as such may be due. For instance in
Exercise 1, the actual work done by the person raising the
bucket is not the same as the work done against gravity. To
find the former from the latter we must know the speed of
the bucket and the work spent in giving it kinetic energy as
well as the work done against the resistances.

It is true, of course, that if we knew the force exerted by the
man the work done would be this force x the displacement.
The difference between this work, and the work done against
gravity, gives the energy imparted to the bucket, and the work
done in overcoming resistances. Similarly, in the example on
p. 356, we are concerned with the work done by the force



DISPLACEMENT AND PATH. 359

applied to the carriage; this may not be the same as the work
done against the resistances to the carriage motion, hecause the
carriage may be going faster at one time than at another.
Shortly put, we are concerned in Statics only incidentally with
the forces causing motion; our problem always is to find the
work done by certain given forces when the body is displaced,
the work being measured according to the definition on p. 354.

Displacement and Actual Path. The actual path of the
displaced point is immaterial; so long as the displacement is
the same, the work done will be the same.

Let F be the force and AA,
the displacement of -/, then (Fig.
308) the work done is F. A.A4,.

If the displacement had heen
first from .4 to B, and then from ; :

B to A, the work done would B2 A,
have been A Fro. 68 F

F.AB,+ FB,d,=F.AA4,.

This decomposition of displacements may he supposed repeated
without limit, so that 4 may be supposed to move on any
curved path from 4 to A4, and the work done by F will still
be F. 44,.

(7) Draw a circle of 3” radius, and suppose it to represent a vertical
wheel of radius 6'. Find the work done by gravity when a load of 0-34
ton is moved round vhe wheel from the lowest position through one, two,
three and four quadrants respectively.

Change of Direction of Force. If the force changes its
direction as the point on its axis moves, but the angle between
the force and the direction of the motion remains unaltered, the
work done will be the product of the distance moved through
by the point and the force component in the direction of the
motion at any instant.

Thus, if the point move in a circle, and the force is always
a tangent to the circle, the work done in a complete revolution
will be the force x the length of the circumference.
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(8) A body is moved through a circular arc, of length 25 ft. and radius
19 ft., hy a force of 34 Ihs. weight, which always makes an angle of 70°
with the radius. Find the work done on the body in ft.-lbs.

(9) A man pushes at a capstan bar with both hands. One ha.nd, at a
distance of 9 ft. from the axis, pushes perpendicular to the bar with a force
of 30 lbs. weight, the other pushes with a force of 38 lbs. weight at a
distance of 78 ft. from the axis, and inclined to the bar at an angle of 72°.
Find the work done in ft.-Ihs. during a complete revolution.

Work done against Friction. In the Chapter on Friction
it was explained that the coefficient of friction was the ratio
of the force tending to produce motion to the normal pressure
when the body was just on the point of motion. Such a
coefficient of friction is therefore not at once applicable to

hodies in motion without further experimental evidence.
Experimental Laws of Friction for Bodies in Motion.

It has heen found for bodies actually sliding one on the other
that the friction hetween them is

(i) proportional to the normal pressure ;

(il) independent of the relative speeds of the bodies ;

(iif) ’ ’ area in contact ;

(iv) dependent on the nature of the surfaces ;
50 that for bodies in motion, if # denoted the friction and N
the normal pressure, F=pN,
where p is constant for any two particular surfaces, but varies
for different surfaces and is called the coefficient of dynamical
friction. This coefficient of dynamical friction is slightly less
than for limiting friction.

ExAMPLE. 4 rough plane is of length 13 ft. and height T-8 fi.
Find the worl; done by the least possible equilibrating force * when the
body of weight 24-8 lbs. is displaced from the bottom to the top of
the plane.  The angle of friction for the plane and body is 18°.

Draw the plane 4CB (Fig. 309) to scale (4C=13 cm. say),
and draw ON perpendicular to 4C.

*A body is not necessarily at rest when in equilibrium ; it may be moving
with constant velocity.
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Set, off O/ vertically to represent the load of 248 Ibs. weight,
and draw OP, making 18° with ON, on the side away from O/,
and then #P perpendicular to OP.

C
Project VP to W, P, on
the plane by lines parallel
to ON. Along W,V set off
w,Q=13cm. . B
and W,U=10cm.

Draw @@, parallel to UP;. Wi
Measure /@)y on the \
force scale, and multiply N
by 10; it gives the num- :
ber of ft-lbs. of work

done in sliding the body

up the plane.

Fie. 309.

(10) Find the work dune against gravity and also that done against
friction. What connection is there between these and the work done
by the equilibrating force ?

(11) Find the work done when the body is displaced up the plane by
the equilibrant when (i) parallel to the plane, (ii) horizontal.

Find also the work done against friction.

(12) A man pushes a roller up a hill rising 1 in 7, and keeps the handle
horizontal. The resistance is equivalent to a force of 24 Ibs. acting down
the hill. Find the work done on the roller by the man in moving it 12-3’
up the hill, if the roller weighs 268 1bs.

(13) The axle of a fly-wheel has a radius of 27, the weight of the wheel
is 1780 lbs. and the coefficient of friction for the axle and bearing is 0-18.
Find the work done in ft.-lbs. against the friction per revolution of the
wheel.

If a given set of forces acting on a body would keep it in
equilibrium, then the total work donme by all the forces is
zero during any displacement of the body, the forces being
supposed constant. ’
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This is a direct consequence of the fact that the vectors of
the forces form a closed polygon, and therefore the sum of
their components in any direction is zero.

In many cases the forces cannot be supposed coustant for
finite displacements, and we have to consider infinitely small
displacements. In the case of a beam leaning against a
smooth wall and kept from sliding down by a peg at its
foot, the reactions depend on the slope of the beam, and
we cannot at one and the same time suppose the slope altered
and the reactions unaltered.

M.C. and Work Done. The work done against gravity
in raising a body of weight /7 is equal to the work done in
raising a mass of weight /7 supposed concentrated at the
mass-centre of the body.

Let w;, w,, %, ... be the weight of the particles of the bodies,
Y1s Yas Jg» --. their initial vertical distances ahove some horizontal
plane, and Y7, ¥, ... their final distances above the same plane.
Then the work done against gravity is

wy(Yy =) +wp (Yo =) + .o =Sy ¥y = Sy
But Swyy, = y=w, where y is the initial vertical distance of the
M.C. above the plane
and Sw,¥;=YSw, where ¥ is the final vertical distance.

Therefore, total work done against gravity=(¥-7)# the
work done on a particle of weight 7 in lifting it through
the distances ¥ —7.

(On each particle of the body other forces than the weight act,
viz. the pushes and pulls of adjacent particles. These pushes
and pulls constitute the stress of the hody, and since the stress
consists of equal and opposite pairs of forces, the total work
done by these is zero.)

(14) Find by calculation the work done in emptying a cylindrical well
shaft of diameter 3 ft., the depth of the well heing 110 ft. and the top of

the water being 26 ft. below the surface; the weight of a cubic foot of
water is 625 Ibs. approximately.
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(15) ABC is a triangular prism weighing 783 lbs. It rests on the
ground with the face BC, of length 2-37 ft., in contact with it. Bd is
vertical and of length 316 ft. Find the work done against gravity in
turning the prism so that it is about to fall over (i) round the edge at B,
(ii) round the edge at C.

(16) Find Ly calculation the work done against gravily in raising a
cage of weight 727 lbs. from a depth of 236 ft. by a wire rope of that
length, the rope weighs 57 lbs. per yard.

Work done by a Variable Force.

EXAMPLE. A fuorce moves o body in its line of action; for suc-
cessive displacements of 1 ft. the magnitude of the force is 513, 724,
65°7, 42:6, 315, 271, 303, 39-2, 46°9 lbs. weight. Represent the
work done graphically and find its amount in ft.-Ibs.
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On squared paper take two axes of co-ordinates, the horizontal
one to represent displacements to the scale of 1”7 to a foot and
the vertical one to represent forces to the scale of 01" to a
Ib. weight.

Plot the points corresponding to the numbers, and complete
the rectangles as indicated in Fig. 310. Evidently the whole
area of the figure represents the work done. Find the area
in sq. inches; the number of sq. inches multiplied by 10 gives
the work done in ft.-Ibs.
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Suppose we knew that the force changed for every displace-
ment of 67, heing 60, 68, 52, 36, 29, 28, 35, 43 and 47 Ibs. weight
at the intermediate points. Then, plotting these points, we see
that the total work done is represented by the area of the new
figure.

Further, if the force changed continuously instead of suddenly,
we should have, instead of a succession of points forming a
zig-zag line, a continuous smooth curve, and we see that the area
enclosed by this curve, the axes of coordinates and the ordinate
at 9 represents the work done.

(17) The resistance to the motion of a car for various displacements
is given in the accompanying table. Draw a curve giving the relation
between the displacement and the resistance. Divide the total displace-
ment into ten equal parts and erect ordinates at the mid-points. Add the
mid-ordinates by means of a straight strip and measure on the force scale ;
multiply by the width of the strips in feet. The product is the work done
against the resistance in ft.-1bs.

Disf’il;‘%if“em 10 (30| 50 | 70 | 90 | 110|130 | 150 | 170 | 190
Resistance e P . - -
e e | 160 | 184 | 231 | 289 | 304 | 540 | 641 | 709 | 751 | 776

(18) The force in lhs. weight acting on a body is always twice the
magnitude of the displacement in feet and acts in the direction of the
displacement. Find the work done by the force for a total displacement
of 174 feet.

Work done in Spring Extension or Compression.
Experiments shew that when a helical spring is extended heyond
its natural length, the extension is always proportional to the
force applied (up to the elastic limit of the spring), so that if

¢ denote the extension, and # the load, ZV_ is, for the same
spring, always constant (Hooke’s Law).

If the results of an experiment be plotted, say extension in
cms. horizontally, and load in grms. weight vertically, the points
will be found to lie approximately in a straight line—as in
Fig. 311—passing through the origin of coordinates. From the

graph we see that I?V is always constant and is measured by tan a.
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The work done in extending the spring a distance (A4 is
therefore given by the area OA4B to scale, and is measured

by 3$04.4B, ie } the product of the maximum extension
and maximum load.
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(19) A spring is found to extend a distance of 127 cms. beyond its
natural length under a load of 46-31bs. Find the work done in inch-lbs. in
gradually extending the spring from its natural length to 8-7 cms. beyond.

(Draw the straight line graph by setting off 0.4 =127 cms. horizontally,
and 4B vertically a distance of 4'63 inches, and join OB; OB is the
graph. Find the area enclosed by OB, 04, and the ordinate at a point
87 from 0.)

(20) A spring is found to extend a distance of 15 cms. under a load of
176 1bs. Find the work done in gradually extending it from an extension
of 7'3 ems. to one of 17°4 in inch-lbs.

(21) A bar is fixed at one end, and twisted by means of an arm of length
1 ft., fixed at right angles to the length, at the other end. To keep the
free end of the bar twisted through a radian requires a force of 27 1hs.
weight to be applied to the end of the arm. The force applied being
proportional to the angle of twist, find the work done in twisting the free
end from 0°56 to 132 radians.

Work done in compressing Gases. For many gases at
ordinary temperatures and pressures the relationship between
the volume they occupy and the pressure to which they are
subjected is given by the law

Pressure x volume = C (where C is constant)
(known as Boyle’s or Marriotte’s Law).

EXAMPLE. A gas obeying Boyle's Low is enclosed in a cylinder fitted
with an air-tight piston ; to find the work done in compressing the gas.
Suppose when the compression starts at the atmospheric
pressure of 143 lbs. per square inch, the volume of the
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enclosed gas is 100 cubic inches, then the constant above is
14-3x100=1430. Suppose the volume is reduced to 20 cubic
inches.

On squared paper take two axes of coordinates, the vertical
one for pressures, and the horizontal one for volumes. Along
the latter set off OM to represent to scale 100 cubic inches, and
set up vertically MP to represent the pressure of the gas
(14-3 Ibs. per sq. inch).
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Draw a horizontal line through P (Fig. 312), and mark any
point ¥, on it; put a straight edge along OV}, and mark the
point 7, where it cuts the ordinate PM. From 7, go horizontally
to 7, on the ordinate 77, through 77.

7, is a point on the curve whose equation is

P.V=143x100=0M . MP.

Repeat the construction for a number of points like 7, and
obtain, say, nine points between ¥ =20, and ¥=100. Join the
points by a smooth curve @7,P. This curve has for its equation

P.V=143x100.

Find the area enclosed between the curve, the axis OM, and

the ordinates @V and PJM, by the mid-ordinate method, z.e. add
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the mid-ordinates of a number of equally wide strips between
N and M by the strip method, and multiply by the common
width of the strips, the former being measured on the pressure
scale, and the latter on the volume scale.

The product is the work done in compressing the gas in inch-
pounds.

Proof. Pressure meaning force per sq. inch, then if A4 is the
area of the piston in square inches, the total force acting when
the pressure is P is P.A=F, say.

If L is the length of the cylinder in inches, then

V=AL,
and PV:%.A.L:E.L,

and we may take the ordinate to represent the force on the
piston, and the abscissae to represent displacement.

(22) Find the work done in compressing a gas from a volume of 7-32 to
364 cu.-ft., if the initial pressure of the gas was 5200 lbs. weight per
sq. ft.

*(23) The resistance toithe motion of a body in a liquid varies as the
square of the speed, find the work done in reducing the speed from 20 to
11-5 miles per. hour in a distance of 1'6 miles, if the resistance to the
motion is a force of 12'3 tons weight, when the speed is 86 miles per
hour.

*(24) If W, is the weight of a body on the earth’s surface, and W the
weight of the same body at a distance R from the earth’s centre, then
WER?=W,R,*> where R, is the radius of the earth. Find the work done
on a meteorite by the earth’s attraction in moving it from R=8000 miles,
to R=R;=4000 miles, if the meteorite weighs 3 a ton on the earth’s
surface.

MISCELLANEOUS EXAMPLES. XIL

1. Explain the term work.
Find the work done in raising a lift full of people and weighing 2 tons
through a height of 80 feet. Explain the system of units you use.
(Engineer Students, 1903.)
2. A uniform rope hangs by one end, and carries a weight at the other;
shew how to draw a diagram to represent the work done in winding up the
rope, and thereby lifting the weight. (B. of E., II.)

3. Draw a line 4w, and take in it five equidistant points, B, C, D, E,
F; suppose a force (P) to act along Az, and that its value at the points
B, 0, D, B, F are respectively 50, 35, 28, 25, 24 lbs., let the distances
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B, CD, ... represent 8 ft. apiece ; draw a diagram of the work done by
the force, and calculate (by Simpson’s rule, if you know it) in foot-pounds
the work done by the force while acting from 5 to /. (B. of K., II.)

4. Draw a diagram of work in the following case: Six equal weights
(W) ave fastened to a rope in such a way that one follows another at
distances of a foot. The rope hangs vertically with the lowest weight
3 ft. above the ground ; if the rope be gradually lowered draw a diagram
for the work done by gravity on the bodies, when all have come to the
ground. (B. of E., II., 1903.)

5. A load of 10 ewts. is raised from the bottom of a shaft 500 feet deep
by a wire rope weighing 2 lbs. per foot. The rope is wound up on a drum,
3 feet in diamcter. Draw a curve, showing the moment exerted at the
drum throughout the motion, and find the whole work done during the
lift. (Patent Office, 1905.)

6. Shew how to represent in a diagram the work done by a force P of
variable magnitude, which displaces its point of application in its own fixed
line of action from 4 to B. Let P begin with the magnitude 50 Ibs.
weight, and keeping its magnitude constant, displace its point of application
from A to C, a distance of 2 feet ; then from (' to D, a distance of 8 ft., let
P vary inversely (without discontinuity) as the distance of its point of
application from A. Draw the work diagram and find the total work done
from 4 to B. (Inter. B.Se. (Engineering), 1906.)

7. Give the vector definition of the mass-centre of a system of particles.
Prove that the work done against gravity in moving a system from one
configuration to another is equal to the work done in lifting a particle
equal to the total mass from the first position of the m.c. to the second.

(Inter. B.Sc. (Engineering), 1905.)

8. The table below gives the relation between pressure and volume for
1 1b. of saturated steam, between certain limits of pressure. Plot a graph
which will show this relation, and by counting squares on the sectional
paper, determine the area bounded by the curve, the horizontal axis or
line of zero pressure, and the limiting ordinates (parallel to the line of zero
volume).

If for any small change of volume of the steam the product of pressure
in lbhs. per square foot and the change of volume in cubic feet represents
the work done in foot-lbs., find how many foot-1bs. of work will be done in
compressing the steam from a volume of 4:29 c. ft. to a volume of 1-53 c. ft.

Pressure in 1bs. per square inch. Volume in cubic feet.
101-9 4-29
115°1 3-82
129-8 342
145-8 307
1633 276
1824 248
2033 224
2259 203
2507 1-84
2769 1-68
3055 153

(Military Entrance, 1905.)



APPENDIX.

EXPERIMENTS ON MOMENTS.

The Lever. A good simple lever can be made from a metre scale.
Leaving about 3 ems. untouched at the centre, cut away from one edge
down to the middle line and remove the end portions as in Fig. 313.
Bore a hole just above the middle line at the mid-point of the length, and
fix a steel cylindrical peg firmly in the hole so as to protrude about 3"
on both sides.

L
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Fia. 313.

The lever should be supported between two wooden blocks of the same
height or on a special stand. Weights may be suspended from the lever
by lIooped threads, either directly or by scale pans.
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Fic. 314,

Stops should be provided to prevent the lever overbalancing when the
weights are not properly adjusted.

If the lever is not horizontal when placed on its supports, cut away a
little more wood from the heavier side until it is.

Exer. I. Suspend, by means of a silk loop, a 100 gramme weight from
the left-hand side of the lever at 20 cms. from the fulerum. From the
right-hand side suspend a weight of 40 grammes and adjust its position
until the lever is horizontal.

Do the same with weights of 50, 60, 100, 150, 200, 250, 300, 400 and
500 grammes on the right-hand side, noting in each case the distance of
the supporting thread from the fulerum.

Tabulate the results thus :

Weight in grammes= 7,

cms. =d, - - -

40 ’ 50 [ 60 ;mo] cte.

Distance from fulecrum in ’

T. G, 24A
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On squared paper take a horizontal line to represent distances from the
fulerum, scale 11in. to 5 cms., and vertical distances to represent the weights,
scale 1 inch to 50 grammes, and mark the divisions as indicated in the

figure.
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Plot the points whose coordinates are given in your table and draw
a smooth curve lying as evenly as possible amongst them.

The curve can be recognised as like the one constructed on p. 34.
Verify this by multiplying the weights by the distances (take the weights
from the curve).

Find that always Weight x by distance from fulerum

is the same.

See if this constant product is also the product of the left-hand weight
and its distance.

These products are called the moments or turning moments of the weights
about the fulerum, and we have moment of weight on one sicde=moment of
wetyht on the other.

From the graph determine

(i) At what distance from the fulecrum a weight of 120 grammes on
the right would balance the left-hand weight?

(i) What weight must be placed at 27'5 ems. on the right to balance the
left-hand weight ?
(iii) Suspend a % I, weight from the right arm and determine by trial

the point at which it is in equilibrium. Read off from the curve its weight
in grammes.
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(iv) If all the weights used on the right in the experiment were suspended
at the same time from their old positions, what weight would have to be
suspended at 30 ecms. from fulcrum on the left ?

(v) Where would a 500 gramme weight have to be suspended on the left
to balance all the weights used on the right ?

Bxpr. II.  Generalise Expt. I. by taking three weights on one side and
two on the other at the same time.

If Mp and A, mean the moment of a weight on the right and left
respectively, then the result of this experiment may be symbolised by the
equation SMy-ZMz=0.

Notice that the weights on the left tend to produce a contraclockwise
rotation of the lever, and those on the right a clockwise, hence if the
former be reckoned positive and the latter negative, then, as an algebraic
sum, the sum of all the moments about the fulcrum is zero, or ZM =0.

Repeat this experiment twice, using different weights, and see if 2/ =0
in these cases.

(1) Weights 20, 25 and 100 grammes are placed at distances 45, 30 and
20 ¢ms. to the right of the fulerum. A weight of 70 grammes is placed at
10 cms. on the left ; where must 20 grammes be placed to balance the others,
and what weight must be placed &t 40 cms. to the left to balance the same
set ?

(2) Would an upward push of 200 grammes at 15 cms. on the right be
likely to have the same balancing power as 200 grammes hanging at
15 cms. on the left? (A 200 grammes upward push at any point would be
counter-balanced by 200 grammes weight hanging vertically below.)

(3) AB represents a lever 25 cms. long, the fulerum being somewhere
between 4 and B. A weight of 170 grammes at 4 balances 60 at B;
determine graphically the position of the fulcrum.

W,
F1c. 316.

Expr. III. Generalise the results of Expt. II. by applying an upward
force on the right side by means of a spring balance (Fig. 316).

T,G. 242
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Shew in several cases that
W,.4C=Wyx CB-P.CD (where C is the fulerum),
P being the upward pull of the spring as registered on the scale.

(4) Forcesinlbs. weight, -| 10 | -15 | 25 | -12 { 20

Distances from it in inches, 2 3 -10 7 l

The above table gives the parallel forces acting on a lever, and the
distances of their points of application from fulerum. Distances to the
right are given as positive, those to the left as negative; a -force means
an upward push. Find the distance of the 20 lbs. weight from the fulerum
for equilibrium.  On which side must it be placed ?

(5) Expt. I. Chap. IV. shewed that a force acting on a rigid body
may be supposed applied at any point in its line of action. Suppose, then,
a weight on one side of a lever were suspended by a thread cemented on
to the lower edge (instead of strung from the npper edge), would this make
any difference in its balancing power? If not, the moment would in this
case be expressed Dy weight x ?

Exer. IV. A farther generalisation of Expt. III. can be made by
changing the shape of the lever.

Rix a eylindrical peg through the centre of a rectangular piece of planed
wood (say 12”x10”x%”). Fix two drawing pins firmly near opposite
edges of the board, leaving suflicient space between the heads of the pins
and the hoard to insert a loop of thread. Balance the hoard by means of a
peg on two blocks as in the case of the metre scale lever. Hang weights of
400 and 500 grammes on the pins, and let the lever take up a position of
equilibrium.  Mark the lines of the strings on the board. Measure the
perpendicular distances of the strings from the fulerum. See if the moment
law, Z(weight x perpendicular distance from fulerum)=0, is true.

Remove the pins and mark their old positions; set the pins in other
positions on the two lines drawn on the board, and suspend the weights
as before. Is the lever in equilibrium in the same position as before?
How can you tell that the position is the same

How does the experiment verify the deduction from Expt. ITI. Chap. IV.

Notice that when the line joining the two pins is above the fulcrum the
equilibrium is unstable. :

Exer. V. A final generalisation is effected by arranging an experiment
in which the forces have different directions.

Cut out a piece of irregular shaped cardboard. Punch five holes in it,
and fix it on the vertical drawing board (Expt. II. Chap. IV.) by means
of two stout pins. Astach hooks, threads and weights as in Expt. IV. of
Chap. IV., one weight hanging vertically. Remove one of the pins; the
card will probably turn round the remaining pin, and take up some
position of equilibrium. The card is now a lever in equilibrium, the pin
being the fulerum.

Draw lines on the card shewing the axes of the forces, and indicate on
the lines the magnitudes and senses of these forces,
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Dismount the card. Mecasure the perpendiculars from the fulerum on
the axes of the forces, and calculate the sum of the moments.

Find the sum of the vectors of the forces.

Draw through the fulcrum a line parallel to the sum of the vectors.
Mark a point on this line, and mark also a point not near the line.

Calculate the sum of the moments about these two points as if they
were fulera.

If a force equal in magnitude and direction, but opposite in sense, to the
resultant vector acted in the axis drawn through the fulerum, what would
be the sum of the moments of the whole six forces about these three points,
viz. the original fulerum, and the two marked points?

What was the force acting at the fulerum on the card, 7.e. the reaction
of the pin?

Expr. VI. Fix the same card to the drawing board (by two pins) in
such a position that the axis originally vertical is vertical again.
Arrange the pulleys so that the same forces may act on the card as in the
last experiment, and in addition a sixth force given by the reversed
resultant vector whose line of axis has been already drawn.

Remove the pins and see if the card is in equilibrium.

If in equilibrium any point on the card pinned to the board would do
for a fulerum. Caleculate the sum of the moments of the six forces about
several points.

Was the vector polygon closed for all the forces?

Would there have been equilibrium if the sixth force had been applied
in any other line than the one through the fulerum?

Deductions.

(1) If a rigid body is free to turn about an axis (fulcrum) the rotative
tendency of any force acting on the body is measured by the product of
the forece and the perpendicular on its axis from the fulcrum, and this
moment is positive or negative according as the rotative tendency is contra-
clockwise or clockwise. Expts. I.-VL

(2) If a number of coplanar forces act on a body free to turn about an
axis, the body will turn until the sum of the moments of the forces about
the axis is zero. If the body, free to turn about an axis, does not, the sum
of the moments of the forces about that axis is zero. Expt. V.

(3) If the sum of the moments of the forces is zero about three points
(non-collinear) in the plane, the body will be in equilibrium (Expts. V.
and V1.), and if the body is in equilibrium, the sum of the moments
is zero for all points. Expt. VL
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NOTE A.
CIRCULAR MEASURE OF AN ANGLE.

DrAW a circle of radius 3” and mark by radial lines angles of 30°, 60° and
90°. Step off the arcs, corresponding to these, along a tangent and measure
their lengths in inches. Divide these lengths by the radius. The numbers
so obtained are approximately the circular measures of the angles. See
that the last number is 1-37 and that the numbers are in the ratio 1:2:3,
or nearly so.

Whatever the radius of the circle the circular measure of these angles
will be the same.

If an arc be stepped off equal to the radius, the angle at the centre will
have unity as its cireular measure. This angle is called a radian and is the
unit of circular measure. Construct a radian and sce that it is nearly 57-3°.

The measure of an angle in radians is always ¢ which being the
adius

ratio of two lengths is a number. rad

Mathematicians formerly went to enormous trouble to calculate the
measure of two right angles in radians; it has been worked out to 707
decimal places. The number of radians in two right angles is always
denoted by the letter w. Correct to 5 figures its value is 3'1416; the
fraction 2% gives r correct to three figures. Instead of giving the radians
in an angle as a number, approximately correct, it is sometimes convenient
to express it as a fraction of 7 ; thus the number of radians in 15°, 30° and

mT™ T m
45° are -, = and .
12 6 4
. semicircular arc . . . .
Since m="—-"-- dins ™ the circumference of a circle of radins »
is Omr radius

NOTE B.

GREEK LETTERS USED IN THE TEXT, WITH THEIR
USUAL PRONUNCIATIONS.

o (Alpha). 8 (Theta).
8 (Beta). ™ (Pi).

v (Gamma). p (Rho).

& (Delta). - .

¢ (Epsilon). 2} (Sigma).

¢ (Phi).
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CHAPTER 1.
Exercises. Paces 1-4l.
3. 0'62"; 384" 5. Total load, 15°1 ozs. 6. 11-3 ozs.
7. 123. 8. 27+4. 9. 12. 10. -97.
15. Complete the triangle on @, and measure the aungle between u and the
third side. Through the ends of 0 draw lines making 6 and 60°
with b, then ¢ is the side bounding the 60° angle.
16. 8-88. 25, 1'92. 29. 1-36, 1-48, 0-57. 82. 1-47, 0'83. 34. 9'15.
35. 6-38. 36. 6°06. 38. 0-5375. 39. 2-88. 40. 225,
41. 1-28, 1-64, 2°08, 2-67, 3-43, 4°39. 42. 073, 0'62, 0°53.
43. 1-13, 106, 0-92, 0-96.
46. 004, 0°13, 0-21, 0-82, 0-97, 1-74, 1-90.
47. 0+63, 087, 096, 1°17, 1-30, 143, 1-48.
_i : ", —_—2. "
50. Y=3557 where w is 1”; y=2a?2; 9"
51. ;—/="f; ; 15" and 135" and are independent of a.
o
64. 3. 65. 8130. 66. 10-9". 67. 257 ; 694.
69. 312 million ergs. 70. 104 secs. 71. 294 ft.-lbs. 72. 17-4ft.-tons.
78. A line of length 8:96 cms., scale 1 ecm. to 1 Ib.-ft.; a line of length
8-96”, scale 1" to 1 1b.-ft.
Miscellaneous Examples I. Pacrs 41, 42.
1. 06", 1-42", 0°7". 2. 5'14 cms. 4. 1-88".
5. 7-85, 126, 15°7. 6. 453, 35'0, 17. 7. 1'07, 1-38, 2°36, 2-84.
8. y=———-1g;2, where % is an inch. 9. 2-47. 10. 21 ft.-lbs.
11, 2-46, 119, 076, 4°0. 13. 031 cub. ft.
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CHAPTER IL
Exercises. Pacrs 43-64.
1. 512 sq. ins. 2. 204 sq. cms. 4. 228 sq. ins.
6. 91 sq. ins, 7. 2420 sq. ft. 8. 167 sq. ins.
9. ABCDis - 103 sq. ins. 11. 9 sq. ins. 12. 4950 sq. yds.
13. 8-87. 16. 59 sq. ins. 24. 376 cub. ins.
25. 21°6 cub. ins. 26. 975 cub. ins.
Miscellaneous Examples II. Pacrs 65, 66.

2. 12 sq. ins., 172 . ius. 3. 54 sq. ins. 4. 471 sq. ins.
5. 1°5 sq. ins. 6. 99 sq. ins. 7. 152 sq. cms.
8. 3560 cub. cms. 9. 22200 sq. ft. 10. 40°7 sq. cms.
12. Area is 503 sq. ins., angles are 71°8°, 61°8°, 46°4°.

CHAPTER III
Exercises. Pacrs 69-114.
113 ft. N.W.; 160 ft. N.; 113 ft. N.E.; 0.
(1) 495, 06° W. of 8. ; (ii) 6:97', 11-4° W. of 8.
143 ems., 23:2° 8. of E.

. 369 m./hr. S.W.; 37 m./hr., 25°9° S. of W.; 197 m. /hr., 32-2°N. of W.

Speeds 3:69; 4; 3'86 m. /hr.

11. 5°83 ft.[sec., 31° E. of N. 12. 36-9° with the up-stream line.
13. 24-3° with the up-stream line. 14, 258 m./hr., 22'8° N. of 1.

15. 166 m./hr., 25-2° W, of S. 17, 143 m./hr. from 36°5° N. of K.
18. 17 m./hr. (nearly). 19. From 28+4° N. of K. and 156° W. of N.
20. 3-3 miles. 21, 13'5 m./hr. 475 K. of S.

22. 92 m./hr., 14°7° K. of 8.5 15°7 m. [hr., 147° E. of 8.

. The total accelerations are 17 ft./sec., 48:3° S. of K., 26°1 ft./sec. B.,

16 ft./sec., 45° N. of E. and 0.

. 41°9 ft. per sec. per sec. at 22-5° with its own direction of motion.

7-07 ft. each. 27. 106 and 5°5 ft.

. 27+9 and 16°1 ft. per sce. per sec.
. 493 and 0-83 ft. per sec. per sec.

47 miles. 31. 292 ft. per sec. per sec.

. 1'61 ft. per sec. per sec. down the incline.

2-31 ft. per sec. per sec. making 43'4° with the vertical.

. 085" from the centre.
. 1-1” and 0'8” from the sides containing the second and third, and the

third and fourth masses respectively.

. 503 cms. from origin. 49. 4" from origin.
. 192" and 029", 57. 0608 of radius from centre.
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69.
70.
71.

-

®

12.
13.
15.
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21.
23.

24.

HrooR®

ANSWERS. 377

0-84" from centre of circle.

0°19” from the centre of the 3" circle away from the hole.
0-33" from the centre of the rectangle away from the hole.
044" from centre of rectangle.

057" from centre of rectangle.

Miscellaneous Examples III. Paces 115, 116.

26°8 ft. per sec. at 52-6° with the horizontal.

112 m./hr., 49°1° N. of W. 5. Coordinates are 2-42 and 354 cms.
Coordinates are 232 and 3-88 cms. 8. 2:25" from centre.

078 and 061 of the radius from 4B and B respectively.

7°17 ft. from base of block.

CHAPTER IV.
Exercises. Pacrs 119-166.

166 1bs. wt.

(i) 6=¢=36"9" (it) R=87 lbs. wt., p=30"
(ili) p=3405°, 6 =44-4°. (iv) @=8-18 1bs. wt., =48

(v) P=1421bs. wt. ¢=T63". (vi) P=538, Q=412 Ibs. wt.
(vii) #=338°, Q=776 Ibs. wt. (viii) P=654.

(ix) P=10"73, @=9. (x) R=566, @=3"35.
95°5°, 134°7°, 129°8° 5. 59 and 107 grms. wt. respectively.
(i) 127 and 20°8 lbs. wt. respectively.
298 cwts. at 4 and 1'57 at B.

4 5,340 5,880 8,980 | 12,600 | 14,800 E 30,600

B 8,790 | 8,720 | 7,560 9,080 | 11,400 | 29,000

111 making 112-75° with the 30 force.

R=374, 8§=63. 14. 02 and 167 Ihs. wt. respectively.

7-54 and 12-52 lbs. wt. respectively.

4 B makes 21-3° with the vertical, the pull on d is 1025 Ibs. wt.

W=328 lbs. wt. 20. 11 lbs. wt. at 35-3° with the vertical.

129 cwts. 22. 205 and 36 Ibs. wt.

Through one end of a draw a line parallel to OB, deseribe a circle
of radius ¢ with the other end of a as centre. The circle cuts the
line drawn parallel to OB in two points, hence ¢ has one of two
directions. If ¢ has a direction perpendicular to OB the magnitude
of ¢ will be the least possible.

(i) 13°4 and 448 lbs. wt. (ii) Diminished by 5:3and 73 Ibs. wt.

(iii) Increased by 5:3 and 7°3 lbs. wt. (iv) 183 Ibs. wt.
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25. 20°7 kilogrms. wt., 40°1° E. of N.

26. 6°5 lbs. wt. at 67-2° with the 23 force.

30. 182 lbs. wt. towards a point 33-7° N. of E.

31. 23-81bs. wt. at 79-1° with the 10 1b. wt. force.

32. 20-7 lbs. wt. bisecting the angle 4 BC.

33. 127 Ibs. wt. at 45°05° with 4B. 34 9-33 and 9-66 kilogrms. wt.

35. 129 and 2°5 kilogrms. wt. 36. 177 and 3°42 kilogrms. wt.

38. 04 cwts.

39. First draw the plane. Then set off 4C vertically downwards for the
weight of the body and draw A4 B and BC parallel and perpendicular
to the plane. Set off 4# along A8 for the pull parallel to the plane,
and then draw KD at 15° with the horizontal cutting OB at D.
Scale DE and DC'; they give 109 and 143 cwts. as the required
forces.

40. Draw parallel to vy a radius of the circle and measure the length of the
arc to the highest point (1-22').

41. The slope is 0'41 the angle 21-8°.

42, 24°3°. 43. 39°; 16°1 lbs. wt. 44, 3°39 cwts.

45. 45 and 3 kilogrms. wt.

46. 156 Ibs. wt. at 45° with the vertical.

47. 9-3 and 199 lbs. wt. bisecting the angles.

48. (i) 388,1300 and 388 grms. wt. bisecting the angles.

(ii) 1449,1299 and 1449 grms. wt. bisecting the angles.

49. 571 tons wt. in AC, 428 in BC. 50. 8°61 tons wt. in BC.

51. 2-33 tons. wt. in BC, 446 in AC.

53. 639 tons wt. in 4C, 3'83 in BC.

54. 43 tons wt. in AC, 0°92 in BC.

55. 1'89 kilogrms. wt. in 4C, 1'19 in 4B, 0-98 in BC, 0'68 kilogrms. wt.
reaction at B, 162 at 4.

56. 4-44 tons wt. in A B, 962 in AC.

57. 2'8 tons wt. in 4B, 15°9in AC.

59. Reaction of nail = weight of picture ; tension=4-62 Ibs. wt.

61. 172 ¢wts. in BC, 35 in 4C, C being below 4 B.

62. Stress in B4, 529 tons wt. 63. Tension is 155 lbs. wt.

64. First find the tension in the chain by drawing from the ends of the
vertical load vector a horizontal line and one making 30° with
the vertical. Find the total pull at B of the two parts of the chain
and then the forces in 4B and CB which are in equilibrium with
this. Stress in A B is 66 cwts., in CB 173 cwts.

65. 1818, 42:1° N. of E. 67. 10-02 and 9-92.

69. 129, 321, 453, 483 lbs. wt. respectively.

70. 11 and 569 lbs. wt. respectively.

72, (i) 421 Ibs. wt. along the rail, side thrust 201.

(ii) 421 lbs. wt. along the rails, side thrust 21.
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(1) 53 and 1053 lbs. wt. (i1) 10°35 and 53 lbs. wt.
(iii) 3-7 lbs. at each.
P=367 lbs. wt., reaction=11 lhs. wt. Component parallel to
plane =367 lbs. wt., vertical component of reaction=10-4 lbs. wt.
27 1bs. wt., 753 1bs. wt. 77. 1327 lbs. wt., 55°8 1bs. wt.
The wedge is in equilibrium under the horizontal push of 28 Ibs. wt.,
the reaction of the block and a vertical force equal to the table
reaction less the weight of the wedge. Draw a horizontal line
representing to scale the push of 28 Ibs. wt. From its end points
draw lines vertical and perpendicular to face of wedge supporting
the block, the latter gives 596 Ihs. wt. as the reaction of the block
on the wedge. The former gives 52'5 as the vertical force on the
wedge, and this consists of 18 lbs. downwards and the reaction of
the table upwards. The table reaction is therefore 70-5 upwards.
12:2 and 43°5 1bs. wt. respectively.
199 Ibs. wt. 87. 585, 12°5, 37°5 lhs. wt. 89. 2:35 Ibs. wt.
2:36 1bs. wt. at 43°7° with the vertical.
0252 ewts. at wall, 0564 at ground, making 63-45° with the horizontal.
0217 ewts. at wall, reaction at ground makes 23-25° with the vertical.
Tension is 22°1 kilogrms. wt.
For the 60° plane the rcaction is 29°9 Ihs. wt., the reaction of the
hinge is 60°8 lbs. wt., making 252° with the vertical.
125 cwts. at the top and 166 cwts. at the bottom, the latter making
51+6° with the horizontal.
521 lbs. wt. at hinge, making 24° with the beam, and 265 Ibs. wt. at
the top.
@=212 lbs. wt., reaction at C 232 lbs. wt. passing through the
intersection of P and ().
42 lbs. wt. at plane and 48 at the peg, making 25'6° with the vertical.
83-1° with the vertical. 103. 50-8° with the vertical.
42-7° with the vertical.
5-1° with the horizontal ; reactions of the planesare 366 and 2°59 cwts.

CHAPTER V.
Exercises. Paces 172-206.
Resultant of magnitude 3:62 lbs. wt. inclined at 13-8° with BC, the
axis cuts 4 B produced at 1” from B.

Resultant of magnitude 8:99 lbs. wt., making 48:7° with Ox and
cutting it at — (0-31 units from origin.

. Magnitude 662 Ths. wt. making 78:3° with the first spoke, axis cuts

first spoke at 46" from its point of contact with the hub.
12 1bs. wt. at 642" from the smaller weight.
386" from the left end weight.

First find the resultant of the first two forces and the given equilibrant.
The third rope is 3:9” from the mid-point and nearer the smaller weight.
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Draw the link polygon for the weights W, and W,, mark the points
where the first link cuts the known axis of the resultant, and
where the last link cuts the axis of W;. A line through the pole of
the vector polygon parallel to the line joining these two points
determines the magnitude of W, (1975 lbs. wt.).

-5 1bs. wt. at 9 ft. from first force and 6 ft. from second.

—22 lbs. wt. at 171" from the end.

Magnitude 27-2 lbs. wt., the axis making 22°1° with P¢) and cutting it
at 0-47" from P.

1 cwt. at 0-72 yds. from first and 028 yds. from second force.

197""from leading wheel. 25. 473 and 597 tons.

2365 and 22'35 cwts. 27. 394 and 66 cwts.

No; reaction 13 ewts. downwards.

237 cwts. at roller, reaction at pin makes 41'6° with beam and is of
magnitude 315 cwts.

185°7 lbs. wt. at plate, 273 Ibs. wt. at hinge, making 42'9° with
vertical.

364 lbs. wt. at plate, 472 lbs. wt. at hinge, making 50'5° with
vertical.

(i) 327 Ibs. wt. at plate, 499 1bs. wt. at hinge, making 545° with the
gate post.

Reaction at cylinder 182 cwts., reaction at hinge 1-22 cwts., making
51°9° with the horizontal.

348 1bs. wt., making 152° with the vertical.

(i) Perpendmulcu' to the pole with a force 181 times the weight of the
pole; (ii) a force of 1-86 times the weight of the pole at an angle of
76°9° with the pole.

103 tons wt., making 16-1° with the vertical.

CHAPTER VI.
Exercises. Pacrs 210-251.

. RQ and PR in tension ; stress 9-82 lbs. wt. in each. PQ in com-

pression ; stress 491 lhs. wt.

. Reaction at P is 1245 lbs. wt., stress in PQ=3"72 lbs. wt. and at

@R=3508 lbs. wt.

. A tensile stress of 497 Ibs. wt. in the lower bars ; a compressive stress

in the horizontal bar of 14 Ibs. wt

. Lower bars have a tensile stress of 4 97 1bs. wt., the vertical bar one

of 14 1bs. wt.

The diagonal bar makes 4°75° with the horizontal ; the stresses in the
two lower bars are 443 and 542 lbs. wt.

The stresses in 4B, BC and C4 are 217, 56°3 and 27°3 1bs. wt.

. Tensile stress in P@ of 2 tons wt., compressive stress in PT of 173

tons wt., compressive stress in TS of 1'15 tons wt.
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Compressive stress in P@ of 2:31 tons wt., in QR a tensile stress of
1°15 tons wt. :

Stress in P is 2:31 tons wt. 14. Stress in PU is 866 tons wt.
33°1 Ibs. wt. along the line joining P to the mid-point of ¢R.
Average compressive stress in 4B is 3'93 1bs. wt.

CHAPTER VIL

Exercises. Pacus 256-280.
w="%, e=266°
Reaction 27-4 ozs., making 18-4° with the vertical.
(i) Yes ; (ii) no. 4, p=0447, e=24-1°.
467 grms. wt. 8. 4-09 and 379 lbs. wt.

Least force 11-7 lbs. wt. at 32+4° with the horizontal, corresponding
friction is 0-98 lbs. wt.

Yes; 15'5° with the vertical.

5°64 cwts. at 19-5° with the vertical, horizontal resistance 188 cwts.

Least pull is 12-8 Ibs. wt. at 20-3° with the horizontal.

Angle of friction 36-9°, reaction 8 lbs. wt.

(a) 3:5. (D) 414 cwts. (c) 2°98. (d) At 25° with the horizontal.

6°23 kilogrms. wt. is the least force, 17-81 in the opposite sense to the
5 force.

078 tons wt., making 38
(D) 0°83 tons wt.

Greatest force 131 kilogrms. wt.

332 cwts. 19. 643, 3'46 cwts.

11, 2:85 and 7-78 lbs. wt. TFor the friction in the three cases resolve
the total reaction of the surface into two components along and
perpendicular to the plane, the former components give the friction.

7e

with the vertical; (a) 1:02 tons wt.;

105 and 14°7 lbs. wt. 22. 485 lbs. wt.
10-3°. 24. 285 ft., least tension 0-896 cwts.
43+6°. 27. pn=014.

The m.c. divides ladder in ratio 13/100.

1429 lbs. wt. ; ©=0°866.

8°8° with the horizontal.

The M.c. divides the beam in ratio 342/100.

The M.c. divides the beam in ratio 211/100.

The m.c. divides the beam in ratio 323/100.

The M.c. is nearly at the mid-point.

63° with the vertical.

76°7° with the vertical.

70° with the vertical, no other possible position for limiting equili-
brium.
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CHAPTER VIIIL
Exercises, Pacus 284-302.

3. 475 lbs. ft.
8. (i) —387. (i) 13°7. (iii) - 8'5 tons ft.
8. 5450 tons inches. 9. 13700 tons inches.
11. Take the pole 10 ems. from the force vector.
12. Mea,sitre the line giving the momental area on the kilogramme weight
scale.
14. 157 lbs. inches. 16. -11-4 Ibs. inches.

20. 2467 cms. from CD, 42 from A D.
21. 6°66 cms. from CD, 2:05 from 4 D outside the square.
29. 54 c¢ms. from lower centre. 80. 5°62 cms. from lower centre.

CHAPTER IX.
Exercises. Pacrs 315-332.
1. B.M. is 4000 lbs. ft., s.F. is 500 1bs. wt.
2. B.s are 22,500, 10,000 and 5000 1bs. ft.
s.¥'s are 2000 Ibs. wt. at 8 ft.
1700 1bs. wt. at just under 15 ft.
1000 Ibs. wt. at just over 15 ft.
1000 Ibs. wt. at 20 ft.
3. B.M. at 8 ft. is 212 tons ft.
S.F. at 8 ft is 1°9 tons wt.

4. At 7 ft. from © the B.M. is 21,100 Ibs. ft. and the s.F. is 1500 just
under, and 750 just over 7 ft. from @.

CHAPTER XI.
Exercises. Pacrs 3514-367.

1. 1420 ft.-1bs. 2. 16,000 ft.-1bs. 3. 18,500 inch-lbs.
4. 1930 ft.-lbs. 5. 484 ft.-cwts. 6. 117 ft.-cwts.
8. 799 ft.-lbs. (independent of the radius). 9. 3470 ft.-Ibs.

10. 193 ft.-1bs. against gravity, 57 against friction, 250 by the equilibrating
force. Total work is zero.

11. 278 and 367 ft.-1bs. 12. 765 ft.-1bs.

13. 335 ft.-1bs. 14. 2,520,000 ft.-1bs.

15. 20°7 ft.-Ibs. round B and 662 round C.

16. 224,500 ft.-lbs. 18. 303 ft.-1bs. 19, 546 inch-1bs.

20. 579 inch-1bs. 21, 193 ft.-1bs.



Abscissa, 13.
Acceleration, average, 82.
definition, 83.
due to gravity, 83, 116.
mass and force, 133,
total, 82.
Action and reaction, 137.
examples on, 138-142.
Addition, graphical, 4.
of accelerations, 83.
of displacements, 70-72.

of momental areas, 188-190.

of moments, 287-297.
of velocities, 78.
of work done, 361.
Areas, circular sector, 55.
circular segment, 56-57.
equivalent figures, 62, 113.
irregular figures, 58-61.
mass-centres of, 98, 114.
mid-ordinate rule for, 58.
negative, 48, 49, 106, 107.
parabolic segment, 60.
polygons, 50-52.
quadrilateral, 46-48.
cross, 49.
re-entrant, 47.
rectangle, 46.
Simpson’s rule for, 59.
to scale, 36, 37.
triangle, 43-45.
Arm, of a couple, 185,
Average acceleration, 82.
speed, 77.
stress, 226.
velocity, 77.

INDEX.

Axes of coordinates, 13.
Axis of rightand skew symmetry, 95.

Backstays, 341.
Bending moment, definition, 314
diagrams, 314.
experiment and explanations, 309.
for cantilever, 310.
for continuously loaded heam,
319-321.
for freely supported bridge, 312.
for non-parallel forces, 316.
for several loads, 314.
for travelling loads, 321-334.
maximum, 313, 322, 329, 330.
Bending of beams, 309.
Bicycle spanner (problem), 273.
Bow, notation due to, 177.
Bowstring roof truss, 221.
Boyle’s law, 265.

Cantilever, 216,225, 308-311, 322,326.
Centre of figure, 89, 303.

of gravity, 303.

of mean position, 85-90, 303.

of parallel forces, 298, 303.
Centroid, 89, 303.

Chain, uniformly loaded, 346.
of suspension bridge, 344.
Circular arc, length of, 53-54.

m.c. of, 98.
measure, 374.
sector, area, 55.

M.C., 105.
segment, area, 55.

M.C., 108.

The numbers refer to puges.
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Components, vectors, 84.
forces, 151-154, 199-205.
parallel forces, 201.
three non-concurrent forces, 202,
Composition of forces, 206-208.
Conjugate direction, 99.
Continuously loaded beams, 319-321.
chains, 345, 346.
Coordinates, rectangular, 13.
Couples, 184, 207, 304.
arms of, 185.
momental areas of, 185.
of transference, 207.
Crane, simple wall, 144-147.
derrick, 149.
Cremona (Professor), 352,
Cubes, 33.
Cube roots, 33, 34.
Curve of cubes, 33.
of gas compression, 366.
of reciprocals, 34.
of squares, 29.
of suspension bridge chain, 344.

Decomposition of forces, 151-160,
199-206.
Derrick crane, 149, 204, 319.
Dip (of a suspension bridge), 341.
Direction, 1, 69.
Displacement, 69, 70.
addition of, 71, 72.
minimum, 81.
relative, 73.
Division, 15, 16, 17.
and multiplication, 18, 19.
on squared paper, 17.
Dyne, 136.

Elastic limit, 305.
Engine crank, force on, 156.
Equation, to a straight line, 13.
to curve of suspension bridge, 248,
344, 345.

y=a2 o, L, L 31.36.
xr o x=

Equilibrant, 132, 177.
Equilibrium under concurrent forces,
132, 135.
under two forces, 118.
under three forces, 132, 160-165.
and friction, 257, 258.

Equilibrium and link :polygon, 190,
195.
and vector polygon, 184, 186, 195.
broken by rotation, 277-279.
scalar conditions, 151.
Equivalent figures, 62, 113.
forces, 176.
Erg, 40, 355.
Experiments I.-VIIL. on concurrent
forces, 119-122.
deduction, 131, 132,
VIIL. on link polygon construc-
tion, 177.
IX., X., XI. on general conditions
for equilibrium, 192.
deductions from, 193.
XII., XIII., XIV. on friction,
256, 258.
deductions from, 258.
with lever, 369-373.
deductions from, 373.

Falling bodies, 83.
Foot-pound, 38, 355.
Force, components, 151-156, 199-
205.
equilibrant, 132, 177.
equivalent, 176.
mass and acceleration, 135.
moment of, 41, 284, 370-373.
on crank, 150.
on sail, 159.
polygon, 176.
unit, magnitude of, 136.
Forces, concurrent composition of,
133.
decomposition of, 151.
examples on, 123-126.
experiments on, 119-123.
resultant, 132, 135.
coplanar composition of, by link
polygon, 174-176.
cecomposition of, 199-203, 206.
like and unlike, 180.
parallel, 180-185.
reduction of any set, 207.
resultant, 176, 177.
Framework, simple bar, 144-149.
and weight of bars, 225-235.
French window problem, 206.
roof truss, 353.

The numbers refer to pages,
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Friction and beams on two planes,

and bicycle spanner, 273.
and cube, 277.

and drawer, 275.

and inclined plane, 262-265.
and motion, 360.

and ladder, 266-269.

and lifting jack, 274.
and reel, 278-280.

and wedge, 276.

angle of, 259.

coetficient of, 258.

laws of, 258, 360.

minimum foree for motion under,

261.
Funicular polygon, 176, 236-248.
and parabola, 244-248.
for equal loads, 240.

3as, work done in compression, 366.

Girder, Warren, 222, 224.
N, 219.

Graphical addition, 4.
subtraction, 5.

Graphical measure of angles, 374.
of areas, 36-38, 43-61.
of bending moments, 310.
of cireular arc, 53.
of moments, 285.
of powers, 26.
of products, 8-13.
of quotients, 15-17.
of reciprocals, 35.
of shearing force, 310.
of volumes, 62.
of work done, 38, 355.

Graphical vepresentation of a

moment, 285.
of momental area, 185, 285.
of work done, 358.

Graphs of y=mzx, «?, «°, %, ete., 13,

31-36.

of force on engine crank, 156,

157.

of force on meteorite (problem),

367.

of friction and normal pressure,

258.
of gas compression, 360.

Graphs of lengths of ropes support-
ing loads, 127-129.
of lever law, 369.
stresses in simple wall crane,
146.
of spring extension, 365.
of work done, 363.
Gravity, acceleration due to, 83, 136.
centre of, 303.

Heaviside, vector notation, 74.
Henrici (Prof.), notation for graphi-
cal statics, 177.
vector notation, 74.
vectors and rotors, 352.
Hinge, door, reactions, 335.
reactions on bars, 226-23(.
Hooke’s law, 307, 364.

Inclined plane and beam in equili-
brium, 270, 271.
and coefficient of friction, 262.
and work done, 361.
problems on, 139-142.
and reel, 279.
with friction problems, 262-265.
Independent vectors, 110.
Integral powers, 26.
Irregular figures, area of, 58, 61.
M.c. of, 302

Joints, pin, 144,
two bar reactions, 226, 228.
three bar reactions, 229.

King post truss, 222, 224.
Kite problem, 160.
Knife edge, supports, 195.

Law, Boyle’s or Marriotte’s, 365.
Hooke’s, 306, 364.
Newton's second, 135.
third, 137.
Length of circular arc, 53.
Lever, experiments on, 369-373.
law of, 373.
simple, 369.
Like forces, 180.
vectors, 110.
Line, straight, 13.
M.C. of, 89.

The numbers refer to pages,
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Line in division and multiplication,
-22

Link, polygc;n constructions, 173-170,
178-180.

closed, 190.
for parallel forces (like), 180-182.
(unlike), 182.
Localised vectors, 132.

Mass, foree and acceleration, 135.
moments, 111.
negative, 106, 107.
points, 91.
and weight, 136.

Mass centres and centres of gravity,

303.
by link polygon, 299-302.
definition, 91.
formule for, 93, 97, 93, 104, 105,
111.
gmphic;a,l construction, 91-93, 111,
112,
of circular are, 97, 95.
sector, 105.
segment, 108,
of irregular area, 113, 302
of lines, 96.
of points in a line, 92-94.
of quadrilateral, 100-101.
of trapezium, 104.
of triangle, 99.
scalar equations for, 111.
and work done, 362.

Masses to scale, 2.

Maxwell vector notation, 70.

Mid-ordinate rule for areas, 58-59.

Modulus, of a bar, 305.

Young’s, 305.

Moment, Bending, 309, 314.
geometrical representation of, 285.
graphical measure of, 285, 286.
mass, 111.
of a force, 284, 290, 370-373.
sense of, 287.
unit of, 285.

Momental areas, 185.
addition of, 185.
unit of, 185.

Moments and couple, 295, 304.
and equilibrium, 304, 373.
bending, 308.

Moments, sum of, 296, 297.
by link polygon, 287-294.
theory of, 304.
Multiplication of lengths, 37.
of numbers, 8-11, 20.
of vectors by scalars, 85.
on suared paper, 12, 22, 23.

Newton’s second law of motion,
135.
third law of motion, 137.
Notation for displacements, 70.
for lines representing numbers,
8

for numbers, 8.

for vectors, 74.

space for forces and vectors, 177.
Numbers to scale, 6.

Ordinates, 13.
Origin of coordinates, 13.

Parabola, equation to, 244.
and funicular polygon, 244-248.
and suspension hridge, 343,
and telegraph wire, 345.
Parallel forces (engine problem),
180-182.
like and unlike, 182.
vectors (like), 74, 110.
Parallelogram, area of, 46.
centre of figure of, 89.
law, 134.
Particles, 91.
Path and displacement, 69.
and work done, 359.
Pentagonal frame stresses, 234.
Plane, inclined, 139-142.
and friction, 262-265.
Polygon, area of 50
force, 176.
funicular, 176.
link, 173-176.
vector, 176.
Powers of numbers, 26, 27.
Product of force and length (see
work done and moment).
of two lengths, 36-38.
of numbers, 8.
of ratios, 25.
Pulley, smooth, 119, 162.

The numbers refer to payes.
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Quadrilateral, area of, 47.
cross, 48.
frame, 214, 230.
m.c. of, 100, 101.
re-entrant, 47.

Quantities, scales and vector, 1.
to scale, 1.

Queen post truss, 223, 250.

Radian, 374.
Rankine, 53.
Reaction, determination of, 138-142,

normal, 138.
of a surface, 138.
Reaction and action (see Newton).
Reactions, at joints, 226, 234.
by link polygon, 194, 196.
indeterminate, 317.
made determinate, 338.
of walls, 205, 230, 337-339.
Reciprocal figures, 352.
Reciprocals, 35.
squared, 36.
Rectangle reduced to unit base, 46.
Reduction of a set of forces, 195,
206, 207.
Reel, problems on, 278.
Relative velocity and displacement,
73, 79-82.
Resistance, 137.
Resultant force, 132, 133, 176.
by link polygon, 173-176.
examples in concurrent forces,
133, 134.
three forces (non-parallel), 172.
uniqueness of, 177.
Rigid body, 131.
frame as a, 212.
Roots, square, 30.
cube, 33.
Rotors, 132.

Sag, of a telegraph wire, 345.
Sailing against the wind, 159.
Scalar quantities, 1.
Scale, areas to, 36.
masses to, 2.
numbers to, 6.
Scales, change of, 22, 24.
different, 15.

Screw jack and friction, 274.

Second law of motion, 135.

Sections, method of, 248-250, 340-
352

Sense and sign, 70.
of an area, 49.
of a line, 68.
Shearing force (s.7.) definition, 314.
experiments and explanations,
309,

for continuously loaded beams,
320-321.
for freely supported bridge, 312.
for several loads, 314.
for simple cantilever, 310, 326-335.
for travelling loads, 321-326.
Similar triangles, 7.
Simpson’s rule for areas, 59.
Skew symmetry, 95.
Smooth (bodies), 138.
Speed, 76, 77.
Square roots, 29, 30.
Squared paper and division, 17.
and multiplication, 12.
and powers, 29-35.
Statics, foundation of, 131.
Straight line, as a vector, 74.
equation to, 13.
locus in B.M. diagram, 332.
M.c. of, 89.
in division, 17-19.
in multiplication, 12, 21, 22.
Stress, compressive, 137.
diagrams, three bar frame, 210-
214.
braced quadrilateral, 214-216.
bridge girder, 218.
cantilever, 216, 225.
examples, 221-225.
pentagonal frame, 234.
roof truss, 220, 338.
and vector polygon, 210.
tensile, 137.
Stresses by moments, 340-343, 348-
352.
Strip division method for areas,

Subtraction, 5.
Suspension bridge, 341.

and parabola, 343.
Symmetry, right and skew, 95.

The nwmbers refer to pages.
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Telegraph wire, 345.
Three moments, 304, 373.
Toggle joint, 205.
Torque, 41.
Triangle, area of, 43-46.
M.c. of, 99.
Tria,ngles, similar, 7.
Truss and wind pressure, 338.
bowstring roof, 221.
French roof, 352, 353.
king post, 222, 224.
quadrilateral, 251.
queen post, 223, 250.
railway platform, 223.
simple three bar, 149.
taking account of weight of bars,
333.
various examples, 215, 222, 223,
251, 339, 348, 351, 353.
Turning moment, 41, 370.

Unit area, 36.
base and reduction of areas to, 43.
force (magnitude), 136.
length, 78.
moment (magnitude), 285.
speed acceleration, 136.
speed, 78, 136.
work, 38.
Unlike forces, 180.

Vector addition, 74, 75.
definition, 74.
notation, 74.
polygon, closed, 106, 186, 190.
quantities, 1.

Veetors, components, 83, 84
independent, 110.
like, 110.
multiplication by scalars, 85
and vector quantities, 73.
Velocities, addition of, 78.
Velocity, average, 75.
definition of, 78.
relative, 79-82.
and speed, 77.
units, 78.
Volumes, of revolution, 62.
to scale, 36.

Wall crane, 198, 204.
reaction of, 205, 230, 337-339.
Warren girder, 222, 224.
Weight and mass, 136.
of bars in frames, 225-235.
Wind pressure on roofs, 338.
on a kite, 160.
on a sail, 159.
Work done, 38-40.
and M.c., 362.
and friction, 360, 361.
and motion, 358.
by component forces, 361, 362.
by variable force, 363.
definition, 354, 357.
graphical representation, 355.
in compressing a gas, 366.
in spring extension, 364.
negative, 354.
unit of, 38, 354.

Young’s modulus, 305.

The numbers refer to pages.
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