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PREFACE.

THE importance of Graphics in modern mathematical training,

and its numerous uses in practical work, render unnecessary

any excuse for the publication of an elementary account of

some of its applications, provided these applications are chosen

with discretion and treated with clearness.

The author is hopeful that competent judges will consider

that the present book fulfils these requirements. It has not

been written with a view to any particular examination
;
but the

easier parts will be found to meet the needs of secondary schools

and of candidates in military and naval examinations
;

while

students in technical colleges and candidates in the examinations

of the University of London will, it is believed, find most of

the chapters of definite use to them.

All sections and exercises marked with an asterisk should be

omitted in a first reading of the volume ; students who wish

further to curtail the course of work will find an easy First

Course mapped out on page ix.

Special attention is directed to the large number of concrete

examples, worked out in detail, which are supplied in the

various chapters. It is essential that the student should himself

work out the graphical constructions according to the instruc-

tions given, and afterwards compare his results with those

obtainable by measurement of the figures in the text. To

avoid the tendency to produce very small figures, which

characterise the work of almost all students, the instructions

supplied will be found to determine large drawings in nearly

all cases. An endeavour should be made so to construct the

diagrams that all lengths are correct to at least three numerical

figures ; it is hoped that this degree of accuracy has been attained

in the answers given at the end of the book. Owing to slight,
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perhaps very slight, errors in construction the final result,

obtained by measurement, will often be slightly incorrect in

the third figure.

The student is strongly urged not to confine himself to

graphical methods only in statics and mensuration. The

employment of calculation and graphics may be likened to

the use of our two hands; no matter how highly developed

one instrument may be, much more can be done with the two

conjointly than with one alone. Of necessity, in this book

analytical methods and calculations are only incidentally

touched upon, but students with a knowledge of Trigonometry
will see that even roughly drawn vector polygons can easily

be used for purposes of calculation.

This opportunity is gladly taken to acknowledge a debt

of gratitude to Prof. Henrici, F.ES., of the Central Technical

College, London to whom the author's first knowledge of the

true value of Graphics is due. His teaching showed Statics

and Dynamics not merely as a branch of somewhat unsatisfying

Mathematics, but as a real and interesting subject with important

applications. Those acquainted with Prof. Henrici's work and

lectures will appreciate the author's obligation to him.

Thanks are also due to Mr. E. F. Witchell of the Central

Technical and Goldsmiths' Colleges for reading most of the

proof sheets, suggesting improvements, and correcting some of

the answers; to Prof. B. A. Gregory and Mr. A. T. Simmons

for their unsparing trouble during the preparation of the MSS.
and while the book was passing through the press; and finally

to the Senate of the University of London and the Controller of

H.M. Stationery Office for permission to make use of problems
set in various University, Civil Service, Naval, Military, and

Board of Education examinations. The source of each such

problem, and the date when subsequent to 1902, has been

given after the question.

G. C, TfJENEK.

SIDCUP, November, 1907-
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CHAPTEE I.

GRAPHICAL ARITHMETIC.

Scalar Quantities. In Mechanics and Physics, quantities

such as numbers, volumes, masses, time, temperature, dis-

placement, velocity and force are dealt with. Some of these

quantities are related to direction in space and cannot be defined

without reference to direction, others have no such relation to

space.

Mass, time, temperature, volume and number are examples
of quantities which are completely given when we know the

kind of quantity and how much there is of it; they are called

Scalar Quantities.

To specify the amount needs reference to some unit, a gramme,
a degree centigrade, a cubic centimetre, the number 1 . . .

,
so

that Scalar Quantities are specified by giving

(1) the unit quantity, (2) the number of units.

Vector Quantities. Those quantities which require for their

specification some reference to direction in space are called

Vector Quantities. Examples of these are displacement, velo-

city, acceleration, force, ....

An hour difTers from a minute only in amount, but the

pull of the earth on a book differs from the pull of a locomotive

on a train not only in amount but also in direction.

Time is a scalar quantity and force a vector quantity.

Quantities to Scale. The word scalar is used because these

quantities can be graphically represented to scale by lengths

(Latin scalae a ladder divided into equal parts by the rungs).

Thus, if we agree to represent unity by a length of 3 cms. then

the number 3 would be represented by a line 9 cms. long, and a

line of length 10*5 cms. would represent the number 3*5.
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In all cases of the representation of physical quantities by

lengths, the scale of the representation, i.e. the length repre-

senting the unit quantity, must be given either directly or by

implication.

Masses to Scale.

EXAMPLE. To construct a scale of masses so that the mass

corresponding to any length^ and the length corresponding to any

mass, can be read off at once.

The given line % (Fig. 1) represents 1 Ib. mass. Transfer this

length to your drawing paper, by pricking through with needle

points or by the aid of dividers (having fine adjustment), and

mark the end points (left) and 1 (right). Mark off on this

line produced, lengths giving 2, 3, 4, ... 10 Ibs., as follows :

In the figure 01 is (intentionally) not the same length as u.

(i)
With dividers accurately adjusted to the length u, and with

the right-hand point as centre (marked 1 in figure) describe a

PIG. 1.

semicircle clockwise, pricking a slight mark at the point (marked
2 in figure) where the semicircle cuts the line. With 2 as

centre describe a semicircle contraclockwise, pricking through
at 3, and so on by alternate clock- and contraclockwise half
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revolutions, pricking through points 4, 5,... 10. With a properly

adjusted straight edge and set square draw fine sharp, short

lines perpendicular to 01 through the points marked.

(ii) Draw a straight line through making some angle

between 20 and 60 with 01, and mark off from inches

T, 2', 3', ... 10' along it.

Adjust a straight edge and set square with one edge of the

latter passing through 1 and 1', so that when the set square

is moved parallel to itself along the straight edge to 10' it

still intersects 01 produced. Mark the points on 01 produced
when the set square passes through 2', 3', ... 10' by short, sharp,

fine lines.

These points so determined should coincide with the points

already marked on 01 produced ; why ?

We have now 01 representing 1 Ib. mass, and 07 a mass of

7 Ibs., etc.

(iii) To obtain, by method
(ii),

the division marks perpendicular

to 01.

Draw a fresh straight line and mark off 01 u on it. Place

the inch scale and set square so that V I is perpendicular to 01

when the scale edge passes through 0, and mark off the points

2, 3, ... as before.

EXAMPLE. To find the length which represents 3-7 Ibs.

(a) With a scale, adjusted at as before, mark the point

3*7" from along the scale, and with set square adjusted at

this point parallel to 3 3', mark a point on 01 produced 3*7,

then the length from to 3*7 represents 3-7 Ibs.

(5) Produce 10 and VO backwards through 0, and with an

inch scale mark tenths of inches along the latter up to 1 inch,

and from these points draw parallels to 3 3' cutting 01 produced
in points marked O'l, 0-2, 0*3, ... 0*9. Then the distance

between 0*7 and 3 represents 3*7 Ibs.

The final result in (b) is a scale of masses from which the

length corresponding to any mass between and 11 Ibs. or the

mass corresponding to any length may be found.
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(1) With squared paper or straight edge ruled in mms. or 2 mms. find the
number represented by the line a, if (i) 1 cm. (ii) 2 cms. represents unity.

FIG. 2.

(2) Make a scale for numbers from to 10 on squared paper, the length
representing unity being u.

FIG. 3.

(3) On a plan of a house |> inch represents 3 feet. Draw a scale giving
feet and J feet. What length represents 7 ft. 6 in., and what length is

represented by 3*2 ins., and by the line a ?

FIG. 4,

(4) The areas of certain fields are represented by lengths to the scaie

of 6 cms. to an acre. Draw a scale giving 1 to 5 acres, tenths of an acre
and hundredths of an acre. Read off from your scale the area represented
by 17*3 ems. and the length which represents 4*25 acres.

Addition.

EXAMPLE. The lines a, b, c, d, represent numbers to the scale of

-J-
an inch to unity. Find the sum of the numbers.

JL
FIG. 5.

Take a strip of paper with a straight edge and apply in turn to

the lines, marking with a fine sharp line the beginnings and ends

of the segments so that the segment OA is equal to a, AB is

equal to b and so on.

The edge, then, is marked OABCD as in Fig. 5.

In Fig. 5, OD is one-half the true length.
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Measure OD in half inches (or in inches and multiply mentally

by 2), this number of half inches is the required sum.

Notice that the order of addition is immaterial.

(5) A scale pan is suspended from the hook of a spring balance, and it is

loaded with small shot. The shot is put in by means of a small scoop.
The weight of shot added each time is given by the lines a, 5, c, d, e, and
the line u represents 1 oz.

FIG. 6.

Find graphically the reading of the spring balance at each addition to

the load.

(Add the lengths as above and then draw the u scale along the straight

edge.)

(6) A weight of shot given by the line in Fig. 7 is taken out of the

scale pan ; what is the reading of the balance ?

FIG. 7.

(7) What is the peri-
meter of the room of which
the accompanying figure is

the plan, drawn -to a scale

of 0'6" to lift.

FIG. 8.

Subtraction.

EXAMPLE. The lines a, b, c, d, (Fig, 9) represent numbers to the

scale of 1"5 cms. to unity. Find the difference between the second

number and the sum of the rest.

Add the lengths a + c + d as before and obtain OD on the

straight edge, cut off from D to the left D=*b, then OB is
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the length representing the required number. (In Fig. 9,

OA, ... are half their true lengths.) Eead off the length of

OB on the 1/5 cm. scale.

O ABC D
FIG. 9.

Notice that since addition is performed as a continuous process

by adding lengths from left to right, subtraction must be

performed by setting off distances from right to left, if we wish

to measure our result from 0.

EXAMPLE. Required the number equal to the sum of the first and

third numbers minus the sum of the second and fourth.

Mark, as before, on a straight edge, OA=a, ACc, then to

the left, OD = d and DB = b. The point B comes to the left of

B O D~A C

FIG. 10.

the starting point (the origin), and the length OB, measured
to the left instead of the right, corresponds to the fact that the

required difference is negative. Measure OB on the proper
scale and prefix a negative sign to the number.

If distances to the right of represent positive numbers,
distances to the left must represent negative numbers.

Scale of Numbers. Such a line as BODAC (Fig. 10) when

produced both ways represents numbers to the scale of 1-5 cms.

to unity. Every distance to the right of represents some
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definite positive number, every distance to the left represents

some definite negative number; conversely, to every number

corresponds a definite point in the line.

(8) Find the sum of the numbers represented by a, 6, c, d, the scale

being 0*4 inches to unity.

d-
FIG. 11.

(9) Find the algebraic sum corresponding to a + b - c + d.

(10) Find the algebraic sum corresponding to a b-c-d.

(11) Shew by actual measurement that

a + b-c +da + d -c + b,

and that a-b-c-d= ~b-

Similar Triangles. The construction on page 3 depended
for its validity on a property of similar triangles, viz. the ratios

of the sides, taken in order, about the equal angles are equal.

For triangles we can always ensure similarity by making them

equiangular. Generally, one figure is similar to another when

it is a copy of the second drawn to the same or a different

scale (in the first case the figures are congruent, i.e. identically

equal).

(12) Draw any triangle ABO and by the aid of the right angle of a set

square and a straight edge construct another triangle A^C^ whose sides

are perpendicular to those of the first. Scale the sides and calculate the

AB BG CA

(13) By aid of the 30 set squa're construct -4 2#2<73 such that A%B.2 is

turned clockwise through 30 from AB, and so on for the other sides.

Verify again that the triangles are similar.

A property of similar triangles often useful in graphical work

is that the ratio of their altitudes is equal to that of their bases.

(14) Verify this fact for the triangles drawn in the last exercise.
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The graphical constructions for multiplication, division, etc.,

depend on these properties of similar triangles. It should be

borne in mind that if the only object is to obtain the product,

quotient, root, or power of numbers, the graphical constructions

are but poor substitutes for abridged arithmetic, the slide rule

and logarithms ;
it is only when in the course of other graphical

work it is found necessary to obtain, say, the product of two

numbers represented by lengths that the full advantage of the

methods becomes apparent.

Notation. To avoid circumlocutions and the constant repeti-

tion of 'the number represented by the length,
3

it is convenient

to use small letters a, b, c, ... for the lengths of lines, the numbers

represented by these lines being denoted by the corresponding

capitals A, B, C, ... . When the lengths a, b, ... are set off from

an origin or 27, they will be lettered OA, OB, ... or UA, U, ....

The line representing unity is designated by u, unless some

measure in inches or centimetres is given.

Multiplication.

EXAMPLE. The lengths a (5-98 cms.) and b (8 '84 cms.) represent

numbers to the scale 1*5" to unity. Find, (i) the length which gives

the product of the numbers, (ii) the product itself.

(i)
Draw any two intersecting lines (Fig. 12). From the point

of intersection set off 07"=1*5" and OB = b along one, and on

the other set off OA = a. Place a set square along A U and

move it parallel to itself until it passes through B, mark Q
on OA where the set square cuts it.

OC is the required length, measure it by setting off the u scale

along OC and obtain the product.

Of* OTt
Proof. -=~ = ,, and, using A, B, C and U as numbers,

C/-OL \JU

1=1'
or <>-*'*
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(ii) The construction given involves the transfer of lengths

from the given to the drawn intersecting lines. If the lines

a and I be already on the drawing paper this can be avoided.

FIG. 13.

From one extremity of a draw u perpendicular to a (Fig. 13).

From one extremity of b draw a line c perpendicular to b, and

from the other a line perpendicular to the hypotenuse of the first
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right angle constructed. Then two similar triangles have been

drawn, the sides of the one being perpendicular to those of the

other.

Construct the u scale along c and measure c on that scale j
it

gives the product required.

Proof. From Fig. 13 = -, or ^ = ^, and .-. C-A.B.
U Jj 1

If the lines a and b are not parallel, draw u at one end of a

parallel to &, and complete the triangle; then from the extremities

of b draw lines parallel to a and to the third side of the first

triangle.

c

FIG. 14.

The two triangles are similar (since they are drawn equi-

angular) and the line c giving the product is parallel to a.

For - = -, or ab cu. and A.BC.
u b

'

Measure c on the u scale and compare with the previous

results.

Vary the construction in the case where a is parallel to b, by
drawing u at an angle of 60 with a.

(16) Draw two lines of lengths 7*2 and 3 '9 cms. Let these represent
numbers to the scale of 0"7" to unity. Find the product by the methods

given. If unity be represented by I'l", find the product of the new
numbers represented by the old lengths

n
'2 and 3 '9 cms.
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Multiplication on Squared Paper.

EXAMPLE. // u = 2", a = 8-38 cms
,
b = 6'82 cms., find the product

AxB.
Take a sheet of ordinary squared paper (inches and tenths).

Mark off as indicated in Fig. 15, OA=a, OU=u, and U = b.

Join OB and produce. Bead off at once by the aid of the ruled

lines the length of AC (AC "being parallel to U) on the 2 inch

scale; it measures the product of A and B.

FIG. 15.

The side of each small square represents the number 0*05.

With a little practice a fifth of this, or the number 0-01, can be

estimated by the eye. To render the figure clearer in its

reduced size, the side of the smallest square shewn represents
0*1 and not 0-05.
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Mark the points on OA and OA produced corresponding to

the numbers, O5, 1, 1*5, 2, 2-5, 3, 3 -5 and 4, and to - 1 and - 2.

On the line through perpendicular to OA mark off the

points corresponding to the same numbers.

This method is exceedingly convenient when more than one

number has to be multiplied by the same factor. Any other

number being given by a length a
1}
we set off OA

l
= a

l ,
and then

read off the length of the corresponding perpendicular A^C^
which is the product A l

x B.

(17) Head off the products of B and 2'7, 3'1 and 0'6.

(18) What number is represented by 6? Read off the products of this

number and 1*4, 2*3, 2*3& and compare the results with those obtained by
actual multiplication.

(19) Multiply graphically 1*75 by 1-16, 2'35, 4*64, 3-88 and 5 '26, using a
scale of 2" to unity.

(20) Multiply graphically 0*18 by 5 '6, 2-4, 7 '8, 6 '9, using a scale of

1" to unity horizontally, and 10" to unity vertically. Read the products off

on the vertical scale.

Equation to a Straight Line. Let any distance OM along

the line OA (Fig. 15) be a;, and the corresponding perpendicular

distance PM be y. Then, wherever M may be along OA or OA

produced.

x u

= 1-34

= tangent of the angle OP mates with OM
(called the slope of the line),

The equation y l*34x is called the equation to the straight line

OP. x and y are called the coordinates of the point P, and the

lines OA and its perpendicular through (lettered Ox and Oy in

Fig. 15) are called the axes of coordinates. PM or y is called the

ordinate, OM or x the abscissa of the point P. is the origin.

The straight line is called the graph of the corresponding

equation ?/=l'34$, and any number of points on it could .have

been obtained by giving x values 1, 2, 3, ...
,
and calculating the

corresponding values of y and marking* the points having these

* The points should be marked with a x
,
the two limbs of which must be fine

and sharp and intersect at the point.

u ,=- alwaysJ
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coordinates, or at once by drawing a straight line through

at a slope
= 1 '34.

Take any point A 2
on OA produced to the left, then OA%

represents a negative number (A 2).
Eead off what this number

is. Produce OB backwards through the origin and read off the

length on the 2" scale of the perpendicular line A
2
C2

. This

number is the product B x A^. How does the figure shew that

the product is negative ?

(21) Find the product of B and ~0'8, -1'5, -2*3.

(22) Find the product of -B and O'S, 1'5, 2 "3 directly from a figure,

(set off 5 downwards).

Since distances upwards along Oy represent positive numbers,

distances downwards along Oy produced must be considered

negative.
_ y qt y

N"ote also that since - = -, the equation -= 1*34 represents-xx ^ x r

the line POC% produced indefinitely both ways.

(23) Draw the straight lines whose equations are

i.e. draw lines through the origin the tangent of whose angles with the
axis of x are 3, 1, ____

(24) In the third equation of the last exercise suppose x to have values

-2, 1,0, 1, 2, 3, in turn; calculate the corresponding valu.es of y, and
shew that the points having these numbers as coordinates lie on the line

already drawn.

Notice that y = Q-lx, y = 0-01a:, y^Q'QQlx, y^O'OOQlx are

successively nearer to the axis of x, and hence y = . x or y
must be the axis 0^ itself. Similarly x - must be the axis of y.

(25) The lines a and b represent numbers to the scale u to unity.

FIG. 16.

Find by method (ii) the product of the corresponding numbers, con-

structing the u scale along c.
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(26) Find the product by method (i).

(27) Using paper divided into mms. or 2 mms.
,
find the product of

174 and 0'S2, 1-67, 2-31, 0'63, -1*31 and -2-36.

Different Scales. It is not necessary to use the same scale

horizontally and vertically. Suppose we wish to multiply 0*27

by 6 -6
;

it would be better to represent the first number to a

scale 10 inches to unity, and the latter to a scale 1 inch to unity,

than to take the same scale and have lines differing greatly in

length. If the vertical scale be chosen as 10" to unity, then

the product must be read on that scale, for

CA OA

and if OA and U be measured on the same scale so must CA

Perform this multiplication graphically ;
mark points U where

OU=l', and A where 0^ = 6*6"; set up, perpendicular to OA,
275 = 2 -7", i.e. 0-27 of ten inches; join OB and produce and read

off on the ten inch scale the length of A C.

(28) Multiply 0'037 by 8-1, 7'3, 5-6, 2'9 and 10'3.

A C
Division. If C=A.B then ~- = -~; and, therefore, to find

C
the quotient ,

we have to make but a slight modification in
JL>

our construction for multiplication.

EXAMPLE, a and b represent numbers to the scale 2 cms. to unity.

A
Find the line representing the quotient = and the number itself.

a = 3-92", b = l-34".

"Notice that if we do not wish to find the line representing the

quotient, but only the number itself, we may take any length

whatsoever to represent unity. This follows from the fact that

a A
whatever the scale may be.

o JD

(i)
Draw any two intersecting lines (Fig. 17), from the point

of intersection set off 017=2 cms. along one, and OA a and
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OB-l along the other. Mark the point on OU produced

where the line through A
parallel to B U cuts it. Then

00 is the required length c
;

read the length on the 2 cm.

scale and the required quotient

2*93 is obtained.

FIG. 17.

(ii)
Draw n (Fig. 18) perpendicular to I at its extremity. On

a construct a triangle similar to the one on b having its sides

Fia 18.
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parallel to those of the first.

Then c being the side corre-

sponding to u we have

Aa o ,- =
-, i.e.

c u

A B
or

(iii)
On squared paper

(mm.) take two axes at right

angles. Set off U= 2 cms.

(Fig. 19) and OJ5 = b along
the axis Ox (the axis of x),

BA = a parallel to the axis

Oy (the axis of y). Finally,

17C, perpendicular to Ox,

cutting OA in (?, is the

length representing the

quotient. Read this length
off on the 2 cm. scale and

obtain the quotient C.

(29) Using squared paper find
the quotient corresponding to

I
and (Bg. 20),

where 5 cms. represents unity.

(30) Find by aid of squared
paper the quotients of 5*6, 4*7,

2-8, 1"8, -2-6 and -1'5 by 2'6.

(The negative a's must be set off

downwards.
)

(31) What are the equations
to the sloping lines used in the
two previous exercises ?

U B
FIG. 19.

FIG. 20.

B
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(32) Find by method (ii) the quotient representing ~ where u represents

a-

(1)5-

(2)5-

FIG. 21.

unity. Change the length of u to 2" and
see that the quotient is the same, but
that the line representing it is altered.

(33) Find by direct graphical con-

struction the quotients of 2*8, 5*7, 4 '5,

3-7, -2-1 and -1-8 by -3'3.

Combined Multiplication
and Division.

EXAMPLE, a, b and c represent

three numbers and u represents

unity. Find the line which B

represents

itself.

'

and the number

FIG. 22T
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(i)
Draw two intersecting lines and set off along one OU=u

(Fig. 22), OA=a, and along the other OB = b and 00 =c. Mark
the point D on OA where JBD, parallel to AC, cuts it, then OD is

the required length.

o * OD OB , ^ A B
Jtrooi. -r

^
=

^ and ./^ = .

Construct the w scale along OD and read off the number D.

A
(ii) Multiply the ratio -- by a set of numbers E

lt B< B
3 ,

...
,

unity being represented by 0*5 inches.

On squared paper mark two axes Ox and Oy (Fig. 23) ;
set off

along Ox the distance c and draw CA a parallel to Oy.

y

FIG. 23.

Join OA and mark the points on it where the y ordinates through

EV B
2 , B^ ...

,
cut it, viz. D

15
J9

2 ,
D3 . Then ^D^ 2

Z)
2 ,
5

3
D3

are the required lengths. Bead off the corresponding numbers.
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(34) Draw four lines of lengths 7*8, 2'6 and 3'1 cms. and 0'4 inch. If

the last represents unity, find the product of the numbers represented by
the third and the ratio of the first to the second.

Continued Multiplication.

EXAMPLE 1. Find a, line representing the product A.B.C.D
where u represents unity, the numbers being given by the lines a, b, c, d.

Set off along any line OU=u (Fig. 24),

and along an intersecting line OD = d.

Mark X
l
where AX^ parallel to Z7Z), cuts OD produced.

X
2

BX
2

UX
l

OD.

X
3

CX
S UX% OD produced.

Then OX3 is the length required. Measure OXB on the u scale

and obtain the product A.B.C.D.

OX
2
~~OU'

Multiply these ratios together and obtain

. OX, .

_OA.OB.OQ
OU*

or X^ A.B.C.D.

EXAMFJLE 2. The scale being 1 inch to unity, find, on squaredpaper,

the continued product of the numbers represented by a, b
?
c and d,
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d

u-
FIG. 24.
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Mark positions for U, A, and D along Ox (Fig 25), and

set up UB^ b, parallel to the axis of y.

Join 1 OB
1
and produce. Mark the point A l

on OB
l
where the

ordinate at A cuts it. Mark the point A^ where A^A^ parallel

to Ox> cuts UBV Join 1 OA.2 and produce and mark on it G^

where the ordinate at C cuts it. Join 1 002 and mark <7
3
on

UB where C
2
C
B , parallel to Ox, cuts it. If 00% be joined, the

ordinate at I) would not intersect it on the paper, so mark (73

'

on the ordinate at 2 U arid join OCB

f

, marking D3
where the

ordinate at D cuts it. Then %DD
3 gives the product required.

Measure this on the u scale and write down the product.

OPP f .^
x

' OA.OC. OP
CC . DD

Do the multiplication again, taking A, B, C, on Ox and UD
l

vertically. When the construction lines go off the paper use

the 2u line instead of the u line.

Change of Scale. When the lengths a, b, c, etc., are long

compared with u, or when there are many multiplications to be

performed, the lines OC2 ODB
... in (ii) become so steep that then-

intersections with the verticals CC>2 DD% ... will not be on the

paper. Similarly in
(i) Xv JT

2 ,
Z

B
. . . get farther and farther

along OD, and the lines joining them to U become more and

more nearly parallel to OD.

When this is the case the triangles become ill-conditioned.

To avoid this difficulty the scale must be changed. Thus, in

(i) if OCX
B
becomes an ill-conditioned triangle in consequence of

o being much larger than in Fig. 24, either halve OX
Z ,

or double

1 The lines need not actually be drawn, it is sufficient to mark the points.
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2

FIG. 25.
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017, and proceed as before
;
the resulting length OX% must now

be measured on the scale of \u.

Should OCX% be stiH an ill-conditioned triangle, take J of

OX% or quadruple OU; if still ill-conditioned take ^ of OX% or

ten times U", and read the answer on \ or ^ of the u scale.

A similar change can be made in method (ii)
if necessary.

(35) Find the value of _1-, where
6

a= 5-2",

6=2-7",

u= 4 cms.

(36) Find, on squared paper (mm.), the value of -^ x Bl . JB2 . -#3 ,
where

a =5*7 cms.,

c =6 -8 cms.,

^ = 2*3 cms.,

52= 5-6 cms.,

63= 9-2 cms.

J.Q v O'T v 1 *Q v Q zL

(37) Find the value of A graphically.

(38) Find the value of A . B . G. D . E, where

a=6*3 cms.,

6= 5*1 cms.,

c= 2-7 cms.,

d=3'8 cms.,

e=5'9 cms.,

and =2".

Continued Product of Ratios.

EXAMPLE. Find the line representing to the scale u to unity the

ACE
product ^ .

^-
.
==, the numbers being given "by the lines

JD JD

a=9'9 cms., e=lQ-Q cms.,

5 = 5-52 cms., /= 13-05 cms.,

c 6*3 cms., u 1 -65 inches.

^=3*46 cms.,
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Set off OA, OB, OC, OD, OE, OF from along any convenient

line and 017 along an intersecting one (Fig. 26).

Mark on OU the points X^ JST
3 ,
Z

3 ,
where AX

l
is parallel to

BIT, CX2
is parallel to DZV EX\ is parallel to

Proof.

FIG. 26.

Then OX% gives the required product; measure this on the

u scale.

OX^_OA OX^__OC_ OXs _OE .

~M~"aF 02j~a5' ox
2
~~OF'

** l)U^W'W'Wn X
^B*T3'l!f

(39) Draw lines of lengths 10'3, 7 '8, 6'5, 4'3, 3'9, 2'7 cms., and find the

continued product of the ratios of the first to the second, the third to the

fourth, etc., if 07" represents unity.

(40) Find the continued product of the first four numbers in Ex. 39 and

the value of
(

-
J-
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Integral Powers (Positive and Negative). Since A* means

A x A x A x A and A~B means - = . it is evident

that the constructions already given cover the cases in which

numbers have to be raised to positive or negative integral

powers. It is, however, simpler to use the subjoined con-

struction.

EXAMPLE. G-iven a (1 62") and the unit line u (3*08 cms.} to

construct lines giving A2
,
A3

,
A4

,
... and

, -^ -T-
5J ....

A A2 A3

Draw any two lines intersecting at right angles. Set off along
these OUu and OA A.

Join UA, and draw AA^ A%A3
. A

B
A

4
... so that each line is

perpendicular to the one drawn immediately before it, as in

Fig. 27. Also, draw UB^
B%BZ ... where the lines are

parallel to AA Z ,
A

2AB ,

FIG. 27
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Construct the u scale along a straight-edged piece ot paper.

Measure OA<>, OA^ OA4 ... on the u scale; they are A*2
,
A 3

,

A*....

Measure OBly OB
2 , OB*. ... on the same scale; they are

1 _L JL
A' A^ A*""

Proof. All the triangles drawn are similar, and hence

OAj OAs OAz OA_
OA

B ~OA.2

~
OA~~OU'

Multiplying the ratios, we get

_
ou~\ou'

but U represents unity,

.*. A
3
=A 3

,
etc.

For the reciprocals we have

OB^OB^ OU~OA
Multiplying together

Similarly, BB
=

-jo, etc.
JL

For positive powers the construction stops at A^ since A
5

would not be on the paper. Take, then, g-
of OA 4 and proceed

as before ; then
OA OA
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The succeeding intercepts must, therefore, be read on the

xfrtli
u scale.

Again OB^ is too small to measure accurately, take 10 OB4

and read on the 10 u scale.

The points ... J8
4 , v B

2 ,
JB

ly U, A, A 2 ,
A

3 ,
... are points on

a curve called the equiangular spiral. The intermediate points

on this curve would give fractional and decimal powers, and

would thus enable one to find the values of such expressions

as A%, A\ It is not difficult to construct such a curve geo-

metrically.

Square Eoots.

EXAMPLE. Find the square root of A, given a and u.

Set off OA = a (Fig. 28) and OU=u in opposite senses along

c

FIG. 28.

a straight line. On UA describe a semicircle UOA, and measure

OC where OC is perpendicular to UA.

Then = N/Z

Proof. Since UA is a diameter of a circle and OC a semi-

cliord perpendicular to it ;

OC^OU.OA;
:. C*=A or cWZ

By repeating this process we can find rapidly A\ A 9̂ ....

(41) Draw a line 6*5 cms. long. If unity be represented by 2", find the

powers of the number up to the 6th , and their reciprocals.

(42) Draw a line 6 '5 cms. long. If unity be represented by 3", find the

square, cube and 4th power of the number, and their reciprocals,

(43) Find the square and 4th roots of the given numbers in (41) and (42).
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Powers by Squared Paper.
EXAMPLE. Construct a curve which gives ly inspection the squares

of oil numbers, integral and decimal, from -3/0+3.
Take two axes (Fig. 29) along the thick lines of the squared

paper, the axis of x horizontally and the axis of y vertically.

Mark the large divisions along the axis of x 0-5, 1, 1*5, 2, ...
,

and those along the axis of y 1, 2, 3, ... . Draw OP through 0,

and the point x = 3, y = 3. In Fig. 29 part only of the squared

paper and the curve is shewn.

FIG. 29.

Mark any point A l
on OP by a sharp short line perpendicular

to OP.

From ^
z go horizontally to A^ a point on the ordinate at 1,

put a straight edge along OA^ and mark the point A^ where

it outs the ordinate through Ar
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Proceed similarly with points ly
C
19

...
, along OP, taking at

least twelve points. In Fig. 29, to save confusion, the construction

lines for only 2 points A B
and J?3 have been shewn. With a

little care and practice the points A
B, B^ ... can be marked

accurately without actually drawing any construction lines

except OP, the ruled lines in the paper being a sufficient guide
for the eye.

Take points also on OP, produced backwards through the

origin, such as L
lt

and repeat the construction and find a

number of points like L
s

. Join all the points so obtained by a

smooth curve drawn by freehand
;
see that it is a smooth curve

by looking along it, and smooth down any humps and irregu-

larities that appear on it.

The curve thus constructed is such that the ordinate for any

point on it represents the square of the number given by
the corresponding abscissa.

Proof. OAA% is similar to 01A 2 ,
and OA = %AA

l
as lengths ;

. AA
B===

OA
"

IA^~~ 01

But AA
l
and OA represent the same number, viz. A, though

to a different scale; hence A
s being the number given by AA 3 ,

A2^A 2
,

i.e. AA
B represents the square of the number A, the

scale being one half that on which A is measured.

A similar proof holds for negative numbers, and the construc-

tion shews that the square of a negative number is positive,

(44) Read off from the curve as accurately as possible the squares of 0'52,
0-68, 0-84, 175, 1-98, 2-24, 2-5, 2-85.

(45) Read off the square roots of O55, 0*85, 2-54, 3*8, 3*6, 4*54.

(46) Find the squares of the numbers given by lengths, 1, 1-8, 2-3, 4 '6,

5, 67 and 7 cm. if unity be represented by 2".

(47) Find the square roots of the numbers given by the lengths, 2 3*8
47, 6-9, 8*5, 10-3, 11-1 cms. if 2" represents unity.

Evidently the curve as drawn is not adapted for finding the

squares of numbers much greater than 3. To find the squares of

greater numbers, the scale of numbers along Oy must be made
still smaller than that along Ox. Thus for numbers from to
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100 take 1 inch to represent 10 along Ox, but along Oy take 1 in^h

to represent 1000. The construction is almost exactly the same;

the line OP joining to the point for which =100, y= 100.

(48) Find graphically the squares of 2 '7, 3*6, 77, 9 '8, using a tenth scale

along the y axis. Find the square roots of 87, 73, 60, 31, 20 and 12.

(49) Construct a curve giving \ of the squares of the numbers ranging
from - 4 to +4. (The line OP must now go through the point (7, 1).)

Equation to Graph, The curve just constructed (p. 30) is

such that every ordinate like BB% represents a number which is

the square of the number represented by the abscissa OB. If,

then, y arid x are these numbers, y x2
,
and since this equation

holds for all points on the curve it is called the equation to the

curve, and the curve is the graph of the equation.

It must be clearly understood that the equation y
-

cc
2 is only

true if, by y and x, we mean the numbers represented by the lines

and not the actual lengths of the lines themselves.

If y and x denote the lengths representing the number then

the equation y = x2 is not true.

Let % be the unit length along Oy, and 2w the unit length along

Ox, then, referring to Fig. 29, we have OA=x
3 AA 3

=
y, and

since AA*. __
AA

l

~OA 0T'

we get .&

The last form of the relation brings us back to the original

equation ;
for ^ is the number represented by the length y, and

x
^- is the number represented by the length x.

(50) If the scale along y had been 1" to unity, and 5" to unity along x,
what would have been the equation connecting the lengths x anid y of the
coordinates of any point on the curve, and what would be the relation

between corresponding numbers? What length would represent the

square of the number 3 ?

(51) If a be the unit of length along x, and b that along y, what is the

equation connecting the lengths x and y? If a= 2'3"and &= 1 "5", what are
the lengths representing the squares of 1 and 3 ?

Another construction for the curve y $ follows from the

geometrical method explained on
p. 26,
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Take two axes on squared paper (Fig. 30) \
let unity be repre

sented by 1" along Ox and J" along Oy.

Take any point A on Ox and

by the aid of set squares draw

l perpendicular to the line

^

joining A and 4 (on Oy).

Mark on the ordinate at A
the point A% where A^A^
parallel to Ox, cuts it.

Eepeat this construction for

a number of points like A, and

join the points like A 2 by a

smooth curve ;
this is the

curve of squares.

Proof. As on p. 28,

Taking all measurements

in inches, we have, if OA = x

and OA
l y9

^ =%
(x and y being in inches).

Hence, if the axis of y be

marked
"
to unity, we have,

as numbers,

_Q

FIG. 30.

(52) Construct, by a similar method, a curve giving directly 1 '6 times the

square of numbers from - 3 to +3.

Cubes and Cube Roots.

EXAMPLE. From the curve y = x2 construct a curve giving the cubes

of numbers from -2 to +2.

First construct the curve of squares, the origin being in the

centre of the squared paper, and the y scale J that of the x.

Take any point A l (Fig. 31) on the curve, go horizontally to
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A^ on the vertical through 1, mark Az on AA
l
where OA,2 cuts

it, then AA% gives the cube of A.

Proceed similarly with a number of other points like Av Join

all the points similar to A
3 (for negative as well as positive x's) ;

this is the curve giving the cubes.

FIG. 31.

AA
1
= OA 2

(as numbers)
-oto ,/x -A o

Proof.

= AA
3 (as numbers).

If, then, y denote the number corresponding to any ordinate

AA
2 ,

and x the number for the corresponding abscissa, y = x3
,

is the equation to the curve.

Notice that for a negative number
a?, y is negative.
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(53) Find_thejmbes_of 0'3, 0-5, 1-4, 17, 1'9, 2'1
3
2-8 and 3'1, and the

values of S/2, x/3'5, ^87.

(54) From the curve y xz construct the curve giving the fourth powers
of numbers from - 1 '8 to 4- 1 '8.

(55) Read off from the curve y= orS the values of

/2, */5, v/9, (1-22)
4

, (l'S5)
4

.

_

(56) Draw a curve by the above construction giving J of the cubes of

numbers from. to 10. What is its equation ?

FIG. 82.

Curve giving Reciprocals, Let 1 inch represent unity.

Take the origin at the centre of the squared paper. Mark any

point A l (Fig. 32) on the unit line parallel to Ox, mark also A%
where OA

l
cuts the unit line parallel to Oy. Go horizontally to
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^
3,-the point where A

2
A

3 cuts the ordinate through Av Then
AA% represents the reciprocal of the number A,

Eepeat this process for a number of points like A
l
on the

positive and the negative sides of Oy. Join all the points like

A
3 by a smooth curve. This curve is such that the ordinate at

any point Az gives' the reciprocal of the corresponding abscissa

number.

Proof. AA^IA;, and

Also

=:-fj-j (as numbers).

(57) Read off from the curve the reciprocals of 0*35, 0*75, l-2> 1'85, 2*15,

2-75,3-84, -0-65 and ~2'78.

(58) Using a construction similar to that on page 32, draw the curve of

reciprocals. [Take OA=l always, make 0(-4}x, then OA l
= y.]

Equation to Curve of Reciprocals. Let y be any ordinate

number, and x the corresponding abscissa number; then evidently

from the construction

which is the equation to the curve drawn.

Since - x .
-
y= xy

=
1,

we see that the two parts drawn by graphical construction are

really branches of the same curve.

Notice also that for very big 's the y's are very small, and

vice versa, hence as we travel along x in the positive sense the

,
cunre approaches nearer and nearer to the axis but never crosses

it. Similarly, for very large negative x's the curve gets very
near to the axis of x (negative side) but is below it.

(59) Construct the curve which gives | of the reciprocals of numbers.
What is its equation ?

(60) Construct the curve giving 1 *7 times the reciprocals of all numbers
from 1 to 100. What is its equation ?
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Curve of Reciprocals Squared. From the curve y = ~,

construct the curve y = -% giving the squares of the reciprocals of

numbers.

The construction is very similar to the last. Put a straight

edge along OA
l
where A

l
is any point on the curve jey=l,

mark A
2
where the straight edge cuts the ordinate at 1, go

horizontally to A
B
on the ordinate AA^ then AA

B gives the

required reciprocal squared.

(1
\^
)

is positive ?

xj

(61) Construct from the curve y = ~ the curves
x

y= and
j/=|.

(62) Construct from y= -$ the curves

1 , 3
7/= . and y= 3'u ^ y x,i

(63) From y-x^ construct y*=x
3

,
or y= x%.

So far multiplication, division, etc., have referred to numbers,

represented by lengths. On page 1 it was pointed out that

a length may represent any other scalar quantity, the length

representing the unit quantity being given.

Areas to Scale. The product of two lengths a and b is

defined as the area of a rectangle having a and b as adjacent

sides

The product of two unit lengths is unit area. To represent

the product of two lengths by a line, we must first choose a line

to represent unit area. This line may be the unit of length, or,

if more convenient, some other length.

The methods, for finding the lines representing areas or volumes,

are exactly the same as for multiplying numbers together ;
it is

only the interpretation that is different.
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EXAMPLE. Represent the product of a x b by a line, unit area

being represented by u, the unit of length.

Set off OU=u (Fig. 33), OA = a along any line, and UB^l
perpendicular to it, then

AC.OU=OA.UB
or A C . u a . b.

AC is the height of a rect-

angle having unit length as

base. Measure this on the

u scale
;

it gives the number

of unit areas contained in

a.b. QUA
Note that although the

same line u represents unit

area and unit length, it is not
^

correct to say that lengths
u

;

, .. IJIG. 33.

and areas are represented to

the same scale. They are different physical quantities, and all

we can say is that the same length represents the same number of

units of length as of units of area.

EXAMPLE. Lines of lengths 7 and 15 cms. represent the sides of a

rectangular room to the scale of Y to 10'. Find a line giving the floor

area, when the unit area is

(i) 10 sq. ft., (ii) sq, yds., (iii) 17 sq. ft.

(i) Draw, as in Fig. 33, 027=1", 0-4 = 15 cms., J7JS7 cms.;

produce OB to cut AC, the perpendicular at A to OA, in C.

Then, as before, AC.OU^OA.VB.
This equation remains true whatever the scale on which we

measure the lengths. If, then, we measure on the tenth inch

scale, each tenth represents one ft. (for U represents 10 ft.), and

AC represents the height of a rectangle of base 10 ft. and area

equal to the given floor, i.e. gives the floor area in 10 sq. ft.

(ii) Set off OZ7=0*9" and measure AC in tenths of inches.

(iii) Set off 0/7=1-7"
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Any Scale. Suppose the given lengths OA and UB repre-

sented lengths to the scale 1" to x ft. and we want to find the

area represented by OA x UB in sq. yds.

x being a number we can always set oft a line representing

9
that number of feet, and - of this will be OU, and AC must be

QJ

measured on the scale (- ]
to 1 sq. yd.

\x/

Thus, if x=T we must divide 1" into 7 equal parts (or if

more convenient 10" into 7 equal parts), 9 of these will equal

017. Make the construction as before, and measure AC on the

scale of f" to 1 sq. yd.

(64) Lines of lengths 2 "3 and 47 inches represent, to the scale of 10 cms.
to 7 ft., the sides of a rectangular room. Find by construction the floor

area in sq. yds.

(65) Lines of lengths 1'82 and 3 "65 inches represent the altitude and
base of a rectangle to the scale of 1 inch to 350 cms., find geometrically the
area in 100 sq. cms.

*(66) Find a line representing the volume of a rectangular box, in cb. ins.,
whose edges are 7, 15 and 17 cms. in length, unit volume being represented
by 0*1 inch.

*(67) Find graphically the volume of a rectangular room whose dimensions
are given by lines of 3*2, 5*3 and 6 '7 cms., the scale being I" to 10',

(1) in cb. yds ; (2) in 10 cb. ft.

Work done. The work done in lifting a body vertically

upwards is defined as the product of the weight of the body
and the vertical distance moved through, If the weight be

expressed in pounds and the distance in feet, the product is in

foot-pounds (ft.-lbs.). The work done in lifting a 1 Ib. weight

vertically through 1 ft. is thus 1 ft.-lb., and is the unit of work.

Obviously the work done in lifting 10 Ibs. through 1 ft. is the same
as that done in lifting 1 Ib. through 10 ft. or 1 oz. through 160 ft.

EXAMPLE, w represents the weight of a body to the scale u to a Ib.

weight, s represents the vertical distance moved through, to the scale f to

a ft ; find graphically the work done in ft.-Us.

Notice that uxf is the area representing a ft.-lb., and wxs
the area we wish to find in terms of u x/.
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We can most conveniently do this by finding the rectangle
whose base is u or / and whose area is w x .<?.

(i) Set off OU=u (Fig. 34) and OW=w along one axis, and

OF=f and OS= s along an intersecting one.

Draw WX parallel to US and measure OX on the / scale.

This gives the work done in ft. Ibs.

w

Proof. UU

FIG, 34.

or OX . OW . OS ;

Hence OX is the altitude of a rectangle whose base is u and

whose area is w .s; and therefore OX represents the vertical
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distance through which 1 Ib. weight must be raised in order that

the given work may be done. If, then, OX be measured on the

/ scale the number of units in OX will be the

number of ft 4bs. represented by w . s.

(ii) Set off OF=f (Fig. 35) and W=w along

any line, OS=s along an intersecting line, and

draw WX parallel to FS.

T , OW OF
Then

ox -US'

FIG. 36.

:. OF. ox

i.e. f . OX=w . s.

OF W
FIG. 35.

OX therefore measures the weight which, lifted

vertically through 1 ft., requires an expenditure

of work represented by w . s. Hence measure OX
on the u scale

;
it gives the number of ft.-lbs.

represented by w . s.

(68) If s is actually 6", which construction, (i) or (ii),

would be most convenient ?

(69) In the c.G.s. system the unit of work is an erg=dyne x centi-

metre. If d (Fig. 36) is the weight of a body in dynes and 1,000,000 dynes
is represented by u, find the work done in lifting the body through the
distance c.
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*(70) The speed of a body is given by v (Fig. 37), where u represents a

foot per second. Find the time the body takes to go a distance /), repre-
sented by d

; /represents a foot.

FIG. 37.

(71) The weight of a body is given by a line 4" long, the Ib. being

represented by 1'3 cms. If 1 ft. is represented by a line of length 4",

find the work done in lifting the body through a distance given by a line

of length 15".

(72) Find graphically in ft. -tons the work done in raising a body, weight
0'75 ton, through a distance of 23 "2 ft.

Moment of a Force. If a force be applied to the arm of a

lever, the turning moment or torque of the force about the axis

(fulcrum) of the lever is measured in magnitude by the product

of the force and the perpendicular on its line of action from the

axis. The geometrical representation of a moment is (like that

of work done) an area. The difference between the two products

we shall see later.

(73) A straight bar PQ, 12 ft. long, is hinged at Q, a force of 13 Ibs. is

applied at P making an angle of 35 with PQ. If a force of 1 Ib. be

represented by a line 1 cm. long and if 1 ft. be represented by 01", find in

two ways a line which represents the moment about Q, and read off the

moment by scale.

MISCELLANEOUS EXAMPLES. I.

1. Draw the lines a, I and c of lengths 4 '7, 3 '9, and 5*2 cms. Find

lines representing, A . B, A~, to the scale of 0'5" to unity, and the
B 6

numerical values of those quantities.

2. Find a line which represents the fraction ^ to the scale of 9 cms.

to unity.

3. Determine graphically the value of \/6 and <v/6.
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4. Find a line whose length represents N/7*2 to the scale of 0'7 inch
to unity, and read off the value of the square root.

5. Construct the line whose equation is l'7y= 5'8x, and from the line

read off the values of ?^p,
S

'\^
8

and *\*f
8

.

6. Construct geometrically the curve y = 2'7x2 and find the values of

2-7x4'l2
,

3'62 x2-7 and ^?.
7. If a line of length 7 "2 cms. represents unity, find the product of the

ratio 4 and C> where a= 3 -48", & = 1'85" and c=r62", 2 -08", 3-55", 4 -28"
X>

in turn.

8. In constructing the curve of cubes, unity is represented along Ox by
2" and along Oy by 0*5". What is the relation between the lengths
x and y for any point on the curve ?

9. Find the product A . Bin. three ways, where a= S '7 cms.
,
6= 4 *8 cms.

and M= l-62".

10. to-=2'3" represents, to the scale 2 cms. to 1 lb., the weight of a body ;

7z.= 7"2cms. represents, to the scale 1 cm. to 1', the vertical distance the

body is moved through ; find the work done in ft.-lbs.

11. Construct geometrically the curve xy=3'2, and find the values of

3'2 times the reciprocals of 1
;
3, 27, 4*2 and 0'8.

12. By aid of a straight line divide 2 '72, 0'85, 3 '64, 1-88 in turn by 1'35.

*13. The volume of a pyramid being $ base area x height, find graphically
the volume in cubic feet when the base is a rectangle, the sides of the

rectangle being given by lines of 7*2 and 3 '9 cms. and the height by a line

of 4 '3 cms., the scale being 2" to 1 foot.

14. To divide a set of numbers by 5*44 use a straight line graph, taking
the vertical scale (for the numbers to be divided) as 1 quarter-inch for 10,
and the horizontal scale (for the quotients) as 1 quarter-inch for 1. Obtain
'from your graph the quotients of 60 and 218 by 5 '44, and verify by
calculation with the tables. Explain why the graphical method gives the
result. (Military Entrance Examination, 1.905.)

15. Find graphically the values of 2*38, 18*3, 47*5 when multiplied by
0-763

5-47*



CHAPTER II

GRAPHICAL MENSURATION.

THE chief problem studied in this chapter may be concisely
stated as follows : Given an area bounded by straight or curved lines, to

find a length which will represent to a given scale the magnitude of the

area.

The process for effecting this is called reducing the given area

to unit base. The required length is the altitude of a rectangle
whose base is the unit of length and whose area is equal to the

given area.

The Triangle. The area of a triangle being half the pro-

duct of the base and altitude, if we can find another triangle
of equal area having one side twice the unit of length the

altitude of this second triangle measures the area.

Method I. Transfer ABO (Fig. 38) to drawing paper. Draw

through A a line

parallel to B
;

with B as centre,

describe an arc of

a circle of radius

2 inches cutting

AA
l

at A
l (or

put. a scale at B
in such a position

that BAi =
2").

By the aid of set

squares, draw CD

perpendicular to

BA, Put the
FIG. 38.

inch scale along
CD and read off p, the number of square inches in ABC.
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Proof. Since AA^ is parallel to BC, the area of AEC^ area

of A^IBG \ and, since BA
l
= 2 inches,

the area of ABC
-|~
x 2 xp-p (sq. ins.).

(1) Draw a triangle having sides 3 '7, 2 "8 and 4*3 inches, and find a line

giving its area in sq. ins. (In this case 2 inches is less than any perpen-
dicular from a vertex to the opposite side, so take 4 inches for JSA^ and
read p on the J" scale.)

(2) Draw a triangle having sides 9, 7 "3, 5*6 ems. and find a line giving
the area in sq. cms. (Take A I9 10 cms. and read_p in mms.)

Method II Since the lengths of BA
l
and CD may be inter-

changed without altering the area (i.e. we may make CD = 2

inches or in general = 2w), if BDC be kept a right angle, the

line from A to the base, parallel to BD
}
measures the area.

Transfer ABC (Fig, 39) to drawing paper. With C as centre

describe an arc of a circle of radius 2 units. Place the set

squares, in contact along one edge, so that an edge of one going

through E is perpendicular to an edge of the other going through
'

j
a position can easily be found for the set squares in which

these edges intersect on the arc at D (say). In this position BD
is the tangent to the arc at D and CD is the radius to the point

of contact.* Move the B set square, parallel to itself, until the

edge passes through A, and draw AE to cut the base in E.

Measure AE (=j?) ;
it gives the area of ABC (3*23 sq. ins.).

Proof. From. (Fig. 39) we see that the areas ABC and A-JBG
are equal, and that the area of the latter is

\A-fj x altitude = $AE . %,
and hence AE measures the area in sq, units.

When does this construction fail ? See that the difficulty can

be got over by taking u, Jw, %u9
... instead of 2u.

(3) Repeat this measurement by describing a semicircle on BO and
setting off a chord, CD=2u, in it, and then proceed as before.

(4) Find the area in sq. inches of the triangle whose sides are 7*5, 6*3
and 4 "7 ems.

Method III. Transfer ABC (Fig. 40) to drawing paper. Set

off along BC, BD=2u. Mark the point E on AB where CE,

*L could be found with the right angle of one set square only if the corner
were perfect and not rounded by use.
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A A,

45

B\

parallel to AD^ cuts it
;
measure EF

( =p), where EF is perpen-

dicular to BO'; p gives the area (1*58 sq. ins.).
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Proof. Join DE ;

then (as areas) AEG^ DEC,' .'. ABC=EBC+DEC=EBD,
and the last triangle has 2u for its base.

(5) Repeat the construction, taking BA and AC as bases. Is this

construction always possible ?

Rectangle. Parallelograms and rectangles can be treated by
the method given for quadrilaterals in the next section ; but the

following way is a little simpler.

Draw a rectangle ABCD whose height BA is 8'5 cms. and

base BC is 3 '2 cm. To find its area in sq. inches, set off along

FIG. 41.

BA, BU=l" (Fig. 41) and draw AE parallel to UC. Measure

BE in inches, and the number so obtained is the area of ABCD
in sq. inches.

This is like the old construction of pp. 8 and 9 over again

and needs no further demonstration.

Quadrilateral. Transfer the quadrilateral ABCD (Fig. 42)

to drawing paper. With B as centre, describe an arc of radius

2% (2"), and draw the tangent DE to it from D (or describe a

semicircle on BD, and set off BE = %u in it). From A and C
draw AA

l
and CC

1 parallel to BD, and measure A
l
C

l
which

gives the area of ABCD (2*57 sq. inches).

Proof. Join BA
l
and BC

l ;
then (as areas) ABD =A

1
BD and

BDC=BDC
lt

:. ABCD^A^C^ a triangle whose altitude is

2^ and base A.
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(6) The sides of a quadrilateral, taken in the order A BCDA, are 3 '7,

2, 4 and 2 '8 inches, the angle ABO is a right angle ;
find the area (i) by

using the diagonal A G, (ii) by using ED.

(7) From a point in a field lengths are measured OA = So ft. ,

OS=72 ft. and OO=5l ft., the angles AOB and BOG being 55 and 50

respectively. Draw the figure OABO to scale (2 cms. to 10 ft. say).

Reduce the figure to unit base, and determine the area marked out on the

field by the contour OABG.

B

FIG. 42.

Re-entrant Quadrilateral, The construction already given

holds for a re-entrant quadrilateral. Transfer ABCD (Fig. 43)

to drawing paper and proceed exactly as before. In this case,

using the diagonal BD, A
l
and 6\ are on the same side of E.

MeasureA^ in inches, this gives the area in sq. inches (0*97).

Notice that A^ is now the difference between A-J) and 0^)

instead of the sum

Proof. Join BA
l
and GA

l ;
ABCD is now the difference between

the triangles ABD and CD, and BAD^BA^D, BCD =BC1
D.

Hence BADC= BAfl - BC,D = BA&,
a triangle of altitude BE (2?t)

and base A&.
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^ If G, in Fig. 42, be moved nearer and nearer to BD, BCD

gets smaller and smaller arid vanishes when C is on BD. If be

moved still further, so that it crosses BD, the triangle becomes

negative and has to be subtracted from ABD. Corresponding to

this change of sign of the area, there is a change in the sense of

the boundary as determined by the order of the letters. In

Fig. 42 the boundary, in the order of the letters BCD, is described

FIG. 43.

clockwise, whereas, in Fig. 43, the boundary, taken in the same

order, is described contraclockwise. On changing the sense of

the boundary of an area, we must, therefore, change the sign of

the area The equation ABCD^ABD + BCD holds, therefore,

for both Figs. 42 arid 43, and since BCD- - CBD, we have

where the three areas have the same sense to their boundaries.
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It is usual to consider an area, whose boundary is described

contraclockwise, as positive, one with a clockwise boundary as

negative. In Fig. 43 ABCD is a negative area, but BADO is

a positive one.

(8) Given BAD=W, AJB=7'2, AD= 6, BG=5 and OD= 3'Z cms., find

the area in sq. inches.

# Cross Quadrilateral. If is taken on the other side of

AB or AD the figure is called a cross quadrilateral, and the

area is still the difference between AED and CBD.

c

\2u

FIG. 44.

Transfer the annexed figure ABCD (Fig. 44) to paper and

reduce to unit base as before. See that A^ (0-65") still repre-

sents the area ABD - the area DCS. Hence the area ABCD is

that of the triangle ADD- the triangle BOG. On going round the

figure ABCD in the order of the letters from A back to A, it is

seen that AOD is described clockwise and BCO contraclockwise.

T.G,



50 GRAPHICS.

The triangle AOD being greater than BOO, the figure ABCD,
taken in the order of the letters, is negative, but ADOB is

positive.

(9) Given AO= I'2, D0=2% (70=0-4 and B0=0'8 inches, and
COB=110 ; find the area of the cross quadrilateral in sq. ins.

Polygons (including the quadrilateral as a particular case).

Transfer ABCDEF (Fig. 45) to drawing paper. Produce

AB both ways. With set squares mark C^ on AB so that CC
l

is parallel to DB\ mark D
l

so that DD
l

is parallel to C-JS>

f; A B Ct D
t

PIG. 45.

then on the other side mark F
l
so that F^F is parallel to AE ;

find the area of EF
1
D

1 by reducing to unit base
;

this is the

area of ABODEFA (19 sq. cms.).

In general, to reduce any polygon to a triangle having its

base on a side AB of the polygon, put a set square along the

line joining B to the next but one vertex D, and bring down the

omitted vertex to G
l
on AB by a parallel to BD.

Then put the set square along the line joining C
l
to the next

lut one vertex E, and bring down D to D
l

on AB as before.

This process is to be continued until only one vertex is left
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above AB, Should the construction lines become awkward, the

transformation can be transferred to the end A of AB, or a

new base line may be taken on another side of the polygon.

Proof. Since BGD=-BC\D in area

the hexagon ABODEFA = the pentagon AC^EFA.
Join D^E ; then, since C-JOE^ C^E

the pentagon AC\DEFA = the quadrilateral AD-^EFA.

Join^-E; then, since AEF=AEF
l

the quadrilateral AD^FA^ttiQ triangle F^E.

(10) Reduce the same polygon to a triangle having its base (i) on BC,

(ii) on AD.

(11) Reduce the re-entrant pentagon AEDCB (Fig. 46) to unit base.

FIG. 46.

EXAMPLE. To find the area between a polygon and one enclosed

within it.

Instead of reducing the two polygons separately, the mensur-

ation may be effected by a continuous process.

Transfer the figure ABC... (Fig. 47) to drawing paper.

Produce KH to cut FA at L, then ABGDEFA -HKJ]H = ti&

re-entrant polygon ABODEFGHIJKLA when Q and L are

coincident.

Eeduce this polygon to unit base as before (32 -3 sq. cms.).
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For many-sided figures the process is tedious and errors may

easily accumulate unless very great care is taken. In such cases,

and for curved boundaries, the strip division method (p. 58) may

FIG. 47.

be used. The planimeter, where one is obtainable, is, however,

best for such cases.

(12) ABCDEA is a small pentagonal field, the sides AJB, BO and AE
were measured and found to be 136, 52 and 95 yds. long respectively, and

the angles ABO, BCD, DEA and J&LB had magnitudes 75, 70, 60 and

50. Draw a plan of the field to a scale of 1 cm. to 10 yds., reduce the area

to unit base and determine the area of the field in sq_. yds.

Circular Arc. Draw a circular arc AB (Fig. 48) of radius

3 inches subtending 90 at the centre. Draw the tangent AB^
to this at A. Set the dividers so that the distance apart of the

end points is about 1 -5". Step off the arc from B towards A
with alternate clock- and contraclockwise sweeps, prick a point

on AB
l
where the last semicircular sweep would cut it. From
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this point make as many steps along AB
l

as were taken for

the arc, mark J>\ the end of the last step. Then AB
l

is very

roughly the length of AB.

Adjust the dividers again so that the length of step is about
"

(roughly), and

repeat the operation]

you will come to a

point Bo near B-^.

Which most nearly

gives the length of

the arc BA, BA- or

BA^ and why'?

Adjust the dividers

again so that length

of step is about
"

(roughly). Repeat
the operation again,

and find a point BB

on AB. Can you

distinguish between B
2
and Z?

3
?

ABB is approximately the length of the arc AB.
Professor Eankine gave the following construction for finding

as a straight line-

the length of a

circular arc AB.
Produce the

chord AB (Fig.

49) to C making
BC= \AE. Draw

the tangent at B,

and with C as

A B c centre describe
FIG - 49*

the arc AD cut-

ting BD at JO, then BD is the length of the arc AB approxi-

mately.

FIG. 48.
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For an angle of 90 the error is about 1 %, so that the method

should not be used for arcs greater than a quadrant.

(13) Draw a circular arc of radius 4" and subtending 50 at the centre.

Measure the length of the arc in cms. by the two methods given.

(14) Draw the circular arc whose base is 10 '5 cms. and arc length 11 '4 cms.

In this problem the length AB is given and therefore AG is known.

The point D is therefore given by the intersection of two circles. The

centre of the circular arc AB is therefore found as the point of intersection

of the perpendicular at B to JE>D, and the perpendicular to AB at its

mid-point.

For the are of a semicircle there is a method due to a Polish.

Jesuit, Kochansky (circa 1685).

Draw a semicircle ABG (Fig.

50) of radius 3". Draw a tangent

at one end of the diameter (B) ;

set off BD so that BOD = 30.

From D step off DE = three

times the radius, then AE is the

length of the arc ACB nearly.
1

Any arc greater than a semi-

circle can be now found by first

finding the length of the semi-

circle by the above construction

and the remainder by Professor

Ranlune's construction.

PIG. 50.

(15) Find the length of a semicircular arc of 4'72
//
radius and compare

with twice the length of the corresponding quadrant given by Rankine's
rule and the length given by stepping off the arc along a tangent.

iThe theory of the construction gives a value of T=3'14153 instead of 3*14159.
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Area Of Circular Sector. Draw a circular arc AB (Fig. 51)

of radius 3*5" subtending at the centre an angle of 70. At any

point of the arc draw a tangent, and step off CB
l equal to the

arc OB, and OA
l equal to the arc CA*

Eeduce the tri-

angle A^OE^ to unit

base by one of the

given methods, and

measure the alti-

tude in inches. This

number is the area

of the sector AOB
in sq. inches.

Proof. If the are

be supposed divided

up into a very great

number of small parts LM (LM as drawn is not very small, but

this is only because if it were very small the points L arid M
would seem to the eye coincident). LM being very small, it is

very nearly straight, and its area is therefore approximately

\LM x the perpendicular (p) from on it.

In addition, if all the chords like LM are equal, the per-

pendiculars are all equal, and therefore

Area of sector AOB is approximately equal to

2~P x (tne sum ^ khe stePs ^0
= IpSLM. (Eead : "the sum of all terms like LM. 91

)

As the number of steps increases indefinitely the length LM
diminishes without limit; but XZJf approaches and ultimately

becomes the arc AB, p becomes the radius r of the arc, while

^p^LM becomes the area of the sector.

Hence, area of the sector = area of A
l
OBr

The formula for the area is : Area= Jr
2
#,

where r is the radius, the circular measure l of the angle, and rB

the length of the arc.

i See Note A, p. 374.
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(16) Draw a circular sector of radius 8 cms. such that the base of the

segment is 9 cms. Find the area in sq. inches.

(17) Find the area of a quadrant of a circle of radius 3 '4 inches.

Area of a Segment of a Circle.

(i) Segment less than a semicircle. Draw a sector AOBG

(Fig. 52) of angle 75 and radius 4"; join AB, cutting off the

segment ABO. Set off the arc along the tangent at C, CBl
= OB

and CA^CA.
Join JBB

1
and draw

OB
2 parallel to it;

similarly, draw OA Z

parallel to AAV then

A^AJS^ has the

same area as AEG.

Reduce this quad-

rilateral to unit base,

and measure the area

in sq. inches.

FIG. 52.

* Proof. Since segment ACB
= sector OACB - A OAB = A OA^ - A GAB
=AOA^ + AOA^ + A OBJS^ +AzA&Bz - AOAB

=A OA%B2 +A OAA 2 4- A OB^B - A OAB +A^B^
.*. segment A%AiB^B^.
A simplification is effected "by taking C at A, so that A% is at

A and the quadrilateral reduces to a triangle AB-jB^. Draw the

figure and make the construction. The proof then simplifies to :

segment ABC~ sector AOBC- A OBA

Pind the area of this triangle and compare it with the previous

result.
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(18) Take ^05=60, 0.4 =3\ Find the area graphically, and com-

pare with the value of 4'5 (~
- 1?Y

\3 2 /

(The formula giving the area is A =^ (a-sin2a), where r is the radius
and AOB = 2a in circular measure.

)

(ii) Segment greater than a semicircle. Draw a segment
ACB (Fig. 53) of a circle such that AOB= 150, and repeat the

previous construction (p. 56). A crossed quadrilateral

is obtained. Reduce this to unit base.

Verify, by means of the formula in Ex. 18.

^ Proof, This is very similar to the preceding one.

Segment ACB = sector OACB + &AOB

OBB
2 +A OB

For the same segment, draw the tangent at A and step off the arc

along it. The area is thus reduced to a triangle AB.2
Br Find

the area of this triangle and compare it with the previous result.

(19) Reduce a semicircle of radius 7 "3 cms. to unit base.

(20) Reduce a segment having three quadrants to its arc to unit base,
the radius being 3*2".

Irregular and Curved Figures. The areas of figures

bounded by curves or many straight lines are best obtained by a
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planimeter. The method of strip division gives, with care, a

very good approximation.

Place a sheet of tracing paper over the accompanying figure

and draw its outline. Divide the distance between the two

O,

Fiq. 54.

extreme points and O
l
into 12 strips of equal width. To do

this, set a scale slantwise between two parallel lines drawn at

and O
l (the whole figure must lie between these parallels),

in such a position XY that there are 12 equal divisions between

X and Y.
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Mark the mid-points Z
15 X2 ,

... of these divisions, and

through these points draw lines parallel to XO.
Take a long strip of paper with a straight edge and add up

graphically the segments of the mid-lines intercepted by the curve.

The given area is approximately that of a rectangle whose

base is the width of the strips and whose altitude is the length
on the long strip. Calculate this in sq. cms. (53 -2).

The approximation made is in the assumption that each strip

has the area of a rectangle whose height is the line through the

mid-point (the mid-ordinate) and of the given width, and this,

again, assumes that the little shaded areas outside the figure are

just balanced by the shaded areas inside.

A more accurate value of the area is obtained by using

Simpson's Rule, viz.

wide

yl
the

rly, yl JM

second s$(e

* . . y are

scrips.
Since

The rule only

where the area is divided into an even number of

strips of width h-
y y(}

is the length of the

length of the second side of the first strip

the length of the first, and y.2
the length

of the second strip, and so on ; shortly put
the lengths of the bounding straight lines

the number of strips is even, n must

holds for an even number of/strips.

Apply the rule to
determine

the

taking the strips from bottom to

the first dotted line witfim the

T/S are not shewn, lam

according to the ruleJand

by the mid-ordinat^frale.

Place the tracing paper

count up the number of l

of
squared

mm. paper and

quares wholly within the curve,

and then the number of small ones between these squares and

the curves, estimating for any decimals of a small square. Find

the area by this means and compare with the previous results.

of ''Fig, 54. Here,

is the length of

the second
;
the other

the ordinates

result with that obtained
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B

(21) Obtain the area of the hexagon on p. 50 by the strip division method.

(22) Draw a semicircle of radius 3*1" on squared paper.

Find the area by
(1) The mid-ordinate rule. (2) Simpson's Rule.

(3) Counting the squares. (4) Calculating from formula : Area= -|xr
2

.

* Another Method for Figures bounded by Curved Lines.

For these figures it is usual to assume that the boundary can be

divided into parabolic arcs. In most elementary text books on

Geometrical Conies, it

is shewn that the area

of any parabolic seg-

ment, such as AGB
(Fig. 55), is equal to

|-

of the triangle having
as base the base of the

segment, and having

its vertex on the tan-

gent to the curve

parallel to the base.

In Fig. 55
-J

of triangle ACB*= area of segment.

We may, therefore, choose any convenient point P on the

tangent, divide AP into three equal parts, produce to Q, where

P$ = one of these parts, and join QB. Then the area of AQB is

the parabolic segment area

(23) Find the area of the circular segment of Exercise (16) by treating it

as a parabolic segment.

Any curved area such as ABODEA (Fig. 56) may be divided

into a number of approximately parabolic arcs, AB> EC, ... .

Each arc must be curved in one way only (i.e. must not contain

a point of inflexion) and through considerably less than 180 :

the procedure is as follows. Start with the base BC say ;
draw

a tangent parallel to BC and produce AB to cut it at JT
;
divide

BK into three equal parts and make BB
1 equal to four of these

;

join CB^. Then CBBl
= given parabolic segment in area.

Again, produce B-fi to cut the tangent parallel to CD, and take

the | point Cl
on B^O and join C^D. Then 00^0 = area of corre-

PIG. 55.
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FIG. 50,

spending segment. Proceed in this way round the curve and

reduce the curved area to the rectilinear one J5
1 1
D

1
JS

r

1
^

1
^.

Reduce this to unit base in the usual way (6*9 s<j. ins.).
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This method is, however, rather tedious, and errors due to want

of parallelism may, unless very great care be taken, lead to

considerable final error. It is generally better to use the method

of strip division and either the mid-ordinate or Simpson's Kule

for such cases.

Volumes of Revolution. Any such volume may be found

by a double reduction, Suppose the given area in Fig. 57 to

revolve about the line XX] then it will generate a figure called

a volume of revolution. In particular,
if a right-angled triangle

ABO revolve about its base AB, it will generate a cone ; if a

semicircle revolve about its diameter, it will generate a sphere ;

a rectangle about its base will generate a cylinder ; any triangle

about one side will generate a spear-head volume ;
a circle about

an exterior line in its plane will generate an anchor ring ;
and a

rectangle about a line parallel to its base will generate a figure

like the rim of a fly-wheel.

The construction to be explained is one, therefore, of great

generality.

Make a tracing of the outline of the given figure.

Divide the area up into 10 equally wide strips, parallel to XX,

and draw the mid-lines for each of these as in Kg. 57. Only

the mid-lines are shewn.

Draw a line YY above XX and parallel to it at a distance

a inches, given by a= (that in Fig. 57 is purposely not at

the correct distance).

Project the end points, like AB of each mid-line up to A'ff,

on YY, AA' and JSff being perpendicular to YY. Join A' and

B to any fixed point on XX, cutting AB in A
l
and r

Connect all the points like A^ by a curve. The area of this

curve is proportional to the volume. If a planimeter is not

obtainable, add up all the mid-lines like A^ of the new figure

(called the First Equivalent Figure) by the straight-edged paper

method, and obtain the area approximately in square inches;

multiply this by 20 ; the result is the volume of revolution in

cubic inches.
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* Proof. Suppose the area divided up, not into 10 only, "but

into a very great number of equally thin strips, of which AB
may represent any one. The strip must be considered infinitely

thin, so that it is all at the same distance from XX, Let x be

FIG. 57,

the length AB> and h the width of the strip, then, however small

k may be, 2&r, (read : "the sum of all terms like hx") will be the

area.

Let y-be the distance of AB from XX, then when the strip

revolves round XX, keeping always at the same distance y from

it, it will generate a very thin hollow cylinder. The height of

this cylinder is x, its circumference is %iry and its thickness is h
;

its volume, therefore, will bo
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All the other strips into which the area has been divided, will,

on revolution about X3T, also generate very thin hollow cylinders,

and the sum of all these hollow cylinders is the volume of

revolution of the original area. Hence the

volume of revolution = It^i

In this sum, x and y change from term to term, but 2wh is the

same, and is therefore a common factor to all terms in the sum.

Hence, if V is the volume,

V~ 2-n-h *2xy.

Let a he the distance of YY from XX, then, from the method

of constructing the First Equivalent Figure, we see that OA
1
B

1

and OA'B' are similar triangles, and therefore

y a a a

hence xy a.A^B^.
A similar equation holds for all the strips like AB, and hence

But hA
l
B

l
is the area of one strip of the Equivalent Figure,

and I>hA
l
B

1
is therefore the whole area.

.*. 2fe/ or K2xy = a x area of Equivalent Figure,

.". 2-n-h IZxy
= 2ira x area,

i.e. V 2ira x area of Equivalent Figure.

If, then, in our special case

a =
,
2^ = 20"

7T

and V= 20 x area of Equivalent Figure,
and is in cubic inches if the area be in square inches.

(24) Find the volume generated "by a right-angled triangle ABC in

revolving about its base AB, if AJB=4t", BC=$' f
.

*(25) Find the volume of a sphere of radius 1'73".

*(26) The coordinates of three points A, B, O are, in inches, (0*5, 0'6),

(1, 2 '5), (3 '5, 0). Find the volume generated by the revolution of ABG
about the axis of re. Take point (3 '5, 0) as 0.

*(27) Draw a segment of a circle of base 4 '4" and height 2 -9". Find the
volume generated by revolving the segment about its base,
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MISCELLANEOUS EXAMPLES. II.

1. Reduce an equilateral triangle of side 9'1 cms. to unit base w= 1" by
the three methods given, and compare these determinations of the area
with those obtained by (i) measuring the base and altitude and taking
half the product, (ii) by calculation from the formula.

Area 5 .a5

a being the length of a side in inches.

2'

(1 inch= 2 -54 cms.)

2. The coordinates of four points A, B, C, D are (2*3, 0), (4*1, 2-1),
(1*2, 4-9), (-0-8, 2-2) in inches. Find the areas of the quadrilaterals ABOD
B.ndACDB.

3. Find the area of the figure ABODE
(Fig. 58) in square inches, where AB=5'7
cms., j5(7~9'8 cms., and AED is a cir-

cular arc for which JJ^=3 cms.

FIG. 58.

4. The coordinates of 5 points A, B, C, D, ^are (1-1, 2 -2), (4-9, 0'8),

(7*3, 5'8), (5-1, 7-3), (0-8, 5'2) cms. Find the area of ABODE in sq. ins.

5. Find also the area of AGDEB.
[If be the point of intersection of A C and BE, then

the difference of the areas OCDE and ABO has to be
found ; the construction for effecting the reduction to

unit base is exactly as on p. 50.]

6. Reduce to unit base the area of the lens section

shewn (Fig. 59), AB=4?', CE=l'B", E>=!&", (i) by
drawing the figure to scale on squared paper and counting
up the contained squares ; (ii) by reducing the segments
separately to unit base.

7. Draw a circular sector of radius 12 cms. and angle 150 degrees. Find
the area of the segment (i) by the construction given in the text, (ii) by
treating it as a parabolic segment, (iii) by dividing it up into eight strips
of equal width and adding the mid-lines.

T.G. E
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*8. The circular segment of question 7 revolves about its base ; find the

volume of the solid generated.

9. One side of a field is straight and of length 200 ft. At distances

increasing by 20 ft. from one end, the width is measured and found to be

70, 100, 100, 130, 137, 180, 150,. 145, 100 ft. Find approximately the area

of the field.

10. Reduce to unit base the area ABCD, where AB= 5 '9, A I) = 8 '7 cms.

and 'AB is perpendicular to AD, and BCD is a circular arc of 12 '5 cms.

length, convexity outwards. (The arc may be drawn by reversing

Rankine's construction. )

11, The corners of a triangular field PQR are determined with reference

to a 'base line AB by the dimensions PAB=5T, PBA = $tf, QAB= 64: t

QBA = lir, RAB= 130, RBA=T. A Bis 50 feet long. Draw a diagram
to a scale of an inch to 100 feet, and determine the area of the field.

(Military Entrance Examination, 1905. )

12. A triangle has sides of 3 '9, 3*2 and 4*2 inches. Draw the triangle,

measure each of the angles with a protractor and find the area.

13, Test or prove geometrically the accuracy of the following graphical
method of determining the area of a quadrilateral ABCD'. "Join BD ;

through G draw CE parallel to BD meeting AB, produced if necessary,
in E ; with centre E and radius equal to twice the unit of length, describe

a circle ;
from A draw a tangent to this circle, to meet DX, which is

parallel to AB, in X. Then the number of units of length in AX is the

number of units of area in ABCD." Data for the test figure : BD = 2 in.,

AB= 1-6 in., #0=1-8 in., CD=1-6 in., DA =1%3 in.

(Military Entrance Examination, 1905.)

E

FIG. 60.

11 In a survey of a field ABODE, of which a sketch is given (Fig. 60),
the following measurements were made: AB=84t yards, AO1'73 yards,AD= 175 yards, AE^ 130 yards, LBAG=^42, LCAD= 36, LDAH=2Q.
Draw a plan to a scale of an inch to 30 yards, and find the area of the field
from your plan. (Naval and Engineer Cadets, 1904.)
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FIG. 01.

15. Above (Fig. 61) is a rough plan of the city of Paris drawn to the
scale of 1 centimetre to the kilometre. Find the area of the city in square
kilometres by measuring any lines you like. (Naval Cadets, 1903. )
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FIG. 62.

16. In any way you please, find the area of the given figure (Fig. 62)

to the nearest square inch. State your method.

(Naval and Engineer Cadets, 1905.)



CHAPTER III.

VECTORS AND THEIR APPLICATION TO VELOCITIES,

ACCELERATIONS, AND MASS-CENTRES.

Displacement. If a point moves from to A (Fig. 63)

along some curved or straight path, the line drawn from to A
is the displacement of the point. This displacement is inde-

pendent of the actual path of the point, and depends only
on the relative positions of the new and the initial points.

FIG. 63.

To specify the displacement, there must be given not only
the magnitude of OA (e.g. 1%32 inches), but the direction or lie

of the line (e.g. the North-South line) ; and not only the direction

of the line, but the sense of the motion in that line (e.g. towards

the North).

The displacement OAX though equal to OA in magnitude and

direction is of the opposite sense.

Displacements may be represented by lines drawn to scale, if

the lines be placed in the proper directions and given the required

senses. The sense of the displacement is indicated by an arrow

head on the line.

To indicate that the line from to A involves direction and

sense as well as magnitude, it is convenient to print the letters

in block type ;
thus OA means the length OA in its proper

direction and with its correct sense.
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In writing it is extremely difficult to keep the distinction

between the block and the ordinary capital, and
so^

when writing,

it is better to use a bar over the letters; thus, OA ("Maxwell"

notation) means the same thing as OA.

Sum of Two Displacements. If the point moves from

to A and then to B, the final displacement from is OB,

while the displacement from A is AB and that of A from is

OA. These frets are symbolised by the equation

OB = OA + AB.

Such an equation does not mean that the length OB is the

sum of the lengths OA and AB; but simply, that the final

position of the moving point is the same whether displaced

directly from to B, or first to A and then from A to JJ.

Sense and Sign. If the second displacement brings the

point from A to (so that B is at 0), then the final displace-

ment is zero, and

OA + AO = 0, or OA= -AO.

Hence, changing the sense of a displacement changes the sign

of its symbol. (See also p. 6.)

EXAMPLE. A train travels due N. for 20 miles, then N.E. for

10 miles, what is its displacement? Another train goes 10 miles

N.E. and then 20 miles N., show that its total displacement is the

same as that of the first train.

Eepreserit 10 miles by 0*5 in.

(i) Set off 0^ = 4" (Fig. 64) vertically upwards and AB^%'

making 45 with OA produced. Measure OB in TV in. and

divide mentally by 2
;
this gives the magnitude of the displace-

ment (28). With a good protractor (the vernier protractor is

best), or by aid of a scale of chords, measure (15) ; then the

displacement of the train is 28 miles 15 to the East of North

(approximately). Measure also by the aid of p and a table of

sines.

Notice that OB itself with the arrow head gives the displace-

ment, but, if it is necessary to state the displacement in words,
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we must give not only its magnitude but also the direction and

sense compared with some standard direction and sense in this

case the line drawn towards the North.

[It is perhaps as well to notice that, drawing
OA parallel to the bound edge of the paper

and towards the top of the page, is only the

conventional way of representing
" towards

the North." The line OA will only represent

the true displacement when the book is placed

so that the arrow head on OA does point

due North.]

FIG. 64.

. (ii) Set off OB
l
= 2" at 45 with the N. line, then 4" due N. ;

arrive at B as before, for OB-^BA is a parallelogram.

Order of Addition. The order in which two displacements

are added is immaterial ;
as an equation

and the displacement BX
B is equal to OA and OB

X
is equal to AB.

(1) A circus horse trots with uniform speed round a circus of radius

80 feet in 1 minute. Starting from the south position, give the displace-

ment in 15, 30, 45 and 60 seconds. Make the drawing to the scale 2 mms.

to a foot.

(2) A ring slides 5 ft. along a 7 ft. rod from E. to W. whilst the rod

moves parallel to itself 7 ft. S.K. Find the total displacement of the ring.

The rod now rotates through 70 about its West end in a clockwise sense,

the ring remaining in the same position relatively to the rod ;
find the

total displacement of the ring, if it starts at the E. end of the rod.
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Addition of any number of Displacements.

EXAMPLE. A point is displaced successively from to A, from

A to B, to C and to D, the displacements being given in magnitude,

direction and sense by X
A

15 OjBj, O^, 0^. Find the resultant

displacement.

O
l
A

l
= 4*2, 0^ 7-92, 6^ = 10'5, O

l
D

l
= 4*1 cms.,

^
1
(7

1
^

1
= 25, ^^^ = 120 and ^^7^ = 80.

From any point draw CU (Fig. 65) equal and parallel to

O
l
A

l

-

)
from A draw AB equal and parallel to 0^', from 5

FIG. 65.

draw ^(7 equal and parallel to
1
C

f

1 ; and, finally, CD equal and

parallel to
1
D

1
. Then OD is the sum of the displacements

OB= OA + AB +BC + OB =0^ +0^ +0^ +0^ .

Measure OD and the angle AOD
; these measurements give

the displacement in magnitude, direction and sense.

(3) From the same point add the displacements in a different order,

e.g. find

i I + Old >

and shew that the same resultant displacement is obtained.

(4) Find the sum of the displacements

OjA! - OBi + OOi - ODi
and Old ~ OjBj - OjDi + OjAj .

Since OA= - AO, to subtract a displacement AO we have only to

change the sense and add.
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Relative Displacement. All displacements are relative, for

there is no point in space known to be fixed. The earth turns

on its axis, the axis moves round the sun, and the sun itself is

moving in space.

EXAMPLE Given the displacement of two points A and B relative

to 0, to find the displacement ofB relative to A.

In Fig. 66 OA and OB are the displacements relative to
;

then AB is the displacement of B relative to A.

B

But

O
PIG. 66.

and AB is the difference of the displacements of A and B
relative to 0,

If the displacement of A relative to B, viz. BA, had been

required we should have had

BA = BO-f-OA = OA-OB.

Complete the parallelogram OABBl
then

The displacement of B relative to A may therefore be regarded
as follows. Give to both A and B a common displacement
BB

1
= AO, making the total displacement of A zero; then the

total displacement of B is the relative displacement required.

Vectors and Vector Quantities. Displacements are

examples of directed, or vector quantities. The magnitude of

the quantity e.g. how many feet displaced being represented
to scale by a length, then, if this length be placed in the proper
direction and given the proper sense, we have a complete repre-

sentation of the vector quantity. Velocities of 20 and 30 miles

an hour due K and E. respectively are represented by lines of
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lengths 2 and 3 inches respectively, if the lines be placed in the

given directions and arrow heads marked on them to give the

senses : the scale is 1 inch to 10 miles an hour.

To specify a vector, magnitude, direction and sense must be

given, and a vector is defined as a geometrical quantity (e.g. a

line) which has magnitude, direction and sense.

Position. A vector has no definite position,
it may be con-

ceived as occupying any one of an infinite number of parallel

positions.

In Fig. 67 AB and CD are equal vectors, and we write

AB = CD.

C D

FIG. 67.

But by changing the sense of CD we have

AB = -CD, or AB + CD = 0.

The connection between sense in geometry and sign in algebra

was considered on p. 70.

Notation. In order to avoid the repetition of the word

vector, Greek letters will often be used to symbolise them, the

corresponding English letter denoting the magnitude ; a, b, c,

d, e denote the magnitudes of a, /3, y, S, e.
1 Block letters are often

used in books to denote vectors A, B, .. this is the "Heavi-

side" notation. Owing to the difficulty of writing these, small

Greek letters are to be preferred
" Henrici

"
notation. When

the vector is denoted by the letters placed at its ends, block

letters will be used
;
in writing, use the Maxwell notation.

Addition of Vectors, The process is exactly the same as

for displacements, the formal enunciation is : To add vectors,

place the first anywhere, at the end of the first place the

beginning of the second, at the end of the second the beginning
a For the pronunciation see Note J5, p. 374.
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of the tMrdj and so on
;
tlien the vector from the beginning of

the first to the end of the last is the sum of the given vectors.

The vector giving the sum is often called the resultant vector,

and in relation to this the vectors are called the components.
When the end of the last and the beginning of the first vector

coincide, the sum is zero and the vectors are said to cancel.

(5) Draw any five lines and give them senses. Denoting these lines by
a, j8, 7, 5, e prove that

(6) Find the vector sum of

(7) The lengths of five vectors are 3 '5, 2 -6, 4 '7, 6 '2 and 7 "8 cms.

respectively, and they point N., S.W., 20 S. of E., 25 E. of S. and E.
Find, the resultant vector, taking care to give its magnitude, direction and

Order of Addition. The order in which vectors are added

is immaterial.

In Fig. 68,

but

a-

FIG. 68.

By changing the order two at a time, any desired order may
be obtained, and hence the theorem is established.

(8) Draw a regular hexagon OABCDE, find the vector cr such that
a = OA, j8

= OB, .......

Average Velocity. When a body moves, its displacement,

from some standard point or origin, changes with the time.

The total displacement in any time divided by the time is

defined as the average velocity for that time.

This average velocity is then measured by a displacement and

is therefore a vector quantity.
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EXAMPLE. A train at 10 a.m. is 100 miles N.E. oj London, at

noon it is 80 miles 15 N. of E. WliaA is its average velocity 9

Draw OP
l (Fig. 69) and OP2

to scale, giving the displacements;

measure P, P on same scale and find its direction. Bisect P-^P^

N

O E
FIG. 69.

at M. Then PjPgis the total displacement, and P-^M gives the

average velocity in miles per hour.

It should be evident, that, as nothing is known of the motion

between 10 a.m. and noon, the displacement in one hour is not

necessarily fP^-
The average velocity means only .that velocity which, if it

remained constant, would give the actual displacement in the

given time.

The average speed of a point for any interval of time is

defined as the distance traversed divided by the time.

(9) A man walks from towards the S.W. for 4 miles and arrives at

A in 65 minutes, he then walks for 3 miles W. to B in 40 minutes, then
6*5 miles due N. to O in 105 minutes. What are his average velocities

from O to A, to B, to G, and what are his average speeds?

(10) A man walks round (clockwise) a rectangular field ABOD in

27 minutes. Starting at A he is at B (due E. of A), distant 200 yds.,
in 7 minutes; at (7, distant 150 yds. from B, in 16 minutes ; and at D in

21 minutes. What are his average velocities and speeds from A to Bt

A to O, A to D and Irom A oack to A ?
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Speed and Velocity. A point moves on a curve from P

(Fig. 70) to P
l
in time t. Its displacement in that time is the

chord PPj and its average velocity is 1.

t

During this time it travels over the distance PP1 (arc) and

- 1 is defined as the average speed.
t

If we take t very small, then the arc, the chord, and the

tangent at P become indistinguishable

the one from the other at P. At the

limit, when P
: approaches nearer and

nearer and finally comes up to P, the

chord PjP produced becomes the tangent
at P, and the magnitude of the velocity

is the speed at P. The direction of

motion is therefore always tangential to

the path.

At every instant of the motion the

point is moving with a definite speed in

a definite direction.

The smaller the time interval, the

smaller will be the vector PP
1?

and the

more nearly will the average velocity be

the same as at the beginning or end of

the time interval. The problem of finding, in particular cases,

to what fixed value this average velocity tends, as the interval

of time is taken smaller and smaller without limit, belongs to

the Calculus and cannot be discussed here. This limiting value

of the average velocity is evidently the velocity at the instant

under consideration, and its magnitude is the speed of the point

at that instant.

A velocity is specified "by giving the speed, the direction and

the sense of the motion.

Speed is constant only when the point passes over equal

distances in equal times, no matter how small the equal times may

Pio.
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be, or the average speed is always the same whatever the time

interval.

Velocity is constant only when the speed is constant, and the

direction and sense of the motion remain unaltered.

A point moving along a curved path may have constant speed

but cannot have constant velocity.

Units. The unit of length being a foot, and the unit of time

a second, the unit of speed is a ft. per sec. often written 1 ft./sec.

Other units in common use are 1 mile per hour, or 1 m./hr., and

1 cm. per sec. or 1 cm./sec.

DEFINITION. The "Velocity of a point is its rate of displace-

ment and is measured by the displacement in unit time, or the

displacement that would have taken place if the velocity had

remained constant.

Velocity is, therefore, a vector quantity and can be represented

by a line vector ;
the length of the vector represents to scale the

magnitude of the velocity (the speed), the direction and sense of

the motion being shown by the direction and sense of the vector.

Velocities are added or compounded like vectors since they

are measured by displacements.

EXAMPLE. A ship is moving clue W. at a speed of 15 miles an

hour ; a passenger runs across the deck from S. to N". at 7 miles an

hour, find the velocity of the passenger relative to the earth.

a

FIG. 71.

Set off a (Fig. 71) from right to left of length 15 cms. ; add

ft of length 7 cms. drawn vertically upwards; then 7 the sum

(y
= a + ft) gives the magnitude, direction and sense of the velocity

required. Scale y in cms. and measure the angle 0.
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(11) A ship sails N. relative to the water at 5 ft. per sec. whilst a
current takes it E. at 3 ft. per sec. ; what is the velocity of the ship
relative to the earth ?

(12) A river current runs at 2 miles an hour ; in what direction should
a swimmer go, who can swim 2*5 miles an hour, in order to cross the river

perpendicular to the banks? [Draw the vector of the velocity of the
current ; through the beginning of this, draw a line perpendicular to it,

and with the other end as centre, describe a circular arc of radius 2 '5 to

cut the perpendicular. This construction gives the velocities of the
swimmer relative to the water and to the land. There are two solutions,

giving the directions from both banks.]

(1-3) A boat can be rowed at 6 miles an hour in still water, a river

current flows at 3 miles an hour ; how should the head of the boat be

pointed if it be desired to cross the river at an angle of 45 up stream ?

(14) A train travels E. at 65 miles an hour, a shot is projected from the
train at an angle of 30 with the forward direction and at a speed of 200 miles
an hour relative to the train ; what is the velocity of the shot relative to the
earth ?

(15) A ball is moving at 10 miles an hour S.W. and is struck by a bat
with a force which would, if the ball had been at rest, have given it a

speed of 8 miles an hour due 8. ; with what velocity does the ball leave

the bat ?

^ Relative Velocity. A point at any instant can only have

one definite velocity ;
it is impossible to conceive it as moving in

two different directions, or with two different speeds, at one and

the same instant. Relative to other moving points it may have

all sorts of velocities.

^EXAMPLE. A train moves 20 E. of N. at 50 miles an hour;

another train is moving W. at 22 '6 miles an hour, and a third is

travelling due S. at 35*2 miles an hour. What are the velocities of

the first and third relative to the second ?

Notice that the relative motions of two or more bodies are

unaffected by any motion common to them all
; thus, the relative

motions of trains, people, ships, etc., are quite independent of the

motion of the earth round the sun. We may, therefore, suppose

any common velocity given to the trains.

In Fig. 72, a represents the velocity of the first train, /? and y

those of the second and third.
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Add -
/3 to a, then the sum a^ gives the relative velocity of the

first to the second train, for -
fi reduces the second train to rest,

and then a -
/3 is the velocity of the first relative to a supposed

FIG. 72.

fixed point. Scale o^ and measure the angle it makes with the

E. line (61-8 miles an hour 50T N. of E.).

Similarly, acid -/? to y and obtain cr
2 the relative velocity

of the third to the second.

(16) Two cyclists meet on a road, one is going S. at 10 miles an hour, the
other N. at 12 miles an hour j what are their relative velocities ?

(17) A cyclist travels N.W. at 12 miles an hour, the wind is due E. and
travels at 20 miles an hour ; what is the apparent direction and speed of the
wind to the cyclist? [Add to the wind velocity one of 12 miles an
hour S.E.]

(18) A train travels due W. at 40 miles an hour
; the smoke from its

funnel makes an angle of 157 with the forward motion; the wind is

blowing from the N.
,
what is its speed ?

(19) In the last example if the speed of the wind had been 20 miles an
hour, what are the possible directions whence it could have come ?
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* EXAMPLE. Two ships are 20 miles apart, one (A) is then due E.

of the other (B), and is steaming due N. at 18 miles an hour ; B is

steaming E. at 15 miles an hour. Find when they will be nearest one

another, and their distance apart at that time.

Suppose a speed of 18 miles an hour due S. is given to both,

then A is reduced to rest, and the relative motion of A and B

FIG. 73.

is unaltered. Hence, add the vectors (Fig. 73) representing the

velocities 15 due E. and 18 due S. and obtain a resultant vector

BC(y). From A drop a perpendicular on BG. and measure its

length on the scale to which the distance AB was drawn
;

it is

evidently the shortest distance the ships will be apart. BO is

the relative displacement in one hour ; in order to find the time

for the relative displacement BD, set off BC-^ K) cms. in any
direction to represent 1 hour ; then, if DD be drawn parallel to

OC
19 BD-^ gives the time in hours.

^ EXAMPLE. Find "by construction the actual positions of the two

steamers, in the last example, when at their shortest distance apart.

To do this, draw through D a line due North cutting BA
T.G, P
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at B
l ,

then B
l

is the required position of B. Through Bl
draw

B
l
A

l parallel to DA cutting the N. line at A in A
l ;

then A
l

is

the required position of A.

(20) Two ships are 1 1 miles apart, and both are steaming direct towards
the same point distant 11 and 7 miles from them respectively. They both
travel at 14 miles an hour. Find their shortest distance apart and the

corresponding time.

^ Total Acceleration. When the velocity of a body changes,

the motion is said to be accelerated. This acceleration may be

clue to the velocity increasing or

diminishing (retardation) ,
or to

] *

the change in the direction of

the motion or to both. Thus, if

aj (Fig. 74) gives the velocity

at one instant and
2
at a subsequent one, the magnitude only

has changed, and the total acceleration is a
2
- a

x
and is negative.

If /?x
and /32 (Fig. 75) denote the velocities at two instants,

then the change in the velocity is y, where

y, the change in the velocity, is

simply the velocity which must be

added on as a vector to the

initial velocity /5X
to give the final

velocity /J2
. Change in velocity is

then a vector quantity and must be

represented by a vector.

I/
FIG. 75.

The velocity has changed both in magnitude and in direction

and 7 is the total acceleration.

(21) A cyclist at noon is travelling N. at 12 miles per hour
;
at 1 p.m. he

is travelling 10 miles an hour 75 E. of N. ; what is his total acceleration ?

^Average Acceleration. Dividing the total acceleration by
the time we get the average acceleration,
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^ Acceleration. Notice that both total and average accelera-

tions are vector quantities, and the latter gives the average

velocity added per unit of time.

If the acceleration Is constant, i.e. if the same velocity be

added during equal intervals of time, no matter how small the

latter may be, then the velocity added per second is the

acceleration.

If the acceleration changes, then the value to which the

average acceleration approximates, as the time interval becomes

smaller arid smaller without limit, is the acceleration at the

instant (cf. Velocity, on p. 77).

* DEFINITION. Acceleration is the rate of change of velocity,

and is measured by the velocity added per unit time, or the

velocity that would have been added if the acceleration had kept
constant.

Acceleration is therefore a vector quantity, and accelerations

are added (or compounded) as vectors.

It can be shewn by experiment that bodies falling freely under

the influence of gravity have a constant acceleration directed

towards the centre of the earth, and measured by a velocity of

32*2 ft. per second added per second, or 32*2 ft. per sec. per
sec. (at Greenwich). This acceleration is usually denoted by the

letter g.

(22) A train at noon is moving 35 E. of N. with a speed of 32 m./hr.
At 12 h. 35 m. p.m. it is moving with a speed of 27 m./hr. 50 E. of N.
What are its total and average accelerations during this time ?

(23) A point moves in a horizontal circle of radius 5 '3 ft. in the contra-

clockwise sense. When at the most northern point its speed is 11 '3 ft. /sec. ,

when at the W. point it is 12*7 ft. /sec., and when at the S. and E. points
its speed is 14*8 and 11 "3 ft. /sec. If the time taken to move through each

quadrant be 1"2 minutes, find the average and total accelerations for

1, 2, 3 and 4 quadrants.

(24) Two trains are moving towards the same point in directions in-

clined at 70 with one another. One train is increasing speed at the rate

of 33 ft. per sec. per sec. ; the other is diminishing its speed at the rate

of 17 ft. per sec. per sec. Find the acceleration of the first relative to the
second.

Components of a Vector. Finding the sum of a number of

vectors is a unique process; i.e, one and only one resultant
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vector is obtained. The converse, i.e. finding the components

when the resultant is known, is not unique in general. The

components of a vector in two given directions are, however,

uniquely determined.

EXAMPLE. Find the components of a in the two given directions.

From the ends of a (Fig. 76), draw lines parallel to the two

given directions, these determine two vectors a
x
and a

2
which are

FIG. 76.

the components. The construction can he done in two ways

as indicated, but the component vectors are the same in both

constructions.

(23) Draw any vector a and any three lines
;
shew that any number of

components of a can be found in the three directions.

(26) a represents a velocity of 10 ft. per see. due N". ; find the component
velocities N.W. and N.E.

(27) Find the components of a displacement 15 ft. E. in direction,

making angles 15 N. and 30 S. respectively with this line.

*
(28) A falling stone has an acceleration of 32'2 ft. per sec. per sec.

vertically downwards ; find the components along and perpendicular to a

line making an angle of 60 with the horizontal.

*
(29) A train has an acceleration of 5 ft. per see. per sec. down an

incline of 1 in 6 (1 vertical 6 along the incline) ; find the component
accelerations horizontally and vertically.

When only one component is spoken of, the other is supposed

to be at right angles to the first component.
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(30) A ship journeys 50 miles 20 N. of W.; what is its displacement
due W.

*(31) A bead slides freely down a straight wire making 65 with the
horizontal

; what is the acceleration of the bead down the wire ?

*(32) A cable car fails to grip on a down incline of 10 in 73 ;
if the

retardation due to friction be equivalent to a negative acceleration of

2'8 ft. per sec. per sec., what is the actual acceleration of the car ?

*(33) If in question 32 a man jumps up from his seat so that his body
has a vertical acceleration (relative to the car) of 1*9 feet per sec. per sec.,
what is the real acceleration of his body ?

Multiplication of Vectors by Scalars. Multiplying a

vector by a number merely multiplies tlie length of tnat

vector, thus no. means a vector n times as long as a.

Similarly multiplying a vector by any scalar quantity multiplies

its length by that quantity.

OAB (Fig. 77) is any triangle.

If A
l
B

l
be drawn parallel to the

base AB, cutting OA and OB pro-

duced in A
l
and B

lt then we know
that OAB and OA

1
B

1
are similar

triangles. Hence ~A
1
B

1
is the same

multiple of AB that OA
l

is of OA.

FIG. 77.

If OA = a and OB =
/?,

be the two sides of the triangle,

then if OA1
= wa and OB^n/3

we have AB = /3-a and A
1
B

1
=

7i(y8-a),

so that from A^ = OE
I
- OA

X ,

we have the vector law,

TO(-a)= wjS-Tia, ................................. (1)

(34) Establish the equation 7ia, + np= n(a. + p) by (i) adding to the sum
of n vectors a the sum of n vectors ft and (ii)* adding /3 to a and then

adding n of these vectors together.

Centre of Mean Position, Given two points A and B,

the point M bisecting the line AB evidently occupies a mean

position with regard to A and B.



86 GRAPHICS.

Choose any two origins and O
l (Fig. 78), let OA = a and

OB =A and from O
l
draw a and add /2 to it, then the sum

Fm. 78.

from set off |o- and shew that the point M thus determined

is the mid-point of AB. (This is also obvious from OAB, for

AB =
/?
-

a, and, therefore, the vector to the mid-point of -^5 is

proving, incidentally, that the diagonals of parallelograms bisect

one another.)

Take any three points A, I>, C (Fig. 79), and a point of

reference 0. Find the sum a-h/2 + y (
=

cr)
as indicated (away

from A, B
y G). From set off ^<r and determine thus the

point Mj the centre of mean position.

Instead of take other origins O
l
and

2
and shew by a

similar construction that the same point M is obtained. This

shews that M depends on A> B and (7, and not on the origin

used to determine it Draw the medians of ABC and see that

M is their point of concurrence.

(35) Draw a regular hexagon, take any origin (not the centre) and find
in a separate figure the sum of the six position vectors of the vertices. Set
off from the origin -g-

of this sum, and thus find M, the centre of mean
position of the vertices.

Perform a similar construction when the origin is at the centre.
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(36) Draw a parallelogram and find the centre of mean position of the
vertices by taking the origin (i) outside, (ii) at the intersection of the

diagonals.
In each case the centre of mean position is the end point of the

vector, drawn from the origin, which is ^ of the sum of the position
vectors of the vertices.

(37) Take any five points and any origin, find y of the sum of the

position vectors ; set this off from the origin and determine thus the point
M. Choose another origin and show, by a similar construction, that the

same point M is determined.

DEFINITION. Generally, if there are n points A,B,C, ... whose

position vectors with reference to some origin are a, /3, y, ... ,

is the position vector of a point M calledthen

the centre of mean position.
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Let a, ft, y, ... (Fig. 80) be the position vectors of the points

relative to 0, a
L , 19 ylt

... their position vectors relative to Ov
and let

/>
= 00

: ,
then

^ and 0lM' =
^

FIG. SO.

But

on the

used

:. JT is at if.

The centre of mean position is thus a point dependent

relative position of the points themselves and not on the

to determine it.

Tlie points A> B, (7, ... need not be in a plane.

(38) The coordinates of five points are (1, 1-2), (-1, 1'5), (2'1, 1*3),

(3*3, -1*4) and (-2, -3'4) ; find the centre of mean position. (Add the
vectors and divide by 5 ; set off this one-fifth vector from the origin, and
measure the coordinates of its end point M.}
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Centre of Figure. In the case of a line, curve, area or

volume, the centre of mean position of all the points in it is

called the centre of figure or centroid. In many cases we can

determine the centre of figure by inspection.

A straight line. Choosing the origin at the point of bisection

we see that to every point P, having a position vector p, there is

a point P-p having
-
p for its vector, hence, 2p = 6l

,
and is the

centre of mean position. Where is the centre of figure for

lines bounding a square, a rectangle, a parallelogram, a circle,

respectively, and whyl
Area of a Parallelogram. Taking the origin at the intersection

of the diagonals, to every point P or Q (Fig. 81) there is a corre-

ct

FIG. 81.

sponding point Pl
or Ql

such that OP + OP
l
or OQ + OQj = 0, and,

therefore, the centre of mean position of figure is at this point

of intersection.

(39) Where is the centre of figure of the area of a rectangle, of a circle,

of a regular hexagon ?

(40) Shew that the centre of figure of a regular pentagonal area cannot
be proved to be at the centre of the circumscribing circle by this argument
alone.

(41) Mark the positions of any seven points on your drawing paper.
Find the centre of mean position of any four of them and then of the

remaining three, and mark these two points. Find the centre of mean

position of these two points, counting the first one four times and the last

three times. Is this final centre of mean position the same as would be
determined directly from the position vectors of the seven points ?
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Theorem on Centres of Mean Position. In finding the

centre of mean position -of a system of points, any number or

them may be replaced by their centre of mean position, if the

position vector of that point be multiplied by that number.

Let there be m
1 points whose position vectors are a

19 {319 y19
... .

Then the position vector cr of the centre of mean position for

the whole m^ + m.
2
4- w?

8 points, is given by

>

3)
o- = 2 (aa

+ a
2 -f ag )

If
0-j

is the centre of mean position for the m
l points, cr

2 that

for the m
2 points and o-

3
that for the m3 points, then

^,cr = 2a
,
mo- = 2a and m

3
cr
3
= 2<x

3 ;

. *. (Mj -f% + M 3
0* = ^i"i -f- ^2

<

The ?T?
j points may therefore be treated as if concentrated at

their centre of mean position, provided the position vector of the

latter be counted m
1 times, and so on for the other points.

Evidently the argument holds however many partial systems

of points we suppose the whole system divided up into.

Mass-Centres. Let there be n points having unit mass at

each point, then the centre of mean position of the points is

called the mass-centre of the masses. If ap a
2 ... are the position

vectors of the points, and cr that of the mass-centre, then

ncr= 2aj .

Divide the points up into groups, m: points having mass-centre

, o-j,
m

2 points mass-centre or
2 ,

... then, since n = !Zmv we have

(ml + m.2 +m3 + ...)o-
=w

1
cr

1
-f w

2
o-
2 + ............. (1)

This equation remains unaltered however the m
l points be

moved, provided that their mass-centre given by o^ remains

unaltered
; we may, therefore, suppose them to come together and

coincide at <r
19
and so for the other partial systems.
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At the end point of
o-j we have now a mass m

l units, at <r
2
a

mass m
2
units Moreover, equation (1) remains true when

multiplied throughout by the same scalar quantity, and hence

mv m2 , ... may be taken as the masses at the points.

Hence, given a number of points Jf
1?

l/
2 ,

... having masses

m1? m2 ,
... concentrated there, and having position vectors er

]?

cr
2 ,

... the mass centre of the system is given by the position

vector <j, where

Mass-Points or Particles. WG

have thus arrived at the conception

of points with masses concentrated

at them; such points are called

mass-points, and have exactly the

same meaning as the more usual

term particles.

To find the Mass-Centre (M.C.) of
B

a number of mass-points : Choose

any convenient origin 0, multiply
each position vector by the mass at

its end point, add all these mass-

vectors, and divide the resultant

mass-vector by the sum of the

masses. Set off from the vector

so determined; its end point will

be the M.c. required.

EXAMPLE. Find the Mass-centre

(M.C.) of three particles of masses 1, 2

and 3 grammes placed at the vertices

of an equilateral triangle.

Draw any equilateral triangle ABC (Fig. 82). Take any

origin 0. Draw a equal to OA, add 2/3 (where /?
= OB), and

3y (where y = 00). Then, if cr = a + 2/3 + 3y, set off <r from 0,

and find M the M.c. required.
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(42) Find the M.C. of four particles of masses 1, 2, 3, 4 grammes, placed
at equal intervals round a circle of radius 3 inches.

(43) Find the M.C. of five particles of masses, 2, 3, 1*8, 3*3, and 4'7 Ibs.

placed in order at the vertices of a regular pentagon of 1 "5" side.

(44) Take the M.C. as found in Ex. 43 as origin, repeat the construc-

tion, and show that the vector polygon is closed, i.e. that the origin is

the M.C.

Mass-Points in a Line. For two points, A and B, having

masses 3 and 2 Ibs., we have, by taking the origin in the line

(Fig. 83),

If M be now taken as origin,'

"0,

FIG. 83.

and therefore M divides AB inversely as the masses. Hence

the simplest construction would be : Set off BA
l
= 3", and AB

l

parallel to BA
l
and of length 2". Put a straight edge along

A^Bv and mark the point M where it cuts AB.

(45) At A and B, distant apart 3", are masses given by lines of length
7*1 and 5 P6 cms. Find the M.C.

(46) If in Ex. 45 the masses at A and B are given by (i) the squares,
(ii) the cubes of the lengths, determine graphically in each case the position,
of the M.C.
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(47) Draw any line and mark an origin O and four points in the line.

Suppose masses of 2, 3, 1, and 4 grammes to be at the points. Construct
the position of the M.C., and measure its distance from 0. Shew that
this position could have been calculated by multiplying each mass by its

distance from (positive if to the right, negative if to the left), adding
the products together, and dividing by 10, the sum of the masses.

Formula for the M.C. of Points in a Line. Let %, x.2 ,
,r3 ,

...

be the distances of a number of points in a line from an origin

in that line, and ml9
m

2 ,
m

3,
... the masses at those points.

Then, all the position vectors being parallel, they are added as

scalars, one sense giving a positive scalar, the opposite a negative
one. If, then, x denote the distance of the M.C. from 0, we have

If this sum is negative, it shows that the M.C. lies on the

negative side of the origin.

(48) Find by calculation the position of the M.C. of masses 2*7, 3 '6, 4*7
and 6*9 grms. situated at points in a line distant 11*7, 1*6, 1*2 and 9*3 cms.
from an origin in the line.

(49) Calculate the position of the M.C. of masses 10, 5, 3, 8, and 1 Ibs.

situated in a line, the position of the points from a fixed origin in the line

being 1, 5, -2, -
3, and 4 ft. respectively.

Graphical Construction.

EXAMPLE. Masses given by lines m^ m
2 ,
m

3
and m4 are concen-

trated at points X19
X

2 , X3 ,
X

4
in a line, to construct the position of

the mass-centre.

Draw m
ly m^ ... and the distances X

19
JT

2
... twice the size of

'those in Fig. 84.

Through any point in the line draw Oy perpendicular to it,

set off from along this perpendicular OM
l

. OM^ OMS9 OM
and OM equal to w13

W2
2 ,
m

3 ,
m4 ,

and w^ +w2 + wi
3 + wi

4 (
= Swi

a ).

OM should be found by the strip method of addition.

Through M1
draw M^ parallel to MXY

M3
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By the strip method find the sum of Ox
l , Ox.,, 0%%, Ox4 ,

and set off

OX equal to this sum, then X is the M.c. of the four mass-points.

M

, \ \
\ -\
\ \ \ \

X, ** X, X X3 X4

FIG, 84.

_ f OM OX
l

Proof.

Similarly, OM . Ox, = OM% . OX, ,

:. by addition OM .Wx
l

The right-hand side of this equation is the sum of the products

of each mass and its distance from 0, the left-hand side is OX

multiplied by the sum of the masses, hence OX is the distance

pf the M.C. from 0,
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(50) Repeat the construction as above, drawing Oy through M-^ , Jl, and
3/4 in turn. Notice that this simplifies the work, since only three

parallels have to be drawn.

(51) Masses given by lines of lengths 2"3, 5, 7 "8, 8*5 ems., scale 1" to
5 Ibs., are at points (in a straight line) whose distances apart are O'o, 1, 1 *7,

0*8 inches taken in order. Find the M.C. graphically, and test by calcu-
lation from the formula of p. 93.

Non-Collinear Mass-Points. For points not In a line and

having masses given by lines, general constructions are given

(i) on page 112, (ii)
on page 299.

A few simple cases may be treated by repeated constructions

similar to that on page 92.

(52) Find the M.C. of three masses given by the lines ml5,
m2 ,

ms ,

situated at A, B, respectively, where AB= 5 t

, >C=7'5 and 614*== 5*98
ems. First, find the M.C. O

1
of m

1 and m2 ,
and then the M.C. G2 of ms at

C, and ml -fm2 at G1
.

(53) Masses given by lines of lengths 47, 2%3 and 3 '8 cms. are situated at

points whose coordinates in inches are (1,0), (2, 3), (3,
-

1). Find the
mass-centre by construction, and give its coordinates.

Mass-Centre of a figure with an axis of Symmetry. If

any curved or broken zig-zag line has an axis of symmetry the mass

centre of the line must lie on that axis.

For to every point P distant MP from the axis of symmetry
there is a point Pl

at the same distance

on the other side of the axis (Fig. 85).

Choosing any origin 0, then, for two

such points,

OP + OPl
= OM+MP + OM+MPI

and as this holds for every pair of points,

the M.C. must lie on the axis.

When the axis of symmetry is per-

pendicular to the lines joining corre-

sponding points, it is called an axis of

right symmetry, otherwise it is an axis of skew symmetry. The

line joining the mid-points of opposite sides of a rectangle is an

axis of right symmetry, a similar line in a parallelogram is

an axis of skew symmetry.
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11,0. of any number of equal consecutive lines inscribed

m a circle. Draw a circle of radius 4" (Fig. 86), and set off in

it six chords, each of length 1-5", forming an open polygon

AjA 2A^A4A 5
A

G
A

7
. Draw the axis of symmetry OA^ being

the centre of the circle, and join A-^A*.

Bisect A^AZ at 1T
X
and set off OA along the axis of symmetry

equal to OMr Draw AB parallel to A^A^~\ the sum of the

sides. Join OB, and draw A*D parallel to OA, and DG- parallel

A-^A*, as in Fig. 86, then the point G so determined is the

mass-centre of the six lines.

Proof. Draw through 0, OX parallel to A^A*, and through
A

l
and A% lines parallel to OA and OX as in Fig. 86. Through

the mid-points M^ M2 , M$ of the lines draw M-^K^ etc., parallel

to OA.

Then, by construction, OM^Xl
is similar to A^A^ ',

In the same way
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But A^A^A^A^A^A^ and

:. "by addition A^^M^ +M
2

Now, for finding the mass-centre, we may suppose the mass of

each line concentrated at its mid-point, and since OA is the axis

of symmetry, the pairs of mass-points M19
M6

... have their mass-

centres on OA, and at distances M-^K^ ... from OX.

But the distance y of the M.C. from is given by

2 . y ;

..................... (i)

/. AB.y~GD.OA,
y _G-D

or m~~lB'
and y~OG.

If there had been eight sides instead of six, equation (i) would

have been ^A^A 2 . y=\A^ . OM
ly

if 2n sides, n^A2
. y ==^ x

^2rt+1
. OM

l ,

or semi-perimeter . ^ = semi-closing chord . perpendicular
from centre on polygon,

or
*

perimeter . y = closing chord . perpendicular, (ii)

(54) Find by this method the M.C. of any six sides of a regular heptagon.

Mass-Centre of a Circular Arc. The formula embodied

in equation (ii) is independent of the number of sides to the

polygon. When the number of sides becomes very large, the

sides themselves being very small, the polygon becomes nearly the

same as the circular arc, and the perpendicular OMl
-becomes nearly

the radius of the circle. The limiting case, when the number of

sides becomes infinitely large and their size infinitely small, is

the arc itself, and hence for any circular arc

perimeter . y = closing chord . radius.

Construction for the M.C. of a Circular Arc. Draw a

circular arc BCD (Fig. 87) of radius 4" and angle 135, and its

axis of symmetry 00. Construct the tangent at 0, and step off

CD' = arc CD
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along it. Join OD'y
and draw DL and LGr parallel arid per-

pendicular to OC> then G- is the mass-centre.

c

Proof, This follows at once from the equation

y _ closing chord

perimeterradius

From this result a formula for calculation can be deduced,

for if r- radius and 2a the angle BOD,

y r sin a
- =--

j
T ra

. _ sin a

,

we have

which, in the case of a semicircular arc, becomes

(55) Construct the M.C. of a semicircular are, and compare the measured
- 2r
y with the calculated value .

IT

(56) Construct the M.C, of a circular arc subtending 270 at the centre.

(57) Find the M.C. of the lines bounding a circular sector of angle 75.

(58) Find the M.C. of a uniform U-rod formed of two parallel pieces, each
of length 6", connected by a semicircular piece of radius 3".

Mass-Centres of Areas. If mass be supposed distributed

uniformly over an area, the preceding processes enable us to find

the mass-centre (or centroid) in many cases.

The principles of general use are :

(i) If the area has an axis of symmetry, the M.C. must lie on

that axis.
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M,
FIG. 38.

(ii)
If the area can be divided into parts, for each of which

the M.C. can be seen by inspection or easily found, then the M.C.

of the whole is found by rinding the M.C. of these points, each

point having a mass proportional to the corresponding area.

EXAMPLE. To find the M.C. of a triangular lamina ABC.

Draw the median AM
l (Fig. 88) ;

this bisects all lines parallel to J3C\

i.e. the M.C.'s of all lines (or very

narrow strips) parallel to BC lie in

AMI* Hence to a mass m at P
l

there is an equal mass m at P,

where PflP is parallel to BC and >^-

OP
X
-h OP = 0. AM- is an axis of B

skew symmetry; BC is called the

conjugate direction.

Draw a second median BM'S the point of intersection is

the M.C.

(59) Shew, from the property of the M.C., that the three medians meet

in a point.

Q (60) Shew that the triangle and three equal masses

placed at the vertices have the same axes of skew

symmetry. Hence prove that M.C. of the triangle
lies on the median M^A , J of the way up from base.

EXAMPLE. Find graphically the

M.C. of the area in Fig. 89.

Draw the figure to scale.

Find the mass-centres ffj
and @

2

12 i \ x ^ ^e ^wo rectangles as indicated.

Join ^#25 and divide Qfi^ in the

ratio of 16 to 9.

w
FIG. 89.
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Quadrilateral.
EXAMPLE. Find graphically the M.C. of a quadrilateral.

Draw any quadrilateral ABCD (Fig. 90) and its diagonals AC
and ED intersecting in 0.

Cut of!AE=CO. Find the M.C. of T>ED, it is the same point

as the M.C. of ABOD.
D

FIG. 90.

Proof. Since AE=CO, the medians through D of CAD and

OED are coincident. But the M.C. of a triangle (Ex. 60) lies ^ up
the median from the base, hence the M.C. of OED is that of CAD.

Similarly, the M.C. of OEB is that of QBA. Also, the masses

of AED and BEA, DOC and BOG, DEO and BEO are propor-

tional to their altitudes, which are proportional to DO and OB,

ABC BO BEO
% &

, __

AGD" D0~ DEO'

hence the M.C. of ABGD is that of BED.

EXAMPLE. Find the M.C. of the area of the re-entrant quadrilateral

ABED (Fig. 90).

Set off AJE
l
=EO along EA produced, and find the M.C. of the

triangle DE^B ; it is the M.C. of the re-entrant quadrilateral.

Construct also the M.C. by finding separately the M.C.
J

S of

ADE and ABE.
* EXAMPLE. Find the M.C. of a cross quadrilateral A BED.
Draw a cross quadrilateral from the re-entrant quadrilateral

(Fig. 90) by taking E on the other side of AD, and follow out

the construction just given ; the M.c. of the triangle DE^B is the

M.C. of the cross quadrilateral.
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Proof. The cross quadrilateral has an area ABE -ADE',
the M.O. of ABE is that of E^BO and the M.c. of ADE is that

of E^DO. The areas added are in each case proportional to

the original areas and hence the M.c. of ABE - ADE is that of

E^BO -
E^DO, i.e. is the M.c. of E^B.

(61) Find the mass-centres of the areas of the following figures (Fi^s.

91-101).
& h

The figures must be drawn full size according to the dimen-

sions given. The angle in Fig. 101 is equal to the same
lettered angle in Fig. 100.

- 3-6

FIG. 92.

2-43-

JJ'IG. 93.
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FIG. 96.

2"~-

FIG. 98.
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2-82"

FIG. 1

2-82"

FIG. 100.

3-37"
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KLC. of Trapezoidal Area. Draw any trapezium ABCD
(Big. 102) where BC and DA are the parallel sides.

Produce DA to A^ and BC to B
}

in opposite senses, so that

CB^AD.
D M, A A,

Find the point of intersection G of the line A
l
B

l
and the line

f
2 joining the mid-points of the parallel sides AD and BC.

G- is the M.C. of the area.

Proof. The triangles DBC, ABD being of equal altitude have

areas proportional to their bases BC and AD. We may, there-
D/~Y

fore, replace the two triangles by mass-points at
,
B and C

AD
and - at A, D and B.

.". in the line A^D there is a mass given by ~-
.

o

an AD + 2BC
,, 5J jjjj^ ,, ,j ,, .

But the M.C. must lie on M^M^
.". Gr, the mass-centre, must divide M-^M^ so that

Notice that tlie distance of the mass-centre of a number of

points from a given line is unaltered by any movement of the

points parallel to that line.

(62) Find the M.C. of the trapezium for which 5(7=4-3, -4Z)= 6'1,
AB=5'S and CD ^'I eras., (i) by this method and (ii) by the general
quadrilateral method.

(63) Divide the trapezium into a triangle and parallelogram, and find the
M.C. of the whole by finding in what ratio it divides the line joining the
M.c.'s of the triangle and parallelogram.
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M.O. of a Circular Sector.

EXAMPLE. Construct the M.C. of a circular sector of radius 4

inches and angle 120.

Draw the axis of symmetry 00 (Fig. 103).

Set off
l
=WE and draw the concentric arc A

1
Br

Step off the arc C
1
B

l along the tangent C\B2 ; draw B^B^

vertically to cut 0J5
2 ,
and B

G horizontally to cut 00 at G. G is

the M.C.

Proof. Suppose the sector divided into a great number of

very small sectors, of which OLM is a very enlarged copy, then

OLM is at its limit a triangle, LM being a tangent to the circle,

the M.C. of this triangle is at g}
where Og ^OL. The sector

OACB may therefore be replaced, as far as the M.C. is concerned,

by a circular arc of radius %OA (p. 97).

The y for the circular sector is, therefore, given by
_ sin a

which, in the case of a semicircle, becomes
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(64) Find the M.C. of a semicircle and compare your result with the

calculated position.

(65) Construct directly from the semicircle the position of the M.C. of

a quadrant of a circle, and from that the M.c.'s of -J, J and J of a quadrant.

Negative Mass and Area.

EXAMPLE. To find the M.C. of the area ABCDD^BjAj, given

that AB = 6", BC - 8", AAX
-

1", A& = 5", B^ = 5".

FIG. 104.

Find the mass-centres G
l
and 6r

2 (Fig. 104) of the rectangles

ABOD and J.
1
B

1
C

1
D

1
. Join G^ and produce. Set off along

parallel lines 6r2 /T2 proportional to ABCD, and 6?^ proportional

to A^B^Q^D^ both in the same sense. Where JT^g cuts ^(TO is

the point $, the mass centre of the area.

Since the given area is the difference between two rectangles,

the smaller rectangle (a square) must be considered as a negative
area or as having negative mass, and hence @

2
K

2 , Gr^ instead

of being set off in opposite senses must have the same sense.
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Proof. In order to justify the construction on p. 106 refer to

Fig. 105. Let M denote the mass of the whole area enclosed by
the outer boundary, and m the mass of the shaded area enclosed

by the inner curve.

Let G
l

and 6r
2

be the mass-

centres of the area between the

two curves (M-m) and of the

shaded area. Then, to find G the

M.c. of the whole area If, we have

to divide G^G* at G so that

m
The Graphical construction for

effecting this division is indicated

in Fig. 105.

FIG. 105.

On the other hand, if G and 6?
2
be known, G

l
can be deter-

mined.

Add unity to each side of the last equation ;
then since

we get

M-m
__
M--hi ?m m

GG
l

This shews that G
2
G has to be divided externally at G

l
in the

^io

Hence, from G and $2 ,
set off parallel lines, in the same sense,

representing the masses to scale. Join their end points and

produce the line to cut G^G in G
19

the M.c. required. This

was the construction made in the example.

Mass-Centre of a Segment of a Circle. Draw a circular

sector OACB (Fig. 106) of radius 4-5" and angle 150. Construct
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the M.C.
3

of this sector as before. Divide OM (Fig. 106)

into three equal parts and take OG-^^OM. Through G
l
and ff

2

draw parallels and set off && =^, the perpendicular from M on

OA and ff^-the arc ^<7.* (In Fig. 106 f of these distances

are set off.) Join K^ cutting 00 at G-, the M.c. of the segment.

Proof. The problem is to find the M.c, of the sector area and

the negative area of the triangle OA B.

The area of the sector = radius x arc (p. 55)

= OA x arc AC.

The area of the triangle
= OM. MA

,, , I V-*J- VXJLU.

-OA.p; (since
=AM

area of sector arc AC
area of triangle

~~

p

Since the area of the triangle must be considered as negative,

p and the arc AC must be set off in the same sense.

(66) Construct the M.C. of a circular area of radius 3 inches having a
circular hole of radius 1" cut out, the distance apart of the centres being
1*5". (Areas are proportional to radii squared,)

* These distances must be set off very carefully, especially when the angle of

the sector is very small or nearly 180.
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(67) Construct the M.C. of the area as above, the radii being JR and r,
and the distance apart of the centres being c. Construct the ratio of the

squares as in Fig. 107.

FIG. 107.

(68) Construct the M.C. of the figure shewn (Fig. 108).

-4-cm.

PIG. 108.

(69) Find the M.C. of a rectangle of sides 5 -64" and 7'85" with a square of

side 2*83" cut out, the distance apart of their centres being 1-5", and the
line of centres being a diagonal of the rectangle. (Use a similar con-

struction to that in Ex. 67 for getting lines proportional to areas. )

(70) Find the M.C. of a rectangle (5
B64" x 4 -85"), having a circular hole of

radius 1 '4" cut out, the distance apart of the centres being 1 *5".

(71) Draw a rectangle of sides 4 and 3 inches. On the 3" side as diameter
describe a semicircle inside the rectangle ; now suppose it cut away.
Find the M.C. of the remaining area.
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Vectors in a Plane. Parallel vectors are said to be LIKE

vectors, they can all be expressed as multiples of any other

parallel vector.

Two non-parallel vectors are independent, i.e. one cannot be

expressed in terms of the others.

Draw any two non-parallel vectors a and j$ ;
see that the sum or

difference of any multiples of these is the third side of a triangle,

which can only be zero when a and /5 have the same direction, or

the two multiples are zero. If, therefore, we have an equation
aa=

fy8, where a and /? are independent, it can only be satisfied

when $ = = 0.

Similarly, if 7a + 3/3
= aa

then 7-aa=
and a, must be 7 and b must be 3 if the vectors are not parallel.

I-'KJ. 10!).

Scalar Equations for Mass-Centre. A number of masses

m^ ,
m

2,%,... are at points whose position vectors are pv p29 pS9 ....

Take any two axes through (Fig. 109), and let the

components of pl parallel to the axes be <x
x and /?lf

j> P j> a and ?
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Then Pi
=

0-1 + Pi,

Let p be the position vector of the mass-centre and a and

the components of p.

Then, for the mass-centre,

.". (a +

by rearrangement of the terms.

But a, a
l5

a
2 ,

... are like vectors, and so are /?, /?15 /32 , ..., and

a
x
and

/?! are independent.

Hence 2m
1
= 2m

1
a
1
and P'2ml

=*'2/m
lpl

.

If, then, a^ is the length of ap yl
of /317

x of a, etc.,

3Bm
l
=='2m,

l
%
l
and yHZn^ lZm^j^

two scalar equations, each of which determines a line on which

the mass-centre must lie, the point of intersection of the two

lines being G- the mass-centre.

Generally, it is convenient to take the axes perpendicular, and

in this case m
1 i/1

is the mass at a point multiplied by the per-

pendicular distance of the point from the axis of x, and is called

the mass moment about Ox.

2???^ is then the sum of the mass moments about the axis of y.

The whole mass 2?w
1 , supposed concentrated at the mass

centre, is called the resultant mass.

We have then the theorem :

Tke sum of the mass moments about any line is ectual to the

moment of the resultant mass.

Graphical Construction for M.C. The construction given
on p. 94 for the position of the M.c. of points in a line can be

applied to points in a plane, the construction being made for two

intersecting lines. A better method, however, is the link polygon

construction, given on p. 299.
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EXAMPLE. Find the M.c, of masses 2, 3, 5, and I Ibs. at points

whose coordinates are (1, 1), (2, 3), (4, 1) and (3, 2).

Draw the axes of coordinates (Fig. 110), and mark the co-

ordinates of the points on each axis; draw a line bisecting the

angle between them, and set off along this line the masses to any
convenient scale

FIG. 110.

In Fig. 110, 0^ =
1, OPi = l and 6^ = 2 (on mass scale);

0Zj = 2, OY>2 = 3 and OM^ = 3 . . . .
(
OX

8
= 4 is not shewn.

) The
suffixes indicate the order of the points in the example.

Join M (OM=Il, the sum of the masses) to 1, 2, 4, 3 on the

x axis, and mark the points where parallels to these lines from

2, 3, 5, 1 on the mass axis respectively cut the x axis, xv x2i #8 ,
#
4

.

Then ^1
"

or
\JX-i 1
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Similarly . = " or 1
las,

- 3 . 2,
(J'tLn Jjtn

Hence ll(% + 2 +% + 4)
= 2 . 1 H-3. 2 + 5. 44- 1 . 2 = 2^%.

Add by a straight edged strip #
ls

sc
2 3 arid ^ ,

the sum is x.

Make a similar construction on the y axis and obtain y.

Mark the point whose coordinates are x and y ; it is the mass

centre, G.

(72) Masses are given by lines of length 5*1, 2*3, 1*5 and 2'15 cms. ; the
coordinates in inches of the points are (0, Tl), (2*3, 0), (3*2, T7), (2*2, 4*3).
Find the mass-centre by construction, and test by calculation from the

.,
_ Sm-,0?! _

formula x= _
, y' ^

Graphical Construction for the M.C. of any area,

irregular or otherwise. Transfer the figure given in Fig. Ill

to your drawing paper, and draw its axis of symmetry XY.
Divide it up into strips parallel to the base, and draw the first

equivalent figure as in the construction on p. 62, only take the

point in the base and a equal to the height of the figure.

Divide the height at G so that

where A and A
l
are lines proportional to the areas of the given

and the equivalent figure. G is the M.o.

^ Proof. This is very similar to the proof on p. 63.

In Fig. Ill, AB is one of the very thin strips, parallel to the

base, into which the area is supposed to be divided. The mass

of each of these strips may be supposed concentrated at the

mid-point, i.e. in the axis of symmetry, XY.
If m is the mass of any one of these strips and y is the distance

from the base, then, if y is the distance of the M.c. from the base

But m is proportional to the area of the strip, hence if AB = x

and h is the thickness of the strip, m is proportional to hx, and

therefore y 2A;r = Ifaxy.
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X X-

Now (see Fig. 57}

and

- = -X hence xy = ax,
a y

.*. y . area of given Fig.
= a^hz

= a . area of first equivalent figure,

and

Fia. 111.

If the area has not an axis of symmetry, y only determines the

distance of the M.O. from XX. The process must therefore be

repeated for another line which intersects XX (preferably at

right angles to it), and the distance of the M.c. from this line

must be determined. From these two distances the M.C. can

be determined as the intersection of two lines.

Another method is given on p. 299 in connection with the

Link Polygon.
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MISCELLANEOUS EXAMPLES. III.

1. Draw a square ABCD of side 3 inches to represent a square field of
side 300 yards. A man starting at A walks round at 80 yards a minute,
another man starting at D at the same instant, and walking at 100 yards
a minute, begins to overtake him. Construct the relative displacements
at the end of the 1st, 2nd, 3rd, 4th, 6th, 9th, 12th and 15th minutes.

2. Construct the minimum relative displacements when the men are on

adjacent sides.

3. A toy gun is pointed at an elevation of 45 ; on firing it begins to
recoil with a speed of 5 ft. per sec. (horizontally), the speed of the shot
relative to the gun is 30 ft. per sec., construct the true velocity of the
shot.

4. A sailing boat is going N.W. at 8 miles an hour, a sailor moves
across the deck from the S.W. at 2 '7 miles an hour, a current is flowing at
3 '6 miles an hour 15 S. of E. ; what is the velocity of the sailor relative
to the current ?

5. Find the centre of mean position of five points whose coordinates
in cms. are (21, 3'3), (4*7, 1'8), (2*6, 1'75), (1-95, 4*6), (0'75, 6 -25).

6. Find the mass-centre of the above points supposing masses of 3, 4*1,
2 '8, 7*3 and 4*6 grammes to be concentrated at the points, first by the
vector polygon method, secondly by the graphical construction of p. 113,
and finally by calculation.

7. Find the M.O. of the part of a circular area between two parallel
lines at distances 3 '74 and 2 '66 inches from the centre, the radius of the
circle being 4 "5 inches. First treat it as the difference between two
segments and then by the strip division method.

8. Find the M. c. of a circular arc and its chord, the arc subtending an

angle of 135 at the centre of a circle of radius 3 '7".

9. Masses of 3, 8, 7, 6, 2, 4 grammes are placed at the vertices A, B, ...

of a regular hexagon ; construct the position of the M.c.

10. Draw a circular arc of radius 3" and one of radius 2", the distances

apart of the centres being 2
//

. Find the M.C. of the lens shaped area between
the two arcs by the method of strip division.

11. A horizontal wooden cylinder rests on the top of a rectangular block
of wood, the radius of the cylinder= width of block = 2 -52 ft., the height
of the block is 7*86 ft., and the length of the cylinder and depth of block
are the same. Find the M.c. (Treat as a circle on a rectangle.)

12. A steamer which is steaming in still water due S.E. at a speed of

14 knots enters a current flowing due W. at a speed of 2 knots. Deter-
mine in any way you please the actual velocity of the steamer when in the
current and the direction in which she will travel.

If it is desired to maintain a due S.E. course and to cover exactly as

much distance per hour in this direction as when in the still water, what
course would the steamer require to steer, and what must be the speed of

the ship in regard to still water? (Military Entrance, 1905.)
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13. A uniform iron girder has a cross-

section of the given form (Fig, 112).
Determine the position of the centre of

gravity of the section.

(Naval Cadets, 1904.)

wide

4"- -

FIG. 112.

14. Fig. 113 represents a figure formed of a rectangle and an isosceles

triangle. Find and mark the position of its centre of gravity.

(Naval and Engineer Cadets, March, 1904.)

FIG. 113. FIG. 114.

15. The letter T in the diagram (Fig. 114) is made of wire of uniform
thickness. Find its centre of gravity (M.C.), stating your method.

(Naval Cadets, 1903.)

16. Fig. 115 represents a hexagon
frame, the length of each side "being
2 inches ; equal masses of 4 pounds each
are placed at the four corners a, 6, d, e,

and a mass of 8 pounds is placed at the
corner c. The mass of each of the six
sides of the hexagon frame is 1| pounds.
Find the common centre of gravity (M.C.)
of the whole system.

(Military Entrance, 1905.)

G. 115,
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17. A cistern, without lid, whose thickness may be neglected, measures
3 ft. 6 in. in height by 2 ft. 3 in. by 3 ft. 3 in. Find the position of its-

centre of gravity.

18. A and B are two points 20 miles apart. At noon one man starts

from A to walk to B at the rate of 4 miles an hour, and at 2 p. m. another
man starts after him on a bicycle at 10 miles an hour. Draw a diagram
on your ruled paper to show how far they are apart at any given time,
and at what times they pass any given point between A and B. [Scale to
be 5 mile= l inch, and 1 hour=l inch.]

Also, find from your diagram or otherwise when and where the cyclist
overtakes the man walking. (Engineer Students, Navy, 1903. )

19. Two small spheres, of weights 4 ounces and 7 ounces, are placed so
that their centres are 5 inches apart. How far is their centre of gravity
from the centre of each? (Engineer Students, 1903.)

20. Given the centre of gravity of a body, and that of one of its parts,

explain how to find the centre of gravity of the remaining part.

AEDO is a rectangular lamina of uniform density ; E is the middle

point of AB ; join DJ2; find the perpendicular distances of the centre of

gravity of BODE from the sides BO and CD. (B. of E., II.)

21. A river which is 2 miles wide is flowing between parallel straight
banks at the rate of 4 miles an hour. A steamer starts from a point A on
one bank and steers a straight course at 7 miles an hour. Show on a

fraph
the distance above or below A of her point of arrival at the other

ank, as a function of the inclination of her course to the direction of the
river. (Naval Cadets, 1905.)

22. Explain the method of determining the motion of one body relative

to another. To a passenger on a steamer going N. at twelve miles per hr.
,

the clouds appear to travel from the E. , at 8 miles per hr. ; find their true

velocity.

Two steamers are at a given instant 10 miles apart in an E. and W.
line ; they are going towards each other, one N. E. at 20 miles per hr. , and
the other N.W. at 16 miles per hr. Find how near they approach.

(Inter. Soi., 1901.)

23. Find the centre of gravity of a triangular frame formed of three

uniform bars of equal weight. Where must a mass equal to that of a
uniform triangular plate be fixed on the plate so that the mass centro

of the whole may be at the middle of the line joining a vertex to the point
of bisection of the opposite side. (Inter. Sci., 1901.)

24. Explain the phrase "velocity of one body relatively to another

body."

25. Two level roads are inclined at an angle of 60. Two motors, each

half-a-mile from the junction are being driven towards it at speeds 10

and 1 1 miles an hour. Find the velocity of the first motor relative to the

second, and the distance the motors are apa/rt after 2 minutes 50 seconds.

(B. of E., II., 1904.)
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26. A ship A that steams 23 knots sights another ship B to the 1ST. at a
distance of 1*4 sea miles, and steaming E. at 19 knots. In what direction
must A steam in order that her motion relative to B may be directly
towards J5? and in what time does she reach B ? A knot is a speed of 1 sea
mile per hour.

Shew that if A does not know B's speed she can deduce it from her own
by steering in such a direction as to keep due S. of B. If this direction
is 78 E. of N.

,
and the other data are as already given, what is B's, speed ?

(Military Entrance, 1906.)

27. Find the position of the centre of gravity of a circular sector. Find
the distance of the centre of gravity of a circiilar segment from its chord.

(B. of B., II., 1906.)

28. Ox and Oy are two lines at right angles ; P and Q are points
moving from to x and from O to y, with speeds 7 and 12 respectively.
At the same instant OP=8 and OQ = 5. Find the velocity (speed) with
which they are separating from each other, and explain whether or not the

velocity of separation is their relative velocity. (B. of E., II., 1903.)

29. Give an instance of a moving body that is at rest relatively to
another moving body. State how the relative velocity of one point with
respect to another point can be found.

Two points A and B are moving with equal speeds and opposite senses
round a given circle ; at the instant that the arc between them is a
quadrant, find the relative velocity of A with respect to B.

(B. of E., XL, 1905.)
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CONCURRENT FORCES.

EXPERIMENTS.
EXPT. I. Lay an envelope or sheet of paper on a fairly smooth table.

Push it by a pencil parallel to the shorter edge (i) near one corner,
(ii) near the middle. Notice that the motion is quite different in the two
eases, even though the push is otherwise the same. Does the effect of a
force on a body depend on its line of action (axis) ? Think of other simple
experiments illustrating this point.

For the remaining experiments the following apparatus is

necessary : A vertically fixed drawing board and paper ; liglit

freely-running pulleys which can be clamped round the board in

any desired positions ; a set of weights from 5 to 1000 grammes ;

one or two scale pans of known weight ; some light, tough, stiff

cardboard; strong, black, fine thread; some small polished steel

rings, about the size of a threepenny piece; some thin, strong
wire (for making little hooks) ;

and a spring balance.

EXPT. II. Fasten, by means of loops, two threads to one of the steel

rings, and attach 100 gramme-weights to the other ends. Put the threads
over two pulleys as indicated in Fig. 116, and let the whole come to rest.

Take another piece of thread in the hands, and, stretching tightly, see if

the two threads are in a straight line.

The function of the pulleys is only to change the directions of

the forces due to the weights ; any effect due to their having
friction may be minimised by good lubrication.

What are the forces acting on the ring, neglecting its weight, in magni-
tude, direction and sense? Draw lines representing these in magnitude,
direction and sense ; these are the vectors of the forces. Add these
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vectors. What is their sum ? Why may the weight of the ring be left

out of consideration ? See if equilibrium is possible with different weights
Wl and JF2 .

W
FIG. 116.

What is the pull at B on the part BA ? What is the pull at B on the

part between B and the ring ? In what respect do these pulls differ ?

EXPT. III. Replace the ring by a piece of cardboard and attach, the
threads by wire hooks passing through two holes punched in the card.
See that the sura of the vectors of the forces is again zero. Mark on the
card, points A, B, O, in a line with the threads. Punch holes at these
points, and insert the lower hook tn turn through each of these holes.
Is equilibrium still maintained? Does it matter at what point in its axis
a force may be supposed applied to a rigid body ?

(1) Four hooks A, B,C,D are connected together by three strings AB,
BO, CD, Kg. 117. Weights JF^lOO grammes, JTo=50 grammes, W9

= 15Q
grammes are attached by long strings to B, G and D, and the whole is
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suspended from the hook A fixed to a beam or wall. If J/j
are points in AB, B(J and C/>, what is the pull at J/., on 6',

at J/j on A ?

/.> on J3, and

Verify at J/2 by inserting a spring balance there.

EXPT. IV. Attach three threads by loops to one of the rings and sus-

pend weights^ 200, lop,
and 100 grammes as indicated (Fig. 118). Let the

ring take up its position of equilibrium. Mark two points on the drawing

-A

MI

B

M2

C

IW,

!W2
IW3

PIG. 117.

750

PIG. 118.

paper under each thread. A set square does very well for this purpose, if

placed approximately perpendicular to the plane of the board, but a small
cube or right prism is better. Indicate the sense of each pull on the ring.
Bemove the drawing paper and draw to scale the vectors, a, (3 and 7,
of the forces acting on the ring, and find their sum.
Are the lines of action of the forces concurrent ?

Eepeat the experiment and drawing for other weights.

Is ecjuilibrium possible with 50, 60 and 150 grammes ?
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EXPT. V. Use three pulleys and four threads with attached weights

of 80, 120, 200 and 120 grammes. Mark the axes and the senses of the

pulls on the ring as before, and find the sum of the vectors.

Perform a similar experiment and construction using fiye

different weights. Notice in each case whether the forces are

concurrent or not.

EXPT. VI. Draw a triangle ABC (Fig. 119) on cardboard having sides

3-4, 3-6 and 5 "2 inches, and give the boundary a clockwise sense.
^

Draw
concurrent lines parallel to these sides, indicating the senses as in Fig.

119. Punch holes on these three lines and cut away the card as indicated

FIG. 119.

by dotted lines. Fix the card, with one axis vertically downwards, on the

drawing board by pins. Adjust the threads, hooked through the holes,

so as to lie over the lines and attach weights proportional to the corre-

sponding sides of the vector triangle. Remove the pins and notice if the

card remains in position.

Perform a similar experiment starting (i)
with a quadrilateral

of sides 5, 3, 2 and 6 inches, the senses being the same way round,

(ii)
with a pentagon ; the axes must be concurrent in both cases.

EXPT. VII Attach three weights to a card (one thread hanging verti-

cally and two passing over pulleys). The card will take up some position
of equilibrium. See if the axes of the forces are concurrent. Attach four
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weights to the card, and after the card has taken up its position of

equilibrium see if the axes are concurrent.

Perform a similar experiment with five weights.

EXAMPLE. A student repeating Expt. IF. has a vertical pull of

40 grms. weight on the ring, the two parts of the left-hand thread

supporting 25 grms. weight make an angle of 45 with one another.

PThat was the third weight used, and what was the angle between the

two parts of its thread ?

Set off OA = 4:" (Fig. 120) vertically downwards, OB = 2 -5" at

an angle of 45 with OA. Join AB. Then OAB is the vector

triangle of the forces, and AB = 2 -85" gives the third pull on the

ring of magnitude 28*5

grms. weight (nearly). The

direction is given by the

angle OAB and the sense

is from A to B.

Measure OAB (a) with

a protractor, (J) by a scale

of chords, (c) by means of

the tangent of the angle

(i.e. measure^ on the 2-inch

scale, p being the perpen-

dicular to AB drawn at 2"

from A, and find the angle

from the table of tangents).

See that these three results

are approximately 38 '7

each.

Scale of Forces
10

grammes wt.

FIG. ISO.
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weights 20, 30 cund 32 grms.,

What were the angles between the

EXAMPLE. Another student

the lust giving the vertical pull.

threads attached to the ring ?

Set off AB (Fig. 121) vertically downwards =3-2"; draw

circles with A and B as centres and of radii 2 and 3 inches to

intersect in G. Draw concurrent lines PjO, P20, WO parallel to

the sides of this triangle.

A

Ibs. \vt.

Force Scale

FIG. 121.

Evidently the angles between the threads are the supplements
of the angles of the triangle ; measure the angles of ABC by the

scale of chords. Approximately they are 37*5, 65*8 and 76-7.

Notice that since the construction may be done in two ways,
viz. the 2" circle from either A or B> it is impossible to say
which weight was put on the left-hand pulley.

In all solutions of statical problems by graphical methods it is

necessary to complete the solution either by drawing out the

force scale or by giving it in cms. or ins.
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EXAMPLE. A weight of 20*6 tons is suspended by ropes of length

1 and 8 ft. from two hooks in a horizontal line distant apart 5 ft.

Find the pulls of the ropes on the weight (the tensions in the ropes).

First draw a figure ABC (Fig. 122) representing the position

of the ropes to scale (1" to 1').

A B

FIG. 122.

Then set off OP downwards to represent 20-6 tons weight

(1 cm. to 1 ton). From the ends of OP draw OQ and PQ,

parallel to A and C, and measure PQ and QO on the ton scal$ r
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EXAMPLE. From a telegraph pole radiate five lines (in the same

horizontal plane). The pulls of four of them on the pole are known,

find the putt of the fifth; given a pull due E. of 30 Ibs. weight, one

due S. of 40, one S.W. of 25, one N.W. of 414.

Ibs. wt.

FIG. 123.

Set off OP (Fig. 153) horizontally to the left = 3", PQ vertically

downwards = 4", QR**2'5" so that PQR= 135, QR perpendicular

to j?$=4-14", then SO gives (3*2" in length) the fifth pull in

magnitude, direction and sense.

(2) In a tug-of-war A, B, C, D are opposed to A lt BI , C19 D^ D and
Dl being the end men. The pulls of A , B, C, D are given by lines of lengths
2 '8, 34, 3*5 and 3 '9 cms. respectively, those of A lt Bl

and O
l by 2*45, 3 -25

and 3*75 ; scale 1" to 100 Ibs. wt. What is the least pull that D^ must
exert in order that his side may not be beafcen ? If D

l
exerts this force,

give the tensions of the rope at points intermediate between the men.

(3) Three strings are fastened to a ring as in Expt. IV. ,
two pass over

smooth pulleys and bear weights P and Q, the third string hangs vertically
and supports a weight E. If 6 and

<j> denote the angles between the
vertical and the threads attached to P and Q, find

() 8 and <j>
when P= Q= 5 Ibs. wt. and J?= 8 Ibs. wt. ;

(ii) R and
<j>

when P=Q=5 and 0=30;
(in) and <f> when P= 4? Q= 5 and J?=7;
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(iv) Q and
(f>
when P= 7, 7?= 9 and = 60;

(v) P and $ when Q~12, 7?= 11 and = 55;
(vi) P and Q when #= 7, = 35 and #= 50 ;

(vii) and Q when #=13, P= 8 and = 35;
(viii) 6 and P when #=11, $ = 6 and =30;
(ix) P and Q when #=14, = 40 and Q is perp. to P;
(x) E and Q when = 35, < = 70 and P=5'5. (Notice that

the angle between P and Q in the vector triangle is 75.)

(4) Three threads fastened to a ring bear weights of 35, 27 and 25 grammes
as in Expt. IV. ;

draw the vector triangle of the forces, and by measure-
ment determine the angles between the threads.

(5) Three threads are fastened to a ring, as in Expt. IV., the vertical
load is 135 grammes weight, the acute angles the sloping strings make with
the vertical are 25 and 50 ; find the other two weights.

(6) A load of 27 Ibs. is supported by two strings attached to hooks ;

if the strings make angles of

(i) 27 and 48 ; (ii) 40 and 70 ; (iii) 50 and 50 ;

with the vertical, determine the pulls on the hooks.

(7) To two hooks A and B are fastened ropes which support a load of

3 cwts. The distance apart of A and B is 7 ft. and A is 3 ft. higher than
B ; if the lengths of the ropes attached to A and B are 5 ft. and 4 ft., what
are the tensions in the ropes, i.e. what are the pulls of the ropes on the
load and on the hooks ?

(8) A weight of 12,000 grammes is supported by strings from two hooks
A and B in the same horizontal line. The distance apart of A and B is

15 ft. and the string attached to B is 12*2 ft. Find the pulls on the hooks
when the length of the string attached to A is

(i) 15; (ii) 14-4; (iii) 10 ; (iv) 5 ; (v) 4; (vi) 3 ft.

(9) Draw a graph shewing the relation between the pull on the hook in

Ex. 8, and the length of the string attached to it, as the string varies

in length from 3 to 15 ft.

Take two axes on squared paper and an origin. From the diagrams of

position and of vectors, the pull corresponding to the string length 3, 4, 5,

10 and 14 '4 ft. can be found. Plot points having as abscissae the lengths of

the string and as ordinates the corresponding pulls. Join the points by a
smooth curve. From the graph read off the pulls corresponding to string

lengths of 12 ft. and 7 ft.
,
and the lengths corresponding to pulls of 5000

and 17,000 grammes weight.
If the string could stand a pull of 12000 grammes only, what would be

the least length of string that could be used ?

(10) Draw a graph shewing the relation between the length of the

variable string and the pull on the other hook.

(1 1 ) Draw a graph shewing the relation between the two pulls on the hooks,
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(12) In repeating Expt.
V, a student used five

weights. The directions

and magnitudes of four of

the pulls being as given in

Fig. 124, what was the

magnitude of the fifth

weight, and in what direc-

tion and sense was the pull
exerted by it ?

PIG. 124.

(13) Four concurrent forces are in

equilibrium and act in the lines indi-

cated (Fig. 125). If P=18 and <?=25
Ibs, weight, find R and S in magnitude
and sense. (Find the vector giving the
sum of the two known vectors, from its

end points draw parallels to It arid S.

This can be clone in two ways ; but the
vectors parallel to R and $ are the same
in each case. Since the forces are con-

current arid the vector polygon is closed,
these vectors must give the forces in

magnitude, direction and sense.)

Q

PIG. 125

(14) Awheel has six central equi-spaced spokes, in four consecutive spokes
the pushes on the axis are Q'32, 072, 1*15 and 0'S4 Ibs. wt. ; what are the
actions of the remaining two spokes on the axis ?

(15) A weight of 10 Ibs. hangs vertically by a string from a hook. The
weight is pulled horizontally so that the string makes an angle of 37 with
the vertical. What is the magnitude of the horizontal pull and what is

the pull of the string on the weight ?

(16) Draw a graph shewing the relation between the pull 8 on the hook
and the horizontal pull H in Ex. (15) as H increases gradually from

to 10 W,

For any given value of H the vectors form a triangle OAB (say), OA
representing the weight W, AB the pull P and BO the pull of the string
on W. At B draw BP perpendicular to AB and of length BO. Go
through this construction when AB represents 1, 2, ... 10 Ibs. weight, and
join the points P so obtained by a smooth curve. This curve is the one
required, for A being the origin of coordinates and AB and AO the
axes, the coordinates of P are the values of H and 8 necessary to give
equilibrium,
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(17) In Fig. 126 AJB is a light rod with
a weight of 11 Ibs. at B ; the rod can turn

freelyroundA . B is pushedperpendicularly
to A B with a force of 4 Ibs. weight. Find
the position of AB and the pull on A.

[Since the angle at B is a right angle,
describe a semicircle on the vector repre-
senting 11 Ibs. weight, and set off in this
a line representing a force of 4 Ibs. weight ;

the closing line of the triangle gives the
direction of AB and the force it exerts
on J5].

Vertical

FIG. 126.

(18) Draw a graph shewing the relation between the push at B (P} and
the pull S on A in Ex. (17) as P increases from zero to 11 Ibs. weight.

(19) In Fig. 127 A is a
fixed hook and C a smooth

pulley, B a smooth ring to
which the threads AB, BO
and BW are attached. If

30, ABC'=85, find

the pull on A and the weight
W.

W
FIG. 127,

The angles remaining constant, draw a graph shewing the relation

between Q and W.

(20) Two cords are fastened to a ring at G, and, hanging over pulleys at

A and i?, bear weights of 12 and 17 Ibs. Find the force in magnitude,
direction and sense, with which G must be pulled in order that, with A C
and BO making angles of 60 and 80 with the vertical, there may be

equilibrium.

(21) A load of 5 cwts. is suspended from a crane by a chain of length
20 ft. ; a doorway is opposite the load and 5 ft. distant ; with what force

must the load be pulled horizontally to cause it just to enter the doorway ?

(22) Strings of length 5 and 3 '2 ft. respectively are fastened to a floor

at points distant 4 '3 ft. apart ; the other ends are attached to a smooth

ring which is pulled by means of a string making 30 with the vertical

with a force of 50 Ibs. weight. The three strings being in one plane, find

the other pulls on the ring.
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(23) OA and OB (Fig. 128) are the axes of two forces, a is the vector of
the force in OA, c is the magnitude of a third force which, acting through
0, is in equilibrium with the other two forces. Find the vectors of the

FIG. 128.

other forces. How many solutions has the problem ? Can you choose a
magnitude for c, so that there shall be only one solution ? Can you choose
a magnitude for c so that equilibrium is impossible ? What is the least
magnitude of c consistent with equilibrium ?

(24) A weight of 50 Ibs. is supported from A and B as in Fig. 129.

A\

(i) Find the pulls on A
and J9.

(ii) If a man pulls in the
direction and sense
OO with a force of

10 Ibs. weight, find
the alteration in the

pulls on A and B.

(iii) If he pulls in the

opposite sense, find
the alteration in the

pulls on A and B.

(iv) Find the pull so that
there may be no
tension in OB.

FIG. 129.
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The Foundation of Statics. Such experiments as have

been performed cannot be considered In themselves as the best

foundation for the science of mechanics, the true basis for which

must be sought in far more generalised experience. Such

generalised experience was summed up by Newton (p. 135).

Deductions made from such experiments as those detailed must

consequently be regarded as tentative only. The experiments,

however, have the great advantage of giving a reality to

notions concerning the action of forces which descriptive matter

fails to impart.

Deductions from Experiments. The experiments now

performed all relate to the action of forces on rigid bodies.

Force without some body (mass) acted on is a meaningless term
;

forces do not act on points but on masses, and such an expression
as "

forces acting at a point
"
means only that the lines of action

of the forces are concurrent.

Expt. I. shewed that a force is determined only when we
know some point in its line of action in addition to its magni-

tude, direction and sense

Expts. II. and III. shewed (i) that a body under the action of

two forces is in equilibrium when, and only when, the forces

differ in sense alone
; (ii) a force acting on a rigid body may be

supposed to act anywhere in its axis.

By a rigid "body is meant one which retains the same relative

position of its parts under the action of all forces. Any body
which maintains its shape unaltered, or for which the change is

too small to be measurable under the action of certain forces, may
be considered as rigid for those forces. The paper in Expt. I.

was practically rigid for the forces acting on it ; it is, however,

quite easy to apply forces to it that would change its shape. If

a set of forces deform a body, but after a time the body takes

up a new shape which does not alter while the forces are

unchanged, such a body after deformation may be treated as

rigid for those forces. For non-rigid bodies we must know not

only the axis of the force, but also its point of application.
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Expts. IV. to VI shewed that if a rigid body, acted on by

concurrent forces, is in equilibrium, the sum of the vectors of

the forces is zero ; and conversely, when the sum of the vectors

of the forces is zero and the axes concurrent, the body is in

equilibrium.

Expt. VII. shewed that when a body is in equilibrium under

the action of three forces, their axes are concurrent; but that

in general for four or more forces the axes are not concurrent

when there is equilibrium.

Eotors. Any quantity which, like a force, requires for its

specification the magnitude, direction, sense and a point on its

axis, is called a rotor quantity (Clifford).

Such quantities may be represented geometrically by rotors,

i.e. vectors localised in definite straight lines. The rotor may
be specified by giving its vector and a point on its line of

action. It is, however, usual and convenient to give

(i)
the axis, (ii) the vector,

so that the direction is given twice over.

To avoid confusion in graphical work
3
the axes of the forces

(rotors) should be drawn on a different part of the paper from

the vectors giving the magnitudes, direction and senses of the

forces.

Equilibrant. When a body is in equilibrium under the

action of a number of forces, the forces themselves are, for

shortness, often spoken of as being in equilibrium. For such

a system of forces any one may be said to be in equilibrium

with the rest, and from this point of view is called the equilibrant

of the others.

Resultant. The equilibrant of such a system of forces would

be in equilibrium with a certain single force differing from it

only in sense (Expt. II.
),

and this reversed equilibrant would

have the same effect, so far as motion is concerned, as all the

rest of the forces together, The equilibrant reversed in sense,

is called the resultant of the forces.
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It should be noticed that it has not been shewn that any
system of forces has a resultant, but simply that if a system of

forces is in equilibrium any one of them reversed in sense is the

resultant of the rest, and would produce the same effect as

regards motion as all the rest together.

Resultant of Concurrent Forces. To find the resultant

of a number of concurrent forces acting on a body, add their

vectors to a resultant vector and through the point of con-

currence draw the axis of the resultant force parallel to its

vector.

Force Scale

Ibs. wt.

FIG. 130.

EXAMPLE 1. Find the resultant of two forces of magnitude 9*2

and 12 -I $& weight acting towards the E. md towards a point 60*5

N. ojE.
Draw the axes a and b (Fig. 130) and add the vectors a and f3

of the forces (scale I" to 5 lb.), a + /3
=

y, then y is the vector of

the resultant force. Through the point of intersection of a and b

draw the axis c, of the resultant.



134 GRAPHICS.

Notice that if y he set off along c and a and fi along a and
fr,

they form two adjacent sides and the concurrent diagonal of

a parallelogram. That the magnitude, direction and sense of

the resultant of two intersecting forces can be found, by adding
the forces as vectors, is often, but badly, expressed by saying
that forces are combined by the parallelogram law.

EXAMPLE 2. Find the resultant offourforces ofmagnitudes 13, 11,

9, 7 kilogrammes weight whose axes are the lines joining a point O to

points A, B, C, D, the five points being the vertices in order of a

regular pentagon^ and the senses being from to A, to B, to C
and D to 0.

Draw a circle of radius 2", divide the circumference into five

equal parts with dividers by the method of trial. Mark the five

points in order 0, A, }J, 6', D, then draw the vector polygon,
a of length 13 cms. parallel to OA, /? of length 11 cms. parallel

to OB, y of length 9 cms. parallel to 00, and, finally, B parallel

to OD, but having a sense from D to 0. The vector <r joining

the beginning of a. to the end of 5 is the resultant force in magni-

tude, direction and sense. Finally, draw a line through parallel

to o-
3
this is the axis of the resultant force.

(25) Find the resultant of two forces of magnitudes 16 and 18 kilogrammes
weight, if they are directed N. and 75 E. of N.

(26) Three concurrent forces have magnitudes 23, 18, 15 Ibs. weight, find
their resultant in magnitude, direction and sense when the angles between
them are 120 and 100, and the forces all act outwards.

(27) If two forces are equal, shew that the resultant must bisect the angle
between them.

(28) If the magnitudes only of

two forces are given, in what
relative directions should they
act so that the resultant is (i) as

big, (ii) as small as possible.

(29) a (?ig. 131) acts in the axis

O.tr, another force in Oy, find

graphically the magnitude and
sense of this force so that the ^ *

resultant may be as small as
* 13L

possible.

(SO) Concurrent forces of magnitudes 12, 17, 10 and 8 Ibs. weight are
directed towards N"., N.B., S.E. and 30 W. of S. respectively; find the
resultant in magnitude, direction and sense.
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(31) A wheel has six equi-spaced radial spokes ; four consecutive spokes
are in tension and pull on the hub with forces of 10, 15, 12 and 7 Ihs.

weight ; find the resultant pull on the hub due to these spokes.

(32) A string ABO is fastened to a hook at A, passes round a free

running pulley at B (AB horizontal), and is pulled in the direction EG
where ABC=105 with a force equal to the weight of 17 Ibs. Find the
resultant force on the pulley at B.

(33) ABGD is a square of side 2", a force of 11 Ibs. weight acts from A
to B, one of 7 Ibs. from D to A and one of 3 Ibs. from C to A ; find the
resultant force.

FORGE, MASS AND ACCELERATION.

Newton's Laws of Motion. The laws for the combina-

tion of concurrent forces deduced from Expts. I. to VII. are

immediate deductions from Newton's famous Second Law of

Motion. Stated shortly in modern language the law is a force

acting on a particle (or body, if tlie axis passes tlirougli the

M.O.), is measured "by the product of the mass of the body and

the acceleration produced.

Acceleration being a vector quantity, force is a vector quantity,

and since the force must act on the mass moved, it is a localised

vector quantity or rotor.

The effect of two or more concurrent forces is found, therefore,

by adding the corresponding accelerations as vectors. The single

force, which would produce this resultant acceleration, is called

the resultant force, and is measured by the product of the mass

and this acceleration. To find, then, the resultant of a number of

concurrent forces, add the forces as vectors
;
the sum gives the

vector of the resultant force, and the axis of the force passes

through the given point of concurrence.

A mass being in equilibrium when it has no acceleration, we

see this will be the case, when, the axes being concurrent, the

vector sum of the forces is zero, and conversely.

The equation connecting the three quantities, mass, force and

acceleration is

Force = Mass x Acceleration.
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^'Mass and Weight, If a foot and a second are units o*

length and time, a foot per second is the unit of speed, and

a speed of a foot per second added per second (or a ft. per sec. per

sec.) is the unit of speed acceleration. Further, if the unit of

mass be a Ib. mass, the unit of force must be that force which

would give a Ib. mass a speed acceleration of a ft. per see. per

sec. ;
or which would increase its speed every second by a ft.

per sec. This follows at once from the equation : if the mass = 1

and the acceleration = 1, then the force must = 1.

We know that a body falling freely has a speed acceleration

of 32*2 ft. per sec. per sec ; hence if the mass be a Ib. mass, the

force acting on it is the Ib. weight and is given by the equation,

lb.-wt. = force = 1 x32-2.

In this system, then, the force on a falling Ib. mass would

be 1x32-2 units of force; this is the weight of a Ib. mass

in these units. For statical purposes it is better, however, not

to use this system, but to take the weight of the Ib. mass as the

unit of force.

The expressions Ib. weight, force of a Ib. weight, and Ib. mass

will often be met with ;
the first denotes the force with which

the earth attracts the Ib. mass; the second a force equal in

magnitude to the weight of a Ib. mass, but usually having a

different direction.

In the O.G.s. system, similar double terms occur. The unit of

mass is here a gramme, and the unit of length and time a

centimetre and a second.

Unit force is then = gramme x an acceleration of a centimetre

per sec. per sec., and is called a dyne.

The acceleration due to gravity in centimetres per sec. per sec.

is 981, and, therefore, the weight of a gramme mass is 981

dynes. In statics, however, it is usual to consider the gramme

weight as the unit of force, and thus we meet with the terms,

gramme weight, force of a gramme weight, and gramme (or

gramme mass).
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Action and Reaction. In Expt. II. (p. 119) the ring was

found to be in equilibrium under the opposite pulls of the

threads BA and CD. Consider the bit of thread AB, it is in

equilibrium under the pull (
= W^ from A upwards and the pull

(
= W^) from B downwards. At B the action of the thread on

BO is equal and opposite to that on BA. At every point of the

thread a similar argument holds, i.e. there are two equal and

opposite forces pulling away from each other. This double set

of forces is called a stress, tensile stress in this particular case.

If a column (Fig. 132) supports a load W, then the action

of the upper portion on AP is (neglecting the weight of the

column itself) a downward push = W, and the

upper part is in equilibrium under the load W
and the reaction of AP. The action at P,

therefore, on the upper part must consist of

an upward push = W. Whatever part of the

column be considered, the result is the same, at

every point there are two equal and opposite

pushing forces. This double set of forces is

called a compressive stress.

No force can be exerted without the presence

of an equal and opposite one. If a body be FlG - m
pushed, the body will push back with a force (called the resist-

ance) equal in magnitude and opposite to it in sense.

If a spiral spring be pulled out beyond its natural length it

tends to shorten and pulls back with a force of equal magnitude.

Again, the wind only exerts force in so far as its motion is

resisted, and the resisting obstacle reacts on the moving air with

a force of equal magnitude.
Put shortly as in Newton's Third Law of Motion : the action

of one body on another (or of one part of a body on another

part) is equal in magnitude and opposite in sense to that of the

second body on the first, or still more shortly : action and re-

action are equal in magnitude, have the same axis, "but are of

opposite sense.
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EXAMPLE. A look is in equilibrium on a horizontal table, not

because there is no force acting on it, but because the pressure of the

book on the table, due to its weight, is exactly equal in magnitude and

opposite in sense to the reaction of the table on the booh

SrW

FIG. 133.

Suppose the table to be tilted ;
then if the book still remains in

equilibrium it must be because the reaction of the table is still

vertical, and of the same magnitude as before.* The reaction is

therefore no longer normal to the table, arid hence there must

be some force along the common surface of table and book
;
in

fact, there is friction.

Ideal surfaces between which normal action alone is possible

are called frictionless or smooth. Smooth as applied to one body

only is, strictly speaking, meaningless; it is a term relating to

the action and reaction of two bodies. If in any problem one

surface is spoken of as being smooth, it is meant that the action

between that surface and any other body considered in the

problem is wholly normal.

Since the action between any two bodies is never wholly

normal, problems involving the supposition that certain surfaces

are smooth are to a great extent academic, and the results

obtained must be regarded as only first approximations to the

real state of things.

Note. In this chapter the weight of a body will be supposed
to act through its mass-centre.

*I a body is In equilibrium under two forces the weight and the table
reaction these forces can only differ in sense.
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EXAMPLE. A body of weight W (2-5 kilogrms.) is kept in position

on a smooth plane of inclination 30 ly a horizontal force a. What

must be the magnitude and sense of a, and' what is the reaction of the

The body is in equilibrium under the action of three forces,*

viz. the weight, the force a, and the reaction y of the plane.

The latter is perpendicular to the plane, since the plane is

smooth.

Set off -45=2-5" (Fig.
A

1 34) vertically downwards,

draw through A, AC mak-

ing 30 with the vertical,

and through JB
9
BC hori-

zontal.

Then ft

BC measures the pull
= 1'44 kilogrms.,

and

CA measures the reaction

= 2-89 kilogrms. |

Force Scale

Kilogrammes wt.

FIG. 134

* The axes must be concurrent. D. 132.
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(34) If the plane is inclined at 75, find a and 7.

(35) If the plane is inclined at 30 and the direction of a makes 15 above

the horizontal, find a and 7.

(36) If the plane is inclined at 30, and a's direction is 15 below the

horizontal, find a and 7.

(37) Shew from the vector polygon that, whatever the inclination of the

plane, the pull will be a minimum if it be applied parallel to the plane.

(38) A garden roller of weight 2 cwts. is hauled up a slope inclined 1 in o

(1 vertically to 5 horizontally) and held with the handle horizontal. What
is the horizontal pull on the handle ?

(39) A body weighing 7 cwts. is kept in position on a smooth inclined

plane by a force of 2 cwts. parallel to and up the plane and another force

inclined at 15 beloxv the horizontal. The ratio of the height and the

base of the plane being 0'7, find the force inclined at 30 and the reaction

of the plane.

EXAMPLE. A mass of 5 lb$. weight is attached to a string of length

1 ft. The siring is fastened to a point on the circumference of a smooth,

fixed horizontal cylinder of radius 2 ft. The point of attachment "being

1*2 ft. from the top of the cylinder ; find the tension in the string and

the reaction of the cylinder.

The direction of the string at C is along the tangent to the

circle, the string being supposed quite flexible.

The tension in the string being the same at all points of BC
(see formal proof on p. 162) it is immaterial at what point we

suppose it fastened to the cylinder; in fact the length of the

string may be anything, provided one end is at C and it is

wound on the cylinder from the fastened end towards C in a

clockwise sense.

Draw a circle of radius 2" to represent the vertical section of

the cylinder containing the weight and string. Step off, from

the highest point A (Fig. 135), the arc AG= 2-2". Join C to

the centre of the circle. Then draw the vector polygon of the

forces
;
a vertically downwards of length 5 cms., y parallel and /?

perpendicular to 00. Then measure y and /3 in cms to obtain

the reaction of the cylinder and the tension of the string.
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FIG. 135.
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EXAMPLE. A body of 15 Ibs. weight is sustained on a smooth

inclined plane by a horizontal force of 7 '2 Ibs. weight and a force

parallel to the plane of 3 -7 Ibs. weight. What is the inclination of the

plane and its reaction ?

Draw OA (Fig. 136)

downwards of length 15

cms,, then AB horizontally

of length 7 -2 cms. With B
as centre, describe a circle

of radius 3-7 cms., and,

by the aid of set squares,

draw a tangent to it from

O'y let BD and OD be the

radius and tangent.

FIG. 136.

Measure OD on the cm. scale, this gives the reaction
; measure

the slope of DB by finding how many inches it rises for 1"

horizontally, or use a protractor and obtain the angle DBA.

(Eeaction
= 16*25 Ibs. and angle of plane 38 '2 approximately.)

(40) A mass of 7 Ibs. weight is to be attached to the highest point of a
smooth horizontal cylinder (radius 2') by a string which can only bear a
tension of 4 Ibs. ; what is the greatest length of string that may be used ?

(The reaction being perpendicular to the tension, the vector triangle is right-
angled, and since a is known and the magnitude of ft, y is determined. )

(41) Find the inclination of a smooth plane so that a body of 5 kilogrms.
weight may be supported on it by a horizontal push of 2 kilogrms. weight.
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(42) Find the inclination of a smooth plane so

that a body of 17 Ibs. weight may be supported
on it by a force of 7 Ibs, weight applied parallel
to the plane. (In this case we know the reaction
of the plane is perpendicular to the applied force
of 7 Ibs., so set off 17 cms. vertically down-
wards for the weight. Prom the lower end of

this line describe an arc of radius 7 ems. as in

Fig. 137, and draw a tangent to it from the

upper end. The length of the tangent gives
the reaction R. The reaction, and therefore

the normal to the plane, is now known.
)

FIG. 137.

(43) A body of weight 15 Ibs. is supported on a smooth inclined plane by
a horizontal force of 7 Ibs. weight together with a force of 4 Ibs. weight
acting parallel to and up the plane ; find the inclination of the plane
and the reaction.

(44) A truck weighing 15 cwts. is kept at rest on an incline of 1 in 5 (one
vertical to five horizontal) by a rope 6 ft. long attached to the truck 3 ft.

above the level of the rails and fastened to a hook midway between them.
Find the pull 011 the rope.

(45) A smooth ring weighing 3 kilogrms. can slide on a vertical circular

hoop of radius 2 ft. It is attached to the highest point of the hoop by a

string 3 ft. long. Find the tension in the string and the reaction of the

hoop on the ring. (The reaction is along a radius of the circle since the

ring is smooth.)

(46) A string with equal weights of 11 Ibs. attached to its ends is hung
over two parallel smooth pegs A and B in the same horizontal line ; find

the pressures on the pegs. (The tension of the string is the same through-
out ; the concurrent forces at each peg which are in equilibrium are the

reaction of the peg and the two pulls of the string, one on each side of

the peg.)

(47) If in Ex. 46 the line AB makes an angle of 40 with the horizontal ;

find the pressures on the pegs.

(48) A string with equal weights of 750 grms. attached to its ends

passes round three pegs in a vertical plane at the vertices of an equilateral

triangle. Find the pressures on the pegs when one side of the triangle is

horizontal and (i) the third vertex above, (ii) the third vertex below the

horizontal side, the string passing under this vertex and over the other two.
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Simple Bar Frameworks. In problems on the equilibrium

of very simple frameworks of rods we suppose at first that

(i) the weight of the rods may be neglected ;

(ii) the joint connecting two rods is made by a perfectly

smooth circular pin ;

(iii) the loads are applied only at the joints.

The action of the pin on the rod must then pass through the

centre of the pin (why ?) ; hence, any rod is under the action of

two forces passing through the centres of the end pins, and for

equilibrium these forces must be equal and opposite, i.e. in the

line joining the centres of the pins. The bars may therefore

be represented by the lines joining the pin centres.

EXAMPLE. A wall crane consists of two bars AC and BC pin-

jointed together at C and to the wall at A and B. (BO is called the

beam, AC the tie rod.) A load of 4'02 tons is suspended from C.

Find the stresses in BC and AC and whether they are tensile or

compressive, given that BC =10*1 ft., AC = 15 ft.

Since the forces on the pin at are 4*02 tons downwards and

pulls or pushes along BC and CA, we have simply to find the

forces in the directions CA and CB which will be in equilibrium

with 4 -02 tons downwards.

Draw first the crane to scale and then set off OP=4'02 cms.

(Fig. 138) vertically downwards and draw PQ horizontally and QO

parallel to AC. The forces at C are given by OP, PQ and QO in

magnitude, direction and sense. Scale these vectors
; PQ gives

3-64 tons. Notice that OPQ is similar to ABC, hence, if ABO
be supposed the vector polygon for the forces at C, then AB
represents 4 "02 tons. Measure the length of AB, and from this

determine the forces represented by BC arid CA.

At G the beam BC pushes from left to right, and, therefore,

since C is in equilibrium, the pin must push the beam C from

right to left and exerts a compressive force on it. Again, the

beam is in equilibrium and hence the pin at B must also exert a

force on the beam from left to right. Hence, BC is in a state of
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L

Crane Scale
' '

Q

4' $' 6 7' g' 9'
7 T i 1 i i

Force Scale

FIG. 138.

compression and the compressive stress is measured simply by
the force at either end.
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Again, QO measures the action of the bar AC on 6r

,
and since

It is upwards, the bar evidently pulls at Oj and further, since the

"bar is in equilibrium, it must also pull the pin at A, and hence

the bar AC is pulled at C and A with forces tending to lengthen

It and must therefore be in a state of tensile stress or (shortly) in

tension.

(49) If C~9 ft. and .4(7=12 ft., and the load suspended from C is

3 '78 tons, find the stresses in AC, and BO.

(50) If ABO= 60, J3CA=45, and the load is 6%3 tons, find the stresses.

(51) If 5(7=10 ft. and .4.5=12 ft., and BC slopes downwards at an

angle of 30, find the stresses in AB and BC due to a load of 2*8 tons wt.

(52) If .8(7=10 ft. and is horizontal, find the stresses in BO and AG
when AB lias the following lengths 10, 8, 6, 4 and 3 ft. ; the load is 1*7

tons wt. Draw a graph shewing the relation between the length of AB
and the stress in BC.

EXAMPLE. In a wall crane ACB (Fig. 139) the chain bearing the

load W passes over a smooth pulley at C and is fixed to the watt at E;
fund the stresses in AC and CB given that AC is horizontal and

of length 9//., BC=12/^ AE =
4-4/SJ., and W = 3'7 tons.

Draw the frame to scale, say 1 em. to a foot. Since the pulley

is smooth, the pull on E, and therefore the tension in CJE, is

measured by 3*7 tons weight.

Hence, set off OP' = 3-7" vertically downwards to represent the

load; then P#=3'7" parallel to OK Through Q draw QR
parallel to AG, and through draw OR parallel to BO ; then

OPQK is the vector polygon of the forces keeping the pin in

equilibrium at C.

Measure the lines to scale. The senses in which the vectors

must be taken at are decided by OP and PQ. QB acts from A
to (7, and the bar pushes at C and is therefore in compression.

EO acts from C to B^ and the bar pulls at C and is therefore in

tension.

(53) Find the stresses when AU=3 ft.

(54) Find the stresses if AC=AB~9 ft., AE=4'5 ft., and AC slopes
upwards at an angle of 20 with the horizontal,
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FIG. 139.
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EXAMPLE. Two equal rods AB and AC are pin-jointed together

at A and their other ends connected ly a cord BC
;
the whole rests on a

smooth table in a vertical plane with a weight W = 29 "4 Ibs. suspended-

pom A. Given AB =AC * 3-9 ft. and BC = 5 -9 ft., find the stresses

in AB, AC and BC.

First draw the frame ABC (Fig. 140) to scale (1" to 1'),
and

then the vector polygon: 07* =5 -88 inches, PQ parallel to AB,

QO parallel to AC. Then these rectors measured on |-" scale

give the stresses in the bars in Ibs. weight. Are the rods AB
and AC in compression or tension ?

For the joint B the force QP pushes. Draw PR parallel to

C and QR vertical, then the sense of the vector triangle for

B is QPJRj and PR measures the tensile (why tensile ?)
stress in

BC. Why was RQ drawn vertically upwards, and what does it

measure ?

(55) If AJB=3 ft, AO=2 ft, J56
y=3'5 ft. and W=2'3 kilogrms., find all

the stresses and the reactions of the table at B and C.

(56) The Derrick Crane. BC (Fig. 141} is the

post (kept vertical by some means not shewn),
AC the jib, AB the tie rod. Given AB= B ft.,

AO-13 ft. and BC-IQ ft. A load JT=7'4 tons

is suspended from A, find the stresses in AB and

AC.

(57) If the supporting chain passes over a smooth

pulley at A and is fixed at D, where <7Z)=3'5 ft.,

find the stresses in AB and AC.

(58) Given AB=ll ft, AC=25 ft, 5<7=16 ft,

CD-5 ft. and PF=14'5 tons, find the stresses in

A Band AC.

(59) A picture weighing 6*5 Ibs. is hung by a
wire over a smooth nail. If the distance apart of

the points AB at which the wire is fastened be

1 ft. 7 in. and the length of the string 2 ft. 3 in., find the pressure on the

nail and the tension in the string.

(60) If the length of the string in Ex. 59 vary, draw a graph shewing
the relation between the tension of the string and its length.

(61) Light rods AC, CB, of lengths 7 -2 ft. and 5*7 ft. are pin-jointed

together and to two fixed points A and B distant 6*3 ft. apart. AB is

inclined to the horizontal at an angle of 25 (A being the higher) a load

of 4*7 cwts. is suspended from the pin joining the two rods ; find the

stresses in the rods.

FIG- 141.
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(62) ABC (.Fig. 142) is a wall crane pin-

jointed at A , B and G ;
a load W of 5 tons

is suspended from a pulley 7), which is

attached to the crane at B and C by a chain

&06y
. ABD=72\ AC'=1 -5 ft., .45= 12-9

ft.
;
find the stresses in .4 5 and BO. (Notice

that BD and CD must be equally inclined

to the vertical, since the tension throughout
the chain is constant. Hence first draw the

vector triangle for the forces at D, and
determine this tension. Knowing the pull
of the chain at J5, the stresses in AB and
BG can be found.)

(63) A picture, of weight 11 Ibs., is suspended from a smooth nail by a
continuous string passing through two smooth rings on the picture frame
distant apart 1 ft. 7 in. If the height of the nail above the two rings
be 3 ft.

,
find the tension in the string and the pressures on the nail and

rings.

(64) AB and BG (Fig. 143) are light rods pin-jointed together at B, and
to fixed points at A and G. A load W
(7 cwts.) is suspended by a chain which

passes over a smooth pulley at B and is

attached to M, the mid-point of AC. The
load is pulled by a horizontal rope until

the chain makes an angle of 30 with the
vertical. Find the stresses in the rods and
chain, given that AB=10 ft.,

5(7=5-4 ft. and AC= 6 '22 ft.

M
Horizontal

FIG. 143.

Components of a Force. In relation to their resultant the

forces of a given system are called the components. Finding
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the resultant of a set of concurrent forces is a unique process ;

the converse problem of finding the components when the

resultant is known is not in general unique.

A force may be decomposed into two components having

given directions and passing through any point on the axis, in

one and one way only.

The proof is exactly the same as that for the decomposition
of vectors, on p. 84.

When the component of a force in a given direction is spoken
of without reference to the other component, it is always implied

that the two components are perpendicular.

Scalar Conditions of Equilibrium for Concurrent Forces.

For equilibrium under concurrent forces, it is a sufficient and

necessary condition that the vector polygon of the forces should

be a closed figure.

FIG. 144.

Let the axes of the forces be supposed concurrent, and let

a, ft, ... cr be their vectors whose sum is zero
(i.e.

the vector

polygon is closed). Draw any line XX ; project the vectors on

to this line by drawing parallels through the end points of

the vectors. If ap /315
... be the projections, Fig. 144 shews that
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Similarly project on YY a line parallel to the former direction

of projection, and establish a similar theorem for the projection

on it, viz.

a
a + 2 + y-2

+ 8
2 + ~2

= 0.

Then a
t
and a.

2
are the components of a in the directions JiZ

and 7F, and so for the other components, and the sum of the

components in any two directions is zero.

Conversely, if the sum is zero in any two directions the vector

polygon is closed, and the forces (if concurrent) are in equi-

librium. One direction is not sufficient, for it might happen,

as in Fig. 145, that though the polygon is not closed, the first

and last points of the projections are coincident

FIG. 145.

The two directions being at right angles we have the theorem :

Tlie sum of the components in any direction of all the forces

acting on a body in equilibrium is zero.

Again,
- o- is the resultant of a + /3 + y -f 8, and hence we get

the theorem : The sum of the components in any direction of

any number of concurrent forces is equal to the component of

the resultant in that direction.

(65) Five concurrent forces in a horizontal plane have components 3*7,

2-1, 1-8, 1-7 and 2 '9 towards the N., and components 1-2, 37, 2 '4, 3 and
3 -2 towards the E. Find the resultant in magnitude, direction, sense and
position.
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(66) Mark on squared paper the four points whose coordinates are (1,0),
(1*7, 2), (2'3, 1), (3*2, 4) inches, and let the lines joining the origin to these

points represent concurrent forces to the scale of 1 cm. to akilogrm. Find
the resultant by (i) the vector polygon method, (ii) the component method.

(67) Forces of magnitude 5, 2*8, 3*1, 4 '7 are concurrent and make angles
of 15, 30, 60 and 75 with a line through the point of concurrence. Find
the forces in this line and a line perpendicular to it which would be in

equilibrium with the given forces.

EXAMPLE 1. A horse begins to pull a small tramcar with a

force P = SOO Ibs. weight. The traces make an angle of 25 with

the horizontal, find the component of P in the direction of motion.

If the weight of the car be J a ton, what is the reaction of the

ground ? (Suppose no friction.)

Force Scale
100 200

B x

400

Ibs. wt.

PIG. 146.

Draw OA5" (Fig. 146) making 25 with Ox, and draw AB
perpendicular to Ox] then, since as vectors OA = OB-f BA, OB

represents the forward pull on the car.

From B along BA set up .#(7=11*2", then AC gives the

reaction of the ground, for it represents the weight of the car,

less the vertically upwards component of the pull of the traces.
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EXAMPLE 2. The points A and B are 5" apart and distant 1 and

3-7" respectively from the line CD, find both on the same side of it.

Find the components through A and B of a force of 8 Ibs. in CD, when

(i) the component through A is perpendicular to CD ; (ii)
the com-

ponents through A and B 0r0 mutually perpendicular; (iii) fe

components are equal in magnitude.

(i) Draw, through A, AO perpendicular to CD. Join BO, and

find the components of the 8 Ibs. weight along OA and OB.

(ii)
Draw a semicircle on AB, cutting CD in and

t ;
then

OA, OB, Or4 and O^B are possible directions for the components.

There are thus in this particular case two sets of components

which will satisfy the conditions of the problem. Find these

components.

(iii)
Draw AM perpendicular to CD and produce it to Av

where AM=-MA l
. Join A& cutting CD in N; then AN

and NB are the required directions. Find the components

in these directions.

(68) In the above example, if B is on the opposite side of CD to A,
determine the components in the three cases (i), (ii) and (iii).

(69) The pressure of wind on a sail when the sail is perpendicular to the

wind is 500 Ibs. weight ; find the normal pressure on the sail when the wind
makes angles of 15, 40, 65 and 75 respectively with the sail.

(70) Find the components of a force of 11 Ibs. weight making angles of

30 and 7o with it.

(71) A force of 17 Ibs. weight is directed due N. ; find the components in

the directions (i) N.E. and N.W., (ii) E. and KW., (iii) S.E. and 30

W. of N.

(72) Two ropes are attached to the coupling of a railway van and are

pulled horizontally with forces of 200 Ibs. and 270 Ibs. weight. The

lengths of the taut ropes are 18 ft. and 21 ft. and their ends remote from
the truck are at distances of 10 ft. and 7 ft. respectively from the centre

line of the rails. Find the forward pull of the van and the side thrusts

on the rails when (i) both ropes are on the same side, (ii) on opposite sides

of the rails.

(73) On squared paper mark the positions of two points whose coordinates

are (1, 2) and (2*4, 1*2) inches; find the components through the origin
and these points of a force of 7 Ibs. weight acting (i) along the axis of x,

(ii) along the axis of y, (iii) along the line bisecting the angle xOy.

(74) On squared paper mark the point whose coordinates are (27, 1"1),

and draw a line parallel to Oy and distant 1" from it on the negative side.

Find the components of a force of 5 Ibs. weight, one of which is along this

parallel and the other passes through the given point when the axis of the
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force is (i) along Ox, (ii) along Oy, (iii) a line making 30 with Ox and cuts
Ox at 1 '5" from the origin on the positive side.

(75) A smooth inclined plane (Fig. 147) rising 1 in 3 has a smoothly
running pulley at the top.
A body of weight W (11 -6

Ibs.) is kept in equilibrium
by the pull of a string
parallel to the plane. The
pull being produced by a

freely hanging weight P,
find P and the reaction of

the plane.
What is the component of

the weight parallel to the

plane ? What is the vertical

component of the reaction of FIG. 147.

the plane ?

(76) A man distant 13 '5 ft. from a tree pulls at the upper part of the trunk

by a rope of length 40 ft. His pull is equal to a weight of 80 Ibs. What is

the horizontal pull on the tree, and what is the force producing compressive
stress in the trunk ?

(77) A barge is towed by a horse with a pull P of 152 Ibs. weight making
an angle of 20 with the "direction of the bank. What is the force pro-

ducing forward motion, and what would be the side thrust of the water on
the barge if there were no side motion ?

(78) A block is partly supported by a smooth right-angled wedge of

weight 18 Ibs. (as in Fig. 148) the height and base of the wedge Being

FIG. 148.

3*2 ft. and 6 ft. respectively. If, to maintain equilibrium, the wedge has

to be pushed with a horizontal force of 28 Ibs. weight, what are the

reactions of the wedge on the body and on the horizontal table ?

(79) A uniform cylinder of

weight 57 Ibs. rests on two
inclined planes as indicated
in Fig. 149. The planes are

hinged together at A ; what
is the tension at A , and what
is the pressure of each plane
on the ground, given that the

wedges are equal in all re-

spects, each weighing 15 Ibs.,

and that

BG 3,
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EXAMPLE. OF (Fig. 150) represents the crank of an engine, F

moving in the circle DFE and being fixed. CF is the connecting rod,

C being the cross head of the piston rod which moves to and fro along AB
(AB= DE). C is kept in the line AB by guides. The forward

thrust on C leing 5000 Ibs. weight, find the force transmitted along

the connecting rod CF and the side pressure on the guides at C

(assuming no friction) given that CF = 6-5 ft., DE = 3 ft. and AC = 6"

the direction of motion F being as indicated.

Find also the components of the force transmitted along CF in the

direction of the forward motion ofF and perpendicular to it, (i.e., along

the tangent and radius at FJ.

First draw the position diagram to scale, say 2 cms. to 1 ft.

Next construct the vector diagram PQ = 5" to represent 5000 Ibs.;

then QR and PR are perpendicular to AB and parallel to CF

respectively. QR is the thrust on the guides (and RQ is the

reaction of the guide on keeping it in the path ACB) and PR
is the force transmitted along the connecting rod.

Draw PS perpendicular and ES parallel to OF, then PR acting

along CF is equivalent to PS acting along the tangent at F and

SR acting from F to 0. PS then gives the forward thrust of F.

(80) Find the force on F urging it round the circle when AC=Q'2, 0'4,
0'6 and 0'8 times AB.

EXAMPLE. Draw a graph shewing the connection between the

position of C (Fig. 1 50) and the thrust on F urging it round the circle.

Divide AB into ten equal parts arid draw ordinates at A and B
and the points of division. Produce CF to cut the ordinate at

in G. Project G horizontally on to the ordinate at (7. Do this

for the eleven marked positions of C and join the points so deter-

mined by a smooth curve. The force scale for this representation
is OF to 5000 Ibs.

Compare the results with those obtained by the vector polygon.
* Proof.

From the construction of Fig. 150 we have the following
relations between the angles :

RPQ = G-CO = 90 - OffF, PES= GFO,
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and hence ^|
- cos RPQ = cos (90

- OOF) = sin OGF,

|J| = sin PES= sin GFO -

}
JL li>

T>cy /-,T>-4 f^T7r\ i~\r*i
JL O Sin vrjc L/ (L/ur

**
PQ

==

STOGF
=
OF'

157

13

eg

FIG. 150.

Hence, If OF be taken to represent PQ or 5000 Ibs. wt,

represent PS or the forward thrust on the piston.
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*
(81) If the force on the piston decreases uniformly from 5000 Ibs. at A

to zero at J?, find by a graphical construction the forward thrust on
H* when the cross head is at and AC=

*(82) Construct the curve giving the relation between the forward
thrust on F and the displacement of G for the variable force given in

the last example. Set up, perpendicular to AB, AA I
= radius of crank

circle and project from G to GT on AA l
and join G^B ; the point of inter-

section of G^B and COl gives the force required for displacement AC.

EXAMPLE. AJB (Fig. 151) represents a sail of a ship whose keel

line, is as shewn. The thrust a of the wind on AB if perpendicular to

the ivind would be 500 Ibs. weight. If AB makes an angle of 30 with

the keel line and the relative velocity of the wind to the ship be in

direction CM, making 45 with keel line, find the thrust urging the ship

forward.

Resolve a into ft arid y perpendicular and parallel to the sail

AB. 7 has no effect on the ship's motion. Find the components
of P along and perpendicular to the keel line; the former, S

(approximately 647 Ibs. weight) is the thrust urging the ship

forward, the latter, e, tends to produce lee-way and in good sailers

is nearly balanced by the resistance of the water to side motion

and the force of the current on the rudder.

In the vector diagram, since RPQ is a right angle, a circle

described on RQ as diameter will pass through P. Draw this

circle. As the direction of the sail line AB is changed the

point P will move on this circle. Evidently as P changes, the

length QT will alter and it will be greatest when PT is a tangent
to the circle.

Now, the radius being perpendicular to the tangent at any

point, the line joining P (when PT is a tangent) to the mid-

point S of RQ must be perpendicular to PT and therefore parallel

to the keel line. Hence, to find the best position for the sail,

bisect RQ at S and describe a circle of radius SQ ; then draw SP

parallel to the keel line cutting the circle at P. RP gives the

direction in which the sail should be set and the greatest
A A

possible forward thrust is given by QT. Since SRP= ^QSP we

may give this direction as the one bisecting the angle between

the keel line and the direction of the relative wind.
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No matter how small the angle between the keel line and the

wind direction, there will always be a force urging the vessel

on. If there be much lee-way, sailing close to the wind is impossible.

Q,

FIG. 151.

(83) Draw a figure for the case when the sail is set on the other side of

the keel line, and shew that this case is an impossible one.

(84) The keel line being from W. to E. and the relative wind from the
1ST.W. ; find the forward thrust on the ship when the sail is set 25 S. of W.

(85) Shew from the vector diagram for given directions of the keel line

and stern wind that the greatest forward thrust would not he obtained

by putting the sail as nearly perpendicular as possible to the keel line.

(86) The keel line being from N. to S. and the relative wind from E. to

W., find the forward thrust when the sail makes an angle of 20 with the
keel line. Find the angle at which it should be set to give maximum
forward thrust on the ship.
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(87) The force of a current on a rudder when placed perpendicular to the

stream is 50 Ibs. ;
find the retarding force on the ship when the rudder

makes angles of 20, 30 and 60
&
with the

^keel
line. Shew that, in a race,

the rudder should be used as little as possible.

(88) Explain how it is that a kite, though fairly heavy, is enabled to rise

in the air.

(89) The force of the wind on a kite if placed perpendicular to it would

be 5 Ibs. When the kite makes an angle of 35 with the horizontal, find

the force due to the wind urging it upwards.

(90) In Ex. 89 if the kite be stationary and its weight 10 ozs., what is

the pull of the string on the kite in magnitude, direction, and sense.

Body in Equilibrium under Three Non-Parallel Forces.

Experiment VII. on p. 122 shewed that when a body is in equili-

brium under three non-parallel forces, the axes of the forces are

concurrent, The same result follows from the combination of

concurrent forces, deduced from Newton's Second Law of Motion,

since equilibrium is only possible under three forces when the

resultant of any two differs only intense from the third.

This consideration enables us to draw the axes of those forces

in equilibrium when one force is unknown in direction.

EXAMPLE. A unifwm learn rests with one end against a smooth

vertical icall and the other on rough ground. Determine the reactions

of the ground and wall. A
AB (Fig, 152) is the beam of length 25 ft., ^(7=60 and

the weight is 0-505 cwt.

Draw the beam in position (scale 1 in. to 5 ft.), then draw a

vertical through G the M.c. of beam, and a horizontal through

A, intersecting in 0. Join 0, then BO is the direction of the

ground's reaction.

Construct the vector polygon (scale 10 cms. to cwt.).

Draw PQ=W cms. downwards; then QR horizontal and RP

parallel to BO. Scale the lengths, QR and PR giving the re-

actions (QR 0"145 cwt., 7tLP = 0'525 cwt. approximately). Why
is AO drawn perpendicular to AG^

(91) Determine the reactions of the wall and ground if AB is inclined at

45 to the horizontal.

(92) Determine the reaction of the wall and ground if AB is inclined at

40 to the horizontal and the mass centre G of the beam is at 9 ft. from

the ground, reckoned along the bearn.
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(93) A uniform beam AB hinged at A, is supported in an inclined

position to a vertical wall AC by a string CB fixed to the wall at C.

The weight of the beam is 17 kilogrms., A = 4: ft., A0=2 ft., BC= 5 '2 ft.,

find the tension in BG and the reaction at A on the beam.

(94) With dimensions as in Ex. 93, find the stress in BO if the mass-
centre of the beam be AB from A.

(95) Draw a graph shewing the connection between the distance of
G from B and the tension of the string BG.

(96) In Ex. 94, if AB = 30 ft. and ABC= 75, find the reactions.

A lO

Force Scale

FIG. 152.

(97) A uniform beam AB of length 25 ft. and weight 70 Ibs. is hinged to

a wall at A (19 ft. above the ground at 0), the other end B rests on a
smooth inclined plane OB. Find the reactions at A and B when the
inclination of the plane is 30, 15 and 60 respectively.

(98) Draw the two sides and base of a rectangle, the sides being 3" and
base 2"

; draw a diagonal and produce it 4*5". Let the two sides of the

rectangle represent vertical boards securely fixed in the ground (base), and
the diagonal produced a uniform beam. The beam being smooth, find the

reactions at its points of contact : weight of beam 2 cwts.

T.G. L
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(99) A uniform beam of length 3 ft. is hinged at one end to the lowest

point of a horizontal hollow circular cylinder of inner radius 2*5 ft. The

other end of the beam rests against tho inner smooth surface of the

cylinder in a plane perpendicular to the axis of the cylinder. Find the

reactions at the two ends of the beam, the weight of the beam being

530 Ibs.

FIG. 153.

(100) AB (Fig. 153) Is a weightless rod 5 ft. long, which can turn

about as a fulcrum; AC = 3 '2 ft.; it is acted on by two forces P
and Q as shewn. P 100 Ibs. ; find Q and the reaction at C.

FIG. 154.

(101) A uniform beam AB (Fig. 154), 13 ft. long and of weight 80 Ibs.,

rests against a smooth inclined plane BO (rising 4 ft. vertically to 7 ft.

horizontally) and is prevented from

sliding by a peg at A, AC= 2 ft. Find

the reaction of the plane and the total

reaction at A.

The Smooth Pulley. A
ible string of negligible weight is

fastened at B to a smooth pulley

(Fig, 155) and passing over it bears

a load W. Consider the equilibrium

of any part QP of the string. The

forces acting are the pulls (tensions)

at Q and P and the reactions of the

surface QP. The former are tan-

gential and their axes intersect at

C, the latter are normal and have therefore a resultant passing

FIG. 155.
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through 0. Since three forces in equilibrium must be concurrent,

the resultant reaction must pass through C as well as 0. But

CO bisects the angle QCP, and hence, from a trial stress diagram,
we see that the tensions at Q and P must be equal in magnitude.

In some problems the axes of one, two, or more of the forces

are unknown in direction, but other geometrical conditions are

given which, with the aid of a trial diagram, will enable the

solution to be found.

EXAMPLE 1. A uniform heavy rod, of weight 9 Ibs. and length 3ft.,

is suspended from a point by two strings of length 2 -5 and 2 ft.

respectively attached to its ends. Find the equilibrium position, and

the stresses in the strings.

If AB, AC, BO (Fig. 156) be the two strings and the rod,

then, on the system of strings and rod. act two forces, the

weight of the rod at M, its mid-point, and the reaction at A.

These must be in a line, since there is equilibrium, and hence

BMC
FIG. 156.

AM must be vertical. Draw the triangle ABC, in any position,

and its median AM. Then, if AM be vertical we have the

required position, and the vector polygon can be drawn. (The
usual convention in books is to represent the vertical in space

by a line parallel to the bound edge of the paper; if this

convention be adhered to, another triangle A
I
B

1
C

l
must be

drawn with AM vertical, and this can easily be done by con-

structing a parallelogram, whose diagonal is vertical and equal to
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2AM, and whose adjacent sides are equal to AB and AC.}

Complete the solution.

*EXAMPLE 2. A heavy uniform smooth ring weighing 17 Ibs. slides

on a string of length 4*92 ft.; the ends of the string are fastened to

two hooh A and B, whose distance apart is 3*95 ft., A being 0*98/tf.

above B
; find the position of equilibrium and the tension of the string.

Since the ring is smooth the tension of the string must be the

same on both sides, and hence from a trial stress diagram we

see that the two parts of the string must be equally inclined

to the vertical. Draw ADB (Fig. 157), where ^D = O98" and

is vertical, AB- 3'95" and DB is horizontal. With B as centre,

describe a circular arc of radius 4 "9 2" cutting AD produced in E
9

or set an inch scale so that $$ = 4*92". Bisect AE at M and

draw MN parallel to DB, then ANB is the form assumed by
the string.

Positlosi Scale

_r *

FIG. 157,

For AN=-EN, and therefore AN+NB = 4=*$%
f

,
and AN and

NB make equal angles with the horizontal. To find the tension,
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draw, in the vector diagram, lines parallel to AN and NB from

the .extremities of the vector, giving the load of 17 Ibs.; complete
the solution.

* ExAMPLE 3. A uniform beam weighing 105 Ibs. rests icith one

end A in contact with a smooth plane of inclination 35, the other

end B rests on a smooth plane of inclination 50. Determine the

reactions of the supporting planes and the position of the beam.

Draw first the vector polygon of the forces, PQ representing
105 Ibs. weight to scale, then draw QM and PE making angles of

31 and 50 with PQ. These lines give the reactions at A arid B.

Draw two lines AC and BC for the planes and at any two points
A and B, their normals intersecting in 0. Join to the mid-

point M of AB. Complete the parallelogram OATB of which

OA and OB are adjacent sides. Then OTB and OAT should

be similar to DRQ ; hence if PQ be bisected at $, CB should be

parallel to K, hence SE gives the inclination of the beam.

(102) A rod of length 7" lies in a smooth hollow horizontal cylinder,

perpendicular to its axis, of radius 9". The mass-centre of the rod is at a

point distant 2*5" from one end ; draw the position of Che rod in the
Bowl when in equilibrium, and measure its slope.
NOTE. The M.C. of the rod must be vertically under the axis of the

cylinder.

*
(103) A uniform rod, of weight t kilogrms., can turn freely about one

end in a vertical plane ; it is pulled by a horizontal force of 4*3 kilogrms.

weight at its free end. Draw the rod in its position of equilibrium, and
measure its slope.

NOTE. Three forces act on the rod and must pass through a point ;

knowing the vertical and horizontal forces, the reaction at the hinge can
be found. From any point draw two lines: (i) OB parallel to the

reaction, and (ii) OA horizontally. Bisect OA at Mt and draw verticals

from M and A. Where the former cuts OB (at B say) draw BT, cutting
the vertical through A in 71

, then OT is the direction of the "beam. Measure
OT in cms. or inches, and determine the scale to which the figure is drawn.

*
(104) Solve the previous exercise if the rod is not uniform and the

M.G. is at a distance of J of the length from, the lower end.

*
(105) A rod of length 6 ft. has its M.C. at a distance of 2 ft. from the

end which rests on a smooth plane of inclination 30, the other end rests

on another smooth plane whose inclination is 45. Draw the rod in its

position of equilibrium ; its weight being o cwts., find the reactions of the

planes.
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*
(106) A uniform beam AB (Fig. 158), of length 7 ft. and weight 27

kilogrras., can turn freely, in a vertical plane, about A ;
to its upper

extremity B is fastened a cord which runs over a smooth pulley at C,

9 ft. vertically above A, and carries a weight of 11 kilognns. Find the

position of the beam and the reaction at the hinge.

Q
PIG. 158.

Draw a trial figure A BO and a stress diagram PQR, where PQ repre-
sents the weight of the beam, HP the tension of the cord (

= 11 kilogrms.)
and QR the reaction at A. Then PQR should evidently be similar to AOO
(0 being point of concurrence of the axes of the forces). Hence

and hence GO and therefore GB (=2(70) is known, and hence the triangle
AGB can be constructed to scale. Do this construction and determine

QX.
MISCELLANEOUS EXAMPLES. IV.

1. With the aid of your instruments find the resultant of the two forces

represented in magnitude and direction by the straight lines shewn in the

FIG. 159.
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diagram (Fig. 159). Assuming that one inch represents 10 Ibs. weight,
write down the magnitude of the resultant. Also, express in degrees the

angle the resultant makes with the greater of the two forces.

(Engineer Students, 1903.)

2. Draw diagrams to shew the directions in which each of the following
sets of forces must act so as to maintain equilibrium, if they can do so.

Set A. 3, 4, 5. Set B. 1, 1, 3. Set C. 4, I, 3,

(Naval Cadets, 1904.)

3. Two men, who are lifting by ropes a block of wood, exert pulls of

45 Ibs. and 65 Ibs. respectively. The ropes are in the same,,vertical plane ;

the rope to which the smaller pull is applied makes an angle of 25 with the

vertical, and the rope to which the other pull is applied makes an angle of

33 with the vertical on the opposite side. Determine graphically, or in

any other way, the actual weight of the block of wood if it is just lifted by
these two men. (Naval Cadets, 1904.)

4. One of two forces, which aet at a point, is represented numerically
by 7 ; the resultant is 14 and makes an angle of 30 with the force of 7 ;

find graphically the magnitude and line of action of the second force. Also
calculate the magnitude to two places of decimals, and measure the angle
between the two forces as accurately as you can.

5. Three forces, acting in given directions, are in equilibrium at a

point ; shew how to find the relative magnitudes of the forces. What
additional information suffices for the determination of the absolute

magnitudes ?

Two small equal brass balls, each weighing ^ oz. , are suspended by equal
silk threads, 12 inches long, from a single point ; the balls being electrified

there is a force of repulsion between them so that they separate and remain
in equilibrium 4 inches apart ; find the force of repulsion and the tension

of each thread. (B. of E., L, 1904.)

6. A weight of 1 ton is hung from two hooks 20 ft. apart in a horizontal

platform by two chains 15 and 10 ft. long ; find by construction and
measurement the tension in each chain. (B. of E,, II., 1903.)

7. A chain weighing 800 Ibs. is hung from its two ends, which are

inclined to the horizontal at 40 and 60 respectively. What are the forces

in the chain at the points of suspension? (fi. of E., A.M. L, 1903.)

FIG. 160.

B. The figure (Fig. 160) shows a bent lever A OS with a frictionless

fulcrum 0. AO is 12", BO is 24". The force Q of 1000 Ibs. acts at A ;

what force P acting at B will produce balance ? What is the amount
and direction of the force acting at ? (B. of E., A.M. II., 1904.)
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9. A thread is fastened by one end to a fixed point A, and carries at its

other end a weight W of 20 IBs. To a point B of the thread a second thread
BG is fastened and this second thread is pulled at the end C by a force

equal to the weight of 8 Ibs. ; when the system comes to rest it is found that

BC is horizontal. Shew the system when at rest in a diagram drawn to

scale, find the angle which AB makes with the horizon and the tension set

upiuAJS. (B. of B., L, 1904.)
A

10. Draw two lines OA and OB and let AOB be an angle of 37 ; suppose
that jft, the resultant of two forces P and Q, is a force of 15 units acting
from to B ; suppose also that P is a force of 8 units acting from to A .

Find, by a construction drawn to scale, the line 00 along which Q acts,
and the number of units of force in Q. (B. of E., L, 1904.)

11. In a common swing gate the weight is borne by the upper hinge.
The distance between the upper and lower hinges of such a gate is 3*5 ft.

If a boy weighing 119 Ibs. gets on the gate at a distance of 8 ft. from the

post, find the magnitude and direction of the pressure he exerts on the

upper hinge. (B. of E., II., 1905.)

12. A machine of 5 tons in weight is supported by two chains ; one of

these goes up to an eyebolt in a wall and is inclined 20 to the horizontal ;

the other goes up to a roof principal and is inclined 73 to the horizontal ;

find the pulling forces in the chains. (B. of E., A.M. L, 1907.)

13. Fig. 161 shows a weight
of 500 Ibs, supported by two

equally inclined poles. Find
the thrust on each pole.

(Naval Cadets, 1903.)

14. The bracket shewn in the
sketch (Fig. 162) carries a load of 100

kilogrammes at G. Find whether the
stresses in AC and BO are thrusts or

pulls and the amount.

(Military Entrance, 1905.)

FIG 162.
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15. Draw a triangle ABC with AB vertical, and let A G and BO repre-
sent two weightless rods, joined together by a smooth hinge at C and
fastened by smooth hinges to fixed points at A and B ; a weight W is hung
from C ; shew that one of the bans is in a state of tension, and the other of

compression ; also shew how to calculate the stresses.

Obtain numerical results in the following case : AB=4-y BC=3, CA=2,
and ir=18 tons. (B of E.

5
II.

, 1905.)

16..
In Fig. 163 IT is a weight of 170 Ibs.

hanging from a joint at A by a chain that

weighs 20 Ibs. The joint is" supported bv
rods AB and AC fixed at B and C. Find
the stress in each rod, and say whether it

is a thrust or a pull. (Naval Cadets, 1904.
)

CDW
FIG. JOB.

17. The two bars AC
and BC (Fig. 164), hinged
at A and B> and hinged to-

gether at (7, carry a load
of 170 Ibs. at C. Find the

stress in each bar.

(Inspector of Ordnance

Machinery, 1904.)

170 ibs.

FIG. 164.

18. A body whose mass is 2 cwts. rests on a smooth inclined plane ; it is

maintained in position by a force of 40 Ibs. acting parallel to the surface

of the plane, and by a horizontal force of 110 Ibs. Determine in any way
the angle of inclination of this plane. (Military Entrance, 1905.)
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19. A weight slides freely on a cord 2 '6 metres long, the ends of which
are attached to fixed pegs P and Q ; P is 1 '4 metres from the vertical

through Q and 30 centimetres below the horizontal through Q. Draw to

a scale of j\jth a diagram shewing the position of equilibrium. Determine

the tension in the cord and the proportion of the weight borne by each

peg.

Denoting the span or horizontal distance between the pegs by S, the

height of one peg above the other by ff, and the length of rope by L, find

expressions for the horizontal and vertical distances of the weight from

the lower peg. (Military Entrance, 1905.)

20. A weight is supported by a tie and a horizontal strut
;
find how the

pull in the tie varies as the inclination changes, and plot a curve giving
the pull as a function of the angle of inclination of the tie.

(Military Entrance, 1905.)

21. Fig. 165 represents a vertical section (drawn to the scale of 1 inch

to a foot) of the roof of a building, A OB being a window which can turn

about a hinge at A and which is opened by means of a rope tied to the end
F of a light iron bar OF, which is firmly fixed to the window at C. The

FIG. 165.

rope from F passes over a smooth pulley at K and is fastened to a hook E
in the roof. Find the tension in the rope when the position of the window
is that indicated in the figure. The weight of the window is 30 Ibs. and

may be taken as acting at G. (Military Entrance, 1905.)

22. A uniform bar AB of weight W is freely movable round a smooth
horizontal axis fixed at A . It is kept at a fixed inclination i to the horizon

by resting against a peg P whose position along the under surface of AB
is varied. Represent in a diagram the various magnitudes and directions

of the pressures on the peg and the axis A as P is moved along the bar.

(Inter. B.Se. (Eng.), 1906.)

23. Enunciate the triangle of forces. Shew how to find, by a graphical
construction, the angle at which two forces, each equal to 50 Ibs. weight,
must act on a point that they may have a resultant equal to 75 Ibs.

weight. (Inter. Sci, 1900.)

24. Draw a triangle ABC with AB vertical and A above B to represent
two bars AG and BG freely jointed at O and attached at A and B to
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points of a wall in the same vertical line. A given weight being suspended
from C, determine the natures and magnitudes of the stresses in AC
and BG. (Inter. Sci., 1900.)

25. Draw a triangle ABC having the vertical angle A large and the
base BC horizontal ; produce BO to D. Let AB denote a rod connected

by smooth hinges to a fixed point B and to the end A of a rod A C\ whose
other end C can move in a smooth groove BCD ;

the weight of the rods

being negligible, a force ^T
is applied in the plane ABC at right angles to

AB at A ; find the force transmitted by the rod AC along the groove.
(Inter. Sci., 1900.)

26. A light cord attached to a fixed point 0, passes over a fixed

pulley Q at the same level as and at a distance c from it, and supports a

weight W attached to its end ; another weight w smaller than 2W is

slung freely over the cord between and Q ; determine the depth below
OQ at which this weight will rest in equilibrium. (Inter. Sci., 1900.)

27. Explain a graphical method of finding the resultant of a number of

given forces acting on a particle. A light string of length I has its ends
fixed at A and B at a horizontal distance a apart, and a heavy ring of

weight W can slide along the string. Prove that the ring can rest

vertically beneath B if a force W~ be applied parallel to AB.
1

(Inter. Sci., 1904.)

28. A uniform bar A B, 10 ft.
long,

of weight W is freely movable in a
vertical plane, about a smooth axis fixed at A ; it is sustained at an angle
tan"1

1 to the horizon by resting against a fixed (smooth) peg at C, where
AC-6 ft. Find the magnitude and exhibit the lines of action of the

pressures at A and C. (Inter. Sci., 1904.)

29. A man stands on a ladder which leans against a vertical wall.

Assuming the pressure on the wall to be horizontal, find geometrically the
horizontal thrust of the foot of the ladder on the ground. Length of

ladder 15 ft., foot of ladder 5 ft. from wall, total weight of man and ladder
3 cwts. acting 5 ft. from the ground (reckoned along the ladder).

(Inter. Sci., 1904.)

SO. A drawbridge AB, hinged at A (the axis of the hinge being hori-

zontal and perpendicular to AB}, is to be raised by a chain attached at B
and carried over a pulley C fixed vertically over A at a height AC=AB.
The resultant weight of the bridge acts through the mid-point of AB.
Shew in a diagram how to find the varying tension in the chain due to the

weight of the bridge as it is slowly lifted, neglecting the weight of the
chain and all friction.

If the bridge weighs 2 cwts., find the tension of the chain and the

direction and magnitude of the reaction of the hinge when the bridge is

half-open, that is, when AB is at 45 with the horizontal.

(Home Civil, L, 1905.)

31. A light bar AB can move freely about the end A 9 which is fixed,

and is supported in a horizontal position by a string CB, C being a fixed

point vertically above A . If a weight W be suspended from any point P
of the bar, find geometrically the direction and magnitude of the reaction

at A and the tension in the stay. W= 10, AB=I8", AP= 12', AC=9".
(B.Sc., 1904.)



CHAPTER V.

THE LINK POLYGON.

Resultant of three Coplanar Forces (non-parallel).
EXAMPLE. Draw a triangle ABC (Fig. 166) whose sides are 3, 4,

and 6 inches long. Take these as the axes of forces whose magnitudes

are 7, 2, 5 Ibs. weight, and whose senses are given by AB, BC, and

CA. To find the resultant of these forces in magnitude, direction,

sense and position.

Draw the vector polygon for these forces

a, /?, y, finding

Through B draw ED parallel

to
o-j cutting ^(7 at D.

Through D draw DJ parallel

to o- cutting 5(7 in E.
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Then DE is the axis and <r the vector of a force called the

resultant of the given forces. Measure the magnitude of v and

the angle it makes with BC, and the position of E with reference

to B and C.

Note that <r is independent of the order of addition of a, /3, y ;

it is not evident that E is independent of the order in which we

suppose the forces combined.

(1) Combine the forces in two different orders, viz. (i) a and 7 to a
resultant through A arid combine this resultant with ,3 ; (ii) p and 7 to

a resultant through and then combine this with a. Shew in each case
that the resultant always cuts BG at E.

Resultant of any number of Coplanar Forces (non-

parallel). When there are more than three forces the process

for finding the resultant, if there is one, is simply a continuation

of the process explained for three forces, and consists in finding

the resultant of two intersecting forces, then the resultant of this

and a third force intersecting it, and so on. The whole con-

struction is a repetition of that for two concurrent forces; its

validity depends on the truth of the assumption that the order,

in which we suppose the forces combined, is immaterial.

(2) Draw an equilateral triangle ABC of side 4"
;
forces of magnitudes

2, 5, 1 Ibs. weight act in these sides with senses AB
t BC\ OA. Find the

resultant in magnitude, direction, sense and position.

(3) On squared paper take axes Ox and Oy. Mark the points whose
coordinates are (3, 2), (1,

-
1), (2, 3) and ( -4, 2). Forces of 3, 5, 1'54 and

2 Ibs. weight act through these points, their directions and senses being
in order.

(i) parallel to Ox and in the positive sense.

(ii) making 45, (iii) making 75, (iv) making 120 with Ox and with
senses upwards.
Find the magnitude, direction and sense of the resultant and where it

cuts the axis Ox.

Resultant by Link Polygon. The construction in the

previous examples fails altogether for parallel forces and in many
cases involves finding the point of intersection of lines which

are nearly parallel.

These difficulties can be overcome by the introduction of two

new forces which differ only in sense.
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The construction now to be explained depends for its validity

on the truth, of the suppositions, (i) that such a pair of forces

will not affect the equilibrium, (ii)
the order of the combination

is immaterial.

EXAMPLE. On any straight line mark four points an inch apart,

and draw lines a, b, c, d through these as indicated, a, /?, y, 8 are the

vectors of the jwees acting in these lines of magnitudes 1*98, 3-3, 4*15,

and 2 '05 Ibs. weight, find the resultant.

Draw the vectors, to the scale 2 cms. to 1 Ib. weight, and add

them to a resultant vector <r (Fig. 167).

Mark a point on the concave side of the vector polygon

(called the pole). Join this point to the vertices of the vector

polygon Jf^PgPg/^Pg. The point should be chosen so that

these joining lines are not nearly parallel to any of the vectors.

For this reason the concave side is the better position for 0.

Mark any point A on a and through it draw a line, e, parallel

to OPr '-The latter line is a vector, call it e.

Through A draw AB (cutting b at JB) parallel to

OP
t2 (
= + a

).

Through *^draw BC (cutting c at C) parallel to

,

'

OP3 (
= e + a +

/3).

Through draw CD (cutting d at D] parallel to

QP
4(^ + a + /3 + y).

Through D draw DE (cutting e at E) parallel to

OP
5 (==e+a

Through E draw r parallel to

= a + /) + 7 + 5).

Then r is the axis and a- the vector of the resultant of the

given forces.
, .

Proof. Let two forces differing only in sense act in e, and

suppose their vectors to be e and -
e. At A there are two

concurrent forces e and a; these are combined to e+a acting in

AB. At B there are two concurrent forces (3 and e + a
; these
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<?" ^

are combined to + a 4- ft acS* in JBC. Ai^C tbere are two

current forces 7 and e + a + /3; these are combined to

con-
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acting in CD. At D there are two concurrent forces 5 and

+ a -f- /? -{- y ;
these are combined to e-ha + /34-y + 3 acting in

DE. Finally, at E there are two concurrent forces -e and

e + a _|,^ + y_j_$; these are combined to a force a 4- J3 + y + 8

acting in r. Hence r is the axis of the resultant and o- is its

vector.

Note that the construction is always possible and never

awkward if the pole is chosen properly, for this means that

Alt, BC, ... always intersect b, c, ... at angles never very acute.

(4) Repeat the construction, using a different pole. Is the same axis r

obtained ?

(5) Repeat the construction, choosing a different point A on a.

(f>) Repeat the construction, adding the vectors in the order

a-f 7 + 5 + j8.

The figure A, B, C, ...
,
constructed on the axes a, b, c, ...

,
is called

the link polygon (sometimes the funicular polygon} the vector

polygon is often (but wrongly) catted the force polygon.

(7) Find the resultants in Exx. 2 and 3 by the link polygon method.

(8) A wheel has eight tangent spokes placed at equal distances round

the hub. The tensions in five consecutive spokes are 3'1, 2*7, 3-3, T8 and
2-4 Ibs. weight. Find the magnitude, direction, sense and axis of the

resultant pull on the hub due to these five spokes, the spokes being

tangents to a circle of radius 2*5".

Equivalent Forces. Any set of forces which would produce

tlie same effect, so far as motion is concerned, as a given system

of forces is called equivalent to tlie latter.

Resultant Force. If a single force would produce the same

effect as a given system of forces this equivalent force is called

the resultant of tlie given system.

Not more than one single force can be equivalent to any given

set of forces, otherwise forces differing in magnitude or direction

or sense or position, or in all together, could produce the same

motion in a body. The latter supposition is inadmissible (see

Expt. 1, p. 119, arid Newton's Second Law of Motion, p. 135).
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Eqililibrant. Look at the matter a little differently. Sup-

pose a set of forces to be in equilibrium, then any one of the

set may be considered as the eauilibrant of the rest. A force

differing only in sense from the equilibrant is the only force that

could produce equilibrium with it, and hence is the only single

force equivalent to all the rest (Expt. II, p. 119).

Unique Eesultant. If, then, a set of forces has a resultant,

it can have one only.

That any set of forces has a resultant has not been proved ;

as a matter of fact, two forces, which differ only in sense and

position have no resultant

The construction given for finding the resultant of any number
of coplanar forces consists in finding one after another the single

forces equivalent to 2, 3, 4, ... up to the last of the given set,

and including in this set two forces differing only in sense. At

each step of the process we find the resultant in conformity with

experimental results and with Newton's Second Law of Motion.

Since there can be one resultant only, the order in which we

suppose the forces combined is immaterial.

EXPT. VIII. Punch four holes in a piece of cardboard,
and suspend it as in Expt. VI. , Chap. IV. Mark the lines

of the forces and the corresponding magnitude and sense of

each pull.

By vector and link polygons construct the resultant of

three of these, and hence shew graphically that this

resultant differs only in sense from the fourth force.

Notation (Bow or Henrici). For graphical

work it is often (but not always) convenient to

have a different notation from that used hitherto.

The axis of the force is indicated by two letters

(or numbers), one on each side of the force, whilst
FJG 16g

the vector of the force is indicated by the same

two letters in capitals placed at its ends. Thus ab (Fig. 168) is

the axis, and AB the vector, of a force.
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EXAMPLE. Mark five points P, Q, K, S, T 3 cms. apart on a

straight line, and draw lines through these points at angles 65, 90,

70, 90 and 65, as indicated in Fig. 169. Letter the spaces between

the lines a, b, c, d, e, f, as indicated. The forces in these lines are

given by the vectors AB, BO, OB, DE, EF, and represent 3, 2-15,

2-08, 2-7, 2*85 Us. weight respectively. Find the resultant force.

Choose a convenient pole (Fig. 169). Through the space a

draw B^Il parallel to OA\ through the space I draw B^ parallel

to OB-, through c draw &
2
R

B parallel to OG \ through d drawE^
parallel to OD \ through "e draw Ii4Ii& parallel to OE

;
and finally

through / draw P^R parallel to OF. The lines through the first

and last spaces, i.e. P^R and fiBR, intersect at li, a point on the

resultant.

Draw, then, through B a line parallel to AF; it is the axis,

and AF is the vector of the resultant.

Note that it is not necessary to draw the radial lines

OA, OB, OC, ... ;
in fact it is better not to do so, as the crossing

of the lines at tends to make the exact position of the pole

doubtful.

The advantage of the space notation consists in its rendering

mechanical the order of drawing the lines. A corresponds to a,

B to b, and so on. The more important advantage of uniqueness

of construction will be better seen when stress diagrams are

under consideration.

In some cases where the axes of the forces cross, some little

care is necessary in choosing a good order in which to take the

lines and a convenient pole, so that the construction lines may

not intersect off the paper.

EXAMPLE. Draw a parallelogram having adjacent sides of 2-76

and 2*53 inches, the included angles being 75 and 105. Letter the

spaces as indicated (i.e. talcing the parallel sides in order and not the

adjacent sides). The forces acting in the sides are given ly the vectors

AB, BC, CD, DE, and are of magnitudes 10'3, 4*2, 3'1 and 5*6

Mogrms. weight. Find the resultant.

Choose a
pole

somewhere near the position indicated (Fig. 170)
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Ibs. wt.

FIG. 169,
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and construct the link

polygon and the axis

of the resultant as

shewn.

In Fig. 170 the lines

from to A and A to

are the arbitrary

vectors. The first line

in the link polygon is

drawn parallel to OA,
and the second is drawn

through the space b

parallel to OB. AE,

shewn dotted, is the

vector of the resultant

force ;
its axis is the

dotted line in the link

polygon.

(9) Take the order in which the forces are combined differently, e.g.

take the adjacent sides in order contraclockwise.

(10) Combine the forces directly without using a pole.

Parallel Forces (Like). Parallel forces are but a particular

case, and the construction for their resultant does not differ in

any respect from that given for the general case.

Parallel forces having the same sense are said to be like;

if they have opposite senses they are unlike.

EXAMPLE. Fig. Ill is a diagram of the four pairs of driving

wheels and the trailers of a modern locomotive. The weights borne ly

the ivheels, taken in order from left to right, are 15, 17, 17, 17 and 13

tons weight, their distances apart are 6', 5' S", 6' and T 6". Find

the axis of the resultant thrust on the rail

Letter the spaces as indicated, and draw the vector and link

polygons. Fig. 171 shews R, a point on the axis of the resultant,

distant 1" to the right of the centre of the third pair of wheels.
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(11) Find the resultant of two weights of 5 and 7 Ibs., distant apart 11",

hung from a horizontal rod.

(12) Find the resultant of six etjual weights (1-23 Ibs. each) hung from a

horizontal rod at distances, from left to right, of 1*7, 1'04, 1*83, 2 '02, 0'97

inches apart.

(13) Three men pull at parallel ropes attached to a block in a horizontal

plane with forces 51 '7, 65*2 and 55*4 Ibs. weight ; the first two ropes are

2 ft. 8 in. apart; where should the third rope be so that the resultant

pull should be in a line midway between the first two ropes.

(14) Three weights TF15 Tfo, IF- are placed in a line on a table, the

distance apart of W^ and IK, is 2 ft., and of fFa and W:i
3 '2 ft. If IF, =7

Ibs. and IF2= 4 Ibs., find IF* "if the resultant push is to be midway between

JTa and W*

Parallel Forces (Unlike). Should some of the parallel

forces be of opposite sense to the rest, the corresponding vectors

in the vector polygon must be drawn in their proper sense, the

construction is otherwise exactly the same.

EXAMPLE. Five men pull on a yacht which is stuck on a mud bank

by parallel ropes (in the same plane). Find the resultant pull on the

yacht, the distances apart of the ropes in ft. and the magnitudes in Ibs.

weight and senses of the pulls being as given in Fig. 172.

Set off AB= 5'8, BC=*l'l, <7D = 7'9 cms. downwards; and

DE=6'3 and EF=5'5 cms. upwards. The vector sum is AF
and represents the resultant in magnitude, direction arid sense.

Draw the link polygon as before, keeping to the order of the

letters
; finally, P is found as the point of intersection of the first

and last lines of the link polygon and therefore is a point on

the axis (r) of the resultant.

(15) Find the resultant of two parallel forces 10 and - 15 Ibs. weight, the

axes being 3 ft. apart.

(16) Six parallel forces act on a rod ; the magnitudes are 10,
-

15, 8,
-

12,

7 and -20 Ibs. weight at distances 2, 8, 9, 11, 12, 15 inches from one end ;

find the resultant force and where its axis cuts the rod.

(17) PQRS is a square of side 3" ; a force of 15 '3 Ibs. weight acts along
PQ, one of 8*2 Ibs. weight along Qfi, one of 9 '8 Ibs. weight along SJR and
one of 18 -4 Ibs. weight along SP. Find the resultant in magnitude, direction

and sense, and the point where its axis cuts QR.
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(IS) Find the equilibrant of three parallel forces of magnitudes 8,
- 7 and

-2 owts., the distances apart of their axes being 1 and 113 yards.

(19) In a certain locomotive there are four pairs of driving wheels who.se

distances apart are all 5' 8"; the distance between the last "wheel and the
first wheel of a coupled goods truck is 9' 10". The truck has three pairs
of wheels whose distances apart, from front to rear, are 6' 3" and 6'.

;4-o

The thrusts of the wheels taken in order from the leading driving wheel
are 12 tons 10 owts., 14 tons 8 owts,, 12 tons 14 cwts., 9 tons 13 cwts,, 9 tons
12 cwts., 9 tons 15 cwts. and 7 tons 5 cwts. Find the axis of the resultant
thrust on the rails.
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Vector Polygon Closed, Two Forces. When the vector

polygon is closed there is evidently no resultant force, but it does

not follow that the forces are in equilibrium.

EXAMPLE. Draw two parallel lines ab and be 3 indies apart,

and suppose jwees of 10 and 10 Ibs. weight to act in these lines ; go

through the construction for finding the axis of the resultant.

Draw the vector polygon (Fig. 173), AB 10 cms. downwards,

BC=W cms. upwards; it is of course closed, since the starting

and ending points are the same. Choose a pole and draw

OA, OB, 00. Through space a draw K^ parallel to OA\

through b draw P
1
P

Z parallel to OB ; and through c draw Pf^
parallel to CO.

-~~b >0

PIG 173.

The theory of the construction is : in ^"
1
P

1
we suppose two

forces OA, CO differing only in sense
;
OA is combined with AB

to the resultant OB acting along Pt
P

2 ;
then OB is combined with

BC to the resultant OC in P^K^, and we have, finally, CO in K
l
P

l

and -CO in P
2
K2

.

DEFINITION. Two forces which- differ only in position and sense are

catted a couple of forces or shortly a couple.
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The construction on p. 184 shews that the given couple is equi-

valent to the final couple, and, since the pole may be anywhere,
there is an infinite number of couples equivalent to any one couple.

To see the connection between the couples, measure the per-

pendicular distance between the forces. Shew that the product,

force x the perpendicular distance between the couple, is the

same, i.e. shew that AB xp 00 x q where p and #, the distances

between the axes, are called the arms of the couples.

AB .p measures the area of a parallelogram whose opposite

sides are AB and -AB, and is called the momenta! area of

the couple, if account be taken of the sense of the area.

An area is considered positive if its boundary is given a

contraclockwise sense, and negative if the boundary is clockwise.

Taking the sense of the momenta! area as given by the sense

of one of the forces we see that the momenta! area has the same

sense in the two cases.

(20) Use in turn four other poles for the vector polygon, taking at least

one pole on the opposite side of AB to that in Fig. 173. Calculate in

each case the momenta! area of the equivalent couple, and see that it is

equal to AB . p, and of the same sense.

Proof that the construction does give couples of equal

momenta! areas. Produce K-f^ to cut Ic in P
3 ,

and K%P<> to

cut ab in P4
. Then P

1
P

3
P

t
,P4 is a parallelogram, and PjPg

PjP^a are similar to the vector triangle OAB.

The"area of P
1
P

3
P

2
P

4
- PjPg . q = P2

P8
. p ;

or, denoting by Pand P the magnitudes of the forces represented

by AB and AO pF qP,

i.e. the momental areas of the two couples are equal in magni-
tude. A simple inspection of Fig. 173 shews that the senses are

the same.

Unit of Momental Area. This unit has no special name;
if the force be measured in Ibs. weight, and the distance in ft.,
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the momental area would be in Ibs. ft. (Not ft. Ibs. a term

which has a totally different meaning.) The units employed
must always be distinctly stated.

Vector Polygon Closed (General Case). The vector

polygon being closed, the first and the last lines of the link

polygon are of necessity parallel, and the simplest equivalent

set of forces is a couple (except in the special case when the

first and last links are coincident).

EXAMPLE. Draw a dosed vector polygon ABCDEA such that

AB = 2-2", BC=a-82", CD = 2*8", DE=1" and EA = 4" and

BE = 4-1" and CE-3'2".

Draw any line cd (Fig. 174) parallel to CD, and (on the left-hand

side of the paper) ab parallel to AB cutting cd at P. On cd mark

points Q, E and S where PQ = 2-64", PE=4-61" and PS = 5-93".

Through Q, E and S draw be, de and ef parallel to BC, DE and

EF respectively.

Let the vectors represent in magnitude, direction and sense forces

to the scale of 1 cm. to 1 lb.
9
and let the lines drawn through

P, Q, E, S be their axes.

Find the equivalent couple to the forces whose vectors are AB, BO,

CD, BE and EA, and whose axes are given.

Choose some convenient pole within the vector polygon.

Through any point RI
in ab draw P^R parallel to OA, and

13^2 parallel to OB, and proceed as usual with the link polygon
construction until H5 on ef is reached, and R4R5

is parallel to OE.

Finally, draw R
6
R parallel to OA.

The theory of the construction is just as before : in P^E we

suppose two equal and opposite forces OA and AO
; the former

we combine with AB to a resultant OB in J?^2 ; OB is combined

with BO to a resultant OC in RJRZ ;
00 is combined with CD to

a resultant OD in R
3
R4 ; OD is combined with DE to a resultant

OE in R
4
R

6 ; and, finally, OE is combined with EA to a resultant

OA in R
6
R

The given set of forces has thus been replaced by a force AO
or - OA in R^R and AO in R

5R, i.e. by a couple.
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Measure the perpendicular distance between li^R and li-E in

inches, and multiply the result by the number of Ibs. represented

by OA (either graphically or by actual multiplication of numbers).

R S

3-1567
FIG. 174.

o ro Ibs, wt.

The product is the momenta! area of the couple in Ibs. and

inches. Notice that the sense of the couple is contraclockwise

and therefore the
s-ign

of the momenta! area is positive.
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(21) With the same vector polygon and axes, take a new pole Ol outside
the vector polygon and shew that the momenta! area of the couple obtained
is the same in magnitude and sign to that obtained previously.

(22) Draw four lines at distances apart of 0'5, 1 and 1 '5 inches, and
suppose parallel forces of 2 '3, 3 "7,

- I'S and -4 '2 Ibs. weight to act in
them. Go through the process of finding the resultant and shew that the

given set of forces is equivalent to a couple, and find its momental area.

Closed Vector Polygon and Couples. Since the pole

may be taken in any position, OA may have any magnitude and

direction, and J^ may be any point on ab
;
hence the couple

equivalent to the given set of forces may have any position in

the plane and the forces constituting it may have any magnitude
and direction. All the couples found by changing and E

1
are

therefore equivalent, and the connection between the couples is

that they all have the same momental area.

Momental Areas are Vector Quantities, Since a

momental area has no definite position in space, but is fixed

when its magnitude, direction (or aspect of its plane) and sense

are given, momental areas are vector quantities.

For coplanar forces the momental areas are all in one plane,

and hence they are added by adding their magnitudes alge-

braically.

Addition of Momental Areas. EXAMPLE. To find a couple

equivalent to three couples having the same sense.

The magnitudes of the six forces of the three couples are given "by

lines of length 10*7, 8-65 and 12-8 cms. (to a scale of I Mogrm. weight

to an inch) the perpendicular distance between the forces constituting the

couples are 12-5, 10*8 and 6*25 cms. The senses of the couples are all

clockwise.

Mark off along any line on a sheet of squared paper (Fig. 175)

0^ = 12-5, 0J?=10-8, (9(7= 6 -25 cms.,

and on a perpendicular line through

0^ = 10-7, 0^ = 8-65 and 00^ 12-8 cms.

On the former mark off OU= 10 cms.

Draw AA
2 parallel to AJJ, BB2 parallel to BJT, and CC2

parallel to C-JJ, cutting the force axis in A^ B
2 and (7

2
. Add

by the strip method OC
2 + OB2 + OA 2 and scale this with the
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tenth of an inch scale. It is the momenta! area of the resultant

couple in kilogrms.-cms. (viz. -121 approximately).
Proof. A couple may be supposed to occupy any position in

the plane, hence all the couples may be supposed placed so that

one force of each lies along OA
l ,

the other forces will then be

parallel to OAl and pass through A 9 & and C respectively.

Further, a couple may be replaced by any other of equal

momental area, hence the couple of force OA
l
and arm OA

may be replaced by one of force OA
2
and arm 017. Similarly,

the others may be replaced by forces OB2
and OC

2
and arm U.

The construction is simply our old construction (p. 46) for

reducing an area to unit base (in this case 10 unit base).

Finally, we have forces given by OA2 ,
OB

2 and OC
2 along OA^

and parallel forces -of opposite sense through U, and the three

couples have been replaced by one of force given by
OA3+OB2+OC3 and arm OU (10 cms.).
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Should all the couples not have the same sense, the distances

OA
ly
OB

19
... must be set off from with their proper senses and

the corresponding subtraction made by the strip method.

Force.

(23) Couples having positive momenta! areas are -
given by the annexed table; find the resultant couple 23*6

(i) geometrically by reducing each couple to ~
g"

forces distant apart 1

(ii) algebraically by adding the momenta! areas.

10-8

Arm.

2-84

4-65

2-26

1-92

(24) The couple given in the first and last lines of the above table are

negative. Find the resultant couple and its momenta! area in Ib. inches.

Vector ,.and Link Polygons Closed. Refer back to Fig.

174 on p. 187. Imagine Rfjl produced to cut R^R in RG9 then

if ef be supposed moved parallel to itself to cut R^R in J?6 , R^R
would be the same line as R^ and hence the forces OA and AO
would cancel and there would be equilibrium.

EXAMPLE. Parallel forces act in the lines and have magnitudes and

senses as indicated in Fig. 176. To show graphically that the forces

are in equilibrium (approximately).*

Draw the vector polygon starting with the downward forces

BO, CD, DE, then EF and FB upwards (Fig. 176). The upward
force AB is the same as FB. Hence A and F are coincident,

and a and / must be considered the same space. The vector

polygon is closed. Choose a convenient pole.

Draw through the space a P
6
P

4 parallel to OA.

t> P.Pi OB.

c P
X
P

2
00.

d P
2P, OD.

e PS
P

4
OE.

/aline OA.

The construction (if properly done) gives the first and last

lines identical, viz. P
5
P

4
and P

4
P

5
. But in P

5
P
4

acts the force

*
Graphical work will not as a rule give results correct to more than. 3 figures,

the numbers given in the example are correct to 1 in 1200*
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whose vector is AO, and in P
4P5

the force whose vector is - AO.
Two such forces in the same axis must be in equilibrium,, and

therefore the whole set of forces is in equilibrium. The

cancelling of the forces in P
5
P4 is due to the fact that the first

and last lines of the link polygon are coincident, i.e. the link

polygon forms, like the vector polygon, a closed figure.

C-

E-"

+

FIG. 176.

If "both, the vector and the link polygons for a set of forces

are closed, the forces are in equilibrium.

Proof. The general proof of this theorem is seen easily from

the construction when the vector polygon is closed,



192 GRAPHICS.

LetABODEA (Fig. 1 77) he the closed vector polygon for certain

forces. Then if be the pole, the first link for the link polygon
is parallel to OA, and has,

finally, a force whose vector is

AO acting in it. The last link

is also parallel to OA, and has

a force whose vector is -AO
acting in it. These form a

couple (in general), but if the

first and last links coincide,

the forces whose vectors are

AO and OA cancel, and the

whole set must be in equili-

brium.

FIG.

EXPT. IX. Punch four holes in an irregular shaped piece of cardboard,
and suspend it in front of a drawing board, as in Expt. VI., p. 122.

Mark on the card the lines of actions of the forces, and their magnitudes
and senses. Remove the card, and draw the vector and link polygons.
Both will be found closed ; or as nearly closed as one can expect from
the errors incidental to the experiment.

Perform an experiment similar to IX., with five forces.

EXPT. X. Draw a closed four-sided vector polygon on cardboard, the
sides being of such lengths that they represent to scale obtainable

weights. Draw on the card four non-concurrent lines parallel to these.

Fix the card to the drawing board by two pins. Adjust the position of

the pulleys so that the corresponding weights may pull on the card along
these lines. "Remove the pins and see if the card moves.

EXPT. XI. Draw on stiff cardboard a closed four-sided vector polygon
ABQDA (Fig. 178), the sides being of convenient lengths to represent to

scale obtainable weights.
Draw three non-concurrent lines ab, be, cd parallel to the corresponding

vectors. Take a pole inside the vector polygon (say the point of inter-

section of the diagonals).

Mark any point Rl
on ab, and through it draw R^R^ parallel to OA ;

draw ^J^o parallel to OS, and cutting be in J?2 ; draw j??2 7?3 parallel
to 0(7, cutting cd in J?

;{ ; then draw RR parallel to OI>, cutting RI^ in

R4 . Through R4 draw the axis ad parallel to AD.
Then J?.j7?4 cuts ad at Rp and on drawing through 7?4 a line parallel to

OA we come to R
1
R

4 again. Hence the first link R^R4 , in which lies the
force given by AO, coincides with the last link R-R& in which lies the
force given by OA. Hence both the vector and the link polygons are
closed. Fix the card (with the axes of the forces marked on it) on the
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drawing board by two stout drawing pins, and adjust the pulleys so that
the threads (with their proper weights attached) lie over the axes. Remove
the pins, and see that the card doesjiot move.

Devise an experiment for shewing that couples of equal momenta! areas
are equivalent.

PIG. 178.

Expt. X. shews that in general there is not equilibrium when

the vector polygon only is closed.

Expt. XL shews that there is equilibrium when the link and

vector polygons are both closed, and Expt. IX. shews the con-

verse.

T.G. N
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Determination of Reactions.

EXAMPLE. A locomotive has three pairs of driving, one pair of

leading, and one pair of trailing wheels, and is stopping on a short

bridge of 40 ft. span. The centre of the leading wheels is 6' 8" from

one end of the bridge (the left in Fig. 179) and the distance between

the centres of the wheels are, from the leading to the trailing wheels,

8' 9", T, T 9" and 8' 3". The load each pair of wheels carries is, in

the same order, 9 torn, 17 tons 13 cwts., 18 tons 4 cwts., 18 tons

4 cwts. and 1 1 tons 9 cwts. Determine the reactions of the supports

(supposed vertical).

'4-P

Draw the position diagram (Fig. 179) to scale, say 1 em. to 20

inches, with the reaction and load lines, and letter the spaces

o, a, bj c, d, e, f, o referring to the spaces outside the reaction

lines. Draw next the load vectors, say to the scale 0-1 inch

to 1 ton, so that AB is of length 0*9", BC of length 1-765 inches

(i.e. nearly 1'77 inches), etc. Choose some convenient pole P and

draw through the space a a line parallel to PA cutting the

reaction line oa in J^; through, the space b draw a link parallel to

PB, and so on to the link through the space / parallel to PF cut-

ting the reaction line fo in
2

. If the reactions in oa and of to

maintain equilibrium had been known, the first line of the link

polygon would have been through El
and the last through R^
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and these would have "been coincident and therefore would have

been the line R^E.2 itself.

Hence join R^R^ i.e. close the link polygon, and through P
draw a line parallel to this closing line cutting the load vectors

in 0\ then FO is the reaction in fa and OA that in oa, and these

are the forces necessary to maintain equilibrium.

Three cases have now been considered :

(i)
If a set of forces acts on a body, arid the vector polygon

is not closed, there is a resultant force whose vector is the sum

of the given vectors and whose line of action is determined by

the link polygon.

(ii)
If the forces have a closed vector polygon they are (in

general) equivalent to a couple whose momenta! area can be

found from the link polygon.

(iii)
If the forces have both the vector and link polygons

closed, the body is in equilibrium.

Incidentally (ii)
shewed that all couples which have the same

moniental area are equivalent.

The third case enables an unknown reaction (or reactions)

which keeps a body in equilibrium when under the action of

known forces to be found.

(25) A horizontal beam 17 ft. long is loaded with weights distributed as

in the Table. The beam being supported on knife edges* at its ends, to

find the reaction of these knife edges (neglecting the weight of the beam

itself).

(26) A horizontal beam is supported on knife edges at its ends ; the

length of the beam is 60 ft. and at distances 7, 20, 25, 32, 40 and 49 ft.

from the left-hand end are hung weights of 3, 10, 8, 7, 12 and 6 cwts. ;

find the reactions of the supports.

(27) A beam loaded as in Ex. 26 is supported at the left end and at a

point distant 36 ft. from it ; find the reactions due to the loads.

*The knife edge, shaped like As
te simply to ensure that the end is f eelr

supported at one point only or (taking into account the breadth ot the beam)

on a line perpendicular to the length of the beam.
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(C3) The beam, loaded as before, is freely supported at a distance of

30 ft. from the left end; can it be supported in equilibrium at the left

end, and what is the reaction (given by the polygons) there ?

(29) The centre lines of the wheels of a locomotive and tender are from
the leading wheel backwards 12', 9', 10' 3 -25", 6' 10-5" and 6' 1O5" apart ;

the loads on the wheels are 20 tons 14 owts., 19 tons 11 cwts., 19 tons

11 cwts., 14 tons 5 cwts., 14 tons a cwts. and 14 tons 8 '5 cwts. The engine
and tender are stopping on a bridge of 60 ft. span and the leading wheel
is 7 ft. from one support of the bridge; find the reactions (supposed
vertical) of the supports of the bridge.

Non-Parallel Eeactions.

EXAMPLE. A learn is pin-jointed to a supporting wall. Its

length is 25 feet and it is supported at the other end by a chain of

length 37 ft. attached to a watt hook 21 ft. vertically above the joint,

heights of 54, 58*5, and 45 Ibs. are hung from it at points distant

(along the beam) 7, 12, and 20 ft. from the pin. Find the tension of

the chain and the reaction of the pin.

Draw first to scale the position of hook, pin-joint and chain

^ Xand rZ(Fig. 180).

Then draw the axes ab, be and cd of the forces; then the vectors

of the forces AB, BO, CD acting in ab, be, cd, and, finally, the

link polygon corresponding to any pole 0. The resultant of the

loads is thus obtained and its axis passes through E.

In Pig. 180 the line ZX gives the vertical. To obtain the conventional

position, the book must be turned round.

Find the point P where this axis cuts the chain ZY. Join

XP, and in the vector polygon draw AE and DE parallel to

XP and PT respectively.

Then DE gives the tension in ZY (why tension and not

compression ?)
and EA the reaction of the hinge.

Since the force whose vector is AD and axis PR is equivalent
to the given three loads, the beam may be supposed to be in

equilibrium under the action of this force, the, tension in the

chain and the reaction at the pin.

These forces must pass through a point, viz. P, and then the

necessary and sufficient condition for their equilibrium is that

their vector polygon should be closed. Hence DE must give the

force along YZ, and EA that along XP.
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Find the vertical reactions through X and F that would be in

equilibrium with the given loads in al, be and cd. Project E
horizontally to E

l
on AB and see that DE

3
and B

a
A give these

vertical reactions.

FIG. 180.

(SO) Produce the first and last links to cut XP and PY, and hence shew
that the closing line of the link polygon is parallel to OE. Why is this

necessarily so ? "
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(31) A horizontal beam 45 ft. long is pin-jointed to a supporting pier at

Due end (the left), and rests on a smooth horizontal roller at the other,

forces of 12, 8, 20 and 15 cwts. act downwards at points distant 6, 10, 28,

and 32 ft. from the pinned end and make angles of 30, 45, 90 and 60

with the beam line from left to right. Find the reactions at the ends.

NOTE. The object of the roller is to make the direction of one reaction

known, viz. vertical ; if neither reaction be known in direction the

problem is indeterminate.

First draw the line of the beam and the axes of the known forces, add
the vectors of the forces, draw the link polygon and obtain the position
of the resultant force of the given set. Mark the point of intersection of

the vertical reaction and this resultant, and join this point to the pin.
The last line gives the direction of the reaction at the pin. The unknown
reaction may then be found from the vector polygon.

(32) Solve the problem in Ex. 31 by projecting the vectors on to a

vertical line and drawing the link polygon for these vertical components.
Determine thus the reaction of the roller and the vertical component of

the pin reaction. The latter combined with the reversed horizontal com-

ponent of the vectors gives the pin reaction.

(33) A swing gate is hinged at A (Fig. 181) to a post and rests against
a smooth iron plate at B. AB= 3 '5 ft., CD = 6 ft. and the gate weighs
200 Ibs. Supposing the weight of the gate to act at the centre of the

rectangle CD, find the reactions at the hinge and plate. The distance

between AB and the gate is 3".

FIG. 181.

(34) A boy of weight 100 Ibs, hangs on the gate at D. Find the total

reactions at A and B

(35) The post AB is not vertical, but inclined at an angle of 15 to the

vertical, so that CD slopes (i) downwards, (ii) upwards. Find the reaction

when the boy is on the gate in the two cases, if AC=BE=9".

(36) In a wall crane ABO the beam BO is loaded at equal distances as

in Fig. 182. Find the tension in the tie rod AG and the reaction at A and
B. (The beam BO and the tie rod AG are pin-jointed at A, B and O.)

(37) AB is a uniform beam hinged at A (Fig. 183) and weighing 1*6 cwts.
It rests on a smooth fixed cylinder D, and a load of 0'7 cwt. is suspended
from R IfAEis horizontal and if A=1Q', AG=T and Z>E= <2f

i find the
reactions at A and O.
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(38) A uniform ladder rests against a smooth vertical wall at an an^b
of 27 with the vertical. The weight of the ladder is l>9 U*. and may "be

supposed to act at its mid-point. Find the reaction of the ground when a
man weighing 12 stones and a boy weighing 7 stones are f and I up the
ladder respectively.

': A

7ft.

15 ft.

0-1 ton 0-21ton 0>363ton 0-4-7Bton 0-53ton

FIG. 182.

E
FIG. 188.

Decomposition of Forces. Any force may be decomposed

along any two given axes if they intersect on the axis of the

force (see p. 151). Any force may be decomposed into two

forces parallel to it, having axes in assigned positions.

Draw any line be (Fig. 184) as the axis of the force, and BO
its vector. Draw two lines parallel to be, viz. ab and ca, on
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opposite sides of be. Choose any pole 0, and draw through any

point P of be, PP% and PP
l parallel to 00 and OB respectively.

Join P^P^ and in the vector polygon draw OA parallel to P-f^
Then BA and AC are the vectors of the required components.

Fia 184.

Proof. At P, BC may be decomposed into two, BO and 00,

acting in PP
l
and PP

2
. At P

2 , 00 may be decomposed into two,

OA in PjPg and AC in ac. At P
I} BO may be decomposed into

two, BA in ab and AO in P-f^ OA and AO in P^P^ cancel, and

we are left with BA in aI and AC in ca.

Shortly put, the construction is that for finding the reaction

in ab and ca which will be in equilibrium with the given force

in be. These reactions will be the same in magnitude but of

opposite sense to the components.

(39) Choose two other poles (one on the side of BG opposite to 0) and
see that the construction gives the same components.

(40) D .compose a force of given axis and vector into two parallel axes,
both axes being on the same side of the force.

(41) Find graphically the components of a force which pass- through
given points, one direction, being fixed.
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EXAMPLE. Find ike components, passing through two gicett points

of a force when one of the components has the least possible value.

FIG. 185.

Let xy (Fig. 185) "be the axis and XY the vector of the force,

and suppose A and B to be the given points. Join any point
P on xy to A and B.

Through X and Y draw XO and YO parallel to PA and PB

respectively. Through 0, the point of intersection, draw OZ

parallel to AB, cutting XY in Z.

If the component through B is to be a minimum, draw YT

perpendicular to OZ and join XT'; then XT and TY are the

required components.

Proof. To find components through A and B parallel to xy,

we may, instead of taking any pole for the vector polygon,

first draw from any point P in
sri/, PA and PB, and then find

the corresponding pole 0. The closing line of the link polygon
is AB

;
and hence, on drawing OZ parallel to AB, we get the

reactions YZ and ZX at B and A in equilibrium with XY in xy.

These reactions must evidently be independent of the pole

used to find them, Le. Z is a fixed point on XY. If any other
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point P on xy "be chosen, then the new pole must be on 20, for

Z is fixed, and ZO is a fixed direction parallel to AB,

Further, XO and YO are two components of XY through

A and B, hence the smallest component through B will be such

that it is perpendicular to ZO.

Note that since ZO is a fixed line, a simple construction will

give the components through A and B which have any desired

relation, say that of equality, or the B component twice the

A component, etc.

(42) Solve graphically the example on p. 201 when A and B are on the

same side of xy.

(43) Find components of a given force such that one has an assigned
direction and the other is to be as small as possible.

(44) Decompose a given force into two forces equal in magnitude passing
forces through points A and B when A and B are (i) on the same,

(ii) on opposite sides of the given force. (See also Chap. IV., p. 154.)
When does the construction fail ?

(45) Decompose a given force into two passing through two given points,
the magnitudes of the forces having the ratio of a to b.

(46) A man carries a pole across his shoulder at an angle of 25 with the

horizontal. The pole is of length 15 ft., and the distance of the mid-point
of the pole from his shoulder is 5 ft. He keeps the pole in position by
hard pressure on the front end. In what direction should this pressure be

applied so that it may be as small as possible? What direction would
make the pressure on his shoulder as small as possible? (Assume that

there is sufficient friction at the shoulder to prevent the pole sliding.)
Find the pressures in the two cases.

Any force may be decomposed into three forces lying in non-

concurrent and non-parallel axes.

Draw any straight line ab (Fig. 186) for the axis and a parallel

line AB for the vector of a force. Draw any three non-con-

current lines be, cd and da forming a triangle XYZ.

Suppose ab cuts XY in P. Then, at P, AB may be decomposed
into two, AC and CB, acting along PZ and PY. At Z, AC may
be decomposed into two, AD and DC, acting along XZ and YZ.

Hence, AB has components AD, DC and CB having ad, dc and

cb as axes.

Evidently unless ab is parallel to one of the sides of the triangle

XYZ, we may take as the starting point for the decomposition
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any of the three points in which ab intersects the sides. If the

decomposition is unique, the components determined in the three

ways should be the same.

The proof that the decomposition is unique will be found in

the Chapter on Moments (p. 297).

FIG. 186.

(47) Start the decomposition at (i) Q 3 (ii) R, the points of intersection of

ab with YZ and XZ, and shew that the same components are obtained.

(48) Draw any four non-concurrent lines. Assign any value to the force

in one, and find the forces in the other three so that the four forces may be
in equilibrium.
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(49) A weight of 10

tons is suspended from
a crane ABGD (Fig. 187)
at A. Find the com-

ponents along BG, CD
and DB ; find also the
vertical components of

If through B and O,
and shew that the com-

ponent along CD is the
same as that found by
the first method.

Also, resolve the B
component along BG
and BD and compare
with previous results.

FIG. 187.

(50) AB, BO, CA (Fig. 188) are three light rods pin-jointed together and

supported at B and G in a horizontal line. Find graphically the com-

ponents along the rods due to a load of 1 cwt. at D. Find also the

loads at A and C equivalent to

that at D, and hence find the

components along the rods. Com-

pare the two sets of results.

73-7"
FIG. 188.

(51) ABO (Fig. 189) Is a wall

crane, find the components in AB,
BC and OA due to a load of 1 ton

applied at D ; (i) by resolving W
along AD and CD and (ii) by
finding the parallel components
of W through A and B. D 4-7

W
FIG. 189.



THE TOGGLE JOINT. 205

(52) In Exercise 51 decompose the load at D into equivalent loads
at A and B and find the components of the latter along BO and JJA.

Compare with the previous results.

A

*(53) AB and AC (Kg. 190) are rafters of
a roof; find the total thrust on the walls
due to loads of 10 tons at the mid-point of
each rafter. (Resolve the load at M in
directions MB arid MC, and at G resolve
the latter along CB and GA. The com-

ponent along GB gives the outward thrust.

FIG. 190.

EXAMPLE. (The Toggle Joint.) AB is a beam hinged at A to

fixed masonry. CD is a bar pin-jointed to C (in AB) and to D.

D is constrained to move along AD ly means of smooth guides. A
force P is applied at B perpendicular to AB, and a force Q at D along

AD so that there is equilibrium. AB = 3-58", BC = 1 -64", CD = 2-7"

and DA = 3 *9". P = 10 Ibs. weight. Find the components of P along

AC, CD and DA.

FIG. 191.

The beam AB (Fig. 191) is in equilibrium under P, a force

along CD, and the reaction at A. These must be concurrent;

find the point of concurrence, and hence, in the vector polygon,

find the reaction at A and shew that this reaction is the eqtii-

librant of the forces at A found by resolving P along AC and

AD and CD.

Find the value of Q and the reaction of the guides on the

slide at D.
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(54) Decompose P into parallel forces at O and A. Find the components
of the former along CD and CA, and the resultant of the latter and the

force along CA. Compare with the former result.

(55) AB (Fig. 192) represents an open French window (plan or trace of

on a horizontal plane). It is kept in position by a bar CD, freely jointed

at G. The bar has a number of holes in it, any one of which can be fitted

over a peg at D so that the angle BAD may have any value from to 120.

The wind is blowing parallel to

AD and would exert a force of

30 Ibs. weight if AB were perpen-
dicular to AD. Suppose the re-

sultant force of the wind on the

door to act at the mid-point M of

AB.
Find the pull in CD, given that

AB=2'T> AD = 1' 3-5"=AM, and
BC-l ft. when

(a) CAD= 20,

(6) CAD= 45,

(c) CAD^ 90,

(d) CAD= 120.

GENERAL ANALYTICAL THEORY OF THE COMPOSITION
OF COPLANAR FORCES.

^Theorem. Any force is

equivalent to a force through

any assigned point together

with a couple, if the forces

have the same vector.

If a (Fig. 193) is the axis

and a the vector of the given

force, and any assigned

point, draw through the

axis a
l parallel to a.

Then we may suppose at

in &
x

forces a and a,

i.e. at we have a force a

which together with the couple a in a and - a in a^ are equivalent

to a in a. The couple is called the couple of transference.

Fia 193*
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^Theorem. Any set of coplanar forces is equivalent to a

resultant force tlarougli some assigned point and a couple.

By the previous theorem each force of the set may be replaced

by an equal vectored force through and a couple. The forces,

being now concurrent, have in general a resultant found by the

vector polygon. The momental areas of the couples may be

added to the momental area of a resultant couple, i.e. the couples
are equivalent to a resultant couple.

^Theorem. Any set of forces reduces to

(i) a single resultant, or

(ii) a couple, or

(iii) is in equiHbnum.

Since a couple may have any position in its plane and may
have its forces of any magnitude, provided the momental area is

constant, we may replace the

resultant couple of the last

theorem by an equivalent couple

having its forces a- (Fig. 194)

and -
cr, where o- is the resultant

of the concurrent forces at 0.

If the arm of the couple is p,

and S is the magnitude cr, then

M being the known momental

area.

If, now, the couple be sup- PIG. 194

posed placed so that its force

- cr passes through and is in a line with the resultant force cr

there, then cr and - or cancel, and we have a single resultant

cr at a distance p from 0.

Should the resultant of the concurrent forces at be zero, the

set of forces reduces to the couple of momental area M.

If M is also zero, there is equilibrium.



208 GRAPHICS.

These theorems are only what we had before as direct

deductions from the geometrical constructions. The actual

determination of the resultant, or the resultant couple, should

be effected by the link polygon construction.

MISCELLANEOUS EXAMPLES. V.

1. Draw a triangle AEG, having an angle of 45 at B and one of 30 at

0. Let forces of 9, 7 and 4 units act from A to B, B to and to A
respectively. By construction or otherwise, find their resultant com-

pletely* and shew it in the same diagram as the triangle.F J
(B. of E., Stage II.)

2. Draw a square ABOD and a diagonal AC; forces of 1, 2, 3, 4 units

act from A to B, from B to C, from to D and D to A respectively ;

find the sum of their components along AC, and also the sum of their

components at right angles to A C.
'

(B. of E. , Stage II. )

3. Draw a triangle ABC, and take D and E the middle points of BC
and *CA respectively ; if forces P, Q, R act from A to B, A to C and

to JS respectively, and are proportional to the lengths of the sides along
which they act. shew that their resultant acts from 1$ to Z>, and is equal
to2P. (B. of E., Stage II.)

4. Define a couple. Explain how to find the resultant of two forces

which form a couple and a third force.

Draw a square ABCD; a force of eight units acts from A to B and
C to D respectively; find the resultant. Also find what the resultant

would be if the first force acted from D to A. (B. of E., Stage II.)

5. A horizontal beam 20 ft. long is supported at its ends, loads of

3, 2," 5 and 4 cwts. act at distances 3, 7, 12, 15 ft. from one end. Find,
bv means of a funicular (link) polygon, the pressures on the two ends.

(Inter. Sci. (Eng.), 1904.)

6. Find the resultant of two parallel forces by a graphical construction.

Extend this to find the resultant of three or four parallel forces.

(Inter. Sci., 1902.)

7. Find the resultant of three parallel like forces of 2, 4 and 3 Ibs.

weight acting through points in a straight line, distant 1, 3 and 7 ft.

from an origin in that line. (Inter. Sci. (Eng.), 1905.)

8. Drawa triangle ABC, such that AB^lQcms., JSa=14and OA = 12 ;

take B' in AC, such that AB' = 3; and A' in BC, such that BA' = 8. A
force of 20 Ibs. weight acts in B'A'; shew how to replace this force by three

forces acting along the sides of a triangle by simple drawing, without using

any of the numerical data concerning lengths. (Inter. Sci. (Eng.), 1906.)

9. ABC is a right-angled triangle, AB12 and BC=5. Forces of

52, 24 and 27 Ibs. weight act from A to 0, B to A and C to B, Find the

resultant of the forces and exhibit its line of action. (Inter. Sci., 1900.)
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10. ABO is an equilateral triangle, P is the foot of the perpendicular
from C on AB. Find in magnitude and line of action the resultant of

forces : 10 from A to JB, 8 from B to C, 12 from A to C and 6 from G to P.

(B.Sc., 1005.)

11. A locomotive on a bridge of 40 ft. span has the centre line of its

leading wheels at a distance of 11 ft. from one abutment, the distance
between the centre lines of the wheels are, from the leading wheel back-
wards towards the far abutment, 9' 10", 6' 8" and 6' 8". Find the pres-
sures on the abutments if the loads on the wheels be 15 tons 10 cwts.,
17 tons 10 cwts., 17 tons 10 cwts. and 16 tons 10 cwts.

12. State and prove the rule for finding the resultant of two unlike

parallel forces.

Given a force of six units, shew how to resolve it into two unlike parallel
forces, of which the greater is ten units ; and explain whether the resolu-

tion can be made in more ways than one. (B. of E., II., 1904.)

13. Let a horizontal line AC represent a rod 12 ft. long, resting on two
fixed points A and B, 10 ft. apart. Each foot of the length of the rod

weighs 12 ozs. ;
a weight of 16 Ibs. is hung from G, Shew that the rod will

stay at rest, and find the pressure at each of the points of support.
(B. of E., L, 1904.)

14. ABC is an equilateral triangle, and forces P, P, and 2P act from
B to C, C to A and A to B respectively. Find their resultant, and shew,
in a carefully-drawn diagram, its direction and line of action.

(B. of E., L, 1903.)

15. Forces P, Q and &R act in order along the sides BG, CA, AB of a

given triangle. If P, Q, P are proportional to the sides respectively, find

completely the force which would balance the three given forces, and shew

your result in a carefully-drawn diagram, (B. of E., II., 1907.)
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STRESS DIAGRAMS.

IN Chapter IY. the stresses in simple frames, due to loads applied

at the joints, were considered. The present chapter is a con-

tinuation of the subject. It is shewn that the vector polygon
for the forces acting at a point is the stress diagram for the

bars meeting there, and that the space notation enables us to

draw in one figure the stress diagram lines giving the stresses

in all the bars of more complicated frames.

Three Bar Equilateral Frame.
EXAMPLE. Three bars, each 3 ft. long,, are pin-jointed together to

form an equilateral triangle. The frame is suspended by one vertex,

and 5*5 Ib. weights are hung from the others ; to determine the stresses in

the bars dice to the weights.

Draw the frame PQR (Fig. 195) to scale (say 1" to 1') and letter

the spaces as indicated.

Draw the vectors of the two external forces at R and Q (scale

say 2 cms. to 1 Ib. weight); then, without drawing the link

polygon, notice that the upward reaction CA at P (
= 11 Ibs.

weight) will keep the frame in equilibrium.

Draw AD and ED parallel to ad, Id, then CD is parallel to cd-,

and AD, DJB, and DC measure the magnitudes of the stresses in

the corresponding bars. Scale these lines and tabulate the

stresses.

At the point P of the frame act three forces, viz. the reaction

OA vertically upwards, and the pushes or pulls of the bars ad and
cd. Hence CADO is the vector polygon for P. The sense of

the force at P due to cd is given by DO, and hence the bar must
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FIG, 195.

pull at P. Similarly,

the sense of the force

In ad is given by AD,
and hence this bar

also pulls at P.

Now consider the

equilibrium of R.

The forces there are

the weight of 5*5 Ibs.

(AB) downwards and

the forces due to ad

and bd. The vector

polygon Is ABDA,
and, since AB is

downwards, the force

in Id Is given by BD
and pushes at R;

similarly, DA pulls at R.

Thus, in the vector polygon the

line AU gives the pull at P or at

R according to the sense It is taken

in. This is as it should be, for the

bar ad Is In equilibrium and must

be pulled with equal and opposite

forces at its ends. The line AD
thus gives the stress in ad, and the

figure ABCD is called now, not

the vector polygon, but the stress

"diagram of the frame PQR and the

forces acting on it.

Finally, consider the point Q. It

is in equilibrium under BO, and the

forces along cd and db ; the corre-

sponding lines in the stress diagram,

have been already drawn, and it
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only remains to determine the senses of the forces at Q. The

vector polygon for Q is BGDB, hence a force in cd (CD) pulls at

Q whilst DB pushes. Hence bd pushes at its two ends, Q and R,

and is therefore in compression, whilst PQ and RP pull at both

ends, and are therefore in tension. As vectors, therefore, the

lines AD, DC and DB should have double arrow heads
; this

may easily lead to confusion, and it is, therefore, better to avoid

them altogether and to indicate in the frame those bars which

are in compression by drawing fine lines parallel to them. Mark

the bar hi as being in compression.

Change of Shape in Frames under Forces. The simple

triangular frame, just considered, was treated as a rigid body ;

this was justifiable, since, although some bars may elongate a

little and others contract, yet the bars will always adjust their

positions to form a closed triangle, and when once the deformation

has taken place, the parts retain their relative positions unaltered.

That is, for the given forces the frame after the elongations, etc.,

have taken place is like a rigid body. In nearly all prac-

tical cases the elongations, etc., are so small that the frame may,

so far as change of form is concerned, be regarded as unaltered.

Only frames which have just a sufficient number of bars or

strings to keep them rigid under the given applied forces will

be considered, and of these only simple cases which can be solved

directly by vector polygons will be taken.

The weight of the bars will be neglected unless expressly

included in the problem.

EXAMPLE. Three bars, PQ, QE and RP, of lengths 4, 7, and

6 ft., are freely pin-jointed together to form a triangular frame and

the frame is suspended ly P. Weights of 4 and 6 Ibs. are

suspended from Q and E. Draw the frame in its position of equi-

librium and find the stresses in the bars.

The resultant of the weights 4 and 6 at Q and E (Fig. 196) must

OS
act through a point S such that ^L = f ; hence, by construction,

find the position of S in QE,
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FIG. 100.

Then, if PS be regarded as vertical, the angles the sides make

with the vertical or horizontal can be measured. (If the con-

ventional position be desired, the length PS must be set off

vertically and then the triangle drawn in.)
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Letter the spaces as in Fig. 196 and draw the vector polygon

ABD for Q.

Draw next the vectors for the forces at E ;
the vector triangle

is DEO where DC is parallel to dc. ADO is then the vector

triangle for the point P. See that GA gives 10 Ibs,, the reaction

at P, and that the senses of the forces at the joints are consistent

with one another.

Measure the stresses and see which hars are in compression

and which in tension, and tabulate the results. Measure the

angle QR makes with the vertical.

(1) Determine the position of QR (Fig. 196) and the stresses in the

bars if the weights at Q and JR care 7 and 4 Ibs.

(2) An equilateral framework PQR of three bars is suspended by means
of two vertical strings attached to P and Q so that PQ is horizontal. A
load of 17 Ibs. is suspended from R. Find the stresses in the bars of the

frame, stating which are in compression and which in tension.

(3) The equilateral frame of Ex. 2 being suspended from a hook at P
and a vertical string at Q, so that PQ makes 15 with the horizontal,

determine, by the link polygon, the reaction at P, the tension in the

string, and find the stresses in the bars. Determine also the reactions at

P and Q from the stress diagram.

Braced Quadrilateral Frame.

EXAMPLE. Draw to scale the frame PQRS (Fig. 197), supported

at Q and E in the same horizontal line, given that PQ = 1 *5, PS = 2,

QR 3-7 metres, and PS is parallel to QR and PQR = 60. A load of

121 Ibs. is placed at P
;
determine the stresses in the bars due to this load.

Letter the spaces as indicated and draw in the stress diagram
AB l^'l cms.; then ED and AD are parallel to Id and ad.

ABDA is the vector polygon for P and gives the stresses in

the bars Id and ad. BD evidently pushes at P, so that, since

Id is in equilibrium, it must push at both ends and be in com-

pression. Similarly, DA pushes at P, and hence ad must also

be in compression. At S we know the force AD (pushing at $),

hence we can find the stresses in dc, and ca which will give

equilibrium. Draw D(7and AC, parallel to dc and ae, intersecting
at Oy then ADCA is the vector polygon for S, in which we know
the sense AD of the force in od at S.
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Hence, the force DC

pulls, and the force OA

pushes at S, and the bars

do and ca are consequently

in tension and compression

respectively.

At Rj AC pushes and

the forces in oc and ao

must, therefore, be given

by AGOA where CO is

parallel to co.

Hence, 00 pulls at H,

and OA pushes upwards,

so that co must be in

tension, and OA must be

the reaction at R.

Finally, at Q we have

00 pulling, CD pulling,

DB pushing and the reac-

tion, which must therefore,

be BO.

Notice that given the reaction B0
5
the senses of all the other

FIG. 197.
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forces necessary to produce equilibrium are consistent with the

senses previously obtained.

Scale all the lines in the stress diagram and tabulate the

stresses.

In the frame diagram mark those bars which are in compression.

The reactions BO and OA have been obtained, without drawing
the link polygon, on the supposition that there is equilibrium.

(4) Find the reactions in ob and oa due to the load in db by the link

polygon, i.e. find the components of AB in two parallel lines through
Q and 7?, and compare with the previous results.

Cantilever.

EXAMPLE. PQRST (Fig. 198) represents a cantilever pin-jointed

to a vertical watt at R and S. RS = 5, ST = 2*25, SP = 8-25,

PQ = 5-88, QE=4-4/. The loads at T and P are 2300 and 3400

llx. weight respectively. Find the stresses in the bars.

Draw the load vectors AB and BC. Then, since there is

equilibrium at P, draw BD and CD parallel to bd and cd. BGDB

gives r,d in tension and db in compression.

For Q, draw CE and DE parallel to ce and de. Then, from

CDEC, we know that DC gives the sense of the force in dc on Q,

and hence DCED is the correct sense of the diagram, and ce is

in tension and ed is in compression.

Finally, for T draw AF and EF parallel to af and ef. We
may determine the senses of the forces at T either from knowing
that in ab or that in ed. The vector polygon is ABDEFA in the

sense given by the letters, and hence ef is in tension and fa in

compression.

Indicate on the frame figure the bars in compression, measure

the stresses from the stress diagram and tabulate the results.
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(5) Four equal bars are pin-jointed together to form a square and a
fifth bar is introduced diagonally. The frame is suspended by a vertex PO
that the diagonal bar is horizontal, and the three remaining* vertices are
loaded with 7 Ibs. weight each. Find the stresses in all the bars.

(6) As in previous exercise only the diagonal bar is vertical

Q

1000 o 1000 2000 3000 4000 5000

FIG. 108.

*(7) If the weights at the two vertices, where three bars meet, be 4 and
8 Ibs., and a third vertex sustain 7 Ibs., find the position of equilibrium
when the frame is suspended by the remaining vertex. Find also the
stresses in the bars. (Draw the frame with the diagonal bar, find the

M.C. of the three masses. Join the M.c. to the fourth vertex, this line

relatively to the frame is the vertical line. The formal proof for the

Centre of Parallel Forces is on p. 298.)

*(8) Five bars of lengths 1 "2, 1 2, 1 '6, 1 *6 and 2 ft. respectively when
jointed together form a rectangle PQIZS and one diagonal QS. The frame
is suspended by P and loaded at Q, J?, S with weights of 7 }

5 and 11 Ibs,

Find the position of the frame and the stresses in the bars.
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(9) Three rods AB, BO, OA of lengths 7, 6 "2 and 5 '8 ft respectively arc

pin-jointed together. A is fixed arid rests on a smooth horizontal

plane so that A is 2 ft. above B, and a load of 70 Ibs. weight is hung
from C. Determine the stresses in the bars and the reactions of the

supports on -4 and B.

(10) The frame PQR8 (Fig. 199) is

loaded at Q and R with 100 Ibs. weights
and supported at P and 8. If Ptf= 15,

QR= 8 and PQ = 8R=C)'Q, find the

stresses in the bars.

FIG. 199.

Bridge Girder.

EXAMPLE. PQRSTUV (Fig. 200) represents a short N girder,

the bars forming right-angled isosceles triangles. It is freely supported

at P and T and loaded at each of the joints Q, R, and S with 1-5

tons. Determine the reactions at P and T and the stresses in the bars.

The loading being symmetrical, the reactions at P and T must

each 1)e equal to "2-25 tons and there is no occasion to draw the

link polygon.

Letter the spaces as indicated and draw the vectors AB, BO
and CD of the loads; then, bisecting AD at 0, DO and OA
must be the reactions at T and P. At P the known force OA
acts and the forces in aj and oj ; these being in equilibrium
draw AJ parallel to aj and OJ parallel to oj

-

3
then OAJ is the

vector triangle for P. The force AJ pushes P, and JO pulls,

hence aj Is in compression and oj in tension.

At Q there are three bars with unknown forces, and as

resolution into three concurrent straight lines is not unique, we
must try some other point U. At U one known force OJ acts

and two unknowns
; draw, then, in the stress diagram 01 parallel

to oi and JI parallel to ji then OJI gives the stresses in the bars

meeting at U. Also OJ gives the sense of the force at U along

oj ; JI pushes at U and 10 pulls, hence ji is in compression and
to is in tension,

Now return to Q, where there are only two unknowns remain-

ing, and draw the vector polygon ABHIJA (most of it is already
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drawn, IH and BE being the only two lines necessary). See

from the sense of this polygon that bh and ji must be in

compression and ih in tension.

B ,, -

H M-

FIG. 200.

Draw the rest of the stress diagram, noticing, from the

symmetry of the loads and the frame, that the stress diagram
must also be symmetrical. In consequence of this symmetry the

points I and F of the stress diagram are coincident.
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However many bars the frame contains, the method of solution

always follows the same lines. The stress diagram is started by

drawing the vector triangle for three concurrent forces, of which

one is known and the directions of the other two are given by

bars in the frame. Sometimes this start can be made at once,

but more generally the reactions at the points of support have

first to be determined, either by drawing the link polygon for the

external forces or by taking moments. For the latter method

see Chap. VIII.

Eoof Trass.

EXAMPLE. The frame diagram shewn (Fig. 201) represents a

lowering roof truss supported freely at P and T in a horizontal line ;

PQ-27', QR=19', PU=19-4', RV=11'4' and PT = 63', and the

ingle UPT = 4^. The loads at Q, E and S are 1-5, 2 and 2-5

tons; determine the reactions at the supports and the stresses in

ffie barn.

Draw the frame to scale. Set off the vectors of the loads

AB, BC, CD, and number the spaces of the frame as indicated.

Choose any pole O
l
and through Ql any point on the vertical

QQ19
draw Q-^P^ parallel to Q^A^ cutting the reaction line in

Pr Then draw Q^ parallel to 0^, JR
1
8

1 parallel to
0-f!, and

8\Ti parallel to 0-J) cutting the reaction line at T^ Join P-jT^

thus closing the link polygon, and draw 0-fl in the vector poly-

gon parallel to P^. The reactions at P and T are, therefore,

OA and DO.

Now draw the stress diagram, starting with the vector

triangle for the forces at P. The vectors are OA, AJ and JO,

shewing that the bar aj is in compression and jo in tension.

At the point Q are three unknown forces
;
and since the known

forces in aj arid ah cannot be decomposed in three directions,

nothing can be done there at present But at U we have only
two unknowns

; hence draw 01 parallel to oi and JI parallel to

ji to determine the point /; and the stresses in oi and ij are

found. The point Q may now be attacked, for there are now

only two unknown forces there.
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FIG. 201.

Complete the stress diagram, mark tlie bars which are in

compression, scale the lines in the stress diagrams and make a

table of the stresses as before.
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(11) The frame PQRST (Fig.

202) is loaded at T and S with

1 ton weights and supported at

P and K. Find the stresses In

the bars if

and

(12) PQRST (Fig 203) is a short Warren girder consisting of three

equilateral triangles." A load of 4 tons is suspended from R and the

girder is supported at Q and S. Find all the stresses.

FIG. 203. FIG. 204.

(13) PQRST (Fig. 204) is a short Warren girder of three equilateral

triangles supported at P and S, and with loads of 2 tons at Q and JR.

Find the reactions of P and 89 and the stresses in the bars.

Fia. 205.

(14) The figure PQKST (Fig. 205} represents a king post (roof) truss

supposed freely jointed at all the points and supported at P and
<J>.

If
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PQ = 25 ft. and &P<? = 30
,
find the stresses in all the bars when the loads

at T, $, /i, are 3, 4 and 3 tons respectively.

(15) Find the stresses in the bars of the roof truss shewn in Fig. 206
when loaded at J?, S, and T with 3, 4 and 2 tons respectively.

PT=FS=S'5.

P<2=29-5.
PU=lO-8.

17=7-8.

FIG. 206.

(16) Fig. 207 represents a queen post (roof) truss, supposed freely

jointed at all points, supported at P and /S
r

,
and loaded at T,

r
, F, W and

X t
with 2, 2, 3, 2 and 2 tons. Find the stresses in all the bars if

PX=X W= Wl r
and VPS =30.

Q

FIG. 207.

(The figure shewn is not rigid for anything but symmetrical loads ; in

practice the stiffness of the joints prevents distortion when the loading is

not symmetrical. )
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(17) PQRSTU (Fig. 208)

represents c^ non-symmetrical
king post truss loaded at Q,

#, T, U with 1, 2, 2, 1 tons

weight. Find, by the link

polygon, the reactions at the

points of support P and J?,

and then determine the stresses

in the bars ; given that PJR= 19,

7?Z'=16-0, /
>T f

/?= 90
J

, and QU
parallel to RT, QS parallel to

PT.

FIG. 209.

(18) Fig. 200 represents a short N girder consisting of right-angled
isosceles triangles. Find the stresses in the Lars when supported at

P and r

l\ and loaded at Q t JR, $ with 2, 3 and 4 tons weight.

FIG, 210.

(19) PQRSTUV (Fig. 210) represents a short Warren girder of five

equilateral triangles, loaded at Q and B with 7 and 10 tons. Find the
reactions at the points of support P and $, and the stresses in all the bars.
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(20) Find the stresses in the "bars

of the cantilever in Fig. 211, loaded
at Q and R with 2 and 3 tons, and
supported by a vertical wall at P
and U; given

PJ?=8-8ft.

(21) The queen post truss of Ex.
16, with a diagonal bar WR, is

loaded at T, U, r, W and X with
2, 3, 3, 1-5 and 1-5 tons; find all

the stresses.

FIG. an.

Weight of Bars in a Framework. In many engineering

structures, the weight of the framework is very small compared
with the loads it has to carry, and In such cases no appreciable

error is made by neglecting the weights of the various parts.

If the weights of the bars are not small in comparison with

the loads, we shall suppose half the total weight of each bar

concentrated at its ends.

Every particle of a body is acted on by a vertical downward

force ;
the resultant of all these parallel forces is a parallel force

through the M.c. of the body equal to trhe whole weight (see

Chap. VIII.
, p. 307). This resultant is merely the single force

which would produce the same motion as the actual forces on

the particles, and it by no means follows that the other effects

produced by it would be the same, e.g. as in bending the body
or in producing internal stresses. Consider a vertical uniform

column
;
the resultant force is a force through the mid-point of

the column equal to the total weight. This force, if it acted at

the M.C., would not produce any stress at all in the upper half,

and a uniform stress for all sections in the lower half, whereas
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the actual stress must vary gradually from zero at the top to

the total weight at the bottom. The average value of the

corapressive stress for the whole column would be the same in

the two cases, viz. half the total weight.

The simplest way to suppose this average but constant stress

produced would be to consider half the total weight concentrated

at the top and half at the bottom, giving a constant stress

measured by half the total weight and a pressure on the

supporting ground equal to the total weight.

This is the approximation we shall adopt : by the stress in a

bar of a framework, clue to its own weight, we shall mean the

average stress, produced by a load of half the total weight of

the bar concentrated at each end.

When the bar is a sloping one, the weights of the various

particles tend to bend the bar, and thus set up additional stresses.

Except in Ch. IX. on Bending Moments, the bars of the frame

will be supposed straight, and these additional stresses neglected.

A similar supposition will be made as to the effects produced

by other forces acting on the bars at points other than the ends,

viz. they will be supposed replaced by parallel and equivalent

forces at the ends. Such suppositions have the additional

advantage of making all the forces act at the joints of the

framework, where they may be combined directly by the vector

law of addition.

(22) Find the average stresses due to the weights of the bars set up in

the Warren girder of Ex. 13, each bar weighing 530 Ibs.

Reactions at Joints (two bars). Consider the simple

cantilever PQE (Fig. 212), PQ and PR being uniform equally heavy

rods of equal length. Suppose the weight of each bar to be W
(15 Ibs. weight). Eeplace the bars by weightless ones, having

7*5 Ibs. weight concentrated at each end; then at P a verti-

cally downward force of W (15 Ibs. weight) acts. The average

stresses BO and CA are obtained in the usual way, and are

exactly the same as if the bars were weightless and a load BA
were suspended from P,
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To find the reactions of one body on another we may suppose
the second body removed

; then the force which has to be applied
at the old point of contact, to maintain equilibrium, is the reaction

of the second body on the first.

Hence the reaction of cl at P is found by supposing the bar

cb removed, and seeing what force must be applied at P to keep
the rest of the frame in equilibrium.

W
Force Scale012345 6 -7 8 q 10 20 Ibs.

PIG, 212.

But if we remove cb we must suppose the load j-/Falso removed

from P, hence we bisect A'B at If, and CB +BH or CM is the

reaction of cb on the pin at P ; similarly, the reaction of the pin
on be is MC.

If the bars had been supposed weightless and a load W Tb,

suspended from P, then the stresses found in be and ca would

have been the same as before, but the reactions of the pin on

be and ca would have been quite different. For, on removing

be, no weight is taken away from P, and the reaction of cb on

P would be simply CB. Similarly, on removing ar, the reaction

on ca is seen to be CA.
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(23) If PQ-1-2 ft, PK = r>'t> ft. and tf#= f)-3 ft., find the reaction at P
on /*<$ if each bar weighs 37 "24 Ihs.

(24) As in the previous question if, in addition, a load of 40 Ibs. hangs
from P.

Reaction at a Joint (two unequal bars). PQR (Fig. 213)

is a small wall crane; the fairs PQ and QK are uniform and the

weights tire 2 Us. per foot. Find the pin reactions at Q given

PR = 9', EQ-3-9' awl QP = 7-1'.

Draw the total load vector AB of length proportional to

half the weight of PQ and Qfi, and draw the stress diagram

ABC as usual Divide AB at Z>, so that =
7 Join <?AUL f-t/A

and measure it by the force scale; it gives the reaction of the pin.

Suppose the bar PQ removed, then the force that must be

applied at Q to maintain equilibrium is given by the resultant of

the force OA and the weight AD (half the weight of PQ), i.e. by
CD.

This vector CD gives, therefore, the reaction of the bar PQ on

the pin at Q, and DC gives the action of the pin at Q on the

bar PQ.

Similarly, if we suppose QR removed, we must remove the

forces EC and DB and replace them by their resultant DC.
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Hence DC is the reaction of the bar RQ on ft and CD is the

action of the pin at Q on the bar.

Evidently these results are consistent, for, the pin at Q being

supposed weightless (or so small that its weight may be neglected),
the total forces acting on it, viz. DC and CD, must be in equi-

librium.

(25) Find the reaction of the pin on be if a load equal to half the total

weight of the bars be suspended from it.

Reactions at a Joint (three bars). If the bars have no

weight, the reactions are simply along the bars; if they have,

then the reactions of the pin on the three bars may be found

as above by supposing the bars removed one by one, the reaction

being the sum of the remaining forces, or the sum of the half

weight of the bar and its force on the joint reversed in sense.

Fio. '214.

Thus, suppose be (Fig. 214), cd, da are the bars, and wl9
w

2 ,
w

z

their half weights, and that the vector polygon for P is as

shewn, where AM=ic^ ZIN=u\2 ,
NB~wr

To find the reaction of the pin at P on Ic, suppose be

removed, i.e. remove NB and BC in the vector polygon ; then NC
is their resultant and CN the resultant of the remaining forces

and is the reaction of the pin on be.

Similarly, remove DA and AM (the force in da and half its

weight) ; the sum of the remaining forces is MD and gives the

reaction of the pin at P on ad.
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Finally, remove MN and OB and the sum of the remaining

forces is given by the sum of DM and N"C.

Hence the sum of the three reactions of the pin is zero as

it should be.

(26) Find the reactions of the pin at T, of the girder of Ex. 18, on the

three bars meeting there, if the bears weigh 25 Ibs. each.

EXAMPLE. AB and AC (Fig. 215) represent heavy uniform beams,

each 7 ft. long, pin-jointed at A and resting on rough walls at B and

C in the same horizontal line. If BC = 9 ft. and the beams weigh 500

and 700 Ibs., determine the reactions at A, B, and C, and the average

stresses in AB and AC.

It is assumed that the walls are sufficiently rough to prevent

the beams sliding down.

Suppose the beams replaced by light rods loaded at their ends

with 250 and 350 Ibs. weight respectively. Then at A there is

a load of 600 Ibs. weight, at B 250 and at C 350 Ibs. weight.

Draw the beam diagram to scale and letter the spaces as

indicated ; then draw the vector polygon XYZU for the loads.

Then for the point A, YVZ is the stress diagram, and VY and

VZ give the average values of the stresses in AB and AC* For

B, XY7 is the stress diagram. Since XY is the load at B and

YV the push of the beam there on the wall, therefore VX gives

the reaction of the wall at /> on the beam AB. Similarly, UV
gives the reaction at C. To find the reaction at A on AB suppose
AC removed, then we must also suppose a weight of 350 Ibs.

removed from A ;
set off then ZMZU and the resultant of the

weight MZ and of the force ZV is the force MV, which is the

reaction at A on the bar AB.
Measure the magnitudes of the reactions and the angles they

make with the horizontal
; measure also the average stresses in

the beams.

Find the resultant of the weights of the beams (supposed to act

through their mid-points) and shew by construction that the re-

actions at B and 6', previously determined, are concurrent with it.

Of what general theorem is this concurrency an example ?
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If the walls were smooth and B and (J were connected by a

light rod, what would be the stress in that rod ?

(27) Find the reaction
on the bar AC at A.

(28) Shew (by drawing)
that the reactions at B
and A on AB are con-
current with the vertical

through the M.C. of AB.

FIG. 215
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Quadrilateral Frame and Reactions at Joints.

EXAMPLE, Four equal bars, each of weight 0'5 Ib. and length 6",

are pin-jointed together to form a square. It is suspended by one

vertex and Us form maintained Inj a light string connecting the upper

and lower vertices. Determine the stresses in the string and rods and

the reactions of the pins on the bars.

Each bar may be supposed replaced by a weightless rod if

half the weight be supposed concentrated at its end. This

reduces the case to a frame loaded at the joints only. Further,

if the string be supposed cut, the geometrical form will be

maintained if we suppose a force equal to the tension in the string

to be applied upwards at the lowest joint and downwards at the

highest one. Letter the spaces as in the diagram (Fig. 216) and

draw the vector polygon for the loads at Q, R, 8, viz. 0*5 Ib. at

each ;
then the reaction, due to these, of the support at P is AB

or 1*5 Ibs. upwards,

At Q we have a force 0'5 Ib. downwards (BO) and the forces

due to the rods If and cf. Draw, then, BF and CF (parallel to

these rods) to intersect in F, the sense of the vectors being

BGFB. Hence rf is in compression and bfin tension. Similarly,

at S we get DAED for the vector polygon.

At R we have then FC, CD, DE and the tension in ef. Join,

therefore, E and F and CDEFG is the vector polygon for the

point, The tension in the string is twice the weight of a rod.

Tabulate the stresses and mark the bars which are in com-

pression.

(29) Shew that the stress diagram for the point P gives results consistent

with those already obtained. Find the stresses if PJR=2QS.

For the reactions of the joints on the bars all we have to do is

to suppose the corresponding bar removed and find the resultant

of the forces acting at the joint, or find the force which would

produce the same action on the joint as the bar, and then change
its sense. It must be remembered that when a bar is supposed

removed, we must take away the half load concentrated at the

end under consideration.
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At (), suppose the

bar If removed, i.e.

take away the pull

FB and one half of

EC ; the resultant of

the remaining forces

G-C and OF is OP, the

reaction of the joint

on the bar bf. The

reaction on c/is simi-

larly seen to be FG.

At E, suppose the

bar de removed
; then,

in the stress diagram,

take away DE and

iCD arid there re-

mains EFCH, the re-

sultant vector being

EH. Similarly, the

reaction one/ is found

by removing FC and

iCD, and is therefore

EF

H

FIG. 2 Id.
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These results contrast with the case in which the joints

are loaded and the weights of the bars are negligible, for in this

latter case the action on any bar must be equal and opposite to

the force of the bar on the joint, and is therefore given by the

stress in the bar itself.

^Pentagonal Frame and the Reactions at the Joints.

EXAMPLE. A regular pentagonal framework is suspended by one

-vertex, the regular form being maintained by a light string joining the

fop vertex to the middle point of the opposite side. Each bar weighs

1 Ih. ; find the stream in the bars and string and the reactions of the

pins on, the bars.

Proceed as in previous example, but now the pull due to the

string at the mid-point of the lowest side must be replaced by

equal upward forces at R and S (see Fig. 217) of magnitude to be

determined. Letter the spaces as indicated, and draw the vector

polygon BGDEAB for the external forces. Then draw BCH for

the point Q and EAF for T, then HOUGH for . The last

gives GrH as half the tension in the string. Complete the stress

diagram and see that the part for the point P gives results con-

sistent with those obtained before.

The reaction at Q on ch is HL, where L is the mid-point of BC.

Tor the reaction at B on ch we must not only remove half the

weight of the bar RS and its stress, but also half the tension of

the string (since the string does not really pull at R) ; the

reaction is therefore KH on ch
t
where K is the mid-point of CD.

Tabulate the stresses as usual.

(30) Two heavy uniform bars AB and BO are jointed together at B and
to supports at A and in I/he same horizontal line. If AB= 8, JBC=4'5
and, A 0=7 ft., and the bars weigh 7 Ibs. per ft., find the average stresses

in AB and BC, and the reaction at J?, A and 0.

(31) A rectangular framework of four heavy bars is hung by one

vertex, the rectangular state is maintained by a light non-vertical rod

joining two vertices. The sides of the frame being 7 and 4'5 ft., and the
bars weighing 25 and 16 Ibs. respectively, find the average stresses in the
bars and the compress!ve stress in the light rod.

(32) AB, BO and CD (Fig. 218) are three uniform heavy iron bars of

weights L), 10 and 15 Ibs., hinged at A, B, C and D, and hung from A
and D in the same horizontal line. Find the average stresses in the bars
and the reactions at A, J3, C and D if the bars weigh 1 Ib. per ft.
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FIG. 217.

A\60/

B C
FIG. 218.
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(33) .45 = 6, BC = 4 '5, CD = 0,

BD = -5 and IL4 = 45. The shape
in Fig. 219 is maintained by a light

string ED ; find the average stresses

and the reactions if the bars weigh
3 Ibs. per ft.

(34) five equal bars are freely jointed to form a pentagon, which is

suspended by one vertex. The frame is maintained in the regular penta-

gonal form by a light horizontal bar connecting two vertices. If the five

bars weigh 7 Ibs. each, mid the stresses and the reactions at the joints.

(35) As in the previous example, only the bars are light and weights of

7 Ibs. are suspended from the five vertices.

(36) A heavy triangular framework is suspended by one vertex, the sides

are 3, 4 and 3v> ft. long. The bars are uniform and weigh 0*2 Ib. per foot.

Find the position of equilibrium, and the stresses in the bars and the

reactions at the joints.

(37} Three equal rods each weighing 2*5 Ibs. are freefy jointed together.
The frame is supported at the mid-point of a horizontal side. Find the

stresses in the bars and the reactions of the hinges on the bars.

(38) A regular hexagon of uniform bars, each of weight 3 Ibs. , is suspended
from two vertices in the same horizontal line, the form is maintained by a

light string connecting the mid-points of the top and bottom bars. Find
the tension in the string and the reactions at the vertices.

(39) Find the average stresses in the bars of the king post truss of

Ex. 13 clue to the weight of the bars alone if they weigh 10 Ibs. per ft.

The Funicular Polygon. The link polygon for like parallel

forces can easily be constructed by means of weights and strings.

The actual string polygon is called a funicular polygon (funi-

cula = a little rope), and sometimes the meaning is extended to

cover all the geometrical figures we have called link polygons.

EXAMPLE. BC and CD (Fig. 220) are the vectors of forces whose

ae$ are be and cd. Choose any pole between the perpendiculars at

B and D to BD. Through the space b draw a line parallel to OB,

through c a line parallel to OC and through d a line parallel to OD.

In Fig. 220, PR\R$ is the link polygon, P and Q being any

points on the first and last lines drawn.

If the paper, on which the drawing has been made, be fixed to a

vertical drawing board, so that be is vertical, and a string of length
PS

1
+S

1
B.2 4- R.2Q be fixed to the board by stout pins at P and Q,
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then if weights proportional to BC and CD be fixed, hung by threads

knotted to the string at R
l
and /t the forces acting on the string

will cause it to be in equilibrium in the given position PP^It^Q.
To prove this requires merely a statement concerning the

equilibrium of concurrent forces. R
l

is in equilibrium if three

forces BO, 00 and OB act there
; the last two will therefore give

the pulls which must be exerted on P^ to balance BO and can be

supplied by the tensions of the strings attached to R^ in the

positions given.

On joining PQ the link polygon is closed, and by drawing OA

parallel to it in the vector polygon we get AB, the vertical

Q

FIG, 220.

reaction at P, and DA the vertical reaction at Q; moreover,

AO gives the components of the reaction at P and Q along the

line PQ. Hence, if PQ be a light rod suspended by vertical

strings at P and Q, then AO would give the stress in PQ.

Notice carefully that we are able to draw the correct position of

the funicular polygon corresponding to a certain arbitrary vector

polygon, we can also, with certain exceptions, do the converse

construction : i.e. given an arbitrary form PR^R^Q for the string.
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we can determine the weights BC and CD which will produce

equilibrium and find the corresponding tensions in the- string.

It is essential that the form of the string polygon assumed be

such that equilibrium can be obtained by tensile stresses only;

hence in the arbitrary vector polygon the angles at B and I) must

be acute. Hence, the limitation as to the position of 0. It is,

of course, true that an infinite number of weights can be found,

but the sets will all be proportional; i.e, taking the first, JBC,

arbitrarily, the other, CD, is fixed by the construction.

We cannot assume botli tlie form of the string and the

magnitudes of both the weights.

EXAMPLE. PQES (Fig. 221) represents a string attached to the

points P and S, P being 3 ft. above S, and PS =15 ft., PQ = 5,

QR = 8*5 and ES = 7 ft. At Q is tied a weight of 4-7 Ibs. ; find

the weight which must be attached to R so that the angle QRS may
le 120.

Draw first the polygon PQRS to scale
;

to do this construct

the triangle Q^S^ where

this gives the length of QS, and hence the point Q can be

constructed.

Construct next the vector polygon for Q, viz. ECAE. At R
we know the pull AC in oc, and can therefore complete the

diagram for that point, viz. ACT)A. The weight at R is

therefore given by CD, the other lines give the tensions in the

three parts of the string.

Notice that the horizontal components of all the tensions are

equal

(40) PQRST (Fig. 222) is a funicular polygon, PT is horizontal ; a load
of 5 Ibs. is suspended at Q ; find the loads at R and Si necessary to maintain
the given shape. PQ = $&', QJi=4'5", J?$=6", PT=\T.

(41) If the strings PQ and ST be suspended from a light rod PT hung
by vertical strings, find the tension in the strings and the compression in
the rod PT.

(42) The tension in PQ being 18 Ibs., what must be the weights suspended
from <?, jff and S ?
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Ibs. wt.3123456789

Fro. 221.

Slds.

FIG. 222.
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Funicular Polygon for Equal Loads, the axes being- at

equal distances.

EXAMPLE. P and Q (Fig. 223) are two faed points in a

horizontal Imp, distant apart 2'5fl.; a string is to be fixed to P and

Q, and loaded with weights 2, '2 -5, 1-0, 3 Ibs., wltose axes are

equidistant (viz. 6"). The part of the string attached to P w to

make 30 with the verfiml Find the length of string necessary,

the form of the funicular polygon and the 'points on it where the

weights have to be fastened.

Draw first the vector polygon of the weights BCDEF, choose

a pole A for the rector polygon, and find the position of the

resultant by the link polygon. Find the point R of intersection

of the known direction of the string at P and the axis of

the resultant. Join R to Q; then RQ is the direction of the

string at Q. Draw, then, BO and FO parallel to PR and QR to

intersect at 0. is then the pole of the vector polygon, and by

joining to GDE we get the directions of the remaining segments

of the string. Draw these directions on the link polygon, and

measure the segments between the given vertical lines.

It may appear at first sight that, although we can determine

the point in the manner given, yet when we come to construct

the corresponding link polygon PR-^ parallel to OH, fij^ parallel

to OC, Rfis parallel to DO, R%R parallel to #0 the last link

through 11
4 parallel to OF would not necessarily go through Q.

A little consideration of the properties of the link and vector

polygons will shew the necessity of this.

We have a number of parallel forces in It, cd, de, and ef, and

BF is their vector sum
; through I draw PP^ parallel to BO,

and suppose in PR
l
two forces OB and BO, differing only in

sense, to act. The resultant of OB and BC is 00 along P^R^
and so on to the resultant of OB, BC, CD, DE and EF is OF

acting along E4QV where (^ is the point on the vertical through

Q, where R$19 parallel to OF, cuts it. Combine, then, BO in PE
l

with OF to a resultant BF acting through the point of intersection

of PJZj and Q^. But the point in PR
19

where this resultant
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cuts it, has been determined ali'eady, viz. the point J?, and J?Q

is parallel to 0^, hence RQ and -B^i must be both parallel to

OF, i.e. Ql
is at (?.

(43) The distances apart of

the verticals are 1', 6", 4", 4"

and 8", P^ is to be inclined
at 45 to the horizontal, and
the weights are all equal ;

find the form of the string

polygon, the total length of

string and the tensions.

FIG. 2-23.

(44) The loads being 2*1, 2*2, 1*8 and 2*9 Ibs., and the vertical axes

equidistant (6"), find the form of the link polygon and the total length of

string necessary if ad is to be horizontal ; PR^ makes an angle of 45 with
vertical and Q is fixed only inasmuch as it must lie in a certain vertical.

(45) As in Ex. 43, but now ac and ae are to be equally inclined at

45 to the horizontal.

T.G,
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The theory of the funicular polygon is of great practical

importance, since it is immediately applicable to the deter-

mination of the form arid stresses of suspension bridges,

Funicular Polygon satisfying prescribed conditions.

A funicular polygon is to be constructed between two points,

P and 0, distant 3 ft. apart in a horizontal line. It is to be

loaded with seven equal weights of 5 Ibs., the axes are to be

equidistant and the lowest vertex, V, \\\ inches below M, the

mid-point of PQ.

Since the axes and loads are symmetrical with regard to $/F,

only half the funicular and stress diagrams need be drawn.

Set off PJLTand J/F(Fig. 224) to scale (say half full size) and

letter the spaces.

Set off to scale AB, BO, CD for the loads in ab, lc> cd, and

DK**\AE\ draw KO perpendicular to AK\ then the pole of

the vector polygon must be in KO. This follows from the

known symmetry of the funicular polygon. Take any point

iu KO as pole, and proceed to draw the link polygon, starting

at F, viz. FF
X parallel to 01), F

X
F2 parallel to OC, F

2
F

3

parallel to OB and FS
F4 parallel to OA.

If F
4

is at P we have solved the problem.

Evidently by taking different poles along K0> and constructing
the corresponding link polygons, we should get a series of points

like F
4 , and by trial we could find the position of the pole so

that F
4 should be at P.

Through V draw a line Vu^ parallel to PM and produce the

links FgFj, F3
F

2 ,
F

4
F

3 ,
to cut it at u

19 u^ u
s-

Join P to ws cutting nb in 7F
3 ; join /F3 to u9 cutting "be in

/Fo ; join W% to i^ cutting cd in W ; and, finally, join Wl
to V.

Then P/Fg/Fg/J^Fis the half funicular polygon required.

Through A, B, and D draw lines parallel to P/F
3 ,

/F
3
/F2 ,

/F^/Fp /F
X
F"; these should all be concurrent to a point O

l

in Z.
Measure A0

lt BO^ C0
l
and D0

l
on the force scale

; these are

the tensions in the various parts of the string polygon.



FUNICULAR POLYGON. 243

B C
FIG* 224f
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* Proof. Suppose that corresponding to the two poles and O
l

there are two link polygons VWl
... and VV

l
.... Through V

draw a line Fu^ parallel to 00
lt cutting W^W^ ... in u

1:
ti
2
and u

d .

Let OOj be the vector of a force in Fu^ then 00
1? OjD and

BO In J'\,

t

VJ7
l
and VF

i
are in equilibrium. To C^D add DC

and to DO add CD, both forces acting in ctl, then 00P 0^ and

CO are in Fu^ W^ and F^ are in equilibrium. But three

forces in equilibrium must be concurrent, hence F^ must pass

through //r A similar argument shews that F
& F% and F

4
F

3

pass through 7/
2
and wa respectively.

Generally, then, we see that wherever the pole of the vector

polygon be taken in the line KO, the corresponding lines of

the link polygon must intersect on the line through F parallel

to UOV This is really a special case of a more general theorem :

Given the axes and vectors of a set of forces, if two link polygon* be

drawn, for poles and Olt
then the corresponding sides of the link

polygons intersect on a line parallel to 00
l

.

The Funicular Polygon and Parabola. The vertices V,

W
1?
W

,
W

3 ,
... , of p* 24e3, lie on a parabola having V as its

vertex and VM as its axis of symmetry. Construct the links of the

funicular as follows :

Fig, 225 shews the right-hand half of the funicular of which

the left half has already been constructed. P^M-^ or ef, P^M^ or

fg are the load lines on which the vertices are to be found.

Join 7Q and construct the vertices on /\Jf1} PZM^ ... of the

parabola gping through Q (see pp. 29-31).

Curves whose equations are like
;//
= 2

, y = 2x^ or y^Jx2 are

called 'parabolas/

Go vertically from J/
x
to Q3 , horizontally to R

2
and mark P

l

where FB
l
cutsM^ . Similarly, determine the points P2

and P3 .

Set off the load vectors vertically downwards DE, EP, FG- and

@H, and mark K, the mid-point of DE. Then draw, through E>

F
y

Gr and H, lines parallel to the links of the funicular and see

that they all intersect (or nearly so) on the line KO perpendicular

to DB.
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(46) Draw to scale the funicular polygon joining two points P and Q in
the same horizontal line, P<V = 2'5 ft. The string is to be loaded with six

equal weights (1-5 Ibs. each), and the axes are to be equidistant and the
lowest link is to be 2 ft. below PQ. Find the tensions in the various string
segments.

(In this case the lowest link is horizontal, and if the pole of the vector

polygon be chosen on the perpendicular through the mid-point of the
resultant load vector, the corresponding sides of the two link polygons
must intersect on the lowest link. )

FIG. 225.

*(47) Draw to scale the funicular polygon joining two points P and Q
where PQ = & ft., and makes an angle of 30 with the horizontal through P
and below it. There are to be six equal loads in equidistant axes, and the
first link is to make an angle of 40 with the vertical. Find also the
tensions.

(In this case, through the beginning of the total load vector draw a
line making 40 with the vertical and take the pole on this. Draw the

first link of the funicular through P, then wherever the pole of the vector

polygon be taken on the line drawn, the corresponding sides of all funiculars

starting at P must intersect on the first link. Hence It is easy to draw
that particular funicular which will pass through Q. )

*
(48) Funicular as in Exercise 47, but the vertex bearing the middle load

is to be 2 ft. below the mid-point of PQ.

*The Funicular Polygon and Parabola. The vertices

of a funicular polygon for which the loads are all equal and

at equal distances apart lie on a parabola.

(a) Suppose the number of loads odd.

Let w be the load at each vertex, h the distance apart of the

loads, V the lowest vertex and Q any other, say the %tb . Take

the axes of coordinates as the horizontal and vertical through V
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(Fig. 226) and suppose the coordinates of ft z and //.
Between Q

and V are ~n^\ loads and % spaces, hence the resultant load is

nlw whose axis is mid-way between 2^ and Q.

The part of the chain between Fand G is in equilibrium under

the load IT^lic and the tensions in the lowest and highest links.

Hence, since three forces in equilibrium must pass through a

point, these links must intersect on the axis of the resultant load,

, <"f

viz. at M in Fig. 226 whose abscissa is -.

In the stress diagram T and T
l
are the supposed tensions in

the links, then T, Tl
and w(n~l) form the vector triangle for M.

For the point P^ T^ w and by symmetry a force of magnitude

2\ form the vector triangle. Hence T denoting the horizontal

component of all the tensions, we have T
l equivalent to T

and $w.

Comparing the similar triangles of the funicular and vector

polygons we have at once
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Therefore, by the properties of fractions (adding numerators

and denominators),
//

ten

But

This is the equation to a parabola, the axis of
// being the

axis of symmetry. Hence all the vertices lie on the parabola,

for the equation remains exactly the same whatever particular

value n may be supposed to have.

When the dip and span of the funicular and the number of

loads are known, TQ
can be calculated.

Let 25 = the span,

d the dip,

/ 2,9 \
N~ number of loads (h = ^r

-
^

}

(b) Suppose the number of loads even, then the middle link is

horizontal. First take the origin at the middle point of this

link. Then for the equilibrium of the piece between V and Q

the link through Q must, when produced, pass through M the

mid-point of the space between the 1
st and n - 1

th
verticals.
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If the origin be taken at a distance ~~ below V, the

equation becomes y= -~j-wi~
^2

?
& parabola.

*Method of Sections. If any closed curve be drawn

cutting some of the bars of a frame in equilibrium, then the

part inside the curve may be looked upon as a rigid body
in equilibrium, under the action of the known external forces

on that part of the frame, and certain forces acting along the

bars at the points where the curve cuts them. If the forces

necessary to produce equilibrium acting along these bars can be

found, they will give the magnitude of the stresses in those

bars, and whether the stresses are tensile or compressive can be
determined by the senses of the forces.

Fig. 228 represents an ordinary queen post truss. If we
consider the part enclosed by the dotted curve on the right, it

will be in equilibrium under the action of the external forces in
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oa, al and be, and certain forces In eh, hi and io. Suppose these

bars cut; then, to maintain this right-hand portion in equilibrium,
we must apply to the cut surfaces of the bars forces equal in

magnitude to the stresses in them before cutting, and of the

proper sense. For instance, if ch be in compression we must

take the sense of the force at the cut surface from left to right ;

FIG. 22J

if in tension, from right to left. Conversely, if we can find the

forces in these cut bars which will keep the right-hand portion

in equilibrium, these forces with their proper senses will give the

stresses in the bars.

If the curve can be drawn so as to cut only three non-

concurrent and non-parallel forces, we can always find by this

means the stresses in the three bars. (In special cases we may
be able to find the stresses in one or more bars when more

than three are supposed cut).

The method of sections enables us (i) to test the accuracy of

the stresses already found by independent means; and (ii) to

draw stress diagrams for various frames in which the ordinary

method of procedure fails.

To determine the stresses, we either use the construction for

resolving a known force into three components acting in three

non-concurrent and non-parallel lines, or the construction for

finding the sum of the moments of a number of forces. The

latter method will be explained in Chap. X.
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* EXAMPLE. Determine the stresses in the bars ch, hi and io of the

<iueen pod tnw (Fuj. 229) if VZ = 40, V\V= 12, UW= 12 A, toe

fofltZs m ed, dc, cb and ba Sewz# O5, 0-6, 1*5 and I tons.

Draw the truss to scale and the load and reaction lines.

Draw the vectors ED, DO, CB and BA of the loads in ed, dc,

cb and hi. Take any pole P of the vector polygon and construct

the link polygon in the usual manner. Close the link polygon

and draw PO in the vector polygon parallel to the closing line.

Draw any closed curve cutting the bars ch, hi and io. Then

the forces acting on the enclosed body are OE, ED and DO and

the forces in the bars supposed cut. For these forces the first

line of the link polygon drawn is parallel to PO, and" the last is

parallel to PC; these lines intersect (when produced) at R,

consequently the resultant of OE, ED and DC, viz. OC, acts

through R parallel to OC.

Produce io to cut the axis of this resultant in Q. Join Q to U,

the point of intersection of Hi and ch. From C and draw lines

parallel to io and Q U, viz. CX and OX. Then CX and XO are

in equilibrium with 00, their axes being io, QU and MQ.

From and .Y draw OY parallel to ch and XT parallel to ih
;

then OC acting along RQ is in equilibrium with CX, XY and YO

acting along io, ih arid ch respectively.

Since CX pulls at the cut end of the bar io (enclosed by the

curve in Fig. 229) io must be in tension. Similarly ih is in

tension and ch is in compression.

When the angle is small between the sides of the link

polygon, for which the point of intersection is required, the

method becomes untrustworthy. In that case the moment
method explained in Chap. X. is used.

Cases in which the method of sections enables us to draw

stress diagrams for which the ordinary method fails will be

considered also in Chap. X.

(49) Draw the frame in Fig. 230 and determine the stresses in &</, gf and
fd by the method of sections. The load at P=l ton and at Q = 0'5 ton,

J?S=30, ^?P=21, RQ = QP= ll ft.
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Fio, 229.

FIG. 230.

(50) Find the stresses in &/, jk and ko in the queen post truss of

Fig. 229.
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MISCELLANEOUS EXAMPLES. VI

1. ABC h a triangle having a right angle at B. The sides .4 $=12",
BC-Z". A force of 52 Ibs. weight acts from -4 to C, one of 24 acts from

B to -.4 and one of 27 from G to K. Find the magnitude and line of action

of the resultant. Draw the figure to scale and exhibit the resultant.

(Inter. Sci., 1904.)

2. ^4 BO is a light frame in the form of a right-angled triangle, A being
the right angle. It can turn in a vertical plane about a fixed horizontal

axis at .4 ; and, when a weight W is suspended from 6', the corner B
(which is vertically below .4} presses against a fixed vertical plate. Find

graphically the stress in each rod and the reactions at A and B.

(Inter. SeL, 1906.)

3. The pair of rafters shewn in Fig. 231 carry a load equivalent to

L>0 Ibs. at the middle of each. Find the direction and magnitude of the

thrust on each wall.

PIG. 231.

If the walls are relieved of horizontal thrust by a rod joining the lower
ends of the rafters, what is the pull on the rod ? (War Office, 1904.

)

4, A triangular frame -4BC can turn freely in a vertical plane about A
(the right angle). The side AB is horizontal, and the corner G rests

against a smooth vertical stop below A. Find, graphically or otherwise,
the stresses in the various bars due to a weight W suspended from B.

AJi=3 ft., .4(7=1 ft, r=50 Ibs. weight. (Inter. Sci., 1903.)

5. The beams AB and AC (Fig. 232) are part of a roof and carry a load
of 160 kilogrms. at the ridge. The span of the roof is 10 metres, and the
beams make 28 with the horizontal. Find the thrust this load causes
on each wall.

Pro. 232.

If the walls are relieved of the outward thrust by a rod joining the ends
B and G of the beams, what is the thrust in this rod, and what thrust do
the walls still bear? (Military Entrance, 1906.)
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6. A heavy straight rod AB, 12 ft. long, turns on a pivot at -4, and is

supported in a horizontal position by a vertical force of 15 11 >s. weight
applied at B. If the weight of the rod is known to be 90 Ibs.

,
find the

pressure on the pivot and the position of the centre of gravity.
(Naval Cadets, 1904.)

7. A heavy uniform beam AB rests in a vertical plane against a

smooth horizontal plane CA and a .smooth vertical wall CB, the lower

extremity A being attached to a cord which passes over a smooth pulley
at C and sustains a given weight P. Find the position of equilibrium.

(B. ofE.,IL)

8. Find the stresses in the bars of the short Warren girder PQR8T
figured (Ex. 12, p. 222). Loads of 2 and 1 tons act at P and T, and the

frame is freely supported at Q and S in same horizontal line.

(Inter. B.Sc. (Eng.), 1905.)

9. ABGD is a thread suspended from points A and D, and carrying a

weight of 10 Ibs. at B and a weight W at ; the inclination to the vertical

of AB and CD are 45
U and 30 respectively, and ABC is an angle of

165. Find, by construction or calculation, W and the tension of BC.
(B. ofE.,11.)

10. A uniform bar is bent into the shape of a V with equal arms, and

hangs freely from one end. Prove that a plumb line suspended from this

end will cut the lower arm at \ of its length from the angle. (B.Se., 1904.)

11. Fig. 233 shews (drawn to scale) a rectangular framework of four bars

freely hinged. It is supposed to lie on a smooth table with AB fixed.

A piece of elastic cord is stretched, and its ends fastened at E and F.

For what positions of E and F will the frame remain rectangular,
^

for

what positions will the frame move to the right and for what positions
to the left ? Justify your statements.

B
PIG. 23;

If the frame is held rectangular by a pin driven through the corner 0,

and the elastic cord stretched till it exerts a pull of 10 IDS., and fastened

to the frame at the corners A and (7, what force does the pin at C exert

on the frame ? (Military Entrance, 1905. )
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12. Fig. 234 is a rough
sketch of a crane. If the

weight hanging at the point
A is 1000 Ibs., iind, graphic-

ally or otherwise, the forces

acting along the bars AC
and AB ; and if the post
BC is free to move in the

vertical plane, find the pull
in the tie CD which will

prevent the crane from top-

pling over.

(Military Entrance, 1905.)

B
FIG. 234.

13. AB and EG are two uniform rods fastened by smooth joints to each
other at B, and to fixed points A and C; the point G being vertically
above A and CA =AB ; given that the weight of EG is twice that of AB,
find the reaction at O and A by which the rods are supported.

(B. of E., III., 1904.)

14. Draw a circle and from a point A outside the circle draw two

tangents and produce them to B and G. Suppose that AB and BC are
two equal uniform rods connected by a smooth hinge at A at rest on a
smooth vertical circle ; find the position of the rods when A B is 10 times
as long as the diameter of the circle. (B. of E., III.)

15. A, B, are fixed smooth points, such that ABC is an equilateral
triangle, with BG horizontal and above A. A fine thread is fastened to

A, passes over B and G and carries a weight of 10 Ibs. ; find the pressures
on B and G produced by the weight. (B. of E., L, 1903.)

16. A uniform rod AB can turn freely, in a vertical plane, about a

hinge at A ; the end B is supported by a thread BC fastened to a fixed

point (7; ^.46" is horizontal and equal to AB. Draw a triangle for the
forces which keep the rod at rest, and shew that in any inclined position
of AB the reaction of the hinge is greater than the tension of the thread.

(B. of E., II.
, 1903.)

17. A, B, <7and D are four points in a horizontal line. Two weights,
Pand Q, are to be supported by three strings, AP, PQ and QD, in such
a way that P is vertically below B and Q below G. Give a construction
for finding suitable lengths of string for the purpose.
Also shew that in any configuration in which the stated condition is

satisfied, the string PQ will intersect AD produced in a fixed point.

(Patent Office, 1905.)

18. The outline of a crane is as follows : A BG is a right-angled triangle,AB being horizontal and AC vertical, and AB is equal to AG ; on the
other side of A G is a triangle ADO, the angle A being 45 and the angle C
being 120. A load of 10 tons hangs from Z), and the crane is supported
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at A and anchored at B. Find the reactions at the supports, and the
stresses in AG, CD and EG. (Patent Office, 1905.)

19. Draw five parallel lines at distances apart 4, 5, 3 and 6 inches from
left to right. Construct a funicular polygon for loads 2Ff, W, 3 If, 2 If
and W suspended from vertices on these lines, the sides of the polygon
which stretch across from the middle line to its neighbours being "each
inclined at 60 to the vertical. (Inter. Sci. B.Sc. (Eng.), 1904.)

20. Draw the stress diagram for the following trass, Fig. 235, indicating
which members are in tension arid which in compression. Assume equal
vertical loads. (Admiralty Exam., Assistant Engineer, 1904.)

FIG. 235.

21. A king post roof truss is loaded with 1 ton at each of the live joints ;

find graphically the amount and nature of the force acting in each member.

Span=30 ft., pitch =7' 6".

FIG. 230.

22. Draw the stress diagram for the frame shown in Fig. 236, assuming
the joints to be loaded with equal weights in the direction of the arrows.

The arrows A ancl B indicate the direction of the reactions.

(Admiralty, 1905.)



CHAPTER VII.

FRICTION.

HCAVEVEB carefully the Experiments I.-VI. are performed, there

are sure to be some slight divergencies from the results stated.

These discrepancies are chiefly due to the friction at the pulley,

and but to a very small extent to the weight of the ring or card.

Resistance to Motion. In all cases where one body slides

or tends to slide on another, a resisting force called friction is

called into play. This force has the same direction as that of

the motion, or attempted motion, "but is of the opposite sense.

EXFT. XII. Apparatus : A board with a smoothly running pulley
screwed or clamped on to one end ; an open box with a hook for fastening
a string a set of weights and a scale pan. A board of varying width is

best, as this will give different areas of contact between the box and the
board.

Arrange the board horizontally and the box, etc., as in Fig. 237- See
that the hook is screwed in a position so that the pull of the string is

MJ

PIG. 237.

horizontal. Put a 500 gramme weight in the box and load the scale

pan 20 grammes at a time until motion ensues. Find the greatest weight
that can be put into the pan without moving the box.

Starting with no weights in the box, increase the load by 100 grammes
at a time up to 800, and find in each case the maximum weight that can
be placed in the scale pan without moving the box.
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Tabulation of Results. Add to each load put in the box the

weight of the box itself, and similarly the

weight of the scale pan to its load in each

case, and tabulate the results as indicated.

Graph. On squared paper take two axes

Ox and Oy and represent on these, to scale,

the loads.

Plot points like P (Fig. 239) where OM
represents the weight of the box and its load, Fio ogs

and PM the pan weight and its load to scale.

All the points like P will "be found to He approximately on a

straight line.

By aid of a stretched black thread, determine the straight line

lying most evenly amongst the plotted points, and draw this

line. From this line find the greatest load that can be placed

in the pan so that the box will not move when it contains

270 grammes, and test the result by experiment.

Deductions. In the first experiment with 500 grammes load

in the box, at every instant before motion there was equilibrium.

For equilibrium the vector polygon must be closed, and there-

fore the sum of the components of the forces in any direction

must be zero. Hence, the friction resisting the motion of the

box must have been always equal to the pull of the string on

the box. Hence, for a given pressure between the box and

plank, the friction may have any value from zero up to a certain

maximum value, called the limiting friction. If there was no

friction at the pulley, the load due to the scale pan and its

contents would measure the friction ;
if there was friction at

the pulley, the pull of the string on the box which measures the

friction between the box and the board would be slightly less

than the load. If the straight line goes through the origin, it

shews that the pull necessary to turn the pulley is too small

to be measurable; if it does not, then the intercept on the

y axis gives the friction due to the pulley (OA in Fig. 239).

Draw through A a line parallel to Ox.
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ratio

O

Distances measured upwards from this line to the sloping one

give to scale the pull on the box. In Fig. 239 PM^ is the pull

on the box for a normal pres-

sure AM^ and PJ/
3
therefore

measures the limiting friction

in this case.

Coefficient of Friction.

Since AP is a straight line, the

Ingitiiig
friction

normal pressure

is always the same, no matter

what the pressure. This ratio

is called the coefficient of fric-

tion for the two surfaces, and is

always denoted by the letter /x.

EXPT. XIII. Place the box at the narrow end of the board so that it

overlaps and the area of contact is less than before ; shew that p, is

unaltered.

EXPT. XIV. Pin a sheet of paper to the board and shew that IJL has a

different value from that formerly obtained.

Laws of Statical Friction. The laws thus roughly estab-

lished are :

(i)
Friction is a passive force, only called into play by the action

of other forces ; it tends to prevent motion and may have any value from

zero up to a certain maximum, depending on the normal pressure and

the nature of the surfaces.

(ii) Limiting friction is independent of the area of contact.

(iii) Limiting friction is dependent on the nature of the surfaces.

(iv) Limiting friction is proportional to the normal pressure,

M
FIG. 239.

Friction and Stress. If F is the force of friction on the

box, -F is the force on the plank, and friction is therefore of

the nature of a stress.

Angle of Friction. Draw PQ (Fig. 240) vertically down-

wards to represent to scale one of the normal pressures, and QR
horizontally for the pull on the box (

- the limiting friction) \
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W

then, since there is equilibrium, the closing line HP must

represent in magnitude, direction, and sense, the total reaction

of the plank on the box.

The angle e, between EP and

the normal to the plank, is called

the angle of friction, and
//,
= tan e.

Measure e and p. e is always the

same, no matter what the pressure,

if the box is on the point of

W
moving, for

-=^
is constant.

When there is no pull on the

box, RP is vertically upwards (QP);
as the pull increases, HP slopes

more and more away from the

normal and away from the sense

of the attempted motion, until

the maximum angle e is reached.

Expressed in slightly different

words, the total reaction of the surface may be inclined to the

normal at any angle between zero and <=.

(1) If the box weighs 6 ozs., and it is loaded with 1*5 Ibs., and the

horizontal pull on it when on the point of motion is 15 ozs., find e and ju.

(2} If the box weighs 10 ozs. and is loaded with 1 lb., and the coefficient

of friction is J, find the pull on the box and the total reaction of the

surface of the plank when motion is about to take place.

(3) If the box weighs 15 Ibs. and /i=f, would equilibrium be possible
with a horizontal pull of (i) 3 Ibs. weight, (ii) 6 Ibs. weight ?

(4) A block of stone weighs half a ton and rests on a fixed stone with a

horizontal top ; a horizontal push of 500 Ibs. weight just causes the block

to be on the point of motion. What is the angle of friction and what is
ju,

?

(5) A 1000 gramme weight rests on a table ; the angle of friction is 25.
What is the least horizontal force that will produce motion?

(6) A cube of side 2" rests on a horizontal plane. The weight of the

cube is 7 Ibs., and it is pushed with a horizontal force of 3 Ibs. weight
without producing motion. The line of action of the force passes through
the centre of the cube and is perpendicular to one face. Draw a diagram
of the axes of the forces acting on the block (they are concurrent), and find

the reaction of the surface.

(7) Draw a diagram of the forces in Ex. 6 when the applied force is

| of the way up, and find the surface reaction.

Q
FIR. 240.



260 GRAPHICS.

Force not Parallel to the Surface. If the string in the

friction experiment is not quite horizontal, the normal pressure

between the surfaces in contact is no longer the weighted box.

Knowing, however, the slope of the string, the normal pressure

and the friction can be found.

EXAMPLE. The string slopes up-

tcai'dx at an angle of 15 with the

horizontal, ike weight of the box, etc.,

bs 1 7 Ibs., and a putt of 5*5 Us.

weight causes the box to be an the

point of motion. Find the angle of

friction e, and the fridional force

called into play.

Draw AB (Fig, 241) vertically

downwards of length 17 cms.,

$6'=5*5 cms. sloping upwards at

an angle of 15. Then CA is the

total reaction of the plank on the
A

box, and CAfi = e.

A
Scale GA, and measure CAB

by a scale of chords. Set off

AE = 10 ems. along AB, and draw

EF perpendicular to AE , then

EF on the 10 cm. scale measures

/A (
= tan

e).
Look up a table of

tangents, and compare thus

determined with the value ob-

tained by the scale of chords.

Draw CD perpendicular to

AB-3 then BD and DC are the

vertical and horizontal compon-
ents of BC

; hence the friction

on the box is given by CD.

BD is the upward pull on the box, due to the string tending
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to lift It off the plank ; hence the normal reaction of the. plank
is riot BA but DA.
Draw EG- perpendicular to AC. If the inclination of the

string had been that of @, the force given by EG- would have

been the pull that would have caused the box to be on the point
of motion.

Evidently, this is the least pull possible when the box is in

limiting equilibrium. Any force greater than BG, if in the same

direction, will cause motion any force less than EG- will not

cause the box to be on the point of motion. Scale BGr and

measure the angle it makes with the horizontal.

(8) The box, etc., weighs 11 Ibs.
; the coefficient of friction is 0'4. Find

the least pull on the box that will cause it to be just on the point of

motion, and the amount of friction called into play.

(9) The box, etc.
, weighs 21 '5 Ibs. ; a pull of 12 Ibs. applied at an angle

of 20 with the horizontal just causes the box to be on the point of motion.
Find the least force that will move the box, and the corresponding normal

pressure and friction.

(10) The box weighs 9 Ibs. and /i=0*3. A horizontal force of 27 Ibs. is

applied to the box. Is there equilibrium ; and if so, what is the angle the
total reaction of the plank makes with the vertical ?

(11) A harrow weighs 6 cwts., the chains by which a horse can pull it

along make 20 with the horizontal. If the horse exerts a pull of 2 cwts.

along the chains, find the total reaction of the ground in Ibs. wt., the

angle it makes with the vertical, and the resistance corresponding to

the friction between harrow and ground.

(12) A block weighing 37 Ibs. is to be pulled along a horizontal plane by
a rope ; find the least possible pull and its direction if the coefficient of

friction is 0'37.

(13) The least force that will move a chair weighing 10 Ibs. along a

rough floor is 6 Ibs. ; find the angle and coefficient of friction and the
reaction of the ground.

(14) Two men push a side-board along, the side-board weighs 7*5 cwts.

and the angle of friction is 25. Find the force the men must exert if

(a] they push horizontally, (b) downwards at an angle of 20 with the hori-

zontal, (c) upwards at 20 with the horizontal, (d) find the direction in

which they must push in order that the force they exert may be as small

as possible.

(15) A block weighing 17 kilogrammes rests on a rough horizontal table,

the angle of friction being 37. If a horizontal force of 5 kilogrammes
weight acts on the block, find the least additional force that will cause

motion. What is the greatest horizontal force that can be applied
without motion taking place ?
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The Inclined Plane with Friction.

EXAMPLE I. A Mock rests on a board; the latter is tilted about

a homoiitul tuis through its end. The coefficient of friction being 0'2,

fintl the angle at which the Hod: begins to slide and the greatest friction

called into piny,

Whilst there is equilibrium, the reaction of the board on the

Mock must be equal to the weight of the block and in the same

line (since these are the only two forces acting). The angle

between the vertical and the normal to the plane is the same as

the angle between the plane and the horizontal, and as the

former is equal to e when the block is on the point of sliding

the angle of the plane must also be e, and tan e = 0*19. Draw

AS (Fig. 242) horizontally of length 10 cms., and BC vertically

of length 1-9 cms. ;
then CAB is the angle of the plane.

Draw any length VT(%

LM vertically
^"^ 'C

downwards to re-

present W, LN at

an angle e to L

and MN perpen-
dicular to LN, as

indicated in Fig.

242. MN is the

friction and NL the

normal reaction.

Measure the fric-

tion as a decimal

of W.

To do this, set

off as indicated

inches, and draw

through N a line

parallel to WL Measure the intercept on ML on the |"

scale.

FlG. 242.
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EXAMPLE 2. A block of weight 10 Ibs. is supported on an indited

plane by a horizontal force. If /z
= O3, and the plane rises 1 vertically

in 2 horizontally, find the value of the horizontal force that will just

cause the block to be on the point of motion, (i) upwards, (ii) downwards.

First draw the plane
AC (Fig. 243) by drawing
AB = 4:" horizontally, and

0=2" vertically, then a

normal MN to the plane.

Set off along the normal

MN= 2", and (i) NK~ 0-6"

down, and
(ii) NK^W

up the plane.

When the body is about

to move up the plane, the

total reaction of the surface

has the direction MK> when

down the direction is MKr
Next draw the vector

polygon, a line PQ verti-

cally downwards 10 cms.

long, to represent the

weight W of the block,

then from the two ends of

PQ, a horizontal line QR
and one PR parallel to

KM. Then QB gives the

horizontal force which will

just cause the block to be

on the point of motion up
'

FI- 243.

the plane, and EP is the total reaction of the surface.

Draw PP^ parallel to MKr Then QB^ measures the horizontal

force which will just cause the block to be on the point of motion

down the plane, and B
X
P the corresponding reaction. Would the

block rest on the plane if the horizontal force were zero?
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EXAMPLE 3. The problem as before, hit the slope of the plane

is now 1 in 8.

The graphical work is as in the previous example, but notice

now that /^ comes to the left of /Tand QR X
is from right to left,

shewing that the pull is to be replaced by a push down.

Notice that whether the force pulls up or pushes down depends

on the relative magnitudes of and a, where e is the angle of

friction and a the inclination of the plane.

Minimum Force and Inclined Plane. If <*>* then the

body will not rest on the plane without a supporting force.

(Why ?) This condition being fulfilled, the total reaction QE

(Fig. 244) of the surface makes an angle of a~e with the

vertical when sliding down is about to take place; hence the

least force RP, which will prevent motion down the plane,

must be perpendicular to EQ or make an angle a - with the

horizontal, or with the plane and below it

-P p

Fro. 244.

When motion is about to take place up the plane, the total

reaction makes an angle a-h* with the vertical, and the least

force is perpendicular to this reaction and makes an angle
with the horizontal, or e with the plane and above it.
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If a<e (Fig. 245), then, when the body is on the point of

motion down the plane, the total reaction makes e - a with the

vertical, and the least force makes e - a with the horizontal, or

e with the plane downwards but above the plane.

FIG. '245.

When motion is about to take place up the plane the least

force makes e with the plane upwards.

(16) A gun has to be drugged up a steep hill (slope 1 in 5) ; the surface
resistance is equivalent to an angle of friction 40. Find the best angle to
which the ropes should be adjusted. If the gun weighs 1 ton find the value
of the least force. What force would have to be applied if the ropes were
pulled (a) parallel to the ground, (ft) at an angle of 20 with the ground?

(17) A weight of 3 kilogrammes is supported on an inclined plane (rising
I in 4) by a force parallel to plane. Find the greatest and least values this

force can have so that the weight may not move if /i=0*2.

(18) A weight of 7 cwts. is supported on an inclined plane, rising 1 in 1 ;

if /z.=0'3 find the least force that can support the weight.

(19) In the last example find the least and greatest forces parallel to the

plane so that the weight may be (i) on the point of moving up, (ii) on
the point of moving down.

(20) Find the least horizontal force that can move a block weighing
II Ibs. up an inclined plane of inclination 30, the angle of friction being 15.
Find also the least force that will prevent motion downwards and cause

motion upwards.
What are the values of the friction called into play in the three cases ?
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(21) Find the force parallel to a plane of inclination 60 that \vill

support a block of weight lo Ibs. on the plane, the coefficient of friction

being 1/3. Find also the least force that can move the block up the plane.

(22) A force of 17 Ibs. weight will just support a block of weight 40 Ibs.

on a plane inclined at an angle 55 if applied parallel to the plane. What
is the greatest force that can be applied parallel to the plane without

causing motion ?

(23) What is the inclination of a plane, coefficient of friction , jf
the

minimum force necessary to move a block weighing 25 Ibs. up it is 15 Ibs. ?

(Remember the direction of the minimum pull is perpendicular to the

total reaction of the surface and this makes an angle e with the normal. )

For this plane what is the force that will just support the block ?

(24) A block of weight 5 cwts. is kept at rest on a rough inclined plane

by a rope A B fastened to a point A on the block and to a point on the

plane. The plane rises 3 vertically to 5 horizontally and ^= 0'38. Find
the length of the rope AB that will give the least tension if A be 1 foot

distant from the plane.

(25) Two light rods are pin-jointed together and rest in a vertical plane
on a rough board (/u

= 0'4). A weight W= 9 Ibs. is suspended from^the joint ;

find the greatest angle between the rods consistent with equilibrium.

(26) In the example on p. 156, if the coefficient of sliding friction for the

piston be |-, find the total reaction of the guides and the force transmitted

along the connecting rod. Find also the tangential force urging the crank

forward for the various positions given.

Harder Problems on Friction. In some cases a little

ingenuity is necessary to effect the graphical construction.

EXAMPLE. A uniform beam, of length 17 ft. and weight 3 cwts., rests

against a smooth vertical wall and a rough floor for which the coefficient

offriction is 0*4. Find the position of the beam when it is just on the

point of slipping down, and the friction which prevents the motion.

Notice first that the reaction at A is horizontal, and that at

B inclined at to the vertical. First draw the vector polygon,
XY (Fig. 247) vertically down, of length 15 cms.

;
YZ hori-

zontally, of length 6 ems.; and join XZ. Join Z to the mid-

point M of XY.
From any point A draw AB parallel to MZ (Fig. 246) and of

length 1*7", AC vertical and OB horizontal. Then AB gives the

position of the beam relative to the wall AC and the ground CB.
~ VF f>*Proof. Since Tr=^

= = 0*4, and YZ is horizontal, ZX gives1O
the direction of the reaction of the ground at B, and XYZ
must be the vector triangle for the forces on the beam.
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The three forces on the beam, viz. the weight through (the

mid-point) and the reaction at A and B, must pass through a

point 0. Produce Off to K (as in Fig. 246), then 0KB and X7Z
OTC JTV

are similar; .*. ^=1; if, then, XY be bisected at M,Kb YZ

-v^^Trrs, and therefore MZ\$ parallel to AB.

\

M

FIG. 247.

A Simpler Proof. Eeplace the uniform heavy beam by a

light rod having 1 *5 cwts. concentrated at its ends ; then for the

equilibrium at A we have the load given by MY, the reaction

at A given by YZ, and therefore the push of the beam along

BA must be parallel to ZM the closing line of the vector

polygon for A. YZ is known because it equals 0*4 XY.

Similarly, at B we have the load XM, the ground reaction ZX
and the push MZ of the beam along AB.



. A uniform ladder rests fff/almi a wall titan angle of

30. If it be ju$t oti> the point of slipping down, and the angle

of friction is the same for wall and ground, find the coefficient of

friction.

fA

B<
FIG. 248.

AB (Fig. 248) represents the ladder and G- its M.C. through
which its weight is supposed to act. Then, since B is on the

point of moving to the right, the friction acts from right to left

and the total reaction at B makes some (unknown) angle with

the normal, and slopes towards A, At A, the total reaction

slopes upwards, for the friction acts upwards. Since the angle
of friction is the same at A and at $, these reactions must

intersect at right angles ;
the point D of intersection, therefore,

lies on a semicircle having AB as base. For equilibrium, the

vertical through G must be concurrent with the reactions, hence :

Describe a semicircle on AB, draw the vertical through G to

intersect it at D, draw AD and BD the reaction lines, and

measure ft (
= tan

e).

(27) AH in previous example, only the MLa of the ladder is J of the way
up from the bottom.
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(28) Find where the M.CI of the ladder must he if the coefficients of

friction for the wall and ground are 0*3 and 0*5 respectively.

(29) A uniform bar AB of weight 27 Ibs. rests on rough ground at -.4,

and against a smooth bar at G. The inclination of the bar is 30"' to the

horizontal ; AB= S ft., AC=5 ft. ; find the reaction of the ground and the

coefficient of friction if the bar is about to slip.

EXAMPLE. The coefficients of friction for a ladder reding against a

watt and on the ground tire, 0*3 and 0*6. Fiwl the limiting position of

the ladder supposed uniform, and the friction on the wall, if the ladder

weighs 120 Ibs*

Draw a vertical line PQ
(Fig. 249) of length 12 cms.

R

to represent the weight, and

from the ends draw PR and

QR parallel to the reactions of

the wall and ground. Bisect

PQ at S and join J?$
; then

BS is the direction of the

ladder.

Proof. Eeplace the beam

by a light rod with equal

loads at the ends.

In Fig. 249 SQ is the load

at the bottom, QR the reaction

of the ground, and, therefore,

RS must give the push of the

beam on the ground. Hence

RS is parallel to the beam.

FIG. 249.

(30) Shew, by drawing 8T parallel to PQ, and TO parallel^ PQ, that

US will represent the beam position. Notice that the reactions ET and
TS are in the right directions, and are concurrent with the vertical through
Q the mid-point of RS.
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# Beam on Two Rough Inclined Planes.

EXAMPLE. A learn rests on two planes of inclinations 30 and 45

for which the coefficients of friction- are 0*12 and 0-2, Find the two

positions of the beam when in limiting equilibrium, the mass-centre

of the beam being f of its length from the 30 plane. If the beam

weigh 700 kilogrammes, find the friction on the planes in the two cases.

(The vertical plane of the beam is supposed to intersect the

planes in their lines of greatest slope.)

Suppose the 30 plane to be on the left.

Set oftPQ (Fig. 250) downwards of length 7" and draw PS and

QS parallel to the normals to the planes, i.e. PS making 30 and QS
making 45 with the vertical. Mark the point R where PJ?=4"
and QR = 3". Then set off the friction angle e, where tan e = 0*12,

on both sides of PS, and, similarly, set off e
l
on both sides of QS.

When the beam is about to slide down the 45 plane the

reaction of the plane tends to prevent the sliding and is, there-

fore, to the right of the normal
; at the same time the reaction of
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the 30 plane tends to prevent sliding up and is, therefore, to the

right of its normal. For this case then Q0l
and P0

l (Fig. 250)

are the directions of the reaction lines.

When the beam is about to slide down the 30 plane the

reaction lines will be parallel to PO and QO for the 30 and

the 45 planes respectively.

Now suppose the beam replaced by a light rod haying 400 kilo-

grammes concentrated at its end A in contact with the 30

plane, and 300 kilogrammes at the other end B. Then for

the equilibrium at A we have PE (
= 400 Ibs.), the reaction of

the 30 plane and the push of the rod.

When A is about to slide up, the reaction of the plane is 0-jP,

and hence EOj gives the push of the rod at A
\
therefore the rod

must be parallel to O^R.

Similarly, when A is about to slide up, PO is the reaction and

EO must give the push of the beam at A
; hence the beam must

now be parallel to OR,

Draw the planes XA of 30 inclination to the left, and XE of

45 inclination to the right. At any point A on the former,

draw AY parallel to P0
1?
and AB parallel to 0-^R. From B on

the plane X draw BY parallel to Q0r Then through F, the

point of intersection of A Y and BY, draw a vertical cutting AB
in Z. See that AZfZB = f.

In a similar manner, draw the other limiting position of the

beam A^B^ and verify the accuracy of the vector polygon

construction again.

To determine the friction in the first case, draw O^Fperpendicular
to PS} then FP is the normal reaction and OjF the friction at A.

It is evident that there are net always two positions of

limiting equilibrium, e.g. if MO is steeper than 45, or E0
l steepej

than 30, there will only be one position ;
if both happen together

there is no position of limiting equilibrium.

(31) A ladder rests against a vertical wall. The angles of friction for

the wall and ground with the ladder are 20 and 40. Find the position of

the ladder when just on the point of slipping down, if the position of the

M.c. is | tip the ladder from the ground,
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(32) A heavy beam weighing 1000 Ibs. rests in limiting equilibrium with

one end on the ground and the other on a plane of inclination 30. If the

coefficient of friction 0*4 for both ends, and the beam be about to slip

when inclined at 20 to the horizontal, find the position of the M.O.

(33) As in previous exercise, only /* is 0*4 for the ground and 0*3 for the

plane.

(34) A heavy uniform beam Afi weighing 700 Ibs. rests with its end A
on'a plane of inclination 30 and coefficient of friction 0-3. The other end
B is on a plane of inclination 40

J and coefficient of friction 0*4. If the end

B is about to slide down when the beam is horizontal, find the position of

its M.a

(35) A uniform rod of length 7" rests inside a vertical rough hoop of

radius 5". It is found that the greatest inclination that the rod can have

to the horizontal is 30. Find the coefficient of friction.

(If is the centre of the hoop and AB the rod inclined at 30 to

horizon, draw the circle circumscribing OAB; this cuts the vertical

through At (the mid-point of AB) in 6y

;
then CA and CB are the reaction

lines at A and B. Measure the tangent of the angle between each of these

lines and the corresponding radius.)

(36) In the previous exercise if the coefficient of friction at the ends are

0*3 and 0'2 (lower and upper ends), find the position of the M,C.

(37) The angle of friction being 20 at each end, and the rod uniform,

find the position of the rod in the loop when on the point of slipping down.

Draw AB in any position in the circle. Join OA and OB and drawythe
reaction lines at A and B. Join the point of intersection of these lines

with M the mid-point of AB; this last line represents the vertical.

Measure the angle between it and AB ;
this gives the position of the beam.

(38) The angle of friction being 25 at each end, find the limiting position

of the rod when the mass-centre is distant 2" from the upper end of the

rod.

(39) A heavy beam weighing 1050 Ibs. rests in limiting equilibrium with

one end on the ground and the other on a plane of inclination 60. If the

coefficient of friction is 0'4 for both ends, and the M.C. is f up from the

ground, determine the position of equilibrium and the frictions at the ends.

(40) As in previous case, but the coefficient of friction for the end in

contact with the inclined plane is 0"25.

(41) A heavy uniform beam weighing 570 Ibs. rests with one end A on

a plane of inclination 30 and the coefficient of friction 0-2. The other end
/? is on a plane of inclination 50 and the coefficient of friction is 0"4. If

the end B is about to slip down, find the position of the beam and the

friction on the two planes.

4
Find if another position of limiting equilibrium is possible.

EXAMPLE. Fig. 251 represents part of an ordinary bicycle screw-

spanner. By means of the screw thread S and the rack B0
1?

an

upward force a is given to the movable piece. If a short rod DE i<?

placed between, the jaws, required to find the force /3 which is exerted on

the rod when the magnitude of a is 3 Ibs. weight, and the coefficient of
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friction between the movable and fixed parts is 0*4. The distance

between the axes of a and ft is 1", between A and G 1-5", between B
and & 0-6".

The effect of -
/J downwards on the movable piece, Is to press

the latter against the fixed part at A and B, and since the lower

jaw is tending to move upwards the friction acts downwards, and

hence the total reactions at A and B slope as in Fig. 251.

Draw the axes of the four forces, a, /3 and the two reactions,

the distances being taken double the actual ones, Find the points

Pro. 232.

FIG. 251.

of intersection and O
l
of ft and the reaction at !>, and a and the

reaction at A. For equilibrium, the resultant of a and the reaction

at A must balance /? and the reaction at B, hence this resultant

must have the direction 00
l

.

Draw a vertically upwards of length 3", and through its end

points draw o-
3
and <r

3 parallel to A0
l
and 00

l respectively. This
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gives Oj the reaction at A. From the ends of <r
2
draw <r and -

/5

parallel to OB and P respectively. Then a + <r-^3 + cr
1
s=0 and

/3 is the force of the moving piece on the rod.

Another, and perhaps, slightly simpler, way of solving the

problem is as follows. Find the point F of intersection of the

reactions at A and . Resolve a acting along l
into two

parallel forces along ED and the parallel through F. The former

component is the reaction of the movable piece on the rod.

Compare the results obtained by the two methods.

EXAMPLE. Fig, 253 represents the load stage and part of the

rack of a screw jade for raising loads eccentrically. AB is the pitch

line of the rack along which the lifting force

a acts, the load /3 is carried Inj C. D and

E are parts of the casing against which the

rack presses when a load is being raised.

AD = 0-5", DE = 5" and the distance of

the load line from AB is 3 "5". When the

load is 2*6 cwts., find the smallest magni-

tmle of a necessary to raise the load if the

coefficient of friction between the rack and

casing is 0*3.

Draw the axes of the forces a and /3

and the reaction lines of D and E.

Find the point F of intersection of the

two latter, and resolve {3 through G into

two parallel forces, one through the

point F and the other along AB. The

component along ABis a. FIG. 253.

(42) Find a also by the method first given for the previous example and
compare the results.

(43) Find the least value of a necessary to prevent the load descending.

EXAMPLE. ABCD (Fig. 254) represents a horizontal drawer. It

is attempted to putt the drawer out of its case ly a non-central handle

P. Neglecting the friction at the bottom of the drawer, how far may
the drawer le pulled out before jamming, /"/*= 0*6?

N

CD
B
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Suppose the drawer is pulled out a distance AA
l

; then, owing
to the pull being non-central, the drawer is pressed at 6* against
the right slide, and at A

l
to the left. The reaction at C makes

angle e with CD (tan e = 0*6 : actually for motion is a little less

than c for rest) ; the axis of the pull meets this reaction line at

0. At AD the reaction is along -^A", making e with A
1
1>

1
*

Neglecting the weight of the drawer there are three forces, and

*' N

B,

three only, acting on it, viz. the pull and the two reactions.

For equilibrium these must pass through at point.

Now is fixed relatively to the drawer, hence A
l moves until

AjK passes through 0, i.e. the drawer can be pulled out a

distance AA^ where OA% makes an angle e with CD.

Hence to find point A^\ Divide GL into 10 equal parts, set

off 10= 6 of these. Mark N on CDy
where LN^LOi join ON,

cutting AD at A%\ then the drawer can be pulled out a distance
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(44) Find the farthest distance that the handle may be from the centre
line in order that the drawer may be pulled out to within a quarter of its

length, ju= 0'6.

(4.5) The handle being midway between the centre line and a side, find

/A if the drawer jams when pulled out half its length.

EXAMPLE. ABC (Fig. 255) represents a wedge, DE a uniform

iron rod of weight 7 "2 Us., hinged at D and resting on the wedge at E.

The coefficient offriction between the rod and wedge is 0*3, and between

the wedge and ground it is 0*4. The wedge is pushed hj a horizontal

force a so that it is just on the point of motion ; determine a if the

weight of the wedge may le neglected ; given

PIG. 255.

The line of the reaction at E is known, also the weight of the

rod acts through its mid-point, and since the rod is in equilibrium
the direction of the reaction at D is known; hence find the

forces by the vector polygon. The force at E on the wedge is

now known, the axis of a is known, and also the angle the

reaction of the plane makes with the vertical ; hence draw the

vector polygon for the wedge^ and determine a from it.

(46) The weight of the wedge being 3 Ibs., acting through the M.C. of the
triangle ABO, determine a.

(47) Determine a when AG= BG= 1 ft. ; ^ is the same for both surfaces,
and the weight of the wedge is 4 Ibs,
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In the problems on friction so far discussed it has been

supposed that the body considered remains in equilibrium until

the total reaction of the surface makes the angle of friction with

the normal. This is not always possible, as the body ma}' begin
to turn about some point or edge before sliding commences,

EXAMPLE. A cube of 2" side rests on a rough horizontal, pl'tn?,

for which /*
= 0*6

;
it is acted on by a horizontal force perpendicular in

a face and passing through Ike mid-point of fhr. fop face. Sftev: thai,

however large this force, the cube uill not si Itie, but that equilibrium

will be broken by the cube turning about an edge.

O
y

A, A B

FIG. 256.

Draw a square of 2" side to represent the central section of

the cube containing the axis of the horizontal force.

While the cube is in equilibrium the three forces horizontal

push, weight, and reaction of the plane pass through a point.

This point 0, Pig. 256, is determined by the intersection of the

horizontal axis and the vertical through the M.c. of the cube.

If about to slide, the reaction of the surface makes an angle with

the vertical whose tangent is 0*6 ; draw this line OA
l through

0\ it cuts the plane outside the base of the cube. But

the plane reaction must act within the base, and hence it is

impossible for the cube to be on the point of sliding.

As the push a increases from zero, the total reaction of the
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surface makes a larger and larger angle with the normal until

it comes to the position OA. Evidently when the reaction is

at A, A(J must barely touch the ground except at A, and the

cube must be on the point of rotating about the edge through A.

Draw the vector polygon of the forces when OA is the line

of reaction of the ground, and determine the greatest value of a

consistent with equilibrium.

EXAMPLE 2. A cable reel has an outside diameter of 4 ft. ; the

radius, from which the cable is uncoiled, is at a certain moment 1/36

ft. The reel is placed on the ground (coefficient of friction
= 0'2S) ;

find the point at which the cable must be taken off,
and the direction

of the cable at thnt point, so that the reel may be just on the point of

slipping and faid the force necessary to effect this if the reel and

cable weigh 0'32

tons.

Draw (Fig. 257)

to scale circles

representing the

reel AB which

rests on the

ground, and the

layer from which

the cable is being

uncoiled. Then,

since both the

weight and the

reaction of the

ground must act

through A, so

must the pull of

the cable. Draw
j /, , *. ^AB

l
a tangent to

inner circle, which gives the direction in which the cable is taken

off, and the point Bl (there are two such points) at which the

cable leaves. The vector polygon must now be drawn, the three
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sides being parallel to a, /3 and y respectively ;
c is the angle of

friction.

Measure the pull of the cable and the reaction of the ground.
Since for equilibrium the three forces must pass through A if

the cable be taken off at any other point than B
l
the reel will roll

Try an experiment, illustrating this, with a reel of cotton.

EXAMPLE. The ground slopes at an angle of 30 and the reel

is just on the point of sliding doion, find the point at which the

cable leaves the reel and

the direction and magni-

tude of the pull on it.

Draw (Fig. 258) the

plane and reel in posi-

tion as shewn, also

the vertical through
the centre G of the

reel. Since the reel is

by supposition about

to slide down the fric-

tion must act upwards;
draw then, at A, a line

making the angle of

friction with the nor-

mal. This line cuts

the vertical through G

at a point ; from

draw tangents to the

inner circle touching

it at points B and B
2 ;

these points of contact

are the points at which

the cable may leave the reel, and the tangents themselves are the

directions of the cables.

Now draw the vector polygons for the two cases and determine

the senses of the pulls and their magnitudes.
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(48) One end of the cotton on a large reel is fixed to a vertical rough
wall ; If the reel rests in equilibrium against the wall and is just on the

point of slipping down, find the point at which the cotton must leave

the reel; given /*=0*6, the outer radius of reel=l", the inner radius at

which the cotton unrolls = 0'45".

If the reel weigh 7 ozs. find the tension in the cotton.

(49) One end of the cotton is fastened to a rough plane, /u.
= 0*3, of

inclination 45. Find the inclination of the cotton if the reel is about to

slide down the plane.

(50) Why is it not possible to cause the reel to be about to slide up the

plane by pulling at the cotton.

(51) Stand a thick book upright on a table and push it, perpendicular
to the cover, with a pencil, first near the table and gradually increasing
the distance until the book topples over. Measure the thickness of the

book and the height of the push and calculate p.

(52) Draw a rectangle of height 4" and base 2" to represent the right
section of a cuboid through its centre, at points distant , |, f ,

... inches

from the base ; suppose horizontal forces applied in turn until equilibrium
is broken, Mark the corresponding points on the base where the total

reaction of the surface cuts it, the coefficient of friction being 0*3. Find
the highest point at which the force may be applied.

(53) Draw a square of side 3" to represent the section of a cube through
its centre, and a line through a top corner inclined at an angle of 30 with

the horizontal, to represent the line of action of a pull on the cube. The
coefficient of friction being 0'4, find the greatest possible pull, if the

equilibrium remains unbroken. Draw the axis of the total reaction of

the surface. Weight= 107 Ibs.

(54) In the last example, if the pull be exerted at an angle below the

horizontal, find the greatest angle for which sliding is possible and the

greatest pull possible if the cube does not move.

(55) ABG (Fig. 259) is the right central section of a triangular prism,
ABG being a right angle. BG rests on rough horizontal ground. A rope
is fastened to A and pulled horizontally as indicated parallel to BG. If

AB=4t'l' 9 BC=3'5
f

) and y.
= 0*3, determine if sliding is possible. If so,

find the least value of a that will cause sliding.

(56) If a be reversed in sense and /-c=0*4 will sliding be possible?
Give reasons. What value of a will cause the equilibrium to be broken
in this case, and what value of fj, would cause it to be broken by sliding
with this value of a ?

(57) BG (Fig. 260) is part of an inclined plane of inclination 20. ABOD
is a cube kept in position by a string parallel to

t
BG and fastened to D.

What is the greatest value of IJL consistent with* equilibrium ? If //, has
this value find the greatest value of the pull in the string consistent with

equilibrium if the cube weighs 11 Ibs.

(58) As in last example, but let string slope upward at an angle of 45
with horizontal.

(59) In Fig. 260 make AB=2BO. If ^=0'3, find the direction of the

string attached to D so that the prism may be on the point of turning
about the edge at O.
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FTG. 260.

MISCELLANEOUS EXAMPLES. VII.

1. An experiment was performed In which a loaded slider was, by a
suitable horizontal force /*, caused to be just on the point of motion.

Plot the values of P and the weight of the slider W given in the table on

squared paper, and determine approximately the value of the coefficient

of friction.
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Direction of Motion
2. In Fig. 261 the circles represent

~*

the coupled driving wheels of a railway
engine. If the engine is starting, show
roughly the direction of the pressure
between the wheels and the rail. Give
a reason for your answer.

(Naval Cadets.)
FIG. 261.

3. A particle whose weight is 10 Ibs. is placed on a rough plane inclined
at an angle of 30 to the horizon ; it is acted on by a force up the plane
equal to the weight of 6 Ibs.

s acting along the plane ; the particle does not
move ; find the friction between the particle and the plane.

If the particle is just on the point of sliding, find the coefficient of

friction. (B. of E., II.)

4. A uniform rod rests with one end against a smooth vertical wall,
and the other end on a rough horizontal plane ; it can just stand without

sliding when its inclination to the horizon is 45
;
find the coefficient of

friction ; also find the inclination when the friction called into play is one-
half of the limiting friction. (B. of E., II.)

5. If the angle of friction for an inclined plane be 45, determine

completely the least force that will drag a weight of 100 Ibs. down a plane
inclined at 30 to the horizontal (B. of E., II., 1906.)

6. Find graphically the magnitude of the least horizontal force which
will support a weight If on a rough plane whose inclination a< tan"" 1

/x.

(B.Sc., 1904.)

7. Define the coefficient and the angle of friction. A, body weighing
500 Ibs. is sustained on a rough inclined plane (base twice the height) by a

rope pulled in a horizontal direction. Prove that the greatest and least
tensions of this rope consistent with equilibrium are about 389 and 134
Ibs. wt. (Inter. Sci., 1904.)

8. Find, graphically by preference, the direction in which a force of

given magnitude must act if it is just able to move a body of given weight
up a rough inclined plane, the coefficient of friction being known.
Shew that when motion is possible there are in general two such

directions. (Inter. Sci., 1900.)

9. A beam rests against a smooth vertical wall and a rough inclined

plane of inclination a passing through the foot of the wall Determine the

greatest angle the beam can make with the vertical.

(Inter. B.Sc. (Eng.), 1905.)

10. Define friction and limiting friction. Explain briefly what is

meant when friction is said to be a passive force.

A B is a uniform rod of weight 10 Ibs. ; it lies on a rough horizontal table,
and is pulled at the end B in the direction of its length by a force of 2 Ibs.

If AB stays at rest, how much friction is called into play ?

Everything being as it was, a thread is tied to the end B and is pulled
vertically upwards by a gradually increasing force P; find the least
coefficient of friction for which P will begin to lift the point B. How will
the rod begin to move if the coefficient of friction equals 0'25 ? (B. of E., II.)
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11. A body is placed on an inclined plane and the coefficient of friction
is ^ ; it is acted on by a force along a line of greatest slope ; find the force
when it is on the point of making the body slide up the plane.

(B. of E.,IL, 1903.)

12. A ladder A B rests on the ground at A and against a vertical wall at
B. If AB is inclined to the vertical at an angle less than the angle of

friction between ladder and ground, shew geometrically that no load, how-
ever great, suspended from any point in the ladder will cause it to slip.

(B.Sc., 1905.)

13. A weight rests on a rough inclined plane, whose inclination (a)
exceeds the angle (X) of friction, being prevented from sliding by a force P.
Find (geometrically or otherwise) the direction and magnitude of the
least force which will suffice for this purpose. (Inter. Sci., 1906.)

14. A uniform circular hoop is weighted at a point of the circumference
with a mass equal to its own. Prove that the hoop can hang from a rough
peg with any point of its circumference in contact with the peg, provided
the angle of friction exceeds 30.

(Relative to the point of support the M.C. of the hoop and particle lies

on a circle of radius half that of the hoop.) (Inter. Sci., 1905.)

15. Draw a horizontal line ABC, AB= l" and #0=3". Let ABO
denote a uniform beam of weight w resting on a rough prop at 5, and
underneath a rough prop at A . Find the direction and magnitude of the

least force applied at the end which will just begin to draw out the beam
from between the props. (B. of E., II. , 1906.)

(Draw the reaction lines at the points A and B to intersect in D,
resolve the weight of the beam acting at its M.C. into two, one passing

through I) and the other through C, the latter component to be the

least possible. )

16. Prove that a sash window of height a, counter-balanced by weights,
cannot be raised or lowered by a vertical force, unless it is applied within

a middle distance a cot <p (<p the angle of friction).

If the cord of a counter-balance breaks, the window will fall unless the

width is greater than a cot <p. (B.Sc., 1902. )

17. A square window sash weighing 30 Ibs. slides vertically in grooves.
From the two upper corners sash cords are carried over pulleys and carry
two counterpoises each of 15 Ibs. Shew in a diagram the forces acting
on the sash when one of the sash cords breaks, and find the least coefficient

of friction between sash and grooves that will keep the sash from sliding

down, if all other friction may be neglected. (C.S., Div. I., 1905.)

18. If a body having a flat base is placed on a rough inclined plane of

inclination i and angle of friction X, and the body is pulled by a horizontal

force F, prove that for equilibrium P must lie between the values

JPtanfo'+ X) and TFtan(i-X) where X= weight of the body. If X > f,

explain the second case. (Inter. Sci., 1906.)

19. Define the coefficient of friction and the angle of friction for two

rough bodies. A mass of 500 Ibs, on a rough inclined plane for which the

coefficient of friction is I- and whose inclination is tan' 1

1-
is sustained by a

rope which is pulled in a horizontal direction ; prove that the greatest and

least tensions of this rope are about 389 and 136*4 Ibs. wt. respectively.

(Inter. Sci, 1904.)



CHAPTER VIII.

MOMENTS.

To obtain a real grasp of the theory of moments the experiments

described in Appendix I. should be performed. It is only by

actually performing such experiments that the physical meaning
of turning moment or torque becomes realised.

DEFINITION. Tlie moment of a force about a point is the

product of the force and the perpendicular distance of its axis

from the point. It is positive if the direction and sense of the

force relative to the point is contraclockwise, negative if clock-

wise.

Geometrical Representation. From the point draw any
line to the axis, then the area of the parallelogram which has

this line and the vector of the force as adjacent sides, measures

the moment. If the sense of the boundary, as given by the

vector, is contraclockwise, the moment is positive.

Thus, if (Fig. 262) is the point, a the axis, and a the vector

of the force, the positive area OABC measures the moment.

Whatever the direction of OA, the area and the sense of the

boundary remain the same.

For a given force, the moment in general changes when the

point is changed in position. In Fig. 262 the farther is to

the left of a the greater the positive moment. When is on a

the moment vanishes, and on crossing to the right of AB, the

moment is negative. If, however, O moves on a line parallel to a,

the moment remains unaltered.
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It is important to notice that when the moment of a force is

zero about a point 0, we may have either OA or AB zero, i.e.,

the force itself may be zero, or it may pass through the point ;

to decide which alternative is correct further information is

necessary.

FIG. 262.

Taking account of sense, OABC or an area equivalent to

it is called the momental area of the force a in a about the

point 0.

Unit Moment. There is no special name in general use for

the unit moment. If we use a Ik wt. as the unit of force and a

ft. as the unit of length, then the unit moment may be called

one Ib. ft. moment. This of course might mean a force of 1 Ib. wt.

at a ft. distance, or 2 Ibs. wt. at 6" distance, etc. ;
later we shall

see that these are really equivalent. Whatever the units of foroe

and length used, it is necessary to specify them in giving a

number as the measure of a moment.

Graphical Measurement of a Moment.

EXAMPLE, ab (Fig. 263) is the axis,, AB the vector of a force.

Required the measure of the moment of the force about a point

(distant p from ab). AB = 2'65", scale 1 cm, to 1 Ib. wt., and
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Take a pole P of the vector polygon at a distance h (2") from

AB. Through draw a line A& parallel to ab, and through

any point Q in db draw QA l parallel to PA, and QBl parallel

to PB, cutting A l
B

l
in A

l
and Br

Measure A
l
B

l
on the J em. scale ;

it is the moment of the

force AB about in Ibs. inches.

Ibs. inches (moments)
d 6 8 10 12 14 16 18 20

s 3 4 5 6 7

Ibs. wt

FIG. 263.

8 9 10

Proof. PAB and QA 1
B

1
are similar triangles, and therefore

From the ratios it is seen that p and h being in inches,

must be measured on half the AB scalo,
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(This is really our old argument of p. 46 ; the moment is represented by
a rectangle p . AR, or by an equal rectangle A-JZ-Ji. If the base U is the
unit of length then the altitude A 1

B
[̂
measures the area ; if h be twice the

unit of length, the altitude is only \ what it was before, and to obtain
the old altitude we must multiply by 2, or use a scale with J the old unit.)

Sense of a Moment. If the vector polygon and moment

diagram be drawn according to rule, an inspection of the latter

will shew whether the moment is positive or negative.

The radial lines of the vector polygon are always supposed
drawn in the order of the vectors, and the link polygon lines in

the same order.

Hence the order in which the points A^ v ... are drawn gives

the sense of the intercept downwards in the case considered.

The force being in ab and downwards, the moment about is

negative ; hence the rule : if the intercept lias a downward sense the

moment is negative, if upwards, a positive sense.

(1) Verify this rule by taking on the other side of ab.

(2) Verify again by taking P on the other side of AB.

(3) A force is given by a length 3*48 inches (scale 10 Ibs. to 1*25 cm.),
find graphically its moments about points distant 6 "72 ft, from it on

opposite sides of the force axis.

(4) Find the moments in Ex. 3 by drawing through lines parallel to

PA and PB and measuring the intercept on ab.

Another Graphical Construction. With as centre on

your drawing for Fig. 263 describe a circle of 1" radius. From

any point Q on ab draw QO and a tangent QT to this circle.

Find the components of AB in ab along QO and QT. Measure

the latter component on the cm. scale
;

it is the moment of AB
about in Ibs. ft. units.

Proof. The sum of the moments of the components of a force

is equal to the moment of the force itself (see p. 296). As one

component passes through and the other is at unit distance

from it, the second component must measure the moment.

Sum of Moments of Like Parallel Forces.

EXAMPLE. Draw four parallel lines distant apart 1*22, 2*38 and

1'94 inches, and let downward forces represented ly lines of 3, 4, 2*5
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and 3-7 cms. (scale 1" to 10 Ibs. weight) ad in these. Take a point

1-43 inches to the left of the first axis. Find the sum of the moments

of these forces about 0.

Add the vectors of the forces, and choose a pole P distant

3 inches from the vectors (Fig. 264).

-Draw the link polygon R^Jl^R^R in the usual way and

produce the links to cut the line through parallel to ab in
V Y Y
-AJ, A^ ..., A 5

.

Measure A^Xj in inches and multiply by 30
;
the product is the

sum of the moments in Ibs. inches.

Proof. Let .rp #
2 ,

x
?>
and x

4
be the distances of from ab, be,

cd, de. Since the A PAB is similar to Jf^YjA^,

. ~,
h x

l

Again, PJStf, PG'D, PJPJ0 are similar to R
2X.2XB ,

^l^A^, respectively;

Adding, we get

Sum of the moments of the forces about

= h
(JTA + JSTj

And since AT
XA^ is downwards, the sum is negative and the

moment cloekwise.

Obviously? for more than four forces we only need to extend

the construction
\
the method will be exactly the same.

The sum of the moments is thus represented by a rectangle of

height AjA^ and base h. The moment of 1 Ib. inch is represented

by a rectangle of height O'l" and base 1"; hence, since h = 3",

to reduce h . JTjX. to unit base we must treble the altitude,

i.e. 3 . A\A"5 measured on the tenth inch scale gives the sum of

the moments in Ib. inches,
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The moment of the resultant force AE acting through E is equal to

the sum of the moments of the components.

If a is the perpendicular distance from on the axis of

then l^Xs ^AE_ Qr
x h

3O 60 90 I2O

Ibs. inches (moments)

PIG. 264.

If the point about which moments are to be taken is at O
l9

in

the space c, then the moment of AB is h .8^ and is positive; the

moment of BC is h . $
2
$3 and is positive ; the moment of CD is

h . $3
$4 and is negative ; and the moment of DE is h . S4S5

and

is negative : the algebraic sum of the moments is thus h . $j$5 or

the intercept between the first and last lines of the link polygon

multiplied by h.

For all positions of then, the intercept, between the first and

last lines of the link polygon multiplied by h, measures the sum

of the moments.

A simple inspection of the figures shews that this sum must

always be equal to the moment of the resultant.
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Fig. 264 "has been drawn for parallel forces having the same

sense ; the conclusion applies to all parallel forces which have

a resultant.

The sum of the moments of a number of parallel coplanar

forces about any point in their plane is equal to the moment

of the resultant about that point. The algebraic sum of the

moments is given by the intercept, between the first and last

lines of the link polygon, on a line drawn through the point

parallel to the forces.

Notice that, the sum of the moments about any point in the

resultant is s&ro.

(5) Find the sum of the moments about points in the spaces a, d and e.

Sum of Moments of Unlike Parallel Forces.

EXAMPLE. Draw six parallel lines ab, be, cd, de, ef (from left to

right), the spaces b, c, d, e and f being 0*82, 1*2, 1*46, 1*79 and

113 inches wide; forces of 4*6 (down), 1*5 (up), 5*45 (down),

2*8 (down), 5 (up) and 3*2 (dozen) Ibs. weight act in these lines.

Find the mm of the moments about a point distant 1*18 inches to

the left of ab.

Take a pole P (Fig. 265) at 2 inches distance from the sum AE
of the vectors, and proceed exactly as before, the only difference

being that the link polygon is now re-entrant Measure A^^
on the force scale and double the number obtained

;
the result

is the sum of the moments in Ibs. inches.

(6) Parallel forces of 3'3, 4'1, 2 '3, 1*5 and 2*8 tons weight act on lines

distant. 7, 8, 4 and 6 ft. apart from left to right, the first and last forces

being downwards and the rest upwards ; find the sum of the moment
in ton ft. units about the points,

(i) distant 3 ft. to right of axis on extreme right,

(ii) distant 4*5 ft. from first and 2 '5 from second axis,

(iii) distant 1*8 ft. from third and 2*2 ft. from fourth axis.

(7) Find separately in cases (ii) and (iii) the sum of the moments of all

the forces on the left and on the right of the point.
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(8) The distances apart of the centres of the wheels of an express engine
and tender are 9' 8", f/ 3",

'

0", IT :>%)", 6' If and 0' 0" from the leading
wheels backwards. The loads carried hy these wheels are 14 tons If) ewts.,
17 tons 8 cwts., 14 tons, 14 tons 10 cwts., 1'2 tons f> cwts., 12 tons 10 cwts.
and 13 tons 5 cwts. The engine is partly on a bridge, one bridge support
being mid-way between the centres of the fourth arid fifth wheels. Find
the sum of the moments of the loads about the support.

FIG. 265.

Sum of the Moments of Parallel Forces in Equilibrium.
The sum of the moments of such a set of forces is zero for all

points in their plane, and the sum of the moments of all the

forces on one side of a point is equal in magnitude but opposite

in sense to the sum of the moments of all the forces on the

other side.

Any one force of the given set reversed in sense is the resultant

of the rest. Its moment, for all points, is minus the moment of

the resultant and this is equal to the sum of the moments of the

rest. Hence the sum of the moments of the given set of forces is

zero. A proof from the link polygon is given on p. 292.
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EXAMPLE. A locomotive has the centres of the wheels from front

to rear at the following distances apart, 8' 9", 5' 5", 5' 5", 6' 0". The

loads borne by these wheels are 6 tons 8 cwts., 14 tons 6 cwts., 14 fawis

8 cwtfs., 16 fofts 7 cwts., 16 tows 7 cwfc.; the engine is on a freely

snppmied bridge of length 40 ft, and the leading wheel is at a distance

of 9' from the left-hand pier. Find the sum of the moments of all the

forces to the left of a point mid-way between the third and fourth

wheels about that point.

Draw the reaction and load lines of the bridge to scale (say,

1 cm. to 1 ft.) ; then set out the load vectors AB, EC, CD, BE and

EF to a scale of (say) 1 inch to 10 tons (Fig. 266). Take a pole

P at a distance of 20 cms. from AF, and draw the link polygon

XP^RvR^R^R^Y i X and Y being the points on the reaction lines.

Since there is equilibrium, XY must be the closing line, and

the reactions are determined by drawing PO in the vector

polygon parallel to XY.

Through Z, the mid-point of the space d, draw a line parallel to

the axes and cutting XY in M and R
3
R4 in N.

Measure MN on the force scale and multiply by 20 ; the pro-

duct is the sum of the moments, about Z, of all the forces to the

right or left (taking account of sense) of Z.

Proof. To find the sum of the moments of all the forces to

the left of Z, we find the intercept between the first and last

line of the link polygon. The first force (the 'reaction) has OA
as its vector, and therefore the first line of the link polygon

(drawn according to rule) is XY, the second is X^E^ the third

R^Efr the fourth is R%Pi$ and the final (taking into account only
forces to the left of Z) is R^R4

. Hence MN gives the sum of the

moments of all forces to the left of Z, its sense is downwards and
the moment therefore negative.
The unit moment of a ton ft. is represented by a rectangle of

height 0*1 inch and base 1 em., the sum of the moments is given,
from the construction made, by a rectangle of height MN and
base "20 cms. If we measure MN", therefore, on the force scale and

multiply by 20, we have the sum of the moments in tons ft.
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(20 cm. was taken as h instead of 10 to avoid the lines of the

link polygon being too steep.)

For the sum of the moments about Z of all the forces on the

right we have It
z
R

4
as the first link, and since FO is the last

force, XY is the last link, and the intercept is now KM. The
sum of the moments is, therefore, of the same magnitude, but of

the opposite sense.

The total sum of the moments is therefore zero.

Evidently, the deduction is true for all parallel fwees in equilibrium.

800

Pio. 2(56,

(9) The distances apart of the centres of the wheels of an express engine
and tender are (from the leading wheel backwards) 12' 0", 10' 0", 8' 7*25",

6' 9" and 6' 9". The loads borne by these wheels are *21 tons 15 cwts.,

* This load of 21 tons 15 cwts. is really that borne by the two pairs of bogie
wheels ; they are taken as one load to make the example simpler. The first

distance, namely 12' 0", is from the centre of the bogie truck to the front driving
wheel.
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19 tons, 19 tons, 12 tons, 12 tons 5 cwts., 12 tons 13 cwts. The engine
stands on a bridge, the left-hand support being 11' 6" from the leading
wheel (centre), and the bridge is 75 ft. long. Find the sum of the moments
of all the forces to the left of the centre of the bridge about the centre.

Two Parallel Forces, (i) Of same sense. This is only a

special case of the general construction, but it is worthy of

separate consideration.

Draw (Fig. 267) any two

parallel lines ab and be, arid

vectors AB, BO of the forces

supposed to act in those lines.

Construct the axis of the

resultant in the usual way
and mark R^ Jf?

,
11 and Iiz

where the axes of the forces

cut the links. R$R x h then

gives the moment of the force

in be about any point in axis

of resultant, and RR% x h gives the moment of the force in ab.

From the triangles R^R^R and R$RR2 ,
which are similar to

triangles in the vector diagram, we obtain

d~~

and therefore
J)G

or, the resultant divides the distance between the axes inversely

as the magnitudes of the forces.

Notice that R
LR% is any line

; if, then, the axes turn round any

points R^ and Ji
2
and remain parallel, the axis of the resultant

turns round a fixed point in R^^ viz. R3
.

(ii) Of opposite senses. Construct as in the previous case ;

now BC is -upwards and the axis of the resultant is external

to the other axis and nearer the greater force.

See from the similar triangles that the axis of the resultant

divides externally the distance between the other axes inversely
as the magnitude of the forces.
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(iii) Equal in, magmfwh Iwt opimila hi SMIM. This is the

case already considered in the chapter on the link polygon (p. 1 84).

(10) The axes of a couple are 3*70" apart, each force is of nuitpiitnde
7 "21 Ibs. weight. Take the pole at unit distance from the vector line and
find a line giving the momenta! area of the couple in Ib. inches.

(ll^With the same forces as in Ex. 10 find a line giving the niomcntal
area of the couple in Ib. centimetres,

^
(1*2) If a kilogramme= 2 -204 Ibs. tind the momenta! area of the couple in

Ex. 10 in kil-centjmetre and kil-inch units.

Moments of a Couple. Direct Proof. Tim SUM of the

moments of a couple of force* is the same for all poinfs in the plane
and is equal to the momental arm, of the couple.

a and - a being the forces and

(Fig. 268) any point, the moment
of a about is given by OABEO,
that of - a about is given by
OEODO. The algebraic sum of

these is ABCJJ, which is the mo-

menta! area of the couple, and this

result is quite independent of 0.

The moment and the couple are two distinct things. The

couple is simply the pair of forces, tlie momenta! area of the

couple measures the sum of the moments of the pair of forces

about every point in the plane.

Sum of Moments for Concurrent Forces. Draw any

parallelogram OACB (Fig. 269) and let

OA and OB represent concurrent forces,

then 00 represents their resultant.

Take points P, P1
and P

2
as indicated,

and measure the perpendiculars from

them on OA, OB and 00. Find the

algebraic sum of the moments of OA
and OB about P, Pl

and P
2 ,
and com-

pare with the moments of the resultant 00 about those points.

(13) Draw any three non-concurrent lines and take an arbitrary rector

polygon for the forces in them. Find the axis of the resultant by the

link polygon. Measure the forces and resultant to any scale. Mark some
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point on the paper and measure the perpendiculars from the point on the

four forces and calculate the moments. What is the connection between

these moments ?

The algebraic sum of the moments of two concurrent forces

is e<roal to tlie moment of the resultant about all points In

their plane.

Proof. Let a, b and c (Fig. 270) be the axes of the two forces

and their resultant, the senses being as indicated. P is any point

in their plane.

Through P draw a

line parallel to c, cutting

a and b in A and B.

Then AB may be

taken to represent the

resultant in magnitude,

direction and sense, and

AOB is the vector poly-

gon for the forces.

Then the moment of

AO about P is twice

AOP and is positive, the moment of OB about P is twice OBP

arid is negative; therefore their algebraic sum = twice AOB and

is positive.

(Notice that the sum is the same for all points in AB or AB

produced, and that, whatever the position of P, it is always twice

the area of AOB and in the sense of the letters.)

Draw B0
l parallel to AO

\
then twice AOB= A00^B and

therefore measures the moment of AB in c about A, B or any

point P in AB.

It will be seen that the proof is perfectly general for all

positions of P.

For any system of coplanar forces tlie sum of the moments

of the components is, for all poles, ectual to the moment of

the resultant (if there is one), or to the momenta! area of

the resultant couple (if there is one) or is zero.

FIG 270.
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Proof. This result follows at once from the link polygon
construction, which consists in finding the resultant of concurrent

forces two at a time, and since the theory of moments holds

at each new composition it must hold at the final step when the

resultant or resultant couple is found.

As a particular case consider the decomposition on p. 2CK1

Taking moments about A', we have moment of AB = moment
of AD, arid hence AD is uniquely determined.

Sum of the Moments of any Number of Forces about
a Point. If the forces have a resultant, take the pole of the

vector polygon at unit distance (or a simple multiple thereof)
from the resultant vector. Measure, on the force scale, the

intercept between the first and last lines of the link polygon
on a line drawn through the given point parallel to the resultant

vector.

If the forces are equivalent to a couple (the vector polygon

closed) take a force of unit magnitude (or a simple multiple

thereof) as the arbitrary force vector and measure, on the

distance scale, the perpendicular between the first and last lines

of the link polygon.

(14) The magnitudes of five forces are given by 3 "7, 4*8, G'l, 2*8 and
o'3 eras., the scale being 1*7 inches to 10 Ibs. weight. The coordinates of

points on their axes are (0, 0), (1, 2), (3, 2), (1,4), (2, 3) inches respectively,
and the forces are directed towards N. (the y axis), N.E., 15 1ST. of K.,
8.W. and W. Find the sum of their moments in Ibs. inches about a point
whose coordinates are (1*5, 2*7), the coordinates being all measured in

inches.

(15) Choose the magnitudes of the first and last forces in Ex. 14, so

that the vector polygon is closed. Find the momenta! area of the

equivalent couple.

(16) Find the sum of the moments of three forces of magnitudes 3, 7 "2

and 5 Ibs. weight acting along AB* BC,, GA the sides of a triangle about
a point whose coordinates are (4, 2) inches. The coordinates of the vertices

A, B and C of the triangle are (2, 2), (1, 3), {3, 4) inches.

(17) Draw a triangle ABO of sides A=3, C=3-5 and OA = 4 inches ;

through the vertices draw three parallel lines, and suppose forces of

magnitudes 6*2, 7*4 and 9 Ibs. to act in these lines through A^ B and G
and to have the same sense. Construct the line of action of the resultant
in the usual way. Draw three more parallel lines through -.4, B, (7, making
45 with the first set, and suppose forces of the same magnitude as before
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to act in them ;
construct the new axis of the resultant. Repeat the

construction for parallel lines which are perpendicular to the first set.

See that the three axes of the resultants are concurrent. This point of

concurrence is called the centre of the parallel forces.

(18) The coordinates of four points are (1, 2), (0, 3), (4, 0) and (2 '5, 3'6).

Parallel forces of like sense act through these points and are of magnitudes
2'2, 3 '5, 1-8, 3 Ibs. weight. Construct, as in previous example, three link

polygons, the sides making 45" with each other respectively, and shew that

the" three axes of the respective resultant forces are concurrent.

(19) Three parallel forces equal in magnitude and of same sense act

through the vertices of a triangle. Shew by three constructions that the

resultant passes through the M.C. of the triangle.

Centre of Parallel Forces.

A number of parallel forces pass through points A, B, 0, ...

respectively. If the axes turn about these points so as all

to remain parallel, then the axis of the resultant turns about

a fixed point in itself, the centre of the parallel forces.

Suppose masses to be at A, B, C, ..., whose magnitudes have

the same numerical values as the forces acting through the

points. The mass-centre of these mass-points must lie on the

axis of the resultant force, for the sum of the moments of

the forces arid of the masses have exactly the same numerical

value. Supposing, then, the axes of the forces to have a different

direction, the M.C. of the mass-points must be at the intersection

of the axes of the resultants. But the masses can have only one

M.C., and, therefore, whatever direction the parallel forces may
have, the resultant must always pass through a fixed point, viz.

the mass -centre of the masses.

Since the mass-centre theorem remains true if some of the

points be considered as having negative masses, the above theorem
remains true if some of the forces have a different sense from
the rest.

(20) Parallel forces of like sense and of magnitudes 1*27, 2'18, 3*24,
4*1 Ihs. weight act through the corners ABCD of a square of side 8 '35 cms. ;

find the centre of the parallel forces.

(21) Find the centre of the parallel forces in the last exercise if the 3 '24
Ibs. weight force be reversed in sense.

(22) Draw a triangle ABC having ^5=10*2, BO=11*8, O4 = 6'48 cms.
Parallel forces act through A, B and of magnitudes (in Ibs. weight) given
by the opposite sides. Find graphically the centre of the parallel forces
and shew that it is the centre of the circle inscribed in ABO.
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Mass-Centres by Link Polygons. The mass-centres of a

number of mass-points can be accurately and expeditiously
found by the aid of the link polygon construction.

EXAMPLE. Masses of 1-32, "l-66, 215 and 1'67 Z<k are

concentrated at points whose coordinates in inches are (1*14, 0),

(2-2, M3), (3-36, 2-87), and (4, 2), respectively. Find the position

of the mass centre.

Plot the points on squared paper (Fig. 271), and through them
draw lines parallel to the axes of coordinates; label those parallel
to the y axis m

19
w

2 ,
m

3 ,
m

4
in order from left to right, then

those parallel to the x axis from top to bottom must be labelled

Pio. 271.

Set off the masses m
l (

=
1'32), m$ (=1'66), % (

= 2i5),
m

4 (=1"67) to scale along a line parallel to the y axis, and

choose some convenient pole P
f

for the vector polygon.

Using one side of a set square bounding a right angle, draw

through P
13 any point in the vertical m

l line, a link PP
l

parallel to the first line of the vector polygon. "With the other
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edge of the set square draw through any point Q, in the hori-

zontal line m
19

a link Q(^ perpendicular to the first line of the

vector polygon.

In this way it is quite easy to draw correctly and quickly

two link polygons P^P^P^ Q^QA whose vertices lie on

the vertical and horizontal w lines, and whose corresponding

links are perpendicular.

The intersection at P of the first and last links of the polygon

PjPo/gPj gives a line PB, parallel to Oy, on which the M.O. of

the points must lie, and the intersection at Q of the first and

last links of the polygon Q^Q^Q^ gives a horizontal line QR,

on which the M.c, must also lie. The point R of the intersection

of these lines is therefore the M.c.

Proof. Since the M.c. of a number of masses is the same as

the centre of the parallel forces whose magnitudes are pro-

portional to the magnitude of the masses, all we have to do to

find the former point is to find the axis of the resultant force

in two cases. This is done most conveniently by supposing the

forces acting through the mass-points to be (i) parallel to the

axis of
?/, (ii) parallel to the axis of x.

To find the axis in the first case the vectors of the weights
are drawn parallel to the y axis, and a link polygon constructed,

and the resultant force has PR as its axis.

To find the axis in the second case, the vectors of the loads

may be drawn parallel to the x axis and a second link polygon
constructed. It is, however, more convenient, instead of drawing
a fresh vector polygon, to suppose the first one turned through
a right angle. To construct the second link polygon, therefore,

we have only to draw links perpendicular to those of the first

link polygon. There is less chance of error if the two link poly-

gons be constructed simultaneously, by aid of two perpendicular

edges of a set square, than if one be drawn completely first.

To find the M.c. it will, in general, be necessary to draw two

link polygons, preferably at right angles, each determining a line

on which the M.c. must lie.
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(23) Masses 3, 2%5, 5, 4, 3 '7 11 >s. are concentrated at points who.se co-
ordinates are (1, 0)^(2, 3), (1, 1), (3, 2) incites. Draw two link polygons
at right angles and find the mass-centre.

Test the accuracy of your results by taking moments about the axes of
coordinates.

(24) Choose another pole for the vector polygon in the previous question
and see that the same point is obtained for M*C.

(25) Masses given by lines of length 27, 1'Sfj, 3'1, 1'72, 0'94 inches are
concentrated at the vertices, taken in order, of a regular pentagon of side
3 inches. Find graphically the position of the M.c. and test roughly by
measurement and by calculating the moments.

(26) Draw as follows five straight line segments to form a broken or

zig-zag line: (i) horizontally a length of 4*8 ems., (ii) sloping upwards at
45 a length of 3*75 ems., (iii) sloping downwards at 15 a length of 5*3 cms.,

(iv) sloping downwards at 60 a length of 2*8 cms., (v) horizontally a length
of 4*25 cms. Find graphically the position of the M.c. of the zig-zag line.

(Suppose each line to be concentrated at its mid-point.)

(27) Find graphically the M.C. of six sides of a regular heptagon. (Notice
there is an axis of symmetry in which the M.C. must lie.)

M.C. of Areas "by the Link Polygon. When the area can

be divided up into parts for which the M.c.'s are found easily we

may apply the link polygon to find the M.c. of these mass-points.

At each of these M.c.'s we must suppose a mass concentrated

proportional to the corresponding area.

EXAMPLE. Find the M.c. of the area given by Fig. 272.

Draw the figure to scale and mark its axis of symmetry.

3-7S"

0-751

6"

Fifl. 272.

Divide the area up into top and bottom rectangles and

construct their M.C.'S.

Construct the M.c. of the central trapezium.

Draw horizontal lines through the M.c.'s of the two rectangles

and the trapezium. Reduce the areas of the three parts to unit
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base and draw a vector polygon for masses proportional to the

areas, and finally, by a link polygon, determine the horizontal line

on which the M.C. of the whole must lie.

(28) Find the M.C. of the double angled iron in Fig. 273. (Divide up into

four rectangles and use two link polygons. )

(29) Find the mass-centre of the bar shewn in Fig. 274; the ends are

semi-circles of radii 2 '9 and 2-1 cms., the distance of the centres apart
being 12"! cm.

(30) Find the M.C. of the area in Ex. 29 when a circular hole of radius
1 cm. is cut out as indicated by dotted circle.

3-3*

FIG. 273. FIG. 274.

Irregular Areas. When the area is irregular, or cannot be

divided into parts for which the M.c.'s are known, we may resort

to the method of strip division. Divide the area up into a

number of equally narrow strips, take the mid-point of the

middle line of each of these strips as the M.C. of the strip, and

draw two link polygons for these mass-points. The masses at

the points are approximately proportional to the lengths of the

mid-lines of the strips. If the area has an axis of symmetry
only one link polygon need be constructed.

(31) Draw a semi-oirule of radius 4", divide up into ten equally wide
strips parallel to the base, and determine the M.C. of these strips by the
link polygon method.

(32) Find the M.C. of the irregular figure given on p. 58.
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Centre of Gravity, Centre of Parallel Forces, Mass-
Centre, Centroid, Centre of Figure, Centre of Mean
Position. Every particle of a body near the earth's surface is

attracted towards the centre of the earth. The body being
small compared with the earth, the axes of these forces are

parallel (or nearly so). The centre of these parallel forces is

called the centre of gravity of the body. The centre of gravity
as thus defined is the same as the mass-centre of the body.

Moreover, if the mass be uniformly distributed throughout the

volume, it is the same as the centroid or centre of figure, and as

the centre of mean position.

Centre of gravity is not, however, a good term to use, since it

denotes a point whose position depends not only on the body
but on the earth also, whereas the mass-centre depends on the

body alone and would remain unaltered if the body could be

taken right away from all external forces.

Since the mass-centre or centre of gravity of a body is the

point through which the resultant of the weights of the particles

always acts no matter what the position of the body (near the

earth's surface), the body, if supported at that point, would be in

equilibrium.

This consideration leads to an easy experi-

mental way of finding the M.C. of many
bodies. Suppose a triangular board ABC
(Fig. 275) suspended by a string attached ,

to any point D of it
; then, since only two

forces act on the board, viz., the pull of the

string and the resultant weight, these must

be in a line, and therefore if a line is drawn

on the board in continuation of the string

it will pass through the M.C. By suspending
the board from another point Dl

and mark-

ing the point where the vertical through D- cuts the line already

on the board, the position of the M.C. is determined.

The M.C. of such bodies as cardboard or wooden triangles,
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quadrilaterals, circular sectors, ... should be determined experi-

mentally, and the results compared with the graphical deter-

minations.

^Moment and Couple. The moment of a force a in AB
about a point is the same as the momenta! area of the couple

a in AB and - a in 00 (where 00 is parallel to AB), since both

are given in magnitude and sense by the parallelogram OABC.

^Resultant Couple and Moments. Any set of forces

(coplanar) can be reduced to a resultant force through any
chosen point and a number of couples whose momental

areas are added algebraically to the momental area of the

resultant couple. This couple has therefore a momental area

given by the sum of the moments of the forces about 0.

"""Moments and Equilibrium. If there is equilibrium, the

resultant force and the resultant couple must vanish for any

point 6>
3
hence the sum of the moments about any point must

be zero.

^Moments of Resultant and Components. If a system

of forces has a resultant, this resultant reversed in sense must

be in equilibrium with the components, and therefore the

sum of the moments of the given forces minus the moment

of the resultant must be zero for every point. Hence,

2 moments of components = moment of resultant for all points.

^Theory of three Moments. Any system of coplanar

forces can be reduced to either

(i)
a resultant force,

(ii)
a resultant couple,

(iii)
or there is equilibrium.

If, then, the sum of the moments of the forces about one

point be zero, there is either equilibrium, or there is a resultant

force passing through the point. (There cannot he a resultant

couple because the sum of the moments = the nioniental area

of the couple.)
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If, then, the sum of the moments is zero for three non-

collinear points, the forces are either in equilibrium, or there is

a resultant passing through three iion-collinear points. The
latter alternative being impossible the forces must be in equili-

brium.

MISCELLANEOUS EXAMPLES. VIII.

1. ABOD is a rectangle, .4 ,8= 12, ^<7=8. At A, B, C and I) are
masses 8, 10, 6 and 11 Ibs. Find the M.C. by the funicular polygon.

(6. So., 1905.)

2. Prove that the sum of the moments of two forces in a plane about
any point in their plane is equal to the moment of their resultant about
that point. Can the conditions of equilibrium of a body acted on by a

system of forces in one plane be expressed solely by the principle of
moments? (Inter. Sci., 1906.)

3. What do you understand by
' ' the moment of a force

JJ
1 A down-

ward push of 40 Ibs. acts on a 6" bicycle crank which is 50 below the
horizontal position. What is the magnitude of the moment produced
about the axis ? If, by suitable ankle action, a push is produced at right
angles to the crank in the same* position, how great must this be to

produce the same moment as the downward push of 40 Ibs. ?

(Naval Cadets, 1904.)

4. Indicate the method of finding the resultant of two parallel, unequal,
unlike forces acting upon a rigid body.
A uniform bar 12 feet long, weighing 56 Ibs., rests horizontally upon

two supports, one being under one end A and the other being 5 feet from
the other end B ; supposing a weight of 10 Ibs. to be hung from the end
B, find the pressures on the two supports. (B. of B., Stage I., 1904.)

5. Define the moment of a force about a point and state any theorem

concerning moments.
ABO is a triangle with a right angle at A, AB is 2 feet and AO is

3 feet ; a force of 5 Ibs. acts from A to B and
one of 4 Ibs. from A to 0; find the moment
of the forces about the middle point of BO.

If the point in question were fixed, indicate

on a diagram the direction in which the tri-

angle (supposed to be a lamina) would revolve.

6. When a body capable of turning about
an axis is at rest under the action of two
forces perpendicular to the axis, what is the
relation between these forces? (State the

relation, no proof is wanted.)
The disc in Fig. 276 weighs 2 Ibs. and turns

about the point 0. What force P, acting in

the position shown, is required to hold the
disc in the position shown r

(Naval Cadets, 1903.) FIG, 276,
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7. Fig. 277 represents a, form of wheel and
axle, drawn to the scale of one-tenth. A man
sits oil a platform suspended from the end A and
raises himself by pulling on the end B. What
force must lie exert to support himself, and how
much work must he do to raise himself a distance
of 2 metres V The weight of the man with the

platform is 100 kilogrammes, and the pull at

either end of the tackle to raise a given weight
at the other i twice as much as it would be

without friction. (Military Entrance, 1905.)

8. An hexagonal table, diameter 3 ft. and weighing 50 ibs., has weights
5, 10, 15, 20, 25 Ibs. placed in order, etc. at five of the angles. Determine
the centre of the parallel forces, and its distance from the centre of the

table. (B, of B., II., 1904.)

9. Mark five points in a line PQRST, the distances apart representing
3-2, 4*7, 1-8, and 2'G ft. from left to right. Through P, Q, It, 8 and T
act forces of magnitude 1510, 2150, 750, 1830 and. 1980 Ibs. weight. The
forces make angles of 15% 50, 80% 140 and 250 with PT reckoned contra-
clockwise.
Find the sum of their moments in Ibs. weight about a point U, distant

7 ft. to the left of P, (i) by decomposing each force into two components,
one of which is parallel to PT, and the other passes through the point U ;

(ii) by finding the resultant force.

10. On squared paper mark five points whose coordinates are (2*1, 3*3),

(0-3, 5-2), (3-7, 2-1), (3-9, 4-5), (5-7, 0-8) inches. Masses given by lines of

length 2-35, 1*82, 4'1<>, 3 '05, 2'18 centimetres (scale 15 cms. to 10 Ibs.) are
at these points. Find the coordinates of the mass-centre by construction.



CHAPTER IX.

BENDING MOMENT AND SHEARING FORCE.

Hooke's Law. If a bar be subjected to tensile or com-

pressive stress its length changes ; the relation between the

stress and the elongation, or compression, was discovered by
Hooke, and is usually called Hooke's Law. The law is purely
an experimental one.

If I be the original length of the bar, T the force producing

extension, and e the elongation, then T is proportional to ? or

~,
L

(Hooke's Law)

and X is called the modulus of the bar.

If A is the cross sectional area of the bar, then

is the stress per unit area,
-*O.

, T X e
and

-^-.j.
If ~j

=E then E is called Young's Modulus for the material
-*ri

of which the bar is made.

An exactly similar law holds for compression. Always, then,

if a bar is in a state of compressive or tensile stress it is shorter

or longer than its natural length, and this stress is proportional
to the compression or extension.

For very large forces the law ceases to hold and the elastic

limit of the material is said to have been passed,
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This law Is of great importance in many ways; it has

important hearings on the stresses set up in many frames as

well as on the bending of beams.

Simple Cantilever. AB (Fig. 278) represents a horizontal

beam fixed in a wall at A and loaded at its free end B with a

weight W. (The weight is supposed so large that the weight of

the beam itself may be neglected in comparison with it.) Consider

the equilibrium of the part BP of the beam. It is evident that

YW
FIG. 278.

the force or forces which the part AP exerts on PB must be in

equilibrium with the load W at B. Suppose the beam cut

vertically through at P, then the forces which we have to apply

to the cut surface at P to keep PB in equilibrium must be

equivalent to the reactions of AP on PB.

No single force at P can be equivalent to W at B ; if we

suppose a force - W to act at P, then PB is under the action of

a couple whose momental area is - W. PB (clockwise). Hence

for the equilibrium of PB, we must apply at P an upward force

of magnitude W and a couple of momental area W. PB. The

reaction forces of AP on PB must therefore be equivalent to

- W at P and a couple whose momental area is W. PB.

This is simply another way of looking at the theorem on

p. 206, viz. a force W at B is equivalent to a force W at P and a

couple of transference - W. PB ;
it is this force and couple

which are equivalent to the reaction forces of PB on AP.

This theory can actually be demonstrated by connecting the

two parts of the beam by a rod EF, hinged at its ends, (see
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Fig. 279) and a horizontal string DC passing over a pulley G and

bearing a load Q, whilst a vertical string at D passes over another

pulley and bears a load R.

When the vertical and horizontal pulls on D are adjusted so

that BD is horizontal and in a line with G', it is found that the

vertical pull R is of magnitude 17, and the horizontal pull Q
is such that Q x jjFss w x

E F

YW
PIG. 270.

Since the part PI>, under the action of B, J7, Q and the force

in EF, is in equilibrium, and since R and W constitute a couple,

Q and the force in EF must also form a couple, and therefore

EF is in compression and the stress in it is measured by Q.

The upper fibres of the beam (Fig. 278) must therefore be in

tension and the lower ones in compression, and hence the upper
fibres are elongated and the lower ones shortened. The beam

itself must therefore be bent more or less, the loaded end being
lower than the fixed one. It is these tensile and compressive

forces in the fibres of the beam itself that prevent further

bending, and it is the moment of W about P which tends to

produce the bending. Hence W x PB is called the Bending

Moment at P.

The upward force W at P, of AP on PB, prevents PB sliding

downwards relatively to AP, whilst the external load W tends

to make it do so, hence W is called the Shearing Force at P.

For the portion AP on the left the shearing force and bending

moment at P have the same magnitude but are of opposite senses

to those on the right.
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Bending Moment and Shearing Force Diagram for a

Simple Cantilever.

EXAMPLE. A horizontal beam is fixed in a watt, the length from
the watt A to the loaded end B is 19 p

4/ If the load be 5-18 tons

draw diagrams giving the bending moment and shearing force at every

point of the beam.

Draw AB (Fig. 280), of length 3-88", to represent the beam

(scale 1" to 5
ft.),

and then PQ the load vector, of length

5*18 cms. (scale 1 cm. to a ton).

fW

Flo. 280.

Through P draw PC, of length 2", perpendicular to PQ.

Through B draw BC parallel to OQ, and above AB draw a

rectangle of height PQ (ES in Pig. 280) and base AB.
The triangle ABO is the bending moment diagram and the

rectangle ES is the shearing force diagram.
The bending moment at any point S of the beam is given in

tons ft. by ST measured on the mm. -scale.
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Draw the force and moment scales and measure the bending
moments at points 5*36 and 10-28 ft. from A.

Proof, Consider any point 8 of the beam
;
the moment of the

load W at B about $ is given by (Chap. VIII., p. 288) ST.PU
where ST is parallel to AC.

Since PC) represents 10 ft,, if >STbe measured on the force scale,

i.e. in centimetres, and multiplied by 10 the result will be the

bending moment at S in tons ft,

Hence, wherever S may be in AB, the vertical intercept ST
of ABC gives the bending moment (JB.M.) in tons ft.

Again, since the load to the right of S is always PQ, the

shearing force (S.F.) is constant and, therefore, the diagram for

all points is the rectangle US.

At S the part on the left tends to slide upwards relatively

to the part on the right and we may regard Sli as being drawn

upwards to indicate this. If we wished to indicate that the

part on the right tends to slide downwards relatively to the

left part then Sll would have been drawn downwards.

Authorities differ in this matter. In CotterilFs Applied

Mechanics the S.F. orclinate, at any point, is set upwards when

the part on the left tends to slide upwards relatively to the

right hand part and is set downwards in the other case. In

the article
"
Bridges

"
in the Encyclopaedia Britannica, on the other

hand, the orclinate is set upwards or downwards, at any point,

according as the right hand portion tends to move upwards or

downwards relatively to the left.

Fig. 281 is an example of CotteruTs method of construction,

Fig. 282 an example of the Encyclopedia method. With the

exception of Fig. 282 we shall adhere to the former way, i.e. to

CotternTs method.

B.M. and S.P. diagrams for a beam freely supported
at the ends and loaded at any one point.

EXAMPLE. A learn LM (Fig. 281), of length 21-5/5., is sup-

ported freely at its ends in a hortemtal position. It is loaded with
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a weight W (3470 Ibs.) at a point distant 13-2 from L. Draw the

bending moment and shearing force diagrams.

Draw LM to represent to scale the beam length, and mark the

point N on it where the load acts. Choose a pole P for the

vector polygon at 10 units of length from the load vector AB.

V, B

3OOO

IO,OOO 2O,OOO 3O,OOO
Ibs. ft. (moments)

FIG. 281.

40,000 50,000

Draw the link polygon and close it
;
in the vector polygon draw

PO parallel, to the closing line, so that OA is the reaction at L,
and BO that at M.

At jVi a point on LM-where ^ = 7-72 ft., draw a vertical

cutting the link polygon:in S and T.



FREELY SUPPORTED BEAM. 313

Measure ST on the force scale and multiply by 10, this product
is the bending moment at N

l
in Ibs. ft. Draw a scale of bending

moments and measure the moment at a point distant 15*7 ft.

from L.

Draw a horizontal line UV between the reaction lines at L and

My V being vertically below 31. Set downwards W
l

= 0, and

upwards UU
l
= OA.

Complete the rectangle W-^VKUJJ as indicated; this is the

shearing force diagram. The shearing force at any section is

the ordinate of this diagram reckoned from UV.

Proof. Suppose the beam cut through at N
l:

then the external

vertical force acting on LNj, is OA, and on N^M it is AO, hence

the part LJ\\ tends to slide upwards relatively to N^L
To keep N-^M in equilibrium, we must replace OA at L by

OA at N-^ (the shearing force at JVj) and a couple whose momental

area is OA . LN^ Since this momental area is mejtetti^d by the

moment of OA about A\ it is given by /STand measures

the moment.

Similarly, to keep LN-^ in equilibrium, we mus38|)lace AB at

N and BO at M by AB + BO (
= AO) at JV

1S eoupl^jjf
momental area AB . N^+BO . N^, i.e. by jjjj^ouple
momental area is the sum of the moments of JlBnlncLBO jj

iVj, and this moment is measured by 10 . ST.

Hence, before cutting, the material of

exert shearing stress given by AO or

whose momental area is measured by 10 . >

The shearing stress prevents the shearir

LTVj upwards N-^M downwards ;
the

part N-^M rotating contraclockwise,

Hence the measure of the momental theistifsS couples

at NI which prevent the beam bending^j%107TST.

Similarly, the shear stress at N^ is by
The maximum bending moment is

alJJywhere tlp^ad is, the

shearing force is constant from L to sfitEenly at N
and is constant again from N to If.
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However complicated the loading on a beam or girder, the

process for finding the shearing force and bending moment at

any section is similar to the above.

DEFINITION. T3ie shearing force (S,F.) at any section is

defined as tlie sum of all tike external forces perpendicular to

tlie beam on one side of section, and is considered positive when

tlie rigM-hand part tends to move upwards relatively to the

left-hand part.

DEFINITION, The bending moment (B.M.) is defined as the

sum of the moments of all the external forces perpendicular to

the beam on one side of the section, and is considered positive

when the right-hand part tends to rotate or bend contra-

clockwise.

B.M. and S.F. Diagrams when there is more than one

Load,

EXAMPLE. A bridge 80 //. long is supported freely at its ends.

The leading pair of wheels (centre line) of a locomotive and tender is

15 ft. from one support (abutment) of the bridge, the distances apart of

the centre lines of the wheels are 10' 5"
r
8' 9", 10' 8", 6' 6" and 6' 6",

reckoned from the leading wheels. The loads borne by the wheels are

16 tons, 17 tons, 16 tons, 10 tons 7 cwts., 9 tons, 9 tons. The engine

and tender being wholly on the bridge, draw the B.M. and S.F. diagrams.

Set off the load vectors AB, (Fig. 282), BO, CD, DE, EF, FG
to scale. Choose a convenient pole P and draw the link polygon
as usual Close the link polygon and draw PO in the vector

polygon parallel to the closing line. The intercept on any vertical

line between the first and last lines of the link polygon gives the

sum of the moments of all the external forces, including the

reaction, on either side of the vertical line.

Hence the link polygon gives the B.M. at any point of the

bridge. In this connection the closed link polygon is called the

"bending moment diagram.

In Fig. 282 the pole P is taken as four units of length from

AG, and hence the B.M. diagram must be measured on the force



BENDING MOMENT DUE TO SEVERAL LOADS. 315

scale and the measurement multiplied by 4
; this gives the B.M.

in ton feet.

Draw a horizontal line XYfor the datum line of the shearing
force diagram. At Y set YZ upwards (see p. 311), equal to GO

;

at Y
l
on fg set upwards Y

l
Z

l
= FO at F

2 on ef set upwards
YZ,2 -=EO', at r

3 on dc set upwards F3 8̂
= ZW; at X

z
on 2 set

downwards X^ = OC; at Z
2 on be set downwards X

2
/F

2
= $0;

and at Xj_ on a5 set downwards X
lW^AQ.

W
o 100 200 400 600 800 rooo 1 200 1:400

Tons ft. (moments)

;
it is the shearingComplete the zig-zag

force diagram.

Evidently, for the space g, the shearing force is GfO=YZ, for

the space / the sum of the forces to right is FCr + GrO, and the

shearing force is FO, and so on all along the bridge.
It will be noticed that the maximum bending moment is along

cd, and the maximum shearing force is through the space ct,

(1) A horizontal beam fixed in a wall projects 12 ft., and it is loaded at
its far end with 500 Ibs. Draw the B.M. and S.F. diagrams and measure
the B.M. and S.F. at a point distant 4 ft. from the wall.

(2) A cantilever, whose horizontal distance between the free end and
the point of support is 25 ft,, is loaded at distances of 5, 10, 15 and 25 ft.

from its fixed end with 500, 300, 700 and 1000 Ibs. weights. Draw the

diagrams of B.M. and S.F., and measure these quantities at distances of 8,
15 and "20 ft. from the fixed end.
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(3) A beam of length 30 ft. is supported freely at its ends in a, horizontal

position. Loads of 1, 25, 3, '2 tons weight are
applied

at distances of 6,

10, 20, and 23 ft. from the left-hand end ;
the beam is propped at the

centre, the iipward thrust there being equal to a force of 1'8 tons.

Draw the B.M. and S.F. diagrams and measure the B.M. and S.F. at

distances of 8 and 20 ft. from the left-hand end.

Bending Moment for non-parallel Forces. In such cases

the forces must he resolved into components along and per-

pendicular to the beam. The former tend to slide the beam

off the supports, consequently the beam must be fixed at one

end (say by a pin-joint) and supported at the other. The com-

ponents perpendicular to the beam are alone considered as

producing bending moment.

It is not necessary, before attempting to draw the B.M. diagram,

to find the reactions at the supports ;
the B.M. diagram itself deter-

mines the components perpendicular to the beam.

inclined to the vertical at angles of 15, 30, 60 and 45 towards Q. Draw

the B.M. and S.F. diagrams, and measure their amounts at points distant

7 and 19 ft. from Q.

(5) A beam PQ, of length 18 ft., is pin-jointed to a wall at P and

supported at Q by a chain of length 27 ft. which is fastened to the wall

at a point , vertically P, and distant 12 ft. from it. Loads of 1, 1'2, 2*3

and T8 tons are hung at equal intervals along PQ. Draw the B.M. and

S.P. diagrams.

Reactions non-terminal. Occasionally it happens that the

order in which we have to draw the vectors In the vector

polygon, to determine the reactions of the supports on the

beam, is different from the order of the points on the beam

at which the forces are applied. In such problems it is necessary

to take care that the links of the link polygon, or B.M. diagram,

ace drawn between the proper lines. If the diagram is too com-

plicated to be read easily the vector polygon must be re-drawn,

so that the vectors follow in the order of the points.

EXAMPLE. PQ (Fig. 283) is a horizontal learn of length 25'3 ft.,

it is pin-jointed at P, and rests on a knife edge at E, and is partly

supported by a rope fastened to it at Q. The rope QU passes over a
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smooth pulley at U, rerticdly above P, ami a might W is attached to

the end. The learn being loaded at S, T and V, required to ///// the,

bendiny moment and shearing force at ant/ point.

PC-25-3 ft., PZ7-12-1 ft, P/?=4-3G ft, Pf-lO-y ft.,

P5 = 19-7 ft., PF=22-2 ft.
- the loads at >S

f

,
T and P are 1650,

1890 and 1340 Iks. weight, and the weight suspended at the
end of the rope is 3740 Ibs.

10,000 o 10,000 20,000 30,000 40,000 50,000
Ibs. ft. (moments)

FIG, 283.

Draw the vectors of the loads at $, T and V, viz. AB, BC and

CD; then DE% (E% is not shewn in Fig.) parallel to QU for

the tension in the rope. Project horizontally E% to E on AD.
Notice that the space c in the beam diagram must go from T
to F. Take the pole of the vector polygon 10 units of length
from AB. Draw the link polygon P^ parallel to 0A, 3^
parallel to OB, T^Vl (through whole space c) parallel to OC\

F^ parallel to OD, <?1
B

1 parallel to OE (so that the space e

must be considered as going from QQl round the top of the

beam to the vertical through II). Close the link polygon by

P^ and draw OF in vector polygon parallel to it. Then EF
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is the reaction at E, and FA the vertical component of the

reaction at P. (The space / must be considered as going round

from PP
l
over the Learn to the vertical through R.}

The vertical intercepts of /^S'l^i^i^A ive the bending
moments in Ibs. ft. when measured on the force scale and

multiplied by 10.

For the s.F. diagram set downwards from PQ at Q a

distance = DE, at Fa distance =*CE, at E a distance = FC
j at

T set upwards a distance = BF and at S, at distance AF,

complete the rectangles as in the figure. The vertical intercept

at any point between PQ and the thick horizontal lines gives

the S.F. at that point.

As regards the B.M. ; the fact that D^ is (if we start with

OF in the vector polygon) the first and the last line of the link

polygon, and yet for the space EQ we measure intercept from

E^ is perhaps a little difficulty. The difficulty is due to the

links not being drawn in the order of the points. When we
come to the right of E the intercept between P^ and T

l
V

l

does not take account of the B.M. due to the reaction at E, but

the intercept between E^ and P
l
E

l (produced) does so, and,

since, coming backwards from the right, Ql
E

l
is before P^ ,

the

intercepts have to be added.

It is, however, clearer to redraw the latter part of the link

polygon by taking the forces in order. Letter the spaces
between E and F", Fand Q9 d-^

and e
l9 respectively, and the space

c will now end at E.

In the vector polygon, from C draw OD
l upwards, equal to

the reaction at E, viz. EF'; from D
}
set D-^E-^ downwards, equal

to the load at V
(
= CD) ;

then E
:
F is the vertical reaction at Q.

The vector polygon is now FA, AB, BC, CD
19
D

l
E

l
and E^F.

The link polygon is as before up to the space d^ T^ stops at

E2 ; the next link through the space d
l

is E2
F parallel to OD

l ;

and then F"
2ft2 through e

l
is parallel to OEr P^ should be the

same line as P
1
JS

1
if the construction is accurate. The B.M.

diagram is now P^T
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What are the B.M. and s.F. at distances of 12 and 21 ft.

from P?

(6) The span of a roof truss is 40 ft. : three equal loads are placed at

equal intervals of 10 ft., each load being 1*7 tons weight. The resultant
wind pressure on the roof is equal to a force of 3 ton, and makes an angle
of 45 witli the horizontal, and its line of action passes through the

mid-point of the line joining the points of support. The roof being
supposed pinned at the end facing the wind and freely supported at
the other, draw the diagram of the B.M. and S.F. for the forces perpen-
dicular to the line joining the points of support.

(7) Find the B.M. and s.r. diagrams for the
vertical post of the derrick crane in -Fig. 284,
due to a load W (3 tons) suspended at A.

Length of jib AC=16'S ft., length of tie rod
AB= 14 ft., JBO= 10 ft., BE=2(J ft. The post
is kept vertical by a smooth collar at D and a

cup-shaped socket at JE/
9
and DE4 ft.

Di

Pl. 284,

(8) Find the B.M. and S.F. diagrams if the chain supporting Wis carried

over a smooth pulley at A, and is fastened to the post at F the mid-point
of BC) and the collar at D is replaced by a tie rod at DI\ sloping down-
wards at an incline of 30, ED^IZ ft.

(9) Find the B.M. diagram in Ex. (8) if the load is suspended from a

point A l
in BA produced, where BA l

= 17 ft.

Beam uniformly Loaded.

EXAMPLE. A learn 20 ft. long is uniformly loaded with 50 Ibs.

per foot run
;
draw the shearing farce and lending moment diagrams,

the learn being supported at its ends.

Draw a line PQ, 20 cms. long, to represent the beam ; draw a

vertical upwards from the "beam I" long to represent the load per

ft. run. Complete the rectangle of base 20 cms. and height I".

The area of this represents a load of 20 x 50 Ibs. weight.

Divide the rectangle into ten equal parts. Suppose the load on

each of these parts concentrated at its M.c.

The reaction at each end is 500 11 >s. weight,
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Draw the link polygon for loads each of 100 Ibs. weight

concentrated at the M.a's of the rectangles.

Then draw the B.M. diagram. This diagram gives only

approximately the B.M. at the various points, because the real

loading is uniform and not ten equal detached loads. But, the

vertices of the diagram are points on the true B.M. diagram.

For consider any point X on one of the M.c. lines on the beam,

the bending moment there = moment of reaction at P - 2 moments

of all the weights along PX. This last quantity is equal to the

weight of PX multiplied by the distance of its M.c. from Jf,

which is the sum of the moments of the partial system ; and

this difference is exactly what the B.M. diagram does give. On

the other hand, for points between two of the M.C. lines, the

diagram is wrong, since it neglects the load between them. The

true B.M. diagram is a curve passing through all the vertices of

the constructed diagram. Draw a smooth curve through the

vertices and measure to scale in Ibs. ft. the B.M. at points distant

3, 11 and 15 ft. from one end of the beam.

To draw the shearing force diagram. At Q, the right-hand

end point of the beam, set downwards QQl representing 500 Ibs.

to the proper scale, Join Ql
to the mid-point of the beam and

produce it to cut the vertical through P. This line, with the

datum line PQ, forms the shearing force diagram; for the S.F.

must decrease uniformly from 500 Ibs. weight at Q to zero at the

centre.

Beam continuously but not uniformly loaded. The

method of the previous section applies to this case also.

EXAMPLE. A horizontal beam PQ (Fig. 285) supported at the

ends is coniinumidy loaded, the load per foot run at any point being

given % the ordinates of the triangle PQC. Find the S.F. and B.M.

diagrams the scale, of the figure being horizontally II" to 100 ft., and

'vertically 1 cm. to 0*5 tons per ft. run,

Divide the load curve into eight equal parts; find the

vertical M.C. line of each part, and the load represented by the
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area of each part. Set these off to scale and draw the vector

and link polygons as usual. Draw a curve through the vertices

of the link polygon this curve will be approximately the B.M.

diagram.

FIG. 285

Draw ordinates for the shearing forces at the end points of

the sections from right to left, and draw a smooth curve through
their end points.

(Remember that the S.F. diagram is such that the ordinate at

any point gives the sum of the forces on one side of the beam,)

(10) Draw the B.M. and S.F. diagrams for a horizontal beam fixed in a
vertical wall and projecting 25 ft., the load being uniform and 500 Ibs.

per ft. run.

(11) Draw the B.M. and S.F. diagrams for a cantilever due to its own
weight and a load of 3 tons at its end, the length of the cantilever being
30 ft. and its weight 100 Ibs. per ft. run. (Draw the diagrams separately
and add the ordinate.)

(12) The length of a beam is given by PQ (7") (scale ^1"
to 8') the load

per, foot run is given by the ordinates from PQ to a circular arc on PQ,
the maximum ordinate being 4 cms. (scale 1 cm. to 0"5 ton per ft. run).

Draw the B.M. and S.F, diagrams and measure the B.M. and S.F. at points
distant 21 and 15*3 ft. from the centre.

(13) Draw a right-angled triangle ABO having BO horizontal and
of length 6 '72", and BA vertical of length 4-3". Let BC represent the

length of a cantilever from the fixed end B to the free end (7, scale 1" to

10 ft. Let the ordinate of the triangle at any point M of BC represent,
to the scale of 1 cm. to 100 Ibs. weight, the load per foot run there. Draw
the diagrams of the bending moment and shearing force.

Travelling Loads. We have now to consider how the B.M.

and S.F. at any point of a beam, bridge, or cantilever changes as

one or more loads travel along it. Many structures of large span

are now made with cantilevers connected by comparatively short

girders ; perhaps the best example of this kind of bridge is seen

in the Forth railway. The whole bridge consists of two spans of

about 1700 ft. each, two of 675 ft. each fifteen of 168 each and

T.G. x
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five of 25 each. For the main spans there are three double

cantilevers, like scale beams, on supporting piers, and these

cantilevers are connected by girders each 350 ft. long; the

length of the double cantilever is 1360. For such massive

cantilevers as those of the Forth bridge, the B.M and s.F.

due to the travelling train are small compared with those due

to the weight of the structure itself.

As the B.M. diagram is more easily constructed for a canti

lever than for a girder, it is advisable to commence with the

consideration of the former.

B.M. and S.F. Diagrams for a Travelling Load on a

Cantilever.

EXAMPLE. A cantilever is of length 250 ft. from pier to free end.

Required diagrams giving the B.M. and s.F. at any point as a load of

17*3 tons travels from the free end towards the supported pier.

In Fig. 286 PQ represents the length of the cantilever, Q

being the free end, L the given point at a distance of 87 ft.

from P.

AB is the load vector. Suppose the load at Q. Choose a pole

at a convenient distance from AB. Through J?, a point on

the vertical through L, draw RQ- and BQ2 parallel to OA and

OB. Then $163 gives the moment at L of the load at Q. When
the load is at S, the intercept $j$2 on the vertical through S

gives the B.M. at L; hence, RQ^2 gives the B.M. at L for all

positions of the load between L and Q.

When the load passes L the B.M. vanishes.

The shearing force at L is constant for all positions of the load

between L and Q; when the load passes L, the s.F. vanishes,

At all points, therefore, the maximum s.F. is the same and

is equal tr the load.

To find the B,M,'s for points other than L we have only to

notice that moving L to the left is equivalent to moving Q an

equal distance to the right. Through any point R on the

vertical through P, draw RP
l
and RP%, parallel to OA and OB
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and cutting the vertical through Q in I\ and I\,. The triangle

PI&PS gives the B.M.'S at P as the load travels from Q up
to P. For a point Z, distant ^ to the right of P, mark a point
Z', to the left of ft and draw the vertical L^L, ;

then ,/&,
is the B.M. diagram for i as the load moves from *Q up to Z (.e"

in new figure from L to P).

FIG. 286.

(14) What are the B.M.'S at points distant 30, 40, 100 and 150 ft. from
P when the load is 30, 50, 80 and 100 ft. from Q.

(15) Find the maximum bending moment at ten points between Q
and P. Set up, at these points, ordinates

giving the maximum bending
moments to seale, and thus find the curve of maximum B.M.'S.
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#B.M. Diagram for Several Travelling Loads on a

Cantilever.

EXAMPLE. Loads of 3, 5-2, 4-7 and 3-3 tons weight travel along

a cantilever of length 57 ft. The distances apart of the loads being

5*3, 7*7 and 5-3 ft. from the foremost load of 3 tons backwards,

determine the B.M. and s.F. at any point as the loads trawl from the

free end up to the, supporting pier or wall

Draw a line PQ (Fig. 287) to represent the length of the

cantilever having Q for the free end, and mark the point L on

it where the B.M. is required. PL represents 15 ft. Choose a

pole at, say, 10 units of distance from the load vectors AB .. . E.

Draw the axis lib of the load AB in its farthest position from L,

and then on the other side of L draw axes b-fiy c^ and d^ at

the proper distance of the loads apart from the axis through L

(i.e. draw the axes as if the leading load was at L, and the loads

were travelling towards Q).

Through any point A
1
on the axis a^ draw A

l
X

l parallel to

A0y
and A^2 parallel to BO. Produce the latter line back-

wards to cut bfa in B
l ; from B

l
draw B^X^ parallel to GO ;

produce this line backwards to cut c^ in C
1
and draw (7

1X4

parallel to OD ; produce this line backwards to cut d^ in D
l ,

and draw D^ parallel to OE,

Then X^^D-ft^B-^A-^ is the B.M. diagram for L as the leading

load travels from M^ab) up to and past L, and the last load

comes up to L (the first load being then at M4).

When the leading load is at M-^ ,
the B.M. is given by X^X& ;

when at M
2

it is given by FX
F

5 ;
when at M

z by Z^Z^ ;
and when

at M it is zero.

Proof. Since ^
1
X

1
A7

"

2
is similar to OAB, the vertical intercepts

of the former give (p. 322) the B.M. at L due to the first load as

it travels from Jf
x up to L

Again, B-^X^K^ is similar to OBO ; and since the distance from

bfa to ab is equal to that between L and the second load when
the first load Is at M

ly
the vertical intercepts of B-^X^K^ must

give the B.M. at L due to the second load, as it travels from be
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up to L. A similar argument shews that C^X^X^ and D
1
X

4
X

5

give the B.M. due to the third and fourth loads, as these loads

travel from their initial positions up to L.

rA

-C

-D

Tons wt.

100 200 300 400
Tons ft. (moments)

FIG. 287.

500550

Since on passing L the load ceases to have any B.M. at L, the

sum of the vertical intercepts of these triangles must give the

total B.M. at L as the loads travel.

(16) Find the bending moment in tons ft. when the leading load is at

(1)21-5, (2) 11*8 ft. fromL.

(17) Shew how to find the B. M. 's at L as the leading load travels from Q
to M^ (the loads may be supposed travelling from a second cantilever over

a connecting girder to the one under consideration). Find the B.M. in

tons ft. when the leading load is 7 '2, 14 '1 and 16 ft. from Q respectively.

To find the B.M.'s at points other than L it is not necessary to

draw a fresh B.M. curve, because the lines A
1
X

IJ B-jX^ ... are all

fixed relatively to one another ; and, therefore, instead of moving
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L, it is sufficient to move the line X^. Thus, supposing the

B.M. diagram for the travelling loads are required for a point

10 ft. to the right of L, then A^Z. must be drawn 10 ft- to the

left of M^ ;
if for a point 10 ft. to the left of L> X^ must be

drawn 10 ft. to the right of If15 and the lines A^ ... produced

to cut it.

The matter is thus mainly one of relettering the diagram

originally drawn. Change L to P (the fixed end of the canti-

lever) and move M
{
to the right a distance LP, and change the

letter to P. Produce ail the lines A^K^ B^K^ ... DiX6
to cut

the vertical through P' in P
X
P

2
... P5

. Then P^A^ ... P5
is the

B.M. diagram for P as the last load moves from the free end up

to the fixed end. For any point L, distant x ft. to the right of

P, draw a vertical through If, % ft. to left of P' and cutting

A&, P
X
F

2
... in L^ ... L

& ;
then L^B&D^ is the B.M. for

L (at P) as~the last load travels from the free end up to L.

(18) Find the maximum B.M.'S at points distant 5, 10, 15, 20, 25, 30, 35,

40 and 45 ft. from the pier, and draw the maximum B.M. curve.

(19) Draw the shearing force diagram for the point L as the loads travel

up to and past the point. m ,.,,.,
(Up to the leading load being at L the S.F. is AE; immediately it passes

L*, the S.P. drops to BE and so on.)

(20) Loads of 10 tons !7
-

5 cwts., 10 tons 17*5 cwts., 19 tons, 19 tons,

12 tons, 12 tons 5 cwts. and 12 tons 15 cwts., due to an engine and tender,

travel from a girder over a cantilever of length 150 ft. (from free end to

pier). The distance apart of the loads from the leading one backwards

are 6' 6", 8' 9", 10', 8' 7 -25", 6' 9" and 6' 9" respectively

Draw the diagram of the B.M. for a point distant 25 feet from the pier as

the engine and tender travel over the cantilever.

(21) Alter the lettering so that the diagram will give the B.M'S. at any

point of the cantilever, and determine the B.M. at points distant 50 and

75 ft. from the pier when the leading wheels of the engine are at 110, 100,

90, 75, 50, 10 and 5 ft. from the pier.

Travelling Loads on a freely supported Bridge.

EXAMPLE. AB (Fig. 288) is a learn freely supported at its ends.

A load "W travels from A to B
; required the B.M. at any point Q for

every position P of the load W.

The reactions RI
and R2

at A and B> due to W at P, are given

by P^.AB^ W. PB and R^.AB^ W. AP>
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and the bending moment at Q is

Q

PIG. 288.

Now suppose W at Q, then the reactions R^ and R2

'

are given

by
P^.AB^W.AB and R.AB=W.AQ,

and the bending moment at P is

W
R^AP^.AP.QB.

Hence the B.M. at Q due to the load W at P 2$ fe same as the B.M.

a P due to the load W at Q.

B.M. and S.F. Diagrams for a Travelling Load on a

freely supported Bridge.

EXAMPLE. A horizontal learn AB (Fig. 289), of length 50/1, z's

/mfo/ supported at its ends; a load of 3 '38 tons travels from A to B
;

required diagrams giving the B.M. and S.F. # a point Q (QB= 16'4/tf.)

/or aZ positions of the load.

Draw the B.M. diagram for a load of 3*38 tons at Q, and

through any point P in AB draw a vertical PP2
P

3 cutting the

B.M. curve at P
2
and P

3
. Then the intercept P2

P
3 gives, to

scale, the B.M. at Q due to the load 3'38 tons at P.

Set upwards from A, to scale, ^Gf=the load, join EC cutting

the vertical at Q in Qr Prom A draw AQ% parallel to BQl

cutting the vertical at Q in Q2
. Then AQ^B is the s.F. diagram

with AB as base line.

The vertical at P cuts the diagram at P
1?
and PP-t measures the

S.F. at Q due to the load at P.

Proof. That for the B.M. has already been given.
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For the S.F. we notice that when the load at P is between

A and Q the S.F. at Q is the reaction at B, and when P is between

Q and B the S.F. at Q is the reaction at A.

If R
l
is the reaction at A when the load is at some point P

f

between Q and B, then P^.AB^W. PB

hence P'P
l

'

measures to scale the S.F. at Q, and therefore the S.F.

at Q, when the load is between Q and B, is given by the ordinate

of the diagram BQQlf

so 4 6 80 100

Tons ft. (moments)

FIG. 289.

Similarly, if the load is at P between A and Q, and J?
2

is the

reaction at B, E2
. AB ~ W . AP

;

rAP PP
.*. S.F, at Q =R2

= W-^= W
-j^, (sinceAQ is parallel to 5C) ;

therefore the S.F. at Q, when the load is between A and Q, is

given by the ordinate of the diagram AQ%Q.
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Immediately before P comes up to Q the S.F. is QQ 9
and

immediately after it is QQlm

The maximum s.F. is therefore immediately before the load,

travelling from A, comes up to Q.

The maximum B.M. is when the load is at Q.

(22) What are the B.M. and S.F. at Q when the load is at P and

(i) AP=25-7tt., (ii) ^P=41-6ft.

Curve of Maximum Bending Moment for a Travelling
Load. To find the maximum bending moment for other

positions of ft it is not necessary to redraw the whole bending
moment diagram. A new closing line only is wanted.

Keeping the pole fixed, the "lines B^ and E
2
H

3 (Fig. 290),

being parallel to OX and OY
y must always have the same

directions, and hence, instead of supposing Q moved relatively
to A and JJ, we may suppose A and B moved relatively to Q.

A, A Q B, B

FIG. 200.

Suppose the maximum bending moment were required at a

distance x from A. Set off QA l
= x from Q towards A and

make A
I
B

l
AB. Mark the points $, and $

3 ,
where B^B^ and

R%R% cut the verticals through A
l
and B

19 join /S^Sj cutting

the vertical through Q in 5. Then &?2
2 gives the maximum B.M.

at a distance x from ^f.

(23) Find the maximum bending moment due to the load at points
distant 5, 10, 15, 20, 25, .. , 45 ft. from A (Fig. 289). Set up at these

points ordinates giving the maximum B.M.'S to scale and join them by a
smooth curve, which must evidently pass through A and B This curve
is the maximum B.M. curve for a single travelling load.
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* B.M. due to several Travelling Loads.

EXAMPLE. To find the B.M. at any point of a bridge, freely

supported at its ends, as an engine travels from one end (abutment)

to the other.

A bridge is 50 ft. long and an engine travels over it; draw a

diagram giving the B.M. at the mid-point of the beam for all positions

of the engine whilst wholly on the bridge. The load on the leading

wheels is 17 tons 18 cwts., and on the following ones 19 tons 16 cwts.,

19 tons 16 cwts. and 17 tons respectively. The distances between the

centre lines of the wheels are, from rear to front, 8' 3", 7' 0" and

y u respectively.

Draw the bridge length, ZF(Fig. 291), to scale and mark the

load lines when the engine is in one definite position, say with

the centre of the trailing wheels 2-7' from the left abutment.

Draw the load vectors ABODE and take a pole P at a convenient

distance. Construct the link polygon R^B^R^B^EJR^ in the usual

way, close it by the link RQR5 ,
and draw in the vector polygon

PO parallel to R
Q
R

5
. Mark the point R where the first and last

lines of the link polygon intersect. Bisect R R
B
at M] mark the

pointMb
on SB5 so that the horizontal distance between R and M

5

is half the span (25 ft.) ; join M and M
5
and produce both ways.

From the line ab mark off to the right horizontally a distance = J

span and determine a point L\ similarly, from de mark off

horizontally to the left the same distance and determine a point

K'j draw verticals through K and L] then the figure between

these verticals, MM5
and R^ ... R

5 ,
is the bending moment

diagram for the mid-point of the beam, from the trailing wheel

leaving X to the leading wheel reaching Y.

Maximum Bending Moment at the Centre. An in-

spection of Fig. 291 shews that M$R2 is the greatest value

of the B.M. and this occurs when the third wheel of the

engine is just over the mid-point of the bridge.
When the leading wheel is over the mid-point, the B.M. is

given by M4
R

4 ; when the trailing wheel is over the mid-point
the B.M. is given by M^R^ ',

and so for all positions of the engine.
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2i_ 3 0,0,

B \

FIG. 291.
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(24) Find the B.M. diagram for a point distant 15 ft. from the left

abutment.
Mark the point on XY, project vertically to PiQ 5 cutting it at 6, from

JR go horizontally 35' and then vertically to $5
on JR$ . Join SS5 ; then

the vertical distances between #&; and"!^ * ^s Sive tlie
?-
M

\
at the

point required. The horizontal distances between which this will hold

are 15 ft. to the right of ab and 35 ft. to the left of de.

(25) What is the maximum B.M. at this point?

If the pole P be kept fixed, then, whatever the position of the

engine on the bridge, the link polygon R^R^ and the lines

RB^ and J2JK4 will be in exactly the same relative positions. The

only things that alter as the engine moves are the reactions at

the ends, which alter the direction of the closing line P^Rb
.

Instead, therefore, of supposing the loads to move, we may

suppose the supports moved. Thus, to get the second pair of

wheels d over a point Q (distant x from X} of the bridge, we

have only to set off x to the left and 50 - x to the right of cd, and

the points so determined are the new position X^ of the

supports. The verticals through Xl
and Y

l
cut R

Q
R and RR

in, say, Gf and ff
c ,
and $ #5 is the closing line. <95 cuts cd in

#3 , say, then Gr
&
RB gives the B.M. at cd (which is now the

vertical through Q).

Now 3 divides # 6r
5

in the ratio x : 50 - x. If, therefore, we

could find the locus of the points dividing the closing chords in

this ratio, we could read off at once the vertical distances between

the locus and B^R^ ...<B6 , giving the B.M. at the point required

as the engine travels along the bridge. This locus is a straight line.

(26) Find the closing lines of the B.M. diagrams for points distant 10,

20, 30 and 40 ft from JT, and measure the maximum B.M. at those points.

(27) Set up ordinates at points alongXT corresponding to the maximum
B.M/S determined, and join the end points by a straight line. It is the

maximum B.M. diagram for all points on the bridge, as the engine, being
wholly on the bridge, travels from left to right.

*A straight line of variable length moves so that its end

points describe straight lines, the ratio of the distances moved

through by these end points "being constant, the locus of the

point dividing the moving line in a constant ratio is a straight

line.
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and 6r 6r
5 (Fig. 292) are any two positions of the moving

G P,As G
Q
and G

5
move -^-^ is always the same.

b6L6

S divides R^R5
in a given ratio.

Join 6r .&
5 ,
and draw SS

l parallel to G^RQ cutting G R5
in Sv

then draw S^ parallel to R
5
G

5 cutting GQ
G

&
in $

2
.

Then, since M #& = %

GO S,

FIG. 292.

$2 must divide GQG5
in the given ratio.

But SS
l

bears a fixed ratio to GQRQ ,

and o-iOo ji )* (jr^jKe

is constant if is constant.

Also the angle S^S-fl is equal to the angle at B, and is there-

fore constant. Hence, whatever the position of
/S^ and S%, the

triangle SS^ retains the same shape ; the angle S^3S1
is

therefore constant; and since 8S
l

is always parallel to H
QB, S

2

lies in a fixed direction from S, i.e. the locus of S
2

is a straight

line through S.

Eeferring back to the B.M. diagram, we see that this locus

may be drawn by finding out where it cuts B$R or B5 R, and

joining the point so determined to the given point in R
Q
R

6
.

When G
Q
comes to R, then G5 must be 50 ft. horizontally

to the right of J?
5
and hence where the locus cuts RR5 is deter-
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mined by dividing RGr5 in the given ratio. Since, for the special

case drawn, the ratio is unity, 8 is at M and $
2

is at Mb , where

the horizontal distance between E and M
5
is 25 ft.

Similarly, if the point for which we want the B.M. is at a

distance x from the left-hand abutment, then, when & comes

to E
9 5

must be 50 ft. horizontally from R, and the point

required must be x ft. from B (horizontally); hence set off x

ft. horizontally from R, and project vertically down to J2J85 .

As regards the limits within which the straight line locus

is available, we must remember that unless all the loads are

on the bridge, the link polygon will not be the same. When
the leading wheels come to the right-hand abutment, i.e. when

the right-hand abutment is at de, the point distant x from the

left-hand abutment will be 50 -x from de, and when the last

pair of wheels is just on the left-hand abutment
(i.e.

when the

left-hand abutment is at db) the point required is at x ft. to

the right of ab.

When only part of the train is on the bridge, only the part

of the link polygon corresponding to the load actually on the

bridge must be taken. Thus, if the leading wheels have passed

the right-hand abutment, R
3
R4 is the last line of the vector

polygon, and the line joining R
Q

to the intersection of R
3
R

4

and eo is the closing line. Similarly, if the first two pairs of

wheels have passed the right-hand abutment, E
z
Jt3 is the last

link, and the line joining jB and the point of intersection of

R%R% and eo is the closing line.

By dividing these closing lines in the ratio x to 50 -
x, points

on the locus from which the B.M.'S are measured may be found

for the various cases when all the engine is not on the bridge.

#S.P. Diagram for more than one Travelling Load.
The s.F. is determined at any point when we know the closing

line of the link polygon.

Take the case of the S.F. at the mid-point.

When the leading wheel is just coming up to the mid-point, M4

is a point on the closing line (Fig. 291) ; draw then in the vector
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polygon P0
4 parallel to the closing line through M4 (this closing

line cuts EE
Q

at a point distant 25' horizontally from Jf4 ).

The s.F. is then
4
E

; immediately the leading wheel passes the

mid-point, the S.F. drops to OJ).
When the second wheel is over the mid-point, Ms

is on the

closing line; draw then PO
B parallel to this line. Just before

the second wheel reaches the mid-point, the s.F. is 0%D \ and

just after passing it the S.F. is 3C and has changed sign.

Similarly, when the third wheel is just coming to and just

going from the mid-point, the S.F/s are
2
C and

2I>,
and when

the fourth wheel is just going to and from the mid-points, the

S.F/s are O^B and O^A respectively.

Draw a horizontal datum line A
l
E

l
for the S.F. perpendicular

to the load lines ab, be, cd and de. At E^ (on de) set down-

wards JB'J)^ and E^2 equal to OJE and QJJ respectively, at G^

(on cd) set downwards C^ = <93D, and upwards 0^ =
0^0. At

Bl (on be) set downwards
2C, and upwards 2

B. At A (on ab)

set up A 1
BB
=

1
B

)
and A^A^-Q^A.

Then E
2D1
D

2
B

BC2CB
B

2B^A 2
A

3 is the shearing force diagram
for the mid-point of the bridge as the engine travels over the

bridge from left to right, from the moment when the trailing

wheel is on the left-hand abutment to the moment when the

leading wheel is on the right-hand abutment.

The maximum value of the s.F. at the mid-point is seen

from Fig. 291 to be when the trailing wheel has just passed
the mid-point.

MISCELLANEOUS EXAMPLES. IX.

1. A beam 30 ft. long, supported at the ends and weighing 1000 Ibs.,
carries a load of 1500 Ibs. 10 ft. from one end. Shew how to find the
moment of the force tending to bend the beam at any point ; shew in a
graph this moment for all points of the beam and find where the beam
is likeliest to break. (Home Civil, I, 1905.)

2. A beam 40 ft. long is loaded with three weights of 5, 15 and 10 tons

placed 10 ft. apart, the 15 ton weight being at the centre of the span.
Draw the diagram of the bending moments and the shearing stresses.

(Admiralty, 1904.)
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3. A beam is in equilibrium under any system of parallel forces, acting
in a plane which passes through the axis of the beam. Explain what
is meant by the shearing force and the bending moment at any section,
and show how to determine their values.
The beam AB is 20 ft. long, and rests horizontally on two supports,

one at A, the other 5 ft. from B. There is a load of 2 tons midway
between the supports, and a load of 1 ton at B. Draw a diagram for the

bending moments along the beam. (Patent Office, 1905.)

4. Find the stress diagram of a triangular crane A BG, of which AB is

the vertical post, AO a horizontal beam supported by a tie rod BC, due to

a load of W tons carried at a point I) of AC. Prove that the bending

moment at D is WA^-^^- ft. -tons. (Inter. Sei., 1902.)AC
5. Draw a rectangle ABQD and its diagonals AG, ED intersecting at

JBJ, the lengths of A B and A O being 6 ft. , and let its plane be vertical and
AB horizontal. Let AO and BD represent two weightless rods, turning
freely round a pin at E, with their lower ends A , B connected by a thread,
and standing on a horizontal plane. If a weight is hung at G, find the

pressure on the ground, the tension of the thread, the stress on the pin at

E, and the stresses in. the rods themselves.
How would the results be affected if G and Z> were connected by a

thread instead of A and J5? (B. of E., II., 1902.)

6. BG, GA, AB are three weightless rods formed into a triangular
frame ; their lengths are respectively 10, 8, 6 ; the frame is hung up by
the angular point A ; a weight of 100 Ib. is hung from the middle point of

BG. Find the stresses in BG.
Find also what difference it would make in the stresses if 50 Ib. were

hung at B and 50 Ib. at (7, instead of 100 Ib. at the middle of BG.
(B. of B., II. , 1903.)

7. Draw bending moment and shearing force diagrams for a beam
loaded as follows :

A uniformly distributed load of 3 cwt. per foot run covers TJ- of the span
from one abutment, and the span is 60 ft. Mark on your drawing the

position and amount of the maximum bending moment.
(B. of E., m., Applied Mechanics, 1904.)

8. A bridge has a span of 72 ft. Draw the bending moment and
shearing force diagrams for a point distant 9 ft. from the right-hand
abutment as an engine travels from the left to the right-hand abutment.
The distances apart of the centre lines of the wheels are 7' 5" 6", 7' and
8' 3" from the leading wheels backwards, whilst the loads on the wheels
are 8 tons 19 owts., 8 tons 19 cwts,, 19 tons 16 cwts., 19 tons 16 cwts, and
17 tons cwt. in the same order.
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STRESS DIAGRAMS (Continued).

IN designing roof trusses, etc., the engineer has to take into

account not only the permanent loads but also the pressures due
to wind and snow.

Indeterminate Beactions. The wind pressure, being normal

to the roof, has a horizontal component tending to slide the

roof off its supports. This is, of course, resisted by the walls,

but how much is borne by each wall it is generally impossible to

say, since a given force may be resolved into two passing through
fixed points (the points of support) in an infinite number of ways.
This does not mean that the reactions of the supporting walls are

indefinite, but simply that further information is necessary to

determine them.

A similar difficulty occurs in the attempt to determine how
much of the weight of a door is borne by each of the two hinges.

Here the indeterminateness is due to not knowing the exact

relation between the parts of the hinges screwed to the door and

the parts screwed to the door post.

When the door is put into position, it may happen that the

upper hinge parts only come into contact, and then the whole

weight of the door is borne by the upper hinge ; similarly for the

lower hinge. Again, if the upper hinge parts come into contact

first, the wood may give slightly, so that finally the lower hinge

parts come into contact \
in this case we must know a good deal

about the elastic properties of the wood and hinge before the

hinge loads can be determined.
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The hinge parts on the post being at slightly different distances

apart from the corresponding parts of the hinges on the door, the

latter may have to be forced into position and my amount of

compresslve or tensile stress may thus be brought into play at

the hinges. Finally, change of temperature, or accident, may

alter the initial positions of the various parts.

Eeactions made determinate. In heavy gates it is not

uncommon to have one hinge only near the top, the lower

being replaced by a vertical iron plate against which the lower

part of the gate (or rather a rounded iron fixed to the gate)

presses. The forces in this case are determinate, since the

reaction of the plate must be horizontal.

A similar device is sometimes used for large roof trusses. The

truss is hinged (pin-jointed) to one wall, the other end of the

truss forms an iron shoe jointed to the axle of aa iron roller,

which rests on a horizontal iron plate on the top of the wall.

The reaction of the plate on the trass is therefore vertical and

the resultant of the external forces being known, the reaction at

the hinge can be determined, and therefore the stresses in all

the bars.

Eeactions and Stresses due to Loads and Wind
Pressure.

EXAMPLE. PQEST (Fig. 293) represents a roof truss, pin-jointed

at P, with an iron rotter shoe at Q. The loads at T, S, and R due

to the roofing and snow are 1, 1-3 and 1-75 tons. The wind pressure

is equivalent to forces of 0*25, 0*5 and 0*2 tons at S, E and Q

perpendicular to the roof. Determine the reactions at P and Q, and

the stresses in the bars.

Given PQ=3Q ft, QR= BS*=19 ft., and that the base and

altitude of the central triangle are 1 1 *3 ft. and 8 ft.

Draw the truss to scale and letter the spaces ;
then draw the

vector polygon AB, EC, CD, BE of the forces to scale.

Project on to the vertical and obtain AB0
1
D

1
E

1 ; then EjE is

the horizontal force borne by P,
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Take any pole P
l

of the vector polygon and draw the link

polygon for the vertical forces AB, B0
1S CjDj. Determine the

vertical reactions at P and Q due to these by closing the link

p*

FIG. 293.

polygon. In Fig. 293 these are DjOj and O
t
A. The total

vertical reaction at Q is E^. Draw 00
l equal and parallel to

EE^ then OA is the total reaction at P
?
and EO that at Q.
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The vector polygon for the external forces is now OABQDEO,

Another way would be to letter the spaces between the

vertical loads and the wind pressures as indicated, c
2
and d

2 ,
and

draw the link polygon for all the forces AB, BC
2 ,
C

2C, GD2 , D2D,

BE and determine the axis of the resultant. Then find the

point of intersection of this axis and the known line of reaction

at Q and join P to this point. The reaction at P is thus

determined in direction, and the forces at fP and Q will be given

in the vector polygon by drawing lines from A and E parallel to

the reaction lines.

Draw now the stress diagrams for the bars in the usual way,

and tabulate the results. Shew in the frame diagram those bars

which are in compression.

(1) Find the stresses in the bars if Q be pin-jointed and P be on a

roller. Tabulate the results.

(2) Find the stresses in the bars on the supposition that P and Q each

bear half the horizontal thrust of the wind.

(3) Find the stresses on the supposition that P and Q are fixed and the

wind pressures at S and R can be replaced by forces through P and Q
parallel to them.

(Fixing Q, in addition to P, renders the frame over rigid, and merely
putting the frame in position may set up large stresses. Again, siippose
the temperature rises, then the bars tend to elongate whilst the fixed

points P and Q resist these elongations. Hence, stresses will be set up
quite independently of the loads. We are, therefore, driven to further

assumption that the truss can be fixed in position without causing stress,

and that the temperature does not change. These suppositions are some-
times made in books dealing with actual engineering structures, but there
is no real justification for them, see also pp. 337 and 338.)

(4) Find the stresses in the bars of the queen post truss of Ex. 21,

Chap. VI. (p. 225), if Q be pin-jointed, and P on rollers, and if the normal

pressures due to the wind at T, S, R, Q be 0-25, 0'5, 0-5 and 0'25 tons

weight.

Stresses found by Moments. On p. 248 was given a

method of sections for finding the stresses in one or more

particular bars by the resolution of forces into three components

lying along three non-concurrent lines. A similar method of

sections combined with the moment construction will also often

give the stresses in particulars bars.

For this method to be effectual we must be able as before to
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make an ideal section of the frame cutting the particular bar

for which stress is wanted, whilst the rest of the cut bars are

concurrent.

A good example of this moment method is afforded by the

suspension bridge problem already considered from another point
of view in Chap. VI, pp. 242-248.

Suspension Bridges. In suspension bridges, the roadway is

supported by two sets of equidistant vertical rods (tie-rods) which

are attached, at their upper ends, to the pins of long linked

chains supported on pillars at the ends of the bridge. The

pillars are kept vertical either by passing the chains over their

tops and fixing them to blocks in the ground, or by means of

separate tie-rods (backstays).

In Fig. 284, PQ represents the roadway supported by eight

tie-rods (only a few are taken for the sake of simplicity). PR and

SQ are the supporting pillars, RT and SU the tie-rods keeping
the pillars in a vertical position.

The problem is : Given the span PQ (60 ft.) of the bridge and the

dip of the chain, i.e. the vertical distance of the lowest point L from
the highest S (15 ft.), to find the lengths of the various links, their slopes

and the stresses in them.

If the roadway be uniform, each vertical tie-bar bears an equal

fraction of the total weight. Let this be w (3*5 tons).

Since the position of the chain cannot depend on the slope of

the tie-rods, we may suppose these rods replaced by a light rigid

strut joining ES. In this case PR and QS must react on R and S

with equal forces of 4w (14 tons).

Number the spaces as indicated and set out the load vectors

AB, BO, CD, DE, EF, .... From E draw EO perpendicular to

AE, and make EO represent 10 ft. to the scale to which the span

and dip were drawn.

Draw the link polygon for the pole 0, starting with the first

link, parallel to OA, through R. The middle link eo will

evidently from symmetry be horizontal, but in all probability

will not go through L.
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Through any point Z in the lowest link draw the vertical

XYZ cutting RS in X and the desired position of the lowest

link in F.

In the vector polygon draw OR perpendicular to YS
9
and E0

l

perpendicular to Z8. Then O
l

is the correct position of the pole

and ED* is the stress in the lowest link.

wo xy
This last construction is simply to find E0

l
so that -=-J= =

and this is done by making the sides of REO and HEO
l

perpendicular to the sides of XYS and XZS.

K
Tons wt,

o i 2
( | r

6
(

8
f

10
f

12
f
14

x/0 0,

FIG. 294.

Draw the link polygon with
1

as the pole of the vector

polygon, and see that if the first link be drawn through R the

middle one will pass through X.

Now draw to scale the supporting pillars RP and SQ, length,

say, 18 ft., and the tie-rods RT and $7 making 40 with the

vertical. In the vector polygon A0l gives the tension in the link

oa ; hence draw through 1
a line parallel to RT (link polygon)

cutting AE in N; then NA is the reaction along PR and O^N is

the tension in RT.

Proof. If be the pole giving Z for the lowest link, and

O
a

the pole for F, then XF. E0
l

measures the sum of the
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moments of all the forces to the right of XY about any point
in XYZ (Chap. VII, p. 291). Similarly, XZ . EO measures
the sum of these moments, and, therefore, XY. E0

l
=XZ . EO.

O
l was determined from this equation; therefore E0

l gives
the stress in the link LY and the other links must be parallel
to the corresponding lines of the vector polygon.
The position of O

l may also be determined by calculation.

The distances of the load lines from the middle point of the

lowest link are all known; the reaction at $ is also known,
viz. half the sum of the loads. Hence, taking moments about

the middle point of RS, we have the sum of the moments of the

external forces = stress in the middle link multiplied by XY.
This stress must he set off from E along EO on the force

scale
;

it should come to 6^ .

Notice also that the horizontal component of all the tensions

is the same in magnitude, hence the forces in the cut bars at

X and Y must form a couple of momental area equal in magni-
tude and opposite in sense to the couples formed by the reaction

at 8 and the resultant of the loads ef, fg, gli and hi.

If the number of the rods be odd no link will be horizontal.

The construction for finding the pole of the vector polygon
is still the same. Z must be taken on the middle load line,

and on the perpendicular through the mid-point of the

resultant load vector.

(5) Draw the stress diagram for the same span, dip and load per
vertical tie-rod if there be 9 vertical tie-rods and 10 spaces.

(6) The span is 100 metres, the dip 8 metres, and there are 12 vertical

tie-rods each bearing a load of 20,000 kilogrammes. Draw the chain to scale.

The Suspension Bridge and Parabola. The connection

between these was given in Chap. VI., p. 247. A much simpler

proof by moments can now be given.

Let V (Fig. 295) denote the lowest vertex and Q the %th one

from F', so that between V and Q there are n-l equal loads each

of magnitude w. Since the loads are equidistant, the resultant

load must be vertical and midway between V and Q. Take the
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a

horizontal and vertical through 7 as the axes of coordinates.

Then if x and y are coordinates of Q, the resultant load is at

a distance ~ from 7. n _7 n
, 2

Let QM and VM be the

direction of the links at Q

and 7, then since the chain

between 7 and Q is in equili-

brium under three forces, the

total load and the tensions

along 7M and MQ, these

must meet at a point on the

resultant load, i.e. at M, whose

abscissa is \x.

Take moments about Q, then the moment of the total load

acting through M is equal to the moment of T
l

in VM\ but

T
l

is equivalent to T horizontally and
| vertically, hence,

taking account of sense,

and if h = distance apart of tie rods

w x*
..(i)

a parabola.

TO is determined when the span and dip and number of

spaces are known. Say span
= 100 ft., dip

= 20, h = 5,

then 20 = ~~r.
(
5Q

)
2

If the middle link be horizontal (Fig. 296),
/n n

then
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and, taking moments about
,

/ .,
. nh m

and since x - ^
=

(n
- I

) h,

345

(VI

N x

.*. n(n

FIG. 296.

.(ii)

as on p. 248.

Links forming a continuous Curve. However large n

may be
(i) will be true always, but both li and w become smaller

and smaller as the number of links is increased. When the

loading is continuous, ~ is the load per horizontal unit of

length (or foot run), and the chain assumes a continuously
curved form.

Such a loading and chain cannot be obtained easily but very
near approximations are possible. Telegraph and telephone

wires, for which the sag in the middle is small, are cases in

point. The sag being small, the distance between the points

of support is approximately the same as the length of the wire,

and hence the load (which is continuously applied) may be

taken as constant per ft. run.

If the wire or cable were of variable section, so that the

weight per horizontal ft. run was constant, the above supposition

would hold whatever the sag.

The equation to the curve assumed by the chain may also be

determined directly, as in the following article.
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Uniformly loaded Chain. In this case the number of

vertical tie-rods is supposed so great that the roadway may
be regarded as being continuously supported. Let W= weight

of roadway per unit length ;
then the weight of any length x

is Wx, and the axis of the resultant weight acts through the

mid-point of the length x.

TO

FIG. 297.

Let V (Fig. 297) be the lowest point of the chain, then the

chain is horizontal at that point. Let Q be any other point on

the chain. Take the horizontal and vertical through V as axes

of coordinates, x and y being the coordinates of Q. Then, for

the equilibrium of the bit of chain FQt
the tensions at Q and V

must intersect on the axis of x mid-way between V and N, i.e.
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Draw the vector polygon forM ; then, from the similar triangle,

y _ W%
'x~~^'
2

/.
y=-^-.

y?

.

2r

We might have established this by taking moments about Q

when T.=Wx.

The above construction shews us how to draw a tangent to

a parabola (for the tension T at Q is in the direction of the

tangent at Q\ viz. to draw the tangent at Q, first draw the

ordinate QN, bisect VN at M, and join Q to M
;
then QM is the

tangent at Q.

(7) A cable is to be made so that when erected its span will be 50 ft.

and dip 15 ft. It is to be of variable section so that the weight per
horizontal ft. run is constant and equal to 100 Ibs. Draw the tangent at
the highest point, and determine the tension at the highest and at the
lowest point of the cable.

(8) The span of a suspension bridge is 100 ft., the dip 20 ft., the
number of vertical tie-rods for each chain being 8, and the load on each
5 tons ; determine the stresses in the links and their lengths.

(9) In Ex. 8 if the tie-rods JRU&nd. SV be inclined at 45 to the vertical,
determine the stresses in them, and in the supporting pillars PR and QS.

(10) The span being 100, the dip 30, and the number of vertical tie-rods

13 each bearing a load of 4 tons, determine the stresses in them, and the

lengths of the links.

(11) Construct the parabola of Ex. 7 and find approximately the ratio of

the cross sectional areas at the highest and lowest points. (If is the

lowest and H the highest point, join OH and take any point P1
on it.

From P! go horizontally to P2 on the ordinate at H ; mark P where OP
cuts the ordinate at Px

. Then P is a point on the parabola. The ratio of

a small length of the curve at Hto its horizontal projection is approximately
the ratio of the cross sections at and ff).

(12) The dip being 5 ft. and the span 100, draw the parabola. The
load being 10 Ibs. per horizontal foot, find graphically the stresses

^at
the

lowest and highest points of the chain. This example is approximately
the telegraph line problem.

(13) The span being 50 ft. and the load per horizontal foot run being
15 Ibs., and the greatest tension allowable being a force of 500 Ibs. weight,
find the dip, tension and lowest point, and draw the curve assumed by
the chain.
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Stresses in Frames by Moments.
EXAMPLE. The frame QRSTUVW (Fig. 298) is freely supplied

at Q and T. The liars QV and UT simply cross at W and are not

pinned there. The loads at R and S are 4-8 and 6-2 tos respectively.

If QT = 30 /^ QY = 22-5 ft., YT = 1 1 '5 ft. and SV = 4 ft. ; jfei ^e

stresses in the bars.

Draw the frame to scale and letter the spaces. Choose a pole

P and draw the vector and link polygons. Close the link polygon,

and in the vector polygon draw PO parallel to the closing line.

In Fig. 298 the reactions at T and Q are CO and OA.

It will be noticed that at all the points QESTU smd V there

are three bars meeting (double joints), and that therefore the

usual method of resolution is not applicable.

The construction for determining the stress in be/ will first be

given and then the proof of its correctness.

FIG. 298.

Draw a vertical through W cutting the link polygon and

IIS (Iff).

Measure p, the length intercepted on this vertical between W
and RS, and &, the intercept cut off by the link polygon.

In the vector polygon draw EG- horizontal, and construct (as

in Fig. 298) BO, such that ^? -
.

* P
BG- must be drawn from right to left, not from left to right
as ffr
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Then EG- is the force exerted by Ig on R, and G-B is the force

on S. The stresses in the other bars meeting at H or S may
now be determined, viz. draw GF parallel to gf, and CF parallel
to c/, intersecting at F. The vector polygon for S is then BCFGB.
For the equilibrium at V, draw FH parallel to fh, and GH

parallel to gh, determining H, and the polygon for 7 is GFH.
For the equilibrium at T, we have CO, OH, EF, FG

9
and since

H and are already marked we must have HO parallel to ho.

If it is not so, some mistake must have been made in finding BG.
Since QV and UT have two pairs of letters to denote them,

eo and gh and ge and ho, the stresses in these bars will be given
twice over in the stress diagram. See that the results are

consistent.

Proof. Suppose the frame cut through as indicated by the

dotted curve (Fig. 298). Then any rigid body within may be

considered as in equilibrium under the action of the load at J?,

the reaction at Q, and forces in the bars RS, UT and QV applied
at the cut ends of the bars. The sum of the moments of these

forces about any point must be zero; hence, taking moments
about W\
Moment of force at Q -f moment of force at E + moment of force

in US must be zero.

The algebraic sum of the first two is given by

h.k,

and from Fig. 298 this moment must be negative or clockwise.

Hence if s denote the magnitude of the force in % acting on the

body Kk=p.s,

and the force must push towards J?, since its moment is positive

or contraclockwise.

The bar lg or RS must therefore be in compression. If, now,

we consider the equilibrium at S, the force at S must push, and

therefore, since BC is downward, GB must be from left to right

as indicated.

(14) Find the compression in bg by resolving the resultant of the external

forces at Q and -ft into three along $, QV and UT,
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EXAMPLE, The frame PQRST (Fig. 299) is freely supported at

P and Q, and loaded at T, S and R with 1, 2 aww? 1/5 tos.

tte stresses in the bars.

PT=TS=SE= RQ= 9 and

PZ7=10-6 and

SF=6-3 and

Draw the frame to scale and then determine the reactions

at P and Q by the link polygon. It will be seen that the

usual process for determining the stresses stops at T and 7,

since at those points are three bars with unknown stresses in them.

If we make an ideal section, as in Fig. 299, then any rigid body
within the dotted curve may be considered as in equilibrium

under the vertical forces at T and P and forces in the bars

bj, jij io, and the sum of their moments about S must be zero.

The vertical through S cuts the link polygon in M and N;
and hence the sum of the moments of the vertical forces at P
and T is given by MN. PlX, where P^K is the perpendicular from

P
19 the pole of the vector polygon, on to the load vector AD.
Also two of the bars bj and ji pass through S

; hence, if s is

the stress in io and SZ the perpendicular from S on the bar,

oi the sum of the moments of the stresses in the three bars

about S is given by s . SZ, and hence

s.SZ=MN.P
l
Z.

Construct, then, s = XY,
,,

, XY MN
so that

and the stress in io is determined,

Again, the sum of the moments of the external forces at T
and P is clockwise or negative, hence the moment of T must
be contraclockwise, or T must pull on the body" enclosed by
the dotted line and the bar io must be in tension.

Hence set off 01 parallel to oi and of length XY.
The point L is determined by drawing AL and OL parallel to

al and oL Hence K is determined by drawing LK and IK
parallel to Ik and iJc. Since for the point L the action of the
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bar lo is given by LO (OAL being the vector triangle), for the

point U we must have the sense OL, and since oi pulls at U
19

I must be on the left of o
9
as in Fig. 299, so that the vector

polygon for U is IOLKL

FIG. 299.

The point / is determined by KJ and // parallel to Jcj and ij.

Hence B and / are known, and if the drawing has been done

correctly, BJ will be parallel to Ij.

Notice that, if a mistake had been made in deciding whether
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io is in tension or compression, the direction of BJ would have

been totally different from bj ; this, then, gives a test as to the

correctness of the reasoning and of the drawing.
For the theory of reciprocal figures as applied to stress diagrams

the student is referred to Cremona's Graphical Statics,* edited by
Professor Beare, and to a very elementary work by Professor

Henrici and Mr. Turner on Vectors and liotors.j

(15) Fig. 300 gives a not urmsual form of truss supporting the roof
shelter on a railway platform.
The loads at P, $, R> $, T^ U, V due to the roofing and snow are

0-8, 2-7, 3-8, 5-2, 5, 47, 1'5 cwts. Find by moments the stress in WX and
compare with that obtained by the usual graphical method. JRT=5,
PPF=3-85, RW=2-3.

(16) Find the stress in SB, of the cantilever (Fig. 301), by the method of

moments. The load at Q is 3 tons. Test the result by resolving the load
at Q into three components lying along TV, TQ and SB. &K=5*2,
BV=5'5 9 ^7=5-25, T&=11, F=9*4, j?^ = 13'5, TQ = 11'4:. Determine
the stresses in all the other bars.

(17) As in the previous example, only the load is suspended from a chain
which passes over a smooth pulley at Q and is fastened to J/, the mid-

point of TS.

MISCELLANEOUS EXAMPLES. X.

1. Prove that a chain made of equal links will hang in equilibrium
in a vertical plane with the links parallel to lines drawn from a point
to equidistant points on a vertical line ; and determine graphically the
stress at a joint. (Inter Sci., 1902.)

2. A heavy chain is supported by its ends A and
, which are 12 ft.

above the lowest part of the chain. The horizonal distance between
A and B is 66 ft. and the weight of the chain is 20 Ibs. per ft. of its

horizontal projection. Draw out to scale (10 ft. to an inch) the shape
of the chain and find the force on the chain at the lowest point. What
is the maximum force in the chain. (A.M. II., B. of E., 1903.)

3. A suspension bridge two hundred feet span between the centres of
the towers has cables having a dip of 30 feet ; the backstays are anchored
at a distance of 60 feet from the centres of the towers ; the load on each
cable is 4 tons per foot run. What is the stress on the cables at the centre
of the bridge, at the towers, and in the backstays ?

(Admiralty Examination, 1904.)

4. Find the stresses in the bars of the trusses shewn, Figs. 302 and 303
for equal loads.

5. Find the stress in ZT of the French roof truss, Fig. 304, by the
method of moments and thence the stresses in all the bars. The loads
at B, 8, T, U, V, W, X being 1500, 2700, 1600, 3400, 1800, 3250, 1750
Ibs. weight respectively, Y=Q=ZU= 4'7, $6~=8'5, and 4ff=14, and
the loads are equidistant.

*
Qlaj?endon Press. f Published by Mr. Edward Arnold,
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CHAPTER XL

WORK.

A FORCE acting on a body is said to do work when the body is

displaced.

The work done "by a constant force acting on a body is

defined as the product of the displacement of any point on the

axis of the force, and the force component in the direction of

the displacement.*

Thus, if in consequence of the motion of the body, the point
A (Fig. 305) on the axis of the force OF moves from A to A^
the work done by F is the product AA^ . OF\. where OF

l is

the force component in the direction of A^.
If the force component has the same sense as the displacement,

work is said to be done Ity the force, and it is considered positive.

If the force component has a sense opposite to that of the

displacement, work is said to be done against the force, and this

is considered as negative work done by the force. The reason

for this sign convention is not difficult to see ; suppose two
forces differing only in sense act on the body, then, so far as

motion is concerned, these are equivalent to no force at all,

and therefore in any displacement no work is done on the whole.

But the components of the forces in the direction of any dis-

placement are equal in magnitude, and opposite in sense, hence
the work done by each force must be equal in magnitude, and
if one be considered as positive the other must be negative.

: The other component is supposed perpendicular to the first one.
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Unit of Work. In Statics the unit of work is usually taken

as the foot-pound, or the work done by a force of 1 Ib. weight
when the body is moved 1 ft. in the direction of the force.

If the unit of force be a dyne, the unit of work is called an

erg, and is the work clone by one dyne when the body is dis-

placed 1 centimetre in the direction of the force.

Graphical Representation. Work done is represented

graphically by the area of a rectangle of which one side represents

to scale the displacement, and the adjacent side the force com-

ponent in the direction of the displacement. To measure this area

the rectangle is reduced to unit base either (i)
the unit of length,

when the altitude is measured on the force scale, or (ii)
the unit

of force, when the altitude is measured on the length scale

(pp. 3840).

Moment of a Force and Work done "by a Force. These

are both represented graphically by an area, but have totally

different physical interpretations. The moment of a force is a

vector quantity, its plane is determined by the plane of the force

and the point, and its sense by the sense of the force. The area

representing the work done by a force has no special plane,

and may be supposed anywhere ;
it is a scalar area though it

may be positive or negative.
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EXAMPLE. The shctfts of a mnifu/e are inclined at an angle of

15 to the horiamtal If the pull transmitted along the shafts from

the horn be 123 Us. weight, fintl
the work done ly this force in

moving the camar/e through 137//5.

Draw vertically upwards a line OD (Fig. 306), of length 6-85",

and set up along it 0{J=5". Through draw (i)
a horizontal

line OFj, and (ii)
OF sloping at 15 and of length 12*3 cm.

Draw FF
l perpendicular to OF

lt
and mark on OF

1
the point

W, where DIP, parallel to UFV cuts it.

D

U-

w
FTQ. 306.

Measure OW on the force scale, and multiply by 10
;
this gives

the number of foot-lbs, in the work done by the horse on the

carriage.

Proof. OF^ is the component of OF in the direction of the dis-

placement, and hence the work done is measured by OF^ OD, i.e. by
the area of the rectangle having OFl

and OD as adjacent sides.

This rectangle is equal in area to OU.OW, and OU represents

10 feet; hence measuring OW on the force scale gives the work

done in 10 ft-lbs., and therefore 10 x OW on the force scale gives

the work done in ft.-lbs.
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(1) The weight of a bucket of water is- given by a line of length 47 cm.
3ale \" to 10 Ibs.). Find the work done in ft.-lbs. against gravity in

raising the bucket from the bottom to the top of a well 76^ ft. deep.

(2) A horse pulls a canal boat with a force of lol Ibs. weight, the tow
rope makes an angle of 25 with the bank. Find the work done in ft.-lbs.

on the boat in pulling it along 117 ft.

(3) If a hole is punched through a metal plate 0"78 inches thick, and
the average resistance to the force of the punch is of magnitude 23700 Ibs.

weight, find the work done in ft. -Ibs.

(4) A weight of 1720 Ibs. by falling through 27 "8 ft. lifts, by means of

a machine, a weight of 970 Ibs. through 47 '3 ft. Find the total work
done by gravity.

(5) The inclination of a plane is 25 ; find the work done against gravity
in pushing a body weighing 7 '3 cwts., 15 '7 ft. up the plane.

(6) If the body be pushed up the plane by a horizontal force of 8 '2 cwts.,
find the work done by this force.

The work done "by a force when a point in its axis is

displaced, is the product of the force and the component

displacement in the direction of the force.

This is really an alternative definition to that given on p. 354.

Let OD (Fig. 307) represent the displacement, and OF the

force under consideration
; then, according to the first definition,

the work done = OF
l

. OD, where FFl
is perpendicular to OD.

F

FIG. 307.

According to the alternative definition the work done = OF. OD19

where DD
l
is perpendicular to ODr

But OF^F and QDJ) are similar triangles,

and hence
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More shortly, if d is the angle between the force and the

displacement, and /and d are their magnitudes, then the

work done =/. d cos 8 (according to second definition)

=/eos 8 . d (according to first definition).

Work and Motion. It should be observed that for a force

to do work or work to be clone against a force, motion is essential.

Unless some point on the line of action of a force moves, and

the displacement has a component in the direction of the force,

no work is done by or against the force. Thus, however great

the force which a horse exerts on a cart in trying to start

it, no work is done by this force on the cart unless the cart

moves. If by means of a second horse the cart be made to

move, then the first horse does work on the cart, the amount

being his pull multiplied by the component displacement. If

a force acts on a body at right angles to its displacement, no

work is done by the force; thus in the case of a body pushed

along the surface of a horizontal table no work is done by the

weight of the body because its line of action is perpendicular

to the displacement.

If, then, we know the work clone by a force to be zero, we

may have either (i) no displacement, or (ii) a displacement

perpendicular to the force.

We are not here directly concerned with the force or forces

to which the motion as such may be due. For instance in

Exercise 1, the actual work done by the person raising the

bucket is not the same as the work done against gravity. To

find the former from the latter we must know the speed of

the bucket and the work spent in giving it kinetic energy as

well as the work done against the resistances.

It is true, of course, that if we knew the force exerted by the

man the work done would be this force x the displacement.
The difference between this work, and the work done against

gravity, gives the energy imparted to the bucket, and the work

done in overcoming resistances. Similarly, in the example on

p. 356, we are concerned with the work done by the force
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applied to the carriage ; this may not be the same as the work
done against the resistances to the carriage motion, because the

carriage may be going faster at one time than at another.

Shortly put, we are concerned in Statics only incidentally with

the forces causing motion; our problem always is to find the

work done by certain given forces when the body is displaced,
the work being measured according to the definition on p. 354.

Displacement and Actual Path. Tke actual path of the

displaced point is immaterial; so long as the displacement is

the same, the work done will be the same.

Let F be the force and A.A
l

the displacement of A, then (Fig. ^-^"^
308) the work done is F.AA

2
. B,

If the displacement had been

first from A to B, and then from

B to A
l

the work done would

have been
FIG. :

This decomposition of displacements may be supposed repeated
without limit, so that A may be supposed to move on any
curved path from A to A^ and the work clone by F will still

(7) Draw a circle of 3" radius, and suppose it to represent a vertical

wheel of radius 6'. Find the work done by gravity when a load of 0'34

ton is moved round the wheel from the lowest position through one, two,
three and four quadrants respectively.

Change of Direction of Force. If the force changes its

direction as the point on its axis moves, but the angle between

the force and the direction of the motion remains unaltered, the

work clone will be the product of the distance moved through

by the point and the force component in the direction of the

motion at any instant.

Thus, if the point move in a circle, and the force is always

a tangent to the circle, the work done in a complete revolution

will be the force x the length of the circumference.
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(8) A body is moved through a circular arc, of length 25 ft. and radius

19 ft.
, by a force of 34 Ibs. weight, which always makes an angle of 70

with the radius. Find the work done on the body in ft. -Ibs.

(9) A man pushes at a capstan bar with both hands. One hand, at a

distance of 9 ft. from the axis, pushes perpendicular to the bar with a force

of 30 Ibs. weight, the other pushes with a force of 38 Ibs. weight ^t a

distance of 7
-8 ft. from the axis, and inclined to the bar at an angle of 72.

Find the work done in ft. -Ibs. during a complete revolution.

Work done against Friction. In the Chapter on Friction

it was explained that the coefficient of friction was the ratio

of the force tending to produce motion to the normal pressure

when the body was just on the point of motion. Such a

coefficient of friction is therefore not at once applicable to

bodies in motion without further experimental evidence.

Experimental Laws of Friction for Bodies in Motion.

It has been found for bodies actually sliding one on the other

that the friction between them is

(i) proportional to the normal pressure ;

(ii) independent of the relative speeds of the bodies
;

(iii)
area in contact ;

(iv) dependent on the nature of the surfaces
;

so that for bodies in motion, if F denoted the friction and N
the normal pressure, F=pN,
where ^ is constant for any two particular surfaces, but varies

for different surfaces and is called the coefficient of dynamical
friction. This coefficient of dynamical friction is slightly less

than for limiting friction.

EXAMPLE. A rough plane is of length 13 ft. and height 7*8 ft.

Find the work done by the least possible equilibrating force
* when the

body of weight 24*8 Ibs. is displaced from the bottom to the top of

the plane. The angle of friction for the plane and body is 18.

Draw the plane AGE (Fig. 309) to scale (AO=IS cm. say),

and draw OAT perpendicular to AC.

* A body is not necessarily at rest when in equilibrium ; it may be moving
with constant velocity.
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Set off QW vertically to represent the load of 24-8 Ibs. weight,
and draw OP, making 18 with ON, on the side away from QW,
and then WP perpendicular to OP,

Project WP to /F
1
?

1
on

the plane by lines parallel

to ON. Along WJV set off

3^0 =13 cm.

and ^7= 10 cm.

Draw QQl parallel to UP
l

.

Measure W^Q^ on the

force scale, and multiply

by 10
;

it gives the num-

ber of ft.-lbs. of work

done in sliding the body

up the plane.

(10) Find the work done against gravity and also that done against
friction. What connection is there between these and the work done

by the equilibrating force ?

(11) Find the work clone when the body is displaced up the plane by
the equilibrant when (i) parallel to the plane, (ii) horizontal.

Find also the work done against friction.

(12) A man pushes a roller up a hill rising 1 in 7, and keeps the handle
horizontal. The resistance is equivalent to a force of 24 Ibs. acting down
the hill. Find the work done on the roller by the man in moving it 12*3'

up the hill, if the roller weighs 268 Ibs.

(13) The axle of a fly-wheel has a radius of 2", the weight of the wheel
is 1780 Ibs. and the coefficient of friction for the axle and bearing is 0*18.

Find the work done in ft.-lbs. against the friction per revolution of the
wheel.

If a given set of forces acting on a body would keep it in

equilibrium, then the total work done by all the forces is

zero during any displacement of the "body, the forces being

supposed constant.
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This is a direct consequence of the fact that the vectors of

the forces form a closed polygon, and therefore the sum of

their components in any direction is zero.

In many cases the forces cannot be supposed constant for

finite displacements, and we have to consider infinitely small

displacements. In the case of a beam leaning against a

smooth wall and kept from sliding down by a peg at its

foot, the reactions depend on the slope of the beam, and

we cannot at one and the same time suppose the slope altered

and the reactions unaltered.

M.C. and Work Done. The work done against gravity

in raising a "body of weight W is ecLtial to the work done in

raising a mass of weight W supposed concentrated at the

mass-centre of the body.

Let u\, w ,
WB ,

... be the weight of the particles of the bodies,

It11 yi //$
their initial vertical distances above some horizontal

plane, and F
1? K23

... their final distances above the same plane.

Then the work done against gravity is

But 2E0
1 //1

= #2#'1
where y is the initial vertical distance of the

M.C. above the plane

and 2^7^ = Y2w1
where Fis the final vertical distance.

Therefore, total work done against gravity
=

(
Y~- y) W the

work done on a particle of weight W in lifting it through

the distances Y y.

(On each particle of the body other forces than the weight act,

viz. the pushes and pulls of adjacent particles. These pushes
and pulls constitute the stress of the body, and since the stress

consists of equal and opposite pairs of forces, the total work
done by these is zero.)

(14) Find by calculation the work done in emptying a cylindrical well
shaft of diameter 3 ft, the depth of the well being 110 ft. and the top of
the water being 26 ft. below the surface ; the weight of a cubic foot of
water is 62*5 Ibs. approximately.
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(15) ABC is a triangular prism weighing 78 "3 Ibs. It rests on the

ground with the face BG, of length 2*37 ft., in contact with it. BA is

vertical and of length 3 '16 ft. Find the work done against gravity in

turning the prism so that it is about to fall over (i) round the edge at B,
(ii) round the edge at C.

(16) Find by calculation the work done against gravity in raising a

cage of weight 727 Ibs. from a depth of 236 ft. by a wire rope of that

length, the rope weighs 5*7 Ibs. per yard.

Work done by a Variable Force.

EXAMPLE. A force moves a body in its line of action; for suc-

cessive displacements of 1 ft. the magnitude of the force is 51*3, 724,

65-7, 42-6, 31-5, 27-1, 30-3, 39-2, 46-9 Ibs. weight. Represent the

work done graphically and find its amount in ft. -Ibs.

70

60

gso

^40
c

k.20

10

123456789
Displacement in ft

FIG. 310.

On squared paper take two axes of co-ordinates, the horizontal

one to represent displacements to the scale of 1" to a foot and

the vertical one to represent forces to the scale of OT' to a

Ib. weight.

Plot the points corresponding to the numbers, and complete

the rectangles as indicated in Fig. 310. Evidently the whole

area of the figure represents the work done. Find the area

in sq. inches
;
the number of sq. inches multiplied by 10 gives

the work done in ft.-Ibs.
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Suppose we knew that the force changed for every displace-

ment of 6", being 60, 68, 52, 36, 29, 28, 35, 43 and 47 Ibs. weight
at the Intermediate points. Then, plotting these points, we see

that the total work done is represented by the area of the new

figure.

Further, if the force changed continuously instead of suddenly,

we should have, instead of a succession of points forming a

zig-zag line, a continuous smooth curve, and we see that the area

enclosed by this curve, the axes of coordinates and the ordinate

at 9 represents the work done.

(17) The resistance to the motion of a car for various displacements
is given in the accompanying table. Draw a curve giving the relation

between the displacement and the resistance. Divide the total displace-
ment into ten equal parts and erect ordinates at the mid-points. Add the
nrid-ordinates by means of a straight strip and measure on the force scale ;

multiply by the width of the strips in feet. The product is the work done

against the resistance in ft. -Ibs.

(18) The force in Ibs. weight acting on a body is always twice the

magnitude of the displacement in feet and acts in the direction of the

displacement. Find the work done by the force for a total displacement
of 17'4 feet.

Work done in Spring
1 Extension or Compression.

Experiments shew that when a helical spring is extended beyond
its natural length, the extension is always proportional to the

force applied (up to the elastic limit of the spring), so that if

W
a denote the extension, and W the load, is, for the same

spring, always constant (Hooke's Law).
If the results of an experiment be plotted, say extension in

cms. horizontally, and load in grms. weight vertically, the points
will be found to lie approximately in a straight line as in

Fig. 311 passing through the origin of coordinates. From the

graph we see that is always constant and is measured by tan a.
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The work done in extending the spring a distance OA is

therefore given by the area OAB to scale, and is measured

by \OA . AB, i.e. J- the product of the maximum extension

and maximum load.

(19) A spring is found to extend a distance of 12 '7 cms. beyond its

natural length, under a load of 46 '3 Ibs. Find the work done in inch-lbs. in

gradually extending the spring from its natural length to 8 "7 cms. beyond.

(Draw the straight line graph by setting off OA=I2'7 cms. horizontally,
and AB vertically a distance of 4-63 inches, and join OB; OB is the

graph. Find the area enclosed by OB, OA, and the ordinate at a point
87 from 0.)

(20) A spring is found to extend a distance of 15 cms. under a load of

17*6 Ibs. Find the work done in gradually extending it from an extension

of 7*3 cms. to one of 17*4 in inch-lbs.

(21) A bar is fixed at one end, and twisted by means of an arm of length
1 ft., fixed at right angles to the length, at the other end. To keep the

free end of the bar twisted through a radian requires a force of 27 Ibs.

weight to be applied to the end of the arm. The force applied being
proportional to the angle of twist, find the work done in twisting the free

end from 0'56 to T32 radians.

Work done in compressing Gases. For many gases at

ordinary temperatures and pressures the relationship between

the volume they occupy and the pressure to which they are

subjected is given by the law

Pressure x volume = G (where is constant)

(known as Boyle's or Marriotte's Law).

EXAMPLE. A gas obeying Boyle's Law is enclosed in a cylinder fitted

with an air-tight piston ; to find the work done in compressing the gas.

Suppose when the compression starts at the atmospheric

pressure of 14*3 Ibs. per square inch, the volume of the
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enclosed gas is 100 cubic inches, then the constant above is

1 4-3 x 100 =-1430. Suppose the volume is reduced to 20 cubic

inches.

On squared paper take two axes of coordinates, the vertical

one for pressures, and the horizontal one for volumes. Along
the latter set off OM to represent to scale 100 cubic inches, and

set up vertically MP to represent the pressure of the gas

(14-3 Ibs. per sq. inch).

10 20 30 40 50 60 70

Cubic filches

FIG. 312.

80 90

Draw a horizontal line through P (Fig. 312), and mark any

point V^ on it; put a straight edge along OV^ and mark the

point F2 where it cuts the ordinate PM. From F"
2 go horizontally

to F"
3
on the ordinate FF

l through Fr
F"

3
is a point on the curve whose equation is

P. F= 14-3 x 100 = OJfeT. JIP.

Repeat the construction for a number of points like V^ and

obtain, say, nine points between F=20, and F=100. Join the

points by a smooth curve QFBP. This curve has for its equation
P. V^ 14-3x100.

Find the area enclosed between the curve, the axis OM, and
the ordinates QN and PM, by the mid-ordinate method, i.e. add
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the mid-ordinates of a number of equally wide strips between

N and M by the strip method, and multiply by the common
width of the strips, the former being -measured on the pressure

scale, and the latter on the volume scale.

The product is the work clone in compressing the gas in inch-

pounds.

Proof. Pressure meaning force per sq. inch, then if A is the

area of the piston in square inches, the total force acting when
the pressure is P is P . A = F, say.

If L is the length of the cylinder in inches, then

and

and we may take the ordinate to represent the force on the

piston, and the abscissae to represent displacement.

(22) Find the work done in compressing a gas from a volume of 7 "32 to

3 '64 cu.-ft., if the initial pressure of the gas was 5200 Ibs. weight per
sq. ft.

*
(23) The resistance to Jthe motion of a body in a liquid varies as the

square of the speed, find the work done in reducing the speed from 20 to

11 "5 miles per. hour in a distance of 1"6 miles, if the resistance to the
motion is a force of 12 '3 tons weight, when the speed is 8*6 miles per
hour.

*
(24) If WQ is the weight of a body on the earth's surface, and W the

weight of the same body at a distance R from the earth's centre, then
WEZ = W^Rff

1 where R is the radius of the earth. Find the work done
on a meteorite by the earth's attraction in moving it from 7?=8000 miles,
to 7?= J? =4000 miles, if the meteorite weighs J a ton on the earth'j

surface.

MISCELLANEOUS EXAMPLES. XL
1. Explain the term work.
Find the work done in raising a lift full of people and weighing 2 tons

through a height of 80 feet. Explain the system of units you use.

(Engineer Students, 1903.)

2. A uniform rope hangs by one end, and carries a weight at the other ;

shew how to draw a diagram to represent the work done in winding up the

rope, and thereby lifting the weight. (B. of E., II.)

3. Draw a line Ax, and take in it five equidistant points, J9, (7, D, E,
F'; suppose a force (P) to act along Ax, and that its value at the points
B, C, D, E, F are respectively 50, 35, 28, 25, 24 Ibs., let the distances
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BG, Of), ... represent 3 ft. apiece; draw a diagram of the work done by
the force, and calculate (by Simpson's rule, if you know it) in foot-pounds
the work clone by the force while acting from B to F. (B. of E., II.)

4. Draw a diagram of work in the following case : Six equal weights
( IF) are fastened to a rope in such a way that one follows another at

distances of a foot. The rope hangs vertically with the lowest weight
3 ft. above the ground ; if the rope be gradually lowered draw a diagram
for the work done by gravity on the bodies, when all have come to the

ground.
"

(B. of E., II., 1903.)

5. A load of 10 cwts. is raised from the bottom of a shaft 500 feet deep
by a wire rope weighing 2 Ibs. per foot. The rope is wound up on a drum,
3 feet in diameter. Draw a curve, showing the moment exerted at the

drum throughout the motion, and find the whole work done during the

lift. (Patent Office, 1905.)

6. Shew how to represent in a diagram the work done by a force P of

variable magnitude, which displaces its point of application in its own fixed

line of action from A to B. Let P begin with the magnitude 50 Ibs.

weight, and keeping its magnitude constant, displace its point of application
from A to C\ a distance of 2 feet ; then from C to Z>, a distance of 8 ft. , let

P vary inversely (without discontinuity) as the distance of its point of

application from A. Draw the work diagram and find the total work done
from A to B. (Inter. B.Se. (Engineering), 1906.)

7. Give the vector definition of the mass-centre of a system of
^articles.

Prove that the work done against gravity in moving a system from one

configuration to another is equal to the work done in lifting a particle

equal to the total mass from the first position of the M.C. to the second.

(Inter. B.Se. (Engineering), 1905.)

8. The table below gives the relation between pressure and volume for

1 Ib. of saturated steam, between certain limits of pressure. Plot a graph
which will show this relation, and by counting squares on the sectional

paper, determine the area bounded by the curve, the horizontal axis or

line of zero pressure, and the limiting ordinates (parallel to the line of zero

volume).
If for any small change of volume of the steam the product of pressure

in Ibs. per square foot and the change of volume in cubic feet represents
the work done in foot-lbs., find how many foot-lbs. of work will be done in

compressing the steam from a volume of 4*29 c. ft. to a volume of 1*53 c. ft.

Pressure in Ibs. per square inch. Volume in cubic feet.

101-9 4-29

115-1 3-82
129-8 3-42
145-8 3*07
163-3 2-76
182-4 2-48

203-3 2-24
225-9 2-03
250-3 1-84

276-9 1-68

305-5 1-63

(Military Entrance, 1905.)



APPENDIX.

EXPERIMENTS ON MOMENTS.

The Lever. A good simple lever can be made from a metre scale.

Leaving about 3 cms. untouched at the centre, cut away from one edge
down to the middle line and remove the end portions as in Fig. 313.
Bore a hole just above the middle line at the mid-point of the length, and
fix a steel cylindrical peg firmly in the hole so as to protrude about |"
on both sides.

FIG. 313.

The lever should be supported between two wooden blocks of the same
height or on a special stand. Weights may be suspended from the lever

by looped threads, either directly or by scale pans.

W,

FIG. 814.

Stops should be provided to prevent the lever overbalancing when the

weights are not properly adjusted.
If the lever is not horizontal when placed on its supports, cut away a

little more wood from the heavier side until it is.

EXPT. I. Suspend, by means of a silk loop, a 100 gramme weight from
the left-hand side of the lever at 20 cms. from the fulcrum. From the

right-hand side suspend a weight of 40 grammes and adjust its position
until the lever is horizontal.
Do the same with weights of 50, 60, 100, 150, 200, 250, 300, 400 and

500 grammes on the right-hand side, noting in each case the distance of

the supporting thread from the fulcrum.
Tabulate the results thus :

2A
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On squared paper take a horizontal line to represent distances from the

fulcrum, scale 1 in. to 5 cms., and vertical distances to represent the weights,
scale 1 inch to 50 grammes, and mark the divisions as indicated in the

figure.

500

450

400

350

1*300
CD

| 250

s

I 200

150

100

50

W

M
10 15 20 25 30 35

Gms,
FIG. 315.

40 45

Plot the points whose coordinates are given in your table and draw
a smooth curve lying as evenly as possible amongst them.
The curve can be recognised as like the one constructed on p. 34.

Verify this by multiplying the weights by the distances (take the weights
from the curve).
Find that always

Weight x by distance from fulcrum
is the same.
See if this constant product is also the product of the left-hand weight

and its distance.

These products are called the moments or turning moments of the weights
about the fulcrum, and we have moment of weight on one side=moment of
weight on the other.

From the graph determine

(i) At what distance from the fulcrum a weight of 120 grammes on
the right would balance the left-hand weight ?

(ii) What weight must be placed at 27*5 cms. on the right to balance the
left-hand weight ?

(iii) Suspend a i Ib. weight from the right arm and determine by trial
the point at which it is in equilibrium. Bead off from the curve its weight
in grammes.
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(iv) If all the weights used on the right in the experiment were suspended
at the same time from their old positions, what weight would have to be

suspended at 30 cms. from fulcrum on the left ?

(v) Where would a 500 gramme weight have to be suspended on the left

to balance all the weights used on the right ?

EXPT. II. Generalise Expt. I. by taking three weights on one side and
two on the other at the same time.

If MR and ML mean the moment of a weight on the right and left

respectively, then the result of this experiment may be symbolised by the

equation sML - SMR = 0.

Notice that the weights on the left tend to produce a contracloekwise
rotation of the lever, and those on the right a clockwise, hence if the
former be reckoned positive and the latter negative, then, as an algebraic
sum, the sum of all the moments about the fulcrum is zero., or SJ/=0.
Repeat this experiment twice, using different weights, and see if 23/^=0

in these cases.

(1) Weights 20, 25 and 100 grammes are placed at distances 45, 30 and
20 cms. to the right of the fulcrum. A weight of 70 grammes is placed at

10 cms. on the left; where must 20 grammes be placed to balance the others,
and what weight must be placed at 40 cms. to the left to balance the same
set?

(2) Would an upward push of 200 grammes at 15 cms. on the right be

likely to have the same balancing power as 200 grammes hanging at

15 cms. on the left ? (A 200 grammes upward push at any point would be

counter-balanced by 200 grammes weight hanging vertically below.)

(3) AB represents a lever 25 ems. long, the fulcrum being somewhere
between A and B. A weight of 170 grammes at A balances 60 at 2?;
determine graphically the position of the fulcrum.

FIG. 310.

EXPT. III. Generalise the results of Expt. II. by applying an upward
force on the right side by means of a spring balance (Fig. 316).

T,G. 2x2
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Shew in several cases that

Wl
. AC= Jf2 xCB-P.CD (where C is the fulcrum),

P being the upward pull of the spring as registered on the scale.

The above table gives the parallel forces acting on a lever, and the
distances of their points of application from fulcrum. Distances to the

right are given as positive, those to the left as negative ; a - force means
an upward push. Find the distance of the 20 Ibs. weight from the fulcrum
for equilibrium. On which side must it be placed ?

(5) Expt. I. Chap. IV. shewed that a force acting on a rigid body
may be supposed applied at any point in its line of action. Suppose, then,
a weight on one side of a lever were suspended by a thread cemented on
to the lower edge (instead of strung from the upper edge), would this make
any difference in its balancing power ? If not, the moment would in this

case be expressed by weight x ?

EXPT, IV. A farther generalisation of Expt. III. can be made by
changing the shape of the lever.

Fix a cylindrical peg through the centre of a rectangular piece of planed
wood (say 12" x 10" x \"}. Fix two drawing pins firmly near opposite
edges of the board, leaving sufficient space between the heads of the pins
and the board to insert a loop of thread. Balance the board by means of a

peg on two blocks as in the case of the metre scale lever. Hang weights of
400 and 500 grammes on the pins, and let the lever take up a position of

equilibrium. Mark the lines of the strings on the board. Measure the

perpendicular distances of the strings from the fulcrum. See if the moment
law, 2

(weight x perpendicular distance from fulcrum) = 0, is true.
Remove the pins and mark their old positions ;

set the pins in other

positions on the two lines drawn on the board, and suspend the weights
as before. Is the lever in equilibrium in the same position as before?
How can you tell that the position is the same ?

How does the experiment verify the deduction from Expt. III. Chap. IV.
Notice that when the line joining the two pins is above the fulcrum the

equilibrium is unstable.

EXPT. V. A final generalisation is effected by arranging an experiment
in which the forces have different directions.
Cut out a piece of irregular shaped cardboard. Punch five holes in it,

and fix it on the vertical drawing board (Expt. II. Chap. IV.) by means
of two stout pins. Attach hooks, threads and weights as in Expt. IV. of

equilibr:

j the fulcrum.
Draw lines on the card shewing the axes of the forces, and indicate on

the lines the magnitudes and senses of these forces,
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Dismount the card. Measure the perpendiculars from the fulcrum on
the axes of the forces, and calculate the sum of the moments.
Find the sum of the vectors of the forces.
Draw through the fulcrum a line parallel to the sum of the vectors.

Mark a point on this line, and mark also a point not near the line.

Calculate the sum of the moments about these two points as if they
were fulcra.

If a force equal in magnitude and direction, but opposite in sense, to the
resultant vector acted in the axis drawn through the fulcrum, what would
be the sum of the moments of the whole six forces about these three points,
viz. the original fulcrum, and the two marked points ?

What was the force acting at the fulcrum on the card, i.e. the reaction
of the pin V

EXPT. VI. Fix the same card to the drawing board (by two pins) in
such a position that the axis originally vertical is vertical again.
Arrange the pulleys so that the same forces may act on the card as in the
last experiment, and in addition a sixth force given by the reversed
resultant vector whose line of axis has been already drawn.
Remove the pins and see if the card is in equilibrium.
If in equilibrium any point on the card pinned to the board would do

for a fulcrum. Calculate the sum of the moments of the six forces about
several points.
Was the vector polygon closed for all the forces ?

Would there have been equilibrium if the sixth force had been applied
in any other line than the one through the fulcrum V

Deductions.

(1) If a rigid body is free to turn about an axis (fulcrum) the rotative

tendency of any force acting on the body is measured by the product of

the force and the perpendicular 011 its 'axis from the fulcrum, and this

moment is positive or negative according as the rotative tendency is contra-

clockwise or clockwise. Expts. I. -VI.

(2) If a number of eoplanar forces act on a body free to turn about an

axis, the body will turn until the sum of the moments of the forces about
the axis is zero. If the body, free to turn about an axis, does not, the sum
of the moments of the forces about that axis is zero. Expt. V.

(3) If the sum of the moments of the forces is zero about three points
(non-eollinear) in the plane, the body will be in equilibrium (Expts. V.
and VI.), and if the body is in equilibrium, the sum of the moments
is zero for all points. Expt. VI.
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NOTE A.

CIRCULAE MEASURE OF AN ANGLE.

DRAW a circle of radius 3" and mark by radial lines angles of 30, 60 and

90. Stop off the arcs, corresponding to these, along a tangent and measure

their lengths in inches. Divide these lengths by the radius. The numbers

so obtained are approximately the circular measures of the angles. See

that the last number is 1 *57 and that the numbers are in the ratio 1:2: 3,

or nearly so.

Whatever the radius of the circle the circular measure of these angles
will be the same.

If an are be stepped off equal to the radius, the angle at the centre will

have unity as its circular measure. This angle is called a radian and is the

unit of circular measure. Construct a radian and see that it is nearly 57 '3.

The measure of an angle in radians is always
a

^ ,
which being the

ratio of two lengths is a number. radius

Mathematicians formerly went to enormous trouble to calculate the

measure of two right angles in radians ;
it has been worked out to 707

decimal places. The number of radians in two right angles is always
denoted by the letter IT. Correct to 5 figures its value is 3*1416 ; the

fraction 4r
2
-
gives TT correct to three figures. Instead of giving the radians

in an angle as a number, approximately correct, it is sometimes convenient

to express it as a fraction of T ; thus the number of radians in 15, 30 and

. -JT 7T T T
4o are r-~. -^ and T.

12 6 4

,,. semicircular arc . , .

>Smce IT
~,7~T ;

? tlie circumterence 01 a circle or radius r
is 2-n-r.

NOTE B.

GREEK LETTERS USED IN THE TEXT, WITH THEIR
USUAL PRONUNCIATIONS.

a (Alpha). (Theta).

ft (Beta). TT (Pi).

7 (Gamma). p (Rho),

3 (Delta). <rf
,Q .

x

e(Epsilon). 2|
(Sigma).

(Phi).



ANSWERS.

CHAPTER I.

Exercises. PAGES 1-41.

3. 0'62"; 38-4'. 5. Total load, 15 '1 ozs. 6, ll-Sozs.

7. 123. 8. 27'4. 9. 12. 10. -97.

15. Complete the triangle oil a, and measure the angle between u and the
third side. Through the ends of 6 draw lines making 6 and 60
with 6, then c is the side bounding the 60 angle.

16. 8*88. 25. 1-92. 29. 1-36, 1-48, 0'57. 32. 1-47, '83. 34. 9-15.

35. 6'38. 36. 6 '06. 38. 0*o75. 39. 2 -88. 40. 225,

41. 1-28, 1-64, 2-08, 2-67, 3-43, 4-39. 42. 0'73. 0*62, 0'53.

43. 1-13, 1'06, 0-92, 0'96.

46. 0-04, 0-13, 0-21, CKS2, 0*97, 1'74, 1-90.

47. 0-63, 0-87, 0'96, 1-17, 1*30, 1-43, 1"48.

3j2
5* y oF~' where u is 1"; y= x2

; 9".
iiD'Zt

51. M.^^1
; 1*5" and 13 '5" and are independent of a.

b a,"

64. 3-8. 65. 8130. 66. 10-9". 67. 257 ; 694.

69. 31 '2 million ergs. 70. 10 '4 sees. 71. 2'94ft.-lbs. 72. 17 '4 ft. -tons.

73. A line of length 8 "96 cms., scale 1 cm. to 1 Ib.-ft. ; a line of length

8*96", scale 1" to 1 Ib.-ft.

Miscellaneous Examples I. PAGES 41, 42.

1. 0*6", 1-42", 0-7". 2. 5-14 cms. 4. 1-88".

5. 7'85, 12-6, 157. 6. 45-3, 35 '0, 1 '7. 7. 1-07, 1'38, 2-36, 2'84.

8. yrr-fL, where w is an inch. 9. 2-47. 10. 21 ft.-lbs.
lt)W"

J

11. 2-46, 1-19, 0-76, 4-0. 13. 0'31 cub. ft.
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CHAPTER II.

Exercises. PAGES 43-64.

1. 5-12 sq. ins. 2. 20*4 sq. cms. 4. 2 '28 sq. ins.

6. 9-1 sq. ins. 7. 2420 sq. ft. 8. 1'67 sq. ins.

9. ABGD is - 1-03 sq. ins. 11. 9 sq, ins. 12. 4950 sq. yds.

13. s-87. 16. 5-9 sq. ins. 24. 37 '6 cub. ins.

25. 21 -6 cub. ins. 26. 9 '75 cub. ins.

Miscellaneous Examples II. PAGES 65, 66.

2. 12 sq. ins., T2 sq. iiis. 3. 5'4 sq. ins. 4. 4'1 sq. ins.

5. 1-5 sq. ins. 6. 9'9 sq. ins. 7. 152 sq. cms.

8. 3560 cub. cms. 9, '22200 sq. ft. 10. 407 sq. cms.

12. Area is 5*93 sq. ins., angles are 71 '8, 61*8% 46 "4.

CHAPTER III.

Exercises. PAGES 69-114.

1. 113 ft. N.W. ; 160 ft. N. ; 113 ft. N.E. ; 0.

2. (i) 4-95', 0-6 W. of S. ; (ii) 6 -97', 11 "4 W. of S.

7. 14-3 cms. ,23 -2 S. of E.

9. 3'69m./hr. S.W.; 3'7m./hr.,'25'9 8. of W.; 1'97 m./hr., 32'2N. of W.

Speeds 3*69; 4; 3*86 m./hr.

11. 5-83 ft./sec., 31 E. of N. 12. 36 '9 with the up-stream line.

13. 24-3 with the up-stream line. 14. 258 m./hr., 22'8 N. of E.

15. 16-6 m./hr., 25 '2 W. of S. 17. 14 '3 m./hr. from 36 "5 N. of E.

18. 17 m./hr. (nearly). 19. From 28'4
U
N. of E. and 15-6 W. of N.

20. 3*3 miles. 21. 13*5 m./hr. 47 '5 E. of &.

22. 9'2 m./hr., 14*7 E. of S. ; 15*7 m./hr., 14 "7 E. of 8.

23. The total accelerations are 17 ft./sec., 48 '3 S. of E., 26 '1 ft./sec. E.,

16 ft./sec., 45 N. of E. and 0.

24. 41 '9 ft. per sec. per sec. at 22*5 with its own direction of motion.

26. 7 -07 ft. each. 27. 10 '6 and 5*5 ft.

28. 27 "9 and 16*1 ft. per sec. per sec.

29. 4*93 and 0*83 ft. per sec. per see.

30. 47 miles. 31. 29 "2 ft. per sec. per sec.

32. 1*61 ft. per sec. per sec. down the incline.

33. 2*31 ft. per sec. per sec. making 43*4 with the vertical.

42. 0'85" from the centre.

43. 1*1" and 0*8" from the sides containing the second and third, and the

third and fourth masses respectively.

48. 5 "93 ems. from origin. 49, 4" from origin.

53. 1-92" and 0*29". 57. '608 of radius from centre.
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58. 0"84" from centre of circle.

66. 0*19" from the centre of the 3" circle away from the hole.

69. 0"33" from the centre of the rectangle away from the hole.

70. '44" from centre of rectangle.

71. 0"o7" from centre of rectangle.

Miscellaneous Examples III. PAGES 115, 116.

3. 26*8 ft. per sec. at 52*6 with the horizontal.

4. 11-2 m./hr., 49*1 N. of W. 5. Coordinates are 2 '42 and 3 '54 cms.

6. Coordinates are 2'32 and 3*88 cms. 8. 2 '25" from centre.

9. 0'78 and 0'61 of the radius from AB and BO respectively.

11. 7*17 ft. from base of block.

CHAPTER IV.

Exercises. PAGES 119-166.

166 ll>s. wt.

(i)
= = 3(>'9.

(iii)
= 34-05, 0^=44"4.

(v) P=14-21bs. wt. = 76-3.

24.

(ii) ^?= 8*7 Ibs. wt., </
= 30.

(iv) Q= 8*18 Ibs. wt., = 48.

(vi) P= 5'38, Q = 'l*2 Ibs. wt.

(vii)
= 33-8, Q= 7 '76 Ibs. wt. (viii) P = 6'54.

(ix) P=10-73, Q= 9. (x) R = 5 "66, Q = 3'35.

4. 95-5, 134-7, 129*8. 5. 59 and 107 grms. wt. respectively.

6. (i) 12*7 and 20 '8 Ibs. wt. respectively.

7. 2 '98 cwts. at A and T57 at B.

8.

12.

13.

15.

17.

19.

21.

111 making 112 '75 with the 30 force.

j?=37-4, #=6 '3. 14. 0*2 and 1*67 Ibs. wt. respectively.

7-54 and 12-52 Ibs. wt, respectively.

AB makes 21%3 with the vertical, the pull on A is 10 '25 Ibs. wfc.

PF=32*8 Ibs. wt. 20. 11 Ibs. wt. at 35 -3 with the vertical.

1-29 cwts. 22. 20 '5 and 36 Ibs. wt.

Through one end of a draw a line parallel to OB, describe a circle

of radius c with the other end of a as centre. The circle cuts the

line drawn parallel to OB in two points, hence c has one of two

directions. If c has a direction perpendicular to OB the magnitude
of c will be the least possible,

(i) 13-4 and 44*8 Ibs. wt. (ii) Diminished by 5'3 and 7 '3 Ibs. wt.

(iii) Increased by 5 '3 and 7 '3 Ibs. wt. (iv) IS '3 Ibs. wt.
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25. 20-7 kilogrms. wt., 40'] E. of N.

26. 6-5 Ibs. wt. at 67*2 with the 23 force.

30. 18-2 Ibs. wt. towards a point 33 '7 N. of E.

31. 23-8 Ibs. wt. at 79 '1 with the 10 Ib. wt. force.

32. 20-7 Ibs. wt. bisecting the angle ABC.
33. 12-7 Ibs. wt. at 45 '05 with AB. 34. 9'33 and 9'66 kilogrms. wt.

35. 1-29 and 2*5 kilogrms. wt. 36. 177 and 3 '42 kilogrms. wt.

38. 0'4 cwts.

39. First draw the plane. Then set off A G vertically downwards for the

weight of the body and draw A B and BC parallel and perpendicular
to the plane. Set off AM along AB for the pull parallel to the plane,
and then draw ED at 15 with the horizontal cutting CB at D.
Scale DE and DO ; they give 10*9 and 14*3 cwts. as the required
forces.

40. Draw parallel to 7 a radius of the circle and measure the length of the

arc to the highest point (T22').

41. The slope is Q'41 the angle 21*8.

42. 24-3. 43. 39 ; 16*1 Ibs. wt. 44. 3 '39 cwts.

45. 4 '5 and 3 kilogrms. wt.

46. 15 '6 Ibs. wt. at 45 with the vertical.

47. 9*3 and 19 '9 Ibs. wt. bisecting the angles.

48. (i) 388,1300 and 388 grms. wt. bisecting the angles,

(ii) 1449,1299 and 1449 grms. wt. bisecting the angles.

49. 5-71 tons wt. in A G, 4-28 in 5(7. 50. 8 '61 tons wt. in BC.

51. 2-33 tons. wt. in BO, 4 '46 in AC.
53. 6'39 tons wt. in AC, 3 '83 in BC.

54. 4*3 tons wt. in AC, 0'92 in BC.

55. 1-89 kilogrms, wt. in AC, M9 in AB, 0'98 in BC, 0'68 kilogrms. wt.
reaction at B, 1 *t>2 at A .

56. 4-44 tons wt. in AB, 9*62 m AC.
57. 2-8 tons wt. in AB, 15*9 in AC.
59. Reaction of nail= weight of picture ; tension =4 '62 Ibs. wt.

61. 1-72 cwts. in BC, 3 '5 in AC, C being below AB.
62. Stress in BA, 5 "29 tons wt. 63. Tension is 15 '5 Ibs. wt.

64. First find the tension in the chain by drawing from the ends of the
vertical load vector a horizontal line and one making 30 with
the vertical. Find the total pull at B of the two parts of the chain
and then the forces in A B and CB which are in equilibrium with
this. Stress in AB is 6*6 ewts.

,
in CB 17 -3 cwts.

65. 18-18, 42-1 N. of E. 67. 10-02 and 9'92.

69. 129, 321, 453, 483 Ibs. wt. respectively.
70. 1 1 and 5 '69 Ibs. wt. respectively.
72. (i) 421 Ibs. wt. along the rail, side thrust 201.

(ii) 421 Ibs. wt. along the rails, side thrust 21.
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73. (i) 5*3 and 10*55 Ibs. wt. (ii) 10*55 and 5*3 Ibs. wt.

(iii) 3*7 Ibs. at each.

75. P=3*67 Ibs. wt., reaction^ 11 Ibs. wt. Component parallel to

plane= 3 '67 Ibs. wt., vertical component of reaction=104 Ibs. wt.

76, 27 Ibs. wt, 75-3 Ibs. wt. 77. 132 '7 Ibs. wt., 55 -8 Ibs. wt.

78. The wedge is in equilibrium under tbe horizontal push of 28 Ibs. wt.,
the reaction of the block and a vertical force equal to the table

reaction less the weight of the wedge. Draw a horizontal line

representing to scale the push of 28 Ibs. wt. From its end points
draw lines vertical and perpendicular to face of wedge supporting
the block, the latter gives 59 '6 Ibs. wt. as the reaction of the block
on the wedge. The former gives 5*2 '5 as the vertical force on the

wedge, and this consists of 18 Ibs. downwards and the reaction of

the table upwards. The table reaction is therefore 70*5 upwards.
79. 12-2 and 43*5 Ibs. wt. respectively.

84. 199 Ibs. wt. 87. 5*85, 12*5, 37 '5 Ibs. wt. 89. 2*35 Ibs. wt.

90. 2-36 Ibs. wt. at 43 '7 with the vertical.

91. 0*252 cwts. at wall, 0*564 at ground, making 63 '45 with the horizontal.

92. 0*217 cwts. at wall, reaction at ground makes 23*25 with the vertical.

93. Tension is 22*1 kilogrms. wt.

97. For the 60 plane the reaction is 29*9 Ibs. wt., the reaction of the

hinge is 60*8 Ibs. wt.
, making 25*2 with the vertical.

98. 1 '25 cwts. at the top and 1 '66 owts. at the bottom, the latter making
51*6 with the horizontal.

99. 521 Ibs. wt. at hinge, making 24 with the beam, and 265 Ibs. wt. at

the top.

100. $=212 Ibs. wt., reaction at G 232 Ibs. wt. passing through the

intersection of P and Q.

101. 42 Ibs. wt. at plane and 48 at the peg, making 25*6 with the vertical.

102. 83*1 with the vertical. 103. 50 '8 with the vertical.

104. 42*7 with the vertical.

105. 5*1 with the horizontal ;
reactions of the planes are 3*66 and 2*59 cwts.

CHAPTER V.

Exercises. PAGES 172-206.

2. Resultant of magnitude 3*62 Ibs. wt. inclined at 13*8 with EG, the

axis cuts AB produced at 1" from B.

3. Resultant of magnitude 8*99 Ibs. wt., making 48*7 with Ox and

cutting it at - 0*31 units from origin.

8. Magnitude 6*62 Ibs. wt. making 78*3 with the first spoke, axis cuts

first spoke at 4*6" from its point of contact with the hub.

11. 12 Ibs. wt. at 6*42
// from the smaller weight.

12. 3*86" from the left end weight.

13. First find the resultant of the first two forces and the given equilibrant.
The third rope is 3 *9" fromthe mid-point and nearer the smallerweight.
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14. Draw the link polygon for the weights W^ and JF2 , mark the points
where the first link cuts the known axis of the resultant, and
where the last link cuts the axis of W%. A line through the pole of

the vector polygon parallel to the line joining these two points
determines the magnitude of W$ (19 '75 Ibs. wt.).

15. - 5 Ibs. wt. at 9 ft. from first force and 6 ft. from second.

16. -22 libs. wt. at 171" from the end.

17. Magnitude 27 "2 Ibs. wt., the axis making 22*1 with PQ and cutting it

at 0'47" from P.

18. 1 cwt. at 0*72 yds. from first and 0*28 yds. from second force.

19. 197"'from leading wheel. 25. 4*73 and 5 '97 tons.

26. 23-65 and 22*35 cwts. 27. 39*4 and 6*6 cwts.

28. No ; reaction 1 '3 cwts. downwards.

31. 23*7 cwts. at roller, reaction at pin makes 41 '6 with beam and is of

magnitude 31*5 cwts.

33. 185*7 Ibs. wt. at plate, 273 Ibs. wt. at hinge, making 42 '9 with
vertical.

34. 364 Ibs. wt. at plate, 472 Ibs. wt. at hinge, making 50 '5 with
vertical.

35. (i) 327 Ibs. wt. at plate, 499 Ibs. wt. at hinge, making 54 '5 with the

gate post.

37. Reaction at cylinder 1*82 cwts., reaction at hinge 1*22 cwts., making
51 "9 with the horizontal.

38. 348 Ibs. wt., making 15 '2 with the vertical.

46. (i) Perpendicular to the pole with a force 1*81 times the weight of the

pole ; (ii) a force of 1*86 times the weight of the pole at an angle of

7t>*9 with the pole.

53. 10*3 tons wt., making 16*1 with the vertical.

CHAPTER VI.

Exercises. PAGES 210-251.

2. RQ and PR in tension ; stress 9*82 Ibs. wt. in each. PQ in com-
pression ; stress 4*91 Ibs. wt.

3. Reaction at P is 12*45 Ibs, wt, stress in PQ = 3*72 Ibs. wt. and at
QR= 5-08 Ibs. wt.

5. A tensile stress of 4 "97 Ibs. wt. in the lower bars ; a compressive stress
in the horizontal bar of 14 Ibs. wt.

6. Lower bars have a tensile stress of 4*97 Ibs. wt., the vertical bar one
of 14 Ibs. wt,

7. The diagonal bar makes 4*75 with the horizontal
; the stresses in the

two lower bars are 4*43 and 5*42 Ibs. wt.

9. The stresses in AB, 5(7 and OA are 21*7, 56*3 and 27 '3 Ibs. wt,
11. Tensile stress in PQ of 2 tons wt., compressive stress in PT of 1*73

tons wt., compressive stress in TS of 1*15 tons wt.
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12. Compress!ve stress in PQ of 2 -31 tons wt., in QE a tensile stress of

1 '15 tons wt.

13. Stress in PQ is 2'31 tons wt. 14, Stress in PUis 8*66 tons wt.

23. 33 '1 Ibs. wt. along the line joining P to the mid-point of QR.
30. Average compressive stress in AB is 3 '93 Ihs. wt.

CHAPTER VII.

Exercises. PAGES 256-280.

1. 0=4, e=26-6.

2. Reaction 27 '4 ozs., making 18*4 with the vertical.

3. (i) Yes; (ii) no. 4. yu
= 0'447, e= 24'l.

5. 467 grms. wt. 8. 4*09 and 3 '79 Ibs. wt.

9. Least force 1T7 Ibs. wt. at 32 '4 with the horizontal, corresponding
friction is 0'98 Ibs. wt.

10. Yes ; 15*5 with the vertical.

11. 5 '64 cwfcs. at 19 *5 with the vertical, horizontal resistance 1*88 cwts.

12. Least pull is 12*8 Ibs. wt. at 20*3 with the horizontal.

13. Angle of friction 36*9, reaction 8 Ibs. wt.

14. (a) 3-5. (1>) 4-14 cwts. (c) 2*98. (d) At 25 with the horizontal.

15. 6*23 kilogrms. wt. is the least force, 17 '81 in the opposite sense to the

5 force.

16. 0*78 tons wt., making 38*7 with the vertical; (a) 1*02 tons wt. ;

(b) 0-83 tons wt.

17. Greatest force 1 '31 kilogrms. wt.

18. 3-32 cwts. 19. 6-43, 3 '46 cwts.

20. 11, 2 \S5 and 7*78 Ibs. wt. For the friction in the three cases resolve

the total reaction of the surface into two components along and

perpendicular to the plane, the former components give the friction.

21. 10'5 and 14'7 Ibs. wt. 22. 48'5 Ibs. wt.

23. 10'3, 24. 2-85 ft., least tension 0*896 ewts.

25. 43*6. 27. j=0'14.

28. The M.C. divides ladder in ratio 13/100.

29. 14 '29 Ibs. wt. ; At=0-866.

31. 8*8 with the horizontal.

32. The M.C. divides the beam in ratio 342/100.

33. The M.C. divides the beam in ratio 211/100.

34. The M.C. divides the beam in ratio 323/100.

36. The M.C. is nearly at the mid-point.

38. 63 with the vertical.

39. 76 "7 with the vertical.

41. 70 with the vertical, no other possible position for limiting equili-

brium.
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CHAPTER VIII.

Exercises. PAGES 284-302.

3. 475 Ibs. ft.

6. (i)-38-7. (ii) 137. (iii) -8*5 tons ft

8. 5450 tons inches. 9. 13700 tons inches.

11. Take the pole 10 cms. from the force vector.

12. Measure the line giving the momental area on the kilogramme weight
scale.

11 157 Ibs. inches. 16. - 1 1 '4 Ibs. inches.

20, 2*67 cms. from CD, 4 -2 from AD,
21. 6 '66 cms. from CD, 2*05 from AD outside the square.

29. 5*4 cms. from lower centre. 30. 5 '62 cms. from lower centre.

CHAPTER IX.

Exercises. PAGES 315-332.

1. B.M. is 4000 Ibs. ft., S.P. is 500 Ibs. wt
2. B.M'S are 22,500, 10,000 and 5000 Ibs. ft.

s.3?'s are 2000 Ibs. wt. at 8 ft.

1700 Ibs. wt. at just under 15 ft.

1000 Ibs. wt. at just over 15 ft.

1000 Ibs. wt. at 20 ft.

3. B.M. at 8 ft. is 21-2 tons ft.

S.E. at 8 ft is ] '9 tons wt.

4. At 7 ft. from Q the B.M. is 21,100 Ibs. ft. and the S.F. is 1500 just

under, and 750 just over 7 ft. from Q.

CHAPTER XL

Exercises. PAGES 354-367.

1. 1420 ft. -Ibs. 2. 16,000 ft. -Ibs. 3. 18,500 inch -Ibs.

4. 1930 ft. -Ibs. 5. 48'4ft-cwts. 6. 117 ft.-cwts.

8. 799 ft. -Ibs. (independent of the radius). 9. 3470 ft. -Ibs.

10. 193 ft-lbs. against gravity, 57 against friction, 250 by the equilibrating
force. Total work is zero.

11. 278 and 367 ft. -Ibs. 12. 765 ft-lbs.

13. 335ft.4bs. 14. 2,520,000 ft -Ibs.

15. 207 ft. -Ibs. round B and 66 '2 round C.

16. 224,500 ft -Ibs. 18. 303 ft. -Ibs. 19. 54'6mch-lbs.

20. 57-9 inoh-lbs. 21. 19 '3 ft. -Ibs.



INDEX.

Abscissa, 13.

Acceleration, average, 82.

definition, 83.

due to gravity, 83, 116.

mass arid force, 135.

total, 82.

Action and reaction, 137.

examples on, 138-142.

Addition, graphical, 4.

of accelerations, 83.

of displacements, 70-72.
of momenta! areas, 188-190.
of moments, 287-297.
of velocities, 78.

of work done, 361.

Areas, circular sector, 55.

circular segment, 56-57.

equivalent figures, 62, 1 13.

irregular figures, 58-61.

mass-centres of, 98, 114.

mid-ordinate rule for, 58.

negative, 48, 49, 106, 107.

parabolic segment, 60.

polygons, 50-52.

quadrilateral, 46-48.

cross, 49.

re-entrant, 47-

rectangle, 46.

Simpson's rule for, 59.

to scale, 36, 37.

triangle, 43-45.

Arm, of a couple, 185,

Average acceleration, 82.

speed, 77.

stress, 226.

velocity, 77.

Axes of coordinates, 13.

Axis of rightand skewsymmetry, 95.

Backstays, 341.

Bending moment, definition, 314.

diagrams, 314.

experiment and explanations, 309.

for cantilever, 310.

for continuously loaded beam,
319-321.

for freely supported bridge, 312.

for non -parallel forces, 316.

for several loads, 314.

for travelling loads, 321-334.

maximum, 313, 322, 329, 330.

Bending of beams, 309.

Bicycle spanner (problem), 273.

Bow, notation due to, 177.

Bowstring roof truss, 221.

Boyle's law, 265.

Cantilever, 216, 225, 308-311, 322,326.
Centre of figure, 89, 303.

of gravity, 303.

of mean position, 85-90, 303.

of parallel forces, 298, 303.

Centroid, 89, 303.

Chain, uniformly loaded, 346.

of suspension bridge, 344.

Circular are, length of, 53-54.

M.G. Of, 98.

measure, 374.

sector, area, 55.

M.C., 105.

segment, area, 55.

M.C., 108.

wwribers refer to pages.
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Components, vectors, 84.

forces, 151-154, 199-205.

parallel forces, 201.

three non-concurrent forces, 202.

Composition of forces, 206-208.

Conjugate direction, 99.

Continuously loaded beams, 319-321.

chains, 345, 346.

Coordinates, rectangular, 13.

Couples, 184, 207, 304.

arms of, 185.

moniental areas of, 185.

of transference, 207.

Crane, simple wall, 144-147.

derrick, 149.

Cremona (Professor), 352.

Cubes, 33.

Cube roots, 33, 34.

Curve of cubes, 33.

of gas compression, 366.

of reciprocals, 34.

of squares, 29.

of suspension bridge chain, 344.

Decomposition of forces, 151-160,
199-206.

Derrick crane, 149, 204, 319.

Dip (of a suspension bridge), 341.

Direction, 1, 69.

Displacement, 69, 70.

addition of, 71, 72.

minimum, 81.

relative, 73.

Division, 15, 16, 17.

and multiplication, 18, 19.

on squared paper, 17.

Dyne, 136.

Elastic limit, 305.

Engine crank, force on, 156.

Equation, to a straight line, 13.

to curve of suspension bridge, 248,

344, 345.

y =x\x\ 1, -!, 31-36.
x x2

Equilibrant, 132, 177.

Equilibrium under concurrent forces,

132, 135.

under two forces, 118.

under three forces, 132, 160-165.

and friction, 257, 258.

Equilibrium and link 'polygon, 190,
195.

and vector polygon, 184, 186, 195.

broken by rotation, 277-279.

scalar conditions, 151.

Equivalent figures, 62, 113.

forces, 176.

Erg, 40, 355.

Experiments I. -VII. on concurrent

forces, 119-122.

deduction, 131, 132.

VIII. on link polygon construc-

tion, 177.

IX., X., XI. on general conditions

for equilibrium, 192.

deductions from, 193.

XII., XIII., XIV. on friction,

256, 258.

deductions from, 258.

with lever, 369-373.

deductions from, 373.

Falling bodies, S3.

Foot-pound, 38, 355.

Force, components, 151-156, 199-

205.

equilibrant, 132, 177.

equivalent, 176.

mass and acceleration, 135.

moment of, 41, 284, 370-373.

on crank, 156.

on sail, 159.

polygon, 176.

unit, magnitude of, 136.

Forces, concurrent composition of,

133.

decomposition of, 151.

examples on, 123-126.

experiments on, 119-123.

resultant, 132, 135.

coplanar composition of, by link

polygon, 174-176.

decomposition of, 199-203, 206.

like and unlike, 180.

parallel, 180-185.

reduction of any set, 207.

resultant, 176, 177.

Framework, simple bar, 144-149.

and weight of bars, 225-235.

French window problem, 206.

roof truss, 353.

The numbers refer to pages,
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Friction and beams on two planes,
270.

and bicycle spanner, 273.

and cube, 277-
and drawer, 275.

and inclined plane, 262-265.

and motion, 360.

and ladder, 266-269.

and lifting jack, 274.

and reel, 278-280.
and wedge, 276.

angle of, 259.

coefficient of, 258.

laws of, 258, 360.

minimum force for motion under,
261.

Funicular polygon, 176, 236-248.

and parabola, 244-248.

for equal loads, 240.

Gas, work done in compression, 366.

Girder, Warren, 222, 224.

iV, 219.

Graphical addition, 4.

subtraction, 5.

Graphical measure of angles, 374.

of areas, 36-38, 43-61.

of bending moments, 310.

of circular are, 53.

of moments, 285.

of powers, 26.

of products, 8-13.

of quotients, 15-17.

of reciprocals, 35.

of shearing force, 310.

of volumes, 62.

of work done, 38, 355.

Graphical representation of a

moment, 285.

of momental area, 185, 285.

of work done, 358.

Graphs of y=mx, x2
, or, ~, etc., 13,

31-36.
X

of force on engine crank, 156,

157.

of force on meteorite (problem),
367.

of friction and normal pressure,
258.

of gas compression, 366.

The numbers

Graphs of lengths of ropes support-
ing loads, 127-129.

of lever law, 369.

stresses in simple wall crane,
146.

of spring extension, 365.

of work done, 363,

Gravity, acceleration due to, 83, 136.

centre of, 303.

Heaviside, vector notation, 74.

Henri ci (Prof.), notation for graphi-
cal statics, 177.

vector notation, 74.

vectors and rotors, 352.

Hinge, door, reactions, 335.

reactions on bars, 226-230.

Hooke's law, 307, 364.

Inclined plane and beam in equili-

brium, 270, 271.

and coefficient of friction, 262.

and work done, 361.

problems on, 139-142.

and reel, 279.

with friction problems, 262-205.

Independent vectors, 1 10.

Integral powers, 26.

Irregular figures, area of, 58, 61.

M.C. of, 302.

Joints, pin, 144.

two bar reactions, 226, 228.

three bar reactions, 229.

King post truss, 222, 224.

Kite problem, 160*

Knife edge, supports, 195.

Law, Boyle's or Marriotte's, 365.

Hooke's, 306, 364.

Newton's second, 135.

third, 137.

Length of circular arc, 53.

Lever, experiments on, 369-373.

law of, 373.

simple, 369.

Like forces, 180.

vectors, 110.

Line, straight, 13.

M.C. of, 89.

refer to pages,
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Line in division and multiplication,
17-22.

Link, polygon constructions, 173-170,

178-180.

closed, 190.

for parallel forces (like), 180482.

(unlike), 182.

Localised vectors, 132.

Mass, force and acceleration, 135.

moments, 111.

negative, 100, 107-

points, 91.

and weight, 136.

Mass centres and centres of gravity,
303.

by link polygon, 299-302.

definition, 91.

formulae for, 93, 97, 98, 104, 105,
111.

graphical construction, 91-93, 111,
112.

of circular arc, 97, 9S.

sector, 105.

segment, 108.

of irregular area, 1 13, 302.

of lines, 96.

of points in a line, 92-94.

of quadri lateral, 1 00- J ( ) 1 .

of trapezium, 104.

of triangle, 99.

scalar equations for, 111.

and work done, 362.

Masses to scale, 2.

Maxwell vector notation, 70.

Mid-ordinate rule for areas, 58-59.

Modulus, of a bar, 305.

Young's, 305.

Moment, Bending, 309, 314.

geometrical representation of, 285.

graphical measure of, 285, 286.

mass, 111.

of a force, 284, 290, 370-373.
sense of, 287.

unit of, 285.

Momental areas, 185.

addition of, 185.

unit of, 185.

Moments and couple, 295, 304.

and equilibrium, 304, 373.

bending, 308.

Moments, sum of, 296, 297.

by link polygon, 287-294.

theory of, 304.

Multiplication of lengths, 37.

of numbers, 8-11, 20.

of vectors by scalars, 85.

on squared paper, 12, 22, 23.

Newton's second law of motion,
135.

third law of motion, 137.

Notation for displacements, 70.

for lines representing numbers,
8.

for numbers, 8.

for vectors, 74.

space for forces and vectors, 177.

Numbers to scale, 6.

Ordinates, 13.

Origin of coordinates, 13.

Parabola, equation to, 244.

and funicular polygon, 244-248.

and suspension bridge, 348*

and telegraph wire, 345.

Parallel forces (engine problem),
180-182.

like and unlike, 182.

vectors (like), 74, 110.

Parallelogram, area of, 46.

centre of figure of, 89.

law, 134.

Particles, 91.

Path and displacement, 69.

and work done, 359.

Pentagonal frame stresses, 234.

Plane, inclined, 139-142.

and friction, 262-265.

Polygon, area of 50
force, 176.

funicular, 176.

link, 173-176.

vector, 176.

Powers of numbers, 2G, 27.

Product of force and length (see
work clone and moment).

of two lengths, 36-38.

of numbers, 8.

of ratios, 25.

Pulley, smooth, 119, 162.

The. numbers refer to pages.
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Quadrilateral, area of, 47.

cross, 48.

frame, 214, 230.

M.C. of, 100, 101.

re-entrant, 47.

Quantities, scales and vector, 1.

to scale, 1.

Queen post truss, 223, 250.

Radian, 374.

Rankine, 53.

Reaction, determination of, 138-142,
160.

normal, 138.

of a surface, 138.

Reaction and action (see Newton).
Reactions, at joints, 226, 234.

by link polygon, 194, 196.

indeterminate, 317.

made determinate, 338.

of walls, 205, 230, 337-339.

Reciprocal figures, 352.

Reciprocals, 35.

squared, 36.

Rectangle reduced to unit base, 46.

Reduction of a set of forces, 195,

206, 207.

Reel, problems on, 278.

Relative velocity and displacement,
73, 79-82.

Resistance, 137.

Resultant force, 132, 133, 176.

by link polygon, 173-176.

examples in concurrent forces,

133, 134.

three forces (non-parallel), 172.

uniqueness of, 177.

Rigid body, 131.

frame as a, 212.

Roots, square, 30.

cube, 33.

Rotors, 132.

Sag, of a telegraph wire, 345.

Sailing against the wind, 159.

Scalar quantities, 1.

Scale, areas to, 36.

masses to, 2.

numbers to, 6.

Scales, change of, 22, 24.

different, 15.

Screw jack and friction, 274.

Second law of motion, 135.

Sections, method of, 248-250, 340-

352.

Sense and sign, 70.

of an area, 49.

of a line, 68.

Shearing force (S.F.) definition, 314.

experiments and explanations,
309.

for continuously loaded beams,
320-321.

for freely supported bridge, 312.

for several loads, 314.

for simple cantilever, 310, 326-335.

for travelling loads, 321-326.

Similar triangles, 7.

Simpson's rule for areas, 59.

Skew symmetry, 95.

Smooth (bodies), 138.

Speed, 76, 77.

Square roots, 29, 30.

Squared paper and division, 17.

and multiplication, 12.

and powers, 29-35.

Statics, foundation of, 131.

Straight line, as a vector, 74.

equation to, 13.

locus in B.M. diagram, 332.

M.O. of, 89.

in division, 17-19.

in multiplication, 12, 21, 22.

Stress, compressive, 137.

diagrams, three bar frame, 210-

214.

braced quadrilateral, 214-216.

bridge girder, 218.

cantilever, 216, 225.

examples, 221-225.

pentagonal frame, 234.

roof truss, 220, 338.

and vector polygon, 210.

tensile, 137.

Stresses by moments, 340-343, 348-

352.

Strip division method for areas,

58, 62.

Subtraction, 5.

Suspension bridge, 341.

and parabola, 343.

Symmetry, right and skew, 95.

The numbers refer to pages.
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Telegraph wire, 345.

Three moments, 304, 373.

Toggle joint, 205.

Torque, 41.

Triangle, area of, 43-46.

M.C. of, 99.

Triangles, similar, 7.

Truss and wind pressure, 338.

bowstring roof, 221.

French roof, 352, 353.

king post, 222, 224.

quadrilateral, 251.

queen post, 223, 250.

railway platform, 223.

simple three bar, 149.

taking account of weight of bars,
353.

various examples, 215, 222, 223,

251, 339, 348, 351, 353.

Turning moment, 41, 370.

Unit area, 36.

base and reduction of areas to, 43.

force (magnitude), 136.

length, 78.

moment (magnitude), 285.

speed acceleration, 136.

speed, 78, 136.

work, 38.

Unlike forces, 180.

Vector addition, 74, 75.

definition, 74.

notation, 74.

polygon, closed, 106, 186, 190.

quantities, 1.

Vectors, components, 83, 84.

independent, 110.

like, 110.

multiplication by scalars, 85:

and vector quantities, 73.

Velocities, addition of, 78.

Velocity, average, 75.

definition of, 78.

relative, 79-82.

and speed, 77.

unite, 78.

Volumes, of revolution, 62.

to scale, 36.

Wall crane, 198, 204.

reaction of, 205, 230, 337-339.
Warren girder, 222, 224.

Weight and mass, 136.

of bars in frames, 225-235.
Wind pressure on roofs, 338.

on a kite, 160.

on a sail, 159.

Work done, 38-40.

and M.C., 362.
and friction, 360, 361.

and motion, 358.

by component forces, 361, 362.

by variable force, 363.

definition, 354, 357.

graphical representation, 355.
in compressing a gas, 366.

in spring extension, 364.

negative, 354.

unit of, 38, 354.

Young's modulus, 305.
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