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PREFACE.

MY object in the publication of a treatise on Modern

Geometry is to present to the more advanced students

in public schools and to candidates for mathematical

honours in the Universities a ^concise statement of

those propositions which I consider, to be of funda-

mental importance, and to supply numerous examples
illustrative of them.

Results immediately suggested by the propositions,

whether as particular cases or generalized statements,

are appended to them as Corollaries.

The Examples are printed in smaller type, and are

classified under the Articles containing the principal
theorems required in their solution.

The more difficult ones are fully worked out, and

in most cases hints are given to the others.

The reader who is familiar with the first six books

of Euclid with easy deductions and the elementary
formulae in Plane Trigonometry will thus experience
little difficulty in mastering the following pages.

I have dwelt at length in Chap. II. on the Theory
of Maximum and Minimum.

Chap. III. is devoted to the more recent develop-
ments of the geometry of the triangle, initiated

'

21

1873 by Lemoine's paper entitled
" Sur quelques pro-

pride's d'un point remarquable du triangle."



vi PREFACE.

The study of the Brocardian Geometry is appro-

priate at this stage, as I have shown that the

deductions of M. Brocard and of other geometers,
both in England and on the Continent, are simple
and direct inferences of the well-known property of

Art. 19, which has been called the Point Theorem.

Chap. IX. gives an account of the researches of

Neuberg and Tarry on Three Similar Figures.
A feature of the volume is the application of

Reciprocation to many of the best known theorems

by which the corresponding properties of the Conic

are ascertained. This method and that of Inversion

are pursued as far as is admissible within the scope
and limits of an elementary treatise on Geometry.

In the preparation of the book, I consulted chiefly

the writings of Mulcahy, Cremona, Catalan, Salmon,
and Townsend, and hereby acknowledge my indebted-

ness for the valuable stores of information thus placed
at my disposal.

Many of the Examples are from the Dublin Univer-

sity Examination Papers, and more especially from

those set by Mr. M'Cay.
I have as far as possible indicated my additional

sources of information, and given the reader references

to the original memoirs from which extracts have been

taken.
WILLIAM J. M'CLELLAND.

SANTRY SCHOOL,
1st November, 1891.
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CHAPTER T.

INTEODUCTION.

Definitions. Right lines passing through a point are

called a Concurrent System.
The point is the Vertex of the system, and the lines

are a Pencil of Rays.
Collinear points are those which lie on a right line.

Symmetry. Convention of Positive and Negative.

1. The letters A, B, C, ..., are generally used to denote

points and positions of lines, and a, 6, c, lengths, e.g., the

vertices of a triangle are A, B, (7, and the opposite sides

ft, 6, c.

By AB is meant the distance from A to B measured

From A towards B, and by BA the same distance measured

in the opposite direction.

Thus AB= -BA or AB+BA = 0.

Similarly for three collinear points A, B, C :

AB+BC=AC= -CA t therefore

% If four points A , B, (7, D, be taken in alphabetical

order on a circle, we have by Ptolemy's Theorem

BC.AD+AB.CD=BD.AC=-CA.BD,
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the six linear segments being measured from left to

right, or we shall say positively, in figure ;

hence, by transposing,

BC.AD+CA.BD+AB.CD= 0.

Again, since each chord is proportional to the sine

of the angle it subtends at any fifth point on the circle,

this equation reduces to

siuBOC ninAOD+siuCOA sinBOD+ ainAOB sin(70D= 0,

a result which is therefore true for any pencil of four

lines, and is deduced directly from Ptolemy's Theorem

by describing a circle of any radius through its vertex.

In this equation it is implied that AOC denotes the

magnitude of the angle measured from A towards (7, and

that therefore sin A OC= sin COA.

3. Let O.ABCD denote a system of lines concurrent

at ; A, B, C, D, the points in which a line L meets it;

and p the distance of the vertex from L.

Then 2BOC=BC.p= OB. 00 sin BOG,
and 2AOD=AD.p= OA.OD sin A 01);

by multiplication
*= OA .OB.OC.OD.*inBOC.AOD;...(l)
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similarly

GA. BD.p*= OA. OB. 00. OD. sin COJ. . sin .BOD
; (2)

dividing (1) by (2) we have

The student will observe that three pairs of angles are

formed by taking any pair of rays with the remaining or

Conjugate pair.

Thus J30Cand AOD may be conveniently denoted by a

and a', 00A and BOD by ft and ft',
and .405 and COD

by y and y'.

With this notation (3) is written

BO. AD:CA. .BD = sin a sin a : sin ft sin {?,

and generally we infer from symmetry that

COR. 1. If we draw four parallels to the rays of the

pencil, we in general obtain a triangle and a transversal

to its sides. Moreover, if we denote the angles of the

triangle by , /3, y, those made by the transversal with

its sides are the opposites a', ft', y ;
hence for any triangle

and transversal we have always

sin a sin a + sin /3 sin ft'+ sin y sin y = 0.

COR. 2. Let the line ABCD be divided harmonically
or such that AB/BC=AD/CD, then BC.AD = AB. CD

;

hence by (3) the pencil is divided harmonically, i.e., the

angle COA is divided internally in B and externally in

D in the same ratio of sines.

Defs. The three ratios and their reciprocals on the

left side of (3) are termed the Anharmonic Ratios of

the four points on the line
;
and those on the right the

Anharmonic Ratios of the pencil . ABCD.
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Their equivalence is expressed thus : A variable line

drawn across a pencil is cut in a constant anharmonic

ratio
;
or any pencil and transversal to it are Equianhar-

monic.

The foot of the perpendicular from a point on a line

is the Projection of the point on the line, and the per-

pendicular is called its Projector.

If A' and B' be the projections of A and B on a line

L, A'B' is called the Projection of AB, and is equal to

ABcos 0, where 6 is the angle between AB and L.

EXAMPLES.

1. The sum of the projections of the sides of a polygon on any

right line= ;
and generally if lines be drawn equally inclined and

proportional to the sides of a polygon, the sum of their projections

is zero.

2. CoS a + coa(a+ ?5) + co8(a+lU...cos(a+^-^Uo)
\ n I \ n ) \ n /

'

and the sum of the sines of the series of angles is also equal to 0.

[For they are proportional to the projections of the sides of a

regular polygon on two lines at right angles.]

3. In any quadrilateral whose sides are a, 6, <?, c?, to prove that

c?2=a2
4- &2 + c2 2bc cos oc 2ca cos ca 2ab cos 00,

where be denotes the angle between the sides b and c.

[For completing the parallelogram whose sides are b and c and

drawing # we have cP=&2 +or -f 2&.r',



where x' is the projection of x on the parallel b ; but by Ex. 1.

of a cos ab + c cos be,

substituting for x' its value and for #2
, a?+#- 2accos ac, the above

result is obtained.]

4. Euler's Theorem.* For three collinear points A, B, C and

any fourth P to prove the relation

BC. 4P2 + CA . VP*+ A B. CP*= - BC. CA . AB.

[By Euc. II. 12, 13, AP*= AB*+BPZ -2AB. BPcosB (1)

and Cl>2=BC2+BP*+2BC.BPcos B (2)

multiplying (1) by BC and (2) by AB and adding to eliminate

cos B, the above follows on reduction.]

4A. Having given the base c of a triangle and la? + mb*= const.,

find the locus of the vertex, I and m being given quantities.

5. If APCis a right angle the relation in Ex. 4 is equivalent to

BC2
. AP*+A B2

. CP*= AC2
. BP2

.

[Tli is follows from Ex. 4 or is obtained directly thus
;

let fall

perpendiculars BX and BY on CP and AP
9
then

X Y*=BP*=BX*+B F 2= BC%m*C+ A ^2sin2^ ;

multiplying the equation BP2= BC*sin2C+AB2smzA by AC~ ;

therefore, etc.].

6. If the transversal to a harmonic pencil is parallel to one ray

2), the intercept AC is bisected by B the conjugate of D.

* "Catalan's The"oremes et Problemes de Geome'trie ]l&nentaire,"

1879, p. 141.
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7. If a line L turn around a fixed point P and meet two fixed

lines OA and OB in A' and B'
;
the locus of the harmonic conjugate

Q of P with respect to A'B' is a line passing through ;
and

TA' + Tff
=
J>Q

....................(By Ex. 6.)

Note. By Euc. VI. 2 if the variable PQ is bisected at Q' the

locus of Q' is a parallel to OQ and

J +JL_ l

PA'* PB'~T(f
Hence for any three lines A, B, C we find in the same manner that

where $' describes a right line.

8. For any system of lines A, B, C, 1) ... the locus of ($ such that

_L+ _! + l + -_JL (or v 1 =_1 \

PA'^PB'^PC'"^
"

~~P(j \ "PA 1

PQ')

is a right line. [See Exs. 6 and 7.]

9. For a regular cyclic polygon, if P coincides with the centre

v 1

"PA 1
-

[Through P draw the line parallel to one of the sides, etc.]

10. If parallels be drawn through any point to the four lines

in Ex. 4, the relation may be written

sin /3' sin y sin y' sin / sin a' sin /J' _ ^

sin /^ sin y sin y sin a sin a sin [3

11. From the formula BO. AD+CA . BD+AB. C7)=0, prove that

if A, By C be three collinear points and P any fourth point

BOcotA 4- d4 cot^-f^l^cot (7=0, the angles being all measured in

the same aspect; and hence find the locus of the vertex, having

given the base c and I cot A +m cotB= const.

4?. Limiting Cases. and <x> .

Def. The Angle of intersection of two circles is that

between the tangents drawn to them at either point of
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intersection ;
it is therefore equal to the angle between

the radii drawn to either common point.* (Euc. III. 19.)

If the circles touch Internally this angle is 0, if

Externally 180. They are said to intersect Orthogonally
when the angle is 90.

The Angle made by a line and circle is that between

the line and the tangent to the circle at its intersection.

EXAMPLES.

1. To find the angles between the circum- and ex-circles of a

triangle ABC.

[Since 8
l
s =/i2+ 2/fr

x , etc., we easily obtain

with similar expressions for 2 ail(^ ftr]

2. To find the angle of intersection of the in- and circum-circles,

[S
2= R2 -

2tir, therefore 2 sin %0= \7^ wliere ^ """* =^
3. If two concentric circles cut orthogonally one is real and the

other imaginary, and their radii are of the forms p, ip.

* If On r ; 2,
r
2 , be the circles, 5 the distance O^O^ Q the angle of

intersection, and t the direct common tangent, we have

52 = r^ + r2
2 -

2rjr2 cos

hence 53 -
(r-j

- r2)
2 = 47y2 sin2 0, .................................... (1)

or /
a

-=Bina
40.

4^2
Similarly d'

2 -
(rx + r2)

2 -- -
4r!r2 cos

2
J ^,

hence if t
1 be the transverse common tangent,

*'2= -47y2 cos
2
i0 ................................ (2)

Multiplying (1) and (2) and reducing we have

tl'= 2i.r1r2 Bin0 ................................... (3)

where \T^1 = i ; also if 7 denote the length of the common chord, of

the circles (real or imaginary) since 2rjr2 sin - 75, t.t' = i.y.8.

It is obvious that either the transverse common tangent to the circles

or their angle of intersection is imaginary.
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Let AX be a variable chord passing through a fixed

point A at which a tangent is drawn. According as the

chord AX and angle TAX diminish in magnitude X
approaches the tangent. When X is indefinitely near to

A, AX is said to have reached its limiting position and

may then be considered to coincide with the tangent.

Hence a tangent to a circle is in the direction of the

infinitesimal chord at its point of contact, or is the chord

joining two indefinitely near points.

Again, let the tangent T and its point of contact be fixed

and the chord AX given in length. As the radius of the

circle increases the curvature diminishes, and the point X
obviously approaches the tangent. Hence X may be

made to move as near as we please to the tangent by

continually increasing the value of the radius of the

circle.

In the limit, when the latter is indefinitely great, the

distance of X from T is so very small that we maj7

consider the point to lie on the line. Hence a finite

portion of a circle of indefinitely great radius opens
out into a right line, the remainder being, of course,

at a distance infinitely great, i.e., at infinity.
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5. Envelopes. Let a variable line turn around a fixed

point and meet any fixed line.

According as its angle of inclination to the perpen-
dicular OM increases, the segments OA, OB, 00 continue

to increase and the angles A, J?, to diminish. In the

limit it reaches a position at right angles to OM. Here

the angle between it and the fixed line vanishes, and

their point of section is at infinity. In this case the lines

are parallel (Euc., I. 28) ; hence

Parallel lines may be regarded as having angles of
inclination = or lines intersecting at infinity. Thus

a system of parallels is a pencil of rays whose vertex is

at infinity.

6. Let A and X be any two points on a curve of which

A is fixed and X variable, and TA and TX tangents. It

appears as before that as X approaches A the chord AX
and the base angles A and X of the triangle TAX gradu-

ally diminish and ultimately vanish.

But as the base angles diminish the vertex T approaches
the base and a fortiori the element of curve AX. Hence

in the limiting position, i.e.,
when the tangents are con-

secutive, their point of intersection is on the curve.

A curve touched by a variable line is called the

Envelope of the line. Thus the envelope of a line which
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varies according to any law is the locus of the intersec-

tion of its consecutive positions.

EXAMPLES.

1. The envelope of equal chords in a circle is a concentric circle

(Euc. III. 14).

2. Bobillier's Theorem. If two sides of a given triangle touch

fixed circles the third side also touches, or envelopes, a circle.

[Let ABC be the given triangle. Through O
l
and 2,

the centres

of the given circles, draw parallels to the sides meeting the base in

A' and B' and each other in C'. Describe a circle O^C', and draw

C'0B parallel to A B.

Since 2C'03 is a given angle (
= A\ 3 is a fixed point. But

A 'B'C' is given in all respects save position ; hence the distance p
of 3 from A'B' is a known quantity. The envelope of the base A B
is therefore a circle whose centre is 3 and radius =

p.~\

3. To find the radius (p) of a circle which touches the sides AC
and EG of a triangle and the circum-circle ABC.

[Let I denote the in- and the circum-centre of the triangle ;
M

the centre of the circle whose radius is required is on the line CL
Then OM=R-p, OP=IP-2Rr, 7(7=r/sin <7, MC=*pl*in$C, and

Jf/=(p-r)/8inJ<7.

Also, since C, 7, M are three points in a line and any fourth

point, by Enter's Theorem we obtain on reducing

(1)
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Again, if the circle M^ p has external contact with the circum-circle,

it can be similarly proved that

r3=pcos
2

(7 (2)

NOTE. The relation (1) is otherwise expressed :

Since r/p
= cos

2
<7, (p

-
r)/p sin

2
(7.

But (p
-
r)/p

= MilMC and p*/MC*= ain^ C,

hence MI.MC=p* (3)

or the chord of contact PQ of the circle M, p with the sides of the

triangle passes through the centre of the inscribed circle.]

4. Mannheim's Theorem. Having given the vertical angle and

radius of the in- or corresponding ex-circle, the envelope of the

circum-circle is a circle.

[By Ex. 3.]

7. We shall conclude the present chapter with the

following useful property, of the common tangents to four

circles which touch a fifth, due to the late Dr. Casey.

Denote the circle whose centre is and radius r by

0, r
;
and let the four circles 0^, 2

r
2 , 3

r
3, 4r4 ,

touch

a fifth 0, R at the points A, B> C, D. Let the distance

2 3 be <S23 , and the direct common tangent to the cor-

responding circles be 23.

Then 232= 2-^-r 2
.



12 INTRODUCTION.

In the triangle 002 3 we have23
2 3

2= 002
2 + 003

2- 2002 . 003 cos BOG

or ^s
-
fa
~ rs

2

or 232= 4002 .' G>

Similarly

142= 00
1
.00

hence by multiplication and reduction

*3 .li=(00l
. 002

.

and by Ptolemy's Theorem

23.l+:n.24-fl.34 = ........................ (1).

The contacts in the figure are similar, or all of the same

kind, but it will be observed that if the fifth circle

touches any two with contacts of opposite species, their

transverse common tangents must be substituted in (1).

We let 12' denote the transverse tangent to Ov r^ and

2 , r2 ;
then _

12'2= <512
2 -(r1 + r

2)
2

.

For example, if the circle Ov r
x

is external and the

remaining circles internal to 0, R the relation is written

23 n'+Sr M+iT 5^=o,
with analogous expressions for all other cases.

NOTE. The student must carefully observe that of the

three terms of the equation two are positive and one

negative ;
the latter corresponding to the pairs of circles

whose contacts are alternate. Thus in the figure, Ov r
x

and 3 ,
r
3
have alternate contacts with the given circle,

therefore the term 31 . 24 is negative, and taking the

absolute values only the equation is

23. 14+ 12. 34 = 31". 2

This is of great importance, and should be borne in mind

in the following Examples.
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EXAMPLES.

1. What does the general property reduce to when the circles

become points ? Ptolemy's Theorem.

2. Express a condition that the circum-circle of a given triangle

may touch another circle.

[If a, 6, c be the sides and t
l9 t^ t3 the tangents from the vertices

to the other circle we have a^
1+ 6^+ cf3

=
0.]

3. Feuerbach's Theorem. The nine points circle of a triangle

touches the in- and ex-circles.

[The middle points of the sides and the in -circle are four circles

satisfying the equation of Ex. 2. For 23= Ja and 14=(>-c);
therefore 223.14= JSa(6

-
c)
=

0*.]

4. If a, 6, c be the sides of a triangle inscribed in a circle, and

X, /t,
v the distances of its vertices from any tangent, show that the

equation in Ex. 2 reduces to

5. More generally if X, M, v denote the distances from any line,

give the geometrical interpretation of the equation

a*J \ - x+ b^Ti^x + cV v x 0,

and hence find a relation connecting the sides of a triangle with

the distances of its vertices from a given line.

[The roots of the quadratic in x are the distances from the line of

the tangents to the circle parallel to it, etc.]

6. Hart's Extension of Feuerbach's Theorem. If the sides of

a triangle be replaced by three circles, and four circles correspond-

ing to the in- and ex-circles of the triangle described to touch them ;

the group of four is touched by a circle.

[Let the triangle formed by the circles be ABC, and let a<b<c.

Then s a>s b>s c. If the in- and ex-circles are numbered

* This proof is an application of the converse of Dr. Casey's relation.

t This result may be otherwise shown as follows : Let P be the point

of contact of the tangent. Then EG . AP + CA . BP +AB . OP=0.
But -4P2=2rX, BF*-=2rn, and CP*=2rv, substituting these values;

therefore, etc.
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1, 2, 3, 4 respectively, the side a is touched by the four circles and

the transverse tangents are drawn to 2 ; also the order of the con-

tacts is 3, 1, 2, 4
;
hence the equation is

-23'. 14+ 31.24'+ 12"'. 34= (1)

For the side b the transverse tangents are drawn to 3, and the

order of the contacts is 2, 1, 3, 4
; hence

-23'.l4+ 3l'.24-f 12.34'= (2)

For the side c the transverse tangents are drawn to 4, and the order

of the contacts is 3, 4, 1, 2
;
hence

23. f4'-31". 2? -f 12. 34'= (3)

Adding (1) and (3) and subtracting (2) we get

23 . 14' -31' . 2T+T2' . 34= 0,

showing that 2, 3, 4 have similar and 1 opposite contacts with a

circle which touches all four.]



CHAPTER II.

MAXIMUM AND MINIMUM INTRODUCTION.

8. When the base and vertical angle of a triangle are

given the locus of the vertex is a segment of a circle

described on the base, containing an angle equal to the

vertical angle. (Euc. III. 21.) Let a number of tri-

angles be constructed satisfying the given conditions,

and it will be observed that as the vertex recedes from

either extremity of the base the altitude and area both

increase up to a certain point, after which they begin
to diminish.

This point is obviously the middle point of the seg-

ment the vertex of the isosceles triangle with the given

parts or the point at which the tangent to the arc is

parallel to the base.

Here the area and altitude are said to have attained

their maximum values.

Again since the rectangle under the sides AC and BG
is equal to the rectangle under the diameter of the

circum-circle and altitude (ab = dp); ab and p are

maxima simultaneously.

Also since a2 + 62 =
2(|c)

2 + 2/3
2
,

where ft is the median to the side c; when ft is a maxi-

mum or minimum, &2 + 2 is maxmum or mnmum.
15
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And ifN be the middle point of the arc of the circle

below the base, then, since AN=BN (
= x say) by

Ptolemy's Theorem, we have

ax + bx = c . CN,
or x(a + b)

= c . ON,
from which it appears that a + b and CN are maxima

together ;
that is when the vertex C is at the middle

point M of the arc AB.
On the other hand it is manifest that the difference

of base angles (A B) and difference of sides (a b) both

diminish as the vertex C approaches M and vanish at

that point ;
and after C passes through this point each

difference begins to increase. At C they are said to have

their minimum values, though this need not necessarily

be nothing.

Thus generally : a variable quantity which, under

certain conditions, increases up to a definite limit and

'then begins to diminish, is said to have attained its

maximum value at the limit
;
and if, after diminishing,

it again begins to increase, it attains a minimum value

at the stage where it has ceased to diminish.
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The foregoing remarks may be thus summed up : Of
all triangles having a given base and vertical angle the

isosceles has the following maxima area, altitude, rect-

angle under sides, sum of sides, bisector of base, and sum
of squares of sides.*

EXAMPLES.

1. The triangle of greatest area and perimeter inscribed in a circle

is equilateral.

[For each vertex must lie mid-way between the other two, or the

area and perimeter would both be increased by removing any
vertex to the middle point.]

2. A regular polygon of n sides inscribed in a circle has a greater
area and perimeter than any other inscribed polygon of the same

order. [By Ex. 1.]

9. Theorem. If two sides AC and AB of a triangle

are given in length the area of the triangle ABC is a

maximum when they contain a right angle.

Let ABG denote the right-angled triangle, and ABC'

any other triangle formed with the given sides. Draw
G'X perpendicular to AC.

Since AC = AC' and AC'>AX\ therefore AC>AX,
hence (Euc. I. 41) the triangle ABC> ABC?, and similarly

for any other position ; therefore, etc.

* The vertical angle is supposed to be acute.
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EXAMPLES.

1. If the ends of a string of given length are joined, the area of

the figure enclosed is a maximum when it takes the form of a semi-

circle.

[Take any point A on the string ABC and join AB and AC.

Consider the segments into which the string is divided at A to be

rigidly attached to the lines AB and A 0. If the angle at A is not

right, by rotating AC around A until it is perpendicular to AB, the

area of the triangle ABC, and therefore also of the whole figure, is

increased.

Similarly for any other point A'
;
hence the area enclosed is a

maximum when the joining line BC subtends a right angle at every

point on the string.]

2. A closed curve of given perimeter is of greatest area when its

form is a circle.

[Let A be any point on the curve, and take B such that AM B
and ANB are equal in length. Then the areas AMB and ANB s.re
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each a maximum when A B is the diameter of semicircles on opposite

sides ; therefore, etc.]

3. Having given the four sides a, 6, c, d of a quadrilateral, its

area is a maximum when it is cyclic.

[Let ABCD be the cyclic quadrilateral with the given sides, and

consider the segments on the sides to be rigidly attached to them.*

If then the figure be distorted in any way into a new position

*The construction of the cyclic quadrilateral whose four sides are

given is as follows :

Draw GE making LDCE^LBA C. Since by Euc. iii., 22, LCDE=LABC,
the triangles AEG and CDE are similar ; therefore DE : c = b : a

(Euc. vi. 4) ; hence DE is known and E is a fixed point.

Again, AC: CE=a :c; therefore in the triangle ACE we have the

base AE and ratio of sides ; the locus of G is therefore a circle (Euc.

vi. 3) ; this locus intersects the circle described with D as centre and

c as radius at the point C ; therefore, etc.
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A'B'CD', the area of the circle ABOD > A'B'C'D' (Ex. 2), but the

segments ABA'B', BC=B'C'y etc.: take away these equal parts

and there remains the quadrilateral ABCD greater than A'B'C'D'.]*

4. If three sides a, b, c, of a quadrilateral are given in magnitude,
the area is a maximum when the fourth side d is the diameter of

the circle through the vertices
;
and generally,

When all the sides but one of a polygon of any order are given
in magnitude, the area is a maximum when the circle on the

closing side as diameter passes through the remaining vertices.f

[Proof as above.]

5. Having given of a quadrilateral the diagonals S and &' and a

pair of opposite sides BC and AD, its area is a maximum when BC
is parallel to AD.

[Take any position of the quadrilateral and through C draw

CE parallel and equal to 8. Join BE and A E.

The triangles BDE and BCD are equal (Euc. I. 37) ; to each add

ABD, therefore ABCD=ABED.

* The student should learn the proof of the Trigonometrical expression

for the area of any quadrilateral in terms of the four sides and the sum

of either pair of opposite angles.

(Area)
2 =

(s
-
a)(s

-
b)(s

-
c)(s

-
d)

- abed cos2
J(^l -f C).

(Casey's Plane Trig., art. 152, cors. 3, 4.)

f To construct the quadrilateral. Let be the angle between a and

6, and AC-x.

Then d2 = c2 + *2 = a2 + &2 + c2 -2a&cos0 ; ...................... (1)

but cos 6 = -
cjd ;

substituting in (1) and simplifying we have the following expression

for d : d* - d(a* + 62 + c2)
- 2abc = 0,

an equation which has only one positive root. (Burnside and Panton's

Theory of Equations, Art. 13.)

In the particular case when a = b -
c, the equation for d reduces to

hence d = 2a,

thus showing that the quadrilateral is half the regular inscribed hexagon.
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Now, ABDE is a maximum when AD and DE are in the same

straight line; hence ABCD is a maximum when BC is parallel

to AD.}

6. The diagonals of a quadrilateral are 9 and 10 feet and two

opposite sides 5 and 3 feet ; find when its area is a maximum.

10. Theorem. Having given the base AB of a triangle

and the locus of the vertex a line L meeting the base pro-

duced, the sum of the sides AC+BO is a minimum when
L is the external bisector of the vertical angle.

Let fall a perpendicular BL and make B'L = BL. Join

AE' and let G be its intersection with L. Take any
other point P on the line and join AP and B'P.
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The triangles BGL and B'CL are equal in every respect

(Euc. I. 4) ;
hence BC= B'C. Similarly BP= B'P. Hence

since (Euc. I. 20) AP + B'P > AB' it follows that

AP +BP> AC + BC.

COR. 1. If the line L cuts the base internally the

difference of the sides (ACBC) is a maximum when it

bisects internally the angle G.

EXAMPLES.

1. The triangle of minimum perimeter inscribed in a given one is

formed by joining the feet A", T, Z of the perpendiculars
* let fall

from the vertices on the opposite sides.

[For the joining lines are equally inclined to sides on which they
intersect (Euc. III. 21).]

2. The polygon of least perimeter that can be inscribed in a given
one is that whose angles are bisected externally by its sides. (By
Ex. 1.)

3. The base and area of a triangle being given, the perimeter is

least when the triangle is isosceles.

[For the line L is parallel to the base.]

4. If from 0, the point of intersection of the diagonals of a cyclic

quadrilateral, perpendiculars are drawn to the sides and their feet

1\ Q y
R

t
S joined, the quadrilateral PQRS is of minimum perimeter.

4a. If points P, ', R', S' be taken on the sides of the given

quadrilateral, such that P'Q', Q'R'y R'S' are parallel to PQ, QR, RS,

then P'ti' is parallel to PS and the perimeters of the quadrilaterals

are equal. [Euc. VI. 2 and I. 5.]

5. The value of the minimum perimeter of the indeterminate

inscribed quadrilateral in Ex. 4 is 288'/A where D is the diameter

of the circum-circle.

6. Given a triangle ABC, find a point such that

OA 4- OB+ OC is a minimum.

[Where BOC=COA =AOB=12Q
9

.]

* These are generally known as the Perpendiculars of the Trianyle, and

the Pedal Triangle of ABC.
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11. Problem. Given an angle C of a triangle and a

point P on ike base, construct the triangle of minimum
area.

Through P draw APE such that AP= BP. The

triangle ABC is less than any other A'B'C.

For draw AX parallel to BBf

. Then the triangles
APX and BPB' are equal in all respects (Euc. I. 4);

hence AA'P > BB'P. To each add APB'G, therefore

A'B'C>ABC\ hence the triangle of least area is that

whose base is bisected at this point.

12. Theorem. Given an angle and any curve concave

to its vertex C. The tangent AB which forms ivith the

sides of the angle a triangle ABC of minimum area is

bisected at its point of contact (P).

For this tangent cuts off a less area than any other

line A'B' through P, because it is bisected at P. Now
draw any other tangent XY, and let PA'Bf

be parallel to

it. Since the curve is concave to (7, A'B'C < XYC\
a fortiori ABC <X7C.

COR. 1. In the particular case when the curve is a

circle whose centre is at the triangle is isosceles. This
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property may be stated otherwise. When the vertical

angle and altitude of a triangle are given, the base and
area are both minima when the triangle is isosceles.

On account of its importance an independent proof of this pro-

perty of the isosceles triangle is given.

Let ABO be an isosceles triangle and A'B'C any other, having
the same vertical angle and altitude CM.

Now BC>B'C(Euc. III. 8), but BC=AC<A'C, hence A'C>B'C.
Let CD= B'C, join AD. The triangles ACD and BB'C are equal
in every respect (Euc. I. 4), hence AA'C> BB'C] therefore

A'B'C > ABC; therefore, etc.

COR. 2. When the curve is a circle touching the sides

of the angle the tangent AB arid area ABC are each

minima when the triangle is isosceles.
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COR. 3. If we consider the portion of the circle in

Cor. 2, which is convex to (7, the intercept of a variable

tangent made by the sides of the angle subtends a con-

stant angle a at the centre of the circle (2a
= 7r C).

Hence the variable triangle J^Z^Ohas a constant vertical

angle (a) and altitude (y), and therefore its base and area

are minima when J4
1
= J5

1
0. In this case the point of

contact 1\ is the middle point of A^BV Therefore, having

given a circle and two tixed tangents, the portion of a

variable tangent intercepted by the fixed tangents
becomes a minimum in two positions, viz., when its

point of contact bisects the arc XY internally or exter-

nally.

In the latter case the area cut off (ABC) is a minimum
but in the former a maximum

;

For A&C = GXO F-ZA&O ;

therefore, since 0X0 Y is constant, when A^^O is a mini-

mum, -4^(7 is a maximum.



26 MAXIMUM AND MINIMUM.

EXAMPLES.

1. The triangle of least area and perimeter escribed to a circle is

equilateral.

[For the point of contact of each side bisects the arc between the

other ;
cf. Art. 8, Ex. 1.]

2. The polygon of least area and perimeter escribed to a circle is

regular. (By Ex. 1.)

3. Having given the vertical angle C of a triangle in position and

magnitude, and the in- or corresponding ex-circle, to prove that the

line LM joining the middle points of the sides forms with the

centre of the circle a triangle of constant area.

[For the ex-circle : if p be the perpendicular of ABO drawn from

C to the base, and r3 the radius, we have 20Z/J/

., etc.]

13. Problem. Given an angle of a triangle and a

point P on the base, construct it such that AP . BP is a

minimum.

Through P draw AB so that the triangle ABO is

isosceles. Describe a circle touching the sides of the

angle at A and B, and draw any other line APB'.

It is evident that AP.PB< AT . B'P, and is therefore

a minimum.
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EXAMPLE.

1. Through the point of intersection P of two circles draw a line

APB such that PA . PB is a minimum.

[This reduces to describe a circle touching the two given ones at

A and B such that J, B and P are in a line.

It will be afterwards seen that this line passes through a point

ft on the line of centres 0^0,^ of the circles where Q0l/Q02
= the

ratio of the radii.]

14-. Theorem. // a right line be divided into any
two parts a and b, their rectangle is a maximum when

the line is bisected.

For Euc. (II. 5) ab+(^^ =
("-)*

= const"

hence ab is a maximum when a b = or when a = b.

COR. The continued product of the segments of a line

is a maximum when the parts are equal.

EXAMPLES.

1. Through any point P on the base of a triangle parallels PX and

P-Tare drawn to the opposite sides ; the area of the parallelogram
PXCYi* a maximum when the base AB is bisected at P.

[For the triangles A I'X and BP Y are constant in species,

hence PX. PYccAP. BP. But the area of the parallelogram
= PX. 1>Y sin CvPX. PY-, therefore, etc.]*

2. The maximum rectangle inscribed in a given segment of a

circle is such that if tangents BC and AC be drawn at its vertices

X and F, then BX= CX and CY= A Y.

[For NX is the maximum rectangle that can be inscribed in the

triangle BCN, and therefore greater than any other X'N. Hence

from the symmetry of the figure the rectangle on the side XY is

greater than that on X'Y', and a fortiori greater than that on

X"Y".

* Hence, the maximum parallelogram inscribed in a triangle is half

the area of the triangle.
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The construction of the maximum rectangle is as follows : Let

BL be drawn perpendicular to OL, the diameter of the circle

parallel to AB. Join OX and let it meet BL in P. Since the

triangles OCX and BPX are equal in every respect (Euc. I. 26)

PX=OX=r. Also OXBL is a cyclic quadrilateral, therefore

Euc. (III. 36),
PB.PL=PO.PX=1r\

but PL PB is given ; hence the segment PB is known, and since it

is equal to 0(7, C is determined.

In the general case the line A B does not meet the circle, the seg-

ment is therefore imaginary, and the proposition may be thus

stated : given a line AB and a circle ; construct the maximum

rectangle, having two of its vertices X and Y on the circle and the

remaining two on the line.]

3. Draw a chord XY of a circle in a given direction such that the

area of the quadrilateral ABX Y, where AB is a given diameter, is a

maximum.

[Draw a diameter YX\ and A YBX' is a rectangle, hence AX' is

equal and parallel to BY. Join JJJfand XX', and draw BC parallel

to XX'.

Then since

triangle AXX + triangle BXY= triangle ABX',

reject the common part AMX 1

and let BMX be added to each,

BXX'^ABXY.
The quadrilateral is a maximum therefore when BXX* is a
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maximum. It is easy to see that the latter is half the rectangle

inscribed in a given segment EC.

For since EG is parallel to XX\ AC is perpendicular to XX' and

therefore parallel to PX
y
hence BAC=a.

The problem is thus reducible to Ex. 2.]

4. If a given finite line be divided into any number of parts

a, 6, c ... ; to find when aa bPc* ... is a maximum, where a, ft, y
are given quantities.

[This expression is a maximum when

Q (y)
- isamaximum W

but a\a is one of the a equal parts into which the segment a may
be divided ;

hence (a/a)
a is the product of the equal subdivisions.

Similarly (b//3)P is the product of the fi equal subdivisions of 6, and

so on. Therefore (1) attains its greatest value when the subdi-

visions of a, b
t
c ... are all equal ; i.e., when

a b c_ -i

a-ft-y-
-J

5. Find a point with respect to a triangle such that the product
of the areas (BOC)(COA)(AOB} is a maximum.

[Since BOC+COA + A OB is constant, when J30C= COA = AOBy by
Ex. 4, or when is the centroid of the triangle.]

6. The maximum triangle of given perimeter is equilateral.

[From the formula A2
=s(s-a)(s b)(s c) ; since the sum of the

factors on the right hand side is constant, A is a maximum when
* a=s-~b =s-c ; therefore, etc.]
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7. The maximum parallelogram of given perimeter and angles
is equilateral.

8. If p^ p.2 , pz denote the perpendiculars from any point on the

sides of a triangle, the maximum value of Pip^ps is 8A3
/27aZ>c, and

is then the centroid of the triangle. (By Ex. 5.)

[Otherwise thus : Since 4^abp 1p2^(apl + bp2)
2 -

(apl bp2)
2 for any

point 011 the base c, p^p^ is maximum when ap l bp2 vanishes,

since apl + bp2 equals 2A. Then is the middle point of the base.

Now if p3 be supposed constant, is on the median through 0.

Similarly by regarding pl
as constant, would be found on the

median through A ; and so on. Therefore if the three perpendi-
culars vary, their product is a maximum for the point of intersection

of the medians.]

15. Theorem. If a right line be divided into any two

parts a and b the sum of their squares is a minimum
when the line is bisected.

For (Euc. II. 9, 10)

Hence a2+62 is minimum when a b is minimum, because

a+b is constant ;
that is when a b.

COR. The sum of the squares of the segments of a line is

a minimum when the segments are equal.

16. Problem. If a right line be divided into any
number of parts a,b,c..., to find when

%
7,2 02

4.-^-!.-+... is minimum
a p y

where a, ft, y are known quantities.

Let the segment a be divided into a equal parts ;
each

part is therefore a/a and the sum of squares of the parts

= M 2

= a2

\a/ a

Similarly if the segment b be divided into /3 equal parts

the sum of squares of the subdivisions = 62
//3 ;

and so on.
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Hence the above expression denotes the sum of the

squares of the subdivisions of the parts a, 6, c ..., and is

therefore a minimum when these are equal ; i.e., when
a b c

EXAMPLES.

1. Divide a line into two parts a and b such that

is a minimum.

[When
a

--f is minimum, i.e., when - = -, hence 3a = 4ft.]

2. To find a point P such that the sum of the squares of its

distances, #, y, z, from the sides of a triangle is a minimum.

[Let AJ, A2,
A3 denote twice the areas of the triangles subtended

by the sides of the given one at the point. Now since A
1
=

a.r,

A
2
=

&#, and A3
= ^,

and is consequently a minimum when

since AI 4- A2 +A3
- const.

From (2) it is obvious that -=&=.* .................................... (3)a o c

This result may also be seen from the identity

(a
2+ b2+ c*)(x

2+ y*+ z2)
-
(ay+ 6y+ czf

=
(62

-
cy)

2+ (c^
-
a0)

2+ (ay
-
kr)

2
,

with which the student should be familiar.]

NOTE. This point is termed the Symmedian Point of the triangle,

as it is obvious from (3) that the lines joining it to the vertices of

the given triangle make the same angles with the sides as the

corresponding medians
;
also since

x^y^z_ax+by+cz_ 2A
a~b~c~~

~

2aA 6A 2cA
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3. Find a point P such that the sum of squares of its distances

from the vertices of a triangle may be a minimum.

[If CP be supposed constant while AP and BP vary, the point

P describes a circle around as centre, and if M be the middle

point of the base A P2 + BP'2= 2A M*+ 2J/P2
. Hence AP2+BP* + Cl*

is minimum when 2PM2+ OP2 is minimum, since AM is constant.

Therefore P is a point on the median <7J/"such that CP/PM=2, i.e.,

the centroid.

Similarly by supposing AP or BP to remain constant we find

the same point. Hence the centroid is the required point when

AP, BP and CP all vary.]

SECTION II.

METHOD OF INFINITESIMALS.

17. It has probably been observed in the preceding

section that the positions of maximum and minimum of

a quantity, varying according to a given law, are sym-

metrical with respect to the fixed parts of the figure.

Thus when the base and vertical angle of a triangle are

given, the altitude, rectangle under sides; area, etc., etc.,

are maxima when the triangje is isosceles.
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In Art. 9 the triangle of maximum area is found by

placing the two given sides at right angles;

Again, a figure of given perimeter and of maximum
area is circular. As the variable line AB in Art. 11

rotates in a positive direction around Py according as PB
recedes from the perpendicular from P on BC

y the

segments AP and BP approach an equality, and the

triangle ABO is a minimum when AP= BP.

18. The several parts, of a geometrical figure which

varies according to a definite law, can always be expressed
in terms of the fixed parts of the figure and those

quantities which are sufficient to define its position.

Take for example the figure of Art. 8. In any posi-

tion of the vertex (7, by assuming the triangle to be of

given altitude; the variable parts, a, 6, area, and other

functions of the sides or angles can be found in terms of

the base ct vertical angle (7, and altitude.

Thus the variables may be regarded as functions of the

given parts and the co-ordinates of their position.

It follows, then, that if the latter vary continuously
those functions must do likewise.* Hence a very small

change in position will cause a very slight change or

increment in the magnitude of the function. Suppose in

Art. 8 the circle to be divided into an indefinitely great
number of equal parts, and let the vertex G occupy each

point of section from A towards B. As the altitude

thus receives indefinitely small increments so does the

area.

Let AB1&& the base of a triangle and any curve GG^G^
the locus of its vertex.

* See Burnside and Panton's Theory of Equations, Art, 7.

c
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In the figure as the vertex approaches C on the curve

from left to right the intercept AX made by the per-

pendicular may be taken as the co-ordinate of its

position, since if AX is known the position of is

also known.

Thus while AX continues to receive positive incre-

ments, the area, altitude, and other functions of it are

sometimes decreasing, as from G to Ov and sometimes

increasing, as from C
l
to G

2
.

At the points G, Cv Cz
the increments in the altitude

alter in sign and therefore consecutive values are equal.

Here also the tangents to the curve are parallel to the

base AB, and at any other point Cn the increment of

the- variable divided by the corresponding increment in

the function = cot a, where a is the angle made by the

tangent at Gn with AB. We have seen that if AX
denote the value of a variable in any position, and CX

any function of AX, when the function passes through
a maximum or minimum its two consecutive values are

in each case equal to one another.
(

Suppose, for example, that a variable chord XY of a

circle moves parallel to a certain direction; it gradually

increases in length as it approaches the centre and if XY
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be a diameter and X' Y' a consecutive chord
;
since XX '

and YY' are tangents to the circle, and therefore parallel,

XYX'Y is a parallelogram and XY=X'Y' (Euc. I. 34).

Hence the diameter is the maximum chord in a circle

(cf. Euc. III. 15).

EXAMPLES.

1. Having given the base and locus of vertex of a triangle ;
find

when the area is a maximum or minimum.

[Let the locus be a curve of any order and it is readily seen

(Euc. I. 39) that the tangents at the required points are parallel to

the base.]

2. In Ex. 1 when is the sum of the sides a minimum or

maximum ?

[Let C and C' be two points indefinitely near to each other on the

locus MN. Draw CX and C'Y perpendiculars to AC' and EC
respectively.

Then since in the triangle A CX, X is a right angle and A inde-

finitely small, ACX is approximately a right angle and AC is

nearly equal to AX. Hence in the limit

C'X=AC'-AX=AC'-AC.

Similarly CY is the increment (negative) of BO.

Therefore C'X=CY and the right-angled triangles CC'X and

CC'Y are equal in every respect, and LAC'C=LBCC'. But

AC'C=ACM when A is indefinitely small; hence the required

points C on the locus are such that AC and BC are equally inclined

to the curve, i.e., to the tangent at their point of intersection.
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It similarly follows that if A and B were upon opposite sides of

the curve this relation holds when AC-EC is maximum or

minimum.*]

3. Given the vertex A of a triangle fixed, the angle A in magni-
tude and the base angles moving on fixed lines intersecting in ;

to construct the triangle ABC of minimum area.

[By taking two consecutive positions as in figure, we have

AB. AC=AB' . AC' and LBAB'=LCAC'.

Hence AB :AB'= AC' : AC,

and the triangles BAB' and CA C' are similar (Euc. VI. 6). ]

Therefore LABO=LAC'0=ACO in the limit

In the required position the sides AB and AC are equally inclined

to the given lines. Here again we have an illustration of the

symmetry of the figure when the triangle is minimum. If the

angle A is 180 the property (Art. 13) follows at once.]

4. Given two sides of a triangle fixed in position and a point P
on the base ;

when is AB a minimum ?

[Taking two consecutive positions of AB and drawing perpen-
diculars AX and BY'; as before A'X is the increment of AP and

B'Y of BP
;
hence A'X^EY.

Again A'X=AXcotA'=AP sinP. coU'.

Similarly B'Y=BY cotB=BP sinP cot B.

Therefore in the limit

AP cotA=BP cotB.

* It follows if the curve is of such a nature that AC+JBC is constant

then for every point on it AC and BC are equally inclined.
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But if Q denote the foot of the perpendicular on the base we have

BQcotA=AQcotB,
hence AP=BQ,
or the minimum chord is such that the given point P and the foot of
the perpendicular are equidistant from the extremities of the base.

This is known as Philo's Line.

5. Through a given point in the diameter produced of a semi-

circle to draw a secant OBC such that the quadrilateral ABCD may
be a maximum.

[Take two consecutive positions of the secant BC &nd OB'Cf

such

that ABCD^AB'C'D, and join AB, AB\ DC, DC', and B'C.

Now since ABCD= AB'C'D it follows that

BB'CC'=ABB'+ DCC'

or BBfC+ CB'C 1= BB'A + CC'D.
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Transposing we have

BB'C- BEA = CC'D - CB'C',

or since twice the area of a triangle is the product of two sides x

the sine of the included angle ;
in the limit this relation becomes

BB'(BC* -

diameter diameter
'

but from similar triangles BB'/CC'=OBIOC. Hence if AB=a,
BC=b, CD=c,AD=d, and the angles subtended at the centre of the

circle by the sides a, 6, c be denoted by 2a, 2/3, 2y, this relation may

which is easily reducible to

cos 2a-hcos 2y
=

l,

or the projection XY of the intercept is equal to the radius ofthe circle.

The construction of the chord BC will be afterwards given.]

6. Having given two opposite sides A B and CD of a quadrilateral

and the diagonals CA and BD, to construct it so that the area may
be a maximum.

[Let AB be fixed and draw C' and Df

consecutive positions of

C and /). Let be the intersection of AC and ED. Then since

CC' is small compared with OC and OCC' a right angle ; OCC' may
be considered an isosceles triangle, and OCOC'. Similarly

OD= ODf

; and since CD=C'D the triangles COD and C'OD' are

equal in every respect. From the equal areas ABCD and ABC'D'

take the equals COD and C'OD' and the common part A OB, and

there remains BOC+ AOD=BOC'+A OD't
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or BOO' -BOC= AOD-AOU,
hence BO. 00=AO. DO,

from which it is manifest that CD and AB are parallel. Cf. Art. 9,

Ex. 5.

A similar proof may be applied to show that when the four sides

of a quadrilateral are given the area is a maximum when

CO. A 0=BO. DO,

i.e., when the figure is cyclic. See Milne's Companion to the Weekly

Problem Papers, 1888, p. 27.]

7. To draw a parallel to a given line meeting a semicircle in C and

D such that ABCD is a quadrilateral of maximum area.

[As before, when ABCD is a maximum it is equal to the

consecutive area ABC'D'.

Hence CC'DD'^A CC'+BDD',
therefore - CC'D - CC'A = DD'B -

which in the limit reduces to

Again if A" and F are the projections of C and D on the diameter

d of AB we have

AX=a?ld, Z?J*=c2
/c*and XT=6 cos a.

Making these substitutions in (1) we have on reducing

2&2 + dcosa.&-c#<= (2)

NOTE. If a=0 the quadrilateral is found to be one half of the

inscribed hexagon.
If a= 90 the maximum quadrilateral is the inscribed square.
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SECTION III.

THE POINT THEOREM.

19. Theorem. If points P, Q, and R be taken on the

sides of a triangle the circles AQR, BRP, and GPQ pass

through a common point 0.

For let the circles AQR and BRP meet in 0. Then
since (Euc. III. 22) QOR= 7r-A and jROP= 7r-JS, we
have QOP= 27r-(7r-^)-(7r- JB)= ^+ = 7r-C; there-

fore the quadrilateral POQO is cyclic.

Tfie angles BOG, COA, AOB, subtended by the sides of

the given triangle at 0, are respectively A+P, B+Q,
C+R, when is within the triangle ABC.

For, applying Euc. I. 32 to the triangles jBOCand COA,
it follows that LAOB=C+CAO+ CBO.
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But CA = QRO since AQRO is cyclic,

also CBO=PRO since BPRO is cyclic ;

therefore AOB=C+R (a)

where jR denotes an angle of the triangle PQR. Similarly

for the angles BOG and COA.
If falls outside the triangle ABC these angular rela-

tions become somewhat modified. Take for example
within the angle C.

Then from the cyclic quadrilaterals QRAO and RPBO
we have (Euc. III. 20)

LORP= OBPzu& LORQ=OAQ;
adding these equations

R = OAQ+OBP = C+AOB,
or AOB = R-C.

Again, since Euc. I. 32,

A+ACO = BOC+ABO,
by transposing

A-BOC=ABO-ACO (1)

But ABO =RPO since PRBO is cyclic,

and ACO = QPO since PQCO is cyclic.

Substituting these values in (1) we have

A -BOC= RPO - QPO = P ;

therefore BOC^A - P.

Similarly COA =B-Q (8)

It may be shown in the same manner that if the points

P, Q, R are such that two of the angles P, Q of the

triangle formed by them are greater than A and B

respectively BOC=P-A,
COA = Q-B, (y)

and AOB=C-R.
Hence if a triangle PQR of given species be inscribed

in a given one ABC, the circles AQR, BRP, and CPQ
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pass through either of two fixed points, one of which

subtends at the sides of ABC, angles A + P, J3+Q, C+ JK,

and the other A-P, B-Q, J2-(7, or P-^, Q-, C-R,
according as two of the angles of the given triangle are

greater or less than the corresponding angles of the

inscribed triangle.

20. Let PQR be a triangle of given species inscribed in

ABC. We have seen that the point is fixed, and

therefore the lines AO, BO divide the angles of ABC into

known segments. But the segments of A are equal to

the base angles of the triangle QOR ; similarly of B to

the base angles of jROP, and of G to the base angles of

POQ.
Hence each of the triangles POQ, QOR, ROP are given

in species. Therefore as the inscribed triangle PQR varies

in position OQR, ORP, OPQ remain constant in species,

and OP : OQ : OR are constant ratios.

Again, since the triangle OPQ is fixed in species and

one vertex a fixed point; if P describes a line BC it

follows that the locus of Q is also a line (CA). And

generally, ivhen one vertex of a figure of given species is

fixed and any other vertex P or point invariably con-

nected with it describe a locus, the remaining points Q ...

describe loci, which may be derived from P by revolving

it through a known angle POQ and increasing or

diminishing OP in the ratio of OQ : OP.

The loci thus described are similar, the ratio OP : OQ is

termed their Ratio of Similitude and the point the

Centre of Similitude.

Thus since is a point invariably connected with a

variable inscribed triangle PQR of given species, the
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ortho-centre, circum-centre, ex-centres, median point, etc.,

and all other points invariably connected with the

triangle, describe right lines which can at once be con-

structed by the above method.

Moreover, we know that if is fixed and P describes a

circle, and the variable line or Radius Vector OP be

divided in Q, in a given ratio, the locus of Q is a circle.

Now if Q be turned around through any given angle
the locus is the same circle displaced through the same

angle. Therefore if one vertex of a triangle of given

species is fixed, and another vertex describe a circle, the

remaining vertex and all other points invariably con-

nected with it likewise describe circles.

EXAMPLES.

1. Having given the diagonals and angles of a quadrilateral

ABCD, construct it.

[On one diagonal A C describe segments of circles containing angles

respectively equal to B and D. Let ABCD be the required quadri-

lateral. Produce CD to Y and BC to X. Join BY and A Y.

Then since the chord BYof a given circle subtends a given angle C
it is of known length, The triangle ADYis also given in species ;

hence the following construction : On BY describe a segment of a

circle containing an angle C. The triangle ADY, of given species,
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has one vertex Y fixed, another A describing the circle AYC,
therefore the remaining vertex D describes a circle. TakeB as centre

and BD as radius, and cut this locus in the point D ; therefore, etc.*]

2. Required to place a parallelogram of given sides with its

vertices on four concurrent lines (M'Vicker).

[LQtABCD be the parallelogram situated on the pencil . ABCD.

Through (7 and D draw parallels CP and DP to BO and AO respec-

tively. Join OP. By Ex. 1 the diagonals and angles of the

quadrilateral CDPO are given ; therefore, etc.]

21. When the triangle PQR is given in every respect,

the triangles OPQ, OQR, ORP are completely determined
;

for in addition to their species we are given the sides PQ,

QR, and RP, hence the sides OP, OQ, OR are easily

determined. We have therefore four solutions, real or

imaginary, to the problem :

Having given two triangles ABC and PQR to place

either with its vertices on the corresponding sides of the

other ; for having determined the point 0, the position of

which depends altogether on the species of the triangles,

we get the position of the vertex P by taking as centre

and OP as radius and describing a circle cutting BC.

22. When the line OP is perpendicular to EC, OQ and

OR are therefore perpendiculars to CA and AB respec-

tively, and the circle with as centre and OP as radius

touches BC. In this case the two solutions coincide, and

PQR is the minimum triangle of given species that can

be inscribed in ABC.
23. It is manifest that a given triangle ABC may be

escribed to another PQR. For having determined the

point 0, the triangles BOG, COA, and AOB are given in

species, and are therefore completely determined, since

* For other solutions see " Mathematicsfrom the Educational Times"

Vol. XLIV., p. 29, by D. Biddle and Rev. T. C. Simmons.
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BO, CA, and AB are given lines. Hence any vertex (C)
is found by describing a segment of a circle upon PQ
containing an angle equal to C, and with as centre and
OC as radius describing circle. Where these circles meet
is the required position of C.

Again in the triangle BOG when EG is a maximum
00 is a maximum, and is therefore a diameter of the

circle OPQO. Then OPC is a right angle. Hence the

maximum triangle of given species escribed to a given
one is that whose sides are perpendicular to OP, OQ, OR.

COR. If the sides of the given escribed triangle be

X, yu, and i/, and a, /3, y the distances of from P, Q, R,
Xa+

/u/3+ i>y
= a minimum.

Hence required to find a point, given multiples of whose

distancesfrom threefixed points is a minimum when any
two of the multiples are together greater than the third.

EXAMPLES.

1. If d denote the distance of the point from the circumcentre

H of the triangle ABC', prove that twice the area of the minimum
triangle PQR is (R

2 ~ d2
) sin A sin B sin C.

[For join AO and produce it to meet the circum-circle again in C' ;

join BC'.
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Now since LR^AOB- C= AOB - C'^OBC' (Euc. 1. 32),

we have 2P#JR= RP . RQ sin R=RP . RQ sin OBC' (1)

but RP=OB sin B and RQ= OA sin 4.

Substituting these values in (1) and putting
OB sin OBC'^OC' sin (7',

SP&ff=JO . BO sin ^ sin B sin (95(7'

= ^10. 0C" sin A sin sin C

=(M ~ rf2) sin A sin 5 sin
(7.]

NOTE. If the point is on the circum-circle R= d and the area

of the triangle vanishes, hence if from any point on the circum-circle

of a triangle perpendiculars be let fall upon the sides theirfeet lie in a

line. This is termed a Simson Line of the triangle, and the col-

linearity of the points admits of an easy direct proof.

2. If the pedal triangle PQlt of a point is constant in area the

locus of the point is a circle.

[Concentric with the circum-circle by the equation of Ex. 1.]

2a. The theorem holds generally for a polygon.

3. Having given of a triangle the base c, and ab sin (Ca) where

a is a given angle, find the locus of the vertex.

[In Ex. 1 we have

2PQR = AO. BO sin A sin B sin (AOB-C]
oo AO.BOsin(AOB-C),

and the locus of is in that case a circle. Hence in the triangle

A OB we have the data in question ;
therefore the locus of the

vertex is a circle concentric with //.]

4. To inscribe a quadrilateral of given species PQRS in a given

quadrilateral A BCD.

Find the point 0^ of the triangle PQR of given species inscribed in

a given one, viz., that formed by three of the sides, AB, BC> CD of
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the quadrilateral. Similarly find 2 of the triangle PQS inscribed

in a given one. Now by Art. 19, since the species of each of the

triangles O^Q and 2PQ is given, we have z.0
1
P02

= 2PQ ~ O^Q^
a known quantity ; therefore the point P is determined.

5. To escribe a quadrilateral ABCD of given species to a given
one PQRS.

[Take -any quadrilateral abed of the same species as A BCD.

Inscribe in it by Ex. 4 a quadrilateral pqrs of the species PQRS. It

is obvious that LSPA=spaj since the figures are similar, hence the

problem reduces to drawing lines in known directions through

P, ft It, S.

Otherwise thus :

Upon a pair of opposite sides PQ and RS describe segments of

circles containing angles equal to B and D respectively. Find a point

M such that the arcs PM and QM subtend angles equal to ABD and

CBD respectively. Similarly find N such that CDN and ADN may
be equal to the known segments of the angle C. Join MN ;

where it

meets the circles in B and D are two of the required vertices of the

quadrilateral A BCD.}

6. To escribe a square ABCD to a quadrilateral PQRS.
[By Ex. 5 or simply thus : Join PR and let fall a perpendicular

from Q upon it. Make QS' PR. SS' is a side of the required square.
This construction depends upon the property that any tvw rectangu-

lar lines terminated by the opposite sides of a square are equal to one

another (Mathesis).
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7. From any point P on the base of a triangle perpendiculars

PX and PY are drawn to the sides, find the locus of the middle

point N of XY.

[Bisect OP in JS/, join JO", J^Faiid MN. It is easy to see thatMXY
is an isosceles triangle of given species, each of its base angles being
the complement of C

;
and since its vertices T, 3f, Fmove on fixed

lines, any point ^invariably connected with it describes a line. By
taking P to coincide alternately with A and B the locus is seen to be

the line joining the middle points of the perpendiculars from the

extremities of the base of the triangle ABCJ\

8. The sides of the pedal triangle PQR are in the ratios

a.AOib.BO :c.CO.

[For QR=AO sin A <x a . A 0, etc.]

9. Extension of Ptolemy's Theorem. If the three pairs of

opposite connectors of four points be denoted by a, c ; &, d ; 8, 8'

to prove the relation

SW=aW + lW-2abcd cos (0+ff),

where 0+0f

is the sum of a pair of opposite angles of the

quadrilateral.

[Let A, By C, be the four points. From any one of them

let fall perpendiculars OP, OQ, OR on the sides of the triangle

ABC formed by the remaining three ;
then since

PQ2=QW + p2 _ 2QR . RP cos R,

substituting for PQ, QR, RP the values in Ex. 8, and reducing, the

above equation follows at once (M'Cay).]

9a. What does this theorem reduce to for the quadrilateral ABCP
in the figure of Ex. 7 ? Deduce the relation of Art. 3, Ex. 5, as a

further particular case.
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10. A variable circle passes through the vertex of an angle and a

second fixed point ;
find the locus of the intersection of tangents at

the extremities of its chord of intersection.

11. If a, /?, y denote the distances of any point from the sides

of a triangle ; to prove that

,> SS'
a/^M

where S and '

are the rectangles under the segments of a variable

chord through 0* of the circum-circles of ABC and of the pedal

triangle of the point (M'Vicker).

[In Ex. 1 let K be the point where RO meets the circum-circle of

PQR ;
then y=S'JOKES' &mP/pBinOQK.

EutsiuOQK=sin(A + P)=sinBOC; .'. fty=S' smP/amBOC. Also

a=OB. OCsiuBOC/a, therefore a/?y
= ,S' . OB. OCaiuP/a.

Again OB IlP/siuS, etc. ... therefore by substitution

-S
' RP '

12. In the particular cases when coincides with the in- or ex-

centres of the triangle ABC, the formula in Ex. 11 reduces to

etc.

24. Theorem. When three points P, Q, R are taken

collinearly on the sides of a triangle, the circles circum-

scribing the four triangles QRA, RPB, PQC, ABC meet

in a point.

This theorem may be easily proved directly, but it is

obviously a particular case of Art. 19, for the circles

QRA, RPB, PQG meet in a point (Art. 19) such that

COA = Q B, which in this case is 180 B; therefore, etc.

Euc. III. 22.

The transversal PQR to the sides ofABO is the limiting

case of a triangle inscribed in ABC, the angles at P and

*The constant rectangle under the segments of a variable chord of a

circle passing through a fixed point has been termed by Steiner the

Power of the Point with respect to the circle.

D
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R being each and Q=180. The species of the

limiting triangle is determined by the ratios QR : RP :

PQ, or their equivalents a . A : b . BO : c . GO. (Art. 23,

Ex. 8.)

Hence if a transversal is drawn to a triangle such that

the ratios of its segments made by the sides is constant
;

the ratios AO:BO:CO are known and with them the

point 0. As in the general case, the triangles QOR, ROP,
POQ are constant in species.

It follows then that if P, Q, R be the feet of the perpen-

diculars from on the sides cf ABC, and the lines OP,

OQ, OR rotated through any angle in the same direction,

P, Q, R will always remain collinear and the ratios

PQ : QR : RP are constant*

COR. Ptolemy's Theorem. Since QR:RP:PQ = a.AO-

b.BO-.c. CO, a,udPQ + QR = PR;
therefore a . AO + c . CO = b . BO.

EXAMPLES.

1. Place a given line PQ divided in any point R such that the

points /*, Q, It may lie in an assigned order on the sides of a given

triangle.

*Chasles' Ge*omtrie sup^rieure, p. 281.



MAXIMUM AND MINIMUM. 51

2. Draw a line across a quadrilateral, meeting the sides in PQRS
such that the ratios PQ : QR : RS may be given.

3. The line joining to the orthocentre of ABC is bisected by
the Simson line PQR, and intersects it on the nine points circle.

4. The angle subtended by any two points Oi and 2 on the circle

is equal to the angle between their Simson lines.

5. The Simson lines of two points diametrically opposite

intersect at right angles on the nine points circle. (By Ex. 4.)

25. Theorem. For three positions, PQR, P^RV
P

2Q2
R

2 , of the triangle of given species inscribed in a

given one ABC ; to prove that

PP
l

: PP
2
= QQl

: QQ2
=RR

l
: RR

2
.

Since the triangles OPQ, OP1Q 1 ,
OP

2Q2
are similar, we

have OP:OP
1=OQ:OQV also ^POP

l
= QOQl

since

^POQ^PflQ^ therefore the triangles Pt^ and

are similar. Hence

Similarly QQl
: RRl

= OQ:OR;
therefore PP, : QQl

: RR
l
= OP : OQ : OR.

Similarly PP
2

: QQ2
: RRZ

= OP : OQ : OR ;

therefore, etc.

Now if PiQiRi and P2Q2
R

2
denote two fixed positions

of the variable inscribed triangle PQR of constant species,
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and PQR any arbitrary position, it follows that a variable

line PQ, dividing similarly two linear segments P$i
and P

2Q2 , subtends a constant angle POQ at a fixed

point 0.

The point is determined by the intersection of the

loci of the vertices of the triangles P^O and P
2Q2

^
whose bases P^ and P

2Q2 are given and ratio of sides

(
=P

1
P

2 :QQ1),
or the intersection of the circles CP^

and CP$2.

SinceP^ and Q^ form similar triangles with 0, this

point is termed the Centre of Similitude of the segments.

Thus the centre of similitude of two segments AB and

CD is the intersection of the circles passing through the

two pairs of non-corresponding extremities and the inter-

section of the given lines. Or it may be regarded as

the common vertex of two similar triangles described on

the sides.

If the points B and D coincide, coincides with them,

and the circle ADO meeting CD in coincident points D
and therefore touches CD. In the same case the circle

BCO touches AB.

COR. The centres of similitude of the sides of a triangle

taken in pairs are therefore found by describing circles
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on BO and AC touching the sides AC and BO respectively.

The second point of intersection of these circles is a

centre of similitude of AC and (7; similarly for each of

the remaining pairs of sides.

EXAMPLES.

1. Draw a line L dividing three linear segments A 1
A 2 > B\B<i and

0^2 in the same ratio. (Dublin Univ. Exam. Papers.)

[Let the required line intersect the segments in P, Q and It

respectively, O
l
and 2 the centres of similitude of the pairs of lines

A ^2) B\B<t and #i#2, 0^. Then in the triangle O^QO^ we know the

base
1 2

and vertical angle, since it is equal to 180 - f^QPQ^QR ;

therefore, etc.]

2. The centres of similitude of the sides of a triangle taken in

pairs are the middle points of the symmedian chords of the circum-

circle.

[Let Jf, F, Z denote the middle points of the sides of the triangle

ABC
;
CD and CA'the median and symmedian chords of the circle

respectively ;
J/the middle point of CE. Join ZE, AM and BM.

Then since ^ACD=BCE and LCAZ^CEB, the triangles A CZ
and ECB are similar, and }" and M being the middle points of a

pair of corresponding sides, CYZ and CMB are therefore similar.

Hence LCBM= CZY=BCZ=ACM. Similarly LCAM=BCM ;
there-

fore the triangles BCM and CAM are similar.]
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3. Prove the following results from Ex. 2 :

1. CEZ= difference of base angles (B-A).
2. The triangles A DZ and BEZ equal in every respect.

3. CZ. CE=ab.

4. CM= ablJa?+ b*+ 2ab cos C.

5. BtiC=CMA = Tr-C.

6. The circum-circle of ABM passes through the centre of

the circle A BO.

4. Having given the base (c) bisector of base (CZ) and difference

of base angles (B A) ; construct the triangle.

[The triangle CEZ is readily constructed
; therefore, etc.]

5. Having given the bisector of base (CZ) rectangle under sides

(ab) and difference of base angles (B A) ; construct the triangle.

[As in Ex. 4.]

6. Having given the base, median, and symmedian of a triangle ;

construct it.

SECTION IV.

MISCELLANEOUS PROPOSITIONS.

26. Prop. I. Through a point P to draiu a line across

an angle such that the intercepted segment MN may
subtend at a fixed point Q a triangle of maximum area.
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The transversal PMN such that the parallels OM and

ON to the sides of the angle intersect on PQ is the

required line.

For draw any other line PM'N. Join M'N. Then the

triangles MON and M'ON are equal (Euc. 1. 37), but

M'ON> M'ON'
;
therefore MON > M'ON.

tudes = PO/PQ. Similarly
= PO/PQ; therefore

To find the point 0. Evidently by similar triangles

PA/PO = PM/PN = PO/P ;

therefore PA

Prop. II. On the sides BO and CA of a triangle, to

find points M and N such that if the lines AM and BN
meet in the triangle MON may be a maximum.

Regarding A as a point on the base produced of BON
and AOM a transversal to the sides, MON is maximum
when ON and MN' parallels to these sides respectively

meet on AC. Similarly since B is on the base produced
of ACM and BON a transversal to the sides, OM' and

NM' parallels to the sides nijgejb QJI the base.
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Then we have ANM'O and CN'OM' equal parallelo-

grams (Euc. I 36), therefore AN=CN\ also BM=CM'.
But by Prop. I. AN . AC = AN'*, therefore AN . AC = ON* ;

similarly BM . BC= CM2
,
or the sides of the triangle ABC

are divided in extreme and mean ratio, the greater

segments being measured from the vertex.

Prop. III. Through one extremity A of the diameter

APB of a semicircle draw a chord AMN to meet a

perpendicular through P to the diameter AB in M and
the circle in N

y
such that the triangle MEN may be a

maximum.

Suppose a tangent is drawn at the required point N.

Let it meet PM in 8. Join A8. From the centre C let

fall CX perpendicular on AS. Join CN.

By Prop. I. the parallels MQ to the tangent and NQ to

PS meet on AB
}
for then with respect to the angle PSN

the triangle M.BN is maximum
;
therefore a fortiori it is

the maximum triangle whose vertex N lies on the circle

ANB.
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S=ABN=ANQ. Hence since MN, the diagonal

of a parallelogram MSNQ, bisects the angle N, the figure

is a rhombus, and NQ = NS. Then the triangles ANS and

ANQ are equal in every respect (Euc. I. 4), therefore ASN
is a right angle ;

hence CNSX is a rectangle, and SX is

equal to the radius of the circle.

Also OPSX is a cyclic quadrilateral, therefore

AS.AX=AO.AP
which is known. Therefore we have the rectangle and

difference of AS and AX, from which data these lines are

at once determined. Then we can construct the right--

angled triangle ACX, which fixes the point X ;
there-

fore, etc.

COR. In the particular case when PMS is a vertical

radius, if SN meet the tangent AT in T and AB in T'
t
we

have AS. AX = r2
,
therefore by parallels AT'.AC=CT'*.
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Similarly TT .TO^'S2
,

but TT . TS = AT* = TN*
;

therefore TN=T'S9
and TS=T'N.

But when a line Tl7'

is divided in extreme and mean

ratio in S and from the greater segment a part T'N is

taken equal to the less TS, T'S is divided into extreme

and mean ratio.

Ex. Draw the transversal AMN such that the quadrilateral

MNBP may be a maximum.

Prop. IV.* Through a given point in the tangent at

G to a circle draw a secant AB such that the triangle

ABC may be of maximum area.

Draw tangents at A and B to meet in T. The required

triangle is such that the parallels through A and B to the

tangents at these points meet on 00 in P.

For since and T, and 0, are pairs of conjugate

points with respect to the circle, CT is the polar of 0.

* This Proposition may be omitted ou the first reading.
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Let 00', the second tangent from 0, meet PT in G",

Since PETA is a rhombus, AB is at right angles to PT\
also since TC'MP is a harmonic row, we have

TCf

/C'M=TP/PM=2;
therefore TM or PM= SMC'.

Then a given angle 00(7' is divided by the required line

AB, such that the ratio of the tangents of its segments is

known
; therefore, etc.

Ex. If #, by c denote the sides of the maximum triangle ABC,
prove that

m OA =<*r<#
^ ) OB &2-c2

'



CHAPTER III.

KECENT DEVELOPMENTS OF POINT THEOREM.

SECTION I.

THE BROCARD POINTS AND CIRCLE OF A TRIANGLE.

27. Brocard Points Q, JT. In Art. 20 if the inscribed

triangle PQR is similar to ABC and P = A
) Q = B) Ji=C.

&enBOC=A+P=2A,*imil&rlyCOA = ZBandAOB^ZC;
therefore is the centre of the circum-circle.

Secondly, let P = B, Q = C and R = A. Then

umilarly COA = B+ Q = B+C= ir-A,
md AOB=7T-C.

Thirdly, let P=CY

, Q = A and 11 = 11. It follows as

n the last case that BOC=7r-B
y
GOA = ir-G and

Thus we see that a triangle PQR similar to a given

me may be inscribed in the latter in three different ways;
ind that the point in each case may be found as in the

jeneral method by describing segments of circles on two

>f the sides containing given angles.

In the second and third positions the points of inter-

action of the circles are usually denoted by the letters

"2 and }'. They are termed the Brocard Points of the
60
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triangle ABC, and are distinguished as Positive (Q) and

Negative

28. Brocard Angle (>). Since BflC is the supplement
of (7, VBC+tiCB=C or tiBC=QCA. For a similar

reason Q(Li = QAB,
hence OB<7= 004 = ttAB = <o (say).

The angle co is called the Brocard Angle of the triangle

ABC.
We may remark that the angle subtended at Q by the

base c is the supplement of B, the angle at the right

extremity of AB, and at 2
7

equal to the supplement of

A
y
the angle at the other extremity of AB.
The same relations hold for the sides a and 6 ; hence

the names Positive and Negative Brocard points.

The value of o> as a function of the sides or angles is

thus found.

Let x, y, z denote the lengths of AQ J92 and CO,

respectively. Then in the triangle BtiC

sin co 2ay sin co

Similarly in the triangles CO,A and
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t =
4JM2C

m....................................... k ;

It is proved in like manner for 2' that

and that the value of these angles is also given by (1).

Again cotA = - T^~^^~& 2tasmJ.

for cot B and cot C. Hence

Again cotA = - T^~^^~ = -~ ~~ with similar values& 4A

or cot to = cot A + cot B+ cot C ......... (2)

EXAMPLES.

1. Prove that

( 1 ) cosec
2
(o = cosecM + eosec2

/?+ cosec20.

(2)

(3) cos2
o> =

* f/~u T" v~u~ T i*~f~ I

2. The distances of 12 from the sides of /i/?^ are 2/2sin2w
r

,

2/2 sin2
w-, 2/2 sin2w- ; and of 12', 2/2 sin 2

o>-, 2/2 Bin2
o>
c

,
2/2 sinV*

c a cab
[For let the distances of 12 be denoted a, /?, y.

Then
2

a=v sin a>= .

l
?*

; therefore, etc.
17 sm B

The ratios of the distances* are evidently as follows :

and a! :
/?' : y'

= a&2
: fcc

2
: ca2

,

and also aa;=
/}/?

= yy
'= 4 /2

s sin4(o.]

* Or Trilinear Co-ordinates of the points with respect to the triangle,

which is also called the Triangle of Reference.
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3. AD is the bisector of the angle A of a triangle ABC, and c^, o>2

the Brocard angles of the triangles ABD and ACD respectively ;

prove that cot o^ -f cot (o2
= 2 cosec J.+ cot ^1 + cot o>,

with similar expressions for the triangles formed by the bisectors

of the angles B and C.

4. If
<*>!

and w2 denote the Brocard angles of the triangles CAD
and BADy where AD is the median to the side BO,

b2 ~ c
2

with similar expressions for the medians BE &n<l CF.

5. Hence prove that cot Wj + cot co3+ cot w- = cot o>2+ cot o>
4 -}- cot co6,

.

6. If ABC is divided as in the previous exercises by the

Rvmmcclians, prove that S(6
2+ c

2

) (cot o>
t

cot o)2)
= 0.

7. 12 and i2' are Brocard points of their pedal triangles PQR and

1(/R'. (Enc. III. 21.)

8. The triangles PQR and P'Q'R' are equal in area.

[For flA? and 12/^/are similar
;
hence (Euc. VI. 10)

similarly

therefore PQR=P'QH'=ABC . sinV]

9. The Brocard points are equidistant from the circum-centre.

[By Ex. 8 and Art 23, Ex. 1.]

10. If A', ft, C' be the points of intersection of the pairs of lines

y, z' : 2, x' : x, y', prove that the six points A', B
f

, C', 0, 12, 12' He on a

circle.

[For the triangles BCA', CAB' and ABC' are isosceles and similar,

their base angles each being equal to o>, hence OA', OB', OC' are the

bisectors of their vertical angles. In the quadrilateral Oti&'A' we
have 012= 012' and OA' the bisector of the angle 12-/T12' ; therefore

is a point on the circum-circle of 12^'12', and the quadrilateral is

therefore cyclic. Similarly B
f and C' are on the circum-circle of the

triangle 01212'.]

DBF. This is called the Brocard Circle, and A'B'C' the First

Brocard Triangle of ABC.
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11. To find the distance of the Brocard points from the circum-

[By Art. 23, Ex. 1,

but (Ex. 8)

hence R*-8*= 4#2sin2o> or

12. The angle subtended at the circum-centre by 12'12= 2cu.

(By Ex. 10 and Euc. III. 22.)

13. To find the distance 12ft' between the Brocard points.

[Since 01212' is an isosceles triangle,

1212' = 2012 sin w= 2/S sin to N/l - 4 siii^w, by Ex. 11.]

14. The diameter of the Brocard circle is equal to

R sec u> Vl 4 sin2w

[For it equals 3/sin 2w ; therefore, etc.]

15. The altitudes of the similar isosceles triangles ECA', CAB',

ABC' are equal to the distances of the symmedian point (A") from

the sides.

[For ^-=^tenu, = -
2
-

+
2^ ;

therefore, etc., by Art. 28, (1).]

16. The circle on OK as diameter is the Brocard circle.

[For KA is parallel and OA perpendicular to BC, hence OK
subtends a right angle at A\ similarly for the points B and C' ;

therefore, etc.]

17. Brocard's first triangle is Inversely Similar to ABC
; i.e.,

by rotation in the plane of the paper their sides cannot be brought
into a position of parallelism with each other.

[For B'C' subtends equal angles at A and A", but KB' and KCf

are respectively parallel to CA and AJB
t
and therefore contain an

angle A ; similarly the angles B' and C' are equal to B and C.]

18. Having given the base c and Brocard angle o> of a triangle

ABC, find the locus of the vertex (Neuberg).

[Let p be the median CZ and 9 the angle between it and PZ.

Since cotw=(a2+ 62 -f c2)/2c. CR and a2 + W= |c
2 + 2p

2
,
we ha^e
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2/o
2
-Hfc

2= 2c cot w . OR=2c cot o> . p cos 0,

or p
2 -c cotco.p cos0+c2 *=0.

NOTE. Comparing this result with the standard form of the

equation in the footnote we have by equating coefficients

c cot CD == 2d and d2 - rz= fc
2
,

or d=|c cot (u and r
2= J^cotfco

-
Jc

2
.

It is evident that the locus is a curve symmetrical with respect to

the perpendicular bisector of the base, as to each position of the

vertex C there is a corresponding one, C" of the inversely similar

triangle ABC" described on the base.

The distance of C", a vertex of Brocard's first triangle, from

c=Jc tan cu ; therefore ZC' .Z0~(\c)
2 where is the centre of the

required locus.

This example is a particular case of : Having given the base c and

(la?+mb
2 +nc2

)/& to find the locus of the vertex/ a solution of

which is similarly obtained.

ISa. Six similar triangles are constructed on a given base and on

the same side of it. Prove that their vertices C
19

(72,
... Q are con-

cyclic. (Mathesis, t. 2, p. 94.)

* This is known by Analytical Geometry to be the Polar Equation ofa

Circle. If we take any point Z and draw a variable line (Radius Vector)

to a given circle (O, r) and let d = ZO, the equation connecting p and 6

ia for all points on the circle p
2 -

2pd cos + d2 - r2 = ; and p and $ are

called the Polar Co-ordinates of the point P.



66 RECENT GEOMETRY.

19. Having given the base c, and Brocard Angle o>, find the

locus of the centroid of ABC.

[A circle whose equation is formed from that in Ex. 18 by changing

p into 3p ;
hence

12/o
2 -4c cotco. p cosfl-f c2= 0.

It has many important properties, which will be found in the

Transactions of the Royal Irish Academy, vol. xxvni. xx, where

M'Cay names it the " C" circle of the triangle ABC.]

20. The lengths of the tangents drawn from A, B, C to the

Brocard Circle are inversely proportional to a, 6, c, and the sum of

their squares
= 2A cosec 2co.

SECTION II.

THE SYMMEDIANS OF A TRIANGLE.

29. Let K be the symmedian point of ABC, a and f}'

the distances of Z' from BC and CA respectively. Then

a
'

/ft
=
a/6

=BZ sinB/AZ' sinA, hence

(1)
BZ' a2

..................

;

............
l ;

or the symmedians divide each side in the duplicate

ratio of the remaining two.
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Again from (1) AZ*/c = bz/(a?+b*) OT AZ' = b*c/(a?+b*) ;

similarly BZ' = a?c/(a?+b
2
) ........................ (2)

Also CZ'/CK = a'/a
= (a?+b*+c*)/(a?+b

2
),
hence

COR. If C= 90 then OK =KZ (Euc. I. 47) andK is the

middle point of the perpendicular on the hypotenuse.

30. The length of the symmedian CZ' is found as

follows :

In the formula WBZ'+ a?AZ' = cAZ' . BZ'+cCZ'* sub-

stitute the values in (2) and reduce. We easily obtain

GZ, =
a/b+b/a

with similar expressions for the lines through A and B.

EXAMPLES.

1. The symmedian is divided harmonically at A', and Q its point

of intersection with the perpendicular to the base of the triangle at

its middle point Z.

L. e

<?pR heuce
2 cr-fo2

ZV ZZ' c> KZ' ^

therefore CQJQZ'= CK\KZ' = (a
2+ 6*)/c

2

.]

2. Since Z'

. CKZ'Q is an harmonic pencil any line through K is

cut harmonically by its rays, hence if KG' is parallel to one ray, it

is bisected at by the conjugate ray CZ. Also the parallel through
K to PL is bisected at K.

3. The vertices of Brocard's first triangle and the symmedian

point are equidistant from the extremities of the parallels through
K to the sides of ABC.

[Let be the middle point of MN. Since <9J/=0^and (Ex 2)

OK=OC'> subtracting these results ; therefore, etc.]
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4. The lines joining the middle points of the sides of ABC to the

middle points of the perpendiculars on them meet in a point.

[By Ex. 2 the point of concurrence is the symmedian point. The .

ratios of the segments into which the joining lines are divided at K
are easily seen to be be cos A/d*, etc., etc.]

5. Prove that cot KBC+ cot KCA + cot KAB= 3 cot w.

6. The sides of the pedal triangle of A" are at right angles to the

medians of ABC.

ANTIPARALLELS.

Def. A straight line meeting the sides a and b of a

triangle at angles A and B is parallel to the base. If a

line meet these sides at angles A and B respectively it is

said to be Antiparallel to c.

31. The following are the fundamental and obvious

properties of antiparallels to the sides of any triangle :

(1) Antiparallels to the sides a and b meet c at equal

angles (C).

(2) They are parallels to the sides of the pedal triangle.

(3) Or to the tangents at A y B, C to the circum-circle.
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(4) The locus of the middle point of a variable anti-

parallel to a side, c, is the corresponding symmedian
chord CK.

(5) Antiparallels through K to each side are bisected at

the point, and are equal to one another. The latter part

follows from (1).

(6) The median and symmedian to c of the triangle

ABC are respectively the symmedian and median of the

triangle A'B'C cut off by any antiparallel A'E'.

(7) The extremities of a parallel and antiparallel to

any side of a triangle are concyclic.

THE PEDAL TRIANGLES OF THE BROCARD POINTS.

32. From 2 let fall perpendiculars on the sides and

denote their feet as in figure by A'B'C'.

It follows conversely since AQB is the supplement of

B (Art. 28), and is equal to C+A' (Art. 19) that A' =A ;

similarly B' = B and (7 = (7. Also A", B", C' are respec-

tively equal to A, B and C.
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33. Theorems I. 2 is the common positive Brocard

point of ABC and A'EC'.

Since AC'A'Q is a cyclic quadrilateral &AB = 0(7-4' = CD

(Euc. III. 21); similarly Q5'(7 and tiA'B' are each equal
to ft).

It follows also that 2' is the common negative Brocard

point of ABO and A"B"C".

II. The sides ofABC? and A'W(T are equally inclined

to the corresponding sides of ABC.
For by (1) CB'C'^ACTA'^BA'B'^W-w,

arid BC"B" = AB"A" - CA'CT = 90 - w.

III. The six points A', ', (7, A", B", G" are concyclic.

For the angles AC'A' = AB"A'> therefore A'A'E'C' is

cyclic (Euc. III. 22).

Similarly E'B"Q"A' and C'C"A"B' are cyclic. But

generally if three pairs of points on the sides of a triangle

are such that every two pairs are cyclic, the six points lie

on a circle.* For if they do not the tangents to the three

circles from A, B and C are easily seen to be equal, which

is impossible.

IV. The lines B"C', C"A, A"B' are parallel to the sides

a, bt c respectively.

We know that each pair of sides of ABC with 2 and

2' form similar triangles, i.e., BtiC and Ati'C, C&A and

Btl'A, ASIB and Cft'B are similar; hence the perpen-
diculars (or other corresponding lines) through 2 and }'

divide the opposite sides similarly. In the triangles CfiA

* For example, if A'B'O' be the middle points of the sides and AnK'C'

the feet of the perpendiculars, it follows immediately that A'B'C'A"B"C"

is a cyclic hexagon since each pair of points AA' and BB' form a cyclic

quadrilateral. (
' ' Nine Points "

Circle. )
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and BWA we have therefore AC'IAC=AB"/AJi, or B"C'

is parallel to a.

V. Hence also AA", B'B", C'G" are antiparallels to

the sides a, 6, c. (Euc. III. 22.)

SECTION III.

TUCKER'S CIRCLES.

34. By Art. 24 if the inscribed triangle A'B'C' is given
in species only it may be conceived to vary its position

by rotating around the point 2 which is fixed. Let it

revolve in a positive direction through any angle and

also let A"B"C" revolve in the opposite direction through
an equal angle.

Then each of the equal angles of inclination of the sides

of A'B'C' and A"B"C" are diminished by 0, therefore for

all values of 9 the sides are equally inclined and the

vertices of the two triangles are always concyclic.

The circles thus described are called the Tucker Circles

of the triangle.

Thus the lines B"G' and A'A", etc., are always parallel

and antiparallel respectively to the opposite side a, and

therefore remain constant in direction.

Now since the point fi is fixed and the triangle A'B'C'

of constant species; since the vertices move on given
lines all points fixed relatively to the figure describe lines.

The locus of the centre of the system of Tucker's circles

is therefore a line. (Art. 20.)

By taking particular positions of the triangle we find

points on the line of centres. In the case where = the
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vertices of ABC and AB'C' coincide, and the circum-

circle is thus seen to be one of Tucker's circles. The line

of centres thus passes through the circum-centre of ABC.

Similarly the loci of the other Brocard points of the

triangle AB
f

C' and A"B"C" are lines.

35. Let the vertices of the triangle formed by the

parallels B"C', C"A\ A"B' to the sides of ABC be denoted

by X, F, Z.

Then AA'A'X is a parallelogram, as are also BB'B'Y,

CC'C"Z', and since the diagonals bisect each other AX
bisects the antiparallel A'A". AX, BY, CZ are the

symmedians of ABC.

Hence the following construction for Tucker's circles :

Let K be the symmedian point of ABC. Join AK,

BK, CK. Take any point X on AK and draw parallels

through it to the sides b and c. Let them meet BK and

CK in F and Z respectively. YZ is parallel to a, and the

hexad of points in which the sides ofABC are cut by these

parallels lie on one of the required circles.
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36. The antiparallels A'A!', B'B", C'C" are equal
For since A"B' is parallel to c, and A'A" and B'B" are

equally inclined to c (at an angle (7), A'A"=*B'B!'\

therefore, etc. ;
or they are the chords of a Tucker circle

intercepted by parallel lines.

37. Theorem. The line OK is the locus of the centre of
Tucker's system of circles.

For let L be the middle point of the chord AA" of one

of the system. Draw L0l
at right angles to it meeting

OKinOr Join AO.
Since the tangent at A to the circum-circle is anti-

parallel to a, AO and L0
l
are parallel lines.

But AK/AX = BK/BY=CK/CZ (Euc. VI. 2); there-

fore AK/AL = BK/BM=CK/CN=OK/00V or O
x

is the

centre of the Tucker circle.

38. Since 2 is the positive Brocard point of the

triangles ABC and ABC', and SlAB and QA'B' a pair of

similar triangles ;
if 9 be the inclination of the sides

ofABU to those of ABC, we have

12A' sing? ,...

This ratio is the Ratio of Similitude of the triangles,

and is the constant relation between all corresponding
lines of A'B'C' and ABC.

For example, if p be the radius of Tucker's circle for

anyvalueof", S'afe........................ (2)

In (2) we have the following particular cases:

when 6 = p-R ............... (circum-circle) ;

6 = ft> p = JjR secco ..........(T. E. circle) ;

6 = 90 p = JS tanco ...........(cosine circle).

Also area ^^(J : ABC= sin2o) : sin2
(0+ft>) (Euc. VI. 19).
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SECTION IV.

TUCKER'S CIRCLES, PARTICULAR CASES.

39. I Cosine Circle. As a particular case of the

general theorem (Art. 33 v.) we shall consider the anti-

parallels A'A", B'B", C'C" to pass through K. The points
L, M, N will therefore coincide with K, which is also the

centre of the corresponding Tucker's circle.

It is otherwise evident that the six segments KA'y KA",
etc., of antiparallels through K to the sides are equal,

(Art. 31 (5)).

Also B'C'B"G\ C'A'O'A", A'B'A'B" are rectangles since

their diagonals are equal.

Again because A'B'B" is a right-angled triangle

A'B" = B'B" cosA'B"B' - B'B" cosG,
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or A'B" = 2p cos(7, with similar expressions for B'C" and

ffA". Hence

The segments intercepted by the circle on the sides ofABC
are proportional to the cosines of the opposite angles.*

It is from this property the circle derives its name.

40. The middle point M of A"Bf

is on the median

through G to the opposite side c
;
hence the perpendicular

through K to this side passes through M, or as has been

shown otherwise (Art. 30, Ex. 4). If a perpendicular be

drawn through K to the base meeting it in N and the

median in M> MK-NK, from which it follows that the

lines joining the middle points of the sides to the 'middle

points of the corresponding perpendiculars meet at the

symmedian point (Main).

41. The sides of the triangles ARC? and A"B"G" are

perpendicular to the corresponding sides of ABC. The

cosine circle may therefore be obtained by rotating the

two inscribed triangles in opposite directions until 6 = 90.

(Art. 39.)

The ratio of similitude of A'B'Cf and -4jBO = tano>.

42. II. Triplicate Ratio Circle. Let the parallel in

figure of Art. 35 pass through K.

Then L, M, N are the middle points of AK, BK, and

GK> since AA'A'K, etc., etc., are parallelograms; and the

centre of the corresponding Tucker circle bisects OK.

The sides of ARC' are inclined to those of ABC at an

angle = o>. For consider the angles in the equal segments
A'A* 9 B'B", WO", and it is obvious (Euc. III. 21) that

A'RA*= A'C'A" = B'C'B"= B'A'B".= Q'A'C*= C'ffC".

*See Mathesis, t. i., p. 185 :

14 Sur le centre des M^dianes AntiparalUles," Neuberg (1881).
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Hence K is the negative Brocard point of A'BG'.

Similarly it is the positive Srocard point of A'B'C".

It follows generally that the locus of the negative
Brocard point of A'BG' is a line passing through K.

43. The ratio of similitude of A'B'C' and ABC is

sin co/sin 2a) since 6 = o> ;
hence

p = |JS sec co (1)

44. The intercepts B'C", C'A", A'W made by the

circle on the sides are thus determined : The triangles

A 1KB' and ABG are similar, therefore J/.B"/c
= ratio of

altitudes =. *"* /2A
c

hence A'B"=
2 . f2 ,

-
2
................................... (1)222 v '

with similar expressions for B'C" and C'A". The general

property of the circle may be thus stated: Parallels

through the symmedian point meet the non-correspond-

ing sides in six points which lie on a circle ; and the

intercepts made on each side are in the ratios a3
: 63

: c
3

.

From the latter property the circle takes its name. For

the sake of brevity it is often written " T.R.
"
Circle.*

45. III. Taylor's Circle. Let the antiparallels A'A",

B'B'y C'C"
t which, it will be remembered, are always

parallel to the sides of the pedal triangle (PQR) of ABC,

pass through the middle points a, $ y of the sides of

PQR
Consider the segments into which A'A" is divided by
and y. We have /3y

= %QR, yA" = PQ (Euc. I. 5), and

* An account of the circle will be found in Mathesis in the article by

Neuberg already referred to (Art. 39). See also Nouvellea Annoles,

1873, p. 264.
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for the same reason |&4'= JJRP; therefore A'A" is equal
to the semiperimeter of PQR

= |(a cosA + b cos B+ c cos (7)
= 2R sin J. sin sin (7.

Hence generally

^''=##'==a'(7''=2sin4 sintfsinC (1)

Again, since B"aC' is an isosceles triangle, the perpen-
dicular to the chord B"C' of Tucker's circle at the middle

point bisects the vertical angle a and passes through the

in-centre of a/3y. Similarly for the chords C"A r

and

A"B'. Hence

The centre of the circle coincides with the in-centre of
the median triangle (a/3y) of PQR.
Many properties of this circle are proved in Neuberg's

article in Mathesis, t. 1, p. 185, but it was described

independently in England by Mr. H. M. Taylor, and now
bears his name. (Proc. Lond. Math. Society, vol. xv.

p. 122.)

46. Since aQ = a-B = aB" = aC", the circle on QR as

diameter passes through B" and (7 and RB'Q - R(7Q = 90;
or B1

and (7 are the projections of Q and R on the sides

AB and AC; hence
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The six projections of the vertices of the pedal Mangle
on the sides ofABC lie on Taylor's circle.

47. The triangle B'aC" is isosceles, therefore 0^ the

bisector of its vertical angle a is at right angles to BC\
hence generally

The lines 0^, 0$, O
xy are perpendiculars to the sides

of ABC.
Let H

s denote the orthocentre of GPQ ;
then QH3

and

Oja are parallel ; similarly PH3
and Ofi are parallel ;

hence the triangles PQff3 and a/30x
are similar, their

ratio of similitude being = ,
or ff%R is bisected at Or

Similarly PHl
and QH2 are each bisected at O

l ;
and

therefore the triangles H^H^H^ and PQR are equal in all

respects.

48. Theorem. Taylor's circle of the triangle ABC is

the common orthogonal circle of the ex-circles of PQR.

In the triangle A A'A" we have by rule of sines

AA" = A!A!' siu<7/sinA = 2J? sinJ3 sirW (Art. 45 (1)),

also A G> = ARcosA = b cos2A
;

multiplying these results aiid reducing

AA" .ACr

but AQ c cosA ; substituting we obtain

or the square of the perpendicular from A on QR. Hence

the tangent from A an ex-centre of PQR to Taylor's circle

* Otherwise from the right-angled triangle AA"P and AGP we have

AA" = bnin*C ; and from the triangles AGR and AC'R,

AC'*b cos*A ; therefore AA "
. A C' = fe

2 sin2*? cosM .
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is equal to the radius of the ex-circle
; similarly for the

ex-centres B and (7; therefore, etc.*

EXAMPLES.

1. To find the value of the radius p of a circle cutting the ex-

circles of a triangle PQR orthogonally.

[In figure of Art. 45 p
2=0

1
^l'

2
. But if a perpendicular be drawn

from O
l
to /Jy it is equal to the radius of the in-circle of the triangle

a/3y or half the radius (^r) of PQR ;
and the distance of its foot from

A! is equal to the semiperimeter of a/3y i.e., ^s of PQR.
Hence (Euc. I. 47) />

2
=|(>

2 -M2
).

Similarly for the radii ply p,2, p3
of the circles cutting two escribed

and the inscribed of PQR orthogonally we obtain

and by adding these results we have, on reducing,

or,

the sum of the squares of the radii of the four circles cutting orthogon-

ally the inscribed and escribed circles of any triangle taken in threes is

equal to the square of the diameter of the circum -circle.

* In the triangle PQR since perpendiculars PA' and QB' are let fall

from the extremities of the base PQ on the external bisector AB of the

vertical angle R, by a well-known property yA
f

=yB"=% sum of sides.

But the distance of the middle point of any side from the points of con-

tact of the ex-circles which touch it externally \ sum of sides. Hence

if a circle be described with y as centre and yA'=yB" as radius, it cuts

the ex-circles of PQR whose centres are at A and B orthogonally. It

follows that the locus of the centre of a circle cutting these two ortho-

gonally is the line yOlt since it is perpendicular to the line of centres ;

similarly aOj and pOi are the loci for the centres of circles orthogonal to

the remaining pairs of ex-circles, whose centres are at B and (7, C and A
respectively.

Therefore Oi is the centre and
1
^'=015"=eto,, the radiua of the

common orthogonal circle, i.e., Taylor's circle.
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2. To find the radius p of Taylor's circle of a triangle ABC.

[Taylor's circle for the triangle ABC is the circle in Ex. 1 for PQR',
hence we have to express r and s of the latter triangle

* in terms of

the parts of ABO. We easily obtain

p
2= 47E

2
(sinl4 sin2 sin2(7+ cosl<i cos

2
J5 cos2^

also p!
2= 4Jff

2
(sin

2
J4 cos2 cos2<7+ cos'U sinlB sin2tf)

'

with similar values for p2
2 and p3

2
.

From these expressions we have the result given in Ex. 1 :

3. The lines B'C', C"A'
y A"&, parallels to the sides of ABC, are the

chords of contact of the ex-circles of PQR with its sides.t

[Let A"B' meet PR in the point '. Then B'B'RQ' is a parallelo-

gram, therefore RQ' semiperimeter of PQR, etc.]

4. Employing the notation of Art. 35, prove that the lines joining

the corresponding vertices of the two triangles PQR and XYZ are

concurrent at the circum-centre of the latter.

[Let p and q be the perpendiculars from R on the sides YZ and

ZX of the triangle XYZ. Then p/q=RB"smBIRA'smA. But

RB'jRA'= QR/RP= a cos A/b cos B. Substituting and reducing we

have p/q= cosA/cos B.

But if Z be joined to the circum-centre of XYZ, the joining line

is the locus of a point such that perpendiculars from it on the sides

are in this ratio; hence ZR passes through the circum-centre of

XYZ.t And similarly for the lines PX and Q Y.]

* The sides of the pedal triangle are equal to aco&A, b cosB
t ccoaC,

or R BiuZA
,
R sin2, R sin2(7 ; hence its perimeter = 4/? sin A sinB sin C ;

its s-a=2#sin.4cos J5cosC, its s - 6= 27? cos A sin B cos C> etc.; its

r=2/?cos^ cos B cos C; its ^=27? cos .4 sin B sin (7, etc.

t The polars of the vertices of a triangle with respect to the ex-circles

meet the sides in six points which lie on the same circle, Mathesis, 1. 1,

p. 190.

; PX , Q F, and RZ are perpendiculars to antiparallels to the sides of

XYZ and therefore meet the sides of PQR at right angles.

Hence the circum-centre of XYZ is the orthocentre of the triangle

PQR.
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5. The Simson lines of the median triangle LMN of a given one

ABC with respect to the vertices P, Q, R of the pedal triangle pass

through the centre of Taylor's circle.*

[The circum-centre of ABC is the orthocentre of LMN. Hence

RO is bisected by the Simson line XTZ of R. Also CZ=RZ';

therefore the line XYZ'v& parallel to OC. But the centre of Taylor's

circle Ol
is (Art. 47) the middle point of RH3 ; therefore, etc.]

6. The Simson lines of PQR, whose poles are Z/, J/", N, pass through

* The point on the circum-circle from which perpendiculars or other

isoclinals are let fall on the sides of an inscribed triangle is called the Pole

of the Simson line. V. Mathesis, t. 2, p. 106, "Sur la Droite de

Simson," par M. Barbarin.

F
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[For the perpendicular JVZfrom N on PQ bisects it (Euc. III. 3);

and the perpendiculars NX and NY are equally inclined to AB
(Euc. I. 26), hence the line XYZ is a perpendicular to AB through
the middle point of PQ\ therefore, etc, (Art. 47.)]

7. Prove that the common inclination (0) of the sides of the

triangles A'B'C and A'B'C" to those of ABC is given by the equation

tan 6= - tan A tan B tan C. (Taylor)

8. The intercepts made by Taylor's circle on the sides are

a cos A cos (B
- C\ b cos B cos (C-A\ c cos C cos (A

-
B).

(a cos A + b COB B) cos 6'=* etc.]
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9. The circum-centre of a triangle, its symmedian point, and the

orthocentre of its pedal triangle are collinear. (Tucker.)

[The orthocentre of the pedal triangle has been shown to be

(Ex. 4) the circum-centre of XYZ
y
and K is the centre of similitude

of AEC and XYZ\ therefore, etc.]

10. The circum-centre and the orthocentre of its pedal triangle are

equidistant from, and collinear with, the centre of Taylor's circle.

(Neuberg.)

[For Cff2 and ZR are parallel, since both are at right angles to

PQ] also 727/3 is bisected at O
v (Art. 47), therefore, etc., by Art. 37.]



CHAPTER IV.

GENERAL THEORY OF THE MEAN CENTRE OF A
SYSTEM OF POINTS.

49. We now proceed to the discussion of the general

linear relation connecting the distances of a system of

points from a given line.

Let A, By (7, D ... be the system of points, ALy
BL

CL ... their distances from any line L, and 2(a . AL) the

algebraic sum

where a, 6, c ... are given quantities.

By 2(ft . AL} is therefore meant the sum of given

multiples of the distances of the system of points from the

line
; perpendiculars from points on opposite sides of L

being taken with opposite signs.

50. Theorem. For any two lines M and N and

systems of points A, B, .. and multiples a, b, c ...

having given

2(a . AM) = and 2(a.AN) = Q

to prove that

where L is any line passing through the intersection of

MandN.
84
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Join AO and let this line be denoted by R. Then

since LMNR is a concurrent system of lines we have

sinMN. smLR+smNL . smMR+ sinLM. sinNR = 0,

but, by Art. 2,

sinLR : s'mMR : sinNR = AL: AM: AN
;

therefore

siuMN. AL+ sinNL . AM+$inLM . AN= 0.

Similarly for the points B, ... we have

sinMN . BL+ sinNL . BM+smLM .J8N-0

sinMN . CL+ sinNL . CM+sinLM . CN= 0.

Multiplying these equations respectively by a, 6, c . . and

adding

sinl/2V2(a . AL)+ siuNL2(a . AM)+ainLM2(a . AN) = 0,

hence if S(a . AM) - and Z( . AN) = 0, it follows that

Def. The point which satisfies the relation

2(a . AL) = for every line L passing through it is

termed the Mean Centre of the system of points A, B, C. . .

for the system of multiples a, 6, c ....

51. Theorem. The j^osition of the mean centre for a

given system of multiples is either unique or indeter-

minate.

For let O
l
and

2
be two of its positions, and any

point whatever. Join
X

and
20, and denote these

lines by M and N.

Since 2(a . AM) and Z(a . AN) - 0, it follows by Art.

50 that any line L through 0, i.e. any line whatever,

satisfies the equation

It is obvious, in the general case, that when all the

points of the system, and all save one of the multiples are
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given ; by assigning a definite value to the last multiple,
the position of the mean centre is determinate

;
and con-

versely any point whatever is the mean centre of a given

system for multiples, all of which save two may be

arbitrarily chosen.

EXAMPLES.

1. The middle point of a right line is the mean centre of its

extremities (Euc. I. 26).

2. The mean centre of two points ^i and B for the multiples
a and b divides the line AB inversely as the multiples, i.e.,

A0\ B0=b\ a.

The mean centre of the same points for the multiples a, 6, divides

the line externally such that

AO:BO= b\a.

3. The mean centre of a linear system of points A 9 B, C ... for

multiples each= l satisfies the equation *2AO~Q.

4. The bisectors //, J/, iV of the sides of a triangle ABC are con-

current.

[For ?AL= 0, 2AM= and 2AN= 0,

hence each line passes through the mean centre (centroid or centre

of gravity) of the vertices.]

5. The lines joining the middle points of the three pairs of

opposite connectors BC and AD, CA and BD, AB and CD of four

points A, B, C, D are concurrent, and each is bisected at the point

of concurrence.*

* In the particular case when the fourth point D coincides with the

orthocentre of the triangle ABC we infer at once the well-known

property :

The lines joining the middle points of the sides of a triangle with those

of the segments towards the angles of the corresponding perpendiculars

meet in a point and bisect each other. From this it follows immediately

(Euc. I. 4) that the six segments are equal, and that the circle passing

through the middle points of the sides passes through the feet of the

perpendiculars and bisects the segments t>f the latter towards the angles.

This is the fundamental property of the Nine-Points- Circle.
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6. The geometrical centre of a regular polygon is the mean

centre of the vertices A, J5, C ....

[Join AO and BO. If the polygon be of an even order these lines

(L and M) will pass through the opposite vertices, and the perpen-

diculars from the remaining vertices are equal in pairs and opposite

in sign ;
and if the polygon be of an odd order L and M bisect the

opposite sides at right angles ; therefore, etc.]

7. ABCD ... is a regular cyclic polygon and L any line passing

through its centre ; prove that

AL+BL+ CL+ ... -0.

52. Theorem. Any point is the mean centre of the

vertices of a triangle ABCfor multiples proportional to

the areas BOG, GOA, A OB.

For letting L coincide with AOX and applying the

relation 2a-4Z = we have

or disregarding signs BL/CL =
c/b.

Also since the triangles COA and AOB are upon the

same base A 0, BL/CL = AOB/COA ; equating these values,

^ t b OOA
therefore

Similarly

Hence a : 6 : o = BOO : COA : A OB.

If the point is outside the triangle, and within the

angle -A, the multiples are proportional to

-50(7, COA and A OB,
with similar results when is within the angles B or C.

EXAMPLES.

1. The in-centre of a triangle is the mean centre of the vertices

for multiples proportional to the sides.

2. The ex-centres are the mean centres for systems of multiples
-

a, 6, c ; a,
-

6, c ; a, b,
- c ; or quantities proportional to them.
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3. If 0, Ox , 2, 3 denote the in- and ex-centres of a triangle, each

is the mean centre of the remaining three for multiples,

s - a, s - 6, 5 c ; s - 6, s - c,
-

5, etc.

[For the areas in the first case are 2 30, 0^0, O^O, and these

are obviously proportional to s - a, 5 6, 5 c. Similarly for each

of the ex-centres. Thus generally since -s:s-a:s b:s c=
-

1/r : I/?*! : l/r2 : l/r3 ; for the points 0, 19 2y 0^ each is the mean
centre of the remaining three for the corresponding multiples of

the system -
1/r, l/rx , l/r2, l/?-3 .]

4. Prove the following points are the mean centres of the vertices

for the system of multiples written opposite to them.

~. , ( acosA. bcosB, ccosC,
Circum-centre < . ft

'

. nn . ft ~
( sm2^1, sm2j5, sinStf.

Orthocentre tan A, tan B^ tan C.

Symmedian Point a2
, t2

,
c
2

.

Brocaxd Points

" Nine-Points " Centre a cosC^ - (7), b cos((7~ ^i), c cos(^i
-
5).*

5. The lines drawn from the vertices of a triangle to the points of

contact of the in-circle are concurrent at the mean centre of the

vertices for multiples r
1}

r2, ra.

6. The lines drawn to the internal points of contact of the three

ex-circles meet at the mean centre of the vertices for multiples

7. If a point be the mean centre of the vertices for multiples

I, m, n, its Isotomic Conjugate t is the mean centre for multiples the

reciprocals of
,
m

9
n.

7a. The Isogonal Conjugate f of is the mean centre for multiples

* From this it is evident that the sides of the triangle ABC meet the

Nine-Points-Circle at angles B-C, C-A>A-B.
+ Two points X and X' equidistant from the extremities of a line EC

are called Iwtomic Conjugates with respect to the line. It is easy to

see, and it will be afterwards proved, that if the sides of a triangleABC
be divided isotomicaUy in the pairs of points X, X' ; Yt T ; Zy Z' ;

such that A X, BY and CZ are concurrent at a point O ; then AX',
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8. Any point on the segment AB of the circum-circle of an

equilateral triangle ABC is the mean centre of the vertices for

multiples IjOA, 1/OJ3,
-

1/0(7.

9. The mean centre of 0, 19 2, 3 is in Ex. 3 the circum-ceiitre

of the triangle.

10. The centre of Taylor's circle is the mean centre of the vertices

of the pedal triangle of ABC for multiples

11. The mean centre of the vertices of ABC for multiples
l
y w, n is the mean centre of the vertices of the pedal triangle PQR
of for multiples a% b

2
lm, c*[n.

[From the figure of Art. 23, Ex. 1, we have

QOR : ROP : POQ=OQ . ORsmA : OR . OPsinB : OP. OQsinC
= alOP:blOQ:c/OR .............................. (1)

But OPiOQ: OR=BOCja : COA/b : AOB.c

=l/a im/b : n/c.

Substituting these values in (1) ; therefore, etc.]

12. The symmedian point of any triangle is the centroid of the

pedal triangle of 0.

[For BOC : COA : AOB^a? : W : c
2

by Art. 16, Ex. 2 (2).]

13. The lines joining A, B, C to the corresponding vertices of

Brocard's first triangle are concurrent, and the point of concurrence

is the mean centre of the vertices of ABC for multiples the recipro-

cals of a2
,
62

,
c
2
.

[For it has been shown that it is the isotomic conjugate of the

symmedian point, Art. 30, Ex. 3.]

14. If perpendiculars be let fall from any point P on the sides of

a regular polygon ; the mean centre of their feet lies on the line

joining P to the circum-centre.

BY'y CZ' are also concurrent at 0'. The points and 0' are termed

Isotomic Conjugates with respect to the triangle ABC.
If the pairs of lines AX, AX', etc., are equally inclined to the sides

6 and c, etc., they are laogonal Conjugates with respect to the angles ;

and if AX, BY, tfZare concurrent, AX\ BY', CZ' are also concurrent.

The points of concurrence are Inoyoval Conjugates with respect to the

triangle*
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[Through draw OAA parallel and PA' perpendicular to plm The

projection of p on OP= projection of AA'
;
but A, J?, (7, ...and

A', B'
y C', ... are the vertices of regular polygons, whose mean centres

are both on OP. Therefore the sum of the projections of pt ... on

53. Theorem. For any line L to prove that

2a.AL = 2(a)

Draw M through parallel to L.

Then

CL=CM+OL,etc.
Multiplying these equations respectively by a, 6, c> ... and

adding, we have

2(a . AL) = 2(a . AM) + S(a)
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but 2(a. J.J/) = since M passes through the mean centre;

therefore, etc.

This property enables us tofind the mean centre. For

by taking a line L in an arbitrary position and calculating

2(a . -4Z)/2(a) we have for the locus of a line parallel

to L at this distance from it. Again, take a line in

another position and construct the locus of as before.

The intersection of these loci is the point required.

Con. 1. If 2a . AL is a constant, the line L touches, or

envelopes, a circle concentric with 0.

COE. 2. If the multiples are all equal ^AL= n. OL,

where n denotes the number of points in the system.

COR. 3. For systems of points and multiples and their

mean centres

A^B^ ..., afift ..., Op
A

Z
B

Z
C

Z ..., a
2
6
2
c
2 ..., 2 ,

AnBnCn . . ., anbncn . . .
, 0,t ,

the mean centre of all the points and their correspond-

ing multiples is the mean centre of Ov 2 ,
... On for the

multiples 2^), 2(a2),
. . . 2(an).

[For since So
1
4

1
Z = 2(a 1)01Z, 2a

2
^l

2
= 2( 2)02i, etc.,

on adding these equations

Hence the mean centre of a system of points can be

found as follows : Find the mean centre O
x
of two of the

points A and B ; next find the mean centre of
1
and C

for multiples a + 6, c. Denote this by 2 ,
and find the

mean centre of 2 and D for multiples a+ J-Fo,"3T, and'so

on. When the entire system has thus been exhausted"the

last mean centre found is that of tfie system.
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EXAMPLES.

1. The sum of the distances of the vertices of a triangle from any
line is equal to three times the distance of its centroid from the line.

2. Draw a tangent to a circle such that ^a . AL may be a

maximum, minimum, or have any given value.

[The extremities of the diameter passing through the mean
centre are obviously the points of contact in the extreme cases.

The general case reduces to draw a common tangent to two circles.]

3. If L touches the in-circle ^a . AL= 2& when the multiples are

equal to the sides of the triangle.

3a. For the ex-circle to the side c the equation becomes

aAL + bBL-cCL=2&.

4. The projection of the mean centre on any line is the mean

centre of the projections of the system of points on the line.

[Let the projections be denoted by 0\ A', B\ C' ... and L the

line 00'. Then A'0'= AL, B'0'=BL> etc. Hence

Sa. A'0'= 2a .AL^O; therefore, etc.]

5. If 0, 0j, 2, ^3 denote the in- and ex-centres of a triangle,

* This relation may be otherwise written :

O^L OiL 3L^OL
r, ra r* r

*
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[For is the mean centre of the remaining points for multiples

* - a, s - 6, s-c (Art. 52, Ex. 3), and since

2($ a)=s ; therefore, etc.]

G. Let three similar triangles BCA!, CAB' and ABC' be described

on the sides of ABC in the same aspect ;
to prove that the mean

centres of the triangles ABC and A'B'C' coincide (Brocard).

[Let X be the middle point of BC and Z' of A'B'. Complete the

parallelogram BA'CP, Join AJT, C'Z', Z'X and PB'. The triangles

P(7and B'CA are similar, therefore CPjCB^B'CIAC (Euc. VI. 4),

or by alternation B'C/CP=AC/BC ;
also the angles B'CP and >4Z?

are equal, therefore the triangles J^P(7and ABC &r similar (Euc.

VI. 6); hence CB'/B'P=C'A/AB', alternately CB'/CA = PB'/AB'>
but

= C'A/AB(hyp.) ;
therefore Pff/AB^C'A/AB from which

Again L.PB'C=LBAC, to these add the equals ^Z?' and BAG'

respectively ; therefore PBf and A C' are parallel . But Z'X is

parallel and equal to half of PB'
;
therefore it is parallel and equal

to half of AC1

. Hence the medians ^IXand C'Z' trisect each other.*

Otherwise thus : f Let another triangle ABC" be described below

the base AB symmetrically equal to ABC1
. It is easy to see that

* For another proof see Milne's Companion to the Weekly Problem

Papers, Art. 123.

^Educational Times, Reprint. Vol. liv., p. 102.
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the triangles ABA' and CBC" are equal in area; similarly ABB'
and CA C" are equal. By addition we have ABA'

'

+ ABB' =
ABC+ ABC" or ABA'+ ABB' - ABC'=ABC, i.e. the algebraic

sum of the perpendiculars on AB from A', B', C"=the perpen-
dicular from C on A B. Similar results are obtained for the sides

BC and CA ; therefore, etc. Syamadas Mukhopadhyay.]

7. If two points A and B be displaced to new positions A 'and B',

their mean centre M for any multiples is displaced to M' found by
the following construction :

Through M draw lines MP and MQ equal and parallel to AA'

and J$B' respectively. Join PQ and divide it in M' such that

[For since AA'PM &ud BB'QM are parallelograms,

'Q =BM\ therefore by similar triangles PA'AT and

=>= - therefore -

8. If three points A, B and (7 be displaced to new positions

A
',
B and 6", their mean centre M is displaced to M' found by the

following construction :

Through M draw lines MP, MQ and MR equal and parallel to the

displacements AA, BB' and CO' respectively ;
M r

is the mean
centre of P, Q, R.

[For let X denote the mean centre of A and B, X' which is found

by Ex. 7 of A' and If. Draw MO equal and parallel to XX', Join

OX', RC' and X'C'.

It is evident by parallels that is the mean centre of P and Q ;

also MX OX' and MCRC'\ therefore in the similar triangles
*/' v nv ifv

OM'X'^RM'C', == ,.(D
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hence M' is the mean centre of X' and C", that is of A', B' and C",

for the same multiples that M is of A
y
B and C.

But each of the ratios in (1) is equal to M'OfM'R ; therefore M'
is the mean centre of and R, that is of P, Q and 72 for the same

set of multiples.

NOTE. The construction for the displaced mean centre may in

the same manner be extended to the quadrilateral and generally to

a polygon of any number of sides.

Hence for two systems of points A, B, C, ... and A', B\ C', ... and

their mean centres M and M' for the same set of multiples or, 6, c ...

if we draw through M parallels J/P, MQ, MR, ... equal to AA', BB\
CC'

f
... respectively, the mean centre of the third system P, <?, R, ...

for the same multiples coincides with M'.

9. If through any point M are drawn J/P, MQ and MR parallel

and proportional to the sides of a triangle ABC, the mean centre of

P, Q and R for multiples each equal to unity coincides with M.

[By Ex. 8, or thus : Complete the parallelograms PMQR and

draw MR.

^
and the angles at P and C equal, the tri-

angles PMR' and ABC! are similar, hence MR=MR'= 2MO, and

Since -
PM=
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is the mean centre of P and
,
and therefore M is the mean centre

of P, ft &]
10. Prove the similar property for the quadrilateral ; and

generally :

If through any pointM lines are drawn parallel and proportional

to the sides of a polygon ;
the mean centre of their extremities for

multiples each=l coincides with M.

11. If a system of points A, By C, ... be displaced to A', I?, C", ...

such that AA'jBB9
CC'

t
... are parallel and proportional to the sides

of a polygon, the mean centre of the system remains a fixed point.

[By aid of Exs. 8 and 10.]

12. Weill's Theorem. A variable polygon is inscribed to one

circle and escribed to another ; to prove that the mean centre of

the points of contact of its sides with the latter circle is a fixed

point.

[Let ABO .. denote the polygon, AB'C'...a consecutive position,

T and T' the points of contact of AB and A 'B' with the circle of

radius r
;

the small angle between AB and A'B\ and X their

intersection.

The triangles AA'X&nd BB'Xzre similar,
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Also, since AB and A'B' are indefinitely near to one another, X is

indefinitely near to the point of contact T, and EX and BY are

therefore equal because they are tangents from the same point to a

circle.

Dividing (2) by (1)

Again

hence

but AB= (diameter of ABO) x shul'

and TT'= 2r8;

therefore TT' oc AA f+ BB*<xAB (by 3).

Thus as the polygon ABO... varies, its points of contact are

displaced for each consecutive position in the direction of its sides,

and proportional to them
;
therefore the mean centre is a fixed

point.

NOTE. If the side BO is a variable tangent to a third circle of

radius r, the result of dividing (2) by (1) is

AB_ AA' + BB' 7LT
.

BO~~BB' + OO f
' BY '

therefore if the three circles are so related that BX/BYis a constant

ratio /-,

ABr AA' + BB'

BO 'BB' + CC'

and TT'1 7\ T
7

/ - r^r' . AB/BO.]

13. The mean centres of the vertices of any polygon and of

similar triangles similarly described on its sides coincide (M'Cay).

[Let the vertices of the triangles on the sides AB, BO, CD ... be

A', B',
0' ... respectively.

Since A A' : BB' \ CO' ... =AB : BO : CD ... and are inclined to the

sides of the polygon at the same angle ;
we may regard the vertices

of the given polygon displaced to A'B'O' ... distances proportional
and parallel to its sides turned through that angle (cf. Ex. 6).]*

* The proofs of Examples 11-13 were communicated to the Author

by Mr. Charles M'Vicker.
a
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14. Through the centre of a regular polygon any line is drawn

meeting the sides in A f

, B', C', ... to prove that 2- _=0.

[Let M be the middle point of one side, then MA'O is a right-

angled triangle, and if a perpendicular MM' be let fall on the

hypotenuse we have

OA' . OM'= i* or 2 J-:=l20-3/'==0. Art. 50. See Art. 3, Ex. 9.1
UA r"

54 Theorem. For any system of points A, B
y C,...

their mean centre 0, and any line L ; to prove that

where L' is the line through parallel to L.
'

.OL;

Multiplying these equations by a, 6, c, ... respectively

and adding results,

but 2a.AL'= Q (Art. 50); therefore, etc.

COR. 1. When the multiples are equal

also since 'ZA L= n. OL ;
OL is the arithmetical mean of

the several lines AL
y EL, CL ..., and AL', BL' ... the

several differences between each and their mean.

Hence, the sum of the squares of n quantities=n times

the square of their mean value+ the sum of squares of

the n differences ; or if the quantities are the segments of

a line this property may be stated : the sum of the squares

of the unequal parts = the sum of the squares of the equal

parts+ the sum of the squares of the n differences. This

property is obviously an extension of Euc. II. 9, 10.

COR. 2. For any two parallel lines L and M9
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55. Theorem. For any point P to prove that

Project the system of points on the line OP and denote

their projections by A', B', (7, ....

Then (Euc. III. 12-13),

AP* =A 0*+ OP2+20P . OA'.

Similarly J3P2=BO2 + OP2+ 20P . OB' etc.

Multiplying these equations by a, 6, c ... and adding the

results,

but is the mean centre of the system A', B', (7...

(Art. 53, Ex. 4) ;
therefore Sa . 0,4' = 0.

COR. 1. If the n multiples are equal

COR. 2. For a regular cyclic polygon the sum of the

squares of the distances of any point on the circle from

the n vertices is constant and = 2nM2
.

COR. 3. If 2a.AP2
is constant, the locus of P is a

circle concentric with the square of whose radius is

5-^po-.
COR. 4 Sct.-AP2 is a minimum when P coincides with 0.

See Art. 16, Ex. 3.
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EXAMPLES.

1. ABOD ... is a regular cyclic polygon, the centre, R the

radius, and P any point on the circle to prove that the sum of the

squares of the perpendiculars from Pon the radii OJ, OZ?, OC ...

[Denote the feet of the perpendiculars by A'
y B', C' ... The circle

on OP as diameter passes through these points (Euc. III. 31) ; also

since A'B', B'C', ... subtend equal angles (2ir/n) at 0, a point on the

circle, A'B'C
1

... is a regular cyclic polygon. Hence (Cor. 2)

Similarly

2. For any line L passing through 0, HAL2

[Let L coincide with Ol\ By similar triangles

AL = PA', BL=PB
f

,
etc.

therefore 2Pyi'2=2AL~= InR2

by Ex. 1.]

3. The sum of the squares of the perpendiculars ply p2y p$ ... pn
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from any point P upon the sides of the polygon is equal to

w(r
2
-f S

2
), where r is the radius of the in-circle and B OP.

[Through draw parallels OA', OB', 00' ... to the sides of the

polygon meeting the corresponding perpendiculars from P in

A', B
f

, C", ... As before A'B'C'... is a regular cyclic polygon in-

scribed in the circle on OP as diameter.

Since the sum of the perpendiculars is constant and=?ir

2pi =wa+ 2P4'a
(Art. 54) (1)

but 2/M'2 =4ttS2
(Ex. 1),

substituting this value in (1); therefore, etc.]

4. In Ex. 3 if P is on the in-circle 2j91
2
=|wr

2
.

5. If TTj, 7r2,
7r3,

... denote the distances of the vertices from any
line L and 3= OL, 2^= n(8

2

[Through draw Z' parallel to Z and let A', B\ C' be its inter-

sections with AL
t BL, CL ... respectively.

Since ^AL=nOL (A rt. 53),

2AL2=n . OL*+ 2AA'* (Art. 54),

but lZAA'*= %nR* (Ex.2);
therefore by substitution

or Sir

5a. If Z is a tangent to the circum-circle

6. If P be a point on the circum-circle of a regular polygon

ABC..., ^PA*=n&.
[Draw OP and produce it to meet the circle again in $, and let

A'
y B', C' be the projections of the vertices on this line. Since PAQ

is a right-angled triangle,

PQ.PA'^PA*.
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Squaring, we have

therefore

But
and

Substituting

(Art. 54, Cor. 1.)

(Ex. 2.)

7. If a, 6, c denote the sides of a triangle ABC and P any point

on the in-circle, 2a . AP2=2# . A 0*+ 2rA.

8. If ABC be an equilateral triangle, and L a tangent to the

in-circle, + + =0.
AL EL CL

[For AL+BL + CL=Zr, therefore on squaring IZALP+SZBL. CL
= 9r2. Also 2AL2

=3r*+$R?, or since /=2r, 2-4^=9^; hence

*2BL. (7//= 0, therefore, etc.]

9. Perpendiculars are let fall from P on the sides of any polygon
ABC... and their feet joined; prove that if the area of the in-

scribed figure A'FC' ... is constant, the locus of P is a circle

concentric with the mean centre of J, #, (7, ... for the multiples
in 2J, sin 2Z?, sin 2(7, ....
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[Let be the middle point of AP. Then

ZA'OB'= ZA'B'P- AA'HP ;

hence <ZA'OB'= VZPA'B' - ZPAA'B',

or

Therefore 2 sin 2.4 . AP is constant ____

For a triangle the mean centre of J, 7?, (7 for multiples sin 2J,

sin 2j5, sin 2(7 is the circum-centre, showing Art. 23, Ex. 2, to be a

particular case of this theorem. M'Vicker.]

56. Theorem. // 2AB denote the sum of the mutual

distances of a system of points A, B, . . . from each other;

to prove that 2(a6 . A J?)
2= 2(a) . 2(a . A O2

).

In Art. 55 if we suppose P to coincide with each point

of the system successively we have the following
relations :

Multiplying these results by a, 6, c ... respectively and

adding 22a6 . AB*= 2(a) . 2a . A02
+I,(a) . Za . AO2

,

therefore 2a6 . AB2= 2(a) . 2a . 4O2
.

COR. 1. If the multiples are each equal to unity,

COR. 2. The sum of the squares of all the lines joining
the vertices of a regular polygon= n2R*

;
where R is the

radius of the circum-circle.

COR. 3. For three points A,B,Cy the sum of the squares
of the sides of a triangle

= three times the sum of the

squares of the lines joining the vertices to the centroid ;

or three times the sum of the squares of the sides =four
times the sum of the squares of the medians.
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COR. 4. If be the in-centre and a, b, c the sides of a

triangle 4.BC/ 2(a& . .4 J3
2
)
= 2(a) . Za . ^1

2

reduces to (Art. 52, Ex. 1)

with analogous results for Ov 2 ,
and

3
.

COR. 5. The sum of the squares of the six lines joining
the centres of the in- and ex-circles = 48R2

.

Since the centre of the circum-circle is (Art. 52,

Ex. 9.) the mean centre of Olt 2, 3, 4,

/= 4 [S*-

but ^+ r
2+ r3 r = 4Jf2

; therefore, etc.*

EXAMPLES.

1. If $ denote the symmedian point of a triangle,

a*AS*+b*BS*+(?CS*=-?%?*-f (Art. 52, Ex. 4.)
a'+ '*

2. For the Brocard points 12, ft',

^fi" 5ft2
,

(7ft
2

a - -ia- +->- + -o-
b2 c2 a?

P>. + + -= 1. (Art. 52, Ex. 4.)
C? Ct" O

3. The distance OP of any point P from the in-centre of a

triangle is given by the equation

[Eliminating 2a. AO2 between the equations,

Za. AP2=2a. A0*+Z(a) . OP 2
,

and 2(a& . ^l^2
)
= 2(a) .?a.AO\

the above result follows.]

* Otherwise thus : Since Ol
is the orthocentre of 2 3 4 ,

if per-

pendiculars OX> OY, OZ be drawn to the sides from the circum-centre

Oof 2 304, Ofi^ZOX, 1 3-20r, ... ; also 002=2/?; hence

Oi0
therefore
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4. If P coincides with the circum-centre, prove the following

where D, Dly
Z>

3,
Dz are the distances of the circum-centre from

the in- and ex-centres :

/)
2=7Z2 -27fr

; Df^W+ZRru etc., etc.

5. Prove that the distance 8 of the symmedian point from the

circum-centre of a triangle ABC is given by the equation

[For any point P (Art. 52, Ex. 4)

letting P coincide with
;
therefore

hence* S2=jR2
-

therefore, etc.]

6. The distances of ft and ft' from the circum-centre are given

by the equations Oft= Oft'=R x/l"^

[For + -
, -f -5

= 2 cosecM. =

7. For the in-centre O
l
and the ex-centres 2, 3, 4 prove the

relations

8. For any point P
(5
-a)^2

4- (^
-

9. Find the following expression for the square of the distance 8

between the circum- and ortho-centre of a triangle ABC.
32= R\\ - 8 cos A cos B cos C)

[By the previous method, or more simply by finding the area of

the pedal triangle of ABC
t (2 area = #2sin 2A sin 2B sin 2(7), and

using Art. 23, Ex. 1, and reducing.]

* This expression is equivalent to

52= JR2

where w is the Brocard angle.
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RECIPROCAL THEOREMS.

57. Theorem. For any two points M and N, and

systems of lines A, B, C, ... and multiples a, 6, c, ...

having given 2a . MA = and 2a . NA = to prove that

2a.LA = 0,

where L is any point on the line connectingM and N.

For MN.LA+NL.MA+LM.NA=0.

Similarly for the lines B and C,

MN.LB+NL.MB+LM.NB=0,
MN . LG+NL . MC+LM.NC= 0.

Multiplying these equations respectively by a, 6, c, ...

and adding, we get

MN2a.LA+NL2a.MA+LM2a.NA =
(1)

hence if Ha. MA and Ha.NA each= 0, Za.J.=0, for

any other point L on the line MN.
More generally: If *Sa.MA and Ha.NA are equal

2a . LA has the same value.

For, let 2a . MA = 2a . NA = k
; substituting in (1)

MNHa . LA +(NL+LM)k= ;

dividing by MN( =LN+ML) and transposing
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Hence, the locus of a point L such that the sum ofgiven

multiples of the perpendiculars from it upon a system of
tines A y B, C3 ... is constant (Za . LA = k) is a right line.

Def. When the constant vanishes Za.jL4=0, the

locus is termed the Central Axis of the system of lines

for the given system of multiples.

It is evident that the central axis is one of a system
of parallel lines obtained by taking different values,

/Cj, n/o) A/Q) 01 A/.

For if L in (1) lies on then

NLI,a.MA+LM2a.NA=.() .................. (2)

2a . MA ML MO /17 .7T 4 .

xrm-jri-NO (Euc.vi.4.)

hence the values of the summation corresponding to any

point is proportional to the distance of that point from

the central line or axis.

Otherwise thus : If M
1
and j\\ are the loci of M and N such

that ^a.MAk-i and ^a.NA=k2 aiul 1* if possible their point of

intersection
;

then since P is on both lines 2a . PA k and

^a.PA k^ which is absurd ; therefore, etc.

58. Problem. To find the Central Axis of a given

system of lines A, J5, (7, . . . for a given system of multiples

a, 6, c, ...

Take any three points P, Q, R, and calculate 2c* . PA,
Za.QA, and Za.RA.
On QR find a point L such that

=
2a . RA RL'

L is by (2) on the required line; similarly obtaining

points if andN on the other sides of the triangle P, Qt jR,

their line of connection is that required.
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59. Let the multiples a, 6, c ... denote segments of the

given lines A,B,C... respectively; a . LA, b . LB, c . LG . . .

are each twice the area of the triangle subtended by the

corresponding segment at the point L ; hence, the locus

of a point such that the sum of the areas subtended at it

by any number of finite lines is constant, (k) is a right

line ; and if different values be assumed for k the locus

varies in position by moving parallel to itself.

60. Theorem. The locus of the mean centre of the

points of intersection Av Bv Cv Dv of a variable line L,

moving parallel to itself, with the sides of a given poly-

gon is a right line.

Let a, by cy etc., be the given multiples and a, /3, y ...

the angles at Av Bv C
l

... made by the variable line

with the sides A, B, C ... of the given polygon.

By hyp. 2a.^l 1
= 0,

but AJ) = OA/sin a; B^^OB/sinf); 0^0= OC/sin y, etc.,

substituting these values,

a/sin a . OA + 6/sin /3.0B+ (7/sin y . 00+ etc. = 0,

hence describes a line, viz., the central axis of the

system for the multiples a cosec a, b cosec j3, c cosec y . . . .

Def. This locus of the mean centre for the system of

parallels, is termed a Diameter of the Polygon when the

multiples a=&= c=... = l; a name suggested by the

property to which the theorem is reducible when the

polygon becomes a circle.

61. Problem.- To find a point P such that for any

systems of lines A, B, C ... and multiples a,b,c...

Za . PA 2 is a minimum.
Let any line L through P meet the sides of the poly-

gon in A'
t B', V ... at angles a, /?, y . . . . Then 2a . PA*
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is a minimum when 2a sin2a . PA'2 is a minimum, that

is when P is the mean centre of A'y B', C' ... for the

multiples a sin2a, b sin2
/3 .... As L varies parallel to

itself the locus of P is a diameter. Let it meet the

sides of the polygon in Av Bv O
l

...
;
the mean centre

of these points for the multiples a sin2a, b sin2/3 ... is

obviously the point required.

EXAMPLES.

1. If a line is drawn through the centre of an escribed circle

to meet the sides in X and Y such that CX~CY\ prove that

AY. BX=($XY)2
-,
and conversely, if AY. BX=(\XY)\ AB is a

tangent to the circle.

[The angles of the triangles BOX &i\d AOY&re as follows :

90-, therefore

Q-$A, therefore

Hence they are similar ; therefore, etc.]

2. The diameters of an equilateral triangle envelope the in-circle.

[Suppose the multiples to be equal to unity, through B and C
draw any two parallel lines terminated by the opposite sides of the

triangle and trisect them in X and Y towards the vertices. Since

X and Y are the mean centres of their intersections with the sides,
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the line XY is a diameter. Draw parallels XX", YY" to the sides

AB and AC respectively.

Then the triangles XX'X" and YY'Y" are similar, therefore

X'XH .Y'Y"=XX".YYH
.

Again, the triangles CXX" and EYY" are similar, since the

sides are parallel, therefore

XX" . YY"= CX" . BY"=(\X" T")
2
,

therefore X'X". Y'Y"=(\X"Y"? ;

therefore, etc., by Ex. 1. M'Vicker.]

Otherwise thus : Draw any system of parallels AA', Bff, CO'

terminated by the opposite sides and let A', B', C denote the mean
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centres of their points of intersection with the sides of ABC. Let

the diameter A'B'C' meet the sides in X, Y, Z\ the parallels through
JTand J

r
are bisected at these points, hence ^IXand Z?Feach bisect

CO' and therefore meet at its middle point. Then from the com-

plete quadrilateral ABCXYZ the row A C"BZ is harmonic, therefore

A A', C'C" and BB' are in harmonic progression, or

1 _1 ___2 1

'AA
I + BE'~C'C"~CC"

but S-
,

is the criterion for the tangent to the in-circle. See
AA 1

Art. 55, Ex. 8
; therefore, etc.]

3. If a system of n points A
, B, (7, . . .

,
N be situated at equal

distances on an arc of a circle <?, r
; required to find the position of

their mean centre.

[Through draw a parallel L to the chord of the arc AN ; let

the angle AOL= a and AONnfl. Then, if d be the distance of

the mean centre from 0, we have (Art. 53) _
ndR { sin a -Hsin a+ /3+ sin a+ 2/3+ . . . + sin a+n -

1/3 }

_^sm(a 4- \n
-

l/J)sjnJw^J t

sinj'/J

"
'

but a+ \np=\Tr, therefore the above expression becomes, on re-

duction, rcotJ/3sinJ?i/3.]

NOTE. If the number of points on the arc is infinitely great,

it follows, since (3 is indefinitely small, that

d ??? x ra( u

length of arc
'
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COLL1NEAR POINTS AND CONCURRENT LINES.

62. Theorem. // a straight line be drawn cutting the

sides of a triangle ABC in points X, Y, Z, to prove the

relation

BX^ CY AZ
CX'AY'RZ~ ;

and conversely, having given this relation to prove the

points are collinear. (Menelaus.)

For denoting the perpendiculars from the vertices on the

transversal by l,m>n-, we have by similar pairs of tri-

angles,

BX_m OY_n AZ_l
CX~~n y AY" I

; BZ~m
112
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Multiplying these equations* and reducing, the above

result follows at once.

Conversely, if the line joining X and F meet the base

in Z' by the first part of the Proposition,

BX CY AZ'
CX'AY'BZ' '

ill i_ JDA. G Y
but by hyp.

AZ
BZ

therefore Z and Z coincide.

63. Theorem. // three lilies AO, BO, CO be drawn

from the vertices of a triangle ABC through any point
to meet the opposite sides in X, Y, Z; to prove the

, ,. BX CY AZ . .

relatwn _
Z ..J7._

= -l)t

and conversely, if this relation be given the lines AX,
BY, CZ are concurrent. (Ceva.)

For the triangles BOO and 00A on a common base

are proportional to their altitudes, which are in the ratio

BZ/AZ.

* The proof here given applies equally to the general proposition :

Any right line meeting the sides of a polygon ABODEF... in points

X t F, Z, U, F, W... gives the relation

A* ^T ? DU ?. IK -1
BX

'"
CY

'

DZ' EU* FV OW '"" '

t A line drawn across the sides of a triangle meets them either all

externally, or two internally and one externally, i.e. the number of sides

cut externally is always odd, and therefore the product of the ratios

f>Y nv A 7"*
*L*

9

*
is positive. On the other hand, if three points on

GA A. Y oZ
the sides connect concurrently with the opposite vertices, an odd

number is iitienml and the product of the ratios is therefore negative.
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Hence the following equations :

BX_AOB_ CY__BOC AZ COA.
CX'AOC' AY~~BOA' BZ~ COS'

on multiplying* and reducing, the above result is obtained.

Conversely, let AX and BY meet in 0. Join CO and

let it meet AB in Z'. Then by what has been proved
BX CY AZ= _\
CX'AY'BZ'

, . . , BX CY AZ ,
but by hyp. cx-AY-BZ^-

1
'

therefore the points Z and Z' coincide.

64. The relations of the previous Articles are equivalent

to the two following :

sin BAX sin CBY
smCAX'smABT'smBCZ

For by the rule of sinesJ

with similar values for the remaining ratios, compounding
and reducing, the above results are obtained.

* More generally, if the vertices of a polygon ABCD... of any odd

number of aides be joined to any point and the lines produced to

meet the opposite sides in X, Y, Z, V, T, JT, it follows by similar

. ., , AX BY CZ DU ,

reasoning that . . ^ .^ ... = - 1.
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These formulae may be regarded as criteria of points
on the sides of a triangle lying on a line and connecting

concurrently with the opposite vertices,

We shall now apply them to the following remarkable

particular cases :

I. Let the points X, F, Z be at infinity on the sides,

thus BX= <7X, CY=A Y, &r\dAZ= BZ\ hence the criterion

of Art. 62 is satisfied and it follows that every three and

therefore all points at infinity in the same plane may be

regarded as lying on a line*

II. Let AX, BY and CZ be any three parallel lines.

Q . BX CY AZ TSince CX'AY-BZ=~
l

>

every three, and therefore all, parallel lines are con-

current.

Of these properties Townsend says :

" Paradoxical as these

conclusions appear when first stated, all doubt of their legitimacy

has been long set at rest by the number and variety of the con-

siderations tending to verify and confirm them." Modern Geometry,
Vol. I., Art. 136.

III. When ACBC
9
and is a point on the circle

touching the equal sides at A and B.

By Euc. III. 32, LBAO = LCBO-, LAEO^uCAO.

Substituting in the above equation, and

sin2J.JgQ_^0
2

~

sin*BA
~

BO*'

* This conception of elements situated at an infinite distance is due to

Pesargues. About the year 1640 he showed that parallel straight lines

meet at an infinitely distant point ; and that parallel planes may be

regarded as intersecting in the line at infinity. More recently the

celebrated Poncelet proved that all points at infinity may be considered

to lie in a plane.
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Similarly, if GO meet the circle again in 0',

sin AGO A Q/2

Hence: A variable chord 00' of a circle passing

through a fixed point divides harmonically the arc

ABt intercepted by the tangents OA and GB.

Also, vsince AB is divided harmonically at and 0',

00' is divided harmonically by AB ; hence the variable

pairs of tangents at and 0' intersect on the fixed

line AB.

IV. Describe a circle about AOBt and let it meet the

lines Ad, BO, CO again in A'B'O'.

Then, for the point 0,

sinBAO si

sinABO
'

sin GA6 sin AGO '

but CBO= CO'B and GA = CO'A'. (Euc. III. 22.)

Substituting these values and reducing by rule of sines,

OJ3 Off _ sin (70 ^
0-4 0-<i

/
~~sinji(70

Similarly, for 0',

Q' O'B' _sinBCO
Q'

' n/ A '~~ " ;" ^ ^^ ^ '
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Equating these values,

___AfO[ AfO *

BO
' BO^RO' '

B'O'

Hence: If two arcs of a circle AB and A'B' are

divided in and 0' so as to fulfil the relation (3), AA\
BB' and 00' are concurrent.

EXAMPLES.

1. The internal bisectors of the angles of a triangle are con-

current.

2. Any two external and the internal bisector of the remaining

angle are concurrent.

3. The lines joining the vertices (a) to the points of contact of the

in-circle (/2) to the internal points of contact of the ex-circles, are

concurrent.

[The centres of perspective are named respectively t point de

Oergonne and point de Nagel of the triangle.]

*The function -r~, is termed the Anharmonic Ratio of the
BO BO

points A y
B

y 0, 0' ; and (3) may be expressed thus :

" If the arcs AB
and A'B' are divided equi-ariharmonically in and 0', the lines AA't

BB' and 00' are concurrent ; and conversely."

f Educational Times, July, 1890.
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4. The perpendiculars of a triangle are concurrent.

5. The tangents to the circum-circle at A, B, C meet the opposite

sides collinearly.

6. If a circle meet the sides of a triangle in X, X'> 7, Y'
y Z, Z'

such that either triad X, Y, Z is collinear or connects concurrently
with the opposite vertices ; a similar relation exists amongst the

remaining points X f

, Y', Z'.

7. If three points arc collinear, their isotomic conjugates with

respect to the sides are collinear.

7. If they connect concurrently with the vertices, their isogonal

conjugates with respect to the angles also connect concurrently.

8. For any triangle ABC and transversal XYZ \ if any point
is joined to the six points

sin BOX sin COY *

sin COX
'

sin A Y '

sin BOZ
'

[For - with similar values for and
5CX CO sin COX AY BZ

therefore, etc. ...]

9. If the sides of a triangle and any three concurrent lines

*
Examples 8 and 9 will be afterwards enunciated as follows :

8. The lines joining any point to the six vertices of a quadrilateral

form a pencil of rays in Involution.

9. Any line drawn across the sides and diagonals of a quadrilateral

is cut in Involution.
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through its vertices are cut by a transversal in six points X and

X'
y
Fand F', Zand Z' ; (5(7 in X, ^0 in X' ...)

and conversely.

10. If AX, BY, CZ are concurrent, the intersections of YZ and

5(7 (X'), X and CA (F'), XFand ^5 (Z
1

) are collinear.

7? y ; r*v A 7
[For ^-/ . -^4. =^=1. Compounding this with two similar

(jX AY BZ
equations involving Y' and Z' and reducing, we have

BX' CY1 AZ',-,
CX 1

'

AY'* BZ1
*J

11. Given two points A and B on a circle MNP, on the same side

of the diameter MN ; find a point P on the other side such that the

intersections X and Fof AP and BP respectively with MN may be

equidistant from the centre.

[Let AB and MN meet in Z\ then it is easily proved that

PX2
IPY* = BZ/AZ', hence the species of the triangle PXY is

known
; therefore, etc.]

12. Draw two circles in contact each touching a given line at a

given point and having their radii in a given ratio.

* Will be afterwards seen to be an Equation of Involution of the

pencil.



120 COLLINSAll POINTS.

13. If lines be drawn from the vertices of ABC to a point 12 such

that $IBCICA=$IAB= 9) prove that is given by the equation

cot 0=cot A + cot J5+cot <7.

[For sin30=sin(;l
-

0) sin(JS- 0)sin(tf- 0) ; etc. Cf. Art. 28.]

14. In the general case if the lines in Ex. 13 making equal angles

(a) with the sides are not concurrent, they form a triangle A'B'C'

similar to ABC and the ratio of similitude is equal to

cos a - sin a(cot A + cot B+ cot C] : 1.

Defs. The Centres of Perspective of two lines AB and

AB are the points of intersection of the pairs of lines

AB\ AB and A A, BB' joining their extremities.

Two triangles are said to be in perspective when the

lines joining corresponding vertices meet in a point. This

point is called the Centre of Perspective of the triangles.

65. Criterion of Perspective of Triangles. Theorem.

If the perpendiculars from the vertices of a triangle

A 'B'C' on the sides of another ABC be denoted by pv p2 , pz ;
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?i ?2 3W r
i>
r

2>
r
s (i-e- fr * A' on BCpv A' on CAp^ and

so on), the two are in perspective if

2i I? ^ _. i .

a7lcg conversely.

For let 4J/ meet BG in Z'. Then

sin BAX'/sin GAX'
with similar values for r

2/rlf
and ^/^J multiplying these

equations together, therefore, etc., by Art. 64, which also

proves the converse* proposition.

66. Theorem. // the vertices of two triangles connect

concurrently, their pairs of corresponding sides intersect

collinearly (BG and BG' in -3T, etc. ...).

For, by similar triangles,

Multipljring, we have

=1, therefore, etc...AY BZ
Def. The line of collinearity is termed the Axis of

Perspective or Homology^ of the triangles.

EXAMPLES.

1. Any triangle escribed to a circle is in perspective with that

formed by joining the points of contact of its sides.

[The centre of perspective is the symmedian point of the in-

scribed triangle.]

*0r thus : Let be the centre of perspective of the triangles and

a, /3, 7 the perpendiculars from it on the sides of ABC; since filT=pJp&

7/a = qs/qi, and a//9
= rjr2 ; multiply and reduce ; therefore, etc.

f The term Homology is due to Poncelet who first studied the pro-

perties of homological figures in space, v. Traitt des propriitis protective*

des figures (1822).
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2. If three triangles ABC, A^C^ A.^B2C2 have a common axis of

perspective XYZ, their centres of perspective when taken two and

two are collinear.

[For the triangles (fig. of Ex. 3) BB^ and CC^ are in perspec-

tive, their centre being at X ; similarly Y is the centre of perspec-

tive of 00^, AAiA.2 and Z of AA^A 2 and BB^S* Hence the

corresponding sides of these pairs of triangles intersect in collinear

points. But these points (e.g. AAV BB^) are the centres of per-

spective of the given triangles in pairs ; therefore, etc.]

3. If three triangles ABO, A^C^ A
2
B2C2 have a common centre

of perspective, their axes are concurrent.

[Consider the three triangles whose sides are respectively the

directions BC, Bfi^ R2
C2 ; CA, C^, C2A 2 ; AB, A&, A 2B2.

It is manifest they are in pairs in perspective, the axis of the first

pair being CCV ; and XY is a line joining corresponding vertices.

Thus the axis of perspective XY of any two and therefore of

every two of the given triangles passes through the centre of per-

spective of the conjugate triad ]

NOTE. It will be noticed that the common centre of the three

given triangles is the point of concurrence of the axes AA^ BB^
CV7] of the conjugate triad, and the common centre of the conjugate
triad taken in pairs is the point of concurrence of the axes of the

given triangles.

4. Brocard's first triangle is in perspective in three ways with

ABC.
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[The Brocard points are evidently two centres of perspective

(Art. 28) ; also the lines AA', BB\ CC' are concurrent, forp2/p3 found

by aid of the property of Art. 28, Ex. 2, to be c?/b
3

; therefore, etc.

The three centres of perspective are the mean centres of the

vertices ABC for multiples proportional to (Art. 52)

L\,L.L2,L\.\,L^
5. If 12, 12', 12" denote the three centres of perspective of ABC and

its first Brocard triangle A'B'C
1

,
to prove that the corresponding

vertices of their three median triangles lie on three right lines.

(Stoll.)

[For A'B'G' and ABC have a common centroid G (Art. 53, Ex. 6).

But 1212'12" has the same centroid ; for its vertices are the mean

centres of A, B, C for multiples proportional to ^ -y ~ ;
- -=-

;

C" Q/~ C CL O

_>_.; therefore (Art. 53, Cor. 3) the mean centre of 12, 12', 12" is

that for A, B, C for multiples each = I/a
2
-f l/6

2 + l/c
2
. Now let

Z, //, JL" be the middle points of the corresponding sides of the

three triangles such that GA 2GL
9 GA'^ZGL', and 6fi2"==2(7Z":

since A, A', 12" are collinear ; L, Lr

,
L" are also collinear, and

the two lines of collinearity parallel.]

67. Theorem. Two triangles ABC and A'B'G' are in

perspective when

CY. GY AZAZ'
GX . CX'

'

AY. AY''
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where X and X' are the points of intersection of BG
with C'A' and A'B', etc.

;
and conversely.

Using the previous notation, we have by similar

triangles

Hence
BX . BX'_q2qs .Hence ''-'

therefore the left side of the above equation becomes

Wi PiP_2

Wz P*Pi
which is equal to, on reduction,

-1
.

2
.
2s .

therefore, etc. (Art. Go.)
?1 ^2 PS

COR. 1. Pascal's Theorem. If XX'YY'ZZ' be any

cyclic hexagon, then (Euc. III. 36)

AY.AY' = AZ.AZ'-, BZ . BZ'=BX . BX', etc.

Hence : The two triangles formed by the two triads of
alternate sides of any cyclic hexagon are in perspective ;

or, the opposite sides of a cyclic hexagon meet in three

collinear points.

The centre and axis of perspective of any two triangles

in perspective are called the Pascal * Point and Line of

the hexagon XX'YY'ZZ', which is termed a Pascal

Hexagon.

COR. 2. If X, X'
; F, F ; Z, Z' coincide in pairs on the

circle, the sides of the hexagon become the tangents to

the circle at X, F, Z, and the chords of contact YZ, ZX
and XY] the Pascal point is therefore the symmedian

point of the triangle XYZ. (Art. 66, Ex. 1.)

* When only sixteen years old, Pascal discovered this property of the

mystic hexagram. Easai sur les Coniques, Pascal, 1640.
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COR. 3.

smAC'ZamBC'Z
'X'

'

sinOBTsizuUST'
*

ai

= 1.

rT?
[For /== . rf>l/1r/

= "
L

<?3
sin CA X r3

hence the above expression is equivalent to

COR. 4. Brianchon's Theorem. Let AC'BA'CB' be

an escribed hexagon and x, y, z the intercepts made by
the circle on the sides of the triangle A'B'G'

;
since

sin jB^'Z'sin OAr
X'
~

~z*

with two other similar equations, Cor. 3 in this particular

* The property on which this depends is as follows : If from the

point of intersection C of two tangents CA, CB to a circle a secant oj

length x is drawn dividing the angle AGB into segments a and /3 ; then

sin a sin ft ac rr
2

.

For if O be the centre of the circle and OX a perpendicular to the

secant, we have

sin a sin ft
= sin2J(a + 0)

- sin24(a
-

19)
= r^/OC

2 - OX*/OC* = *2
/40<7

a
;

therefore, etc.



126 COLLINEAR POINTS.

case reduces to : The lines connecting the opposite ver-

tices of an escribed hexagon are concurrent; or, the

two triangles formed by joining the alternate vertices of
an escribed hexagon are in perspective.

The centre and axis of perspective of the triangles are

termed the Brianchon * Point and Line of the hexagon
AG'BAGE'y which for the same reason is called a

Bi4anckon Hexagon.

COR. 5. If two of the sides AF and EF of an escribed

hexagon coincide, the vertex F is the point of contact of

the tangent AE (Art. 6) ; hence for an escribed pentagon

ABODE, if the lines AD and BE meet in 0, the points

C, Ot
F are collinear (cf. Art. 63, foot-note).

COR. 6. If two pairs of sides BCy
CD and AF, EF

coincide, the hexagon reduces to a quadrilateral ABDE\
hence the diagonals AD and BE meet on GF\ similarly

they meet on G'F
;
therefore the internal diagonals of

an escribed quadrilateral and of the corresponding in-

scribed meet in a point.

* Published by Brianchon in the year 1806, and derived by him from

Pascal's Theorem by the process of reciprocation with respect to the

circle. (See Art. 80, 2.)



COMPLETE QUADRILATERALS. 127

COR. 7. Consider the cyclic hexagon FFC'CCF.
Its Pascal line is the line of collinearity of the three

points (1) FF, CG\ (2) FC', CF; (3) FF, CC': but the line

joining (2) and (3) is the third diagonal of the inscribed

quadrilateral CFC'F' and (1) is the intersection of the

tangents at G and F> and therefore one extremity of the

third diagonal of the escribed quadrilateral ;
hence : the

third diagonals of any inscribed and corresponding
escribed quadrilaterals coincide.

COR. 8. Let PQRS be any cyclic quadrilateral ;
and

let XX'YY'ZZ', the corresponding escribed quadrilateral,
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be regarded as a Brianchon hexagon ZPX'Z'RX whose

two pairs of coincident sides are the tangents from F.

Then the lines ZZ', PR, XX' are concurrent at the

Brianchon point B ; similarly, if the pairs of coincident

sides are the tangents from F', we have ZZ'
y QS, XX"

concurrent, i.e. the pairs of opposite connectors PR and

QS of the inscribed quadrilateral and ZZ' and XX' of

the corresponding escribed cointersect. We see there-

fore from Cors. 7 and 8 that any pair of opposite con-

nectors ofan inscribed quadrilateral and the correspond-

ing pair for ike quadrilateral escribed at its vertices are

concurrent. The three points of concurrence on the

figure are A, B, G.

The points U, V, W, U', F', W lie in triads on four

lines.

EXAMPLES.

1. Three pairs of tangents are drawn from the vertices of a

triangle to any circle to meet the opposite sides in points XX',
YYf

,
ZZ1

; show that if X, 7, Z are collinear, X', Y, Z are also

collinear.

[Apply Cor. 4.]

2. ABC is a triangle inscribed in and in perspective with A'BC';

the tangents from ABC to the in-circle of A'ffC' meet the opposite

sides in three collinear points X, F, Z(BC in X, etc.).

[Let the axis of perspective of the two triangles be X'Y'Z',

therefore by Cor. 4 we have (Mj-^^Y X...)=l ; therefore,
\C^i . (jJi

'

etc., by Ex. 1.]

3. If points XX', YY'
9
ZZ' be taken on the sides of a triangle

such that
CX' CX'' AY' AT' BZ 9

they are the vertices of a Pascal hexagon.

4. The lines joining each pair of points to the opposite vertex

(AX and AX', etc.) of the triangle determine a Brianchon hexagon.
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5. (a) Any two transversals XYZ, X'Y'Z' determine on the

sides the vertices of a Pascal hexagon.

(ft ) Two triads of points on the sides which connect concurrently
with the opposite vertices determine a Pascal hexagon.

(y) A transversal XYZ and three points X'
y F', Z' which con-

nect concurrently with the opposite vertices determine a Brianchon

hexagon.

6. A hexagon is inscribed in a circle ; prove that the continued

products of the perpendiculars from any point on the Pascal line on

the alternate sides are equal (xyz xfy'z
1

).

[Let AB'CA'BC' be the hexagon whose pairs of opposite sides

EC', B'C-, CA', C'A ; AB, A'B meet in points X, F, Z respectively
and the Pascal line L (XYZ) at angles a, a', ft, ft', y, y' ; then

BL.CL_BX.C'Xmt* sin2a
, m .

BL-CL~B'X . CX siW^sinV- (Euc " HL 36)

Similarly,
V

Multiplying these equations and reducing,
Sm2asin2

/2sm
2

y==sin
2
a'sin

2
/2'sin

2

y' ; therefore, etc.]

7. From the middle points L, M, N of the sides of a triangle

tangents are drawn to the in-circle ; show that these tangents form
a triangle (A'B'C') in perspective with that (PQlt) obtained by

joining the points of contact of the in- or ex-circles with the sides,

and the centre of perspective is the median point of ABC.

[For since the sides of ABC with any two of the tangents form
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an escribed pentagon, e.g., BCMNA', by Cor. 5, the lines BM, CN9

A'P are concurrent ; that is, A'P passes through the centroid

(EM, CN}. Similarly for BQ, C'R ; therefore, etc.]

NOTE. If LMN is any inscribed triangle in perspective with

ABC, the above reasoning applies to prove that A'B'C* and PQR
have the same centre of perspective.

8. If two triangles ABC and A'B'C' are in perspective, A'BC,
ABC' ; ABC, A'BC' ; ABC', A'BCwe also in perspective.

9. If AA'
9 BB, CC' denote the lengths of three lines whose

directions are concurrent, their six centres of perspective (of BB
f

and CC'9
X and X', etc.) taken in pairs lie in triads on four lines.

[For they are the axes of perspective of the triangles in Ex. 8.]

10. If X, Y, Z are on the sides of a triangle and fulfil the relation

the perpendiculars through them to the sides are concurrent ; and

conversely.

11. If two triangles are such that the perpendiculars from the

vertices of either upon the sides of the other are concurrent, then

conversely the perpendiculars from the vertices of the latter upon
the sides of the former are concurrent.

[By Ex. 10.]
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12. State the particular cases of the Theorem of Ex. 11 for a

given triangle taken with the (a) pedal, (/3) median, (y) triangles

formed by joining the points of contact with the sides of the in-

or ex-circles.

13. If XYZ be a transversal to a triangle ABC, X', Y', Z
1

the

harmonic conjugates of X, Y, Z, with respect to the sides
; prove

that

1. The triada of points Y'Z'X, Z'X'Y, X'Y'Zare collinear.

2. X'Y'Z1

, X'YZ, Y'ZX, Z'XY connect concurrently with the

opposite vertices.

14. The mjddle points of the segments XX', YY'
9
ZZ' are

collinear.

[For they are the middle points of the diagonals of a complete

quadrilateral by Ex. 3. For another proof v. Art. 91.]

15. The perpendiculars from the vertices of a triangle ABC on

the sides of A'B'C', its first Brocard triangle, are concurrent on the

circum-circle. (Tarry's Point.)

[By the theorem of Ex. 11.]

16. The perpendiculars from the middle points of the sides of

A'B'C' on the sides of ABC are concurrent. (Of. Ex. 15.)

17. The Simson line of Tarry 's point is perpendicular to OK,
the line joining the circum-centre to the symmedian point.

18. In the figure of Art. 28 show that

OA' : OB' : OC'=cos(A + w) : cos(+ w) : cos(+ co) ;

and deduce the formula for the Brocard angle,

sin A cos(yi -f u>)+ sin B cos(Z?+ to) 4- sin (7cos((7+ o>)
= 0.

Note on Tarry
1

s Point. It will appear obvious that the diameter

of the circum-circle containing Tarry's point is related to the

triangle ABC in the same manner as OK is to A'B'C' ; and that

the circum- and Brocard circles are divided similarly by these

corresponding diameters. Also, if a, /3, y denote the perpendiculars
from Tarry 's point on the sides of ABC,

a : /3 : y = sec(^4 -f w) : ssc(B + w) : sec(C'4- <o).

A point of interest may be here noticed. From Art. 28, Ex. 18

(note) it is evident that the centres 19 0% 3 of Neuberg's circles

with respect to the sides of ABC are the vertices of similar isosceles
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triangles described on a, 6, c respectively, whose equal base angles
are TT - co. Therefore, if T denote Tarry's point, it easily follows

that AT, A0^\ BT, B02 ',
CT

y
C03 divide the angles of ABC

isogonally. But the isogonal conjugate of a point on the circum-

circle is at infinity ; hence the lines AO^ B02, O03 are parallel.

HARMONIC PROPERTIES OF THE QUADRILATERAL.

68. Theorem. In any complete quadrilateral each of
the diagonals XX', YY, ZZ' is divided harmonically by
the other two.

Consider the triangle ZZ'Y' and transversal BXX',
Z'X' Y'X^Z'B

And since YY', YZ}
YZ' are three concurrent lines through

its vertices, we have

Z'X' YX_=JZA m
Y'X 1

'

ZX ZA
...................... ^" ;

Equating these results, we have ZA\Z'A = -ZBfZ'B.
Hence the row of points ZZ'AB is harmonic.

Similarly, BCXX' and CAYY' are harmonic.

Con. 1. The angles of the triangle ABC, formed by the

diagonals (the diagonal triangle) are divided harmoni-

cally by the pairs of lines A X\ AX' ; BY, BY'
; CZ, CZ'.

COR. 2. If two lines be given in magnitude and posi-

tion (ZZ' and XX') their two centres of perspective (Y
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and F') joined to their point of intersection (B) form a

harmonic pencil. They also divide the line joining their

centres of perspective (in A and G) harmonically.

Problem. To determine the number of polygons which can be

formedfrom n points.

Each point joined to the remaining n- 1 points gives n 1 lines.

Taking any one of these lines as the first side of the polygon we
have similarly n 2 selections for the second side, n - 3 for the

third side, and so on. Therefore we have (n l)(n-2) selections

for the first two sides, (n l)(n 2)(n 3) for the first three

sides, etc. ; hence we have finally \n 1 equal to twice the

number of polygons, since any sequence of sides when reversed

gives the same polygon.

Thus four points may be joined in three ways as in figure.

Fig. 1 is called a Convex, Fig. 2 an Intersecting, and Fig. 3 a

Re-entrant Polygon.

By application of the general formula to the hexagon we find

that six points in general determine a system of sixty hexagons.
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EXAMPLES.

1. The conditions that the quadrilaterals in the figures are

escribed are :

1. BC+AD=AB + CD.

2. BC**AD= AB**CD.
3. BC*AD=AB>CD.

[Since tangents from any point to a circle are equal.]

2. To prove that the quadrilateral whose angles and perimeter

are given is of maximum area when it is escribed to a circle.

(Herinite.)

[Let two of the sides AD and AD be fixed in position and the

remaining two vary. It is easy to see that the locus of C is a line.

Suppose C and C2 to be the positions of C on the fixed lines and

CiPto C2D2 parallels to the fixed directions CD and CB.

The perimeters of the triangles AC^D^ and AC2
D2 are each equal

to the perimeter of the quadrilateral ABCD ;
the ex-circle of A C

l
D

l

is the ex-circle of AD2C2 and D2C2
- #2Ci = #i#i~D^

Now, for any point P and parallels PP
l
and PP

2 by similar

triangles PCJC&= (PP1

-P^KD^ - Z>2<7,)

and PCJC&=(PP2
- P&)I(D1

C
1
- D,C2) ;

adding these equations, we get

PP
l + PP2

-P& - P2C2
=D2 2

- D2C, ;

to each side add AC
V+AC2,

and

P2A = ADn-\-D2C2+C^A= given perimeter.
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Regarding P and C as consecutive points on the locus, the area

of the quadrilateral is a maximum when BCPP
l
=CDPP

2y
i.e. BD

is parallel to C&. Hence the parallels BO and DO to CD and BC

respectively form with AB and AD a re-entrant escribed quadri-

lateral, and therefore AB+BO=AD+DO or (Euc. I. 34) AB+CD
=AD+BC-> therefore, etc.]

It may at once be inferred that the maximum polygon of any
order

) ofgiven angles and perimeter, is escribed to a circle,

3. If three common tangents />, Et
F to three circles A

9 B, C
taken two and two are concurrent

; prove that the conjugate

triad ZX, E', F' are also concurrent.*

4. Let the lines joining the middle points of the three pairs of

opposite connectors, BC and AD, etc., of four points A, B, C, D
be A, ft,

v ; prove by means of the following evident formulae,

cosac," (1)

(2)

(3)

the relations,

1.

2.

3. 4X2=
with similar expressions for p and v :

4.
/Jt
2- V2 ==

2(/x
2 - v2

)
= S2 + S'

2 - 62 - 6'
2
,
etc. ; 2a cos ac= 0.

*
Catalan's Thforemes et Problemes de Gtometrie Elementaire^ pp.

53, 54 (1879),
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5. 4(area of quadrilateral)
=

(6
2+ d* - c

2 - a2
)tan $>'.

5a. Hence, or otherwise construct a quadrilateral, having given
its four sides and area.

6. To find the cosine of the angle between any pair of opposite
connectors.

[Equate the values of A2
, /x

2
,
v2 in 3 with those of (1), (2), (3).

7. If any point D be joined to the vertices of a triangle ABC ;

the area of the triangle formed by joining the orthocentres of

BCD, CDA, DAB is equal to ABC.

[Let 19 2 , 3 denote the orthocentres. D0
19
D02 ,

J)03 are

equal to a cot A, bcotB, ccotC respectively, and are mutually in-

clined at angles A, B, C ; therefore, etc.]

8. If the vertices of a quadrilateral ABCD be joined to the

orthocentres 0, O
lt 0& 3 of the four triangles formed by their

vertices taken in triads
;
to prove that

[Let the angle AOD=6. Taking any of the anharmonic ratios

of the pencil . ABCD and reducing, we obtain

sin 6 sin B __b sin _bd siii OA D_ bd cos bd __
v2 - A2

3n(B+ 0)sin A
~
a sin(B+0}" 'aclinOCD

~
ac CQS ^

~
v2 - ^

(Ex. 4, 4). It follows generally that the six anharmonic ratios of

A 2 - u2 u2 - v2 v2 - A2

the pencil . ABCD are .-, -', -
. , -^ .,

and their re-
A2 - V2

fJL"
- A2 V 2 -

/X
2

ciprocals. Similarly for the remaining pencils 0^ . ABCD, etc.

Russell.]

NOTE ON PASCAL AND BRIANCHON'S HEXAGONS.

When two triangles ABC and A'B'C' are in perspective, the

lines AA y
BBf

9
CC' are concurrent ; therefore A and A', B and Bf

,
C

and C' may be regarded as the opposite vertices of a Brianchon

hexagon, and the centre of perspective of the two triangles is the

Brianchon point of the hexagon.
But in this case we have three other pairs of triangles in

perspective, viz., EGA' and B'C'A, CAB' and C'A'B
y
ABC' and

A'B'C. Hence with the vertices of two triangles in perspective

we can form four Brianchon hexagons having the same Brianchon
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point, the opposite vertices of the hexagons being in each case

corresponding vertices of the two triangles.

Again, if the non-corresponding sides of the triangles intersect

as in figure in points X and X', Y and F', Z and Z', and the

corresponding sides in UV W, U VW is the axis of perspective.

But in this case we have three other pairs of triangles in

perspective to the same axis, viz., those obtained by interchanging
a pair of corresponding sides, e.g.> if //, M, N and //', J/', N' denote

the sides of the given triangles, it is obvious that the triangles

LMN' and L'M'N, MNL' and M'N'L, NLM' and N'LM have the

same axis of perspective ; hence with the sides of two
triangles^in

perspective we may form four Pascal hexagons having a common
Pascal line, i.e.

y
the axis of perspective of the triangles, the corre-

sponding sides of the triangles being in each case opposite sides of

the hexagons.

In the accompanying figure the legs of the angles whose vertices

are at (7, F and W intersect again in twelve points, viz.,

A-, x\ r, r, z, z, A, A\ B, #, c, c,

and these we have seen may be grouped in four different ways into

two groups of six (XXr

YTZZ'\ and AA'BB'CC' determining Pascal

and Brianchon hexagons respectively ;
also that the alternate sides
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XX' and YY*) of the Pascal hexagon intersect (in 0) in six points,

which form a Brianchon hexagon.

Again, since sixty Pascal hexagons may be formed from the

points XX'YY'ZZ', and YT and ZZ' meet in A, and YX' and

Z'X in A\ by taking these lines as pairs of opposite sides of one

of the hexagons (YY'XZ'ZX'\ AA' is its Pascal line; similarly

BE' and CO' are Pascal lines of the hexagons XX'YZ'ZY' and

XX'ZY'YZ' respectively; but AA'
y
BH and CC' are concurrent,

hence the sixty Pascal lines pass in threes through twenty points.

Similarly it may be shewn that of the sixty Brianchon hexagons

for/ued by the conjugate hexad of points AA'BB'CC', their Brian-

chon points lie in triads on twenty lines. And either property

involves the other as will be seen by reciprocation with respect to

a circle.
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INVERSE POINTS WITH RESPECT TO A CIRCLE.

Def. Two points P and Q are inverse with respect to

a circle when the line PQ passes through the centre

and OP . OQ = the square of the radius of the circle.

For the circle of unit radius OP . OQ = 1 or OP is the

inverse, or reciprocal, of OQ.

69. It appears from the definition (1) That inverse

points are in the same direction from the centre when the

circle is real and in opposite directions when the radius

is imaginary, that is when it is of the form R*J 1-

(2) They coincide on the circle
;
and when the radius is

not real the inverse Q of a point P at a distance OP from

the centre is given by the equation OP.OQ=R'2
.

(3) When either coincides with the centre the other is at

infinity.

70. Theorem. If a line AB be divided internally and

externally in P and Q in the same ratio, P and Q are

inverse points with respect to the circle on AB as

diameter ; also A and B are inverse points with respect

to the circle on PQ.
For if M be the middle point of AB, by hyp.,

BP BQ' BM-MP QM-MB'
139
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by taking the sum to difference on each side we have

A similar proof applies to show that

NA NB=NP2 = NA*>
where N is the middle point of PQ

71 . Since MP . MQ=MN*-PN*y (Euc. II 6)

therefore (Art. 70)

or transposing,

Hence for any two segments AB and PQ placed to

divide each other harmonically, the square of the distance

(MN) between their middle points = the sum of the squares

of half the segments.

EXAMPLES.

1. The distances of the points of contact of the in- and ex-circles

of a triangle with the sides measured from any vertex on either of

the sides passing through it are s, s - a, s-b, s-c.

2. If M denote the middle point of the base (c) of a triangle, Q
the intersection with the base of the fourth common tangent to the

ex-circles and <92,
P tne f ot f tne perpendicular from the

vertex on the base, MP . MQ= (
a+~ Y.

V 2 /

[For OjOg is divided harmonically in C and Q, project 1? 2,
and

C on base and apply Art. 70].

3. Show also that the rectangle under the distances of the middle

point of the base from the feet of the perpendicular and internal

bisector of vertical angle=square on half the difference of sides.

72. Theorem. The distances of any point X on a

circle from a pair of inverse points have a constant ratio.

Since OQ : OX= OX : OP
;
the two triangles OQX and

OXP are similar (Euc. VI. 6),
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ma (Euc, VI. 4> ^-;=gg=f;
therefore

$p-gg.
or the squares of the distances of a variable point (X) on

a circle from a pair of inverse points (P, Q) are as the

distances of these points from the centre.

COR. 1. Let Z coincide with each extremity of the

diameter AB containing the points, then___
QX* QA* QB* OQ

COR. 2. Given a triangle (PQX), the base (PQ), and

ratio of sides, the locus of the vertex is a circle (ABX)
\vith respect to which the extremities of the base are

inverse points.

COR. 3. If the ratio of sides in Cor. 2 = 1, the locus is a

line bisecting the base at right angles, therefore the

reflexion of a point is its inverse with respect to the line.

COR. 4. From Cor. 1. AX and BX are the bisectors

of the angle PXQ.
COR. 5. If PX be produced to meet the circle again in

X', A and B are the centres of the in- and ex-circles of

the triangle QXX'. (By Cor. 4.)
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COR. 6. The line PQ containing a pair of inverse points
bisects the angle (XQX

f

) which any chord through either

(P) subtends at the other.

COR. 7. The quadrilateral OQXX' is cyclic.

[For OXX'= PQX, but OXX'^OX'X] therefore, etc.

Euc. Ill 21.]

COR. 8. For any other pair of inverse points P', Q' on

the diameter AB-, the angles PXP* and QXQ are equal

or supplemental according as the pairs of points are taken

in the same or opposite directions from the centre.

[The angles PXQ and P'XQ' have in either case the

same bisectors AX and BX.\
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EXAMPLES.

1. Any circle passing through a pair of inverse points P and Q
with respect to a given one cuts the latter orthogonally.

[From the definition of inverse points and Euc. III. 37.]

2. To find two points P and Q which shall be inverse with

respect to two given circles.

[The circle passing through any point and its inverses with

respect to each of the given circles meets their line of centres in

the points required.]

3. The line L bisecting PQ at right angles is such that the

tangents from any point on it to either of the circles in Ex. 2

are equal to OP or OQ.

[For the circle with as centre and OP=OQ as radius meets the

given circles orthogonally :
*

therefore, etc.]

4. Any two pairs of inverse points are coneyclic.

5. Any chord XY of a circle passing through P is divided har-

monically by P and the perpendicular to PQ through Q.

[For the angle XQYia bisected internally and externally by the

lines at right angles.]

6. The radical axes L, J/, N of three circles taken in pairs are

concurrent.

[For the point (L, 3f) of intersection of any two is the centre of

the circle cutting the three given ones orthogonally.]

Def. This point of concurrence is the Radical Centre of the

circles, and is such that for any three secants XX', YY', ZZ' drawn

through it to the circles respectively

OX. OX'= OY. OY' = OZ. OZ'.

The common value of these rectangles is called the Radical Product

of the circles, and is equal to the square of the tangents to them

when ia outside the circles. (See Art. 23, Ex. 11, footnote.)

* Hence the locus of a point from which tangents to two circles are

equal is a right line, viz., the axis of reflexion of their common pair of

inverse points. It is termed the Radical Axi* of the circles, and is

their chord of intersection, real or imaginary.
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7. The radical axis of two intersecting circles is their chord of

intersection ;
hence show that the common chords of three circles

taken in pairs are concurrent.

8. Describe a circle meeting three given circles at right angles.

9. For any triangle ABC find a point such that

OA : OB : 0(7= given ratios.

10. For any four collinear points A
y
B

y C, D find the loci of

points (1) such that the angles AOB and COD are equal, (2) BOC
is supplement of AOD.

11. For any six collinear points taken in the order ABCC'B'A'

find such that the angles BOC, COA, AOB are respectively equal

to B'OC', C'OA', A'OB1

.

[By Ex. 10.]

12. The four sides of an escribed quadrilateral ABCD being

given in magnitude and AB in position ;
find the locus of the

centre of the in-circle.

[Make AH=AD and BC'^BC. Since OA, OB, OC, OD are the

bisectors of the angles of the quadrilateral, it is easy to see that

AOB+COD=ir. Again the triangles AO/> and AOD' are equal

in every respect (Euc. I. 4); hence LADO=AD'0', similarly

LttCO^BC'O ;
therefore by addition it follows that LC'OD'=COD

or AOB+C'OD'= Tr, and the required locus is a circle having A, B
and C'y

D pairs of inverse points. Dilworth.]

13. The centres of perspective P and Q of any two parallel chords

AA' and BB' of a circle are inverse points with respect to the circle,

and the circle touching the chords at their middle points.
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[For we have PA=PA', PB=PB't QA= QA' and QB=Q& ;

hence PAlQA=PB/QB=etc. ; therefore, etc.

The second part follows, since MN is divided harmonically by
P and Q. Art. 70.]

130. To what does the theorem reduce when A A' and BB1

coincide ?

14. For any two pairs of inverse points P, Q and P, Q' prove that

PPVPg= OP / PA\

[PPQQ' is a cyclic quadrilateral (Ex. 4) ;
hence the triangles

OPP and OQQ' are similar ; so also are OPQ' and OPQ ; therefore,

etc. (Euc. VI. 4). Otherwise if p and q denote the perpendiculars

from P and Q on OPQ', we have

PP . PQ'=p . D, and QP . QQ'=q . D ;

15. If P, Q, R be any three collinear points on the diagonal

triangle of a quadrilateral ; their harmonic conjugates PQ'R
with respect to the diagonals XX', YYf

,
ZZ' are also collinear.

[For XX' is divided harmonically in B and C (Art. 68) and

P and P
; hence, by Ex. 14,

BP.BP BX*

Similarly _== (where MY-MY'): etc.
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Multiplying, we have

BP CQ AR BP^ CQ' AK* = BL GM_ AN,*
CP

'

AQ
'

BR
'

CP
'

Aty
'

Bil' OL' AM' BN'
but P, Qy

It are in a line
; f therefore, etc.]

16. To what does Ex. 15 reduce when the line PQR is at infinity ?

17. The angles subtended by the diagonals of a complete quadri-

lateral at any point have a common angle of harmonic section,

real or imaginary.

[0 is the point of intersection of the lines PQR and ]VQ'R' in

Ex. 16
; therefore, etc.]

18. The circles on the diagonals of a complete quadrilateral pass

through two points, real or imaginary.

[In Ex. 17, if two of the angles XOX', TOY' are right; ZOZ'

must also be right, since it is divided harmonically by PQR and

PVR'.}

19. Any transversal to the pencil in. Ex. 17 is cut in six points

which, taken in pairs, have a common segment of harmonic section.

20. To what does Ex. 17 reduce when is at infinity ?

21. If the sides of a triangle ABC are divided harmonically in

XX', rr, ZZ
1

;
if X, r, Zare collinear, the middle points L, M, N

of these segments are collinear.

22. If perpendiculars be let fall on the sides of a triangle from a

pair of inverse points and 0' and their feet joined ;
the triangles

PQR and PQ'R' thus formed are similar and their areas are as the

distances of and O from the circum-centre.

[For QR=AO sin A
,
and Q'R' =A O'sin A

,

therefore QH/Q'ff -A OfAa ;

similarly RP\R!P-BOIBO, etc. Art. 72.]

* Hence also the, middle points L, Mt N oj the diagonals of a complete

quadrilateral are collinear.

f PQR and P'Q'R
f
are termed Conjugate Lints of the quadrilateral.

{ Generally, For a number of angles at a common vertex having a

common angle of harmonic section if any two are right, all the others

are also right,
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23. Through a point P in the diameter of a semi-circle draw a

chord AB such that the area of the quadrilateral ABA'B, where

A'B' is the projection of AB on the diameter, may be a maximum.

[Let Q' be the inverse of P with respect to the circle ;
draw QQ'

at right angles to A'H. Project M the middle point of AB on A'B
and let X be the intersection of MM' with the semi-circle on Q'O.

Then area S of quadrilateral ABAB= A'B . MM', hence

. A'M'*=40M' . PM' . M'P.M'Q', by Art 70,

OM' . M'Q=4PM'Z
. M'X*

;

or is equal to the area of the maximum rectangle that can be

inscribed in a given circle, one of whose sides is parallel to a given

line. Art. 14, Ex. 2.]

24. Six perpendiculars are drawn from the inverse of the inter-

section of the diagonals of a cyclic quadrilateral to the sides and

diagonals. Show

1. The feet of those to the sides are collinear.

2. The line of collinearity bisects at right angles the line joining

the feet of perpendiculars on the diagonals.

[By method of Ex. 22.]

25. If XX' ; TT ; ZZ' denote the feet of the bisectors of the

angles of a triangle ABC, show that the pedal triangles of two

points and 0' inverse to any of the circles on these segments as

diameters, with respect to ABC, are inversely similar. (Neuberg.)

[Let and 0' be inverse with respect to ZZ'C* PQR and qPR
their pedal triangles respectively. M the middle point of ZZ'.
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- -

also the angles R and Rf

are equal ;
therefore etc.

NOTE. If is on the circle ZZ'C the pedal triangle is isosceles,

similarly if it is the point of intersection of the circles ZZ'C and

YY'B it is isosceles in a double aspect, i.e. equilateral.

Hence we may infer that the circles AXX', BYY', and CZZ' pass

through two points and 0' which are inverse (Ex. 22) with respect

to the circum-cirde of ABC and whose pedal triangles with respect to

ABC are equilateral.]

* Le cerck d'ApoIlonhis du triangle ABC par rapport a A B. V. Educ.

Times, Dec., 1890.
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POLES AND POLARS WITH RESPECT TO A CIRCLE.

SECTION I.

CONJUGATE POINTS, POLAR CIRCLE.

73. Def. The perpendicular to the line joining a pair of

inverse points passing through either is the Polar of the

other with respect to the circle. In the figure of Art.

74 and Z are inverse points ;
and and the line

AB are termed Pole and Polar with respect to the circle.

Any point A or B on the polar is the Conjugate of 0,

hence the polar of a point is the locus of its conjugates.

Again, since the circle on EG as diameter passes through
Z and therefore cuts the given one orthogonally:

1. The circle described on the line joining two conjugate

points cuts the given circle orthogonally. 2. The distance

between two conjugate points is equal to tivice the length

of the tangent to the circle from the middle point of the

line connecting them.

74. Theorem. For any two conjugate points B and C,

to prove that each lies on the polar of the other with

respect to the circle.

Suppose the polar of C to be AB, we require to prove
that the polar B passes through C. Join AO, draw a

149
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perpendicular to it CX. Then evidently (Euc. III. 36)
OA.OX = OC.OZ=i*-, hence CX is the polar of A.

Thus as the point B moves along the line AB its polar

turns around, or envelopes, C. At Z therefore the polar is

the chord of contact of tangents through that point to the

circle.

EXAMPLES.

1. The extremities of any diameter of a circle which cuts a given
one orthogonally are conjugate points with respect to the latter.

2. If a variable chord AB of a circle pass through a fixed point
P

;
the locus of the intersection of tangents to the circle at A and

B is a line.

[The polar of P with respect to the circle.]

3. The diameter A B of a circle is the polar of a point at infinity

in a direction perpendicular to AB.

4. The locus of a point which has a common conjugate with

respect to three circles is their common orthogonal circle.
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75. Theorem. // A and B be any two points and L
and M their polars ivith respect to a circle, the point LM
is the pole of the line AB.

For LM is conjugate to both A and B, hence the line

joining A and B is its polar (Art. 73), or " the line of
connexion of any tivo points is the polar of the point of
intersection of the polars of the points." Townsend.

76. More generally for three points A, B, C and their

polars L, M, N, denoting the points MN, NL, LM by A,
B', C" respectively ;

we see as above that A', B', C' are the

poles of BC, CA, AB\ hence, for any tivo triangles if the

vertices of either are the poles of the corresponding sides

of the other ; then, reciprocally, the vertices of the latter

are the poles of the corresponding sides of the former.

Def. Such triangles are said to be Reciprocal Polars

with respect to the circle.

77. In the particular case when ABC and A'B'C' coin-

cide, the triangle is Self-Reciprocal with respect to the

circle. It is manifest, since each vertex is the pole of the

opposite side, every two of its vertices are conjugate

points ;
and the triangle is therefore termed Self-Conju-

gate with respect to the circle.

Its centre coincides with the orthocentre of ABC
and the square of its radius (p) is given by

where X, Y, Z are the feet of the perpendiculars of the

triangle.

This circle is called the Polar Circle of the triangle.

NOTE. In order that the polar circle may be real, the pairs of

points A and X, B and F, C and Z> which are inverse with respect to

it, must lie in the same direction from its centre 0. It is therefore
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real when the triangle is obtuse angled, and imaginary for acute

angled triangles.

78, Expressions for the Radius (p) of the Polar Circle.

Let be the ortho-centre of ABC, then it appears that

A, B, C are the ortho-centres of BOO, COA, and AOB
respectively. For this reason the four points A, J5, (7,

are said to form an Orthocentric System.
Also the circum-circles of the four triangles BOG, COA,

AOB
t and ABC are equal.

Hence since a and A0t chords of equal circles, subtend

complementary angles at the circumferences,

a2+^02= &2+jB02= c
2 +(702= d2

,
............ (1)

also (fig. j8) a2= BO*+ C02+2CO. OZ, (Euc. II. 13)

therefore by substitution from (I)

or -CO.O=d2-Ka2+&2+c2
)
= p

2
............ (2)

This formula is equivalent to p*
= d2cosAco&BcosC,

by reduction or independently, as follows :

-p2= 0(7.0^= 0(7, ^_-^= d2cos -4 cos JS cos (7,. ..(3)
(M

since a chord is equal to the diameter of the circle into

the sine of the angle it subtends.
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EXAMPLES.

1. The four polar circles of the triangles BOC, COA, AOB and

ABC are mutually orthogonal.*

[Let their radii be pa , pby pc , p. Since their centres are at

/I, B, C, 0, by Euc. II. 2,

AB>=AB . AZ+AB . BZ= pa
* + tf ;

therefore, etc.]

2. B and 6', 6' and A, A and 5 are pairs of conjugate points with

respect to the polar circles of BOC
9
COA and AOB respectively.

3. The square of the distance BO between any two conjugate

points is equal to the sum of the squares of the tangents drawn

from them to the circle.

[By Ex. 1 the tangents from B and C to the circle pa are the

radii of pb and />c,
but BC'2= pb

2 + pc
*

; therefore, etc.]

4. Prove that AZ.BZt2
9
where t is the tangent to the polar

circle from Z, the Polar Centre t of AB
;
and conversely.

[By similar triangles ACZ&nd OBZ, AC : CZ=OZ : BZ, etc.]

5. Conjugate points ^1 and B with respect to any chord MN are

conjugate with respect to the circle.

[For the polar centre Z of AB is the middle point of MN
; but

(hyp.) ZA .ZB ZM2= ZM.ZN or the square of the imaginary

tangent from Z to the circle ; therefore, etc., by Ex. 4.]

6. If a number of circles have a common orthogonal circle, the

extremities of any diameter of the latter are conjugates with

respect to the entire system.

7. On a given line find two points which shall be conjugates to

each of two given circles.

[The middle point of the required segment is such that the

tangents from it to the circles are equal ; therefore, etc., by Art. 72,

Ex. 3.]

* Hence : If four circles are mutually orthogonal, their centres form

an orthocentric system and one of the circles is imaginary.

t Z the foot of the perpendicular from the centre on AB is also called

the Middle Point of the line. (Cf. Euc. III. 3.)
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8. On a given circle find two points A and B which shall be

conjugates to each of the circles C, r
; /), r.>.

[The middle point M of the required chord is on the radical

axis L of the given circles (Art. 72, Ex. 3). Let 2tf be the length of

AB
;
then CM*=*P+ r1*=rf+ AM*=rl*+r.f- OM 2

;

hence CM'2 + 03f2
is known, and the triangle COM is completely

determined
; therefore, etc.]

9. Place a chord of given length in a circle so that its extremities

may be conjugates with respect to another.

[See Ex. 8.]

10. If a right line AB meet either (C, r) of two circles in con-

jugate points (J, B) with respect to the other
;
then reciprocally it

meets the latter ((7', /) in conjugate points (^4' and B') with respect

to the former.

[For by Ex. 5 AB divides A'B' harmonically, hence A'B' divides

AB harmonically ; therefore, etc.]

11. Find the locus of the middle points M and N of the chords

A B and A'B' in Ex. 10.

(Art. 71.)

r'
2= const. ;

hence the required locus is a circle whose centre is at the middle

point of CC
f and the square of whose radius is equal to fy(r -f r'"}

- 2
,
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where 28= CO'. It evidently passes through the intersections of

the given circles.]

12. Show that CM. tf'A^coust.

[Draw CX at right angles to C'N. Join OX. Since OC'X is an

isosceles triangle and i\
T a point in the base produced,

CM. C'N

where is the angle between the given circles
; therefore, etc.]

13. Any circle described around the polar centre of a triangle

ABC meets the corresponding sides of the median triangle in

A', B', C
f

such that AA'= BB' = CC'.

14. A tangent is drawn from the polar centre to the circum-

circle, and from the point of contact a tangent is drawn to the

polar circle, show that the angle between these lines is 45.

15. Draw through P a line cutting each of two given circles in

conjugate points with respect to the other.

[By Exs. 10 and 11.]

16. Draw a line cutting each of two circles X and Fin conjugate

points with respect to a third (Z).

[Let the required line meet Z in the points A and B. The

middle point M of AB is the intersection of two known circles

passing through the intersections of ^and A' and ^and Y (Ex. 11),

and is thus determined ; therefore, etc.]

SECTION II.

79. Salmon's Theorem. The distances of any two

points A and B from the centre of a circle are pro-

portwn&l to the distances AM and BL of each from itie

polar of the other.

Draw AB' and BA' perpendiculars to OB and OA

respectively.
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Then OA . OL = OB.OM=r\ and since AABB' is a

cyclic quadrilateral, OA . OA'=OB . OB' ; therefore

OA _ OB' _ OM_ OM- OR_ B'M_AM
OB~~OA'~OL~~OL-OA'~A'L~Bl'y

therefore, etc. By alternation OA/AM=OB/BL.

COR. 1. If M is a fixed line and OA/AM a constant

ratio, B is a fixed point and the envelope of L is a circle ;

or, the pole of a variable tangent to a circle with respect

to another given circle is such that its distance from the

centre of the latter bears a fixed ratio to the distance

from a fixed line.

COR. 2. If A and B are both on the circle (0, r) ;

OA = OB, and therefore AM EL
; or, the points of con-

tact of tangents to a circle are equidistant from the

tangents as is otherwise evident (Euc. I 26).

COR. 3. Let B and its polar M vary and the different

positions be denoted by Bv B2 , B# ..., Mv M2 ,
M

3 , ...;

then since

OAOB OA _OBl
OA _OB2

.- ~
'
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by multiplication of ratios, we have

OA ___ _ OB. OB, ^OB, __ .~

<5r, the product of the distances of a point (A") from any
number of lines (M) is to the product of the distances of

their poles (B)from the polar (L) of the point as the 7i
th

power of ike distance of the point from the centre is to

the product of the distances of the poles from the centre.

COR. 4. If M
f
Mv M2

in Cor. 3 form an inscribed

polygon, B, Bv B2 ,
... are the vertices of the correspond-

ing escribed one
;
hence the product of the distances of

any point from the sides of an in-polygon is to the

product of the distances of the vertices of the correspond-

ing ex-polygon from the polar of the point as the nih

power of the distance of the latter from the centre is to

the product of the distances of the vertices of the ex-

polygon from the centre.

COR. 5. The rectangle under the distances of the

extremities of any chord from a tangent is equal to the

square of the distance of its point of contact from the

chord.

EXAMPLES.

1. The opposite vertices of an escribed quadrilateral are AA',

BB', CO' ; to prove that

OA . OA' : OB. OB' : 00. OC'=AX. A'X : BX . B'X : CX.C'X,
where X is a tangent to the circle at any point P.

[Let the corresponding pairs of sides of the in-quadrilateral

be L, L' \ M,M' \ N, N f

;
then since

OA^OP^OA'^OPTX PL A'X PL"

multiplying these equations, ^

but PL . PJJ^PM . PM'^PN . PN' ; therefore, etc.]
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2. If a, /?, y denote the perpendiculars from any point on the

circum-circle on the sides of an in-triangle,

/3y sin A + ya sin B+ a/3 sin (7=0
" a+ JU<=0.a /? y

3. If A, p, v be the perpendiculars from the vertices of any

triangle upon a variable tangent to the in-circle,

cot^l cot^Z? ,
cotJC^

A /*
v

[Let J
', B', 6", P be the points of contact with the sides and any

tangent, then r-= where a' is the perpendicular from P on B'C'.
A ft

Hence 2OA \
ffC- = rS

5
^-= ;

*
(Ex. 2)

A a

but &4 . /?'<?'= 2?*
2cot JJ ; substituting, we have

A particular case of this has been noticed in Art. 55, Ex. 8.]

4. If the perpendiculars from the vertices on any tangent to the

circum-circle of a triangle be A, /*,
v ; to prove that

[If P be the point of contact of the tangent to the circle, by

Ptolemy's Theorem,

but ^/)2
=2rA, etc., hence 20^=0.]

5. For any point P on the in-circle whose distances from the sides

are a, /?, y ; to prove that

cos \AJa+ cos J/V/?+ cos \C,Jy
- 0.

[Let A', //,',
v be the distances of the points of contact A', B

f

,
C

of the sides of ABC from the tangent at P\ a', /3
;

, y'
the distances

of P from the sides of A'B'C'.

By Ex. 4, 2oyA'=0 or_
but V/xV^a'WjSy; (Art. 79, Cor. 6.)

*The angles of ^'JS'C' are respectively 90-4^4, 90 -J^, 90-^(7;
therefore a' : 6' : c' = cosJ-4 : cosJ5 : cosj(7.
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hence, on substituting, since a'= 2rcos J-4,

2a\/A/ = 003^4^/0,, therefore, etc.]

NOTE. The equations in Exs. 2 and 5 are known in Analytical

Geometry to be those of the circum- and ill-circles respectively, the

given triangle ABC being taken as the triangle of reference. The

expressions in Exs. 3 and 4 are the Tangential Equations of the In-

and Circum-Circles.

6. If two triangles ABC, A'B'C' are reciprocal polars, they are in

perspective.

[Let the perpendiculars from A'B'C' on the sides of ABC be

PI> P-29 P* *> #i> #2, #3 J ?'i> ?*2,
rs respectively ; then, by Salmon's

Theorem,

^'=?3 W? =Q OA'_p* .

00 r2
'

OA' p3

'

OB' qi
J

multiplying these equations we have

P*
.
&

.
D= i ; therefore, etc. (Art. 65.)]

^3 ?1 ^2

7. A triangle inscribed in a circle is in perspective with the

corresponding escribed one.

[By Ex. 6,]

8. Any two triangles may be so placed that the vertices of either

are the poles of the sides of the other with respect to a circle.

[At the centre of the required circle the sides of each triangle

subtend angles similar to those of the other triangle. Find points
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satisfying these conditions with respect to each triangle and place

the latter with the points coincident and AO at right angles to E'C'
;

then OB and OC will be at right angles to C'A' and A'B'. Again,
since the perpendiculars from ABC on the sides of ABC' are con-

current, those from A'B'C' on the sides of ABC are also concurrent ;

it follows obviously that OA'
y
OB

',
OC' are perpendicular to the

sides of ABC
;
and

OA . OX=OB . OY=... = OA'. OX'= ...=p
2

.

9. To find the radius p of the circle in Ex. 8.

area BOCf

_ Off. OC' _ />4 __/o4

be bc.OY'.OZ' 4COA . AOB'

Similarly, -
, etc.

Adding these results, we have

= __^= ABC
ABC 4

'

BOO . COA 4
'

BOG . COA . AOB'

_ 27p
4

4 *^<^ . u<y/i . AOB. A'B'C'
P=

^
10. The area of the reciprocal polar A'B'C' of a given triangle

with respect to a circle is given l>y the equation of Ex 9.

11. The minimum value of A'B'C' is obtained when the centre

coincides with the ceritroid of ABC
;
and =-

A

[In this case BOQ=COA=AOB. Art. 14, Ex. 5.]

12. The reciprocal polar of the median triangle with respect to

the in-circle or ex-circles of the given one is equal to ABC.

13. The reciprocal polar triangle may be of any" species.

[Species depends on the position of the centre 0.]

14. In Ex. 8 is one or other of two fixed points.

[One of them is
obviously

within both triangles and the sides of

each subtend at it angles equal to the supplements of the angles of

the other.

The other is the common intersection of the circles described

externally on the sides of ABC containing angles equal to Tr-A'
9

Tr~ff,ir-C'. On making the figure it will be observed that these

circles, intersecting in pairs at the vertices of the triangle, can only
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meet again in one point ; hence, if a point be reflected with respect

to the three sides of a triangle, the circles BCO^ CAO%, ABO% meet in

a point*

15. If the triangles ABC and A'B'C' are similar the second centre

is any point on the circuni-circle of ABC ; also if P be joined to

A
y By

and and X, Y, Zbe the middle points of these lines and Z'

the middle point of AB
;
XYZZ' is a cyclic quadrilateral for

LXZY=AOB and XZ'Y=APB=ir-AOB ;

hence XZY+ XZ'F= TT ;

therefore Z the middle point of OP is on the nine-points-circle of

ABP. Similarly it is on the nine-points-circles of the triangles

with BC and AC as bases and P as vertex. Hence for any four

points A* B, (?, P, the nine-pomts-circles of three of the triangles

formed by them are concurrent. It is therefore obvious that all

four nine-points-circles of the four triangles BCP, CAP, ABP, ABC
are concurrent."^

16. A triangle reciprocates into a similar one from either of the

Brocard points as origin. (Art. 27.)

* The points and P are reciprocally related to the triangle A BC.

For it will be seen that, if P be reflected with respect to the sides, the

circles BCPV CAP^ ABP3 will meet in O. It follows thence that the

nine points circles of the triangles BCO, CAO and ABO also pass

through this point of concurrence.

t Van de Berg, Mathesis, t. 2, p. 141.

L
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SECTION III.

RECIPROCATION.

80. If ABC ... be any polygon and A'B'C'... another

derived from it by taking the poles A', B', C', ... of the

sides BC
y CA, AB, etc., with respect to any circle, then

we have seen (Art. 76) that the vertices A, B, C, etc., of

the former are the poles of the sides of the latter, and

the two polygons are said to be Reciprocal Polars with

respect to the circle. The process of deriving A'B'C'...

is termed Reciprocation, and the circle, radius, and

centre are the Circle, Radius, and Centre, or Origin of

Reciprocation.

More generally, if ABC ... be any curve to which

tangents Tv T2>
T

3,
... are drawn at the points A,B,C,...,

the locus of their poles is the Reciprocal Polar Curve of

ABC ... with respect to the circle. If the tangents at

A and B are indefinitely near, their poles A', B' are also

indefinitely near on the reciprocal curve
;
but the point

T^ is (Art. 76) the pole of the line A'ff
;
hence in the

limit the point A is the pole of the tangent at A'. The

point A and tangent at A' are said to correspond. Thus,

of two polar reciprocal curves any tangent to either

corresponds to a point on the other, and each point of

contact and the corresponding tangent are pole and polar
with respect to the circle.

The following fundamental properties of two Recipro-

cal figures will appear obvious :

1. The line joining any two points of either is the
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polar of the intersection of the corresponding lines of the

other.

2. Concurrent lines reciprocate into collinear points.

3. The angle subtended by any two points of one at

the origin is equal to the angle between the correspond-

ing lines of the other.

4. For any two figures X and Y and their reciprocals

X' and F', the points of intersection of X and Y
correspond to the common tangents to X' and F'

;
in

other words, a common tangent to two curves corresponds
to a point of intersection of their reciprocals.

5. If X and F touch, their reciprocals X' and Y' also

touch, and each point of contact is the pole of the

common tangent at the other.

6. Since two circles have four common tangents, real

or imaginary, they reciprocate into curves which inter-

sect in four points. (By 4?.)

7. Any point connected with X and the tangents

through it to the curve corre-

spond to a line and its points
of intersection with the recip-

rocal curve X'.

8. The reciprocal of a circle

is a curve of the second degree,

i.e. one which meets every line

in two points, real or imagin-

ary. (By7.)
9. The pencils determined

by any four collinear points A,
B

y C, D at the origin 8 and the corresponding lines A',

jB', (7, D' are similar.

[For the corresponding rays of pencils are at right angles.]
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10. Harmonic rows of points reciprocate into har-

monic pencils of rays ;
and in the particular case when

one point D of the row A, B, 0, D coincides with the

origin 8 ;
SA'9 SB', SO' are in arithmetical progression.

11. Parallel lines reciprocate into points collinear with

the origin.

12. A point and its polar reciprocate into a line and

its pole with respect to the reciprocal curve. (Of. 7.)

RECIPROCATION OF THE CIRCLE.

81. Let the origin 8 be outside the circle (0, r) ;

08= S] L the polar of with respect to the Circle of

Reciprocation, and P the pole of any tangent to the

circle at Z.

For the two points and P we have, by Salmon's

STP SfO fi

Theorem, ---
T
= ~ = -= const. = e (say).

(JA T

The locus of P given by the equation 8P/PL= e is a

Conic Section, of which S is termed a Focus, L a

Directrix, and e the Eccentricity. (See Art. 79, Cor. 1.)

When e > 1, the conic is called a Hyperbola,

e=l, Parabola,

6<1, Ellipse.

Thus the reciprocal polar of a circle is a hyperbola,

parabola, or ellipse, according as the origin is outside,

upon, or within the circle.

In the particular case when the origin coincides with

the centre of the given circle, the reciprocal curve is a

concentric circle.

Since the tangents to a circle are real and distinct

from any points outside it, and reciprocate from 8 as
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origin to two points at infinity; their points of contact

X and F reciprocate into two real tangents to the conic,

neeting in the correspondent of XY} whose points of

ontact are at infinity.

These lines are termed the Asymptotes of the hyper-

la. They are imaginary for the ellipse, though they
^rsect in a real point, and coincident with the line at

ity for the parabola.

e tangents A' and B' at the extremities of the

ter 0$ correspond to points A and B called the

>,s of the conic
;
also since the distances of S from

",
B'

y
are in H.P., SA, SC, S.B their reciprocals are

hence C is the middle point of the segment ABy

is obviously the point at which the asymptotes
intersect.*

* When the origin is outside the circle its polar divides the circum-

ference into two parts which are respectively concave and convex to it.

These portions reciprocate into two distinct curves convex and con-

cave to the origin as shown in the figure, and both branches reach to
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Also since SA'y
SO and SB' are in A.P., their reciprocals

SA, SLj SB respectively are in H.P.

The tangents from any point K, on XY, to the circle

with JSTFand jfiuSform an harmonic pencil (Art. 78, Ex. 5)

hence by reciprocation any line through C meets tl

conic in an harmonic row of points, one of which, cor,

sponding to the ray KS, is at infinity. Thus every ch

of the conic through C is bisected. On account of

property C is termed the Centre of the curve.

Again, the tangents to the circle from any po
the perpendicular through 8 to ES and the lines

that point to R and S form an harmonic pencil

by reciprocation any line parallel to OS meets V

in an harmonic row of points, one of which, cor

ing to the ray through S, is at infinity ; another, tnat

corresponding to the ray through R, is on M the per-

pendicular through C to OS. It is therefore manifest

that the conic is symmetrically situated with respect to

this line. It is moreover symmetrical with respect to

ON. These rectangular lines OM, ON through the centre

C are termed the Axes of the curve.

infinity. If, however, we assume in general that consecutive tangents

to the circle reciprocate into consecutive points on the conic, by taking
two tangents indefinitely near, one on the convex and the other on the

concave part of the circle, we are led to the conclusions that the points

at infinity on the opposite branches of the curves are indefinitely near,

that the asymptotes are tangents at the points of coincidence, and that

the hyperbola is a continuous curve.
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EXAMPLES.

1. A circle, any point and its

polar with respect to the circle,

e.g.

Circle, centre and line at in-

finity.

Circle, origin and polar of

origin.

Circle and inscribed polygon.

Circle (or conic) and self con-

jugate triangle.*

2. The opposite sides of a

cyclic hexagon meet in three

collinear points. (Pascal.)

A conic, a line and its pole

with respect to the conic.

Conic, directrix and focus.

Conic, line at infinity and

centre of conic.

Conic and escribed polygon.

Conic and self conjugate tri-

angle.

The opposite vertices of an

escribed polygonconnectby three

concurrent lines. (Brianchou.)

This result follows when the circle described about the hexagon
is taken as the circle of reciprocation.

In general, from any origin, the theorem of Pascal with respect

to a circle reciprocates into Brianehon's property for a conic.

3. Four points on a circle sub-

tend at a variable point on it

equianharmonic pencils.

Four fixed tangents to a circle

meet a variable tangent to it in

equianharmonic rows ;

hence, generally from any origin, the property of Euc. III. 21

becomes : A variable tangent to a conic meets four fixed tangents
in rows of points which are equianharmonic ;

and reciprocally four

fixed points on a conic subtend equianharmonic rows at a variable

fifth point on it.

And again it follows conversely that, if two points connect equi-

anharmonically with four others, all six lie on a conic ;
hence :

Any two of the hexad of points connect equianharmonically with

the remaining four. This system is sometimes called an Equi-
anharmonic Hexagon. (Townsend, Mod. Geom. vol. II. p. 168.)

4. Concentric Circles. Conies having same focus

(origin) and directrix.

*
If the origin is taken at one of the vertices of the triangle the cor-

responding side of the reciprocal triangle is therefore at infinity, and

its other two sides are diameters (conjugate) of the conic. See Exs. 8, 9.
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5. Circles having a common Conies having a common focus

pair of inverse points (from and centre.

either point as origin).

From the symmetry of the conic we infer that such a system has

a second common focus
;
hence : Coaxal Circles reciprocate from

either of their common pair of inverse points into a system of Confocal
Conies.

6. Euc. III. 35, 36. The rectangle under the dis-

tances of either focus from a

pair of parallel tangents is

constant ;

hence from symmetry we infer that the rectangle under the

distances of the foci from any tangent is constant
;
and conversely,

the envelope of a variable line, the product of whose distances from

two fixed points is constant, is a conic having the fixed points for

foci.

The locus of the intersection

of rectangular tangents to a

conic is a circle.

(Director Circle.)

The variable chord of contact

7. A chord of a circle which

subtends a right angle at the

origin envelopes a conic.

8. A variable chord of a circle

passing through a fixed origin

is divided harmonically by the

point and its polar.

of two parallel tangents passes

through and is bisected at the

centre of the conic.

Def. The diameter of a conic parallel to a tangent is said to be

Conjugate to that which passes through its point of contact.

9. Conjugate points with re-

spect to a circle (from the pole

of line joining them as origin).

10. If a variable point P
moves on a line through the

origin, S its polar passes through

Q the pole of the line with re-

spect to the circle
;
and the

tangents from P and the lines

PQ and PS form an harmonic

pencil.

Conjugate diameters of a

conic.

If a variable chord of a conic

moves parallel to a fixed direc-

tion, the harmonic conjugates of

the points on it at infinity (i.e.

the middle points) are collinear ;
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hence the locus of the middle points of any system of parallel chords

is a line.

11. Conjugate points coincide

on the circle.

1& The rectangle under their

distances from the middle of the

line joining them is constant.

13. Euc. III. 21, 22.

14. The locus of intersection

of tangents containing a given

angle is a concentric circle.

Their chord of contact en-

velopes a concentric circle.

15. If the vertex of an angle
of given magnitude is on a circle,

its variable chord of intersection

envelopes a concentric circle.

16. If the angle is right, the

chord envelopes the centre (from

vertex as origin).

17. The perpendiculars of a

triangle are concurrent.

or the circles on the diagonals are concurrent.

Each asymptote is its own

conjugate.

The product of the tangents
of the angles made by a pair of

conjugate diameters with either

axis of the conic is constant.

The angles subtended at a

focus by either pair of opposite
sides of an escribed quadrilateral

are equal or supplemental.

The envelope of a chord which

subtends a constant angle at the

focus is a conic having the same

focus and directrix.

The locus of the point of inter-

section of the tangents at the

extremities is another conic

having same focus and direc-

trix.

If two points are taken on a

fixed tangent so as to subtend a

constant angle at the focus, the

locus of the intersection of the

tangents through them is a

conic having same focus and

directrix.

The locus of intersection of

rectangular tangents to a para-

bola is the directrix.

The diagonals of a complete

quadrilateral each subtend a

right angle at a certain point ;
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It follows, because their centres lie on a line, that they pass

through a second point, the reflexion of the first with respect to

the line, i.e., they are coaxal.

The line joining the centre of

a conic to the foot of the per-

pendicular from focus on any

tangent is constant.

18. Having given the base

and ratio of sides of a triangle,

the locus of the vertex is a

circle to which the extremities

of the base are inverse points

(origin at either).

The locus of the foot of the perpendicular is called the Auxiliary
Circle of the conic. The circle and conic evidently touch at the

extremities of the major axis.

Since the centre of a parabola is at infinity, its auxiliary circle

degenerates into the tangent at the vertex.

19. Common tangents to two

circles subtend right angles at

either common inverse point.

20. The feet of the perpen-
diculars from any point on a

circle on the sides of an inscribed

triangle are collinear.

Confocal conies cut at right

angles.

The perpendiculars through
the vertices of a triangle,

escribed to a parabola, to the

lines joining them to the focus

are concurrent ;

in other words, the circum-circle of a triangle described about a

parabola passes through the focus (cf. Ex. 18). We infer that the

circum-circles of the four triangles formed by four tangents (that is

any four lines whatever) meet in a point.
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It follows also, since any point (origin) on the circum -circle and

the orthocentre are equidistant from the Simson line of the point,

that the locus of the orthocentre of a variable triangle escribed to a

parabola is the directrix

21. Having given base and If the extremities of a variable

vertical angle, the locus of the line, which subtends a constant

vertex of the triangle is a circle, angle at a fixed point, move on

(Euc. III. 21.) two fixed lines, it envelopes a

conic to which these lines are

tangents.

It therefore cuts them equianharmonically.

22. Since inverse segments
subtend similar angles at any

point on the circle, the segments
of a line drawn across two

circles subtend similar angles at

either common inverse point.

23. All circles meet in two

imaginary points on the line at

infinity.

24. The polars of a point with

respect to a system of coaxal

circles are concurrent.

25. The two points in Ex. 24

are in perpendicular directions

from either common inverse

point.

26. The sum of the squares of

the segments of two rectangular
chords of a circle is constant.

The pairs of tangents to con-

focal conies from any point are

equally inclined.

Confocal conies have pairs of

imaginary common tangents

passing through the foci.

The poles of a line with re-

spect to a system of confocal

conies are collinear.

The locus of the poles is a line

perpendicular to the given one.

The sum of the squares of the

reciprocals of the distances of

the foci from two rectangular

tangents is constant
;

hence if p19 p2 , ir^ 7r2 denote the distances of the foci from the

tangents 2l//>i
2= constant.

27. In Ex. 26, if the square of

the radius of reciprocation is the

power of the 'point with respect

to the circle.

Pi
2+P?+ ?Ti

2+ fl"2
2= constant ;

or the locus of the intersection

of rectangular tangents is a con-

centric circle (Director Circle).
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28. From the properties of

the conic, rectangular tangents,

director circle, centre and line

at infinity.

A variable chord of a conic

which subtends a right angle at

any point envelopes a conic
;
and

the focus and directrix of the

envelope are pole and polar with

respect to the given conic.

If the point is on the given conic the envelope reduces to a point
*

on the perpendicular to the tangent passing through its point of

contact. (The Normal.)

29. The base BC of a triangle ABC inscribed in a circle is fixed

and the origin taken at its pole. Applying the formula of Art. 79,

Ex. 10, we have the area of the reciprocal triangle constant, hence :

the area cut off by any tangent ivith the asymptotes is constant.

And conversely, given the vertical angle in position and area of a

triangle, the envelope of the base is a conic ; and the sides are divided

equianharmonically by the extremities of the base.

30. Show by reciprocating from a vertex of a self conjugate

triangle with respect to a circle that

a. The sum of the squares of any two conjugate diameters of an

ellipse is constant.

/3. The difference of the squares of any two conjugate diameters

of a hyperbola is constant.

31. Find by the methods of Art. 79, Exs. 3 and 4, the tan-

gential equations of a conic circumscribed or inscribed to the

triangle of reference.

* This is proved independently as follows : If two right lines are

drawn at right angles through a fixed point and intercept a variable

segment AB on a fixed tangent to a circle ; the locus of the intersection

of tangents through A and B is a line.

For it is a locus that can only meet the given tangent in one point ;

therefore, etc., by reciprocation.



CHAPTER VIII.

SECTION I.

COAXAL CIRCLES.

82. Definitions. The Radical Axis L of two circles

A, r
x
and B, r

2 is the line perpendicular to AB and

dividing it so that AL2 - BL*= r* - r
2
2

. Cf. Art. 72, Ex. 3.

It follows from the definition that L is the common
chord of the circles when they intersect, and we may
generalize this statement by regarding the radical axis

as their chord of intersection real or imaginary.
Thus all circles having a common radical axis pass

through two real or two imaginary points.

Such a group is termed a Coaxal System.

83. It has been seen, Art. 72, Ex. 3, that a variable

circle cutting two given ones orthogonally passes through
two fixed points, viz., their common pair of inverse

points ;
this orthogonal system is therefore coaxal

;
and

from their mutual relations the two groups are said

to be Conjugate Coaxal Systems. It is obvious that if

either set possesses real points of intersection, the other

does not; also the common points of one set are the

common pair of inverse points with respect to the other

Art. 72, Ex. 1.

Since the line of centres AB bisects the common chord
173
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MN it is the axis of reflexion of each common point with

respect to the other.

NOTE. If two circles are concentric their radical axis is the line

at infinity ; therefore a system of concentric circles passes through
two imaginary points at infinity.

These are called the Circular Points.

If the circles touch, their radical axis is the common tangent at

the point of contact.

If the circles reduce to points, the radical axis of two points is

their axis of reflexion.

84. Let A, r
l \ B, r

2 ; G', r
3 ... denote the circles of a

coaxal system. Then, since
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r*-r*, AL2
-CL*=r*-r,f, etc,

we have by transposing

4Z*-r
1
* =J8ZW

8
2= 01?-r

8
*=...= # (1)

The common value of these quantities (fc
2
) is the

Modulus of the system. It is positive for a non-inter-

secting system and negative for the intersecting or

common point species.

85. It follows from Art. 84 (1) that the position of the

centre of any circle of given radius of a coaxal system
is determined, and conversely. In the former case

(7i2= ^.L2 r
1

2+r3
2= a known quantity.

Two values of CL equal in magnitude but of opposite

signs are thus found. Hence the reflexion of every circle

of the system with respect to the radical axis is also a circle

of the system. The radical axis is therefore the line

around which the entire group is symmetrically disposed.

86. The radical axes of three circles taken in pairs are

concurrent (Art. 72, Ex. 6). In the particular case when
their centres are collinear the axes are parallel, and the

point of concurrence (Radical Centre) is at infinity. If

the circles are coaxal the radical axes coincide and the

tangents from any point on this line to the three circles

are therefore equal.

Conversely, if three circles whose centres are collinear

have a radical centre not at infinity they form a coaxal

system.

87. Limiting Values of the Radius given by the equa-

tion AL* r
r
2 - const.

Since -AZ2
?\

2
is constant, AL and r

x
increase and

diminish in value together; or according as the centre
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approaches to or recedes from the radical axis, the radius

diminishes or increases.

It follows 111 the limit when is at infinity that the

circle loses its curvature, and a portion of it coincides with

the radical axis. The remainder being at infinity is

the line at infinity; hence we regard the line at infinity,

and the radical axis, together as forming the circle oj

the system whose radius is infinitely great.*

Again, since AL2 r* = CL2 r
3
2 if r

3
= 0,

CL* = AL*-r? (1)

The two values of CL in this equation determine there-

fore the positions of the centres of the circles of infinitely

small radii. These are the Points or evanescent Circles

of the group, and are termed the Limiting Points.

By(l) r* = AI?-Cl* = (Al-CL)(Al+ Cl)
= AC.AC',

where C' is the reflexion of C with respect to the radical

axis
;
therefore the limiting points are the common pair of

inverse points of the coaxal system. (Cf. Art. 72, Ex. 1.)

Hence the radical axis of a circle and point is the axis of

reflexion of the point and its inverse with respect to the

circle.

88. Theorems. I. The radical axis of a coaxal system
is the locus of a point the tangents from which to the

circles are equal.

Let the tangents from P be ^ and t
2

.

* Since two circles meet on their radical axis, we infer that any
two circles pass through two imaginary points on the line at infinity.

Also, because every two circles intersect on this line, therefore all

circles pass through the same two imaginary points, i.e. the Circular

Points at Infinity.
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Then tf

hence, by subtraction,

t*-q =PA 2-P 2-
(rx

2- 7*
2
2
)
=

; (Art. 82)

therefore, etc.

II. More generally, The difference of the squares of the

tangents (t^
~

2
2
) from any point P to tivo circles= twice

the rectangle under the distance between their centres

and the distance ofP from their radical axis ; or

-

For, draw PP' perpendicular to AB and take M the

middle point of AB.

Then ^
2=^P2-r 2

,
and

hence t^ -t2
*=AP*~5P2-

(r*- r
2
2
)

=^P/2 -5P/2- (A L*- J?i2
) (Euc. I. 47)

= 2AB . P'M+ZAB . ML
; (Euc. II. 5 or 6)

therefore t*- 1* = 2JB . PL.

COR. 1. If P be any point on one of the circles (B, r
2),

t
2
= 0, and t^ = 2AB . PL, or ^ oc PL ;

or, if the square of the tangent from a variable point to

a given circle varies as its distance from a fixed line,
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the locus of the point is a circle coaxal ^vith the given
circle and line.

COR. 2. More generally, if C be the centre of a circle

coaxal with A and B passing through P, t
t
and

2 the

tangents from P, we have, by Cor. 1,

t* = 2AC. PL (1) and /
2
2= 2BC . PL (2);

dividing (1) by (2), we have

hence the locus of point such that the ratio of the

tangents drawn from it to two circles is constant is a

coaxal circle whose centre is determined by (3).

COR. 3. The common tangents to two circles each sub-

tend right angles at the limiting points.

For, if M be a limiting point, XY one of the common

tangents, and L its intersection with the radical axis,

LX=LY=LM\ therefore, etc.

COR. 4. If a variable chord XY of a circle be divided

at P such that PX . PFoc PJlf2
,
where M is a fixed

point ;
the locus of P is a circle coaxal with the given

circle and point.

The line PM is the tangent from P to the limiting

point M ; therefore, etc.

EXAMPLES.

1. If a variable chord (AH) of a circle (0, r) subtend a right

angle at a fixed point (M\ the loci

a. of its middle point N ;

/J. of ^V the foot of the perpendicular on it from M ;

/. of the pole Pof AD
are circles each coaxal with the given point and circle.
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[To prove a and /2 ;
we have

NM2 N'M*
NA.NB N'A.N'B'

-1

hence N and N' lie on the same circle coaxal with M and 0, r,

whose centre bisects internally the interval OM, by Cors. 2 and 4.

To prove y. Since N describes a circle, its inverse P describes a

circle coaxal with 0, r and the locus of N. For the locus of P is a

circle ; and it is coaxal with the other two, because the three circles

have a common pair of points real or imaginary.]

2. The orthocentre of a triangle is the radical centre of the circles

described on the sides as diameters
;
and the common value (Art.

77) of the rectangles under the segments of the perpendiculars is

the radical product of the point with respect to the circles.

3. The middle points of the four common tangents to two circles

the collinear.

[Each point of bisection is on the radical axis.]
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4. Find the radical centre and product of the ex-circles of a

given triangle.

[The middle point of the base is the middle point of the common

tangent to the two circles which touch the base externally ;
there-

fore the line through it parallel to the internal bisector of the

vertical angle, i.c, at right angles to their line of centres, is their

radical axis. Similarly for each of the remaining pairs. Hence

the radical centre is the in-centre of the median triangle ; and,

generally, the ex-centres of the median triangle are the radical

centres of the three triads of circles formed by taking the in-circle

artd two ex-circles of the original triangle.

For the values of the radical products, see Art. 48, Ex. 1.]

5. The circum-centre of a triangle is the radical centre of any
three coaxal systems which have B and C\ C and A, A and B for

limiting points.

6. The extremities of any two secants to two given circles which

intersect on their radical axis are concyclic.

7. Any circle /', R cutting two circles A,TI\ B, r>2 at angles a

and /? meets the radical axis at an angle given by the equation

[Denote the secants by PXX' and PYY'. Applying the formula

-tf=2AB.PL, we have

.Y')
- R(R+ YY')

= R(XX' - YY') = 2/?(ncos a - r,cos /J) ;

PL - ncos a
hence -nence R~ AB
But PL/R= t\\e cosine of the angle in the segment of P, R made

by the intercept on the radical axis
; therefore, etc.]

8. The axis of perspective of ABC and its pedal triangle is the

radical axis of the circum- and nine-points-circles.

[By Art. 88, I. and Euc, III. 36.]

8a. The line joining the orthoceiitre and circum-centre is at right

angles to the axis of perspective of ABC and the pedal triangle.

fit is the line of centres of the circum- and nine-noirits-circles.l
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9. Two circles touch at M and a chord AB of either touches the

other at P ; prove that PM is a bisector of the angle AMB.

[By Art. 88, Cor. 2, AP/AM=BP/BM.]

10. For any cyclic quadrilateral whose diagonals intersect in J/ ;

prove that, if the bisectors of the angles between the diagonals

meet the four sides in X, Y, .Y',7',

AL .BL.CL. DL=XL . YL . X'L . Y'L,

where L is the radical axis of the circle and point.

11. If L, J/, N denote the radical axes of three pairs of circles

Jf and A
y
X and Z?, X and (7, and L', J/', N' the radical axes of Y

and A, I
r
and B, Y and C\ to prove that the two triangles LMN

and L'M'N' are in perspective ; and that the centre of perspective
is the radical centre of A, B and (7; and their axis of perspective
the radical axis of X and }'.

[For MN is a point on the radical axis of B and (Art. 72, Ex.

6) ; similarly M'N' a vertex of the triangle L'M'N' is on the same

line ; therefore, etc.]

12. If three lines AX, BY, CZ be drawn from the vertices of a

triangle to the opposite sides ; the radical centre of the circles on

these lines as diameters is the orthocentre and their common

orthogonal circle the polar circle of the triangle.

[The perpendiculars of the triangle are respectively chords of

these circles ; therefore, etc. Art. 77.]

13. For any three circles A, B, C and three others taken with them

such that J5, (7, X \ (7, A, Y; A, B, Z form three coaxal systems;

to prove that, 1, the system of six circles have the same radical
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centre and product ; and, 2, if the centres of Jf, Y, Z are collinear,

these circles are coaxal.

[In 1 the radical centre and product is obviously that of the

circles A
y J5, 6'; 2 follows at once since, if the circles be not

coaxal, their radical centre is at infinity. Art. 86.]

14. Two coaxal systems have a common circle
;
find the locus of

the points of contact of the circles which touch.

[Let L and //, the radical axes of the systems, meet at l\ and Tbe
one point of contact. The common tangent at T passes through P,

and PT is the radius of the common orthogonal circle of the two

systems, which is therefore the required locus.]

15. The radical axis of any two circles bisects the distance be-

tween the polars of the centre of each circle with respect to the

other.

*16. Three circles are described each touching two sides of a

triangle and the circum-circle internally in points L, J/, and AT

; to

prove that the triangles ABC and ZJ/iVare in perspective.

[Let one of the circles touch the sides a and 6 in the points P
and Q and the circum-circle in N. Then N being a limiting point

of the two circles AQ*/AN*=BP2/BN*=(R- p)!R, where p is the

radius of the inner circle; but AQ= b- CQ=b- ab/s, Art. 6, Ex.

3; similarly, BP= a- abjs\ substituting these values and reducing

we get ^-Ir^/ll-
6

. Also, AA7

/BJV=the ratio of the perpen-
Jj 1M Oj I

diculars from ^V on the sides b and a respectively. (Euc. III. 22.)

Similarly, the ratios of the perpendiculars from L and M on the

corresponding pairs of sides of ABC are f-I_/lHf and ^Z- /_H_ ;

b I c c / a
therefore, etc., by Art. 65.]

*17. If circles are described as in Ex. 16 touching the circum-

circle externally in points L', M' y N'> the triangles ABC and L'M'N'

are in perspective.

*18. The centres of perspective in Exs. 16 and 17 are respectively

the isogonal conjugates of the centres of perspective of ABC and

*
Professor de Longchamps, Educ. Timest July, 1890.
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the triangle formed by joining the internal points of contact of the

escribed circles with the sides (point de Ragel) ;
and of ABC and

the triangle formed by joining the points of contact of the in-

circle with the sides (point de Gorgonne).

[Make use of the property given in Art. 64, Ex. 3.]

19. The nine-points-circle of a triangle touches the in- and three

ex-circles.

[Let ABO be the triangle, and /the centres of the circum- and

ill-circles, PF the common diameter, AT/? and X'Y'Z' the Sinison

lines of P and P\ R their point of intersection, L^ M, A the middle

points of the sides, L', M', N r

the points of contact of the in-circle.

Since OP=OP', NZ=NZ'. But the Simeon lines of two points

diametrically opposite meet at R at right angles 011 the nine points

circle ; therefore NZ - NZ' = NR. Again, OP/01 = NZJNN'
**NRINN'\ therefore NR/Njy'= MR/MM' = LR/LL' ;

hence it

follows that R is a limiting point of the in-circle and the circum-

circle of the triangle LMN. See Art. 83 Note. This elegant proof

of the well-known property is due to M'Cay,]

20. A variable circle 0, p touches two circles A, TI ; B, ro ; prove
that the polarM of its centre with respect to either (A, r) envelopes

a fixed circle.

[Since it touches the two circles, it cuts their radical axis L at a

constant angle (Art. 88, Ex. 7), or p/OZ/== const. Draw a parallel
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L' to L such that plOL=r1/LL' ) then each of these ratios =j
Let P be the pole of L' with respect to A, TI ; by Salmon's

Theorem, we have AO/OL'=AP/PM, therefore PM is constant, and
the envelope of M is the circle described with P as centre and PM
as radius.]

NOTE. If four positions O
ly 2, 3, 4

of the centre and their

corresponding polars J/
1}
J/

2,
J/3,

J/4 are taken
; since the anharmonic

ratios made by the four tangents on any variable one M is constant,

therefore (Art. 80, 9), the envelope circle reciprocates into a curve

of such a nature that the anharmonic ratios of the pencils joining
four fixed points on it to a variable fifth are equal. This we have

seen Art. 81, Ex. 3, to be a conic section
;
and the ratio AO/OL' is

the eccentricity, A the focus, and L' the directrix of the conic.

89. Theorem. A straight line is drawn to meet two

circles A y r^; B, r2 in points X, X' and F, Y respectively,

to prove that the tangents at these points intersect in four

points Py Q, Ry S which lie on a circle coaxal with the

given ones.

Let a and 6 be the angles of intersection of the line

with the circles. Then

sin a/sin /3
=PY'/PX= QY/QX'= RY/RX=SY'/SX' ;

therefore, since the ratios of the tangents (^:^2) from

each of the points P, Q, R> S to the given circles are
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equal, they lie on a coaxal circle, whose centre is given

by the relation 4S=?^=S (Art - 88
>
Cor* 2)J

COR. 1. Since sin a = -STJT/27'j and sin /3
= FF7^2 >

we

have by division

tJt^sin/3/sm a= VY'/XX'+rJ^ ;
........... (1)

therefore, i/ Ae intercepts made by tivo fixed circles on a

variable line are in a constant ratio (XX'/YY), the

tangents at the points of intersection meet on a fixed

circle coaxal with the given ones.

COR. 2. If the intercepts in Cor. 1 have the ratio of the

radii ^ = ^
2 , a = /3,

C is at infinity, and the locus of the

intersection of the tangents is the radical axis.

COR. 3. If the intercepts are in the sub-duplicate ratio

of the radii ZZ/2 FF2=rr, then

* The two points Cl
and (72 satisfying this relation are easily seen to

be the points of intersection of the direct and transverse common

tangents to the two circles and arc called their Centres of Similitude.

The corresponding coaxal circles are the External and Internal Circles

of Anti-similitude of the two given ones.
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hence the circle coaxal with two given ones whose centre

divides the distance between their centres in the ratio of

the radii is the locus of a point, the tangents from which

to the given circles are in the sub-duplicate ratio of the

radii.

COB. 4. If the intercepts are equal, XX'=>YY, the

tangents are in the ratio of the radii and the locus of

their intersection is called the Circle of Similitude of the

given ones
;

its centre C is given by the equation

r^/r^ ................. (Cor. 1.) (1)

COB. 5. Since AB is divided internally and externally

in (7
2
and C

l
such that ^/

l = TTTT = ~ and again in (7,

1 2 ^*2

by Cor. 4, such that vri
=

~\i it follows (Art. 70) that
JLJ *> 7

G is the middle point of the segment Cfi^ and that the

circle of similitude is the circle on it as diameter.

COB. 6. If the line XX'YY passes through the inter-

sections (QS, PR and PS, QR) of opposite connectors of

the quadrilateral; when PQ and R8 are parallel; the

circles A and B reduce to points and are therefore the

limiting points of the system ;
i.e. the common pair of

inverse points of the circum-circle of the trapezium

PQRS and that touching the parallel sides at Z and Z'.

(Art. 72, Ex. 13.)

EXAMPLES.

1. Any line meeting a pair of opposite sides of a cyclic quadri-

lateral at equal angles makes equal angles with each of the

remaining pairs (Euc. III. 21, 22) ; intersects them in points XX',

FF', ZZ? such that the circles touching the pairs of opposite con-
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nectors at these points are coaxal with the given one ;
and one of

them lies on the side of the radical axis opposite to the other two.

2. A variable quadrilateral inscribed in a circle moves so that a

pair of opposites envelope a circle, then each of the remaining pairs

of opposites always touch circles coaxal with the given ones.

3. A variable triangle ABC is inscribed in a circle of a coaxal

system, and two of its sides each envelope a circle of the system ;

to prove that the third side AC envelopes another.

[Let A'B'C' be any other position of the given triangle. Then

ABA'B is a cyclic quadrilateral, and one pair of opposites AB and

A'B touch a given circle, therefore AA' and BB' touch one circle

of the system.

Similarly BB' and CC' touch one circle of the system. But BB'

can touch only one circle of the group on either side of the radical

axis, Art. 92, Ex. 6 ; hence AA'> BB, CC' touch the same circle.

Now consider the quadrilateral AA'CC' ; it is obvious by Ex. 2

that AC and A'C' touch one circle ;
therefore the envelope of AC

is a coaxal circle.*]

4. Poncelet's Theorem. If a variable polygon inscribed in a

circle of a coaxal system moves so that all the sides but one touch

fixed circles of the system, the last side also touches in every

position a fixed circle of the system.

[By Ex. 3.]

*
Dr. Hurt, Quarterly Journal, Vol. II. p. 143.
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5. The problem
"
to describe a polygon having all its vertices on

a given circle and all its sides touching another
"

is either impossible

or indeterminate.

[Let all the circles in Ex. 4 touching all the sides but one of the

polygon coincide
;

it follows therefore that if the last side touches

this circle in one position it touches it in every position.]

6. To find the relation connecting the radii ri and r-2 of two circles

and the distance 8 between their centres so that a quadrilateral

may be inscribed to one and circumscribed to the other. (Art. 88,

Ex. 1.)

[By Ex. 5, when this is possible the position of the quadrilateral

is indeterminate. Assuming it to have the position of symmetry,

i.e., with a pair of opposite vertices at the extremities of the

common diameter, and 6 the angle between any side and this dia-

meter. By right-angled triangles we have the relations

- l = sin and JX-
6
= cos

r-2-o

squaring and adding these results

*

7. If A,ri, By r2, (7, r3 be three coaxal circles such that a variable

quadrilateral whose pairs of opposite sides envelope A and B is

inscribed in (7, prove that

where 81 and 82 denote the distances AC and BC.

[By the method of Ex. 6.]

8. If a variable line L meet two circles Ar^ J3r-2 so that the chords

intercepted, 2c and 2c' are in a constant ratio AC
;
to show that two

points A', H may be found on the line AB to satisfy the relation

A'L . B'L const.

[For &=r?-AL\ c'*= rf-BL\
hence rf -AL"<= K*(r,*

- BL*\

or (AL+ *BL}(AL - *BL)= const.,

but AL+KL**(l+K)A'L9
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and A L - KBL=(l -
K}B'L,

where A' andH divide the line AB internally and externally in the

ratio K : 1.]

NOTE. The variable line in the present article is thus seen to

envelope a conic of which the points A' and B' are the foci.

90. We have seen, Art. 86, that in general three circles

have but one common orthogonal circle, and in the

particular case when more than one can be drawn the

three form a coaxal system.

This property is sometimes of use in determining
whether circles are coaxal, and may be regarded as a

criterion of coaxality. The following illustrations are

due to Walker.

91. Let ABC be a triangle and XYZ any transversal

to its sides. Join AX, BY, CZ. These lines are drawn

from the vertices of each of the four triangles AYZ,
BZX, CXY, ABO, and terminated by the opposite sides;

therefore, Art. 88, Ex. 12, the orthocentres of the four

triangles are each the radical centre of the circles de-

scribed on AX, BY, CZ as diameters.

Hence we have the following theorems :

1. The orthocentres of the four triangles formed by

any four lines are collinear.
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2. The middle points of the diagonals AX, BY, CZ of

a complete quadrilateral are collinear.

3. The line of collinearity of the orthocentres is at

right angles to the line in 2, called the Diagonal Line of
the Quadrilateral.

4. The circles on the three diagonals as diameters are

coaxal.

5. The polar circles of the four triangles belong to the

conjugate coaxal system.

EXAMPLES.

1. A, By Oj D are the vertices,of a convex quadrilateral taken in

order; A e, Bej C ,
De and A,-, J3

ly
Ch Di the external and internal

bisectors of the angles ; prove that

a. The sixteen centres of the circles touching the sides of the

four triangles formed by taking the sides of the quadrilateral

in triads, lie in fours on these bisectors.

/J. The following groups of quadrilaterals are cyclic :

A e Bi Ct D. At Bt ft

n, A e Be Oe Dc\(J}
AtBiCtDtr

y. Groups (a) and (c) are coaxal, and groups (b) and (cT) con-

jugately coaxal.

[These properties are proved by employing Euc. III. 32 to show

that any circle of either group is cut orthogonally by any circle of

the other group. Russell.]

2*. A
y B, C

y
D are four points on a circle. Omitting each point

in turn we have four triangles ; prove that the sixteen centres

of the circles touching the sides of these triangles lie in fours on

four parallel lines, and also in fours on four lines each perpendicular

* Educational Times, Reprint Vol. LI. p. 65.
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to the former set
;
and that the two sets of lines are parallel to

the bisectors of the angle between AC and BD. (M'Cay.)

3. ABC is a triangle, A A' a diameter of the circum-circle and

//"the orthocentre ; show that A' and // are equidistant from the

base EC ; and hence deduce the theorem "the Simson line of

any point is equidistant from the point and orthocentre of the

triangle."

SECTION II.

ADDITIONAL CRITERIA OF COAXAL CIRCLES.

92. I. Relation connecting the distances between the

centres and the radii of three circles of a coaxal system.

Let the circles be denoted by A, r
x ; J5, r

2 ; C\ ry
Then for any point P on the radical axis, we have

hence if t be the length of the tangent from P to the

circles, since AP* = r
l
2+ t

2
, etc., by substituting in this

equation and reducing,

BC.r*+CA.r*+AB.r*=-BC.CA.AB, .....(1)

a result from which the radius r
3
of any circle of the

system may be found when the position of its centre is

known ;
and conversely.

COR. 1. If r
3
= 0, C is a limiting point (Art. 87), by

letting A C=x in (1) we obtain a quadratic in x, the last

term of which is r^. Hence the product of the distances

of the limiting points from the centre of any circle of the

system= the square of its radius. Cf. Art. 87.

COR. 2. If r
2
= r

3
= 0, the criterion reduces to

AB.AC=r*.
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EXAMPLES.

1. If tj9 Z2, t3 denote the tangents from any point P to three

circles of a coaxal system ;
to prove that

EC. tf+ CA . tf+AB . *3
2= 0.

[For BC.AP*+CA.BP*+AB.CP*=-BC.CA.AB, (1)

and BC.r^+ CA.rJ+AB.r^^-BC.CA.AB (2)

Subtracting (2) from (1) ; therefore, etc.]

2. Deduce as a particular case of Ex. 1 the theorem : The locus

of a point, the tangents from which to two given circles are in a

constant ratio, is a coaxal circle.

[Let *3
=

0.]

3. Explain the formula of Ex. 1 when j
=

3
= 0.

4. Find the locus of a point P if the product of the tangents
from it to two circles bears a constant ratio to the square of the

tangent to any circle coaxal with them (Jctit^=tf).

[In Ex. 1, substituting the given condition, the equation reduces

to the form (ti-mt^(t\-nt^=Q ; hence P describes two coaxal

circles, since the ratio of the tangents ti and tfa
=

w&, or n.]

5. If the common tangent ZZ' to two circles meet a coaxal circle

in the points A and B ; to prove that MZ and MZ' are the bisectors

of the angles subtended by the chord AB at either limiting point.

[For AZy
AM and BZ, BM being pairs of tangents drawn from

two points A and B on the same circle to two circles of the system-,

it follows that AZIAM=BZJBM, by alternation

and for a similar reason = AZ'jBZ' ; therefore, etc.]
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6. To describe two circles of a coaxal system touching a given
line.

[In Ex. 5 divide the line AB internally and externally in Z a,nd

Z* in the given ratio AM/BM; therefore <2Tand Z' are the required

points of contact. It will be noticed that the circles lie one on

each side of the radical axis.]

7. A triangle ABC is inscribed in a circle of a coaxal system ;

prove that the points of contact X, X'
t Y, Y', Z, Z' of the three

pairs of circles of the system which touch the sides BC
y CA, and

AB respectively,

a. Lie three and three on four lines,

(3. Connect with the opposite vertices by six lines, passing three

and three through four points.

[Apply the relations in Ex. 5 to the three sides ; therefore, etc.

Arts. 62 and 63.]

8. Apply the criterion of the Article to show that the nine-points-,

circum- and polar circles are coaxal.

9. If points B and D are taken on any two circles whose centres

are and 0' and joined to the limiting point M such that BMD is

a right angle, the locus of the intersection of tangents at B and D
to the circles is a coaxal circle.

[Let the line BD meet the circles again in A and C ; then

MB* MO MC* MB.MC

also,

AB.BD 00' AC:CD (AB .AC .BD.
MA* _MO'_ MD* __ MA.MD

AB.AC 00' BD.CD (AB .AC. BD.CDf
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- ................................ <>

But since BMD=*W\ AMC= 90 (Art. 72, Cor. 8),

and therefore BMC+AMD= 180
;

hence
BC_MB . MC_MO
AD MA7MD~MO"

by (1), a constant quantity ; therefore, etc. (cf. Art. 89, Ex. 8).]

10. A quadrilateral PQR8 is inscribed to one circle and escribed

to another at the points A, /?, (7, D ; prove that its position is

indeterminate, and the diagonals PR and QS, EC and AD of the

two cyclic quadrilaterals intersect (the latter at right angles) at the

limiting point J/.

[By Art. 89, Ex. 6. See also Art. 88, Ex. 1, and Art. 67, Cor. 6.]

11. Construct a quadrilateral in a given circle symmetrical with

respect to a given diameter and circumscribed to a circle having its

centre at a fixed point on the diameter.

[Find the radius of the second circle by Art, 89, Ex. 6.]

93. II. A variable circle cuts three others of a coaxal

system at angles a, /3, y, to prove the relation

EG . T^COS a+ GA . r
2
cos /3+AE . r

3
cos y = 0.

Let Py p be the variable circle meeting the given ones

at the points R, S, T respectively ; join PR, PS, PT, and

produce the lines to meet the circles again in R', S', T
f

.

By Art. 92, Ex. 1, EG. t? + GA . t<* + AE .
3
2= 0, but

t*=PR .PR = p(p +RR) = p(p+ 2r
x
cos a), with similar

values for t
2
and 3

. Substituting these values in the

equation and reducing, we obtain the required result.

COR. 1. If two of the circles are cut orthogonally,

every circle of the system is cut orthogonally. For if

a =:^=:90 ,
two terms of the equation vanish, therefore

-4.r3cosy= or y= 90.

Con. 2. If the variable circle touch two of the given

ones, it cuts the circle C, r
3
coaxal with them at an angle
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determined by the equation J.jB.r3cosy= BC.r CA.r2 ;

like signs being taken when the contacts are similar and

unlike signs when the contacts are dissimilar. The four

possible values arising from the selections of sign on the

right side of the equation give the values of y correspond-

ing to each assigned species of contact.

COR. 3. In Cor. 2, if cos y = 0, the centres of the par-

ticular circles of the system which are cut at right angles
are given by the relation

or AC
I
EC=

Hence, the variable circle having similar contacts with

two given circles cuts at right angles the coaxal circle

whose centre is their external centre of similitude
; and,

if the contacts are dissimilar, the coaxal circle whose

centre is the internal centre of similitude.

Con. 4. If a = /3 and y= 90, the equation reduces to

AC/BC= r
1/r2 ,

as in Cor. 3. Hence, the variable circle

cutting two others at equal or supplemental angles cuts

at right angles their external or internal circle of anti-

similitude respectively.

COR. 5. Let the radius of the variable circle be infinite ;

hence (Cor. 3) all lines cutting two circles at equal or

supplemental angles are diameters of their external or

internal circles of antisimilitude.

EXAMPLES.

1. To describe a circle cutting any three circles A, rj ; B, r2 ;

(7, rs at given angles a, /?, y.

[The required circle cutting B, ra ; (7, r3 at given angles, therefore

touches a known circle coaxal with them by Cor. 2
; similarly for

each of the remaining pairs of the given circles ; hence the problem
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reduces to " describe a circle touching three given circles tvith assigned
contacts" There are in consequence eight solutions. These are

given in a subsequent chapter.]

2. Show that Ex. 1 cannot be reduced to describing a circle

cutting three given circles orthogonally.

[For let X be the circle coaxal with B and C which is cut ortho-

gonally by the required circle, and constructed by putting y
= 90 in

the relation of the present Article ; similarly let Y coaxal with C
and A, and j? coaxal with A and 21, be circles cut orthogonally by
it. Their centres, being found by the relations

BX_ racos y CY__ ricos a AZ_ r2cos /3~~ ~

are collinear, Art. 62, and their common orthogonal circle therefore

indeterminate.]

3. A variable circle P, p touches two others A,ri\ B, r2 ;
show

that the square of the common tangent t, to it and any third circle

C, r3 coaxal with them, varies as its radius (t
2 oc p).

[By Cor. 2 it cuts C, r3 at a constant angle y. But (Art. 4 (1))

4 sin2
^y= t

2

/p . r3 ; therefore, etc. In the particular case when (7, r3

is a limiting point we have the theorem :

"
if a variable circle touch

two fixed circles, its radius is in a constant ratio to the square of the

tangent to it from either of the limiting points" Also,
"
the ratio of

the tangents from the limiting points is constant"]

4. A variable circle cuts two fixed circles at angles a and
/?,

tan-

gents are drawn from its centre to the circles, and tangents t\ and

/2 from the points of contact to the variable circle ; prove that

^i
2
/^

2=r1cos a/r2cos /?,

and deduce the properties of Ex. 3 as particular cases (Preston).

See Spherical Trigonometry, Art. 159, Ex. 15.

5. Find the locus of the centre of a circle cutting any three circles

at equal or supplemental angles.

[By Cor. 4.]

6. The vertex and base of a triangle are fixed in position and the

vertical angle given in magnitude ;
find the envelope of the circmn-

circle.
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SECTION III.

CIRCLE OF SIMILITUDE.

94. Let A, r
x ; B, r2

be any two circles, Z and Z' the

points of section of AB such that

BZ BZ' r
2

'

then the segments AB and ZZf

divide each other harmoni-

cally, and the circle (7, r
3
on ZZr

as diameter is termed

their Circle of Similitude. The points Z and Zf

are

the Internal and External Centres of Similitude.

95. The circle of similitude has the following funda-

mental properties :

1. Its centre C and radius r
a
are connected by the

relation GA . CB= r
3

2

(Art. 70), or the centres of the given

circles are inverse points with. respect to their circle of

similitude.
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2. The points Z and Z are the intersections of the

transverse and direct common tangents.

3. It is coaxal with the given circles.

[For Z and Z are on the same circle coaxal with A and

B, since the ratios of the tangents from them are each

equal to the ratio of the radii, and only one circle coaxal

with A, r^ and B, r
2
can contain these points, viz. that on

the line ZZ as diameter.]

4. From Cor. 3 it is the locus of a point such that the

tangents drawn from it to the circle have the constant

ratio of the radii.

[Cf. Art. 88, Cor. 2.]

This follows independently, since PZ and PZ are the

bisectors of the angle APB, hence

PA/PB = AZ/BZ=AR/BS ;

therefore, etc., by Euc. VI. 7.

5. The circles subtend equal angles at any point on it.

(By 4*.)

6. In the particular case when the circle B, ?
2
becomes

a right line the centre B is at infinity, its inverse A (Cor.

1) coincides with C
y
therefore the centres of similitude of

a line and circle are the extremities of the diameter of

the circle perpendicular to the line.

EXAMPLES.

1. The circles of similitude of any three circles taken in pairs are

coaxal.

[Their centres are collinear, Art. 72, Ex. 21 ; therefore, etc., Art.

88, Ex. 13, 2.]

2. A circle cuts two at angles a and 13 ;
find the angle it makes

with their circle of similitude.
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3. The tangents from any point /* on the circle of similitude to

the circles A, r
l
and E

y
r2 meet them at R and #; prove (a) the chords

which the circles intercept on the line RS are equal to one another ;

(/3) The tangents from R and to the circles B and A are equal.

[Compare Art. 89, Cor. 4.]

4. The circle on the third diagonal of a complete cyclic quadri-

lateral is the circle of similitude of those described on the remaining
two.

[Let ABCD be the quadrilateral, LMN its diagonal line, PP the

third diagonal, BD= 2rb CA -=
2r,, PP' = 2r3 . Join PM, PN.

The triangles PAC and PBD are similar, Euc. III. 21 ; hence,

since /^Vand PJ/are homologous lines, 7>5J/'and PCN&re similar ;

therefore PM/Pjy^r^r* Similarly, FM/PW^fa; therefore P
and P lie on a circle to which M and N are inverse points. Also

the circles on the three diagonals are coaxal
; therefore, etc. It

follows also by 1 that LM . LN^rf.}

5. Having given the three diagonals of a cyclic quadrilateral ; to

construct it.

[Let be the centre of the circle and r1} ?'2,
r3 the diagonals. By

Ex. 4 LM. LN=r, and is therefore known. Also LMlLN=rt\r ;

hence the lines LJLTand LN are determined. LM ?V3/r2, LN= fy-o/ra,

and MN = ^(^""^Y But 03/and ON are known (Euc. I. 47),

consequently the triangle OMN is completely determined.]
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6. Six circles pass through two points P and Q on the circum-

circle of a triangle ABC and touch the sides
; prove that the points

of contact X, X'
; I*",

Y'
; Z, Z' lie in threes on four lines.

[Let the line joining the points P and Q cut the sides of the tri-

angle in L
y
M

9
and N respectively, and we have obviously LXLX'

and LB . LC=LX 2= LX''\ with similar relations on tne remaining
sides of the triangle ; therefore, etc.]

7. From any point on a given line tangents are drawn to a

circle
;
a circle is described touching the fixed circle and variable

pair of tangents to it
; prove that the envelope of the polar of its

centre is a circle.

8. The circle of similitude of the circum and nine-points-circle of

a triangle is that described on the interval between the centroid

and orthocentre as diameter.

[Let be the circum-centre, H orthocentre, N the nine-points

centre, and Ethe centroid. By a well-known property of these four

collinear points OE/N=OfflNH=2= ra,tio of radii of circum- and

nine-points-circles ; therefore, etc.

[It is called the Orthocentroidal Circle of the triangle.]

MISCELLANEOUS EXAMPLES.
vx

1. Prove that the equation of the two circles touching three

given ones with contacts of similar species are

23x//Vf3VS+ 12\^= 0,

where S^ Szt S3 denote the powers of any point on either of the

tangential circles with respect to the given ones.

2. If a variable chord A D of a circle is such that the sum of the

tangents from A and B to another given circle is proportional to

the length of AB, it envelopes a circle coaxal with the two.

3. If a variable circle touches two fixed circles and cuts a circle

concentric with either in the points A and B : required to find the

envelope of AB. (Dublin Univ. Exam. Papers, 1891.)

[Applying Casey's relation between the common tangents to four
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circles to the points A and B and the two given circles, it follows

by Ex. 2 that the envelope of AB is a coaxal circle.]

4. Prove that the circles cutting three given ones orthogonally

passing through their circles, and bisecting the circumferences are

coaxal.

5. Reciprocate the following theorem from a limiting point :

The square of the distance of any point on a circle from a limiting

point varies as its distance from the radical axis.

[The rectangle under the distances of the foci from any tangent
to a conic is constant.]

6. Prove that the limiting points of any two circles lie on a pair

of opposite connections of their common escribed quadrilateral.

7. If 8 denote the distance between the limiting points and y the

length of their imaginary common chord, prove that 8= iy .

8. Tf two circles whose radii are r\ and r2 are so related that a

hexagon can be inscribed to one and circumscribed to the other,

then

(ri
a __ g)2 + 4rir225

^
(rj

a _
52)2

_ 4,^/5 2r2
2
(r,

2 + 82)
-
(rj

- S2
)
2

'

9. If an octagon can be inscribed to one and circumscribed to the

other,

10. The mean centre of the vertices of a cyclic quadrilateral lies

on the circumference of the nine-points-circle of the harmonic

triangle of the quadrilateral. (Russell.)

11. If a variable polygon is inscribed to one circle and escribed

to another, the locus of the mean centre of any number (r) of

consecutive points of contact is a circle. (Weill). Cf. Art. 53,

Ex. 12.

12. Prove the following extension of Weill's theorems : If a

variable polygon of any order be inscribed in a circle of a coaxal
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system having all its sides touching respectively fixed circles of the

system ; there exists a set of multiples for which the mean centre

of the points of contact of the sides with the circles is a fixed point.

[Let any circle of the system be denoted by (0, r, 8) where S is

the distance of its centre from the circumcentre of the polygon, and

let a, (3, y, and c be the displacements of the points of contact of

the sides AB
9 BC, CD, etc. for consecutive positions. Then, by

Art. 53, Ex. 12, we have

hence the mean centre of the points of contact remains fixed for

the system of multiples V8i/n, VS/r2, VoVr3> etc.]

12a. The locus of the mean centre of r consecutive points of

contact for their respective multiples is a circle.

[For, join the extremities of the r sides thus forming a polygon
of r-fl sides, and let the last side touch a fixed circle (Or+ i, rr+1 ,

6V+0 of the system. (Art. 89, Ex. 4.) By Ex. 12, the mean centre

of the r-H points of contact for the corresponding multiples is a

fixed point (X). Let Y be the mean centre for the r points and Z the

point of contact of the last side. Then Y divides the line XZ in a

constant ratio, and since ^describes a circle, therefore, etc.]
*

* The following is an independent proof of the generalization of

Weill's theorem.

Let ABCD .. and A'B'C'D'... be any two positions of the variable

polygon; T T2 ,
Ts , ?y, 7

T

2 ',
T3

'

... points of contact of the sides

AB, BC, ... ; A'B'y B'C', ... with the corresponding circles Olf
rlt d

1 ;

*2
r
2 ^2 f ^ie system ; R the point of intersection of AB and

A'B' and the angle between them ; S the intersection of AA' and

BB\ and the angle between them. Then AA', BB\ C'C" ... touch'

a circle (0, /?, X) coaxal with the given system. Let L, M, N ... be its

points of contact with AA' , BB', CO', etc. ... and we have

. _

LM psin^<f> p
'

B'j\ p
'

^8^

therefore ^ . T^ /LM^* . T^ / MN= etc.
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13. If the diagonals of a cyclic quadrilateral are conjugate lines

and a homothetic quadrilateral be described with their intersection

as homothetic centre
; prove that the consecutive pairs of sides of

the one quadrilateral intersect the corresponding pairs of the other

in eight points which lie on a circle coaxal with the circum-circles

of the quadrilaterals. See Art. 96.

[Use the theorem of Art. 92, Ex. 2.]

i.e., multiples *Jd
L /

r
lt N/52 /r2 , V^/r3 of the displacements ^T7

/,

7*2 7
T

2
2

. . . are proportional to the sides of the polygon ; therefore, etc.

Bowesman. ]



CHAPTER IX.

SECTION I.

Two SIMILAR FIGURES.

96. Two figures similar and similarly placed are said

to be Homothetic, and their homologous parts are called

Corresponding Points, Lines, etc. It is plain, if a line of

either figure is displaced through an angle 0, that every
line of it is displaced through the same angle. For let

AB be displaced to AE'. It follows (Euc. III. 21, 22),

since B= &, that the angle between BG and B'C? is equal

toft

Also, since corresponding lines meet at equal angles, a

variable pair of corresponding lines passing through a

pair of corresponding points A and A' intersect on the

circumference of a circle described on AA containing an

angle 9
;
and conversely.

204
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Corresponding lines are made up of corresponding

points ;
and the point of intersection of any two lines of

either figure is the correspondent of the points of inter-

section of the corresponding lines of the other.

97. We have seen how to find a point S which, with

the extremities of two linear segments AB and A'B\
forms similar triangles (Art. 25), and that it possesses the

properties.

a. A variable line XX' dividing the segments similarly

AX : BX= A'X': B'X' subtends a constant angle at it;

arid

/3. Its distances from the lines are proportional to their

lengths (Euc. VI. 19).

Now, if similar polygons be similarly described on AB
and A'R, it follows, as in Euc. VI. 20, that

1. The distances of S from each pair of corresponding
lines are proportional to these lines.

2. All pairs of corresponding points P and P' of the

polygons subtend the same angle at it, and with it form

a triangle of constant species.

3. The polygons can be made homothetic by the

revolution of either around it (2).

For this reason it is called the Homothetic Centre of

the Polygons, or their Centre of Similitude.

The ratio of SP to SP' is the Ratio of Similitude of

the figures.

98. Since to each point P of one figure corresponds a

point P' of the other such that PSP' is a triangle of con-

stant species, if P coincides with S, F also coincides with
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it
;
and therefore S taken as a point of either figure is its

own correspondent in the other.

Hence it is a Double Point of the polygons.

99. From these considerations we make the following

inferences :

I. If upon the lines joining a fixed point S to the ver-

tices of any polygon Fl
similar and similarly situated

triangles are constructed, their vertices form a polygon F9

similar to the given one, and S is their double point.

II. If the lines joining corresponding points of two

directly similar figures are divided in the same ratio, the

points of section form a polygon similar to the given ones

(H. Van Aubel).

III. If the vertices of a polygon, constant in species,

move on curves of any nature, to each position of it there

is a corresponding centre of similitude.

This is called the Instantaneous Centre for the position,

and is such that the lines drawn from it to all points A t

B, G ... X of the figure make equal angles with the tan-

gents at these points to their respective loci.

[This is seen by taking two indefinitely near positions

of the polygon.]

IV. Reciprocally : If the lines X, Mt
N of the figure,

moving as in the previous case, envelope curves, the lines

joining the contacts of any position to S make equal

angles with Z, M", N.

[For the points of contact are the intersections of two

consecutive positions of the moveable figure and are

therefore corresponding points.]
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SECTION II.

THREE SIMILAR FIGURES.

100. Let Fv Fy .F
3
be any three directly similar figures ;

S
l
the double point of F

2
and jP

3 ;
$

2
and $

3
the double

points of the remaining pairs Fy Fl
and Fv jF

2 ;
av a

2,
a

3

the lengths of corresponding lines d
lt d# d

3 ; a
lt
a

2 , a3
the

angles of the triangle DjD2
Z)

8, whose sides are dv dy dr
Then, by Art. 96,

1. The variable triangle DjZ)2
Z)

3, formed by any three

corresponding lines, is constant in species.

2. The distances of 8
l
from cZ

2
and d

z
are proportional

to a
2
and a

3,
and similarly for $

2
and S

3 (Art. 97 (j8)) ;

therefore, the lines joining Sv Sv S3
to the corresponding

vertices of D^JD^ divide the angles Dlt
D

2 ,
D

3
each into

constant parts, and are concurrent (Art. 65).

Hence the triangle S^JS^ whose vertices are the centres

of similitude of Fv Fy F3
taken in pairs (Triangle of
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Similitude), is in perspective with all homologous tn*,

-DjJDj-Dj, etc.
;
and the centre of perspective K is a

]

such that its distances from any triad of homologous h
are in the ratios a

l
: a

2
: a

3
.

3. Since the base angles of each of the triangles

D
2
D

3#, DJDJt, D^K are constant (Art. 100, 2) as Dv

D
2, Z>

3 vary, the angles subtended by the sides of 8^8^
at K are each constant, and the locus of K is therefore

the circum-circle ; hence,

Any triangle formed by three homologous lines is in

perspective with 8ftJ39
at a point on the circum-circle of

the latter; or the locus of the centre of perspective of
8

lS$s and any triangle formed by three homologous
lines is the circum-circle of the former. This is called

the Circle of Similitude of F
19 F# F3

.

4. The chords KPV KPy KP3
drawn parallel to 'd

lt
d

2 ,

d
3
are homologous lines, for they intersect at angles

A 7 an^ their distances from dv d^ d
3
are in the

ratios a
l :a^: ay

*
Moreover, they meet the circle in fixed

points, since the angle SJKP^ is constant and $
2
a fixed

point ;
therefore P

l
is fixed, and similarly P2

and P
3
are

fixed points.

They are termed the Invariable Points^ and Pff^
the Invariable Triangle, of JP, F9 Fz

.

4. May be enunciated as follows :

All concurrent triads of homologous lines pass through
the invariable points and intersect on the circle of simili-

tude; and reciprocally: the lines joiningPv P2,
P

3
to any

three homologous points B19
B

2,
5

8
meet in a point on the

* These lines are therefore the sides of an evanescent triangle DiD$D9

of constant species.
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circle of similitude
;
and all triangles whose vertices are

three homologous points are in perspective with P^Pf^
and the locus of their centre of perspective is the circle

of similitude.

101. Theorem. The triangle of similitude and the

invariable triangle are in perspective ; and the distances

of the centre of perspective E from the sides of the latter

are inversely, as the ratios a
1

: a
2

: a
3

.

Since S
l
is its own correspondent with respect to P

2
and

F^ P^Sl
and P

3$, are homologous lines and lengths of

these figures, therefore

8^:8^ = 0,:^ (1)

but (Euc. III. 22) 8.P, : ^P, as the distances of S
l
from

PjP2
and P

1
P

3
a

2
:a

3 by (1), with similar relations for

the points 82
and 8

3 ; therefore, etc., Art. 65.

102. Theorem. The invariable triangle is inversely

similar to DJ)J)y
Follows by Euc. III. 22.

103. Adjoint Points.* Let S/ be the point of F^ which

corresponds to S
l
of the figures F2

and F
s

.

Then S
l
'S

l
8

l
is a particular case of a triangle formed by

three homologous points, and is therefore (Art. 100, 4)
in perspective with PjP2

P
3
at a point on the circle of

similitude ; hence the lines P^', P^, P3$! are concurrent.

Their common point is therefore S
t ;

that is to say, P^/
passes through E and S

1 (Art. 101) ; hence,

The lines
/SyS?/,

$
2
$

2', SJSJ meet each other in E and the

circle of similitude at the invariable points.

* The theorems contained in Arts. 100-103 are due to Tarry.

Mathesis, 1882, p. 72.

o
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Defs. The point E is called the Director Point, and

flf/,
flf

a', S; the Adjoint Points of F
19
Fv Fy

104. Theorems.* In any three similar figures there

exists an infinite number of triads of homologous points
Cv (7

2 ,
C

3
which are collinear. 2. The loci of these points

are circles passing through E. 3. The variable line

CjC^Cg turns around E. Neuberg.
The triangles Sflfl^ S&CV S&C, are constant in

species (Art. 97, 2) ;
hence the angles Sjd^ SjDj3v Sfi^

are given, and therefore the loci of the points are circles

passing through each pair of double points.

Again, since Sfi-fi* *s a constant angle, the variable

line Cj(7a meets the locus of G
l

in a fixed point, and

similarly it meets the loci of (7
2
and C

8
in fixed points.

Therefore the fixed points are coincident
;
that is to say,

the circular loci have a point in common.

In the particular case of the collinear triads 8^8^,
S&'S* SfijSJ it has been proved (Art. 103) that their

lines of collinearity pass through E ; therefore, etc. The

points $/, Sj
7

, SJ are on the corresponding circles.

105. Particular Cases. Let the three similar figures

FvFv F3
be described on the sides of a triangle ABC. It

has been shown that the middle points of the symmedian
chords of the circum-circle

-|-
are the common vertices of

directly similar triangles described on the sides, taken

in pairs (Art. 25, Ex. 2), and they are therefore the three

double points. Hence,

1. Brocard's second triangle is the triangle of simili-

*
Mathesis, 1882, pp. 76-8.

t The middle points of the symmedian chords of the circum-circle are

the vertices of the triangle known as Brocard's Second Triangle.
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tude, and the Brocard circle the circle of similitude,

of three directly similar figures described on the sides of
a triangle.

2. Brocard's first triangle is their invariable triangle,

Art. 29, Ex. 3.

3. Brocard's second triangle and the given one are in

perspective at a point on the circum-circle of the former

whose distances from the sides of AEG are in the ratios

of their lengths (Art. 100, 2). See also Art. 16, Ex. 2.

4. The centre of perspective is the symmedian point
of ABC.

5. The locus of the intersection of concurrent triads of

homologous lines is the Brocard Circle, Art. 100, 4.

6. Brocard's first and second triangles are in perspec-
tive (Art. 101), and their centre of perspective E, or

director points, is the centroid of ABC. (Art. 53, Ex. 6.)

7. All collinear triads of homologous points lie on a

variable line passing through E, and each point describes

a circle passing through two vertices of Brocard's second

triangle and the centroid of ABC.

M'CAY's CIRCLES.

106. The loci in 7 of the previous Article are fully

described by M'Cay in his memoir "On Three Circles

related to a Triangle."* Amongst many other properties

they possess those given in this and the following Article.

The notation employed is as follows: ABC is the

given triangle ; A^B^C^ AJBJd^ Brocard's first and second

triangles ;
E centroid

; A', B\ C' three homologous col-

linear points ;
M middle point of AB

;
H circum-centre

;

*
Transactions of the Royal Irish Academy, vol. xxviii. Science.
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Ay J5
3,

<7
3
the homologues of A^ 5

2,
(7

2 respectively as

double points of Fv F# Fy P^ the c correspondent of

P regarded as an a point, and Lac and La^ the c and b

correspondents of any line L regarded as an a line ; the

circular loci the "A," "5," and "(7" circles of the triangle.

1. The mean centre of any three collinear homologous

points is at E (Art. 53, Ex. 6).

2. If one of them C' coincides with E
y
A'B' is a tangent

to the "0" circle and EA' = EB' or EEca^EE^\ simi-

larly we have EE^EE^ and EEbc
=EEba.

3. If one of them coincides with a double point A z>

the line of collinearity is AJEA^A^ (Art. 103) and

Similarly the lines BJ^JS^ and ClC,flz each pass through

E, which is the common point of trisection of the segments

A,A y BJS3,C&.
4. The circles cut each other at angles A, Bt and C.

5. Their centres are on the perpendicular bisectors of

the sides.
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This is proved for the "
<7" circle as follows :

On the sides of ABC construct three directly similar

triangles EGA', CAB', ABC', each inversely similar to

ABC. Their centres of gravity are therefore correspond-

ing points. But they lie on a parallel through E to AB-,

hence E, the centroid of ABC', is on the "
(7" circle and

E and E are reflexions with respect to the perpendicular
bisector of AB.

107. Problem. To find the Centres and Radii of

M'Cay's Circles.

This is done by finding where the circles again cut the

corresponding medians. We take, for example, the "0"
circle and require to find (7. Let L denote the median

CM, and take it an a line. Since it makes an angle

BOM with the side a, we draw the corresponding b

and c lines by making angles CAB' and AEG' equal
to BCM.
From similar triangles MBC' and MOB we have

MC . MC'=MB2=MC.MI; hence MC'=ML This also

follows, since the triangles ABI and BACf are similar.

Again, the triangle CBC2
is inversely similar to

but it is (hyp.) directly similar to BAC# Hence

and ABC f

are inversely similar; therefore C' is the
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reflexion of C
3
with respect to the perpendicular bisector

of the base.

The connection between three collinear points A', B't C'

on the median to the side c of the given triangle and

thus keen established.

The triangles BOA', CAB', ABO' are similar to one

another, and to CBCy ACC
2 , and BAC

3 -,

and therefore

A', (7
2 ; B\ C

; 0', 3
are reflexions of one another with

respect to the corresponding perpendicular bisectors of

the sides of ABC.
It follows that if the median and symmedian cut the

circum-circle in /and J", and these points be joined to M,

the lines Jlf/and MJ produced through M pass through (7

and (7
3 respectively; MJ=MG3

and MIMC\ or G' and

(7
8
are the reflexions of I and J with respect to the

base AB.

Let d be the distance of the centre of the " 0" circle

from AB,m the median, and the angle it makes with the

base, t the tangent from M to the circle. Then

^ (1)
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A 0,7 a MVI M/Y , f
Again, 2d sin == J/JP+M7 =

-g-
+ -

m =-^-. . . .(2)

by (1); whence cZ= ccoto>, and the radius of the "0"
circle is given by the equation

p =Ay^^2=icV^Vr3 (cf. Art. 28, Ex. 19).

Also, since the highest and lowest points of the circle

are distant from the base p+ d and p S, these quantities

are the roots of the quadratic equation
12/i2 -4ccotft)./<,+ c

2= 0; ............... (3)

or, putting h = ^c tan 0,

3 tan20- 2 cot W. tan 0+1 = 0, ............... (4)

an equation which reduces by an easy transformation to

sin
(ft>+ 20) = 2 sin <o ......... (5)

The forms (4) and (5) are remarkable inasmuch as they

express as a symmetric function of the angles ; hence,

Three similar isosceles triangles may be constructed on

the sides of ABC, whose vertices are a triad of collinear

homologous points.

Let P, Q, li be the vertices of these triangles. Since

cos

with similar values for HP and 7/Q; also, from the

collinearity of P, Q, R we have Z-rrp =0.

By substitution, we obtain

Bin A sin sing
'
........w

an equation which is therefore identical with the forms

(4) and (5).

Let Aj and A
2
be the roots of (3), then

1 1 __4cotft)__2 _ 2

A 7t"" c
"~

G tan w
~~

MO"
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where G' is the vertex of Brocard's first triangle ; there-

fore

The vertices of Brocard's first triangle and the cor-

responding sides of ABC are pole and polar with

respect to the "A" "B" and " C" circles.

Many other beautiful properties of these circles are

given in the memoir from which the preceding are

extracts.

108. If A', B', C' be the feet of the perpendiculars of

ABC, the triangles AB'V, A'BC\ and ABC are similar,

and may therefore be taken as portions of three directly

similar figures Fv F^ F3
whose double points are A'

y
B'

y (7,

homologous lines in the ratios cos A : cos B : cos (7, the

middle points of the segments of the perpendiculars
towards the angles A", B', C", the invariable points

A", B"\ C"\ points of concurrence of homologous lines

middle points of sides, and the nine-points-circle the

circle of similitude (Neuberg).

EXAMPLES.

1. If similar figures FI, F2,
F3 be described on the perpendiculars

A A', BE1

,
CC' of a triangle, their circle of similitude is the ortho-

centroidal circle.

[For the ortbocentre being the point of concurrence of three

corresponding lines is on the circle of similitude (Art. 100, 4).

Also the parallels through the centroid E to the sides of the

triangle trisect the perpendiculars at right angles, and are therefore

also corresponding lines ; therefore, etc.

We note that the parallels meet the corresponding perpendiculars

in P, Q, /?, the invariable points of F
l9 F2,

F3.]

2. The lines joining the in- and circum-centres of the copedal

triangles BC'A, C'A'B, A 'BC meet at the point of contact of the

nine-points and in-circle of ABC.
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[By Art. 108, the three triangles being parts of similar figures
have the nine-points-circle of ADC for circle of similitude, and the

middle points of the segments of the perpendiculars for invariable

points ;
hence (Art. 100, 4), if 7i, 72,

73 and #1, 2, 3 denote the in-

and circum-centres of the triangles, the lines 7^, 72 2, 73 3

correspond, and are concurrent on the circle of similitude.

Dr. Casey
*
proves the remainder of the property, which includes

Feiierbach's Theorem, as follows :

Let xV be the nine-points-centre ; then NO^^R. Draw IP

parallel to A7

3. Now, if PI is proved to be equal to the radius of

the in-circle, the line 73 3 is the join of parallel radii, and therefore

passes through a centre of similitude of the circles
; similarly for

7^1 and 12 2.

Since COI and COJz are corresponding parts of similar figures,

they are similar; therefore the angle 7)70=7 I$l\ and OD1=-OCI
= CIPy since N03 is parallel to 00. Hence the triangles GDI and

P773 are similar, and

IP^IIs^Hs. 7g_ 2rV r\

R ID 2Rr 2tfA R>'

since C//(773 =l/cosC', the ratio of similitude of ABC and A'B'C

(Art. 108).]

3. If A and A ', corresponding points of two similar figures, are

conjugate points with respect to a fixed circle, required to find

their loci.

*
Casey's Sequel to Emlid, fifth edition, p. 202.
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[Take S the double point, M the middle point of A A'. Then
SAA f

is a triangle of constant species ; therefore SM/MA is a

constant ratio. But MA =
t, the tangent from M to the given

circle (Art. 73, 2). Hence SM/t is constant and M describes a circle

(Art. 72, Ex. 3) ;
therefore also A and A' describe circles.]

4. If XiXX$ be a triangle formed by joining a triad of corre-

sponding points of three similar figures such that X\XZ : X\X$
= const., the locus of each vertex is a circle.

[The triangle S^X\X^ is constant in species, Art. 97 ; similarly for

82X1X3 ; hence SsXi/XiX^ and S^XijX^Xz are constant ratios.

Dividing one by the other, we have the base j$S3 and ratio of

sides of the triangle S^S^X^ ; therefore, etc.

It is to be noted that as the ratio S^Xi/S^Xi varies in magnitude
the vertex A'I describes a coaxal system of which /So and /S'3 are the

limiting points.]

5. If the area of XiXzXs is given, each vertex describes a circle.

[For A"iA' 2 . XiXa sin A\ varies as SzXi . *SsATj sin(ATi
-
6) ;

there-

fore, etc. (Art. 23, Ex. 3). X* and X3 similarly describe circles.]

6. If a side or an angle of A^A^Aa is given, its vertices describe

circles.

7. If the area of a variable triangle formed by three correspond-

ing lines be given, its sides envelope circles whose centres are the

invariable points of f\ 9 b\ F3.

These and many other excellent illustrations of the theory of

three directly similar figures are to be found in Casey's Sequel
to Euclid, to which the student is referred. See fifth edition,

Miscellaneous Examples, pp. 231-248.



CHAPTER X.

SECTION I.

CENTRES OF SIMILITUDE.

109. If A, r
l ; By r

2
be any two non-intersecting circles,

P and Q the points of intersection of the direct and

transverse common tangents, it is easily proved that

A,B,P,Q are collinear, and that AP/BP=AQ/BQ = rjr^ ;

hence the centres of similitude of two circles are the

points of intersection of the direct and transverse

common tangents*
In the case of intersecting circles, if G be a point of

intersection, we infer from these equations that the

bisectors of the angle between the circles meet the line

of centres in P and Q (Euc. VI. 3).

For the in- and ex-circles of a triangle taken in pairs

the twelve centres of similitude are the vertices and the

points where the bisectors of the angles meet the opposite

sides.

The centres of similitude of a line L and circle A are

the extremities of the diameter perpendicular to L.

For the common tangents to the circle and line are

* Therefore the common tangents, real or imaginary, to any two

circles always intersect in real points.

219
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parallel to the latter, and the line of centres is the

diameter at right angles to L
; therefore, etc.

110. It has been seen as a particular case of a general

property of coaxal circles (Art. 93) that any line A^A^B^
through (7, ct, cuts the circles at equal angles and, /3, that

the intercepted chords A^ 2
and B^2

are in the ratio of

the radii. These are obvious by the following method :

Join AA
l
and BBr Since CAICB= r

l/r2
= AAJBB1

the

triangles GAA l
arid CBB

l
are similar (Euc. VI. 7) ;

there-

fore AA
1

is parallel to BBV and similarly AA 2
to BB

2
.

Hence the isosceles triangles AA^A 2
and BB

1
B

2
are

similar, whence, a, the angles A^AA^ and B
1
BB

2
are

equal, and, /3, A^AJB^B^r^r^.
Definitions. A

l
and B

l
are termed Homologous Points;

and since the radii AA
l
and BB

l through them are parallel,

the tangents at homologous points on the circles are
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parallel. Thus the tangents at A
2
and J5

2
are parallel.

More generally any two points An and Bn which connect

through G such that CAnICBn = r
llr2 are homologous.

A
l
and J3

2
are termed Antihomologous Points, and since

the radii AA
l
and BB2 through them make equal angles

with their line of connexion, the tangents at antihomo-

logous points meet on the radical axis.

Let a second transversal through C meet the circles in

A^A^B^B^. The chords A^ z
and B^3 joining pairs of

homologous points are termed Homologous Lines, and

those joining pairs of antihomologous points Antihomo-

logous Lines. Thus A%A^ B^^ and A^A^ BJB are

pairs of antihomologous lines.

111. Theorem. Homologous chords (-4^3, B^) of

any two circles are parallel.

For it has been shown that AA and BBV AA 2 and

BB
2
are pairs of parallel lines; hence the two isosceles

triangles AA^A Z
and BB^ have equal vertical angles,

and are therefore similar (Euc. VI. 6).

NOTE. Since any line through meets homologous
lines A^ 3

and B^^ in homologous points An and Bn ,

therefore A n> Bn are in general the corresponding inter-

sections of pairs of homologous lines. The two points

A^fr A 2
A and B^^ -B

2
5

4
are homologous.

112. Theorem. Antihomologous chords (A 2A, B^B^)

of any two circles meet on their radical axis.

By Art. Ill, we have CAJOA^CBJCB^ but (Euc.

III. 36) CAJCA^CAJCAz; hence CBJCR^CAJCA^
or CA

2 . GB
l
=^ CA . CB3 ;

thus : any two points are

coneydie with the corresponding pair of antihomologous

points; therefore, etc. (Art. 88, Ex. 6).
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PRODUCTS OF ANTISIMILITUDE.

113. By the previous Article, we have from the cyclic

quadrilateral A^A^B^B^
CA

2
. CB^CA,. GBy

We may therefore infer that the rectangle under the

distances of either centre of similitude from a pair of

antihomoloyous points is constant

If the circles A, r
l ; B, r

2
be regarded as portions of

two geometrical figures, any point An of one is antihorno-

logous to Bn of the other when the line A nBn passes

through a centre of similitude (7, and CAn . CBn is equal
to the above constant, which is termed the Product of
Antisimilitude (External or Internal).

To find the values of the products, we take the

extreme positions of the variable line GA
2
B

l
which for

real intersections are the common tangents.

We have therefore

GA
2

. CB^CT, . CT2 (1)

Again, since T^T2 subtends a right angle at each of the

limiting points M and N (Art. 88, Cor. 3),

CTt.CT^CM.CN (2)

These constant values which may be expressed in terms

of the distance (<5) between the centres of the given circles

and their radii (rl
and r

2) are of importance in the theory
of coaxal circles, and will frequently be made use of in

the next chapter.

Join ATt and BT^ Let AGT
l
- 6.

Then CT, . CT2
=

r,
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Similarly the internal product of antisimilitude is found

to be equal to

NOTE. It should be noticed when the two circles lie wholly out-

side each other 8 > 7*1 + r2,
if they intersect 8 < TI + r-2 and > r^ ~ r-2

(Euc. I. 20), and when one lies completely within the other

&<ri *, ro (Euc. III. 12) ;
hence it follows from (3) that the external

product of antisimilitude is negative only when one circle lies wholly
within the other. Also from (4) the internal product is negative

when the circles are external to one another and positive in every
other case. In the case where both products are positive 8>ri^r2

and < TI 4- r ;
therefore 8, r

1} r2 form a triangle (Euc. I. 20), or the

circles intersect in a pair of real points.

EXAMPLES.

1. If a variable circle touch two circles with contacts of similar

species, its points of contact are antihomologous points.

[By Art. 112, if AA 2 and BB\ be produced to meet in X,

XBi= XA<>. In the case of internal contact the points of contact

are AI> B&]

2. Describe a circle passing through a given point (P) and

touching two fixed circles (A, TI) (#, r2 ).

[By Art. 110, the required circle passes through an antihomo-

logous point P', and the problem thus reduces to " describe a circle

passing through two fixed points and touching a given circle."]

3. The polars of the external centre of similitude with respect to

two circles are equidistant from the radical axis, and therefore also

from the limiting points.

4. The line at infinity is an axis of perspective of two circles.

[Regard the circles as similar polygons of an infinite number of

sides, and join their corresponding vertices (i.e. the homologous

points). Thus the ex-centre of similitude is a Centre of Perspective

of the circles. Again, the corresponding sides (i.e. homologous lines)

intersect on the axis of perspective. In this case they are parallel.
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Hence the line at infinity is the axis ofperspective of every two circles.

(Cf. Art. 87).]

5. The radical axis is also an axis of perspective of two circles.

[For since antihomologous points B\^ A 2 connect through a

centre of similitude (7, the circles may be regarded as polygons of

an infinite number of sides whose corresponding vertices are

antihomologous points and whose corresponding sides are therefore

antihomologous lines ; but these latter intersect on the radical axis

(Art. 112), which is therefore the axis of perspective.*

6. The poles An> Bn of the chords A\A^ and E\B^ are homologous

points.

[For they are the intersections of pairs of homologous lines, viz.

the tangents at AI, A^ and B^ B2 respectively.]

7. In Ex. 6 the lines AiBi and A nBn are conjugate with respect

to both circles.

8. If (7, C
r

denote the centres of similitude of two circles which cut

orthogonally at X
;
the inverse (C") of the point C' with respect to

the circle A is the inverse of with respect to the circle B.

[Since C' and C" are inverse points, AC"XAXC f ^ ; hence

AC"X=BXC, therefore CJ3/BX=BX/BC", therefore etc.

9. A variable circle touches two equal circles with contacts of

opposite species : show that the product of the intercepts on their

transverse common tangents made by the perpendiculars from the

centre and measured from their point of intersection is constant.

10. The centres of similitude, the centre of the circle of similitude,

and the centre of either circle B are pairs of inverse points with

respect to a circle concentric with A .

* Two circles are thus shown to be doubly in perspective to each

centre of similitude ; the two axes of perspective forming the coaxal

circle whose radius is infinitely great, viz., the radical axis and the

line at infinity. It follows that " for every two circles in the same

plane, however circumstanced as to magnitude and position, the

radical axis and the line at infinity, being both axes of perspective, are

both chords of intersection ; the corresponding points of intersection,

real or imaginary, according to circumstances in the case of the former,

being of course from the nature of the figures always imaginary in the

case of the latter.
"

(Townsend, )
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11. The poles A^ P>i of tlie radical axis of two circles (A, 1\ ; B, r2)

are inverse points with respect to their circle of similitude.

[For since AAt . AL= r
L*, angle APL^ AA^P;

also since BB
l

. BL= r2
2
, angle BPL= BB^P.

By addition APB=PA&+ PB^A x
= TT - A^PBV

Thus AI, BI and A, B, since they subtend similar angles at JP, are

pairs of inverse points with respect to the circle of similitude (Art.

72, Cor 8).]

12. If a variable circle I
r
cut two circles A and B at constant

angles, show that the centre of similitude of any two positions \\

and F2 is on L the radical axis of A and B.

[For Vi and F2 meet the line L at equal angles (Art. 88, Ex. 7) ;

therefore it passes through their ex-centre of similitude.]

12a. Hence show that if the circles A and B each cut three fixed

circles FI, F2,
Fs at the same angles a, /3, y, an axis of similitude of

the three is the radical axis of the two.

13. Construct a quadrilateral, having given the four sides, and

that two adjacent angles are equal. (Mathesis, 1881.)

14. Feuerbach's Theorem. To prove by an elementary
method that the nine-points-circle touches the iii-circle.

Draw C'X the fourth common tangent to the in- and ex-circles to

the side c of the triangle ABC. We shall prove that the line

joining M9
the middle point of the base, to the point of contact X

passes through the point of contact Y of the in- and nine-points-

circles .

Let T be the point of contact of the in-circle, P the foot of the

perpendicular, and C' the foot of the internal bisector of C.

p
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By Art. 71, Ex. 3, MP. J/(/ = J( ~ &)
2= MT*= MX. MY. Hence

XYPC' is a cyclic quadrilateral and angle MC'X=MYP\ but

MC'X=MC'C-XC'C=A ~B\ hence MYP=A~B, and therefore

F" ^* o?i the nine-points-circle, since the latter cuts the base AB
at this angle. Therefore the circles cut or touch at Y. But the

tangents at M and A" to the circles are parallel, since they both

meet the base at the same angle A ^B. M and A^are thus homo-

logous points.

15. The straight lines joining the points of contact of the fourth

common tangents to the in- and three ex-circles to the middle

points of the corresponding sides are concurrent. (Diiblin Univ.

Exam. Papers.}

[By Ex. 14, the point of concurrence is where the nine-points-

touches the iii-circle.]

1C. A right line AHCD is drawn across two circles cutting

them at angles a and fi respectively ; show that if a variable circle

cuts the given ones at the same angles in the points A', /?', C", //, A A\

BB', CC\ DU are concurrent ;
and find the locus of their point of

concurrence.

[The given circles meet the line ABCD and circle A'B'C'D' at

equal angles ;
hence A A' etc. are antihomologous points with respect

to the external centre of similitude of the latter. Therefore A A'

etc. meet 011 the circle A'B'C'D' at a point (P) the tangent at which

is parallel to ABCD. The locus of P is the radical axis of the fixed

circles by Ex. 1 2.]
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SECTION II.

CIRCLES OF ANTISIMILITUDE.

Definitions. The circle described witli either centre

of similitude of two given circles os centre, the square of

whose radius is equal to the corresponding product (Art.

113) of antisimilitude, is known as a Circle ofAntisimili-

tude.

Thus there are two circles of antisimilitude, External

and Internal, according as the centre coincides with the

external or internal centre of similitude of the given circles.

From the definition it is evident that all pairs of

antihomologous points are inverse points with respect to

the circle of antisimilitude, or, more generally, that

each of the tivo given circles is the inverse of the other

with respect to either circle of antisimilitude.

In the next chapter this latter circle, from this funda-

mental property, will be otherwise known as the Circle

of Inversion of the two given ones.

114. The following theorems are of importance in the

geometry of these circles.

1. Any two circles A and B and their circles of anti-

similitude are coaxal.

For the constant product CA
2

. CB
l (Art. 113) has

been proved equal to CM . CN\ hence M and N are a

common pair of inverse points to the four circles.

2. The squares of the tangents ^ and t2
from any

point of either circle of aritishhilitude to A and B are in

the ratio of the radii
;
or t^ : t

2
2 = r

x
: r

2
.
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Since the circles are coaxal,

t* : t/
= CA:CB = r

x
: r

2
. (Art. 88, Cor. 2.)

3. The external circle of antisimilitude cuts ortho-

gonally all circles cutting A and B at equal angles.

Since AA
2
and BB

l
are equally inclined to the line

A
2
BV if they are produced to meet in X, then XB^A^ is

an isosceles triangle, and X is therefore the centre of a

circle cutting A and B at equal angles.

Thus any circle cutting A and B at equal angles passes

through a pair of inverse points A 2
and B

l
with respect

to the ex-circle of antisimilitude
; therefore, etc.

See also the method of Art. 93, Cors. 3, 4.

4. Any circle intersecting A and B at supplemental

angles is orthogonal to the internal circle of antisimili-

tude.

[Proof similar to 3.]

5. Any circle intersecting A and B orthogonally is

orthogonal to both their circles of antisimilitude.

For in this particular case A and B are cut at angles

which are at once both equal and supplemental ;
there

fore, etc. by 3 and 4 combined.
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EXAMPLES.

1. A variable circle passing through a fixed point and cutting

two given ones at equal angles passes through a second fixed point.

[In every position it passes through the inverse of the fixed

point with respect to the ex-circle of antisimilitude.]

2. A variable circle passing through a fixed point and cutting

two fixed circles at supplemental angles passes through a second

fixed point.

[The inverse of the given one with respect to the m-cirele of

antisimilitude.]

3. Two circles X> Y intersecting two others A and B at equal

angles have for radical axis a line passing through the centre C of

the ex-circle of antisimilitude of A and 73.

[For if X and Y intersect in a point 7J
,
each must pass through

the inverse of P with respect to CJ\

3a. If the angles are supplemental, the radical axis of A' and Y

passes through the in-centre of antisimilitude.

4. If three circles .V, ]', Z meet two others A and B at equal

or supplemental angles, the radical centre of the three coincides

v\ith the external or internal centre of similitude C or C" of the

two.

[For by Ex. 3 the radical axes of )', Z ;
Z

y
X ; Xy

Y each pass

through C or (" according as the angles of section are equal or

supplemental ; therefore, etc.]

NOTE. In this example it may be noticed that in the first case

the circles A and B each cut A
r

, F, and Z at equal angles ;
therefore

they cut the ex-circles of antisimilitude of Y, Z \ Z, X ; A", J'at

right angles (Art. 114). But the ex-circles of antisimilitude are

coaxal ; hence a variable circle A cutting three others A", }", Z at

equal angles describes a coaxal system, the conjugate of thatformed by

the circles of antisimilitude of A", Y, Z taken two and tico. More

generally, a variable circle cutting three others X, Y> Z, at similar

angles describes four coaxal systems whose radical axes are the

four axes of similitude of AT, Y, Z. Also, since the common ortho-
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gonal circle of the three cuts them at once at equal and supple-
mental angles, it belongs to each of the four coaxal systems.

5. If two circles A and B touch with similar contacts three

others A", F, Z^ the radical axis of J and B is the line joining the

ex-centres of similitude of JT, F, Z taken in pairs.

[A particular case of the foregoing. ]

6. The eight circles that can be described to touch three given
ones arrange themselves in pairs coaxal with the four axes of

similitude of the given ones.

7. In Ex. 5 the chords of the three circles joining the points of

contact with the two meet at the in-centre of similitude of A and Z?,

and therefore at the radical centre of A", F, Z.

8. The chords of contact pass through the poles of the radical

axis of A and B with respect to each of the circles X, F, Z.

[For the tangents at the extremities of the chord of contact of

X being equal intersect on the radical axis of A and
/>.]

NOTE. Gergonne deduces by means of the foregoing properties

a wimple geometrical construction for the eight circles of contact of
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three given ones A", F, Z. The circles having similar contacts are

found as follows : Find the ex-centres of similitude of A', F, Z
taken in pairs ;

the line L joining them is the radical axis of the

required circles A and B. Next find C' the centre of the common

orthogonal circle of the given ones. C' is the in-centre of simili-

tude of A and B. Now obtain the inverses X', F', Z' of L with

respect to .V, F, Z respectively. Join C'X', C' F', and C'Z' ;

these lines meet the given circles at the required points of

contact
; therefore, etc. The remaining circles may he similarly

found.

Otherwise, thus : By Casey's relation in Art. 7, if we number
the given circles 1, 2, 3 and let 4 be the required point of contact

with 1, we have the ratio of the tangents from 4 to 2 and 3, a given

quantity Jc. Similarly for the second circle which has the similar

contacts with the three given ones, the ratio of the tangents from

its point of contact (5) to 2 and 3 the same ratio k\ therefore,

etc. (Art. 88, Cor. 1).

9. Let AiA-2y /A/>j be the extremities of the common diameter of

two circles
; J/", JV their limiting points ; prove that the circles on

AiBiy AB'2, MN as diameters are coaxal.

[For their centres are collinear, and they each cut the internal

circle of aiitisimilitude orthogonally (Art. 114, 4) ; therefore,

etc.]

10. A variable circle cutting three given ones at equal angles

passes through two fixed points, real or imaginary.

[For it cuts the external circles of aiitisimilitude of the given
ones taken two and two orthogonally, and these (Art. 88, Ex. 13. 2)
are coaxal

;
therefore the variable circle passes through their limit-

ing points, real or imaginary.]

11. Two variable circles X and F touch externally two fixed

circles A, i\ and />, ra at four points B^ A 2 and A.2j L>\ in a right

line ; prove that

a. The line joining their centres passes through a fixed

point.

ft . The sum of their radii is constant.

y*.
The foot of their radical axis describes a circle.
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[a. Since the diagonals of a parallelogram bisect each other, XY
bisects and is bisected at the middle point Z of AB.

/3. Let L be the radical axis of A
, r^ and Z?, /% ; then XLjp

YT J_ VT
-const. (Art. 88, Ex. 7), and therefore - +

^=const., but the
P+Pi

numerator is constant by a (
= 2ZL) ; therefore, etc.

y. The circle on CZ is evidently the locus.]

12. Circles are described touching two fixed circles (as in Fig. of

Ex. 8) ; find the locus of the limiting points of these circles taken in

pairs.

[The internal circle of antisimilitude of the two given circles

(Art. 114, 3).]

I2a. Circles are described touching one another, and each touch-

ing two given circles ; find the locus of their points of contact.

[The points of contact are the coincident limiting points of the

touching circles ; hence the required locus is the internal circle of

antisimilitude of the two given ones.]

13. If n points be taken on a circle, prove that (1) the mean
centres of the n systems of n I points formed by omitting each
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point in succession, lie on a circle $n ; (2) if anotht r point be taken

on the original circle, the centres of the n + 1 circles (Sn ) obtained by

omitting each point in succession lie on an equal circle ; and so on

ad infinitum. (St. Clair.)*

[Let G be the mean centre of the system of n points. Produce

A(jf to a, making AG : Gan-\ : 1
;
then a is the mean centre of

the n- 1 points formed by excluding A. In the same manner we

get BG : Gbn-\ : 1, etc. ;
hence the points a, b, ... lie on a

circle ;
and G is a centre of similitude of the locus circle and the

given one.

* Educational Timta, February, 1891.



CHAPTER XL

INVERSION.

SECTION I.

INTRODUCTORY.

115. It has been seen (Art. 74) that the inverse of

every point on a line with respect to a circle lies on a

circle described on the line joining the centre of the given
circle with the pole of the line.

This circle is said to be the inverse of the line with

respect to the given circle
;
and it may be generally

inferred that the inverse of a line is a circle passing

through the centre of the given circle ; and conversely.

This latter is named the Circle of Inversion, and its

centre the Origin or Centre of Inversion.

We shall now proceed to discuss the inversion of a

system of points which are not collinear. Take the

simplest case the vertices of a triangle ABC. Let their

inverses with respect to a circle of inversion 0, r be

respectively A'y B't C'.

It is obvious that the three quadrilaterals BCB'C',

CAC'A, ABA'B' are cyclic ;
hence we have the angular

relations :

A'C'O = OAC, B'C'O= OBC, etc. (Euc. III. 22),
234
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and thence by addition,

(1)

Similarly, BOC=A+A' (2)

and COA=B+B' (3)

If the base AB and origin are fixed, and G given in

magnitude, G
f

is also given in magnitude by (1) ;
hence :

If a variable point (C) describes a circle (circum-circle

of ABC), the locus of its inverse (C') is a circle (A'B'C')*

Two circles or, more generally, any two curves so

related that every point of one has a Corresponding
Point on the other inverse to it with respect to a given

circle, are Inverse Figures with respect to the circle of

inversion.

It has thus been proved that in general a line or circle

^ * This statement ia equivalent to the following :

~"~

If a variable line OPP' is drawn from afixed point to a given circle

and divided at X such that OP . OX = const. ; the locus ofX is a circle,

which may be thus proved independently. Since OP . OP f and

OP . OX are both constant, OX : OP' .-const. Through A" draw XC'

parallel to CP'. From similar triangles OX : OP' - OC f

: OC
C'X : CP' = const. Hence C' is a fixed point, and C'X is of constant

length. The locus of X is therefore a known circle ; and the circle of

inversion is obviously a circle of antisimilitude of the given one and its

inverse.
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inverts into a circle
;
and in the particular case when

the origin is on the circle, its inverse is a line.

116. Species of A'tfC'. Let the points A, B, G be

tixed. Since AOJi=C+C', G' may have any value de-

pending on the position of the point 0. The following

particular cases are worthy of notice, and may be readily

inferred :

1. If is the circum-centre of ABG,
A=A',B = B'

y
C=C'.

2. If is the right (or positive) Brocard point of

ABC. AOB = C+C'=Tr-B',
hence C' = A.

Similarly A' = B and B' = G.

3. If is the left (or negative) Brocard point, ABC
and A '

B'G' are again similar.

4. If is one of the vertices (f/2) of Brocard's second

triangle, AOB = 2C=C+C', therefore C=C'\ and also

Hence the triangles are similar when the centre of

inversion coincides with any of the six points 0, 2, 2',

-4
2 , B%, C'

2 ,
or their inverses. (Art. 72, Ex. 22.)

5. If is on the circum-circle, (7' = 0, and the points

A
', B', G' are collinear.

6. Let BOG, GOA and AOB be equal respectively to

60 + ^, 60 + ,
60 + C. Then A' = K= C' = GO ;

there-

fore the vertices of any triangle may be inverted into

those of an equilateral; or one of any yioen species.

117. In the preceding figure the point has been

taken inside the triangle. It is easy to verify the

analogous angular relations when the centre of inversion

is outside ABG.
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It will be observed from tbe relations of Art. 116 that,

if a variable triangle of the species ofAB'C' be inscribed

in the given one, the fixed point in connexion with the

figure determined by the method of Art. 19 coincides

with the centre of inversion.

118. Relations between the sides of ABC and A'B'C'.

From similar triangles AOB and A'OB',

AB*IA'B'* = OA . OB10A' . OB
;

but OA ' - r2
/OA and OB' - <>*/OB,

therefore by substitution

or c/c'-OA.OB/i*.

By dividing the similar relations a/of = OB . OC/r
2 and

/>///= 00. OA/r
2

,
we have

a /a OB
,

-.- / T,
=

77-7-
= const.

b/ V OA

Hence : If the base and ratio of sides of a triangle

are given, the base a,nd ratio of sides after inversion are

also known. In each case the locus of the vertex is a

circle having the extremities of the base for a pair of in-

verse points (Art, 70) ;
and since the loci are inverse

figures, we have the following important theorem :

Every circle and a pair of inverse points invert into a

circle and a pair of inverse points ; and more generally,

A circle and a pair of figures each the inverse of the

other with respect to it, retain this relation after inversion

from any origin.

119. Theorem. Any circle X
y
its inverse X' and the

circle of inversion are coaxal, i.e. have a pair of

common points, real or imaginary.
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Let P and Q be the common pair of inverse points of

the circles and X. It is manifest that they are inverse

points to X'. For X, P, Q invert respectively into

X', Q, P, which by the last Article are a circle and pair

of inverse points ; therefore, etc,

The theorem requires no proof when the intersections

of the circles are real, as the coaxal system is of the

common point species.

COR. 1. The circle of antisimilitude is the circle of

inversion of either of two given ones with respect to the

other; hence, Two circles and their circles of antisimili-

tude are coaxal.

COR. 2. The inverses of the vertices of any triangle

with respect to the polar circle, real or imaginary, are the

vertices of the pedal triangle ; hence, The circum- and

nine-points-circles are inverse figures with respect to the

polar circle of the triangle; and the three circles are

coaxal.

120. Inversion of a System of Four Points. Let

A, B, C, D and A', B
f

, C", D' be any four points and their

inverses with respect to a given circle of inversion 0, r.

The quadrilaterals BCB'C', CDC'I)',. . . are cyclic. Hence

the angular relations :

OA'&=ODA, QC'D' = ODC,
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from which we obtain

27r .......................... (1)

Also AOC=B+B' ;
therefore by substituting in (1),

B+&+D+ iy=2ir;......................... (2)

similarly, A +A'+C+C'= ZTT,

or the sums of corresponding pairs of opposite angles of

the two quadrilaternls are together equal to four right

angles.

The following particular cases are noticed :

1. If B+D TT, then also B'
'

+ D'
'

TT ; i.e., a cyclic

system ofpoints inverts into a cyclic system. Cf. Art. 1 15.

2. If B'= D' and A' = C' simultaneously, A'B'C'D' is a

parallelogram, and its angles are given by the equations

and A + C=2(Tr-A') = <:>(>* -C').

NOTE. The centres of inversion in this case are easily

found; for AOC=B+K= B+>ir-\(B+D\ and BOD
similarly equals A + 7r ?>(B+ D) ; hence there are two

centres of inversion from which the vertices of any
quadrilateral invert into the vertices of a, parallelogram
in an assigned order, viz., the intersections of the known
circles COA and BOD. Four other points might be

similarly found from the intersections of pairs of circles

BOG, AODt and AOB, COD.

3. A cyclic system of four points may be inverted

into the vertices of a rectangle.

121. Relations between the sides of ABCD and

A'B'C'D'. By Art. 118, BC/B'C'= OB . OC/t* and

AD/A'D'=OA . OD/r
2

. Multiplying these relations

we have
BO .AD ^ OA . OH . OC^OD

A'D' r*~
~" "

;
............ ( '
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. .. . CA.BD OA.OB.OC . OD ,ox
similarly, C>A < RD>

=-
^
--

* .............. (2)

etc. etc. ; hence

BC.AD:CA.BD:AB. CD
= B'C' . AD' : C'A . B'D' : AB' . C'D'......... (3)

COR. 1. If A
y B, C, D be a harmonic system of points

on a circle
; A, B', C', D' are also a harmonic cyclic

system.
For if the ratios on the left side of (3) are equal, those

on the right are also equal.

COR. 2. Combining 3 of the last Article with the

previous corollary, it follows that a harmonic system of

cyclic points may be inverted into the vertices of a

square.

EXAMPLES.

1. Any two triangles may be placed such that the vertices of the

one may be inverses of those of the other taken in any assigned

order.

2. Any four points may be inverted into an orthocentric system.

[For the latter quadrilateral has the following angles :

A\ 90-4', 1804-4', 90-4'; hence since BOD=A + A', COA
=2?+90 -4', and A + C+A' + 7r+A'=:I8tf ; the centres of inver-

sion are the intersections of two known circles BOD and COA.}

3. Each side of a triangle divided by the perpendicular on it

from any origin remains unchanged by inversion.

3a. If the origin is the symmedian point of the one triangle, it is

also the symmedian point of the other.

4. If a, (3, y denote the perpendiculars from any point on a

circle, on the sides of an inscribed triangle, then

fiy sin A +ya sin B+ a/3 sin (7=0.

[For let A'B'C' be any three points on a line L, and the origin ;

since
ffC' + C'A'+ A'ff

OL '
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after inversion is 011 the inverse circle L' andM+ CA +
AB

or f +|+?=0
.

a /3 7 a /3 y
therefore, etc.]

5. Prove generally for any cyclic polygon that

(a/a)=0. (Casey.)

6. The inverse of a figure with respect to a line is its reflexion

with respect to the line, and is equal in every respect to the given
one.

7. The inverses A', B', C' ... of the points of intersection A, B,

(7, D of any two figures are the corresponding points of inter-

section of the inverse figures ;
and the lines A A', BB', CC' ... are

concurrent at the centre of inversion.

7a. If two curves touch at A, their inverses touch at A' the

inverse of A.

8. A circle coincides with its inverse when the circle of inversion

is orthogonal to it.

9. A variable chord AB of a circle, the inverse C' of a fixed

point C on it and the centre arc coneyclic.

[Since the points A, />, (7,
GO are collinear

;
their inverses with

respect to the given circle are concyclic ; i.e., ABC'O is a cyclic

quadrilateral.]

10. From any point P on the circum-circle a line is drawn

through the symmedian point A", cutting the sides of the triangle

ABC in A', B', C', prove the relation 2l/^i' = 3/7'A".

[Employ the properties of Ex. 4 and Art. 15, Ex. 1 (3).]

122. Theorem. The inverse of the circum-circle of a

triangle ABO with respect to the in-circle is the nine-

points-circle of the triangle PQR formed by joining the

points of contact.

Let X, Y, Z be the middle points of the sides of PQR.
From similar triangles we get

OA . OX=OB . 07=00 . OZ=r*;

therefore, etc.

Q
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Mr. Piers C. Ward has applied this property in the

following elegant proof of Mannheim's Theorem :

Inverting with respect to the in-circle, the circum-

circle inverts into XYZ, that is, a circle passing through

a fixed point Z and of constant radius
(
=

r). It there-

fore envelopes a circle concentric with Z whose radius is

equal to the diameter of XYZ; therefore, etc., by Art.

121, Ex. 7.

EXAMPLES.

1. A variable triangle ABC is inscribed to one and escribed to

another circle ; prove that the mean centre of the points of contact

Py ,
R is a fixed point.

[This particular case of Weill's Theorem (Art. 53, Ex, 12) is easily

seen. For the mean centre of /*, ft R is the point of trisection of

the line joining its circuni- and nine-points-centres, both of which

are fixed ; therefore, etc.]

2. If a quadrilateral ABCD be inscribed to one circle and circum-

scribed to another ; prove that the mean centre of its points of

contact /*, Q, R, S with the inner circle is a fixed point.

[Let TF, X, Y, ^be the middle points of the sides of the cyclic

quadrilateral P, <?, Ry
S. Then lr

, X, F, Z is a cyclic parallelo-

gram, and is therefore a rectangle. The mean centre of 1\ Q, R, S
is evidently that of the system IF, A", F, Z, or the centre of the

circle inverse to ABCD with respect to the other given circle.]
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3. The four nine-points-circles of the four triangles formed by

taking the vertices of a cyclic quadrilateral in threes pass through
a point.

[For the nine-points-circles invert into the circum-circles of the

triangles formed by drawing tangents to the circle at the vertices

of the quadrilateral ; therefore, etc. The more general property

for any quadrilateral has been independently demonstrated.

Art. 79, Ex. 16.]

SECTION II.

ANGLES OF INTERSECTION OF FIGURES AND OF THEIR

INVERSES.

123. The general relations existing between the centres

and radii of a circle, its inverse, and the circle of inver-

sion are as follows :

Let (7, 0', be the centres of the three circles; AB,

A'B', MN the extremities of their common diameter
;

SSf

and TT' the direct common tangents intersecting in

0. Join ST and ST.
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Since AB and A 'B' are inverse segments with respect

to the circle of inversion, the three circles are coaxal.

(Art. 114, Ex. 9.)

Let / and /' denote the points of intersection of ST
and S'T' with the line of centres

; by comparing equal

triangles OIS and OH\ etc., it follows that ST and ST
are both perpendicular to AB. The quadrilateral CSS'I'

is therefore cyclic; hence the inverse of is /'; and

similarly the inverse of G' is / with respect to the circle

of inversion, and therefore :

The centre C of any circle inverts into the inverse I' of
the centre of inversion ivith respect to the inverse circle

C'; and

The inverse I of the centre of inversion with respect

to any circle G inverts into the centre C' of the circle

inverse to the circle (7.*

In the particular case when the inverse circle is a line,

the inverse of the centre of a given circle is the reflexion

of the origin with respect to the line.

The inverse of ST is the circle on OC' as diameter.

Again, by similar triangles 0(7/0CT^OMOff^CS/CW'.
or, say d/d' = t/t'

= r'r ....................... (1)

To find d'
t t', and r'

t
we have

where R is the radius of inversion.

Hence rf'= ^............. .............(2)
cfi ~ ri

a relation which gives the position of the centre (7 of the

inverse circle.

*Townsend, Modern Geometry of the Point, Line, and Circle, 1863,

p. 373.
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From (1) we have therefore generally

from which the position of the centre and magnitude of

the radius of the inverse circle may be determined.

COR. If the centre of inversion is on the circle
;
d = r

and r'=oo, thus verifying that the inverse of a circle

from any origin on its circumference is a right line.

124. Problem. To invert two circles suck that the

ratio of the radii of their inverses may be a given

quantity AC.

Let rv r
2
be the radii of the given circles

;
dv c

2
the

distances of their centres from the origin \
R the

radius of inversion
;

tv 2
the tangents, real or imaginary,

from to the given circles. Then if pv pt denote the

radii of the inverse circles, we have, by Art. 123,

Dividing these equations,

The centre of inversion is therefore on a locus such

that tangents drawn from any point on it to the given
circles have a constant ratio; i.e. a circle coaxal with

them.

COR. Any two circles may be inverted into equal

circles
;
and the locus of the centre of inversion is either

circle of antisimilitude.

For when pi pzl tilt*= ^1/^2 5 therefore, etc. (Art.

114, 2.)

Otherwise thus: Since a circle and two inverse figures

invert into a circle and two inverse figures ;
if the origin
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be taken on either circle of antisimilitude this circle

inverts into a line. Therefore any two figures the inverse

of each other ivitk respect to a circle invert into reflexions

of each other with respect to a line. (Art. 121, Ex. 6.)

EXAMPLES.

1. Show how to invert any three circles into equal circles.

[The centres of inversion are the points of section of the circles

of antisimilitude of the given ones taken in pairs.]

2. How many centres of inversion are there in the solution

of Ex. 1 ?

[The three external circles of antisimi lit tide are coaxal (Art. 88,

Ex. 13), and therefore meet in two real or imaginary points.

Also since every two internal and one external circles of anti-

similitude are coaxal, there are in all right centres of inversion real

or imaginary. ]

3. Any three circles are unaltered by inversion with respect to

their common orthogonal circle. For this reason the latter has

been named the Circle of Self-Inversion of the given ones.

4. To invert the sides of a triangle into

a. Three equal circles.

/3. Three circles whose radii have any given ratios p : q : r.

[o. The centres of the in- and ex-circles are the four origins.

/3. The distances of the origin from the sides are in the inverse

ratios p : q : r.]

125. Theorem. The tangents at corresponding points

A and A' of two inverse figures make equal angles with

their line of connexion AA'.

For take the corresponding points B and E' on the

curves which are consecutive to A and A'. Join AA'
and BB'

; they each pass through 0.

The lines AB and A'B
r

joining consecutive points may
be regarded as tangents to the respective curves; also
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smce AJJA & is a cyclic quadrilateral and the angle at

indefinitely small, we have (Euc. III. 22)

BAO^ORA'^AA'R;
therefore TAA' is an isosceles triangle.

126. Theorem. The angle of intersection of two curves

is similar* to that of their inverses at the corresj)onding

point.

For the angle between any two curves is the angle

between the tangents at their points of intersection.

But the tangents determine two isosceles triangles

(Art. 125) on the line AA
\ therefore, etc.

If the centre of inversion is external or internal to both

circles the angle remains unaltered
;
if on the other hand it

is external to either and internal to the other, the angles of

intersection before and after inversion are supplemental.

* ' ' The angle of intersection of two circles undergoes as a figure, no

change of form under the process of inversion, but often does as a

magnitude, change into its supplement, tinder that process.
" In the application of the theory of inversion to the geometry of the

circle, this circumstance must always be attended to. ^

"The two cases of contact, external and internal, come of course

under it as particular cases ; and in but one case alone, that of

orthogonal intersection, which presents no ambiguity, can the pre-

caution ever be entirely dispensed with.
" Townsend's Modern Geometry

of (he Point, Line, and Circle, Art. 407.
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127. Amongst the various results which follow from

the preceding Articles, we note

1. Any two circles meeting at an angle a invert from

either point of intersection into two lines inclined

at the same angle, e.g. two orthogonal circles into

two lines at right angles.

2. Three mutually orthogonal circles, e.g. the three

real polar circles of the triangles formed from

an orthocentric system of points, invert from any
of their points of intersection into a circle and

two perpendicular diameters.

3. Any three circles invert from any centre on their

common orthogonal circle into three others whose

centres are collinear
;
the line of collinearity being

the inverse of the common orthogonal circle.

4. A system of circles having more than one ortho-

gonal circle inverts into a system having more

than one orthogonal line.

5. In 4 the intersections of the common orthogonal
circles are evidently the limiting points of the

given system which is coaxal. (Art. 86.)

Hence for any centre of inversion :

a. A coaxal system inverts into a coaxal system ; or

b. A circle and a pair of inverse points invert into a

circle and a pair of inverse points ;

and for a centre of inversion at either of the limiting

points :

c. A coaxal system inverts into a concentric system,

the common centre being the inverse of the second

limiting point with respect to the circle of inver-

sion.
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6. A system of concurrent lines inverts into a coaxal

system of the common point species, the common

points being the centre of inversion and the in-

verse of the point of concurrence.

7. An angle and its bisectors invert into two circles

and their circles of antisimilitude. (Art. 109.)

8. If two circles, concentric with the extremities of

the third diagonal of a cyclic quadrilateral, are

described cutting the given one orthogonally; they
are mutually orthogonal, and their points of inter-

section O
l
and 2 are therefore inverse points with

respect to the given circle. Hence if we take O
l

and
2
as centres of inversion we arrive at the

following results : The three circles invert into a

circle and two rectangular diameters
;
the vertices

of the quadrilateral, which are inverse points with

respect to the circles, invert into inverse points in

the same order with respect to the lines, i.e. form

the vertices of a rectangle. Thus the vertices of

any cyclic quadrilateral may be inverted into

those of a rectangle, and the centres of inversion

are inverse points with respect to the circle.

9. A circle may invert into a circle having its centre

at a given point A.

For let A' the inverse of A be the centre, and

AA' the radius of inversion. Then the given
circle and pair of points A and A' inverse to .it,

invert into a circle and a pair of inverse points ;

but the inverse of the centre of inversion A' is at

infinity ;
therefore A is the centre of the inverse

circle.
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10. Two parallel lines invert into two circles touching

externally if the origin is between the lines ;
and

internally if the lines are on the same side of the

origin.

11. If a quadrilateral ABGD inverts into a parallelo-

gram from an origin 0; the pairs of circles BOG,
AOD and COA, BOD touch at 0*

SECTION III.

ANHARMONIC RATIOS UNALTERED BY INVERSION.

128. Theorem. If A, B, C
y
D be any four concydic

points and A', J3', C', D
f

their inverses with respect to any
circle of inversion, then

BC.AD:CA.BD:AB.CD= B'C'.A'D':C'A'.B'D':A'B'.C'D'.

This property has been shown to hold for any four

points and their inverses, and is therefore true in the

particular case when they lie on a circle ; hence the an-

harmonic ratios of four concyclic points are equal to the

anharmonic ratios of their inverses with respect to any
circle of inversion. Particular cases have been noticed in

Art. 121, Cors. 1, 2.

129. Problem. To invert a regular cyclic polygon
ABC... from any origin P.

The circumcircle ABC... inverts into a circle a/3y...;

the diameters AA't BB'y (7(7'. . . into circles passing through
the origin P and cutting a/3y . . . orthogonally in aa',

yy

* Hence a construction for the required centres of inversion.
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They therefore pass through Q the inverse of P with

respect to the inverse circle and thus form a coaxal

system of the common point species. (Art. 127, 6.)

Also the chords aa, ftf?, yy'... meet in a point K on

PQ (Art. 72, Ex. 6),

On the primitive figure any side BO of the polygon
and any diameter AA' meet the circle in a harmonic row

of points ;
therefore (Art. 1 28) on the inverse figure fiyaa

is an harmonic row
;
hence /3a/ya

=
/3a'/ya', or, by Euc.

III. 22, the diagonal aa of the quadrilateral is the locus

of a point such that its distances from either pairs of

sides which meet at its extremities are proportional to the

lengths of the sides; similarly for the quadrilaterals

yS/3/3'> etc. Therefore the distances of the point Kfrom
the sides of the polygon a/3y... are proportional to the

sides.

For an Harmonic Quadrilateral, K is evidently at the

intersection of the diagonals; and the inverse of the

regular polygon possessing, as has been shown, a corre-
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spending and more general property has been termed by
Casey an Harmonic Polygon.

Definitions. The point K is called the Symmedian
Point of the Polygon ; and if the ratio of any perpen-
dicular from K to half the side on which it falls is tan a?,

then CD is the Brocard Angle of the Polygon.
For the properties of harmonic polygons the reader is

referred to Casey's Sequel to Euclid, Supplementary

Chapter, Section VI.

130. Cosymmedian Triangles. Let ABO be a tri-

angle K, its symmedian point, and let the lines AK, BK,
OK meet the circum-circle again in A', B', 0'. If the

circle of inversion be K
3 p where

the vertices of ABO invert into A', B', C'.

Also since EGAA' is a harmonic quadrilateral, therefore

B'C'A'A is harmonic, or A'A is a symmedian of the

triangle A'E'C'
; similarly the other symmedians are E'E

and C'C.

It appears thus that the two triangles have the same

symmedian lines, symmedian point, Brocard Circle,

Brocard Angle, Brocard Points, etc. On account of these

relations they have been termed Cosymmedian Tri-

angles.*

* Their properties were first stated by Casey before the Royal Irish

Academy in December, 1885. A further account of them will be found

in Milne's Companion.
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EXAMPLE.

1. If ABC be a triangle and G its centroid ; A A', JBB', CC
f

chords

of the circum-circle passing through 6 ; the symmedian point of

A'B'C' is on the diameter which contains Tarry's point. (Vigari6.)

[Let the circle be self-inverted from G as origin and the points A,

B, C invert into A'
y #', C' respectively. Let A A", BB", CC' be the

symmedian chords meeting in K.

If a circle CGC" meet GK in the point L then

KG.KL=KC.KC"
-,

and similar relations hold for the circles AOA" and BOB"
; there-

fore these three circles meet in a second common point Z, which is

the inverse of K', the symmedian point of A'B'C'.

Let J be the inverse of K with respect to the circum-circle

ABC, and it follows that KO . KJ=KG. A"Z = the power of K with

respect to the circum-circle. Hence OGJL is a cyclic figure, and

the angle GOK=L.
It has been shown (Art. 67, Ex. 18) that Tarry's point on the

circum-circle corresponds to the circum-centre on the Brocard

Circle with respect to ABC and Brocard's first triangle, and

that G is their common centroid; hence angle GNO GOK and

GRO^GKO^GF'O. Therefore QGKF' is a cyclic quadrilateral,

and (Euc. III. 21) the points F, A, F' are collinear. There-

fore KO.KJ=KG.KL =KF.KF' or F, /, L are collinear, the

line being the inverse of the circle OQKF' with respect to K as

origin.
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Now the circum-circles of ABC and GFL cut each other

orthogonally since the angle OFG =L
;
hence the inverse of the

latter from G is the diameter NR, and therefore L inverts into a

point K' on it
; therefore, etc.

This solution is due to M'Cay.*]

MISCELLANEOUS EXAMPLES.

1. The six circles that can be described to touch three given
ones A, B, C, two externally and one internally and two internally
and one externally, are in pairs the inverses of one another with

respect to the common orthogonal circle of A, B, C.

[Invert with respect to the common orthogonal circle of J, B, C,

and since J, B, C remain unaltered after inversion, three of the

circles of contact invert into the remaining three
; therefore, etc.]

2. The eight circles of contact with A, B, C have a common circle

of antisimilitude.

[As in Ex. 1 they are in pairs the inverses of each other with

respect to the common orthogonal circle of A, B, and C.]

3. Three circles are described touching the ex-circles of a triangle,

two externally and one internally ; prove that they each pass

through the centre of Taylor's Circle.

[Invert with respect to Taylor's Circle and the circles in question

invert into the remaining circles of contact, which in this case are

the sides of the triangle ;
and since the circles invert into lines they

each pass through the centre of inversion.]

4. If ABC be a triangle ; (\ p a circle of inversion, A' and B'

the inverses of A and B
;
to prove that

2*=
/>

2 sin C/r'

where / is the radius of the in-circle of A'B'C.

[We have AC=p*/A'C, BC=p*/B'C and ABIA'ff = p
zIA'C. B'C,

hence by addition

* " Mathematical Questions with their Solutions," from the Educational

Times, vol. Hi., p. 73.
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5. Mannheim's Theorem.* Having given the vertical angle C
and radius / of the in-circle of a triangle A'B'C : the envelope of

the circum-circle is a fixed circle.

[From Ex. 4 by inverting from the vertex with respect to a circle

of inversion (7, />,
the inverse of the circum-circle is the base AB of

a triangle of known perimeter ;
and since the inverse envelopes

a circle, viz., the ex-circle of the triangle ABC ; therefore, etc.]

6. A variable circle touches the base of an isosceles triangle at its

middle point ; prove that the chords of intersection with the sides

that meet within the circle envelope a fixed circle. (M'Vicker.)

[See the property of Art. 61, Ex. 1.]

6. By inverting from the vertex derive Mannheim1

s Theorem.

7. Two circles meet at an angle o>, and are such that

2 cos io=\/r//iJ ; prove that a triangle may be inscribed to one and

circumscribed to the other. Hence find the locus of a point from

which two circles may be inverted into two others, so that a triangle

may be inscribed to one and circumscribed to the other.

8. A variable chord XX' of a circle 0, r passes through a fixed

point Q ;
to prove that the circum-circles of the triangles QOX and

QOX' envelope coaxal systems.

[Let P be the inverse of Q with respect to the given circle. The

circles in question invert into the right lines PX and PA'', which

by Art. 72. Cor. 5, touch each of two concentric systems, viz., the

in- and ex-circles of the triangle PXX'.]

9. Prove that the vertices of a Iriangle and the reflexions

0i ^2> 0:i f anv Pt with respect to the sides may be inverted

into the vertices of a triangle and three collinear points on the

sides. (Russell.)

[The circle BCO
lt
CA02,

ABO
:i
meet in a point P (Art. 79, Ex. 15),

which is seen from Euc. III. 22 to be on the circum-circle of

OiPtPz. Inverting from P
; therefore, etc.]

* This well-known property is thus seen to be the inverse of : Having

cfiven the vertical angle C and either of the quantities s or s - c ; the envelope

of the base in a circle.
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10. Any triangle ABC and a Sinison line XYZ may be inverted

from the pole of the line into a triangle X'Y'Z' and Simson line

A'FC'.

11. If four circles be mutually orthogonal, and if any figure be

inverted with respect to each in succession
;
the fourth inversion

will coincide with the original figure.

[The following proof has been given by M'Cay : Invert the four

orthogonal circles from a point of intersection of any two of them.

The latter invert into rectangular lines
;
a third circle becomes one

p, cutting these lines at right angles ;
and the fourth after inver-

sion (p'), since it cuts the third at right angles and is concentric

with it, satisfies the relation p
2 + p'

2=0 or p
2

-p'
2

.

Let PI, P2,
P3 denote the successive inversions of the point P on

the inverse figure; since OP2 . OA=p2 and OP.2= -OI\ therefore

OP. OP*= -p
2
,
or the inverse of P3 with respect to the imaginary

circle of radius
?'p, whose centre is at 0, coincides with P ; there-

fore, etc.]

12. "The centres of the four circles circumscribed about the four

triangles formed by four right lines are coneyclic." Prove this

theorem by inversion from the point P common to the four circum-

circles, and show that the circle passes through P.

[It is evident that, 1, the four lines invert into four circles

passing through P ; 2, the four circles into lines joining the

remaining pairs of intersections of the circles in 1
; 3, the centres

of the four circles into the reflexions of P with respect to the four
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lines on the inverse figure by Art. 123 ; but these are collinear ;

therefore, etc.]

13. Let T be a common tangent to two circles, t and t
f

the

tangents to them from any point ;
if the circles are inverted

from as origin prove that T^ftt' is unaltered.

14. The vertex C of a given angle ACE is fixed
; required to find

the envelope of the circle ACB where A and B are points on a

given line.

15. A chord AB of a circle passes through a fixed point P ;
find

the locus of the point of intersection of the circles passing through
P and touching the given one at A and B.

16. If two circles be inverted into any two others ; for each pair

the square of the common tangent divided by the product of the

diameters are equal.

[Compare Art. 126 and Art. 4, footnote.]

17. Prove Casey's relation among the common tangents to four

circles all of which are touched by a fifth (Art. 7) by the inversion

of a system of four circles touching a line.

18. Draw two parallel lines and describe a number of circles

touching the lines and each other in succession. Invert this

system from a point on a diameter of any circle perpendicular to

the lines and deduce the following theorem :

A, B) C are three collinear points, and circles Jf, I
7
,
Z are

described on the segments BC, CA, AB respectively. A system of

circles is drawn as in figure to touch each other and the given ones,

if Cn9 p denote the nth circle to prove that the distance of its

centre from AB= 2np. (Pappus.)
R



258 INVERSION.

19. If three circles Ar^ Br^ Cr3 touch one another in pairs ;

prove by inversion that the radii of the circles which touch them

with contacts of similar species are

*Ws
2ry2 2A

where 2A is the area of the triangle ABC.

[Invert from the point of contact of Br%, Cr3 with a radius equal
to the tangent to Ar^ ; etc.]

20. The rectangle under the distances of the ex-centre of simili-

tude of two circles from their radical axis and in-centre of simili-

tude is equal to the constant product of antishnilitude.

[The circle of similitude inverts from either centre of similitude

into the radical axis of the given circles.

20a. Prove that the poles of the radical axis of two circles with

respect to the circles are harmonic conjugates with respect to the

centres of similitude.

[This is the inverse of the theorem : Tke polars of either centre of

similitude with respect to two circles are equidistant from their radical

axis ; the circle of antisimilitude being taken as circle of inversion.]

21. A variable circle ABCD touching two fixed circles externally

meets their radical axis in L and and the pair of transverse

common tangents in A, C and B, D respectively ; prove the follow-

ing properties of the figure :

1. The limiting points M and N of the circles are the middle

points of the parallel sides of the quadrilateral PQRS.

2. The lines AB and CD move parallel to the direct common

tangents PQ and KS respectively.

3. The vertices of ABCD lie on the lines joining and L to the

limiting points.

4. BC and AD envelope circles concentric with J/ and N respec-

tively.

To prove 1. Since the four common tangents to the two given
circles form a common escribed quadrilateral, the diagonals of

which are concurrent with the diagonals of the corresponding

inscribed quadrilaterals ; therefore, etc. See Art. 67, Cor. 6.
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2. Let the points A and B and the given circles be numbered

1, 2, 3, 4. Apply Casey's relation connecting the common tangents
to four circles all touched by a fifth and reduce, it follows that

AZ+BZccAB. Hence AB is constant in direction and PQ is a

particular position of it, therefore AB and PQ are parallel ;

similarly CD and R8 are parallel.

3. To prove that the points D, Z, N are collinear. Invert the

figure from D as origin. The circles, their radical axis and pair of

inverse points invert into three coaxal circles, one of which passes

through the origin, and their limiting points ; also the circle

ABCD inverts into the direct common tangent of the latter system.
It follows easily (Art, 92, Ex. 5) that the inverses of N and L pass

through D : therefore, etc.

4. BM bisects externally the base angle B of the triangle ZBC\
since LO bisects internally the vertical angle of the isosceles

triangle LMN'; similarly CM bisects externally the other base

angle, therefore M is the ex-centre of BCZ.

NOTE. This property, communicated by Mr. Charles M'Vicker,
is a manifest extension of Mannheim's Theorem. For if either of

the circles is reduced to a point Z, we have of the triangle BCZ
the vertical angle Z fixed in magnitude and position and the

ex-circle
; since the variable circum-circle BCZ (i.e. ABCD)

envelopes a circle to which the vertex and centre of the ex-circle

are a pair of inverse points ; therefore, etc.
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22. Prove the converse of Casey's Theorem (Art. 7), showing
the relation which holds between the common tangents to four

circles, all of which are touched by a fifth.

[Invert the circles 1, 2, 3 into equal circles (Art. 124) A, r
; J3, r\ C, r\

and find the inverse />, r
t
of 4 with respect to the same circle of

inversion. The relation S23. 14= holds for the four circles after

inversion (Art. 126) ;
also the tangents 23, 31, 12 are equal to the

sides of the triangle ABC formed by joining the centres of the

equal circles. Now describe a circle concentric with D and a

radius equal to r *> r
lt

and the tangents from A, B
y
C to it are

respectively equal to 14, 24, 34. Hence the general relation has

been reduced to the corresponding one for three points and a circle.

It is easy to see that the circum-circle of ABC touches D,r*> r\ ;
for

by the converse of Ptolemy's Theorem the limiting points of the

two circles are on A BC ; therefore, etc. Fry.]

NOTE. The method of inversion so useful in Modern Geometry
was discovered by the Bev. Dr. Stubbs of Trinity College, Dublin, in

the year 1843. His valuable memoir on the subject is to be found

in the Philosophical Magazine, Nov., 1843, p. 338. About the same

time, Dr. Ingram published his researches in the Transactions of the

Dublin Philosophical Society. See vol. i., p. 145.



CHAPTER XII

GENERAL THEOEY OF ANHAKMONIC SECTION.

SECTION L

ANHARMONIC SECTION.

131. Definitions. Let a line AB be divided by two

variable points C and D such that AC/BC-r-AD/BD is a

constant ratio (
=

K). The value of K is thus

-CA.BD/BC.AD,
and is termed the A nharmonic Ratio in which the seg-

ment AB is divided by the points C and I). Similarly

the anharmonic ratio of CD divided at A and B is

CA/DA + CB/DB or -CA . BD/BC. AD.

The points G and D are Conjugate or Corresponding
Points in the Row A, B, C, D y

and AB and CD are

Conjugate Segments. It is obvious that conjugate seg-

ments divide each other Equianharmonically, i.e. the

anharmonic ratio of AB divided at C and D is equal to

that of CD divided at A and B.

132. Let the four points A, B, C, D be divided into

three pairs of opposite segments BC, AD; CA, BD\
AB, CD ;

then the anharmonic ratios of

261
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BC divided in A and D = BA/CA +BD/CD = X, (1)

CA divided in B and D = CB/AB ~-
(7D/^LD =^ (2)

and J.JS divided in and D = AC/BC+AD/BD = v, (3)

or their reciprocals ;
since a segment divided in A and D

is divided in the reciprocal anharmonic ratio by D and A.

These three fractions X, yu, i/ and their reciprocals are

the six anharmonic ratios of the four points -A, J5, (7, D.

NOTE. Let a line AB be divided internally in a variable point

X and externally in X' such that AXjBX^k . AX'fBX'. As X
approaches B, AXjBX increases ; therefore the conjugate point X'

approaches B simultaneously. For let AX'= a and BX'^b and

we have

~ > or < a
according as a>or < b.

b-x b

but a > b
y
thus it follows that as X 1 moves towards B the ratio

A X'IBX' continually increases, and becomes infinitely great when

the variable point coincides with B. Here also it coincides with

its conjugate A", and the point B is thus a Double Point of the

systems described by the variables X and X'. Similarly A is a

double point.

Again, as A"' recedes from B on the line produced, A^ approaches
M the middle point of AB In the limit when A'' is at infinity and

AX'jBX' therefore equal to unity, its conjugate X( P) divides the

line in the simple ratio AP\PB l\ Similarly when X moves to

infinity, its conjugate X\ = () gives the relation AQfBQ^ljk ; and

the two points whose conjugates are at infinity are isotomic conju-

gates with respect to AB.

We may note here, and we shall see presently, that when the

corresponding points of the two systems move in the same direction

the double points are imaginary.

133. Problem. To express all the Anharmonic Ratios

ofABCD in terms of any one of them (X).

Since BC. AD+ GA . BD+AB. OD = 0;

dividing by AB . CD, we have
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BO. AD CA.BD
. ,_+AB.CDAB.CI>

whence on substituting from Art. 132

Thus generally it follows, by dividing the above equa-
tion by each of its terms, that

M+1/X = 1;

The six ratios are therefore

X, 1/X, (X-1)/
These may be expressed as trigonometrical functions of an angle.

For let A= sec
2
#. Then the ratios taken in the above order reduce

to the following :

sec'
2

$, cos2
#, shr#, cosec2

#,
- tan2

#,
- cot'

2
#.

If two of the ratios are equal, e.g. \ (X
-

I)/ A,
then A2 A 4- 1 =0

and A= to or or, the imaginary cube roots of unity. In this case

the three pairs of ratios have the values w and o>
2
.

If A - 1 the points form an harmonic row, and the remaining

ratios are -
1,
-

2,
-

1/2, 2, 1/2.

In speaking of the anharmonic ratio of four points on

a line the order in which the points are taken is to be

understood. Dr. Salmon introduced the convenient nota-

tion [ABCD] to denote the ratio into which AB is divided

by G and D. [ABCD] is equivalent to AC/BC+AD/BD,
and [ABCD] . [ABDC] = 1.

EXAMPLES.

1. To prove that [ABCD] = [BADC] - [DCBA] = [CDAB} ;

and hence when any two constituents of four points are inter-

changed, the anharmonic ratio of the system remains unaltered,

provided the remaining pair be likewise interchanged.

2. If [ACD]= [ABDC] = K
;
find the value of *.

[It is plain that K is equal to its reciprocal, and is therefore unity.

The four points form in this case an harmonic system.]
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3. To prove for any collinear system of points A, B, (7, J)
y
E ...

that [ABCE]/[ABCD]=[ABDE].
[Expanding the ratios on the left side and reducing ; therefore,

etc.]

4. For any two collinear systems of points A, B, C, D, E ...

A'
y #, GY/

, D', E' ... having given [ABCU\= [A'B'C'Dr\ and

[ABCE^A'BC'E'l to prove that

[BCDE\=[B'C'D'E'l [C<ADE] = [C'A'D'E'l [ABDE]=[A'B'iyE'].

[By Ex. 3.]

5. If [ABCD]=[ABC'D'l prove that [ABCO']= [A BDU].
[Expanding the ratios the required result follows by alternation.]

6. If in Ex. 4 [ABCD]= [A'B'C'D'l [ABCE]=[A'B
tC'Er\,

[ABCF]=[A'B'C'F'l etc., etc.
; prove that

[ADEF]= [A'D'E
fFf

l [BDEF] = [&D'E'F'\, etc (1)

and [DEFG ... ]
= [DE'F'G' ... ].

7. If a segment MN is divided equianharmonically by pairs of

points A y A', By
B1

, C, C', etc. ; to prove that

1. \NAEC ... ^[MA'B'C' ... ] and \_NAEC ... }
= [NA'B'C'].

2. [ABCD...}= [A'BC'iy...].

[Since [MNAA] -[MNBB
r

]
=\MNCC

1

}
= ... etc., by Ex. 5.

[MNAB] =[MNA'ff] ; [J/A
r
^lC]= [J/^^ '{7'], etc. Hence by division

we have [MABC] = [MA'B'C'l etc. ...

To prove 2. We have by 1 [MABC] = [MA'B'C
f

] and

[MA3D]= [MA'ffiy], therefore by division [ACD] = [A'ffC'iy].

8. If a segment MN is divided harmonically by points A and J',

J5 and B', C and C" ; to prove that the anharmonic ratio of four of

the six points taken in any order is equal to that of their four

conjugates, [ABCC'] = [A'BC' C].

[By Ex. 7. [MABC]=[MA'B'C
f

] ; but (hyp.) and C' are inter-

changeable, therefore [MABC']= [MA'B'C] ; dividing these equa-

tions, therefore, etc., as in Ex. 4.]

9. To prove the converse of Ex. 8, i.e., for any six collinear points

A y
B

y C, A', Be

1 C', if the anharmonic ratio of any four is equal to

that of their four conjugates [CABA']=*[C'A'B'A] then

1. The anharmonic ratio of every four is equal to that of their

four conjugates.
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2*. The segments A A', BB', CC' have a common segment of har-

monic section.

[To prove 1. By hyp. since [CABA'] = [C'A'B'A] ;
on rearranging,

by Ex. 1, we get [AA'BC]=[A'AB'C']=[AA
fC'Bf

]. Therefore by
alternation (Ex. 5) [AA'BC']=[AA'CB']= [A'AC'J3] ; similarly for

all other combinations. To prove 2. Let MN divide the segments
AA' and BB' harmonically, it divides CC' also harmonically. For

[MABA']=[MA'B'A] (by Ex. 7) and [NABA'^NABA] ;
also by

1 [CABA
f

]
= [C

f

A'JB
f

A] and [C
f

ABA']= [C'A'J3'Al hence (Ex. 6)

[MA
7

CC']= [MNC'C] ; therefore, etc. (Ex. 2)].

10. Show generally for two equianharmonic systems if any two

conjugates A and ^4'are interchangeable, e.g., if [ABCD]= [A'B'C
f

D']

and [A'BCD]=[AB'C'D
f

] that

1. Every four are equianharmonic with their four opposites ;

2. The segments A A', BB', CC', DD' have a common segment
of harmonic section.

[By the method of Ex. 9.]

SECTION II.

ANHARMONIC SECTION OF AN ANGLE.

134. It has been explained in Art. 3 that the anhar-

monic ratio of four points A, B, G, D is equal to that

of the pencil . ABCD formed by joining them to any

point 0. It follows then that all the properties of four

collinear points stated in the previous section involve

correlative properties of a pencil of rays, and that the

latter are immediately derived from the former by aid of

the equation

BG.AD:GA.BD:AB.CD
= sin BO. sin AD : sin (JA . sin BD : sin AB . sin CD.

Also by describing a circle through the vertex of the
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pencil O.ABCD, and denoting by A, B, C, D the points
where it meets the legs of the pencil again; since the

sines of the angles at are in the ratios of the chords

opposite to them we may further obtain from the anhar-

monic properties of collinear points corresponding relations

amongst points which lie on a circle.

135. The following properties will appear evident :

1. All transversals to a pencil of rays are cut equian-

harrnonically.

2. A transversal to a pencil drawn parallel to one of

its rays D is divided by the remaining three in the

simple .ratio ACIRC] which is the anharmonic ratio of

the pencil.

3. In 2, if the pencil is harmonic, any transversal

A'BV parallel to D is such that A'B'^B'C'.

4. For any two equianharmonic rows of points A, B,

C, D, ... and A', B', C', D', ..., if the lines A A', BE', and

(7(7 are concurrent at
;
DD' and all other lines joining

corresponding points of the given systems pass through 0.

[This important property is the converse of 1 and

follows easily by an indirect proof.]
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136. Theorem. If tiuo lines be divided equianhar-

monically such that a pair of corresponding points
coincide at their intersection [OABC...] = [OA'B'C'...]

the systems are in perspective ; and reciprocally if two

equianharmonic pencils are such that a pair of corre-

sponding rays coincide on the lines joining their vertices

they are in perspective.

Let AA' and BB' meet in P. Join PC, and if possible

let PC cut the other axis in C". Then

since the rows are in perspective. But

therefore \OA'lfCr] = [OA'ffC"], i.e. C' and G" coincide.

Reciprocally for any two pencils P. ABC, ... and

P'. A'B'C't ... if the rays A, A' and B, B
f

intersect respec-

tively in X and F, it follows that C and C" meet on the

line ZF
Otherwise thus : The rows [XYZW] and [XYZ'W] are equi-

anharmonic ;
therefore Z and Z' coincide.

COR. 1. If two pencils are equianharmonic, any two

rows passing through the intersection of a pair of corre-

sponding rays are in perspective.
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COR. 2. Through a given point P a line may be drawn
across a triangle ABC, cutting its sides in the points Q,

R, S, such that [PQRS] = a given anharmonic ratio.

[For the pencil (A . PQRS) formed with the row at

any vertex A of the triangle is given, and since three of

its rays are given the fourth is known.]

Def. Lines divided equianharmonically are also said

to be divided Homographically. The term homographic
is applied in general to the equianharmonic division of

figures of the same kind, e.g. lines, circles, etc., etc.

EXAMPLES.

1. Every tangent to a circle is cut harmonically by the sides of

the escribed square.

[In the limiting position when the variable tangent coincides

with a side of the square the row of points determined on it are

harmonic ; therefore, etc., Art. 81, Ex. 3.]

2. To express the anharmonic ratios in which a variable tangent
is divided by four fixed tangents, in terms of the chords of contact

of the tangents.

[Let P, Q, It, S denote the points of contact of the sides of the

escribed quadrilateral, which meet the variable tangent at in

A, B,C,D; 0' the centre of the circle. Then ABCD^O . ABCD
=

. PQRS, since O'A, OP ; OB, OQ... are four pairs of perpendi- .

cular lines ; therefore the required expressions are

QR.PS'.RP.QS-.PQ.RS.']
3. For any quadrilateral escribed to a circle at the points

P, Q, R, S, each pair of diagonals and a corresponding pair of

opposite connectors of the inscribed quadrilateral PQRS are con-

current. (See Art. 67, Cor. 8.)

[To prove that the sets of lines

QR, PS, YY', ZZ
1

RP, QS, ZZ', XX'

PQ, RS, XX', YY'
are each concurrent.
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Consider each of the four tangents at the points P, Q, R, S a

trahsve/sal to the quadrilateral XX'YY'ZZ'. Since consecutive

tangents meet on the circle, the tangents at P and Q are cut in the

same order at the points P, Zy F, X' and Z, , JT, F'
; therefore

[PZYX ']
= [^(?^T F']

= [QZY'X]. Hence P, FF', XX' are concur-

rent. Similarly RS> YY' and JT^T' are concurrent ; therefore, etc.]

NOTE. As the above properties are more generally true for the

Conic, we consider an interesting case which arises in the parabola
when the fourth tangent is at infinity (Art. 81). Let tangents AC
and BC be drawn to a parabola at the points A and B, and a third

tangent XY meeting BC and CA in X and F respectively. Then

the equianharmonic relations easily reduce to BX/CX CY/A Y ;
or

a variable tangent divides two fixed tangents in the same ratio. It

also subtends a constant angle at the focus. Therefore the foci of

the three parabolas described to touch each pair of sides (6, c, etc.) of a

triangle ABC at the extremities of the third side (BC) are the vertices

of Brocardjs second triangle.

4. If a circle touch four others the anharmonic ratios of the

points of contact are equal to

23. 14: 3T. ^4: 12.34.

[By Art. 7.]

5. The anharmonic ratios of the points of contact of the nine-

points-circle with the in- and three ex-circles of the triangle ABC
are

(7T^> #rr^ 32 5*-

[As in Ex. 4.]

6. If the anharmonic ratios of four points A, B, C, D on a circle

(or conic) be denoted by A, /w, j/, etc., to prove that the anharmonic

ratios of the pencil P. ABCD are A2
, /x

2
,
v2

, etc., where P is the pole

of the line AB.

[Let PC, PD meet the conic again in
",
D'

y
and AB in E, O ;

then CD', DC'
y
and AB are concurrent at F; and since

C'. ABCD=U. ABCD, [ABCD] = [ABEF]= [ABFG]= \ (say);

therefore **W AF
>
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whence
BE IT*

But [ABEG] = P. ABEG=P. ABCD ; therefore, etc.]

137. Directive Axis. For any two homographic rows

of points ABC . .
.,
A'B'C' ... on different axes L and U

y
if

any pair of corresponding points A and A' be each joined
to all the points on the other axis, the two pencils

A . A'B'C' . . ., A'. ABC . . . are in perspective (Art. 136), i.e.

the intersections of the pairs of lines AB', A'B(C"); AC\
A'C (B")\ AD', 47), etc., are collinear. We are thus enabled

to find a point P' on the line L' corresponding to a given

point P on L.

For having obtained the line B"C", join A'P and let it

meet jB"(7" in P"; then AP" meets the axis L' in the

required point.

An important point arises out of the consideration of

the correspondents to the intersections 0, P, and P' of

the axes Z, L', L" taken in pairs. By means of the

general method given above we find that P on the axis

L corresponds to on the axis L
', and that P' on the axis

L' corresponds to on the axis L. This shows that the

axis L" of perspective of the pencils

A.A'ffff..., A'.ABC...,
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whose vertices A and A' were arbitrarily chosen as any

pair of correspondents of the given homographic systems,

is a fixed line, since it meets each axis in a point cor-

responding to their intersection regarded as a point
on the other. Hence : all pairs of corresponding connec-

tors (XT', X'Y) of pairs of non-corresponding points lie

on a line. This line is called the Directive Axis of the

given homographic systems.

Otherwise thus : Take the two homographic pencils at A" and L
and L as transversals to them respectively, then

similarly for the vertex J5" it follows that [CAPO]= [A'C'FOl
therefore by division (Art. 133, Ex. 3) [AJSPO]= [

fA'Pr

O], i.e. the

lines ARj A'B, PP'are concurrent.

The same proof applies to the more general case of two systems
of points on a conic.

138. Directive Centre. The following property of

two homographic pencils is derived from Art. 137 by

reciprocation : For any two homographic pencils of rays

O.ABC... and 0'. A'KG*. . . the lines joining pairs of cor-
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responding intersections (AR, A'B) ofnon-corresponding

rays (A, B
f and A', B) are concurrent.

The point of concurrence is termed the Directive Centre

of the systems, and its property just stated may be

proved by methods analogous to either of those given in

Art. 137 for the directive axis. These are left as useful

exercises for the student.

139. Problem. To find a point X on either axis L
whose correspondent on the other is at infinity (oo').

Since the lines joining A, oo' and A', X meet on the

directive axis, we have the following construction:

through A draw a parallel to L', join A' to its point of

intersection with the directive axis
;
this line meets L in

the required point.

EXAMPLES.

1. Having given two homographic pencils of rays at different

vertices; to find a ray of either corresponding to a given one of the

other.

[By means of their directive centre.]

2. If two homographic rows of points are such that the points oo,

oo
'

at infinity on the axis correspond, the lines are divided similarly.

[For [ABCx>]=[A'ffC'*>1 hence AB: BC=A'&:B'C'', there-

fore, etc.]

3. Having given the vertical angle in magnitude and position of

a triangle of constant species, the extremities of the base divide the

sides homographically.

4. If the lines A A', BE', CO' connecting the corresponding ver-

tices of two triangles ABO and A'B'C' are concurrent at a point 0,

the intersections X, Y, Z of the pairs of sides BO, B'O', etc., are

collinear (cf. Art. 66).

[Join XY and let it meet the lines AA\ BF, 00' in X', Y, Z'

respectively. Then

X. OBY'E=X. OOZ'0'= Y. OCZ'0'= Y. OAFA';
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therefore \OBY'B'\= \pAX'A'']t
and since the point is common to

both rows the pairs of connectors AJ3, X'Y', A'H are concurrent.

Therefore also the centre and axis of perspective L of the two

triangles divide the corresponding segments AA\ Bff, CC' equian-

harmonically.]

5. A variable triangle moves with its vertices on three concurrent

lines such that two of its sides pass through fixed points -Tand Y;
then the third side passes through a fixed point on the line XY.

[By Ex. 4.]

6. The lines joining pairs of corresponding points of any two

figures in perspective are cut homographically by the centre and

axis of perspective.

7. Any line passing through either centre of perspective of two

circles is cut in a constant anharmonic ratio by their radical axis.

8. Every four of the six points Xy Y, Z, X ', Y', Z' in Ex. 4 are

equianharmonic with their four opposites.
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9. In the figure of Art. 137 prove the relations

1. [BCPO]= [B'C'0*P]

[CAPO]=[C'A'OP] =
[

2. [ABCP]=[A'B'C'0] =[A"B'C"Pl
[ABCO]=[A'B'C'P] = [A"B'C"P'].

NOTE. It will be seen that the triangle AB'C" is inscribed to

A'BC&nd escribed to B'C'A", and more generally that of this system
of three triangles each is inscribed to one and escribed to the other of
the remaining two.

The vertex A and opposite side If6'" of the triangle A'B'C" form

with the extremities B and C of the corresponding side of A'BC to

which it is inscribed a row of points J5, Cy

, A, P. Similarly the

vertex A' and opposite side BC of A'BC form with the correspond-

ing side B'C' of the triangle A'B'C' to which it is inscribed a

row B', C\ A\ 0. But these rows are equianharmonic (Ex. 8, 2) ;

hence for such a system of triangles the vertex and the opposite side

of each divide homographically the corresponding side of the triangle

to which it is inscribed.

Again, B'C"PP is the row of points formed by the extremities

of the base B'C" and its intersections with the corresponding sides

BC and B'C' of the remaining triangles. But

hence the sides of each are cut homographically by the corresponding

sides of the other two.

Let the point C' vary along the axis L'. Then the lines A C' and

BC' turn around the fixed points A and B
;
A" and B' move on the

lines A'C and BC\ and the directive axis passes through the fixed

point C". In this case A'B'C' is a variable triangle inscribed to

A'ffC and escribed to ABC", both of which are fixed. Hence for a

variable triangle A'B'C' inscribed to a given one A'B'C, if two of its

sides pass through the vertices A and B of a triangle escribed to the

latter, its third side passes through the third vertex C".

Let us now consider two positions of the variable triangle A'B'C'.

Since its sides pass through the fixed points A, B, C" respectively,

ABC" is a common inscribed triangle. Hence when two triangles are

each inscribed to a third A'B'C, if the sides A"B', etc., and opposite ter~

tices C', etc., divide the corresponding side A'B' of A'B'C in a constant
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anharmonic ratio [A'B'C'P
1

},
the intersections of their corresponding

sides determine a common inscribed triangle ADC" which is escribed

to A'B'C.

And the vertex C" and opposite side AB cut the corresponding

sides B"C", etc., in the above constant auharmonic ratio.

140. Theorem. For any two homographic rows of

points ABC...X and A'B'C'... X\ if X and X' be the

points whose correspondents <x>' and oo are at infinity ;

to prove the relations

Since A, A!\ B, B'\ X y oo'; oo, X' are four pairs of cor-

responding points [AliX<x>] = [A'B'tt'X']. Expanding* and

reducing, this relation becomes AX/BX=l+A'X'/B'X';
therefore AX . A'X'=BX . &X', etc., etc.

;
or : // vari-

able points A and A' be taken on fixed lines L and L'

respectively such that the rectangle under the distances

from two fixed points X and X' on the lines is constant ,

they describe homographic systems.

COR. 1. When the vertical angle of a triangle of con-

stant area is given in magnitude and position, the

extremities of the base divide the sides homographically.
In this case the points X and X', whose correspondents

are oo'and oo, are supposed to coincide at the intersection

of the axes.

By Art. 81, Ex. 3, we see that the envelope of the base

is a conic
;
and by Ex. 29 of the same article the curve is

a hyperbola whose asymptotes are the given axes.

COR. 2. Any two homographic rows of points may be

so placed that the corresponding segments A A, BB', etc.,

mfty have a common segment of harmonic section.

Place the systems so that the axes L and L' and the
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points X and X' are coincident. The equations of the

article are then written

XA . XA= XB.XB'=XC. XC'= P\

Describe a circle with X as centre having A, A'\ By B';

etc., pairs of inverse points, and let it cut the axis in M
and N. MN is the common segment of harmonic section

by Art. 70, but it is imaginary when A and A' lie in

opposite directions from X.

Def. Two homographic systems of points on any axis

which have a common segment of harmonic section are

said to be in Involution, and the corresponding points
A , A'\ B, B'\ etc., are Conjugate Points of the Involution.

We have seen in Cor. 2 that there always exists a pair of

points, real or imaginary, each of which regarded as

belonging to either system is coincident with its corre-

spondent of the other. These are the Double Points

(M, N) of the involution, and are connected with the

systems by the equations

[MNBC] = [MNBfC'l [MNCD] = [MNffiy], etc., etc,

[MABC...] = [MA'RC'...] and [NABC...] = [NA'B'C'...}.

See Art. 133, Ex. 7.

COR. 3. In any two homographic rows of points on a

common axis the double points M and N are found from
the equations

*

XA . X'A'=XB.X'B'...=XM. X'M=XN. X'N>,

they are therefore equidistant from X and X'.

*
If the distances OA, OA' from any point O on the axis be

it follows that (x
- OX)(x

f - OX') = const. , a result of the form

= Q (cf. Art. 143).
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141. For any two homographic rows of points we have

seen how to find the correspondent P of any point P, a,

by means of the directive axis, Art. 137, and /3 by the

formula XP . Z'P'= const. It will now be proved that

two given homographic rows can be generated by the

revolution of either of two determinate angles around

fixed vertices, the positions of the latter and the mag-
nitude of the angles depending on the equal values

[ABCD. . .]
and [A'B'C'D'. .

.]
and the positions of the axes.

142. Problem. // A BC... and A'B'C'... be any two

homographic rows of points; to find two points suck that

the angles subtended at them by the segments AA', BB'y

etc., joining pairs of corresponding points are equal.

Let E and F be the required points ; X, X' the corre-

spondents of oo' and oo (Art. 139). Since AEA' is a

constant angle, if any point P on L coincides with X,
EP' is parallel to the axis L'. Similarly if Q' and X'

coincide, EQ is parallel to L. Hence the lines EX and

.ZJJT'are equally inclined to L and L\ or the angles AXE
and A'X'E are equal.
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Again, the angles subtended at E by any two points A
and X and their correspondents A' and oo' are equal

(hyp.); therefore in the two triangles AEX and EA'X'
we also have the angles AEX and EA'X' equal, and the

triangles are similar. Hence (Euc. VI. 4)

AXIXE=EX'jX'A'

and EX.EX'= AX.A'X'= const. (Art. 140).

Now in the triangle XEX' we are given the base XX'

fixed, the difference of base angles and rectangle under

the sides
; therefore the vertex E is one or other of two

fixed points E or F, which are obviously the opposite

vertices of a parallelogram with XX' as diagonal.

COR. 1. The angles AEA', AXF> and 4'ZTare equal.

For if J/and X' coincide, EA is parallel to L
;
there-

fore AEA' is equal to the angle between J^Jf'and L or

between FX and L, since EX' and FX are parallel.

COR. 2. The triangles AEA', AXF, and EX fA are

similar.

[For by similar triangles AEX and EA'X' we have

AXIAE=EX'IEA', but EX'= FX, hence

or by alternation AX/XF= AE/EA'\ therefore, etc.

(Euc. VI. 6).]

COR. 3. If denote the point of intersection of the

axes L and L', the points E and F are isogonal conjugates

with respect to the variable triangle OAA'.

[By Cor. 2, FAX=EAA' and FA'X'= EA'A\ there-

fore, etc.]
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COR. 4.* The product of the perpendiculars p and p'

frofn E and F on the variable line AA' is constant

(pp'=JP). [By Cor. 3.]

COR. 5.* The locus of the intersection of every two

rectangular positions of AA' is a circle the square of

whose radius (/>)
is given by the equation />

2= 2/ 2
+<S

2
,

where 2S= EF.

COR. 6. A variable line cutting two fixed lines homo-

graphically cuts all positions of itself in a system of

points A"B"C"... such that

[ABGD . .
.]
= [A'ffffjy. .

.]
= [A"B"C"D\ .

.].

Draw the directive axis XYZ ... of the system as in

figure. Then OX and OA", divide the angle LQU of the

q uadrilateral PXP'O harmonically (Art. 68). Similarly for

OFandOJT.... Hence we have [O.XY...] = [O.A
ff

ff'...']

Art. 133, Ex. 7. But

Therefore [A'B'C'. . .]
= \A"B"C". .

.].

* These properties respectively may be otherwise stated : A variable

line AA' cutting two fixed axes homographically envelopes a conic of

which E and F are the foci. The locus of intersection of rectangular

tangents is a circle (the Director Circle).
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COB. 7. If a variable line meet two fixed circles in a

harmonic row of points, it intersects all positions of itself

homographically.

[For the rectangle under its distances from the centres

of the circles is constant, Art. 78, Ex. 12; therefore, etc.,

Cor. 4.]

COB. 8. A variable line meeting two fixed circles such

that the chords intercepted by them are in a fixed ratio

cuts all positions of itself homographically.

[By Art. 90, Ex. 8.]

143. If the distances of any point from four points

A, B, Gy D on a line L passing through it be denoted by
a, /3, y, x, and the distances of any point 0' measured

along another line L' to A'y B', C', D' be similarly a, /3',

y', x', the two systems of points are homographic if

(ft
-
y)(q

-
a)_ (ff

-
y')(q'

-
a')-''

which when multiplied out is of the form

Axx'+Bx+Cx'+D = 0, ..................(1)

an equation which enables us to determine the position

of any point of either system corresponding to a given
one in the other. (See Art. 140, Cor. 3.)

We have seen that the lines joining corresponding

points envelopes a conic touching L and L'. In the par-

ticular case when OJ=QO in (1) the simultaneous value of

x' is also oo, and the corresponding conic is therefore

touched by the line at infinity. It follows obviously that

when A =0 in the above equation the conic is a parabola.

Thus if a variable line be drawn cutting the sides a
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and b of a triangle ABC in X and Y such that

IA Y+mBX= const.,

it envelopes a parabola to which the two sides of the

triangle are tangents.

If the axes L and L' are coincident and B= G in (1), x

and x' are interchangeable in the equation and, as will be

more fully explained in the next chapter, the two systems
are in Involution.

The double points of two systems on a common axis

are found from (1) by putting x= x, in which case the

equation reduces to the form Ax^+(B+ G}x+D= 0.

EXAMPLES.

1. If the distances of two pairs of collinear points J, B and A\ B'

from an origin on the line be denoted by the roots of the equa-

tions ax1 + 2bx + c= and a',*;
2
4- Zb'x+ c

f =
0, they form a harmonic

row if ac'+ a'c - 266'= 0.

2. Having given two of the anharmonic ratios of four collinear

points equal, prove that



CHAPTER XIII.

INVOLUTION.

144. When of two systems of points A, B, 0, ...
; A\

B', C', ... on any line or circle any three pairs A, A \

B>B'\ C, C' which correspond are connected by a relation

of the form [BCAA'] = [B'C'A'A], it has been proved in

Art. 133, Ex. 9, 1. that every four and their four oppo-

sites are equianharmonic ; 2. that A A', BB\ CC f

,
... have

a common segment of harmonic section,

By Art. 140, Def., we may therefore regard either of

these properties as a criterion of points in Involution.

Now since [BCA'B'] = [irC'AB], by expanding and

reducing we get
RV OR AC'
GA 'Iff' BC" ^ '

a result previously arrived at in Art. 64, where it was

shown by the application of Ceva's Theorem that a

straight line drawn across a quadrilateral is cut in involu-

tion; the conjugate points A, A', etc., being the intersections

of the line with the pairs of opposite connectors of the

figure.

Again, if a pencil of six rays be taken and a circl$

described through the vertex cutting the rays in points
282
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A, A'\ Bt B'\ (7, C'y they form a system in involution if

sin BOA' sin COR sin ^0(7'

ainCOA'
'

sin ^05'
'

sinSOC" ( >

The criteria (1) and (2) are called Equations of Involu-

tion.

145. It has been noticed in Art. 134, Ex. 10, that when

any two conjugates A arid A' of two homographic systems
are interchangeable, every two are interchangeable, and

AA' t BB', CO' ... have a common segment or angle of

harmonic section.

It follows that " when any one point on an axis, or ray

through a vertex, has the same correspondent to which-

ever system it be regarded as belonging, then every point

on the axis or ray through the vertex possesses the same

property."
*

In illustration of this theorem, let the correspondents
be joined in pairs to any point (A") on the directive axis

of the systems (Art. 137).

Then the corresponding rays A!'Bt A"B' are interchange-

able, their productions through A" being A"C\ A"C;
therefore

The locus of a point at which two homographic roivv

subtend a pencil in involution is their directive axis ;

and similarly, or by reciprocation, a variable line meeting
tivo homographic pencils at a system of points in involu-

tion passes through their directive centre.

146. A system of points in involution on a line is com-

pletely determined when two pairs of its conjugates

A y A'\ B, B' are given; and the conjugate C'of any point

* Townsend, Modern Geometry, vol. ii. p. 276,
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G is its inverse with respect to the circle described with

AB and A'B' as a pair of inverse segments.

If the radius of the circle is indefinitely great, one of

the double points (N) is at infinity, and therefore (Art. 72,

Cor. 3) MA=MA, MB^MB, etc., etc.
;
that is, if one of

the double points of a system in involution is at infinity,

the segments AA' y BB', CC' ... have a common centre, viz.,

the other double point.

Also a variable segment AA' of constant length moving

along a given axis determines two systems of points in

involution the double .points of which are imaginary.

147. Theorem. If two chords AA', BB' of a circle

meet in C, any line through C which meets the circle in

and 0' determines a system of points A, A'; B, B'\

0, 0' in involution.

Let AB and 00' meet in Z (Art. 64, iv. fig.). Then

the pencil B. AB'OO' is equianharmonic with the row of

points ZCOO' it determines on the transversal to it

through G. For a similar reason

[ZCOO'] =A . BA'00'=[A'BO'0],

from which relation it follows that every four of the six

cyclic points and their four opposites are equianharmonic.
The concurrency of the chords AA\ BB', 00', being

involved in this relation, furnishes a geometrical explana-

tion of the theorem of Art. 133, Ex. 9 (1).

The following generalized statement is a direct inference

of the preceding :

If through any point P,.inside or outside a circle (or

conic} a number of chords be drawn to cut the curve in*

A,A'\ B,B'\ C, C', ..., the two systems ABC..., A'B'C'...
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are in involution, and (Art. 64, III.) the polar of P
meets the circle in the double points, real or imaginary.*

EXAMPLES.

1. A variable line passing through either centre of similitude of

two circles cuts them in four equianharmonic systems of points.

2. A variable circle cutting two given ones at equal or supple-
mental angles divides them equianharmonically.

3. If two circles Vly
F2 cut two others at the same angles a and ft

in the points A, J3
y C, D and A', R, C', Z)', prove that

[A A', BE', PC', Diy are concurrent at the external centre of

similitude of Fb F2. Cf. Art. 113, Ex. 12.]

4. More generally for any number of circles Fj, F2,
... Fw , prove

that [AA'A"...} = [BBB'...]^[CC
r

C"...']
=

[DD'D"...'\.

~

5. In Ex. 3, if the angles a and ft are right, the anharmonic

ratio of the four points of intersection of the variable circle is equal

to that of the four points on their common diameter.

6. If two triangles ABC, A'B'C' inscribed in the same circle are

in perspective at 0, and from any point P on the circle lines PA',

PR', P(7'are drawn meeting the sides of ABC in Jf, F, Z, the points

X, Y, Z, are collinear.

[The Pascal hexagons PB'BACC', PC'CBAA 1

,
PA'ACBB' have

YOZ, ZOX, XOF as Pascal lines ; therefore, etc.]

7. If P denote the point on the circle corresponding to P in the

perspective, and the lines FA, P'B> PC meet the sides of A'B'C1

in

A", F', Z', 1. X 1

, F, Z' are collinear with JT, F, Z and the six

points are in involution ; 2. [XYZO]=[X'Y'Z'0].

(Townsend, vol. ii. p. 208.)

* When the point is outside its polar cuts the circle in real points M
and N which divide AA' , BE', CO'... harmonically, and are therefore

the double points of the involution ABG ..., A'B'C'

t It follows directly that the anharmonic ratio of four points on a

drcle is unaltered by inversion ; the circle of inversion in this case

>eing either circle of antisimilitude of Fj and F2.
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8. A variable circle cutting three fixed circles at equal or similar,

angles determines six home-graphic systems of points on the circles.

[Take two positions of the variable circles cutting the given ones

at equal angles a and f$ respectively ;
then each of the given ones

cuts a coaxal system (Art. 114, Ex. 10) at the same angles a and (3 ;

therefore, etc. It is evident that the three pairs of double points

of the homographic systems on each circle are the points of contact

of the corresponding circles of contact.]

9. Describe a circle touching three given ones with contacts of

assigned species. [By Ex. 7.]

10. Describe a circle passing through a fixed point and cutting

two given arcs on each of two circles equianharmonically.

11. Describe a circle cutting three pairs of arcs on three given
circles equianharmonically.

12. The line joining the centres of perspective of any two chords

of a circle is divided harmonically both by the circle and the

chords.

13. Equal arcs of a circle are divided equianharmonically by the

two circular points at infinity.

DESARGUES' THEOREM.

148. Any transversal to a cyclic quadrilateral ABCD
meets the three pairs of opposite connectors BO and A D,

etc., etc., in X, X'\ F, F'; Z
y
Z' and the circle in

W in eight points in involution.
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Ifor the pencils B . ADWW and C. ADWW are equal,
and therefore [ZY

/

WW^ = [YZ'WW'] = [Z'YW
/

W], or

the two triads F, Z, F; F, Z't W are in involution.

Again, because C.BDWW'= A.DWW it follows

similarly that Z, X, W and Z', X', W' are in involution
;

and since A . GDWW '= . CDWW, X, F, W and Z', F',

F'are in involution
; therefore, etc., Art. 144.

COR. 1. By reciprocation with respect to the given
circle we obtain the correlative theorem :

For any escribed quadrilateral the lines joining any
point P to the three pairs of opposite intersections X, X'\

F, F'; Z, Z' and the pair of tangents PW, PW f

are in
involution.

COR. 2. By reciprocation from any origin it follows

that the theorem and Cor. 1 are more generally true for a

quadrilateral inscribed or escribed to conic.

COR. 3. In the particular case when a pair of opposite
sides of a cyclic quadrilateral, or one inscribed in a conic,

coincide, the remaining pair become tangents, and the

transversal (Z) meets their chord of contact in a double

point.
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Also the line (M) passing through their point of inter-

section, which is therefore a double point, is divided

harmonically ; i.e. A variable chord of a conic passing

through a fixed point is divided harmonically by the

point and its polar.

COR. 4. When the transversal (N) is a tangent to the

conic, the points of contact (TFTF) and (FF') are the

double points.

COR. 5. As a particular case of Cor. 4, let the transversal

be parallel to the chord of contact. Then one of the

double points (FF') is at infinity, and the other is there-

fore the middle point ofXX', hence we have the following

property :

The chord of contact of two parallel tangents (i.e.
a

diameter) bisects every parallel chord of the conic, or the

locus of the middle points of parallel chords of a conic is

a right line.

COB. 6. Since a parabola touches the line at infinity

(Art. 81) and the chord of contact of any tangent and the

line at infinity is a diameter, any chord (WW) of a para-*

bola meets a tangent at a point X, which is the centric,
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and the diameter through its point of contact at a double

point (/F') of the involution. Hence also

or by drawing the ordinates WP, WP',

COR. 7. Since the asymptotes of a hyperbola and the

line at infinity are a particular case of a quadrilateral

inscribed in a conic, any transversal WW is divided

similarly at X and X', because one of the double points

(YY') is at infinity. The other double point is therefore

the middle point of WW\ and the intercepts WX and
W'X' between the curve and the asymptotes are equal.

Also, the portion of any tangent to a hyperbola inter-

cepted by the asymptotes is bisected at the point of contact
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COR. 8. If the point P in Cor. 1 is such that two pairs

of opposite connectors PX, PX'; PF, PYf

are at right

angles, the tangents from P to the circle are likewise at

right angles. But the circle reciprocates from P as origin

into an equilateral hyperbola; therefore if an equilateral

hyperbola be circumscribed to a triangle, it passes

through the orthocentre.

More generally, if an equilateral hyperbola be described

about a quadrilateral, it passes through the orthocentre of

the four triangles formed by taldng the vertices in triads.

The property of Art. 68, Ex. 8, will now appear obvious.

It follows also that the locus of the centres of equilateral

hyperbolas described about a triangle is its nine-points-

circle.

COR. 9. If the sides of the quadrilateral be numbered

1, 2, 3, 4, and the perpendiculars from Wand 14
7/ on them

be denoted by pv p2 , p3 , p ; qv q qB% g4 , since

, ., , WX WZ' WZ WX' . .

and therefore ,= > r etc., etc.,

we have
Ms

hence p^Ps/PiP^ is of constant value for all points on the

conic, or the locus of a point such that the products of the

perpendiculars from it to the three pairs of opposite sides

of a quadrilateral have constant ratios is a conic passing

through its vertices ; and by reciprocation we derive the

correlative theorem; If a quadrilateral is circumscribed
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of opposite vertices from a variable tangent have are to

each other in constant ratios*

COR. 10. If either asymptote of a hyperbola be taken

as a transversal to an inscribed quadrilateral, the double

points of the involution are both at infinity, and the seg-

ments XX', FF', ZZ' have a common middle point;
therefore the lines joining a variable point on a hyper-
bola to a pair of fixed points on it intercept segments of
constant length on each of the asymptotes.

This property is thus stated in Townsend's Modern

Geometry, Art. 340 :

" For every two homographic pencils of rays through
different vertices there exist two lines, real or imaginary,
on each of which the several pairs of corresponding rays

intercept equal segments."

EXAMPLES.

1. A pencil whose rays are parallel to the three pairs of opposite

connectors of a quadrilateral determines a system in involution.

[Since the line at infinity is a transversal cut in involution by the

sides of the quadrilateral ; therefore, etc.]

2. The three pairs of parallels drawn through the vertices and

the extremities of the third diagonal of a quadrilateral cut any
transversal in a system of points in involution.

3. If the fourth vertex D of the quadrilateral ABCD is the ortho-

centre of ABC, prove the following particular case of the general

theorem of Art. 148 : For any pencil of rays in involution, if two

pairs of conjugates are at right angles, then all pairs of conjugates are

at right angles.

4. Hence deduce "The circles on the diagonals of a complete

quadrilateral are coaxal"

*
Chasles, Sectioned coniques, Art. 26,
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5. Any line or circle intersects a coaxal system at points in

involution.
*

6. The parallels through any point to the sides of a triangle and

the lines connecting that point to the vertices form an involution.

7. Every two circles and their two centres of perspective subtend

at any point a pencil in involution.

8. For every two self-reciprocal triangles with respect to the

same circle any two vertices connect cquianharnionically with the

remaining four.



CHAPTER XIV.

DOUBLE POINTS.

149. The solutions of a large number of problems of

every variety in Geometry are frequently made to depend
on the finding of the double points of two homographic

systems. On account of the great importance of these

points various constructions have been given for them.

Thus in the last corollary they are easily found when we
have obtained the points whose conjugates are at infinity

on the axis by the equations

XA . X'A'= XM. X'M=XN. X'N.

We give in the following article two additional construc-

tions for homographic rows on an axis and append a

sufficient number of examples, some of which have

apparently no connexion with our present subject, to

enable the student to form an idea of their extensive

applications.

150. For any two systems of points on a circle (Art. 67,

Ex. 6) the -pairs of lines EG', B'C; CA\ C'A
; AB', AB

intersect respectively in points X, Y, Z, which are col-

linear; and the line of collinearity meets the circle in

jpoints
M and N, real or imaginary, given by the equations

and
293
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But since the anharmonic ratios are unaltered by
inversion, if the origin be taken on the circle, the cyclic

system inverts into points lying on a line and the double

points of the former invert into the double points of the

latter system.
Hence the following construction for the double points

of two homographic systems ABC ... and A'B'C'... on a

line.

Take any arbitrary point and describe the circles

BOG\ B'OC meeting again in X\ COA, C'OA in F; and

AOB\ AOB in Z. Then 0, X, F, Z lie on a circle which

meets the axis in the required points M and N
y
real or

imaginary. (Chasles.)

Otherwise thus: Since [BOAM]
= [BC'A'M], we have

BA IBM B'A' IRM
CA/ CM~~G'A'I C'M

which gives on reduction the ratios MB. MC'/MB'. MG, a

known quantity.

But the numerator and denominator are respectively

the squares of the tangents from M to the circles described

on the segments BO' and B'C as diameters
; therefore, etc.,

by Art. 88, Cor. 2.

It should be noticed that two homographic systems
whose double points are imaginary may be generated by
the revolution of a constant angle about either of two

fixed vertices which are reflexions of one another with

respect to the axis. For if A A', BB', and CC f

subtend

equal angles at a point P (Art 72, Cor. 8), then

since [ABCD . .
.]
= [A'B'C'D'. .

.].
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EXAMPLES.

1. Through a given point P draw a line meeting two given lines

L and L' divided homographically in corresponding points X, X'.

[Join PA , PB, PC, and let these lines meet the axis L' in A', B", C",

then ABC...A"B'C"... since the systems are in perspective at P,

therefore Ar

B'C"... A'B' '..., and if any point of either coincides

with its correspondents of the other, what is required is done
;

hence lines joining P to the double points of these systems give the

two solutions of the problem.]

2. Draw a line through a point P cutting four lines Zi, Zo, Z3,
Z4

in a row of points A, B, (7, D having a given anharmonic ratio L
[Take points AI, A, A s, ... on the axis Z

1?
and draw lines cutting

the remaining axes in systems of points such that

A 1B1C1D1 ...=A 2B.2a,D,...=A 3B3C3D3 .. .

The angle L^L-2 is thus divided homographically by the pairs of rays

through ft, DI ; 6\, A ; ft, A ..., etc., and fclxc oyotomo O.C^ ...,

AA#3 ... are therefore equiaiiharmonic.* Join 7Jft, P(-o, Pft, ...,

and let the joining lines meet Z4 in A', A'> A' 1^ follows, as

in Ex. 1, that AAA ... =A'A'A'..-, and the lines joining their

double points to /* are those required.]

3. Draw a line intersecting five lines such that the anharmonic

ratio of any four of the points of intersection is equal to that of any
other four.

4. Given two homographic pencils, find the pairs of corresponding

rays which intersect on a given line Z.

[Let the line meet the pencils in points ABC, A'E'C'\ the required

rays therefore pass through the double points of the homographic
rows so determined.]

5. In Ex. 4 find the pair of corresponding rays which intersect

at a given angle.

[Join the vertices and 0' of the pencils, and on 00' describe a

segment of a circle containing the given angle ;
let this circle cut

the pencils in the points ABC..., AB'C'..., and find the double

points of these homographic systems ; therefore, etc.]

* This is otherwise evident as all the lines touch the same conic.
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6. Find the direction of the parallel rays ;
and hence draw a

transversal to two homographic pencils which shall be 'divided

similarly by them.

7. Find two points on a given line which shall be isogonal conju-

gates with respect to a given triangle.

8. Construct a triangle with its sides passing through given

points and its vertices on given lines, or on a circle.

9. Let the line L joining the vertices of two homographic pencils

regarded as a ray of each system have' for conjugates L\ and L2 ;

prove that any transversal through the point L\L^ is cut in involu-

tion (cf. Art. 145).

10. Through a given point Pdraw a line intersecting five lines in

the points A, A'} B^B\ F in any assigned order forming with P an

involution.

[Let the lines containing A, B meet in
;
those containing A', B'

in V. Sinrp (hyr)^ ABPP'-O'. A'B'P'P-0'. B'A'PP 1 and the

pairs of rays which correspond OB, OB\ OB, O'A' are fixed ;

therefore the variable rays OP' and O'P' divide the fifth line L

homographically and the double points give the required solutions.]

11. Find a point on a given line such that if joined to five given

points any two pairs of connectors shall be in involution with the

line and fifth.

12. Describe a circle touching three circles with contacts of

assigned species.
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