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Preface 

This book provides an introduction to quantum mechanics which is 
meant to be suitable for chemistry undergraduates in their first and sec- 
ond years at UK universities. There are two broad approaches that an 
author can adopt in writing a book on quantum mechanics. The first is to 
state all the postulates of quantum mechanics at the outset and then 
apply them to a variety of phenomena. Although this approach is logical, 
it seems to leave most students feeling rather bewildered initially because 
the postulates of quantum mechanics appear to be strange and unrelated 
to the world of atoms and molecules that they have been taught at school. 
The second approach, and the one adopted in this book, is to introduce 
the concepts of quantum mechanics gradually, and illustrate them with 
simple examples. This inevitably means that some phenomena are dis- 
cussed before a full explanation of all their aspects can be given. It also 
means that some examples require a qualitative knowledge of material 
that is not covered until much later in the book. An example would be the 
use of n: electrons in conjugated hydrocarbons to illustrate the application 
of the simple particle-in-a-box model. In this book it is assumed that stu- 
dents will already have a qualitative understanding of the general features 
of atomic and molecular orbitals, probably from attending an introducto- 
ry course on chemical bonding which is frequently given in first year. The 
book is therefore intended to be used in conjunction with a lecture course 
on quantum mechanics given either towards the end of the first under- 
graduate year, or in the second year, after introductory courses on bond- 
ing have been given. 

I would like to thank Professor David Phillips for his invitation to write 
this textbook and for his encouragement during its execution. I would 
also like to thank Dr Karol Senkiw for producing some of the figures dis- 
playing mathematical functions, and for his helpful comments on parts of 
the text. Finally, I would like to thank my wife, Heather, for her patience 
during the long hours spent writing this textbook. 

David 0. Hayward 
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Particle-Wave Duality 

I .I lntroduction 

In everyday life a clear distinction is made between particles and waves. 
A particle has a well-defined mass, and its position and velocity can be 
accurately determined as a function of time by applying Newton’s laws 
of motion. Waves do not have mass in the normal sense and cannot be 
precisely located; they are best described in terms of a characteristic fre- 
quency and wavelength. Waves also have the important property that 
they can interact with one another to produce interference patterns, a 
process known as . An example of this is shown in Figure 1.1, 
where interference is observed between two synchronous wave sources. 
When we look at the interaction of electrons with a metal surface we 
find that they can be diffracted in a similar way, and it must be concluded 
that they, too, have wave-like properties, although they are normally 
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2 Quantum Mechanics for Chemists 

thought of as particles. Similarly, electromagnetic radiation can show 
particle-like properties, an example being the way in which X-rays 
can knock electrons out of solids (see Figure 1.2). This process can be 
understood in terms of the collision of two particles, the X-ray particles 
( ) having a momentum inversely proportional to their wave- 
length. 

Figure 1.1 Circular waves ema- 
nating from two synchronized 
sources. The waves reinforce one 
another in the directions marked 
A but cancel one another out in 
the directions marked B 

Although recognition of the particle-wave duality of basic entities 
such as light and electrons is a product of 20th century science, there 
had been earlier signs of a problem. During the preceding centuries 
there had been a disagreement about the true nature of light, with the 
followers of Newton favouring a corpuscular theory, whereas the fol- 
lowers of Huygens regarded light as a wave motion. This difference of 
opinion appeared to have been settled by James Young in 1801, when 
he showed that interference patterns could be produced when light was 
passed through two closely spaced slits. This result could be explained 
satisfactorily only if light was a wave motion. Nowadays, it is accepted 
that both points of view have some validity, light possessing some of the 
properties of both a wave and a particle. The same is true of electrons, 
atoms and molecules. However, it would be wrong to infer from this that 
there is no fundamental difference between particles and electromagnet- 
ic waves; one major difference is that electromagnetic waves always move 
(with respect to the observer) at the velocity of light (3 x los m s-l in 
vacuum), whereas particles can be observed at rest. 

The wave properties of matter can also become evident in ways other 
than by diffraction. An atom in a solid will vibrate because of its ther- 
mal motion. In classical mechanics the energy resulting from this vibra- 
tional motion can have a continuous range of values, but this is no longer 
true when the wave properties of the atom are taken into account. An 
imperfect analogy would be with the modes of vibration of a string, 
which are illustrated in Figure 1.3. For a string of length L, vibrations 
can be generated with wavelengths equal to 2L, 2L/2, 2L/3, etc. These 

Figure 1.2 Experiment that 
demonstrates the particle proper- 
ties of X-rays 
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correspond to the fundamental vibration and its overtones. A similar 
process occurs with the vibrating atom, which can be considered to 
vibrate within the confines of a potential well. Only matter waves with 
particular wavelengths will fit into this well, and they correspond to 
discrete energies which, for simple harmonic motion, are given by the 
formula: 

Figure 1.3 Some of the stand- 
ing waves that can be generated 
on a string 

Here, n is an integer, wvib is the frequency of the vibration, and h is known 
as . This , as it is known, was 
first postulated by Max Planck in 1900 as a key part of his theory to 
explain the frequency distribution of radiation emitted by a black body. 
It is found that energy is quantized whenever a particle is confined to a 
small space because of the need to match the wavefunction of the par- 
ticle to the space available. This applies just as much to electrons trav- 
elling around an atomic nucleus as it does to atoms vibrating in a solid. 

The major part of this book will be concerned with the wave proper- 
ties of matter, but it will be helpful, at the outset, to spend a little time 
looking at the particle properties of electromagnetic radiation because 
similar concepts apply in both cases. 

I .2 Particle Properties of Electromagnetic Waves 

1 m 2 m l  The Photoelectric Effect 

When a metal is placed in an evacuated chamber and illuminated with 
ultraviolet (UV) light, electrons are emitted (see Figure 1.4). These are 
known as , and they flow from the metal surface exposed 
to the radiation to the collecting electrode, where the current flowing can 
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be measured with a sensitive galvanometer. This phenomenon was first 
studied systematically by P. Lenard who, in 1900, was able to show that 
the charged particles emitted from the metal surface were electrons. 

Figure 1.4 Schematic drawing 
of apparatus used by Lenard to 
observe the photoelectric effect 

By varying the applied potential V it was possible to find the value 
Vo (a retarding potential, with the collecting electrode negative with 
respect to the metal under study) at which the current went to zero. The 
value of Vo was found to vary with the frequency of the radiation used, 
as shown in Figure 1.5. When the potential difference was equal to Vo, 
even the most energetic electrons were not quite able to reach the col- 
lector, and the maximum kinetic energy of the photoelectrons must there- 
fore have been equal to eV0, where e stands for the charge on one 
electron. 

Figure 1.5 Variation of the pho- 
toelectric current I with the 
potential difference V applied 
between the electrodes when illu- 
minated with light of two different 
frequencies. The frequency of the 
light would be higher for curve (i) 
than for curve (ii) 

In a later series of experiments, conducted between 1914 and 1916, R. 
A. Millikan was able to show that the maximum kinetic energy of the 
photoelectrons varied linearly with the frequency of the light used, and 
that the slope of the plots of maximum kinetic energy versus frequency 
was equal to Planck’s constant h. A schematic representation of 
Millikan’s results is shown in Figure 1.6. 
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Figure 1.6 Plots of the maxi- 
mum kinetic energy of photoelec- 
trons versus the frequency of the 
light source for two different 
metals 

The results can be summarized as follows: 

1. For any particular metal there was a critical radiation frequency vo 
below which no electrons were emitted, no matter what value of the 
retarding potential V was used. 

2. The maximum kinetic energy of the emitted electrons, +m(vmax)' or 
eV0, depended on the frequency but not the intensity of the light 
used. 

3. The slope of the plot of maximum kinetic energy versus frequency 
was the same for all metals, with a value equal to Planck's constant 
h. 

In 1905, Einstein had already postulated that radiant energy came in 
small packets, each with an energy equal to hv, where v is the frequen- 
cy of the radiation, and Millikan's results gave strong support to this 
concept. Part of the energy is used to release the electron from the metal 
and the rest appears as the kinetic energy of the electron. Electrons can 
be released from different energy levels, the highest occupied level in a 
metal being known as the (see Figure 1.7). The minimum 
energy required to release an electron from the Fermi level is known as 
the of the metal and is given the symbol @. Clearly those 
electrons released from the Fermi level will have the highest kinetic 
energy. This can be expressed in mathematical form as: 

where T is the maximum kinetic energy of the emitted electrons. 
This phenomenon shows that light can behave as a particle (that is, a 

) as well as a wave. 
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Figure 1.7 Electron energy 
level diagram for a metal, show- 
ing the relationship between the 
photon energy, the work function 
of the metal, and the maximum 
amount of kinetic energy that a 
photoelectron can possess 
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I .2.2 Photoelectron Spectroscopy 

The photoelectric effect forms the basis of the modern technique of 
photoelectron spectroscopy' in which molecules are irradiated with UV 
light and the kinetic energies of the emitted photoelectrons are measured 
with an electrostatic energy analyser. A schematic diagram of the 
apparatus used is shown in Figure 1.8. This technique provides valuable 
information about the binding energies of electrons in molecules. Unlike 
metal%, molecules have discrete energy levels, and equation (1.2) can be 
rewritten as: 

h v = T + Z  (1.3) 

where I is the 
is used in place of the work function @. 

of the electron that has been emitted and 

Figure 1.8 Schematic diagram 
of the apparatus used to study 
the UV photoelectron spectra of 
gases 

Thus, by irradiating the sample with light of known frequency v and 
measuring the kinetic energy of the photoelectrons emitted, the ionization 
energy Z can be determined. The UV light is often provided by a helium 
discharge lamp, which generates photons with a characteristic energy. 

The photoelectrons may originate from a variety of electronic states 
within the molecule, and each state will have a different ionization ener- 
gy, I .  Thus, when the photoelectric current is plotted as a function of 
the kinetic energy of the photoelectrons, a series of peaks will be 
obtained. A schematic diagram of the photoelectron spectrum of nitro- 
gen, excited by helium-I radiation, is shown in Figure 1.9. Here, the data 
have been plotted both as kinetic energies of the photoelectrons and as 
ionization energies. The process occurring can be represented as: 

hv + N, -+ N,+ + e- (1 -4) 
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Figure 1.9 Schematic diagram 
of the photoelectron spectrum of 
nitrogen. The arrows indicate the 
energies of photoelectrons that 
are emitted without vibrational 
excitation 

Photoelectrons can be emitted from three different energy levels in the 
nitrogen molecule, labelled A, B and C. The other peaks appearing in 
the spectrum are caused by vibrational excitation of the nitrogen mole- 
cule ion that is formed. This reduces the kinetic energy of the photo- 
electrons because it takes additional energy to make the ion vibrate, and 
therefore these peaks all appear to the left of the principal peaks. 
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Figure 1 .10 Diagram showing 
the molecular orbitals of nitrogen 
from which the photoelectrons 
are emitted 

I .2.3 Collisions between Photons and Electrons: the 
Compton Effect 

We have seen that light can be treated as particles (photons) with an 
energy equal to hv. The energy of the photon can also be obtained from 
Albert Einstein’s famous equation relating mass and energy: 

where c is the velocity of light. The mass referred to in this equation is 
the inertial mass of the photon, which arises as a direct consequence of 
the photon’s energy. It should be noted that the photon does not have 
a proper, or rest, mass in the way that an electron does. When the two 
expressions for the energy are equated, we arrive at the equation me2 = 
h v  = hell. The momentum, p ,  of the photon is then given by the equation: 

This formula was verified by Compton in 1923. He found that when a 
monochromatic beam of X-rays was incident on a block of graphite (see 
Figure 1.1 I), two kinds of X-rays emerged on the far side. One had the 
wavelength of the original beam, Ai, but the other had a longer wave- 
length, As. 
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Figure 1 .l 1 The Compton 
experiment 

These results were explained by postulating that some of the X-ray 
photons had undergone elastic collisions with electrons in the graphite. 
This process, shown in Figure 1.12, results in the scattered photon having 
a smaller momentum than the incident photon. The binding energy of 
the electron in the graphite is very small compared to the energy of an 
X-ray photon, and the electron behaves as though it was a free electron 
which is virtually at rest before the collision. By applying the laws 
of conservation of energy and linear momentum to the collision and 
assuming that the momentum of an X-ray photon is equal to MA, the 
following equation can be derived: 

Figure 1.12 Depiction of the 
collision of an X-ray photon with 
an electron 

Here, Ah is the change in wavelength of the photon, me is the mass of 
the electron, and 8 is the scattering angle. This equation is in good agree- 
ment with the experimental results, thus demonstrating that the photon 
does indeed have a momentum equal to MA. 
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1.3 Wave Properties of Matter 

1.3.1 De Broglie Waves and Low-energy Electron 
Diffraction (LEED) 

In 1924, Louis de Broglie proposed that all matter has wave properties 
and that the wavelength of the associated wave is related to the 
momentum, p ,  of the particle by the expression already derived for 
photons, namely: 

In 1927, Davisson and Germer demonstrated that electrons can be 
diffracted from the surface of a nickel crystal, a result which can be 
explained only if electrons have wave-like properties. By applying the 
de Broglie relationship they were able to calculate the interatomic spac- 
ing between the nickel atoms, and their result agreed with the value 
obtained from X-ray diffraction measurements. 

Davisson and Germer used an electron beam that had been acceler- 
ated through a potential difference of 54 volts and the electrons 
approached the surface at normal incidence, i. e. perpendicularly, as 
shown in Figure 1.13. The nickel sample had been heated to high tem- 
peratures before the experiments began, and this had caused large crys- 
tals to form which produced the regular array of nickel atoms shown in 
the figure. Unlike X-rays, electrons do not penetrate very far into the 
metal crystal, and most of the scattering occurs from the top layer of 
metal atoms. Scattering of electrons was found to occur most strongly 
at an angle of 50" to the surface normal, and this result can be explained 
in terms of the constructive interference of electron waves scattered from 
neighbouring nickel atoms, as shown in Figure 1.14. 

The condition for constructive interference is that the waves should 
all be in phase with one another. Figure 1.15 gives examples of waves 

Figure 1.13 The arrangement 
used by Davisson and Germer to 
observe diffraction of electrons 
from the surface of a nickel 
crystal 
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Figure 1.14 Constructive inter- 
ference of an electron beam at a 
nickel surface 

that interfere constructively and destructively with one another. From 
an inspection of Figure 1.14, constructive interference occurs when the 
difference in path lengths, AC, is equal to a whole number of wave- 
lengths. Now AC = dsin8, where d is the perpendicular distance between 
the close-packed rows of nickel atoms. The condition for constructive 
interference then becomes: 

dsin8 = nA (1 -9) 

where n is an integer. A can be obtained from the equation A = hlp and 
hence d can be calculated. 

Figure 1 .I 5 Constructive and 
destructive interference of waves 

Constructive interference occurs only in certain directions. One of 
these directions is shown in Figure 1.16 for first-order diffraction, where 
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n = 1. Rows of close-packed nickel atoms occur in three different 
directions and diffraction at right angles to these rows results in the dif- 
fraction pattern shown in Figure 1.17, with six first-order diffraction 
spots. In Davisson and Germer’s original experiments, only one diffrac- 
tion peak was observed but all six were seen in later work. By using the 
equipment shown diagrammatically in Figure l.l8(a) the diffraction pat- 
tern shown in Figure 1.18(b) can be obtained. 

Figure 1.1 6 Constructive inter- 
ference of electrons scattered 
from a nickel surface in one 
particular direction 

Figure 1.17 The origins of the 
first-order diffraction pattern 

Figure 1.18 (a) LEED 
apparatus and (b) the first-order 
diffraction pattern 
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Figure 1.1 9 The structure of 
oxygen adsorbed on a close- 
packed nickel surface together 
with the corresponding LEED 
pattern 
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Figure 1.20 Geometry of a 
close-packed nickel surface 

1.3.2 Diffraction of Atoms and Molecules from Surfaces 

Diffraction of helium from alkali halide crystals was first observed by 
Estermann, Frisch and Stern in 1931, but it was not until the 1970s that 
diffraction of atoms and molecules from metal surfaces was first clearly 
demonstrated. A beam of atoms or molecules, all with approximately 
the same energy, can be generated by expanding gas at high pressure 
through a supersonic nozzle. With the set-up shown in Figure 1.21 it 
has been possible to observe the diffraction of beams of helium and 
deuterium from a close-packed nickel ~ u r f a c e . ~  Six first-order diffraction 
peaks have been observed, and the de Broglie relationship has been used 
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to calculate the spacing between the rows of nickel atoms, just as in the 
experiments of Davisson and Germer. 

Figure 1.21 Set-up used to 
observe diffraction of helium or 
deuterium from a nickel surface 

Neutrons can also be diffracted by crystals, but they travel a long way 
into the solid, and therefore give information on the internal structure 
of the solid rather than on the structure of the surface. 
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1.4 Matter Waves 

x2 x3  x4 x 5  x 6  
e x  = l + x + - + - + - + - + -  -... 

21 3! 4! 5! 6! 

1.4.1 The One-dimensional Form of the Wavefunction y 
In this section we consider a beam of particles moving along the x axis 
at constant flux and velocity. It is assumed that the actual positions of 
particles within the beam at any particular time are unknown. Under 
these circumstances the de Broglie wavefunction of a particle in the beam 
will be a function only of x ,  and the time will not be involved. The sim- 
plest wavefunction would be w = Asinkx or y = Acoskx, where A is the 
amplitude of the wave and k is a constant, but, for reasons that will 
gradually become clear, it has been found that the most effective way of 
representing a particle moving along the x axis with constant momen- 
tum is by the complex wavefunction: 

y = AeikX = A(coskx + isinkx) (1.10) 

e" = l + , x - Z - ! C + ? L + C - L  6 This wavefunction consists of two sinusoidal waves, one real and one 
21 31 41 51 61 complex, which are 90" out of phase with one another (see Figure 1.22). 

=(I--+X-X 21 41 61 )+,(x--+-. 31 51 ) In three dimensions the constant k becomes a vector, which is often 
referred to as the . Here, k will be used to indicate the mag- 
nitude of the wave vector, and this can be related to the wavelength A 
by noting that the magnitude of the wavefunction y does not change 

XJ x5 x Z  4 6 

Figure 1.22 Real and complex 
parts of the wavefunction 
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when x is increased by an amount equal to A. Thus, for the sine com- 
ponent: 

Asinkx = Asink(x + A) = Asin(kx + kA) (1.11) 

and similarly for the cosine component. Now, sin8 = sin(8 + 2.n) and 
cos8 = cos(8 + 2n), from which it follows that kA must be equal to 2n. 
Thus: 

k = 2 d A  (1.12) 

According to the de Broglie relationship, p = hlA, and therefore: 

(1.13) hk p=-=Ak 
2n 

where t2 is equal to hl(2n). 

with equation (1.13) we obtain: 
The kinetic energy, T, is equal to p2/2m, and when this is combined 

T = (hk)'/(2m) (1.14) 

Thus, the more kinetic energy the particle has, the smaller the wavelength 
becomes and we can regard the curvature of the wavefunction as giving 
a measure of the kinetic energy of the particle. 

If k is taken to be a positive quantity, then a particle moving in the 
positive x direction with momentum hk would have a wavefunction 
ly = Aeik", and a particle moving in the opposite (negative x) direction 
would have a wavefunction ly= Ae-jk". When expanded in terms of sine 
and cosine functions, the two wavefunctions become: 

w = Aeik.x = coskx + isinkx (1.15) 

and: 

ly = e--ikx = cos(-kx) + isin(-kx) = coskx - isinkx (1.16) 

These wavefunctions are shown in Figure 1.24, where it can be seen that 
the phase relationship between the real and complex parts is different 
for motion in opposite directions. 

One reason for using the complex wavefunction now becomes 
clear: it allows motion in opposite directions to be distinguished because 
the two wavefunctions, ly= AeikX and ly= Ae-jkx, are distinct. If a simple 
sine or cosine function had been chosen to represent the motion of the 
electron, it would have been impossible to distinguish between motion 
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Figure 1.23 The sines and 
cosines of negative angles 

Figure 1.24 Wavefunctions for 
movement in opposite directions 

in opposite directions because cos(-kx) = cos(kx) and sin(-kx) = 
-sin(kx). Although the sine function changes sign when k goes to -k, this 
does not produce a new wavefunction because the sign of the wave- 
function is arbitrary and no particular physical significance can be 
attached to it. 
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1.4.2 The Interpretation of the Wavefunction in Terms 
of Probabilities 

It is difficult to give the wavefunction y a  physical significance because, 
as we have just seen, it can have both real and complex parts. In 1926, 
Max Born suggested that the wavefunction of a particle, y, multiplied 
by its complex conjugate, v,  might be connected with the probability 
of finding the particle at a particular point. We have to be careful here, 
because the probability of finding the particle at the point x,y,z depends 
on how accurately the point is defined. The more exact the definition, 
the lower is the probability of finding the particle there. It is rather like 
asking how many people in Great Britain are exactly six feet tall. A 
moment’s reflection will show that the question is meaningless unless a 
height range is specified. A sensible question would be “How many peo- 
ple in Great Britain have a height between six feet and six feet and one 
inch?” In the same way, we need to find the probability of finding the 
particle in an infinitesimally small box with dimensions dx,dy,dz (known 
as a volume element), located at the point x,y,z. This is illustrated in 
Figure 1.25. The probability of finding the particle within this infinites- 
imal box is clearly going to be proportional to its volume, and the prob- 
ability will therefore be given by the equation: 

P(x,y,z)dxdydz ydxdydz (1.17) 

where P(x,y,z)dxdydz is the probability of finding the particle between 
x and x + dx, y and y + dy and z and z + dz. P(x,y,z ) is known as the 
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. It is equal to vw and has dimensions in SI units 
of m-3. It follows that the wavefunction itself has a dimension of m-3/2, 

For motion restricted to the x axis, equation (1.17) becomes: 

P(x)dx = Vydx (1.18) 

and the wavefunction will have a dimension of rn- I I2 .  

1.4.3 Application to a Particle Moving with Constant 
Figure 1.25 The volume Momentum 
element to which the probability 
refers For a particle moving along the x axis with constant momentum fik,  y 

= Aeikh. and t,,P = Ae-'"". The probability of finding the particle between 
x and x + dx is then given by the expression: 

P(x)dx = V y d x  = A2dx (1.19) 

It follows that the particle is equally likely to be found anywhere along 
the x axis, which is equivalent to stating that its position at any instant 
is unknown. From this we conclude that a particle with wavefunction y 
= Aeiks has a definite momentum but an undefined position. We will 
come back to this subject in Chapter 3, when the Heisenberg Uncertainty 
Principle is discussed. 

1.4.4 Time-independent Wavefunctions 

All the wavefunctions that will be considered in this book are functions 
only of the spatial coordinates of the system; they do not contain time 
as a variable. This means that we are confining our attention to systems 
where the probability of finding the particle concerned at various points 
in space does not vary with time. This does not mean that the particle 
does not move, but merely that the probability distribution associated 
with its movement does not vary with time. For example, an electron 
orbiting a hydrogen atom moves around the nucleus, but its measurable 
properties do not vary with time. Such systems are known as 

, and they include all the stable states of atoms and molecules. 

1.4.5 Well-behaved Wavefunctions 

Wavefunctions normally have to meet the three conditions listed below. 

1. There can be only one value for y at any particular point. This con- 
dition is necessary to prevent there being more than one probabili- 
ty of finding the particle at a given location. 



Particle-Wave Duality 23 

2. The wavefunction must vary smoothly with x so that there are no 
discontinuities in y or its first derivative, d yldx. This arises because 
of the need to be able to define y and dy/dx at every point. This 
rule does not apply to dy/dx when the potential energy becomes infi- 
nite, as happens at the nucleus of an atom. 

3. The integral of 9 y o v e r  all space must be equal to one because the 
particle is certain to be somewhere. This requires the wavefunction 
to remain finite for large x. 

Figure 1.26 Well-behaved and 
unacceptable wavefunctions 
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Particle in a One-dimensional 
Box 

2.1 Allowed Wavefunctions and Energies 

In this section we consider a particle trapped in a one-dimensional 
potential well with infinitely high sides, as shown in Figure 2.1. Later in 
the chapter this model will be applied to electrons trapped in so called 
“quantum wells” and also to the delocalized n; electrons in conjugated 
molecules such as butadiene. 

With an infinitely high wall there is no possibility of the particle escap- 
ing from the box, and the wavefunction outside the box must therefore 
be zero. It follows that the wavefunction inside the box must go to zero 
at the points x = 0 and x = L, otherwise there would be a discontinuity 
in the wavefunction at these points, and two separate values for the wave- 
function would apply to the same point in space. This condition is known 
as a 

If an attempt is made to fit the de Broglie wavefunction, y = Aeikx, 
into the box, a problem arises because this function never goes to zero, 
and it cannot satisfy the boundary conditions. When the sine or the 
cosine component is equal to zero, the other component is either at a 
maximum or a minimum. The inability of this type of wavefunction to 
fit the boundary conditions is not at all surprising because it corresponds 
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I I 

to a particle moving with constant momentum fik, whereas a particle-in- 
a-box will be continually colliding with the walls and having its momen- 
tum reversed. This is illustrated in Figure 2.2. We are therefore looking 
for a wavefunction that represents a particle which is equally likely to 
be moving in either direction. This wavefunction can be obtained by a 
linear combination of the two exponential wavefunctions representing 
momentum in the +ve and -ve x directions: 

x = o  
x = L  k 

When the exponential terms are expanded, this equation becomes: 

y = A[{coskx + isinkx) k {cos(-kx) + isin(-kx))] 
= A[(coskx + isinkx) & (coskx - isinkx)] 
= 2Acoskx or 2iAsinkx (2.2) 

The sine function satisfies the boundary conditions when k = nn/L, where 
n is a positive integer, known as a . When x = 0, w =  
0 and when x = L, t,u = 2iAsin(nz) = 0. Thus, the appropriate wave- 
function for a particle in a box is: 

y = ..i.( 7) 

Figure 2.1 A square potential 
well with infinitely high sides. The 
potential energy, V, is zero inside 
the box and infinite outside 

Figure 2.2 Reversal of momen- 
tum as the particle strikes the 
walls of the potential well 

with N = 2iA and n = 1, 2, 3, etc. 

fi2k2/(2m). With the substitution k = nz/L this becomes: 
From equation (1.14) the kinetic energy, T, of the particle is equal to 
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T = k2(nn)2/(2nzL2) = n2h21(8nzL2) (2.4) 

The potential energy, V, is zero and therefore the total energy, E, equals 
T. Thus: 

with n = 1, 2, 3, etc. n2h2 E=-  
8 mL2 

It should be noted that n = 0 is not allowed because this would corre- 
spond to the wavefunction being zero everywhere, and we would have 
lost our particle. Thus, the particle must have a minimum energy of 
h2/8mL2. This is known as the . The wavefunctions are 
shown diagrammatically in Figure 2.3, together with the probability 
densities. 

Figure 2.3 Wavefunctions and 
probability densities for a particle 
in a box 

2.2 Normalization 

The constant N in equation (2.3) is known as the 7 

and its value can be determined by using the fact that the particle is cer- 
tain to be in the box. Therefore integration of the probability density, 
~I,u, over all the space available to the particle should give an answer 
of one, that is: 

With the use of the wavefunction given in equation (2.3), this becomes: 
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The integral can be evaluated by using the relationship sin2@ = +(1 - 
cos28). This gives: 

which, after integration, becomes: 

Since sin(2nn) = 0 and sin(0) = 0, the normalization constant can be writ- 
ten simply as: 

(2.10) N = J -  2 
L 

Hence: 

(2.11) 

2.3 Probability Distributions of the Wavefunctions 

It should be noted that the probability densities shown diagrammatically 
in Figure 2.3 are not what one would expect on the basis of classical 
mechanics, and they raise a number of conceptual problems. A particle 
that is moving with constant speed, and suffering a reversal of direction 
every time it collides with the walls, would be expected to 
spend equal lengths of time in all parts of the box. It follows that the 
probability of finding the particle at various points inside the box at some 
arbitrary moment in time should be constant. In fact, when the wave 
nature of the particle is taken into account, we find that the particle in 
its ground state (n = 1) is most likely to be found at the centre of the 
box. 

Conceptual problems become even greater when we consider the n = 
2 state, where the probability density drops to zero at the centre of the 
box. How can the particle get from one side of the box to the other if 
there is no chance of finding it at the centre? There is no simple answer 
to this question, but the problem will be partially resolved when we con- 
sider the Heisenberg Uncertainty Principle in Chapter 3. The wavefunc- 
tions that we have considered so far relate to particles that have specific 
energies but indeterminate positions. As we shall see later, any attempt 
to locate the particle interferes with the system, and changes its wave- 
function. 
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2.4 Semiconductor Quantum Wells 

These are sandwich structures made from semiconducting materials and 
they have many potential applications in modern electronic devices. An 
example is illustrated in Figure 2.4, where the base material is the III/V 
semiconductor gallium arsenide (GaAs). A thin layer of pure GaAs has 
been created between two layers of aluminium gallium arsenide, a 
material in which some of the gallium has been replaced with aluminium 
to give the formula AlxGal-xAs. Nearly free electrons, known as con- 
duction electrons, can exist in these semiconductors, and they have a 
much higher potential energy in AlxGal-xAs than they do in pure GaAs. 
Thus, conduction electrons in the pure GaAs become trapped between 
two potential walls and behave like particles in a one-dimensional box 
when moving in the x direction, although they have complete freedom 
of movement in the y and z directions. Unlike the idealized potential 
well considered earlier, which had walls that were infinitely high, this one 
has finite walls. This affects the wavefunctions and energies to a small 
extent, but the equations derived earlier will still give reasonably accu- 
rate values for the energies. 

Figure 2.4 The variation of 
potential energy across a gallium 
arsenide one-dimensional 
potential well, and the associated 
electron energy levels 

The existence of discrete energy levels is confirmed by the observation 
of selective absorption of laser light at certain frequencies which corre- 
spond to the transition of an electron from one energy level to another. 
The GaAslAlxGal-,As combination mentioned above forms the basis of 
the semiconductor laser used in compact disc players. Equation (2.5) can 
be used to calculate the energies, with one important proviso: the con- 
duction electrons behave as though they have a much smaller mass than 
ordinary electrons. This mass is known as the , m*; for 
gallium arsenide, m* = 0.067me. 
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2.5 ?t Electrons in Conjugated Molecules 

Butadiene, CH,=CH-CH=CH,, will be used to illustrate the way in 
which the particle-in-a-box wavefunctions can be applied to conjugated 
molecules, a term applied to hydrocarbon molecules with alternate single 
and double carbon-carbon bonds. To understand the nature of the bond- 
ing in such molecules it is necessary to anticipate the shapes of the atomic 
orbitals, a subject that will be discussed more fully in Chapter 6. 

Figure 2.5 shows the way in which the 2s, 2p, and 2py atomic orbitals 
on each carbon atom combine to give three equivalent orbitals, known 
as hybrid orbitals. The overlap of these hybrid orbitals in the xy plane 
produces so called “CJ bonding”, and results in the molecular shape shown 
in Figure 2.6. The 2pz orbitals on the carbon atoms are directed at right 
angles to the xy plane, as shown in Figure 2.7, and they are not involved 
in the 0 bonding. Instead, they overlap to give what are termed “n: 
orbitals”. It can be seen that the 2pz orbitals on the second and third 
carbon atoms can interact equally well with similar orbitals on either 
side. This results in delocalized orbitals that extend over the whole 
molecule. Electrons in these n: orbitals can move from one end of the 
molecule to the other, and can be thought of as particles in a box. 
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Figure 2.5 Formation of sp2 
hybrid orbitals in the xy plane of 
a carbon atom 

Figure 2.6 The overlap of 
carbon sp2 hybrid orbitals in the 
xy plane of the butadiene 
molecule 

Figure 2.7 Formation of a 
delocalized IT orbital by the over- 
lap of the carbon 2pz orbitals in 
butadiene 

To simplify the problem further we will assume that the carbon frame- 
work is linear and that the potential energy of the IT electrons remains 
constant as they move along the molecule. The second assumption may 
seem to be a poor approximation because of the strong coulombic 
attraction that exists between the negatively charged electron and the 
positively charged carbon nuclei. This should result in a substantial fall 
in the potential energy of the electron as it passes close to a nucleus. 
However, this effect will not be large for IT electrons because, as can be 
seen in Figure 2.7, the electron density is concentrated at points above 
and below the internuclear axis and there is actually a node along the 
axis itself. Thus, the IT electrons never come very close to the carbon 
nuclei during their movement along the molecule. The model and actu- 
al potentials are compared in Figure 2.8. The actual value of V to be 
used is arbitrary, provided it remains constant, and we shall put V = 0. 

Two electrons can occupy each state, with their spins paired. Since 



Particle in a One-dimensional Box 33 

Figure 2.8 Model and actual 
potentials seen by a K electron in 
butadiene 

butadiene has four 71: electrons, the two lowest energy states will be fully 
occupied, as shown in Figure 2.9. Experimentally it is found that buta- 
diene absorbs electromagnetic radiation with a wavelength, A, equal to 
217 nm. The energy of the photon is used to excite a 71: electron from the 
n = 2 to the n = 3 state, and the wavelength of the radiation can be 
calculated from the equation E3 - E2 = hv = hc/A. This gives a value of 
220 nm, which is in surprisingly good agreement with the experimental 
value. 

Figure 2.9 Occupation of ener- 
gy levels in butadiene. Absorption 
of electromagnetic radiation caus- 
es promotion of an electron from 
the n = 2 to the n = 3 level 

The n: electron probability densities for the first three states are shown 
in Figure 2.10. The wavefunctions must extend beyond the carbon atom 
framework, otherwise there would always be a node on the two end 
carbon atoms, which would indicate zero n electron density there. If the 
box is extended by half a bond length at each end of the molecule, the 
length of the box becomes equal to four carbon-carbon bond lengths. 
For n = 2 the n electron density is concentrated between carbon atoms 
1 and 2, and 3 and 4, making these approximate to double bonds. There 
is a node between the two central carbon atoms, so this must be a simple 
CY bond. The n = 2 state therefore corresponds to the structure normally 
drawn for butadiene. The excited state, with n = 3, has zero n; electron 
probability density between atoms 1 and 2, and also between atoms 
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3 and 4, but a maximum probability density between the middle two 
atoms. It therefore corresponds very roughly to the structure 
CH,-CH=CH-CH,, which has unsatisfied valence on the end carbon 
atoms. This makes the excited state particularly reactive. 

Figure 2.10 n Electron 
probability densities in butadiene 
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Uncertainty Arising from the 
Wave Nature of Matter 

3.1 Uncertainty in the Diffraction of Particles 

In classical mechanics the trajectory followed by a particle is fully deter- 
mined by the starting conditions, and the position of the particle as a 
function of time can be specified to any desired accuracy. This implies 
that precise values can be given to both the position and momentum of 
the particle at any instant. The elastic scattering of heavy atoms from 
surfaces (e.g. argon and krypton) comes within this category and results 
in “rainbow scattering” under appropriate conditions, as shown in Figure 
3.1. Here the point of impact is localized and the momentum after impact 
can be determined from the surface corrugation. Although heavy atoms 
have wave-like properties, the wavelength is very much shorter than the 
interatomic distances found in solids, and diffraction is not observed. 

When electrons or much lighter atoms are used, however, it becomes 
impossible to give precise trajectories because the wave-like properties 
of these particles control the scattering. Take electron diffraction, for 
example. If a beam containing millions of electrons is fired at a nickel 
target, we know that the diffraction pattern shown earlier will be 
obtained with six first-order peaks of equal intensity, but it is not possible 
to know in advance to which spot any particular electron will go. 
Therefore the trajectory followed by a single electron cannot be 
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Figure 3.1 Rainbow scattering 
of heavy atoms from an ordered 
surface 

determined from the starting conditions (see Figure 3.2). It follows that 
the deterministic nature of newtonian mechanics is destroyed and an 
unavoidable uncertainty is built into the detailed outcome of any 
experiment. 

Figure 3.2 Uncertainty in low- 
energy electron diffraction from a 
nickel surface 

Diffraction patterns can be built up gradually by observing the arrival 
of single electrons at a fluorescent screen, the time between arrivals being 
sufficiently long to prevent any interaction between different electrons. 
At first, the arrival of the electrons seems to be random, but as more 
electrons arrive a diffraction pattern begins to emerge. Thus, although 
the behaviour of a single electron is unpredictable, the collective behav- 
iour of a very large number of electrons can be determined to a fairly 
high accuracy. 

The phenomenon of diffraction introduces a certain “fuzziness” or 
uncertainty into the trajectories followed by the diffracting particles. 
Figure 3.3 shows the situation at the moment of collision of a diffract- 
ing particle (electron, light atom or molecule) with a surface. The first 
uncertainty arises in the position of impact of the particle with the sur- 
face. Diffraction can occur only if the interaction with the surface extends 
over more than one lattice spacing, which means that the uncertainty in 
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the position of the particle at the moment of impact, Ax, must be equal 
to, or greater than, d. 

Figure 3.3 Uncertainty in posi- 
tion and momentum during dif- 
fraction at a surface 

This can produce some surprising results. For instance, in the 
diffraction of a supersonic helium beam from a sodium-covered silicon 
surface, shown in Figure 3.4, a periodic lattice spacing of about 1.5 nm 
is detected between rows of sodium atoms.' This distance is much greater 
than the collision diameter obtained for helium from the kinetic theory 
of gases, which is about 0.5 nm. In fact, the discrepancy is even greater 
than this because a reasonably sharp diffraction pattern will require 
contributions from at least three rows of sodium atoms. This increases 
the distance over which a helium atom can interact with the surface to 
about 3 nm. It must be concluded that the behaviour of a helium atom 
is far removed from the commonly held picture of a small billiard ball 
bouncing off a rough surface. The entity undergoing diffraction has to 
be treated as a wave packet, which extends beyond the normal dimen- 
sions of the atom. 

There is also an uncertainty in the momentum of the particle as it 

Figure 3.4 Lattice spacing for a 
sodium -covered si I icon surface 
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leaves the surface because, as we have already seen, it is not possible to 
know in advance to which diffraction spot the particle will go. In Figure 
3.3, the particle is equally likely to be diffracted to the left or to the right. 
From the de Broglie relation, the magnitude of the momentum will be 
h/A, and the component parallel to the surface will therefore be equal to 
+hsinO/il, the sign depending on whether the particle is diffracted to the 
left or the right. The uncertainty in the component of momentum par- 
allel to the surface, Apx, will therefore also be equal to hsinO/il. Use of 
the diffraction relation nil = dsine, with n = 1, leads to Apx = h/d. This 
is only an approximate formula because the other four first-order dif- 
fraction peaks have been ignored, as well as higher-order peaks, but it 
gives a rough measure of the overall uncertainty in the momentum. When 
this uncertainty is combined with the uncertainty in the point of impact, 
we obtain the relation: 

A x A ~ , ~  = h (3.1) 

It is significant that the particular properties of the system have cancelled 
out, and we are left simply with a universal constant. It is also worth 
noting that the “uncertainty” or “fuzziness” that we have discussed does 
not arise from any defect in our knowledge of the system, or the method 
of measurement, but from the inherent nature of the diffraction process. 

3.2 Diffraction of Electrons through Double Slits 

The uneasy combination of particle and wave-like properties can lead 
to some strange results. Perhaps the most famous one occurs when elec- 
trons (or any other light particles) are diffracted by a pair of slits, as 
shown in Figure 3.5. Waves emerging from the two slits interfere with 
one another to create, on a fluorescent screen, the diffraction pattern 
shown. This consists of alternating bright and dark fringes where the 
waves from the two slits are either in or out of phase with one another. 

A difficulty arises when one considers what happens to a single 
electron as it passes through the double slit system. Each electron will 
give rise to a spot on the screen and the complete diffraction pattern can 
be built up by an accumulation of these spots, without any interaction 
occurring between the different electrons. Let us assume for the moment 
that an electron, being a particle, can pass through only one of the two 
slits, which we will take to be slit A. The probability of it striking various 
points on the screen will depend upon whether slit B is open or closed. 
If it is closed the probability of the electron striking various points on 
the screen will be determined by the diffraction pattern shown in the 
lower part of the diagram, whereas the upper diffraction pattern will 
apply if slit B is open. How does the electron “know” whether slit B is 

~i~~~~ 3.5 Electron diffraction 
at double and single slits 
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open or closed? Could it be that in some sense the electron actually goes 
through both slits? The fact that the diffraction pattern can be built up 
by separate, non-interacting electrons seems to support the idea that each 
electron passes through both slits and interferes with itself. Or does this 
seem too absurd to be taken seriously? 

3.3 Uncertainty with Particle-in-a-box 

A similar uncertainty arises with the particle in a box. Although the 
energy of the particle is known, there is an uncertainty in the momen- 
tum because it is not possible to know at any given instant whether the 
particle is moving from left to right or right to left. Combining the equa- 
tions for energy and momentum, E = n2h2/8mL2 and p2 = 2mE, it can be 
seen that p = k nh/2L. There is, therefore, an uncertainty in the momen- 
tum, Ap,, equal to nh/2L. There is also an uncertainty in position because 
we do not know where the particle is inside the box. If this uncertainty 
is put equal to half the length of the box, L/2, we find that, for the ground 
state: 

AxAp, = [&)[ ;) = 
4 

Once again, the product of the two uncertainties is proportional to 
Planck’s constant, and does not involve any parameters specific to the 
system. There is no way to avoid this basic uncertainty. Making the box 
smaller will reduce the uncertainty in x, but only at the expense of 
increasing the uncertainty in p,. It is also significant that the particle in 
a box is not allowed to have zero energy, corresponding to n = 0. Zero 
energy would mean that there was no momentum, and therefore Apx 
would be equal to zero. We shall see in the next section that this would 
violate the Uncertainty Principle. 

A more sophisticated calculation2 uses standard deviations from the 
mean to obtain the uncertainties in x and p,. When this is done, Apx is 
still found to be equal to h/(2L) but Ax is now much smaller and equal 
to 0.57L/.n. Thus: 

AxAp, = 0.57h I(2.n) = 0.57h (3-3) 

3.4 Statement of the Heisenberg Uncertainty 
Principle 

Heisenberg, by considering a hypothetical experiment in which the posi- 
tion and momentum of an electron were deduced from observations 
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made in an optical microscope, came to the general conclusion that the 
uncertainty in linear momentum of a particle, Ap,, multiplied by the 
uncertainty in its position, Ax, could never be less than h/4n. This can 
be written formally as: 

AxAp, 2 h I(4.n) = A /  2 (3.4) 

Thus, it is not possible to know simultaneously both the precise position 
and the momentum of a microscopic particle, such as an electron or 
atom. 

3.5 Application to an Electron Beam 

The electrons in a beam move with constant momentum along a specif- 
ic direction, taken to be the x direction (see Figure 3.6). We can see how 
the Uncertainty Principle applies by considering the wavefunction of an 
electron in the beam: 
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Figure 3.6 An electron beam in 
which the electrons have a well- 
defined momentum, but indeter- 
minate position 

The probability, P(x)dx, of finding the electron between x and x + dx 
is given by the equation: 

This shows that the electron is equally likely to be anywhere along the 
x axis. In other words, the position of the electron is unknown, and the 
uncertainty in its position, Ax, is equal to the path length L, which is 
very large compared to the wavelength of the electron. On the other 
hand, the momentum of the electron is known fairly precisely. The value 
is given by the equation: 

p = h l l  = hl(2dk) = hkl27c = tik (3.7) 

Since the value of k can be determined to quite a high accuracy, the 
uncertainty in the momentum is very small. This is the normal situation 
with an electron beam, where there is a constant flux of electrons of 
known energy, but the actual position of individual electrons within the 
beam is unknown and is of no practical interest. For this situation, Ax 
is very large and Ap is very small, and the product of the two must be 
greater than h/2. 



Uncertainty Arising from the Wave Nature of Matter 45 

3.6 The Wavefunction of a Localized Electron 

In this section we consider the situation in which the position of an elec- 
tron has been determined very precisely so that Ax approaches zero. 
What will the wavefunction of such an electron look like? Bearing in 
mind that the probability of finding the electron between x and x + dx 
is equal to w d x ,  we can expect the wavefunction to consist of a delta 
function, as shown in Figure 3.7. 

This type of wavefunction presents us with an immediate problem: 
how can we derive an electron energy or momentum from it? The answer 
is to regard the delta function as the sum, or superposition, of an infi- 
nite number of sinusoidal waves with different wavelengths. This is illus- 
trated in Figure 3.8. When these waves are all in phase at one particular 

Figure The wavefunction of 
a particle located between x and 
x + h  point, and nowhere else, they will generate a delta function. 

Figure 3.8 The superposition of 
an infinite number of waves 
which are in phase at only one 
point 

Since the delta function is made up of an infinite number of sinusoidal 
waves with differing wavelengths, and therefore differing k values, there 
is an infinite uncertainty in the momentum of the particle, with each sinu- 
soidal wave representing a different momentum according to the formula 
p = hk. 
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Conclusion: the position of the particle is known, but there is an infi- 
nite uncertainty as to its momentum. 
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The One-dimensional 
Schrodinger Wave Equation 
and Some of its Applications 

4.1 The One-dimensional Schrodinger Equation 

The simple de Broglie relation, h = h/p, proved to be adequate to account 
for the properties of a particle moving with constant momentum in one 
dimension, but it cannot be applied to more complex systems where 
the momentum of the particle varies with position, or there is more than 
one variable. The equation which describes the wave behaviour of such 
systems is the celebrated Schrodinger wave equation, developed by Erwin 
Schrodinger in 1926. For one-dimensional systems with constant poten- 
tial energy, this equation produces exactly the same results as those 
obtained from application of the de Broglie relation. 

Because the Schrodinger wave equation is an expression of some of 
the most basic principles of quantum mechanics, it cannot be derived 
from a more fundamental equation. However, it is possible to arrive at 
the equation by considering a general wave equation and applying the 
de Broglie relation to it. This is done below. 
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All the wavefunctions that have been discussed so far (eikr, sinkx and 
coskx) are solutions of the differential equation: 

It is fairly easy to show that this equation will always generate waves, 
and Figure 4.1 illustrates this. d2y/dx2 is a measure of the curvature of 
the wavefunction (rate of change of gradient with x) and it always has 
the opposite sign from the wavefunction. Thus, when y is positive, 
d2y/dx2 is negative, and the wavefunction bends downwards towards the 
x axis. Once y becomes negative, the sign of d2y/dx2 changes and the 
wavefunction starts to bend upwards towards the x axis. In this way a 
wave is generated. 

Figure 4.1 Plot of an oscillating 
wavefunction, showing how 
d2y/dx2 always has the opposite 
sign to w 

From equation (1.14) we know that the kinetic energy of the particle, 
T, is equal to (fik)'/(2m). Thus, we can write equation (4.1) in the 
form: 

After rearrangement this becomes: 

This is the wave equation for a particle moving with constant kinetic 
energy along the x coordinate. There is a direct relationship between the 
kinetic energy and the curvature of the wavefunction, which is propor- 
tional to d2y/dx2. 

In many situations the kinetic energy of the particle is not constant 
because the potential energy, V, varies with the position, x. The quantity 
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that remains constant is the total energy, E. Since T = E - V, we can 
rewrite the wave equation as: 

(4.4) 

This is the Schrodinger wave equation in one dimension. We will leave 
consideration of the three-dimensional Schrodinger equation until 
Chapter 5. 

4.2 The One-dimensional Harmonic Oscillator 

In Chapter 2 we considered a particle confined to a square potential well 
with infinitely high sides. In that model there was no force acting on the 
moving particle until it reached one of the walls, where it underwent an 
elastic reflection. In this chapter a different type of one-dimensional 
potential well will be considered in which the particle experiences a force 
which is proportional to its displacement from the midpoint of the well. 
This model is particularly suited to an examination of the vibrations of 
molecules. 
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4.2.1 Classical Treatment of a Vibrating Diatomic 
Molecule 

The atoms of a diatomic molecule can be regarded as two particles joined 
together by a spring of unextended length r,,, as shown in Figure 4.2. If 
the spring is extended to a distance ro + x and then let go, the molecule 
will begin to vibrate as a result of the action of the restoring force, which, 
to a first approximation, is proportional to the value of x. This is 

, and it can be written mathematically as: 

force = -kx (4.5) 

where k is known as the force constant of the bond. The minus sign is 
required because the force acts in the opposite direction to x. The work 
d Wrequired to extend the bond by a distance dx is given by the equation: 

d W  = -(force)dx = kxdx 

Here, again, a minus sign is required because the work done is positive 
when the movement is in the opposite direction to the action of the force. 
The potential energy of the diatomic molecule, I/, is equal to the total 
work done in extending the spring and is therefore given by the equation: 

(4'6) Figure 4.2 Restoring force 
resulting from extension of the 
bond length of a diatomic mole- 
cule 

X X 

V = I d  W = j k x  dx = f k x 2  (4.7) 
0 0 

where the potential energy is taken to be zero when x = 0. 
It can be shown' that the vibration of a diatomic molecule about its 

centre of mass is mathematically equivalent to the oscillations of a single 
particle of mass p [= m,m,/(m,+ mB)] about a fixed point; see Figure 
4.3. Application of Newton's second law of motion (force = mass x 
acceleration) to the vibration leads to the equation: 

d 2 x  
dt 

-kx=,u- 

where t represents the time. A solution of this equation is: 

(4.9) 

where A is the maximum value of x reached during the oscillation. It 
can easily be checked that this is a correct solution of equation (4.8) by 
twice differentiating x with respect to time. The sine function, which 
describes an oscillation, is shown in Figure 4.4. When the time is 

Figure 4.3 The oscillation of 
the reduced 
point 

about a fixed 
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increased by an amount z, the time for one complete vibration, the angle 
of the sine function must increase by 2n;. Thus: 

112 [j z=27c (4.10) 

Figure 4.4 The variation of dis- 
placement with time for a har- 
monic oscillator 

The fundamental frequency of the vibration, coo, is equal to l/z. After 
rearrangement, equation (4.10) becomes: 

112 

1 (4.1 1) 
0 -  

4.2.2 Quantum Mechanical Treatment of a Vibrating 
Diatomic Molecule 

With V=Qkx2, the one-dimensional Schrodinger equation for this system 
becomes: 

2 p  dx2 
(4.12) 

where the total energy E is a constant. This can be rearranged into the 
form: 

A2 d 2 y  1 
2 p  dx2 2 

+ - kx'y = E~+Y (4.13) 

As a trial solution of this differential equation we shall look at the bell- 
shaped wavefunction: 

(4.14) 
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Here, No is a normalization constant, and a is another constant, the value 
of which we have to determine. Now: 

and 

When this expression for d2y/dx2 is substituted into equation (4.13), we 
obtain: 

1 
2 

N,(-2~+4u~x')e-" '~ +-kx2Noe-u-y2 = EON,le-nS2 (4.17) 

where E, is the energy for the wavefunction yo. The term Noe-ax2 is a 
common factor throughout this equation and cancels out. This leaves: 

(-2a+4a2x2)+-kx' 1 = E, 
2 

(4.18) 

The total energy, E,, must be a constant and cannot therefore vary with 
x. This will be true only if the two terms in x2 cancel, which requires 
that: 

(4.19) k - 2a2A2 

Thus, the wavefunction yo = Noe-[lx2 will be a solution of the Schrodinger 
equation if: 

- -  - 

2 P  

The energy is then given by the equation: 

(4.20) 

(4.21) 

When this equation is combined with the classical expression for the fre- 
quency (equation 4.1 l), we obtain the result: 

E, = ; h o ,  (4.22) 
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This is known as the of the simple harmonic oscillator. 
Other solutions of the wave equation can be found, all involving the 

factor epUx2 multiplied by a polynomial in x, known as a Hermite poly- 
nomial, and given the symbol Hv. There are an infinite number of these 
polynomials, and they are indexed by an integer, v, starting with v = 0 
for the ground state. The first few wavefunctions and their associated 
energies are given in Table 4.1. For simplicity the normalization factors 
Nv have not been explicitly given. 

Table 4.1 Wavefunctions and energies for the simple harmonic oscillator 

Wa vefunctions * Energies 

It can be seen that the energy levels are equally spaced and follow the 
formula: 

(4.23) 

The wavefunctions and associated energies are shown in Figure 4.5, 
together with the parabolic potential energy curve. Each wavefunction 
has been given a baseline which corresponds to the total energy of the 
particle. 

4.2.3 Application of Harmonic Oscillator Model to 
Infrared Spectra of Diatomic Molecules 

For most chemical bonds the spacing between the vibrational energy 
levels is such that vibrational excitation of the molecules causes absorp- 
tion of radiation in the infrared region of the spectrum. The potential 
energy curve for the vibration of a diatomic molecule is shown in Figure 
4.6, together with the vibrational energy levels. The parabolic curve 
obtained from the harmonic oscillator model, and the associated energy 
levels, are shown as dotted lines. It can be seen that the fit to the actual 
data is quite good for v = 0 and v = 1, but becomes progressively worse 
for higher values of v. 
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Figure 4.5 The wavefunctions, 
potential energy and total ener- 
gies for a harmonic oscillator 

Figure 4.6 Comparison of the 
potential energy curve and total 
energy of a real diatomic oscilla- 
tor (full lines) with those for the 
harmonic oscillator (dotted lines) 

An analysis of the vibrational spectrum allows the force constant of 
the bond to be evaluated. 
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4.2.4 Extension of the Wavefunctions beyond Classical 
Limits 

The wavefunctions shown in Figure 4.5 look very similar to the parti- 
cle-in-a-box wavefunctions except that they extend beyond the classical 
limits of the potential well. In classical mechanics the maximum exten- 
sion of the vibrating bond, xmax, occurs at the point where the total energy 
is equal to the potential energy, that is, when +kxkax= E. This gives: 

(4.24) 

Thus, in Figure 4.5 the maximum classical extension of the bond occurs 
at the point where the horizontal, total energy line crosses the parabol- 
ic potential energy curve. 

In quantum mechanics, however, there is a finite probability of find- 
ing the bond extended beyond this classical limit. In such a region the 
kinetic energy would appear to be negative because the total energy E 
is now less than the potential energy V. An examination of the one- 
dimensional Schrodinger equation: 

A2 d2y = ( E - V ) l y  -4-1 2m dx2 
(4.25) 

shows that d2y/dx2 has the same sign as \y when E - Vis negative. Under 
these conditions the wavefunction no longer oscillates, but exhibits an 
exponential decay. This can be seen quite clearly for the three wave- 
functions shown in Figure 4.5. Between the classical limits, the wave- 
functions oscillate because d2\y/dx2 has the opposite sign from y, but at 
distances greater than xmax they decay exponentially to zero. 
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4.3 Quantum Mechanical Tunnelling 

The existence of wavefunctions in regions where E < Vleads to a process 
known as tunnelling. This enables light particles, such as electrons and 
protons, to penetrate regions of space that should be forbidden to them 
according to the laws of classical mechanics. 

4.3.1 Equation for Tunnelling through a One- 
dimensional Rectangular Barrier 

We will start with the simple model shown in Figure 4.7. Here, a parti- 
cle with total energy E approaches a rectangular barrier, where the poten- 
tial energy rises suddenly from zero to a value Vo, which is greater than 
E. Classically, the particle would be unable to penetrate the barrier 
because it does not have sufficient energy, and it would be totally reflect- 
ed at the boundary. However, in quantum mechanics there is a finite 
probability that the particle will appear on the other side of the barrier 
by the process of tunnelling. 

Figure 4.7 Wavefunctions 
associated with the tunnelling of 
a particle through a rectangular 
potential energy barrier 

The one-dimensional Schrodinger equation to be solved is: 

A2 d2y =(E-V)y /  
2m dx2 

(4.26) 

There are now two types of solution, depending on whether ( E  - V) is 
+ve or -ve. 
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Region I :  in Front of the Barrier 

We will denote the wavefunction in this region as +!I,. Since V = 0, the 
wave equation becomes: 

(4.27) 

The general solution of this equation is: 

1 (4.28) 
= ~ ~ i k ~  + Be-ikx 

where A ,  B and k are constants. The first part of the wavefunction is the 
incident wave, representing the particle approaching the barrier, and the 
second part is the reflected wave. Since the probability of the particle 
tunnelling through the barrier is normally very small, the reflected wave 
is going to be almost as strong as the incident wave. By differentiating 
w1 twice with respect to x, and comparing the result with equation (4.27), 
it can be shown that: 

(4.29) 

Region 2: Inside the Barrier 

In this region, ( E  - V,) is negative, and the wave equation can be writ- 
ten as: 

2m dx2 
(4.30) 

A solution of this equation, which is appropriate for thick barriers, is: 

(4.3 1) 

where C and k” are constants. It should be noted that “i” is not needed 
in the exponent because V,, is now greater than E. The absence of “i” 
means that +!I~ does not represent an oscillating wave, but simply an expo- 
nential decay function, as shown in Figure 4.7. By differentiating w2 twice 
with respect to x, and comparing the result with equation (4.30), it can 
be shown that: 
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Region 3: Beyond the Barrier 

In this region, V = 0, and the wave equation has the same form as equa- 
tion (4.27). One difference is that we have to consider only the particle 
moving away from the barrier, because there are no particles approach- 
ing the barrier from the other side. The wavefunction can therefore be 
written as: 

v3 = Deik" (4.33) 

where D is another constant. 
The total wavefunction is obtained by joining together the separate 

wavefunctions from the three regions. Ideally, this should be done in 
such a way that there is no discontinuity in either v or dvldx at the 
boundaries between the regions. Thus, at the boundary between regions 
1 and 2, we have v, = I,Y* and dvJdx = dv2/dx, and similar conditions 
apply at the boundary between regions 2 and 3. An example of how the 
real parts of the wavefunctions can be joined up is shown in Figure 4.8. 

Figure 4.8 A simplified model 
for the tunnelling of a particle 
through a rectangular potential 
energy barrier 

To simplify the mathematics we will make two approximations. The 
first is that the reflected component of v1, Be-ikx, can be ignored. The 
second is that we will only attempt to match the magnitudes, and not 
the gradients, of the wavefunctions at the boundaries. At x = 0, I,M, = A 
and y2 = C, and the boundary condition requires that: 

A = C  (4.34) 

At x = L the boundary condition requires that: 
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(4.35) Ce-k"L = ~ ~ i h L  

Combination of equations (4.34) and (4.35) gives: 

- L( k"+ik) 
D =  Ae (4.36) 

The rate at which particles leave the barrier after tunnelling is propor- 
tional to (D*e-jkX)(Deikx) and the rate at which particles arrive at the front 
of the barrier is proportional to (A*e-jkx)(AeZkX). The asterisk denotes the 
complex conjugate and is a reminder that the constants A and D can be 
complex. The tunnelling probability, P, is equal to the ratio of these two 
terms, Thus: 

(4.37) 

Equation (4.36) is now combined with this equation to obtain the 
following expression for the tunnelling probability: 

P = e  (4.38) 

By substitution of the expression for k given in equation (4.32), this 
equation becomes: 

> (4.39) 

Because of the approximations that have been made, this equation is 
useful only for obtaining the order of magnitude of the tunnelling 
probability, although it does contain the dominant term. More accurate 
expressions differ by having a factor involving E/V, in front of the expo- 
nential term. 

The tunnelling probability is found to be exponentially dependent 
upon the length and height of the potential energy barrier, and also on 
the mass of the particle. How this comes about can be understood by 
referring to Figure 4.8. Inside the barrier the wavefunction decays away 
exponentially, and it is the value of v a t  the end of the barrier that deter- 
mines the strength of the oscillatory wave that emerges. Thus, as the 
barrier becomes longer, the tunnelling probability drops off very rapid- 
ly. The height of the barrier, (Vo - E),  and the mass of the particle also 
affect the rate at which the wavefunction decays away with distance. For 
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a barrier of fixed dimensions, the kinetic energy of the approaching 
particle and its mass will be very important in determining the overall 
tunnelling probability. In general, the wavelength of the approaching 
particle has to be of the same order of magnitude as the length of the 
barrier for tunnelling to be important. Tunnelling is therefore likely to 
occur only for relatively light particles such as electrons and, to a lesser 
extent, protons. At low temperature, protons are known to diffuse 
through metals such as tantalum by a process of tunnelling2 and, as we 
shall see in Section 4.3.4, electron tunnelling is the basis of the impor- 
tant technique of scanning tunnelling microscopy. 

4.3.2 Can Particles really have Negative Kinetic Energy? 

There is a finite probability of finding the particle inside the barrier, 
where ( E  - V) is negative, but this does not mean that the particle can 
exist there with negative kinetic energy. The mere act of locating the 
particle at a specific point in this classically forbidden region will 
drastically alter the wavefunction, and introduce a large uncertainty into 
the total energy of the particle, which is then going to be greater than 
Vo. In its original state, with total energy E less than Vo, the particle/wave 
entity is not localized at any particular point, and it is better to think of 
it predominantly in wave terms. 

4.3.3 Tunnelling of Electrons 

Figure 4.9 shows the potential energy barrier existing between two pieces 
of the same metal, separated by a distance of the order of one nanome- 
tre and placed in a vacuum. The highest occupied energy level in the 
metal is known as the , and has an energy El;. The energy of 
an electron just outside one of the pieces of metal is equal to Va, the vac- 
uum level, and this corresponds to the top of the barrier. The amount 
of energy required to take an electron from the Fermi level to the vac- 
uum level is known as the of the metal and is given the 
symbol 4. 

Figure 4.9a shows the situation where the two pieces of metal are at 
the same potential. Under these conditions, tunnelling cannot occur 
because there are no unoccupied energy levels on the other side of the 
barrier into which the tunnelling electrons can go. In Figure 4.9b, a small 
potential, V, has been applied so as to make the metal on the right more 
positive than the metal on the left. This allows electrons to tunnel from 
energy levels close to the Fermi level on the left side into vacant energy 
levels on the right side. For small, applied potentials, the potential ener- 
gy barrier remains roughly rectangular, and the tunnelling probability 
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Figure 4.9 Diagram of the 
potential energy barrier existing 
between two pieces of metal: (a) 
both metals at the same poten- 
tial; (b) with a small potential dif- 
ference applied between the 
metals 

for an electron approaching the gap can be estimated by using equation 
(4.39). For most metals the work function has a value between 4 and 5 
eV, and when a value of 4.5 eV is substituted into equation (4.39), a tun- 
nelling probability of about 3 x is calculated for a one nanometre 
gap. The probability is extremely sensitive to the distance: if the gap 
between the two pieces of metal is increased to 1.1 nm, the tunnelling 
probability drops to about 4 x lo-". 
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4.3.4 Scanning Tunnelling Microscopy (STM) 

Binnig and Rohrer3 received the Nobel Prize in 1986 for developing this 
important technique, which gives atomic resolution of surfaces. A 
schematic diagram of their set-up is shown in Figure 4.10. A very fine 
metal tip is lowered towards a conducting or semiconducting surface 
until electrons are able to tunnel between the tip and the surface. 
Typically, a bias voltage of 0.1-1.0 V is applied, and tunnelling occurs 
when the tip and surface are separated by distances of between 0.3 and 
1 .O nm. Tunnelling currents are quite small, measuring between 0.1 and 
1.0 nA. 

Figure 4.10 Method of opera- 
tion of the scanning tunnelling 
microscope. Px, Py and P, are 
piezoelectric ceramics 

The tip consists of a cluster of atoms, and usually one atom sticks out 
more than the others; it is this atom which is responsible for most of the 
tunnelling current. 

As shown in Figure 4.10, the tip is attached to a piezoelectric ceramic, 
a material that will expand in one direction and contract in another when 
a current is passed. By changing the current flowing through the ceram- 
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ic in different directions, the tip can be either raisedhowered or slowly 
moved horizontally across the surface. In normal operation the tip is 
scanned across the surface, keeping the tunnelling current, and therefore 
the separation from the surface, constant (see Figure 4.11). 

Figure 4.11 Movement of the 
tip across the surface when the 
tunnelling current is kept constant 

The varying piezoelectric currents are stored in a computer and are 
used to generate a topographical map of the surface. Because the current 
is very sensitive to the separation between tip and surface, this technique 
gives a very accurate profile of the surface. Atomic resolution can be 
attained, as shown by the STM image of gallium arsenide4 seen in Figure 
4.12. 

Figure 4.12 Comparison of the STM image of a gallium arsenide surface with a model 
surface. The main image shows only the steps that occur on the GaAs surface, but the 
high-resolution inset gives atomic resolution of a small part of the surface. The image was 
obtained with the tip positively biased with respect to the surface so that electrons tunnel 
from the gallium arsenide to the tip. In this mode the arsenic atoms are imaged. If the bias 
is reversed, so that electrons tunnel from tip to surface, the gallium atoms can be imaged 
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Rotational Motion 

All the systems that we have considered so far have been restricted to 
motion along a straight line, whereas most of the systems of interest to 
chemists involve particles circulating around a fixed point, for example 
electrons circulating around nuclei, molecules rotating about their cen- 
tre of mass and electrons spinning on their axes. In this chapter we con- 
sider those systems in which a particle rotates at a constant distance from 
a fixed point. In the following chapter this treatment will be extended to 
the hydrogen atom, where the distance of the electron from the nucleus 
is variable. 

5.1 Circular Motion in a Fixed Plane 

We begin with the simplest case in which a particle of mass m moves at 
a constant speed v around a circle of radius r ,  as shown in Figure 5.1. 
The distance moved by the particle along the circumference of the cir- 
cle from its starting position is denoted by s, and the angle subtended at 
the centre is denoted by $. It should be noted that s and $ are consid- 
ered to be positive for anti-clockwise motion and negative for clockwise 
motion. Before obtaining solutions of the Schrodinger equation for this 

68 
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system, it will be useful to review some basic concepts from classical 
mechanics. 

5. I. 1 Classical Treatment 

The velocity of the particle at any instant is represented by the vector v. 
Whilst the magnitude of this vector remains constant, its direction is con- 
tinually changing as the particle moves around the circle, and it is not a 
constant of the motion. This difficulty can be overcome by describing 
the movement in terms of the angular velocity a, which is numerically 
equal to the rate of change of the angle 41. The angular velocity is a vec- 
tor which points in a direction at right angles to the plane of motion, 
and therefore does not change direction as the particle goes around the 
circle. To distinguish between clockwise and anti-clockwise motion, the 
vector points up or down according to the right-hand screw rule, which 
is illustrated in Figure 5.2. 

Figure 5.1 Movement of a par- 
ticle around a 

Figure 5.2 The right-hand 
screw rule for determining the 
direction of the angular velocity or 
angular momentum vector 

Because @ = s/r and dsldt = v ,  it is possible to write the following 
expression for the magnitude of the angular velocity: 

d@ 1ds  v 
dt r dt r 

cr)=-= --=- 

The kinetic energy of the particle is constant, and equal to mv2/2. In 
terms of the angular velocity 0, this can be expressed as: 

The quantity mr2 is 
is given the symbol 

known as the moment of inertia of the particle and 
1. Thus: 

1 E = - Io’ 
2 

(5.3) 
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This equation has the same form as the equation for linear motion, but 
with moment of inertia and angular velocity substituted for mass and 
linear velocity, respectively. For rotational motion it is generally true 
that the angular velocity and the moment of inertia have an analogous 
role to velocity and mass in linear motion. In keeping with this princi- 
ple, we can define an angular momentum vector, L,  as follows: 

Clearly, this vector has the same directional properties as O. In terms of 
L,  equation (5.3) then becomes: 

L2 E=-- 
21 

(5.5) 

This equation is equivalent to the equation E = p2/2m for linear motion. 
With the substitutions I = mr2 and o = V / T ,  the magnitude of the angu- 
lar momentum can also be written as: 

5.1.2 Quantum Mechanical Treatment 

The one-dimensional Schrodinger equation can still be used to describe 
the motion of the particle if the Cartesian coordinate x is replaced by s, 
the distance moved by the particle along the circumference of the circle 
from its starting point. Although this variable describes a curved path, 
its use in place of x can be justified because the particle is constrained 
to move along this path. With the potential energy Vput equal to zero, 
the Schrodinger equation can then be written as: 

The length of the arc of a circle is equal to the radius of the circle mul- 
tiplied by the angle subtended at the centre, that is, s = T$. Thus, ds = 
rd$, and equation (5.7) becomes: 

This equation could have been obtained more rigorously by solving the 
two-dimensional Schrodinger equation: 



Rotational Motion 71 

and making the substitutions x = rcos@ and y = rsin@, but this method 
involves much more complicated mathematics. 

The moment of inertia, I ,  of the rotating particle is defined by the 
relation I = mr2. Thus, equation (5.8) can be rewritten as: 

(5.10) 

From equation (5.5) the energy is equal to L2/2Z, where L is the angu- 
lar momentum of the particle; equation (5.10) can therefore be 
rearranged to give: 

Putting Lth = a, the solutions of this equation take the form: 

w = Ne"@ 

where N is a normalization constant. 
If the wavefunction is expanded in the form: 

I,U = N(cosa9 L- isina@) 

(5.11) 

(5.12) 

(5.13) 

it can be seen to consist of two sinusoidal waves, one real and the other 
complex. 

Boundary Condition 

The boundary condition relevant to motion in a circle is different from 
that required for a particle in a box, where the wavefunction had to go 
to zero at the ends of the box. For circular motion the wavefunction has 
to match up with itself after one complete revolution of the circle. This 
requires the circumference of the circle to be equal to a whole number 
of wavelengths. The situation where five wavelengths fit into the circle 
is illustrated for the sine function in Figure 5.3a. The plot for the cosine 
function would be similar, but rotated through 90". If this condition is 
not met the waves will not coincide with one another after one complete 
revolution, and multiple values of ly will be obtained for any particular 
point on the circle, as shown in Figure 5.3b. As we saw in Section 1.4.5, 
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Figure 5.3 Illustration of (a) sat- 
isfactory and (b) unsatisfactory 
wavefunctions. In the first case, 
five wavelengths fit exactly along 
the perimeter of the circle, but in 
the second case there is a mis- 
match 

satisfactory wavefunctions have to be single-valued, so only wavefunc- 
tions of the type illustrated in Figure 5.3a are allowed. 

This can be expressed in mathematical terms by stating that the mag- 
nitude of the wavefunction must remain the same when the angle @ is 
increased by an amount 2.n, that is: 

sins@ = sina(@ + 2.n) = sin(@ + ah) (5.14) 

and: 

This will be true only if a is equal to zero or an integer ( 
), which we will call m,. Thus, acceptable wavefunctions take the 

form: 

Positive 

w =  Neiml@ m, = 0, fl, f2, f 3 ,  ... 

ialues of inl represent anti-clockwise motion, 

(5.16) 

Thereas negative 
values represent clockwise motion. When m, = 0 the particle is station- 
ary. The real (cosine) parts of the wavefunctions for rn, = 0, +1 are shown 
in Figure 5.4. The complex (sine) parts will be similar but rotated through 
90". 

Figure 5.4 The real (cosine) 
parts of the wavefunction for a 
particle moving in a circle 
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5.1.3 Quantizaton of Angular Momentum and Energy 

Remembering that m, = a = La, we see that the magnitude of the angu- 
lar momentum of the particle is quantized in units of 3, that is: 

L = m,A ml = 0, 51, +2, l t3, ... (5.18) 

Thus, we come to the important conclusion that the angular momentum 
of a particle moving at constant speed in a circle can only have values 
which are multiples of f i .  This quantization in units of f i  was first postu- 
lated by Niels Bohr in 19 13 for the movement of an electron around the 
hydrogen atom. Later, we shall see that it applies quite generally to the 
movement of electrons in atoms and molecules. 

From equation (5.5) the energy can be expressed as: 

(5.19) 

The energy levels are shown in Figure 5.5. It can seen that, except for 
the ground state, there are always two states with the same energy, cor- 
responding to clockwise and anti-clockwise movement. Such states are 
said to be doubly degenerate. 

Figure 5.5 The energy levels 
for a particle moving in a circle 
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5.2 Rotation in Three Dimensions 

In this section we consider a particle that is free to move in three dimen- 
sions, but always at a constant distance r from a fixed point. In this way, 
motion is confined to the surface of a sphere, as illustrated in Figure 5.6. 
The potential energy V is also constant and can be set equal to zero. 
This model can be applied to the rotation of rigid molecules and also to 
electron and nuclear spin, as we shall see later. However, the main rea- 
son for introducing it at this stage is that it provides a first step towards 
obtaining mathematical solutions of the Schrodinger equation for the 
hydrogen atom. 

5.2.1 The Schrodinger Equation in Spherical Polar 
Coordinates 

The Schrodinger equation given in Section 4.1 can be extended to three 
dimensions by writing: 

Figure 5.6 Movement of a parti- 
cle on the surface of sphere 
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where: 

a2 a2 a2 
ax2 ay2 az2 v= =- +-+- 

(5.20) 

(5.21) 

V2 is known as the Laplacian operator. 
This form of the equation is not easily applied to rotational motion 

because the Cartesian coordinates used do not reflect the centro- 
symmetric nature of the problem. It is better to express the Schrodinger 
equation in terms of the spherical polar coordinates r, 8 and $, which 
are shown in Figure 5.7. Their mathematical relationship to x, y and z 
is given on the left of the diagram. In terms of these coordinates the 
Laplacian operator V2 becomes: 

(5.22) 

where: 

(5.23) 

Although the Schrodinger equation looks much more formidable in 
spherical polar coordinates than it did in Cartesian coordinates, it is eas- 
ier to solve because the wavefunctions can often be written as the prod- 
uct of three functions, each one of which involves only one of the 
variables r,  8 and 4. 

Figure 5.7 The relationship 
between Cartesian and spherical 
polar coordinates 
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5.2.2 Solutions of the Schrodinger Equation for Rotation 
with Constant r 

Because r is a constant, differentiation with respect to r can be ignored 
in equation (5.22) and the Schrodinger equation in spherical polar coor- 
dinates simplifies to: 

A’y = Ey/ (5.24) 

It should be noted that my2 is equal to the moment of inertia of the 
particle, I. 

h2 
2mr2 

-- 

Solutions of this equation take the form: 

w = @(0)@(@) (5.25) 

where 0 is a function only of the variable 0, and 0 is a function only 
of the variable @. The mathematics involved in obtaining the 0 and 0 
functions are rather lengthy and only the results will be given here. Those 
interested in the mathematics should refer to the Appendix at the end of 
the chapter. 
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The function @ is found to be identical to the one already discussed 
for rotational motion in a fixed plane, that is: 

eim14 m, = 0, k I, +_2, +_3 (5.26) @=- 

The function 0 can take on various forms, depending on the values of 
two quantum numbers. The first is m,, and the second is a new quantum 
number, I ,  sometimes known as the . The 
latter is restricted to the values I = 0, 1, 2, 3, ... 

The modulus of m, (that is, its magnitude regardless of sign) must 
never be greater than 1. This can be written mathematically as: 

1 

J2.n 

(5.27) 

Thus, the allowed values of the two quantum numbers are as follows: 

I = O  ml = 0 
I =  1 
1 = 2  

m, = -1, 0, + I  
ml = -2, -1, 0, +1, +2, etc. 

The wavefunctions are called because they represent 
the types of waveform that can be sustained on the surface of a sphere 
(imagine a tidal wave on a flooded planet), and they are given the symbol 
Y1,J(3,@) where the subscripts identify the quantum numbers controlling 
the mathematical form taken by the wavefunctions. 

The first few spherical harmonics are shown in Figure 5.8, where only 
the real parts of the wavefunctions (represented by &osm,@) have been 
drawn. With respect to the real parts, the complex parts (represented by 
@inn@) would be rotated by 90” in the xy plane. The lines separating 
+ve and -ve regions are nodes, points where the real component of the 
wavefunction is zero. The direction of motion will be at right angles to 
the nodal lines because this will be the direction in which the wavefunc- 
tion has maximum curvature. So, for example, the motion for I = 1 and 
m, = 0 will be entirely from one “pole” to the other, with no motion 
around the “equator”. For I =1 and rn, = +1 the motion will be a mix- 
ture of movement between the “poles” and around the “equator”. The 
more nodes that cut the “equator”, the higher is the angular momentum 
of the particle in the z direction. 

The real parts of the complex wavefunctions can also be regarded as 
wavefunctions in their own right, because they can be generated by a lin- 
ear combination of complex wavefunctions with the same energy. Thus: 

sin8 (e+j@ + e-@) = 2 sin8 cos@ (5.28) 

and: 
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Figure 5.8 The first nine spheri- 
cal harmonic wavefunctions 

sin8 (e+@ - e-@) = 2i sin8 sin$ (5.29) 

Polar plots of these real wavefunctions are shown in Figure 5.9 for I = 
0 and I = 1. In these diagrams the distance from the origin is propor- 
tional to the magnitude of the wavefunction. It can be seen that the three 
wavefunctions corresponding to I = 1 all have the same dumbbell shape, 
with positive and negative lobes, but oriented along different Cartesian 
axes. Once again, those with some knowledge of chemical bonding will 
recognize these shapes as those of the 2p,, 2py and 2pz atomic orbitals. 

5.2.3 Energies of the Wavefunctions 

It is shown in the Appendix that the spherical harmonic wavefunctions, 
Yl,ml) have the following important property when operated upon by the 
operator A2: 

(5.30) 

This important equation will now be used to calculate the energies. It 
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Figure 5.9 Polar plots of the 
first four spherical harmonic 
wavefunctions 

will also appear in the derivation of the radial wavefunctions for the 
hydrogen atom. 

A combination of equations (5.24) and (5.30) gives: 

(5.31) 

The function Yi,mi appears on both sides of this equation and cancels out. 
From this it follows that the energy of a rotating particle is quantized 
according to the equation: 

(5.32) 

Because the energy is independent of the value of m,, there will be 21 
+ 1 states with the same energy, and the energy level is said to be 

5.2.4 Angular Momentum and Spatial Quantization 

The equation relating energy and angular momentum is E = L2/21 (see 
equation 5.5). It follows that the angular momentum is quantized, and 
limited to the following values: 

L =  ZZ+lA I =  0 , 1 , 2 , 3  ) . . .  ,,( 1 (5.33) 

It should be noted that the function @($), which describes the motion of 
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the particIe in the xy plane, is identical to that for a particle rotating in 
a fixed plane, for which the angular momentum was found to be equal 
to m,h. The component of angular momentum directed along the z-axis 
must therefore be quantized according to the equation: 

L, =mlh rn, = 0, f1 ,  +2, ... f 1  (5.34) 

These results can be represented by a vector with a length proportional 
to dZ(Z+l)h, and oriented so that the projection of the vector on the z- 
axis is equal to m,h. This is illustrated in Figure 5.10. 

For a given value of the quantum number 1, there are (21 + 1) direc- 
tions in which the angular momentum vector can point. If all directions 
in space are equivalent, the position of the z axis is quite arbitrary, and 
the 21 + 1 orientations that the rotating particle can adopt all have the 
same energy. In the presence of an externally applied electric or mag- 
netic field, however, the z axis is determined by the direction of the field, 
and the orientation of the angular momentum with respect to this axis 
will affect the energy. 

So far we have discussed the component of the angular momentum 
in the z direction, but no mention has been made of the components in 
the x and y directions. The reason for this omission is that the 
Uncertainty Principle forbids complete knowledge of the orientation of 
the angular momentum vector. If the component in the z direction is 
known, then the other two components must remain undetermined. This 
situation can be represented on a diagram by cones of uncertainty, as 
shown in Figure 5.11. One end of the angular momentum vector is 

Figure 5.10 The five directions 
in which the angular momentum 
vector can point for I = 2 

Figure 5.11 The cones of 
uncertainty on which the angular 
momentum vectors must lie 
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considered to be at the apex of the appropriate cone and the other end 
can then be situated anywhere along the circular cross section at the top 
of the cone. This concept will be useful when we come to consider elec- 
tron spins in a later section. 

5.2.5 Application to the Rotation of Diatomic Molecules 

The rotation of a rigid diatomic molecule about its centre of mass is 
illustrated in Figure 5.12a. As discussed in Chapter 4, the motion of the 
two masses, m, and m2, is mathematically equivalent to the rotation of 
a single particle of mass ,u [= rnlm2/(m, + m2)] about a fixed point, the 
distance between the point and the particle being equal to the bond 
length, r .  This is illustrated in Figure 5.12b. It is therefore possible to 
treat the rotation of a diatomic molecule as the motion of a particle of 
mass p on the surface of a sphere. 

In rotational spectroscopy it is customary to use J as the quantum 
number, rather than 1. With this modification to equation (5.32), the 
allowed energies of rotation can be written as: 

(5.35) 

where the moment of inertia I = pr2. 
For a given rotational energy there will be (2J + 1) possible orienta- 

tions of the rotating: molecule in mace. and therefore each rotational 
Y I ,  

Figure 5.12 The rotation of a 
diatomic the actual 
situation; (b) the equivalent math- 

state will be (2J + 1)-fold degenerate. Absorption of radiation in the far- 
infrared region of the spectrum causes mOleCukS to become rotational- 
ly excited, the selection rule being that the quantum number J can only 
increase by one. Thus, the change in rotational energy resulting from the 
absorption of radiation can be obtained from the equation: 

ematical model used in the calcu- 
lation 
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5.3 Spin 

Besides the angular momentum resulting from circular motion about a 
fixed point, many elementary particles have an intrinsic angular momen- 
tum which can be considered to arise from the particle spinning on its 
axis. This spin angular momentum is quantized in much the same way 
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as the angular momentum of a particle moving over the surface of a 
sphere. 

5.3.1 Electron Spin 

The first experiment to demonstrate electron spin was carried out by 
Otto Stern and Walther Gerlach in 1921, and is illustrated in Figure 5.13. 
Silver atoms, formed by evaporation from a hot metal source in vacu- 
um, were passed between the poles of an inhomogeneous magnet, and 
then condensed on to a glass plate. It was found that approximately half 
of the silver atoms were deflected upwards and half downwards, which 
resulted in two elongated spots on the detector plate. This observation 
could be explained only if the silver atoms were behaving like miniature 
magnets that were able to take up one of two orientations in the mag- 
netic field, as shown in Figure 5.14. Atoms aligned with their south pole 
uppermost would be deflected upwards because the south pole would be 
in a stronger magnetic field than the north pole. By the same reasoning, 
silver atoms with the opposite orientation would be deflected downwards. 
The magnetic field had to be inhomogeneous, otherwise the forces act- 
ing on the north and south poles of the atoms would cancel one another 
out, and there would be no net deflection. 

Figure 5.1 3 The Stern-Gerlach 
experiment to demonstrate the 
spin of the electron 

Figure 5.14 The deflection of 
the silver atoms in the inhomoge- 
neous magnetic field 
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At the time when the experiments were performed the origin of the 
magnetic moment on the silver atom was uncertain. It was known from 
classical physics that an electron undergoing circular motion about an 
atomic nucleus would have a magnetic moment, but this could not 
explain the magnetic moment possessed by the silver atom because the 
single valence electron on the silver atom is in an s orbital, which has 
no orbital angular momentum. The reason for this will be discussed at 
length in Chapter 6. Later, it was suggested that the magnetic moment 
might arise because the valence electron was spinning on its axis, as illus- 
trated in Figure 5.15. It should be emphasized that this is no more than 
a mental picture of a quantum mechanical phenomenon which has no 
true classical analogue, but it is a very useful model, provided it is not 
taken too far. 

A spinning particle can be treated mathematically in much the same 
way as a particle moving on the surface of a sphere. The spin angular 
momentum vector is denoted by S and, by analogy with equation (5.33), 
we expect its magnitude to be given by the equation: Figure 5.15 A picture of the 

electron spinning on its axis (not 
to be taken too literally) (5.37) 

where s is the spin angular momentum quantum number (equivalent 
to I ) .  

The projection of the spin angular momentum vector on to the z axis 
is denoted as S,, and, by analogy with equation (5.34), it is restricted to 
multiples of A given by the equation: 

S,=m,A m, = s , s - I , s - 2 ,  ... - - s  (5.38) 

where ms is another quantum number (equivalent of mJ.  Thus, for a 
given value of the quantum number s, we expect there to be 2s + 1 
possible orientations of the spin angular momentum vector in the 
magnetic field. The experiments of Stern and Gerlach show that there 
are only two orientations that the spinning electron can take up. This 
requires that s be equal to 3 and that ms = ++. This is a departure from 
the conditions for orbiting particles, where the quantum number I was 
restricted to integral values. The boundary conditions for the electron 
spin wavefunctions are somewhat different from those for the motion of 
a particle on the surface of a sphere, and the quantum numbers are there- 
fore subject to different rules. Generalizing from the work of Stern and 
Gerlach, it can be concluded that all electrons have an intrinsic spin 
angular momentum, given by the equation: 

(5.39) 
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Table 5.1 compares the quantization of angular momenta for both spin 
and orbital motion. 

Table 5.1 Comparison of spin and orbital motion 

Orbital motion Spin 

Orbital angular momentum, Spin angular momentum, 

L = nJm S = h J m  

Quantum number I = 0, 1, 2, ... 
Component of L in the z direction is 
restricted as follows: L, = m,A 
Quantum number m, = 0, *l, *2, ... *I 
There are 21 + 1 possible orientations of 
the orbital angular momentum for each 
value of I 

Quantum number s = 3 
Component of S in the z direction 
is restricted as follows: S, = rn,A 
Quantum number rn, = *+ 
There are only two possible 
orientations for electron spin 
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Figure 5.16 The two orienta- 
tions that can be taken up by the 
spinning electron 

5.3.2 Nuclear Spin of the Proton 

Atomic nuclei also have spin, which is quantized in both magnitude and 
orientation in space. The nuclear spin quantum number is denoted by I ,  
and the magnitude of the angular momentum is equal to fi[I(I + 1)]1’2. 

For the proton, I = 3 and its angular momentum is therefore equal 
to 0.866h, which is the same value as that of the electron. However, 
because the mass of the proton is very much greater than that of the 
electron, the proton would need to spin much more slowly than the elec- 
tron if the classical picture of the process is accepted. 

In the presence of a magnetic field, the spin angular momentum vec- 
tor of the proton can take up one of two orientations, just like the elec- 
tron. This causes two energy levels to be produced, as shown in Figure 
5.17. Nuclear magnetic resonance occurs when AE = hv, where v is the 
frequency of the applied radiofrequency field. 

5.3.3 Spins of Other Particles 

Other elementary particles also have a characteristic spin. Those with 
- L  

Figure The two energy half-integral spin quantum numbers are known as and those 
levels that are produced when a 
Droton is Dlaced in a maanetic . The spin with integral spin quantum numbers are known as - 
field quantum numbers of a variety of particles are given in Table 5.2. When 

identical particles are interchanged, the wavefunctions associated with 
fermions and bosom behave differently, and this causes them to have 
significantly different properties. This will be discussed briefly in Chapter 
7, where it is relevant to the way in which electron energy levels in atoms 
are filled. 
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Table 5.2 Spin quantum numbers, I ,  of some fundamental particles 

Fermions 
Particle Spin quantum 

number, I 

Bosons 
Particle Spin quantum 

number, I 

Electron 1 I 2  
Proton ('H) 112 
Neutron 1 I2 
'3C 1 /2 
35c1, 37c1 3/2 

Photon 1 
Deuteron (*H) 1 
4He 0 
'2C 0 
' 6 0  0 
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The Hydrogen Atom 

6.1 Introduction 

In this chapter we shall consider atoms or ions which have a single elec- 
tron. These include the hydrogen atom, He+ and Li? The solutions of 
Schrodinger's wave equation for such systems provide important infor- 
mation on the way in which an electron moves around the nucleus. The 
actual trajectory followed by an electron cannot be known in detail 
because of the operation of the uncertainty principle, but the wavefunc- 
tions obtained from the Schrodinger equation provide probability dis- 

92 
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tributions for the position of the electron, and these are known as 
. They can be contrasted with the accurately defined 

The wavefunctions that we shall discuss form the basis of our under- 
standing of atomic structure in general, because the concepts introduced 
can be extended to many-electron atoms. They will also prove useful 
when we come to discuss chemical bonding. 

which would be required by classical physics. 

6.2 The Hydrogen Spectrum and the Quantization 
of Energy 

The need for a quantum interpretation of the hydrogen atom arose from 
the spectrum of radiation emitted when an electric discharge was passed 
through hydrogen gas. In this process, electrons are promoted to high- 
er energy states by the electric discharge, and photons are emitted when 
these electrons return to lower energy states. The energy released is given 
by the equation: 

(6.1) hc E2 - E, = hv = - 
a 

where E, and E,  are the energies of the upper and lower states, respec- 
tively. An electron moving in a classical orbit about the nucleus would 
be expected to emit radiation with a continuous range of wavelengths 
because there is no restriction on the energy that the orbiting electron 
can have. However, the actual spectrum consists of a series of lines with 
wavelengths that can be described by the formula: 

In this equation, R is a constant, known as the , and 
n1 and n2 are integers, with n2 > nl .  Combining equations (6.1) and (6.2), 
we have: 

By associating E, with n2 and E, with n1 we can obtain the following 
equation for the allowed energies of the electron: 

(4.4) 
hcR 
n2 

E =-- 

where n must be an integer. The energies are negative because work has 
to be done to remove the electron from the region close to the nucleus 
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to infinity. The allowed energies and the transitions between them are 
illustrated in Figure 6.1. 

Figure 6.1 The energies of the 
allowed transitions in the spec- 
trum of hydrogen 

6.3 The Bohr Theory 

In 1913, Bohr proposed a model for the hydrogen atom that appeared 
to explain the line spectra discussed in Section 6.2. The motion of the 
electron around the nucleus was considered to be similar to the motion 
of a planet around the sun, the gravitational attraction that keeps the 
planet in a circular or an elliptical orbit being replaced by the coulom- 
bic attraction between the electron and the positively charged nucleus. 
To account for the line spectra, Bohr postulated that the angular momen- 
tum of the electron was restricted to multiple values of hi. This was an 
arbitrary postulate at the time it was made, but it comes naturally from 
the quantum mechanical description of a particle moving in a circle, as 
we have already seen in Section 5.1.3.. 

Although the theory gives electron energies for the hydrogen atom 
which are in surprisingly good agreement with those calculated from 
equation (6.4), it fails to explain the energies and spectra obtained with 
other atoms, and it has now been completely superceded by quantum 
mechanics. 

The Bohr theory has been mentioned here because the radius of the 
first Bohr orbit, known simply as the , is still widely used in 
quantum mechanics. It is given the symbol uo and has a value given by 
the formula: 
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47CEoA2 a, =- = 52.9 pm 
m,e - 

In this equation, E,, is the permittivity of free space, me is the mass of the 
electron and e is the electronic charge. 

6.4 Formulation of the Schrodinger Wave Equation 
for Hydrogen-like Atoms 

These atoms consist of an electron and a nucleus, both of which are in 
motion. Since wave-like properties have to be associated with both 
particles, the full wave equation for the atom involves a total of six 
variables, and such equations are usually difficult to solve. Fortunately, 
the motion of the atom as a whole can be separated into two parts: (a) 
the translational motion of the centre of mass, for which particle-in-a- 
box wavefunctions are appropriate, and (b) the motion of the nucleus 
and electron relative to the centre of mass (see Figure 6.2a). 

It can be shown' that the second form of motion is mathematically 
equivalent to the movement of a hypothetical particle, with reduced mass 
p, about a fixed point. The reduced mass is given by the formula: 

me% (6.6) Figure 6.2 Diagram of the 
hydrogen atom: (a) the relative 
movements of the proton and 
electron about the centre of 
mass; (b) the mathematical equiv- 

P =  
me f mn 

where me and in,, are the masses of the electron and nucleus, respectively. 
This is illustrated in Figure 6.2b. For hydrogen, the mass of the 

nucleus is 1836 times that of the electron, and the reduced mass is there- zvin: ~ ~ ~ i $ i x o e f d m p a o s ~ t ~  
fore very close to the mass of the electron. It follows that little error is 
involved if the electron is considered to be moving about a stationary 
nucleus, and this approximation is even better with other, heavier nuclei. 

The positive charge on the nucleus is equal to -Ze, where 2 is the 
atomic number of the atom, and the electron is attracted towards this 
charge with a force given by the inverse square law: 

Z e  force = - 
4 w o r 2  

r being the distance of the electron from the nucleus. The potential ener- 
gy, V, of the electron is defined as the work done in bringing the elec- 
tron from infinity to some specified point close to the nucleus, and it is 
obtained from the integral: 

Energy is actually released as the electron approaches the nucleus because 
the force is attractive, and I;/ is therefore negative. 
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In spherical polar coordinates the Schrodinger equation can now be 
written as: 

where: 

and 

(6.10) 

(6.11) 

6.5 The Radial Wave Equation 

Solutions of the Schrodinger equation can be found which are the prod- 
uct of three functions, each one involving only one of the variables r ,  8 
and $. The wavefunction can therefore be written as: 

w = +)@(@)@(@) (6.12) 

where the capital letters represent the functions and the lower case let- 
ters the associated variables. Substitution of this expression into equa- 
tions (6.9) and (6.10) leads to: 

Here, the variables upon which the functions operate have been omitted 
to reduce the length of the equation. The functions o(8) and @($) are 
found to be exactly the same as the wavefunctions which were discussed 
in Chapter 5 for a particle on the surface of a sphere. These are the spher- 
ical harmonics, Y,J8, $), which depend upon the two quantum numbers, 
I and m,. Thus, o(O)@(@) = Yl,J8, @). It was shown in Chapter 5 that 
the spherical harmonics are characterized by the equation: 

Combining this equation with equation (6.13) and writing Y in place of 
@(@)a)(@), we obtain: 
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The radial equation for the hydrogen atom is then obtained by dividing 
throughout by RY: 

(6.16) ti2 d dR A’ 

2 p 2 R  dr [ z)+g - ~ _ _  

This equation is very important because, without doing a lot of mathe- 
matics, it can provide a valuable insight into the motion of the electron 
about the nucleus. The first term in the equation involves the curvature 
of the radial component of the wavefunction, d2R/dr2, and it represents 
the of the electron as it moves towards, or away 
from, the nucleus. The second term is identical to the right hand side of 
equation (5.32), and it therefore represents the 
of the electron as it revolves around the nucleus. This term is also some- 
times referred to as the . The two forms of motion are 
illustrated in Figure 6.3. The third term is the 
arising from the electrical attraction between the electron and the nucle- 
us. These three energy terms all vary with the distance of the electron 
from the nucleus, but their sum must be independent of r because it is 
equal to the total energy of the system, which is constant. 

Figure 6.3 Illustration of the 
angular and radial motions of the 
electron 

6.5.1 Solutions of the Radial Wave Equation 

Equations similar to equation (6.16) have been studied by mathemati- 
cians, and acceptable solutions found. The mathematics involved are 
quite lengthy and will not be given here; they can be found in standard 
textbooks on quantum m e c h a n k 2  Two quantum numbers are needed 
to specify a particular radial wavefunction. The first one is the 

, I ,  and the second one is a new quantum number n, 
often referred to as the . All the solutions 
have the same mathematical structure, which can be expressed by the 
equation: 

(6.17) 
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Here, LV,!(r) is a polynomial in r,  and a, is the Bohr radius, already men- 
tioned in Section 6.3. 

The quantum number n can take the values n = 1, 2, 3, ... and the 
quantum number 1 must always be less than n. Wavefunctions with 1 = 
0, 1 and 2 are known as s, p and d orbitals, respectively. Thus, the wave- 
function with n = 2 and 1 = 1 would be known as a 2p orbital. 

The first few radial wavefunctions for hydrogen are listed in Table 6.1 
and the way in which R and R2 vary with distance from the nucleus is 
shown in Figure 6.4. The number of nodes (points where the wavefunc- 
tion crosses the r axis) is equal to n - I - 1. The radial kinetic energy is 
related to the curvature of the wavefunction and increases with the num- 
ber of nodes. 

Table 6.1 The hydrogen-like radial wavefunctions R(r) with 0 = Zr/a,, where 

a, = ~ 

47T&,A2 

w2 

Orbital type n I R,,(r) (not normalized) 

1s 
2s 
2P 
3s 

3P 
3d 

1 0 e-a 
2 0 (2 - oje-a/2 
2 1 m-D/2 

3 0 (27 - 180 + 28)e-"13 
3 1 (6 - o ~ o E - ~ ' ~  
3 2 8e-0/3 
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Figure 6.4 The variation of R(r) 
and R2(r) with distance from the 
nucleus for the first few wave- 
functions 
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6.5.2 A Relatively Simple Way to Find the Ground State 
Radial Wavefunction 

One procedure for obtaining a solution of the radial wave equation is to 
make a guess as to the correct form of the wavefunction and see if it 
works. This is done in the example that follows. 
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6.5.3 Behaviour of the Radial Wavefunction Close to the 
Nucleus 

It can be seen from Figure 6.4 that R has a maximum value at the nucle- 
us when I = 0, but is zero at the nucleus when I = 1 and I = 2. To under- 
stand this difference, we need to examine what happens to the energy 
terms in equation (6.16) as the electron approaches the nucleus and r 
tends to zero. If I = 0, the second term in equation (6.16) is zero, show- 
ing that there is no rotational energy and all the motion is along a radius. 
It can be seen from Figure 6.5 that the coulombic potential energy tends 
towards --oo as the electron approaches the nucleus, and the radial kinet- 
ic energy must therefore tend towards +m, in order to keep the total 
energy constant. For this to happen, dRldr must be negative as r + 0, 
which means that R must have a maximum value at the nucleus. 

When I > 0, the situation is significantly different because the cen- 
trifugal energy varies as llr2, and becomes the dominant term close to 
the nucleus. This energy acts like a repulsive force and counteracts the 
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Figure 6.5 (a) The variation of 
the kinetic and coulombic poten- 
tial energies of the electron with 
distance from the nucleus for I = 
0, and (b) their effect on the radi- 
al wavefunction R. The dotted 
line represents the classical turn- 
ing point for the electron; at 
greater distances the kinetic ener- 
gy becomes negative and the 
electron can enter this region only 
by tunnelling 

effect of the attractive coulomb potential. The variation of the centrifu- 
gal and potential energies with distance is shown in Figure 6.6, where it 
can be seen that the sum of the two energies becomes greater than the 
total energy, E, at distances less than a certain distance from the nucleus, 
rc. This is a classically forbidden region, where the radial kinetic energy 
of the electron becomes negative. Although the electron can tunnel into 
this region (see Section 4.3.1), its wavefunction will decay away expo- 
nentially, and be zero at the nucleus. 

6.6 The Full Hydrogen Atom Wavefunctions 

The total wavefunction can be written as: 

w = R,, ( r ) q m ,  (@>eirni4 (6.23) 

The forms taken by this wavefunction for various values of the quan- 
tum numbers n, I and ml (up to n = 2) are shown in Figure 6.7. The func- 
tion eimA is the same one that we had for a particle moving around a 
circle, and here it represents the motion of the electron in the xy plane. 
The allowed values of the quantum number m, are as follows: 

m, = 0, L-1, L-2, L-3, ... with lmj I I 



The Hydrogen Atom 103 

Figure 6.6 (a) The variation of 
the coulombic and centrifugal 
energies of the electron with dis- 
tance from the nucleus for I > 0, 
and (b) their effect on the radial 
wavefunction R. There are two 
classical turning points and out- 
side these limits the wavefunction 
decays away exponentially 

Figure 6.7 The mathematical 
form and shapes of the first five 
hydrogen orbitals 
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The form taken by the 8 function depends upon the two quantum num- 
bers, 1 and m,. 

When I = 0, m, must also equal zero, and the 8 function becomes a 
constant. Thus, there is no angular variation to the wavefunction, and 
we obtain an s orbital. When 1 = 1, ml can have the values 0, +1. For 
ml = 0, o(e) = cost3 and we obtain a 2p- orbital, but we do not get the 
familiar 2px and 2py orbitals when m, =-kl .  Instead, we obtain dough- 
nut-shaped orbitals in which the electrons can be circulating in either a 
clockwise or an anti-clockwise direction, and the wavefunction now has 
a complex component. 

6.6.1 The Energies 

The energies are obtained by solving the Schrodinger equation (equation 
6.9). It is found that only the principal quantum number n is involved 
in determining the energy, which is given by the equation: 

- p ~ ' e '  
32n 2?c2 E: ti2 

E, = n = 1, 2, 3 (6.24) 

The mathematics involved in obtaining this equation are quite lengthy, and 
will not be discussed here. A relatively simple way of obtaining the energy 
when n = 1 and 2 =1 has already been given in Worked Problem 6.3. 

6.6.2 Angular Momentum 

The rotational motion of the electron around the nucleus is quantized 
in a similar way to that of a particle on the surface of a sphere, which 
was described in Chapter 5.  The total angular momentum of the elec- 
tron is equal to h[Z(l + 1)]1'2, and the component in the z direction is equal 
to m,A. 

6.6.3 The s Orbitals 

Motion of the s Electron and Shape of the Orbital 

We have already seen that an electron has no rotational energy when 1 
= 0 because the second term in equation (6.16) is zero. It follows that 
an s electron must undergo an oscillatory motion in a straight line 
through the nucleus, similar to that of a harmonic oscillator. Despite this 
similarity, the two forms of motion have different spatial properties 
because all directions in space are equivalent for an s electron, and the 
spherical shape of the s orbital arises from the uncertainty in the orien- 
tation of the oscillating electron. This is illustrated in Figure 6.8. 
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Although the circular orbit proposed by Bohr for an electron in the 
ground state of the hydrogen atom appeared to have some success, we 
now see that the actual motion of the electron is quite different. An oscil- 
latory type of motion was originally considered by Bohr, but rejected as 
unacceptable because it would involve the electron colliding with the 
nucleus. This problem does not arise in such an acute form in wave 
mechanics because the positions of both nucleus and electron are uncer- 
tain, and neither can be precisely located without causing a major per- 
turbation of the system. 

Probability Distributions 

The most probable place to find an s electron is at the nucleus because 
the wavefunction has a maximum value there. Thus, if we move an imag- 
inary electron detector of fixed volume, dV, around the atom, we will 
get a maximum reading at the nucleus. The probability depends upon 
the volume of the detector, and is equal to VydV.  The term Vy is 
equal to the probability per unit volume, and is known as the probabil- 
ity density (see Section 1.4.2). For the 1s orbital: 

(6.25) 

where N is a normalization constant. The variation of this expression 
with distance from the nucleus is shown in Figure 6.9a. 

Figure 6.8 The movement of 
an electron in an s orbital 

Figure 6.9 Two ways of 
recording the probability of an s 
electron being found at various 
distances from the nucleus: (a) 
using a constant volume probe; 
(b) using a spherical shell of vari- 
able volume 
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A different type of probability distribution can be obtained by asking 
the question: "what is the probability of finding the electron at a dis- 
tance between r and r + dr from the nucleus?" In this case the volume 
element that we have to consider (see Figure 6.9b) gets bigger as we move 
away from the nucleus. The volume of the spherical shell, dV, is now 
equal to 4n;r2dr, and the probability of finding the electron between r and 
r + dr is equal to 4n;r2yPydr. 

Using the expresson for yP,sws from equation (6.25), the probability 
per unit radial length, Pr, becomes: 

This function is plotted in Figure 6.9b, where it can be seen that the 
probability goes through a maximum value at a distance from the nucle- 
us equal to the Bohr radius, a,. Close to the nucleus the r2 term is domi- 
nant, which causes the probability to increase with I-, but at distances 
greater than the Bohr radius the exponential term becomes dominant, and 
the probability falls with increasing r. It is surprising to find that the elec- 
tron is most likely to be found at the Bohr radius, bearing in mind the 
large differences between the Bohr model and the wave mechanical one. 

Normalization 

The wavefunction for the 1s orbital can be written as: 

ylS = Ne-""Q (6.27) 

where N is a normalization constant. 
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6.6.4 The p Orbitals 

We have already seen that the 2p, orbital, shown in Figure 6.7, is the 
same as the familiar 2pz orbital, but the 2p,, orbitals involve complex 
wavefunctions that are not so easy to visualize. For these orbitals, the 
electron is circulating around the nucleus in the xy plane, and has a com- 
ponent of angular momentum in the z direction equal to fa. 

The more familiar 2p, and 2py orbitals take the forms: 

and 

yZp, = N,,y e-r'2ao 

(6.29) 

(6.30) 

where Nx and Ny are normalization constants, and x and y are Cartesian 
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coordinates. These functions can be obtained by a linear combination of 
the complex functions, as shown in the Appendix at the end of the 
chapter . 

This procedure gives: 

(6.3 1) 

(6.32) 

The shape of the 2p, orbital can be deduced from equation (6.29). The 
presence of the Cartesian coordinate x in the expression for 2px means 
that there will be a node in the wavefunction in the y z  plane. The surface 
of constant is illustrated in Figure 6.10. The full three-dimensional 
orbital shape can be obtained by rotating the profile about the x axis. It 
is seen to consist of two doughnut-shaped lobes of opposite sign. The 
2py orbital will be similar, but oriented along the y axis. 

The 2px and 2py orbitals are not associated with any particular value 
of the angular momentum because they have been constructed from 
orbitals in which the electrons are moving in opposite directions. In this 
respect they are inferior to the 2p,, orbitals because some information 
has been lost, but their directional properties make them very important 
in chemical bonding. 

Figure 6.10 Surface of con- 
stant W f o r  an in a *P, 
orbital 

6.6.5 The d Orbitals 

These wavefunctions occur when n 2 3 and I = 2. For each value of n 
there are five distinct orbitals, corresponding to m, = 2, 1, 0, -1, -2. Each 
of the orbitals has a total angular momentum equal to 1/6h, but they have 
different orientations, the component of angular momentum along the 
z axis being equal to m,h. The situation is similar to that shown in Figure 
5.11 for the spherical harmonics. 

Four of these wavefunctions are complex, because they include the 
term ei@, but real wavefunctions can be obtained by combining pairs of 
complex wavefunctions with the same Imj, but opposite sign. The orbitals 
obtained by this process are listed in Table 6.2, and their shapes are 
shown in Figure 6.1 1. Linear combinations of the complex orbitals cor- 
responding to m, = + I  give the 3dxz and 3dyr orbitals, whereas those with 
m, = +2 combine to give the 3d+2 and 3dxy orbitals. The 3dz2 orbital, 
corresponding to m, = 0, does not have a complex component. 
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Table 6.2 The real 3d wavefunctions 

n I '77, Real wavefunction (not normalized)a 

3 2 0 v(3dZ,) = 02e-"/3(3~os2 8 - 1) 

3 2 +1 y(3d,) = ~7*e-"/~ sinecosOcos$ 

~(3d,) = 02e-a/3 sinQcosesinq5 

3 2 +2 1y (3d~ ,_~~)  = 02e-0/3 sin28c0s2$ 

1y(3d,) = sin2 @sin24 

Figure 6.11 Surfaces of con- 
stant y f~y fo r  the 3d orbitals. The 
sign of the wavefunction is indi- 
cated, but the probability density 
itself will, of course, always be 
positive. Note that the orientation 
of the Cartesian axes is not the 
same in all the figures 
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Further Concepts in Quantum 
Mechanics and their 
Application to Many-electron 
Atoms 

In previous chapters we have considered systems for which there is an 
exact solution to the Schrodinger wave equation, but as we begin to look 
at atoms containing more than one electron we shall find that it is impos- 
sible to solve the Schrodinger equation exactly, and various approxima- 
tions will have to be introduced to make the problem solvable. Before 
these are considered it will be useful to look at some basic concepts of 
quantum mechanics in more detail, so that we can obtain the Schrodinger 
equation for any system that may be of interest. 

114 
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7. I The Hamiltonian Operator 

The three-dimensional Schrodinger wave equation for a particle of mass 
m moving in a potential energy field V was written 

a2 a2 a2 
ax2 av2 az2 Here, v2 =---+-+-, and is known as the 

in Chapter 5 as: 

(7.1) 

Laplacian operator. 

The wavefunction, y, and the potential energy, V, are both functions of 
the coordinates of the particle, x, y and z. The total energy of the par- 
ticle is represented by E, which must be constant. 

This equation can be rearranged to give: 

The expression in parentheses is known as the and 
is given the symbol Z? It contains instructions for the mathematical 
manipulation of whatever function follows it (for example, differentiate 
twice with respect to x, y and 2) .  The cap over the “H” is a reminder 
that this term is an operator, and not simply a multiplier. With this short- 
hand notation the Schrodinger equation can be written simply as: 

HW = E y  (7.3) 

,. ti2 where H = --V2 + V.  
2m 

The Hamiltonian operator is named after Sir William Rowan Hamilton, 
an Irish mathematician, who devised an alternative form of Newton’s 
equations of motion involving a function H, known as the Hamilton 
function. For most classical systems, H turns out to be simply the total 
energy of the system expressed in terms of the coordinates of the parti- 
cles and their conjugate momenta. The kinetic energy of a single parti- 
cle of mass m can be written as: 

T = - ( P : + P : + P ; )  1 
2m 

(7.4) 

where p x ,  p y  and p z  are the components of linear momentum in the x, 
y and z directions, respectively. The potential energy, V(x, y ,  z) ,  is some 
unspecified function of the coordinates. The Hamiltonian function is then 
defined simply as the sum of the kinetic and potential energies: 
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Thus, H = E, the total energy of the system. 
The entirely classical Hamiltonian function, H ,  can be converted into 

the Hamiltonian operator, a by applying some simple rules, which can 
be stated as follows: 

1. Obtain the classical equation for H in terms of the Cartesian co- 
ordinates of all the particles and their associated momenta, pq (q 
stands for x, y or 2). 

2. Wherever a component of momentum, pq,  occurs, replace it with the 
operator -ifi - a . 

34 
3. Leave'the positional coordinates unchanged. 

application leads to the familiar Schrodinger equation. 
These rules may seem very strange at first but, as we shall see, their 

7.2 Application to the Motion of a Single Particle 

We can convert the Hamiltonian function for a single particle into the 
Hamiltonian operator by substituting the expressions for P , ~ ,  p ,  and p ,  
into equation (7.5). This gives:. 

Because the potential energy is a function of the coordinates alone and 
does not involve the momenta, it remains unchanged in this process. 
After multiplying out the terms, the equation becomes: 

A comparison of this equation with equation (7.3) shows that this is 
indeed the Hamiltonian operator for a single particle, previously 
obtained from the Schrodinger equation. 

7.3 Eigenfunctions and Eigenvalues 

The Schrodinger equation, when written as Hy= Ety, is an example of 
a special class of equations which can be put into the general form: 
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Here, A is an operator which operates on the function @ to give the same 
function back again, multiplied by a constant “a”. Any function which 
satisfies the equation is known as an of the operator A” 
(“eigen” is the German word for “characteristic”), and the constant “a” 
is said to be an of the operator a. 

In general, there will be many functions @ which satisfy the equation, 
each with its own eigenvalue. If we indicate each separate solution by 
the index “n”, the equation can be written as: 

= awk 

When the operator is the Hamiltonian, we have: 

(7.9) 

(7.10) 

where the wavefunctions, vn7 are the eigenfunctions of the Hamiltonian 
operator and the allowed energies are the eigenvalues. 

7.4 The Wave Equation for the Helium Atom 

The approach outlined in Section 7.1 makes it possible to write down 
the Schrodinger equation for any system that we wish to study. To 
demonstrate the method we shall take the helium atom as an example. 
The distances between the nucleus and the two electrons are shown in 
Figure 7.1. In general, the charge on the nucleus will be -Ze, where 2 
is the atomic number of the element. For helium, 2 = 2. 

We start by writing down the classical equations for this system. If 
the components of linear momentum for electrons 1 and 2 are p,,, pJ, , ,  
p,, and p x 2 ,  pY2, pZ2,  respectively, the kinetic energy can be written as: 

1 1 Figure 7.1 Schematic diagram 
of the helium atom, showing the 

and the two electrons 

‘ = - ( p t , + P : , + P ~ , ) + - ( P ~ ~  +P;2 +P:2)  

The potential energy consists of three terms: the attractions of the two 
electrons to the nucleus, which make a negative contribution, and the 
inter-electron repulsion. Thus: 

(7.1 l)  
2% 2% distances between the nucleus 

(7.12) 

The Hamiltonian function is the sum of these two terms: H = T + I/. 
The quantum mechanical equivalents are then obtained by making the 
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substitutions outlined in Section 7.1. These give: 

(7.13) 

The Schrodinger equation for the two electrons then becomes: 

(7.14) 

where Yis the total wavefunction for the atom. 
Two points are worthy of note: 
(i) The physical significance of Yis slightly different from that for the 

wavefunction of a single particle. Y* Y now relates to the probability of 
simultaneously finding electron 1 at xl, y l ,  z1 and electron 2 at x,, y,, z2. 

(ii) The total wavefunction, Y, is now a function of the coordinates 
of both electrons. It is virtually impossible to solve a second-order dif- 
ferential equation with six independent variables, and approximation 
methods must therefore be used to obtain the wavefunctions for this rel- 
atively simple system. 

This problem can be greatly simplified if the electrical repulsion that 
exists between the two electrons is ignored. This is represented by the 
term e2/(47c~0r,,) in equation (7.12). By omitting this term we are treat- 
ing the electrons as though they moved independently of one another, 
whereas in reality they tend to avoid one another because of the electri- 
cal repulsion. 

This approximation allows each electron to be assigned its own hydro- 
gen-like wavefunction, which is independent of the position of the other 
electron. These wavefunctions will be designated yIs( 1) and yIs(2), where 
the number in parentheses identifies the electron occupying a particular 
orbital. The total wavefunction can then be written as: 

This is known as the or because each 
electron is considered to occupy its own orbital, which is essentially 
hydrogen-like in character. 
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The one-electron wavefunctions are similar to the hydrogen 1s 
orbitals, except that the charge on the nucleus has increased to -2, 
thereby making the orbitals more compact. They take the form: 

ylS(1) = N e-Zq’ao and y,s 2 = N e-zrz’“o 0 (7.22) 

As before, N is the normalization constant. 
The energies of electrons in these hydrogen-like orbitals are equal to 

Z2EH, where E,, is the energy of the hydrogen 1s electron (= -13.6 eV). 
The factor Z2 is required to allow for the increased attraction of the elec- 
tron to the nucleus. For the helium atom, E, + E2 = 2 x 4 x (-13.6) eV 
= -108.8 eV, which is much more negative than the experimentally 
determined energy of -79.0 eV. 

Although we have ignored the repulsion between the two electrons in 
formulating the wave equation, it is possible to include the repulsion at 
a later stage. This is done by calculating the repulsion energy that would 
arise between the supposedly static charge distributions arising from two 
electrons in hydrogen-like 1 s orbitals. This calculation gives a repulsion 
energy of 34.0 eV. When this is added to E, + E2, we arrive at an over- 
all energy of -74.8 eV, which is in reasonably good agreement with the 
experimental value. Still closer agreement can be obtained by allowing 
for the “screening” effect of the other electron, which tends to reduce 
the effective charge on the nucleus “seen” by the first electron. This is 
done by replacing 2 in equation (7.22) with Ze, where Zeff < Z. Screening 
will be discussed in more detail in Section 7.7. 

7.5 Electron Spin 

7.5.1 The Pauli Exclusion Principle 

The wavefunction that we have just derived for the helium atom is 
incomplete because it does not include the spins of the two electrons. 
The occupation of atomic oritals in many-electron atoms is controlled 
by the 

Two electrons cannot have the same set of quantum numbers. 

, which states that: 

This set includes not only the three orbital quantum numbers, n, l and 
m,, but also the spin quantum number ms, which was discussed in Chapter 
5.  The spin quantum number is restricted to one of two values: ++, cor- 
responding to spin-up, and -3, corresponding to spin-down. This leads 
to an alternative formulation of the Pauli exclusion principle as: 

A maximum of two electrons can occupy the same spatial orbital, and then 
only if their spins are paired. 
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As we shall see, the exclusion principle is an essential part of our under- 
standing of the structure of many-electron atoms. 

The Pauli exclusion principle can be understood at a deeper level by 
considering what happens to the overall wavefunction when two elec- 
trons are interchanged. We can indicate this interchange by writing: 

Y(  !, 2) + Y(  2,l) (7.23) 

This process cannot affect the physical properties of the system because 
the electrons are indistinguishable; therefore the probability distribution, 
and hence YP,  must remain unchanged. For this to be true, either the 
wavefunction must be unaffected by the interchange of electrons, or it 
must merely change sign. That is: 

either Y( 1,2) = Y( 2,l) or Y( 1,2) = -Y( 2,l) (7.24) 

In practice, it is found that the electronic properties of atomic and 
molecular systems can be understood only if the second alternative is 
true. This leads to a more fundamental statement of the Pauli exclusion 
principle as: 

When uny two electrons in a many-electron system are interchanged, the 
total wavefunction, including the spin contribution, must change sign. 

Wavefunctions which obey this principle are said to be 

7.5.2 Inclusion of Spin in the Wavefunctions for the 
Helium Atom 

To see how this principle operates we need to include spin in the helium 
atom wavefunction by formally writing “a” for spin-up and “P,’ for spin- 
down, and indicating the electron with a particular spin by a number in 
parentheses. At first sight, there appear to be four spin possibilities for 
the two electrons in the helium atom: 

However, there is a problem with the last two assignments because they 
imply that it is possible to know with certainty that electron 1 has spin 
a and electron 2 spin P, or vice versa. It has already been pointed out 
that electrons are indistinguishable and, because of the operation of the 
uncertainty principle, it is not possible to trace the trajectory of a par- 
ticular electron in the atom. Thus, where the electrons have opposite 
spins, there must always be equal probabilities of finding the configura- 
tions a(l)P(2) and a(2)P(l). This is ensured by making linear combina- 
tions of these two spin functions: 
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Here, the factor of 1/42 is required to normalize the spin functions. 
The four acceptable spin functions are therefore: 

Figure 7.2 Orientation of the 
electron spins in the ground state 
of helium. The spin vectors make 
a definite angle with the z axis, 
but their position on the surface 
of the cones is arbitrary provided 
they cancel one another out 

(7.28) 

(7.29) 

It should be noted that the first three spin functions remain the same 
when electrons 1 and 2 are interchanged, and they are said to be 

with respect to interchange of electrons. However, the fourth spin 
function changes sign when this is done, showing that it is 

In the ground state of the helium atom the spatial part of the wave- 
function, yls( 1) yIs(2), is symmetric with respect to interchange of 
electrons, and therefore the total wavefunction will be antisymmetric 
only if the spin part of the wavefunction is also antisymmetric. Thus, the 
overall wavefunction must be: 

This requires the spins to be paired, as in the original statement of the 
Pauli exclusion principle. In this state the spins of the two electrons are 
oriented on their respective cones of uncertainty so that the resultant 
spin is zero, as shown in Figure 7.2. 

Equation (7.30) can also be written in the form of a determinant: 

(7.3 I )  

This way of writing the wavefunction was developed by Slater in 1929, 
and is therefore known as a . Each term in the 
determinant consists of a hydrogen-like orbital multiplied by a spin func- 
tion, and is referred to as a . The first row in the determinant 
contains the two spin orbitals available to an electron in the ground 
state of helium, both occupied by electron 1. The second row contains 
the same terms, this time occupied by electron 2. The method can easily 
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be extended to atoms containing more than two electrons by finding the 
appropriate determinant, but the total wavefunction cannot be written 
as the product of a spatial function and a spin function when more than 
two electrons are involved. 

7.5.3 Excited States of the Helium Atom 

If one of the electrons is promoted to a 2s orbital, we might expect the 
spatial wavefunction to be yl,(l) y2,(2), but this would conflict with the 
indistinguishability of electrons because it implies that the orbital occu- 
pied by each electron is known. There are two ways of writing the spa- 
tial wavefunction which avoid this problem: 

y = [ y, s ( 1)W% ( 2) + Y I s ( 2)Y 2s ( I)] L 
V L  and 

(7.32) 

(7.33) 

The first function is symmetric with respect to interchange of electrons 
and the second function is antisymmetric. When the wavefunctions are 
evaluated it is found that y, tends to keep the two electrons apart, where- 
as y, allows the electrons to come much closer together. It follows that 
I+V, must have a lower energy than ys because of the reduced inter-electron 
repulsion. 

One simple way of demonstrating this effect is to see what happens to 
the wavefunctions when both electrons are equidistant from the nucleus. 
In this situation, r ,  = r2, and yl,(l) = yIs(2), y2,(l) = ~ ~ ~ ( 2 ) .  The antisym- 
metric wavefunction, yd, then becomes zero, showing that the electrons can 
never be at the same distance from the nucleus at the same time. This does 
not apply to the symmetric wavefunction, ys, where there is a finite prob- 
ability of finding both electrons at the same distance from the nucleus. 

To satisfy the Pauli principle the antisymmetric wavefunction must be 
combined with one of the three symmetric spin states, given by equa- 
tions (7.26)-(7.28). This particular excited state can therefore exist in 
three different forms. These have slightly different energies because of 
the small magnetic interactions which occur between the spin and orbital 
motions of the electrons, and this causes any spectral lines involving this 
state to be split into three. For this reason it is known as a 
The symmetric wavefunction, ys, combines with the single antisymmet- 
ric spin state, and it is said to form a 

Although it is clear that the spin states a( l)a(2) and p( 1)p(2) have 
Figure 7.3 The three spin 
states for an excited helium 

site spin states. In fact, as shown in Figure 7.3, the spin vectors are posi- respect to the z axis 
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a(’)b(2)c(3) - a(’)b(3)c(2) 
- a(2)b(l)c(3) + a(3)b(l)c(2) 

+a(2)b(3)c(l) - a(3)b(2)c(l) 

tioned in such a way that there is still a resultant spin, which is equal in 
magnitude to that for the other two symmetric spin states. Thus, the three 
spin states differ only in the orientation of the vector representing the 
total spin angular momentum. 

7.6 The Orbital Approximation for Lithium 

For an atom with n electrons, the total wavefunction can be written 
approximately as the product of n one-electron wavefunctions: 

y = WIW2 * * *  W, (7.34) 

These one-electron wavefunctions are similar to the hydrogen orbitals, 
but are contracted towards the nucleus because of the greater nuclear 
charge “seen” by the electrons. For lithium, which has three electrons, 
one form of the wavefunction will be: 

Y( 1,293) = W1 s (+( 1)Wh (2)P( 2)% ( 3 ) 4  3) (7.35) 

Here, electrons 1 and 2 occupy the 1s orbital with their spins paired. The 
third electron cannot enter this orbital because of the operation of 
the Pauli exclusion principle, and it goes into the 2s orbital. Unlike the 
situation with hydrogen, the 2s orbital has a lower energy than the 2p 
orbital because of electron-electron interaction (see Section 7.7), and it 
is occupied preferentially. The electronic structure of lithium can there- 
fore be written as ls22s’. The electrons in the 1s orbital are, on average, 
much closer to the nucleus than the electron in the 2s orbital, and they 
are said to occupy the K shell. 

The wavefunction given in equation (7.35) is not completely satisfac- 
tory because it assigns each electron to a particular spin orbital, where- 
as it is not possible to know with certainty what state an electron is in. 
To give all combinations equal weighting, and to make the overall wave- 
function antisymmetric with respect to interchange of electrons, equa- 
tion (7.35) must be rewritten as a Slater determinant: 

This determinant gives equal weighting to the six ways in which the three 
electrons can be fitted into the spin orbitals, whereas equation (7.35) 
includes only one arrangement. 

A determinant changes sign when any two rows or columns are inter- 
changed, and the determinant in equation (7.36) is therefore automati- 
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cally antisymmetric with respect to interchange of any two electrons. It 
is also worth noting that a determinant is equal to zero if any two rows 
or columns are identical. Thus, the wavefunction in (7.36) disappears if 
two electrons have the same set of quantum numbers. 

7.7 Electron Shielding of the Nuclear Charge in 
Many-electron Atoms 

For the hydrogen atom we found that the electron energy depended 
only upon the principal quantum number n, but this is no longer true 
for atoms containing more than one electron. For a fixed value of the 
quantum number n, the energies of the orbitals in many-electron atoms 
are generally found to be in the order s < p < d. This difference is caused 
by the coulombic repulsion that exists between the electrons. For a par- 
ticular electron, the presence of the other electrons can be represented 
by a spherically symmetrical charge distribution, as shown in Figure 7.4. 
If the electron under consideration is at a distance r from the nucleus, it 
can be shown from elementary electrostatics that the repulsive effect of 
the other electrons is equivalent to a negative point charge, located at 
the nucleus and equal in magnitude to the total electronic charge con- 
tained within a sphere of radius r .  The electronic charge outside this 
sphere makes no net contribution to the repulsive force. This inter-elec- 
tron repulsion has to be averaged over all possible values of r ,  and the 
overall effect can be represented by an imaginary negative charge at the 
nucleus eaual to oe, where o i s  known as the . Thus. Figure 7.4 Diagram showing 

the effect of electron-electron 

charge experienced by an elec- 

the effective number of positive charges that the electron “sees” at the 
nucleus is reduced from 2 to (2 - 0). 

on the effective nuclear 

It should be emphasized that the screening constant, o, will not be the 
same for electrons in different orbitals of the same atom because of 
the varying extents to which electrons approach the nucleus. o can be 
thought of as the average number of electronic charges that come 
between the particular electron under consideration and the nucleus. For 
electrons that never come close to the nucleus, 0 will be large, but for 
electrons that penetrate inner electron shells it will be much smaller. 

For a given value of the principal quantum number, n, electrons in s 
orbitals are more likely to be found very close to the nucleus than 
electrons in p orbitals, and therefore the effective nuclear charge that 
they experience is greater. For this reason, an s electron is more tightly 
bound than the equivalent p electron. 

The radial probability distributions for the hydrogen 2s and 2p 
orbitals are compared in Figure 7.5. It can be seen that the maximum 
electron density for the 2s orbital occurs at a slightly greater distance 
from the nucleus than it does for the 2p orbital, but this is counter- 
balanced by the 2s orbital having a subsidiary peak, which is very close 

tron situated at a distance rfrom 
the 
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to the nucleus. Taken overall, the 2s orbital penetrates the inner 1s shell 
to a greater extent than the 2p orbital does. In many-electron atoms the 
orbitals will be smaller than their hydrogen equivalents because of 
the increased nuclear charge, but the relative penetration of one orbital 
by another will remain roughly the same. 

Figure 7.5 The radial proba- 
bility distributions for electrons in 
2s and 2p orbitals 

For n = 3, we find that electrons in the 3d orbitals lie much further 
from the nucleus on average than electrons in either the 3s or 3p orbitals, 
with the result that the order of the energies is 

To a rough approximation the ionization energy, I, of an electron in a 
hydrogen-like orbital can be related to the screening constant, 0, by the 
formula: 

(7.37) 

Here, n is the principal quantum number relating to the orbital, and 13.6 
eV is the ionization energy of an electron in the 1s level of the hydrogen 
atom. 
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7.8 The Use of Self-consistent Field Methods to 
Obtain Atomic Orbitals 

In a many-electron atom an approximate wavefunction, qi, can be 
obtained for the ith electron by solving the following one-electron wave 
equation: 

[ -cv; + v(c)]p, = E i q i  (7 .38)  

The first term on the left-hand side represents the kinetic energy of the 
electron, and the second term the potential energy. E~ is the energy of 
the electron in the ith orbital. The potential energy term, Y(rJ, is calcu- 
lated by assuming that the electrical repulsion resulting from all the other 
electrons can be represented by a static, spherically symmetric charge dis- 
tribution. A difficulty with this procedure is that it is impossible to cal- 
culate V(rJ until the one-electron wavefunctions of all the other electrons 
are known. Thus, all the one-electron wavefunctions derived from equa- 
tion (7.38) are interrelated, which makes the problem difficult to solve. 

In 1928, D. R. Hartree got around this difficulty by adopting the 
following procedure. First, all the one-electron wavefunctions were 
estimated, using effective nuclear charges. These wavefunctions were then 
used to calculate the potential energy term for the first electron. This was 
substituted into equation (7 .38) ,  and an improved wavefunction for 
electron 1 was calculated. This was then used to calculate the potential 
energy term for the second electron, and hence to improve its wave- 
function. This process was repeated for all the electrons until self- 
consistency was obtained, that is, further repetition of the process did 
not produce any changes in the wavefunctions. 
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Hartree incorporated the Pauli principle by allowing no more than 
two electrons to be present in each orbital, but the wavefunctions that 
he used did not involve spin, and were not antisymmetric with respect 
to interchange of electrons. In 1930, V. Fock modified Hartree's 
approach by using fully antisymmetric spin orbitals that did not distin- 
guish between electrons. This improved way of calculating atomic 
orbitals is known as the Hartree-Fock self-consistent field (SCF) method. 
Nowadays, fast computers are used and procedures are followed which 
allow the one-electron wave equations to be solved simultaneously. 

7.9 Electron Correlation Energy 

A weakness of the Hartree-Fock SCF method is that it does not take 
proper account of the coulombic repulsion that exists between electrons, 
and which causes them to avoid one another. This is known as 

, and its neglect causes the total energy of a typical atom to 
be overestimated by an amount which can be of the order of 100 kJ 
mol-'. This energy is known as the , and it is very dif- 
ficult to make proper allowance for it in calculations. Some progress has 
been made by using so-called , in which atom- 
ic orbitals for both occupied and excited states of the atom are used, but 
these calculations require very large amounts of computer time. 

7.10 The Elements of the Periodic Table 

Atomic orbital theory, together with the Pauli exclusion principle, provides 
an explanation for the ordering of the elements in the Periodic Table. The 
electron configuration of each element in its ground state can be obtained 
by feeding electrons into the hydrogen-like atomic orbitals in order of 
increasing energy until the full compliment of 2 electrons per atom is 
reached. Each orbital can accommodate two electrons with their spins 
paired. This procedure is known as the 

The electron configurations of the first 36 elements are given in Table 
7.1. Here [He], [Ne] and [Ar] are used to indicate the closed-shell con- 
figurations of the first three inert gases, helium, neon and argon. The 
general order in which the orbitals are occupied is found to be 

or 

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 

To a large extent this follows the order of increasing energies for the 
one-electron orbitals, as calculated by the Hartree-Fock SCF method. 
However, there can be complications when two orbital energies have sim- 
ilar values, as happens for example with the 3d and 4s orbitals of ele- 
ments between potassium and nickel. Under these conditions the order 
in which the orbitals are filled depends upon the particular electronic 
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configuration of the atom because this has an effect on the orbital ener- 
gies.'T2 This topic will be discussed in more detail when the transition 
metal series is examined. 

Table 7.1 The electron configurations of the first 36 elements 

Z 
1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

- 

a 

Atom 

H 
He 
Li 
Be 
B 
C 
N 
0 
F 
Ne 
Na 

Al 
Si 
P 
S 
CI 
Ar 

Mg 

Electron structure Z A tom 

1 s1 
1 s2 
[ He]2s1 
[He]2s2 
[He]2s22p1 
[He]2s22p2 
[He]2s22p3 
[He]2s22p4 
[He]2s22p5 
[He]2s22p6 
[Ne]3s1 
[Ne]3s2 
[Ne]3s23p1 
[Ne]3s23p2 
[Ne]3s23p3 
[Ne]3s23p4 
[Ne]3s23p5 
[ Ne]3s23p6 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

K 
Ca 
sc 
Ti 
V 
Cr 
Mn 
Fe 
co 
Ni 
cu 
Zn 
Ga 
Ge 
As 
Se 
Br 
Kr 

Electron structure 

[Ar]4s1 
[Ar]4s2 
[Ar]4s23d1 
[Ar]4s23d2 
[Ar]4s23d3 
[Ar]4s13d5 
[Ar]4s23d5 
[Ar]4s23d6 
[Ar]4s23d7 
[Ar]4s23d8 
[Ar]4s1 3dl O 

[Ar]4s23d10 
[Ar]4s23d1 04p1 
[Ar]4s23d104p2 
[Ar]4s23d104p3 
[Ar]4s23d104p4 
[Ar]4s23d1 04p5 
[Ar]4s23d1 04p6 

Electrons with principal quantum number, n, equal to 1, 2, 3 and 4, 
are said to occupy the K, L, M and N shells, respectively. The K shell 
is full at helium and the next electron goes into a 2s orbital, giving lithium 
the electron configuration ls22s1, as we have already seen. This is fol- 
lowed by beryllium, which has the electron configuration 1 s22s2. Further 
electrons must enter the 2p orbitals, where a total of six electrons can 
be accommodated. In nitrogen the three p electrons occupy separate 
orbitals because this keeps them apart, thereby reducing the coulombic 
repulsion between them, and the ground state configuration is therefore 

The L shell is full at neon, and the next electron goes into a 3s orbital, 
giving sodium the configuration [Ne]3s1. Further electrons go into the 3s 
and 3p orbitals until argon is reached, which is classed as having a closed 
shell, even though the M shell is incomplete. Argon is unreactive because 
the energy required to promote an electron from the occupied 3s and 3p 
orbitals into the empty 3d orbitals is very great and inhibits strong bond 
formation. 

The next element, potassium, is of interest because the extra electron 
goes into the 4s orbital, thereby showing that the [Ar]4s1 configuration 

1 s22s'2px'2py'2p;l. 



130 Quantum Mechanics for Chemists 

has a lower energy than the [Ar]3d' configuration. This reversal of the 
expected order comes about because the 4s electron penetrates further 
into the argon core than the 3d electron does, and therefore experiences 
a greater force of attraction towards the nucleus. The same effect is found 
in calcium, which has the configuration [Ar]4s2. 

Further electrons go into 3d orbitals to give the first series of transi- 
tion metals which, with two exceptions, have the general configuration 
[Ar]4s23dn. Here, there is good evidence that the energy of the 4s orbital 
lies above that of the 3d orbital. For example, spectroscopic data show that 
the dipositive ions of these metals all have the general configuration [Ar]3dn, 
from which it can be deduced that an electron is more easily removed from 
a 4s orbital than it is from a 3d orbital. This is in keeping with Hartree-Fock 
SCF calculations which show that the energy of a 3d orbital always lies 
below that of a 4s orbital in atoms where both orbitals are occupied. 

On this basis the preferential occupation of the 4s orbital in transition 
metals needs some explanation, because the 3d orbitals might be expect- 
ed to fill first. If scandium is taken as an example, we might expect [Ar]3d3 
to be the most stable configuration, but spectroscopy shows that this state 
lies 404 kJ molt' above the ground state, which has the configuration 
[Ar]4s23d1. The problem disappears once it is realized that the energy of 
the 3d orbital will be considerably greater in the [Ar]3d3 configuration 
than it is in the ground state configuration, because of the large coulom- 
bic repulsion that exists between the three electrons in the 3d orbitals. 

In situations like this, where the energies separating different orbitals 
are quite small, the one-electron approximation breaks down, and the 
electron configuration of the ground state can then be determined only 
by looking at the atom as a whole and treating the electrons collectively. 

7.11 Hund's Rule 

In Section 7.5.3 we saw that the ls'2s' configuration of the helium atom 
can exist in two forms: one where the electron spins are parallel, and the 
other where the spins are paired. The state with parallel spins was found 
to have the lower energy because the antisymmetric spatial wavefunction 
required the electrons to stay further apart, thereby reducing the 
coulombic repulsion energy. 

The same principle can be applied to other multi-electron systems. In 
general, the coulombic repulsion between electrons is found to be least 
when the number of electrons with parallel spins has been maximized. 
These conclusions are in accordance with , which states that: 

For an atom with a particular electron configuration, the most stable state 
is the one which has the maximum number of unpaired electrons. 

The application of this principle to a variety of elements is shown in 
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Figure 7.6. In nitrogen, which has the electron configuration 
[ H e ] 2 ~ ~ 2 p ~ ~ ~ 2 p ~ ~ 2 p _ ’ ,  the spins of the three 2p electrons will all be paral- 
lel in the ground state. The next element, oxygen, has four 2p electrons, 
two of which must go into the same orbital with their spins paired. This 
leaves just two unpaired electrons with parallel spins. 

The transition metals are worthy of note because the reduction in elec- 
tron repulsion gained from parallel spins makes the 3d5 configuration 
particularly stable. For chromium, this is sufficient to make the transfer 
of an electron from the 4s orbital into one of the 3d orbitals energeti- 
cally favourable. This results in an [Ar]4s13d5 configuration in which both 
the 3d and the 4s orbitals are only partially occupied, and the simple 
Aufbau principle breaks down. 

7.12 Ionization Energies of the Elements 

The of an atom, A, is defined as the energy 
required to remove an electron completely from the isolated, neutral 
atom. It can be represented by the equation: 

A + A’ + e- (7.39) 

It is a measure of the strength of the forces holding the electron to the 
atom. Further electrons can be removed from the ion A+, leading to 
second and higher ionization energies. 
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The way in which the first ionization energy varies with atomic number 
for the first 55  elements is shown in Figure 7.7. It can be seen that the 
ionization energies follow a regular sequence, with the highest values 
occurring at the inert gases and the lowest values at the alkali metals. 
This behaviour can be explained by the sequential filling of the electron 
energy levels. The alkali metals have one electron outside a filled shell, 
and this electron is easily removed because the electrons in the inner 
shells screen the nuclear charge so effectively that the outer electron 
“sees” only a small positive charge attracting it towards the nucleus. 
Thus, as we have already seen, the effective nuclear charge experienced 
by the outermost 2s electron in lithium is reduced from a nominal -3e 
to -1 .3~  because of the screening effect of the two 1s electrons. 

Figure 7.7 Variation of the first 
ionization energy of the elements 
with atomic number 

As more electrons are introduced into the outer shell, the effective 
nuclear charge rises because electrons in the same shell are unable to 
screen the nuclear charge from one another very effectively, and the 
ionization energy therefore increases. This effect reaches its climax when 
the shell is full, which occurs at neon for the L shell. 

It should be noted that the rise in first ionization energy from lithium 
to neon is not continuous, but shows small reversals at boron and 
oxygen. At boron the 2p orbitals start to be occupied, and a small fall 
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in ionization energy occurs because electrons in 2p orbitals are less 
strongly bound than electrons in 2s orbitals. A different explanation is 
needed for the small fall in ionization energy observed at oxygen. 
Nitrogen comes before oxygen, and it has three 2p electrons which 
occupy separate 2px, 2pJ, and 2pz orbitals. The addition of a fourth elec- 
tron at oxygen causes one of the 2p orbitals to become doubly occupied, 
and the presence of two electrons in the same orbital gives rise to con- 
siderable coulombic repulsion, thereby lowering the ionization energy. 

It can be seen that the ionization energy of the alkali metals decreas- 
es as we go from lithium to cesium. This occurs because the electron in 
the outermost s orbital is getting further away from the nucleus. 
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8.1 Introduction 

The first quantitative theory of chemical bonding was developed for the 
hydrogen molecule by Heitler and London in 1927, and was based on 
the Lewis theory of valence in which two atoms shared electrons in such 
a way that each achieved a noble gas structure. The theory was later 
extended to other, more complex molecules, and became known as 

. In this approach, the overlap of atomic orbitals on 
neighbouring atoms is considered to lead to the formation of localized 
bonds, each of which can accommodate two electrons with paired spins. 
The theory has been responsible for introducing such important concepts 
as and into the theory of the chemical bond, but 
applications of the theory have been limited by difficulties in generating 
computer programs that can deal efficiently with anything other than the 
simplest of molecules. 

An alternative approach to bonding uses the concept of one-electron 
orbitals, which was developed for atoms in Chapter 7. This is known as 

. The one-electron wavefunctions are con- 
sidered to be spread over the whole molecule, leading to the formation 
of . Unlike the valence bond approach, this theory can 
be applied quite generally to a wide variety of molecules without the need 
to introduce specific features for individual molecules. Once the relative 
energies of the molecular orbitals have been calculated, electrons are fed 
into the lowest lying orbitals to give the overall electronic structure of 
the molecule. 

In this chapter we will focus on MO theory because this is the most 
widely used method of calculating molecular properties, but valence bond 
theory will be discussed where appropriate. Before entering into a 
detailed discussion of the molecular orbitals of simple diatomic mole- 
cules, it will be useful to delve a little deeper into quantum mechanics, 
and take a look at ways of evaluating approximate solutions of the 
Schrodinger equation. 

8.2 Trial Wavefunctions and their Associated 
Energies 

In Chapter 7 we saw that it is not possible to obtain exact solutions of 
the Schrodinger equation for many-electron atoms, even within the one- 
electron approximation, and the same applies to molecules. For these 
systems it is necessary to use approximate solutions, which are based on 
chemical insight and chosen for mathematical convenience. 

First, we consider an atom or molecule which has a set of wavefunc- 
tions, y,, given by the equation: 
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For a given Hamiltonian operator there will be an infinite number of 
solutions to this equation, each indicated by a different value of the index 
n. We wish to find the ground state wavefunction, vo, which has an ener- 
gy Eo. Normally, equation (8.1) cannot be solved analytically and the 
wavefunctions that satisfy the equation are unknown. Under these cir- 
cumstances it is necessary to formulate a trial wavefunction, $, which is 
expected to be a good approximation to the true ground state wave- 
function. 

One problem with this trial wavefunction is that it will not be an eigen- 
function of the Hamiltonian operator for the atom or molecule. Thus: 

Hq # (constant)$ (8.2) 

It is evident that the energy associated with the trial wavefunction is not 
a constant of the motion. Any attempt to measure the energy of such a 
hypothetical system would force it into one of the quantum states rep- 
resented by equation (8.1), and the energy measured could be any of the 
values Eo, E,, ... En. It follows that there must be an uncertainty in the 
energy of such a system, and we have to resort to an average energy, 
(E) ,  which is defined as the average value that would be obtained from 
a large number of measurements. This is often referred to as the 

of the energy, and it can be obtained from the equation: 

Here, dz is a shorthand notation for dxdydz, and integration is carried 
out over all space. 

This important equation is based on one of the basic postulates of 
quantum mechanics, and it cannot be derived from a more fundamen- 
tal equation. However, we can carry out a check on the equation by 
replacing the trial wavefunction with one of the eigenfunctions of the 
Hamiltonian operator, v/,. Application of equation (8.1) then leads to 
the correct result: 

8.3 The Variation Principle 

This can be stated as follows: 
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For any trial wavefunction, the expectation value of the energy can never 
be less than the true ground state energy. 

This can be expressed mathematically as follows: 

where E, is the true ground state energy, obtained from equation (8.1). 
The equality applies only when @ is identical to the true ground state 
wave function, yo. 

This result comes about because, as mentioned in Section 8.2, the 
expectation value of the energy is a weighted mean of the true energies 
of the system, E,, E,, E,, ..., and this mean value cannot be less than E,. 

The variation principle allows different trial wavefunctions to be eval- 
uated on the basis that the one giving the lowest energy will be the best 
approximation to the true ground state wavefunction. Some caution is 
necessary when applying this principle because trial wavefunctions which 
deviate significantly from the true wavefunction can sometimes give ener- 
gies that are surprisingly close to the true ground state energy. 

8.4 The Hamiltonian Operator for the Hydrogen 
Molecule-ion 

We begin our consideration of chemical bonding by looking at the 
simplest possible molecule, H,+. The molecular orbitals derived for this 
system form the basis of the molecular orbitals for all other diatomic 
molecules, in much the same way that the atomic orbitals of hydrogen 
form the basis for all atomic orbitals. 

The hydrogen molecule-ion contains two protons of mass m which 
we shall label A and B, and a single electron of mass me. The distances 
separating the three particles are defined in Figure 8.1. The Hamiltonian 
operator for this system can be written as: 

p.' 

--V, ti2 2 --('+;)+- e2 e' (8.6) 
2n1, 4m, rA 4 m ,  R 

In this equation VA2, VB2 and Ve2 are Laplacian operators involving the 
coordinates of nucleus A, nucleus B and the electron, respectively. The 
first term on the right-hand side of the equation gives the kinetic ener- Figure 8.1 Schematic diagram 
gy of the two protons, and the second term gives the kinetic energy of of the hydrogen molecule-ion. 

the electron. The third term represents the electrostatic interaction ener- The distances Of the electron 
from the two nuclei are rA and rB, 

gy existing between the electron and the two nuclei, and the fourth term and the nuclei are separated by a 
represents the internuclear repulsion energy. fixed distance R 
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The Schrodinger equation with this particular Hamiltonian operator 
contains nine independent variables, and it is therefore much too com- 
plicated for mathematical analysis, but the complexity of the problem 
can be greatly reduced by separating the motions of the protons and the 
electron. The way in which this is done is discussed in the next section. 

8.5 The Born-Oppenheimer Approximation 

Electrons are much lighter than nuclei, and therefore move more quick- 
ly. For example, calculations show that the average speed.of an electron 
in the hydrogen molecule-ion is approximately 1000 times the average 
speed of a proton. This means that an electron can make a complete 
orbit of the molecule before the nuclei have moved significantly. This 
enables electrons to adjust their orbitals almost instantaneously in 
response to any change in the positions of the two nuclei, and the motion 
of the nuclei (representing translation, vibration and rotation of the mol- 
ecule) can therefore be separated from the electronic motion. This is 
known as the , and it allows the 
Schrodinger equation for electronic motion to be solved for a fixed sep- 
aration of the protons. 

With this approximation the total wavefunction for the molecule-ion 
can be written as the product of an electronic wavefunction, ye, which 
is a function only of the electron coordinates, and a nuclear wavefunc- 
tion, yn, which is a function only of the nuclear coordinates: 

The Schrodinger equation for the electronic motion can be written as: 

where 

The only variables in this Hamiltonian are the coordinates of the elec- 
tron, which appear in rA, rB and V,2. Although the internuclear separa- 
tion, R, is treated as a constant when the electronic Schrodinger equation 
is being solved, the wavefunction obtained will depend upon the value 
of R used. 
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8.6 Molecular Orbitals for the Hydrogen 
Molecule-ion 

Although it is possible to obtain exact solutions to the simplified 
Schrodinger equation given in equations (8.8) and (8.9), the resulting 
wavefunction is complicated, and it provides little insight into the wave- 
functions that might be used for other diatomic molecules. For this rea- 
son it will be more instructive to examine trial wavefunctions that have 
been constructed by a linear combination of hydrogen 1 s atomic orbitals: 

(8.10) 

Here, y ,  and yB are hydrogen 1s orbitals centred on atoms A and B, 
respectively, and N+ is a normalization constant, which will have differ- 
ent values for @+ and @-. This way of constructing molecular orbitals is 
known as the , or method 
for short. 

The use of this type of trial wavefunction can be justified by the fol- 
lowing argument. When the electron is very close to nucleus A, it expe- 
riences a coulombic attraction towards nucleus A which is far greater 
than that towards nucleus B. The wavefunction in this region is there- 
fore expected to resemble a hydrogen 1s orbital, centred on nucleus A. 
Similarly, when the electron is very close to nucleus B, the wavefunction 
is expected to resemble a 1s orbital centred on nucleus B. Thus, by com- 
bining these two atomic wavefunctions it should be possible to produce 
trial wavefunctions which are fairly close to the true wavefunctions. 

The normalized atomic orbitals to be used in equation (8.10) are: 

Combination of these two atomic orbitals results in the wavefunctions 
shown in Figure 8.2. Addition of the atomic orbitals leads to construc- 
tive interference in the region between the nuclei, and the wavefunction 
is reinforced there. On the other hand, subtraction of the orbitals pro- 
duces a node between the nuclei, showing that the electrons avoid this 
region. 

The expectation values for the energies of these trial wavefunctions 
can be calculated by inserting the wavefunctions into equation (8.3). This 
gives: 

(8.12) 

By evaluating the integrals in this equation for a series of different, but 
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Figure 8.2 The bonding and 
antibonding wavefunctions that 
result from the overlap of two 
hydrogen 1 s atomic wavefunc- 
tions. The distance x is measured 
along the internuclear axis 

fixed, values of the internuclear separation R, it is possible to calculate 
how the energy of the molecule-ion varies with bond length. Plots of 
energy versus R, known as , are shown in Figure 
8.3. As the two atoms are brought closer together, the potential energy 
of $I+ drops to a minimum value, before rising at small values of R as 
the overall interaction becomes repulsive. This wavefunction must there- 
fore represent a . By contrast, the potential energy of @- 
rises continuously as the internuclear separation is reduced, and it must 
therefore represent an 

The depth of the potential well formed with the bonding orbital gives 
a measure of the of the molecule-ion. This is 
calculated to be +170 kJ mol-l, which is much less than the true value 
of +258 kJ mol-'. Thus, the simple molecular orbital given in equation 
(8.10) does not provide an accurate value for the bond dissociation ener- 
gy. The calculation can be improved by combining a mixture of Is, 2s 
and 2p atomic orbitals, centred on the two nuclei. In the limit, as more 
and more terms are added, it is possible to obtain an energy which is 
exactly equal to the true bond dissociation energy. 

The probability density for the electron in one of the molecular 
orbitals can be obtained by squaring the wavefunction: 
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Figure 8.3 Potential energy 
curves for the bonding and anti- 
bonding orbitals of H,+ in the 
LCAO approximation. The true 
bonding curve is given for com- 
parison. Energies are expressed 
as a fraction of E,, the energy of 
the hydrogen 1s atomic orbital 

(8.13) 

The resulting probability densities are shown in Figure 8.4. The first two 
terms in equation (8.13) correspond to the electron density of separate 
atomic orbitals centred on nuclei A and B. The third term is a measure 
of the excess, or deficit, electron density resulting from the formation of 
the combined orbital. It will be important only in the region between the 
nuclei, where yA and wB both have significant values. This term is pos- 
itive for the bonding orbital, showing that there is an accumulation of 

Figure 8.4 Plots of I$ versus 
distance x along the internuclear 
axis for the bonding and anti- 
bonding orbitals of H,+ 
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electron density in the region between the two nuclei. This is generally 
thought to be responsible for bonding because the electron in this region 
is attracted towards both nuclei, which lowers its energy. Regrettably, 
this simple explanation of bonding is not entirely correct, and the read- 
er is referred to Atkins' for a more subtle explanation. For the anti- 
bonding orbital the third term is negative, confirming that the electrons 
tend to avoid the region between the two nuclei. 

The bonding and antibonding molecular orbitals both have cylindri- 
cal symmetry about the internuclear axis, as shown in Figure 8.5. Orbitals 
of this type are known as . The bonding orbital also has a cen- 
tre of symmetry (see Figure 8.6), which means that the magnitude of the 
wavefunction remains the same when the wavefunction is inverted 
through the centre of the molecule. Wavefunctions with this property 
are designated by the subscript g for gerade (German for even). Thus, 
the bonding orbital is referred to as a . The magnitude of the 
antibonding wavefunction changes sign on inversion through the centre 
of the molecule, and it is given the subscript u for ungerade. It is also 
given an asterisk to indicate that it is an antibonding orbital, making it 
a 

Figure 8.5 Contour plots of the 
wavefunctions corresponding to 
bonding and antibonding orbitals 
of H,+ 

Figure 8.6 The effect on wave- 
functions of inverting the electron 
coordinates through the centre of 
the molecule. The bonding wave- 
function is unchanged by this 
process but the antibonding 
wavefunction changes sign 

0 
1SA 

- + 
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8.7 The Hydrogen Molecule 

In this section the molecular orbital and valence bond approaches to 
bonding in the hydrogen molecule will be compared. In their simplest 
forms we shall find that valence bond theory is better than MO theory, 
but as the models become more sophisticated the results obtained by the 
two methods converge to give the exact experimental result. 

' 

Figure 8.7 The overlap of two 
atomic wavefunctions. 

Significant contributions to the 
overlap integral will occur only in 
the shaded area 

1 

8.7.1 The Hamiltonian Operator 

The distances between the electrons and nuclei in the hydrogen 
molecule are defined in Figure 8.8. The electronic Hamiltonian can be 
written as: 
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Figure 8.8 Schematic diagram 
of the hydrogen molecule. The 
distances of electrons 1 and 2 
from the two nuclei are repre- 
sented by T , ~ ,  rlB, and r2A1 r28, 
respectively. The nuclei are sepa- 
rated by a fixed distance R, and 
the inter-electron separation is r12 

V I 2  and V; are the Laplacian operators for the two electrons. The first 
term represents the kinetic energy of the two electrons, and the other 
terms the various electrostatic attractions and repulsions. 

8.7.2 The Molecular Orbital (MO) Method 

In this approach the extra electron needed to form a hydrogen molecule 
is added to the Is$ orbital of H,+ in much the same way that a second 
electron was added to the 1s orbital of atomic hydrogen to form helium. 
The spatial part of the wavefunction is then l s ~ ~ ( l ) l s ~ ~ ( 2 ) ,  where the 
number in parentheses indicates the particular electron that is occupy- 
ing the orbital. According to the Pauli principle, the total wavefunction 
has to be antisymmetric with respect to interchange of electron co- 
ordinates, Because the spatial wavefunction is symmetric, the spin 
component is required to be antisymmetric. The only antisymmetric 
spin function is a(l)P(2) - a(2)P(1), in which the electrons have paired 
spins. The full form of the H2 ground state wavefunction can therefore 
be written as: 

where N is the overall normalization constant. 
As before, the expectation value for the energy of this trial wave- 

function can be calculated by inserting the wavefunction into equation 
(8.3). This gives: 

(8.19) 

where & is now the Hamiltonian operator given in equation (8.17). 
Integration leads to a rather complicated equation for (E)  which can be 
written as: 

CI (8.20) (E)=2E,,+-- e2 

4m0 R 

The first term in this equation represents the electronic energy of two 
hydrogen atoms, and the second term is the electrostatic repulsion 
between the two nuclei. The term labelled "CI" represents the coulom- 
bic interactions of various charge distributions with one another. The 
integrals can all be evaluated analytically and the potential energy curve 
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obtained. This has a minimum value at an internuclear separation of 84 
pm, which corresponds to a dissociation energy of 255 kJ mol-'. These 
results can be compared with experimental values of 458 kJ mol for 
the dissociation energy and 74.1 pm for the bond length. Clearly, there 
is considerable room for improvement, and ways in which this can be 
done will be discussed in a later section. 

8.7.3 The Valence Bond (VB) Method 

When hydrogen atoms A and B are an infinite distance apart, the 
electronic wavefunction is given accurately by the equation: 

W V B  = ~ , ( l ) ~ B ( 2 )  (8.21) 

Again, the number in parentheses identifies the particular electron occu- 
pying the orbital. The two atomic orbitals are multiplied together because 
the wavefunctions behave rather like probabilities, and the probability 
of two independent events occurring at the same time is the product of 
the separate probabilities. 

As the atoms are brought closer together they begin to interact with 
one another, and it is no longer possible to be sure that electron 1 is on 
atom A and electron 2 on atom B because the detailed trajectories of the 
electrons cannot be followed with certainty. Therefore, there is an equal 
probability of finding electron 1 on atom B and electron 2 on atom A. 
This requires the trial wavefunction for two interacting atoms to be writ- 
ten so that both combinations have equal weighting: 

In order to make the overall wavefunction antisymmetric, this spatial 
wavefunction has to be multiplied by the antisymmetric spin function, 
a( l)P(2) - a(2)P( 1). The wavefunction to be used in calculations is there- 
fore: 

@v.( '7 2, = .[ w.A( ')VB( 2, -k v A (  2 ) v B (  ' )P( 2, - a( 2)P( ')] (8*23) 

where N is the overall normalization constant. 

equation: 
The expectation value for the energy is then obtained from the 

where is the Hamiltonian operator given by equation (8.17). 
The potential energy curve is found to have a minimum value at R = 
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87 pm, which corresponds to a bond dissociation energy of 303 kJ mol-I. 
Although the theoretical dissociation energy is still too low, it is closer 
to the experimental value than the energy obtained from simple MO 
theory. 

8.7.4 Comparison of Methods 

The relative success of the valence bond wavefunction comes about 
because it keeps the two electrons apart. When electron 1 is on atom A, 
electron 2 is on atom B, and vice versa. This can be compared with the 
MO wavefunction, which assumes that the electrons move independently 
of one another so that the probability of finding one electron at a 
particular point in space is independent of the position of the other elec- 
tron. In reality, of course, electrons tend to avoid one another because 
they are negatively charged. Thus, the motion of one electron at a 
particular instant is dependent upon the position of the other electron, 
and their motions are correlated. 

The difference between the two types of wavefunction can be seen by 
expanding the spatial part of the MO wavefunction in the following way: 

The first two terms in this expansion correspond to the VB wavefunc- 
tion, whereas the last two terms correspond to ionic structures, HA-H,+ 
and H,+HB-, in which both electrons are on the same atom. The weak- 
ness of the MO description is that it gives equal weighting to covalent 
and ionic structures, and this is at variance with the general perception 
that the bonding in the hydrogen molecule is mainly covalent. 

The VB wavefunction suffers from the opposite problem because it 
does not allow for any ionic character to be present in the hydrogen 
bond. This situation can be improved by adding the ionic terms found 
in the MO wavefunction, but multiplied by a weighting factor A. With 
this modification, the spatial part of the VB wavefunction becomes: 

When this wavefunction is substituted into equation (8.24), it is found 
that the energy has a minimum value when the coefficient A is equal to 
1/6. According to the variation principle, this value of A gives the closest 
approximation to the true ground state wavefunction. The contribution 
of ionic structures to the overall bond is equal to A2, which has a value 
of 1/36, or about 3%. This ionic contribution, although small, causes the 
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bond dissociation energy calculated for the VB wavefunction to increase 
from 303 to 396 kJ mol l .  Although this represents a significant improve- 
ment over the simple VB theory, the calculated dissociation energy still 
falls short of the experimental value by 62 kJ mol-I. 

Significant improvements to the MO wavefunction can also be made 
by adding terms which represent the molecular orbitals of higher ener- 
gy states of the molecule. There is an excited state of the molecule in 
which both electrons occupy the 1 sou* antibonding molecular orbital. 
This can be written as 1s0u*(l)ls0u*(2). It is possible to mix this wave- 
function with the one where both electrons are in the bonding molecu- 
lar orbital because the two wavefunctions have the same symmetry. This 
results in a considerable increase in the calculated dissociation energy of 
the molecule. By using even more complex wavefunctions, containing as 
many as 100 terms,2 it is possible to obtain results which are so close to 
the experimental values as to be within experimental error. The energies 
and bond lengths calculated for the various models are listed in Table 
8.1. 

Table 8.1 Comparison of binding energies and bond lengths calculated for the hydro- 
gen molecule 

Type of wavefunction Binding Bond 
energylkJ mol-' lengthlpm 

Simple valence bond 303 87 
Simple molecular orbital 255 84 
Valence bond with ionic contribution 396 74.9 
100 term function (see Kolos and Wolniewicz2) 458 74.1 
Experimental result 458 74.1 

8.8 Molecular Orbitals for Other Diatomic 
Molecules 

The MO method used with the hydrogen molecule can be applied to 
other diatomic molecules after some modifications have been made. Each 
electron is considered to move in the potential field produced by the 
nuclei, plus some additional electrical field which represents the average 
effect of all the other electrons. This gives rise to the following one-elec- 
tron Hamiltonian operator: 

-+- +V rA,rB (8.27) 0 h2 2 e2  Z ,  Z,  H =-- 
rA rB) 
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In this equation, r A  and rB are the distances of the electron from the two 
nuclei, and ZA and 2, are the effective charge numbers of the two nuclei 
after allowance has been made for the screening effect of the other 
electrons. The final term represents the supposedly static potential field 
which arises from the charge distribution of the other electrons. 

We start by considering the following trial wavefunction for a 
heteronuclear diatomic molecule, AB: 

Here, yA and yB are atomic orbitals centred on atoms A and B, respec- 
tively; cA and cB are weighting factors for the two atomic wavefunctions, 
the best values of which have to be determined. The method to be dis- 
cussed is quite general and can easily be extended to larger molecules. 

The expectation value for the energy of this trial wavefunction can be 
obtained from equation (8.3): 

(8.29) 

It will be assumed that the atomic wavefunctions do not have complex 
components, and therefore that @* = @. It is not strictly necessary to do 
this, but it simplifies the mathematics. When the expression in equation 
(8.28) is substituted into this equation, we obtain: 

(8.30) 

This can be expanded to give: 

In this equation the following symbols have been used to represent the 
integrals: 
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S,, and S,, will both be equal to one if the atomic orbitals have 
been normalized. SAs is the overlap integral, already discussed in Section 
8.6. 

. It represents the energy that an 
electron would have in the diatomic molecule if it occupied the atomic 
orbital yA. It is more negative than the ground state energy EA of an 
electron on atom A alone because of the coulombic attraction of the 
electron for the second nucleus B. HBB is also a Coulomb integral, cen- 
tred on atom B. 

for reasons that originate in 
classical physics. It vanishes when the orbitals yA and y, do not over- 
lap. It is normally negative for equilibrium bond lengths. 

The next step is to find the minimum energy that can be obtained 
from equation (8.31) by setting d(E)/dc, and d(E)/dc, equal to zero. We 
start by writing equation (8.31) in the following form: 

HAA is known as a 

HA, is known as the 

where use has been made of the fact that SAA and S,, are both equal to 
one. Differentiation of this equation with respect to the variable cA gives: 

Similarly, differentiation with respect to the variable c, gives: 

At the minimum value of the energy, d(E)/dc, and d(E)/dc, are both 
equal to zero, and equations (8.33) and (8.34) can then be reorganized 
to give: 

and 

It should be noted that we are now using E for the minimum energy 
rather than (E) ,  because this represents the best possible value of the 
energy that can be obtained with the LCAO method. Equations (8.35) 
and (8.36) are known as the . They have non-trivial 
solutions only if the determinant of the coefficients is equal to zero: 
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(8.37) 

This is known as the , and it can be expanded to give 
a quadratic equation in E. It has two roots, which give the energies of 
the bonding and antibonding orbitals. 

8.9 Molecular Orbitals for Homonuclear Diatomic 
Molecules 

8.9.1 Solutions of the Secular Equations 

If atoms A and B are identical, and the molecular orbital is constructed 
from atomic orbitals of the same type, then H,, = HBB, and the secular 
determinant can be expanded as: 

( H ~ ~  - E ) ~  - ( H ~ ,  - ES,,)’ = o (8.38) 

This equation has two solutions: 

E, = HA, *HA, (8.39) 

The overlap integral, SAB, is of the order of 0.2-0.3 for atomic orbitals 
with n = 2, and it is possible to ignore this term in an approximate cal- 
culation. It can also be shown that the coulomb integral, HAA, is rough- 
ly equal to EA, the energy of an electron in the atomic orbital yA. With 
these approximations, equation (8.39) can be written as: 

14 SAB 

(8.40) 

The resonance integral, HAB, is normally negative so that the bonding 
orbital is associated with the positive sign. The resulting energy level 
diagram is shown in Figure 8.9a, where it can be seen that the bond 
energy for the bonding orbital is approximately equal to HAH. In this 

Figure 8.9 Energy levels calcu- 
lated for the bonding and anti- 
bonding orbitals of a 
homonuclear diatomic molecule: 
(a) overlap integral ignored; 
(b) overlap integral taken into 
account. HA, is the resonance 
integral 



The Structure of Molecules 153 

diagram the antibonding orbital goes up in energy by the same amount 
that the bonding orbital goes down in energy, but this is no longer true 
when the overlap integral is taken into account (see Figure 8.9b). 

By symmetry it can be shown that cA=kcB for a homonuclear dia- 
tomic molecule. After normalization, the corresponding molecular 
orbitals become: 

(8.41) 

and 
9-={ ( 1 )I { W * - W H }  

2 l -s*B (8.42) 

8.9.2 Molecular Orbitals for Second-row Homonuclear 
Diatomics 

The atomic orbitals available for bonding in these molecules are 2s and 
2p. The 1s orbitals are too compact to give significant overlap, and they 
are regarded as essentially non-bonding. The overlap of the 2s orbitals 
results in a bonding 2so, orbital and an antibonding 2sou* orbital, which 
look much like the lsoE and lsou* orbitals shown in Figure 8.5. 

The 2p atomic orbitals can interact in two different ways to give the 
molecular orbitals shown in Figure 8.10. It can be seen that the lobes of 
the 2p- orbitals are directed along the internuclear axis, and they over- 
lap strongly to give molecular orbitals with the same cylindrical sym- 
metry as the 2s molecular orbitals. Hence a 2pzog bonding orbital and a 
2p,ou* antibonding orbital are formed. 

The lobes of the 2px and 2py orbitals are directed at right angles to 
the internuclear axis, and they overlap sideways to give either a bond- 
ing or an antibonding . These orbitals have positive and nega- 
tive lobes running parallel to the internuclear axis, and a node along the 
axis itself. It can be seen from Figure 8.10b that the bonding orbitals 
change sign when inverted through the centre of the molecule, which 
makes them ungerade, whereas the antibonding orbitals are gerade. We 
therefore have 2px7cu and 2py7ru bonding orbitals, and 2p,x7rE* and 2py7rg* 
antibonding orbitals. 

Generally, the 2p,oE orbital shows stronger overlap than the 2p7cu 
orbitals, and it would therefore be expected to have the lower energy. 
This would result in the MO energy diagram shown in Figure 8.1 1, which 
is found to be applicable to oxygen and fluorine. However, spectroscopic 
evidence shows that the 2pzog energy level lies above the 2pzU levels for 
the other second row elements, as shown in Figure 8.12. This change in 
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Figure 8.10 The molecular 
orbitals that can be produced by 
overlap of 2p atomic orbitals. 
Part (a) shows the formation of 
bonding and antibonding <T 

orbitals from overlap of 2pz atom- 
ic orbitals, and part (b) shows the 
formation of bonding and anti- 
bonding n orbitals from overlap of 
2px atomic orbitals 

Figure 8.1 1 Molecular orbital 
energy diagram in which the 
2p (J orbital lies below the 2pn, 
z, g orbitals. This arrangement applies 

to oxygen and fluorine 

the ordering of the energy levels occurs because the 2sou* antibonding 
orbital and the 2pzog bonding orbital have similar energies, and this 
allows them to mix together to form two new states, one with an energy 
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slightly less than the original 2soU* level and the other with an energy 
slightly higher than the original 2p-0~ level. This mixing is sufficient to 
push the latter above the 2pzu levels. No interaction is possible between 
the 2s0,* level and the 2pzU levels because they have different symme- 
tries, and therefore zero overlap. The modified molecular orbitals will 
still be referred to by their original names because the amount of mix- 
ing is relatively small. 

Figure 8.12 Molecular orbital 
energy diagram in which the 
2p o orbital is above the 2p75 =. orbitals, This arrangement applies 
to nitrogen 

The variation in the energy levels and electron occupancy for homonu- 
clear diatomic molecules of the elements of the second period is shown 
in Figure 8.13. It can be seen that the energy of the 2pql orbitals remains Figure 8.13 The molecular 

approximately constant in going from Li, to F,, whereas the energy of Orbital energy levels Of the 

the 2pzoQ orbital drops considerably, and finally becomes less than that 
ond-row homonuclear diatomic 
molecules~ and their electron 

of the2c.nu orbital towards the end of the period. occupancy 
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MO theory has been particularly successful in providing an explana- 
tion for the paramagnetic nature of the oxygen molecule. It can be seen 
from Figure 8.13 that oxygen has two unpaired electrons in the degen- 
erate 2px7cg* and 2py7cg* orbitals. These electrons occupy separate orbitals 
because this keeps them far apart, and therefore reduces the coulombic 
repulsion between them. The electrons have parallel spins in accordance 
with Hund’s rule, and measurements of the paramagnetism of oxygen 
confirm the presence of two unpaired electrons. Hence, there is complete 
agreement between theory and experiment. 

The strength of the bond formed can be assessed by calculating the 
bond order according to the following formula: 

Bond order = i (8.43) 

Here, n(bonding) and n(antibonding) are the numbers of electrons in 
bonding and antibonding orbitals, respectively. The predicted bond 
orders for the second-row homonuclear diatomics are given in Table 8.2, 
together with the experimentally measured bond lengths and bond ener- 
gies. There is seen to be a strong correlation between bond order and 
bond energy. 

Table 8.2 Relationship between bond order, bond length and bond dissociation ener- 

gy 

Molecule nfbonding) nfanti- Bond Bond Bond 
bonding) order lengthlpm dissociation 

energylkJ rnol-I 

Li2 2 0 1 267 105 

8 2  4 2 1 159 289 

N* 8 2 3 110 942 

F2 8 6 1 141 154 

Be* 2 2 0 245 <I 0 

c2 6 2 2 124 599 

0 2  8 4 2 121 494 
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8.10 Application of MO Theory to Heteronuclear 
Diatomic Molecules 

These are molecules in which different atoms are bonded together, and 
the atomic orbitals on the two atoms will therefore have different 
energies. As a general rule, appreciable interaction occurs only when 
atomic orbitals with broadly similar energies are used to form the molec- 
ular orbitals. Two molecules will be used to illustrate the bonding 
possibilities; the first is nitrogen monoxide (nitric oxide), where the ener- 
gies of the 2s and 2p orbitals on the carbon and oxygen atoms match 
up quite well, and the second is hydrogen fluoride, where there is a large 
disparity between the orbital energies on the two atoms. 

8.10.1 The NO Molecule 

The molecular orbital energy level diagram for NO is shown in Figure 
8.14. It is similar to the diagram for molecular oxygen, except that the 
energy gap between the 2s and 2p orbitals is smaller for nitrogen than 
it is for oxygen. Molecular orbitals of a given symmetry are numbered 
in order of increasing energy, and g or u subscripts are not used because 
the molecule does not have a centre of symmetry. The diagram is slightly 
oversimplified in that there will be some 2p character in the lo and 20" 

Figure 8.14 The molecular 
orbital energy level diagram for 
nitrogen monoxide 
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orbitals, and some 2s character in the 30 and 40* orbitals, but the effect 
will be relatively small. 

The number of valence electrons that need to be accommodated in 
the molecular orbitals is eleven, five coming from the nitrogen atom and 
six from the oxygen atom. Pairs of electrons occupy the molecular 
orbitals in order of increasing energy until the antibonding 27c* orbitals 
are reached, which are occupied by a single unpaired electron. There are 
eight electrons in bonding orbitals and three in antibonding orbitals, and 
the bond order is therefore 2.5. The unpaired electron causes the mole- 
cule to be paramagnetic and highly reactive. 

8.10.2 The HF Molecule 

The relative energies of the atomic and molecular orbitals of this polar 
molecule are shown in Figure 8.15, where it can be seen that the fluorine 
1s and 2s atomic orbitals lie far below the hydrogen 1s orbital on the 
energy scale. As a consequence, they generate molecular orbitals which 
are essentially unmodified fluorine atomic orbitals, with hardly any 
contribution from the hydrogen atom. Although the fluorine 2p orbitals 
have energies that are sufficiently close to that of the hydrogen 1s atomic 
orbital for interaction to be feasible, only the 2pz orbital has the correct 
symmetry for bonding to occur. The bonding molecular orbital created 
by the F(2p7)-H( 1s) overlap is shown in Figure 8.16. The wavefunction 
can be written as: 

$(bonding) = 0.33yr,(H) +0.94yr,,2 (F) 
(8.44) 

Figure 8.15 Energy level dia- 
gram for hydrogen fluoride 
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Figure 8.16 The bonding 
molecular orbital formed from the 
overlap of the H 1s and the F 2pz 
atomic orbitals 

This shows that the major contribution comes from the fluorine atom, 
and the electrons in the bonding orbital are therefore most likely to be 
found close to the fluorine atom, which means that the molecule is highly 
polarized. There is also an antibonding orbital with the wavefunction: 

@( antibonding = 0 . 9 4 ~ ~ ~  H - 0 . 3 3 ~ ~ ~ ~  (F) 1 0 (8.45) 

Here, the major contribution comes from the hydrogen atom. 
It can be seen from Figure 8.17 that the 2p, and 2pJ, orbitals produce 

zero net overlap with the hydrogen 1s orbital because the overlap of the 
positive lobe cancels out the overlap of the negative lobe. Therefore, the 
hydrogen 1s orbital makes no contribution to the 7c molecular orbitals. 

In this simple treatment it has been assumed that the fluorine atom- 
ic orbitals do not mix, which is not strictly true. More detailed calcula- 
tions show that the F 2s orbital makes a significant contribution to the 
bonding orbital. Figure 8.17 Illustration of the 

zero net overlap produced by 
combining the H 1s and F 2p, 

8.1 I Hybridization in Polyatomic Molecules orbitals 

We have already seen that more than one atomic orbital on an atom 
may contribute to a particular molecular orbital. For instance, the order- 
ing of the molecular orbitals for homonuclear diatomic molecules 
depended upon the mixing of 2s and 2p atomic orbitals. A similar mix- 
ing is found in the bonding of HF. One disadvantage of this approach 
is that we appear to have lost the simple concept of a bond as an over- 
lap of two atomic orbitals, one on each atom. Often it is useful to work 
with hybrid orbitals, which consist of a linear combination of the atomic 
orbitals on a single atom. These hybrid orbitals are then thought of as 
overlapping with orbitals located on other atoms to form chemical 
bonds. This is essentially the VB approach to bonding, in which bonds 
are seen as localized between pairs of atoms. 

It should be emphasized that hybrid orbitals are not true solutions of 
the Schrodinger equation for the atom concerned, and they are not gen- 
erally used in rigorous quantum theory. They are, however, often 
extremely useful in gaining insight into the shapes of polyatomic mole- 
cules. We will examine their use in predicting the shapes of the mole- 
cules BeH,, BH,, CH,, NH, and H,O. 
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The electron configuration of the ground state of the beryllium atom 
is 1s22s2, and it might be thought that bonding in BeH, would occur by 
overlap between the hydrogen 1s orbital and the beryllium 2s orbital. In 
fact, there is a significant contribution from one of the 2p orbitals. Bond 
formation can be thought of as occurring in three stages: 

(i) A 2s electron on the beryllium atom is promoted into a 2p orbital, 
which will be taken to be the 2p, orbital. 

(ii) The 2s and 2p, orbitals then combine to form two hybrid sp orbitals, 
each occupied-by an electron, as shown in Figure 8.18. These hybrid 
orbitals have one lobe greater than the other because there is con- 
structive overlap of the 2s and 2p, orbitals on one side of the nucle- 
us and destructive overlap on the other. The normalized orbitals 
formed in this way are 

Figure 8.18 The formation of 
two sp hybrid orbitals by combin- 
ing the 2s and 2pz atomic orbitals 
of a beryllium atom 

(iii) Finally, the major lobes of the two hybrid sp orbitals overlap with 
the 1s atomic orbitals of the hydrogen atoms to form the following 
bonding orbitals: 

(8.49) 

where c1 and c2 are coefficients, the values of which have to be deter- 
mined. 
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Because the major lobes of the hybrid orbitals are much more directed 
than the 2s orbital, a much stronger bond can be formed, and the extra 
energy released is more than sufficient to compensate for the energy 
required to promote an electron from the 2s to the 2p atomic orbital of 
beryllium. From the orientation of the two hybrid orbitals, the molecule 
is expected to be linear with a H-Be-H bond angle of 180". 

Next we turn to the BH, molecule, in which the three B-H bonds are 
coplanar, and the H-B-H angle is 120". The electronic configuration of 
the boron atom in the ground state is ls22s22p, 
occur only after promotion of an electron from 
orbital to give a ls22s12p2 configuration. Three 
orbitals can then be constructed as follows: 

and hybridization can 
the 2s orbital to a 2p 
equivalent hybrid sp2 

(8.50) 

(8.52) 

These orbitals lie in a plane, as shown in Figure 8.19, and they overlap 
with the hydrogen 1s orbitals to give three equivalent B-H bonds. The 
2p- orbital lies at right angles to this plane and takes no part in bond 
formation. Figure 8.19 The three sp2 

hybrid orbitals which can be 
formed on a boron atom from a 
combination of the 2s, 2px and 
2py atomic orbitals 



162 Quantum Mechanics for Chemists 

The best known example of hybridization occurs with the carbon 
atom, where the 2s orbital and the three 2p orbitals can be combined to 
give four sp3 hybrid orbitals. The ground state of the carbon atom has 
the electronic configuration ls22s22p2, and this needs to be raised to 
1 s22s’2p3 before hybridization can occur. The sp3 hybrid orbitals are: 

@2 = - 1 ( w2s - w2p,y - V 2 P Y  + %Pz) 

2 

$3 = -( 1 w 2 s  + V 2 p ,  - W 2 P ,  - W 2 P Z )  

2 

$4 = - ( w 2 s  1 - W 2 P ,  + W2P, - V 2 P Z )  
2 

(8.57) 

(8.58) 

(8.59) 

(8.60) 

These orbitals form the tetrahedral structure seen in Figure 8.20. There 
is a single electron in each hybrid orbital, and these are available for 
bonding to four hydrogen atoms to make CH,. 

We find a similar form of sp3 hybridization in ammonia. The nitro- 
gen atom has the electronic configuration ls22s22px12py12pz1, and there 
are now five electrons to be accommodated in the four hybrid orbitals. 
Thus, one hybrid orbital must contain two electrons from the nitrogen 
atom with their spins paired. These are known as a or 

Figure 8-20 The four tetrahe- 
dra’ sp3 hybrid Orbitals which can 
be formed on a carbon atom by 
combination of the 2s orbital with 
the three 2p orbitals 
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, and they will be relatively unreactive. The other three elec- 
trons are available for bonding to three hydrogen atoms to form NH,. 
On this basis, ammonia would be expected to have the structure shown 
in Figure 8.21, in which the H atoms are positioned at three corners of 
a tetrahedron and there is a non-bonding pair of electrons located at the 
fourth corner. According to this model, the H-N-H bond angle should 
be 109", which is in reasonably close proximity to the experimentally 
determined value of 107". The reason for the slight discrepancy is that 
the four hybrid orbitals are not equivalent: three of them are involved 
in bonding to hydrogen atoms, and the fourth contains the non-bonding 
pair of electrons. This results in the 2p contribution to the bonding hybrid 
orbitals being slightly greater than that for the non-bonding orbital, with 
a concomitant small decrease in the bond angle. 

8.12 Bonding in the Water Molecule Figure 8.21 The sp3 hybrid 
orbitals of ammonia. Three of the 
electrons from the nitrogen atom 

8.12.1 Valence Bond View form bonds with hydrogen atoms, 
but there are two electrons left 

The shape of the water molecule can be explained by hybridization of over, and these form a non- 
the 2s, 2py and 2p, atomic orbitals on the oxygen atom, as shown in bonding pair 

Figure 8.22. The 2px atomic orbital points in a direction at right angles 
to the plane of the molecule, and is not involved in bonding. The three 
hybrid orbitals, consistent with a bond angle of 104.5", are: 

(8.61) 

(8.62) 

(8.63) 

The first two hybrid orbitals point towards the hydrogen atoms, and 
they differ only in the sign of the contribution from the 2py orbital. The 
third hybrid orbital does not include a contribution from the 2py orbital, 
and is therefore aligned along the z axis. It points away from the two 
hydrogen atoms, which makes it non-bonding. There are four electrons 
on the oxygen atom which have to be accommodated in these orbitals; 
one goes into each bonding orbital and the other two go into the non- 
bonding orbital. 

The H-0-H bond angle is determined by the proportions of the 2py 
and 2p- orbitals that contribute to the hybrid orbitals. These may be 
represented as vectors with lengths proportional to the coefficients 0.7 1 
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and 0.55. It can be seen from Figure 8.23 that the bond angle, @, is 
obtained from the formula: tan(@/2) = 0.71/0.55 = 1.29. This gives @/2 
= 52.24', which corresponds to a bond angle of 104.5", as required. 

Figure 8.23 Vector diagram 
relating the H-0-H bond angle to 
the relative contributions made by 
the 2py and 2pz orbitals to the 
bonding 

8.1 2.2 Molecular Orbital Picture 

The 2s, 2p,, 2pJ, and 2pz atomic orbitals on the oxygen atom combine 
with the two hydrogen 1s atomic orbitals to give the six molecular 
orbitals shown in Figure 8.24. The names given to the orbitals are 
obtained from group theory, but they will be used here merely as labels. 
Where two or more molecular orbitals have the same symmetry they are 
numbered consecutively, starting with the one with the lowest energy. 
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Figure 8.24 Molecular orbital 
description of the water molecule. 
The diagram shows the six 
molecular orbitals that can be 
formed from the hydrogen Is and 
the oxygen 2s and 2p orbitals 

The positions of the energy levels with respect to the atomic orbitals 
are shown in Figure 8.25. The oxygen atom contributes six electrons, 
and the hydrogen atoms one each, so that there are eight electrons to 
occupy the molecular orbitals. These fill the four lowest levels, as shown. 

There are two quite strongly bonding orbitals, 2a, and lb,, which 
come about by overlap of the 0 2s and 0 2py orbitals with the hydro- 
gen 1s orbitals. However, the 2a, orbital has some 2p- character because 
it is allowed to mix with the 3a, orbital, which has the same symmetry. 
By the same reasoning, the 3a, orbital has some 2s character. 

The 3a, orbital arises because of the overlap of the 0 2pz orbital with 
the hydrogen 1s orbitals. This is relatively weak, and this orbital is there- 
fore close to being non-bonding. The lb,  orbital consists of an 0 2p, 
orbital, which is directed at right angles to the plane of the molecule, 
and is therefore non-bonding. 
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Figure 8.25 The relative ener- 
gies of the atomic and molecular 
orbitals of the water molecule 

8.13 Huckel Molecular Orbital Theory 

The bonding in conjugated organic molecules, such as butadiene, was 
described in Chapter 2 as a mixture of localized 0 bonding, and delo- 
calized 7c bonding. The <T electrons were considered to form the rigid 
bonds that determined the shape of the molecule, whilst the 7c electrons 
were free to move around the whole molecule in a constant potential 
field. Although this free 7c electron model had some success in explain- 
ing certain features of the absorption spectra of conjugated molecules, 
the assumption that the 7c electrons moved in a constant potential field 
was obviously a poor approximation. In this section we shall take this 
simple model a little further by constructing delocalized 'TC molecular 
orbitals that take account of the undulating nature of the potential ener- 
gy. The treatment that we shall follow was first introduced by Erich 
Huckel in 1930. 

8.13. I Application to Butadiene 

The two types of bonding found in conjugated molecules are illustrated 
for butadiene in Figures 2.6 and 2.7. Carbonxarbon 0 bonds are formed 
by overlap of sp' hybrid orbitals on the four carbon atoms, and further 
0 bonds are formed between the carbon hybrid sp2 orbitals and the 
hydrogen 1s orbitals. These orbitals make up the 
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I - ESll - ES12 - ES13 - ES14 

H21 - ES21 H22 - ES22 H23 - Es23 H24 - Es24 

H3, -E% H32 -ES32 H33 - ES33 H 3 4  - E S 3 4  

H41 - Es41 H42 - Es42 H43 - ES43 H44 - ES44 

of the molecule and they all lie in the same plane (see Figure 2.6). The 
2p- atomic orbitals on the carbon atoms are oriented at right angles to 
thl's plane, and they overlap to form a 71: molecular orbital, as shown in 
Figure 2.7. Because of their different symmetry, the 2p- orbitals do not 
interact with the 0-bonded framework, and they are treated quite sepa- 
rately in Huckel theory. 

The molecular orbital for the 71: electrons can be written as a linear 
combination of the 2pz atomic orbitals on the four carbon atoms, which 
we shall denote as yl, y2, y3 and y4. The trial wavefunction therefore 
becomes: 

= 0 
(8.69) 

$="lYI + c ' 2 Y 2  + C , W 3 + C 4 Y 4  (8.64) 

where c1-c4 are the weighting coefficients. The variation principle is then 
used to find the optimum values for these coefficients by minimizing the 
energies, as discussed in Section 8.8. This leads to the following set of 
secular equations: 

These have non-trivial solutions only when the secular determinant is 
equal to zero: 

This results in a quartic equation in the energy E, which has four roots, 
and is not easy to solve. However, the equation can be greatly simpli- 
fied by making the following Hiickel approximations: 

(i) All overlap integrals, S12, S13, etc., are set equal to zero. 
(ii) All Coulomb integrals, H ,  1, I fz2,  etc., are given the value a. 
(iii) All resonance integrals between neighbouring carbon atoms, H12, 
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Determinant =x 

HZ3, etc., are given the value p. 

H,,, H14, etc., are set equal to zero. 
(iv) All resonance integrals between non-neighbouring carbon atoms, 

Although (iv) is a reasonable approximation because atomic orbitals on 
non-neighbouring carbon atoms do not overlap significantly, the other 
approximations all introduce significant error into the calculation. 
Nevertheless, the method is widely used to give a qualitative description 
of the bonding in conjugated hydrocarbon molecules. 

With these approximations, and assuming that the atomic 2pz orbitals 

X I 0  1 1 0  
1 x 1 - 0 x 1 
0 1 x  O l x  

are normalized so 
becomes: 

that Sll, S22, etc. are equal to 

a - E  P 0 0  

0 P a - E  P 
p a - E  P 0 

0 0 p a - E  

one, the determinant 

= O  

(8.70) 

This can be further simplified by dividing each row by P, and writing x 
= (a  - E)/p. 

The determinant then becomes: 

x 1 0 0  
l x  1 0  
0 1 x 1  
0 0  1 x  

= O  

This form of the determinant can then be expanded as follows: 

+ 

(8.71) 

o x  O l l  

(8.72) 

This is a quadratic equation in x2 with the following roots: x2 = 2.62 and 
0.382. The allowed values of x are k1.62 and k0.62, which lead to the 
following energies for the four n molecular orbitals: 
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Since p is negative, the lowest energy is a + 1.62p. The four n: electrons 
in butadiene occupy the two lowest lying states with their spins paired, 
as shown in Figure 8.26. 

Figure 8.26 The energy levels 
occupied by the .n electrons in 
the ground state of butadiene 
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Figure 8.27 Formation of the 
4, Huckel molecular orbital of 
butadiene from the 2pz atomic 
orbitals. The black dots represent 
the carbon nuclei 

The other wavefunctions can be obtained in the same way. They are: 

e2 = 0.60y1 + 0 . 3 7 ~ ~  - 0.371,~~ - 0.60y4 (8.74) 

These are illustrated in Figure 8.28. The dotted lines follow the general 
contours of the wavefunctions, and it can be seen that these show some 
similarity with the one-dimensional particle-in-a-box wavefunctions, dis- 
cussed in Chapter 2. 

user
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Figure 8.28 The q&, & and G4 
Huckel molecular orbitals of 
butadiene 
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Figure 8.29 The bonding and 
antibonding Huckel molecular 
orbitals of ethene 

8.13.2 Delocalization Energy 

We can calculate the total n electron binding energy in butadiene by sum- 
ming the energies of each n electron. There are two electrons in the 
ground state with energy (a  + 1.62p), and two electrons in the next lowest 
state with energy (a  + 0.62p). Thus, the total n electron energy in buta- 
diene is given by the equation: 

(8.79) 

This can be compared with the n electron energy of two ethene mole- 
cules, which is 2 x 2(a + p> = 4a + 48. We can see that the n electron 
energy of butadiene is lower than that of two localized 7c bonds by an 
amount equal to -0.48P (remember that P is a negative quantity). This 
is equivalent to about 36 kJ mol-I. The lowering of the energy is due to 
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the ability of n; electrons in conjugated systems to move along the full 
length of the molecule, and it is known as the 

8.13.3 Application to Aromatic Systems 

The stability of aromatic molecules can be related to the delocalization 
of the n electrons in the carbon rings. Benzene, which provides the best 
example, will be discussed here. Hybridization of the atomic orbitals on 
the carbon atoms produces sp2 hybrid orbitals which overlap to give CT 

bonding within the plane of the hexagonal molecule, as shown in Figure 
8.30. The carbon 2pz orbitals have their lobes at right angles to this plane, 
and there is therefore no net overlap between these orbitals and the CT 

bonded framework of the molecule. They form a separate molecular 
orbital, which is illustrated in Figure 8.31. 

Figure 8.30 The overlap of the 
hybrid sp2 orbitals in benzene 

Figure 8.31 The overlap and 
delocalization of the 2pz orbitals 
in benzene 

Numbering the carbon atoms from 1 to 6, we can write the Huckel 
molecular orbitals as: 

where v/,, y2, etc., are 2p, atomic orbitals on the carbon atoms. 
The energies of the Huckel molecular orbitals are obtained by solv- 

ing the secular determinant: 

a - E  P 0 0 O P  
P a - E  P 0 0 0  
0 p a - E  p 0 0 
0 0 P a - E p  0 
0 0 0 P a - E p  
p o  0 0 p a - &  

= O  

(8.8 1)  

This is a simple extension of the secular determinant for butadiene, except 
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that an extra p now appears at the end of the first row, and another one 
at the beginning of the last row. These represent the terms and H61,  
respectively. For a linear molecule these terms would be put equal to 
zero because carbon atoms 1 and 6 would be a long way from one anoth- 
er, but in the benzene ring these carbon atoms are nearest neighbours. 

Expansion of the secular determinant results in an algebraic equation 
with six roots. These are: 

The lowest energy is a + 2p and the highest energy is a - 2p. In between, 
there are two doubly degenerate states with energies of a + p and a - 
p. The energy levels, and their associated molecular orbitals, are shown 
in Figure 8.32. 

Figure 8.32 The Huckel molec- 
ular orbitals of benzene, viewed 
from above the plane of the mol- 
ecule. There will be two compo- 
nents to each lobe shown, one 
above the plane of the molecule 
and the other below the plane 
with an opposite sign 

The total 'TI: electron energy is equal to 2(a + 2p) + 4(a + p> = 6a + 
8p.  This is to be compared with an energy of 3 ( 2 a  + 2p)  for three local- 
ized 'TI: bonds. The delocalization energy is therefore equal to -2p, or 
about 150 kJ mol-'. 
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