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PREFACE

In writing this book we have attempted to produce a textbook
of practical quantum mecchanics for the chemist, the experi-
mental physicist, and the beginning student of theoretical
physics. The book is not intended to provide a critical discus-
sion of quantum mechanies, nor even to presenéga thorough
survey of the subject. We hope that it does give b lucid and
easily understandable introduction to a limj oriten .

quantum-mechanical theorv: mnamelv. “hat ubilign, wally
suggested by the name ‘Lol v T, rwtix s of the
aiscussion of the Schrodinger wave equativa N Bhe problems

which ecan be treated by means of it. The effort has been made
to provide for the reader a means of equipping himself with a
practical grasp of this subject, so that he can apply quantum
mechanics to most of the chemical and physical problems which
may confront him.

The book is particularly designed for study by men without
extensive previous experience with advanced mathematics, such
as chemists interested in the subject because of its chemical
applications. We have assumed on the part of the reader, in
addition to elementary mathematics through the calculus, only
some knowledge of complex quantities, ordinary differential
equations, and the technique of partial differentiation. It
may be desirable that a book written for the reader not adept
at mathematics be richer in equations than one intended for
the mathematician; for the mathematician can follow a sketchy
derivation with ease, whereas if the less adept reader is to be
led safely through the usually straightforward but sometimes
rather complicated derivations of quantum mechanics a firm
guiding hand must be kept on him. Quantum mechanics is
essentially mathematical in character, and an understanding
of the subject without a thorough knowledge of the mathematical
methods involved and the results of their application cannot be
obtained. The student not thoroughly trained in the theory
of partial differential equations and orthogonal functions must

il



v PREFACE

learn something of these subjects as he studies quantum mechan-
ics. In order that he may do so, and that he may follow the
discussions given without danger of being deflected from the
course of the argument by inability to carry through some minor
step, we have avoided the temptation to condense the various
discussions into shorter and perhaps more elegant forms.

After introductory chapters on classical mechanics and the
old quantum theory, we have introduced the Schrodingsr wave
equation and its physical interpretation on a postulatory basis,
and have then given in great detail the solution of the wave
cquation for important systems (harmonic oscillator, hydrogen
atom) and the discussion of the wave functions and their proper-
ties, omitting none of the mathematical steps except the most
damentszry: A similarly detailed treatment has been given
in the discussion o1 pertw’vition “hory, the variation method,
the structure of simple molecules, and, in general, 1. - .
important section of the book.

In order to limit the size of the book, we have omitted from
discussion such advanced topics as transformation theory and
general quantum mechanics (aside from brief mention in the
last chapter), the Dirac theory of the electron, quantization
of the electromagnetic field, ete. We have also omitted several
subjects which are ordinarily considered as part of elementary
quantum mechanics, but which are of minor importance to the
chemist, such as the Zeeman effect and magnetic interactions in
general, the dispersion of light and allied phenomena, and
most of the theory of aperiodic processes.

The authors are severally indebted to Professor A. Sommerfeld
and Professors E. U. Condon and H. P. Robertson for their
own introduction to quantum mechanics. The constant advice
of Professor R. C. Tolman is gratefully acknowledged, as well
as the aid of Professor P. M. Morse, Dr. L. E. Sutton, Dr.
G. W. Wheland, Dr. L. O. Brockway, Dr. J. Sherman, Dr. S.
Weinbaum, Mrs. Emily Buckingham Wilson, and Mrs. Ava
Helen Pauling.

Linus PavLiNG.
E. BricaT WILSON, JR.

CAMBRIDGE, Mass.,

PasapkNa, Lavrr,,
July, 193E
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INTRODUCTION TO QUANTUM
MECHANICS

CHAPTER 1
SURVEY OF CLASSICAL MECHANICS

The subjecet of quantum mechanics constitutes the most recent
motion of matter. For a long time investigators confined their
efforts to studying the dynamics of bodies of macroscopic dimen-
sions, and while the science of mechanics remained in that
stage it was properly considercd a branch of physics. Since
the development of atomic theory there has been a change of
emphasis. 1t was recognized that the older laws are not correct
when applied to atoms and electrons, without considerable
modification. Moreover, the success which has been obtained
in making the necessary modifications of the older laws has also
had the result of depriving physics of sole claim upon them, since
it is now realized that the combining power of atoms and, in
fact, all the chemical properties of atoms and molecules are
explicable in terms of the laws governing the motions of the
electrons and nuclei composing them.

Although it is the modern theory of quantum mechanics in
which we are primarily interested because of its applications to
chemical problems, it is desirable for us first to discuss briefly
the background of classical mechanics from which it was devel-
oped. By so doing we not only follow to a certain extent the
historical development, but we also introduce in a more familiar
form many concepts which are retained in the later theory. We
shall also treat certain problems in the first few chapters by the
methods of the older theories in preparation for their later treat-
ment by quantum mechanics. It is for this reason that the
student is advised to consider the exercises of the first few
chapters carefully and to retain for later reference the results

which are secured.
1



2 SURVEY OF CLASSICAL MECHANICS [I-1

In the first chapter no attempt will be made to give any parts
of classical dynamics but those which are useful in the treatment
of atomic and molecular problems. With this restriction, we
have felt justified in omitting discussion of the dynamics of rigid
bodies, non-conservative systems, non-holonomic systems, sys-
tems involving impact, etc. Moreover, no use is made of
Hamilton’s principle or of the Hamilton-Jacobi partial differential
equation. By thus limiting the subjects to be discussed, it is
possible to give in a short chapter a thorough treatment of
Newtonian systems of point particles.

1. NEWTON’S EQUATIONS OF MOTION IN THE LAGRANGIAN
FORM

The earliest formulation of dynamical laws of wide application
is that of Sir Isaac Newton. If we adopt the notation z, y,, 2:
for the three Cartesian coordinates of the 7th particle with
mass m;, Newton’s equations for n point particles are

mE; = X:,
m,y; = Y.', 1 = 1, 2, R ( (1—'1)
miZ; = Z,-,

where X, Y., Z; arc the three components of the force acting on
the 7th particle. There is a set of such equations for each
particle. Dots refer to differentiation with respect to time, so
that
. d?x;
:t; = _dYE' (1—2)
By introducing certain familiar definitions we change Equation
1-1 into a form which will be more useful later. We define as
the kinetic energy T (for Cartesian coordinates) the quantity

T =Ygmi(3 + 92+ 2) + - - - + ma(ad + g2 + )
= 15 3 mi(#? + 92 + 22). (1-3)
i=1

If we limit ourselves to a certain class of systems, called conserva-
tive systems, it is possible to define another quantity, the potential
energy V, which is a function of the coordinates zyyz, - - -
TnYa2s of all the particles, such that the force components acting
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on each particle are equal to partial derivatives of the potential
energy with respect to the coordinates of the particle (with
negative sign); that is,

14
Xi= —g;
aV . A
Y: = _5.;/7 t =1, 2, : y 1. (1 )
oV
Zi =~y

It is possible to find a function V which will express in this manner
forces of the types usually designated as mechanical, electrostatic,
and gravitational. Since other types of forces (such as electro-
magnetic) for which such a potential-energy function cannot
be set up are not important in chemical applications, we shall
not consider them in detail.

With these definitions, Newton’s equations become

d aT . oV
&t oz Toz = O (1-5)
d T oV
dog. Ty =0 (1-5b)
doT | av _
dl 9z T oz (1-5¢)

There are three such equations for every particle, as before.
These results are definitely restricted to Cartesian coordinates;
but by introducing a new function, the Lagrangian function L,
defined for Newtonian systems as the difference of the kinetic
and potential energy,

L =L(CE1, Y, 21, © 5 Tny Yny 2, 3‘31, ctt yén) =
T -V, (1-6)

we can throw the equations of motion into a form which we shall
later prove to be valid in any system of coordinates (Sec. 1c).
In Cartesian coordinates T is a function of the velocities
&y + - -, 2 only, and for the systems to which our treatment
is restrlcted V is a function of the coordinates only; hence the
equations of motion given in Equation 1-5 on introduction of
the function L assume the form
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FrEE S

d oL oL R

@og ag s LB oum (D)
4oL _oL _,

dt 9z, 9z '

In the following paragraphs a simple dynamical system is
discussed by the use of these equations.

la. The Three-dimensional Isotropic Harmonic Oscillator.—
As an illustration of the use of the equations of motion in this
form, we choose a system which has played a very important
part in the development of quantum theory. This is the
harmonic oscillator, a particle bound to an equilibrium position by
a force which increases in magnitude linearly with its distance
r from the point. In the three-dimensional isotropic harmonic
oscillator this corresponds to a potential function 14kr?, represent-
ing a force of magnitude kr acting in a negative direction; i.e.,
from the position of the particle to the origin. k is called the
force constant or Hooke’s-law constant. Using Cartesian coordi-
nates we have

L = Ygm(s* + gt 40 = Jgh(zt + 42 + 29, (1-8)
whence
d—‘i(m.’é) + kzr = mi + kx =0,
myj + ky = 0, (1-9)
mz + kz = 0.

Multiplication of the first member of Equation 1-9 by & gives
di dz

mE g = —kxm (1-10)
or .
1 d(#)? _  1,d(z?)
A T L (1-11)
which integrates directly to
14mi? = —1skx? 4+ constant. (1-12)

The constant of integration is conveniently expressed as lskz2.
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2 = o~ o, (1-13)

or, on introducing the expression 4w?my? in place of the force
constant %,

Hence

dx

27rl’odt = W)

which on integration becomes

2mvet + 6, = sin“‘—:-t—

Zo
or
z = z sin (2rvet 4 8.), (1-14)
and similarly
¥ = yosin (2rvet + 8, _
z = 2o sin (2rvot + 6,).} (1-18)

In these expressions zo, ¥o, 20, 8z, 0,, and §, are constants of
integration, the values of which determine the motion in any
given case. The quantity v, is related to the constant of the
restoring force by the equation

4rimy} =k, (1-16)
so that the potential energy may be written as
V = 2r2myir?, (1-17)

As shown by the equations for z, y, and 2, v, is the frequency of
the motion. It is seen that the particle may be described as
carrying out independent harmonic oscillations along the z, y,
and z axes, with different amplitudes zo, yo, and z, and different
phase angles 6., §,, and §., respectively.

The energy of the system is the sum of the kinetic energy and
the potential encrgy, and is thus equal to

1gm(@t + g + &) + 2wmid(a? + y? + ).

On evaluation, it is found to be independent of the time, with the
value 2x2mi2(z3 + y3 + 22) determined by the amplitudes of
oscillation.

The one-dimensional harmonic oscillator, restricted to-motion
along the z axis in accordance with the potential function
V = Lkx? = 2x*myviz?, is seen to carry out harmonic oscillations
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along this axis as described by Equation 1-14. Its total energy
is given by the expression 2x?myix{.

1b. Generalized Coordinates.—Instead of Cartesian coordi-
nates xi, ¥1, 21, *+ * * , Zny Yn, 2a, it i frequently more convenient
to use some other set of coordinates to specify the configuration
of the system. For example, the isotropic spatial harmonic
oscillator already discussed might equally well be described using
polar coordinates; again, the treatment of a system composed of
two attracting particles in space, which will be considered
later, would be very cumbersome if it were necessary to use
rectangular coordinates.

If we choose any set of 3n coordinates, which we shall always
assume to be independent and at the same time sufficient in
number to specify completely the positions of the particies of
the system, then there will in general exist 3n equations, called
the equations of transformation, relating the new coordinates
gx to the set of Cartesian coordinates z,, y., 2,

Ty = fi(qu Qe * qan))
vi = gi(qy, @2, * ¢, Qan), (1-18)
zi = hi(qy, g2, - ¢, Qan).

There is such a set of three equations for each particle 7. The
functions f;, g;, h: may be functions of any or all of the 3n new
coordinates g, so that these new variables do not necessarily
split into sets which belong to particular particles. For example,
in the case of two particles the six new coordinates may be the
three Cartesian coordinates of the center of mass together
with the polar coordinates of one particle referred to the other
particle as origin.

As is known from the theory of partial differentiation, it is
possible to transform derivatives from one set of independent
variables to another, an example of this process being

dry _ 0zidqy | dzidqy | 9z, dgs.
d “ag di Taga T T age ar (17199
This same equation can be put in the much more compact form
3n
. LT
& = E@q,. (1-19b)
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This glives the relation between any Cartesian component of
velocity and the time derivatives of the new coordinates. Similar
relations, of course, hold for g; and Z; for any particle. The
quantities ¢;, by analogy with &;, are called generalized velocities,
even though they do not necessarily have the dimensions of
length divided by time (for example, q; may be an angle).

Since partial derivatives transform in just the same manner,
we have

9V _ oVom _8Vay, . 3V az

q; Ow1dg;  dy1dg; 925 g;
n
_ oV oz; | aV ay: , oV dz;\ _
- 2( 250 T oy on + 3505 q,-) = Q. (1-20)
i=1
Since Q, is given by an expression in terms of V and ¢; which is
analogous to that for the force X in terms of V and x;, it is called
a generalized force.
In exactly similar fashion, we have

OT _ (3T 3 | 9T oy | 0T Oi\ (.
ag; 2<ar.- a¢; ' 9Y: 9¢; = 9z aq,-) (1-21)
i=1

1c. The Invariance of the Equations of Motion in the Lagran-
gian Form.—We are now in a position to show that when New-
ton’s equations are written in the form given by Equation 1-7
they are valid for any choice of coordinate system. For this
proof we shall apply a transformation of coordinates to Equa-
tions 1-5, using the methods of the previous section. Multiplica-

tion of Equation 1-5a by Z—?; of 1-5b by %‘Z—‘; etc., gives
1

oz, d T | aV oz, _

3q,dt 0, ' 9z, dq; '
oz, d 9T | OV s _
dq; dt 9z, ' 8xadq; (1-22)

0z, d 0T oV 3z, _

3q; dt 3%, ' Oz, 0q;

with similar equations in y and 2. Adding all of these together
gives :
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n dz; d oT ay.d(?_j_’ %iﬂ" FY% )
2{3_%337‘«4' aqdiag: o dany Tag ~» 7B

i=1

where the result of Equation 1-20 has been used. In order to
reduce the first sum, we note the following identity, obtained by
differentiating a product,

dz; dfoT\ _ d/oT dx; oT d
3, Ez(é‘a) = a(za‘; 5@) 5% dt(aq) (1-24)

From Equation 1-19b we obtain directly

9T x;
— = 1-25
ag; dg; ( )

Furthermore, because the order of differentiation is immaterial,
we see that

dr;
dt<6q,> an,,(aq,) 23q7<6qk>
] 3z; di;
B @E(Bq:)q g (1-26)

k=1

By introducing Equations 1-26 and 1-25 in 1-24 and using the
result in Equation 1-23, we get

N (d OT 0t | 9T 3ys | 3T 0%\ _ (9T 33y | T 3y
2 di\ 3&; 0¢; ' 8y 0g; @ 0%; 9¢; 9z; 9g; Y 9q;

aT 9z, 1%
+97 52])} +5- =0, (-2)

which, in view of the results of the last section, reduces to

d T oT

= — =0. 1-28

dtag;  9g; +3 6q, (1-28)
Finally, the introduction of the Lagrangian function L = T — V,
with V a function of the coordinates only, gives the more compact
form

_____ =0, ;=123 --,3n (1-29)
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(It is important to note that L must be expressed as a function
of the coordinates and their first time-derivatives.)

Since the above derivation could be carried out for any value
of j, there are 3n such equations, one for each coordinate g;.
They are called the equations of motion in the Lagrangian form
and are of great importance. The method by which they were
derived shows that they are independent of the coordinate
system.

We have so far rather limited the types of systems considered,
but Lagrange’s equations are much more general than we have
indicated and by a proper choice of the function L nearly all dynam:-
cal problems can be treated with their use. These equations are
" therefore frequently chosen as the fundamental postulates of
classical mechanics instead of Newton’s laws.

1d. An Example: The Isotropic Harmonic Oscillator in Polar
Coordinates.—The example which we have treated in Section 1la
can equally well be solved by the use of polar coordinates r,
¢, and ¢ (Fig. 1-1). The equations of transformation correspond-
ing to Equation 1-18 are

z = rsind cos ¢,
y = rsin dsin ¢, (1-30)
z2 = rcosd.

With the use of these we find for the kinetic and potential energies
of the isotropic harmonic oscillator the following expressions:

_1 2 4 52) — a2 232 2qin2 g 52
T—2m(x2+y +z)-—2(r + r292 + r2sin? & ¢?), (1-31)
V = 2r*mvir?,

and

L=T-V = ’—2’—‘@2 + 7297 + r2sin? 9¢?) — 2mimairt  (1-32)

The equations of motion are
doL 9L d

E't %‘ - a—-‘P = (ﬁ(mrz sin? 1990) = 0, (1'—33)
4oL L _ i(mrzzi) — mr? sin ¢ cos 9¢? = 0, (1-34)
dt g9 o9 dt
ddL dL d

G — 2 = m) — mrd? — mrsin? 9% + dr'mylr = 0.
(1-35)
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In Appendix II it is shown that the motion takes place in a
plane containing the origin. This conclusion enables us to
simplify the problem by making a change of variables. Let us
introduce new polar coordinates r, ', x such that at the time
¢t = 0 the plane determined by the vectors r and v, the position
and velocity vectors of the particle at ¢ = 0, is normal to the new
2 axis. This transformation is known in terms of the old set of
coordinates if two parameters 9, and ¢,, determining the position
of the axis 2’ in terms of the old coordinates, are given (Fig. 1-2).

z
W
A
x& <Y
F1g. 1-1.—The relation of polar coor- F16. 1-2.—The rotation of axes.

dinates r, ¢, and ¢ to Cartesian axes.

In terms of the new coordinates, the Lagrangian function L
and the equations of motion have the same form as previously,
because the first choice of axis direction was quite arbitrary.
However, since the coordinates have been chosen so that the
plane of the motion is the 2’y’ plane, the angle ¢’ is always equal
to a constant, v/2. Inserting this value of & in Equation 1-33
and writing it in terms of x instead of ¢, we obtain

9 mresy = o, (1-36)
which has the solution
mrix = py, & constant. (1-37)

The r equation, Equation 1-35, becomes

ii—(mi‘) — mrx? + dx?myir = 0,
dt
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or, using Equation 1-37,

¢ i) — PX iyt =
‘—E(mr) — o + 4r2myvir = 0, (1-38)
an equation differing from the related one-dimensional Cartesian-
coordinate equation by the additional term —p2/mr® which
represents the centrifugal force.

Multiplication by # and integration with respect to the time
gives

2
i = =B —drngre b, (1-39)

2T2

P2 ¥
so that r = (—m" — dr2vkr? + b> .
This can be again integrated, to give

rdr
P #
— Bt by — e

t—to=

_f . de
~2) (@ + bz + ¥
in which ¢ = r?, a = —p?2/m?, b is the constant of integration in

Equation 1-39, and ¢ = —4#% This is a standard integral
which yields the equation

{b + A sin 4mve(t — o)},

r? =

22
8wyl

with A given by
PR

We have thus obtained the dependence of r on the time, and
by integrating Equation 1-37 we could obtain x as a function of
the time, completing the solution. Elimination of the time
between these two results would give the equation of the orbit,
which is an ellipse with center at the origin. It is seen that the
constant »o again occurs as the frequency of the motion.

le. The Conservation of Angular Momentum.—The example
worked out in the previous section illustrates an important
principle of wide applicability, the principle of the conservation
of angular momentum.
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Equation 1-37 shows that when x is the angular velocity of the
particle about a fixed axis 2’ and r is the distance of the particle
from the axis, the quantity p, = mr2x is a constant of the motion.*
This quantity is called the angular momentum of the particle
about the axis 2.

It is not necessary to choose an axis normal to the plane of the
motion, as 2z’ in this example, in order to apply the theorem.
Thus Equation 1-33, written for arbitrary direction 2, is at once
integrable to

mr? sin? 3¢ = p,, & constant. (140)

Here r sin ¢ is the distance of the particle from the axis 2, so that
the left side of this equation is the angular momentum about the
axis z.2 It is seen to be equal to a constant, p,.

YA
\
ZI
//T‘ sin 9dy
S
rd\O%\\"
dg(/ ~rdx
2 >y
()
X<y tdp

F1a. 1-3.—Figure showing the relation between dx, d¥, and de.

In order to apply the principle, it is essential that the axis of
reference be a fixed axis. Thus the angle ¢ of polar coordinates
has associated with it an angular momentum ps = mr2$ about
an axis in the zy plane, but the principle of conservation of
angular momentum cannot be applied directly to this quantity
because the axis is not, in general, fixed but varies with ¢. A
simple relation involving ps connects the angular momenta

! The phrase a constant of the motion is often used in referring to a constant
of integration of the equations of motion for a dynamical system.

? This is sometimes referred to as the component of angular momentum
along the axis z.
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px and p, about different fixed axes, one of which, p,, relates
to the axis normal to the plane of the motion. This is

pde = psdd + pwd% (1-41)

an equation easily derived by considering Figure 1-3. The
sides of the small triangle have the lengths r sin ddp, rdx, and
rdd. Since they form a right triangle, these distances are
connected by the relation

r¥(dx)? = r?sin? 0(de)? + r2(d9)?,

which gives, on introduction of the angular velocities x, ¢, and ¢
and multiplication by m/dt,

mrixdx = mr?sin? d¢de + mr2ddd.
Equation 141 follows from this and the definitions of p,, ps,
and p,.

Conservation of angular momentum may be applied to more
general systems than the one described here. It is at once
evident that we have not used the special form of the potential-
energy expression except for the fact that it is independent of
direction, since this function enters into the r equation only.
Therefore the above results are true for a particle moving in
any spherically symmetric potential field.

Furthermore, we can extend the theorem to a collection of
point particles interacting with each other in any desired way
but influenced by external forces only through a spherically
symmetric potential function. If we describe such a system by

using the polar coordinates of each particle, the Lagrangian
function is

L =15 3mi(i? 4 1292 + risin? 0.69) — V. (1-42)
i=1
Instead of ¢, ¢z, - - -, ¢, we now introduce new angular
coordinates a, 8, - - - , « given by the linear equations
pr=a+bf+ - + ki
pr=a+bB + - - + kax,
................. )

on=a+bB+ - +kn

The vaiues given the constants by, - - - , k, are unimportant so
long as they make the above set of equations mutually independ-

(1-43)



14 SURVEY OF CLASSICAL MECHANICS (I-2a

ent. « is an angle about the axis z such that if « is increased
by Aa, holding 8, - - -, « constant, the effect is to increase each
¢; by Ae, or, in other words, to rotate the whole system of particles
about z without changing their mutual positions. By hypothesis
the value of V is not changed by such a rotation, so that V is
independent of . We therefore obtain the equation

d 9L oL doT
Gda " da = disa =" (1-44)

Moreover, from Equation 1-42 we derive the relation

T QOT 0, _ N
3% = 36, 96 Em,ri sin? &4,¢,. (1-45)
i=1

i=1

Hence, calling the distance r, sin 9, of the ith particle from the
z axis p;, we obtain the equation

Emm?@ = constant. (1-46)

i=1
This is the more general expression of the principle of the con-
servation of angular momentum which we were sceking. In
such a system of many particles with mutual interactions, as,
for example, an atom consisting of a number of electrons and a
nucleus, the individual particles do not in general conserve
angular momentum but the aggregate does.

The potential-energy function V need be only cylindrically
symmetric about the axis z for the above proof to apply,
since the essential feature was the independence of V on the angle
a about z. However, in that case z is restricted to a particular
direction in space, whereas if V is spherically symmetric the
theorem holds for any choice of axis.

Angular momenta transform like vectors, the directions of the
vectors being the directions of the axes about which the angular
momenta are determined. It is customary to take the sense
of the vectors such as to correspond to the right-hand screw rule.

2. THE EQUATIONS OF MOTION IN THE HAMILTONIAN FORM

2a. Generalized Momenta.—In Cartesian coordinates the
momentum related to the direction zx is my#, which, since V is
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restricted to be a function of the coordinates only, can be written
as

aT oL

K = 5:{’; = 6—5:;' k = 1, 2, y 3”. (2‘1)

Angular momenta can likewise be expressed in this manner.

Thus, for one particle in a spherically symmetric potential field,

the angular momentum about the z axis was defined in Section le

by the expression

Dy = mp2p = mr?sin? d¢. (2-2)

Reference to Equation 1-31, which gives the expression for the
kinetic energy in polar coordinates, shows that
oT oL
Pe =55 = 35 (2-3)
Likewise, in the case of a number of particles, the angular
momentum conjugate to the coordinate « is

aT dL
Pa = G2 =55 (2-4)
as shown by the discussion of Equation 1-46. By extending
this to other coordinate systems, the generalized momentum p;
conjugate to the coordinate g is defined as

oL
Px = a—q.;c: k = 1, 2, y 3n. (2"5)

The form taken by Lagrange’s equations (Eq. 1--29) when the
definition of py is introduced is

. oL
pk=5a7 k=1,2,"-,3n, (2—6)

8o that Equations 2-5 and 2-6 form a set of 6n first-order dif-
ferential equations equivalent to the 3n second-order equations
of Equation 1-29,

%’ being in general a function of both the ¢’s and ¢’s, the

k

definition of p; given by Equation 2-5 provides 3n relations
between the variables gx, g, and pi, permitting the elimination
of the 3n velocities ¢, so that the system can now be described
in terms of the 3n coordinates g; and the 3n conjugate momenta
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pr. Hamilton in 1834 showed that the equations of motion can
in this way be thrown into an especially simple form, involving
a function H of the pi’s and ¢’s called the Hamiltonian function.

2b. The Hamiltonian Function and Equations.—For con-
servative systems! we shall show that the function H is the total
energy (kinetic plus potential) of the system, expressed in terms
of the pi’s and ¢¢’s. In order to have a definition which holds
for more general systems, we introduce H by the relation

3n
H = zpk(ik — L(gx, dx)- (2-7)
k=1 .
Although this definition involves the velocities ¢x, H may be made
a function of the coordinates and momenta only, by eliminating
the velocities through the use of Equation 2-5. From the
definition we obtain for the total differential of H the equation

3n

3n 3n 3n
. o oL oL ,.
dH = Emqu + zqkdm - E 3g;, 00— igg, 4w (2-8)
k=1 k=1 k=1 k=1
or, using the expressions for p; and p given in Equations 2-5 and

2-6 (equivalent to Lagrange’s equations),

3n

dH = 2 (grdor — Prdqs), (2-9)
F1

whence, if H is regarded as a function of the ¢’s and pi’s, we
obtain the equations

oH
apx
oH
ok

= gx,
k=1,2 - -,3n (2-10)
= — Pk,

These are the equations of motion in the Hamiltonian or canonical
form. N

2c. The Hamiltonian Function and the ’Energy.—Let us con-
sider the time dependence of H for a conservative system. We
have

1 A conservative system is a system for which H does not depend explicitly
on the time t. We have restricted our discussion to conservative systems by
assuming that the potential function V does not depend on ¢.



1-8] THE EMISSION AND ABSORPTION OF RADIATION 21

coordinate but only its derivative. Such a coordinate is caliea a cyciic
coordinate.

8. THE EMISSION AND ABSORPTION OF RADIATION °

The classical laws of mechanical and electromagnetic theory
permit the complete discussion of the emission and absorption of
electromagnetic radiation by a system of electrically charged
particles. In the following paragraphs we shall outline the
results of this discussion. It is found that these results are not
in agreement with experiments involving atoms and molecules;
it was, indeed, just this disagreement which was the principal
factor in leading to the development of the Bohr theory of the
atom and later of the quantum mechanics. Even at the present
time, when an apparently satisfactory theoretical treatment of
dynamical systems composed of electrons and nuclei is provided
by the quantum mechanics, the problem of the.emission and
absorption of radiation still lacks a satisfactory soluti~n, despite
the concentration of attention on it by the most able theoretical
physicists. It will be shown in a subsequent .chaptex;,'hpw,ever,
that, despite our lack of a satisfactory conception of the fiature
of electromagnetic radiation, equations similar to the classical
equations of this section can be formulated which represent
correctly the emission and absorption of radiation by’ atomic
systems to within the limits of error of experiment.

According to the classical theory the rate of emission of radiant
energy by an accelerated particle of electric charge e is

dE _ 2¢%?
Tt 3¢
. . dE . . .
in which —J s the rate at which the energy E of the particle
is converted into radiant energy, ¥ is the acceleration of the
particle, and ¢ the velocity of light.

Let us first consider a system of a special type, in which a
particle of charge e carries out simple harmonic oscillation
with frequency » along the z axis, according to the equation

T = I, cO8 2mrt. (3-2)
Differentiating this expression, assuming that z, is independent
of the time, we obtain for the acceleration the value

b =i = —4r2viz, cos 2rit.
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The average rate of emission of radiant energy by such a system
is consequently

dE _ 16m*vie’x}

Tdt T T 3¢

inasmuch as the average value cos? 2rvt over a cycle is‘one-half.
As a result of the emission of energy, the amplitude z, of the
motion will decrease with time; if the fractional change in
energy during a cycle of the motion is small, however, this equa-~
tion retains its validity.

The radiation emitted by such a system has the frequency v of the
emitting system. It is plane-polarized, the plane of the electric
vector being the plane which includes the z axis and the direction
of propagation of the light.

In case that the particle carries out harmonic oscillations along
all three axes z, y, and 2z, with frequencies v., »,, and », and
amplitudes (at a given time) z,, yo, and 2, respectively, the total
rate of emission of radiant energy will be given as the sum of
three terms similar to the right side of Equation 34, one giving
the rate of emission of energy as light of frequency v, one of
vy, and one of »,.

If the motion of the particle is not simple harmonie, it can be
represented by a Fourier series or Fourier integral as a sum or
integral of harmonic terms similar to that of Equation 3-2;
light of frequency characteristic of each of these terms will then
be emitted at a rate given by Equation 34, the coefficient of the
Fourier term being introduced in place of z,.

The emission of light by a system composed of several inter-
acting electrically charged particles is conveniently discussed in
the following way. A Fourier analysis is first made of the
motion of the system in a given state to resolve it into harmonic
terms. For a given term, corresponding to a given frequency
of motion », the coefficient resulting from the analysis (which is a
function of the coordinates of the particles) is expanded as a
power series in the quantities z,/\, - - -, 2z,/\, in which z,,

., 2, are the coordinates of the particles relative to some
origin (such as the center of mass) and A = ¢/v is the wave length
of the radiation with frequency ». The term of zero degree in
this expansion is zero, inasmuch as the electric charge of the
system does not change with time. The term of first degree
involves, in addition to the harmonic function of the time, only

(3-4)
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a function of the coordinates. The aggregate of these first-
degree terms in the coordinates with their associated time factors,
summed over all frequency values occurring in the original
Fourier analysis, represents a dynamical quantity known as the
electric moment of the system, a vector quantity P defined as

P= 28,‘1’,‘, (3"5)

in which r; denotes the vector from the origin to the position of
the 7th particle, with charge ¢;, Consequently to this degree of
approximation the radiation emitted by a system of several
particles can be discussed by making a Fourier analysis of the
electric moment P. Corresponding to each term of frequency »
in this representation of P, there will be emitted radiation of
frequency v at a rate given by an equation similar to Equation
34, with ex, replaced by the Fourier coefficient in the electric-
moment expansion. The emission of radiation by this mechanism
is usually called dipole emission, the radiation itself sometimes
being described as dipole radiation.
The quadratic terms in the expansions in powers of zi/\,
-, Z»/N form a quantity @ called the quadrupole moment
of the system, and higher powers form higher moments. The rate
of emission of radiant energy as a result of the change of quadru-
pole and higher moments of an atom or molecule is usually
negligibly small in comparison with the rate of dipole emission,
and in consequence dipole radiation alone is ordinarily discussed.
Under some circumstances, however, as when the intensity of
dipole radiation is zero and the presence of very weak radiation
can be detected, the process of quadrupole emission is important.

4. SUMMARY OF CHAPTER I

The purpose of this survey of classical mechanics is twofold:
first, to indicate the path whereby the more general formulations
of classical dynamics, such as the equations of motion of Lagrange
and of Hamilton, have been developed from the original equations
of Newton; and second, to illustrate the application of these
methods to problems which are later discussed by quantum-
mechanical methods.

In carrying out the first purpose, we have discussed Newton’s
equations in Cartesian coordinates and then altered their form by
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the introduction of the kinetic and potential energies. By
defining the Lagrangian function for the special case of Newtonian
systems and introducing it into the equations of motion, Newton’s
equations were then thrown into the Lagrangian form. Follow-
ing an introductory discussion of generalized coordinates, the
proof of the general validity of the equations of motion in the
Lagrangian form for any system of coordinates has been given;
and it has also been pointed out that the Lagrangian form
of the equations of motion, although we have derived it from the
equations of Newton, is really more widely applicable than
Newton’s postulates, because by making a suitable choice of the
Lagrangian function a very wide range of problems can bc
treated in this way.

In the second section there has been derived a third form for
the equations of motion, the Hamiltonian form, following the
introduction of the concept of generalized momenta, and the rela-
tion between the Hamiltonian function and the energy has been
discussed.

In Section 3 a very brief discussion of the classical theory of
the radiation of energy from acceclerated charged particles has
been given, in order to have a foundation for later discussions
of this topic. Mention is made of both dipole and quadrupole
radiation.

Finally, several examples (which are later solved by the use of
quantum mechanics), including the three-dimensional harmonic
oscillator in Cartesian and in polar coordinates, have been
treated by the methods discussed in this chapter.
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CHAPTER 1II
THE OLD QUANTUM THEORY

6. THE ORIGIN OF THE OLD QUANTUM THEORY

The old quantum theory was born in 1900, when Max Planck!
black-body radiation which he had previously formulated from
empirical considerations. He showed that the results of experi-
ment on the distribution of energy with frequency of radiation
in equilibrium with matter at a given temperature can be
accounted for by postulating that the vibrating particles of
matter (considered to act as harmonic oscillators) do not emit
or absorb light continuously but instead only in discrete quanti-
ties of magnitude hv proportional to the frequency v of the light.
The constant of proportionality, h, is a new constant of nature;
it is called Planck’s constant and has the magnitude 6.547 X 1027
erg sec. Its dimensions (energy X time) are those of the old
dynamical quantity called action; they are such that the product
of h and frequency » (with dimensions sec™!) has the dimensions
of energy. The dimensions of k are also those of angular momen-
tum, and we shall sce later that just as hv is a quantum of radiant
energy of frequency », so is h/2r a natural unit or quantum of
angular momentum.

The development of the quantum theory was at first slow. It
was not until 1905 that Einstein? suggested that the quantity
of radiant energy hv was sent out in the process of emission of
light not in all directions but instead unidirectionally, like a
particle. The name light guantum or photon is applied to such a
portion of radiant energy. Einstein also discussed the photo-
electric effect, the fundamental processes of photochemistry,
and the heat capacities of solid bodies in terms of ‘the quantum
theory. When light falls on a metal plate, electrons are emitted
from it. The maximum speed of these photoelectrons, however,

1 M. PLaNCK, Ann. d. Phys. (4) 4, 553 (1901).

2 A. EINSTEIN, Ann. d. Phys. (4) 17, 132 (1905).
25
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is not dependent on the intensity of the light, as would be
expected from classical electromagnetic theory, but only on its
frequency; Einstein pointed out that this is to be expected from
the quantum theory, the process of photoelectric emission involv-
" ing the conversion of the energy hv of one photon into the kinetic
energy of a photoelectron (plus the energy required to remove
the electron from the metal). Similarly, Einstein’s law of
photochemical equivalence states that one molecule may be
activated to chemical reaction by the absorption of one photon.

The third application, to the heat capacities of solid bodies,
marked the peginning of the quantum theory of material systems.
Planck’s postulate regarding the emission and absorption of
radiation in quanta hv suggested that a dynamical system such
as an atom oscillating about an equilibrium position with fre-
quency vo might not be able to oscillate with arbitrary energy,
but only with energy values which differ from one another by
integral multiples of Av,. From this assumption and a simple
extension of the principles of statistical mechanics it can be
shown that the heat capacity of a solid aggregate of particles
should not remain constant with decreasing temperature, but
should at some low temperature fall off rapidly toward zero.
This prediction of Einstein, supported by the earlier experi-
mental work of Dewar on diamond, was immediately verified
by the experiments of Nernst and Eucken on various substances;
and quantitative agreement between theory and experiment for
simple crystals was achieved through Debye’s brilliant refinement
of the theory.!

6a. The Postulates of Bohr.—The quantum theory had
developed to this stage before it became possible to apply it
to the hydrogen atom; for it was not until 1911 that there
occurred the discovery by Rutherford of the nuclear constitu-
tion of the atom—its composition from a small heavy posi-
tively charged nucleus and one or more extranuclear electrons.
Attempts were made immediately to apply the quantum theory to
the hydrogen atom. The successful effort of Bohr? in 1913,
despite its simplicity, may well be considered the greatest single
step in the development of the theory of atomic structure.

1 P. DEBYE, Ann. d. Phys. (4) 89, 789 (1912); see also M. Born and T. vov
KArMAN, Phys. Z. 13, 297 (1912); 14, 15 (1913).
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It was clearly evident that the laws of classical mechanical and
electromagnetic theory could not apply to the Rutherford
hydrogen atom. According to classical theory the electron
in a hydrogen atom, attracted toward the nucleus by an inverse-
square Coulomb force, would describe an elliptical or circular
orbit about it, similar to that of the earth about the sun. {The
acceleration of the charged particles would lead to the emission
of light, with frequencies equal to the mechanical frequency
of the electron in its orbit, and to multiples of this as overtones.
With the emission of energy, the radius of the orbit would
diminish and the mechanical frequency would change. Hence
the emitted light should show a wide range of frequencies.) This
is not at all what is observed—the radiation emitted by hydrogen
atoms is confined to spectral lines of sharply defined frequencies,
and, moreover, these frequencies are not related to one another
by integral factors, as overtones, but instead show an interesting
additive relation, expressed in the Ritz combination principle, and
in addition a still more striking relation involving the squares
of integers, discovered by Balmer. Furthermore, the existence
of stable non-radiating atoms was not to be understood on the
basis of classical theory, for a system consisting of electrons
revolving about atomic nuclei would be expected to emit radiant
energy until the electrons had fallen into the nuclei.

Bohr, no doubt inspired by the work of Einstein mentioned
above, formulated the two following postulates, which to a great
extent retain their validity in the quantum mechanics.

1. The Existence of Stationary States. An atomic system can
exist in certain stationary states, each one corresponding to a
definite value of the energy W of the system; and transition from
one stationary state to another is accompanied by the emission
or absorption as radiant energy, or the transfer to or from
another system, of an amount of energy equal to the difference
in energy of the two states.

II. The Bohr Frequency Rule. The frequency of the radiation
emitted by a system on transition from an initial state of energy
W to a final state of lower energy W (or absorbed on transition
from the state of energy W, to that of energy W) is given by
the equation!

1 This relation was suggested by the Ritz combination principle, which it
closely resembles. It was found empirically by Ritz and others that if
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W, — W,
— "

Bohr in addition gave a method of determining the quantized
states of motion—the stationary states—of the hydrogen atom.
His method of quantization, involving the restriction of the
angular momentum of circular orbits to integral multiples of
the quantum hA/2r, though leading to satisfactory energy
levels, was soon superseded by a more powerful method, described
in the next section.

(5-1)

y =

Problem 6-1. Consider an electron moving in a circular orbit about a
nucleus of charge Ze. Show that when the centrifugal force is just balanced
by the centripetal force Ze?/r? the total energy is equal to one-half the
potential energy —Ze?/r. Evaluate the energy of the stationary states for
which the angular momentum equals nh/2r, withn =1, 2, 3, - - - .

6b. The Wilson-Sommerfeld Rules of Quantization.—In
1915 W. Wilson and A. Sommerfeld discovered independently!
a powerful method of quantization, which was soon applied,
especially by Sommerfeld and his coworkers, in the discussion

lines of frequencies »; and », occur in the spectrum of a given atom it is
frequently possible to find also a line with frequency vy + vy or vi — va.
This led directly to the idea that a set of numbers, called term values, can
be assigned to an atom, such that the frequencies of all the spectral lines
can be expressed as differences of pairs of term values. Term values are
usually given in wave numbers, since this unit, which is the reciprocal
of the wave length expressed in centimeters, is a convenient one for spectro-
scopic use. We shall use the symbol » for term values in wave numbers,
reserving the simpler symbol » for frequencies in sec™'. The normal state
of the ionized atom is usually chosen as the arbitrary zero, and the term
values which represent states of the atom with lower energy than the ion
are given the positive sign, so that the relation between W and 7 is

w

Yy = ——-

he

The modern student, to whom the Bohr frequency rule has become common-
place, might consider that this rule is clearly evident in the work of Planck
and Einstein. This is not so, however; the confusing identity of the
mechanical frequencies of the harmonic oscillator (the only system discussed)
and the frequency of the radiation absorbed and emitted by this quantized
system delayed recognition of the fact that a fundamental violation of
electromagnetic theory was imperative.

W. WiLson, Phil. Mag. 29, 795 (1915); A. SOMMERFELD, Ann. d. Phys.
61, 1 (1916).
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of the fine structure of the spectra of hydrogen and ionized
helium, their Zeeman and Stark effects, and many other phe-
nomena. The first step of their method consists in solving the
classical equations of motion in the Hamiltonian form (Sec. 2),
therefore making use of the coordinates ¢qi, - - - , qs, and the
canonically conjugate momenta p;, - - - , ps, as the independent
variables. The assumption is then introduced that only those
classical orbits are allowed as stationary states for which the
following conditions are satisfied:

Soldg =nehy k=1,2,- -+ 3n; n =an integer. (5-2)

These integrals, which are called action integrals, can be calcu-
lated only for conditionally periodic systems; that is, for systems
for which coordinates can be found each of which goes through a
cycle as a function of the time, independently of the others.
The definite integral indicated by the symbol ¢ is taken over
one cycle of the motion. Sometimes the coordinates can be
chosen in several different ways, in which case the shapes of the
quantized orbits depend on the choice of coordinate systems, but
the energy values do not.

We shall illustrate the application of this postulate to the
determination of the energy levels of certain specific problems in
Sections 6 and 7.

bc. Selection Rules. The Correspondence Principle.—The
old quantum theory did not provide a satisfactory method of cal-
culating the intensities of spectral lines emitted or absorbed by
a system, that is, the probabilities of transition from one sta-
tionary state to another with the emission or absorption of a
photon. Qualitative information was provided, however, by an
auxiliary postulate, known as Bohr’s correspondence principle,
which correlated the quantum-theory transition probabilities
with the intensity of the light of various frequencies which would
have been radiated by the system according to classical electro-
magnetic theory. In particular, if no light of frequency cor-
responding to a given transition would have been emitted
classically, it was assurned that the transition would not take
place. The results of such considerations were expressed in
selection rules.

For example, the energy values nhy, of a harmonic oscillator
(as given in the following section) are such as apparently to
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permit the emission or absorption of light of frequencies which
are arbitrary multiples (nz — n1)vo of the fundamental fre-
quency »,. But a classical harmonic oscillator would emit only
the fundamental frequency »,, with no overtones, as discussed
in Section 3; consequently, in accordance with the correspondence
principle, it was assumed that the selection rule An = +1 was
valid, the quantized oscillator being thus restricted to transitions
to the adjacent stationary states.

6. THE QUANTIZATION OF SIMPLE SYSTEMS

6a. The Harmonic Oscillator. Degenerate States.—It was
shown in the previous chapter that for a system consisting of
a particle of mass m bound to the equilibrium position z = 0
by a restoring force —kz = —4r?myiz and constrained to move
along the z axis the classical motion consists in a harmonic oscilla-
tion with frequency o, as described by the equation

X = xo8in 2mwvl. (6-1)
The momentum p, = ma has the value
Pz = 2wmyexo COS 2myl, (6-2)

80 that the quantum integral can be evaluated at once:
$pudz = ﬁ Y (2mvezo 008 2rvol)tdt = 2wtvomal = nh.  (6-3)

The amplitude z, is hence restricted to the quantized values
%o, = {nh/2rx%vym}%. The corresponding energy values are

Wo=T+V = 2r'myiz} (8in? 2rvot + cos? 2rvet) = 2r*myiz] ,
or
W = nhy,, n=20,12 ---. (6—4)

Thus we see that the energy levels allowed by the old quantum
theory are integral multiples of hy, as indicated in Figure 6-1.
The selection rule An = +1 permits the emission and absorption
of light of frequency », only.

A particle bound to an equilibrium position in a plane by
restoring forces with different force constants in the z and y
directions, corresponding to the potential function

V = 2em(it + vy, (6-5)



I1-6b] THE QUANTIZATION OF SIMPLE SYSTEMS 31

is similarly found to carry out independent harmonic oscillations
along the two axes. The quantization restricts the energy to
the values

Woain, = nzhve + nyhyy, fzyy =0,1,2, - - -, (6-6)

determined by the two quantum numbers n. and n,. The ampli-
tudes of motion x, and y, are given by two equations similar to
Equation 6-3.

v,wf

0 X

Fia. 6-1.—Potential-energy function and quantized energy levels for the har-
monic oscillator according to the old quantum theory.

In case that v. = », = »,, the oscillator is said to be isotropic.
The energy levels are then given by the equation

Wa = (nz + ny)hve = nh,. (6-7)

Different states of motion, corresponding to different sets of values
of the two quantum numbers 7, and n,, may then correspond
to the same energy level. Such an energy level is said to be
degenerate, the degree of degeneracy being given by the number
of independent sets of quantum numbers. In this case the nth
level shows (n + 1)-fold degeneracy. The nth level of the
three-dimensional isotropic harmonic oscillator shows

(_"_i}%’ij'i) -fold degeneracy.

6b. The Rigid Rotator.—The configuration of the system of
a rigid rotator restricted to a plane is determined by a single
angular coordinate, say x. The canonically conjugate angular
momentum, p, = Ix, where I is the moment of inertia,! is a

18ee Section 36a. footnote. for a definition of moment of inertia.
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constant of the motion.! Hence the quantum rule is

2%
J;"pedx = 2np, = Kh
or
Kh
Px =7 K=0,12 ---. (6-8)
Thus the angular momentum is an integral multiple of k/2r, as
originally assumed by Bohr. The allowed energy values are
_p_ K
Wx =51 = 81
The rigid rotator in space can be
described by polar coordinates of
the figure axis, ¢ and ¢. On apply-
ing the quantum rules it is found
WT k=4 that the total angular momentum is
given by Equation 6-8, and the
component of angular momentum
along the z axis by

(6-9)

K=5

K=3

Mh
p4p=—2_;’ M=——K,_—K+1’
k<2 ce, 0,0, + K. (6-10)
0 &f(l) The energy levels are given by

Fia. 6-2.—Energy levels for the Equation 6-9, each level being
rotator according to the old (2K -+ 1)-fold degenerate, inas-
quantum theory. much as the quantum number M
does not affect the energy (Fig. 6-2).

6c. The Oscillating and Rotating Diatomic Molecule.—A
molecule consisting of two atoms bonded together by forces
which hold them near to the distance ro apart may be approxi-
mately considered as a harmonic oscillator joined with a rigid
rotator of moment of inertia I = ur?, u being the reduced mass.
The quantized energy levels are then given by the equation

K?h?
Wk = vhvo + —8—7;2—1) (6—11)

v being the oscillational or vibrational quantum number? and K

 Section le, footnote.
* The symbol v is now used by band spectroscopists rather than n for this
quantum number.
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the rotational quantum number. The selection rules for such a
molecule involving two unlike atoms are AK = +1, Av = +1.
Actual molecules show larger values of Av, resulting from devi-
ation cof the potential function from that corresponding to
harmonic oscillation.

The frequency of light absorbed in a transition from the state
with quantum numbers »"', K’ to that with quantum numbers
v, K'is

Vorrgrr g = (0 — vy + (K'2 — K''?)

h
8r2l’
or, introducing the selection rule AK = +1,

h
vy kel = (0 — 0")vo + (£2K" + l)m- (6-12)

The lines corresponding to this equation are shown in Figure 6-3
for the fundamental oscillational band v = 0 — v = 1, together

Calculated by equation 6-12

A T O O B B B I A R

10+99+68+77+66+55+44+*33-22+1 1=00+1 |+22~+3 3+44+55-66+77+8

Observed

llll I

10>9 98 8>7 776 6>5 5744>33>22>1 [>0 0> [>2273 4>5 67 629
 — 374 576 18 90

Fic. 6-3.—The observed rotational fine structure of the hydrogen chloride
fundamental oscillational band » = 0 — » = 1, showing deviation from the
equidistant spacing of Equation 6-12.

with the experimentally observed absorption band for hydrogen
chloride. It is seen that there is rough agreement; the observed
lines are not equally spaced, however, indicating that our theo-
retical treatment, with its assumption of constancy of the moment
of inertia I, is too strongly idealized.

6d. The Particle in a Box.—Let us consider a particle of mass
m in a box in the shape of a rectangular parallelepiped with
edges a, b, and c, the particle being under the influence of no
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forces except during collision with the walls of the box, from
which it rebounds elastically. The linear momenta p., py, and
p. will then be constants of the motion, except that they will
change sign on collision of the particle with the corresponding
walls. Their values are restricted by the rule for quantization
as follows:

2h
ﬁp,dx=2ap,=n,h, p,_—_%a, ne=012 -,
Pw=7;"—:: n,=0,1,2 ---,%(6-13)
nzh

P:=b2;; n=0,1,2 ---.

Consequently the total energy is restricted to the values

Womens = 50 + 08+ 22) = 0
menens = g Pe TPy TP = gy

2 2 2
S+ %) (6-14)

6e. Diffraction by a Crystal Lattice.—Let us consider an
infinite crystal lattice, involving a sequence of identical planes
spaced with the regular interval d. The allowed states of motion
of this crystal along the z axis we assume, in accordance with
the rules of the old quantum theory, to be those for which

Fpdz = n.h.

For this crystal it is seen that a cycle for the coordinate z is the
identity distance d, so that (p. being constant in the absence of
forces acting on the crystal) the quantum rule becomes

d nh

J; pdz = n.h, or p.= é . (6-15)
Any interaction with another system must be such as to leave p,
quantized; that is, to change it by the amount Ap, = An,h/d
or nh/d, in which n = An, is an integer. One such type of
interaction is collision with a photon of frequency », represented
in Figure 64 as impinging at the angle ¢ and being specularly
reflected. Since the momentum of a photon is hv/c, and its

component along the z axis ’% sin ¢, the momentum transferred

to the crystal is E’CEZ sind = % sin . Equating this with the
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allowed momentum change of the crystal nh/d, we obtain the
expression
n\ = 2d sin 9. (6-16)

This is, however, just the Bragg cquation for the diffraction of
z-rays by a crystal. This derivation from the corpuscular view
of the nature of light was given 7

by Duane and Compton' in
1923.

Let us now consider a particle,
say an electron, of mass m simi-
larly reflected by the crystal.
The momentum transferred to
the crystal will be 2mv sin ¢,
which is equal to a quantum
for the crystal when

h . Fia. 6-4.—The reflection of a photon
nm = 2d sin ¢. (6‘—17) by a crystal.

Thus we see that a particle would be scattered by a crystal only
when a diffraction equation similar to the Bragg equation for
z-rays is satisfied. The wave length of light is replaced by the
expression
h

\ = ponel (6-18)
which is indeed the de Broglie expression for the wave length
associated with an electron moving with the speed ». This
simple consideration, which might have led to the discovery of
the wave character of material particles in the days when the
old quantum theory had not yet been discarded, was overlooked
at that time.

In the above treatment, which is analogous to the Bragg treat-
ment of z-ray diffraction, the assumption of specular reflection is
made. This can be avoided by a treatment similar to Laue’s
derivation of his diffraction equations.

The foregoing considerations provide a simple though perhaps
somewhat extreme illustration of the power of the old quantum
theory as well as of its indefinite character. That a formal argu-
ment of this type leading to diffraction equations usually derived

1'W. DuaNE, Proc. Nat. Acad. Sci. 9, 158 (1923); A. H. CoMpTON, tbid.
9, 359 (1923).
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by the discussion of interference and reinforcement of waves
could be carried through from the corpuscular viewpoint with the
old quantum theory, and that a similar treatment could be given
the scattering of electrons by a crystal, with the introduction of
the de Broglie wave length for the electron, indicates that the
gap between the old quantum theory and the new wave mechanics
is not so wide as has been customarily assumed. The indefinite-
ness of the old quantum theory arose from its incompleteness—
its inability to deal with any systems except multiply-periodic
ones. Thus in this diffraction problem we are able to derive
only the simple diffraction equation for an infinite crystal, the
interesting questions of the width of the diffracted beam, the dis-
tribution of intensity in different diffraction maxima, the effect
of finite size of the crystal, etc., being left unanswered.!

7. THE HYDROGEN ATOM

The system composed of a nucleus and one electron, whose
treatment underlies any theoretical discussion of the electronic
structure of atoms and molecules, was the subject of Bohr’s first
paper on the quantum theory.? In this paper he discussed cir-
cular orbits of the planetary electron about a fixed nucleus.
Later® he took account of the motion of the nucleus as well as
the electron about their center of mass and showed that with
the consequent introduction of the reduced mass of the two
particles a small numerical deviation from a simple relation
between the spectral frequencies of hydrogen and ionized helium
is satisfactorily explained. Sommerfeld* then applied his more
general rules for quantization, leading to quantized elliptical
orbits with definite spatial orientations, and showed that the
relativistic change in mass of the electron causes a splitting of
energy levels correlated with the observed fine structure of
hydrogenlike spectra. In this section we shall reproduce the
Sommerfeld treatment, except for the consideration of the rela-
tivistic correction.

Ta. Solution of the Equations of Motion.—The system con-
sists of two particles, the heavy nucleus, with mass m; and

1 The application of the correspondence principle to this problem was made
by P. 8. Epstein and P. Ehrenfest, Proc. Nat. Acad. Sci. 10, 133 (1924).

2 N. BoHR, Phil. Mag. 26, 1 (1913).

3 N. BonR, ibid. 27, 506 (1914).

4 A. SoMMERFELD, Ann. d. Phys. 51, 1 (1916).
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electric charge +Ze, and the electron, with mass m, and charge
—e, between which there is operative an inverse-square attrac-
tive force corresponding to the potential-energy function

V(r) = —Ze¥/r,

r being the distance between the two particles. (The gravi-
tational attraction is negligibly small relative to the electro-
static attraction.) The system is similar to that of the sun and a
planet, or the earth and moon. It was solved by Sir Isaac
Newton in his ‘“ Philosophiae Naturalis Principia Mathematica,”
wherein he showed that the orbits of one particle relative to the
other are conic sections. Of these we shall discuss only the
closed orbits, elliptical or circular, inasmuch as the old quantum
theory was incapable of dealing with the hyperbolic orbits of the
ionized hydrogen atom. '

The system may be described by means of Cartesian coordi-
nates zi, Y1, 21 and z,, y2, 22 of the two particles. As shown in
Section 2d by the introduction of coordinates z, y, z of the center
of mass and of polar coordinates r, 4, ¢ of the electron relative
to the nucleus, the center of mass of the system undergoes
translational motion in a fixed direction with constant speed,
like a single particle in field-free space, and the relative motion

mims
my + ms
the reduced mass of the two particles, about a fixed center to
which it is attracted by the same force as that between the
electron, and nucleus. Moreover, the orbit representing any
state of motion lies in a plane (Sec. 1d).

In terms of variables r and x in the plane of motion, the
Lagrangian equations of motion are

of electron and nucleus is that of a particle of mass u =

2
i = prit — 22 (7-1)

a/nd
—=(ur?x) =0 7-2
dt( T X) . ( )

The second of these can be integrated at once (as in Sec. 1d), to
give
urlx = p, a constant. (7-3)

This first result expresses Kepler’s area law: The radius vector
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from sun to planet sweeps out equal areas in equal times. The
constant p is the total angular momentum of the system.
Eliminating x from Equations 7-1 and 7-3, we obtain

. 2 Ze?
i = fﬁ = (7-4)

which on multiplication by # and integration leads to
Wt _pt 2 .
2 - 2[17'2 + T + W- (7 5)
The constant of integration W is the total energy of the system
(aside from the translational energy of the system as a whole).
Instead of solving this directly, let us eliminate ¢ to obtain an
equation involving r and x. Since

dr _drdx _dr p

Sd@ " dxdt  dxwr® (7-6)
Equation 7-5 reduces to
Lgr_)’ _ 1 2Zew  uW
r2dx) 1 pPr p? ’
or, introducing the new variable
1
u = 7 (7—7)
du
+dx = 7-8
X 2uW | 2Ze*u . (-8)
p? + D7 U — U

This can be integrated at once, for W either positive or negative.
In the latter case (closed orbits) there is obtained

4u®Z%* | SuW
P T

This is the equation of an ellipse with the origin at one focus, as

in Figure 7-1. In terms of the eccentricity ¢ and the semimajor

and semiminor axes a and b, the equation of such an ellipse is
_1 _1+4esin(x —x0) _ \/a'*’—b

u r 0(1 — ez) bo + Sln (X - Xo);

(7-10)

1 Zeu
p

=== + sin (x — x0). (7-9)

with b =aVv1—¢€.
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Thus it is found that the elements of the elliptical orbit are given
by the equations

-z L _ P _
T oW TN =W wZ%et
The energy W is determined by the major axis of the ellipse
alone.

As shown in Problem 5-1, the total energy for a circular orbit
is equal to one-half the potential energy and to the kinetic energy
with changed sign. It can be shown also that similar relations

1—¢e =

(7-11)

AN

F1g. 7-1.—An elliptical electron-orbit for the hydrogen atom according to the
old quantum theory.

hold for the time-average values of these quantities for elliptic
orbits, that is, that

W =4V =-T, (7-12)

in which the barred symbols indicate the time-average values of
the dynamical quantities.

Tb. Application of the Quantum Rules. The Energy Levels.—
The Wilson-Sommerfeld quantum rules, in terms of the polar
coordinates r, ¢, and ¢, are expressed by the three equations

Fp.dr = n,h, (7-13a)
Fpsdd = nsh, (7-13b)
Fp.de = mh. (7-13¢)

Since p, is a constant (Sec. 1e), the third of these can be integrated
at once, giving
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2rp, = mh, or Po = 5— m= t1, +2,
(7-14)

Hence the component of angular momentum of the orbit along the
z axis can assume only the quantized values which are integral
multiples of h/2x. The quantum number m is called the mag-
netic quantum number, because it serves to distinguish the
various slightly separated levels into which the field-free energy
levels are split upon the application of a magnetic field to the
atom. This quantum number is closely connected with the
orientation of the old-quantum-theory orbit in space, a question
discussed in Section 7d.

The second integral is easily discussed by the introduction of
the angle x and its conjugate momentum p, = p, the total
angular momentum of the system, by means of the relation,
given in Equation 1-41, Section 1le,

Dxdx = podd + pode. (7-15)
In this way we obtain the equation
Fpxdx = kh, (7-16)

in which p, is a constant of the motion and k is the sum of ns
and m. This integrates at once to
kh
2np = kh, or P =g k=1,2,---. (7-17)
Hence the total angular momentum of the orbit was restricted
by the old quantum theory to values which are integral mul-
tiples of the quantum unit of angular momentum A/2r. The
quantum number k is called the azimuthal quantum number.
To evaluate the first integral it is convenient to transform it
in the following way, involving the introduction of the angle x
and the variable ¥ = 1/r with the use of Equation 7-6:

2
pdr = uidr = 2(;—;) dx =p- o (du) dx. (7--18)

From Equation 7-10 we find on differentiation

du ecos (x — xo)

x- adi-o ' (7-19)
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with the use of which the r quantum condition reduces to the

form
2%

cos? (x — Xo) _ ~
b {1+esin(x—xo)}2dx_n'h' (7-20)

The definite integral was evaluated by Sommerfeld.! The
resultant equation is

pe’

pr(-\—/l%_ez - 1) —~ nh. (7-21)

This, with the value of p of Equation 7-17 and the relation
b = a1 — &, leads to the equation

a__zn,—l—lc=

b k

In this equation we have introduced a new quantum number n,
called the total quantum number, as the sum of the azimuthal
quantum number k and the radial quantum number %, :

n =n,+ k. (7-23)

With these equations and Equation 7-11, the energy values
of the quantized orbits and the values of the major and minor
semiaxes can be expressed in terms of the quantum numbers
and the physical constants involved. The energy is seen to
have the value

(7-22)

=3

Z22n%uet
T nfh?r

Z2
W, = = —FRhc, (7-24)
being a function of the total quantum number alone. The value
of R, the Rydberg constant, which is given by the equation

212uet
B =5

(7-25)
depends on the reduced mass u of the electron and the nucleus.
It is known very accurately, being obtained directly from
spectroscopic data, the values as reported by Birge for hydrogen,
ionized helium, and infinite nuclear mass being

Ry = 109,677.759 + 0.05 cm™,
Ry, = 109,722.403 + 0.05 cm™Y,
R. = 109,737.42 + 0.06 cm™".

1 A. SoMMERFELD, Ann. d. Phys. 61, 1 (1916).
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The major and minor semiaxes have the values

n2a nka
6= b=— (7-26)
in which the constant ao has the value
h2
a = e (7-27)

The value of this quantity, which for hydrogen is the distance of
the electron from the nucleus in the circular orbit with n =1,
k = 1, also depends on the reduced mass, but within the experi-
mental error in the determination of e the three cases mentioned
above lead to the same value?!

a0 = 0.52854,

in which 1 = 1 X 10~*cm. The energy may also be expressed
in terms of a, as
Ze? Z2%?

Wa = “2a = T ontg, (7-28)

The total energy required to remove the electron from the
normal hydrogen atom to infinity is hence
O 2uget 2

This quantity, Wg = 2.1528 X 10~!! ergs, is often expressed in
volt electrons, Wy = 13.530 v.e., or in reciprocal centimeters or
wave numbers, Wx = 109,677.76 cm~! (the factor hc being
omitted), or in calories per mole, Wa = 311,934 cal/mole.

The energy levels of hydrogen are shown in Figure 7-2. It is
seen that the first excitation energy, the energy required to raise
the hydrogen atom from the normal state, with n = 1, to the
first excited state, with n = 2, is very large, amounting to
10.15 v.e. or 234,000 cal/mole. The spectral lines emitted by
an excited hydrogen atom as it falls from one stationary state to
another would have wave numbers or reciprocal wave lengths ¥
given by the equation

WH=

5 = R,,(;b,l,—, - ;1—,) (7-30)
! The value given by Birge for infinite mass is
0.5281¢¢ + 0.0004 X 1078 cm,
that for hydrogen being 0.0003 larger (Appendix I).
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in which 7" and »n’ are the values of the total quantum number
for the lower and the upper state, respectively. The series of
lines corresponding to n’’ = 1, that is, to transitions to the normal
state, is called the Lyman series, and those corresponding to
n'' =2, 3, and 4 are called the Balmer, Paschen, and Brackett
series, respectively. The Lyman series lies in the ultraviolet
region, the lower members of the Balmer series are in the visible
region, and the other series all lie in the infrared.

W=0
n-4 Ty
Poschen Brackett
series series
n=2 Balmer
series
W:=-Rhc | n={
Lyman
series

F1a. 7-2.—The energy levels of the hydrogen atom, and the transitions giving
rise to the Lyman, Balmer, Paschen, and Brackett series.

Tc. Description of the Orbits.—Although the allowed orbits
given by the treatment of Section 7b are not retained in the
quantum-mechanical model of hydrogen, they nevertheless
serve as a valuable starting point for the study of the more subtle
concepts of the newer theories. The old-quantum-theory orbits
are unsatisfactory chiefly because they restrict the motion too
rigidly, a criticism which is generally applicable to the results of
this theory.

For the simple non-relativistic model of the hydrogen atom in
field-free space the allowed orbits are certain ellipses whose com-
mon focus is the center of mass of the nucleus and the electron,
and whose dimensions are certain functions of the quantum
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numbers, as we have seen. For a given energy level of the
atom there is in general more than one allowed ellipse, since the
energy depends only on the major axis of the ellipse and not on
its eccentricity or orientation in space. These different ellipses
are distinguished by having different values of the azimuthal

k3

c

Fi1a. 7-3a, b, ¢.—Bohr-Sommerfeld electron-orbits for n = 1, 2, and 3, drawn
to the same scale.

quantum number k, which may be any integer from 1 to n.
When k equals n, the orbit is a circle, as is seen from Equation
7-26. For k less than 7, the minor semiaxis b is less than the
major semiaxis a, the eccentricity ¢ of the orbit increasing as &
decreases relative to n. The value zero for k was somewhat
arbitrarily excluded, on the basis of the argument that the
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corresponding orbit is a degenerate line ellipse which would
cause the electron to strike the nucleus.

Figure 7-3 shows the orbits for n = 1, 2, and 3 and for the
allowed values of k. The three different ellipses with n = 3
have major axes of the same length and minor axes which
decrease with decreasing k. Figure 7-3 also illustrates the
expansion of the orbits with increasing quantum number, the
radii of the circular orbits increasing as the square of n.

A property of these orbits which is of particular importance in
dealing with heavier atoms is the distance of closest approach of
the electron to the nucleus. Using the expressions for a and b
given in Equation 7-26 and the properties of the ellipse, we obtain

n(n — vV/n? — k’)ao_
Z

and the orbits drawn in Figure 7-3 show that the most eccentric
orbit for a given n, i.e., that with the smallest value of k, comes
the. nearcst to the nucleus. In many-electron atoms, this
causes a separation of the ecnergies corresponding to these
different elliptical orbits with the same », since the presence of
the other electrons, especially the inner or core electrons, causes a
modification of the field acting on .the clectron when it enters
the region ncar the nucleus.

Since the charge on the nucleus enters the expression for the
radius of the orbit given by Equations 7-26 and 7-27, the orbits
for Het are smaller than the corresponding ones for hydrogen,
the major semiaxis being reduced one-half by the greater charge
on the helium-ion nucleus.

7d. Spatial Quantization.—So far we have said nothing of
the orientation of the orbits in space. If a weak feld, either
electric or magnetic, is applied to the atom, so that the z direction
in space can be distinguished but no appreciable change in
energy occurs, the z component of the angular momentum of
the atom must be an integral multiple of k/2r, as mentioned
in Section 7b following Equation 7-14. This condition, which
restricts the orientation of the plane of the orbit to certain definite
directions, is called spatial quantization. The vector representing
the total angular momentum p is a line perpendicular to the
plane of the orbit (see Sec. 1¢) and from Equation 7-17 has the
length kh/2r. The z component of the angular momentum is
of length k cos w(h/2r), if w is the angle between the vector p and

for this distance the value This formula
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the z axis. This results in the following expression for cos w:
coBw = .
k

The value zero for m was excluded for reasons related to those

used in barring k¥ = 0, so that m may be +1, +2, - - -, +k.
m-+2
ma+l me+l
k=] =~—»J(m:0) k=2 (m=0)
o] m=-{
a

me-2

m=+3

k=3

ma-3
c

Fig. 7-4a, b, c.—Spatial quantization of Bohr-Sommerfeld orbits withk =1, 2,
and 3.

For the lowest state of hydrogen, in which £ = 1 (and for all orbits
for which k = 1), there are only two values of m, 4+1 and —1,
which correspond to motion in the zy plane in a counterclockwise
or in a clockwise sense. For k = 2 four orientations are per-
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mitted, as shown in Figure 7-4. Values *+k for m always cor-
respond to orbits lying in the zy plane.

It can be shown by the methods of classical electromagnetic
theory that the motion of an electron with charge —e and mass
mg in an orbit with angular momentum gg gives rise to a magnetic
kh e
2r 2moc
oriented in the same direction as the angular momentum vector.
The component of magnetic moment in the direction of the z axis

field corresponding to a magnetic dipole of magnitude

is m he The energy of magnetic interaction of the atom with
4rmoc

a magnetic field of strength H parallel to the.z axis is m47’:ne~o—cH .
It was this interaction energy which was considered to give rise
to the Zeeman effect (the splitting of spectral lines by a magnetic
field) and the phenomenon of paramagnetism. It is now known
that this explanation is only partially satisfactory, inasmuch as
the magnetic moment associated with the spin of the electron,
discussed in Chapter VIII, also makes an important contribution.

The magnetic moment is called a Bohr magneton.

he
47rmoc

Problem 7-1. Calculate the frequencies and wave lengths of the first
five members of the Balmer scries for the isotopic hydrogen atom whose
mass is approximately 2.0136 on the atomic weight scale, and compare with
those for ordinary hydrogen.

Problem 7-2. Quantize the system consisting of two neutral particles
of masses equal to those of the electron and proton held together by gravita-
tional attraction, obtaining expressions for the axes of the orbits and the
energy levels.

8. THE DECLINE OF THE OLD QUANTUM THEORY

The historical development of atomic and molecular mechanics
up to the present may be summarized by the following division
into periods (which, of course, are not so sharply demarcated as
indicated):

1913-1920. The origin and extensive application of the old

quantum theory of the atom.

1920-1925. The decline of the old quantum theory.

1925- . The origin of the new quantum mechanics and

its application to physical problems.
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1927~ The application of the new quantum mechanics
to chemical problems.
The present time may well be also the first part of the era of the
development of a more fundamental quantum mechanics, includ-
ing the theory of relativity and of the electromagnetic field; and
dealing with the mechanics of the atomic nucleus as well as of the
extranuclear structure.
he decline of the old quantum theory began with the introduc-
tion of half-integral values for quantum numbers in place of
integral values for certain systems, in order to obtain agreement
with experiment. It was discovered that the pure rotation
spectra of the hydrogen halide molecules arc not in accordance
with Equation 6-9 with K =0, 1, 2, - - -, but instead require
K =14 34 - - - . Similarly, half-integral values of the oscilla-
tional quantum number v in Equation 6-11 were found to be
required in order to account for the observed isotope displace-
ments for diatomic molecules. Half-integral values for the
azimuthal quantum number k were also indicated by observations
on both polarization and penetration of the atom core by a
valence electron. Still more serious were cases in which agree-
ment with the observed energy levels could not be obtained by
the methods of the old quantum theory by any such subterfuge
or arbitrary procedure (such as the normal state of the helium
atom, excited states of the helium atom, the normal state of
the hydrogen molecule ion, etc.), and cases where the methods
of the old quantum theory led to definite qualitative disagreement
with experiment (the influence of a magnetic field on the diclectric
constant of a gas, etc.). Moreover, the failure of the old quan-
tum theory to provide a method of calculating transition probabil-
ities and the intensities of spectral lines was recognized more
and more clearly as a fundamental flaw. Closely related to this
was the lack of a treatment of the phenomenon of the disper-
sion of light, a problem which attracted a great amount of
attention.

This dissatisfaction with the old quantum theory culminated
in the formulation by Heisenberg! in 1925 of his quantum
mechanics, as a method of treatment of atomic systems leading
to values of the intensities as well as frequencies of spectral
lines. The quantum mechanics of Heisenberg was rapidly

1 W. HEISENBERG, Z. f. Phys. 38, 879 (1925).
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developed by Heisenberg, Born, and Jordan' by the introduction
of matrix methods. In the meantime Schrodinger had inde-
pendently discovered and developed his Wave 'mechanics,?
stimulated by the earlier attribution of a wave character to the
electron by de Broglie® in 1924. The mathematical identity of
matrix mechanics and wave mechanics was then shown by
Schrodingert and by Eckart.® The further development of the
quantum mechanics was rapid, especially because of the con-
tributions of Dirac, who formulated® a relativistic theory of the
electron and contributed to the generalization of the quantum
mechanics (Chap. XV).
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CHAPTER III

THE SCHRODINGER WAVE EQUATION WITH THE
HARMONIC OSCILLATOR AS AN EXAMPLE

In the preceding chapters we have given a brief discussion of
the development of the theory of mechanics before the discovery
of the quantum mechanics. Now we begin the study of the quan-
tum mechanics itself, starting in this chapter with the Schrodinger
wave equation for a system with only one degree of freedom, the
general principles of the theory being illustrated by the special
example of the harmonic oscillator, which is treated in great
detail because of its importance in many physical problems.
The theory will then be generalized in the succeeding chapter
to systems of point particles in three-dimensional space.

9. THE SCHRODINGER WAVE EQUATION

In the first paragraph of his paper! Quantisierung als Eigen-
wertproblem, communicated to the Amnnalen der Physik on
January 27, 1926, Erwin Schridinger stated essentially:

In this communication I wish to show, first for the simplest case of
the non-relativistic and unperturbed hydrogen atom, that the usual
rules of quantization can be replaced by another postulate, in which
there occurs no mention of whole numbers. Instead, the introduction
of integers arises in the same natural way as, for example, in a vibrating
string, for which the number of nodes is integral. The new conception
can be generalized, and I believe that it penetrates deeply into the true
nature of the quantum rules.

In this and four other papers, published during the first half of
1926, Schrodinger communicated his wave equation and applied
it to a number of problems, including the hydrogen atom, the
harmonic oscillator, the rigid rotator, the diatomic molecule, and

1 E. SCHRODINGER, Ann. d. Phys. 79, 361 (1926), and later papers referred
to on the preceding page. An English translation of these papers has
appeared under the title E. Schrédinger, ‘“Collected Papers on Wave
Mechanics,” Blackie and Son, London and Glasgow, 1928.

50



II1-9] THE SCHRODINGER WAVE EQUATION 51

the hydrogen atom in an electric field (Stark effect). For the
last problem he developed his perturbation theory, and for
the discussion of dispersion he also developed the theory of a
_ perturbation varying with the time. His methods were rapidly
adopted by other investigators, and applied with such success
that there is hardly a field of physics or chemistry that has
remained untouched by Schrédinger’s work.

Schrodinger’s system of dynamics differs from that of Newton,
Lagrange, and Hamilton in its aim as well as its method. Instead
of attempting to find equations, such as Newton’s equations,
which enable a prediction to be made of the exact positions and
velocities of the particles of a system in a given state of motion,
he devised a method of calculating a function of the coordinates
of the system and the time (and not the momenta or velocities),
with the aid of which, in accordance with the interpretation
developed by Born,! probable values of- the coardinates and
of other dynamical quantities can be predicted for the system.
It was later recognized that the acceptance of dynamical equa-
tions of this type involves the renunciation of the hope of describ-
ing in exact detail the behavior of a system. The degree of
accuracy with which the behavior of a system can be discussed
by quantum-mechanical methods forms the subject of Hezsen-
berg’s uncertainty principle,® to which we shall recur in Chapter
XYV.

The Schrodinger wave equation and its auxiliary postulates
enable us to determine certain functions ¥ of the coordinates of a
system and the time. These functions are called the Schridinger
wave functions or probability amplitude functions. The square
of the absolute value of a given wave function is interpreted as
a probability distribution function for the coordinates of the
system in the state represented by this wave function, as will
be discussed in Section 10a. The wave equation has been
given this name because it is a differential equation of the second
order in the coordinates of the system, somewhat similar to the
wave equation of classical theory. The similarity is not close,
however, and we shall not utilize the analogy in our exposition.

Besides yielding the probability amplitude or wave function ¥,
the Schrédinger equation provides a method of calculating values

1 M. Bory, Z. f. Phys. 87, 863; 88, 803 (1926).
* W. HEISENBERG, Z. f. Phys. 48, 172 (1927).



52 THE SCHRODINGER WAVE EQUATION [I11-9

of the energy of the stationary states of a system, the existence
of which we have discussed in connection with the old quantum
theory. No arbitrary postulates concerning quantum numbers
are required in this calculation; instead, integers enter auto-
matically in the process of finding satisfactory solutions of the
wave equation.

For our purposes, the Schrodinger equation, the auxiliary
restrictions upon the wave function ¥, and the interpretation of
the wave function are conveniently taken as fundamental
postulates, with no derivation from other principles necessary.

This idea may be clarified by a comparison with other branches
of physics. Every department of deductive science must
necessarily be founded on certain postulates which are regarded
as fundamental. Frequently these fundamental postulates are
so closely related to experiment that their acceptance follows
directly upon the acceptance- of the experiments upon which
they are based, as, for example, the inverse-square law of electrical
attraction. In other cases the primary postulates are not so
directly obvious from experiment, but owe their acceptance to the
fact that conclusions drawn from them, often by long chains of
reasoning, agree with experiment in all of the tests which have
been made. The second law of thermodynainics is representative
of this type of postulate. It is not customary to attempt to
derive the second law for general systems from anything more
fundamental, nor is it obvious that it follows directly from
some simple experiment; nevertheless, it is accepted as correct
because deductions made from it agree with experiment. It is
an assumption, justified only by the success achieved by its
consequences.

The wave equation of Schrodinger belongs to this latter class
of primary assumption. If is not derived from other physical
laws nor obtained as a necessary consequence of any experiment;
instead, it is assumed to be correct, and then results predicted
by it are compared with data from the laboratory.

A clear distinction must frequently be made between the way
in which a discoverer arrives at a given hypothesis and the
logical position which this hypothesis occupies in the theory when
it has been completed and made orderly and deductive. In
the process of discovery, analogy often plays a very important
part. Thus the analogies between geometrical optics and
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classical mechanics on the one hand and undulatory optics and
wave mechanics on the other may have assisted Schrodinger to
formulate his now famous equation; but these analogies by no
means provide a logical derivation of the equation.

In many cases there is more than one way of stating the funda-
mental postulates. Thus either Lagrange’s or Hamilton’s form
of the equations of motion may be regarded as fundamental for
classical mechanics, and if one is so chosen, the other can be
derived from it. Similarly, there are other ways of expressing
the basic assumptions of quantum mechanics, and if they are
used, the wave equation can be derived from them, but, no
matter which mode of presenting the theory is adopted, some
starting point must be chosen, consisting of a set of assumptions
not deduced from any deeper principles.

It often happens that principles which have served as the basis
for whole branches of theory are superseded by other principles
of wider applicability. Newton’s laws of motion, adopted
because they were successful in predicting the motions of the
planets and in correlating celestial and terrestrial phenomena,
were replaced by Lagrange’s and Hamilton’s equations because
these are more general. They include Newton’s laws as a
special case and in addition serve for the treatment of motions
involving electric, magnetic, and relativistic phenomena. Like-
wise, quantum mechanics includes Newton’s laws for the special
case of heavy bodies and in addition is successful in problems
involving atoms and electrons. A still more general theory
than that of Schrodinger has been developed (we shall discuss
it in Chap. XV), but for nearly all purposes the wave equation is a
convenient and sufficient starting point.

9a. The Wave Equation Including the Time.—Let us first
consider a Newtonian system with one degree of freedom,
consisting of a particle of mass m restricted to motion along a
fixed straight line, which we take as the z axis, and let us assume
that the system is further described by a potential-energy func-
tion V(z) throughout the region —® < 2z < 4. For this
system the Schrodinger wave equation is assumed to be

h? 3*¥(z, t)

- h 0¥, 1)
8rm  dx?

(9-1)

In this equation the function ¥(z, t) is called the Schridinger
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wave function including the time, or the probability amplitude
function. It will be noticed that the equation is somewhat
similar in form to the wave equations occurring in other branches
of theoretical physics, as in the discussion of the motion of a
vibrating string. The student facile in mathematical physics
may well profit from investigating this similarity and also the
analogy between classical mechanics and geometrical optics on
the one hand, and wave mechanics and undulatory optics on the
other.! However, it is not necessary to do this. An extensive
previous knowledge of partial differential equations and their
usual applications in mathematical physics is not a necessary
prerequisite for the study of wave mechanics, and indeed the
study of wave mechanics may provide a satisfactory introduction
to the subject for the more physically minded or chemically
minded student.

The Schrédinger time equation is closely related to the equation
of classical Newtonian mechanics

H(ps, 2) = T(p=) + V() = W, (9-2)

which states that the total energy W is equal to the sum of the
kinetic energy T and the potential energy V and hence to the
Hamiltonian function H(p., z). Introducing the coordinate z
and momentum p., this equation becomes

H(pa 7) = 5op? + Vi) = W. (9-3)

If we now arbitrarily replace p, by the differential operator

h and W by — o7 :t’ and introduce the function ¥(z, t) on

o 9z
which these operators can operate, this equation becomes
h d h? 9%y h ¥
H(?rna ’x)W( D= ~gmaz T VY= “omar &Y

which is identical with Equation 9-1. The wave equation is

1 See, for example, Condon and Morse, ‘‘Quantum Mechanics,” p.
10, McGraw-Hill Book Company, Inc., New York, 1929; Ruark and Urey,
“ Atoms, Molecules and Quanta,” Chap. XV, McGraw-Hill Book Company,
Inc., New York, 1930; E. Schrodinger, Ann. d. Phys. 79, 489 (1926); K. K.
Darrow, Rev. Mod. Phys. 8, 23 (1934); or other treatises on wave mechanics,
listed at the end of this chapter.
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consequently often conveniently written as

HY = Wy, (9-5)
in which it is understood that the operators LA and L
2mi oz 21 9t

are to be introduced.

B R\ ot

In replacing p. by the operator T P2 is to be replaced by (%) pry
and so on. (In some cases, which, however, do not arise in the simpler
problems which we are discussing in this book, there may be ambiguity
regarding the formulation of the operator.!) It might be desirable to dis-
tinguish between the classica] Hamiltonian function H = H(p,, z) and the

Hamiltonian operator
H = H (L —a—: :c):
2mt oz

a8 by writing Hoperator for the latter. We shall not do this, however, since
the danger of confusion is small. Whenever H is followed by ¥ (or by ¢,
representing the wave functions not including the time, discussed in the
following sections), it is understood to be the Hamiltonian operator. Simi-

. . h @

larly, whenever W is followed by ¥ it represents the operator o a5t
L

The symbol W will also be used to represent the energy constant (Secs.

9b, 9¢). We shall, indeed, usually restrict the symbol W to this use, and

. h 8
write —— — for the operator.
27t ot

It must be recognized that this correlation of the wave equation
and the classical energy equation, as well as the utilization
which we shall subsequently make of many other classical
dynamical expressions, has only formal significance. It provides
a convenient way of describing the system for which we are
setting up a wave equation by making use of the terminology
developed over a long period of years by the workers in classical
dynamics. Thus our store of direct knowledge regarding the
nature of the system known as the hydrogen atom consists in the
results of a large number of experiments—spectroscopic, chemical,
ete. It is found that all of the known facts about this system
can be correlated and systematized (and, we say, explained)
by associating with this system a certain wave equation. Our
confidence in the significance of this association increases when
predictions regarding previously uninvestigated properties of

1 B. PopoLskY, Phys. Rev. 82, 812 (1928).
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the hydrogen atom are subsequently verified by experiment.
We might then describe the hydrogen atom by giving its wave
equation; this description would be complete. It is unsatis-
factory, however, because it is unwieldy. On observing that
there is a formal relation between this wave equation and the
classical energy equation for a system of two particles of different
masses and electrical charges, we seize on this as providing a
simple, easy, and familiar way of describing the system, and
we say that the hydrogen atom consists of two particles, the
electron and proton, which attract each other according to
Coulomb’s inverse-square law. Actually we do not know that
the electron and proton attract each other in the same way
that two macroscopic electrically charged bodies do, inasmuch
as the force between the two particles in a hydrogen atom has
never been directly measured. All that we do know is that the
wave equation for the hydrogen atom bears a certain formal
relation to the classical dynamical equations for a system of
two particles attracting each other in this way.

Having emphasized the formal nature of this correlation and
of the usual description of wave-mechanical systems in terms of
classical concepts, let us now point out the extreme practical
importance of this procedure. It is found that satisfactory wave
equations can be formulated for nearly all atomic and molecular
systems by accepting the descriptions of them developed during
the days of the classical and old quantum theory and translating
them into quantum-mechanical language by the methods
discussed above. Indeed, in many cuses the wave-mechanical
expressions for values of experimentally observable properties of
systems are identical with those given by the old quantum theory,
and in other cases only small changes are necessary. Throughout
the following chapters we ‘shall make use of such locutions as
“a system of two particles with inverse-square attraction”
instead of ‘‘a system whose wave equation involves six coordi-
nates and a function e2?/ry,,”” ete.

9b. The Amplitude Equation.—In order to solve Equation 9-1,
let us (as is usual in the solution of a partial differential equation
of this type) first study the solutions ¥ (if any exist) which can
be expressed as the product of two functions, one involving the
time alone and the other the coordinate alone:

¥(z, 1) = ¢(z)e(?).
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On introducing this in Equation 9-1 and dividing through by
¥(z)e(t), it becomes

1 h? d%(z) 1 do(t)
W){ VD) Ly >w<x>} R L)

The right side of this equation is a function of the time ¢ alone
and the left side a function of the coordinate z alone. It is
consequently necessary that the value of the quantity to which
each side is equal be dependent on neither z nor ¢; that is, that
it be a constant. Let us call it W. Equation 9-6 can then
be written as two equations, namely,
de(t) _ 2xi
@t = "R el
and 9-7)

—oh BV | i) - W),

The second of these is customarily written in the form

d% | 8r’m
DB — vy =0, (0-8)

obtained on multiplying by —8r?m/h? and transposing the term
in W.

Equation 9-8 is often itself called the Schrédinger wave equa-
tion, or sometimes the amplitude equation, inasmuch as y(x)
determines the amplitude of the function ¥(z, t). It is found
that the equation possesses various satisfactory solutions, cor-
responding to various values of the constant W. Let us indicate
these values of W by attaching the subscript 7, and similarly
represent the amplitude function corresponding to W, as ya(z).
The corresponding equation for ¢(t) can be integrated at once
to give

oull) = &, (8-9)
The general solution of Equation 9-1 is the sum of all the particu-
lar solutions with arbitrary coefficients, We consequently
write as the general expression for the wave function for this
gystem
2t

¥(z, 1) = Ea,\p,(x, f) = Ea,.wl/,.(x)e 5 (9-10)
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in which the quantities a, are constants. The symbol z, is
n

to be considered as representing the process of summation over
discrete values of W, or integration over a continuous range or
both, according to the requirements of the particular case.

It will be shown later that the general postulates which we
shall make regarding the physical interpretation of the wave
function require that the constant W, represent the energy of
the system in its various stationary states.

9c. Wave Functions. Discrete and Continuous Sets of
Characteristic Energy Values.—The functions y¥.(z) which
satisfy Equation 9-8 and also certain auxiliary conditions, dis-
cussed below, are variously called wave functions or eigenfunctions
(Eigenfunktionen), or sometimes amplitude functions, charac-
teristic functions, or proper functions. It is found that satis-
factory solutions ¥, of the wave equation exist only for certain
values of the parameter W, (which is interpreted as the energy
of the system). These values W, are characteristic energy values
or eigenvalues (Eigenwerte) of the wave equation. A wave
equation of this type is called a characteristic value equation.

Inasmuch as we are going to interpret the square of the absolute
value of a wave function as having the physical significance of a
probability distribution function, it is not unreasonable that the
wave function be required to possess certain properties, such as
single-valuedness, necessary in order that this interpretation be
possible and unambiguous. It has been found that a satisfactory
wave mechanics can be constructed on the basis of the following
auxiliary postulates regarding the nature of wave functions:

To be a satisfactory wave function, a solution of the Schrodinger
wave equation must be continuous, single-valued, and finite! through-

1 The assumption that the wave function be finite at all points in configura-
tion space may be more rigorous than necessary. Several alternative
postulates have been suggested by various investigators. Perhaps the most
satisfying of these is due to W. Pauli (‘‘Handbuch der Physik,” 2d ed., Vol.
XXVI, Part 1, p. 123). InSection 10 we shall interpret the function ¥*¥ asa
probability distribution function. In order that this interpretation may be
made, it i8 necessary that the integral of ¥*¥ over configuration space be a
constant with changing time. Pauli has shown that this condition is satis-
fied provided that ¥ is finite throughout configuration space, but that it is
also satisfied in certain cases by functions which are not finite everywhere.

The exceptional cases are rare and do not occur in the problems treated ip
this book.
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out the configuration space of the system (that is, for all values of
the coordinate z which the system can assume).

These conditions are those usually applied in mathematical
physics to functions representing physical quantities. For
example, the function representing the displacement of a vibrat-
ing string from its equilibrium configuration would have to
satisfy them.

For a given system the characteristic energy values W, may
occur only as a set of discrete values, or as a set of values covering
a continuous range, or as both. From analogy with spectroscopy
it is often said that in these three cases the energy values comprise
a discrete spectrum, a continuous spectrum, or both. The way

< =

Yy X‘b Xs OF
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Fi1g. 9-1.—Potential-energy function for a general system with one degree of
freedom.

in which the above postulates regarding the wave equation and
its acceptable solutions lead to the selection of definite energy
values may be understood by the qualitative consideration of a
simple example. Let us consider, for our system of one degree
of freedom, that the potential-energy function V(z) has the form
given in Figure 9-1, such that for very large positive or negative
values of z, V(z) increases without limit. For a given value of
the energy parameter W, the wave equation is

ay _ 8x’m
dz?  h?

In the region of large z (z > a) the quantity V(z) — W will be

{V(z) — Wi (9-11)

2,
positive. Hence in this region the curvature % will be positive

if y is positive, and negative if ¢ is negative. Now let us assume
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that at an arbitrary point z = ¢ the function ¥ has a certain value
(which may be chosen arbitrarily, inasmuch as the wave equation

is a homogeneous equation!) and a certain slope Z—f, as indicated

for Curve 1 in Figure 9-2. The behavior of the function, as it
is continued both to the right and to the left, is completely
determined by the values assigned to two quantities; to wit, the
slope Z—i at the point z = ¢, and the energy parameter W in the

wave equation, which determines the value of the second deriva-

>X

F1g. 9-2.—The behavior of ¥ for z > a.

tive. As we have drawn Curve 1, the curvature is determined
by the wave equation to be negative in the region z < a, where
V(z) — W is negative, ¢ being positive, and hence the curve can
be continued to the right as shown. At the point z = a, the
function remaining positive, the curvature becomes positive, the
curve then being concave upward. If the slope becomes positive,
as indicated, then the curve will increase without limit for
increasing z, and as a result of this “infinity catastrophe’ the
function will not be an acceptable wave function.

1 An equation is homogeneous in y, if the same power of ¢ (in our case the
first power) occurs in every term. The function obtained by multiplying
any solution of a homogeneous equation by a constant is also a solution
of the equation.
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We can now make a second attempt, choosing the slope at
z = c as indicated for Curve 3. In this case the curve as drawn
intersects the z axis at a point £ = d to the right of a. For
values of x larger than d the function y is negative, and the curva-
ture is negative. The function decreases in value more and more
rapidly with increasing z, again suffering the infinity catastrophe,
and hence it too is not an acceptable wave function in this
region.

Thus we see that, for a given value of W, only by a very careful
selection of the slope of the function at the point z = ¢ can the
function be made to behave properly for large values of . This
selection, indicated by Curve 2, is such as to cause the wave
function to approach the value zero asymptotically with increas-
ing z.

Supposing that we have in this way determined, for a given
value of W, a value of the slope at z = ¢ which causes the
function to behave properly for large positive values of z, we
extend the function to the left and consider its behavior for large
negative values of z. In view of our experience on the right,
it will not be surprising if our curve on extension to the left
behaves as Curve 1 or Curve 3 on the right, eliminating the
function from consideration; in fact, it is this behavior which
is expected for an arbitrarily chosen value of W. We can now
select another value of W for trial, and determine for it the value
of the slope at £ = ¢ necessary to cause the function to behave
properly on the right, and then see if, for it, the curve behaves
properly on the left also. Finally, by a very careful choice of
the value of the energy parameter W, we are able to choose a
slope at z = ¢ which causes the function to behave properly
both for very large and for very small values of . This value
of W is one of the characteristic values of the energy of the
system. In view of the sensitiveness of the curve to the param-
eter W, an infinitesimal change from this satisfactory value will
cause the function to behave improperly.

We conclude that the parameter W and the slope at the point
z = ¢ (for a given value of the function itself at this point) can
have only certain values if ¢ is to be an acceptable wave function.
For each satisfactory value of W there is one (or, in certain
cases discussed later, more than one) satisfactory value of the
slope, by the use of which the corresponding wave function can
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be built up. For this system the characteristic values W,
of the energy form a discrete set, and only a discrete set, inasmuch
as for every value of W, no matter how large, V(z) — W is
positive for sufficiently large positive or negative values of z.

It is customary to number the characteristic energy values for
such a system as indicated in Figure 9-1, W, being the lowest,
W, the next, and so on, corresponding to the wave functions
Yo(2), ¥1(x), etc. The integer n, which is written as a subscript
in W, and y.(z), is called the quantum number. For such a
one-dimensional system it is equal to the number of zeros!
possessed by ¥,. A slight extension of the argument given above

Continuum
of W-values Y+ 00)
W V(-00)
({lr Wy
W
W
W
X=~>

F1g. 9-3.—The energy levels for a system with V(—w) or V(+) finite.

shows that all of the zeros lie in the region between the points
z = b and z = q, outside of which V(z) — W, remains positive.
The natural and simple way in which integral quantum numbers
are introduced and in which the energy is restricted to definite
values contrasts sharply with the arbitrary and uncertain
procedure of the old quantum theory.

Let us now consider a system in which the potential-energy
function remains finite at £ — 4« or at £ — — « or at both
limits, as shown in Figure 9-3. For a value of W smaller than
both V(4 o) and V(— =) the argument presented above is
valid. Consequently the energy levels will form a discrete set
for this region. If W is greater than V(4 «), however, a
similar argument shows that the curvature will be such as always
to return the wave function to the z axis, about which it will

1 A zero of ya(z) is a point (x = z;) at which ¢, is equal to zero.
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oscillate. Hence any value of W greater than V(4 ) or
V(— ) will be an allowed value, corresponding to an acceptable
wave function, and the system will have a continuous spectrum
of energy values in this region.

'9d. The Complex Conjugate Wave Function ¥'*(x, t).—In
the physical interpretation of the wave equation and its solutions,
as discussed in the following section, the quantity ¥*(z, t),
the complex conjugate of ¥(z, t), enters on an equivalent basis
with ¥(z, t). The wave equation satisfied by ¥* is the complex
conjugate of Equation 9-1, namely,

2 N * *
e BV D 4 yayuete, 1) = s D (g g
The general solution of this conjugate wave equation is the
following, the conjugate of 9-10:

t

Wa
¥z, ) = Dai¥i, ) = JaRi@e b (9-13)

(Some authors have adopted the convention of representing
by the symbol ¥ the wave function which is the solution of
Equation 9-12 and by ¥* that of 9-1. This is only a matter of
nomenclature.)

It will be noticed that in the complex conjugate wave function
the exponential terms containing the time are necessarily different
from the corresponding terms in ¥ itself, the minus sign being
removed to form the complex conjugate. The amplitude
functions ¥.(z), on the other hand, are frequently real, in which

case ¥¥(z) = ¥a(2).

10. THE PHYSICAL INTERPRETATION OF THE WAVE FUNCTIONS

10a. w*(x, {)W(x, t) as a Probability Distribution Function.—
Let us consider a given general solution ¥(z, t) of the wave equa-
tion. For a given value of the time ¢, the function ¥*(z, {)¥(z, t),
the product of ¥ and its complex conjugate, is a function defined
for all values of r between — © and + « ; that is, throughout the
configuration space of this one-dimensional system. We now
make the following postulate regarding the physical significance
of ¥:

The quantity ¥*(z, t)¥(z, t)dx is the probability that the system
in the physical situation represented by the wave function ¥(z, t)
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have at the time t the configuration represented by a point in the
region dz of configuration space. In other words, ¥*(z, t)¥(z, t)
is a probability distribution function for the configuration of the
system. In the simple system under discussion, ¥*(z, t)¥(z, ¢)dz
is the probability that the particle lie in the region between z
and z + dz at the time ¢.

In order that this postulate may be made, the wave function
¥(z, t) must be normalized to unity (or, briefly, normalized);
that is, the constants a, of Equation 9-10 must be so chosen as
to satisfy the relation

f_’“:w*(x, ¥ (z, t)dz = 1, (10-1)

inasmuch as the probability that the coordinate = of the particle
lie somewhere between — o and + o is necessarily unity.
It is also convenient to normalize the individual amplitude
functions y.(x) to unity, so that each satisfies the equation

[ @@z = 1. (10-2)

Moreover, as proved in Appendix III, it is found that the
independent solutions of any amplitude equation can always be
chosen in such a way that for any two of them, y.(z) and ¢.(z),
the integral [YX(z)¥a(z)dx over all of configuration space van-
ishes; that is,

f_+:¢,’:(x)¢n(x)d:v =0, msn (10-3)

The functions are then said to be mutually orthogonal. Using
these relations and Equations 9-10 and 9-13, it is found that a

wave function ¥(z, t) = Zan\li,.(:c, t) is normalized when the
n
coefficients a, satisfy the relation

Ea,’fan = ‘1. (10-4)

10b. Stationary States.—Let us consider the probability dis-
tribution function ¥*¥ for a system in the state represented by

Wa
the wave function ¥(z, f) = Zan‘lx”(x)e 5 and its conjugate

W
Y*(x, t) = Ea,’: ,’:‘,(:z;)ez’rl ' On multiplying these series
m
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together, ¥*V¥ is seen to have the form

Yz, O¥(z, 1) = Y arad(@)¥a(z) +

(W~ W)
33 st @@ F
in which the prime on the double-summation symbol indicates
that only terms with m % n are included. In general, then,
the probability function and hence the properties of the system
depend on the time, inasmuch as the time enters in the exponen-
tial factors of the double sum. Only if the coefficients a, are
zero for all except onc value of W, is ¥*¥ independent of ¢.
In such a case the wave function will contain only a single term

War

(with n =17/, say) V. (z, &) = \/z,.:(x)e—zﬂ h ‘, the amplitude
function ¢n..(z) being a particular solution of the amplitude
equation. For such a state the properties of the system as given
by the probability function ¥*¥ are independent of the time, and
the state is called a stationary state.

10c. Further Physical Interpretation. Average Values of
Dynamical Quantities.—If we inquire as to what average value
would be expected on measurement at a given time ¢ of the
coordinate z of the system in a physical situation represented by
the wave function ¥, the above interpretation of ¥*¥ leads to the
answer

= f_“:\y*(x, 1)V (z, t)zdz;

that is, the value of z is averaged over all configurations, using
the function ¥*V¥ as a weight or probability function. A similar
integral gives the average value predicted for z2, or «? or any
function F(z) of the coordinate z:

F= f_+:\Il*(x, 1V (z, OF (z)dz. (10-5)

In order that the same question can be answered for a more
general dynamical function G(p., z) involving the momentum p,
as well as the coordinate x, we now make the following more
general postulate:

The average value of the dynamical function G(p,, =) predicted
for a system in the physical situation represented by the wave
function ¥(z, t) is given by the integral
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G = f_ v, t)G(%. 2 x)\I/(:c, Hdz,  (10-6)

in which the operator G, obtained from G(p, z) by replacing p.
by % ;%; operates on the function ¥(z, t) and the integration is
extended throughout the configuration space of the system.!

In general, the result of a measurement of G will not be given
by this expression for G. G rather is the average of a very
large number of measurements made on a large number of
identical systems in the physical situation represented by ¥, or
repeated on the same system, which before each measurement
must be in the same physical situation. For example, if ¥ is

A

v /’\

X o> Xx=a
F1a. 10~-1.—Two types of probability distribution function ¥*¥,

-

finite for a range of values of x (Curve A, Figure 10-1), then a
measurement of z might lead to any value within this range,
the probability being given by ¥*¥., Only if ¥*¥ were zero
for all values of = except z = a, as indicated by Curve B in
Figure 10-1, would the probability of obtaining a particular
value £ = a on measurement of z be unity. In this case the
value a” would be predicted with probability unity to be obtained
on measurement of the rth power of z; so that for such a prob-
ability distribution function z* is equal to (Z)*. It has also
been shown by mathematicians that the existence of this identity
of G" and (G)" for all values of r is sufficient to establish that the
probability distribution function for the dynamical quantity @ is
of type B; that is, that the value of G can be predicted accurately.

1 In some cases further considerations are necessary in order to determine
the exact form of the operator, but we shall not encounter such difficulties.
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Even if the system is in a stationary state, represented by the

Wn
wave function V,(z, f) = w,.(x)e_zﬂ_"—‘, only an average value
can be predicted for an arbitrary dynamical quantity. The
energy of the system, corresponding to the Hamiltonian function
H(p., ), has, however, a definite value for a stationary state
of the system, equal to the characteristic value W, found on
solution of the wave equation, so that the result of a measurement
of the energy of the system in a given stationary state can be
predicted accurately. To prove this, we evaluate H™ and (H)'.
H is given by the integral

+ =
A= [ uef-g T 1+ vewe|a

8rim dx?

the factor involving the time being equal to unity. This trans-
forms with the use of Equation 9-8 into

H = [T 0@ Wan(@)ds,

or, since W, is a constant and f_ +:wlx,’{‘(x)¢,.(x)dx =1,
A=W, and (I)=Ww. (10-7)

By a similar procedure, involving repeated use of Equation 9--8,
it is seen that H7 is equal to W7,. We have thus shown H" to
be equal to (H), in consequence of which, in accordance with the
argument set forth above, the energy of the system has the
definite value W,.

Further discussion of the physical significance of wave functions
will be given in connection with the treatment of the harmonic
oscillator in this chapter and of other systems in succeeding
chapters, and especially in Chapter XV, in which the question
of deciding which wave function to associate with a given system
under given circumstances will be treated. In the earlier sections
we shall restrict the discussion mamly to the properties of
stationary states.

11. THE HARMONIC OSCILLATOR IN WAVE MECHANICS

11a. Solution of the Wave Equation.—As our first example
of the solution of the Schrodinger wave equation for a dynamical
system we choose the one-dimensional harmonic oscillator, not
only because this provides a good illustration of the methods
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employed in applying the wave equation, but also because this
system is of considerable importance in applications which we
shall discuss later, such as the calculation of the vibrational
energies of molecules. The more difficult problem of the three-
dimensional oscillator was treated by the methods of classical
mechanics in Section la, while the simple one-dimensional
case was discussed according to the old quantum theory in
Section 6a.

The potential energy may be written, as before, in the form
V(z) = 2r®myix?, in which z is the displacement of the particle
of mass m from its equilibrium position = 0. Insertion of this
in the general wave equation for a one-dimensional system
(Eq. 9-8) gives the equation

2
%‘5 + §1,221'(W — 2r'mviet)y = 0, (11-1)

or, introducing for convenience the quantities N = 8x2mW /h?
and a = 4r?my,/h,

¥+ = auny = 0. (11-2)

We desire functions ¢(x) which satisfy this equation throughout
the region of values — « to + « for z, and which are acceptable
wave functions, i.e., functions which are continuous, single-
valued, and finite throughout the region. A straightforward
method of solution which suggests itself is the use of a power-
series expansion for ¥, the coefficients of the successive powers
of z being determined by substitution of the series for ¢ in the
wave equation. There is, however, a very useful procedure
which we may make use of in this and succeeding problems,
consisting of the determination of the form of ¢ in the regions of
large positive or negative values of z, and the subsequent dis-
cussion, by the introduction of a factor in the form of a power
series (which later reduces to a polynomial), of the behavior of ¥
for |z| small. This procedure may be called the polynomial
method.!

The first step is the asymptotic solution of the wave equation
when |z| is very large. For any value of the energy constant W,
a value of |z| can be found such that for it and all larger values

1 A. SoMMERFELD, ‘‘Wave Mechanics,” p. 11.
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of |z|, N is negligibly small relative to a’?, the asymptotic form
of the wave equation thus becoming

d2 = 272

Ex—é = o’ II/. (11—3)
This equation is satisfied asymptotically by the exponential
functions

Vv =ce 2 )

inasmuch as the derivatives of ¥ have the values

4 = iaxeiéz’

dx
and

% = a% T 4 ac' P
. dy, C . . .

and the second term in gz? 1 negligible in the region considered.

Of the two asymptotic solutions ¢ 2" and e+53’, the second is
unsatisfactory as a wave function since it tends rapidly to
infinity with increasing values of |z|; the first, however, leads to a
satisfactory treatment of the problem.

We now proceed to obtain an accurate solution of the wave
equation throughout configuration space (—o <z < 4 ®),
based upon the asymptotic solution, by introducing as a factor
a power series in z and determining its coefficients.by substitution
in the wave equation.

Let ¢ = e—gztf(x). Then
ﬂ _ e—gz:{azxzf — af — 2azf’ +f”},

dx?
2
in which f’ and f’’ represent g—'; and j—x{, respectively. Equation

11-2 then becomes, on division by e_éz’,
f” —_ 2axf’ + ()‘ — a)f =0, (11_4)

the terms in a?z?f cancelling.
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It is now convenient to introduce a new variable £, related to
z by the equation

£ = Vaz, (11-5)

and to replace the function f(z) by H(%), to which it is equal.
The differential equation 11-4 then becomes

a*H
T 2s,=dE + <— —l)H (11-6)

We now represent H (%) as a power series, which we differentiate
to obtain its derivatives,

H(E) = Daf =a+ at+ af +af+ - - -,

v

%%I = Eva,&’*l = ay + 2a.% 4+ 3ast2+ - - -,

v

%=Ev(v—l)m’2—l 2as + 2 - 3azt + -

v

On substitution of these expressions, Equation 11-6 assumes the
following form:

1-2a; + 2-3a3¢ + 3-4a48 + 4 - 5asé® +
— 21 — 2- 20,8 — 2-3ast® —

+<§ - 1>ao n (— - 1)als + (— . 1>a2$2 +
(} —_— 1)(1353 + e e = 0
a

In order for this series to vanish for all values of ¢ (i.e., for H(§)
to be a solution of 11-6), the coefficients of individual powers of
£ must vanish separately!:

1- 202+(—— l)ao —0
A
2-30.3-}-(; - 1 - 2>a1 = 0,
A
3-4a4+<& —1- 2-2)(12 =0,

4.5a, +<§ —1- 2-3>aa =0,

1 8ee footnote, Sec. 23.
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or, in general, for the coeflicient of £,

v+ D+ 2)an + (2 -1 21')&» =0

(§ 2 — 1)
S — 11-7)
e [ (
This expression is called a recursion formula. It enables the
coefficients a,, as, a4, - - - to be calculated successively in
terms of a, and a;, which are arbitrary. If a, is set equal to zero,
only odd powers appear; with a, zero, the series contains even
powers only.

For arbitrary values of the energy parameter A\, the above
given series consists of an infinite number of terms and does
not correspond to a satisfactory wave function, because, as we
shall show, the value of the series increases too rapidly as z
increases, with the result that the total function, even though it
includes the negative exponential factor, increases without
limit as z increases. To prove this we compare the series for
H and that for e,

or

Ev £v+2

G G

For large values of ¢ the first terms of these series will be unim-
portant. Suppose that the ratio of the coefficients of the »th
terms in the expansion of H(£) and e is called ¢, which may be
small or large, i.e., a,/b, = ¢, if b, is the coefficient of £ in the
expansion of ef’. For large enough values of », we have the
asymptotic relations

+

4 8
eE’=1+£2+'2“!+3~!+"'+

2

Ayyo = ;ay and by+2 = ;by,
so that
Qyye _ Qv _ c
bv+2 br ’

if » is large enough. Therefore, the higher terms of the series for
H differ from those for e only by a multiplicative constant, so
that for large values of |¢], for which the lower terms are unim-
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E!
portant, H will behave like ¢¢* and the product e 2H will behave
EI
like ¢* 2 in this region, thus making it unacceptable as a wave
function.

We must therefore choose the values of the energy parameter
which will cause the series for H to break off after a finite number
of terms, leaving a polynomial. This yields a satisfactory wave

El
function, because the negative exponential factor e 2 will cause
the function to approach zero for large values of [§]. The value
of N\ which causes the series to break off after the nth term is
seen from Equation 11-7 to be

A= (2n + Da (11-8)

It is, moreover, also necessary that the value either of a, or of a,
be put equal to zero, according as 7 is odd or even, inasmuch as a
suitably chosen value of A can cause either the even or the odd
series to break off, but not both. The solutions are thus either
odd or even functions of £. This condition is a sufficient condi-
tion to insure that the wave equation 11-2 have satisfactory
solutions, and it is furthermore a necessary condition; no other
values of A lead to satisfactory solutions. For each integral
value 0, 1, 2, 3, - - - of n, which we may call the quantum
number of the corresponding state of the oscillator, a satisfactory
solution of the wave equation will exist. The straightforward
way in which the quantum number enters in the treatment of
the wave equation, as the degree of the polynomial H (%), is
especially satisfying when compared with the arbitrary assump-
tion of integral or half-integral multiples of h for the phase
integral of the old quantum theory.

The condition expressed in Equation 11-8 for the existence
of the nth wave function becomes

W =W,= 4+ ¥)hy, n=20,12 ---, (11-9)

when M and o are replaced by the quantities they represent. A
comparison with the result W = nhy, obtained in Section 6a
by the old quantum theory shows that the only difference is
that all the energy levels are shifted upward, as shown in Figure
11-1, by an amount equal to half the separation of the energy
levels, the so-called zero-point energy }4hve. From this we
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see that even in its lowest state the system has an energy greater
than that which it would have if it were at rest in its equilibrium
position. The existence of a zero-point energy, which leads to
an improved agreement with experiment, is an important feature
of the quantum mechanics and recurs in many problems.!
Just as in the old-quantum-theory treatment, the frequency
emitted or absorbed by a transition between adjacent energy
levels is equal to the classical vibration frequency », (Sec. 40c).

n=5

n=4

n=3

n=2

n-|

n=0

X —
Fia. 11-1.—Energy levels for the harmonic oscillator according to wave me
chanics (see Fig. 6-1).

11b. The Wave Functions for the Harmonic Oscillator and
Their Physical Interpretation.—For each of the characteristic
values W, of the energy, a satisfactory solution of the wave
equation 11-1 can be constructed by the use of the recursion
formula 11-7. Energy levels such as these, to each of which
there corresponds only one independent wave function, are said
to be non-degenerate to distinguish them from degenerate energy
levels (examples of which we shall consider later), to which several

1 The name zero-point energy is used for the energy of a system in its lowest
stationary state because the system in thermodynamic equilibrium with its
environment at a temperature approaching the absolute zero would be in
this stationary state. The zero-point energy is of considerable importance
in many statistical-mechanical and thermodynamic discussions. The
existence of zero-point energy is correlated with the uncertainty principle
(Chap. XV),
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independent wave functions correspond. The solutions of 11-1
may be written in the form

‘I/n(x) = Nne— %?Hn(s)) (11"“10)

in which ¢ = vaz. H.({) is a polynomial of the nth degree in
¢, and N, is a constant which is adjusted so that ¥, is normalized,
i.e., so that y, satisfies the relation

[Frn@w@ds =1, (11-11)

in which 2, the complex conjugate of ¥,, is in this case equal to
V¥a.  In the next seotion we shall discuss the nature and properties
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Fre. 11-2.—The wave function yo({) for the normal state of the harmonic
oscillator (left), and the corresponding probability distribution function
[Wo(§))? (right). The classical distribution function for an oscillator with the
same total energy is shown by the dashed curve.

of these solutions ¥, in great detail. The first of them, which
corresponds to the state of lowest energy for the system, is

1 e 1 ~Zn
¥olz) = (%)‘e ‘= <¢7xr>4e = (11-12)

Figure 11-2 shows this function. From the postulate discussed
in Section 10a, ¥3¢, = Y3, which is also plotted in Figure 11-2,
represents the probability distribution function for the coordinate
z. In other words, the quantity y%(z)dz at any point z gives
the probability of finding the particle in the range dz at that
point. We see from the figure that the result of quantum
mechanics for this case does not agree at all with the probability
function which is computed classically for a harmonic oscillator
with the same energy. Classically the particle is most likely to
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be found at the ends of its motion, which are clearly defined points
(the classical probability distribution is shown by the dotted
curve in Figure 11-2), whereas {2 has its maximum at the origin
of r and, furthermore, shows a rapidly decreasing but nevertheless
finite probability of finding the particle outside the region allowed
classically. This surprising result, that it is possible for a
particle to penetrate into a region in which its total energy is less
than its potential energy, is closely connected with Heisenberg’s
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Fi1a. 11-3.—The wave functions y»(£), n = 1 to 6, for the harmonic oscillator.
For each case the heavy horizontal line indicates the region traversed by the
classical harmonic oscillator with the same total energy.

uncertainty principle, which leads to the conclusion that it is
not possible to measure exactly both the position and the velocity
of a particle at the same time. We shall discuss this phenomenon
further in Chapter XV. It may be mentioned at this point,
however, that the extension of the probability distribution func-
tion into the region of negative kinetic energy will not require
that the law of the conservation of energy be abandoned.

The form of ¥, for larger values of n is shown in Figure 11-3.
Since H, is a polynomial of degree n, y, will. have n zeros or
points where ¥, crosses the zero line. The probability of finding
the particle at these points is zero. Insovection of Figure 11-3
shows that all the solutions plotted show a general behavior in
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agreement with that obtained by the general arguments of Section
9c; that is, inside the classically permitted region of motion of
the particle (in which V(z) is less than W,) the wave function
oscillates, having n zeros, while outside that region the wave
function falls rapidly to zero in an exponential manner and has
no zeros. Furthermore, we see in this example an illustration
of still another general principle: The larger the value of n, the
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F1a. 11-4.—The probability distribution function [¥10(£)]*? for the state
n = 10 of the harmonic oscillator. Note how closely the function approximates
in its average value the probability distribution function for the classical har-
monic oacillator with the same total energy, represented by the dashed curve.

more nearly does the wave-mechanical probability distribution
function approximate to the classical expression for a particle
with the same energy. Figure 114 shows y2(z) for the state
with n = 10 compared with the classical probability curve for
21
2
It is seen that, aside from the rapid fluctuation of the wave-
mechanical curve, the general agreement of the two functions
is good. This agreement permits us to visualize the motion of
the particle in a wave-mechanical harmonic oscillator as being

the harmonic oscillator with the same value Ay, for the energy.
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similar to its classical to-and-fro motion, the particle speeding
up in the center of its orbit and slowing down as it approaches
its maximum displacement from its equilibrium position. The
amplitude of the oscillation cannot be considered to be constant,
as for the classical oscillator; instead, we may picture the particle
as oscillating sometimes with very large amplitude, and some-
times with very small amplitude, but usually with an amplitude
in the neighborhood of the classical value for the same energy.
Other properties of the oscillator also are compatible with this
picture; thus the wave-mechanical root-mean-square value of the
momentum is equal to the classical value (Prob. 11-4).

A picture of this type, while useful in developing an intuitive
feeling for the wave-mechanical equations, must not be taken
too seriously, for it is not completely satisfactory. Thus it
cannot be reconciled with the existence of zeros in the wave
functions for the stationary states, corresponding to points where
the probability distribution function becomes vanishingly
small.

11c. Mathematical Properties of the Harmonic Oscillator
Wave Functions.—The polynomials H.(¢) and the functions

e 2H,(f) obtained in the solution of the wave equation for the
harmonic oscillator did not originate with Schrodinger’s work
but were well known to mathematicians in connection with other
problems. Their properties have been intensively studied.

For the present purpose, instead of developing the theory of
the polynemials H,(¢), called the Hermite polynomials, from the
relation between successive coefficients given in Equation 11-7,
it is more convenient to introduce them by means of another
definition:

dre~ 8
den
We shall show later that this leads to the same functions as
Equation 11-7. A third definition involves the use of a generating
function, a method which is useful in many calculations and which
is also applicable to other functions. The generating function
for the Hermite polynomials is

Ha($) = (—1)me® (11-13)

S(§, 8) = et~ = EH————;(‘E):;". (11-14)

n=0
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This identity in the auxiliary variable s means that the function
e8*— = hag the property that, if it is expanded in a power series
in s, the coefficients of successive powers of s are just the Hermite
polynomials H,(£), multiplied by 1/n!. To show the equivalence
of the two definitions 11-13 and 11-14, we differentiate S n times
with respect to s and then let s tend to zero, using first one and
then the other expression for S; the terms with v < n vanish
on differentiation, and those with » > n vanish for s — 0, leaving
only the term with v = n:

S H, (E)S .
(@)ﬁ <6s”2 > = ()
and
(ans> 3 (anes:—-u—e)!) 3 E’( ane—(c—f)‘)
asm a—0 - as” 8—0 = ¢ 6(8 - E)”

np—(sa—§)2 e~ 13
= ee’(_l)n<§%£_n__>ﬁ = (- l)ueE’ df"

Comparing these two equations, we see that we obtain Equation
11-13, so that the two definitions of H,({) are equivalent.
Equation 11-13 is useful for obtaining the individual functions,
while Equation 11-14 is frequently convenient for deriving their
properties, such as in the case we shall now discuss.

To show that the functions we have defined above are the
same as those used in the solution of the harmonic oscillator
problem, we look for the differential equation satisfied by
H,.(t). It is first convenient to derive certain relations between
successive Hermite polynomials and their derivatives. We
note that since S = e~ ©“~8* its partial derivative with respect
to s is given by the equation

a_g
as

—2(3 - 8.
Ha(8)

Similarly differentiating the series S = E 8 and equating

the two different expressions for 4S/ds, we obtain the equation

G = 2 = o s

’

n

or, collecting terms corresponding to the same power of s,
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Hn l(e) Hn—l(E) Hn(e) n
E{ Al T2 o1 257}8 =0

Since this equation is true for all values of s, the coefficients of
individual powers of s must vanish, giving as the recursion
formula for the Hermite polynomials the expression

Hoii(§) — 26Ha(§) + 2nH, 1(§) = 0. (11-15)

Similarly, by differentiation with respect to §, we derive the
equation

a8

ot

which gives, in just the same manner as above, the equation

S {80 - 20}

n

= 2s8,

or

HI(t) = i’fiT‘“ = 2nH._.(8), (11-16)

involving the first derivatives of the Hermite polynomials.
This can be further differentiated with respect to ¢ to obtain
expressions involving higher derivatives.

Equations 11-15 and 11-16 lead to the differential equation for
H.(¢), for from 11-16 we obtain

HY(§) = 2nH, ,(§) = 4n(n — 1)Haa(), (11-17)
while Equation 11-15 may be rewritten as
Ha(§) — 2¢Hai(§) + 2(n — 1)Huo(8) =0, (11-18)
which becomes, with the use of Equations 11-16 and 11-17,

Ho®) ~ SHIE) + o-HI(E) = 0
or
HY(§) — 2tH(§) + 2nH,(§) = 0. (11-19)

This is just the equation, 11-6, which we obtained from the har-
monic oscillator problem, if we put 2n in place of 2 — 1, as

required by Equation 11-8. Since for each integral value of n
this equation has only one solution with the proper behavior at
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infinity, the polynomials H,(¢) introduced in Section 1la are
the Hermite polynomials.
The functions

_e
¥n(z) = Nnve 2 -Ho(8), &=+az, (11-20)

are called the Hermaite orthogonal functions; they are, as we
have seen, the wave functions for the harmonic oscillator. The

value of N, which makes f_ +: Y2(z)dx = 1,i.e., which normalizes

¥, i8 g
N, = {(;) 2—7”} : (11-21)

The functions are mutually orthogonal if the integral over
configuration space of the product of any two of them vanishes:

[T @ n@dz =0, n=m. (11-22)

To prove the orthogonality of the functions and to evaluate the
normalization constant given in Equation 11-21, it is convenient
to consider two generating functions:

S(Et 8) = EI"I;—‘('E)S" = b=
and "

T(E; t) = EH—;;;%QW = fi—(—E1,

Using these, we obtain the relations

+- +=
f STe_EndE = 228””‘ \ Hn(s)'g‘m(s) _E'de

+o +o
- f e—.'—t*{-%cHﬂE—E’de = ehtf e—(E—l—t)’d(E —_—8 - t)

—‘\/_62“ \/;(1+21‘glt+2;!t+ ..+M+...>.

n!
Considering coefficients of s"t™ in the two equal series expansions,
we see that f_ +:H a(§)H w(£)e¥'dE vanishes for m = n, and has the

value 2"n!/x for m = n, in consequence of which the functions
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are orthogonal and the normalization constant has the value
given above.
The first few Hermite polynomials are

Ho(f) =1

Hl(f) = 2£

Hy(§) =48 — 2

Hy(k) = 8¢ — 12¢

H(t) = 1644 — 4882 4 12

Hs(¥) = 328 — 160£® 4 120¢ (11-23)

Ho(¥) = 64£ — 4804 4 72082 — 120

Hi() = 12847 — 13445 4+ 3360£% — 1680%

Hy(f) = 256£% — 3584£% 4 1344084 — 13440¢2 + 1680

Ho(§) = 5128 — 921647 + 483845 — 80640£% + 30240%

Hio(¥) = 1024£1° — 230408 4 161280£° — 403200£* + 30240042
— 30240.

The list may easily be extended by the use of the recursion
formula, Equation 11-15. Figure 11-3 shows curves for the
first few wave functions, i.e., the functions given by Equation
11-20.

By using the generating functions S and 7 we can evaluate
certain integrals involving ¢, which are of importance. For
example, we may study the integral which, as we shall later
show (Sec. 40c), determines the probability of transition from the
state n to the state m. This is

]

]

+ + o
Tam = Vn¥mrdr = &;&‘f H.H e 8tdt. (11-24)

Using S and T we obtain the relation

+ o + o
f STeodg = > S Lgnim | H,Houe ekt

+ o + »
= eznf e“f"“”EdE - ez.:f e~ k—e—0)?
(E—s—td(t—s—1)

+ o
Felo 40 [ etoae — o - ),

The first integral vanishes, and the second gives vV On
expanding the exponential, we obtain
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2! nl
229243 nonsn-1
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Hence, comparing coefficients of s"t™, we see that Z.. is zero
except for m = n + 1, its values then being

Toni1 = ”2'!; 1 (11-25a)

Tamt = ,/2% (11-25b)

It will be shown later that this result requires that transitions
occur only between adjacent energy levels of the harmonic
oscillator, in agreement with the conclusion drawn from the
correspondence principle in Section 5¢.

and

Problem 11-1. Show that if V(—z) = V(z), with V real, the solutions
¥a(z) of the amplitude equation 9-8 have the property that ya( —2z) = tya(z).
Problem 11-2. Evaluate the integrals

(£})nm = [Yn¥mzidz, (%) nm = [Yn¥mzide, (Z)nm = [Yn¥mzridz,

where ¥, 18 a solution of the wave equation for the harmonic oscillator.

Problem 11-8. Calculate the average values of z, x? z3% and z¢ for a
harmonic oscillator in the nth stationary state. Is it true that 7} = (£)3
or that z* = (z?)2? What conclusions can be drawn from these results
concerning the results of a measurement of z?

Problem 11-4. Calculate the average values of p, and p? for a harmonic
oscillator in the nth stationary state and compare with the classical values
for the same total energy. From the results of this and of the last problem,
compute the average value of the energy W = T + V for the nth
stationary state.

Problem 11-5. a. Calculate the zero-point energy of a system consisting
of a mass of 1 g. connected to a fixed point by a spring which is stretched
1 cm. by a force of 10,000 dynes. The particle is constrained to move only
in the z direction.

b. Calculate the quantum number of the system when its energy is about
equal to kT, where k is. Boltzmann’s constant and T = 298° A. This corre-
sponds to thermodynamic equilibrium at room temperature (Sec. 49).
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CHAPTER 1V

THE WAVE EQUATION FOR A SYSTEM OF POINT
PARTICLES IN THREE DIMENSIONS

12. THE WAVE EQUATION FOR A SYSTEM OF POINT PARTICLES

The Schrodinger equation for a system of N interacting point
particles in three-dimensional space is closely similar to that for
the simple one-dimensional system treated in the preceding
chapter. The time equation is a partial differential equation
in 3N + 1 independent variables (the 3N Cartesian coordinates,
say, of the N particles, and the time) instead of only two inde-
pendent variables, and the wave function is a function of these
3N + 1 variables. The same substitution as that used for the
simpler system leads to the separation of the time equation into
an equation involving the time alone and an amplitude equation
involving the 3N coordinates. The equation involving the time
alone is found to be the same as for the simpler system, so that
the time dependency of the wave functions for the stationary
states of a general system of point particles is the same as for
the one-dimensional system. The amplitude equation, however,
instead of being a total differential equation in one independent
variable, is a partial differential equation in 3N independent
variables, the 3N coordinates. It is convenient to say that this
is an equation in a 3N-dimensional configuration space, meaning
by this that solutions are to be found for all values of the 3N
Cartesian coordinates z; - - - 2y from — o to —+«. The
amplitude function, dependent on these 3N coordinates, is said
to be a function in configuration space. A point in configuration
space corresponds to a definite value of each of the 3N coordi-
natesz; - - - 2, and hence to definite positions of the N particles
in ordinary space, that is, to a definite configuration of the
system.

The wave equation, the auxiliary conditions imposed on the
wave functions, and the physical interpretation of the wave
functions for the general system are closely similar to those for
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the one-dimensional system, the only changes being those conse-
quent to the increase in the number of dimensions of configura-
tion space. A detailed account of the postulates made regarding
the wave equation and its solutions for a general system of point
particles is given in the following sections, together with a dis-
cussion of various simple systems for illustration.

12a. The Wave Equation Including the Time.—Let us con-
sider a system consisting of N point particles of masses m;,

mg, - - + , my moving in three-dimensional space under the
influence of forces expressed by the potential function V(z,
Y- - 28 t), 21 - - - zy being the 3N Cartesian coordinates

of the N particles. The potential function V, representing
the interaction of the particles with one another or with an
external field or both, may be a function of the 3N coordinates
alone or may depend on the time also. The former case, with
V = V(x, - - - 2y), corresponds to a conservative system.
Our main interest lies in systems of this type, and we shall soon
restrict our discussion to them.

We assume with Schrédinger that the wave equation for this
system is

o o a2 h o¥
Em <6x2 ar + 5;) TV = —omw (ZD

1=1

This equation is often written as

h ov
E:_Vz VY = —— 2,
¥ ¥ 2my ot

1=1

in which v? is the Laplace operator or Laplacian for the ith
particle.! In Cartesian coordinates, it is given by the expression

ik 92 a?

Vi=—— —_ -

Y 9xf 0 oyt ' 0z}
The wave function ¥ = ¥(z, * * * 2, t) is a function of the

3N coordinates of the system and the time.
It will be noted that the Schrédinger time equation for this
general system is formally related to the classical energy equation
in the same way as for the one-dimensional system of the preced-

1The symbol A is sometimes used in place of v2. The symbol V? is
commonly read as del squared.
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ing chapter. The energy equation for a Newtonian system of
point particles is

H(ps - " pepyo - 2wy ) = T(ps, * - - pe) +

Vizg, - - - 2nt) =W, (12-2)
which on explicit introduction of the momenta pz . . . ps,
becomes

H(pe, © * * Pep - - * 2wy t) = 2 (pz + 2l + pi) +

V(xl ez ) =W, (12-3)

We now arbitrarily replace the momenta p., - - - p.y by
. . h o h 9 .

the differential operators omi oz Ot oay respectively,
and W by the operator —2—h—:t, and introduce the function
¥(x; - - - 2v,t) on which these operators can operate. Tbe
equation then becomes

h o h d
H(é’ﬁé‘?ﬁ ori Bz’ ! """)"

h? 1 h 8¥
“s‘PE?&V?‘I’ + VY = - n 2 (12-4)

i=1

which is identical with Equation 12-1. Just as for the one-
dimensional case, the wave equation is often symbolically
written

HY = WV. (12-5)

The discussion in Section 9a of the significance of this formal
relation is also appropriate to this more general case.

12b. The Amplitude Equation.—Let us now restrict our atten-
tion to, conservative systems, for which V is a function of the 3N
coordinates only. To solve the wave equation for this case,
we proceed exactly as in the simpler problem of Section 9b,
investigating the solutions ¥ of the wave equation which can be
expressed as the product of two functions, one of which involves
only the time and the other only the 3N coordinates: '

Y@y - - v zm t) = Y@ 0 - - zn)e(t). (12-6)
On introducing this expression in Equation 12-1, the wave equa-~
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tion can be separated into two equations, one for ¢(f) and one

for Y(x1 - - - 2v). These equations are
de(t) _  2m
a __h_W‘o(t)
and
N (12-7)
h? 1,
= ;n"iV;\l/ + Vy = Wy.

t=1

The second of these is often written in the form

N
1 82
D+ (W = Vv =0, (12-8)

t=1

This is Schrédinger’s amplitude equation for a conservative
system of point particles.

The auxiliary conditions which must be satisfied by a solution
of the amplitude equation in order that it be an acceptable wave
function are given in Section 9c. These conditions must hold
throughout configuration space, that is, for all values between
— o and + » for each of the 3N Cartesian coordinates of the
system. Just as for the one-dimensional case, it is found that
acceptable solutions exist only for certain values of the energy
parameter W. These values may form a discrete set, a con-
tinuous set, or both.

It is usually found convenient to represent the various succes-
sive values of the energy parameter and the corresponding ampli-
tude functions by the use of 3N integers, which represent 3N
quantum numbers n; - - - ngy, associated with the 3N coordi-
nates. The way in which this association occurs will be made
clear in the detailed discussion of examples in the following
sections of this chapter and in later chapters. For the present

let us represent all of the quantum numbers 7 - - - nsv by
the one letter n, and write instead of Wa, * * * ayandym, * © * ay
the simpler symbols W, and ¥, WP
The equation for ¢(f) gives on integration N
W -
—2ri T ¢ Vv
o) =€ " F, (12-9)

exactly as for the one-dimensional system. The various particu-
lar solutions of the wave equation are hence
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Wn

oz * -z ) =ya(m - - z)e kL (12-10)
These represent the various stationary states of the system. The
general solution of the wave equation is

\I'(xl 2Ny t) = 20«,.‘1’,.(11 © 2N, t) =
n

W

—2xi—2

za,nlf,.(a:l < - o2zn)e "t, (12-11)

in which the quantities a, are constants. The symbol 2 repre-
n
sents summation for all discrete values of W, and integration over

all continuous ranges of values.

12c. The Complex Conjugate Wave Function ¥'*(x, - - - zn,
t).—The complex conjugate wave function ¥*(z, - - - zw, {)
is a solution of the conjugate wave equation

N
2
S e ) +

=l

V*(Zl < 2y t)‘l’*(z;, c 2N, t) -
2wz, - zw ). (12-12)

The general solution of this equation for a conservative system is

V*(zy + + - 2wy t) = Ea,’}‘\ll,f‘(:cl Ce g t) =

DALY

Ea:‘”(xl C e zw)e b (12-13)

12d. The Physical Interpretation of the Wave Functions.—
The physical interpretation of the'wave functions for this general
system is closely analogous to that for the one-dimensional system
discussed in Section 10. We first make the following postulate,
generalizing that of Section 10a:

The quantity ¥*(xy - - - 2y, )¥(x1 - - - 2y, )d2y - - - d2y 18
the probability that the system in the physical sttuation represented
by the wave function ¥(z, - - - 2x, t) have at the time t the configura-

tion represented by a point in the volume element dz, - - - dzx of
configuration space. W*¥ thus serves as a probability distribution
function for the configuration of the system.
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The function ¥(x, - - - 2y, f) must then be normalized to
unity, satisfying the equation

JU*(y - - -z, (21 - - - zw, bdr =1, (12-14)

in which the symbol dr is used to represent the volume element
dz, - - - dzy in configuration space, and the integral is to be
taken over the whole of configuration space. (In the remaining
sections of this book the simple integral sign followed by dr
is to be considered as indicating an integral over the whole of
configuration space.) It is also contvenient to normalize the
amplitude functions y,(z: - - - 2»), according to the equation

Jox(xy + - - zn¥alms * - - 2w)dr = L. (12-15)

It is found, as shown in Appendix III, that the independent
solutions of any amplitude equation (just as for the one-dimen-
sional case) can be chosen in such a way-that any two of them are
orthogonal, satisfying the orthogonality equation

(@1 - - - 2n)¥a(z1 - ¢+ - 2zw)dr = 0, m #= n. (12-16)
A wave function ¥(z, - - - 2w, t) = Ea,.\ll,.(zl - oz, b)) is
then normalized if the coefficients a, satisfy the equation

Sata, = 1. (12-17)

An argument analogous to that of Section 10b shows that the
W

wave functions ¥,.(z; * * * 2x, ) = a2y - * - zN)e_zﬂT‘ give
probability distribution functions which are independent of the
time and hence correspond to stationary states.

A more general physical interpretation can be given the wave
functions, along the lines indicated in Section 10¢, by making
the postulate that the average value of the dynamical function

G(pz, -+ * Dawy %1 - - - 2n, t) predicted for a system in the
physical situation represented by the wave function ¥(z; - - - zw,
t) is given by the integral
h d h 9
= P ) T2 (L LA R
G = f Y & t)G(zm' 3z ori 92y’ ! ol ’)
Y(xy * * 2w, t)dr, (12-18)

in which the operator G, obtained from G(pz, + - * Puy, 21 - - * 2w,
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b h o h
TP DY ori 9z T 2mi dzn
operates on the function ¥(z;, - - - 2y, t) and the integration is
extended throughout the configuration space of the system.
Further discussion of the physical interpretation of the wave
functions will be found in Chapter XV.

¢) by replacing p., - 9 —, respectively,

13. THE FREE PARTICLE

A particle of mass m moving in a field-free space provides the
simplest application of the Schrédinger equation in three dimen-
sions. Since V is constant (we choose the value zero for con-
venience), the amplitude equation 12-8 assumes the following
form:

8
vy 4 7;12'" ¥ =0, (13-1)
or, in Cartesian coordinates,
a%p a'ﬂ// \p 8rim .
S WY = (13-2)

This is a partial dlfferentlal equation in three independent
variables z, y, and z. In order to solve such an equation it is
usually necessary to obtain three total differential equations,
one in each of the three variables, using the method of separation
of variables which we have already employed to solve the
Schrodinger time equation (Sec. 9b). We first investigate the
possibility that a solution may be written in the form

¥(z,y,2) = X(2) - Y() - Z(2), (13-3)
where X (z) is a function of z alone, Y (y) a function of y alone,
and Z(z) a function of z alone. If we substitute this expression
in Equation 13-2, we obtain, after dividing through by ¢, the
equation

1d*X | 14d*Y | 1d°Z 81rm

X TYar Tz TR
Since X is a function only of z, the first term does not change
its value when y and z change. Likewise the second term is
independent of r and z and the third term of z and y. Never-
theless, the sum of these three terms must be equal to the con-

=0. (13-4)

stant —S%W for any choice of z, y, z. By holding y and 2
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fixed and varying 2, only the first term can vary, since the others
do not depend upon z. However, since the sum of all the

terms is equal to a constant, we are led to the conclusion that
2

%(fi;f is independent of z as well as of y and 2, and is therefore

itself equal to a constant. Applying an identical argument to
the other terms, we obtain the three ordinary differential
equations

1 d*X 1 d%Y 1d*Z

Xdt Fo ygp —he wmd =k, (13-5)

with the condition

8 2,
kot by + ke = =S W (13-6)
. . 8rim . . .
It is convenient to put k., = ——h’_W"’ which gives the equation
in z the form
a*X  8r'm
dxE + —h—z—W,,X = 0. (13-7)

This is now a total differential equation, which can be solved
by familiar methods. As may be verified by insertion in the
equation, a solution is

X(z) = N, sin {%’R/me‘,(x - xo)}~ (13-8)

Since it contains two independent arbitrary constants N, and x,,
it is the general solution. It is seen that the constant z, defines
the location of the zeros of the sine function. The equations for
Y and Z are exactly analogous to Equation 13-7, and have the
solutions

Y(y) = N, sin {%\/ 2mW,(y — yo)}:
Z(z) = N, sin {'2“1:‘ /ImWa(z — 2) }

The fact that we have been able to obtain the functions
X, Y, and Z justifies the assumption inherent in Equation 13-3.
It can also be proved! that no other solutions satisfying the

1 The necessary theorems are given in R. Courant and D. Hilbert,

‘““Methoden der mathematischen Physik,” 2d ed., Julius Springer, Berlin,
1931.

(13-9)
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boundary conditions can be found which are linearly independent
of these, i.e., which cannot he expressed as a linear combination
of these solutions.

The function Y must now be examined to see for what values of
W = W, + W, + W,it satisfies the conditions for an acceptable
wave function given in Section 9¢. Since the sine function is
continuous, single-valued, and finite for all real values of its
argument, the only restriction that is placed on W is that W,
Wy, W, and therefore W be positive. We have thus reached the
conclusion that the free particle has a continuous spectrum of
allowed energy values, as might have been anticipated from the
argument of Section 9.

The complete expression for the wave function corresponding
to the energy value

is

¥(z,y,2) = N sin {%\/ 2mW .(z — xo)}
- gin {2%\/2mW,,(y - yo)} - gin {27:5\/2mW,(z - zo)}; (13-11)

in which N is a normalization constant. The problem of the
normalization of wave functions of this type, the value of which
remains appreciable over an infinite volume of configuration
space (corresponding to a continuous spectrum of energy values),
is a complicated one. Inasmuch as we shall concentrate our
attention on problems of atomic and molecular structure, with
little mention of collision problems and other problems involving
free particles, we shall not discuss the question further, contenting
ourselves with reference to treatnients in other books.!

In discussing the physical interpretation of the wave functions
for this system, let us first consider that the physical situation is
represented by a wave function as given in Equation 13-11
with W, and W, equal to zero and W, equal to W. The func-

1 A. SomMmerFELD, ‘‘Wave Mechanics,” English translation by H. L.
Brose, pp. 203-295, E. P. Dutton & Co., Inc., New York, 1929; RuARrK and
Urgey, ‘‘Atoms, Molecules, and Quanta,” p. §41, McGraw-Hill Book Com-
pany, Inc., New York, 1930.
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—oxilt
tion! ¥(z, y, 2, t) = N sin {%—:f\/ 2mW(z — xo)}e ™% is then a

set of standing waves with wave fronts normal to the z axis.
The wave length is seen to be given by the equation

A= : (13-12)

In classical mechanics the speed v of a free particle of mass m
moving with total energy W is given by the equation \4mvt = W.
A further discussion of this system shows that a similar inter-
pretation of W holds in the quantum mechanics. Introducing
v in place of W in Equation 13-12, we obtain

h
A= m . (13—13)
This is the de Broglie expression? for the wave length associated
with a particle of mass m moving with speed v.

It is the sinusoidal nature of the wave functions for the free
particle and the similar nature of the wave functions for other
systems which has caused the name wave mechanics to be applied
to the theory of mechanics which forms the subject of this book.
This sinusoidal character of wave functions gives rise to experi-
mental phenomena which are closely similar to those associated
in macroscopic fields with wave motions. Because of such
experiments, many writers have considered the wavelike char-
acter of the electron to be more fundamental than its corpuscular
character, but we prefer to regard the electron as a particle and
to consider the wavelike properties as manifestations of the
sinusoidal nature of the associated wave functions. Neither
view is without logical difficulties, inasmuch as waves and
particles are macroscopic concepts which are difficult to apply to
microscopic phenomena. We shall, however, in discussing the
results of wave-mechanical calculations, adhere to the particle
concept throughout, since we believe it is the simplest upon
which to base an intuitive feeling for the mathematical results
of wave mechanics.

1Tt can be shown that the factors involving ¥ and z in Equation 13-11
approach a constant value in this limiting case.
* L. pE BrogLis, Thesis, 1924; Ann. de phys. 8, 22 (1925).
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The wave function which we have been discussing corresponds
to a particle moving along the z axis, inasmuch as a calculation

of the kinetic energy T. 21 5—p? associated with this motion

shows that the total energy of the system is kinetic energy of
motion in the z direction. This calculation is made by the
general method of Section 12d. The average value of T, is

T 2mf (21”.) PP vdr
2 ?
LAY () v

=W,
or, since in this case we have assumed W to equal W,

T.=W.

II

Similarly we find Tr = Wr = (T.)", which shows, in accordance
with the discussion of Section 10c¢, that the kinetic energy of
motion along the z axis has the definite value W, its probability
distribution function vanishing except for this value.
On the other hand, the average value of p, itself is found on
calculation to be zero. The wave function
W

N sin{ \V2mW(z — xo)} W

hence cannot be interpreted as representing a particle in motion
in either the positive or negative direction along the z axis but
rather a particle in motion along the z axis in either direction,
the two directions of motion having equal probability.

W,
The wave function N cos {2—;\/ 2mW (x — xo)}e_z’"T‘ differs

from the sine function only in the phase, the energy being the
same. The sum and difference of this function and the sine func-
tion with coefficient ¢ are the complex functions
2% o 2nW
Nigh VImPET@ " and Ne
which are also solutions of the wave equation equivalent to the
sine and cosine functions. These complex wave functions
represent physical situations of the system in which the particle
is moving along the z axis in the positive direction with the

- ghﬂ V' 2mW (2 — z0) —2———';th
)
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definite momentum p, = \/2mW or p, = —V2mW, the
motion in the positive direction corresponding to the first of
the complex wave functions and in the negative direction to the
second. This is easily verified by calculation of p, and p’ for
these wave functions.

The more general wave function of Equation 13-11 also
represents a set of standing plane waves with wave length
N = k/\/2mW, the line normal to the wave fronts having the

direction cosines /W ,/W,/W,/W,and \/W./W relative to the

z,y, and z axes.

Problem 13-1. Verify the statements of the next to the last paragraph
regarding the value of p..

14, THE PARTICLE IN A BOX!

Let us now consider a particle constrained to stay inside of a
rectangular box, with edges a, b, and ¢ in length. We can repre-
sent this system by saying that the potential function V(z, y, 2)
has the constant value zero within the region 0 < z < q,
0<y<b and 0 <z < ¢, and that it increases suddenly in
value at the boundaries of this region, remaining infinitely
large everywhere outside of the boundaries. It will be found
that for this system the stationary states no longer correspond to
a continuous range of allowed energy values, but instead to a
discrete set, the values depending on the size and shape of the
box.

Let us represent a potential function of the type described as

V(:C, Y, z) = Vx(x) + Vy(y) + Vz(Z), (14'_1)

the function V.(z) being equal to zero for 0 < 7 < a and to
infinity for x < 0 or z > @, and the functions V,(y) and V.(2)
showing a similar behavior. The wave equation
% 0% oW + 8m>m
oz? 1 ay® T 92? R?
{W = Va(z) — Vily) — Va(2)}¥ =0 (14-2)

is separated by the same substitution

¥(z,y,2) = X(2) - Y(y) - Z2(2) (14-3)

1 Treated in Section 6d by the methods of the old quantum theory.

+
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as for the free particle, giving three total differential equations,
that in = being
EX | 8em
dz? h?
In the region 0 < r < a the general solution of the wave
equation is a sine function of arbitrary amplitude, frequency, and

phase, as for the free particle. Several such functions are repre-
sented in Figure 14-1. All of these are not acceptable wave

(W.— V.2)} X = 0. (14-4)

Vi)
%
w
WX
o -+ J
X=0 X X=0

Fig. 14-1.—The potential-energy function V;(z) and the behavior of X (z) near
the point z = a.

functions, however; instead only those sine functions whose
value falls to zero at the two points £ = 0 and x = a behave
properly at the boundaries. To show this, let us consider the
behavior of Curve A as r approaches and passes the value q,
using the type of argument of Section 9c. Curve A has a finite
positive value as z approaches a, and a finite slope. Its curvature
is given by the equation
2 2,

X W - V@)X, (14-5)
At the point z = a the value of V(z) increases very rapidly and
without limit, so that, no matter how large a value the constant
W, has, W, — V. becomes negative and of unbounded magni-
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tude. The curvature or rate of change of the slope consequently
becomes extremely great, and the curve turns sharply upward
and experiences the infinity catastrophe. This can be avoided
in only one way; the function X(x) itself must have the value
zero at the point # = q, in order that it may then remain bounded
(and, in fact, have the value zero) for all larger values of z.
Similarly the sine function must fall to zero at = 0, as shown
by Curve C. An acceptable wave function X(x) is hence a
sine function with a zero at z = 0 and another zero at z = q,

Nyl el
X
ot -
0
X, 00 nys?
2R (T) X X;(l)' nee2
0
X. (1)1 . ngsd
o el u *

)

1
ne4

X Jx)? N /\ . nged

’ \/ x‘(n?

0

Fi1g. 14-2.—The wave functions X, (2) and probability distribution functions
[Xn,(2)]? for the particle in a box.

thus having an integral number of loops in this region. The
phase and frequency (or wave length) are consequently fixed,
and the amplitude is determined by normalizing the wave func-
tion to unity. Introducing the quantum number n, as the
number of loops in the region between 0 and a, the wave length
becomes 2a/n., and the normalized X(z) function is given by
the expression

X,.(z) = \/gsin ’“;“, ne=1,23, -,
0<z<a, (14-6)

with

Wo = gt (140
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The first four wave functions Xy(z), - - - , Xs(x) are represented
in Figure 14-2, together with the corresponding probability
distribution functions { X,.(z)}2

A similar treatment of the y and z equations leads to similar
expressions for Y, (y) and Z,,(2) and for W, and W,. The com-

116

115

114

113

12

13]

Nynyng= 1]

A —

! AU 3L —all 511
3 — L4y

—
Py i/ N
Origin %

F1a. 14-3.—A geometrical representation of the energy levels for a particle in a
rectangular box.

plete wave function ¥,,.,.(z, ¥, 2) has the form, for values of z,
Y, and z inside the box,

_/S.n,wx.n,ﬂry.nnrz .
Vnanyns (2, ¥, 2) = abe Sin —,— sin == sin = (14-8)

withn, =1,2,3, - - - ;n,=1,2,3, - - - ;n,=1,2,3, - - - ;
and
_ h*/n?  nl  n? ~
Wn;nyn. = Wﬂ; + Wﬂy + Wn. - g-ﬁ(a—é + b_z + EE)' (14 9)
The wave function ¥,,.,. can be described as consisting of
standing waves along the z, y, and z directions, with n, + 1

equally spaced nodal planes perpendicular to the z axis (begin-
ning with £ = 0 and ending with z = a). 7, + 1 nodal planes
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perpendicular to the y axis, and n, + 1 nodal planes perpendicular
to the z axis.

The various stationary states with their energy values may be
conveniently represented by means of a geometrical analogy.
Using a system of Cartesian coordinates, let us consider the

Ny Ny Nz
27 p =4 5lletc,333
26 f————=0p =6 43letc.
24 p— =3 422etc.
22 p= 332etc.
2| p——p =6 42l etc.
19 p————p = 33l etc.
|8 p———————=p =3 4]||etc.
17 p—————0p =3 322etc.
8ma’WT
h?
14 fm——p =6  321,132,213,312,231,123
12 p=1 222
|| [ p =3 311,130,113
9 p—p =3 221,122,212
6 p———p =3 201,120,112
Ifp——p=1 W
0

Fi1g. 14-4.—Energy levels, degrees of degeneracy, and quantum numbers for a
particle in a cubic box.

lattice whose points have the coordinates n./a, n,/b, and n./c,
withn.,=1,2,---;n,=12,-:-;andn=1,2....
This is the lattice defined in one octant about the origin by the
translations 1/a, 1/b, and 1/c, respectively; it divides the octant
into unit cells of volume 1/abc (Fig. 14-3). Each point of the
lattice represents a wave function. The corresponding energy
value is-

h2

8_7” Nanyns)

Wﬂ:ﬂyﬂ. = (14—10)
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in which [,,n, ., is the distance from the origin to the lattice point
n:nyM., given by the equation

}nﬁ n2 nl
ln;n,n, = (? + ‘6",_‘: + -6_2' (14“‘11)

In case that no two of the edges of the box a, b, and ¢ are in
the ratio of integers, the energy levels corresponding to various
sets of values of the three quantum numbers are all different,
with one and only one wave function associated with each.
Energy levels of this type are said to be non-degenerate. 1If,
however, there exists an integral relation among a, b, and c,
there will occur certain values of the energy corresponding to
two or more distinct sets of values of the three quantum numbers
and to two or more independent wave functions. Such an energy
level is said to be degenerate, and the corresponding state of the
system is called a degenerate state. For example, if the box is a
cube, with a = b = ¢, most of the energy levels will be degener-
ate. The lowest level, with quantum numbers 111 (for n.,
ny,, M., respectively) is non-degenerate, with energy 3h?/8ma®.
The next level, with quantum numbers 211, 121, and 112 and
energy 6h?/8ma?, is triply degenerate. Successive levels, with
sets of quantum numbers and degrees of degeneracy (represented
by p), are shown in Figure 14-4. The degree of degeneracy
(the number of independent wave functions associated with a
given energy level) is often called the quantum weight of the
level.

16. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CARTESIAN COORDINATES

Another three-dimensional problem which is soluble in Car-
tesian coordinates is the three-dimensional harmonic oscillator,
a special case of which, the isotropic oscillator, we have treated
in Section 1a by the use of classical mechanics. The more general
system consists of a particle bound to the origin by a force whose
components along the z, y, and z axes are equal to —k.zx, —ky,
and —k.2, respectively, where k., k,, k. are the force constants
in the three directions and z, y, z are the components of the
displacement along the three axes. The potential energy
is thus

V = Mka? + LKhy® + Jok.e?, (15-1)
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which, on introducing instead of the constants k., k,, k. their
expressions in terms of the classical frequencies v, v, v,, becomes

V = 2r*m(vx? + »iy? + »32?), (15-2)
since
k. = 4rtmyl,
k, = h’mvﬁ,} (15-3)
k. = 4r?myl

The general wave equation 12-8 thus assumes for this problem
the form

9 i)
T+ T T+ T W = 2m vl + O = 0,
(154)
which, on introducing the abbreviatiors
2
x =, (15-5a)
2
a, = 4—"hl"y,, (15-5b)
41'.2
& = T n, (15-50)
and
2
a = 4"T’"u., (15-5d)
simplifies to the equation
ik d
o - - =0 (159

To solve this equation we proceed in exactly the same manner
as in the case of the free particle (Sec. 13); namely, we attempt to
separate variables by making the substitution

¥(z,y,2) = X(@) Y() - Z(2). (15-7)

This gives, on substitution in Equation 15-6 and division of the
result by ¢, the equation

2 2 2
(R4~ )+ (35 - )+ (552 ) -0
(15-8)
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It is evident that this equation has been separated into terms
each of which depends upon one variable only; each term is
therefore equal to a constant, by the argument used in Section 13.
We obtain in this way three total differential equations similar
to the following one:
d*X(x)

——(—i-x—z— + ()\z - afxz)X(x) = 0, (15—9)

in which A; is a separation constant, such that
Nt M+ =N (15-10)
Equation 15-9 is the same as the wave equation 11-2 for the
one-dimensional harmonic oscillator which was solved in Section

11. Referring to that section, we find that X(z) is given by the
expression

azxr?

X(x) = ane—THn ( V azx) (15"11)
and that \; is restricted by the relation
A = (2n, + 1)a,, (15-12)

in which the quantum number 7, can assume the values 0, 1,
2, - - - . Exactly similar expressions hold for Y(y) and Z(2)

and for Ay and \,. The total energy is thus given by the equation
Wamn = k{(n: + 28)v: + (ny + 18) vy + (n: + 15)0:}, (15-13)
and the complete wave function by the expression

#’"z"v"l(xi yl Z) =
Nﬂ'nyme—%(a;:2+ayV’+a.zz)H"'(‘\/a_;x)Hny(’\/c_!;y)H,"(‘\/a_;Z) . (15—14)

The normalizing factor has the value

%
N":”yﬂ: — { (a,aya,)” } . (15_15)

rH2nstrutny In, In, |

For the special case of the isotropic oscillator, in which
v: = v = v, = ypand a; = ay = a,, Equation 15-13 for the energy
reduces to the form

W = (n: + ny + n. + 38)hvo = (n + 35)hv,.  (15-16)

n = n; + ny 4+ n, may be called the total quantum number.
Since the energy for this system depends only on the sum of the
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quantum numbers, all the energy levels for the isotropic oscilla-
tor, except the lowest one, are degenerate, with the quantum

weight —(ﬁj&éﬁj—z) Figure 15-1 shows the first few energy

%—-"—'4—— pelb
300,030,003,
2 n=3 p.lo ?/0’02/ ’02,
Pl 201,120,012,
11
W 7] n=e .6 4 200,020,002
thIZ P "{/10’,/01’,01/.’
St o3 100,000,001,
% n:0 pel  nyny,n=000.
0

Fi16. 16-1.—Energy levels, degrees of degeneracy, and quantum numbers for the
three-dimensional isotropic harmonic oscillator.

levels, together with their quantum weights and quantum

numbers.

16. CURVILINEAR COORDINATES

In Chapter I we found that curvilinear coordinates, such as
spherical polar coordinates, are more suitable than Cartesian
coordinates for the solution of many problems of classical
mechanics. In the applications of wave mechanics, also, it is
very frequently necessary to use different kinds of coordinates.
In Sections 13 and 15 we have discussed two different systems,
the free particle and the three-dimensional harmonic oscillator,
whose wave equations are separable in Cartesian coordinates.
Most problems cannot be treated in this manner, however, since
it is usually found to be impossible to separate the equation into
three parts, each of which is a function of one Cartesian coordi-
nate only. In such cases there may exist other coordinate
systems in terms of which the wave equation is separable, so
that by first transforming the differential equation into the proper
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coordinates the same technique of solution may often be
applied.

In order to make such a transformation, which may be repre-
sented by the transformation equations

z = f(u, v, w), (16-1a)
y = g(u, v, w), (16-1b)
z = h(u, v, w), (16-1¢)

it is necessary to know what form the Laplace operator V2 assumes

in the new system, since this operator has been defined only in
Cartesian coordinates by the expression

32 0 9?

2 = i R

V= + dy? ' 922

The process of transforming these second partial derivatives is a

straightforward application of the principles of the theory of

partial derivatives and leads to the result that the operator V2

in the orthogonal coordinate system uvw has the form

1 a qqu a) a Qqu a a Quqv a
2 — e—— | — — ] —_— e ——— —
v quqvqw{8u< Gy OU + o\ ¢, 9v + ow\ ¢, ow ’

(16-2)

in which (163
= () +(2) + ().
e ()@@ wo
e () + () +(2)

Equation 16-3 is restricted to coordinates u, », w which are
orthogonal, that is, for which the coordinate surfaces represented
by the equations u = constant, v = constant, and w = constant
intersect at right angles. All the common systems are of this
type.

The volume element dr for a coordinate system of this type
is also determined when q., ¢., and ¢, are known. It is given by
the expression

dr = dzdydz = ¢.q.qu.dudvdw. (16-5)

In Appendix IV, gu, ¢v, qu, and v? itself are given for a number of
important coordinate systems.
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Mathematicians® have studied the conditions under which the
wave equation is separable, obtaining the result that the three-
dimensional wave equation can be separated only in a limited
number of coordinate systems (listed in Appendix IV) and then
only if the potential energy is of the form

V = quéu(u) + qv@v(v) + qu’w(w);

in which &,(u) is a function of u alone, ®,(v) of v alone, and
&, (w) of w alone.

17. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CYLINDRICAL COORDINATES
The isotropic harmonic oscillator in space is soluble by separa-
tion of variables in several coordinate systems, including Car-
z

e e—
7
S
s
)
~

F1a. 17-1.—Diagram showing cylindrical coordinates.

tesian, cylindrical polar, and spherical polar coordinates. We
shall use the cylindrical system in this section, comparing the
results with those obtained in Section 15 with Cartesian
coordinates.

Cylindrical polar coordinates p, ¢, 2, which are shown in
Figure 17-1, are related to Cartesian coordinates by the equations
of transformation

T = p COS g,
y = psin ¢, (17-1)
2 = 2.

1 H. P. ROBERT80N, Mathematische Annalen 98, 749 (1928); L. P. EisEn-
HART, Ann. Mathematics 85, 284 (1934).
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Reference to Appendix IV shows that V2 in terms of p, ¢, 2 has
the form

af a 1 o2 a?

o) + o+ 2w (17-2)

Consequently, the wave equation 154 for the three-dimensional
harmonic oscillator becomes

1 a( aw) 1 9% . 9% . 8xm

pa\Pap) Tiag T o T p

{(W = 2e'm(v3p* + viz) ¥ =0, (17-3)

when we make v. = v, = v, (only in this case is the wave equa-
tion separable in these coordinates). Making the substitutions

8rm

A= ?W, (17-4a)

a= 4"72"‘%, (17-4b)
and

a = 4"’:mv., (17-4¢)

we obtain the equation
19( oy 1_ ‘})'_ ﬂ — a?? — a2z = -
;5;(’)5;) + pz a‘pz azz + (X a“p azz )‘p - 0' (17 5)
Pursuing the method used in Section 15, we try the substitution
¥ = P() - 2(o) - Z(2), (17-6)

in which P(p) depends only on p, ®(¢) only on ¢, and Z(z) only
on z. Introduction of this into Equation 17-5 and division by ¢
leads to the expression

1 df dP 1 d*% | 1d°Z 22 =
Fp(js(pa;)—}-%w-{-zd—z;—i-)\—ap —ak?=0. (17-7)

The terms of this equation may be divided into two classes:
those which depend only on z and those which depend only on
pand ¢. As before, since the two parts of the equation are func-
tions of different sets of variables and since their sum is constant,
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each of the two parts must be constant. Therefore, we obtain
two equations
d*Z

and
1 df dP 1 d*®
E%("%) g g RN =0, (179)
with
N + A=A

The first of these is the familiar one-dimensional harmonic
oscillator equation whose solutions

Zo(@) = Nug 2 Ho(Va) (17-10)
are the Hermite orthogonal functions discussed in Section 11c.
As in the one-dimensional problem, the requirement that the
wave function satisfy the conditions of Section 9c restricts the
parameter A, to the values

=@+ Da, n=0,1,2 ---. (17-11)

Equation 17-9, the second part of the wave equation, is a

function of p and ¢ and so must be further separated. This

may be accomplished by multiplying through by p% The

second term of the resulting equation is independent of p; it is

therefore equal to a constant, which we shall call —m? The
two equations we obtain are the following:

2
3;“2 +m¥ =0 (17-12)

1df dP b oaa @) B :
pd—p<pdp>+()\ a’p s P =0. (17-13)
The first of these is a familiar equation whose normalized solution
is?

and

®(p) =

1
meim¢. (17"14)
Inasmuch as e is equal to cos me + ¢ sin me, we see that for
arbitrary values of the separation constant m this function is

1 Instead of the exponential, the forms ®(¢) = N cos me and N sin me
may be used. See Section 18b, Chapter V.
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not single-valued; that is, & does not have the same value for
¢ = 0 and for ¢ = 2x, which correspond to the same point in
space. Only when m is a positive or negative integer or zero is
& single-valued, as is required in order that it be an acceptable
wave function (Sec. 9¢); m must therefore be restricted to such
values. ¢ is called a cyclic coordinate (or ignorable coordinate),
these names being applied to a variable which does not occur
anywhere in the wave equation (although derivatives with respect
to it do appear). Such a coordinate always enters the wave
function as an exponential factor of the type given in Equation
17-14.1
The equation for P(p) may be treated by the same general
method as was employed for the equation of the linear harmonic
oscillator in Section 11a. The first step is to obtain an asymp-
totic solution for large values of p, in which region Equation
17-13 becomes approximately
P _ a??P =0 (17-15)
dpg P . 7
The asymptotic solution of this is eiz_p', since this function
satisfies the equation
dze:tgp’
dp?
which reduces to 17-15 for large values of p. Following the
reasoning of Section 11a, we make the substitution

+%51
— (a¥? £ @e ™ =0,

P(s) = ¢ 2f(p) (17-16)
in Equation 17-13. From this we find that f must satisfy the
equation

2
"= 2a0f" + f’ + N = 20)f — —f =0. (17-17)
As before, it is convenient to replace p by the variable
= Vap (17-18)
and f(p) by F(¢), a process which gives the equation
da’F 1dF N m\, .
aE 2£d£— TdE + (; -2 — F)F =0. (17-19)

t ConpoN and MoRrsE, ‘“‘Quantum Mechanics,” p. 72.
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We could expand F directly as a power series in ¢, as in Section
11la. This is not very convenient, however, because the first
few coefficients would turn out to be zero. Instead, we make
the substitution

F(§) = £ D08 = af' +ag+i+ - - -, (17-20)

v=0

in which s is an undetermined parameter and a, is not equal
to zero.

This substitution is, indeed, called for by the character of the differential
equation.! Equation 17-19 is written in the standard form
dar

dF
T + p(E)E—E + q(§)F =0,

daF
the coefficient of d_£2 being unity. The coefficients p and ¢ in Equation

17-19 possess singularities? at ¢ = 0. The singular point ¢ = 0 is a regular
point, however, inasmuch as p(£) is of order 1/¢ and ¢(¢) of order 1/¢2. To
solve a differential equation possessing a regular point at the origin, the
substitution 17-20 is made in general. It is found that it leads to an indicial
equation from which the index s can be determined.

Since we are interested only in acceptable wave functions, we shall ignore
negative values of s. For this reason we could assume F(£) to contain ouly
positive powers of £. Occasionally, however, the indicial equation leads to
non-integral values of s, in which case the treatment is greatly simplified by
the substitution 17-20.

If we introduce the series 17-20 into Equation 17-19 and group
together coeflicients of equal powers of £, we obtain the equation

(s* — mNaog + {(s + 1) — m*}ag
+ [{(s +2)* — m*a: + {Z‘; - 2(s + 1)}ao]£' + -

’
+ [{(s + »)2 — m2la, + {% —2(s+ v — l)}a,_2]£'+"2
+ - =0 (17-21)
Since this is an identity in £, that is, an equation which is true

for all values of ¢, we can show that the coefficient of each power

1 See the standard treatments of the theory of linear differential equations;
for example, Whittaker and Watson, ‘ Modern Analysis,”” Chap. X.
% A singularity for a function p(¢) is a point at which p(£) becomes infinite.
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of £ must be itself equal to zero. This argument gives the set of
equations

(82 — m®a, = 0, (17-22q)
{(s + 1) — m?}a, =0, (17-22b)

’

{(s + »)2 — m?la, + {% —2(s+ v — 1)}a,_2 =0, (17-22c)

ete.

The first of these, 17-22a, is the indicial equation. From it
we see that s is equal to +m or —m, inasmuch as a, is not equal
to zero. In order to obtain a solution of the form of Equation
17-20 which is finite at the origin, we must have s positive, so
that we choose s = +|m|. This value of s inserted in Equation
17-22b leads to the conclusion that ¢, must be zero. Since the
general recursion relation 17-22c¢ connects coefficients whose
subscripts differ by two, and since a, is zero, all odd coefficients
are zero. The even coefficients may be obtained in terms of
ay by the use of 17-22c.

However, just as in the case of the linear harmonic oscillator,
the infinite series so obtained is not a satisfactory wave function
for general values of \’, because its value increases so rapidly with
increasing £ as to cause the total wave function to become
infinite as ¢ increases without limit. In order to secure an
acceptable wave function it is necessary to cause the series to
break off after a finite number of terms. The condition that the
series break off at the term a..£+™! where n’ is an even integer,
is obtained from 17-22¢ by putting n’ + 2 in place of » and equat-
ing the coefficient of a., to zero. This yields the result

N = 2(m| + ' + Da. (17-23)

Combining the expressions for N\, and X' given by Equations
17-11 and 17-23, we obtain the result

A=XN+N=2(m| + 2 + Da+2n + Ba,, (17-24)
or, on insertion of the expressions for A, «, and a,
Wmn'n' = (lml + 'nl + l)hV() + (nz + %)hl/z. (17—25)

In the case of the isotropic harmonic oscillator, with ». = vy,
this becomes
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W, = (n 4+ 38)hv,, n=|m| +n 4+ n,. (17-26)
The quantum numbers are restricted as follows:

m=0, +1, +2, - - -,
n,=0)2,4;6;"'r
n,. =0,1,2, - - -,

These lead to the same quantum weights for the energy levels
as found in Section 15.
The wave functions have the form

Yaimn (0, 0, 2) = Nemoe 2F (v ap)e 2 Ho(Vaz),
17-27)

in which N is the normalization constant and F,,,.,,,.'(\/Zp) is a
polynomial in p obtained from Equation 17-20 by the use of the
recursion relations 17-22 for the coefficients a,. ‘It contains only
odd powers of p if |m| is odd, and only even powers if |m| is
even,

Problem 17-1. The equation for the free particle is separable in many
coordinate systems. Using cylindrical polar coordinates, set up and
separate the wave equation, obtain the solutions in ¢ and 2, and obtain the
recursion formula for the coefficients in the series solution of the p equation.
Hint: In applying the polynomial method, omit the step of finding the
asymptotic solution.

Problem 17-2. Calculate ;f for a harmonic oscillator in a state repre-
sented by ¥nmn, of Equation 1727, Shew that p. is zero in the same state.

Hint: Transform ;%: into cylindrical polar coordinates.

Problem 17-8. The equation for the isotropic harmonic oscillator is
separable also in spherical polar coordinates. Set up the equation in these
coordinates and carry out the separation of variables, obtaining the three
total differential equations.



CHAPTER V

THE HYDROGEN ATOM

The problem of the structure of the hydrogen atom is the most
important problem in the field of atomic and molecular structure,
not only because the theoretical treatment of this atom is simpler
than that of other atoms and of molecules, but also because it
forms the basis for the discussion of more complex atomic sys-
tems. The wave-mechanical treatment of polyelectronic atoms
and of molecules is usually closely related in procedure to that
of the hydrogen atom, often being based on the use of hydrogen-
like or closely related wave functions. Moreover, almost without
exception the applications of qualitative and semiquantitative
wave-mechanical arguments to chemistry involve the functions
which occur in the treatment of the hydrogen atom.

The hydrogen atom has held a prominent place in the develop-
ment of physical theory. The first spectral series expressed by a
simple formula was the Balmer series of hydrogen. Bohr’s
treatment of the hydrogen atom marked the beginning of the old
quantum theory of atomic structure, and wave mechanics had
its inception in Schroédinger’s first paper, in which he gave the
solution of the wave equation for the hydrogen atom. Only
in Heisenberg’s quantum mechanics was there extensive develop-
ment of the theory (by Heisenberg, Born, and Jordan) before
the treatment of the hydrogen atom, characterized by its diffi-
culty, was finally given by Pauli. In later developments, beyond
the scope of this book, the hydrogen atom retains its important
position; Dirac’s relativistic quantum theory of the electron
is applicable only to one-electron systems, its extension to
more complicated systems not yet having been made.

The discussion of the hydrogen atom given in this chapter is
due to Sommerfeld, differing in certain minor details from that
of Schrodinger. It is divided into four sections. In the first,
Section 18, the wave equation is separated and solved by the

polynomial method, and the energy levels are discussed. Sec-
112
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tions 19 and 20 include the definition of certain functions, the
Legendre and Laguerre functions, which occur in the hydrogen-
atom wave functions, and the discussion of their properties. A
_detailed description of the wave functions themselves is given
in Section 21.

18. THE SOLUTION OF THE WAVE EQUATION BY THE POLY-
NOMIAL METHOD AND THE DETERMINATION OF
THE ENERGY LEVELS

18a. The Separation of the Wave Equation. The Transla-
tional Motion.—We consider the hydrogen atom as a system of
two interacting point particles, the interaction being that due
to the Coulomb attraction of their electrical charges. Let us
for generality ascribe to the nucleus the charge +Ze, the charge
of the electron being —e. The potential energy of the system,

2
in the absence of external fields, is __ZTe’ in which r is the distance

between the electron and the nucleus.

If we write for the Cartesian coordinates of the nucleus and
the electron x,, y1, 21 and x2, ¥s, 22, and for their masses m, and
ma, respectively, the wave equation has the form

1/0%r , 0%r , W1 1/0%r , 0%r , OWr
) 2 )

1\ 9z2 922 3 T a2

87?2
+ F(WT - Viyr =0, (18-1)
in which
V= — Ze?

'\/(x2 —2)2 4 (Y2 — Y1) + (22 — 21)?

Here the subscript T (signifying total) is written for W and ¢ to
indicate that these quantities refer to the complete system, with
six coordinates.

This equation can be immediately separated into two, one of
which represents the translational motion of the molecule as a
whole and the other the relative motion of the two particles.
In fact, this separation can be accomplished in a somewhat more
general case, namely, when the potential energy V is a general
function of the relative positions of the two particles, that is,
V = V(@ — x1, Y2 — Y1, 22 — 21). This includes, for example,
the hydrogen atom in a constant electric field, the potential
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energy due to the field then being eEz; — e¢Ez = eE(22 — 2,),
in which E is the strength of the field, considered as being in the
direction of the z axis.

To effect the separation, we introduce the new variables
z, y, and 2, which are the Cartesian coordinates of the center of
mass of the system, and r, ¢, and ¢, the polar coordinates of the
second particle relative to the first. These coordinates are
related to the Cartesian coordinates of the two particles by the
equations

mx; + MaTz

= 18-2a
m; + my (18-2a)
my, + My
= 41 ° A, 18-2b
Yy pra———— (18-2b)
_ Mz + maz, _

z = T (18—2¢)
rsin 4 cos ¢ = T2 — Ty, (18-2d)
rsin #sin ¢ = y; — Yy, (18-2¢)

rcosd = 2y — 21. (18-2f)

The introduction of these new independent variables in
Equation 18-1 is easily made in the usual way. The resultant
wave equation is

1 (3%  o%r 0%\ . 1(1 8/ ,3¢r
m+ m2< T oy T az2> + ;{ﬁ ?9?(’%?)

1 8% 1 a/. .Yz
T sinio op T 12 sinﬂ?ﬁ(sm EX) >}

+ S We = V(r, 9, 9)¥r = 0. (18-3)

In this equation the symbol x has been introduced to represent
the quantity

- _Mums 1_1 1\
B =+ ma (or; Tmy +m2>’ (18-4)

u is the reduced mass of the system, already discussed in Section
2d in the classical treatment of this problem.

It will be noticed that the quantity in the first set of parentheses
is the Laplacian of yr in the Cartesian coordinates z, y, and 2z,
and the quantity in the first set of braces is the Laplacian in the
polar coordinates r, 4, and ¢ (Appendix IV).
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We now attempt to separate this equation by expressing yr
as the product of a function of z, y, z and a function of
r, ¢, ¢, Writing

‘pT(x; Y, 27, t’) ¢P) = F(x) Y, Z)ll/(?', 0; ¢)' (18_5)

On introducing this in Equation 18-3 and dividing through by
¥r = Fy, it is found that the equation is the sum of two parts,
one of which is dependent only on z, y, and z and the other
only on r, 4, and ¢. Each part must hence be equal to a con-
stant. The resulting equations are

QPF  PF T . 8Sx(mi + my)

and

1 i(,mf’!) + 1 i + 1 9 <sin 0§£>

r29r\ or r2sin? d d¢? | rZsin J 09
8y
+5EW — Ve, 8, ol =0, (18-7)
with
We+ W =W (18-8)

Equation 18-6 is identical with Equation 13-2 of Section 13,
representing the motion of a free particle; hence the translational
motion of the system is the same as that of a particle with mass
my + me equal to the sum of the masses of the two particles.
In most problems the state of translational motion is not impor-
tant, and a knowledge of the translational energy W, is not
required. In our further discussion we shall refer to W, the
energy of the system aside from the translational energy, simply
as the energy of the system.

Equation 18-7 is identical with the wave equation of a single
particle of mass p under the influence of a potential function
V(r, ¥, ). This identity corresponds to the classical identity of
Section 2d (Eqs. 2-25).

If we now restrict ourselves to the case in which the potential
function V is a function of r alone,

V= V(T):
Equation 18-7 can be further separated. We write
v(r, 9, ¢) = R(r) - 6(8) - B(); (18-9)
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on introducing this in Equation 18-7 and dividing by RO®, it
becomes

1 d dR>+ 1 a2 1 df. de
7R ar\” dr rtgin2 9P de? ' r?sin 90O dd do

+ 8;:2“{W - V(@) =0. (18-10)

On multiplying through by r?sin? ¢, the remaining part of the
2
second term, %3—;, which could only be a function of the inde-

pendent varijable ¢, is seen to be equal to terms independent of ¢.
Hence this term must be equal to a constant, which we call —m?:

d

The equation in ¢ and 7 then can be written as

1df ,dR m? 1 d de 8w2ur?
Rdr( dr) ~ s’ T snoe d0< sin "da) T

{W—-V(@®} =0.

The part of this equation containing the second and third terms
is independent of r and the remaining part is independent of ¥,
so that we can equate each to a constant. If we set the ¢ terms
equal to the constant —@3, and the r terms equal to +8, we
obtain the following equations, after multiplication by 6 and
by R/r?, respectively:

1 d a8

and .
AR B 87r u .

e dr( dr) SR+ —-{W — V(r)}R = 0. (18-13)
Equations 18-11, 18-12, and 18-13 are now to be solved
in order to determine the allowed values of the energy.
The sequence of solution is the following: We first find that
Equation 18-11 possesses acceptable solutions only for certain
values of the parameter m. Introducing these in Equation 18-12,

we find that it then possesses acceptable solutions only for
certain values of §. Finally, we introduce these values of 8
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in Equation 18-13 and find that this equation then possesses
acceptable solutions only for certain values of W. These are the
values of the energy for the stationary states of the system.

It may be mentioned that the wave equation for the hydrogen
atom can also be separated in coordinate systems other than the
polar coordinates r, ¢, and ¢ which we have chosen, and for some
purposes another coordinate system may be especially appro-
priate, as, for example, in the treatment of the Stark effect,
for which (as shown by Schrodinger in his third paper) it is
convenient to use parabolic coordinates.

18b. The Solution of the ¢ Equation.—As was discussed in
Section 17, the solutions of Equation 18-11, involving the cyclic
coordinate ¢, are

B(p) = \/lﬂei"“’. (18-14)

In order for the function to be single-valued at the point ¢ = 0
(which is identical with ¢ = 2r7), the parameter m must be equal
to an integer. The independent acceptable solutions of the ¢
equation are hence given by Equation 18-14, with m = 0,
+1, +2,---, =1, =2, -+ ; these values are usually
written as 0, +£1, +2, - - - , it being understood that positive
and negative values correspond to distinct solutions.

The constant m is called the magnetic quantum number. It is
the analogue of the same quantum number in the old-quantum-
theory treatment (Sec. 7b).

The factor 1/4/2x is introduced in order to normalize the
functions ®,(¢), which then satisfy the equation

e (@) @nle)de = 1. (18-15)

It may be pointed out that for a given value of |m| (the
absolute value of m), the two functions ®,,(¢) and ®_,(¢)
satisfy the same differential equation, with the same value of the
parameter, and that any linear combination of them also satisfies
the equation. The sum and the difference of these two functions
are the cosine and sine functions. It is sometimes convenient
to use these in place of the complex exponential functions as the
independent solutions of the wave equation, the normalized
solutions then being
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) 1
Do(e) = \-/3;7

1 cos |m| o, (18-16)
q)|m|(¢) = 11!'

V;Sin 1™ @, Im| =1,2,8, - - - .

There is only one solution for |m| = 0. These functions are
normalized and are mutually orthogonal. _

It is sometimes convenient to use the symbol m to represent
the absolute value of the magnetic quantum number as well
as the quantum number itself. To avoid confusion, however,
we shall not adopt this practice but shall write |m| for the
absolute value of m.

18c. The Solution of the & Equation.—In order to solve the
d equation 18-12, it is convenient for us to introduce the new
independent variable

z = cos ¢, (18-17)

which varies between the limits —1 and +1, and at the same time
to replace 6(#) by the function P(z) to which it is equal:

P(z) = 0(9). -(18-18)
Noting that sin? ¢ = 1 — 22 and that

do _dPd: _ _dP .
W - dd T &
we see that our equation becomes

;%{(1 - z’)é%%z—)} - {B - T%%;,}P(z) —0. (18-19)

On attempting to solve this equation by the polynomial method,
it is found that the recursion formula involves more than two
terms. If, however, a suitable substitution is made, the equa-
tion can be reduced to one to which the polynomial method can
be applied.

The equation has singular points at z = +1, both of which are regular
points (see Sec. 17), so that it is necessary to discuss the indicial equation
at each of these points. In order to study the behavior near z = +1, it is
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convenient to make the substitution z = 1 — z, R(z) = P(z), bringing this
point to the origin of z. The resulting equation is

d dR m?
;i;{z(Z - z)d—z‘} + {B — z—(2 — z)} R =0.

L]
If we substitute R = z* Za,z" in this equation, we find that the indicial

v=0
equation (see Sec. 17) leads to the value [m|/2 for s. Likewise, if we investi-
gate the point z = —1 by making the substitution y = 1 + 2z and similarly

study the indicial equation at the origin of y, we find the same value for the
index there.

The result of these considerations is that the substitution
m| |m| Im|
P(2) = xlflyLélG(z) = (1 —29)2G(2) (18-20)

is required. On introducing this into Equation 18=19, the differ-
ential equation satisfied by G(z)—which should now be directly
soluble by a power series—is found to be
(1 — 296" — 2(Im| + D26’ +
{8 — Im|(Im| + 1)}G =0, (18-21)

in which G’ represents g—f and G'' represents Fr

This equation we now treat by the polynomial method, the
successive steps being similar to those taken in Section 11 in the
discussion of the harmonic oscillator. Let

G=ar+ a2+ a2> +agz* + - - -, (18-22)

with G’ and G’’ similar series obtained from this by differentiation.
On the introduction of these in Equation 18-21, it becomes

1-2a; +2-3asz + 3-4a22 + 4-5a52> + -+ -
—1:2ay2%2 — 2-3a32> — - - -

—=2(|m| + az —2-2(Jm| 4+ 1)as2? —2-3(|m| + 1)asz® — - - -
+1{B — [m|(Im| + D}ao + {}a:iz + {}az® + {}asz®* + - - - =0,
in which the braces {} represent {8 — |m|(|m| 4+ 1)}. This
equation is an identity in 2, and hence the coefficients of indi-
vidual powers of z must vanish; that is,

1'202 + {}ao = 0,

2-3as + ({} — 2(Im| + 1))a, =0,

3-das+ ({} —2-2(m| +1) — 1-2)a, =0,

4-5a5 + ({} —2-3(Im| +1) —2-3)a; =0,
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or, in general, for the coefficient of 2,

(v + 1) + 2)a,42 + [{8 — |m[(Im] 4 1)}
— 2¥(lm| + 1) — v(v — D]a, = V.

This leads to the two-term recursion formula

wnn = @A IMD 4 [m| 1) — 8
v G+ D0 +2)

between the coefficients a,; and a, in the series for G.

It is found on discussion by the usual methods! that an infinite
series with this relation between alternate coefficients converges
(for any values of |m| and B8) for —1 < z < 1, but diverges for
2 = +1 or —1, and in consequence does not correspond to an
acceptable wave function. In order to be satisfactory, then,
our series for @ must contain only a finite number of terms.
Either the even or the odd series can be broken off at the term
in 2’ by placing

ﬁ:(y’+|m|)(u’+lm|+l), ”I=071121"'»

a, (18-23)

and the other series can be made to vanish by equating a, or a,
to zero. The characteristic values of the parameter 8 are thus
found to be given by the above expression, the corresponding
functions G(z) containing only even or odd powers of z as »
is even or odd.

It is convenient to introduce the new quantum number

l=v 4+ |m (18-24)
in place of »’, the allowed values for I being (from its definition)
|m|, |m| + 1, |m| +2, - - - . The characteristic values of §
are then .

g =11+1), l=m|,|m +1, ---. (18-25)

l is called the azimuthal quantum number; it is analogous to the
quantum number k of the old quantum theory. Spectral states
which are now represented by a given value of I were formerly
represented by a value of k one unit greater, ¥ = 1 corresponding
tol = 0, and so on.

L R. CouranT and D. HiLBERT, ‘‘ Methoden der mathematischen Physik,”
2d ed.,Vol. I, p. 281, Julius Springer, Berlin, 1931.
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We have now shown that the allowed solutions of the ¢ equa-
tion are 6(8) = (1 — 2*)"?G(2), in which G(2) is defined by
the recursion formula 18-23, with 8 = I(I + 1). It will be shown
in Section 19 that the functions O(¢) are the associated Legendre
functions. A description of the functions will be given in
Section 21.

18d. The Solution of the r Equation.—Having evaluated 8 as
I(l + 1), the equation in r becomes

1df dR Il+1)
r? dr(r dr) + [_ A T

8’”‘1W - V(r)}] —0, (18-26)

in which V(r) = —Ze?/r, Z being the atomic number of the atom.
It is only now, by the introduction of this expression for the
potential energy, that we specialize the problem to that of the
one-electron or hydrogenlike atom. The discussion up to this
point is applicable to any system of two particles which interact
with one another in a way expressible by a potential function
V(r), as, for example, the two nuclei in a diatomic molecule after
the electronic interactions have been considered by the Born-
Oppenheimer method (Sec. 35a).

Let us first consider the case of W negative, corresponding to
a total energy insufficient to ionize the atom. Introducing the
symbols

. 8riuW
a® = —T
and (18-27)
\ = 4r2ule?
ha

and the new independent variable
p = 2ar, (18-28)
the wave equation becomes

1d[ dS 1 W41, N,
= __(pz_._) + {__1 — o + ;}S =0,
0<p S, (18-29)
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in which S(p) = R(r). As in the treatment of the harmonic
oscillator, we first discuss the asymptotic equation. For p
large, the equation approaches the form
a8 1
&7~ 2>
the solutions of which are

+2 _r
S=¢e 2and S =¢ 2

Only the second of these is satisfactory as a wave function.
We now assume that the solution of the complete equation
18-29 has the form

S(p) = e 2F(p). - (18-30)
The equation satisfied by F(p) is found to be
P +(z_ 1)F,+{§_l_<l_;l_> _l}p —o,
P P e p

0<p< w. (1831)

The coefficients of F' and F possess singularities at the origin,
which is a regular point (cf. Sec. 17), so that we again make the
substitution

F(p) = p'L(p), (18-32)

in which L(p) is a power series in p beginning with a non-vanishing
constant term:

L(p) = D, a0 #0. (18-33)

Since
F'(p) = sp'L + p'L’
and
F"(p) = s(s — 1)p*~*L + 28p*~'L’ + p’L",

Equation 18-31 becomes
p L + 2sp*+L’ + s(s — 1)p'L
+ 2p*t1L" 4 2sp’L
—_— pl+2L' —_ spl+lL
+ AN=Dp*L -l +1)p'L =0 (18-34)
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Since L begins with the term a,, the coefficient of p* is seen to be
{s(s = 1) +2s — I(l + 1)}a,, and, since a, does not vanish,
the expression in braces must vanish in order for Equation 18-34
to be satisfied as an identity in p. This gives as the indicial
equation for s:

s(s+1)—Il+1)=0, or s=+4I or —(+1). (18-35)

Of the two solutions of the indicial equation, the solution
s = —(l 4+ 1) does not lead to an acceptable wave function.
We accordingly write

F(p) = p'L(p), (18-36)

and obtain from 18-34 the equation

oL + {20+ 1) — p}L' + (A —1—1L =0, (18-37)
after substituting I for s and dividing by p'*!. We now introduce
the series 18-33 for L in this equation and obtain an equation
involving powers of p, the coefficients of which must vanish
individually. These conditions are successively

N\ =1—1)a+ 2( + 1)a, =0,
AN=1—-1—-1a +{2-20+1) +1-2}a, =0,
N—=101—1—-2)a;+ {3-20+1)+2-3}az =0

or, for the coefficient of p,

AN=Il-1=wa+ {20+ 1)1+1) + v+ 1}au =0.
(18-38)
It can be shown by an argument similar to that used in Section
11a for the harmonic oscillator that for any values of A and [ the
series whose coefficients are determined by this formula leads to
a function S(p) unacceptable as a wave function unless it breaks
off. For very large values of v the successive terms of an infinite
series given by 18-38 approach the terms of the expansion
of e, which accordingly represents the asymptotic behavior of
the series. This corresponds to an asymptotic behavior of
P
2

')
S(p) = e 2p'L(p) similar to e+§, leading to the infinity catastrophe
with increasing p.
Consequently the series must break off after a finite number
of terms. The condition that it break off after the term in p* is
seen from Equation 18-38 to be
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A=1l—-1—-7n"=0
or
\=mn, where n=n"4+1+4+1. (18-39)

n’ is called the radial quantum number and n the total quantum
number. From its nature it is seen that n’ can assume the values
0,1, 2 3, - - . The values of n will be discussed in the next
section.

In this section we have found the allowed solutions of the

0
7 equation to have the form R(r) = e 2p'L(p), in which L(p) is
defined by the recursion formula 18-38, with A = n. It will
be shown in Section 20 that these functions are certain associated
Laguerre functions, and a description of them will .be given in
Section 21.
18e. The Energy Levels.—Introducing for \ its value as given
in Equation 18-27, and solving for W, it is found that Equation
18-39 leads to the energy expression
W. o 2wl _ _RheZ' __Z°

hin? n? n?

Wy, (18-40)

in which
_ 2m%pet

R = Wie and Wy = Rhe.

This expression is identical with that of the old quantum theory
(Eq. 7-24), even to the inclusion of the reduced mass u. It is
seen that the energy of a hydrogenlike atom in the state repre-
sented by the quantum numbers n’, [, and m does not depend on
their individual values but only on the value of the total quantum
number n = n' 41 4+ 1. Inasmuch as both n’ and ! by their
nature can assume the values 0,.1, 2, - - -, we see that the
allowed values of n are 1, 2, 3, 4, - - . , as assumed in the old
quantum theory and verified by experiment (discussed in
Sec. 7b).

Except for n = 1, cach energy level is degenerate, being
represented by more than one independent solution of the wave
equation. If we introduce the quantum numbers n, !, and m
as subscripts (using n in preference to n’), the wave functions
we have found as acceptable solutions of the wave equation
may be written as

1/’n’m(r) 0! ‘p) = Rnl(r)elm(o)q)"l(ﬂo)) (18_41)
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the functions themselves being those determined in Sections
18b, 18¢, and 18d. The wave functions corresponding to distinet
sets of values for n, I, and m are independent. The allowed
values of these quantum numbers we have determined to be

m=0, 1, +2, - - -,
l=[m|)]m|+lrlm]+2:7
n=1l+114+2143 .

This we may rewrite as

total quantum number n =1,2,3, - - -,
azimuthal quantum number I =0,1,2, - - - , n — 1,
magnetic quantum number m = -1, -l 4+ 1, - - -, —1, 0,
+1, 0, =1, L

There are consequently 2! + 1 independent wave functions with
given values of n and [, and n? independent wave functions with
a given value of n, that is, with the same energy value. The
2] + 1 wave functions with the same n and [ are said to form a
completed subgroup, and the n? wave functions with the same n a
completed group. The wave functions will be described in the
following sections of this chapter.

A similar treatment applied to the wave equation with W
positive leads to the result that there exist acceptable solutions
for all positive values of the energy, as indicated by the general
discussion of Section 9¢. It is a particularly pleasing feature of
the quantum mechanics that a unified treatment can be given
the continuous as well as the discrete spectrum of energy values.
Because of the rather complicated nature of the discussion of the
wave functions for the continuous spectrum (in particular their
orthogonality and normalization properties) and of their minor
importance for most chemical problems, we shall not treat them
further.!

19. LEGENDRE FUNCTIONS AND SURFACE HARMONICS

The functions of # which we have obtained by solution of the
¢ equation are well known to mathematicians under the name of
associated Legendre functions.? The functions of 9 and ¢ are

1 See SOMMERFELD, ‘‘ Wave Mechanics,” p. 290.
2 The functions of ¢ for m = 0 are called Legendre functions. The asso-
ciated Legendre functions include the Legendre functions and additional
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called surface harmonics (or, in case cosine and sine functions of
¢ are used instead of exponential functions, tesseral harmonics).
We could, of course, proceed to develop the properties of these
functions from the recursion formulas for the coefficients in the
polynomials obtained in the foregoing treatment. This would
be awkward and laborious, however; it is simpler for us to define
the functions anew by means of differential expressions or
generating functions, and to discuss their properties on this basis,
ultimately proving the identity of these functions with those
obtained earlier by application of the polynomial method.

19a. The Legendre Functions or Legendre Polynomials.—The
Legendre functions or Legendre polynomials P;(cos ¢) = Py(z)
may be defined by means of a generating function T'(¢, z) such
that

1

iy il 19__1
V1 =2 + 2 ( )

T, 2) = EP,(z)zt =
1=0
As in the case of the Hermite polynomials (Sec. 1lc), we
obtain relations among the polynomials and their derivatives by
differentiating the generating function with respect to ¢ and to z.
Thus on differentiation with respect to ¢, we write

oT _ e 33(—22+20)
i IEZP“ = TU =2 + 0B
=0

or

(1 — 22t + ) DUP ¢ = (z — ) D Pu
l l

(the right side having been transformed with the use of Equation
19-1), and consequently, by equating coefficients of given powers
of ¢ on the two sides, we obtain the recursion formula for the
Legendre polynomials

(1 + DPun(e) — (2 + 1)zPi(2) + Pia(z) = 0. (19-2)

Similarly, by differentiation with respect to 2, there is obtained
aT _ ' t
%= Dbt = e
1

functions (corresponding to |ml > 0) conveniently defined in terms of the
Legendre functions.




V-18b] LEGENDREFUNCTIONS AND SURFACE HARMONICS 127

or

(1 — 2zt + t’)zP; = tEP,t’,
{ l

which gives the relation
Pl \(2) — 22P((2) + P{_y(z) — Py(2) =0 (19-3)

involving the derivatives of the polynomials. Somewhat simpler
relations may be obtained by combining these. From 19-2
and 19-3, after differentiating the former, we find

zPi(2) — P/_,(2) — IP)(2) = 0 (19-4)
and
P 1(2) — 2Pi(2) — (I + 1)Py(2) = 0. (19-5)

We can now easily find the differential equation which P,(z)
satisfies. Reducing the subseript I to I — 1 in 19-5, and sub-
tracting 19—4 after multiplication by 2, we obtain

(1 —2)P; + P, — IP;,_, =0,

which on differentiation becomes
P
gg{(l - 22)‘_1$} + IPi(2) + 12Pj(z) — IP]_,(2) = 0.

The terms in P} and P;_, may be replaced by I2P,, from 19-4,
and there then results the differential equation for the Legendre
polynomials

%{(1 _ zz)ii%zizl} FUl+ DPie) =0, (19-6)

19b. The Associated Legendre Functions.—We define the
associated Legendre functions of degree ! and order |mj (with
values! =0,1,2, - - -and jm| =0, 1, 2, - - - , 1) in terms of
the Legendre polynomials by means of the equation

Im|

Pri(z) = (1 — zz)'""/zd Py(2). (19-7)

dzlml

(It is to be noted that the order |m| is restricted to positive values
(and zero); we are using the rather clumsy symbol |m| to represent
the order of the associated Legendre function so that we may
later identify m with the magnetic quantum number previously
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introduced.] The differential equation satisfied by these func-
tions may be found in the following way. On differentiating
Equation 19-6 |m| times, there results

P,(2 dm+1P, (5
a- 2) dz |m|+2( ) - 2(Im| + l)zﬁ—)
d»p
+ 0+ 1) = il + D15 0 08)
as the differential equation satisfied by d lel(lz) With the

use of Equation 19-7 this cquation is casily transformed into

1 - )d Z‘Z2(2) ZdPg:(Z) {l(l +1) - ___i. }plm(z)

=0, (19-9)

which is the differential equation satisfied by the associated
Legendre function P}"i(z).

This result enables us to identify! the ¢ functions of Section
18¢ (except for constant factors) with the associated Legendre
functions, inasmuch as Equation 19-9 is identical with Equation
18-19, except that P(z) is replaced by P™(z) and 8 is replaced
by I(l 4+ 1), which was found in Section 18¢ to represent the
characteristic values of 8. Hence the wave functions in ¢
corresponding to given values of the azimuthal quantum number [
and the magnetic quantum number m are the associated Legendre
functions Pi™(z).

The associated Legendre functions are most casily tabulated by
the use of the recursion formula 19-2 and the definition 19-7,
together with the value PJ(z) = 1 as the starting point. A
detailed discussion of the functions is given in Section 21.

For some purposes the generating ‘function for the associated
Legendre functions is useful. It is found from that for the
Legendre polynomials to be

” 2 (1 — 2z2)Imlrzgim
Tim(z, 1) = EP'{"'(Z)H = 21m|((l,,I:|r)tl!)(1( - 2;)_*_ DR

(19-10)

I=|m|

! The identification is completed by the fact that both functions are formed
from polynomials of the same degree.
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In Appendix VI it is shown that

+1 0forl =1,
[ Prpr@e = 2 abim
- @+ 10— m)!
Using this result, we obtain the constant necessary to normalize

the part of the wave function which depends on ¢. The final
form for O(9) is

0(d) = \/@l + D= mD pmieos 9, (19-12)

=1 (19-11)

2 (+mp!
Problem 19-1. Prove that the definition of the Legendre polynomials
Po(z) = 1, l
1 di(z2 — 1) (19-13)
P = , =1 . e
[(2) 2'” dzl l ’ 27 v‘

is equivalent to that of Equation 19-1.
Problem 19-2. Derive the following relations involving the associated
Legendre functions:

1
— 2\ repimi-1 plml _ |m|
(I —22)72P™"(2) = @A+ D Pi(2) @ + 1)P,_,(z), (19-14)
I+ I+ +1
(1 = pimine) = Im(gz(+ 1|)mI Pl a) —
U—WW%4M+U|M

and

2P"l(z) = (l_-f—__|_mi) Pl (2) + ;)ml_-*__)_lel(z). (19-16)

2 +1) @ +1)

20. THE LAGUERRE POLYNOMIALS AND ASSOCIATED LAGUERRE
FUNCTIONS
20a. The Laguerre Polynomials.—The Laguerre polynomials
of a variable p, within the limits 0 < p < «, may be defined by
means of the generating function
U

Ulp, u) = EL o), o ¢ (20-1)

r! 1—u
r=0

To find the differential equation satisfied by these polynomials
L,(p), we follow the now familiar procedure of differentiating the
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au
generating function with respect to » and to p. From oa Ve

obtain

puU

L.(p) _6_““_ P _ P 1
(r—-l)' 1—u\ 1—2 @A—-w? 1-—u

r

or
1 -2u+ u’)E( L. (pi)ﬂ"'_l = = p) EL (p)

from which there results the recursion formula

Lesa(p) + (p — 1 = 2r)Le(p) + r°Lr—a(p) = 0.  (20-2)

Similarly from oy we have

dp
Lip) , _ _ u L:(p), .
ET" =71z uE r!
Or r r
Ll(p) — rL]_y(p) + rLr—1(p) = 0, (20-3)

in which the prime denotes the derivative with respect to p.
Equation 20-3 may be rewritten and differentiated, giving

Lii(p) = (r + D{L;(p) — L+(p)}

Lii(p) = (r + D{L/(p) — Li(p)},

with similar equations for L/ ,(p) and L},(p). Replacing r by
r 4+ 1 in Equation 20-2 and differentiating twice, we obtain
the equation

Lis(p) + (p — 3 — 2r)L74,(0) + (r + 1)2L"(p) + 2L;,,(p) = 0.

With the aid of the foregoing expressions this is then transformed
into an equation in L,(p) alone,

pL{(p) + (1 — p)L;(p) + rL.(p) = 0, (20-4)

which is the differential equation for the rth Laguerre polynomial.

and

Problem 20-1. Show that L,(p) = e"‘—;—i: (p7e™?).
"
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20b. The Associated Laguerre Polynomials and Functions.—
The sth derivative of the rth Laguerre polynomial is called the
associated Laguerre polynomial of degree r — s and order s:

Lip) = dip',L,<p>. (20-5)

The differential equation satisfied by Li(p) is found by differ-
entiating Equation 204 to be

pLy"(p) + (s + 1 — p)Lt'(p) + (r — s)L2(p) = 0. (20-6)

If we now replace r by n + [ and s by 2] 4+ 1, Equation 20-6
becomes

oL () + {21 + 1) — p}L3H (o)
+ (n — 1 = DLIHY(p) = 0. (20-7)
On comparing this with Equation 18-37 obtained in the treat-
ment of the 7 equation for the hydrogen atom by the polynomial
method, we see that the two equations are ideutical when
L¥}5(p) is identified with L(p) and the parameter \ is replaced
by its characteristic value n. The polynomials obtained in the
solution of the r equation for the hydrogen atom are hence the
associated Laguerre polynomials of degree » — ! — 1 and of
order 21 + 1. Moreover, the wave functions in r are, except for
normalizing factors, the functions

P
e 2p'L3H(p).
These functions are called the associated Laguerre functions.
We shall discuss them in detail in succeeding sections.
It is easily shown from Equation 20-1 that the generating
function for the associated Laguerre polynomials of order s is!?

@ fidad

Ui, u) = EL 10y = (1) (T;_——)"—Hu (20-8)

T3

The polynomials can also be expressed explicitly:
n—1-1

l B . {(n + D)2
L¥H(e) = 2 (=1 “(n I 1-Ri2+ 1+ k)'k!p
(20-9)

1 This was given by Schrodinger in his third paper, Ann. d. Phys. 80, 485
(1926).
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In Appendix VII, it is shown that the normalization integral
for the associated Laguerre function has the value

" o2l (T 241 22y, _ 2nf(n +D}°
J;epl{L+(P)}Pd m’

the factor p? arising from the volume element in polar coordinates.
From this it follows that the normalized radial factor of the wave
function for the hydrogen atom is

(20-10)

= — Lu_l_) 2 17 21
Rnl(r) = \[(nao> zn{(n ¥ l)'} 3€ Ln‘:-ll(P)y (20—11)
with
_ _ 8w*uZe* 27
p = 2ar = o r = ——naor. (20-12)

Problem 20-2. Derive relations for the associated Laguerre polynomials
and functions corresponding to those of Equations 20-2 and 20-3.

21. THE WAVE FUNCTIONS FOR THE HYDROGEN ATOM

21a. Hydrogenlike Wave Functions.—We have now found
the wave functions for the discrete stationary states of a one-
electron or hydrogenlike atom. They are

'l/nlm(ry 4, <P) = Rnl("‘)elrn(ﬁ)d)m(‘p)) (21_1)

with
Do) = \/276”"“’ (21-2)
Oim(d) = {(_%;kab } P (cos ¥), (21-3)

and

n—1-— o
R.(r) = _[<nao> 2(11—{(7;-{-—1)11)}3] e 2p'L¥H(p), (21-4)

in which

p = ECTOT (21"5)
and
h2
Aoy = mm:

ao being the quantity interpreted in the old quantum theory as
the radius of the smallest orbit in the hydrogen atom. The
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functions P{™(cos ¢) are the associated Legendre functions
discussed in Section 19, and the functions L24!(p) are the asso-
ciated Laguerre polynomials of Section 20. The minus sign in
Equation 21-4 is introduced for convenience to make the function
positive for small values of r.

The wave functions as written here are normalized, so that
© for (27 .
J; j; A (T 3y @Q)Wmim(r, &, @)r? sin ddedddr = 1. (21-6)

Moreover, the functions in r, 3, and ¢ are separately normalized
to unity:

[T e ®ne)de = 1,
ﬁ " (Oum(¥) )2 sin 3d = 1, (21-7)
j;“’an,(r)}zrzdr =1,

They are also mutually orthogonal, the integral
© Oor (2r .
L7 [ a8, W (r, 3, )r sin ddedsdr

vanishing except for n = n/, I = I, and m = m/; inasmuch as if
m # m', the integral in ¢ vamshes, if m =m/, but I =1, the
integral in ¢ vanishes; and if m = m’ and [ = U, but n # n/,
the integral in r vanishes.

Expressions for the normalized wave functions for all sets of
quantum numbers out to n = 6, 1 = 5 are given in Tables 21-1,
21-2, and 21-3.

The functions ®.(¢) are given in both the complex and the
real form, either set being satisfactory. (For some purposes
one is more convenient, for others the other.)

TABIE 21-1.—THE FuNcCTIONS <I>,,.(¢)

Bo(p) = —== or Po(p) = —=
‘\/27r \/
1 1
®1(p) = \/é-o"" or DPreos(p) = 7 cos ¢
us m
1 1
S_i(p) = 24 or  ®uin(p) = —=sine
V2 V'
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TABLE 21-1.—THE FUNCTIONS &, (¢).—(Continued)

1 1
P1(p) = d or  Poes(p) = —= c08 2p
V'or \V'x
1 1
®_1(p) = €% or  Pam(p) = —~=sin 20
V2 Vi
Ete.

TABLE 21-2.—THE WAVE FUNCTIONS ©;,(9)
(The associated Legendre functions normalized to unity)

! = 0, s orbitals:

N

Opo(9) =

I = 1, p orbitals:

S

610(3) = 5 cos ¢
3
O1ar(9) = —\2—[ sin 9
1 = 2, d orbitals:
10
O2(d) = ~\£-_—‘(3 cos? ¢ — 1)
5 .
02.1(8) = sin ¢ cos &
O2u2(8) = sin? ¢

1 = 3, f orbitals:

B3(F) = :l/—}— <§ cos® 9 — cos d)

42
03.1(9) = sin ¢(5 cos? ¢ — 1)

5 |
sin? J cos &

e!tz(t’) =

70
03.3(8) = l/—s——— sin3 ¢

1 = 4, g orbitals:

Oy(9) = 9\/— (
O4u1(9) = 9\/1_0 sin & (% cosd 9 — cos o)

8

—costd — 10 cos? ¢ + 1)
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TaABLE 21-2.—THE WAVE FUNCTIONS Om(¢).—(Continued)

Ogus(d) = 3\8/3 sin? ¢(7 cos? ¢ — 1)
3 0 .
Oyus(9) = sin? ¢ cos ¢
3V 35
Buai(9) = AL
16
! = 5, h orbitals:
1 22( 21 14
Ogo(9) = '5—}{:('5“ cost 9 — N cosd 8 + cos 0)
65 .
Os+1(d) = sin 9(21 cos* ¢ — 14 cos2 ¢ + 1)
4V 1155
Opuz2(d) = 3 sin? ¥(3 cos® ¢ — cos &)
70
Bsus(¥) = sin® 9(9 cos? ¢ — 1)
31385 .
Osud(d) = sint ¢ cos &
16
154
Bpus(d) = 3 325 sin® ¢

TaBLE 21-3.—THE HYDROGENLIKE RADpiAL WavE FuNcTiONS
n = 1, K shell:

—F
1=0,18 Ru(r) = (Z/ag)*-2¢ 2
n = 2, L shell:
VA 3% -2
1 =028 Ryl = (—2%(2 —ple 2
VA 3% _»
1=1,2p Rut) = Z/%)7,72
216
n = 3, M shell:
Z /ag)% -2
1=0,3 Rul) = (9/\“}; (6 — 60 + pt)e 2
7 3 -2
1= l, 31) Ru(T) = %3_2—(4 el p)pe 2
Z/a)¥ -2
= 2, 3d Riu(r) = .(___/_a_")_pze 2
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TaBLE 21-3.—THE HYDROGENLIKE RapiaL Wave FuncrioNs.—(Continued)
n = 4, N shell:

7 _Pr
=0,4s Ry(r) = ( /“°) (24 — 36p + 1202 — p¥e 2
(Z/ao)“ -2
=14 Ru(r) = (20 — 10p + pY)pe 2
“ 32/15
Z % -3
=244 Ra() = 2196 — pyore 2
96\/—
Z/a)t -2
=34 Rat) = 2/% 0,72
96/35
n = 5, O ghell:
VA 3% -2
1=0,55 Re(r) = (Z/a0) (120 — 240p + 12002 — 20p° + pi)e 2
30015
VA _P
1=1,5p0 Ra(r) = ( /"")_(120 — 00p + 18p% — pY)pe 2
1504/30
7 /ao)’t -2
1=250 Run() = ( ’“°)~_(42 — 14p + p2)pe 2
1501/70
VA 3 -2
1=305 Rur) = _(_/L)_ — o)t 2
300\/_0
7/ 3% _°
1=4 5 Rur) = LD
900/70
n = 6, P shell:
(Z/ao)
1=0,65 Roolr) = (720 — 1800p + 12002 — 300p% + 30p*
0 2160\/_ P (4 P P »
—p ) 2
(Z/an)" oY
1=16p Ra(r)=——""2"-(840 — 840p + 2520? — 28p° + p¥)pe 2
61 324/210 p p p3 + p*)pe
(Z/ao)* ——"
1=264d Re() = ) (336 — 168p + 2407 — P
) 62 864\/ P p p%)p?
(Z/ao)* -2
1=36f Rea) = (72 — 18p + p2)ple 2
® 2592/35 P+ phete
A _
=460 Ruir) = 21997 (16 _ pypte2
12960/7
(Z/ao)* -2

|
o
I

1 =256 Re(r) =

12060077 )
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The wave functions 6;,.(#) given in Table 21-2 are the asso-
ciated Legendre functions P{™ (cos ) normalized to unity. The
functions P{™ (cos &) as usually written and as defined by
Equations 19-1 and 19-7 consist of the term sin'™'¢ and the
polynomial in cos ¢ multiplied by the factor

(2 + |m])! or (¢ + |m| + 1)! ,
2,<l +2|m|>,<l —2lml>,_ 2,(: + |n2u + 1>,((z - |72n| - 1>!

as m + | is even or odd. Expressions for additional associated
Legendre functions are given in many books, as, for example,
by Byerly.! Numerical tables for the I.egendre polynomials
are given by Byerly and by Jahnke and Emde.?

Following Mulliken, we shall occasionally refer to one-electron
orbital wave functions such as the hydrogenlike wave functions
of this chapter as orbitals. In accordance with spectroscopic
practice, we shall also use the symbols s, p, d, f, g, - - - to
refer to states characterized by the values 0, 1, 2, 3, 4, - - -,
respectively, of the azimuthal quantum number I, speaking, for
example, of an s orbital to mean an orbital with I = 0.

In the table of hydrogenlike radial wave functions the poly-
nomial contained in parentheses represents for each function
the associated Laguerre polynomial L2}'(p), as defined by
Equations 20-1 and 20-5, except for the factor

—(n+ DY — 1 -1

which has been combined with the normalizing factor and
reduced to the simplest form. It is to be borne in mind that
the variable p is related to r in different ways for different
values of n.

The complete wave functions ¥aim(r, &, ¢) for the first three
shells are given in Table 21-4. Here for convenience the variable
p = 27r/na, has been replaced by the new variable s, such that

Z

n r
o =5p = —T.
2P Qo

W. E. Byerry, “Fourier’s Series and Spherical Harmonics,” pp. 151,

159, 198, Ginn and Company, Boston, 1893.
:W. E. Byervy, ibid., pp. 278-281; Jaunke and EmpE, ‘‘Funktionen-

tafeln,” B. G. Teubner, Leipzig, 1933.
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The relation between o and r is the same for all values of the
quantum numbers. The real form of the ¢ functions is used.
The symbols p., py, Pz, dz4yy dytey Aotz dzy, and d, are introduced
for convenience. It is easily shown that the functions y,,,,
Vnp,y a0d ¥ap, are identical except for orientation in space, the
three being equivalently related to the z, y, and 2z axes, respec-
tively. Similarly the four functions yn4..,, ¥uda,.., ¥nd.,., and
¥nd,, are identical except for orientation. The fifth d function
Vnd, is different.

TaBLE 21-4.—HYDROGENLIKE WAvE FUNcTIONS
K Shell
n=1,1=0m=0:

1 /Z\*
‘pl: = '\/; (ao) e’

L Shell

VA -2
(—) 2 —o)e 2
a
n=21l=1m
Z
Yap, = (—) se” 2 cog 9
a
n=2101=1m
Z A
Yap, = a_ e 28in & cos ¢
34 _a
Vip, = — 2gin ¢ sin ¢
2p 4‘\/2—; (ﬂo) age
M Shell
n=31l=0m=0: i
1 z 3‘(2 _e
Va = ———( — 7 — 180 + 20%)e 3
' 81/3r <ao)

n=3l=1m=0:
ZN 6 — ayoe 3
Vip, = — — o)oe cos ¢
e 81\/;(%)
n=3l=1m= t1:

2 Z\% -g
VYip, = — ) (6 — a)oe 3 gin ¢ cos ¢
81v/x \ %o

S
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TaABLE 21-4.—HYDROGENLIKE WaAVE Funcrions.— (Continued)

3% -
Vi, = V2 (g-) (6 — o)oe 3sin 9sin ¢

814/ \ 8o

Z\¥% -2
—> o 3(3cos?s — 1)

V2 [Z\% —% .
Vit = — ) o% “38in ¢ cos & co8 ¢
ao

814/r
V2 (Z\*% -5
= = — ) o?% °sin ¥ cos dsing
VYidy,, 81\/1r(a° b
n=31l=2m= %2
1 Z\¥% -7
Yad,, = - =) o% 3sin2d cos 2o
o 81\/—27r<00)
1 Z\3¥ -7
Vidy,, = =) o% 3sin? ¢ sin 20
Y812 <ao>
VA
witho = —r.
ao

21b. The Normal State of the Hydrogen Atom.—The proper-
ties of the hydrogen atom in its normal state (1s, with n = 1,
I = 0, m = 0) are determined by the wave function

The physical interpretation postulated for the wave function
2r

requires that y*y = me_a be a probability distribution function
0

for the electron relative to the nucleus. Since this expression
is independent of # and ¢, the normal hydrogen atom is spheri-
cally symmetrical. The chance that the electron be in the

2r
volume element r2dr sin ddddey is ;i—se_arzdr sin dddde, which
0

is seen to be independent of # and ¢ for a given size of the volume
element. This spherical symmetry is a property not possessed
by the normal Bohr atom, for the Bohr orbit was restricted to a
single plane.



140 THE HYDROGEN ATOM [V-21b

By integrating over ¢ and ¢ (over the surface of a sphere),
we obtain the expression
4 -
D(r)dr = —r?e odr
Qg
as the probability that the electron lie between the distances

r and r + dr from the nucleus. The radial distribution function
2r

Dioo(r) = %r’e_a is shown in Figure 21-1 (together with 100
0

and y32,,) as a function of r, the distance from the nucleus. It

v 4

v |

4y}

[ 1 1 | 1

| |
0 1.0 2.0 308

Fia. 21-1.—The functions ¢, ¢*/, and 4rray*) for the normal hydrogen
atom. The dashed curve represents the probability distribution function for a
Bohr orbit.

is seen that the probability that the electron remain within about
1 & of the nucleus is large; that is, the ““size’’ of the hydrogen atom
is about the same as given by the Bohr theory. Indeed, there is
a close relation; the most probable distance of the electron from
the nucleus, which is the value of r at which D(r) has its maximum
value, is seen from Figure 21-1 to be ap = 0.52911, which is just
the radius of the normal Bohr orbit for hydrogen.
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The distribution function itself is not at all similar to that
for a circular Bohr orbit of radius ao, which would be zero every-
where except at the point r = a,. The function ¥%,, has its
maximum value at r = 0, showing that the most probable
position for the electron is in the immediate neighborhood of
the nucleus; that is, the chance that the electron lie in a small
volume elemeont very near the nucleus is larger than the chance
that it lie in a volume element of the same size at a greater
distance from the nucleus.! It may be pointed out that a Bohr
orbit in the form of a degenerate line ellipse, obtained by giving
the azimuthal quantum number % of the old quantum theory
the value 0 instead of the value 1, leads to a distribution function
resembling the wave-mechanical one a little more closely. This
is shown in Figure 21-1 by the dashed curve. The average
distance of the electron from the nucleus, given by the equation

Frim = [ [ [¥Eur¥nimridr sin 8ddde, (21-8)

is found in this case to be equal to 34a,. This is also the value
calculated for the Bohr orbit with £ = 0; in fact, it will be shown
in the next section that for any stationary state of the hydrogen
atom the average value of r as given by the quantum mechanics
is the same as for the Bohr orbit with the same value of » and
with k? equal to I(I + 1). It will also be shown in Chapter XV
that the normal hydrogen atom has no orbital angular momen-
tum. This corresponds to a Bohr orbit with £ = 0 but not with
k = 1. The root-mean-square linear momentum of the electron
is shown in the next section to have the value 2wue?/h, which is
the same as for the Bohr orbit. We may accordingly form a
rough picture of the normal hydrogen atom as consisting of an
electron moving about a nucleus in somewhat the way cor-
responding to the Bohr orbit with » = 1, k = 0, the motion
being essentially radial (with no angular momentum), the
amplitude of the motion being sufficiently variable to give rise
to a radial distribution function D(r) extending to infinity,
though falling off rapidly with increasing r outside of a radius
of 1 or 2.&, the speed of the electron being about the same as in
the lowest Bohr orbit, and the orientation of the orbit being

1 The difference between the statement of the preceding paragraph and
this statement is the result of the increase in size of the volume element
4aridr for the former case with increasing r.
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sufficiently variable to make the atom spherically symmetrical.
Great significance should not be attached to such a description.
We shall, however, make continued use of the comparison of
wave-mechanical calculations for the hydrogen atom with
the corresponding calculations for Bohr orbits for the sake of
convenience.
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F16. 21-2.—Hydrogen-atom radial wave functions R,:(r) for n = 1, 2, and 3 and
! =0and 1.

21c. Discussion of the Hydrogenlike Radial Wave Functions.
The radial wave functions R (r) forn =1, 2, and 3 and [ = 0
and 1 are shown plotted in Figure 21-2. The abscissas represent
values of p; hence the horizontal scale should be increased by the
factor n in order to show R(r) as functions of the electron-nucleus
distance r. It will be noticed that only for s states (with I = 0)
is the wave function different from zero at r = 0. The wave
function crosses the p axis » — I — 1 times in the region between
p=0andp = «,
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The radial distribution function
Dy(r) = r*{Rnu(r)}? (21-9)
is represented as a function of p for the same states in Figure
21-3. It isseen from Figures 21-2 and 21-3 that the probability
distribution function ¢*J, which is spherically symmetrical

for s states, falls off for these states from a maximum value at
r = 0. We might say that over a period of time the electron
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Fi6. 21-3.—Electron distribution functions 4xr? R,;(r)]? for the hydrogen atom.

may be considered in a hydrogen atom in the normal state to
form a ball about the nucleus, in the 2s state to form a ball and
an outer shell, in the 3s state to form a ball and two concentric
shells, etc. The region within which the radial distribution
function differs largely from zero is included between the values
of r at perihelion and aphelion for the Bohr orbit with the same
value of n and with k% = I(l + 1), as is shown by the heavy
horizontal line for each curve in Figure 21-3, drawn between the
minimum and maximum values of the electron-nucleus distance
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for this Bohr orbit in each case. For these s orbits (with k = 0)
the heavy line extends to r = 0, corresponding to a line ellipse
with vanishingly small minor axis, in agreement with the large
value of y*y at r = 0. For states with I > 0, on the other hand,
¥*y vanishes at r = 0, and similarly the minimum value of r

for the Bohr orbits with £ = v/I(l + 1) is greater than zero.
The average distance of the electron from the nucleus, as given
by Equation 21-8, is found on evaluating the integral to be

f,,,,..="a°[ 1+ { l(l;l)}] (21-10)

The corresponding values of p are represented by vertical lines in
Figure 21-3. From this expression it is seen that the size of the
atom increases about as the square of the principal quantum
number n, 7.im being in fact proportional to n? for the states
with [ = 0 and showing only small deviations from this propor-
tionality for other states. This variation of size of orbit with
quantum number is similar to that of the old quantum theory,
the time-average electron-nucleus distance for a Bohr orbit

being
2
Fop = aO{l + < :2>}: (21-11)

which becomes identical with the wave-mechanical expression
if k? is replaced by I(l 4 1), as we have assumed in the foregoing
discussion.

Formulas for average values of various powers of r are given
below.* It is seen that the wave-mechanical expressions as a
rule differ somewhat from those of the old quantum theory,
even when k2 is replaced by I(Il 4 1).

AVERAGE VALUES* OF r*
Wave Mechanics

s, 8f Wy -x
e (]

* Expressions for 7 are given in Equations 21-10 and 21-11.

1 1
1. WALLER, Z. f. Phys. 88, 635 (1926); expressions for (;) and (F)
are given by J. H. Van Vleck, Proc. Roy. Sec. A 148, 679 (1934).
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AVERAGE VALUES oF r*.—(Continued)
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To illustrate the use of these formulas, let us calculate the
average potential energy of the electron in the field of the
nucleus. It is

Vﬂlm = f I‘f‘#,ﬂm \I/nlmrzdr sin l’dl’d(p
T /nim

Z%?
- = (21-12)
Now the total energy W, which is the sum of the average ki-
netic energy T and the average potential energy V, is equal to
—Z%?/2am?. Hence we have shown that the total energy is
just one-half of the average potential energy, and that the average
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kinetic energy is equal to the total energy with the sign changed,
i.e.,

= Z%?
Toim = 2am? (21-13)
This relation connecting the average potential energy, the
average kinetic energy, and the total energy for a system of
particles with Coulomb interaction holds also in classical mechan-
ics, being there known as the virial theorem (Sec. 7a).

Now we may represent the kinetic energy as

_i 2 2 2
T - 2#(7)1 +pv +pz)!

in which p., p,, and p. represent components of linear momentum
of the electron and nucleus relative to the center of mass (that
is, the components of linear momentum of the electron alone
if the small motion of the nucleus be neglected). Hence the
average value of the square of the total linear momentum
? = p? 4 p? 4 p?is equal to 2u times the average value of the
kinetic energy, which is itself given by Equation 21-13 for both
wave mechanics and old quantum theory. We thus obtain

— _ 2uZ%? _ (211'2’;.«22)2

Pum = Soon? nh

(21-14)

as the equation representing the average squared linear momen-
tum for a hydrogenlike atom in the wave mechanics as well as in
the old quantum theory. This corresponds to a root-mean-
square speed of the electron of

2nZe?
V2, = o (21-15)

which for the normal hydrogen atom has the value 2.185 X 10®
cm/sec.

Problem 21-1. Using recursion formulas similar to Equation 20-2 (or
in some other way) derive the expression for 7nm.

21d. Discussion of the Dependence of the Wave Functions on
the Angles & and $.—In discussing the angular dependence of
hydrogenlike wave functions, we shall first choose the complex
form of the functions ®(¢) rather than the real form. It will be
shown in Chapter XV that there is a close analogy between the
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stationary states represented by these wave functions and the
Bohr orbits of the old quantum theory in regard to the orbital
angular momentum of the electron about the nucleus. The
square of the total angular momentum for a given value of I
. h?
is Il + 1)74?2
the z axis is mh/2wr, whereas the corresponding values for a Bohr
orbit with quantum numbers nkm are k2h%/4r® and mh/2r,
respectively. We interpret the wave functions with a given
value of  and different values of m as representing states in which
the total angular momentum is the same, but with different
orientations in space.

It can be shown by a simple extension of the wave equation
to include electromagnetic phenomena (a subject which will
not be discussed in this book) that the magnetic moment asso-
ciated with the orbital motion of an electron is obtained from the
orbital angular momentum by multiplication by the factor
e/2mqc, just as in the classical and old quantum theory (Sec. 7d).
The component of orbital magnetic moment along the z axis is

» and the component of angular momentum along

hence ’”E}%%c’ and the energy of magnetic interaction of this

moment with a magnetic field of strength H parallel to the z axis

In the old quantum theory this spatial quantization was sup-
posed to determine the plane of the orbit relative to the fixed
direction of the z axis, the plane being normal to the z axis for
m = +k and inclined at various angles for other values of m.
We may interpret the probability distribution function y*y in a
similar manner. For example, in the states with m = +1
the component of angular momentum along the z axis, mh/2mr,
is nearly equal to the total angular momentum, \/1(I + 1)h/2x,
so that, by analogy with the Bohr orbit whose plane would be
nearly normal to the 2z axis, we expect the probability distribution
function to be large at ¥ = 90° and small at 3 = 0° and 180°.
This is found to be the case, as is shown in Figure 21-4, in which
there is represented the function {6;.(#)}? for m = +! and for
1=0,1,2 3,4, and 5. It is seen that as ! increases the prob-
ability distribution function becomes more and more concen-
trated about the zy plane.
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The behavior of the distribution function for other values of m
is similarly shown in Figure 21-5, representing the same function
forl=3andm =0, +£1, £2, +3. It is seen that the function
tends to be concentrated in directions corresponding to the
plane of the oriented Bohr orbit (this plane being determined
only to the extent that its angle with the z axis is fixed).

With the complex form of the ¢ functions, these figures
represent completely the angular dependence of the probability
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Fia. 21-5.—Polar graphs of the function [0;,(3)]? for [l =3 and m =0, *1.
+2, and £3.

distribution function, which is independent of ¢. The alterna-
tive sine and cosine functions of ¢ correspond to probability
distribution functions dependent on ¢ in the way corresponding
to the functions sin? me and cos? me. The angular dependence
of the probability distribution function for s and p orbitals in
the real form (as given in Table 21—4) is illustrated in Figure 21-6.
It is seen that, as mentioned before, the function s is spherically
symmetric, and the functions p., p,, and p. are equivalent except
for orientation. The conditions determining the choice of wave
functions representing degenerate states of a system will be
discussed in the following chapter.
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A useful theorem, due to Unséld,! states that the sum of the
probability distribution functions for a given value of I and all
values of m is a constant; that is,

g Oin(9)®n*(¢)Oin(3)®m(¢) = constant.  (21-16)

1

F1g. 21-6.—Polar representation of the absolute values of the angular wave
functions for s and p orbitals. The squares of these are the probability distribu-
tion functions.

The significance of this will be discussed in the chapter dealing
with many-electron atoms (Chap. IX).

Problem 21-2. Prove Unstld’s theorem (Eq. 21-18).

! A. UnsdLD, Ann. d. Phys. 83, 355 (1927).



CHAPTER. VI
PERTURBATION THEORY!

In case that the wave equation for a system of interest can be
treated by the methods described in the preceding chapters, or
can be rigorously treated by any amplification of these methods,
a complete wave mechanical discussion of the system can be
given. Very often, however, such a procedure cannot be carried
out, the wave equation being of such a nature as to resist accurate
solution. Thus even the simplest many-electron systems, the
helium atom and the hydrogen molecule, lead to wave equations
which have not been rigorously solved. In order to permit
the discussion of these systems, which more often than not are
those involved in a physical or especially a chemical problem,
various methods of approximate solution of the wave equation
have been devised, leading to the more or less accurate approxi-
mate evaluation of energy values and wave functions. Of these
methods the first and in many respects the most interesting is
the beautiful and simple wave-mechanical perturbation theory,
developed by Schrédinger in his third paper in the spring of 1926.
It is especially fortunate that this theory is very much easier
to handle than the perturbation theory which is necessary for
the treatment of general problems in classical dynamics.

Before we can discuss this method, however, we need certain
mathematical results concerning the possibility of expanding
arbitrary functions in infinite series of normalized orthogonal
functions. These results, which are of great generality and
widespread utility, we shall discuss in the next section without
attempting any complete proof.

22. EXPANSIONS IN SERIES OF ORTHOGONAL FUNCTIONS

The use of power series to represent certain types of functions
is discussed in elementary courses in mathematics, and the
theorems which state under what conditions the infinite series

1 A generalized perturbation theory will be discussed in Section 27a.
151
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obtained by formal methods converge to the functions they are
meant to represent are also well known. An almost equally
useful type of infinite series, which we shall use very frequently,
is a series the terms of which are members of a set of normalized
orthogonal functions each multiplied by a constant coefficient.
If fo(x), fi(z), f2(z), - - - are members of such a set of normal-
ized orthogonal functions, we might write as the series

e(z) = agfo(2) + aifi(z) + azfa(z) + - - -
2, anfa(a). (22-1)

n=0

If the series converges and has a definite sum ¢(x), we may express
Equation 22-1 by saying that the infinite series on the right of
the equation represents the function ¢(z) in a certain region of
values of z. We may ask if it is possible to find the coefficients
a, for the series which represents any given function ¢(z). A
very simple formal answer may be given to this question. If
we multiply both sides of Equation 22-1 by f7(z) and then
integrate, assuming that the series is properly convergent so
that the term-by-term integration of the series is justified,
then we obtain the result

[e@ft@dz = a, (22-2)
since

[t @iz = 0it n =k,
=1if n = k.

(22-3)

a < z < b defines the orthogonality interval for the functions
fa(). .

In many cases the assumptions involved in carrying out
this formal process are not justified, since the series obtained may
either not converge at all or converge to a function other than
o(z). Mathematicians have studied in great detail the condi-
tions under which such series converge and have proved
theorems which enable one to make a decision in all ordinary
cases. For our purposes, however, we need only know that such
theorems exist and may be used to justify all the expansions
which occur in this and later chapters.
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The familiar Fourier series is only one special form of an
expansion in terms of orthogonal functions. Figure 22-1,
which gives a plot of the function

e(z) =1lfor0 <z <m, }

o) = —1forwr <z < 2, (22-4)

together with the first, third, and fifth approximations of its
Fourier-series expansion

o(x) = ap + a; sinz + by cos x + a sin 2z +
bacos2z + - - -, (22-5)

illustrates that a series of orthogonal functions may represent
even a discontinuous function except at the point of discontinuity.

+1

e}

-

F1a. 22-1.—The function ¢(z) = +1for0 <z <, —lform < z < 2r, and
the first, third, and fifth Fourier-series approximations to it, involving terms to
gin z, sin 3z, and sin 