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PREFACE

In writing this book we have attempted to produce a textbook

of practical quantum mechanics for the chemist, the experi-

mental physicist, and the beginning student of theoretical

physics. The book is not intended to provide a critical discus-

sion of quantum mechanics, nor even to presen^ia thorough

survey of the subject. We hope that it does gb^ela, lucid and

easily understandable introduction to a limjAdVpori*<m
>

quantum-mechanical theorv; n*w*iv. *hat
i^WJ < -

- Via1^
suggested by the nnm- (

,-..-/. ,., 1 <..,-,,, ra^tinta of the

al&eussion of the Schrodinger wave equal kM .^ l?fce" problems
which ran be treated by means of it. The effort has been made
to provide for the reader a means of equipping himself with a

practical grasp of this subject, so that he can apply quantum
mechanics to most of the chemical and physical problems which

may confront him.

The book is particularly designed for study by men without

extensive previous experience with advanced mathematics, such

as chemists interested in the subject because of its chemical

applications. We have assumed on the part of the reader, in

addition to elementary mathematics through the calculus, only
some knowledge of complex quantities, ordinary differential

equations, and the technique of partial differentiation. It

may be desirable that a book written for the reader not adept
at mathematics be richer in equations than one intended for

the mathematician; for the mathematician can follow a sketchy
derivation with ease, whereas if the less adept reader is to be

led safely through the usually straightforward but sometimes

rather complicated derivations of quantum mechanics a firm

guiding hand must be kept on him. Quantum mechanics is

essentially mathematical in character, and an understanding
of the subject without a thorough knowledge of the mathematical

methods involved and the results of their application cannot be

obtained. The student not thoroughly trained in the theory
of partial differential equations and orthogonal functions must
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learn something of these subjects as he studies quantum mechan-
ics. In order that he may do so, and that he may follow the

discussions given without danger of being deflected from the

course of the argument by inability to carry through some minor

step, we have avoided the temptation to condense the various

discussions into shorter and perhaps more elegant forms.

After introductory chapters on classical mechanics and the

old quantum theory, we have introduced the Schroding^r wave
equation and its physical interpretation on a postulatory basis,

and have then given in great detail the solution of the wave
equation for important systems (harmonic oscillator, hydrogen
atom) and the discussion of the wave functions and their proper-

ties, omitting none of the mathematical steps except the most

l^JT!^?577 A, similarly detailed treatment has been given
in the discussion di pertin

1

option Shruor^, the variation method,
the structure of simple molecules, and, in general, 'iu --,

important section of the book.

In order to limit the size of the book, we have omitted from

discussion such advanced topics as transformation theory and

general quantum mechanics (aside from brief mention in the

last chapter), the Dirac theory of the electron, quantization
of the electromagnetic field, etc. We have also omitted several

subjects which are ordinarily considered as part of elementary

quantum mechanics, but which are of minor importance to the

chemist, such as the Zeeman effect and magnetic interactions in

general, the dispersion of light and allied phenomena, and

most of the theory of aperiodic processes.

The authors are severally indebted to Professor A. Sommerfeld
and Professors E. U. Condon and H. P. Robertson for their

own introduction to quantum mechanics. The constant advice

of Professor R. C. Tolman is gratefully acknowledged, as well

as the aid of Professor P. M. Morse, Dr. L. E. Sutton, Dr.

G. W. Wheland, Dr. L. 0. Brockway, Dr. J. Sherman, Dr. S.

Weinbaum, Mrs. Emily Buckingham Wilson, and Mrs. Ava
Helen Pauling.

LINUS PAULING.

E. BRIGHT WILSON, JR.

PASADENA, I^AMF.,
CAMBRIDGE MASS.,

July, 193J5.
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INTRODUCTION TO QUANTUM
MECHANICS

CHAPTER I

SURVEY OF CLASSICAL MECHANICS

The subject of quantum mechanics constitutes the most recent

step in the very old search for the general laws_goyrning the

motion of matter. For a long time investigators confined their

efforts to studying the dynamics of bodies of macroscopic dimen-

sions, and while the science of mechanics remained in that

stage it was properly considered a branch of physics. Since

the development of atomic theory there has been a change of

emphasis. It was recognized that the older laws are not correct

when applied to atoms and electrons, without considerable

modification. Moreover, the success which has been obtained

in making the necessary modifications of the older laws has also

had the result of depriving physics of sole claim upon them, since

it is now realized that the combining power of atoms and, in

fact, all the chemical properties of atoms and molecules are

explicable in terms of the laws governing the motions of the

electrons and nuclei composing them.

Although it is the modern theory of quantum mechanics in

which we are primarily interested because of its applicatiqns_to

chemical jjroblems ,
it is desirable for us first to discuss briefly

the background of classical mechanics from which it was devel-

oped. By so doing we not only follow to a certain extent the

historical development, but we also introduce in a more familiar

form many concepts which are retained in the later theory. We
shall also treat certain problems in the first few chapters by the

methods of the older theories in preparation for their later treat-

ment by quantum mechanics. It is for this reason that the

student is advised to consider the exercises of the first few

chapters carefully and to retain for later reference the results

which are secured.

1



2 SURVEY OF CLASSICAL MECHANICS [1-1

In the first chapter no attempt will be made to give any parts

of classical dynamics but those which are useful in the treatment

of atomic and molecular problems. With this restriction, we

have felt justified in omitting discussion of the dynamics of rigid

bodies, non-conservative systems, non-holonomic systems, sys-

tems involving impact, etc. Moreover, no use is made of

Hamilton's principle or of the Hamilton-Jacobi partial differential

equation. By thus limiting the subjects to be discussed, it is

possible to give in a short chapter a thorough treatment of

Newtonian systems of point particles.

1. NEWTON'S EQUATIONS OF MOTION IN THE LAGRANGIAN
FORM

The earliest formulation of dynamical laws of wide application

is that of Sir Isaac Newton. If we adopt the notation #-, y t , Z{

for the three Cartesian coordinates of the iih particle with

mass Wi, Newton's equations for n point particles are

m tx =
i =

1, 2,
- - -

, n, (1-1)

where X,-, F;, Z t are the three components of the force acting on

the ^th particle. There is a set of such equations for each

particle. Dots refer to differentiation with respect to time, so

that

* - v <'-2>

By introducing certain familiar definitions we change Equation
1-1 into a form which will be more useful later. We define as

the kinetic energy T (for Cartesian coordinates) the quantity

T =

If we limit ourselves to a certain class of systems, called conserva-

tive systems, it is possible to define another quantity, the potential

energy V, which is a function of the coordinates x \y\z\

of all the particles, such that the force components acting
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on each particle are equal to partial derivatives of the potential

energy with respect to the coordinates of the particle (with

negative sign) ;
that is,

Y -At 7:
>

OXi

dV
Yi =

~^Y
7 - dV
Zi _ ___,

i = 1, 2, ,
n. (1-4)

It is possible to find a function V which will express in this manner

forces of the types usually designated as mechanical, electrostatic,

and gravitational. Since other types of forces (such as electro-

magnetic) for which such a potential-energy function cannot

be set up are not important in chemical applications, we shall

not consider them in detail.

With these definitions, Newton's equations become

at dxi dxi

dT 3V
dt dyi

+
dy,

d dT dV n n . .

Tt ~^- + 3 = 0. (l-5c)
dt dZi dZi

^ '

There are three such equations for every particle, as before.

These results are definitely restricted to Cartesian coordinates;

but by introducing a new function, the Lagrangian function L,

defined for Newtonian systems as the difference of the kinetic

and potential energy,

L = L(XI, i/i, 21, ,
xn , yn ,

zn , Xi f

-

,
zn)

=
T -

F, (1-6)

we can throw the equations of motion into a form which we shall

later prove to be valid in any system of coordinates (Sec. Ic).

In Cartesian coordinates T
7

is a function of the velocities

xi, ,
zn only, and for the systems to which our treatment

is restricted F is a function of the coordinates only; hence the

equations of motion given in Equation 1-5 on introduction of

the function L assume the form
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d^dL _ dL =
eft dZi to*

'

_
d _ d =

'

t = 1, 2, ,
n. (1-7)

In the following paragraphs a simple dynamical system is

discussed by the use of these equations.

la. The Three-dimensional Isotropic Harmonic Oscillator.

As an illustration of the use of the equations of motion in this

form, we choose a system which has played a very important

part in the development of quantum theory. This is the

lwrn,wiwscj$M&r, a particle bound to an equilibrium position by
a force which increases in magnitude linearly with its distance

r from the point. In the three-dimensional isotropic harmonic

oscillator this corresponds to a potential function %kr 2
, represent-

ing a force of magnitude kr acting in a negative direction; i.e.,

from the position of the particle to the origin, k is called the

force constant or Hookas-law constant. Using Cartesian coordi-

nates we have

L =

whence

-r.(mx) + fcx = mx + fcx ==
0,

flf

my + ky =
0,

wz + fcz = 0.

(1-8)

(1-9)

Multiplication of the first member of Equation 1-9 by x gives

(1-10)
.dx _ , dxmx
dt

~ ~ kx
~dt

or

dl
(1-11)2 dt

which integrates directly to

^mx2 = %kx 2 + constant. (1-12)

The constant of integration is conveniently expressed as
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Hence

or, on introducing the expression ^mvl in place of the force

constant k,

dx

which on integration becomes

27n>o* + dx = sin" 1 -
XQ

or

x = x sin (27r^ + $*), (1-14)

and similarly

t/
=

t/o sin (Zirwt + ),)
(1-15)

Z = Z Sin (27T*>o + S z). /

In these expressions rr
, 2/0, Zo, 5X,

6y ,
and d z are constants of

integration, the values of which determine the motion in any
given case. The quantity VQ is related to the constant of the

restoring force by the equation

Wmvl =
k, (1-16)

so that the potential energy may be written as

V = 27r 2m^r2
. (1-17)

As shown by the equations for x, T/,
and z, j> is the frequency of

the motion. It is seen that the particle may be described as

carrying out independent harmonic oscillations along the x, y,

and z axes, with different amplitudes XQ, 2/o, and ZQ and different

phase angles 6X,
dy,

and d z , respectively.

The energy of the system is the sum of the kinetic energy and

the potential energy, and is thus equal to

On evaluation, it is found to be independent of the time, with the

value 27r2mj/2
) (:r

2
) + 2/o + zl) determined by the amplitudes of

oscillation.

The one-dimensional harmonic oscillator, restricted to -motion

along the x axis in accordance with the potential function

F = %kx 2 = 27r
2
rai>Jz

2
,
is seen to carry out harmonic oscillations
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along this axis as described by Equation 1-14. Its total energy
is given by the expression 2T 2

mj>gzJ.

Ib. Generalized Coordinates. Instead of Cartesian coordi-

nates xij 2/1, 2i, ,
xn , 7/n , n, it is frequently more convenient

to use some other -set of coordinates to specify the configuration

of the system. For example, the isotropic spatial harmonic

oscillator already discussed might equally well be described using

polar coordinates; again, the treatment of a system composed of

two attracting particles in space, which will be considered

later, would be very cumbersome if it were necessary to use

rectangular coordinates.

If we choose, any set of 3n coordinates, which we shall always
assume to be independent and at the same time sufficient in

number to specify completely the positions of the particles of

the system, then there will in general exist 3n equations, called

the equations of transformation, relating the new coordinates

Qk to the set of Cartesian coordinates x
tj y lf

z
t;

(1-18)

There is such a set of three equations for each particle i. The
functions /t , g iy hi may be functions of any or all of the 3n new
coordinates q^ so that these new variables do not necessarily

split into sets which belong to particular particles. For example,
in the case of two particles the six new coordinates may be the
three Cartesian coordinates of the center of mass together
with the polar coordinates of one particle referred to the other

particle as origin.

As is known from the theory of partial differentiation, it is

possible to transform derivatives from one set of independent
variables to another, an example of this process being

= . . .

dt dq, dt
^

dq2 dt
"*" +

dq*n ~3T' I

This same equation can be put in the much more compact form

3n
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This gives the relation between any Cartesian component of

velocity and the time derivatives of the new coordinates. Similar

relations, of course, hold for t/ and 2< for any particle. The

quantities g/, by analogy with x if are called generalized velocities,

even though they do not necessarily have the dimensions of

length divided by time (for example, <?/ may be an angle).

Since partial derivatives transform in just the same manner,
we have

_ . _ _
dxi dqj dyi dqj dzn d

dZ **<
. *Z to*

.

dV dz
<\

dx, dqj
+

dyi dq]
+

dz> dqj

Since Q, is given by an expression in terms of V and <// which is

analogous to that for the force Xi in terms of V and #,, it is called

a generalized force.

In exactly similar fashion, we have

. L _J_

T dqj dyi dqj

Ic, The Invariance of the Equations of Motion in the Lagran-

gian Form. We are now in a position to show that when New-
ton's equations are written in the form given by Equation 1-7

they are valid for any choice of coordinate system. For this

proof we shall apply a transformation of coordinates to Equa-
tions 1-5, using the methods of the previous section. Multiplica-

dx ' dlJ '

tion of Equation l-5a by *> of 1-56 by ^> etc., gives
oOj uQj

ox\ a d J. dv dx\ x

-^^v^- + ^ ^ =o,
dqj at dxi ox\ dqj

dqj dt dx% dx% dqj
'

(122)

^
I

n 5 ==

dqj dt dxn dxn dq,-

with similar equations in y and z. Adding all of these together

gives
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dW fadW faddQ dV = (

qj dt dXi
"*"

dq, dt dyi
^

dq, dt
diif

^
dqf

' V '

where the result of Equation 1-20 has been used. In order to

reduce the first sum, we note the following identity, obtained by

differentiating a product,

_i = i _ i

dqjdt\dXi) dt\dXidqjJ dXidt\d'
( }

From Equation l-19b we obtain directly

Furthermore, because the order of differentiation is immaterial,
we see that

d/dXi\ _ i
d /dXi\

By introducing Equations 1-26 and 1-25 in 1-24 and using the

result in Equation 1-23, we get

d/dTdi .dTdyi , ^T <^\ /dTdXi dTdy*

dt\dXi dqj
^

dyi 3%
"^

dz* dqj \dxi dqj
"*"

dyi dq^

which, in view of the results of the last section, reduces to

IJS-+- <>*

Finally, the introduction of the Lagrangian function L = T Vy

with V a function of the coordinates only, gives the more compact
form

--
' ^ = 1^,3,-.., 3n. (1-29)
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(It is important to note that L must be expressed as a function

of the coordinates and their first time-derivatives.)

Since the above derivation could be carried out for any value

of ,/, there are 3n such equations, one for each coordinate g/.

They are called the equations of motion in the Lagrangian form
and are of great importance. The method by which they were

derived shows that they are independent of the coordinate

system.
We have so far rather limited the types of systems considered,

but Lagrange's equations are much more general than we have

indicated and by a proper choice of the function L nearly all dynami-
cal problems can be treated with their use. These equations are

therefore frequently chosen as the fundamental postulates of

classical mechanics instead of Newton's laws.

Id. An Example : The Isotropic Harmonic Oscillator in Polar

Coordinates. The example which we have treated in Section la

can equally well be solved by the use of polar coordinates r,

#, and $ (Fig. 1-1) . The equations of transformation correspond-

ing to Equation 1-18 are

x =
rsin#cos<p,}

y = r sin tf sin $>,
\ (1-30)

z = rcostf.
j

With the use of these we find for the kinetic and potential energies

of the isotropic harmonic oscillator the following expressions:

T = ~ m(x* + y* + * 2
)
=
| (r

2 + rW + r2 sin

V = 27r
2mv2r2

,

and

L = T - V = ~(r
2 + rW + r2 sin 2

tty
2
)
- 27r

2m^r2
. (1-32)

Z

The equations of motion are

2^- ' ^
- mr* sin * cosW =

0, (1-34)
at d$ do- at

- mr sin2W + ^r^mv\r - 0.-
at or or at

(1-35)
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In Appendix II it is shown that the motion takes place in a

plane containing the origin. This conclusion enables us to

simplify the problem by making a change of variables. Let us

introduce new polar coordinates r, #', x such that at the time

t = the plane determined by the vectors r and v, the position

and velocity vectors of the particle at t = 0, is normal to the new

z' axis. This transformation is known in terms of the old set of

coordinates if two parameters # and v? , determining the position

of the axis z' in terms of the old coordinates, are given (Fig. 1-2).

FIG. 1-1. The relation of polar coor-

dinates r, t? , and <p to Cartesian axes.

Fio. 1-2. The rotation of axes.

In terms of the new coordinates, the Lagrangian function L
and the equations of motion have the same form as previously,
because the first choice of axis direction was quite arbitrary.

However, since the coordinates have been chosen so that the

plane of the motion is the x'y' plane, the angle #' is always equal
to a constant, v/2. Inserting this value of & in Equation 1-33

and writing it in terms of x instead of <?, we obtain

(1-36)

(1-37)

:)"
-

0,
U*/

which has the solution

mr*x =
Px> a constant.

The r equation, Equation 1-35, becomes

oL

dt
(

= 0,
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or, using Equation 1-37,

a .
- . . w

=
0, (1-38)mr* ' v y

an equation differing from the related one-dimensional Cartesian-

coordinate equation by the additional term p|/wr
3 which

represents the centrifugal force.

Multiplication by r and integration with respect to the time

gives

r 2 = ^*T - 47r
2
v
2r2 + 6, (1-39)

ra2r 2 u i > \ /

/ 02 V*
so that r =

I
~~ - 47r

2
^r

2 + 6 I

\ m 2r 2

/
This can be again integrated, to give

rdr

+ bx + cx*)*'

in which x = r2
,
a p%/m

2
,
b is the constant of integration in

Equation 1-39, and c = 47r
2

j>
2
,. This is a standard integral

which yields the equation

-^-J6 + A sin

with A given by

We have thus obtained the dependence of r on the time, and

by integrating Equation 1-37 we could obtain x as a function of

the time, completing the solution. Elimination of the time

between these two results would give the equation of the orbit,

which is an ellipse with center at the origin. It is seen that the

constant v again occurs as the frequency of the motion.

le. The Conservation of Angular Momentum. The example
worked out in the previous section illustrates an important

principle of wide applicability, the principle of the conservation

of angular momentum.
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Equation 1-37 shows that when x is the angular velocity of the

particle about a fixed axis z' and r is the distance of the particle

from the axis, the quantity px = wr2
x is a constant of the motion. 1

This quantity is called the angular momentum of the particle

about the axis z'.

It is not necessary to choose an axis normal to the plane of the

motion, as z' in this example, in order to apply the theorem.

Thus Equation 1-33, written for arbitrary direction z, is at once

integrable to

rar2 sin2
&<p = pvy a constant. (1-40)

Here r sin & is the distance of the particle from the axis z, so that

the left side of this equation is the angular momentum about the

axis z.
2 It is seen to be equal to a constant, p^.

FIG. 1-3. Figure showing the relation between dx, d&, and d<p.

In order to apply the principle, it is essential that the axis of

reference be a fixed axis. Thus the angle d of polar coordinates

has associated with it an angular momentum p# = mr2$ about

an axis in the xy plane, but the principle of conservation of

angular momentum cannot be applied directly to this quantity
because the axis is not, in general, fixed but varies with <?. A
simple relation involving p* connects the angular momenta

1 The phrase a constant of the motion is often used in referring to a constant

of integration of the equations of motion for a dynamical system.
2 This is sometimes referred to as the component of angular momentum

along the axis z.
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px and p<p about different fixed axes, one of which, px , relates

to the axis normal to the plane of the motion. This is

Pxdx = Pd$ + Pvdv, (1-41)

an equation easily derived by considering Figure 1-3. The
sides of the small triangle have the lengths r sin M>, rdx, and

rd&. Since they form a right triangle, these distances are

connected by the relation

= rL sm*

which gives, on introduction of the angular velocities x, <f>, and #
and multiplication by m/dt>

mr^xdx = wi?*
2 sin 2

$<pd<p + r/ir
2$d$.

Equation 1-41 follows from this and the definitions of px , p*,

and pv .

Conservation of angular momentum may be applied to more

general systems than the one described here. It is at once

evident that we have not used the special form of the potential-

energy expression except for the fact that it is independent of

direction, since this function enters into the r equation only.

Therefore the above results are true for a particle moving in

any spherically symmetric potential field.

Furthermore, we can extend the theorem to a collection of

point particles interacting with each other in any desired way
but influenced by external forces only through a spherically

symmetric potential function. If we describe such a system by
using the polar coordinates of each particle, the Lagrangian
function is

n

L = ^2 5/Wi(^? + ?*&* + r2 sin 2

Instead of <pi, ^ 2 , , <pn ,
we now introduce new angular

coordinates a, 0, ,
* given by the linear equations

<Pi
= oi + 6i0 + + kiK,

<e*
- + 2/3 + + k2K,

(i
_
43)

J

The values given the constants 61, ,
kn are unimportant so

long as they make the above set of equations mutually independ-
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ent. a is an angle about the axis z such that if a is increased

by Aa, holding /?, ,
K constant, the effect is to increase each

<pi by Aa, or, in other words, to rotate the whole system of particles

about z without changing their mutual positions. By hypothesis
the value of V is not changed by such a rotation, so that V is

independent of a. We therefore obtain the equation

ddL^dL^ddT^
dtda da dtda U **'

Moreover, from Equation 1-42 we derive the relation

t - 1 1=1

Hence, calling the distance r l sin t> t of the ith particle from the

z axis pi, we obtain the equation

itpfci
= constant. (1-46)

This is the more general expression of the principle of the con-

servation of angular momentum which we were seeking. In

such a system of many particles with mutual interactions, as,

for example, an atom consisting of a number of electrons and a

nucleus, the individual particles do not in general conserve

angular momentum but the aggregate does.

The potential-energy function V need be only cylindrically

symmetric about the axis z for the above proof to apply,
since the essential feature was the independence of V on the angle
a about z. However, in that case z is restricted to a particular
direction in space, whereas if V is spherically symmetric the

theorem holds for any choice of axis.

Angular momenta transform like vectors, the directions of the

vectors being the directions of the axes about which the angular
momenta are determined. It is customary to take the sense

of the vectors such as to correspond to the right-hand screw rule.

3. THE EQUATIONS OF MOTION IN THE HAMILTONIAN FORM

2a. Generalized Momenta. In Cartesian coordinates the

momentum related to the direction xk is mkxk , which, since V is
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restricted to be a function of the coordinates only, can be written

as

Angular momenta can likewise be expressed in this manner.

Thus, for one particle in a spherically symmetric potential field,

the angular momentum about the z axis was defined in Section le

by the expression

p? = rapV = mr2 sin2
#<f>. (2-2)

Reference to Equation 1-31, which gives the expression for the

kinetic energy in polar coordinates, shows that

dT dL <* *\* =
a*

= W (2
~
3)

Likewise, in the case of a number of particles, the angular
momentum conjugate to the coordinate a. is

dT dL

as shown by the discussion of Equation 1-46. By extending
this to other coordinate systems, the generalized momentum pk

conjugate to the coordinate qk is defined as

Pk =
J|>

* =
1, 2, ,

3n. (2-5)

The form taken by Lagrange's equations (Eq. 1--29) when the

definition of pk is introduced is

P"
=

7^'
* =

1, 2, , 3n, (2-6)
<7^A

so that Equations 2-5 and 2-6 form a set of 6n first-order dif-

ferential equations equivalent to the 3n second-order equations

of Equation 1-29.

being in general a function of both the q
y

s and g's, the
u<lk

definition of pk given by Equation 2-5 provides 3n relations

between the variables #*, (fc, and p*, permitting the elimination

of the 3n velocities q^ so that the system can now be described

in terms of the 3n coordinates qk and the 3n conjugate momenta
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Pk. Hamilton in 1834 showed that the equations of motion can

in this way be thrown into an especially simple form, involving

a function H of the pk's and qk's called the Hamiltonian function.

2b. The Hamiltonian Function and Equations. For con-

servative systems.
1 we shall show that the function H is the total

energy (kinetic plus potential) of the system, expressed in terms

of the pk's and g^'s. In order to have a definition which holds

for more general systems, we introduce H by the relation

3n

H = 2W* -
L(qk , qk). (2-7)

Although this definition involves the velocities </*, H may be made
a function of the coordinates and momenta only, by eliminating

the velocities through the use of Equation 2-5. From the

definition we obtain for the total differential of H ths equation

3n 3n 3n 3n

dH =

or, using the expressions for pk and pk given in Equations 2-5 and

2-6 (equivalent to Lagrange's equations),

3n

, (2-9)

whence, if // is regarded as a function of the qk's and p/t's, we
obtain the equations

dH
S
dH

=
1, 2, ,

3n. (2-10)

These are the equations of motion in the Hamiltonian or canonical

form.
2c. The Hamiltonian Function and the 'Energy. Let us con-

sider the time dependence of H for a conservative system. We
have

1 A conservative system is a system for which H does not depend explicitly

on the time t. We have restricted our discussion to conservative systems by

assuming that the potential function V does not depend on t.
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coordinate but only its derivative. Such a coordinate is called a cyclic

coordinate.

3. THE EMISSION AND ABSORPTION OF RADIATION

The classical laws of mechanical and electromagnetic theory

permit the complete discussion of the emission and absorption of

electromagnetic radiation by a system of electrically charged

particles. In the following paragraphs we shall outline the

results of this discussion. It is found that these results are not

in agreement with experiments involving atoms and molecules;
it was, indeed, just this disagreement which was the principal

factor in leading to the development of the Bohr theory of the

atom and later of the quantum mechanics. Even at the present

time, when an apparently satisfactory theoretical treatment of

dynamical systems composed of electrons and nuclei is provided

by the quantum mechanics, the problem of the. emission and

absorption of radiation still lacks a satisfactory solution, despite

the concentration of attention on it by the most able theoretical

physicists. It will be shown in a subsequent -chapter 'however,

that, despite our lack of a satisfactory conception of the nature

of electromagnetic radiation, equations similar to the classical

equations of this section can be formulated which represent

correctly the emission and absorption of radiation by 'atomic

systems to within the limits of error of experiment.

According to the classical theory the rate of emission of radiant

energy by an accelerated particle of electric charge e is

_dE 2eW
dt

~
3c 3

'

dE
in which -^- is the rate at which the energy E of the pagtich

ctt

is converted into radiant energy, v is the acceleration of the

particle, and c the velocity of light.

Let us first consider a system of a special type, in which a

particle of charge e carries out simple harmonic oscillation

with frequency v along the x axis, according to the equation

x = x cos Zirvt. (3-2)

Differentiating this expression, assuming that x* is independent

of the time, we obtain for the acceleration the value

v =* x * -4irVz cos
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The average rate of emission of radiant energy by such a system
is consequently

dE

inasmuch as the average value cos 2 2irvt over a cycle is "one-half.

As a result of the emission of energy, the amplitude z of the

motion will decrease with time; if the fractional change in

energy during a cycle of the motion is small, however, this equa-

tion retains its validity.

The radiation emitted by such a system has the frequency v of the

emitting system. It is plane-polarized, the plane of the electric

vector being the plane which includes the x axis and the direction

of propagation of the light.

In case that the particle carries out harmonic oscillations along
all three axes x, y, and 2, with 'frequencies vxy vv, and vz and

amplitudes (at a given time) x
, 2/0, and ZQ, respectively, the total

rate of emission of radiant energy will be given as the sum of

three terms similar to the Tight side of Equation 3-4, one giving

the rate of emission of energy as light of frequency vx,
one of

vy ,
and one of v.

If the motion of the particle is not simple harmonic, it can be

represented by a Fourier series or Fourier integral as a sum or

integral of harmonic terms similar to that of Equation 3-2;

light of frequency characteristic of each of these terms will then

be emitted at a rate given by Equation 3-4, the coefficient of the

Fourier term being introduced in place of x .

The emission of light by a system composed of several inter-

acting electrically charged particles is conveniently discussed in

the following way. A Fourier analysis is first made of the

motion of the system in a given state to resolve it into harmonic

terms. For a given term, corresponding to a given frequency
of motion v, the coefficient resulting from the analysis (which is a

function of the coordinates of the particles) is expanded as a

power series in the quantities i/X, , zn/X, in which i,

, zn are the coordinates of the particles relative to some

origin (such as the center of mass) and X = c/v is the wave length
of the radiation with frequency v. The term of zero degree in

this expansion is zero, inasmuch as the electric charge of the

system does not change with time. The term of first degree

involves, in addition to the harmonic function of the time, only
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a function of the coordinates. The aggregate of these first-

degree terms in the coordinates with their associated time factors,

summed over all frequency values occurring in the original

Fourier analysis, represents a dynamical quantity ktiown as the

electric moment of the system, a vector quantity P defined as

(3-5)

in which r denotes the vector from the origin to the position of

the iih particle, with charge a. Consequently to this degree of

approximation the radiation emitted by a system of several

particles can be discussed by making a Fourier analysis of the

electric moment P. Corresponding to each term of frequency v

in this representation of P, there will be emitted radiation of

frequency v at a rate given by an equation similar to Equation

3-4, with exo replaced by the Fourier coefficient in the electric-

moment expansion. The emission of radiation by this mechanism
is usually called dipole emission, the radiation itself sometimes

being described as dipole radiation.

The quadratic terms in the expansions in powers of x\/\

, Zn/X form a quantity Q called the quadrupole moment

of the system, and higher powers form higher moments. The rate

of emission of radiant energy as a result of the change of quadru-

pole and higher moments of an atom or molecule is usually

negligibly small in comparison with the rate of dipole emission,

and in consequence dipole radiation alone is ordinarily discussed.

Under some circumstances, however, as when the intensity of

dipole radiation is zero and the presence of very weak radiation

can be detected, the process of quadrupole emission is important.

4. SUMMARY OF CHAPTER I

The purpose of this survey of classical mechanics is twofold:

first, to indicate the path whereby the more general formulations

of classical dynamics, such as the equations of motion of Lagrange
and of Hamilton, have been developed from the original equations
of Newton; and second, to illustrate the application of these

methods to problems which are later discussed by quantum-
mechanical methods.

In carrying out the first purpose, we have discussed Newton's

equations in Cartesian coordinates and then altered their form by
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the introduction of the kinetic and potential energies. By
defining the Lagrangian function for the special case of Newtonian

systems and introducing it into the equations of motion, Newton's

equations were then thrown into the Lagrangian form. Follow-

ing an introductory discussion of generalized coordinates, the

proof of the general validity of the equations of motion in the

Lagrangian form for any system of coordinates has been given;
and it has also been pointed out that the Lagrangian form

of the equations of motion, although we have derived it from the

equations of Newton, is really more widely applicable than

Newton's postulates, because by making a suitable choice of the

Lagrangian function a very wide range of problems can be

treated in this way.
In the second section there has been derived a third form for

the equations of motion, the Hamiltonian form, following the

introduction of the concept of generalized momenta, and the rela-

tion between the Hamiltonian function and the energy has been

discussed.

In Section 3 a very brief discussion of the classical theory of

the radiation of energy from accelerated charged particles has

been given, in order to have a foundation for later discussions

of this topic. Mention is made of both dipole and quadrupole
radiation.

Finally, several examples (which are later solved by the use of

quantum mechanics), including the three-dimensional harmonic

oscillator in Cartesian and in polar coordinates, have been

treated by the methods discussed in this chapter.
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CHAPTER II

THE OLD QUANTUM THEORY

5. THE ORIGIN OF THE OLD QUANTUM THEORY

The old quantum theory was born in 1900, when Max Planck 1

announced his theoretical derivation of th^jdistrihutionjaw for,

black-body radiation which he had previously formulated from

empirical considerations. He showed that the results of experi-
ment on the distribution of energy with frequency of radiation

in equilibrium with matter at a given temperature can be

accounted for by postulating that the vibrating particles of

matter (considered to act as harmonic oscillators) do not emit

or absorb light continuously but instead only in discrete quanti-
ties of magnitude hv proportional to the frequency v of the light.

The constant of proportionality, h> is a new constant of nature;
it is called Planck's constant and has the magnitude 6.547 X 10~27

erg sec. Its dimensions (energy X time) are those of the old

dynamical quantity called action; they are such that the product
of h and frequency v (with dimensions sec" 1

) has the dimensions

of energy. The dimensions of h are also those of angular momen-

tum, and we shall see later that just as hv is a quantum of radiant

energy of frequency v, so is h/2w a natural unit or quantum of

angular momentum.
The development of the quantum theory was at first slow. It

was not until 1905 that Einstein2
suggested that the quantity

of radiant energy hv was sent out in the process of emission of

light not in all directions but instead unidirectionally, like a

particle. The name light quantum or photon is applied to such a

portion of radiant energy. Einstein also discussed the photo-
electric effect, the fundamental processes of photochemistry,
and the heat capacities of solid bodies in terms of "the quantum
theory. When light falls on a metal plate, electrons are emitted

from it. The maximum speed of these photoelectrons, however,

1 M. PLANCK, Ann. d. Phys. (4) 4, 553 (1901).
2 A. EINSTEIN, Ann. d. Phys. (4) 17, 132 (1905).

25
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is not dependent on the intensity of the light, as would be

expected from classical electromagnetic theory, but only on its

frequency; Einstein pointed out that this is to be expected from

the quantum theory, the process of photoelectric emission involv-

ing the conversion of the energy hv of one photon into the kinetic

energy of a photoelectron (plus the energy required to remove

the electron from the metal). Similarly, Einstein's law of

photochemical equivalence states that one molecule may be

activated to chemical reaction by the absorption of one photon.

The third application, to the heat capacities of solid bodies,

marked the Beginning of the quantum theory of material systems.

Planck's postulate regarding the emission and absorption of

radiation in quanta hv suggested that a dynamical system such

as an atom oscillating about an equilibrium position with fre-

quency VQ might not be able to oscillate with arbitrary energy,

but only with energy values which differ from one another by

integral multiples of hvQ . From this assumption and a simple

extension of the principles of statistical mechanics it can be

shown that the heat capacity of a solid aggregate of particles

should not remain constant with decreasing temperature, but

should at some low temperature fall off rapidly toward zero.

This prediction of Einstein, supported by the earlier experi-

mental work of Dewar on diamond, was immediately verified

by the experiments of Nernst and Eucken on various substances;

and quantitative agreement between theory and experiment for

simple crystals was achieved through Debye's brilliant refinement

of the theory.
1

6a. The Postulates of Bohr. The quantum theory had

developed to this stage before it became possible to apply it

to the hydrogen atom; for it was not until 1911 that there

occurred the discovery by Rutherford of the nuclear constitu-

tion of the atom its composition from a small heavy posi-

tively charged nucleus and one or more extranuclear electrons.

Attempts were made immediately to apply the quantum theory to

the hydrogen atom. The successful effort of Bohr2 in 1913,

despite its simplicity, may well be considered the greatest single

step in the development of the theory of atomic structure.

1 P. DEBYB, Ann. d. Phya. (4) 39, 789 (1912); see also M. BORN and T. VON
, Phys. Z. 13, 297 (1912); 14, 15 (1913).

XT T>*v~
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It was clearly evident that the laws of classical mechanical and

electromagnetic theory could not apply to the Rutherford

hydrogen atom. According to classical theory the electron

in a hydrogen atom, attracted toward the nucleus by an inverse-

square Coulomb force, would describe an elliptical or circular

orbit about it, similar to that of the earth about the sun. ^The

agc_eleratioiLDf the chargedjgartjcles would lead to the emission

of light, with frequencies equal to the mechanical frequency
of the electron in its orbit, and to multiples of this as overtones.

With the emission of energy, the radius of the orbit_ would

dimmish and the mechanical frequency would change. Hence

the emitted light should show a wide range of frequencies.) This

is not at all what is observed the radiation emitted by hydrogen
atoms is confined to spectral lines of sharply defined frequencies,

and, moreover, these frequencies are not related to one another

by integral factors, as overtones, but instead show an interesting

additive relation, expressed in the Ritz combination principk, and

in addition a still more striking relation involving the squares

of integers, discovered by Balmer. Furthermore, the existence

of stable non-radiating atoms was not to be understood on the

basis of classical theory, for a system consisting of electrons

revolving about atomic nuclei would be expected to emit radiant

energy until the electrons had fallen into the nuclei.

Bohr, no doubt inspired by the work of Einstein mentioned

above, formulated the two following postulates, which to a great

extent retain their validity in the quantum mechanics.

I. The Existence of Stationary States. An atomic system can

exist in certain stationary states, each one corresponding to a

definite value of the energy W of the system; and transition from

one stationary state to another is accompanied by the emission

or absorption as radiant energy, or the transfer to or from

another system, of an amount of energy equal to the difference

in energy of the two states.

II. The Bohr Frequency Rule. The frequency of the radiation

emitted by a system on transition from an initial state of energy

Wz to a final state of lower energy W\ (or absorbed on transition

from the state of energy Wi to that of energy TF2) is given by
the equation

1

1 This relation was suggested by the Ritz combination .principle, which it

closely resembles. It was found empirically by Rite and others that if
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Wt - Wi

Bohr in addition gave a method of determining the quantized

states of motion the stationary states of the hydrogen atom.

His method of quantization, involving the restriction of the

angular momentum of circular orbits to integral multiples of

the quantum h/2ir, though leading to satisfactory energy

levels, was soon superseded by a more powerful method, described

in the next section.

Problem 5-1. Consider an electron moving in a circular orbit about a

nucleus of charge Ze. Show that when the centrifugal force is just balanced

by the centripetal force Ze2
/r

2
,
the total energy is equal to one-half the

potential energy Ze2
/r. Evaluate the energy of the stationary states for

which the angular momentum equals nh/27r j
with n 1, 2, 3, .

6b. The Wilson-Sommerfeld Rules of Quantization. In

1915 W. Wilson and A. Sommerfeld discovered independently
1

a powerful method of quantization, which was soon applied,

especially by Sommerfeld and his coworkers, in the discussion

lines of frequencies v\ and vi occur in the spectrum of a given atom it is

frequently possible to find also a line with frequency v\. -f- ^2 or v\ i> 2 .

This led directly to the idea that a set of numbers, called term values, can

be assigned to an atom, such that the frequencies of all the spectral lines

can be expressed as differences of pairs of term values. Term values are

usually given in wave numbers, since this unit, which is the reciprocal

of the wave length expressed in centimeters, is a convenient one for spectro-

scopic use. We shall use the symbol v for term values in wave numbers,

reserving the simpler symbol v for frequencies in see" 1
. The normal state

of the ionized atom is usually chosen as the arbitrary zero, and the term

values which represent states of the atom with lower energy than the ion

are given the positive sign, so that the relation between W and v is

W

The modern student, to whom the Bohr frequency rule has become common-

place, might consider that this rule is clearly evident in the work of Planck

and Einstein. This is not so, however; the confusing identity of the

mechanical frequencies of the harmonic oscillator (the only system discussed)

and the frequency of the radiation absorbed and emitted by this quantized

system delayed recognition of the fact that a fundamental violation of

electromagnetic theory was imperative.
W. WILSON, Phil. Mag. 29, 795 (1915); A. SOMMERFELD, Ann. d. Phys.

51, 1 (1916).
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of the fine structure of the spectra of hydrogen and ionized

helium, their Zeeman and Stark effects, and many other phe-
nomena. The first step of their method consists in solving the

classical equations of motion in the Hamiltonian form (Sec. 2),

therefore making use of the coordinates #!,, <?3n and the

canonically conjugate momenta pi, , p 3n as the independent
variables. The assumption is then introduced that only those

classical orbits are allowed as stationary states for which the

following conditions are satisfied:

tfpkdqk nkh, k = 1, 2, , 3n; nk
= an integer. (5-2)

These integrals, which are called action integrals, can be calcu-

lated only for conditionally periodic systems; that is, for systems
for which coordinates can be found each of which goes through a

cycle as a function of the time, independently of the others.

The definite integral indicated by the symbol $ is taken over

one cycle of the motion. Sometimes the coordinates can be

chosen in several different ways, in which case the shapes of the

quantized orbits depend on the choice of coordinate systems, but

the energy values do not.

We shall illustrate the application of this postulate to the

determination of the energy levels of certain specific problems in

Sections 6 and 7.

5c. Selection Rules. The Correspondence Principle. The
old quantum theory did not provide a satisfactory method of cal-

culating the intensities of spectral lines emitted or absorbed by
a system, that is, the probabilities of transition from one sta-

tionary state to another with the emission or absorption of a

photon. Qualitative information was provided, however, by an

auxiliary postulate, known as Bohr's correspondence principle,

which correlated the quantum-theory transition probabilities

with the intensity of the light of various frequencies which would

have been radiated by the system according to classical electro-

magnetic theory. In particular, if no light of frequency cor-

responding to a given transition would have been emitted

classically, it was assumed that the transition would not take

place. The results of such considerations were expressed in

selection rules.

For example, the energy values nhv Q of a harmonic oscillator

(as given in the following section) are such as apparently to
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permit the emission or absorption of light of frequencies which

are arbitrary multiples (n2 UI)VQ of the fundamental fre-

quency i/o. But a classical harmonic oscillator would emit only

the fundamental frequency v
,
with no overtones, as discussed

in Section 3
; consequently, in accordance with the correspondence

principle, it was assumed that the selection rule An = 1 was

valid, the quantized oscillator being thus restricted to transitions

to the adjacent stationary states.

8. THE QUANTIZATION OF SIMPLE SYSTEMS

6a. The Harmonic Oscillator. Degenerate States. It was

shown in the previous chapter that for a system consisting of

a particle of mass ra bound to the equilibrium position x =

by a restoring force kx= 4ir*mvlx and constrained to move

along the x axis the classical motion consists in a harmonic oscilla-

tion with frequency v
,
as described by the equation

x = XQ sin 2-jrvot. (6-1)

The momentum p x
= mx has the value

p x = ZirmvoXo cos 2?rvo<, (6-2)

so that the quantum integral can be evaluated at once:

= I

*

cos ^v^dt = <
2fx'

i
vtimx\ nh. (6-3)

The amplitude XQ is hence restricted to the quantized values

0n
= {nh/2v

2
VQm}tt. The corresponding energy values are

Wn = T + V = 27r
2

m^(sin
2
2mv<t, + cos 2 2irvQt)

or

Wn = nhv, n =
0, 1, 2, . (t>-4)

Thus we see that the energy levels allowed by the old quantum
theory are integral multiples of hvo, as indicated in Figure 6-1.

The selection rule An = 1 permits the emission and absorption
of light of frequency VQ only.

A particle bound to an equilibrium position in a plane by

restoring forces with different force constants in the x and y

directions, corresponding to the potential function

V = 2r2m(^ 2 + vvV), (fr-5)



H-6b] THE QUANTIZATION OF SIMPLE SYSTEMS 31

is similarly found to carry out independent harmonic oscillations

along the two axes. The quantization restricts the energy to

the values

Wntnv
= nxhv x + nyhvv, n*, riy

=
0, 1, 2, , (6-6)

determined by the two quantum numbers n x and ny . The ampli-
tudes of motion x and t/ are given by two equations similar to

Equation 6-3.

n-5

V,W

n-4

n. 3

n-2

n 1

FIQ. 6-1. Potential-energy function and quantized energy levels for the har-

monic oscillator according to the old quantum theory.

In case that v x = vv
= j>

,
the oscillator is said to be isotropic.

he energy levels are then given by the equation

Wn = (nx + ny)hvQ
= nhv<>. (6-7)

Different states of motion, corresponding to different sets of values

of the two quantum numbers n9 and ny , may then correspond
to the same energy level. Such an energy level is said to be

degenerate, the degree of degeneracy being given by the number
of independent sets of quantum numbers. In this case the nth

level shows (n + l)-fold degeneracy. The nth level of the

three-dimensional isotropic harmonic oscillator shows

(n + l)(n + 2) ,
. , ,

- ^ - --fold degeneracy.
Zi

6b. The Rigid Rotator. The configuration of the system of

a rigid rotator restricted to a plane is determined by a single

angular coordinate, say x- The canonically conjugate angular

momentum, px = /x, where / is the moment of inertia,
1 is a

1 See Section 36a. footnote, for a definition of moment of inertia.
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constant of the motion. 1 Hence the quantum rule is

or

px =~ } K =
0, 1, 2, . (6-8)

Thus the angular momentum is an integral multiple of h/2ir, as

originally assumed by Bohr. The allowed energy values are

WK =
27

=
87T
1/" (6

~9 ^

The rigid rotator in space can be

described by polar coordinates of

the figure axis, <p and #. On apply-

ing the quantum rules it is found

Kc4 that the total angular momentum is

given by Equation 6-8, and the

component of angular momentum

along the z axis by

W

K-2 . --
, 0, , + K. (6-10)

1 - K=i The energy levels are given by

"FIG. 6~2.-Energy levels fo/the Equation 6-9, each level being
rotator according to the old (2K + l)-fold degenerate, inas-
quantum theory. miich ^ the quantum number M
does not affect the energy (Fig. 6-2).

6c. The Oscillating and Rotating Diatomic Molecule. A
molecule consisting of two atoms bonded together by forces

which hold them near to the distance r apart may be approxi-

mately considered as a harmonic oscillator joined with a rigid

rotator of moment of inertia / =
M^*O> M being the reduced mass.

The quantized energy levels are then given by the equation

WvK = t**o

v being the oscillational or vibrational quantum number2 and K
1 Section le, footnote.
* The symbol v is now used by band spectroscopists rather than n for this

quantum number.
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the rotational quantum number. The selection rules for such a

molecule involving two unlike atoms are AK =
1, At; = 1.

Actual molecules show larger values of Ay, resulting from devi-

ation of the potential function from that corresponding to

harmonic oscillation.

The frequency of light absorbed in a transition from the state

with quantum numbers v", K" to that with quantum numbers

i;', K' is

or, introducing the selection rule AK =
1,

iv'*",.'*"*i =
(v'

- O"o + (2K" + 1)~ (6-12)

The lines corresponding to this equation are shown in Figure 6-3

for the fundamental oscillational band v = > v 1, together

Calculated by equation 6~I2

I I I I I I I I I I I I I I I I I I

10*9 9*88*77*6 6*5 .5*44*3 3~2 2*1 1*00*1 1*22*3 3*44*55*66*77*8

Observed

v ^
FIG. d-3. The observed rotational fine structure of the hydrogen chloride

fundamental oscillational band v > v =
1, showing deviation from the

equidistant spacing of Equation 6-12.

with th3 experimentally observed absorption band for hydrogen
chloride. It is seen that there is rough agreement; the observed

lines are not equally spaced, however, indicating that our theo-

retical treatment, with its assumption of constancy of the moment

of inertia /, is too strongly idealized.

6d. The Particle in a Box. Let us consider a particle of mass

m in a box in the shape of a rectangular parallelepiped with

edges a, 6, and c, the particle being under the influence of no
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forces except during collision with the walls of the box, from

which it rebounds elastically. The linear momenta px, pv ,
and

p t will then be constants of the motion, except that they will

change sign on collision of the particle with the corresponding
walls. Their values are restricted by the rule for quantization

as follows:

pxdx = 2apx = nji, p x = -~i n x = 0, 1, 2, ,

pv =W n" = '
l

'
2

'

' ' '

' (6r
~
13)

P* =
^> n, =

0, 1, 2,

Consequently the total energy is restricted to the values

*W, = -L(rf + Pi + Pi) =
(|

+ 5j +
|).

(6-14)

6e. Diffraction by a Crystal Lattice. Let us consider an

infinite crystal lattice, involving a sequence of identical planes

spaced with the regular interval d. The allowed states of motion

of this crystal along the z axis we assume, in accordance with

the rules of the old quantum theory, to be those for which

flpgdz = n zh.

For this crystal it is seen that a cycle for the coordinate z is the

identity distance d, so that (p z being constant in the absence of

forces acting on the crystal) the quantum rule becomes

d <L

p4z =
nji, or p g

= -'
(&-15)

Any interaction with another system must be such as to leave p f

quantized; that is, to change it by the amount Ap t
= Anji/d

or nh/dj in which n = An* is an integer. One such type of

interaction is collision with a photon of frequency v, represented
in Figure 6-4 as impinging at the angle & and being specularly

reflected. Since the momentum of a photon is hv/c, and its

hv
component along the z axis sin #, the momentum transferred

c

to the crystal is sin & = ~ sin #. Equating this with the
C A
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allowed momentum change of the crystal nh/d y
we obtain the

expression
nX = 2d sin 0. (6-16)

This is, however, just the Bragg equation for the diffraction of

x-rays by a crystal. This derivation from the corpuscular view

of the nature of light was given

by Duane and Compton 1 in

1923.

Let us now consider a particle,

say an electron, of mass m simi-

larly reflected by the crystal.

The momentum transferred to

the crystal will be 2mv sin #,

which is equal to a quantum
for the crystal when

n = 2d sin
mv

Fia. 6-4.- -The reflection of a photon
by a crystal.

Thus we see that a particle would be scattered by a crystal only

when a diffraction equation similar to the Bragg equation for

x-rays is satisfied. The wave length of light is replaced by the

expression
h

mv (6-18)

which is indeed the de Broglie expression for the wave length

associated with an electron moving with the speed v. This

simple consideration, which might have led to the discovery of

the wave character of material particles in the days when the

old quantum theory had not yet been discarded, was overlooked

at that time.

In the above treatment, which is analogous to the Bragg treat-

ment of x-ray diffraction, the assumption of specular reflection is

made. This can be avoided by a treatment similar to Laue's

derivation of his diffraction equations.

The foregoing considerations provide a simple though perhaps

somewhat extreme illustration of the power of the old quantum

theory as well as of its indefinite character. That a formal argu-

ment of this type leading to diffraction equations usually derived

1 W. DUANE, Proc. Nat. Acad. Sri. 9, 158 (1923); A. H. COMPTON, ibid.

9, 359 U923).
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by the discussion of interference and reinforcement of waves

could be carried through from the corpuscular viewpoint with the

old quantum theory, and that a similar treatment could be given

the scattering of electrons by a crystal, with the introduction of

the de Broglie wave length for the electron, indicates that the

gap between the old quantum theory and the new wave mechanics

is not so wide as has been customarily assumed. The indefinite-

ness of the old quantum theory arose from its incompleteness

its inability to deal with any systems except multiply-periodic

ones. Thus in this diffraction problem we are able to derive

only the simple diffraction equation for an infinite crystal, the

interesting questions of the width of the diffracted beam, the dis-

tribution of intensity in different diffraction maxima, the effect

of finite size of the crystal, etc., being left unanswered. 1

7. THE HYDROGEN ATOM
The system composed of a nucleus and one electron, whose

treatment underlies any theoretical discussion of the electronic

structure of atoms and molecules, was the subject of Bohr's first

paper on the quantum theory.
2 In this paper he discussed cir-

cular orbits of the planetary electron about a fixed nucleus.

Later 3 he took account of the motion of the nucleus as well as

the electron about their center of mass and showed that with

the consequent introduction of the reduced mass of the two

particles a small numerical deviation from a simple relation

between the spectral frequencies of hydrogen and ionized helium

is satisfactorily explained. Sommerfeld 4 then applied his more

general rules for quantization, leading to quantized elliptical

orbits with definite spatial orientations, and showed that the

relativistic change in mass of the electron causes a splitting of

energy levels correlated with the observed fine structure of

hydrogenlike spectra. In this section we shall reproduce the

Sommerfeld treatment, except for the consideration of the rela-

tivistic correction.

7a. Solution of the Equations of Motion. The system con-

sists of two particles, the heavy nucleus, with mass MI and
1 The application of the correspondence principle to this problem was made

by P. S. Epstein and P. Ehrenfest, Proc. Nat. Acad. Sci. 10, 133 (1924).
2 N. BOHR, Phil. Mag. 26, 1 (1913).
8 N. BOHR, ibid. 27, 506 (1914).
4 A. SOMMERFELD, Ann. d. Phys. 51, 1 (1916).
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electric charge +Ze, and the electron, with mass w2 and charge

e, between which there is operative an inverse-square attrac-

tive force corresponding to the potential-energy function

V(r) = -Z6 2
/r,

r being the distance between the two particles. (The gravi-

tational attraction is negligibly small relative to the electro-

static attraction.) The system is similar to that of the sun and a

planet, or the earth and moon. It was solved by Sir Isaac

Newton in his
"
Philosophiae Naturalis Principia Mathematica,"

wherein he showed that the orbits of one particle relative to the

other are conic sections. Of these we shall discuss only the

closed orbits, elliptical or circular, inasmuch as the old quantum
theory was incapable of dealing with the hyperbolic orbits of the

ionized hydrogen atom.

The system may be described by means of Cartesian coordi-

nates x\j 2/1, z\ and x 2 , 2/2, z2 f the two particles. As shown in

Section 2d by the introduction of coordinates x, y, z of the center

of mass and of polar coordinates r, #, <p of the electron relative

to the nucleus, the center of mass of the system undergoes
translational motion in a fixed direction with constant speed,

like a single particle in field-free space, and the relative motion

of electron and nucleus is that of a particle of mass ju
=

+ ma
the reduced mass of the two particles, about a fixed center to

which it is attracted by the same force as that between the

electron, and nucleus. Moreover, the orbit representing any
state of motion lies in a plane (Sec. Id).

In terms of variables r and x in the plane of motion, the

Lagrangian equations of motion are

= Mri
2 _ ^

(7_!)
r2

and

0. (7-2)

The second of these can be integrated at once (as in Sec. Id), to

give

/*r
2
x =

p, a constant. (7-3)

This first result expresses Keoler's area law: The radius vector
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from sun to planet sweeps out equal areas in equal times. The

constant p is the total angular momentum of the system.

Eliminating x from Equations 7-1 and 7-3, we obtain

7) 2 7jP*

^r = P- _
q-, (7-4)

Mr
3 r2

v '

which on multiplication by r and integration leads to

,- -.
' (7

~
5)

Mr
2

p
2 ,Ze 2

~ - " "

The constant of integration W is the total energy of the system

(aside from the translational energy of the system as a whole).

Instead of solving this directly, let us eliminate t to obtain an

equation involving r and x- Since

. __ dr _ dr d\ _ dr p

Equation 7-5 reduces to

(idrV __1 2ZeV
VF'dx/

-
F'
+

p'r
+ -

or, introducing the new variable

u =
\,

(7-7)

dU = (7-8)
2MTF

-\ / T~
\ p

2 "T" o C*
2

This can be integrated at once, for W either positive or negative.

In the latter case (closed orbits) there is obtained

,- ^
(7
~
9)

This is the equation of an ellipse with the origin at one focus, as

in Figure 7-1. In terms of the eccentricity and the semimajor
and semiminor axes a and 6, the equation of such an ellipse is

1 1 + sin (x xo) a
, ^/o 2 b 2

. f ,

U -
r
--

a(l
-:

*)

=
P + ^-F sm (x

-
xo) '

(7-10)

with b --



n-7b] THE HYDROGEN ATOM 39

Thus it is found that the elements of the elliptical orbit are given

by the equations

Ze 2

a =
2W'

b = CM,,

The energy W is determined by the major axis of the ellipse

alone.

As shown in Problem 5-1, the total energy for a circular orbit

is equal to one-half the potential energy and to the kinetic energy
with changed sign. It can be shown also that similar relations

FIG. 7-1. An elliptical electron-orbit for the hydrogen atom according to the

old quantum theory.

hold for the time-average values of these quantities for elliptic

orbits, that is, that

W = Y2V = -?, (7-12)

in which the barred symbols indicate the time-average values of

the dynamical quantities.

7b. Application of the Quantum Rules. The Energy Levels.

The Wilson-Sommerfeld quantum rules, in terms of the polar

coordinates r, tf
,
and ^, are expressed by the three equations

nji, (7-13a)

n*h, (7-136)

mh. (7-13c)

Since p^isa, constant (Sec. le), the third of these can be integrated

at once, giving
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Yfth

2vpv = mh, or pv =
^-

m =
1, 2, .

(7-14)

Hence the component of angular momentum of the orbit along the

z axis can assume only the quantized values which are integral

multiples of h/2ir. The quantum number m is called the mag-
netic quantum number, because it serves to distinguish the

various slightly separated levels into which the field-free energy
levels are split upon the application of a magnetic field to the

atom. This quantum number is closely connected with the

orientation of the old-quantum-theory orbit in space, a question

discussed in Section Id.

The second integral is easily discussed by the introduction of

the angle x and its conjugate momentum px =
p, the total

angular momentum of the system, by means of the relation,

given in Equation 1-41, Section le,

+ Pvd<p. (7-15)

In this way we obtain the equation

fpxdx = kh, (7-16)

in which px is a constant of the motion and k is the sum of n&

and m. This integrates at once to

2rrp
= kh, or p = ^ k =

1, 2,
- -

. (7-17)
47T

Hence the total angular momentum of the orbit was restricted

by the old quantum theory to values which are integral mul-

tiples of the quantum unit of angular momentum h/"2ir. The

quantum number k is called the azimuthal quantum number.

To evaluate the first integral it is convenient to transform it

in the following way, involving the introduction of the angle x
and the variable u = 1/r with the use of Equation 7-6:

, . , . ,_ 10 ,
Prdr = rdr = ^J dx = p ^(

dx . (7-18)

From Equation 7-10 we find on differentiation

du cos (x
-

xo)
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with the use of which the r quantum condition reduces to the

form
~

cosMx-^xo) d = nji (7_^
{I + Sin(x - xo)}

2

The definite integral was evaluated by Sommerfeld. 1 The
resultant equation is

2rp( -= - 1
j

= nrh. (7-21)
\ v 1 ~~~ * /

This, with the value of p of Equation 7-17 and the relation

b = a\/\ e
2

,
leads to the equation

a = nr + k = n
(7-22)

b k k

In this equation we have introduced a new quantum number n>

called the total quantum number, as the sum of the azimuthal

quantum number k and the radial quantum number nr :

n = nr + k. (7-23)

With these equations and Equation 7-11, the energy values

of the quantized orbits and the values of the major and minor

semiaxes can be expressed in terms of the quantum numbers

and the physical constants involved. The energy is seen to

have the value

being a function of the total quantum number alone. The value

of R, the Rydberg constant, which is given by the equation

P 27r^e4
(7 OKNR = --, (7-25)

depends on the reduced mass /x of the electron and the nucleus.

It is known very accurately, being obtained directly from

spectroscopic data, the values as reported by Birge for hydrogen,
ionized helium, and infinite nuclear mass being

#H = 109,677.759 0.05 cm" 1
,

fine = 109,722.403 0.05 cm- 1
,

fl = 109,737.42 0.06 cm- 1
.

1 A. SOMMERFELD, Ann. d. Phys. 51, 1 (1916).
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The major and minor semiaxes have the values

n _ n*a
h - nka H 9fi\a =

^-1
o = --; (7-26)

\n which the constant a has the value

The value of this quantity, which for hydrogen is the distance of

the electron from the nucleus in the circular orbit with n =
1,

k =
1, also depends on the reduced mass, but within the experi-

mental error in the determination of e the three cases mentioned

above lead to the same value 1

a = 0.52851,

in which 1A = 1 X 10~8 cm. The energy may also be expressed

in terms of a as

%,,* 72v>2Wn =~ = --
(7-28)Za Znz

do

The total energy required to remove the electron from the

normal hydrogen atom to infinity is hence

IWke = (7-29)

This quantity, Wn = 2.1528 X 10~n ergs, is often expressed in

volt electrons, TFH = 13.530 v.e., or in reciprocal centimeters or

wave numbers, WH = 109,677.76 cm"" 1
(the factor he being

omitted), or in calories per mole, Wn = 311,934 cal/mole.

The energy levels of hydrogen are shown in Figure 7-2. It is

seen that the first excitation energy, the energy required to raise

the hydrogen atom from the normal state, with n =
1, to the

first excited state, with n =
2, is very large, amounting to

10.15 v.e. or 234,000 cal/mole. The spectral lines emitted by
an excited hydrogen atom as it falls from one stationary state to

another would have wave numbers or reciprocal wave lengths v

given by the equation

n.,, -.. (7-30)

1 The value given by Birge for infinite mass is

0.5281 e 0.0004 X lQ- cm,

that for hydrogen being 0.0003 larger (Appendix I).
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in which n" and ri are the values of the total quantum number
for the lower and the upper state, respectively. The series of

lines corresponding to n" =
1, that is, to transitions to the normal

state, is called the Lyman series, and those corresponding to
n" =

2, 3, and 4 are called the Balmer, Paschen, and Brackett

series, respectively. The Lyman series lies in the ultraviolet

region, the lower members of the Balmer series are in the visible

region, and the other series all lie in the infrared.

w-o

FIG. 7-2. The energy levels of the hydrogen atom, and the transitions giving
rise to the Lyman, Balmer, Paschen, and Brackett series.

7c. Description of the Orbits. Although the allowed orbits

given by the treatment of Section 76 are not retained in the

quantum-mechanical model of hydrogen, they nevertheless

serve as a valuable starting point for the study of the more subtle

concepts of the newer theories. The old-quantum-theory orbits

are unsatisfactory chiefly because they restrict the motion too

rigidly, a criticism which is generally applicable to the results of

this theory.

For the simple non-relativistic model of the hydrogen atom in

field-free space the allowed orbits are certain ellipses whose com-

mon focus is the center of mass of the nucleus and the electron,

and whose dimensions are certain functions of the quantum
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numbers, as we have seen. For a given energy level of the

atom there is in general more than one allowed ellipse, since the

energy depends only on the major axis of the ellipse and not on

its eccentricity or orientation in space. These different ellipses

are distinguished by having different values of the azimuthal

FIG. 7-3a, 6, c. Bohr-Sommerfeld electron-orbits for n = 1, 2, and 3, drawn
to the same scale.

quantum number fc, which may be any integer from 1 to n.

Wlienjc-^qu^ls^n^ the orbit is a circle, as is seen from Equation
7-26. For k less than n, the minor semiaxis b is less than the

major semiaxis a, the eccentricity e of the orbit increasing as k

decreases relative to n. The value zero for k was somewhat

arbitrarily excluded, on the basis of the argument that the



H-7d] THE HYDROGEN ATOM 45

corresponding orbit is a degenerate line ellipse which would
cause the electron to strike the nucleus.

Figure 7-3 shows the orbits for n =
1, 2, and 3 and for the

allowed values of k. The three different ellipses with n = 3

have major axes of the same length and minor axes which

decrease with decreasing ft. Figure 7-3 also illustrates the

expansion of the orbits with increasing quantum number, the

radii of the circular orbits increasing as the square of n.

A property of these orbits which is of particular importance in

dealing with heavier atoms is the distance of closest approach of

the electron to the nucleus. Using the expressions for a and b

given in Equation 7-26 and the properties of the ellipse, we obtain

e j.i - j- , xi i r. - ,

for this distance the value-~-- 1ms formula
L

and the orbits drawn in Figure 7-3 show that the most eccentric

orbit for a given n, i.e., that with the smaU^st-^alue-of k, comes

the nearest to the nucleus. In many-electron atoms, this

causes a separation of the energies corresponding to these

different elliptical orbits with the same n, since the presence of

the other electrons, especially the inner or core electrons, causes a

modification of the field acting on the electron when it enters

the region near the nucleus.

Since the charge on the nucleus enters the expression for the

radius of the orbit given by Equations 7-26 and 7-27, the orbits

for He+ are smaller than the corresponding ones for hydrogen,
the major semiaxis being reduced one-half by the greater charge
on the helium-ion nucleus.

7d. Spatial Quantization. So far we have said nothing of

the orientation of the orbits in space. If a weak field, either

electric or magnetic, is applied to the atom, so that the z direction

in space can be distinguished but no appreciable change in

energy occurs, the z component of the angular momentum of

the atom must be an integral multiple of h/2ir, as mentioned

in Section 7b following Equation 7-14. This condition, which

restricts the orientation of the plane of the orbit to certain definite

directions, is called spatial quantization. The vector representing

the total angular momentum p is a line perpendicular to the

plane of the orbit (see Sec. le) and from Equation 7-17 has the

length kh/2ir. The z component of the angular momentum is

of length fc cos w(V2rr), if w is the angle between the vector p and
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the z axis. This results in the following expression for cos o>:

m
COS CO = -T '

The value zerojor m was excluded for reasons related to those

used in barring k =
0, so that m may be 1, 2, ,

k.

'0)

-1

m-3

FIQ. 7-4a, 6, c. Spatial quantization of Bohr-Sommerfeld orbits with A; = 1, 2.

and 3.

For the lowest state of hydrogen, in which k = 1 (and for all orbits

for which k =
1), there are only two values of m, +1 and 1,

which correspond to motion in the xy plane in a counterclockwise

or in a clockwise sense. For fc = 2 four orientations are per-
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mitted, as shown in Figure 7-4. Values k for m always cor-

respond to orbits lying in the xy plane.

It can be shown by the methods of classical electromagnetic

theory that the motion of an electron with charge e and mass

kh
mo in an orbit with angular momentum 5- gives rise to a magnetic

ZTT

field corresponding to a magnetic dipole of magnitude ^-^

oriented in the same direction as the angular momentum vector.

The component of magnetic moment in the direction of the z axis

he
is m-A-- The energy of magnetic interaction of the atom with

he
a magnetic field of strength H parallel to the- z axis is mj- H.

It was this interaction energy which was considered to give rise

to the Zeeman effect (the splitting of spectral lines by a magnetic

field) and the phenomenon of
*

paramagnetism. It is now known
that this explanation is only partially satisfactory, inasmuch as

the magnetic moment associated with the spin of the electron,

discussed in Chapter VIII, also makes an important contribution.

he
The magnetic moment -:

- is called a Bohr magneton.6

Problem 7-1. Calculate the frequencies and wave lengths of the first

five members of the Balmer series for the isotopic hydrogen atom whose

mass is approximately 2.0136 on the atomic weight scale, and compare with

those for ordinary hydrogen.
Problem 7-2. Quantize the system consisting of two neutral particles

of masses equal to those of the electron and proton held together by gravita-

tional attraction, obtaining expressions for the axes of the orbits and the

energy levels.

8. THE DECLINE OF THE OLD QUANTUM THEORY

The historical development of atomic and molecular mechanics

up to the present may be summarized by the following division

into periods (which, of course, are not so sharply demarcated as

indicated) :

1913-1920. The origin and extensive application of the old

quantum theory of the atom.

1920-1925. The decline of the old quantum theory.

1925- . The origin of the new quantum mechanics and

its application to physical problems.
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1927- The application of the new quantum mechanics

to chemical problems.

The present time may well be also the first part of the era of the

development of a more fundamental quantum mechanics, includ-

ing the theory of relativity and of the electromagnetic field,- and

dealing with the mechanics of the atomic nucleus as well as of the

extranuclear structure.

vThe decline of the old quantum theory began with the introduc-

tion of half-integral values for quantum numbers in place of

integral values for certain systems, in order to obtain agreement
with experiment. It was discovered that the pure rotation

spectra of the hydrogen halide molecules are not in accordance

with Equation 6-9 with K =
0, 1, 2, ,

but instead require

K = ^, %, . Similarly, half-integral values of the oscilla-

tional quantum number v in Equation 6-11 were found to be

required in order to account for the observed isotope displace-

ments for diatomic molecules. Half-integral values for the

azimuthal quantum number k were also indicated by observations

on both polarization and penetration of the atom core by a

valence electron. Still more serious were cases in which agree-

ment with the observed energy levels could not be obtained by
the methods of the old quantum theory by any such subterfuge

or arbitrary procedure (such as the normal state of the helium

atom, excited states of the helium atom, the normal state rf

the hydrogen molecule ion, etc.), and cases where the methods

of the old quantum theory led to definite qualitative disagreement
with experiment (the influence of a magnetic field on the dielectric

constant of a gas, etc.). Moreover, the failure of the old quan-
tum theory to provide a method of calculating transition probabil-

ities and the intensities of spectral lines was recognized more

and more clearly as a fundamental flaw. Closely related to this

was the lack of a treatment of the phenomenon of the disper-

sion of light, a problem which attracted a great amount of

attention.

This dissatisfaction with the old quantum theory culminated

in the formulation by Heisenberg
1 in 1925 of his quantum

mechanics, as a method of treatment of atomic systems leading

to values of the intensities as well as frequencies of spectral

lines. The quantum mechanics of Heisenberg was rapidly

1 W. HEISENBERG, Z. f. Phys. 33, 879 (1925).
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developed by Heisenberg, Born, and Jordan 1

by the introduction

of matrix methods. In the meantime Schrodinger had inde-

pendently discovered and developed his wave mechanics,
2

stimulated by the earlier attribution of a wave character to the

electron by de Broglie
3 in 1924. The mathematical identity of

matrix mechanics and wave mechanics was then shown by
Schrodinger

4 and by Eckart. 5 The further development of the

quantum mechanics was rapid, especially because of the con-

tributions of Dirac, who formulated 6 a relativistic theory of the

electron and contributed to the generalization of the quantum
mechanics (Chap. XV).
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CHAPTER III

THE SCHRODINGER WAVE EQUATION WITH THE
HARMONIC OSCILLATOR AS AN EXAMPLE

In the preceding chapters we have given a brief discussion of

the development of the theory of mechanics before the discovery

of the quantum mechanics. Now we begin the study of the quan-
tum mechanics itself, starting in this chapter with the Schrodinger

wave equation for a system with only one degree of freedom, the

general principles of the theory being illustrated by the special

example of the harmonic oscillator, which is treated in great

detail because of its importance in many physical problems.
The theory will then be generalized in the succeeding chapter
to systems of point particles in three-dimensional space.

9. THE SCHR6DINGER WAVE EQUATION
In the first paragraph of his paper

1

Quantisierung als Eigen-

wertproblem, communicated to the Annalen der Physik on

January 27, 1926, Erwin Schrodinger stated essentially:

In this communication I wish to show, first for the simplest case of

the non-relativistic and unperturbed hydrogen atom, that the usual

rules of quantization can be replaced by another postulate, in which

there occurs no mention of whole numbers. Instead, the introduction

of integers arises in the same natural way as, for example, in a vibrating

string, for which the number of nodes is integral. The new conception

can be generalized, and I belieVe that it penetrates deeply into the true

nature of the quantum rules.

In this and four other papers, published during the first half of

1926, Schrodinger communicated his wave equation and applied
it to a number of problems, including the hydrogen atom, the

harmonic oscillator, the rigid rotator, the diatomic molecule, and

1 E. SCHRODINGER, Ann. d. Phys. 79, 361 (1926), and later papers referred

to on the preceding page. An English translation of these papers has

appeared under the title E. Schrodinger, "Collected Papers on Wave
Mechanics," Blackie and Son, London and Glasgow, 1928.

60



ffi-9] THE SCHRODINGER WAVE EQUATION 51

the hydrogen atom in an electric field (Stark effect). For the

last problem he developed his perturbation theory, and for

the discussion of dispersion he also developed the theory of a

perturbation varying with the time. His methods were rapidly

adopted by other investigators, and applied with such success

that there is hardly a field of physics or chemistry that has

remained untouched by Schrodinger's work.

Schrodinger's system of dynamics differs from that of Newton,

Lagrange, and Hamilton in its aim as well as its method. Instead

of attempting to find equations, such as Newton's equations,

which enable a prediction to be made of the exact positions and

velocities of the particles of a system in a given state of motion,
he devised a method of calculating a function of the coordinates

of the system and the time (and not the momenta or velocities),

with the aid of which, in accordance with the interpretation

developed by Born,
1

probable values of- the coordinates and

of other dynamical quantities can be predicted for the system.
It was later recognized that the acceptance of dynamical equa-
tions of this type involves the renunciation of the hope of describ-

ing in exact detail the behavior of a system. The degree of

accuracy with which the behavior of a system can be discussed

by quantum-mechanical methods forms the subject of Heisen-

berg's uncertainty principle,
2 to which we shall recur in Chapter

XV.
The Schrodinger wave equation and its auxiliary postulates

enable us to determine certain functions ^ of the coordinates of a

system and the time. These functions are called the Schrodinger

wave functions or probability amplitude functions. The square
of the absolute value of a given wave function is interpreted as

a probability distribution function for the coordinates of the

system in the state represented by this wave function, as will

be discussed in Section 10a. The wave equation has been

given this name because it is a differential equation of the second

order in the coordinates of the system, somewhat similar to the

wave equation of classical theory. The similarity is not close,

however, and we shall not utilize the analogy in our exposition.

Besides yielding the probability amplitude or wave function ty,

the Schrodinger equation provides a method of calculating values

1 M. BORN, Z.f. Phys. 37, 863; 38, 803 (1926).

W. HEISENBERG, Z. /. Phys. 43, 172 (1927).
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of the energy of the stationary states of a system, the existence

of which we have discussed in connection with the old quantum
theory. No arbitrary postulates concerning quantum numbers

are required in this calculation; instead, integers enter auto-

matically in the process of finding satisfactory solutions of the

wave equation.

For our purposes, the Schrodinger equation, the auxiliary

restrictions upon the wave function ^, and the interpretation of

the wave function are conveniently taken as fundamental

postulates, with no derivation from other principles necessary.

This idea may be clarified by a comparison with other branches

of physics. Every department of deductive science must

necessarily be founded on certain postulates which are regarded
as fundamental. Frequently these fundamental postulates are

so closely related to experiment that their acceptance follows

directly upon the acceptance- of the experiments upon which

they are based, as, for example, the inverse-square law of electrical

attraction. In other cases the primary postulates are not so

directly obvious from experiment, but owe their acceptance to the

fact that conclusions drawn from them, often by long chains of

reasoning, agree with experiment in all of the tests which have

been made. The second law of thermodynamics is represeritative

of this type of postulate. It is not customary to attempt to

derive the second law for general systems from anything more

fundamental, nor is it obvious that it follows directly from

some simple experiment; nevertheless, it is accepted as correct

because deductions made from it agree with experiment. It is

an assumption, justified only by the success achieved by its

consequences.
The wave equation of Schrodinger belongs to this latter class

of primary assumption. It is not derived from other physical

laws nor obtained as a necessary consequence of any experiment ;

instead, it is assumed to be correct, and then results predicted

by it are compared with data from the laboratory.

A clear distinction must frequently be made between the way
in which a discoverer arrives at a given hypothesis and the

logical position which this hypothesis occupies in the theory when
it has been completed and made orderly and deductive. In

the process of discovery, analogy often plays a very important

part. Thus the analogies between geometrical optics and
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classical mechanics on the one hand and undulatory optics and
wave mechanics on the other may have assisted Schrodinger to

formulate his now famous equation; but these analogies by no

means provide a logical derivation of the equation.
In many cases there is more than one way of stating the funda-

mental postulates. Thus either Lagrange's or Hamilton's form

of the equations of motion may be regarded as fundamental for

classical mechanics, and if one is so chosen, the other can be

derived from it. Similarly, there are other ways of expressing
the basic assumptions of quantum mechanics, and if they are

used, the wave equation can be derived from them, but, no

matter which mode of presenting the theory is adopted, some

starting point must be chosen, consisting of a set of assumptions
not deduced from any deeper principles.

It often happens that principles which have served as the basis

for whole branches of theory are superseded by other principles

of wider applicability. Newton's laws of motion, adopted
because they were successful in predicting the motions of the

planets and in correlating celestial and terrestrial phenomena,
were replaced by Lagrange's and Hamilton's equations because

these are more general. They include Newton's laws as a

special case and in addition serve for the treatment of motions

involving electric, magnetic, and relativistic phenomena. Like-

wise, quantum mechanics includes Newton's laws for the special

case of heavy bodies and in addition is successful in problems

involving atoms and electrons. A still more general theory
than that of Schrodinger has been developed (we shall discuss

it in Chap. XV), but for nearly all purposes the wave equation is a

convenient and sufficient starting point.

9a. The Wave Equation Including the Time. Let us first

consider a Newtonian system with one degree of freedom,

consisting of a particle of mass m restricted to motion along a

fixed straight line, which we take as the x axis, and let us assume

that the system is further described by a potential-energy func-

tion V(x) throughout the region *> < x < + > . For this

system the Schrodinger wave equation is assumed to be

, -A **(

In this equation the function ^(z, t) is called the Schrddinger
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wave function including the time, or the probability amplitude
function. It will be noticed that the equation is somewhat

similar in form to the wave equations occurring in other branches

of theoretical physics, as in the discussion of the motion of a

vibrating string. The student facile in mathematical physics

may well profit from investigating this similarity and also the

analogy between classical mechanics and geometrical optics on

the one hand, and wave mechanics and undulatory optics on the

other. 1
However, it is not necessary to do this. An extensive

previous knowledge of partial differential equations and their

usual applications in mathematical physics is not a necessary

prerequisite for the study of wave mechanics, and indeed the

study of wave mechanics may provide a satisfactory introduction

to the subject for the more physically minded or chemically
minded student.

The Schrodinger time equation is closely related to the equation

of classical Newtonian mechanics

H(Px, x) = T(Px) + V(x) = W, (9-2)

which states that the total energy W is equal to the sum of the

kinetic energy T and the potential energy V and hence to the

Hamiltonian function H(p x , x). Introducing the coordinate x

and momentum p x,
this equation becomes

H(P., *) =
ifcPl

+ V(x) = W. (9-3)

If we now arbitrarily replace px by the differential operator

PT . and W by jrr -TT> and introduce the function ^(x, t) onAm ox Jnri ot

which these operators can operate, this equation becomes

h
, XX -_ -_

ri dx
Xr (X ' t}

-
&r2m dx 2 + V* ~

2wi dt'

which is identical with Equation 9-1. The wave equation is

1
See, for example, Condon and Morse, "Quantum Mechanics," p.

10, McGraw-Hill Book Company, Inc., New York, 1929; Ruark and Urey,

"Atoms, Molecules and Quanta," Chap. XV, McGraw-Hill Book Company,

Inc., New York, 1930; E. Schrddinger, Ann. d. Phys. 79, 489 (1926); K. K.

Darrow, Rev. Mod. Phys. 8, 23 (1934); or other treatises on wave mechanics,

listed at the end of this chapter.
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consequently often conveniently written as

H* TF*, (9-5)

in which it is understood that the operators =. -r- and H. -r;
ZiTTl OX Jflft dt

are to be introduced.

* a

lii replacing p by the operator > p* is to be replaced by
* 2irt ox

and so on. (In some cases, which, however, do not arise in the simpler

problems which we are discussing in this book, there may be ambiguity

regarding the formulation of the operator.
1
) It might be desirable to dis-

tinguish between the classical Hamiltonian function H = H(px , x) and the

Hamiltonian operator

/ i \1 \1

(
I

\2iriy die

*_!/*_, A
\2Tri dx I

as by writing /^operator for the latter. We shall not do this, however, since

the danger of confusion is small. Whenever H is followed by ^ (or by f,

representing the wave functions not including the time, discussed in the

following sections), it is understood to be the Hamiltonian operator. Simi-

larly, whenever W is followed by ^ it represents the operator .

2nt dt

The symbol W will also be used to represent the energy constant (Sees.

96, 9c). We shall, indeed, usually restrict the symbol W to this use, and
h d , ,

wnte for the operator.
2wi dt

F

It must be recognized that this correlation of the wave equation
and the classical energy equation, as well as the utilization

which we shall subsequently make of many other classical

dynamical expressions, has only formal significance. It provides
a convenient way of describing the system for which we are

setting up a wave equation by making use of the terminology

developed over a long period of years by the workers in classical

dynamics. Thus our store of direct knowledge regarding the

nature of the system known as the hydrogen atom consists in the

results of a large number of experiments spectroscopic, chemical,

etc. It is found that all of the known facts about this system
can be correlated and systematized (and, we say, explained)

by associating with this system a certain wave equation. Our
confidence in the significance of this association increases when

predictions regarding previously uninvestigated properties of

1 B. PODOLSKY, Phys. Reo. 32, 812 (1928).
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the hydrogen atom are subsequently verified by experiment.

We might then describe the hydrogen atom by giving its wave

equation; this description would be complete. It is unsatis-

factory, however, because it is unwieldy. On observing that

there is a formal relation between this wave equation and the

classical energy equation for a system of two particles of different

masses and electrical charges, we seize on this as providing a

simple, easy, and familiar way of describing the system, and

we say that the hydrogen atom consists of two particles, the

electron and proton, which attract each other according to

Coulomb's inverse-square law. Actually we do not know that

the electron and proton attract each other in the same way
that two macroscopic electrically charged bodies do, inasmuch

as the force between the two particles in a hydrogen atom has

never been directly measured. All that we do know is that the

wave equation for the hydrogen atom bears a certain formal

relation to the classical dynamical equations for a system of

two particles attracting each other in this way.

Having emphasized the formal nature of this correlation and

of the usual description of wave-mechanical systems in terms of

classical concepts, let us now point out the extreme practical

importance of this procedure. It is found that satisfactory wave

equations can be formulated for nearly all atomic and molecular

systems by accepting the descriptions of them developed during
the days of the classical and old quantum theory and translating

them into quantum-mechanical language by the methods

discussed above. Indeed, in many cases the wave-mechanical

expressions for values of experimentally observable properties of

systems are identical with those given by the old quantum theory,

and in other cases only small changes are necessary. Throughout
the following chapters we

v

shall make use of such locutions as

"a system of two particles with inverse-square attraction
"

instead of "a system whose wave equation involves six coordi-

nates and a function e 2
/ri 2," etc.

9b. The Amplitude Equation. In order to solve Equation 9-1,

let us (as is usual in the solution of a partial differential equation
of this type) first study the solutions ^ (if any exist) which can

be expressed as the product of two functions, one involving the

time alone and the other the coordinate alone:

*(*, t)
-
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On introducing this in Equation 9-1 and dividing through by
\l/(x)<p(f), it becomes

The right side of this equation is a function of the time t alone

and the left side a function of the coordinate x alone. It is

consequently necessary that the value of the quantity to which

each side is equal be dependent on neither x nor t\ that is, that

it be a constant. Let us call it W. Equation 9-6 can then

be written as two equations, namely,

(9-7)and

_ h 2
c

87T
2w dx2

The second of these is customarily written in the form

(9-8)

obtained on multiplying by 87r
2ra//i

2 and transposing the term

in W.

Equation 9-8 is often itself called the Schrodinger wave equa-

tion, or sometimes the amplitude equation, inasmuch as \l/(x)

determines the amplitude of the function >(#, t). It is found

that the equation possesses various satisfactory solutions, cor-

responding to various values of the constant W. Let us indicate

these values of W by attaching the subscript n, and similarly

represent the amplitude function corresponding to Wn as ^n(x).

The corresponding equation for <p(t) can be integrated at once

to give
or

(9-9)

The general solution of Equation 9-1 is the sum of all the particu-

lar solutions with arbitrary coefficients. We consequently

write as the general expression for the wave function for this

system m

*(*, *)
-

2an*n(x,
-

""
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in which the quantities an are constants. The symbol V is

to be considered as representing the process of summation over

discrete values of Wn or integration over a continuous range or

both, according to the requirements of the particular case.

It will be shown later that the general postulates which we
shall make regarding the physical interpretation of the wave
function require that the constant Wn represent the energy of

the system in its various stationary states.

9c. Wave Functions. Discrete and Continuous Sets of

Characteristic Energy Values. The functions tn(x) which

satisfy Equation 9-8 and also certain auxiliary conditions, dis-

cussed below, are variously called wave functions or eigenfunctions

(Eigenfunktionen), or sometimes amplitude functions, charac-

teristic functions, or proper functions. It is found that satis-

factory solutions \l/n of the wave equation exist only for certain

values of the parameter Wn (which is interpreted as the energy
of the system). These values Wn are characteristic energy values

or eigenvalues (Eigenwerte) of the wave equation. A wave

equation of this type is called a characteristic value equation.

Inasmuch as we are going to interpret the square of the absolute

value of a wave function as having the physical significance of a

probability distribution function, it is not unreasonable that the

wave function be required to possess certain properties, such as

single-valuedness, necessary in order that this interpretation be

possible and unambiguous. It has been found that a satisfactory

wave mechanics can be constructed on the basis of the following

auxiliary postulates regarding the nature of wave functions:

To be a satisfactory wave function, a solution of the Schrodinger

wave equation must be continuous, single-valued, and finite
1

through-

1 The assumption that the wave function be finite at all points in configura-

tion space may be more rigorous than necessary. Several alternative

postulates have been suggested by various investigators. Perhaps the most

satisfying of these is due to W. Pauli ("Handbuch der Physik," 2d ed., Vol.

XXVI, Part 1, p. 123). In Section 10 we shall interpret the function ^* as a

probability distribution function. In order that this interpretation may be

made, it is necessary that the integral of V** over configuration space be a

constant with changing time. Pauli has shown that this condition is satis-

fied provided that ^ is finite throughout configuration space, but that it is

also satisfied in certain cases by functions which are not finite everywhere.
The exceptional cases are rare and do not occur in the problems treated ID

this book.
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out the configuration space of the system (that is, for all values of

the coordinate x which the system can assume).

These conditions are those usually applied in mathematical

physics to functions representing physical quantities. For

example, the function representing the displacement of a vibrat-

ing string from its equilibrium configuration would have to

satisfy them.

For a given system the characteristic energy values Wn may
occur only as a set of discrete values, or as a set of values covering

a continuous range, or as both. From analogy with spectroscopy

it is often said that in these three cases the energy values comprise

a discrete spectrum, a continuous spectrum, or both. The way

Fia. 9-1. Potential-energy function for a general system with one degree of

freedom.

in which the above postulates regarding the wave equation and

its acceptable solutions lead to the selection of definite energy

values may be understood by the qualitative consideration of a

simple example. Let us consider, for our system of one degree

of freedom, that the potential-energy function V(x) has the form

given in Figure 9-1, such that for very large positive or negative

values of x, V(x) increases without limit. For a given value of

the energy parameter W, the wave equation is

(9-11)

In the region of large x (x > a) the quantity V(x)
- W will be

positive. Hence in this region the curvature^ wil1 be positive

if ^ is positive, and negative if ^ is negative. Now let us assume
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that at an arbitrary point x = c the function
\l/ has a certain value

(which may be chosen arbitrarily, inasmuch as the wave equation

is a homogeneous equation
1

) and a certain slope -p>
as indicated

for Curve 1 in Figure 9-2. The behavior of the function, as it

is continued both to the right and to the left, is completely
determined by the values assigned to two quantities; to wit, the

d\l/

slope -7- at the point x =
c, and the energy parameter W in the

wave equation, which determines the value of the second deriva-

FIG. 9-2. The behavior of ^ for x > a.

tive. As we have drawn Curve 1, the curvature is determined

by the wave equation to be negative in the region x < a, where

V(x) W is negative, \l/ being positive, and hence the curve can

be continued to the right as shown. At the point x a, the

function remaining positive, the curvature becomes positive, the

curve then being concave upward. If the slope becomes positive,

as indicated, then the curve will increase without limit for

increasing x, and as a result of this "infinity catastrophe" the

function will not be an acceptable wave function.

1 An equation is homogeneous in ^, if the same power of \l/ (in our case the

first power) occurs in every term. The function obtained by multiplying

any solution of a homogeneous equation by a constant is also a solution

of the equation.
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We can now make a second attempt, choosing the slope at

x = c as indicated for Curve 3. In this case the curve as drawn
intersects the x axis at a point x = d to the right of a. For

values of x larger than d the function ^ is negative, and the curva-

ture is negative. The function decreases in value more and more

rapidly with increasing z, again suffering the infinity catastrophe,

and hence it too is not an acceptable wave function in this

region.

Thus we see that, for a given value of W
y only by a very careful

selection of the slope of the function at the point x = c can the

function be made to behave properly for large values of x. This

selection, indicated by Curve 2, is such as to cause the wave
function to approach the value zero asymptotically with increas-

ing x.

Supposing that we have in this way determined, for a given
value of W, a value of the slope at x = c which causes the

function to behave properly for large positive values of x, we
extend the function to the left and consider its behavior for large

negative values of x. In view of our experience on the right,

it will not be surprising if our curve on extension to the left

behaves as Curve 1 or Curve 3 on the right, eliminating the

function from consideration; in fact, it is this behavior which

is expected for an arbitrarily chosen value of W. We can now
select another value of W for trial, and determine for it the value

of the slope at x = c necessary to cause the function to behave

properly on the right, and then see if, for it, the curve behaves

properly on the left also. Finally, by a very careful choice of

the value of the energy parameter W, we are able to choose a

slope at x = c which causes the function to behave properly

both for very large and for very small values of x. This value

of W is one of the characteristic values of the energy of the

system. In view of the sensitiveness of the curve to the param-
eter Wj an infinitesimal change from this satisfactory value will

cause the function to behave improperly.

We conclude that the parameter W and the slope at the point

x = c (for a given value of the function itself at this point) can

have only certain values if ^ is to be an acceptable wave function.

For each satisfactory value of W there is one (or, in certain

cases discussed later, more than one) satisfactory value of the

slope, by the use of which the corresponding wave function can
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be built up. For this system the characteristic values Wn

of the energy form a discrete set, and only a discrete set, inasmuch

as for every value of W y
no matter how large, V(x) W is

positive for sufficiently large positive or negative values of x.

It is customary to number the characteristic energy values for

such a system as indicated in Figure 9-1, W being the lowest,

W\ the next, and so on, corresponding to the wave functions

to(x)> ^i(z)> etc. The integer n, which is written as a subscript
in Wn and ^n (x), is called the quantum number. For such a

one-dimensional system it is equal to the number of zeros 1

possessed by ^n . A slight extension of the argument given above

W
orA
v

x~^

Fia. 9-3. The energy levels for a system with V( <) or F(-}-oo) finite.

shows that all of the zeros lie in the region between the points

x = b and x =
a, outside of which V(x) Wn remains positive.

The natural and simple way in which integral quantum numbers

are introduced and in which the energy is restricted to definite

values contrasts sharply with the arbitrary and uncertain

procedure of the old quantum theory.

Let us now consider a system in which the potential-energy

function remains finite at x + or at x > oo or at both

limits, as shown in Figure 9-3. For a value of W smaller than

both F(+<) and F( >) the argument presented above is

valid. Consequently the energy levels will form a discrete set

for this region. If W is greater than F(+<x>), however, a

similar argument shows that the curvature will be such as always
to return the wave function to the x axis, about which it will

1 A zero of tn (x) is a point (x = x\) at which $n is equal to zero.
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oscillate. Hence any value of W greater than F(+) or

F( oo
) will be an allowed value, corresponding to an acceptable

wave function, and the system will have a continuous spectrum
of energy values in this region.

9d. The Complex Conjugate Wave Function *F*(x, *) In

the physical interpretation of the wave equation and its solutions,

as discussed in the following section, the quantity ^*(x, t),

the complex conjugate of ^(x, t), enters on an equivalent basis

with ^(x, f). The wave equation satisfied by ^* is the complex

conjugate of Equation 9-1, namely,

*>"' -53 di

The general solution of this conjugate wave equation is the

following, the conjugate of 9-10:

.Wn

**(x, t)
= ]a*^n OB,

= ^*^n(^)e
*IT

"'. (9-13)

(Some authors have adopted the convention of representing

by the symbol the wave function which is the solution of

Equation 9-12 and by ^* that of 9-1. This is only a matter of

nomenclature.)

It will be noticed that in the complex conjugate wave function

the exponential terms containing the time are necessarily different

from the corresponding terms in ^ itself, the minus sign being
removed to form the complex conjugate. The amplitude
functions 1/^(2), on the other hand, are frequently real, in which

case ^*(x) = tn(x).

10. THE PHYSICAL INTERPRETATION OF THE WAVE FUNCTIONS

10a. W*(x, t)W(x, as a Probability Distribution Function.

Let us consider a given general solution ^(x, t) of the wave equa-
tion. For a given value of the time t, the function ^*(z, t)V(x, t),

the product of and its complex conjugate, is a function defined

for all values of x between oo and + <

;
that is, throughout the

configuration space of this one-dimensional system. We now
make the following postulate regarding the physical significance

of *:

The quantity V*(x, t)V(x, t)dx is the probability that the system

in the physical situation represented by the wave function y(x, t)
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have at the time t the configuration represented by a point in the

region dx of configuration space. In other words, ty*(x, t)^(x, t)

is a probability distribution function for the configuration of the

system. In the simple system under discussion, V*(x, t)V(x, t)dx
is the probability that the particle lie in the region between x

and x + dx at the time t.

In order that this postulate may be made, the wave function

(x, t) must be normalized to unity (or, briefly, normalized);
that is, the constants an of Equation 9-10 must be so chosen as

to satisfy the relation

f
+
J^*(:r, f)V(x, t)dx =

1, (10-1)

inasmuch as the probability that the coordinate x of the particle

lie somewhere between < and +00 is necessarily unity.

It is also convenient to normalize the individual amplitude
functions $n(x) to unity, so that each satisfies the equation

\l/*(x)\l/n(x)dx = 1. (10-2)

Moreover, as proved in Appendix III, it is found that the

independent solutions of any amplitude equation can always be

chosen in such a way that for any two of them, ^m(x) and ^ n (z),

the integral J^m(^)^n(z)dx over all of configuration space van-

ishes; that is,

f
+
"tZ(xWn(x)dx =0, m * n. (10-3)J- oo

The functions are then said to be mutually orthogonal. Using
these relations and Equations 9-10 and 9-13, it is found that a

wave function ^f(x y t)
= Van^r

n (o;, t) is normalized when the
n

coefficients an satisfy the relation

10b. Stationary States. Let us consider the probability dis-

tribution function S*SI> for a system in the state represented by

the wave function ^(x, t)
= ^an\l/n(x)e

**
h and its conjugate

n

2 I

, t)
= a*^*(z)e

**
h On multiplying these series
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together, ^*^ is seen to have the form

,
-
5aX#*(x)*n(s) +
n

.(Wm-W*)
'

in which the prime on the double-summation symbol indicates

that only terms with ra ^ n are included. In general, then,

the probability function and hence the properties of the system

depend on the time, inasmuch as the time enters in the exponen-
tial factors of the double sum. Only if the coefficients an are

zero for all except one value of Wn is ^*^ independent of t.

Tn such a case the wave function will contain only a single term

-2wi^t
(with n =

ri, say) n '(z,
= $'(x)e

h
,
the amplitude

function \l/n '(x) being a particular solution of the amplitude

equation. For such a state the properties of the system as given

by the probability function ^*^ are independent of the time, and

the state is called a stationary state.

lOc. Further Physical Interpretation. Average Values of

Dynamical Quantities. If we inquire as to what average value

would be expected on measurement at a given time t of the

coordinate x of the system in a physical situation represented by
the wave function ^, the above interpretation of S^*^ leads to the

answer

= C
J

x, t)xdx;

that is, the value of x is averaged over all configurations, using

the function *&*<& as a weight or probability function. A similar

integral gives the average value predicted for a;
2

,
or a;

3
,
or any

function F(x) of the coordinate x:

, t)F(x)dx. (10-5)

In order that the same question can be answered for a more

general dynamical function G(pXJ x) involving the momentum px

as well as the coordinate x, we now make the following more

general postulate:

The average value of the dynamical function G(px, x) predicted

for a system in the physical situation represented by the wave

function ^(x, f) is given by the integral
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(10-6)

in which the operator (?, obtained from G(px , x) by replacing px

h d
by o . -^~' operates on the function ty(x, t) and the integration isJ 2m dx * v ' ' 6

extended throughout the configuration space of the system.
1

In general, the result of a measurement of G will not be given

by this expression for G. G rather is the average of a very

large number of measurements made on a large number of

identical systems in the physical situation represented by ^, or

repeated on the same system, which before each measurement
must be in the same physical situation. For example, if ^ is

FIG. 10-1. Two types of probability distribution function

finite for a range of values of x (Curve A, Figure 10-1), then a

measurement of x might lead to any value within this range,

the probability being given by >Jr*^r
. Only if ty*ty were zero

for all values of x except x a, as indicated by Curve B in

Figure 10-1, would the probability of obtaining a particular

value x = a on measurement of x be unity. In this case the

value ar would be predicted with probability unity to be obtained

on measurement of the rth power of x
;
so that for such a prob-

ability distribution function xr
is equal to (x)

r
. It has also

been shown by mathematicians that the existence of this identity

of Gr and (G)
r for all values of r is sufficient to establish that the

probability distribution function for the dynamical quantity G is

of type B] that is, that the value of G can be predicted accurately.

1 In some cases further considerations are necessary in order to determine

the exact form of the operator, but we shall not encounter such difficulties.
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Even if the system is in a stationary state, represented by the

-Mr-
function tyn(x, t)

= $n(x)e
h

, only an average value

can be predicted for an arbitrary dynamical quantity. The

energy of the system, corresponding to the Hamiltonian function

H(px, x), has, however, a definite value for a stationary state

of the system, equal to the characteristic value Wn found on

solution of the wave equation, so that the result of a measurement
of the energy of the system in a given stationary state can be

predicted accurately. To prove this, we evaluate Hr and (B)
r
.

R is given by the integral

H =

the factor involving the time being equal to unity. This trans-

forms with the use of Equation 9-8 into

8 =

/4-

oo

\f/*(x)\l/n(x)dX =
1,

H = Wn ,
and (HY - Wr

n . (10-7)

By a similar procedure, involving repeated use of Equation 9-8,

it is seen that H r
is equal to Wr

n . We have thus shown Hr to

be equal to (H)
r
,
in consequence of which, in accordance with the

argument set forth above, the energy of the system has the

definite value Wn .

Further discussion of the physical significance of wave functions

will be given in connection with the treatment of the harmonic

oscillator in this chapter and of other systems in succeeding

chapters, and especially in Chapter XV, in which the question

of deciding which wave function to associate with a given system
under given circumstances will be treated. In the earlier sections

we shall restrict the discussion mainly to the properties of

stationary states.

11. THE HARMONIC OSCILLATOR IN WAVE MECHANICS

lla. Solution of the Wave Equation. As our first example
of the solution of the Schrodinger wave equation for a dynamical

system we choose the one-dimensional harmonic oscillator, not

only because this provides a good illustration of the methods
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employed in applying the wave equation, but also because this

system is of considerable importance in applications which we

shall discuss later, such as the calculation of the vibrational

energies of molecules. The more difficult problem of the three-

dimensional oscillator was treated by the methods of classical

mechanics in Section la, while the simple one-dimensional

case was discussed according to the old quantum theory in

Section 6a.

The potential energy may be written, as before, in the form

V(x) = 27r
2mv^ 2

,
in which x is the displacement of the particle

of mass m from its equilibrium position x = 0. Insertion of this

in the general wave equation for a pne-dimensional system

(Eq. 9-8) gives the equation

=
0, (11-1)

or, introducing for convenience the quantities X

and a = 47r
2m^ //i,

g + (X
- aW)t = 0. (11-2)

We desire functions \l/(x) which satisfy this equation throughout
the region of values <*> to + for x, and which are acceptable
wave functions, i.e., functions which are continuous, single-

valued, and finite throughout the region. A straightforward
method of solution which suggests itself is the use of a power-
series expansion for ^, the coefficients of the successive powers
of x being determined by substitution of the series for \l/

in the

wave equation. There is, however, a very useful procedure
which we may make use of in this and succeeding problems,

consisting of the determination of the form of ^ in the regions of

large positive or negative values of #, and the subsequent dis-

cussion, by the introduction of a factor in the form of a power
series (which later reduces to a polynomial), of the behavior of ^
for \x\ small. This procedure may be called the polynomial
method. 1

The first step is the asymptotic solution of the wave equation
when \x\ is very large. For any value of the energy constant W,
a value of \x\ can be found such that for it and all larger values

1 A. SOMMBBFELD, "Wave Mechanics," p. 11.



m-lla] HARMONIC OSCILLATOR IN WAVE MECHANICS 69

of \x\, X is negligibly small relative to V, the asymptotic form
of the wave equation thus becoming

This equation is satisfied asymptotically by the exponential
functions

*= 2

inasmuch as the derivatives of \l/ have the values

,

-T- = -f axe
dx

~

and

and the second term in
-^-^

is negligible in the region considered.
ctx

_?x. + xi

Of the two asymptotic solutions e 2 and e 2
,
the second is

unsatisfactory as a wave function since it tends rapidly to

infinity with increasing values of \x\ ;
the first, however, leads to a

satisfactory treatment of the problem.

We now proceed to obtain an accurate solution of the wave

equation throughout configuration space (
& < x <+>),

based upon the asymptotic solution, by introducing as a factor

a power series in x and determining its coefficients .by substitution

in the wave equation.

= e 2
/Or). Then

^ = r3*V*/ -
af

- 2axf +/"},

in which /' and /" represent -p
and -7-^ respectively. Equation

-**-
1 1-2 then becomes, on division by e 2

,

f _ 2af + (X
-

a)/ = 0, (11-4)

the terms in aVf cancelling.
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It is now convenient to introduce a new variable {, related to

x by the equation

f = V*r, (11-5)

and to replace the' function f(x) by H(), to which it is equal.

The differential equation 11-4 then becomes

d*H dH /X A~
'

We now represent H(l-) as a power series, which we differentiate

to obtain its derivatives,

dH

= 1 2a 2

On substitution of these expressions, Equation 1 1-6 assumes the

following form :

1 2a2 + 2 3a 3 + 3 4a 4
2 + 4 5a5

3 +
-

2<*i
- 2 2a,{*

- 2 3a 3
3 -

-
l)

ia 3
3 + - - = 0.

In order for this series to vanish for all values of (i.e., for //()
to be a solution of 11-6), the coefficients of individual powers of

must vanish separately
1

:

1 - 2a 2 +
(
- - 1

ja
=

0,
\ /

=
0,

=
0,

4 5a6 + ( 1 2 3
jo

8
=

0,
\ /

1 See footnote, Sec. 23.
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or, in general, for the coefficient of *,

or

This expression is called a recursion formula. It enables the

coefficients a2 ,
a 8,

a4 ,
to be calculated successively in

terms of a and ai, which are arbitrary. If a is set equal to zero,

only odd powers appear; with a\ zero, the series contains even

powers only.

For arbitrary values of the energy parameter X, the above

given series consists of an infinite number of terms and does

not correspond to a satisfactory wave function, because, as we
shall show, the value of the series increases too rapidly as x

increases, with the result that the total function, even though it

includes the negative exponential factor, increases without

limit as x increases. To prove this we compare the series for

H and that for e**,

4 6 tv v+2

gJ _ J _|_
2 I _L

-j-
_L -L _L q J - - -L . . .

For large values of the first terms of these series will be unim-

portant. Suppose that the ratio of the coefficients of the vth

terms in the expansion of H() and e& is called c, which may be

small or large, i.e., av/bv
=

c, if 6, is the coefficient of " in the

expansion of e*\ For large enough values of v, we have the

asymptotic relations

2
= -a and 6, 2

= \v+2
v

v+2
v

,

so that

a.,+2 av

if v is large enough. Therefore, the higher terms of the series for

H differ from those for e? only by a multiplicative constant, so

that for large values of ||, for which the lower terms are unim-
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_I!

portant, H will behave like e** and the product e 2H will behave

+ L*

like 6 2 in this region, thus making it unacceptable as a wave

function.

We must therefore choose the values of the energy parameter
which will cause the series for H to break off after a finite number
of terms, leaving a polynomial. This yields a satisfactory wave

_!2

function, because the negative exponential factor e 2 will cause

the function to approach zero for large values of
|f|.

The value

of X which causes the series to break off after the nth term is

seen from Equation 11-7 to be

X = (2n + 1). (11-8)

It is, moreover, also necessary that the value either of a or of ai

be put equal to zero, according as n is odd or even, inasmuch as a

suitably chosen value of X can cause either the even or the odd

series to break off, but not both. The solutions are thus either

odd or even functions of . This condition is a sufficient condi-

tion to insure that the wave equation 11-2 have satisfactory

solutions, and it is furthermore a necessary condition; no other

values of X lead to satisfactory solutions. For each integral

value 0, 1, 2, 3, of n, which we may call the quantum
number of the corresponding state of the oscillator, a satisfactory

solution of the wave equation will exist. The straightforward

way in which the quantum number enters in the treatment of

the wave equation, as the degree of the polynomial H(), is

especially satisfying when compared with the arbitrary assump-
tion of integral or half-integral multiples of h for the phase

integral of the old quantum theory.

The condition expressed in Equation 11-8 for the existence

of the nth wave function becomes

W = Wn = (n + M)hv, n =
0, 1, 2,

-

, (11-9)

when X and a are replaced by the quantities they represent. A
comparison with the result W = nhvQ obtained in Section 6a

by the old quantum theory shows that the only difference is

that all the energy levels are shifted upward, as shown in Figure

11-1, by an amount equal to half the separation of the energy

levels, the so-called zero-point energy %hv<>. From this we
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see that even in its lowest state the system has an energy greater
than that which it would have if it were at rest in its equilibrium

position. The existence of a zero-point energy, which leads to

an improved agreement with experiment, is an important feature

of the quantum mechanics and recurs in many problems.
1

Just as in the old-quantum-theory treatment, the frequency
emitted or absorbed by a transition between adjacent energy
levels is equal to the classical vibration frequency i> (Sec. 40c).

VJY

FIG. 11-1. Energy levels for the harmonic oscillator according to wave me*
chanics (see Fig. 6-1).

lib. The Wave Functions for the Harmonic Oscillator and

Their Physical Interpretation. For each of the characteristic

values Wn of the energy, a satisfactory solution of the wave

equation 11-1 can be constructed by the use of the recursion

formula 11-7. Energy levels such as these, to each of which

there corresponds only one independent wave function, are said

to be non-degenerate to distinguish them from degenerate energy

levels (examples of which we shall consider later), to which several

1 The name zero-point energy is used for the energy of a system in its lowest

stationary state because the system in thermodynamic equilibrium with its

environment at a temperature approaching the absolute zero would be in

this stationary state. The zero-point energy is of considerable importance

in many statistical-mechanical and thermodynamic discussions. The

existence of zero-point energy is correlated with the uncertainty principle

(Chap. XV),
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independent wave functions correspond. The solutions of 11-1

may be written in the form

~

in which = \/ax. Hn() is a polynomial of the nth degree in

,
and Nn is a constant which is adjusted so that ^n is normalized,

i.e., so that \l/n satisfies the relation

x)dx =
1, (11-H)

in which ^*, the complex conjugate of ^n ,
is in this case equal to

^n . In the next section we shall discuss the nature and properties

-

A
3 -i -1 12 3 -3-2 -1 I 2 3

FIG. 11-2. The wave function ^o() for the normal state of the harmonic
oscillator (left), and the corresponding probability distribution function

[\^o()P (right). The classical distribution function for an oscillator with the

same total energy is shown by the dashed curve.

of these solutions \l/n in great detail. The first of them, which

corresponds to the state of lowest energy for the system, is

Figure 11-2 shows this function. From the postulate discussed

in Section 10a, ^J^ = ^, which is also plotted in Figure 11-2,

represents the probability distribution function for the coordinate

x. In other words, the quantity ^l(x)dx at any point x gives

the probability of finding the particle in the range dx at that

point. We see from the figure that the result of quantum
mechanics for this case does not agree at all with the probability

function which is computed classically for a harmonic oscillator

with the same energy. Classically the particle is most likely to



m-llbj HARMONIC OSCILLATOR IN WAVE MECHANICS 75

be found at the ends of its motion, which are clearly defined points

(the classical probability distribution is shown by the dotted

curve in Figure 11-2), whereas $1 has its maximum at the origin

of x and, furthermore, shows a rapidly decreasing but nevertheless

finite probability of finding the particle outside the region allowed

classically. This surprising result, that it is possible for a

particle to penetrate into a region in which its total energy is less

than its potential energy, is closely connected with Heisenberg's

-3 -2 -1" 012 3 4 -4-3-2-10 1 2 34 -4-3-2-10 I 2 54
FIG. 11-3. The wave functions v^n(), n 1 to 6, for the harmonic oscillator.

For each case the heavy horizontal line indicates the region traversed by the
classical harmonic oscillator with the same total energy.

uncertainty principle, which leads to the conclusion that it is

not possible to measure exactly both the position and the velocity

of a particle at the same time. We shall discuss this phenomenon
further in Chapter XV. It may be mentioned at this point,

however, that the extension of the probability distribution func-

tion into the region of negative kinetic energy will not require

that the law of the conservation of energy be abandoned.

The form of \l/n for larger values of n is shown in Figure 11-3.

Since Hn is a polynomial of degree n, \l/n wilLhave n zeros or

points where \l/n crosses the zero line. The probability of finding

the particle at these points is zero. Insuection of Figure 11-3

shows that all the solutions plotted show a general behavior in
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agreement with that obtained by the general arguments of Section

9c; that is, inside the classically permitted region of motion of

the particle (in which V(x) is less than Wn) the wave function

oscillates, having n zeros, while outside that region the wave
function falls rapidly to zero in an exponential manner and has

no zeros. Furthermore, we see in this example an illustration

of still another general principle: The larger the value of n, the

Fio. 11-4. The probability distribution function [^io()]
2 for the state

n 10 of the harmonic oscillator. Note how closely the function approximates
in its average value the probability distribution function for the classical har-

monic oscillator with the same total energy, represented by the dashed curve.

more nearly does the wave-mechanical probability distribution

function approximate to the classical expression for a particle

with the same energy. Figure 11-4 shows \l/

2
(x) for the state

with n = 10 compared with the classical probability curve for

21
the harmonic oscillator with the same value -^-hvo for the energy.

JL

It is seen that, aside from the rapid fluctuation of the wave-

mechanical curve, the general agreement of the two functions

is good. This agreement permits us to visualize the motion of

the particle in a wave-mechanical harmonic oscillator as being



m-llc] HARMONIC OSCILLATOR IN WAVE MECHANICS 77

similar to its classical to-and-fro motion, the particle speeding

up in the center of its orbit and slowing down as it approaches
its maximum displacement from its equilibrium position. The

amplitude of the oscillation cannot be considered to be constant,
as for the classical oscillator; instead, we may picture the particle

as oscillating sometimes with very large amplitude, and some-

times with very small amplitude, but usually with an amplitude
in the neighborhood of the classical value for the same energy.
Other properties of the oscillator also are compatible with this

picture; thus the wave-mechanical root-mean-square value of the

momentum is equal to the classical value (Prob. 11-4).

A picture of this type, while useful in developing an intuitive

feeling for the wave-mechanical equations, must not be taken

too seriously, for it is not completely satisfactory. Thus it

cannot be reconciled with the existence of zeros in the wave

functions for the stationary states, corresponding to points where

the probability distribution function becomes vanishingly

small.

lie. Mathematical Properties of the Harmonic Oscillator

Wave Functions. The polynomials Hn() and the functions

_v
e 2Hn() obtained in the solution of the wave equation for the

harmonic oscillator did not originate with Schrodinger's work

but were well known to mathematicians in connection with other

problems. Their properties have been intensively studied.

For the present purpose, instead of developing the theory of

the polynomials Hn(), called the Hermite polynomials, from the

relation between successive coefficients given in Equation 11-7,

it is more convenient to introduce them by means of another

definition:

We shall show later that this leads to the same functions as

Equation 11-7. A third definition involves the use of a generating

function, a method which is useful in many calculations and which

is also applicable to other functions. The generating function

for the Hermite polynomials is
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This identity in the auxiliary variable s means that the function

0*1- <-$> h^ the property that, if it is expanded in a power series

in s, the coefficients of successive powers of s are just the Hermite

polynomials Hn(), multiplied by 1/n !. To show the equivalence
of the two definitions 11-13 and 11-14, we differentiate S n times

with respect to s and then let s tend to zero, using first one and

then the other expression for S] the terms with v < n vanish

on differentiation, and those with v > n vanish for s > 0, leaving

only the term with v = n:

and

dnS\ = />e*'- (-* )a\ = Jdne- (<-v*\

dsV,_o
"

\ ds A^o
~ 6

\d(s
- )*A

Comparing these two equations, we see that we obtain Equation

11-13, so that the two definitions of Hn() are equivalent.

Equation 11-13 is useful for obtaining the individual functions,

while Equation 11-14 is frequently convenient for deriving their

properties, such as in the case we shall now discuss.

To show that the functions we have defined above are the

same as those used in the solution of the harmonic oscillator

problem, we look for the differential equation satisfied by
fln(). It is first convenient to derive certain relations between

successive Hermite polynomials and their derivatives. We
note that since S = e**-^-^*, its partial derivative with respect

to s is given by the equation

- -2(. - Q8.

Similarly differentiating the series S = rsn
,
and equating

the two different expressions for dS/ds, we obtain the equation

2ffn({)(n-l)!

or, collecting terms corresponding to the same power of s,



m-llc] HARMONIC OSCILLATOR IN WAVE MECHANICS 79

+ _
n! (n 1)! n!

n

Since this equation is true for all values of s, the coefficients of

individual powers of s must vanish, giving as the recursion

formula for the Hermite polynomials the expression

H^(& - 2tH*($ + 2n/7n_ 1 ({)
- 0. (11-15)

Similarly, by differentiation with respect to {, we derive the

equation

|f
- M,

which gives, in just the same manner as above, the equation

or

Hi(Q =^^ = 2ntfn_ 1(), (11-16)

involving the first derivatives of the Hermite polynomials.

This can be further differentiated with respect to to obtain

expressions involving higher derivatives.

Equations 11-15 and 11-16 lead to the differential equation for

ffn(), for from 11-16 we obtain

H?(t) = 2nffJ_1 ({)
= 4n(n

-
!)#*-,(*), (11-17)

while Equation 11-15 may be rewritten as

ffn (f)
- 2ff,.!({) + 2(n

-
l)ff -,() =

0, (11-18)

which becomes, with the use of Equations 11-16 and 11-17,

Hn(& -
$lpi(& + IH;'(O = o

or

)
= 0. (11-19)

This is just the equation, 11-6, which we obtained from the har-

monic oscillator problem, if we put 2n in place of -- 1, as

required by Equation 11-8. Since for each integral value of n

this equation has only one solution with the proper behavior at
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infinity, the polynomials Hn() introduced in Section lla are

the Hermite polynomials.

The functions

__
^n(x)

- ATn e 2 ffn(), = V*, (11-20)

are called the Hermite orthogonal functions; they are, as we
have seen, the wave functions for the harmonic oscillator. The

/+ il/*(x)dx
=

1, i.e., which normalizes

*n, is

The functions are mutually orthogonal if the integral over

configuration space of the product of any two of them vanishes:

=
0, n * m. (11-22)

To prove the orthogonality of the functions and to evaluate the

normalization constant given in Equation 11-21, it is convenient

to consider two generating functions:

M) =

and

e,o =

Using these, we obtain the relations

f
"

e-1-"+ !"+ ( - t

df = e" f s - t)

,

+TT

Considering coefficients of sn^m in the two equal series expansions,

/~H

*
Hn()Hm()e-*'d vanishes form^n, and has the

value ^nlx/r for m = n, in consequence of which the functions
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are orthogonal and the normalization constant has the value

given above.

The first few Hermite polynomials are

Hp) =1

+ 12

= 32 6 - 160 8 + 120 (11-23)
- 480 4 + 720 2 - 120
7 - 1344 5 + 3360 3 - 1680

= 256 8 - 3584J
6 + 13440?

4 - 13440 2 + 1680

f
7 + 48384 6 - 80640f

3 + 30240f

f
10 - 23040 8 + 161280f

6 - 403200f
4 + 302400 2

- 30240.

The list may easily be extended by the use of the recursion

formula, Equation 11-15. Figure 11-3 shows curves for the

first few wave functions, i.e., the functions given by Equation
11-20.

By using the generating functions S and T we can evaluate

certain integrals involving \l/n which are of importance. For

example, we may study the integral which, as we shall later

show (Sec. 40c), determines the probability of transition from the

state n to the state m. This is

xnm = f
+
ViMdz = ^^ f

+
"ffja^e-Ptf*. (11-24)

J * OL J QO

Using S and T we obtain the relation

M f
+fl

-<-._) _ *, f
+a

((_t-0~ e
J-oo

* *

J-oo
*

(
- s - t)d($

- 8 -
/.+

+ e2"(s + e- ( -'-W(f - s - 0.
J- co

The first integral vanishes, and the second gives VT- On

expanding the exponential, we obtain
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Hence, comparing coefficients of sntm
,
we see that xnm is zero

except for m = n 1, its values then being

(ll-25a)
* *i\*

and

It will be shown later that this result requires that transitions

occur only between adjacent energy levels of the harmonic

oscillator, in agreement with the conclusion drawn from the

correspondence principle in Section 5c.

Problem 11-1. Show that if V(-x) = V(x\ with V real, the solutions

fn(x) of the amplitude equation {M* have the property that^( x) ^(x).
Problem 11-2. Evaluate the integrals

where fa is a solution of the wave equation for the harmonic oscillator.

Problem 11-3. Calculate the average values of x, x*,
8
,
and x* for a

harmonic oscillator in the nth stationary state. Is it true that re* = ()*
or that P = (P)

2 ? What conclusions can be drawn from these results

concerning the results of a measurement of x?

Problem 11-4. Calculate the average values of px and p* for a harmonic

oscillator in the nth stationary state and compare with the classical values

for the same total energy. From the results of this and of the last problem,

compute the average value of the energy W = T -f V for the nth

stationary state.

Problem 11-5. a. Calculate the zerp-point energy of a system consisting

of a mass of 1 g. connected to a fixed point by a spring which is stretched

1 cm. by a force of 10,000 dynes. The particle is constrained to move only
in the x direction.

6. Calculate the quantum number of the system when its energy is about

equal to kT, where k is- Boltzmann's constant and T - 298 A. This corre-

sponds to thermodynamic equilibrium at room temperature (Sec. 49).
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CHAPTER IV

THE WAVE EQUATION FOR A SYSTEM OF POINT
PARTICLES IN THREE DIMENSIONS

12. THE WAVE EQUATION FOR A SYSTEM OF POINT PARTICLES

The Schrodinger equation for a system of N interacting point

particles in three-dimensional space is closely similar to that for

the simple one-dimensional system treated in the preceding

chapter. The time equation is a partial differential equation
in 3N + 1 independent variables (the 3N Cartesian coordinates,

say, of the N particles, and the time) instead of only two inde-

pendent variables, and the wave function is a function of these

3N + 1 variables. The same substitution as that used for the

simpler system leads to the separation of the time equation into

an equation involving the time alone and an amplitude equation

involving the 3N coordinates. The equation involving the time

alone is found to be the same as for the simpler system, so that

the time dependency of the wave functions for the stationary
states of a general system of point particles is the same as for

the one-dimensional system. The amplitude equation, however,
instead of being a total differential equation in one independent

variable, is a partial differential equation in 3N independent

variables, the 3N coordinates. It is convenient to say that this

is an equation in a 3]V-dimensional configuration space, meaning
by this that solutions are to be found for all values of the 3N
Cartesian coordinates Xi ZN from oo to + - The

amplitude function, dependent on these 3N coordinates, is said

to be a function in configuration space. A point in configuration

space corresponds to a definite value of each of the 3N coordi-

nates x\ ZN, and hence to definite positions of the N particles

in ordinary space, that is, to a definite configuration of the

system.
The wave equation, the auxiliary conditions imposed on the

wave functions, and the physical interpretation of the wave

functions for the general system are closely similar to those for

84
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the one-dimensional system, the only changes being those conse-

quent to the increase in the number of dimensions of configura-
tion space. A detailed account of the postulates made regarding
the wave equation and its solutions for a general system of point

^articles is given in the following sections, together with a dis-

cussion of various simple systems for illustration.

12a. The Wave Equation Including the Time. Let us con-

sider a system consisting of N point particles of masses mi,

w2 , , WIN moving in three-dimensional space under the

influence of forces expressed by the potential function V(x\

2/i ZN> t), xi - - ZN being the 37V" Cartesian coordinates

of the N particles. The potential function 7, representing
the interaction of the particles with one another or with an

external field or both, may be a function of the 3N coordinates

alone or may depend on the time also. The former case, with

V V(x\ ZN), corresponds to a conservative system.
Our main interest lies in systems of this type, and we shall soon

restrict our discussion to them.

We assume with Schrodinger that the wave equation for this

system is

,

m y
t-1

This equation is often written as

._--
2ri dt'

i-i

in which v,? is the Laplace operator or Laplacian for the ith

particle.
1 In Cartesian coordinates, it is given by the expression

U2= a2 4.J1+ d\
Vi

~dx!
+

dy?
+

dz?

The wave function ^ = V(xi z#9 1) is a function of the

3N coordinates of the system and the time.

It will be noted that the Schrodinger time equation for this

general system is formally related to the classical energy equation

in the same way as for the one-dimensional system of the preced-

J The symbol A is sometimes used in place of V 2
. The symbol V 2 is

commonly read as del squared.
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ing chapter. The energy equation for a Newtonian system of

point* particles is

H(p Xl pv xi ZN, f)
= T(p Xi p.J +
V(x l ZN , t)

= W, (12-2)

which on explicit introduction of the momenta p xi . . . pgfi

becomes

- zNl t)
= F. (12-3)

We now arbitrarily replace the momenta p X i p** by

the differential operators x . -r s .
-

> respectively,
27rt dxi 2m dzN
T .%

and TF by the operator ?
~

, and introduce the function
.<&7r& of

V(xi zir, t) on which these operators can operate. The

equation then becomes

h 3 h d

which is identical with Equation 12-1. Just as for the one-

dimensional case, the wave equation is often symbolically

written

H* = TF*. (12-5)

The discussion in Section 9a of the significance of this formal

relation is also appropriate to this more general case.

12b. The Amplitude Equation. Let us now restrict our atten-

tion to conservative systems, for which F is a function of the 3#
coordinates only. To solve the wave equation for this case,

we proceed exactly as in the simpler problem of Section 96,

investigating the solutions ^ of the wave equation which can be

expressed as the product of two functions, one of which involves

only the time and the other only the 3JV coordinates:

*(*! ZK, t)
= f(xi

- zN)9 ((). (lfc-6)

On introducing this expression in Equation 12-1, the wave equa-
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tion can be separated into two equations, one for <p(f) and one

for $(xi
-

ZN). These equations are

(12-7)

dt

and

The second of these is often written in the form

N

This is Schrodinger's amplitude equation for a conservative

system of point particles.

The auxiliary conditions which must be satisfied by a solution

of the amplitude equation in order that it be an acceptable wave

function are given in Section 9c. These conditions must hold

throughout configuration space, that is, for all values between

oo and + oo for each of the 3iV Cartesian coordinates of the

system. Just as for the one-dimensional case, it is found that

acceptable solutions exist only for certain values of the energy

parameter W. These values may form a discrete set, a con-

tinuous set, or both.

It is usually found convenient to represent the various succes-

sive values of the energy parameter and the corresponding ampli-

tude functions by the use of 3N integers, which represent 3N

quantum numbers HI - nw, associated with the 3N coordi-

nates. The way in which this association occurs will be made

clear in the detailed discussion of examples in the following

sections of this chapter and in later chapters. For the present

let us represent all of the quantum numbers n\ - UZN by

the one letter n, and write instead of Wni ntff and ^ni nw

the simpler symbols Wn and ^n .

The equation for ^(0 gives on integration

-2*5-1 _ "is J
(12-9)

*(*) 6 *
,

- v '

exactly as for the one-dimensional system. The various particu-

lar solutions of the wave equation are hence
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w
*n(xi *, = fn (xi

' '

**)e "**"**. (12-10)

These represent the various stationary states of the system. The

general solution of the wave equation is

y
= an^n(xi

- ZN ,
=

n

__ 2iri
w

<M*i zN)e "*', (12-11)

in which the quantities an are constants. The symbol V repre-
n

sents summation for all discrete values of Wn and integration over

all continuous ranges of values.

12c. The Complex Conjugate Wave Function *F*(XI z#,

0. The complex conjugate wave function V*(xi ZN ,

is a solution of the conjugate wave equation
N

-l

The general solution of this equation for a conservative system is

\S/^fT, 9*. f\ ^^/7 *\I/*^ /r < 9+r i\*
\**'l &N) v) X r^n. * n v^l ^^j vy

n

o .^.

12d. The Physical Interpretation of the Wave Functions.

The physical interpretation of the'wave functions for this general

system is closely analogous to that for the one-dimensional system
discussed in Section 10. We first make the following postulate,

generalizing that of Section 10a:

The quantity ^*(xi ZN, 0^(xi ZN, t)dxi dzN is

the probability that the system in the physical situation represented

by the wave function ty(xi ZN, t) have at the time t the configura-

tion represented by a point in the volume element dx\ dzx of

configuration space. *> thus serves as a probability distribution

function for the configuration of the system.



IV-12d] WAVE EQUATION FOR A SYSTEM OF PARTICLES 89

The function W(xi Zy, t) must then be normalized to

unity, satisfying the equation

z*, t)dr =
1, (12-14)

in which the symbol dr is used to represent the volume element

dx\ - - dzN in configuration space, and the integral is to* be

taken over the whole of configuration space. (In the remaining
sections of this book the simple integral sign followed by dr

is to be considered as indicating an integral over the whole of

configuration space.) It is also convenient to normalize the

amplitude functions \l*n(xi Zy), according to the equation

It is found, as shown in Appendix III, that the independent
solutions of any amplitude equation (just as for the one-dimen-

sional case) can be chosen in such a way-that any two of them are

orthogonal, satisfying the orthogonality equation

=0, m * n. (12-16)

A wave function ty(xi
- - - ZN, t)

= an^n(^i
* * *

zy, t) is

n

then normalized if the coefficients an satisfy the equation

= I- (12-17)

An argument analogous to that of Section 10b shows that the

-to&t
wave functions Vn (xi Zy, t)

= ^n(zi zN)e
h

give

probability distribution functions which are independent of the

time and hence correspond to stationary states.

A more general physical interpretation can be given the wave

functions, along the lines indicated in Section lOc, by making
the postulate that the average value of the dynamical function

G(p Xl ptff , xi ZN, t) predicted for a system in the

physical situation represented by the wave function ^f(x\
- zNj

t) is given by the integral

o

*(*i
' '

Zy, t)dr, (12-18)

in which the operator (?, obtained from G(pXl PIH,XI ZN,
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T <\ T <

by replacing pzi
- p^by^-^

-

^.^respectively,

operates on the function ^(xi ZN , t) and the integration is

extended throughout the configuration space of the system.
Further discussion of the physical interpretation of the wave
functions will be found in Chapter XV.

13. THE FREE PARTICLE

A particle of mass m moving in a field-free space provides the

simplest application of the Schrodinger equation in three dimen-

sions. Since V is constant (we choose the value zero for con-

venience), the amplitude equation 12-8 assumes the following

form:

=
0, (13-1)

or, in Cartesian coordinates,

2

n=

This is a partial differential equation in three independent
variables x, y, and z. In order to solve such an equation it is

usually necessary to obtain three total differential equations,

one in each of the three variables, using the method of separation

of variables which we have already employed to solve the

Schrodinger time equation (Sec. 96). We first investigate the

possibility that a solution may be written in the form

t(x, y, z)
= X(x)

-

Y(y) Z(z), (13-3)

where X(x) is a function of x alone, Y(y) a function of y alone,

and Z(z) a function of z alone. If we substitute this expression

in Equation 13-2, we obtain, after dividing through by i/s the

equation

1 d*X 1 d*Y +ld*ZX ~dx*
+ YW + Z7^

Since X is a function only of x, the first term does not change
its value when y and z change. Likewise the second term is

independent of x and z and the third term of x and y. Never-

theless, the sum of these three terms must be equal to the con-
O9

slant --r*~W f r anY choice of x
t y, z. By holding y and z
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fixed and varying x, only the first term can vary, since the others

do not depend upon x. However, since the sum of all the

terms is equal to a constant, we are led to the conclusion that

1 d2X
v ~j~z *s independent of x as well as of y and z, and is therefore
A. d/x

itself equal to a constant. Applying an identical argument to

the other terms, we obtain the three ordinary differential

equations

v A 2
-

*-. ^TT7 = fc"> and ^^ = *. (!3-5)X ax 2 F at/
2 Z cfe

2

with the condition

JU i JU i T*
^W /'1Q_A^

A/x i % n^ t'z , g
rr . \-*-" W

It is convenient to put k x = p W x,
which gives the equation

in x the form

~ + *^W XX = 0. (13-7)

This is now a total differential equation, which can be solved

by familiar methods. As may be verified by insertion in the

equation, a solution is

(2- f )

X(x) = N x sin <~V^rnW x(x
- x )>- (13-8)

Since it contains two independent arbitrary constants N x and XQ,

it is the general solution. It is seen that the constant x defines

the location of the zeros of the sine function. The equations for

F and Z are exactly analogous to Equation 13-7, and have the

solutions

Y(y) = Ny sin

=
, sn

The fact that we have been able to obtain the functions

X, Y, and Z justifies the assumption inherent in Equation 13-3.

It can also be proved
1 that no other solutions satisfying the

1 The necessary theorems are given in R. Courant and D. Hilbert,

"Methoden der mathematischen Physik," 2d ed., Julius Springer, Berlin,

1931.
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boundary conditions can be found which are linearly independent
of these, i.e., which cannot be expressed as a linear combination

of these solutions.

The function ^ must now be examined to see for what values of

W = Wx + Wv + W it satisfies the conditions for an acceptable

wave function given in Section 9c. Since "the sine function is

continuous, single-valued, and finite for all real values of its

argument, the only restriction that is placed on W is that W x ,

Wy , W* and therefore W be positive. We have thus reached the

conclusion that the free particle has a continuous spectrum of

allowed energy values, as might have been anticipated from the

argument of Section 9c.

The complete expression for the wave function corresponding

to the energy value

W = W, + Wv + W, (13-10)

is

t(x, y,z)
= N sin

<j^\^2mWl(x
z U

sin
jyV2^W~y (y

-
y ) \

' sin <^V2mWz(z
- z)\, (13-11)

in which TV is a normalization constant. The problem of the

normalization of wave functions of this type, the value of which

remains appreciable over an infinite volume of configuration

space (corresponding to a continuous spectrum of energy values),

is a complicated one. Inasmuch as we shall concentrate our

attention on problems of atomic and molecular structure, with

little mention of collision problems and other problems involving

free particles, we shall not discuss the question further, contenting

ourselves with reference to treatments in other books. 1

In discussing the physical interpretation of the wave functions

for this system, let us first consider that the physical situation is

represented by a wave function as given in Equation 13-11

with Wy and Wf equal to zero and Wx equal to W. The func-

X A. SOMMEBFELD, "Wave Mechanics," English translation by H. L.

Brose, pp. 293-295, E. P. Button A Co., Inc., New York, 1929; RUARK and

UREY, "Atoms, Molecules, and Quanta/' p. 541, McGraw-Hill Book Com-

pany, Inc., New York, 1930.
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(27T / ) -2ri^<
tion 1

ty(x, y, z, t)
= N sin ^-r-v2mTF(z

"" Xo)r6
h is then a

set of standing waves with wave fronts normal to the x axis.

The wave length is seen to be given by the equation

(13-12)

In classical mechanics the speed v of a free particle of mass m
moving with total energy W is given by the equation ^wt>

2 = W.
A further discussion of this system shows that a similar inter-

pretation of W holds in the quantum mechanics. Introducing
v in place of W in Equation 13-12, we obtain

X = (13-13)mv ^

This is the de Broglie expression
2 for the wave length associated

with a particle of mass m moving with speed v.

It is the sinusoidal nature of the wave functions for the free

particle and the similar nature of the wave functions for other

systems which has caused the name wave mechanics to be applied

to the theory of mechanics which forms the subject of this book.

This sinusoidal character of wave functions gives rise to experi-

mental phenomena which are closely similar to those associated

in macroscopic fields with wave motions. Because of such

experiments, many writers have considered the wavelike char-

acter of the electron to be more fundamental than its corpuscular

character, but we prefer to regard the electron as a particle and

to consider the wavelike properties as manifestations of the

sinusoidal nature of the associated wave functions. Neither

view is without logical difficulties, inasmuch as waves and

particles are macroscopic concepts which are difficult to apply to

microscopic phenomena. We shall, however, in discussing the

results of wave-mechanical calculations, adhere to the particle

concept throughout, since we believe it is the simplest upon
which to base an intuitive feeling for the mathematical results

of wave mechanics.

1 It can be shown that the factors involving y and x in Equation 13-11

approach a constant value in this limiting case.

1 L. DB BROGLIE, Thesis, 1924; Ann. de phys. 3, 22 (1925).
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The wave function which we have been discussing corresponds
to a particle moving along the x axis, inasmuch as a calculation

of the kinetic energy T x = ^pl associated with this motion

shows that the total energy of the system is kinetic energy of

motion in the x direction. This calculation is made by the

general method of Section 12d. The average value of Tx is

or, since in this case we have assumed Wx to equal TF,

Tx = W.

Similarly we find T r
x
= Wr = (T x)

r
,
which shows, in accordance

with the discussion of Section lOc, that the kinetic energy of

motion along the x axis has the definite value W, its probability

distribution function vanishing except for this value.

On the other hand, the average value of p x itself is found on

calculation to be zero. The wave function

N sin <y\/2mW(x
- z )>e

,w
t

"T1

hence cannot be interpreted as representing a particle in motion

in either the positive or negative direction along the x axis but

rather a particle in motion along the x axis in either direction,

the two directions of motion having equal probability.

The wave function N cos \-j-\/2mW(x x Q)fe

*
%h differs

from the sine function only in the phase, the energy being the

same. The sum and difference of this function and the sine func-

tion with coefficient i are the complex functions

N'e h
m

e h and N'e h e h
,

which are also solutions of the wave equation equivalent to the

sine and cosine functions. These complex wave functions

represent physical situations of the system in which the particle

is moving along the x axis in the positive direction with the



IV-14] THE PARTICLE IN A BOX 95

definite momentum px =* ^/2rnW or px = \/2mW, the

motion in the positive direction corresponding to the first of

the complex wave functions and in the negative direction to the

second. This is easily verified by calculation of p x and p
r
x for

these wave functions.

The more general wave function of Equation 13-11 also

represents a set of standing plane waves with wave length

X = h/\/2mW, the line normal to the wave fronts having the

direction cosines \/W x/W, \/Wy/W, and \/Wz/W relative to the

Xy y, and z axes.

Problem 13-1. Verify the statements of the next to the last paragraph

regarding the value of px .

14. THE PARTICLE IN A BOX 1

Let us now consider a particle constrained to stay inside of a

rectangular box, with edges a, 6, and c in length. We can repre-

sent this system by saying that the potential function V(x, y, z)

has the constant value zero within the region < x < a,

< y < by and < z < c, and that it increases suddenly in

value at the boundaries of this region, remaining infinitely

large everywhere outside of the boundaries. It will be found

that for this system the stationary states no longer correspond to

a continuous range of allowed energy values, but instead to a

discrete set, the values depending on the size and shape of the

box.

Let us represent a potential function of the type described as

V(xy y f z)
= Vx(x) + Vy(y) + V,(z)y (14-1)

the function Vx(x) being equal to zero for < x < a and to

infinity for x < or x > a, and the functions Vv(y) and Vz (z)

showing a similar behavior. The wave equation

dV aV dV 87r
2m

dx 2 +
dy

2 + dz 2 + h 2

{W - V x(x)
- Vy (y)

- Vz (z)}+
= (14-2)

is separated by the same substitution

t(X y y, z)
= X(x)

-

Y(y)
-

Z(z) (14-3)

1 Treated in Section Qd by the methods of the old quantum theory.
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as for the free particle, giving three total differential equations,

that in x being

(14-1)+ \W, - V.(x)}X = 0.

In the region < x < a the general solution of the wave

equation is a sine function of arbitrary amplitude, frequency, and

phase, as for the free particle. Several such functions are repre-

sented in Figure 14-1. All of these are not acceptable wave

o--

Vx(x)

Fio. 14-1. The potential-energy function Vx (x) and the behavior of X(x) near

the point x = a.

functions, however; instead only those sine functions whose

value falls to zero at the two points x = and x a behave

properly at the boundaries. To show this, let us consider the

behavior of Curve A as x approaches and passes the value a,

using the type of argument of Section 9c. Curve A has a finite

positive value as x approaches a, and a finite slope. Its curvature

is given by the equation

(14-5)
dz'

At the point x = a the value of V(x) increases very rapidly and

without limit, so that, no matter how large a value the constant

W* has, Wx
- Vx becomes negative and of unbounded magni-
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tude. The curvature or rate of change of the slope consequently
becomes extremely great, and the curve turns sharply upward
and experiences the infinity catastrophe. This can be avoided

in only one way; the function X(x) itself must have the value

zero at the point x =
a, in order that it may then remain bounded

(and, in fact, have the value zero) for all larger values of x.

Similarly the sine function must fall to zero at x =
0, as shown

by Curve C. An acceptable wave function X(x) is hence a

sine function with a zero at x = and another zero at x = a.

xwt
4

<>
t

FIG. 14-2. The wave functions Xnx (x)
and probability distribution functions

[Xnx (x)]* for the particle in a box.

thus having an integral number of loops in this region. The

phase and frequency (or wave length) are consequently fixed,

and the amplitude is determined by normalizing the wave func-

tion to unity. Introducing the quantum number n x as the

number of loops in the region between and a, the wave length

becomes 2a/n x ,
and the normalized X(x) function is given by

the expression

/ \ /* W>xRX 100
"0*0 = \/~ sm > n* = !> 2

> 3,

with

W -!.""' ~
8ma*

< x < a, (14-6)

(14-7)
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The first four wave functions Xi(x), ,
X6(x) are represented

in Figure 14-2, together with the corresponding probability
distribution functions

{
Xn*(x) }

2
.

A similar treatment of the y and z equations leads to similar

expressions for Ynv (y) and Zn ~(z) and for Wy and W*. The com-

FIG. 14-3. A geometrical representation of the energy levels for a particle in a

rectangular box.

plete wave function
\l/ntnvn,(x, y, z) has the form, for values of x,

y, and z inside the box,

/ / \ / 8 . nxirx .

Yntnvnt (x, y, z)
=

-J-jT-
sm -- sin

. ,. . ^.- sin- > (14-8)
i? C

with n, =
1, 2, 3, ; n, =

1, 2, 3, ; n, = 1, 2, 3,

and

Wn .
= + + .

(14-9)Wn

The wave function ^n,n|,
n can be described as consisting of

standing waves along the x, y, and z directions, with nx + 1

equally spaced nodal planes perpendicular to the x axis (begin-

ning with x = and ending with x a), nv 4- 1 nodal Dlanes
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perpendicular to the y axis, and nt + 1 nodal planes perpendicular
to the z axis.

The various stationary states with their energy values may be

conveniently represented by means of a geometrical analogy.

Using a system of Cartesian coordinates, let us consider the

27

26

24

22

21

19

18

17

ia 2Wf
h*~~ I

8ma 2W
14

12

nx ny n z

p=4 511etc,333
P =6 431 etc.

p =3 422 etc.

P=3 332 etc.

P =6 421 etc.

P =3 331 etc.

'P =3 41 1 etc.

p =3 322 etc.

P =6 321,132,213,312,231,123

P
=

I 222

P =3 311,131,113

P =3 221,122,212

P =3 211,121,112

p
=

I 111

Fia. 14-4. Energy levels, degrees of degeneracy, and quantum numbers for a

particle in a cubic box.

lattice whose points have the coordinates n x/a, nv/b, and n/c,
with n x = 1, 2, ;

ny = 1, 2, ;
and n

?
=

1, 2 .

This is the lattice defined in one octant about the origin by the

translations I/a, 1/6, and 1/c, respectively; it divides the octant

into unit cells of volume 1/abc (Fig. 14-3). Each point of the

lattice represents a wave function. The corresponding energy

value is~

w = -z>W n*nyn, Q^/n^n, (14-10)
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in which lnxn> n . is the distance from the origin to the lattice point

*, given by the equation

++- (14
~n)

In case that no two of the edges of the box a, 6, and c are in

the ratio of integers, the energy levels corresponding to various

sets of values of the three quantum numbers are all different,

with one and only one wave function associated with each.

Energy levels of this type are said to be non-degenerate. If,

however, there exists an integral relation among a, 6, and c,

there will occur certain values of the energy corresponding to

two or more distinct sets of values of the three quantum numbers

and to two or more independent wave functions. Such an energy

level is said to be degenerate, and the corresponding state of the

system is called a degenerate state. For example, if the box is a

cube, with a = b =
c, most of the energy levels will be degener-

ate. The lowest level, with quantum numbers 111 (for n xy

Uy, nz , respectively) is non-degenerate, with energy 3/i
2/8ma2

.

The next level, with quantum numbers 211, 121, and 112 and

energy 6ft
2
/8ma

2
,
is triply degenerate. Successive levels, with

sets of quantum numbers and degrees of degeneracy (represented

by p) y
are shown in Figure 14-4. The degree of degeneracy

(the number of independent wave functions associated with a

given energy level) is often called the quantum weight of the

level.

15. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CARTESIAN COORDINATES

Another three-dimensional problem which is soluble in Car-

tesian coordinates is the three-dimensional harmonic oscillator,

a special case of which, the isotropic oscillator, we have treated

in Section la by the use of classical mechanics. The more general

system consists of a particle bound to the origin by a force whose

components along the x, y, and z axes are equal to k xx, Jcyy,

and kzz, respectively, where k x ,
ky ,

kz are the force constants

in the three directions and x, t/, z are the components of the

displacement along the three axes. The potential energy
is thus
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which, on introducing instead of the constants k x ,
kv ,

kt their

expressions in terms of the classical frequencies v xj vv ,
vg ,

becomes

V = 2w*m(p*x* + v$y* + F.V), (16-2)

since

kx = 4ar*mv*,\

kv = 47r
2mv2A (15-3)

fc,
= 4ir

2mj/ 2

.)

The general wave equation 12-8 thus assumes for this problem
the form

dV # 3V

(15-4)

which, on introducing the abbreviations

X = ^f^W, (15-5a)

(15-56)

(15-5c)
Hi

and

a. =
^v,, (15-W)

simplifies to the equation

^~2 + -T1 + TT + (^
~~ axx

* ~~ a
y2/

2 "~ 222
)^ = 0. (15-6)

To solve this equation we proceed in exactly the same manner
as in the case of the free particle (Sec. 13) ; namely, we attempt to

separate variables by making the substitution

t(x, y, z)
= X(x) Y(y) Z(z). (15-7)

This gives, on substitution in Equation 15-6 and division of the

result by ^, the equation

I d*X /I .

%x2
A

alz
)

(16-8)
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It is evident that this equation has been separated into terms

each of which depends upon one variable only; each term is

therefore equal to a constant, by the argument used in Section 13.

We obtain in this way three total differential equations similar

to the following one :

^ + (\x
- oJcW*) =

0, (15-9)

in which X* is a separation constant, such that

X* + X,, + Xz
= X. (15-10)

Equation 15-9 is the same as the wave equation 11-2 for the

one-dimensional harmonic oscillator which was solved in Section

11. Referring to that section, we find that X(x) is given by the

expression

X(x) = Nnxe^H
and that X* is restricted by the relation

X, = (2nx + !) (15-12)

in which the quantum number nx can assume the values 0, 1,

2, . Exactly similar expressions hold for Y(y) and Z(z)

and for X^ and X*. The total energy is thus given by the equation

Wninvn,
= h{(nx + W* + (rh,+

lA}vy + (nz + M)"*}> (15-13)

and the complete wave function by the expression

^^
(15-14)

The normalizing factor has the value

For the special case of the isotropic oscillator, in which

vx = vv
= vz = v Q and ax = ay = a*, Equation 15-13 for the energy

reduces to the form

W = (nx + nv + nz + %)h*Q
- (n + %)hvQ . (15-16)

n = nx + ny + na may be called the total quantum number.

Since the energy for this system depends only on the sum of the
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quantum numbers, all the energy levels for the isotropic oscilla-

tor, except the lowest one, are degenerate, with the quantum

weight ~- n + '

Figure 15-1 shows the first few energy

n-3
p-IO

p-6

300,030,003,,, ,

201,120,012,
in!

'

200,020.002,
110,101,011.

p3 100,010,001.

n0

FIG. 15-1. Energy levels, degrees of degeneracy, and quantum numbers for the
three-dimensional isotropic harmonic oscillator.

levels, together with their quantum weights and quantum
numbers.

16. CURVILINEAR COORDINATES

In Chapter I we found that curvilinear coordinates, such as

spherical polar coordinates, are more suitable than Cartesian

coordinates for the solution of many problems of classical

mechanics. In the applications of wave mechanics, also, it is

very frequently necessary to use different kinds of coordinates.

In Sections 13 and 15 we have discussed two different systems,

the free particle and the three-dimensional harmonic oscillator,

whose wave equations are separable in Cartesian coordinates.

Most problems cannot be treated in this manner, however, since

it is usually found to be impossible to separate the equation into

three parts, each of which is a function of one Cartesian coordi-

nate only. In such cases there may exist other coordinate

systems in terms of which the wave equation is separable, so

that by first transforming the differential equation into the proper
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coordinates the same technique of solution may often be

applied.

In order to make such a transformation, which may be repre-

sented by the transformation equations

x = f(u, v, w), (16-la)

y = g(u y v, w), (16-16)

z = h(u, v, w), (16-lc)

it is necessary to know what form the Laplace operator V
2 assumes

in the new system, since this operator has been defined only in

Cartesian coordinates by the expression

tf
=

I iz

The process of transforming these second partial derivatives is a

straightforward application of the principles of the theory of

partial derivatives and leads to the result that the operator V2

in the orthogonal coordinate system uvw has the form

W JL\ +
d
(q

uqw d\ _d/W _d\)
qu du/ dv\ qv dv/ dw\ qw dw/j

(16-8)

in which

(16-4)

\dw/
'

\dw/
'

\dw;

Equation 16-3 is restricted to coordinates u, v, w which are

orthogonal, that is, for which the coordinate surfaces represented

by the equations u = constant, v = constant, and w = constant

intersect at right angles. All the common systems are of this

type.

The volume element dr for a coordinate system of this type
is also determined when qu , qv ,

and qw are known. It is given by
the expression

dr = dxdydz = quqvqwdudvdw. (16-5)

In Appendix IV, qu , qv , qw ,
and v 2

itself are given for a number of

important coordinate systems.
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Mathematicians 1 have studied the conditions under which the

wave equation is separable, obtaining the result that the three-

dimensional wave equation can be separated only in a limited

number of coordinate systems (listed in Appendix IV) and then

only if the potential energy is of the form

in which $u(u) is a function of u alone, $v(v) of t; alone, and

&w(w) of w alone.

17. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CYLINDRICAL COORDINATES

The isotropic harmonic oscillator in space is soluble by separa-

tion of variables in several coordinate systems, including Car-

Fia. 17-1. Diagram showing cylindrical coordinates.

tesian, cylindrical polar, and spherical polar coordinates. We
shall use the cylindrical system in this section, comparing the

results with those obtained in Section 15 with Cartesian

coordinates.

Cylindrical polar coordinates p, <?, z, which are shown in'

Figure 17-1, are related to Cartesian coordinates by the equations

of transformation

x = p cos

y = psin
z = z.

(17-1)

1 H. P. ROBERTSON, Mathematische Annalen 98, 749 (1928); L. P. EISBN-

HART, Ann. Mathematics 35, 284 (1034).
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Reference to Appendix IV shows that V 2 in terms of p, <p, z has

the form

Consequently, the wave equation 15-4 for the three-dimensional

harmonic oscillator becomes

Id/ d\l/\ ,1 " r i

~ r

/I
2

when we make vx = vy
=

j> (only in this case is the wave equa-
tion separable in these coordinates). Making the substitutions

X = S

-^W, (17-4o)

a =
^^v , (17-46)

and

we obtain the equation

Pursuing the method used in Section 15, we try the substitution

* = P(p) *M '

Z(z), (17-6)

in which P(p) depends only on p, <!>(<?) only on <p, and Z(^) only
on z. Introduction of this into Equation 17-5 and division by ^
leads to the expression

dP. 22-- =

The terms of this equation may be divided into two classes:

those which depend only on z and those which depend only on

p and <?. As before, since the two parts of the equation are func-

tions of different sets of variables and since their sum is constant,
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each of the two parts must be constant. Therefore, we obtain

two equations

+ (X,
-

af**)Z = (17-8)

and

with

X' + X* = X

The first of these is the familiar one-dimensional harmonic

oscillator equation whose solutions

(17-10)

are the Hermite orthogonal functions discussed in Section lie.

As in the one-dimensional problem, the requirement that the

wave function satisfy the conditions of Section 9c restricts the

parameter X* to the values

X, = (2n> + l)o., nz
=

0, 1, 2,
-

. (17-11)

Equation 17-9, the second part of the wave equation, is a

function of p and <p and so must be further separated. This

may be accomplished by multiplying through by p
2
. The

second term of the resulting equation is independent of p; it is

therefore equal to a constant, which we shall call w2
. The

two equations we obtain are the following:

= (17-12)
U<f>~

and

The first of these is a familiar equation whose normalized solution

is 1

1

<|>(<p)
=

-gim<p (1714)

Inasmuch as eim* is equal to cos my + i sin w<p, we see that for

arbitrary values of the separation constant m this function is

1 Instead of the exponential, the forms &(<?)
= N cos m<p and N sin m*

may be used. See Section 186, Chapter V.
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not single-valued; that is, $ does not have the same value for

<p
= and for <p

= 2r, which correspond to the same point in

space. Only when m is a positive or negative integer or zero is

< single-valued, as is required in order that it be an acceptable
wave function (Sec. 9c) ;

m must therefore be restricted to such

values. <p is called a cyclic coordinate (or ignorable coordinate),

these names being applied to a variable which does not occur

anywhere in the wave equation (although derivatives with respect

to it do appear). Such a coordinate always enters the wave
function as an exponential factor of the type given in Equation
17-14. *

The equation for P(p) may be treated by the same general

method as was employed for the equation of the linear harmonic

oscillator in Section lla. The first step is to obtain an asymp-
totic solution for large values of p, in which region Equation
17-13 becomes approximately

~ - 2
p
2P = 0. (17-15)

The asymptotic solution of this is e *
P

,
since this function

satisfies the equation

)e
( =

0,

which reduces to 17-15 for large values of p. Following the

"easoning of Section lla, we make the substitution

(17-16)

in Equation 17-13. From this we find that / must satisfy the

equation

1 -m 2

/"
- 2p/' + + (X'

-
2a)/

- / = 0. (17-17)

As before, it is convenient to replace p by the variable

= V^P (17-18)

and /(p) by F(), a process which gives the equation

- ---* -><

1 CONDON and MORSE, "Quantum Mechanics," p. 72.
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We could expand F directly as a power series in
,
as in Section

lla. This is not very convenient, however, because the first

few coefficients would turn out to be zero. Instead, we make
the substitution

in which s is an undetermined parameter and a is not equal
to zero.

This substitution is, indeed, called for by the character of the differential

equation.
1

Equation 17-19 is written in the standard form

dF

the coefficient of being unity. The coefficients p and q hi Equation

17-19 possess singularities
2 at = 0. The singular point = is a regular

point , however, inasmuch as p() is of order l/ and q() of order l/
2

. To
solve a differential equation possessing a regular point at the origin, the

substitution 17-20 is made in general. It is found that it leads to an indicial

equation from which the index s can be determined.

Since we are interested only in acceptable wave functions, we shall ignore

negative values of s. For this reason we could assume F() to contain only

positive powers of . Occasionally, however, the indicial equation leads to

non-integral values of s, in which case the treatment is greatly simplified by
the substitution 17-20.

If we introduce the series 17-20 into Equation 17-19 and group

together coefficients of equal powers of
,
we obtain the equation

(s
2 - m2

)a
- 2 + {(s + 1)

2 -

{( + 2)
2 - 2

}a2
-

\(s + v}
2 m2

}a, +
j a

2(s + v

+ =0. (17-21)

Since this is an identity in
,
that is, an equation which is true

for all values of
,
we can show that the coefficient of each power

1 See the standard treatments of the theory of linear differential equations;

for example, Whittaker and Watson, "Modern Analysis," Chap. X.
* A singularity for a function p() is a point at which p() becomes infinite.
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of must be itself equal to zero. This argument gives the set of

equations

(s
2 - m2

)a =
0, (17-22a)

{(s + I)
2 - m 2

}a! -0, (17-226)

-
1)

ja,_,
=

0,{(s + vY - m*}av + ^IL
-

2(a + v - 1) fa,_2
=

0, (17-22c)

etc.

The first of these, 17-22a, is the indicial equation. From it

we see that s is equal to +m or w, inasmuch as a is not equal

to zero. In order to obtain a solution of the form of Equation
17-20 which is finite at the origin, we must have s positive, so

that we choose s = +|wi|. This value of s inserted in Equation
17-226 leads to the conclusion that ai must be zero. Since the

general recursion relation 17-22c connects coefficients whose

subscripts differ by two, and since a\ is zero, all odd coefficients

are zero. The even coefficients may be obtained in terms of

a by the use of 17-22c.

However, just as in the case of the linear harmonic oscillator,

the infinite series so obtained is not a satisfactory wave function

for general values of X', because its value increases so rapidly with

increasing as to cause the total wave function to become

infinite as increases without limit. In order to secure an

acceptable wave function it is necessary to cause the series to

break off after a finite number of terms. The condition that the

series break off at the term an >%n/+lm] ,
where n' is an even integer,

is obtained from 17-22c by putting n' + 2 in place of v and equat-

ing the coefficient of an , to zero. This yields the result

X' =
2(|m| -h n' + 1). (17-23)

Combining the expressions for X* and X' given by Equations
17-11 and 17-23, we obtain the result

X = V + X, = 2(H + n 1 + l)a + 2(nz + }4)a,, (17-24)

or, on insertion of the expressions for X, a, and a*,

TFmn'n =
(|w| + ri + l)fc* + (n. + Y^hvz . (17-25)

In the case of the isotropic harmonic oscillator, with vz =
this becomes
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Wn = (n + %)hvQ ,
n =

|m| + ri + n,. (17-26)

The quantum numbers are restricted as follows:

m =
0, 1, 2,

- - -

,

n' =
0, 2, 4, 6, ,

nz = 0, 1, 2, .

These lead to the same quantum weights for the energy levels

as found in Section 15.

The wave functions have the form

(17-27)

in which N is the normalization constant and F\m \,
n'(\fap) is a

polynomial in p obtained from Equation 17-20 by the use of the

recursion relations 17-22 for the coefficients av . "It contains only
odd powers of p if \m\ is odd, and only even powers if \m\ is

even.

Problem 17-1. The equation for the free particle is separable in many
coordinate systems. Using cylindrical polar coordinates, set up and

separate the wave equation, obtain the solutions in <f> and z, and obtain the

recursion formula for the coefficients in the series solution of the p equation.
Hint: In applying the polynomial method, omit the step of finding the

asymptotic solution.

Problem 17-2. Calculate pi for a harmonic oscillator in a state repre-

sented by tn'mn, of Equation 17-27. Shew that px is zero in the same state.

Hint: Transform into cylindrical polar coordinates.
oX

Problem 17-3. The equation for the isotropic harmonic oscillator is

separable also in spherical polar coordinates. Set up the equation in these

coordinates and carry out the separation of variables, obtaining the three

total differential equations.



CHAPTER V

THE HYDROGEN ATOM

The problem of the structure of the hydrogen atom is the most

important problem in the field of atomic and molecular structure,

not only because the theoretical treatment of this atom is simpler
than that of other atoms and of molecules, but also because it

forms the basis for the discussion of more complex atomic sys-

tems. The wave-mechanical treatment of polyelectronic atoms

and of molecules is usually closely related in procedure to that

of the hydrogen atom, often being based on the use of hydrogen-
like or closely related wave functions. Moreover, almost without

exception the applications of qualitative and semiquantitative
wave-mechanical arguments to chemistry involve the functions

which occur in the treatment of the hydrogen atom.

The hydrogen atom has held a prominent place in the develop-

ment of physical theory. The first spectral series expressed by a

simple formula was the Balmer series of hydrogen. Bohr's

treatment of the hydrogen atom marked the beginning of the old

quantum theory of atomic structure, and wave mechanics had
its inception in Schrodinger's first paper, in which he gave the

solution of the wave equation for the hydrogen atom. Only
in Heisenberg's quantum mechanics was there extensive develop-
ment of the theory (by Heisenberg, Born, and Jordan) before

the treatment of the hydrogen atom, characterized by its diffi-

culty, was finally given by Pauli. In later developments, beyond
the scope of this book, the hydrogen atom retains its important

position; Dirac's relativistic quantum theory of the electron

is applicable only to one-electron systems, its extension to

more complicated systems not yet having been made.

The discussion of the hydrogen atom given in this chapter is

due to Sommerfeld, differing in certain minor details from that

of Schrodinger. It is divided into four sections. In the first,

Section 18, the wave equation is separated and solved by the

polynomial method, and the energy levels are discussed. Sec-
112
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tions 19 and 20 include the definition of certain functions, the

Legendre and Laguerre functions, which occur in the hydrogen-
atom wave functions, and the discussion of their properties. A
detailed description of the wave functions themselves is given

in Section 21.

18. THE SOLUTION OF THE WAVE EQUATION BY THE POLY-
NOMIAL METHOD AND THE DETERMINATION OF

THE ENERGY LEVELS

18a. The Separation of the Wave Equation. The Transla-

tional Motion. We consider the hydrogen atom as a system of

two interacting point particles, the interaction being that due

to the Coulomb attraction of their electrical charges. Let us

for generality ascribe to the nucleus the charge +Ze, the charge

of the electron being e. The potential energy of the system,

Ze 2

in the absence of external fields, is > in which r is the distance

between the electron and the nucleus.

If we write for the Cartesian coordinates of the nucleus and

the electron xi, y\, z\ and #2 , 2/2, 22, and for their masses m\ and

w2 , respectively, the wave equation has the form

1 / d^\l/T d^\f/T d^l/T\ 1 d^ij/T d^\l/T

rn\~dxl
+

~dy\
+

~dz\)
+

ni\dx\
+

~dy\

+ *j^(W
T - V)* T = 0, (18-1)

in which
702

V

Here the subscript T (signifying total) is written for W and ^ to

indicate that these quantities refer to the complete system, with

six coordinates.

This equation can be immediately separated into two, one of

which represents the translational motion of the molecule as a

whole and the other the relative motion of the two particles.

In fact, this separation can be accomplished in a somewhat more

general case, namely, when the potential energy V is a general

function of the relative positions of the two particles, that is,

V = Vfa xi, 2/2 yi, 22 21). This includes, for example,
the hydrogen atom in a constant electric field, the potential



114 THE HYDROGEN ATOM [V-18a

energy due to the field then being eEzz eEzi = eEfa 21),

in which E is the strength of the field, considered as being in the

direction of the z axis.

To effect the separation, we introduce the new variables

x, y, and z, which are the Cartesian coordinates of the center of

mass of the system, and r, #, and <p, the polar coordinates of the

second particle relative to the first. These coordinates are

related to the Cartesian coordinates of the two particles by the

equations

x = il *\ (18-2a)
mi + m2

= ,
2>

mi + m2

z = il 22
, (18-2c)

mi + m 2

r sin # cos <f>
= x2 i, (18-2d)

r sin & sin <p
= y^ yi, (18-2e)

r cos t? = 22 Zi. (18-2/)

The introduction of these new independent variables in

Equation 18-1 is easily made in the usual way. The resultant

wave equation is

/ay r

dy*

i

, i/j. l/r2^_
~*~

M |r
2

dr\
dr

r8 sin" & d(p rz sin #

4. ^{WT
-

V(r, *, ^>)}^T = 0. (18-3)

In this equation the symbol /z has been introduced to represent

the quantity
. . / 1 -i \

(18-4)
mi + m2

/or- = + \
y ju mi m

2//
;

n is the reduced mass of the system, already discussed in Section

2d in the classical treatment of this problem.
It will be noticed that the quantity in the first set of parentheses

is the Laplacian of \[/T in the Cartesian coordinates x, y, and 2,

and the quantity in the first set of braces is the Laplacian in the

polar coordinates r, tf, and ^ (Appendix IV).
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We now attempt to separate this equation by expressing \f/T

as the product of a function of x, y, z and a function of

r, tf
, <p, writing

*r(x, y, z, r, tf, <?}
= F(x, y, z)t(r, *, *>). (18-5)

On introducing this in Equation 18-3 and dividing through by
\!/T

=
F\l/ 9

it is found that the equation is the sum of two parts,

one of which is dependent only on x, y, and z and the other

only on r, #, and <p. Each part must hence be equal to a con-

stant. The resulting equations are

r
trF =

0, (18-6)
i/x/ \jy \J& n>

and

I A/r2^
rL sin* i> d<^ r* sin # c

\ /

with

W t r + W = WT . (18-8)

Equation 18-6 is identical with Equation 13-2 of Section 13,

representing the motion of a free particle; hence the translational

motion of the system is the same as that of a particle with mass

nti + nit equal to the sum of the masses of the two particles.

In most problems the state of translational motion is not impor-

tant, and a knowledge of the translational energy Wtr is not

required. In our further discussion we shall refer to W
, the

energy of the system aside from the translational energy, simply
as the energy ctf the system.

Equation 18-7 is identical with the wave equation of a single

particle of mass M under the influence of a potential function.

F(r, #, <p). This identity corresponds to the classical identity of

Section 2d (Eqs. 2-25).

If we now restrict ourselves to the case in which the potential

function V is a function of r alone,

V = F(r),

Equation 18-7 can be further separated. We write
V

\l/(r, tf, *>)
= R(r) 9(tf) $(<p); (18-9)
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on introducing this in Equation 18-7 and dividing by RQ&, it

becomes

1
jrf/flin *<te\

in #0 d*\ d*/
JL^_ _
r*Rdr\ dr/ ^>2

sin^tf<l>d<p
2 r

r2 sin

+ ^{W -
F(r)} = 0. (18-10)

On multiplying through by r2 sin 2
#, the remaining part of the

second term, -p^ which could only be a function of the inde-

pendent variable <p, is seen to be equal to terms independent of <p.

Hence this term must be equal to a constant, which we call w 2
:

= -*. (18-11)

The equation in & and r then can be written as

Id/
t>dR\ ra2

,
1 d I . QdQ\ ,

8?rV2

. i Y \
- -

\
- I cifi *> I i

*

R dr\ dr ) sin 2
1?
^

sin ?6 <W\ dt?/
^

h*

{W-V(r)} =0.

The part of this equation containing the second and third terms

is independent of r and the remaining part is independent of #,

so that we can equate each to a constant. If we set the # terms

equal to the constant 0, and the r terms equal to +/3, we
obtain the following equations, after multiplication by 9 and

by -B/r
2

, respectively:

sm
and

Equations 18-11, 18-12, and 18-13 are now to be solved

in order to determine the allowed values of the energy.

The sequence of solution is the following: We first find that

Equation 18-11 possesses acceptable solutions only for certain

values of the parameter ra. Introducing these in Equation 18-12,

we find that it then possesses acceptable solutions only for

certain values of 0. Finally, we introduce these values of ft
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in Equation 18-13 and find that this equation then possesses

acceptable solutions only for certain values of W. These are the

values of the energy for the stationary states of the system.

It may be mentioned that the wave equation for the hydrogen
atom can also be separated in coordinate systems other than the

polar coordinates r, #, and v? which we have chosen, and for some

purposes another coordinate system may be especially appro-

priate, as, for example, in the treatment of the Stark effect,

for which (as shown by Schrodinger in his third paper) it is

convenient to use parabolic coordinates.

18b. The Solution of the <p Equation. As was discussed in

Section 17, the solutions of Equation 18-11, involving the cyclic

coordinate <p, are

*. (18-14)

In order for the function to be single-valued at the point (p

(which is identical with <p 2?r), the parameter m must be equal
to an integer. The independent acceptable solutions of the (p

equation are hence given by Equation 18-14, with m =
0,

+ 1, +2, , 1,
J
-2,

k

;
these values are usually

written as 0, 1, 2,
-

,
it being understood that positive

and negative values correspond to distinct solutions.

The constant m is called the magnetic quantum number. It is

the analogue of the same quantum number in the old-quantum-

theory treatment (Sec. 76).

The factor l/V^Tr is introduced in order to normalize the

functions <m(<p), which then satisfy the equation

= 1. (18-15)

It may be pointed out that for a given value of \m\ (the

absolute value of m), the two functions &\m \(<f>)
and <_,m|(^>)

satisfy the same differential equation, with the same value of the

parameter, and that any linear combination of them also satisfies

the equation. The sum and the difference of these two functions

are the cosine and sine functions. It is sometimes convenient

to use these in place of the complex exponential functions as the

independent solutions of the wave equation, the normalized

solutions then being
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, ,cos m

sin H = 1,2,3,

(18-16)

There is only one solution for |m|
= 0. These functions are

normalized and are mutually orthogonal.

It is sometimes convenient to use the symbol m to represent

the absolute value of the magnetic quantum number as well

as the quantum number itself. To avoid confusion, however,
we shall not adopt this practice but shall write |m| for the

absolute value of m.

18c, The Solution of the # Equation. In order to solve the

& equation 18-12, it is convenient for us to introduce the new

independent variable

z = cos (18-17)

which varies between the limits 1 and +1, and at the same time

to replace 9(#) by the function P(z) to which it is equal:

P(z) = 6(#). .(18-18)

Noting that sin 2
tf = 1 - z 2 and that

d9 dPdz dP . n

we see that our equation becomes

On attempting to solve this equation by the polynomial method^
it is found that the recursion formula involves more than two

terms. If, however, a suitable substitution is made, the equa-
tion can be reduced to one to which the polynomial method can

be applied.

The equation has singular points at z =
1, both of which are regular

points (see Sec. 17), so that it is necessary to discuss the indicial equation
at each of these points. In order to study the behavior near z =

-f-1, it is
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convenient to make the substitution x =* 1 z, R(x) = P(z), bringing this

point to the origin of x. The resulting equation is

dx

If we substitute R = x ]V a^" in this equation, we find that the indicial

?-o

equation (see Sec. 17) leads to the value |m|/2 for s. Likewise, if we investi-

gate the point z = 1 by making the substitution y = 1 -}- z and similarly

study the indicial equation at the origin of y, we find the same value for the

index there.

The result of these considerations is that the substitution

Iml 1ml I ml

P(z) = X2y20(z) =
(1
-

z*) T0(z) (18-20)

is required. On introducing this into Equation 18-19, the differ-

ential equation satisfied by G(z) which should now be directly

soluble by a power series is found to be

(1
- z 2

)(?"
-

2(|m| + 1)*G' +
0, (18-21)

in which (?' represents -r- and G" represents -r-^-

This equation we now treat by the polynomial method, the

successive steps being similar to those taken in Section 11 in the

discussion of the harmonic oscillator. Let

G = a + atf + a2z
2 + a 3z

3 + , (18-22)

with G' and G" similar series obtained from this by differentiation.

On the introduction of these in Equation 18-21, it becomes

1 2a2 + 2 - 3a 3* + 3 4a 4*
2 + 4 5a6z

3 +
- 1 - 2a2z

2 - 2 - 3a3z
3 -

-2(|rn| + l)aiz -2 2(|m| + I)a2z
2 -2 -

3(|m| + I)a 3*
3 -

+ {ft
-

\m\(\m\ + I)}a + {}<*& + {}a2z
2 + {}a3z

3 + =
0,

in which the braces {} represent {/3 |m|(|m| + 1)J. This

equation is an identity in z, and hence the coefficients of indi-

vidual powers of z must vanish; that is,

l-2oi + {}a =
0,

2.3a8 + ({} -2(|m| + l)) fll =0,
3 4a4 + ({ }

- 2 -

2(|m| + !)-! 2)a2
=

0,

4 5o6 + ({ }

- 2 .

3(|m| + 1)
- 2 - 3)a8

=
0,
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or, in general, for the coefficient of z",

(v + l)(v + 2)a,+, + [{j8
-

|m|(|m| + 1)}
-

2v(\m\ + 1)
- K" - 1)K =' 0.

This leads to the two-term recursion formula

(y + |m[)(y + |m| + 1)
- g ,

a*+2
=

(, + !)( + 2)
av (18

'
23)

between the coefficients a^+2 and av in the series for G.

It is found on discussion by the usual methods 1 that an infinite

series with this relation between alternate coefficients converges

(for any values of \m and g) for 1 < z < 1, but diverges for

z = +1 or 1, and in consequence does not correspond to an

acceptable wave function. In order to be satisfactory, then,

our series for G must contain only a finite number of terms.

Either the even or the odd series can be broken off at the term

in z"' by placing

P =
("' + MX"' + |m + 1), v' =

0, 1, 2,
- -

,

and the other series can be made to vanish by equating ai or a

to zero. The characteristic values of the parameter are thus

found to be given by the above expression, the corresponding
functions G(z) containing only even or odd powers of z as v

f

is even or odd.

It is convenient to introduce the new quantum number

I = v
' +

\

m
\ (18-24)

in place of v
1

,
the allowed values for I being (from its definition)

|m|, m\ + 1, m\ + 2, . The characteristic values of /3

are then

P =
l(l + 1), I = |m|, |m| + 1, . (18-25)

I is called the azimuthal quantum number; it is analogous to the

quantum number k of the old quantum theory. Spectral states

which are now represented by a given value of I were formerly

represented by a value of k one unit greater, fc = 1 corresponding

to I = 0, and so on.

1 R. COURANT and D. HILBERT,
" Methoden der mathematischen Physik,"

2d ed.,Vol. I, p. 281, Julius Springer, Berlin, 1931.
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We have now shown that the allowed solutions of the & equa*
tion are 9(#) =

(1
- z 2

)
lm|/2

G(z), in which G(z) is defined by
the recursion formula 18-23, with ft

=
1(1 + 1). It will be shown

in Section 19 that the functions 0(#) are the associated Legendre
functions. A description of the functions will be given in

Section 21.

18d. The Solution of the r Equation. Having evaluated ft as

1(1 + 1), the equation in r becomes

: drV dr.
1 ' ' ~' +

>-*'^f{W
-

V(r)\ \R =
0, (18-26)

in which F(r) = Ze 2
/r, Z being the atomic number of the atom.

It is only now, by the introduction of this expression for the

potential energy, that we specialize the problem to that of the

one-electron or hydrogenlike atom. The discussion up to this

point is applicable to any system of two particles which interact

with one another in a way expressible by a potential function

F(r), as, for example, the two nuclei in a diatomic molecule after

the electronic interactions have been considered by the Born-

Oppenheimer method (Sec. 35a).

Let us first consider the case of W negative, corresponding to

a total energy insufficient to ionize the atom. Introducing the

symbols

and

_A

(18-27)

and the new independent variable

p = 2ar, (18-28)

the wave equation becomes

1 d dS\ f 1 1(1 + 1) X)~ -

^ p ^ , (18-29)
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in which S(p) = R(r). As in the treatment of the harmonic

oscillator, we first discuss the asymptotic equation. For p

large, the equation approaches the form

d^
~

I
5 '

the solutions of which are

S = +
* and 8 = e~{

Only the second of these is satisfactory as a wave function.

We now assume that the solution of the complete equation
18-29 has the form

S(p) = e~(p). (18-30)

The equation satisfied by F(p) is found to be

p P)

^ p ^ oo. (18-31)

The coefficients of F f and F possess singularities at the origin,

which is a regular point (cf. Sec. 17), so that we again make the

substitution

F(p) = p'L(p), (18-32)

in which L(p) is a power series in p beginning with a non-vanishing
constant term:

L(P)
=
2>P% o * 0. (18-33)
V

Since

F'(p) = sp-'L + p'L'

and

F"(P) = 8(8
- l)p-

2L + 2sp-'L' + p'L",

Equation 18-31 becomes

" + 2sp'
+1L' + s(s

-
l)p'L

+ 2p'+
lL' + 2sp'L

p'
+2L' sp'

+lL
+ (X

-
l)p-+

1L -
1(1 + l)p'L = 0. (18-34)
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Since L begins with the term a
,
the coefficient of p* is seen to be

[s(s 1) + 2s 1(1 + 1)} a , and, since a does not vanish,

the expression in braces must vanish in order for Equation 18-34

to be satisfied as an identity in p. This gives as the indicial

equation for s :

8(8 + 1)
-

1(1 + 1)
=

0, or 5 = +1 or -(i + 1). (18-35)

Of the two solutions of the indicial equation, the solution

s =
(/ + !) does not lead to an acceptable wave function.

We accordingly write

F(P)
=

p'L(p), (18-36)

and obtain from 18-34 the equation

PL" + {2(1 + 1)
- p\U + (X

-
I
-

1)L =
0, (18-37)

after substituting I for s and dividing by p
l+ 1

. We now introduce

the series 18-33 for L in this equation and obtain an equation

involving powers of p, the coefficients of which must vanish

individually. These conditions are successively

(X
-

I
-

I)a + 2(1 + l)ai -
0,

(X
-

Z
- 1 - IK + {2

-

2(1 + 1) + 1 2}a 2
=

0,

(X
-

Z
- 1 - 2)a2 + {3-2(1 + 1) +2-3|a3 =0

or, for the coefficient of p",

(X
-

I
- 1 - v)a, + {2( + 1)(I + 1) + v(v + l)}a,+1 = 0.

(18-38)

It can be shown by an argument similar to that used in Section

lla for the harmonic oscillator that for any values of X and I the

series whose coefficients are determined by this formula leads to

a function S(p) unacceptable as a wave function unless it breaks

off. For very large values of v the successive terms of an infinite

series given by 18-38 approach the terms of the expansion
of ep

,
which accordingly represents the asymptotic behavior of

the series. This corresponds to an asymptotic behavior of

_* +f
S(p) =e 2

p
l

L(p) similar to e 2
, leading to the infinity catastrophe

with increasing p.

Consequently the series must break off after a finite number
of terms. The condition that it break off after the term in p

n '

is

seen from Equation 18-38 to be
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X - I
- 1 - ri =

or

X =
ft, where n = ri + I + 1. (18-39)

n' is called the radial quantum number and n the total quantum
number. From its nature it is seen that n' can assume the values

0, 1, 2, 3, . The values of n will be discussed in the next

section.

In this section we have found the allowed solutions of the

_P
r equation to have the form R(r) = e 2

p
l

L(p), in which L(p) is

defined by the recursion formula 18-38, with X = n. It will

be shown in Section 20 that these functions are certain associated

Laguerre functions, and a description of them will ,be given in

Section 21.

18e. The Energy Levels. Introducing for X its value as given

in Equation 18-27, and solving for W, it is found that Equation
18-39 leads to the energy expression

in which

W. = - = - = -*, (18-40)
h*n 2 n 2 n 2

R = and WH = Rhc.
h3c

This expression is identical with that of the old quantum theory

(Eq. 7-24), even to the inclusion of the reduced mass ju- It is

seen that the energy of a hydrogenlike atom in the state repre-

sented by the quantum numbers n', I, and m does not depend on

their individual values but only on the value of the total quantum
number n = n' + I + 1. Inasmuch as both n' and I by their

nature can assume the values 0, ,1, 2, ,
we see that the

allowed values of n are 1, 2, 3, 4, ,
as assumed in the old

quantum theory and verified by experiment (discussed in

Sec. 76).

Except for n =
1, each energy level is degenerate, being

represented by more than one independent solution of the wave

equation. If we introduce the quantum numbers n, I, and m
as subscripts (using n in preference to ft'), the wave functions

we have found as acceptable solutions of the wave equation

may be written as

*0, (18-41)
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the functions themselves being those determined in Sections

186, 18c, and 18d. The wave functions corresponding to distinct

sets of values for n, I, and m are independent. The allowed

values of these quantum numbers we have determined to be

m =0, 1, 2, ,

I = \m\, \m\ + 1, \m\ + 2, ,

n = I + 1, I + 2, I + 3, .

This we may rewrite as

total quantum number n =
1, 2, 3, ,

azimuthal quantum number J = 0, 1, 2, ,
n 1,

magnetic quantum number m =
I, Z + 1, , 1,0,

+ 1, , +Z -
1, +1

There are consequently 21 + 1 independent wave functions with

given values of n and Z, and n 2
independent wave functions with

a given value of n
f
that is, with the same energy value. The

21 + 1 wave functions with the same n and I are said to form a

completed subgroup, and the n 2 wave functions with the same n a

completed group. The wave functions will be described in the

following sections of this chapter.

A similar treatment applied to the wave equation with W
positive leads to the result that there exist acceptable solutions

for all positive values of the energy, as indicated by the general

discussion of Section 9c. It is a particularly pleasing feature of

the quantum mechanics that a unified treatment can be given
the continuous as well as the discrete spectrum of energy values.

Because of the rather complicated nature of the discussion of the

wave functions for the continuous spectrum (in particular their

orthogonality and normalization properties) and of their minor

importance for most chemical problems, we shall not treat them

further. 1

19. LEGENDRE FUNCTIONS AND SURFACE HARMONICS

The functions of & which we have obtained by solution of the

& equation are well known to mathematicians under the name of

associated Legendre functions.
2 The functions of t? and <? are

1 See SOMMERFELD,
" Wave Mechanics," p. 290.

2 The functions of tf for m =0 are called Legendre functions. The asso-

ciated Legendre functions include the Legendre functions and additional
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called surface harmonics (or, in case cosine and sine functions of

<p are used instead of exponential functions, tesseral harmonics).
We could, of course, proceed to develop the properties of these

functions from the recursion formulas for the coefficients in the

polynomials obtained in the foregoing treatment. This would
be awkward and laborious, however; it is simpler for us to define

the functions anew by means of differential expressions or

generating functions, and to discuss their properties on this basis,

ultimately proving the identity of these functions with those

obtained earlier by application of the polynomial method.

19a. The Legendre Functions or Legendre Polynomials. The

Legendre functions or Legendre polynomials Pj(cos #) = PI(Z)

may be defined by means of a generating function T(t, z) such

that

As in the case of the Hermite polynomials (Sec. lie), we
obtain relations among the polynomials and their derivatives by
differentiating the generating function with respect to t and to z.

Thus on differentiation with respect to t, we write

1-1 = ^(-2* + 2Q
dt

~ ^ l
~

(1
- 2zt

2-0

or

i i'

(the right side having been transformed with the use of Equation

19-1), and consequently, by equating coefficients of given powers
of t on the two sides, we obtain the

,
recursion formula for the

Legendre polynomials

(I + I)PH-I(Z)
-

(21 + l)zPi(z) + ZPi-i(3) = 0. (19-2)

Similarly, by differentiation with respect to z, there is obtained

t

dz
-
^j <

* -
(1
- 2zt

i

functions (corresponding to Iml > 0) conveniently defined in terms of the

Legendre functions.
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or

which gives the relation

P'M (z)
- 2zP'

t (z) + P'M (Z )
- P t (z)

= (19-3)

involving the derivatives of the polynomials. Somewhat simpler
relations may be obtained by combining these. From 19-2

and 19-3, after differentiating the former, we find

zP[(z)
-

P;_ t (z)
- lP t (z)

= (19-4)
and

P'l+l (z)
- zP'

t (z)
-

(1 + l)P t (z)
= 0. (19-5)

We can now easily find the differential equation which P/(z)

satisfies. Reducing the subscript I to / 1 in 19-5, and sub-

tracting 19-4 after multiplication by z, we obtain

(1
- z 2

)P,' + lzP l
-

>,_! =
0,

which on differentiation becomes

, \V A * / j.. i i
"* v*v i

"^ zv*/ **
z iv*'/ 0.

a2 (

The terms in P\ and P[_! may be replaced by l
2
Pi, from 19-4,

and there then results the differential equation for the Legendre

polynomials
" 7

~P r (V>)~} + 1(1 + l)Pi(z) = 0. (19-6)

19b. The Associated Legendre Functions. We define the

associated Legendre functions of degree I and order \m\ (with

values I = 0, 1, 2, and \m\
=

0, 1, 2, , I) in terms of

the Legendre polynomials by means of the equation

pjr'co = a - * 2
)
Iml/2 M*).

[It is to be noted that the order \m\ is restricted to positive values

(and zero) ;
we are using the rather clumsy symbol \m\ to represent

the order of the associated Legendre function so that we may
later identify m with the magnetic quantum number previously
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introduced.] The differential equation satisfied by these func-

tions may be found in the following way. On differentiating

Equation 19-6 \m\ times, there results

/i
[1(1 + 1)

-
|m|(|m| + l)!r^ = (19-8)

zz
as the differential equation satisfied by |m ,

With the
dz

use of Equation 19-7 this equation is easily transformed into

(i
-

**)
- 2* + z(z + i)

- rp'^
=

0, (19-9)

which is the differential equation satisfied by the associated

Legendre function P\
ml

(z).

This result enables us to identify
1 the # functions of Section

18c (except for constant factors) with the associated Legendre

functions, inasmuch as Equation 19-9 is identical with Equation

18-19, except that P(z) is replaced by P[
m
'(z) and ft is replaced

by 1(1 + 1), which was found in Section 18c to represent the

characteristic values of 0. Hence the wave functions in #

corresponding to given values of the azimuthal quantum number I

and the magnetic quantum number m are the associated Legendre
functions P[

ml
(z).

The associated Legendre functions are most easily tabulated by
the use of the recursion formula 19-2 and the definition J9-7,

together with the value PQ(Z) = 1 as the starting point. A
detailed discussion of the functions is given in Section 21.

For some purposes the generating 'function for the associated

Legendre functions is useful. It is found from that for the

Legendre polynomials to be

T (z(\ =
^|m,^, I)

-

Z|m|

(19-10)

1 The identification is completed by the fact that both functions are formed

from polynomials of the same degree.
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In Appendix VI it is shown that

i
(0

for V * I,

*-l \^1 )'- l' {Z/dZ == \ " \v ~7~ r^ / f it 7 /i f\ -t -t \

i7oi-rT\ 77 bin for l = l - (19
-n )

Using this result, we obtain the constant necessary to normalize

the part of the wave function which depends on #. The final

form for 0($) is

(,9-12)

Problem 19-1. Prove that the definition of the Legendre polynomials

Po(z) =
1,

)
*(*' '

*>'

is equivalent to that of Equation 19-1.

Problem 19-2. Derive the following relations involving the associated

Legendre functions:

__
>

.

-f- 1;

and

20. THE LAGUERRE POLYNOMIALS AND ASSOCIATED LAGUERRE
FUNCTIONS

20a. The Laguerre Polynomials. The Laguerre polynomials
of a variable p, within the limits ^ p ^ GO

, may be defined by
means of the generating function

r=0

To find the differential equation satisfied by these polynomials
Lr(p)j we follow the now familiar procedure of differentiating the
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generating function with respect to u and to p. From - we

obtain

pu

2Lr(p)
t = C */ _ _ Pt* ,

1

(r-l)l l-u\ I-M (l-w) 2 ^l-u

or

(1 -2u

from which there results the recursion formula

Lr+iGO + (p
- 1 - 2r)Lr(p) + r2Lr_!(p) = 0. (20-2)

Similarly from -r- we have
dp

2^r(p)
uf = __U ^Lr^Ur

r! 1 w^j r!
'

r r

or

L;(P)
- rL^^p) + rLr_!(p)

=
0, (20-3)

in which the prime denotes the derivative with respect to p.

Equation 20-3 may be rewritten and differentiated, giving

Xp) -Lr(p)|
and

with similar equations for Z/^2 (p) and L^_ 2 (p)- Replacing r by
r + 1 in Equation 20-2 and differentiating twice, we obtain

the equation

^; 2(P) + (P
- 3 - 2r)L;;,(p) + (r + l)

2
L^(p) + 2L;+1 (p)

= 0.

With the aid of the foregoing expressions this is then transformed

into an equation in Lr (p) alone,

PL;'(P) + (i
-

P)L;(P) + rL r (P)
=

o, (20-4)

which is the differential equation for the rth Laguerre polynomial.

dr

Problem 20-1. Show that Lr (p)
= tf (p

re~p ).

dpr
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20b. The Associated Laguerre Polynomials and Functions.

The sth derivative of the rth Laguerre polynomial is called the

associated Laguerre polynomial of degree r s and order s:

L;(P) =
^A(p).

(20-5)

The differential equation satisfied by L'r (p) is found by differ-

entiating Equation 20-4 to be

PL'r "(p) + (s + 1 - P)L/(p) + (r
-

*)L;(p) = 0. (20-6)

If we now replace r by n + I and s by 21 + 1, Equation 20-6

becomes

+ (n
-

i
-

l)Lfi'(p)
= 0. (20-7)

On comparing this with Equation 18-37 obtained in the treat-

ment of the r equation for the hydrogen atom by the polynomial

method, we see that the two equations are identical when

L%i
l
(p) is identified with L(p) and the parameter X is replaced

by its characteristic value n. The polynomials obtained in the

solution of the r equation for the hydrogen atom are hence the

associated Laguerre polynomials of degree n I 1 and of

order 2Z + 1. Moreover, the wave functions in r are, except for

normalizing factors, the functions

These functions are called the associated Laguerre functions.

We shall discuss them in detail in succeeding sections.

It is easily shown from Equation 20-1 that the generating

function for the associated Laguerre polynomials of order s is
1

pU
~

r 8

The polynomials can also be expressed explicitly:

n-J-l _
(n
_

l
_ l _ fc)!(

fc=0

(20--9)

1 This was given by Schrodinger in his third paper, Ann. d. Phys. 80, 486

(1926).
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In Appendix VII, it is shown that the normalization integral

for the associated Laguerre function has the value

the factor p
2
arising from the volume element in polar coordinates.

From this it follows that the normalized radial factor of the wave

function for the hydrogen atom is

with

p = 2ar = Sir

\
Ze *

r = r. (20-12)p
n/i

2 na

Problem 20-2. Derive relations for the associated Laguerre polynomials
and functions corresponding to those of Equations 20-2 and 20-3.

21. THE WAVE FUNCTIONS FOR THE HYDROGEN ATOM

21a. Hydrogenlike Wave Functions. We have now found

the wave functions for the discrete stationary states of a one-

electron or hydrogenlike atom. They are

, (21-1)

with

(21-2)

and
* '

(n
~

I
-

in which

p = r (21-5)

and
h 2

a being the quantity interpreted in the old quantum theory as

the radius of the smallest orbit in the hydrogen atom. The
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functions Pi
ml
(cos #) are the associated Legendre functions

discussed in Section 19, and the functions L^ J

(p) are the asso-

ciated Laguerre polynomials of Section 20. The minus sign in

Equation 21-4 is introduced for convenience to make the function

positive for small values of r.

The wave functions as written here are normalized, so that

to > ^ sin *WMr = 1. (21-6)

Moreover, the functions in r, #, and v are separately normalized

to unity:

(21-7)

They are also mutually orthogonal, the integral

vanishing except for n = n f

,
I = I', and ra =

ra'; inasmuch as if

m 7* m', the integral in <p vanishes; if m = m'
',
but I ^ I', the

integral in # vanishes; and if m = m' and I I', but n ^ ri,

the integral in r vanishes.

Expressions for the normalized wave functions for all sets of

quantum numbers out to n =
6, I = 5 are given in Tables 21-1,

21-2, and 21-3.

The functions ^>

m(<^) are given in both the complex and the

real form, either set being satisfactory. (For some purposes

one is more convenient, for others the other.)

TABLE 21-1. THE FUNCTIONS 3>mM
~^ o

V27T V27T

cos <p

T

sin
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TABLE 21-1. THE FUNCTIONS *,*(>) (Continued)

or

V2
Etc.

TABLE 21-2. THE WAVE FUNCTIONS 8im (#)

(The associated Legendre functions normalized to unity)

0, s orbitals:

1, p orbitals:

A/6
e 10 (t>)

= cos

V3
t =

2, d orbitals:

= - sn

A/10~
(3cos

2
t?
-

lte

e2 -. 2 (t?)
=

I = 3, /orbitals:

e80

3A/14 /5 \
(t?)

=
(
- cos3

tf
- cos t? 1

sin 0(5 cos 2
tf - 1)

8

ios
- sin 2

t? cos t?

A/70-^-- sin3
tf

- 4, g orbitals:

840W =
( cos4 d - 10 cos 2 # + 1

)
16 \ 3 /

9-\/10 /7 ,
\

B

ft
8m ^

I 5
cos ^ co* ^ I
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TABLE 21-2. THE WAVE FUNCTIONS 6im (0). (Continued)

64*2(0) = ^-^ sin 2
0(7 cos 2

1>
-

1)
o

3\/70
64*3(0) =- sin 3 cos

8

3-V/35
e,*() =-Yr-8in*dlo

I = 5, /i orbitals:

15\/22/21 14
,

\
e60 (0) = -- 1 cos5 -- cos 8

-f cos )

16 \ 5 3 /

\/165
sin #(21 cos4

tf
- 14 cos 2

tf -h 1)
16

/1155-

8
sin2

#(3 cos 3
1> cos #)

A770
65*3(0) = sin 3

#(9 cos 2 0-
32

3A/385 .

85*4(0) =- sin4 cos
16

3A/154 . K

65*5(0) =
00 sin
o^

TABLE 21-3. THE HYDROGENLIKE RADIAL WAVE FUNCTIONS

n = 1,K shell:

__

Z =0, 1 flio(r)
= (Z/a )K'2e

2

n =
2, L shell:

Z = 0, 25 ft, (r

2\/2

n =
3, Jlf shell:

"
0, 3s /2 30 (r)

- - (6
- 6p +

9-\/3

f il

9V6

-
2, 3d (,)
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TABLE 21-3. THE HYDBOGENLIKE RADIAL WAVE FUNCTIONS. (Continued)

n =
4, AT shell:

I = 0, 48 /Mr) = (Z/
.

a
,

o)/
(24

- 36P + 12p
2 -

P
3
)e~

2

yt>

f =
1, 4p /Mr) = -^L(20 - 10p + P )pe~~2

32\/T5

/ - 2, 4d /Mr) =
'"

96V 5

I -3,4, JWD-

n =
5, O^hell:

1 = 0, 5s /MO = (Z/ao)
_(i20 - 240P + 120P

2 - 20p
3

-f P
4)e~2_

300Vo

, 6l

150V30

(7 7a V^
=

2, 5d RM (r)
= -

----/_- (42
- 14p

150V70

-
3, 5/ A.(

3^ _ p

,(120 - 90p H- 18P
2 -

p
3
)P

2

300V 70

/ = 4. og KM(T) T=/
900V70

n =
6, P shell:

Z = 0, 6s #M (r)
= -iL

-(720
- 1800P + 1200P 2 - 300p

3 + 30p4

2160V6 _

-P6
)e

(7 1n V1 ^

J = 1, 6p /Jei(r)
= "_^r(840 - 840P + 252P 2 - 28P

3 + P
4)pe"

2

432A/210

=
2, 6d /2 62(r)

=
a

y
_ (336 - 168p + 24p 2 -

P
3
)P

2e
2

864V105

=
3, 6/ flei(r)

= -^(72 - 18P
2592V35

4, 60 /Mr) = -

12960V7

AA
5, 6/1 =-

12960V77
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The wave functions 9jm(#) given in Table 21-2 are the asso-

ciated Legendre functions P[
m|

(cos #) normalized to unity. The
functions P[

m|
(cos $) as usually written and as defined by

Equations 19-1 and 19-7 consist of the term sinlml# and the

polynomial in cos # multiplied by the factor

(I + \m\)\ (I + \m\ + 1)!

<^4('-^>
"

2<(<iM^)(<^M^)'
as m + iis even or odd. Expressions for additional associated

Legendre functions are given in many books, as, for example,

by Byerly.
1 Numerical tables for the Legendre polynomials

are given by Byerly and by Jahnke and Emde. 2

Following Mulliken, we shall occasionally refer to one-electron

orbital wave functions such as the hydrogenlike wave functions

of this chapter as orbitals. In accordance with spectroscopic

practice, we shall also use the symbols s, p, d, f, g, to

refer to states characterized by the values 0, 1, 2, 3, 4, ,

respectively, of the azimuthal quantum number I, speaking, for

example, of an s orbital to mean an orbital with I = 0.

In the table of hydrogenlike radial wave functions the poly-

nomial contained in parentheses represents for each function

the associated Laguerre polynomial L t̂

l
(p) 9

as defined by

Equations 20-1 and 20-5, except for the factor

which has been combined with the normalizing factor and

reduced to the simplest form. It is to be borne in mind that

the variable p is related to r in different ways for different

values of n.

The complete wave functions ^n im(r9 #, <p) for the first three

shells are given in Table 21-4. Here for convenience the variable

p = 2Zr/na has been replaced by the new variable <r, such that

n Z

W. E. BYERLY, "Fourier's Series and Spherical Harmonics," pp. 151,

159, 198, Ginnand Company, Boston, 1893.

2 W. E. BYERLY, ibid., pp. 278-281; JAHNKE and EMDE, "Funktionen-

tafeln," B. G. Teubner, Leipzig, 1933.
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The relation between o- and r is the same for all values of th

quantum numbers. The real form of the <f> functions is used.

The symbols p x , pv , p g ,
dx+y, dv+t,

dx+t, d^ and d z are introduced

for convenience. It is easily shown that the functions ^npft

\l/npv ,
and \l/npg are identical except for orientation in space, the

three being equivalently related to the x, y, and z axes, respec-

tively. Similarly the four functions ^w +v, tndv+t , tnd*+t ,
and

\l/ndxv are identical except for orientation. The fifth d function

$nd t is different.

TABLE 21-4. HYDROGENLIKE WAVE FUNCTIONS

K Shell

n =
l, l = 0, m = 0:

1 /Z'

L Shell

n =
2, I = 0, m - 0:

n =
2, I =

1, m = 0:

< /*rr \ 3^
~2

COS

n = 2, / =
1, m = 1:

1 /ZV* _*
2 sinrj"

4VSV

^2py
=

y= (
1 ffe

~
2 sin t? sin v

M Shell

n =
3, J = o, m = 0:

i /zV*
^3. = P= f ) (27 - 18<r + 2c

81\/3i \
a /

n -
3, Z = 1, m = 0:

V2 /~ v //% x

^3p,
=

7= I 1 (6 <T)<re
tf COS t

81VT \

n =
3, / - 1, m = 1:

-v/sT/zV* -1
,
=

7= [
l (6 <r)<re

6 sin t> cos <t

81V^r \ao/
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IKE WAVE FUNCTIONS. (Co

Z\^ -

i (6 <r)<re
3 sin tf sin <

TABLE 21-4. HYDROGENLIKE WAVE FUNCTIONS. (Continued)

\/2

n =
3, I r*

2, m = 0:

^ 8<i,
= 7=1 [ )

<T
26

3
(3 COS 2

tf 1)

81v6ir \
a
o/

n =
3, I = 2, w = 1:

A/9 /7.\& -*-
r
2e

3 sin # cos t? cos v

\/2 /Z\^ --

7= I

~
I

**e 3

81VT \
aV

> cos t?

81VT \fl
o/

n =
3, i = 2. m = 2:

1 /Z\* -f . .

with <r =
a

81 ^-

1 /*7\^ __
3 sin 2

tf sin 2^>

81
'

Z

21b. The Normal State of the Hydrogen Atom. The proper-

ties of the hydrogen atom in its normal state (Is, with n =
1,

I = 0, m = 0) are determined by the wave function

The physical interpretation postulated for the wave function

1 --
requires that \f/*\f/

=
36 be a probability distribution function

TTflg

for the electron relative to the nucleus. Since this expression
is independent of # and <p, the normal hydrogen atom is spheri-

cally symmetrical. The chance that the electron be in the

1 --
volume element r2dr sin &d&d<p is ~e r2dr sin dd&d<p, which

ira

is seen to be independent of # and <f> for a given size of the volume

element. This spherical symmetry is a property not possessed

by the normal Bohr atom, for the Bohr orbit was restricted to a

single plane.
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By integrating over # and <p (over the surface of a sphere),

we obtain the expression

4 --
D(r)dr = ~r*e aodr

a
o

as the probability that the electron lie between the distances

r and r + dr from the nucleus. The radial distribution function

'100r2e ao is shown in Figure 21-1 (together with

and ^00) as a function of r, the distance from the nucleus. It

FIG. 21-1. The functions ^, ^V and 47rrVV for the normal hydrogen
atom. The dashed curve represents the probability distribution function for a

Bohr orbit.

is seen that the probability that the electron remain within about

1 A of the nucleus is large; that is, the "size" of the hydrogen atom

is about the same as given by the Bohr theory. Indeed, there is

a close relation; the most probable distance of the electron from

the nucleus, which is the value of r at which D(r) has its maximum

value, is seen from Figure 21-1 to be a = 0.529A, which is just

the radius of the normal Bohr orbit for hydrogen.
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The distribution function itself is not at all similar to that

for a circular Bohr orbit of radius a
,
which would be zero every-

where except at the point r = a . The function ^00 has its

maximum value at r = 0, showing that the most probable

position for the electron is in the immediate neighborhood of

the nucleus; that is, the chance that the electron lie in a small

volume element very near the nucleus is larger than the chance

that it lie in a volume element of the same size at a greater

distance from the nucleus. 1 It may be pointed out that a Bohr
orbit in the form of a degenerate line ellipse, obtained by giving

the azimuthal quantum number k of the old quantum theory
the value instead of the value 1, leads to a distribution function

resembling the wave-mechanical one a little more closely. This

is shown in Figure 21-1 by the dashed curve. The average
distance of the electron from the nucleus, given by the equation

rtnimr*dr sin MM*, (21-8)

is found in this case to be equal to ^a . This is also the value

calculated for the Bohr orbit with k = 0; in fact, it will be shown
in the next section that for any stationary state of the hydrogen
atom the average value of r as given by the quantum mechanics

is the same as for the Bohr orbit with the same value of n and

with k 2
equal to 1(1 + 1). It will also be shown in Chapter XV

that the normal hydrogen atom has no orbital angular momen-
tum. This corresponds to a Bohr orbit with fc = but not with

k = 1. The root-mean-square linear momentum of the electron

is shown in the next section to have the value 2*ne
2
/h, which is

the same as for the Bohr orbit. We may accordingly form a

rough picture of the normal hydrogen atom as consisting of an

electron moving about a nucleus in somewhat the way cor-

responding to the Bohr orbit with n =
1, k =

0, the motion

being essentially radial (with no angular momentum), the

amplitude of the motion being sufficiently variable to give rise

to a radial distribution function D(r) extending to infinity,

though falling off rapidly with increasing r outside of a radius

of 1 or 2A, the speed of the electron being about the same as in

the lowest Bohr orbit, and the orientation of the orbit being

1 The difference between the statement of the preceding paragraph and

this statement is the result of the increase in size of the volume element

4rr2dr for the former case with increasing r.
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sufficiently variable to make the atom spherically symmetrical.

Great significance should not be attached to such a description.

We shall, however, make continued use of the comparison of

wave-mechanical calculations for the hydrogen atom with

the corresponding calculations for Bohr orbits for the sake of

convenience.

8 10 12 14 16 18 20

9 ->

FIG. 21-2. Hydrogen-atom radial wave functions Rni(r) for n = 1,2, and 3 and
I = and 1.

21c. Discussion of the Hydrogenlike Radial Wave Functions.

The radial wave functions Rn i(r) for n =
1, 2, and 3 and I =

and 1 are shown plotted in Figure 21-2. The abscissas represent

values of p; hence the horizontal scale should be increased by the

factor n in order to show R (r) as functions of the electron-nucleus

distance r. It will be noticed that only for s states (with I = 0)

is the wave function different from zero at r = 0. The wave
function crosses the p axis n I 1 times in the region between

p = and p = oo .
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The radial distribution function

Dni(r)
= r2

{#nj(r)}
2

(21-9)

is represented as a function of p for the same states in Figure

21-3. It is seen from Figures 21-2 and 21-3 that the probability

distribution function \l/*\l/, which is spherically symmetrical
for s states, falls off for these states from a maximum value at

r = 0. We might say that over a period of time the electron

8 10 12 14 16 18 20

FIG. 21-3. Electron distribution functions 4rr*[.Rwj(r)]
f for the hydrogen atom.

may be considered in a hydrogen atom in the normal state to

form a ball about the nucleus, in the 2s state to form a ball and

an outer shell, in the 3s state to form a ball and two concentric

shells, etc. The region within which the radial distribution

function differs largely from zero is included between the values

of r at perihelion and aphelion for the Bohr orbit with the same

value of n and with fc
2 =

1(1 + 1), as is shown by the heavy
horizontal line for each curve in Figure 21-3, drawn between the

minimum and maximum values of the electron-nucleus distance
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for this Bohr orbit in each case. For these s orbits (with k =
0)

the heavy line extends to r =
0, corresponding to a line ellipse

with vanishingly small minor axis, in agreement with the large

value of \l/*\l/ at r = 0. For states with / > 0, on the other hand,

^"V vanishes at r = 0, and similarly the minimum value of r

for the Bohr orbits with k = \/l(l + 1) is greater than zero.

The average distance of the electron from the nucleus, as given

by Equation 21-8, is found on evaluating the integral to be

fnlm = r

The corresponding values of p are represented by vertical lines in

Figure 21-3. From this expression it is seen that the size of the

atom increases about as the square of the principal quantum
number n, fnZm being in fact proportional to n 2 for the states

with I = and showing only small deviations from this propor-

tionality for other states. This variation of size of orbit with

quantum number is similar to that of the old quantum theory,

the time-average electron-nucleus distance for a Bohr orbit

being

f- = Vj1 +
il

1 - 5
which becomes identical with the wave-mechanical expression

if k2
is replaced by 1(1 + 1), as we have assumed in the foregoing

discussion.

Formulas for average values of various powers of r are given
below. 1 It is seen that the wave-mechanical expressions as a

rule differ somewhat from those of the old quantum theory,

even when k2
is replaced by 1(1 + 1).

AVERAGE VALUES* OF rf

Wave Mechanics

* Expressions for f are given in Equations 21-10 and 21-11.

1 1. WALLER, Z. f. Phys. 38, 635 (1926); expressions for (
-^

are given by J. H. Van Vleck, Proc. Roy. Soc. A 143, 679 (1934)
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AVERAGE VALUES OF r*. (Continued)

r o n2

V a,V(I + )

alnH(l + %)(l + 1)

$-*
Old Quantum Theory

/Tj _!
\rV aJ

r 3
/ ajn

3
/c
3

To illustrate the use of these formulas, let us calculate the

average potential energy of the electron in the field of the

nucleus. It is

*>,, - -
J (" ftiJft.

7V 2

= -
,. (21-12)

a n 2 v '

Now the total energy W ,
which is the sum of the average ki-

netic energy f and the average potential energy V, is equal to

Z 2e 2
/2aott

2
. Hence we have shown that the total energy is

just one-half of the average potential energy, and that the average
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kinetic energy is equal to the total energy with the sign changed,

i.e.,

This relation connecting the average potential energy, the

average kinetic energy, and the total energy for a system of

particles with Coulomb interaction holds also in classical mechan-

ics, being there known as the virial theorem (Sec. 7a).

Now we may represent the kinetic energy as

T = p\ + p* + pi),

in which px , py> and pz represent components of linear momentum
of the electron and nucleus relative to the center of mass (that

is, the components of linear momentum of the electron alone

if the small motion of the nucleus be neglected). Hence the

average value of the square of the total linear momentum
P

2 == Pi + Pi + Pi is equal to 2/x times the average value of the

kinetic energy, which is itself given by Equation 21-13 for both

wave mechanics and old quantum theory. We thus obtain

as the equation representing the average squared linear momen-
tum for a hydrogenlike atom in the wave mechanics as well as in

the old quantum theory. This corresponds to a root-mean-

square speed of the electron of

(21-15)vv i- nh
'

which for the normal hydrogen atom has the value 2.185 X 10 8

cm/sec.

Problem 21-1. Using recursion formulas similar to Equation 20-2 (or

in some other way) derive the expression for fjm .

21d. Discussion of the Dependence of the Wave Functions on

the Angles d and $. In discussing the angular dependence of

hydrogenlike wave functions, we shall first choose the complex
form of the functions $(<?) rather than the real form. It will be

shown in Chapter XV that there is a close analogy between the
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stationary states represented by these wave functions and the

Bohr orbits of the old quantum theory in regard to the orbital

angular momentum of the electron about the nucleus. The

square of the total angular momentum for a given value of I

h2

is 1(1 + l);r-2
; anc* *ke component of angular momentum along

the z axis is wA/27r, whereas the corresponding values for a Bohr
orbit with quantum numbers nkm are k 2h 2

/4w
2 and mh/2w,

respectively. We interpret the wave functions with a given

value of I and different values of m as representing states in which

the total angular momentum is the same, but with different

orientations in space.

It can be shown by a simple extension of the wave equation

to include electromagnetic phenomena (a subject which will

not be discussed in this book) that the magnetic moment asso-

ciated with the orbital motion of an electron is obtained from the

orbital angular momentum by multiplication by the factor

e/2m c, just as in the classical and old quantum theory (Sec. 7d).

The component of orbital magnetic moment along the z axis is

he
hence mj-

-
> and the energy of magnetic interaction of this

moment with a magnetic field of strength H parallel to the z axis

he TT
is m-:-H.

In the old quantum theory this spatial quantization was sup-

posed to determine the plane of the orbit relative to the fixed

direction of the z axis, the plane being normal to the z axis for

m = k and inclined at various angles for other values of m.

We may interpret the probability distribution function \l/*\(/ in a

similar manner. For example, in the states with m = 1

the component of angular momentum along the z axis, mh/2w,

is nearly equal to the total angular momentum, \/l(l -f l)h/2w,

so that, by analogy with the Bohr orbit whose plane would be

nearly normal to the z axis, we expect the probability distribution

function to be large at & = 90 and small at # = and 180.

This is found to be the case, as is shown in Figure 21-4, in which

there is represented the function {6jm(#))
2 for m = 1 and for

I = 0, 1, 2, 3, 4, and 5. It is seen that as I increases the prob-

ability distribution function becomes more and more concen-

trated about the xy plane.
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Fio. 21-4. Polar graphs of the function [e*w (#)]
2 for m = I and I = 0,

1, 2, 3, 4, and 5, showing the concentration of the function about the xy plane
with increasing I.
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The behavior of the distribution function for other values of m
is similarly shown in Figure 21-5, representing the same function

for I = 3 and m =
0, 1, 2, 3. It is seen that the function

tends to be concentrated in directions corresponding to the

plane of the oriented Bohr orbit (this plane being determined

only to the extent that its angle with the z axis is fixed).

With the complex form of the <p functions, these figures

represent completely the angular dependence of the probability

Fia. 21-5. Polar graphs of the function [&im (#)]
2 for I = 3 and m = 0, 1.

2, and 3.

distribution function, which is independent of <p. The alterna-

tive sine and cosine functions of <p correspond to probability

distribution functions dependent on y in the way corresponding
to the functions sin2

rrup and cos2
m<p. The angular dependence

of the probability distribution function for s and p orbitals in

the real form (as given in Table 21-4) is illustrated in Figure 21-6.

It is seen that, as mentioned before, the function s is spherically

symmetric, and the functions px , pv ,
and pt are equivalent except

for orientation. The conditions determining the choice of wave

functions representing degenerate states of a system will be

discussed in the following chapter.
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A useful theorem, due to Unsold,
1 states that the sum of the

probability distribution functions for a given value of I and all

values of m is a constant; that is,

= constant. (21-16)
W--I

Px

FIG. 21-6. Polar representation of the absolute values of the angular wave
functions for a and p orbitals. The squares of these are the probability distribu-

tion functions.

The significance of this will be discussed in the chapter dealing

with many-electron atoms (Chap. IX).

Problem 21-2. Prove UnsGld's theorem (Eq. 21-16).

1 A. UNSOLD, Ann. d. Phys. 82, 355 (1927).



CHAPTER VI

PERTURBATION THEORY1

In case that the wave equation for a system of interest can be

treated by the methods described in the preceding chapters, or

can be rigorously treated by any amplification of these methods,
a complete wave mechanical discussion of the system can be

given. Very often, however, such a procedure cannot be carried

out, the wave equation being of such a nature as to resist accurate

solution. Thus even the simplest many-electron systems, the

helium atom and the hydrogen molecule, lead to wave equations
which have not been rigorously solved. In order to permit
the discussion of these systems, which more often than not are

those involved in a physical or especially a chemical problem,
various methods of approximate solution of the wave equation
have been devised, leading to the more or less accurate approxi-

mate evaluation of energy values and wave functions. Of these

methods the first and in many respects the most interesting is

the beautiful and simple wave-mechanical perturbation theory,

developed by Schrodinger in his third paper in the spring of 1926.

It is especially fortunate that this theory is very much easier

to handle than the perturbation theory which is necessary for

the treatment of general problems in classical dynamics.

Before we can discuss this method, however, we need certain

mathematical results concerning the possibility of expanding

arbitrary functions in infinite series of normalized orthogonal

functions. These results, which are of great generality and

widespread utility, we shall discuss in the next section without

attempting any complete proof.

22. EXPANSIONS IN SERIES OF ORTHOGONAL FUNCTIONS

The use of power series to represent certain types of functions

is discussed in elementary courses in mathematics, and the

theorems which state under what conditions the infinite series

1 A generalized perturbation theory will be discussed in Section 27a.

151
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obtained by formal methods converge to the functions they are

meant to represent are also well known. An almost equally

useful type of infinite series, which we shall use very frequently,

is a series the terms of which are members of a set of normalized

orthogonal functions each multiplied by a constant coefficient.

If /o(z), f\(x) y fi(x), are members of such a set of normal-

ized orthogonal functions, we might write as the series

(22-1)

If the series converges and has a definite sum <f>(x), we may express

Equation 22-1 by saying that the infinite series on the right of

the equation represents the function <p(x) in a certain region of

values of x. We may ask if it is possible to find the coefficients

an for the series which represents any given function <p(x). A
very simple formal answer may be given to this question. If

we multiply both sides of Equation 22-1 by f(x) and then

integrate, assuming that the series is properly convergent so

that the term-by-term integration of the series is justified,

then we obtain the result

v(x)ft(*)d* =
a*, (22-2)

since

fft(x)fn(x)dx
= if n *

*,| (22
_
3)

= 1 if n =
k.\

a ^ x ^ b defines the orthogonality interval for the functions

/(*).
In many cases the assumptions involved in carrying out

this formal process are not justified, since the series obtained may
either not converge at all or converge to a function other than

<p(x). Mathematicians have studied in great detail the condi-

tions under which such series converge and have proved
theorems which enable one to make a decision in all ordinary

cases. For our purposes, however, we need only know that such

theorems exist and may be used to justify all the expansions

which occur in this and later chapters.
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The familiar Fourier series is only one special form of an

expansion in terms of orthogonal functions. Figure 22-1,

which gives a plot of the function

<p(x)
= 1 for < x < T, )

<f>(x)
= -1 for TT < x < 27r,J

together with the first, third, and fifth approximations of its

Fourier-series expansion

<p(x)
= a + 0i sin x + fri cos x + a2 sin 2z +

62 cos 2z + , (22-5)

illustrates that a series of orthogonal functions may represent

even a discontinuous function except at the point of discontinuity.

FIG. 22-1. The function <p(x) = +1 for < x < IT, 1 for TT < x < 27r, and
the first, third, and fifth Fourier-series approximations to it, involving terms to

sin x, sin 3z, and sin 5x, respectively.

If we had evaluated more and more terms of Equation 22-5,

the series would have approached more and more closely to the

function <p(z), except in the neighborhood of the discontinuity.

The most useful sets of orthogonal functions for our purposes

are the wave functions belonging to a given wave equation. In

preceding chapters we have shown that the solutions of certain

wave equations form sets of normalized orthogonal functions,

such as for example the Hermite orthogonal functions which
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are the solutions of the harmonic oscillator problem (Sec. 11).

In Appendix III it is shown that the solutions of any wave

equation form such a set of orthogonal functions.

In making expansions in terms of orthogonal functions, it is

necessary to be sure that the set oflunct^nng fo ^wy?fe/g. Thus in

the example of Equations 22-4 and 22-5, if we had used the set

cos x, cos 2x, ,
without the sine terms, the series obtained

would have converged, but not to the function <p(x) y
because the

set of functions cos x
9 cos 2x, is not complete. This

requirement of completeness necessitates that all the solutions

of the wave equation be included when using these solutions for

an expansion of an arbitrary function. Since many wave equa-
tions lead to a continuous spectrum of energy levels as well as a

discrete spectrum, it is necessary to include the wave function

Belonging 4a the continuous levels when making an expansion.
The quantum numbers for the continuous spectra do not have

discrete values but may vary continuously, so that the part

of the expansion involving these wave functions becomes an

integral instead of a sum as in Equation 22-1.

However, in many special cases it is easy to see that certain

of the coefficients a^ will be zero so that in those cases an expan-
sion is possible in a set of functions which is not complete. Thus
if the function <p(x) which we are attempting to represent is an

even function 1 of x, and if the orthogonal set we are using for the

expansion contains both even and odd functions, the coefficients

of all the odd functions fk(x) will vanish, as may be seen from the

consideration of Equation 22-2.

All the ideas which have been discussed in this section can be

generalized without difficulty to systems of several variables.

Normalized orthogonal functions in several variables Xi, y\ 9

,
ZN satisfy the condition

'

/
' ' '

J/n (*1, 2/1;
* ' *

-Oifn*m,i
= 1 if n = m, )

in which the integration is carried out over the whole of the

configuration space for the system, and dr is the volume element

1 The function J(x) is called an even function of x if f(x) is equal to

f(x) for all values of x, and an odd function of x if f(x) is equal to /(a?)

for all values of x.
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for the particular coordinate system in which the integral is

expressed. Orthogonal functions in several variables usually
are distinguished by several indices, which may however be

symbolized by a single letter. An example of a three-dimensional

set of normalized orthogonal functions is the set of solutions of

the wave equation for the hydrogen atom. We have obtained in

Chapter V the solutions belonging to the discrete levels; the

quantum numbers nlm provide the indices for these functions.

The solutions for the continuous spectrum of the atom, i.e., the

system resulting when the electron has been completely removed
from the nucleus, must be included if a complete set is desired. 1

The coefficients in the expansion of an arbitrary function of

several variables are obtained from an equation entirely analogous
to Equation 22-2,

* = / JVtei, 2/i,
' ' '

, z*)/*(zi, 2/i,
' ' '

, z*)dr, (22-7)

in which the limits of integration and the meaning of dr are tne

same as in Equation 22-6.

A function (p which is expressed in terms of the normalized

functions of a complete orthogonal set is itself normalized if the

coefficients in the"expansion satisfy the relation ya*an = 1.
n

It may be mentioned that in some cases it is convenient to

make use of complete sets of functions which are not mutually

orthogonal. An arbitrary function can be expanded in terms

of the functions of such a set; the determination of the values

of the coefficients is, however, not so simple as for orthogonal

functions. An example of an expansion of this type occurs in

Section 24.

In certain applications of expansions in terms of orthogonal

functions, we shall obtain expressions of the form

= 0.

By multiplying by /*(z) and integrating, we see that the coeffi

cient of each term must be zero; i.e., an = for all values of n.

1 For a discussion of the wave functions for the continuous spectrum of

hydrogen, see Sommerfeld, "Wave Mechanics," p. 290.
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Problem 22-1. Obtain the first four coefficients in the expansion <p(x)

(2T + s)-H = a*
2fc P* (:C) '

Where P* (:C) is the fcth Legendre poly"

nomial given in Section 19. This expansion is valid only for
\x\ $ 1. Plot

<p(x) and the approximations to it given by including the first, second, third,

and fourth terms of the expansion. If possible, obtain a general expression

for a*, using the generating function for Pk(x).

^23. FIRST-ORDER PERTURBATION THEORY FOR A
NON-DEGENERATE LEVEL

In discussing many problems which cannot be directly solved, a

solution can be obtained of a wave equation which differs from

the true one only in the omission of certain terms whose effect

on the system is small. Perturbation theory provides a method

of treating such problems, whereby the approximate equation

jaJfirst solved and thenjjie smgiljidjitional terms are introducejd

as corrections^

us write the true wave equation in the form

H* - W* =
0, (23-1)

in which H represents the operator

We assume that it is possible to expand H in terms of some

parameter X, yielding the expression

H = H Q + \H' + X 2tf
" +-; (23-3)

in which X has been chosen in such a way that the equation to

which 23-1 reduces when X > 0,

=
0, (23-4)

can be directly solved. This equation is said to be the wave

equation for the unperturbed system, while the terms

\H'

are called the perturbation. As an illustration, we might men-

tion the problem of the Stark effect in atomic hydrogen, in

which an electric field is applied to the atom. In this problem
the field strength E provides a convenient parameter in terms
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of which the Hamiltonian may be expanded. When E is zero,
the problem reduces to that of the ordinary hydrogen atom,
which we have already solved.

The unperturbed equation 23-4 has solutions

called the unperturbed wave functions, and corresponding energy
values

wi wi, wi, -

, wi, -
.

The functions ^ form a complete orthogonal set as discussed in

Section 22, and, if we assume that they have also been normalized,

they satisfy the equation (Appendix III)

(23
_
5)= 1 if i = j.)

+

Now let us consider the effect of the perturbation. By hypoth-
esis it will be small, and from the continuity properties of wave
functions 1 we know that the energy values and wave functions

for the perturbed system will lie near those for the unperturbed

system. In other words, the application of a small perturbation

is not going to cause large changes. With these facts in mind

we can expand the energy W and the wave function \l/ for the

perturbed problem in terms of X and have reasonable assurance

that the expansions will converge, writing

** = M + Wi + XV" + (23-6)

and

tyk
= Wl + \W'k + XH7 + - -

. (23-7)

If the perturbation is really a small one, the terms of these series

will become rapidly smaller as we consider the coefficients of

larger powers of X; i.e., the series will converge.

We now substitute these expansions for H, \l/k, and Wk into

the wave equation 23-1, obtaining the result, after collecting

coefficients of like powers of X,

? + H'ti + H"W
+ - - = 0. (23-8)

1
Discussed, for example, in Courant and Hilbert, "Methoden der mathe-

matischen Physik."
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If this series is properly convenient, we know that in order for it to

equal zero for all values of X the coefficients of the powers of X

must vanish separately.
1

fyhe
coefficient of X when equated to

zero gives Equation 23-4, tp
that we were justified in beginning

the expansions 23-6 and 23^7 with the terms \p and W. The
coefficient of X gives the equation

H^i ~ WM = (Wi
- H'M. (23-9)

To solve this we make use of the expansion theorem discussed

in the last section. We consider that the unknown functions

\l/

f

k can be expanded in terms of the known functions ^?, since the

latter form a normalized orthogonal set, and write

'

(23-10)
i

(The coefficients a\ might be written as a^, but we shall assume

throughout that we are interested only in the state k and there-

fore shall omit the second subscript.) Using this, we obtain the

result

since

Equation 23-9 therefore assumes the form

?
= (Wi - HOe (23-12)

If we multiply by ^2
* and integrate over configuration space, we

observe that the expression on the left vanishes :

J^'SWTF? - WMdr ^ ^(W?- Wl)Wk *tfdr =
0,

i i

since JV *tfdr vanishes except for I = k, and for this value

1
Thus, if

0,

then, assuming that the series is properly convergent, we can write
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of I the quantity W* Wl vanishes; and hence we obtain the

equation

=0. (23-13)

This solves the problem of the determination of W'k ,
the first-

order correction to the energy. Since W'k is a constant in

Equation 23-13, the integration of the term containing it can be

carried out at once, giving the result, when multiplied by X,

Wk
= \frl*H'*ldr. (23-14)

Since the correction to the energy is \W'k ,
it is convenient to

include the parameter X in the symbols for the first-order pertur-

bation and the first-order energy correction, so that to the

first order it is usual to write the relations

H = H + #',

in which

W'k = JV *H't*dr. (23-16)

This expression for the perturbation energy can be very simply
described : The first-order perturbation energy for a non-degenerate

state of a system is just the perturbation function averaged over the

corresponding unperturbed state of the system.

We can also evaluate the correction \l/k for the wave function.

Multiplying each side of Equation 23-12 by t/^ *,
we obtain, after

integration^

af(Wf
- Wk )

= -/^*#VMr, j 7* fc, (23-17)

where we have utilized the orthogonality and normalization

properties of the ^'s. The coefficients a/ in the expansion 23-10

of \l/' in terms of the set ^ are thus given by the relation

3 (M-LX)

The value of a& is not given by this process; it is to be chosen

so as to normalize the resultant ^, and, if only first-order terms

are considered (terms in X 2
neglected), it is equal to zero. It is

convenient to introduce the symbol

H'ik = M*HWr, (23-19)
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so that the expression for the first-order wave function of the

system, on introducing the above values of the coefficients a,,

becomes

y-o

in which the prime on the summation indicates the omission of

the term with j = k.

As mentioned before, it is customary to include X in the defini-

tion of Hr
as indicated in Equation 23-15, so that we get finally

for the first-order energy and the first-order wave function the

expressions

Wk = Wl + Hi, (23-21)

and

WO-W *'* (23-22)

j-O

23a. A Simple Example : The Perturbed Harmonic Oscillator.

As a simple illustration of first-order perturbation theory we shall

obtain the approximate energy levels of the system whose wave

equation is

_ ^ _
6,4^

= o.+ w _ fa. _ ^ _ 6,4 = o. (23-23)

We recognize that if a and 6 were zero this would be the wave

equation for the harmonic oscillator, whose solutions we already

know (Sec. 11). If a and b are small, therefore, we may treat

these terms as perturbations, writing

H' = ax3 + bx*. (23-24)

We need then to evaluate the integrals

Since x8 is an odd function and $1 V2 an even function, the first

of these integrals is zero, so that the first-order perturbation due

to ax? is zero. To calculate the second integral we refer back to
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Section lie for the functions $ and their properties. Substi-

tuting for
\l/ from Equation 11-20 we obtain the integral

/ = (" *2 **Y2<fc =
n| f

"

e-*H*M?dt. (23-26)
t/ ^* */

From Equation 11-15 we see that

iU) + nff^U), (23-27)

so that, after applying Equation 23-27 to //n+i and // n-i and

collecting terms, we obtain the equation

*) + n(n -

(23-28)

By this application of the recursion formula for Hn() we have

expressed
2/7n() in terms of Hermite polynomials with constant

coefficients. By squaring this we obtain an expression for

4# 2
(), which enables us to express the integral in Equation

23-26 as a sum of integrals of the form

f~^e-*'H
n(t)Hm(t)dt =0 if ro ^ n ,! (23_29)

= 2nn!\/^if m =
w,\

evaluated in Section lie. Thus we find for I the expression

-2
(n
-

2)!>

1),

when the value of Nn given in Equation 11-21 is introduced.

The first-order perturbation energy for this system is therefore

W = H'nn = ^2(2n* + 2n + 1),

so that the total energy becomes (to the first order)

W = JP + w = n + hvo + -L.^. + 2n +

(23-30)
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In order to calculate the first-order wave function it would
be necessary to evaluate all the quantities H'nk . The z3 term as

well as the x4 term will contribute to these integrals. The
number of non-zero integrals is not, however, infinite in this

case but quite small, only the terms with k =
n, n 1, n 2,

n 3, and n 4 being different from zero.

23b. An Example: The Normal Helium Atom. As another

example of the application of first-order perturbation theory let

us discuss the normal state of the helium atom. Since the term
which we shall use as the perturbation is not particularly small,

we must not expect an answer of very great accuracy. The

potential energy for a system of two electrons and a nucleus of

charge +Ze is

V = - - + *, (23-31)
ri r2

^
ri2

v '

in which r\ and r2 are the distances of electrons 1 and 2, respec-

tively, from the nucleus, and r J2 is the separation of the two

electrons. If we make the approximation of considering the

nucleus at rest, which introduces no appreciable error, the wave

equation (see Equation 12-8) for the two electrons becomes

, = .-^
S**m\dxl

"*"

dy\
~*"

dz\

~
t
"

dx\
~*~

dy\
"*"

dz\

(ftp*
ftp* P2\

-TT-^ + ^>-
This equation applies to He, Li+, Be"1

"
1

", etc., with Z =
2, 3, 4, etc.,

respectively. The variables x\, y\, z\ are Cartesian coordinates

of one electron, and x2 , t/ 2 ,
z2 those of the other; ra is the mass

of the electron.

Since if the term e2/ri 2 is omitted the wave equation which

is obtained can be exactly solved, we choose this term as the

perturbation function,

P 2

H f = -

^12

The wave equation which remains, the unperturbed equation,

can then be separated into two equations by the substitutions

Vi, *\i 22, 2/2, z2) =
ti?(xi, yi, 2:10:2, 2/2,
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and

WQ = W\ + Wl
the equation

1 for u\ being

I + 7 i
- 0. (23-33)

The equation for u\ is identical except for the changed subscripts.

Equation 23-33 is just the hydrogenlike wave equation discussed

in the preceding chapter, with solutions $nim(ri} #1, <f>i) and

energy values Z2WH/n
2

,
in which

W, = = 13 .53 v .e .

The unperturbed wave function for the lowest level of the two-

electron atom is therefore

^100,100
= ^ioo(ri, #1, 9?i)^ioo(r2 ,

#2 , ^2) =

Wi(ri, t^i, ^i)Mi.(r 2 , ^2, ^2), (23-34)

in which ri, t?i, <^i and r2 , t?2, <p2 are polar coordinates of the two

electrons relative to axes with the nucleus at the origin. The

corresponding energy value is

TFUioo = Wl + W\ = -2Z*WH . (23-35)

The first-order perturbation energy W is the average value of

the perturbation function H f

e 2
/r^ over the unperturbed

state of the system, with the value

W = *#V dr = ~^2
ioo,ioo^. (23-36)

From Table 21-4 of Chapter V we obtain for u i8 the expression

~*, (23-37)

in which p = 2Zr/a and a = A2
/47T

2m ^
2

. Using this in Equa-
tion 23-34, we find for ^100,100 the expression

P1 __P_ __

^100,100
=

jf
2 e 2

.

1 The symbol u will be used for the wave function for a single electron in a

many-electron atom, with subscripts Is, 2s, 2p, etc.
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The volume element is

dr = r\dri sin &id$id<pi r|c?r2 sin \

so that the integral for W becomes

Ze 2 pppppp
ojo Jo Jo Jo Jo Jo

05^ ll 1

2 57ra Jo Jo Jo Jo Jo Jo PIS

d#id<f> lPldp 2 sin <M# 2d<?2 , (23-38)

W =

in which p i2
= 2Zri 2/a .

The value of this integral is easily obtained, inasmuch as it

corresponds to the electrostatic interaction energy of two spheri-

cally symmetrical distributions of electricity, with density

functions e~pl and e~p
*, respectively. In Appendix V it is shown 1

that

W' = YZWH . (23-39)

This treatment thus gives for the total energy the value

W = -(2Z 2 - %Z)Wa . (23-40)

This may be compared with the experimental values of the total

energy, which are obtained by adding the first and the second

ionization energies. Table 23-1 contains, for He, Li+
,
Be++

,

B 3
+, and C4+

,
the experimental energy Wexp .y

the unperturbed

energy W, the total energy calculated by first-order perturbation

theory W + W, the difference A = W exP .

- F, the difference

A' = We*p.
- W - W, and finally the ratio -A'/A .

It is seen that the error A' remains roughly constant in absolute

value as the nuclear charge increases, which means that the

percentage error decreases, since the total energy is larger for

larger Z. This result is to be expected, inasmuch as for large

nuclear charge the contribution of the attraction of the nucleus

is relatively more important than that of the repulsion of the two

electrons. It is pleasing that even in this problem, in which the

perturbation function e
2
/Vi2 is not small, the simple first-order

perturbation treatment leads to a value of the total energy of

the atom which is in error by only a small amount, varying from

5 per cent for He to 0.4 per cent for C 4
+.

1 This problem was first treated by A. Unsold, Ann. d. Phys. 82, 355

(1927).
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TABLE 23-1. CALCULATED AND OBSERVED VALUES OF THE ENERGY OF

HELIUMLIKE ATOMS AND IONS

Problem 23-1. Calculate the first-order energy correction for a one-

dimensional harmonic oscillator upon which the perturbation H'(x) acts,

where H'(x) is zero unless
|x|

< e and H'(x) = b for
|x| < e, with e a quantity

which is allowed to approach zero at the same time that 6 approaches infinity,

in such a way that the product 2eb = c. Compare the effect on the odd and

even levels of the oscillator. What would be the effect of a perturbation

which had a very large value at some point outside the classically allowed

range of the oscillator and a zero value elsewhere?

Problem 23-2. The wave functions and energy levels of a particle in a

one-dimensional box are given in Equations 14-6 and 14r-7. Calculate the

first-order perturbation energy for such a system with a perturbation H'

such that H f = b for (a/k) e ^ x ^ (a/A;) -f e and H' = elsewhere, with

as 6 * oo in such a way that 2eb =
c, k being a given integer. With

k =
5, determine which energy levels are the most and which are the least

perturbed and explain. With k =
2, give the expression for the perturbed

wave function, to the first order.

Problem 23-3. Let H' be a perturbation, such that H'(x] = b for

^ x ^ a/2 and H'(x) -= +b for a/2 ^ x ^ a, which is applied to a

particle in a one-dimensional box (Eqs. 14-6 and 14-7). Obtain the first-

order wave function. Show qualitatively that this function is such that the

probability of finding the particle in the right-hand half of the box has been

increased and explain in terms of classical theory. (Hint: Use the symmetry
about the point x = a/2.)

24. FIRST-ORDER PERTURBATION THEORY FOR A DEGENERATE
LEVEL

The methods which we have used in Section 23 to obtain the

first-order perturbation energy are not applicable wjien the energy

level of the unperturbed system is degenerate, for the reason

that in carrying out the treatment we assumed that the perturbed

wave function differs only slightly from one function ^l which

is the solution of the unperturbed wave equation for a given

energy value whereas now there are several such functions, all
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belonging to the same energy level, and we do not know which

one (if any) approximates closely to the solution of the perturbed
wave equation.

An energy level Wk is called a-fold degenerate (see Sec. 14)

when for W = Wk there exist a linearly independent wave func-

tions ^*i, ^*2, ^*s, , tka satisfying the wave equation.
1

Each of these is necessarily orthogonal to all wave functions for

the system corresponding to other values of the energy (see

Appendix III) but is not necessarily orthogonal to the other

functions corresponding to the same value of the energy. Any
a

linear combinationV Kyi/^of the wave functions of a degenerate set

y-i

such as ^*i, ^* 2 , , $k<* is itself a solution of the wave equa-
tion and is a satisfactory wave function corresponding to the

energy TF*. We might therefore construct a such combinations

Xki by choosing sets of values for AC, such that the different com-

binations thus formed are linearly independent?" ^The setr~of

functions so obtained,
a

Xki =
2)**^*"

* = 1, 2, 3, , a, (24-1)
j-i

is entirely equivalent to the original set 1/^1, ^2, , ^ka.

This indicates that there is nothing unique about any particular

set of solutions for a degenerate level, since we can always con-

struct an infinite number of other sets, such as x*i, , XA**>

which are equally good wave functions. The transformation

expressed by Equation 24-1 is called a linear transformation

with constant coefficients.

It is usually convenient to deal with wave functions which

are normalized to unity and which are mutually orthogonal
Since the coefficients AC, can always be chosen in such a way as

to make the set Xki possess these properties, we shall ultimately

assume that this has been done.

Using these ideas, we can now investigate the application of

perturbation theory to degenerate levels. We write the wave

equation in the form

1 The functions ^*i, \J/ki, , tka are said to be linearly independent if

there exists no relation of the form a 1^*1 + a 2^*j +
"

+ Vat** = (in

which ai, aj, ,
a are constant coefficients) which is satisfied for all

rallies of the independent variables.
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H+ - Wt = (24-2)

with

H = H + \H' + \*H" +
as before. The wave equation for the unperturbed system is

flV - WW* =
0, (24-3)

the solutions of which are

corresponding to the energy levels

Now let us consider a particular wave function for the per-

turbed equation 24-2. It is known, in consequence of the proper-

ties of continuity of characteristic-value differential equations,

that as the perturbation function \H' + becomes smaller

and smaller the energy value W of Equation 24-2 will approach
an energy level of the unperturbed equation 24-3, TFJ, say.

The wave function under consideration will also approach more

and more closely a wave function satisfying Equation 24-3.

However, this limiting wave function need not be any one of

the functions fh, , t/^a ; it may be (and generally is) some
linear combination of them. The first problem which must be

solved in the treatment of a degenerate system is the determina-

tion of the set of unperturbed wave functions to which the

perturbed functions reduce when the perturbation vanishes;

that is, the evaluation of the coefficients in the linear transforma-

tion converting the initially chosen wave functions into the

correct zeroth-order wave functions. These correct combinations,

given by

II'*&', I = 1, 2, , a, (24-t)

provide the first term of the expansion of \l/ki in powers of X, since

by definition they are the functions to which the foi' reduce when
X -> 0. Therefore

XVi'i + (24-5)

and

Wk i
- WJ
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where Z(= 1, 2, , ) designates the particular one of the a

degenerate wave functions in question, are the equations which

are analogous to Equations 23-6 and 23-7. (As in Equation
23-10 we sometimes omit the subscript fc; e.g., we write K ;

for Kkiv] it must be borne in mind that throughout we are con-

sidering the fcth degenerate level.)

Substituting the expansions for ^, TF, and H into the wave

equation 24-2, we obtain an equation entirely analogous to

Equation 23-8 of the non-degenerate treatment,

=
0, (24-7)

from which, on equating the coefficient of X to zero as before,

there results the equation (cf. Eq. 23-9)

#V - WW'kl = W'klxli - ff'x. (24-8)

So far our treatment differs from the previous discussion of

non-degenerate levels only in the use of xli instead of ^; i.e.,

in the introduction of a general expression for unperturbed
functions instead of the arbitrary set ^. In the next step we
likewise follow the previous treatment, in which the quantities

\l/'k and ffVi were expanded in terms of the complete set of

orthogonal functions $!. Here, however, we must in addition

express x& in terms of the set tii't by means of Equation 24-4,

in which the coefficients */ are so far arbitrary. Therefore we
introduce the expansions

(24-9)
kT

and

k'l' k'l

into Equation 24-8 together with the expression for Xki given by

Equation 24-4. The result is

(TP2.
- WiMv =

2J
KW (Wi,

- H'Wkl,, (24-11)
r-i

in which the right-hand side involves only functions $!r belonging

to the degenerate level W% while the expansion on the left includes
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all the tk >i>'s.
If we now multiply both sides of this equation by

\l/ff
and integrate over configuration space, we obtain the result

(24-12)

The left side of this equation is zero because \f/kj
- and $!r are

orthogonal if k ^ k' and Wl> - WQ
k is zero if k = k'. If we

introduce the symbols

(24-13)

(24-14)

,
a. (24-15)

This is a system of a homogeneous linear simultaneous equations

in the a unknown quantities KU, *J2> > *&* Written out in

full, these equations are

and

A/i'
=

ttlMi'dr,

we may express Equation 24-12 in the form

=0, j
=

1, 2, 3,

=
o,

=
0,

(H'a%
-

(H'aa
- 0.

(24-16)

Such a set of equations can be solved only for the ratios of the

/c's; i.e., any one K may be chosen and all of the others expressed
in terms of it. For an arbitrary value of W'k i, however, the set

of equations may have no solution except the trivial one KW 0.

It is only for certain values of Wki that the set of equations has

non-trivial solutions; the condition that must be satisfied if

such a set of homogeneous linear equations is to have non-zero

solutions is that the determinant of the coefficients of the

unknown quantities vanish ; that is, that
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' H'la - A laTF,

H'al -

(24-17)

This determinantal equation can be expanded into an algebraic

equation in W'kt which can then be solved for Wkt . For the types
of perturbation functions which arise in most physical and chemi-

cal problems the determinant is either symmetrical about the

principal diagonal, if the elements are real, or else has the property
that corresponding elements on opposite sides of the principal

diagonal are the complex conjugates of each other; that is,

H'
if
=

Hjf. In consequence of this property it can be shown
that the determinant possesses a real roots, W'kl , W^, ,

Wkct .

These are the values of the first-order perturbation energy for the

a wave functions which correspond to the a-fold degenerate

unperturbed energy level Wk . It may happen, however, that

not all of the roots Wkl , etc., are distinct, in which case the

perturbation has not completely removed the degeneracy.
The coefficients KU> which determine the correct zeroth-order

wave function xu corresponding to any perturbed level W'kl
may be determined by substituting the value found for Wkt

into the set of simultaneous equations 24-16 and solving for the

other coefficients in terms of some one of them. This remaining

arbitrary coefficient may be adjusted so as to normalize xJu-

This process does not give uiiique results if two or more roots Wki

coincide, corresponding to the fact that since there still remains

a certain amount of degeneracy the wave functions for the

degenerate level are not uniquely determined but are to a

certain degree arbitrary.

If the original wave functions \fskl , , $Ja were normalized

and mutually orthogonal (which we have not hitherto needed

to assume), the function Ayr is unity for j = V and zero other-

wise, so that the determinantal equation 24-17 assumes the

form

(24-18)
Vt Tjt JJf . . TJ7 TT77"! "o2 "S "oa W kl



VI-24] FIRST-ORDER PERTURBATION THEORY 171

An equation such as 24-17 or 24-18 is often called a secular

equation, and a perturbation of the type requiring the solution

of such an equation a secular perturbation.
1

It is interesting to note that in case the secular equation has

the form

'n
- W'kl

H'n-W'kl =0,
(24-19)

H'aa - W'kl

then the initially assumed functions \l/kl , ^ 2 >

*

> tla. are the

correct zeroth-order functions for the perturbation H'
,
as is seen

on evaluation of the coefficients K of Equations 24-16. A secular

equation in which all the elements are zero except along the

principal diagonal is said to be in diagonal form. The roots

W'kt are of course immediately obtainable from an equation in

this form, since the algebraic equation equivalent to it is

(#'u
- WiW* - W'kl) (#L - W'kl ) =

0, (24-20)

with the roots W'kl = H'u ,
H f

^ y ,
H'aa .

1 In this sense secular means "accomplished in a long period of time"

(Latin saecidum = generation, age). The term secular perturbation was

introduced in classical mechanics to describe a perturbation which produces

a slow, cumulative effect on the orbit. If a system of sun and planet, for

which the unperturbed orbits are ellipses of fixed size, shape, and orientation,

were perturbed in such a way as to change the law of force slightly from the

inverse square, as is done, for example, by the relativistic change of mass

with change of speed, the position of the major axis in space would change

by a small amount with each revolution of the planet, and the orbit would

carry out a slow precession in its own plane, with a period which would be

very long if the magnitude of the perturbation were small. Such a perturba-

tion of the orbit is called a secular perturbation.

On the other hand we might have a system composed of a wheel in a

gravitational field rotating about a horizontal frictionless axle passing

through its center of mass and perturbed by the addition of a small weight

at some point on its periphery in such a way as to accelerate the motion

as the weight moves down and to decelerate it as the weight moves up.

Such a perturbation, which produces a small effect on the motion with the

high frequency characteristic of the original unperturbed motion of the

system, is not a secular perturbation.

The significance of the use of the word secular in quantum mechanics

will be seen after the study of the perturbation theory involving the time

(given in Chap. XI).
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This equation 24-19 illustrates, in addition, that the integrals

H'mn depend on the set of zeroth-order functions ^ which is

used to define them. Very often it is possible to guess in advance

which set of degenerate ^'s to use for a given perturbation in

order to obtain the simplest secular equation. In particular,

in case that the perturbation is a function of one variable (x, say)

alone, and each function of the initial set of unperturbed wave
functions can be expressed as the product of a function of x and a

function of the other variables, the individual functions being

mutually orthogonal, then these product functions are correct

zeroth-order wave functions for this perturbation. This situa-

tion arises whenever the unperturbed wave equation can be

separated in a set of variables in which x is included.

It may be pointed out that Equation 24-18 may also be written

in the form

Hu -W Hu Hia

Hal tlaZ
' ' ' Haa rr

=
0,

in which HH = #?y + H^ and W = Wk + W'kl ,
inasmuch as

// is equal to W% for i = j and to zero for i ^ j. This form is

used in Section 30c.

24a. An Example : Application of a Perturbation to a Hydrogen
Atom. As an illustration of the application of perturbation

theory to degenerate systems, let us consider a hydrogen atom to

which a perturbation which is a function of x only has been

applied. Since the lowest state of the hydrogen atom is non-

degenerate, the treatment of Section 23 applies to it and we have

the result that

with H' = f(x). For the second energy state, however, we need

to use the treatment for degenerate systems, since for W\ = %,
Rhc there are four wave functions,

fc. = *Soo
=

^=^ 1o
=

x/5 -^ "R-f-JcoB*,
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as given in Chapter V. In order to set up the secular equation

for this system we need the integrals

Even without specifying the form of the function f(x) further,

we can say certain things about these integrals. Since the com-

plex conjugate of e~ itp is e+i* and e~^e+i<f> =
1, we see that

r> _ rjf _ _ _ TjtD ~
-"211,211

~"
-"211,211

regardless of the nature of H', so long as it is real. By expressing

x in polar coordinates through the equation

x r sin # cos <p,

we see that f(x) is the same function of </ = 2w <p as it is of ^,

since cos (2ir <p)
= cos <p. If we make this substitution in

an integral over <p we get the result

(24-21)
Jo

since it is immaterial what symbol we use for the variable of

integration in a definite integral. This substitution also changes
e -t<f> into e-''<2*^'> or e+i*', so that by its use we can prove the

identity
T\ _ TJ7 __ _ TJfU "200,211

"~
-"200,211-

f(x) is also unchanged in form by the substitution # = tr

since sin (TT t^
;

)
= sin #'. Also, we have the relation

siri ^^ = " ^ sin

fVTT -
#) sin $d&. (24-22)jQ y\ ) , \ )

in which the factor sin # is introduced because it occurs in the

volume element dr of polar coordinates. The substitution

$ = TT $' does not leave cos # unchanged, however, since

cos (TT t^')
= cos #'. By employing this substitution we

can show that
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H' Iff
"""210,200 or 210,200'210,200

since the integrand is unaltered by the substitution except for

the cosine factor in ^ 10 which changes sign. Similarly we
find

#210,211
= and #210,21!

= 0.

Finally we have the general rule that

Iff _ 17' *
"2Jm,2rm' 2i'm' f 2/m-

We are now in a position to write down the secular equation for

this perturbation, using the relations we have obtained among
the elements #2im , 2rm'. It is (using the order 200, 211, 2ll, 210

for the rows and columns)

A - W D D
D B - W E
D E B - W

C - Wf

= 0. (24-23)

The symbols A, 5, etc., have the meanings: A = #2200,200
#200,211*

We may obtain one root of this equation at once. Since the

other elements of the row and the column which contains C W
are all zero, C W is a factor of the determinant and may be

equated to zero to obtain the root W = C. The other three

roots may be obtained by solving the cubic equation which

remains, but inspection of the secular equation suggests a simpler

method. Determinants have the property of being unchanged
in value when the members of any row are added to or sub-

tracted from the corresponding members of any other row. The
same is true of the columns. We therefore have

A -W'
D
D

1

D
B -W
E

A-W

D
E

B -W
2D

D B - W +E B -W - E
D B -W + E E - B + W

- W 2D
2D 2(5 + E - W)

2(5 - E - W)
=

0,

(24-24)
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in which we have first added the last column to the second

column to form a new second column and subtracted the last

column.from the second column to form a new third column, and

then repeated this process on the rows instead of the columns.

The result shows that we have factored out another root,

W' = B Ej leaving now the quadratic equation

(A
- W')(B + E - W) - 2D 2 =

which determines the remaining two roots.

The process by which we have factored the secular equation
into two linear factors and a quadratic corresponds to using

the real functions ^2,, ^2P,, faPv > and ^2p, for the ^/s instead

of the set ^2 , ^2Pi, ^2P_ t
,
and ^2po (see Sec. 186). In terms of

the real set the secular equation has the form

0,

A - w VZD o o

\/2D B + E - W
B - E - W

C - W
(24-25)

which, aside from the last row and column, differs from the last

determinant of Equation 24-24 only by a constant factor. The

proper zeroth-order wave functions for this perturbation are

therefore \l/2pvy \l/2Pt ,
and two linear combinations o^2 + ftfap,

and ftfa8 a^2px ,
in which the constants a and ft are determined

by solving the quadratic factor of the secular equation, sub-

stituting the roots into the equations for the coefficients of the

linear combinations, and solving for the ratio a/ft. The
normalization condition yields the necessary additional equation.

It is to be noted that in place of ^2p, and ^2p, any linear com-

binations of these might have been used in setting up the secular

equation 24-25, without changing the factoring of that equation,

so that these linear combinations would also be satisfactory

zeroth-order wave functions for this perturbation.

Problem 24-1. Prove the statement of the last paragraph.
Problem 24-2. Discuss the effect of a perturbation f(y) [in place of f(x)]

on the system of Section 24a.



176 PERTURBATION THEORY [VI-25

25. SECOND-ORDER PERTURBATION THEORY

In the discussion of Section 23 we obtained expressions for

W and V in the series

W = W + \W + X 2TF" + -

(25-1)

and

^ = ^o + x^' + \V" + (25-2)

In most problems it is either unnecessary or impracticable to

carry the approximation further, but in some cases the second-

order calculation can be carried out and is large enough to be

important. This is especially true in cases in which the first-

order energy W is zero, as it is for the Stark effect for a free

rotator, a problem which is important in the theory of the meas-

urement of dipole moments (Sec. 49/).

The expressions for W" and \l/" are obtained from the equation

which results when the coefficient of X 2 in Equation 23-8 is put

equal to zero and a solution obtained in a manner similar to

that of the first-order treatment. We shall not give the details

of the derivation but only state the results, which are, for the

energy correction,

TTf Iffn kln lk I Tj/f /OK Q\
*~ITQ + ff**i (25-3)

in which

Hit
= SWH'Wr (25-4)

and

dT (25-5)

and the prime on S means that the term I = k ds omitted. All

other values of I must be included in the sum, however, including
those corresponding to the continuous spectrum, if there is one.

If the state Wl is degenerate and the first-order perturbation
has removed the degeneracy, then the functions to be used in

calculating H'kl , etc., are the corrects zeroth-order functions found

by solving the secular equation.
If the energy level for the unperturbed problem is degenerate

and the first-order perturbation does not remove the degeneracy >

the application of the second-order correction will also not remove
the degeneracy unless the term \*H" is different from* zero, in
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which case the degeneracy may or may not be removed. The
treatment in this case is closely similar to that of Section 24.

26a. An Example : The Stark Effect of the Plane Rotator. A
rigid body with a moment of inertia / and electric moment 1

M, con-

strained to rotate in a plane about an axis passing through its

center of mass and under the influence of a uniform electric field

E, is characterized by a wave equation of the form2

P + Ktf COS

in which <p is the angle of rotation. If we call p,E cos <p the

perturbation term, with E taking the place of the parameter X,

then the unperturbed equation which remains when E = has

the normalized solutions

m =
0, 1, 2, 3, , (25-6)

and the energy values

In order to calculate the perturbation energy we shall need

integrals of the type

> cos

= for mf ^ m 1,

Using this result we see at once that the first-order energy cor-

rection is zero, for

W'm = EH'mm = 0. (25-9)

1 For a definition of /z see Equation 3-5.
2 This equation can be obtained as the approximate wave equation for a

system of two particles constrained by a potential function which restricts

the particles to a plane and keeps them a fixed distance apart by an argu-

ment similar to that used in the discussion of the diatomic molecule men-

tioned in the footnote to Section 35c.
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This problem is really a degenerate one, since W depends only
on |m| and not on the sign of w, so that there are two wave

functions for every energy level (other than the lowest). It is,

however, not necessary to consider this circumstance in evaluat-

ing W'

m and W'n because neither the first- nor the second-order

perturbation removes the degeneracy, and either the exponential

functions 25-6 or the corresponding sine and cosine functions are

satisfactory zeroth-order wave functions.

The second-order energy, as given by Equation 25-3, is

Wi - Wm+l h*(m* - 1)

(25-10)

so that the total energy, to the second order, is

w = w

It is interesting to point out the significance of this result

in connection with the effect of the electric field on the polariza-

bility of the rotator. The polarizability a is the proportionality

factor between the induced dipole moment and the applied
field E. The energy of an induced dipole in a field is then

y&aE2
- From this and a comparison with Equation 25-11 we

obtain the relation

which shows that a is positive for m = 0; the induced dipole

(whictfi in this case is due to the orienting effect of the field E on

the permanent dipole M of the rotator) is therefore in the direction

of the field E. For \m\ > 0, however, the opposite is true and

the field tends to orient the dipole in the reverse direction.

This is similar to the classical-mechanical result, which is

that a plane rotator with insufficient energy to make a complete
rotation in the field tends to be oriented parallel to the field

while a rotator with energy great enough to permit complete
rotation is speeded up when parallel and slowed down when

antiparallel to the field so that the resulting polarization is

opposed to the field. 1

1 An interesting application of perturbation theory has been made to the

Stark effect of the hydrogen atom, the first-order treatment having been
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Problem 2&-1. Carry out a treatment similar to the above treatment for

the rigid rotator in space, using the wave equation and wave functions found

in the footnote of Section 35c. Discuss the results from the viewpoint of

the last paragraph above. Compute the average contribution to the

polarizability of all the states with given / and with m =
/, f 4- 1, ,

+ /, assigning equal weights to the states in the averaging.

given independently by Schrodinger, Ann. d. Phys. 80, 437 (1926), and

P. S. Epstein, Phys. Rev. 28, 695 (1926), the second order by Epstein, loc.

tit., G. Wentzel, Z. f. Phys. 38, 518 (1926), and I.Waller, ibid. 38, 635 (1926),

and the third order by S. Doi, Y. Ishida, and S. Hiyama, Sti. Papers Tokyo

9, 1 (1928), and M. A. El-Sherbini, Phil. Mag. 13, 24 (1932). See also

Sections 27a and 27e.



CHAPTER VII

THE VARIATION METHOD AND OTHER
APPROXIMATE METHODS

There are many problems of wave mechanics which cannot be

conveniently treated either by direct solution of the wave

equation or by the use of perturbation theory. The helium

atom, discussed in the next chapter, is such a system. No
direct method of solving the wave equation has been found

for this atom, and the application of perturbation theory is

unsatisfactory because the first approximation is not accurate

enough while the labor of calculating the higher approximations
is extremely great.

In many applications, however, there are methods available

which enable approximate values for the energy of certain of the

states of the system to be computed. In this chapter we shall

discuss some of these, paying particular attention to the variation

method, inasmuch as this method is especially applicable to the

lowest energy state of the system, which is the state of most

interest in chemical problems.

26. THE VARIATION METHOD

26a. The Variational Integral and Its Properties. We shall

show 1 in this section that the integral

E =
f<t>*H<t>dr (26-1)

is an upper limit to the energy Wo of the lowest state of a system.
In this equation, H is the complete Hamiltonian operator

KH :i -?-> q } for the system under discussion (Sec. 12a) and <f>(q)
Znn oq / i

.

v
'. f '

. ..
'

*

i

is any normalized function of the coordinates of the system

satisfying the auxiliary conditions of Section 9c for a satisfactory

wave function. The function <t> is otherwise completely unre-

1 C. ECKABT, Phys. Rev. 36, 878 (1930).

180



VII-26al THE VARIATION METHOD 181

stricted; its choice may be quite arbitrary, but the more wisely
it is chosen the more closely will E approach the energy WQ.

If we used for our function <, called the variation function,

the true wave function \f/ of the lowest state, E would equal TFo;

that is,

E = JWWr =
TFo, (26-2)

since

If
<t> is%ot equal to ^ we may expand <t> in terms of the complete

set of normalized, orthogonal functions \I/Q , \l/i, , ^n , ,

obtaining

^n '
with a *<*n = 1. ''' (26^3)

Substitution of this expansion in the integral for E -leads to the

equation

inasmuch as the functions ^n satisfy the equations

H*n = TTn^n. (26-5)

Subtracting Wo, the lowest energy value, from both sides gives

E - TF = aXan(Wn
- WQ). (26-6)

Since Wn is greater than or equal to WQ for all valuea of n and the

coefficients a*an are of course all positive oi* zerty the right side

of Equation 26-6 is positive or zero. We have therefore proved
that E is always an upper limit to TF

;
that is,

E ^ Wo.
'

~J
(26-7)

This theorem is the basis of the variation ftiethod for the

calculation of the approximate value of the lowest energy level

of a system. If we choose a number of variation functions

$ii <t>*> <s> and calculate the values Ei, E0E*, cor-

responding to them, then each of these values of K is greater

than the energy TT ,
so that the lowest one is tlie nearest to TF .

Often the functions <#>i, fa, fa, are onlydistingui^l by

having different values of some parameter. The process of
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minimizing E with respect to this parameter may then be carried

out in order to obtain the best approximation to WQ which the

form of the trial function < will allow.

If good judgment has been exercised in choosing the trial

function <t>, especially if a number of parameters have been

introduced into < in such a manner as to allow its form to be

varied considerably, the value obtained for E may be very close

to the true energy WQ. In the case of the helium atom, for

example, this method has been applied with great success, as is

discussed in the next chapter.

If E is equal to WQ then <t> is identical 1 with ^ (as can be

seen from Eq. 26-6), so that it is natural to assume that if E is

nearly equal to Wo the function <t> will approximate closely to

the true wave function
\l/

. The variation method is therefore

very frequently used to obtain approximate wave functions

as well as approximate energy values. From Equation 26-6

we see that the application of the variation method provides
us with that function <t> among those considered which approxi-
mates most closely to ^o according to the following criterion:

On expanding <
\f/

in terms of the correct wave functions ^n ,

the quantity ^anan(Wn Wo) is minimized; that is, the sum
n

of the squares of the absolute values of the coefficients of the

wave functions for excited states with the weight factors Wn Wo
is minimized. For some purposes (as of course for the calcula-

tion of the energy of the system) this is a good criterion to use ;

but for others the approximate wave function obtained in this

way might not be the most satisfactory one.

Eckart 2 has devised the following way of estimating how

closely a variation function approximates to the true solution ^c

by using E and the experimental values of Wo and W\. A very
leasonable criterion of the degree of approximation of <t> to ^o

(for real functions) is the smallness of the quantity

ik + tl)dr = 2 - 2a
,

(26-8)

1 If the level TFo is degenerate, the equality of E and Wo requires that

< be
|^Sitical

with one of the wave functions corresponding to WQ.
8 Reference on p. 180.
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in which a is the coefficient of \l/o in the expansion 26-3 of <t>.

From Equation 26-6 we can write

E - Fo =
n-0 n=l

or

E - TF ^ (Wi -
TPo)(l

- a 2
)-

Therefore if c
2

is small compared to
,
we may combine this

equation and Equation 26-8, obtaining

Thus, from a knowledge of the correct energy values TFo and Wi
for the two lowest levels of the systems and the energy integral E
for a variation function <, we obtain an upper limit for the

deviation of a from unity, that is, of the contribution to </> of

wave functions other than i/'o.

The variation method has the great drawback of giving only an

upper limit to the energy, with no indication of how far from the

true energy that limit is. (In Section 26e we shall discuss a

closely related method, which is not, however, so easy to

apply, by means of which both an upper and a lower limit can be

obtained.) Nevertheless, it is very useful because there arise

many instances in which we have physical reasons for believing

that the wave function approximates to a certain form, and this

method enables these intuitions to be utilized in calculating a

better approximation to the energy than can be easily obtained

with the use of perturbation theory.

If we use for < the zeroth-order approximation to the wave

function ^{j discussed under perturbation theory, Chapter VI,

and consider H as equal to # + H'
9

this method gives for

E a value identical with the first-order perturbation energy

WI + WQ. If therefore we use for
<t>

a variation function con-

taming parameters such that for certain values of the parameters

<t> reduces to $j, the value we obtain for E is always at least as

good as that given by the first-order perturbation treatment.

If 4> is set equal to the first-order wave function, the energy value

E given by the variation method is the same, to the second

power in the parameter X, as the second-order energy obtained

by the perturbation treatment.
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In case that it is not convenient to normalize <t>,
the above

considerations retain their validity provided that E is given

by the expression

26b. An Example : The Normal State of the Helium Atom.

In Section 236 we treated the normal state of the helium atom

with the use of first-order perturbation theory. In this section

we shall show that the calculation of the energy can be greatly

increased in accuracy by considering the quantity Z which occurs

in the exponent (p = 2Zr/a ) of the zeroth-order function given
in Equations 23-34 and 23-37 as a parameter Z' instead of as a

constant equal to the atomic number. The value of Z' is

determined by using the variation method with
<f> given by

Z'A - Zri -

)e
e

,

7ra /

in which Z', the effective atomic number, is a variable parameter.

In this problem, the Hamiltonian operator is

in which Z is the true atomic number. The factors <i and < 2

of <t> are hydrogenlike wave functions for nuclear charge Z'e,

so that 0i satisfies the equation

2

^fa - Z/2TFH*i (26-12)

(Wn being equal to e2
/2a ), with a similar equation for < 2 . Using

these and the expression for H
,
we obtain

E = -2Z'*Wa + (Z
f - Z)e

2

9 VI '2/

(V-l$dr. (2&-13)
J ^12

The first integral on the right has the value
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r* C

I j,

*1 _?ZVi 87'V 2 f

rf
-
1*.**h-H4j[ -*.-

O7'p2=^- = 4Z'TF*. (26-14)

The second integral of Equation 26-13 is the same as that of

Equation 23-38 if Z is replaced by Z'. It therefore has the

value

*
0dr = ^Z'WH . (26-15)

ri2 4

Combining these results, we obtain for E the expression

E =
{
-2Z' 2 + y&' + 4Z'(Z'

- Z)]WH . (26-16)

Minimizing E with respect to Z' gives

or

Z' = Z - ^ 6 , (26-17)

which leads to

E = -2(Z - Ke) 1^- (26-!8)

As pointed out in Section 29c, this treatment cuts the error in

the energy of helium to one-third of the error in the first-order

perturbation treatment. In the same section, more elaborate

variation functions are applied to this problem, with very
accurate results.

Problem 26-1. Calculate the energy of a normal hydrogen atom in &

uniform electric field of strength F along the z axis by the variation method,
and hence evaluate the polarizability a, such that the field energy is %aF\
Use for the variation function the expression

1

1 The correct value of a for the normal hydrogen atom, given by the

second-order perturbation theory (footnote at end of preceding chapter) is

0.667 10~ 2* cm8
.

A value agreeing exactly with this has been obtained by the variation

method by H. R. Hasse", Proc. Cambridge Phil. Soc. 26, 642 (1930), using the

variation function ^i,(l -\-Az-\- Bzr). Hasse* also investigated the effects

of additional terms (cubic and quartic) in the series, finding them to be

negligible. The same result is given by the treatment of Section 27a.
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iMl 4- Az),

minimizing the energy with respect to A, with neglect of powers of F higher
than F2

.

a = 4aJ = 0.59 lO"24 cm 3
. Ana.

26c. Application of the Variation Method to Other States.

The theorem E ^ Wo, proved in Section 26a, may be extended

in special cases to states of the system other than the lowest

one. It is sometimes possible to choose </> so that the first few

coefficients a
, i, of the expansion 26-3 are zero. If, for

example, a
, ai, and a 2 are all zero, then by subtracting TFs

from both sides of Equation 26-4 we obtain

an *(TPn
- TF3) > 0, (26-19)

since, although Wo TF 3, W\ TF 3 ,
and TF2 Wz are negative,

their coefficients are zero. In this case then we find the inequal-

ity E ^ W*.

There are several cases in which such a situation may arise.

The simplest illustration is a one-dimensional problem in which

the independent variable x goes from oo to +00 and the

potential function V is an even function of x, so that

V(-x) = V(+x).

The wave function belonging to the lowest level of such a system
is always an even function; i.e., ^o( x) =

fa(x)', while $\ is odd,

with ^i( or)
= ^i(x) (see Sec. 9c). If we therefore use for <j>

an even function, we can only say that E is greater than or equal

to Wo, but if
<t> is an odd function, a will be zero (also all an's

with n even) and the relation E ^ Wi will hold. For such a

problem the variation method may be used to obtain the two

lowest energy levels.

The variation method may also be applied to the lowest state

of given resultant angular momentum and of given electron-spin

multiplicity, as will be discussed in the next chapter (Sec. 29d).

Still another method of extending the variation method to levels

other than the lowest is given in the following section.

26d. Linear Variation Functions. 1 A very convenient type of

variation function is one which is the sum of a number of linearly

x The generalized perturbation theory of Section 27a is closely related

to the treatment discussed here.
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independent functions xi, X2, , Xm with undetermined

coefficients Ci, c 2 , ,
cm . In other words the variation

function </> has the form

<t>
= CiXl + C2X2 + ' ' ' + CmXm, (26-20)

in which Ci, c2 , ,
cm are the parameters which are to be

determined to give the lowest value of E and therefore the best

approximation to Wo. It is assumed that the functions xi>

X2, , Xm satisfy the conditions of Section 9c. If we intro-

duce the symbols

Hnn > = IxnHxn'dr and Ann , = /XnXn'dr, (26-21)

in which for simplicity we have assumed that <t> is real, then the

expression for E becomes

= f+H+dT

n-1 n'-l

or

To find the values of ci, c 2 , ,
cw which make E a minimum,

we differentiate with respect to each c*:

dE
The condition for a minimum is that = for k =

1, 2, ,

OCk

m, which leads to the set of equations

=
0, k =

1, 2,
-

,
m. (26-23)

This is a set of m simultaneous homogeneous linear equations in

the m independent variables ci, c2, ,
cm . For this set of
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equations to have a non-trivial solution it is necessary that the

determinant of the coefficients vanish (cf. Sec. 24); i.e., that

H 12
-

7/22

H lm
-

Hmm -

(26-24)

This equation is closely similar to the secular equation 24-17 of

perturbation theory. It may be solved by numerical methods,
1

or otherwise, and the lowest root E = EQ is an upper limit to

w

E'o

Fia. 26-1. Figure showing the interleaving of energy values for linear variation

functions with added terms.

the energy WQ . Substitution of this value of EQ in Equations
26-23 and solution of these equations for c2 ,

c d , ,
cm in

terms of c\ (which can be used as a normalizing factor) gives the

variation function < corresponding to E .

The other roots E\, Z?2 , ,
Em-\ of Equation 26-24 are

upper limits for Wi, W^ ,
Wm-\, respectively.

2 Further-

more, it is possible to state how'these roots will be changed when

a new trial function <f>' is used, containing one more function

+ + + + C TO+iXm+l- (26~25)

In this case the roots J5'
, E{, },--, E'm will be separated by

the old ones EQ , EI, E2 , ,
Em as shown in Figure 26-1.

1 For a convenient numerical method see H. M. James and A. S. Coolidge,

J. Chem. Phys. 1, 825 (1933).

J. K. L. MACDONALD, Phys. Rev. 43, 830 (1933).
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In other words, the relations E'Q ^ Eo, E( ^ Ei, etc., and

EQ ^ E{, Ei ^ E^, etc., are satisfied.

This method has proved to be very useful in practice, as will

be illustrated by examples discussed in Chapters VIII and XII.

The application of the variation method to wave mechanics grew from the

work of Ritz, /. /. reine u. angew. Math. 135, 1 (1909), who considered the

solution of certain differential equations by discussing the equivalent
variation problem. It can be shown that a general normalized function <j>\

which satisfies the boundary conditions of Section 9c and which makes the

integral E =
f<t>*H<t>id,T a minimum relative to all variations in <i is a

solution of the differential equation H\j/
=

W\fs, E then being equal to the

corresponding characteristic energy value. A similar minimization of E
with respect to all variations in another general normalized function 0*

with the added restriction that #2 is orthogonal to <f>i leads to another solu-

tion ^ 2 of the wave equation. By the continuation of this process of minimi-

zation, all of the solutions can be found. Ritz proved that in certain cases

a rigorous solution can be obtained by applying a limiting process to the

integral f<t>*H<f>dr, in which <f> is represented as the sum of ra functions of a

convenient set of normalized orthogonal functions ^i, V'z, which satisfy

the boundary conditions, taken with arbitrary coefficients ci, c2 , ,
c.

For each value of m the coefficients cm are determined so that the integral

f<t>*H<t>dr is a minimum, keeping f<j>*<t>dr
= 1. Ritz found that under

certain restrictions the sequence of functions converges to a true solution

of the wave equation and the sequence of values of the integral converges
to the corresponding true characteristic value. The approximate method

discussed in this section is very closely related to the Ritz method, differing

from it in that the functions \f/ are not necessarily members of a complete

orthogonal set and the limiting process is not carried out.

Problem 26-2. Using a variation function of the form <f> A + B cos

<p -f- C sin <p, obtain ai\ upper limit to the lowest energy level of the plane
rotator in an electric field, for which the wave equation is

TI + nrr*^ + ^ cos *)* -
-

d<p* h*

26e. A More General Variation Method. A method has been

devised 1 which gives both an upper and a lower limit for an

energy level. If we represent by E and D the integrals

E =
f<t>*H<t>dT and D = /(#<) "(tf^dr, (26-26)

in which is a normalized trial variation function as before, then

we shall show that some energy level Wk satisfies the relation

E + VD - E2 2 Wk 2 E - VD -
JE?

2
. (26^-27)

1 D. H. WBINSTBIN, Proc. Nat. Acad. Set. 20, 529 (1934); see also J. K. L.

MACDONALD, Phys. Rev. 46, 828 (1934).
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To prove this we expand 4> as before (Eq. 26-3), so that

E =
^tfOnWn,

D =
%a2anWl and a*an = 1.

n n n

(26-28)

From this we obtain the result

A = D - E* = a*anWl - Z

a*an(Wn - E)\ (2&-29)

There will be some energy level Wk which lies at least as near

E as any other, i.e., for which

(wk
- EY <; (wn

- EY.

Therefore A is related to Wk E by the inequality

A ^ (Wk
- E

or

A ^ (Wk
- EY. (26-30)

There are now two possible cases,

Wk ^ E and Wk < E.

In the first case we have

VA ^ Wk
-

E, so that E + VA ^ Wk ^ E]

and in the second case

\/A ^ E - Wk ,
and E > Wk ^ E - \/A.

From this we see that the condition in Equation 26-27 applies

to both cases.

The application of this method to actual problems of the usual

type is more difficult than that of the simple variation method

because, in addition to the integral E, it is necessary to evaluate

D, which ordinarily is considerably more difficult than E.

It may be pointed out that by varying parameters in a function

in such a way as to make A a minimum the function <t> is made to

approach some correct wave function fa as closely as is permitted

by the form of 0. This method consequently may be considered

as another type of variation method applicable to any state of a

system.
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27. OTHER APPROXIMATE METHODS

There are a number of other methods which may be used to

obtain approximate wave functions and energy levels. Five of

these, a generalized perturbation method, the Wentzel-Kramers-

Brillouin method, the method of numerical integration, the

method of difference equations, and an approximate second-order

perturbation treatment, are discussed in the following sections.

Another method which has been of some importance is based

on the polynomial method used in Section lla to solve the

harmonic oscillator equation. Only under special circumstances

does the substitution of a series for \[/ lead to a two-term recursion

formula for the coefficients, but a technique has been developed
which permits the computation of approximate energy levels for

low-lying states even when a three-term recursion formula is

obtained. We shall discuss this method briefly in Section 42c.

27a. A Generalized Perturbation Theory. A method of

approximate (and in some cases exact) solution of the wave

equation which has been found useful in many problems was

developed by Epstein
1 in 1926, immediately after the publication

of Schrodinger's first papers, and applied by him in the complete
treatment of the first-order and second-order Stark effects of the

hydrogen atom. The principal feature of the method is the

expansion of the wave function in terms of a complete set of

orthogonal functions which are not necessarily solutions of the

wave equation for any unperturbed system related to the system
under treatment, nor even necessarily orthogonal functions in

the same configuration space. Closely related discussions of

perturbation problems have since been given by a number of

authors, including Slater and Kirkwood 2 and Lennard-Jones. 3

In the following paragraphs we shall first discuss the method in

general, then its application to perturbation problems and its

relation to ordinary perturbation theory (Chap. VI), and finally

as an illustration its application to the second-order Stark effect

for the normal hydrogen atom.

In applying this method in the discussion of the wave equation

H*(x) - W+(x), (27-1)

1 P. S. EPSTEIN, Phys. Rev. 28, 695 (1926).
8 J. C. SLATER and J. G. KIRKWOOD, Phys. Rev. 37, 682 (1931).
8 J. E. LENNARD-JONES, Proc. Roy. Soc. A 129, 598 (1930).
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in which x is used to represent all of the independent variables

for the system, we express \l/(x) in terms of certain functions

Fn(x), writing

The functions Fn(x) are conveniently taken as the members of a

complete set of orthogonal functions of the variables a:; it is not

necessary, however, that they be orthogonal in the same con-

figuration space as that for the system under discussion. Instead,

we assume that they satisfy the normalization and orthogonality

conditions

JF*(x)Fn(x)p(x)dx = 8mn

with

for m =
n,

1 for m 7* n,

(27-3)

in which p(x)dx may be different from the volume element dr

corresponding to the wave equation 27-1. p(x) is called the

weight factor
1 for the functions Fn(x). On substituting the

expression 27-2 in Equation 27-1, we obtain

n(H - TF)Fn (z) =
0, (27-4)

which on multiplication by F*(x)p(x)dx and integration becomes

%A n(Hmn - Wdmn)
=

0, m =
1, 2,

- -

, (27-5)
n

in which

1 In case that the functions Fn (x) satisfy the differential equation

d ( dF\
-rlp(*)-r{

- Q(*W + V(*)F -
0,

in which X is the characteristic-value parameter, they are known to form

a complete set of functions which are orthogonal with respect to the weight
factor p(x) . For a discussion of this point and other properties of differential

equations of the Sturm-Liouviile type see, for example, R. Courant and

D. Hilbert, "Methoden der mathematischen Physik," Julius Springer,

Berlin, 1031.
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For an arbitrary choice of the functions Fn(x) Equation 27-5

represents an infinite number of equations in an infinite number
of unknown coefficients A n . Under these circumstances ques-
tions of convergence arise which are not always easily answered.

In special cases, however, only a finite number of functions

Fn(x) will be needed to represent a given function ^(x) ;
in these

cases we know that the set of simultaneous homogeneous linear

equations 27-5 has a non-trivial solution only when the deter-

minant of the coefficients of the A n 's vanishes; that is, when the

condition

11 W 7/12 HIS
#21 HM - W Hn
7/81 7/32 7/33 W = (27-7)

is satisfied. We shall assume that in the infinite case the mathe-

matical questions of convergence have been settled, and that

Equation 27-7, involving a convergent infinite determinant, is

applicable.

Our problem is now in principle solved : We need only to eval-

uate the roots of Equation 27-7 to obtain the allowed energy
values for the original wave equation, and substitute them in

the set of equations 27-5 to evaluate the coefficients A n and

obtain the wave functions.

The relation of this treatment to the perturbation theory of

Chapter VI can be seen from the following arguments. If the

functions Fn(x) were the true solutions ^n(#) of the wave equation

27-1, the determinantal equation 27-7 would have the form

W l
- W

W*-W
W* - W =

0, (27-8)

with roots W = Wi, W = TT2 ,
etc. Now, if the functions

Fn(x) closely approximate the true solutions tn(z), the non-

diagonal terms in Equation 27-7 will be small, and as an approxi-

mation we can neglect them. This gives

"2
W* (27-9)

etc.,
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which corresponds to ordinary first-order perturbation theory,
inasmuch as, if H can be written as H -f- Hf

, with

HFn (x) = WnFn (x),

then Wn = Hnn has the value Wn = Wl + fF*(x)H'Fn(x)p(x)dx,
which is identical with the result of ordinary first-order per-

turbation theory of Section 23 when p(x)dx = dr. Equation
27-9 is more general than the corresponding equation of first-

order perturbation theory, since the functions Fn (x) need not

correspond to any unperturbed system. On the other hand,
it may not be so reliable, in case that a poor choice of functions

Fn (x) is made; the first step of ordinary perturbation theory is

essentially a procedure for finding suitable zeroth-order functions.

It may happen that some of the non-diagonal terms are large

and others small; in this case neglect of the small terms leads to

an equation such as

Hn -WHu
#21 #22 - W

#33 - W
#44 - W

0,

which can be factored into the equations

7/u - W
H21 Hn - W

H 33
- W

#44 - W
etc.

(27-10)

It is seen that this treatment is analogous to the first-order

perturbation treatment for degenerate states as given in Section

24. The more general treatment now under discussion is espe-

cially valuable in case that the unperturbed levels are not exactly

equal, that is, in case of approximate degeneracy.

A second approximation to the solution of Equation 27-7

can be made in the following manner. Suppose that we are

interested in the second energy level, for which the value #22

is found for the energy as a first approximation. We introduce

this expression for W everywhere except in the term #22 W 9
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and neglect non-diagonal terms except #2n and #n2, thus obtain-

ing the equation

#11 - #22 #12

#21 #22 ~ W #23 #24 ' '017 17 17 f\ . . -
== 0.

"32 "33 "22 U

#42 7/44 - H44
- n (27-11)

On multiplying out the determinant, we convert this equation
into the form

n - H 22)(H33
-

#i2#2l(#33 ~"
#22) (#44

~~
#22)

* ' '

#32#2s(#ll #22) (#44
~

#22)
* *=

0,

with the solution

in which the prime indicates that the term with I = 2 is omitted.

This is analogous to (and more general than) the second-order

perturbation treatment of Section 25; Equation 27-12 becomes

identical with Equation 25-3 when HU is replaced by W? and

#2* by H'kl .

Higher approximations can be carried out by obvious exten-

sions of this method. If Equation 27-7 can be factored into

equations of finite degree, they can often be solved accurately by

algebraic or numerical methods.

Let us now consider a simple example/ the second-order

Stark effect of the normal hydrogen atom, using essentially the

method of Epstein (mentioned above). This will also enable

us to introduce and discuss a useful set of orthogonal functions.

The wave equation for a hydrogen atom in an electric field

can be written as

L '

(27-13)
8ir

in which eFz represents the interaction with an electric field of

strength F along the z axis. In order to discuss this equation we
shall make use of certain functions F,,xM(, #, <p), defined in terms

1 The study of this example can be omitted by the reader if desired.



196 THE VARIATION METHOD [VH-27a

of the associated Laguerre and Legendre functions (Sees. 19

and 20) as

*W(, *,
= A,xU)exMW<tv(^), (27-14)

in which

, (27-15)

f) being an associated Laguerre polynomial as defined in

Section 206. The functions 6\M (#) and $M (^) are identical with

the functions 6jm(#) and $m (<p) of Equations 21-2 and 21-3

except for the replacement of / and m by X and /z. It is found

by the use of relations given in Sections 19 and 20 that Fv^(t, tf
, <p)

satisfies the differential equation

W
4. ? dJL 4. (l - -

1

d 2 "^
{ d{

"*"

\ i/ sin

The functions are normalized and mutually orthogonal with

weight factor
, satisfying the relations

1 for X = X'

= M
(27-17)

otherwise.

If we identify with 2Zr/n'a ,
where a = A 2

/47r
2
jue

2
,
then

the functions FV\M become identical with the hydrogen-atom wave
functions \l/n im for the value n = n' of the principal quantum
number n, but not for other values of n\ the functions Fv\^ all

contain the same exponential function of r, whereas the hydrogen-
atom wave functions for different values of n contain different

exponential functions of r.

For the problem at hand we place n' equal to 1 and Z equal to 1,

writing

The functions F,XM then satisfy the equation

- ("
~ *W (27-19)
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Now let us write our wave equation 27-13 as

in which

A
u&

j& A )

4e

4'

197

(27-20)

(27-21)

and the operation V2 refers to the coordinate rather than r,

being given by Equation 27-18. To obtain an approximate
solution of this equation in terms of the functions F,xM we shall

set up the secular equation in the form corresponding to. second-

order perturbation theory for the normal state, as given in

Equation 27-11; we thus obtain the equation

HU 2j8 #12 #13

#21 #22 =
0, (27-22)

in which

F,
2d sin MM?, (27-23)

i and j being used to represent the three indices v, X, /*. The
factor 2 before arises from the fact that the functions F^
are not normalized to unity with respect to the volume element

i^dfc SHI $d&d<p.

It is found on setting up the secular equation 27-22 that only
the three functions FIOO, ^210, andF3 ioneed be considered, inasmuch

as the equation factors into a term involving these three func-

tions only (to the degree of approximation considered) and terms

involving other functions. The equations

cos 4\/2F21 o
- 2V2F,810

and

rXn

+ X)(F - X - 1) }

(27-24)

(27-25)
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together with Equation 27-17, enable us to write as the secular

equation for these three functions

= 0, (27-26)

-20 -

-4V2A -1

2V2A -2

The root of this is easily found to be /3
= 1&4. 2

,
which corresponds

to

or

W" = Tf - WQ = -%a3
oF

2
. (27-27)

This corresponds to the value

a = %aj = 0.677 - 10-" cm 3

for the polarizability of the normal hydrogen atom.

Problem 27-1. Derive the formulas 27-24 and 27-25.

Problem 27-2. Discuss the first-order and* second-order Stark effects

for the states n = 2 of the hydrogen atom by the use of the functions F,XM-

Note that in this case the term in A can be neglected in calculating

*+ v'\ f
n' ,v"\ f f

n'
'

unless v' or v" is equal to 2, and that the secular equation can be factored

into terms for p =
-}-!,/*

=
0, and n =

1, respectively.

27b. The Wentzel-Kramers-Brillouin Method. For large

values of the quantum numbers or of the masses of the particles

in the system the quantum mechanics gives results closely similar

to classical mechanics, as we have seen in several illustrations.

For intermediate cases it is found that the old quantum theory
often gives good results. It is therefore pleasing that there

has been obtained 1 an approximate method of solution of the

wave equation based on an expansion the first term of which

leads to the classical result, the second term to the old-quantum-

theory result, and the higher terms to corrections which bring
in the effects characteristic of the new mechanics. This method
is usually called the Wentzel-Kramers-Brillouin method. In

our discussion we shall merely outline the principles involved

in it.

1 G. WENTZEL, Z. f. Phys. 38, 518 (1926); H. A. KRAMERS, Z.f. Phys. 39,

828 (1926); L. BRILLOUIN, J. de phys. 7, 353 (1926); J. L. DUNHAM, Phys.
Rev. 41, 713 (1932).
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For a one-dimensional problem, the wave equation is

0, -oo <*<+.
If we make the substitution

t = ffi
vdx

, (27-28)

we obtain, as the equation for y,

- F) -
t/*

= p - y*, (27-29)

in which p = \/2m(W V) is the classical expression for

the momentum of the particle. We may now expand y in powers
of h/2iri, considering it as a function of A, obtaining

+ ' ' '
' (27

-
30)

Substituting this expansion in Equation 27-29 and equating the

coefficients of the successive powers of h/2iri to zero, we obtain

the equations

2/o
= p = V2rn(W -

F), (27-31)

2/0 P
7

V/ 07 Q9^
2/1

= " = " = -
V)'

* (27
~
32)

- F)-* f (27-33)

in which V = and F" =
ao: ax

The first two terms when substituted in Equation 27-28 lead

to the expression

tN(W-V) -ieT/vss <F:^* e

(27-34)

as an approximate wave function, since

f , i r v ,
,

i f dv i . ,. T
_

J
** -

ij r^F&
- +

Ij W^F
- I log (Pf

-
F)

so that

ef*
1** = (W -

F)-*.

The probability distribution function to this degree of approxima-
tion is therefore

F)~H = const. -> (27-35)
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agreeing with the classical result, since p is proportional to the

velocity and the probability of finding a particle in a range dx is

inversely proportional to its velocity in the interval dx.

The approximation given in Equation 27-34 is obviously not

valid near the classical turning points of the motion, at which

W = V. This is related to the fact that the expansion in

Equation 27-30 is not a convergent series but is only an asymp-
totic representation of t/, accurate at a distance from the points

at which W = V.

So far nothing corresponding to quantization has appeared.
This occurs only when an attempt is made to extend the wave
function beyond the points W V into the region with W less

than V. It is found 1 that it is not possible to construct an

approximate solution in this region satisfying the conditions

of Section 9c and fitting smoothly on to the function of Equation

27-34, which holds for the classically allowed region, unless W
is restricted to certain discrete values. The condition imposed
on W corresponds to the restriction

fydx = nh, n =
0, 1, 2, 3, , (27-36)

in which the integral is a phase integral of the type discussed in

Section 56. If we insert the first term of the series for y, y =
p,

we obtain the old-quantum-theory condition (Sec. 56)

/pdx = nh, n =
0, 1, 2, 3 . (27-37)

For systems of the type under discussion, the second term

introduces half-quantum numbers; i.e., with y =
t/ + o2/i>

4TTI

ydx = pdx + x.&yidx = pdx ^
= nh

f

so that

fpdx = (n + YJ)h (27-38)

to the second approximation. (The evaluation of integrals such

as $y\dx is best carried out by using the methods of complex
variable theory, which we shall not discuss here. 2

)

This method has been applied to a number of problems and

is a convenient one for many types of application. Its main

1 Even in its simplest form the discussion of this point is too involved to

be given in detail here.

* J. L. DUNHAM, PAyt. Rev. 41, 713 (1932).
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drawback is the necessity of a knowledge of contour integration,

but the labor involved in obtaining -the energy levels is often

considerably less than other methods require.

27c. Numerical Integration. There exist well-developed meth-

ods 1 for the numerical integration of total differential equations

which can be applied quite rapidly by a practiced investigator.

The problem is not quite so simple when it is desired to find

characteristic values such as the energy levels of the wave equa-

tion, but the method is still practicable.

Hartree,
2 whose method of treating complex atoms is dis-

cussed in Chapter IX, utilizes the following procedure. For

some assumed value of W, the wave equation is integrated

numerically, starting with a trial function which satisfies the

boundary conditions at one end of the range of the independent
variable x and carrying the solution into the middle of the range
Another solution is then computed for this same value of W,
starting with a function which satisfies the boundary conditions

at the other end of the range of x. For arbitrary values of W
these two solutions will not in general join smoothly when they
meet for some intermediate value of x. W is then changed

by a small amount and the process repeated. After several

trials a value of W is found such that the right-hand and left-

hand solutions join together smoothly (i.e., with the same

slope), giving a single wave function satisfying all the boundary
conditions.

This method is a quantitative application of the qualitative

ideas discussed in Section 9c. The process of numerical integra-

tion consists of starting with a given value and slope for ^ at a

point A and then calculating the value of ^ at a near-by point B
dV

by the use of values of the slope and curvature
-^~

at A, the latter

being obtained from the wave equation.
This procedure is useful only for total differential equations in

one independent variable, but there are many problems involving

several independent variables which can be separated into total

*E. P. ADAMS, "Smithsonian Mathematical Formulae," Chap. X, The
Smithsonian Institution, Washington, 1922; E. T. WHITTAKER and G.

ROBINSON, "Calculus of Observations,
"
Chap. XIV, Blackie and Son., Ltd.,

London, 1929.

*D. R. HARTREE, Proc. Cambridge Phil. Soc. 24, 105 (1928); Mem.
Manchester Phil. Soc. 77, 91 (1932-1933).
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differential equations to which this method may then be applied.

Hartree's method of treating complicated atoms (Sec. 32) and

Burrau's calculation of the energy of HJ (Sec. 42c) are illustra-

tions OA the use of numerical integration.

27d. Approximation by the Use of Difference Equations. The
wave equation

=
0, k 2 = (27-39)

may be approximated by a set of difference equations,
1

a2

or

in which

function ^ at the points xi, x 2 ,

^

*t

(27-41)

are numbers, the values of the

, uniformly spaced

Fio. 27-1. The approximation to a wave function by segments of straight lines.

along the x axis with a separation x #i_i = a. To prove this

we consider the approximation to ^ formed by the polygon of

straight lines joining the points (x\, ^0, (x2 , ^2), >

teii W> of Figure 27-1. The slope of ^ at the point

halfway between z t_i and Xi is approximately equal to the slope

of the straight line connecting x_i and x, which is (^; ^_i)/a.

The second derivative of ^ at x = xt is likewise approximated by

I/a times the change in slope from (x,- + x_i)/2 to (x^ + Xt+i)/2;

that is,

dx 2 (27-42)

1 R. G. D. RICHARDSON, Trans. Am. Math. Soc. 18, 489 (1917); R. COURANT,
Tf TTt>iwrT>TnTTa onH TT T.mnirv Mnfhrmntijirhe Aninnltxn Iftft !19
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The differential equation 27-39 is the relation between the

dV
curvature -7-5 at a point and the function k*(W V)\l/ at that

point, so that we may approximate to the differential equation

by the set of equations 27-40, there being one such equation for

each point Xi. The more closely we space the points x
iy the more

accurately do Equations 27-40 correspond to-Equation 27-39.

Just as the lowest energy W of the differential equation can be

obtained by minimizing the energy integral E =
f<t>*H<t>d,T with

respect to the function <, keeping /</>*</>dr
=

1, so the lowest

value of W giving a solution of Equations 27-40 may be obtained

by minimizing the quadratic form

E = -it -, (27-43)

2>,
2

in which <i, # 2 , , $ t ,
are numbers which are varied

until E is a minimum. (Just as <t> must obey the boundary
conditions of Section 9c, so the numbers < t must likewise approxi-

mate a curve which is a satisfactory wave function.)

A convenient method 1 has been devised for carrying out this

minimization. A set of trial values of < is chosen and the

value of E is calculated from them. The true solutions \l/it

to which the values of < will converge as we carry out the

variation, satisfy Equations 27-40. Transposing one of these

gives

/
li-l +

+< =
2 - a*k*{W -

If the <fc's we choose are near enough to the true values \l/i, then

it can be shown 1

that, by putting < t-i and </> t> i in place of i^_i

and \t/i+ i and E in place of W in Equation 27-44, the resulting

expression gives an improved value ^ for </> t , namely,

'
=

2 - aW{E - V(x iJ}

In this way a new set </>[, 0, -

, <-, can be built up
from the initial set <i, <#>2, ,</>,, the new set giving a

1 G. E. KIMBALL and G. H. SHORTLEY, Phys. Rev. 45, 815 (1934).
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lower and therefore a better value of E than the first set. This

process may then be repeated until the best set <f>i is obtained

and the best value of E.

This procedure may be modified by the use of unequal intervals,

and it can be applied to problems in two or more dimensions,

but the difficulty becomes much greater in the case of two

dimensions.

Problem 27-3. Using the method of difference equations with an

interval a = H> obtain an upper limit to the lowest energy W Q and an

approximation to ^ for the harmonic oscillator, with wave equation

ft^L

jg + (X
- x*)t - (see Eq. 11-1).

27e. An Approximate Second-order Perturbation Treatment.

The equation for the second-order perturbation energy (Eq. 25-3)

is

w" =

with

H'kl = /*J*ffV{Wr
and

Hii = M*H"WT.
The sum may be rearranged in such a manner as to permit an

approximate value to be easily found. On multiplying by

- TF? , TF? .. u
1 ~~

"o + ~o>
li becomes

I I

Now we can replace
1 ^HklH f

tk 'by (H'
2
) kk (H'kk)

2
, obtaining

i

1 To prove this, we note that H'^l = ^H^] (as is easily verified by
I

multiplication by ^* and integration). Hence

l

. ]g//<.
V . .

'

The sum 2^
* HhlH lk differs from this only by the term with I - A;, (#w)

f
.

/
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for W'k
'
the expression

wo (wo _

in which

(ff'% = /*ff'V&fr. (27-48)

This expression is of course as difficult to evaluate as the

original expression 27-46. However, it may be that the sum is

small compared with the other terms. For example, if k repre-

sents the normal state of the system, and the origin for energy

measurements is such that Wk is negative, the terms in the sum
will be negative, for W negative, and positive for W* positive,

and there may be considerable cancellation. It must be empha-
sized that the individual terms in this expression are dependent
on the origin chosen for the measurement of energy (the necessity

for an arbitrary choice of this origin being the main defect of the

approximate treatment we are describing). If this origin were

to be suitably chosen, this sum could be made to vanish, the

second-order perturbation energy then being given by integrals

involving only one unperturbed wave function, that for the

state under consideration. The approximate treatment consists

in omitting the sum.

As an example let us take the now familiar problem of the

polarizability of the normal hydrogen atom, with H' = eFz.

We know that H(9tlt vanishes. The integral (//'
2
)i,i is equal

to e
2F2

(z
2
)i,,u, and, inasmuch as r2 = x2 + y

2 + zz and the

wave function for the normal state is spherically symmetrical,
the value of (z

2
)i,,u is just one-third that of (r

2
) u,i,, given in

Section 21c as 3a. Thus we obtain

i
~~ wow i

If we use the value e
2
/2a for W^ (taking the ionized atom at

zero energy), we obtain

W" = -2FV
,

which corresponds to the value a = 4aJ for the polarizability.

This is only 11 per cent less than the true value (Sec. 27a),

being just equal to the value given by the simple treatment of

Problem 26-1.
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It is interesting to note that if, in discussing the normal state

of a system, we take as the zero of energy the first unperturbed
excited level, then the sum is necessarily positive and the approxi-

mate treatment gives a lower limit to W". In the problem of the

normal hydrogen atom this leads to

giving for a the upper limit l%a%, which is 18 per cent larger

than the correct value %a\. Inasmuch as the value a = 4a given

by the variation method is a lower limit, these two very simple
calculations fix a to within a few per cent.

It was pointed out by Lennard-Jones 1 that this approximate
treatment of W^ corresponds to taking as the first-order per-

turbed wave function the approximate expression (not normalized)

^ = *(! + AH' + ) (27-49)

in which A = 1/TFJ.

This suggests that, when practicable, it may be desirable to

introduce the perturbation function in the variation function

in this way in carrying out a variation treatment. Examples of

calculations in which this is done are given in Sections 290

and 47.

1 J. E. LENNARD-JONES, Proc. Roy. Soc. A129, 598 (1930).



CHAPTER VIII

THE SPINNING ELECTRON AND THE PAULI
EXCLUSION PRINCIPLE, WITH A DISCUSSION OF THE

HELIUM ATOM

28. THE SPINNING ELECTRON 1

The expression obtained in Chapter V for the energy levels of

the hydrogen atom does not account completely for the lines

observed in the hydrogen spectrum, inasmuch as many of the

lines show a splitting into several components, corresponding
to a fine structure of the energy levels not indicated by the simple

theory. An apparently satisfactory quantitative explanation
of this fine structure was given in 1916 by the brilliant' work of

Sommerfeld,
2 who showed that the consideration of the rela-

tivistic change in mass of the electron caused the energy levels

given by the old quantum theory to depend to some extent on
the azimuthal quantum number k as well as on the total quantum
number n, the splitting being just that observed experimentally
not only for hydrogen and ionized helium but also for x-ray

lines of heavy atoms. This explanation was accepted for

several years. Shortly before the development of the quantum
mechanics, however, it became evident that there were trouble-

some features connected with it, relating in particular to the

spectra of alkalilike atoms. A neutral alkali atom consists in

its normal state of an alkali ion of particularly simple electronic

structure (a completed outer group of two or eight electrons)

and one valence electron. The interaction of the valence electron

and the ion is such as to cause the energy of the atom in various

quantum states to depend largely on the azimuthal quantum
number for the valence electron as well as on its total quantum
number, even neglecting the small relativistic effect, which ip

negligible compared with the electron-ion interaction. How-

1 For a more detailed treatment of this subject see L. Pauling and S.

Goudsmit, "The Structure of Line Spectra," Chap. IV.
* A. SOMMBBFELD, Ann. d. Phys. 51, 1 (1916).

207
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ever, the levels corresponding to given values of these two

quantum numbers were found to be often split into two levels,

and it was found that the separations of these doublet levels are

formally representable by the Sommerfeld relativistic equation.

Millikan and Bowen 1 and Land6,
2 who made this discovery,

pointed out that it was impossible to accept the relativistic

mechanism in this case, inasmuch as the azimuthal quantum
number is the same for the two components of a doublet level,

and they posed the question as to the nature of the phenomenon
involved.

The answer was soon given by Uhlenbeck and Goudsmit,
3

who showed that the difficulties were removed by attributing to

the electron the new properties of angular momentum and

magnetic moment, such as would be associated with the spinning

motion of an electrically charged body about an axis through
it. The magnitude of the total angular momentum of the

electron is \fs(s + l)s-> in which s, the electron-spin quantum
4TT

number, is required by the experimental data to have the value

y^. The component of angular momentum which the electron

spin can possess along any prescribed axis is either +o~ or

s -; that is, it is given by the expression w,~-, in which the

quantum number mt can assume only the values +J^ and J^.

To account for the observed fine-structure splitting and Zeeman
effects it is found that the magnetic moment associated with

the electron spin is to be obtained from its angular momentum

by multiplication not by the factor e/2woc, as in the case of

orbital magnetic moment (Sec. 21d), but by twice this factor,

the extra factor 2 being called the*Land6 g factor for electron spin.

In consequence the total magnetic moment of the electron spin

1 R. A. MILLIKAN and I. S. BOWTGN, Phys. Rev. 24, 223 (1924).
1 A. LANDB, Z. f. Phys. 25, 46 (1924).

G. E. UHLENBECK and S. GOUDSMIT, Naturwissenschaflen 13, 953 (1925);

Nature 117, 264 (1926). The electron spin was independently postulated by
R. Bichowsky and H. C. Urey, Proc. Nat. Acad. Sci. 12, 80 (1926) (in whose
calculations there was a numerical error) and had been previously suggested
on the basis of unconvincing evidence by several people.
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is 2~ 9~\/-
- - or A/3 Bohr magnetons, and the component along

a prescribed axis is either +1 or 1 Bohr magneton.
It was shown by Uhlenbeck and Goudsmit and others 1 that the

theory of the spinning electron resolves the previous difficulties,

and the electron spin is now accepted as a property of the electron

almost as well founded as its charge or mass. The doublet

splitting for alkalilike atoms is due purely to the magnetic
interaction of the spin of the electron and its orbital motion.

The fine structure of the levels of hydrogenlike atoms is due to

a particular combination of spin and relativity effects, resulting

in an equation identical with Sommerfeld's original relativistic

equation. The anomalous Zeeman effect shown by most atoms

(the very complicated splitting of spectral lines by a magnetic

field) results from the interaction of the field with both the

orbital and the spin magnetic moments of the electrons, the

complexity of the effect resulting from the anomalous value 2

for the g factor for electron spin.
2

The theory of the spinning electron has been put on a particu-

larly satisfactory basis by the work of Dirac. In striving to

construct a quantum mechanics compatible with the require-

ments of the theory of relativity, Dirac 3 was led to a set of

equations representing a one-electron system which is very
different in form from the non-relativistic quantum-mechanical

equations which we are discussing. On solving these, he found

that the spin of the electron and the anomalous g factor 2 were

obtained automatically, without the necessity of a separate

postulate. The equations led to the complete expression for

the energy levels for a hydrogenlike atom, with fine structure,

and even to the foreshadowing of the positive electron or positron,

discovered four years later by Anderson.

So far the Dirac theory has not been extended to systems

containing several electrons. Various methods of introducing

1 W. PAULI, Z. f. Phys. 36, 336 (1926); W. HEISENBERG and P. JORDAN,
Z. /. Phys. 37, 266 (1926); W. GORDON, Z. f. Phys. 48, 11 (1928); C. G.

DARWIN, Proc. Roy. Soc. A 118, 654 (1928); A. SOMMERFELD and A. UNSOLD,
Z. f. Phys. 36, 259; 38, 237 (1926).

'For a fuller discussion see Pauling and Goudsmit, "The Structure of

Line Spectra," Sees. 17 and 27.
* P. A. M. DIRAC, Proc. Roy. Soc. A117, 610; A118, 351 (1928).
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the spin in non-relativistic quantum mechanics have been

devised. Of these we shall describe and use only the simplest

one, which is satisfactory so long as magnetic interactions

are neglected, as can be done in treating most chemical and

physical problems. This method consists in introducing a

spin variable co, representing the orientation of the electron,

and two spin wave functions, a(o>) and /3(w), the former cor-

responding to the value +J^ for the spin-component quantum
number ma (that is, to a component of spin angular momentum

along a prescribed axis in space of +^/&/27r) and the latter to

the value Y^ for m8 . The two wave functions are normalized

and mutually orthogonal, so that they satisfy the equations

/0
2
(co)dco

=
1, \ (28-1)

A wave function representing a one-electron system is then

a function of four coordinates, three positional coordinates

such as x
y y, and 2, and the spin coordinate co. Thus we write

\l/(x, y, z)a(co) and \f/(x, y, z)/3(a>) as the two wave functions cor-

responding to the positional wave function \[/(x, y, z), which is a

solution of the Schrodinger wave equation. The introduction

of the spin wave functions for systems containing several electrons

will be discussed later.

Various other simplified methods of treating electron spin have

been developed, such as those of Pauli,
1

Darwin,
2 and Dirac. 3

These are especially useful in the approximate evaluation of

interaction energies involving electron spins in systems containing
more than one electron.

29. THE HELIUM ATOM. THE PAULI EXCLUSION PRINCIPLE

29a. The Configurations Is2s and Is2^. In Section 236 we

applied the first-order perturbation theory to the normal helium

atom. Let us now similarly discuss the first excited states of

this atom,
4
arising from the unperturbed level for which one

1 W. PAULI, Z. f. Phys. 43, 601 (1927).
1 C. G. DARWIN, Proc. Roy. Soc. A116, 227 (1927).

P. A. M. DIBAC, Proc. Roy. Soc. A123, 714 (1929).
4 This was first done by W. Heisenberg, Z. f. Phys. 39, 499 (1926).
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electron has the total quantum number n = 1 and the other

n = 2. It was shown that, if the interelectronic interaction

term e2
/ri 2 be considered as a perturbation, the solutions of the

unperturbed wave equation are the products of two hydrogen-
like wave functions

in which the symbol (1) represents the coordinates (rlt t

of the first electron, and (2) those of the second electron.

corresponding zeroth-order energy is

The

We shall ignore the contribution of electron spin to the wave
function until the next section.

The first excited level, with the energy TF = -5Rhc, is that

for HI =
1, n2

= 2 and rii
=

2, n a
= 1. This is eight-fold

degenerate, the eight corresponding zeroth-order wave functions

being

(29-1)

28(1)

2p,(2),

2p,(2),

in which we have chosen to use the real <p functions and have

represented ^ioo(l) by ls(l), and so on.

On setting up the secular equation, it is found to have the

form

-0.
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Here the symbols J., K99 Jp,
and Kp represent the perturbation

integrals

la(l) 2^(2) 1(1) 2s(2)

.*-//

'-//

ls(l) 2s(2) 28(1) 1(2) dr ldr 2)

2px(2) ^-

2Px(2) f-

(29-3)

JP and Kp also represent the integrals obtained by replacing

2px by 2pv or 2pg , inasmuch as these three functions differ from

one another only with regard to orientation in space. The

integrals J, and Jp are usually called Coulomb integrals; J,,

for example, may be considered to represent the average Coulomb
interaction energy of two electrons whose probability distribution

functions are (ls(l)}
2 and {2s(2)}

2
. The integrals K8 and Kp

are usually called resonance integrals (Sec. 41), and sometimes

exchange integrals or interchange integrals, since the two wave
functions involved differ from one another in the interchange
of the electrons.

It can be seen from symmetry arguments that all the remaining

perturbation integrals vanish; we shall discuss /Jls(l) 2s(2)

e
ls(l) 2px(2)*

rz as an example. In this integral the func-
7*12

tion 2px (2) is an odd function of the coordinate x2,
and inasmuch

as all the other terms in the integrand are even functions of x%,

the integral will vanish, the contribution from a region with x2

negative canceling that from the corresponding region with x z

positive.

The solution of Equation 29-2 leads to the perturbation energy
values

W J. + K.,

J, K9 ,

Jp + Kp, (triple root),

(triple root).

The splitting of the unperturbed level represented by these

equations is shown in Figure 29-1.
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One part of the splitting, due to the difference of the Coulomb

integrals J, and Jp ,
can be easily interpreted as resulting from the

difference in the interaction of an inner Is electron with an
outer 2s electron or 2p electron. This effect was recognized in

the days of the old quantum theory, being described as resulting

from greater penetration of the core of the atom (the nucleus

plus the inner electrons) by the more eccentric orbits of the

W

FIG. 29-1. The splitting of energy levels for the helium atom.

outer electron, with a consequent increase in stability, an s orbit

being more stable than a p orbit with the same value of n, and

so on. 1

(It is this dependence of the energy of an electron on I

as well as n which causes the energy levels of an atom to depend

largely on the electronic configuration, this expression meaning
the n and I values of all electrons. These values are usually

indicated by writing ns, np, etc., with the number of similar

electrons indicated by a superscript. Thus Is 2 indicates two Is

electrons, Is z
2p these plus a 2p electron, and so on.)

1 PAULING and GOUDSMIT, "The Structure of Line Spectra," Chap. Ill
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On the other hand, the further splitting due to the integrals

K, and Kp was not satisfactorily interpreted before the develop-

ment of the quantum mechanics. It will be shown in Section 41

that we may describe it as resulting from the resonance phe-

nomenon of the quantum mechanics. The zeroth-order wave

function for the state with W' = J8 + K8y for example, is

the atom in this state may be described as resonating between the

structure in which the first electron is in the Is orbit and the

second in the 2s orbit and that in which the electrons have been

interchanged.
A wave function of the type just mentioned is said to be

symmetric in the positional coordinates of the two electrons, inasmuch

as the interchange of the coordinates of the two electrons leaves

the function unchanged. On the other hand, the wave function

sV2
is antisymmetric in the positional coordinates of the electrons,

their interchange causing the function to change sign. It is

found that all wave functions for a system containing two

identical particles are either symmetric or antisymmetric in the

coordinates of the particles.

For reasons discussed in the next section, the stationary states

of two-electron atoms represented by symmetric and by anti-

symmetric positional wave functions are called singlet states

and triplet states, respectively. The triplet state from a given

configuration is in general more stable than the singlet state.

29b. The Consideration of Electron Spin. The Pauli Exclu-

sion Principle. In reconsidering' the above perturbation prob-

lem, taking cognizance of the spin of the electrons, we must

deal with thirty-two initial spin-orbit wave functions instead of

the eight orbital functions 1*(1) 2*(2), 1*(1) 2p(2), etc. These

thirty-two functions are obtained by multiplying each of the

eight orbital functions by each one of the four spin functions

(1) (2),

(D 0(2),

0(1) (2),

0(1) 0(2).
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Instead of using the second and third of these, it is convenient to

use certain linear combinations of them, taking as the four spin

functions for two electrons

1

0(1) 0(2),

-L{(1) 0(2)
-

(29-5)

These are normalized and mutually orthogonal. The first

three of them are symmetric in the spin coordinates of the two

electrons, and the fourth is antisymmetric. It can be shown that

these are correct zeroth-order spin functions for a perturbation

involving the spins of the two electrons.

Taking the thirty-two orbit functions in the order

2s(2) (1) (2),

1(2) a(l) a(2),

2p,(2) a(l) a(2),

1

obtained by multiplying the eight orbital functions by the first

spin function, then by the second spin function, and so on,

we find that the secular equation has the form

0,



216 THE SPINNING ELECTRON [Vni-29b

in which each of the small squares is an eight-rowed determinant

identical with that of Equation 29-2. The integrals outside of

these squares vanish because of the orthogonality of the spin

functions and the non-occurrence of the spin coordinates in the

perturbation function e 2
/r12 . The roots of this equation are

the same as those "of Equation 29-2, each occurring four times,

however, because of the four spin functions.

The correct zeroth-order wave functions are obtained by

multiplying the correct positional wave functions obtained in the

preceding section by the four spin functions. For the con-

figuration Is2s alone they are

ls(2)J
V*

(

1) 2s(2) + 2s(l) ls(2)} -4={a(l) 0(2) + 0(1) a(2)}/O '

-{ls(l) 2s(2) + 2s(l) 1*(2)| j8(l) |8(2) f

2(2) -
/n

Triplet

0(1)

~{15(1) 2(2) - 2(1) 1*(2)}
-

a(l) a(2),

-=[ls(l) 2s(2)
-

2s(l) 18(2)}
- -{(1) 0(2)

V'
Singlet -!={!(!) 2*(2) + 2s(l) ls(2)} ~[a(l) 0(2)

-
v 2

Of these eight functions, the first four are symmetric in the

coordinates of the two electrons, the functions being unchanged
on interchanging these coordinates. This symmetric character

results for the first three functions from the symmetric character

of the orbital part and of the spin part of each function. For

the fourth function it results from the antisymmetric character

of the two parts of the function, each of which changes sign on

interchanging the two electrons.
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The remaining four functions are antisymmetric in the two

electrons, either the orbital part being antisymmetric and the

spin part symmetric, or the orbital part symmetric and the spin

part antisymmetric.

Just as for Is2s, so each configuration leads to some symmetric
and some antisymmetric wave functions. For Is 2

,
for example,

there are three of the former and one of the latter, obtained by
combining the symmetric orbital wave function of Section 236

with the four spin functions. For Is2p there are twelve of each

Symmetric Antisymmetric

{

OOOlsZp'P***

000 ls2p
3P

O

Is
2 OlsMS

FIG. 29-2. Levels for configurations la 1
, Is2s, and Is2p of the helium atom, $,

spin-symmetric wave functions; Ot spin-antisymmetric wave functions

type, nine spin-symmetric and orbital-symmetric, three spin-

antisymmetric and orbital-antisymmetric; nine spin-svmmetric
and orbital-antisymmetric, and three spin-antisymmetric and

orbital-symmetric. The levels thus obtained for the helium

atom by solution of the wave equation are shown in Figure 29-2,

the completely symmetric wave functions being represented

on the left and the completely antisymmetric ones on the right.

Now it can be shown that if a helium atom is initially in a

symmetric state no perturbation whatever will suffice to cause

it to change to any except symmetric states (the two electrons

being considered to be identical). Similarly, if it is initially

in an antisymmetric state it will remain in an antisymmetric

state. The solution of the wave equation has provided us with
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two completely independent sets of wave functions. To show

that no perturbation will cause the system in a state represented

by the symmetric wave function \l/s to change to a state repre-

sented by the antisymmetric wave function \!/A we need only

show that the integral

vanishes (H' being the perturbation function, involving the spin

as well as the positional coordinates of the electrons), inasmuch

as it is shown in Chapter XI that the probability of transition

from one stationary state to another as a result of a perturbation

is determined by this integral. Now, if the electrons are identi-

cal, the expression H'^a is a symmetrical function of the coordi-

nates, whereas $% is antisymmetric; hence the integrand will

change sign on interchanging the coordinates of the two electrons,

and since the region of integration is symmetrical in these

coordinates, the contribution of one element of configuration

space is just balanced by that of the element corresponding
to the interchange of the electrons, and the integral vanishes. 1

The question as to which types of wave functions actually

occur in nature can at present be answered only by recourse to

experiment. So far all observations which have been made on

helium atoms have shown them to be in antisymmetric states. 2

We accordingly make the additional postulate that the wave

function representing an actual state of a system containing two

or more electrons must be completely antisymmetric in the coordinates

of the electrons; that is, on interchanging the coordinates of any
two electrons it must change its sign. This is the statement of

the Pauli exclusion principle in wave-mechanical language.
This is a principle of the greatest importance. A universe

based on some other principle, that is, represented by wave
functions of different symmetry character, would be completely
different in nature from our own universe. The chemical

properties in particular of substances are determined by this

principle, which, for example, restricts the population of the

K shell of an atom to two electrons, and thus makes lithium

1 The same conclusion is reached from the following argument: On inter-

changing the subscripts 1 and 2 the entire integral is converted into itself

with the negative sign, and hence its value must be zero.

2 The states are identified through the splitting due to spin-orbit inter-

actions neglected in our treatment.
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an alkali metal, the third electron being forced into an outer

shell where it is only loosely bound.

To show this, we may mention that if A represents a spin-orbit

function for one electron (such that A(l) = ls(l) a(l), for

example) and B, C, ,
E others, then the determinantal

function

4(2) 5(2) . . . E(2)

A(N) B(N) . . . E(N)

is completely antisymmetric in the N electrons, and hence a

wave function of this form for the TV-electron system satisfies

Pauli's principle, since from the properties of determinants the

interchange of two rows changes the sign of the determinant.

Moreover, no two of the functions A, B, -

,
E can be equal,

as then the determinant would vanish. Since the only spin-orbit

functions based on a given one-electron orbital function are the

two obtained by multiplying by the two spin functions a and 0,

we see that no more than two electrons can occupy the same orbital

in an atom, and these two must have their spins opposed; in other

words, no two electrons in an atom can have the same values of

the four quantum numbers n, I, m, and m,. Pauli's original

statement 1 of his exclusion principle was in nearly this language;

its name is due to its limitation of the number of electrons in an

orbit.

The equations of quantum statistical mechanics for a system of

non-identical particles, for which all solutions of the wave

equations are accepted, are closely analogous to the equations

of classical statistical mechanics (Boltzmann statistics). The

quantum statistics resulting from the acceptance of only anti-

symmetric wave functions is considerably different. This

statistics, called Fermi-Dirac statistics, applies to many problems,

such as the Pauli-Sommerfeld treatment of metallic electrons

and the Thomas-Fermi treatment of many-electron atoms.

The statistics corresponding to the acceptance of only the

completely symmetric wave functions is called the Bose-Einstein

statistics. These statistics will be briefly discussed in Section 49.

1 W. PAULI, Z. f. Phys. 31, 765 (1925).



220 THE SPINNING ELECTRON [Vm-29b

It has been found that for protons as well as electrons the wave
functions representing states occurring in nature are antisym-

metric in the coordinates of the particles, whereas for deuterons

they are symmetric (Sec. 43/).

The stationary states of the helium atom, represented on the

right side of Figure 29-2, are conveniently divided into two sets,

shown by open and closed circles, respectively. The wave

functions for the former, called singlet states, are obtained by

multiplying the symmetric orbital wave functions by the single

antisymmetric spin function ~^{(1) 0(2) 0(1) (2)}.V 2

Those for the latter, called triplet states, are obtained by mul-

tiplying the antisymmetric orbital wave functions by the three

symmetric spin functions. 1 The spin-orbit interactions which

we have neglected cause some of the triplet levels to be split

into three adjacent levels. Transitions from a triplet to a

singlet level can result only from a perturbation involving the

electron spins, and since interaction of electron spins is small

for light atoms, these transitions are infrequent; no spectral line

resulting from such a transition has been observed for helium.

It is customary to represent the spectral state of an atom by
a term symbol such as 1

>S,
3
/S,

3
P, etc. Here the superscript on

the left gives the multiplicity, 1 signifying singlet and 3 triplet.

The letters S, P, etc., represent the resultant of the orbital

angular-momentum vectors of all the electrons in the atom.

This is also given by a resultant azimuthal quantum number L,

the symbols S,P,D,F, corresponding toL = 0,1,2,3, .

If all the electrons but one occupy s orbitals, the value of L is

the same as that of I for the odd electron, so that for helium the

configurations Is2
, Is2s, and Is2p Jead to the states 1

S,
1S and 3

>S,

and IP and 3P. Use is also made of a resultant spin quantum
number S (not to be confused with the symbol S for L =

0),

1 The electrons are often said to have their spins opposed or antiparallel

in singlet states and parallel in triplet states, the spin function

in the latter case representing orientation of the resultant spin with zero

component along the z axis.
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which has the value for singlet states and 1 for triplet states,

the multiplicity being equal to 2S + I.
1

The results which we have obtained regarding the stationary

states of two-electron atoms may be summarized in the following

way. The main factors determining the term values are the

values of the principal quantum numbers fti and n2 for the

two electrons and of the azimuthal quantum numbers l\ and Z2 ,

smaller values of these numbers leading to greater stability.

These numbers determine the configuration of the atom. The

configuration Is 2 leads to the normal state, Is2s to the next most

stable states, then Is2p, and so on. For configurations with

nili different from n 2h there is a further splitting of the levels

for a given configuration, due to the resonance integrals,

leading to singlet and triplet levels, and to levels with different

values of the resultant azimuthal quantum number L in case

that both li and Z2 are greater than zero. The triplet levels may
be further split into their fine-structure components by the

spin-orbit interaction, which we have neglected in our treatment.

It is interesting to notice that these interactions completely
remove the degeneracy for some states, such as Is2s 1

S,

but not for others, such as Is2s Z
S, which then show a further

splitting (Zeeman effect) on the application of a magnetic field

to the atom.

Problem 29-1. Evaluate the integrals J and K for Is2s and l$2p of

helium, and calculate by the first-order perturbation theory the term values

for the levels obtained from these configurations. Observed term values

(relative to He+) are Is2s 1S 32033, Is2s *S 38455, Is2p
1P 27176, and Is2p

3P
29233 cm- 1

.

29c. The Accurate Treatment of the Normal Helium Atom.

The theoretical calculation of the energy of the normal helium

atom proved to be an effective stumbling block for the old

quantum theory. On the other hand, we have already seen that

even the first attack on the problem by wave-mechanical methods,

1 For a detailed discussion of spectroscopic nomenclature and the vector

model of the atom see Pauling and Goudsmit. "The Structure of Line

Spectra." The triplet levels of helium were long called doublets, complete
resolution being difficult. Their triplet character was first suggested by
J. C. Slater, Proc. Nat. Acad. Sci. 11, 732 (1925), and was soon verified

experimentally by W. V. Houston, Phys. Rev. 29, 749 (1927). The names

parhelium and orthohelium were ascribed to the singlet and triplet levels,

respectively, before their nature was understood.
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the first-order perturbation treatment given in Section 236,

led to a promising result, the discrepancy of about 4 v.e. (accept-

ing the experimental value as correct) being small compared
with the discrepancies shown by the old-quantum-theory
calculations. It is of interest to see whether or not more and

more refined wave-mechanical treatments continue to diminish

the discrepancy with experiment and ultimately to provide a

theoretical value of the ionization potential agreeing exactly

with the experimental (spectroscopic) value 24.463 v. 1 The
success of this program would strengthen our confidence in our

wave-mechanical equations, and permit us to proceed to the

discussion of many-electron atoms and molecules.

No exact solution of the wave equation has been made, and all

investigators have used the variation method. 2 The simplest

extension of the zeroth-orderwave function e~2
% with s = (ri + 7*2) /

a
,

is to introduce an effective nuclear charge Z'e in place of the

true nuclear charge 2e in the wave function. This function, e~z '*,

minimizes the energy when the atomic number Z' has the value
2
J/{ 6 , corresponding to a screening constant of value ^{g (Sec.

266). The discrepancy with the observed energy
3
(Table 29-1)

is reduced by this simple change to 1.5 v.e., which is one-third the

discrepancy for Unsold's treatment. This wave function cor-

responds to assuming that each electron screens the other

1 Calculated from Lyman's term value 198298 cm"1 corrected by Paschen

to 198307.9 cm" 1
;
T. Lyman, Astrophys. J. 60, 1 (1924); F. Paschen, Sitzber.

preuss. Akad. Wiss. 1929, p. 662.
2 The principal papers dealing with the normal helium atom are A. Unsold,

Ann. d. Phys. 82, 355 (1927); G. W. Kellner, Z.f. Phys. 44, 91, 110 (1927);

3. C. Slater, Proc. Nat. Acad. Sri. 13, 423 (1927); Phys. Rev. 32, 349 (1928);

C. Eckart, Phys. Rev. 36, 878 (1930); E. A. Hylleraas, Z. f. Phys. 48, 469

(1928); 54, 347 (1929); 65, 209 (1930). A summary of his work is given by
Hylleraas in Skrifter del Norske Vid.-Ak. Oslo, I. Mat.-Naturv. Klasse 1932,

pp. 5-141. For the special methods of evaluating and minimizing the

energy integral, the reader is referred to these papers.
3 The experimental value 78.605 v.e. = 5.8074 R^Jic for the energy

of the normal helium atom is obtained by adding to the observed first

ionization energy 24.463 v,e. (with the minus sign) the energy

4RHehc -54.1416 v.e.

of the helium ion. Hylleraas has shown that the correction for motion of

the nucleus in the neutral helium atom is to be made approximately by

using #HB ; that is, by assigning to each electron the reduced mass with the

helium nucleus.
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from the nucleus in the same way as a charge %e on the

nucleus.

Problem 29-2. (a) Calculate approximately the energy the normal
lithium atom would have if the allowed wave functions were completely

symmetric in the electrons, using for the positional wave function the

product function ls(l) ls(2) 1(3), in which Is contains the effective nuclear

charge Z' = 3 S, and minimizing the energy relative to Z' or S. From
this and a similar treatment of Li+ obtain the first ionization energy. The
observed value is 5.368 v.e. (6) Obtain a general formula for the Nth
ionization energy of an atom with atomic number Z in such a Bose-Einsteln

universe, using screening-constant wave functions. Note the absence of

periodicity in the dependence on Z.

We might now consider other functions of the type F(ri)F(r2),

introducing other parameters. This has been done in a general

way by Hartree, in applying his theory of the self-consistent

field (Chap. IX), the function F(rO being evaluated by special

numerical and graphical methods. The resulting energy value,

as given in Table 29-1, is still 0.81 v.e. from the experimental
value. Even the simple algebraic function

Z\r\ Ztrt Ztn Zirt

g ao e oo
_|_ Q ao e ao

leads to as good a value of the energy. (This is function 4 of

the table, there expressed in terms of the hyperbolic cosine.)

This variation function we may interpret as representing one

electron in an inner orbit and the other in an outer orbit, the

values of the constants, Zi = 2.15 and Z 2
=

1.19, corresponding
to no shielding (or, rather, a small negative shielding) for the

inner electron by the outer, and nearly complete shielding for

the outer electron by the inner. By taking the sum of two

terms the orbital wave function is made symmetric in the two

electrons. It is interesting that the still simpler function

5 leads to a slightly better value for the energy. Various more

complicated functions of s and t were also tried by Kellner and

Hylleraas, with considerable improvement of the energy value.

Then a major advance was made by Hylleraas by introducing

in the wave function the coordinate u = ri 2/a ,
which occurs

in the interaction term for the two electrons. The simple two-

parameter functions 6 and 7 provide values of the energy of the

atom accurate to Y^ per cent. Here again the polynomial in u

is more satisfactory than the more complicated exponential
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function, suggesting that a polynomial factor containing further

powers of u
} t, and s be used. The functions 8, 9, and 10 show

that this procedure leads quickly to a value which is only slightly

changed by further terms, the last three terms of 10 being

reported by Hylleraas as making negligible contributions.

The final theoretical value for the energy of the helium atom is

0.0016 v.e. below the experimental value. Inasmuch as this

theoretical value, obtained by the variation method, should

be an upper limit, the discrepancy is to be attributed to a numer-
ical error in the calculations or to experimental error in the

ionization energy, or possibly to some small effects such as

electron-spin interactions, motion of the nucleus, etc. At

any rate the agreement to within 0.0016 v.e. may be considered

as a triumph for wave mechanics when applied to many-electron
atoms.

TABLE 29-1. VARIATION FUNCTIONS FOR THE NORMAL HELIUM ATOM 1

r\ -f r 2

Symbols: s

r 2 r 12
j u =

Experimental value of W = -5.80736/2^6

1 A few variation functions which have been tried are not included in the table because

they are only slightly better than simpler ones; for example, the function e~*'* (l-cie-w),
which is scarcely better than function 6. (D. R. HARTREE and A. L. INOMAN, Mem.

Manchester Phil. Soc. 77, 69 (1932).)
5 The normalization factor is omitted. Of these functions, 1 is due to Unsold, 2 to Kell-

ner, 3 to Hartree and Gaunt, 4 to Eckart and Hylleraas, and the remainder to Hylleraas.
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Hylleraas's masterly attack on the problem of the energy of

normal helium and heliumlike ions culminated in his derivation

of a general formula for the first ionization energy / of these

atoms and ions. 1 This formula, obtained by purely theoretical

considerations, is

I =
14-+ M

- -
A
Z + 0.31488

0.01752
.
0.00548

(29-6)

in which M is the mass and Z the atomic number of the atom.

Values calculated by this formula 2 are given in Table 29-2,

together with experimental values obtained spectroscopically,

mainly by Edln 3 and coworkers. It is seen that there is agree-

TABLE 29-2. IONIZATION ENERGIES OF TWO-ELECTRON ATOMS

ment to within the experimental error. Indeed, the calculated

values are now accepted as reliable by spectroscopists.
4

Included in the table is the value 0.7149 v.e. for the ionization

energy of the negative hydrogen ion H~. This shows that the

hydrogen atom has a positive electron affinity, amounting to

16480 cal/mole. The consideration of the crystal energy of the

alkali hydrides has provided a rough verification of this value.

29d. Excited States of the Helium Atom. The variation

method can be applied to the lowest triplet state of helium as

well as to the lowest singlet state, inasmuch as (neglecting

!E. A. HYLLERAAS, Z. f. Phys. 66, 209 (1930).
2 Using 1 v.e. = 8106.31 cm" 1 and R* = 109737.42 cm- 1

.

3 A. ERICSON and B. EDLN, Nature 124, 688 (1929); Z. /. Phys. 69, 666

(1930); B. EDLN, Nature 127, 405 (1930).
* B. EDLN, Z. f. Phys. 84, 746 (1933).
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spin-orbit interactions) the triplet wave functions are anti-

symmetric in the positional coordinates of the two electrons,

and contain no contribution from singlet functions (Sec. 26c).

A simple and reasonable variation function is

l8M'(l) 2s,"(2)
- &,"(!) lsz<(2),

in which lsZ ' and 2sZ" signify hydrogenlike wave functions with

the indicated effective nuclear charges as parameters. We
would expect the energy to be minimized for Z' = 2 and Z" = 1.

Calculations for this function have not been made. However,

Hylleraas
1 has discussed the function

se"z
'

a sinh ct, (29-7)

obtaining the energy value 4.342(XRH Ac, not far above the

observed value 4.3504/JHe/ic. This function is similar to the

hydrogenlike function (containing some additional terms),

and the parameter values found, Z' = 1.374 and c = 0.825,

correspond to the reasonable values Z' = 2.198 and Z" = 1.099.

Hylleraas has also replaced s in 29-7 by s + du, obtaining the

energy 4.3448/2H^c, and by s + c 2t
2

, obtaining the energy
4.3484/JHeAc. It is probable that the series s + CiU + cd*

would lead to very close agreement with experiment.
Numerous investigations by Hylleraas and others 2 have

shown that wave mechanics can be applied in the treatment of

other states of the helium atom. We shall not discuss further

the rather complicated calculations.

29e. The Polarizability of the Normal Helium Atom. A
quantity of importance for many physical and chemical con-

siderations (indices of refraction, electric dipole moments,
term values of non-penetrating orbits, van der Waals forces,

etc.) is the polarizdbility of atoms and molecules, mentioned in

Problem 26-1 and Sections 27a and 27e. We may write as the

energy of a system in an electric field of strength F the expression

W = WQ - Y2aF* + (29-8)

1 E. A. HYLLERAAS, Z. J. Phys. 64, 347 (1929).
2 W. HBISENBERG, Z. f. Phys. 39, 499 (1926); A. UNSOLD, Ann. d. Phys.

82, 355 (1927); E. A. HYLLERAAS and B. UNDHEIM, Z.f. Phys. 66, 759 (1930);
E. A. HYLLERAAS, ibid. 66, 453 (1930); 83, 739 (1933); J. P. SMITH, Phys.
Rev. 42, 176 (1932); etc.
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in case that the term linear in F vanishes, the permanent electric

moment of the system being zero. The electric moment induced

in the system by the field is aF, the factor of proportionality a.

being called the polarizability. The polarizability of the

molecules in a gas determines its index of refraction n (for light

of very large wave length) and its dielectric constant D, according
to the equation

V
~

47T n2 + 2
"

4* D + 2

in which N is Avogadro's number and V is the molal volume of

the substance. The mole refraction R is defined as

R = Ila = 2.54 1024
a. (29-10)

5

The dimensions of R and a are those of volume, and their magni-
tudes are roughly those of molal volumes and molecular volumes,

respectively; for example, for monatomic hydrogen R = 1.69 cm 3

and a = 0.667 10~24 cm 3
(Sec. 27o). Values of R and a are

determined experimentally mainly by measurement of indices

of refraction and of dielectric constants,
1

rough values being
also obtainable from spectral data. 2

The value of the polarizability a of an atom or molecule can

be calculated by evaluating the second-order Stark effect energy

^aF2
by the methods of perturbation theory or by other

approximate methods. A discussion of the hydrogen atom has

been given in Sections 27a and 27e (and Problem 26-1). The
helium atom has been treated by various investigators by the

variation method, and an extensive approximate treatment

of many-electron atoms and ions based on the use of screening

constants (Sec. 33a) has also been given.
3 We shall discuss the

variational treatments of the helium atom in detail.

The additional term in the Hamiltonian due to the electric

1 The total polarization of a gas may be due to polarization of the electrons

in the gas molecules (for fixed nuclear positions), polarization of the nuclei

(with change in the relative positions of the nuclei in the molecules), and

orientation of molecules with permanent electric dipole moments. We are

here discussing only the first of these mechanisms; the second is usually

unimportant, and the third is treated briefly in Section 49/.
1 See PAULING and GOUDSMIT, "The Structure of Line Spectra," Sec. 11.
8 L. PAULINO, Proc. Roy. Soc. A114, 181 (1927).
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field (assumed to lie along the z axis) is eF(zi + 32), *i and z2

being the z coordinates of the two electrons relative to the nucleus.

The argument of Section 27e suggests that the variation function

be of the form

* = V{1 + (*i + *)/(*i, 2/i, i, a*, 2/2, *)}, (29-11)

in which ^ is an approximate wave function for zero field.

Variation functions of this form (or approximating it) have been

discussed by Hass6, Atanasoff, and Slater and Kirkwood,
1

whose results are given in Table 29-3.

TABLE 29-3. VARIATION FUNCTIONS FOR THE CALCULATION OF THE
POLARIZABILITY OF THE NORMAL HELIUM ATOM

Experimental value: a = 0.205 10~24 cm 3

r\ -f r 2

H - Hasag, A - Atanasoff, SK - Slater and Kirkwood.

Of these functions, 1, 2, 4, and 5 are based on the simple

screening-constant function 2 of Table 29-1; these give low

values of a, the experimental value (from indices of refraction

extrapolated to large wave length of light and from dielectric

1 H. R. HASSB, Proc. Cambridge Phil Soc. 26, 542 (1930), 27, 66 (1931);

J. V. ATANASOFF, Phys. Rev. 36> 1232 (1930); J. C. SLATER and J. G. KIRK-

WOOD, Phys. Rev. 37, 682 (1931).
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constant) being about 0.205 10~24 cm 3
. The third function,

supposed to provide a better approximation to the correct wave
function for large values of r\ and r2 (that is, in the region of the

atom in which most of the polarization presumably occurs),

overshoots the mark somewhat. (The fundamental theorem

of the variation method (Sec. 26a) does not require that a

calculation such as these give a lower limit for a, inasmuch as

the wave function and energy value for the unperturbed system
as well as for the perturbed system are only approximate.)
Function 6 is based on 7 of Table 29-1, 7, 8, and 10 on 8, and

9 on 9. It is seen that functions of the form 29-11 (6, 10) seem

to be somewhat superior to functions of the same complexity
not of this form (7, 8, 9). Function 11 is based on a helium-

atom function (not given by a single algebraic expression) due to

Slater. 1

It is seen that the values of a given by these calculations in

the main lie within about 10 per cent of the experimental value2

0.205 10~24 cm 3
. For Li+, Hass6, using function 6, found the

value a = 0.0313 - 10~24 cm 3
;
the only other values with which

this can be compared are the spectroscopic value 3 0.025 and the

screening-constant value 2 0.0291 10~24 cm 3
.

Problem 29-3. Using the method of Section 27e and the screening-

constant wave function 2 of Table 29-1, evaluate the polarizability of the

helium atom, taking as the zero point for energy the singly ionized atom.

1 J. C. SLATER, Phys. Rev. 32, 349 (1928).
2 The rough screening-constant treatment mentioned above gives the

values 0.199 - 1Q-24 cm 3 for He and 0.0291 - 1Q-24 cm 3 for Li+.

3
J. E. MAYER and M. G. "MAYER, PJiys. Rev. 43, 605 (1933).



CHAPTER IX

MANY-ELECTRON ATOMS

Up to the present time no method has been applied to atoms

with more than two electrons which makes possible the computa-
tion of wave functions or energy levels as accurate as those for

helium discussed in Section 29c. With the increasing complexity
of the atom, the labor of making calculations similar to those

used for the ground state of helium increases tremendously.

Nevertheless, many calculations of an approximate nature have

been carried out for larger atoms with results which have been

of considerable value. We shall discuss some of these in this

chapter.
l

30. SLATER'S TREATMENT OF COMPLEX ATOMS

30a. Exchange Degeneracy. All of the methods which we
shall consider are based on a first approximation in which the

interaction of the electrons with each other has either been

omitted or been replaced by a centrally symmetric field approxi-

mately representing the average effect of all the other electrons

on the one under consideration. We may first think of the prob-
lem as a perturbation problem. The wave equation for an atom
with N electrons and a stationary nucleus is

in which r, is the distance of the ith electron from the nucleus,

ra is the distance between the zth and jth electrons, and Z is

the atomic number.

If the terms in r# are omitted, this equation is separable into

N three-dimensional equations, one for each electron, just as

was found to be the case for helium in Section 236. To this

1 This chapter can be omitted by readers not interested in atomic spectra
and related subjects; however, the treatment is closely related to that for

molecules given in Chapter XIII.

230
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degree of approximation the wave function for the atom may be

built up out of single-electron wave functions; that is, a solution

of the equation for the atom with 2)e
2
/r# omitted is

(30-2)

in which t/(l), etc., are the solutions of the separated single-

electron equations with the three quantum numbers 1

symbolized

by a, 0, ,
v and the three coordinates symbolized by

1, 2, ,
N. With this form for ^ the individual electrons

retain their identity and their own quantum numbers. How-

ever, an equally good solution of the unperturbed equation cor-

responding to the same energy as Equation 30-2 is

(30-3)

in which electrons 1 and 2 have been interchanged. In general,

the function

(30-4)

in which P is any permutation of the electron coordinates, is an

unperturbed solution for this energy level.

The meaning of the operator P may be illustrated by a simple example.

Let us consider the permutations of the three symbols Zi, xz ,
x t . These are

Xi, #2, Xz\ #2, Xs, Xi't x*, Xij Xz', 2, x^ Xi\ Xi, x^ Xt\ 3 , 2, x\. Any one of these

six may be represented by Pxi, x2 ,
xz ,

in which P represents the operation of

permuting the symbols a?i, x z ,
x3 in one of the above ways. The operation P

which yields Xi, z2 ,
xz is called the identity operation.

Any of the above permutations can be formed from x\, z2,
xs by successive

interchanges of pairs of symbols. This can be done in more than one way,

but the number of interchanges necessary is either always even or always

odd, regardless of the manner in which it is carried out. A permutation

is said to be even if it is equivalent to an even number of interchanges, and

odd if it is equivalent to an odd number. We shall find it convenient to

use the symbol ( l)
p to represent +1 when P is an even permutation and

1 when P is an odd permutation.

Multiplication of the operators P and P' means that P and P' are to be

applied successively. The set of all the permutations of N symbols has the

property that the product PP
f
of any two of them is equal to some other

permutation of the set. A set of operators with this property is called 8

group, if in addition the set possesses an identity operation and if every

operation P possesses an inverse operation P" 1 such that PP" 1 is equivalent

to the identity operation. There are N\ permutations of N different

symbols.

1 The symbols a, ft ,
v are of course not related to the spin functions

a and 0.
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At this point we may introduce the spin of the electrons into

the wave function (in the same manner as for helium) by multi-

plying each single-electron orbital function by either (o>) or

0(w). For convenience we shall include these spin factors in

the functions ua (l), etc., so that hereafter a, j8, 7, represent

four quantum numbers n, I, mi, and ma for each electron and 1,

2,
- represent four coordinates r, #<, <pi, and co. As discussed

in Section 29a for the two-electron case, treatment of this

degenerate energy level by perturbation theory (the electron

interactions being the perturbation) leads to certain combinations

(3(M5)

for the correct zeroth-order normalized wave functions. One
of these combinations will have the value +1 for each of the

coefficients CP. Interchange of any pair of electrons in this

function leaves the function unchanged; i.e., it is completely

symmetric in the electron coordinates. For another combina-

tion the coefficients CP are equal to +1 or to 1, according as P
is an even or an odd permutation. This combination is com-

pletely antisymmetric in the electrons; i.e., the interchange of

any two electrons changes the sign of the function without

otherwise altering it. Besides these two combinations, which

were the only ones which occurred in helium, there are for

many-electron atoms others which have intermediate symmetries.

However, this complexity is entirely eliminated by the appli-

cation of the Pauli exclusion principle (Sec. 29b) which says that

only the completely antisymmetric combination

' ' U'(N) (3(HJ)

has physical significance. This solution may also be written as a

determinant,

1 u(2) W/J(2) . . . ,(
(30-7)

u (N) . . . .(#)

as was done in Section 296. The two forms are identical.
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30b. Spatial Degeneracy. In the previous section we have
taken care of the degeneracy due to the N I possible distributions

of the TV electrons in a fixed set of N functions u. There still

remains another type of degeneracy, due to the possibility of

there being more than one set of spin-orbit functions correspond-

ing to the same unperturbed energy. In particular there may
be other sets of ^'s differing from the first in that one or more of

the quantum numbers mi or m8 have been changed. These

quantum numbers, which represent the z components of orbital

and spin angular momentum of the individual electrons, do not

affect the unperturbed energy. It is therefore necessary for

us to construct the secular equation for all these possible func-

tions in order to find the correct combinations and first approxi-
mation to the energy levels. 1

Before doing this, however, we should ask if there are any more

unperturbed wave functions belonging to this level. If, in setting

up the perturbation problem, we had called the term Se2
/r#

the perturbation, then the single-electron functions would have

been hydrogenlike functions with quantum numbers n, l
y mi,

and ma . The energy of these solutions depends only on n,

as we have seen. However, a better starting point is to add and

subtract a term ^\v(xi) representing approximately the average

effect of the electrons on each other. If this term is added to

H and subtracted from H'
y
the true Hamiltonian H = H + H'

is of course unaltered and the unperturbed equation is still

separable. The single-electron functions are, however, no longer

hydrogenlike functions and their energies are no longer inde-

pendent of the quantum number I, because it is only with a

Coulomb field that such a degeneracy exists (see Sec. 29a).

Therefore, in considering the wave functions to be combined we
do not ordinarily include any but those involving a single set of

values of n and Z; i.e., those belonging to a single configuration.

The consideration of a simple example, the configuration

Is2
2p of lithium, may make clearer what the different unper-

turbed functions are. Table 30-1 gives the sets of quantum num-

1 The treatment of atoms which we are giving is due to J. C. Slater, Phys.

Rev. 34, 1293 (1929), who showed that this method was very much simpler

and more powerful than the complicated group-theory methods previously

used.
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bers possible for this configuration. The notation

means n =
1, I = 0, m\ =

0, m, = +M- Each line of the table

n corresponds to a set of functions ua uv which when
substituted into the determinant of Equation 30-7 gives a satis-

factory antisymmetrical wave function ^J corresponding to the

TABLE 30-1. SETS OF QUANTUM NUMBERS FOB THE CONFIGURATION Is 2
2p

+ 1, 2m, = ->

2m,
2m, = K,
2m, = +K,

=
1, 2m, =

same unperturbed energy level. No other sets satisfying the

Pauli exclusion principle can be written for this configura-

tion. The order of the expressions n, Z, mi, ma in a given row is

unimportant.
This simple case illustrates the idea of completed shells of

electrons. The first two sets of quantum numbers remain the

TABLE 30-2. SETS OF QUANTUM NUMBERS FOR THE CONFIGURATION np2

same throughout this table because Is2
is a completed shell;

i.e., it contains as many electrons as there are possible sets of

quantum numbers. The shell ns can contain two electrons,

np six electrons, nd ten electrons, etc. In determining the
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number of wave functions which must be combined, it is only

necessary to consider electrons outside of completed shells,

because there can be only one set of functions Ua uv ior the

completed shells.

Table 30-2 gives the allowed sets of quantum numbers for two

equivalent p electrons, i.e., two electrons with the same value

of n and with I = 1.

Problem. 30-1. Construct tables similar to Table 30-2 for the configura-

tions np
3 and nd2

.

30c. Factorization and Solution of the Secular Equation. We
have now determined the unperturbed wave functions which

must be combined in order to get the correct zeroth-order wave
functions for the atom. The next step is to set up the secular

equation for these functions as required by perturbation theory,

the form given at the end of Section 24 being the most con-

venient. This equation has the form

Tii
- W #12 #u

#21 H - W ' '

;

H*k

=0, (30-8)

Hki #*2 ' ' ' Hkk W
in which

Hnm = MHtmdr. (30-9)

^n is an antisymmetric normalized wave function of the form of

Equation 30-6 or 30-7, the functions u composing it correspond-

ing to the nth row of a table such as Table 30-1 or 30-2. # is

the true Hamiltonian for the atom, including the interactions

of the electrons.

This equation is of the fcth degree, k, being the number of

allowed sets of functions ua uv . Thus for the configura-

tion Is 2
2p k is equal to 6, as is seen from Table 30-1. However,

there is a theorem which greatly simplifies the solution of this

equation: the integral Hmn is zero unless \l/m and \l/n have the same

value of 2m, and the same value of 2m/, these quantities being

the sums of quantum numbers ma and mi of the functions u making

up \l/m and \l/n - We shall prove this theorem in Section 30d in

connection with the evaluation of the integrals Hmn ,
and in the

meantime we shall employ the result to factor the secular

equation.
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Examining Table 30-1, we see that the secular equation for

Is2
2p factors into six linear factors; i.e., no two functions ^n

and ^ have the same values of 2ra and Sw*. The equation
for np

2
,
as seen from Table 30-2, has the factors indicated by

Figure 30-1, the shaded squares being the only non-zero elements.

A fifteenth-degree equation has, therefore, by the use of this

theorem been reduced to a cubic, two quadratic, and eight
linear factors.

FIQ. 30-1. The secular determinant for the configuration np 2
, represented

diagrammatically.

By evaluating the integrals Hmn and solving these equations,
the approximate energy levels W corresponding to this con-

figuration could be obtained; but a still simpler method is

available, based on the fact that the roots W of the equations of

lower degree will coincide with some of the roots of the equations
of higher degree. The reason for this may be made clear by the

following argument. The wave . functions \f/i, ^2, , fa,

which we are combining, differ from one another only in the

quantum numbers ma and mi of the single electrons, these

quantum numbers representing the z components of the spin
and orbital angular momenta of the electrons. The energy
of a single electron in a central field does not depend on mi or m8

(neglecting magnetic effects), since ttese quantum numbers
refer essentially to orientation in space. The energy of an
atom with several electrons does depend on these quantum
numbers, because the mutual interaction of the 'electrons is

influenced by the relative orientations of the angular-momentum



IX-SOc] SLATER'S TREATMENT OF COMPLEX ATOMS 237

vectors of the individual electrons. Just as for one-electron

atoms, however, the orientation of the whole atom in space
does not affect its energy and we expect to find a number of states

having the same energy but corresponding to different values

of the z components of the total orbital angular momentum
and of the total spin angular momentum; i.e., to different values

of Sraj and 2w5 .

This type of argument is the basis of the vector model 1 for atoms,
a very convenient method of illustrating and remembering the

results of quantum-mechanical discussions such as the one we
are giving here. In the vector model of the atom the orbital

and spin angular momenta of the individual electrons are con-

sidered as vectors (see Section le) which may be combined to

give resultant vectors for the whole atom, the manner in which

these vectors are allowed to combine being restricted by certain

rules in such a way as to duplicate the results of quantum
mechanics. The vector picture is especially useful in classifying

and naming the energy levels of an atom, the values of the

resultant vectors being used to specify the different levels.

In Chapter XV we shall show that not only is the energy of a

stationary state of a free atom a quantity which has a definite

value (and not a probability distribution of values) but also the

total angular momentum and the component of angular momen-
tum in any one chosen direction (say the z direction) are similar

quantities. Whereas it is not possible to specify exactly both the

energy and the positions of the electrons in an atom, it is possible

to specify the above three quantities simultaneously. If the

magnetic effects are neglected we may go further and specify the

total spin and total orbital angular momenta separately, and

likewise their z components. However, we may not give

the angular momenta of the individual electrons separately,

these being quantities which fluctuate because of the electron

interactions.

It will likewise be shown that when magnetic effects are

neglected the square of the total orbital angular momentum
must assume only the quantized values L(L + l)(/i/2r)

2 where

L is an integer, while the square of the total spin angular momen-
tum can take on only the values S(S + 1)(A/2T)

2 where S is

integral or half-integral. (The letter L is usually used for the

1 See PAULING and GOUDSMIT, "The Structure of Line Spectra."
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total resultant orbital angular momentum of the atom, and the

letter S for the total spin angular momentum; see Section 296.)

In the approximation
1 we are using, the states of an atom may

be labeled by giving the configuration and the quantum numbers

L, S, ML = 2wj, and Ma = 2w,, the last two having no effect

on the energy. Just as for one electron, the allowed values

of ML are L, L 1, ,
L + 1> L] Ms is similarly

restricted to /S, S 1, ,
S + 1, >S, all of these values

of Ms and ML belonging to the same degenerate energy level and

corresponding to different orientations in space of the vectors

L and S.

We shall now apply these ideas to the solution of the secular

equation, taking the configuration np
2 as an example. From

Table 30-2 we see that Hu W is a linear factor of the equation,

since ^i alone has 2mi = 2 and 2mg =0. A state with ML = 2

must from the above considerations have 1/^2. Since 2 is

the highest value of ML in the table, it must correspond to

L = 2. Furthermore the state must have S =
0, because

otherwise there would appear entries in the table with ML = 2

and Ms T* 0. This same root W must appear five times in the

secular equation, corresponding to the degenerate states L =
2,

S =
0, Ms = 0, ML =

2, 1, 0, -1, -2. From this it is seen

that this root (which can be obtained from the linear factors)

must occur in two of the linear factors (ML = 2, 2; Ms =
0),

in two of the quadratic factors (ML =
1, 1; Ma =

0), and in

the cubic factor (ML =
0, Ma =

0). The linear factor // 2 2 W
with ML 1, Ms = 1 must belong to the level L 1, S =

1,

because no terms with higher values of ML and Ms appear in

the table except those already accounted for. This level will

correspond to the nine states with ML = 1,0, 1, and Ms = 1,

0, 1. Six of these are roots of linear factors (ML =
1,

Ma = 1; ML = 0; Ma =
1), two of them are roots of the

quadratic factors (ML =
1, Ms =

0), and one is a root of the

cubic factor (ML =
0, Ms =

0).

Without actually solving the quadratic equations or evaluating

the integrals involved in them, we have determined their roots,

since all the roots of the quadratics occur also in linear factors.

1 This approximation, called (LS) or Russell-Saunders coupling, is valid

for light atoms. Other approximations must be made for heavy atoms in

which the magnetic effects are more important.
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Likewise we have obtained two of the three roots of the cubic.

The third root of the cubic can be evaluated without solving the

cubic or calculating the non-diagonal elements of the equation,

by appealing to the theorem that the sum of the roots of a

secular equation (or of one of its factors) is equal to the sum
of the diagonal elements of the equation

1
(or of the factor).

Since two of the roots of the cubic have been found and the sum
of the roots is given by the theorem, the third may be found.

It corresponds to the state L =
0, S =

0, since this is the only

possibility left giving one state with ML = and Ma = 0.

The three energy levels for np* which we have found are

W = #u ,
*D (L =

2, S =
0, Ms =

0, ML = 2, 1, 0, -1, -2);
W = #22, *P (L =

1, S =
1, M8 = 1, 0; ML =

1, 0);

W = #77 + #88 + #99 - #11 - #22,
!S (L =

0, S =
0,

Ms = 0, ML = 0).

(30-10)

The term symbols *D,
3
P,

1S have been explained in Section 296.

Problem 30-2. Investigate the factorization of the secular equation
for np

3
, using the results of Problem 30-1, and list terms which belong to

this configuration.

30d. Evaluation of Integrals. We need to obtain expressions

for integrals of the type

#mn =

u*(N)HPua(l) u,(N)dr. (30-11)

1 To prove this theorem, we expand the secular equation 30-8 and arrange

according to powers of W. The resulting algebraic equation in W will have
k roots, Wi, W^ , Wk and can therefore be factored into k factors

(W - Wi)(W -
TTi)

- (W - Wk)
= 0.

The coefficient of Wk~ l in this form of the equation is seen to be

Wi + W2 + - -

-I- Wk',

the coefficient of -Wh~ l in Equation 30-8 is seen to be

HU + HM + -f" Hkk-

These two expressions must therefore be equal, which proves the theorem.



240 MANY-ELECTRON ATOMS [K-SOd

We may eliminate one of the summations by the following

device:

JP'u*(l)
- - u*(N)HPua(l)

-

P"/P'w*(l)
- u*(N)HPua(l)

' ' ' uv(N)dr =

JP"P'f**(l)
- u*(N)HP"Pua(l) uv(N)dr.

the first step being allowed because P" only interchanges the

names of the variables of a definite integral. If we choose P"
to be P'"1

, the inverse permutation to P7

,
then P"P' =

1; i.e.,

P"P' is the identity operation, while P"P is still some member
of the set of permutations, all members of which are summed
over. The integral therefore no longer involves P' and the

sum over P' reduces to multiplication by-JV!, the number of

permutations. We thus obtain the equation

l)
FK*(D u*(N)HPua(l) - - uv(N)dr.

(30-12)

We shall now prove the theorem that Hmn = unless Sm, is

the same for $m and \l/n . H does not involve the spin coordinates

so that integration over these coordinates yields a product of

orthogonality integrals for the spin functions of the various

electrons. Unless the spins of corresponding electrons in the

two functions u*(l) u*(N) and Pua(l) uv(N) are

the same, the integral is zero. If 2m, is not the same for \l/m

and ^n there can be no permutation P which will make such a

matching of the spins possible, because the number of positive

and negative spins is different in the two functions.

To prove the theorem concerning Swj it is necessary to specify

further the nature of H . We write

where

The functions ua(l) are solutions of

. h* , Ze* , e2

ft
= -

V?
~ and *' -
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From this we see that

where /(r) is a function of r* alone. The integral of the first

term in H thus reduces to

, (30-13)

in which Puf (i) is used as a symbol for uf (j) in which electron j

has replaced i as a result of the permutation P. Because of the

orthogonality of the w's, this is zero unless Pu^(i) = %(j) except

perhaps for j equal to the one value i. In addition, since

uf (i)
= Rni(rt)

-

0im(t>0 e *, (30-14)

the factor fu?(i)f(ri)Put(i)dTi will be zero unless uf (i) and

Pu>t(i) have the same quantum number mi. We thus see that

this integral will vanish, unless all the u's but one pair match and
the members of that pair have the same value of mi.

Similar treatment of the term S0 t-/ shows that all but perhaps
two pairs must match. The factor containing these unmatched
functions is

T,-. (30-15)
' V

It can be shown 1 that

w(*w(*)*w. (3(M6)
k,m

in which ra is the smaller of r< and r
,-,

and rb is the greater.

Places t^) is an associated Legendre function, discussed in

Section 196. Using this expansion we obtain for the p part of

the above integral f
J V^i^i^^e*^^^*/^^/, in which

mi is associated with wf (i), ra{ with us(f), Pmi with Puf (i) 9
and

Pm'i with Pu>s(j). This vanishes unless Pm\ mi + m =
and PmJ m{ m = 0; i.e., unless Pm\ + Pm\ = mi + m\.

1 For a proof of this see J. H. Jeans, "Electricity and Magnetism,'
1

5th ed. t

Equations 152 and 196, Cambridge University Press, 1927.
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This completes the proof of the theorem that Hmn = unless

Sraj is the same for
\f/n and ^m .

Of the non-vanishing elements Hmn only certain of the diagonal

ones need to be evaluated in order to calculate the energy levels,

as we have seen in the last section. Because of the orthogonality

of the w's, Equation 30-13 vanishes unless P = 1 (the identity

operation) when a diagonal element Hmm is being considered.

Since the u'a are also normalized, this expression reduces to

=
/,, (30-17)

i

a relation which defines the quantities 7.

Similarly, the orthogonality of the u's restricts P in Equation
30-15 to P = 1 and P =

(tj), the identity operation and the

interchange of i and j, respectively. The first choice of P
contributes the terms

2J- <* (30-18)

**>'

while the second yields

<,-. (30-19)

ij>i iJ>i

The integral KU vanishes unless the spins of Uf(i) and u^(j) are

parallel, i.e., unless w.< = m
8]

.

The functions / reduce to integrals over the radial part of

. (30-20)

We shall not evaluate these further.

The functions // and KH may"be evaluated by using the

expansion for 1/r,-/ given in Equation 30-16. For J^ the (pi

part of the integral has the form f
"r

eim^d(p if which vanishes

unless m = 0. The double sum in the expansion 30-16 thus

reduces to a single sum over k, which can be written

l] n'l'), (30-21)
k

in which nlmi and nTm{ are the quantum numbers previously

represented by n t and n/, respectively, a* and F* are given by
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-'' - ( + Dtf ~ KDU^ +W -
|m{|)t- -aa

,-)
sin

and
jT'{P|?"

l

(cos t?,) } "P|!(cos >,) sin ttyto/, (30-22)

F*(nl; nT) = (4r)V f
"

f "i(r t)l.r(ry)^I
r
4 ff

JO JO FJ

. (30-23)

The a's are obtained from the angular parts of the wave functions,

which are the same as for the hydrogen atom (Tables 21-1 and

21-2, Chap. V). Some of these are given in Table 30-3, taken

TABLE 30-3. VALUES OF ak(lmr, Z'm[)

(In cases with two signs, the two can be combined in any of the four

possible ways)
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from Slater's paper. The F's, on the other hand, depend on the

radial parts of the wave functions, which for the best approxima-
tion are not hydrogenlike.

KH may be similarly expressed as

KH =
^.b

k
(lmi]l'm'i)G

k
(nl}n'l')j (30-24)

in which

5*(Imi;ZX) =

and

r
; . (30-26)

The functions 6* are given in Table 30-4. The functions Gk

are characteristic of the atom.

30e. Empirical Evaluation of Integrals. Applications. We
have now carried the computations to a stage at which the

energy levels may be expressed in terms of certain integrals

/, Fk
,
and Gk which involve the radial factors of the wave

functions. One method of proceeding further would be to assume

some form for the central field fl(rt-), determine the functions

Rmi(ri), and use them to evaluate the integrals. However,
another and simpler method is available for testing the validity

of this approximation, consisting in the use of the empirically

determined energy levels to evaluate the integrals, a check on

the theory resulting from the fact that there are more known

energy levels than integrals to be determined.

For example, if we substitute for Hn, etc., for the configuration

np
2 the expression in terms of /, Fk

,
and Gk

, using the results of

the previous section and Equation 30-10, we obtain for the

energies of the terms 1
D,

3
P, and 18 the quantities

*D:W = 2/(n, 1) + F'

*P: W = 2/(n, 1) + F
ifl: W = 2/(n, 1) + F
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TABLE 30-4. VALUES OF bk(lmrt im\)
(In cases where there are two signs, the two upper, or the two lower,

signs must be taken together)

Examination of Equations 30-18 and 30-19 shows that for

equivalent electrons F is equal to G (with the same index). We
therefore have for the separations of the levels for np2

The theory therefore indicates that, if the approximations which



246 MANY-ELECTRON ATOMS [IX-31

have been made are valid, the ratio of these intervals should be

2:3, a result which is obtained without the evaluation of any
radial integrals at all. In addition, since F2

is necessarily

positive, this theory gives the order of the terms,
3P lying lowest,

1D next, and 1S highest. This result is in agreement with

Hund's empirical rules, that terms with largest multiplicity

usually lie lowest, and that, for a given multiplicity, terms

with largest L values usually lie lowest. 1

Slater gives the example of the configuration
2 Is 22s 2

2p
6

3s 2
3p

2 of silicon, for which the observed term values3 are

3P = 65615 cm- 1

,

1D = 59466 cm- 1

,

1S = 50370 cm" 1

,

so that the ratio 1D - 3P to 1S - 1D is 2:2.96, in excellent

agreement with the theory. In other applications, however,

large deviations have been found, most of which have been

explained by considering higher approximations based on the

same general principles.
4

31. VARIATION TREATMENTS FOR SIMPLE ATOMS

The general discussion of Section 30, which is essentially a

perturbation calculation, is not capable of very high accuracy,

especially since it is not ordinarily practicable to utilize any
central field except the coulombic one leading to hydrogenlike
orbital functions. In this section we shall consider the applica-

tion of the variation method (Sec. 26) to low-lying states

of simple atoms such as lithium and beryllium. This type of

treatment is much more limited than that of the previous

section, but for the few states of simple atoms to which it has

been applied it is more accurate.

1 PAULINO and GOUDSMIT, "The Structure of Line Spectra," p. 166.

2 This configuration gives the same interval ratios as np 2
, only the absolute

energy being changed by the presence of the closed shells.

3 As mentioned in Section 5a, term values are usually given in cm" 1 and

are measured downward from the lowest state of the ionized atom. Hence

the largest term value represents the lowest energy level.

4 There have been many papers on this subject; a few are: C. W. Ufford,

Phys. Rev. 44, 732 (1933); G. H. Shortley, Phys. Rev. 43, 451 (1933); M. H.

Johnson, Jr., Phys. Rev. 43, 632 (1933); D. R. Inglis and N. Ginsburg,

Phys. Rev. 43, 194 (1933). A thorough treatment is given by E. U. Condon
and G. H. Shortlev, "The Theory of Atomic Spectra," Cambridge, 1935.
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The principles involved are exactly the same as those discussed

in Section 26 and applied to helium in Section 29c, so we shall

not discuss them further but instead study the different types of

variation functions used and the results achieved.

31a. The Lithium Atom and Three-electron Ions. Table 31-1

lists the variation functions which have been tried for the

lowest state of lithium, which has the configuration l$2
2s. All

these functions are of the determinant type given in Equation
30-7 and in all of them the orbital part of Ui 8 (i) is of the form

-Z'
e ao

,
in which Z', the effective atomic number for the K shell,

is one of the parameters determined by the variation method.

The table gives the expressions for 6, the orbital part of u 28 (i),

the function for the 2s electron. In addition, the upper limit

to the total energy of the atom is given, and also the value of the

first ionization potential calculated by subtracting the value of

the energy calculated for Li+ from the total energy calculated

for Li. The Li+ calculation was made with the use of the same

type of Is function used in Li for the K shell, in order to cancel

part of the error introduced by this rather poor K function.

The table also gives the differences between these calculated

quantities and the experimental values.

TABLE 31-1. VARIATION FUNCTIONS FOR THE NORMAL LITHIUM ATOM
Units: Rxhc

Experimental total energy: 14.9674; experimental ionization potential:

0.3966

i The function 1 was used by C. Eckart, Pkys. Rev. 36, 878 (1930), 2 and 3 by V. G ille-

min and C. Zener, Z. /. Phys. 61, 199 (1930), and 4 by E. B. Wilson, Jr., /. Chem. Phya. 1,

211 (1933). The last paper includes similar tables for the ions Be+, B++, and C+++
.
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Table 31-2 lists the best values of the parameters for these

lithium variation functions. Figure 31-1 shows the total

electron distribution function 4?rr2
p for lithium, calculated using

TABLE 31-2. PARAMETER VALUES FOR LITHIUM VARIATION FUNCTIONS
_zv

t*u = e
ao

the best of these functions, p is the electron density, which can

be calculated from ^ in the following manner:

P =
3jV*!/'dTidT2. (311)

gives the probability of finding electron 1 in the

volume element dri, electron 2 in dr 2 ,
and electron 3 in dr3 .

Integration over the coordinates of electrons 1 and 2 gives the

probability of finding electron 3 in dr3 , regardless of the positions

of 1 and 2. Since ^V is symmetric in the three electrons, the

probability of finding one electron in a volume element dxdydz in

ordinary three-dimensional space is three times the probability of

finding a particular one. Figure 31-1 shows clearly the two shells

of electrons in lithium, the well-marked K shell and the more

diffuse L shell. Due to the equivalence of the three electrons,

we cannot say that a certain two occupy the K shell and the

remaining one the L shell, but we can say that on the average

there are two electrons in the K shell and one in the L shell.

The next step to be taken is to apply a variation function to

lithium which recognizes explicitly the instantaneous, instead

of just the average, influence of the electrons on each other.

Such functions were found necessary to secure really accurate

results for helium (Sec. 29c), but their application to lithium
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involves extremely great complications. This work has been

begun (by James and Coolidge at Harvard 1

).

31b. Variation Treatments of Other Atoms. Few efforts have

been made to treat more complicated atoms by this method.

Beryllium has been studied by several investigators but the

functions which give good results for lithium are not nearly so

accurate for heavier atoms. Hydrogenlike functions with

variable effective nuclear charges (function 1 of Table 31-1 is

Fio. 31-1. The electron distribution function D = 4irr*p for the normal lithium

atom.

such a function for n =
2, I = 0) have been applied to the case

of the carbon atom,
2 the results being in approximate agreement

with experiment. Functions of the types 2 and 3 of Table 31-1

have also been tried 3 for Be, B, C, N, 0, F, and Ne. A more

satisfactory attack has been begun by Morse and Young,
4 who

have prepared numerical tables of integrals for wave functions

dependent on four parameters (one for Is, two for 2s, and one

1 Private communication to the authors; see H. M. James and A. S.

Coolidge, Phys. Rev. 47, 700 (1935), for a preliminary report.
1 N. F. BBAKDSLBY, Phys. Rev. 39, 913 (1932).
* C. ZENEK, Phys. Rev. 36, 51 (1930).
4 P. M. MORSE and L. A. YOUNG, unpublished calculations (available av

the Massachusetts Institute of Technology).
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for 2p one-electron functions) for the treatment of the K and L
shells of atoms.

The analytical treatment of complicated atoms by this method

is at present too laborious for the accuracy obtained, but it may
be possible to find new forms for the variation function which will

enable further progress to be made.

32. THE METHOD OF THE SELF-CONSISTENT FIELD

The previous sections give some indication of the difficulty

of treating many-electron atoms in even an approximate manner.

In this section we shall discuss what is probably the most success-

ful effort which has yet been made in attacking this problem,

at least for those atoms which are too complicated to treat by

any satisfactory variation function. Both the principle and

the difficult technique involved are due to Hartree,
1

who, with the

aid of his students, has now made the numerical computations
for a number of atoms. In Section 326 we shall show the

connection between this method and those previously discussed.

32a. Principle of the Method. In Section 306 we have

pointed out that the wave equation for a many-electron atom

can be separated into single-electron wave functions not only

when the mutual interactions of the electrons are completely

neglected but also when a central field v(x t) for each electron is

added to the unperturbed equation and subtracted from the

perturbation term. Each of the resulting separated unper-
turbed wave equations describes the motion of an electron in a

central field which is independent of the coordinates of the

other electrons. The perturbation treatment considered in

Section 30 was based on the idea that a suitable choice could be

made of these central fields for the individual electrons so that

they would represent as closely as possible the average effect

upon one electron of all the other electrons in the atom.

The important step in the application of such a method of

treatment is the choice of the potential-energy functions repre-

senting the central fields. The assumption made by Hartree

is that the potential-energy function for one electron due to a

second electron is determined approximately by the wave
function for the second electron, W0(2), say, being given by the

1 D. R. HARTREE, Proc. Cambridge Phil. Soc. 24, 89, 111, 426 (1928).
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potential corresponding to the distribution of electricity deter-

mined by the probability distribution function u^(2) t//s(2).

This is equivalent to assuming that the wave function for the

second electron is independent of the coordinates of the first

electron. The complete central-field potential-energy function

for the first electron is then obtained by adding to the potential-

energy function due to the nucleus those potential-energy
functions due to all the other electrons, calculated in the way
just described. The wave function for the first electron can

then be found by solving the wave equation containing this

complete potential-energy function.

It is seen, however, that in formulating a method of calculating

the functions u^(k) for an atom we have assumed them to be

known. In practice there is adopted a method of successive

approximations, each cycle of which involves the following

steps :

1. A potential-energy function due to the nucleus and all of

the electrons is estimated.

2. From this there is subtracted the estimated contribution

of the fcth electron, leaving the effective potential-energy function

for this electron.

3. The resulting wave equation for the fcth electron is then

solved, to give the wave function u^(k). Steps 2 and 3 are

carried out for all of the electrons in the atom.

4. Using the functions %(&) obtained by step 3, the potential-

energy functions due to the various electrons are calculated,

and compared with those initially assumed in steps 1 and 2.

In general the final potential-energy functions are not identical

with those chosen initially. The cycle is then repeated, using

the results of step 4 as an aid in the estimation of new potential-

energy functions. Ultimately a cycle may be carried through
for which the final potential-energy functions are identical

(to within the desired accuracy) with the initial ones. The

field corresponding to this cycle is called a self-consistent field

for the atom.

It may be mentioned that the potential-energy function due

to an s electron is spherically symmetrical, inasmuch as the

probability distribution function u^u ntl
is independent of <p and #.

Moreover, as a result of the theorem of Equation 21-16 the

potential-energy function due to a completed shell of electrons
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is also spherically symmetrical. Spherical symmetry of the

potential function greatly increases the ease of solution of the

wave equation.

Hartree employs the method of numerical integration sketched

in Section 27c to solve the single-electron wave equations.

In addition he makes the approximation of considering all

contributions to the field as spherically symmetrical. Thus

if some electron (such as a p electron) gives rise to a charge
distribution which is not spherically symmetrical, this is averaged
over all directions. Finally, the simple product of Equation
30-2 is used for the wave function for the whole atom. As we
have seen, this does not have the correct symmetry required by
Pauli's principle. The error due to this involves the interchange

energies of the electrons (Sec. 32c).

32b. Relation of the Self-consistent Field Method to the

Variation Principle. If we choose a variation function of the

form

<t>
= w(l) t*0(2)

-

u,(N) (32-1)

and determine the functions uf (i) by varying them individually

until the variational integral in Equation 26-1 is a minimum,

then, as shown in Section 26a, these are the best forms for the

functions Uf(i) to use in a wave function of this product type for

the lowest state. Neglecting the fact that Hartree averages

all fields to make them spherically symmetrical, we shall now
show 1 that the variation-principle criterion is identical, for this

type of
<t>,

with the criterion of the self-consistent field. If

we keep each Uf(i) normalized, then f<t>*<t>dr
= 1 and

E = JVff^dr. (32-2)

The operator H may be written as

H - H< + (32
-
3)

with

1 J. C. SLATER, Phys. Rev. 35, 210 (1930); V. FOCK, Z. /. Phys. 61, 126

(1930).
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Using this and the expression for
<t>

in Equation 32-1, we obtain

2c *
({)HiU[(i)dT

. +
j

r

f* f* />2

fry. (32-5)
n/

t,J>t"

The variation principle can now be applied. This states that

the best form for any function U[(i) is the one which makes E
a minimum (keeping the function normalized). For this mini-

mum, a small change bu^(i) in the form of Uf(i) will produce no

change in J5J; that is 8E = 0.

The relation between 8u^(i) and dE is

BE = 5 lu?(i)HiUt(i)dTi +

^v r r e 2

> 5 I I u?(i)u?(j) Ut(i)ue(j)dTidTj, (32-6)
^-J I I ftf

c/ */

y

in which the prime on the summation sign indicates that the

term with j = i is not included. Let us now introduce the new

symbol F;, defined by the equation

(32-7)

or

Fi = Hi +
in which

Fi is an effective Hamiltonian function for the ith electron, and

Vi the effective potential-energy function for the ith electron

due to its interaction with the other electrons in the atom.

Using the symbol Fi, we obtain as the condition that E be sta-

tionary with respect to variation in u^(i) the expression (Eq.

32-6)

- 0-
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A similar condition holds for each of the N one-electron functions

Let us now examine the criterion used in the method of the

self-consistent field. In this treatment the wave function

Uf(i) is obtained as the solution of the wave equation

(i)
=

0, (32-10)

or, introducing the symbol F i9

FiUf(i) = e.ur (i). (32-11)

We know, however, that a normalized function u^(i) satisfying

this equation also satisfies the corresponding variational equation

b^(i)F^(i)dr v
= 0. (32-12)

Equations 32-9 and 32-12 are identical, so that by using the

variation method with a product-type variation function we
obtain the same single-electron functions as by applying the

criterion of the self-consistent field.

32c. Results of the Self-consistent Field Method. Hartree

and others have applied the method of the self-consistent field

to a number of atoms and ions. In one series of papers
1 Hartree

has published tables of values of single-electron wave functions

for Cl~, Cu+
,
K+

,
and Rb^. These wave functions, as given,

are not normalized or mutually orthogonal, but values of the

normalizing factors are reported. For these atoms the total

energy has not been calculated, although values of the individual

t's are tabulated. (The sum of these is not equal to the total

energy, even if interchange is neglected.) For 0,
+

,
O++

,
and

O4"4"4
",
Hartree and Black 2 have given not only the wave functions

but also the total energies calculated by inserting these single-

electron wave functions into a determinant such as Equation
30-7 and evaluating the integral E'= f\l/*H\l/dr.

Several other applications
3 have been made of this method and

a considerable number are now in progress. Slater 4 has taken

Hartree's results for certain atoms and has found analytic expres-

1 D. R. HARTREE, Proc. Roy. Soc. A 141, 282 (1933); A 143, 506 (1933).
2 D. R. HARTREE and M. M. BLACK, Proc. Roy. Soc. A 139, 311 (1933).
3 F. W. BROWN, Phys. Rev. 44, 214 (1933); F. W. BROWN, J. H. BARTLETT,

JR., and C. G. DUNN, Phys. Rev. 44, 290 (1933); J. MC-DOUGALL, Proc. Roy.
Soc. A 138, 550 (1932); C. C. TORRANCE, Phys. Rev. 46, 388 (1934).

4 J. C. SLATER, Phys. Rev. 42, 33 (1932).
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sions for the single-electron wave functions which fit these results

fairly accurately. Such functions are of course easier to use than

numerical data.

The most serious drawback to Hartree's method is probably
the neglect of interchange effects, i.e., the use of a simple produet-

60i

Fm. 32-1. The electron distribution function D for the normal rubidium

atom, as calculated: I, by Hartree's method of the self-consistent field; II, by the

screening-constant method; and III, by the Thomas-Fermi statistical method.

type wave function instead of a properly antisymmetric one.

This error is partially eliminated by the procedure of Hartree

and Black described above, but, although in that way the energy

corresponding to a given set of functions %(fc) is properly calcu-

lated, the functions u$(k) themselves are not the best obtainable

because of the lack of antisymmetry of $. Fock 1 has considered

this question and has given equations which may be numerically

solved by methods similar to Hartree's, but which include inter-

change. So far no applications have been made of these, but

several computations are in progress.
2

Figures 32-1, from Hartree, shows the electron distribution

function for Rb+ calculated by this method, together with those

given by other methods for comparison.

1 V. FOCK, Z. f. Phys. 61, 126 (1930).

'See D. R. HABTBBB and W. HARTREE, Proc. Roy. Sac. A 150, 9 (1936).
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Problem 32-1. (a) Obtain an expression for the potential due to an

electron in a hydrogenlike Is orbital with effective atomic number Z' =
2 KG- (&) Using this result, set up the wave equation -for one electron in a

helium atom in the field due to the nucleus and the other electron (assumed

to be represented by the wave function mentioned above). Solve the wave

equation by the method of difference equations (Sec. 27d), and compare
the resultant wave function with that chosen initially.

33. OTHER METHODS FOR MANY-ELECTRON ATOMS

Besides the methods discussed in the previous sections there

are others yielding useful results, some of which will be briefly

outlined in the following sections. Several methods have been

proposed which are beyond the scope of this book, notably the

Dirac^Van Vleck 2 vector model, which yields results similar to

those given by the method of Slater of Section 30.

33a. Semi-empirical Sets of Screening Constants. One of the

methods mentioned in Section 316 consists in building up an

approximate wave function for an atom by the use of hydrogen-
like single-electron functions with effective nuclear charges

determined by the variation method. Instead of giving the

effective atomic number Z', it is convenient to use the difference

between the true atomic number and the effective atomic num-

ber, this difference being called the screening constant. Pauling
3

has obtained sets of screening constants for all atoms, not by
the application of the variation method (which is too laborious),

but by several types of reasoning based in part on empirical

considerations, involving such quantities as x-ray term values

and molecular refraction values. It is not< to be expected
that wave functions formed in this manner will be of very great

accuracy, but for many purposes they are sufficient and for many
atoms they are the best available! The results obtained for

Rb+ are shown in Figure 32-1.

Slater4 has constructed a similar table, based, however, on

Zener's variation-method calculations for the first ten elements

(Sec. 316). His screening constants are meant to be used in

1 P. A. M. DIBAC, "The Principles of Quantum Mechanics," Chap. XI.
1 J. H. VAN VLECK, Phys. Rev. 46, 405 (1934).
8 L. PAULING, Proc. Roy. Soc. A 114, 181 (1927); L. PAULINO and J.

SHERMAN, Z. f. Krist. 81, 1 (1932).
4 J. C. SLATER, Phys. Rev. 36, 57 (1930).
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functions of the type r
n
-e~z

'
T instead of in hydrogenlike func-

tions, the exponent n' being an effective quantum number.
A discussion of an approximate expression for the wave func-

tion in the outer regions of atoms and ions and its use in the

treatment of various physical properties (polarizability, ioniza-

tion potentials, ionic radii, etc.) has been given by Wasastjerna.
1

33b. The Thomas-Fermi Statistical Atom. In treating a

system containing a large number of particles statistical methods

are frequently applicable, so that it is natural to see if such

methods will give approximate results when applied to the

collection of electrons which surround the nucleus of a heavy
atom. Thomas 2 and Fermi 3 have published such a treatment.

In applying statistical mechanics to an electron cloud, it was

recognized that it is necessary to use the Fermi-Dirac quantum
statistics, based on the Pauli exclusion principle, rather than

classical statistics, which is not even approximately correct for

an electron gas The distinctions between these have been men-
tioned in Section 296 and will be further discussed in Section 49.

The statistical treatment of atoms yields electron distributions

that are surprisingly good in view of the small number of electrons

involved. These results have been widely used for calculating

the scattering power of an atom for z-rays and for obtaining an

initial field for carrying out the self-consistent-field computations
described in the previous section. However, the Thomas-Fermi

electron distribution does not show the finer features, such as

the concentration of the electrons into shells, which are character-

istic of the more refined treatments. Figure 32-1 shows how the

Thomas-Fermi results compare with Hartree's and Pauling's

calculations for Rb+ .

General References on Line Spectra

Introductory treatments:

L. PAULING and S. GOUDSMIT: "The Structure of Line Spectra," McGraw-
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H. E. WHITE: "Introduction to Atomic Spectra," McGraw-Hill Book

Company, Inc., New York, 1934.

1 J. A. WASASTJERNA, Soc. Scient. Fennica Comm. Phys.-Math.j vol. 6,

Numbers 18-22 (1932).

*L. H. THOMAS, Proc. Cambridge Phil Soc. 23, 642 (1927).
3 E. FERMI, Z. f. Phys. 48, 73; 49, 560 (1928).
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Cambridge University Press, 1935.
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R. F. BACHER and S. GOUDSMIT: "Atomic Energy States," McGraw-
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CHAPTER X

THE ROTATION AND VIBRATION OF MOLECULES

The solution of the wave equation for any but the simplest
molecules (some of which are discussed in Chap. XII) is a very
difficult problem. However, the empirical results of molecular

spectroscopy show that in many cases the energy values bear a

simple relation to one another, such that the energy of the

molecule (aside from translational energy) can be conveniently
considered to be made up of several parts, called the electronic

energy, the vibrational energy, and the rotational energy.

This is indicated in Figure 34-1, showing some of the energy
levels for a molecule of carbon monoxide, as calculated from the

observed spectral lines by the Bohr frequency rule (Sec. 5a).

It is seen that the energy levels fall into widely separated

groups, which are said to correspond to different electronic states

of the molecule. For a given electronic state the levels are

again divided into groups, which follow one another at nearly

equal intervals. These are said to correspond to successive

states of vibration of the nuclei. Superimposed on this is the

fine structure due to the different states of rotation of the mole-

cule, the successive rotational energy levels being separated by
larger and larger intervals with increasing rotational energy.

This simplicity of structure of the energy levels suggests that it

should be possible to devise a method of approximate solution

of the wave equation involving its separation into three equa-

tions, one dealing with the motion of the electrons, one with

the vibrational motion of the nuclei, and one with the rotational

motion of the nuclei. A method of this character has been

developed and is discussed in the following section. The

remaining sections of this chapter are devoted to the detailed

treatment of the vibrational and rotational motion of molecules

of various types.

34. THE SEPARATION OF ELECTRONIC AND NUCLEAR MOTION

By making use of the fact that the mass of every atomic nucleus

is several thousand times as great as the mass of an electron,

259
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Born and Oppenheimer
1 were able to show that an approximate

solution of the complete wave equation for a molecule can be
obtained by first solving the wave equation for the electrons

cm"
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FIG. 34r-l. Energy levels for the carbon monoxide molecule. On the left are
shown various electronic levels, with vibrational fine structure for the normal
state, and on the right, with one hundred fold increase of scale, the rotational
fine structure for the lowest vibrational level.

alone, with the nuclei in a fixed configuration, and then solving
a wave equation for the nuclei alone, in which a characteristic

energy value of the electronic wave equation, regarded as a
1 M. BOKN and J. R. OPPBNHBIMBB, Ann. d. Phya. 84, 457 (1927).
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function of the internuclear distances, occurs as a potential

function. Even in its simplest form the argument of Born and

Oppenheimer is very long and complicated. On the other

hand, the results of their treatment can be very simply and

briefly described. Because of these facts, we shall content

ourselves with describing their conclusions in detail.

The complete wave equation for a molecule consisting of r

nuclei and s electrons is

y-i t-i

in which Mt is the mass of the jth nucleus, m the mass of each

electron, v,
? the Laplace operator in terms of the coordinates

of the jth nucleus, and v ? the same operator for the ith electron.

V is the potential energy of the system, of the form

_!_ ,

the sums including each pair of particles once. Here Z/ is the

atomic number of the jth nucleus.

Let us use the letter to represent the 3r coordinates of the

r nuclei, relative to axes fixed in space, and the letter x to repre-

sent the 3s coordinates of the s electrons, relative to axes deter-

mined by the coordinates of the nuclei (for example, as described

in Section 48). Let us also use the letter v to represent the

quantum numbers associated with the motion of the nuclei,

and n to represent those associated with the motion of the

electrons. The principal result of Born and Oppenheimer's

treatment is that an approximate solution ^,,(> ) of Equation

34-1 can be obtained of the form

The different functions \l>n (x, ), which may be called the

electronic wave functions, correspond to different sets of values

of the electronic quantum numbers n only, being independent

of the nuclear quantum numbers v. On the other hand, each of

these functions is a function of the nuclear coordinates as

well as the electronic coordinates x. These functions are
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obtained by solving a wave equation for the electrons alone, the

nuclei being restricted to a fixed configuration. This wave equation
is

- V(X 9 r, {)
= 0. (34-3)

t-1

uwj

z

It is obtained from the complete wave equation 34-1 by omitting

the terms involving v/> replacing ^ by tn (x, ), and writing

[/() in place of W. The potential function V(x, ) is the

complete potential function of

Equation 34-1. It is seen that

for any fixed set of values of

the s nuclear coordinates this

equation 3^-3, which we may
call the electronic wave equation,

is an ordinarywave equation for

the s electrons, the potential-

energy functionV being depend-
ent on the values selected for the

nuclear coordinates . In con-

sequence the characteristic elec-

PIG. 34-2. A typical function u(r) for tronic energy values Un and the
a diatomic molecule (Morse function). , . f ..

,

electronic wave functions \//n

will also be dependent on the values selected for the nuclear

coordinates; we accordingly write them as Un() and tn(x, ).

The first step in the treatment of a molecule is to solve this

electronic wave equation for all configurations of the nuclei.

It is found that the characteristic values Un() of the electronic

energy are continuous functions of the nuclear coordinates .

For example, for a free diatomic molecule the electronic energy

function for the most stable electronic state (n = 0) is a function

only of the distance r between the two nuclei, and it is a con-

tinuous function of r, such as shown in Figure 34-2.

Having evaluated the characteristic electronic energy /n()

as a function of the nuclear coordinates for a given set of

values of the electronic quantum numbers n by solving the

wave equation 34-3 for various nuclear configurations, we next

obtain expressions for the nuclear wave functions ^n ,v({). It

was shown by Born and Oppenheimer that these functions are
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the acceptable solutions of a wave equation in the nuclear

coordinates in which the characteristic electronic energy
function t/n() plays the role of the potential energy; that is,

the nuclear wave equation is

There is one such equation for each set of values of the electronic

quantum numbers n, and each of these equations possesses an

extensive set of solutions, corresponding to the allowed values

of the nuclear quantum numbers v. The values of Wn , v are the

characteristic energy values for the entire molecule; they depend
on the electronic and nuclear quantum numbers n and v.

The foregoing treatment can be formally justified by a pro-

cedure involving the expansion of the wave functions and

other quantities entering in the complete wave equation 34-1

as power series in (m /M) H
,
in which M is an average nuclear

mass. The physical argument supporting the treatment is

that on account of the disparity of masses of electrons and nuclei

the electrons carry out many cycles of their motion in the time

required for the nuclear configuration to change appreciably,

and that in consequence we are allowed to quantize their motion

for fixed configurations (by solving the electronic wave equation),

and then to use the electronic energy functions as potential energy
functions determining the motion of the nuclei.

When great accuracy is desired, and in certain cases when

only ordinary accuracy is required, it is necessary to consider the

coupling between electronic and nuclear motions, and especially

between the electronic angular momentum (either spin or

orbital) and the rotation of the molecule. We shall not discuss

these questions,
1 but shall treat only the simplest problems in

the complex field of molecular structure and molecular spectra

in the following sections. Some further discussion is also

given in Chapter XII and in Section 48 of Chapter XIV.

35. THE ROTATION AND VIBRATION OF DIATOMIC MOLECULES

In the previous section we have stated that an approximate
wave function for a molecule can be written as a product of two

1 See the references at the end of the chapter.
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factors, one a function of the electronic coordinates relative to

the nuclei and the other a function of the nuclear coordinates.

In this section we shall consider the nuclear function and the

corresponding energy levels for the simplest case, the diatomic

molecule, assuming the electronic energy function Un (r) to be

known.

35a. The Separation of Variables and Solution of the Angular

Equations. The wave equation for the rotation and vibration

of a diatomic molecule (Eq. 34-4) has the form

in which \[/n>v
= $n , v (x\, y\ y Zi, x 2 , y^ z2) is the wave function for

the nuclear motion, Mi and M2 are the masses of the two nuclei,

and

v? =S+5+5' '- 1
'
2

' (35
~
2)

ar, y,, and Zi being the Cartesian coordinates of the ith nucleus

relative to axes fixed in space. Equation 35-1 is identical with

the wave equation for the hydrogen atom, the two particles

here being the two nuclei instead of an electron and a proton.
We may therefore refer to the treatment which has already
been given of this equation in connection with hydrogen. All

the steps are the same until the form for Un (r) is inserted into

the radial equation.

In Section 18a we have seen that Equation 35-1, expressed in

terms of the Cartesian coordinates of the two particles, can be

separated into two equations, one describing the translational

motion of the molecule and the other its internal motion. The
latter has the form

0, (35-3)

in which
/x, the reduced mass, is given by the equation
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and r, #, $ are polar coordinates of the second nucleus relative to

the first as origin. In Section 18a it was also shown that this

equation can be separated into three equations in the three

variables <p, #, and r, respectively. The solution^ of the <p and $

equations, which are obtained in Sections 186, 18c, and 19, are

(35-5)V ^7T

and

in which P^cos #) is an associated Legendre function (Sec. 196).

<i> and are the <p and & factors, respectively, in the product
function

iKr, 0, ?) = #(r)e(i)*k>). (35-7)

Instead of the azimuthal quantum number I, used for the hydro-

gen atom, we have here adopted the letter K, and for the magnetic

quantum number m we here use M, in agreement with the usual

notation for molecular spectra. Both M and K must be integers,

for the reasons discussed in Sections 186 and 18c, and, as there

shown, their allowed values are

K =
0, 1, 2,

- -

;
M = -K, -K + 1, ,

K -
1, K.

(35-8)

Just as in the case of hydrogen, the quantum numbers M and K
represent angular momenta (see also Sec. 52), the square of the

total angular momentum due to the rotation of the molecule 1

being

K(K + !),, (35-9)

while the component of this angular momentum in any specially

chosen direction (taken as the z direction) is

M~ (3&-10)

In Section 40d it will be shown that dipole radiation is emitted

or absorbed only for transitions in which the quantum number

1 There may be additional angular momentum due to the electrons.
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K changes by one unit; i.e., the selection rule for K is

AJ = 1.

Likewise, the selection rule for M is

AM = or 1.

The energy of the molecule does not depend on M (unless there

is a magnetic field present), so that this rule is not ordinarily

of importance in the interpretation of molecular spectra.

The equation for R(r) (Eq. 18-26) is

(35-11)

in which for simplicity we have omitted the subscripts n and v.

This may be simplified by the substitution

R(r) = s(r), (35-12)

which leads to the equation

d*S
,

^r2 I
I ~2 I J,2 I

rr ^v/j |~ vr. (35-13;

35b. The Nature of the Electronic Energy Function. The
solution of the radial equation 35-13 involves a knowledge of

the electronic energy function U(r) discussed in Section 34. The
theoretical calculation of U(r) requires the solution of the wave

equation for the motion of the electrons, a formidable problem
which has been satisfactorily treated only for the very simplest

molecules, such as the hydrogen molecule (Sec. 43). It is

therefore customary to determine U(r) empirically by assuming
some reasonable form for it involving adjustable parameters
which are determined by a comparison of the observed and calcu-

lated energy levels.

From the calculations on such simple molecules as the hydrogen
molecule and from the experimental results, we know that

U(r) for a stable diatomic molecule is similar to the function

plotted in Figure 34-2. When the atoms are very far apart

(r large), the energy is just the sum of the energies of the two

individual atoms. As the atoms approach one another there
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is for stable states a slight attraction which increases with

decreasing r, as is shown by the curvature of U in Figure 34-2.

For stable molecules, U must have a minimum value at the

equilibrium separation r = re . For smaller values of r, U rises

rapidly, corresponding to the high repulsion of atoms "in contact."

For most molecules in their lower states of vibration it will be

found that the wave function has an appreciable value only in a

rather narrow region near the equilibrium position, this having
the significance that the amplitude of vibration of most molecules

is small compared to the equilibrium separation. This is impor-
tant because it means that for these lower levels the nature of

the potential function near the minimum is more important than

its behavior in other regions.

However, for higher vibrational levels, that is, for larger ampli-

tudes of vibration, the complete potential function is of impor-
tance. The behavior of U in approaching a constant value for

larger values of r is of particular significance for these higher
levels and is responsible for the fact that if sufficient energy is

transferred to the molecule it will dissociate into two atoms.

In the following sections two approximations for U(r) will be

introduced, the first of which is very simple and the second

somewhat more complicated but also more accurate.

36c. A Simple Potential Function for Diatomic Molecules.

The simplest assumption which can be made concerning the force

between the atoms of a diatomic molecule is that it is proportional
to the displacement of the internuclear distance from its equilib-

rium value r e . This corresponds to the potential function

U(r) = Y2k(r - r e)\ (35-14)

which is plotted in Figure 35-1. k is the force constant for the

molecule, the value of which can be determined empirically from

the observed energy levels. A potential-energy function of this

type is called a Hooke's-law potential energy function.

It is obvious from a comparison of Figures 34r-2 and 35-1

that this simple function is not at all correct for large internuclear

distances. Nevertheless, by a proper choice of k a fair approxi-

mation to the true U(r) can be achieved in the neighborhood
of r = re . This approximation corresponds to expanding the

true U(r) in a Taylor series in powers of (r r) and neglecting

all powers above the second, a procedure which is justified only
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for small values of r re . The coefficient of (r re) (that is,

the constant term) in this expansion can be conveniently set

equal to zero without loss of generality so far as the solution

of the wave equation is concerned. The linear term in the

u(r)

Fia. 36-1. Hooke's-law potential function as an approximation to U (r).

expansion vanishes, inasmuch as U(r) has a minimum at r = r
,

---
(r r)

2
.and so the series begins with the term ~ -7-5

Z\ (tr

Comparison with Equation 35-14 shows that the force constant

i*k is equal to
\

Insertion of this form for U(r) into the radial equation 35-13

yields the equation

(35-15)

which may be transformed by the introduction of the new inde-

pendent variable p = r re (the displacement from the equilib-

rium separation) into the equation

X(1C + 1)\ _= 0.

Since the approximation which we have used for U(r) is good only

for p small compared to r, it is legitimate to introduce the

expansion
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\
r

a step which leads to the result

=
0, (35-16)

in which powers of p/r9 greater than the second have been

neglected, and the symbol <r has been introduced, with

and I e nr*. I e is called the equilibrium moment of inertia of

the molecule.

By making a suitable transformation p = f + a, we can

eliminate the term containing the first power in the independent

variable, obtaining thereby an equation of the same form as

Equation 11-1, the wave equation for the harmonic oscillator,

which we have previously solved. It is easily verified that the

proper value for a is

K(K + l)<rr e

3K(K

and that the introduction of this transformation into Equation
35-16 yields the equation

-
fc + 3K(K + 1) f

2
-S = 0. (35-18)

We seek the solutions of this equation which make \l/(r, #, <p) of

Equation 35-7 a satisfactory wave function. This requires

that S vanish for r = and r = oo
,
the former condition entering

because of the relation R = -S. We know the solutions of the
r

equation which vanish for = oo and f = + oo
,
since for these

boundary conditions the problem is analogous to that of the

linear harmonic oscillator (Sec. 11). Because of the rapid
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decrease in the harmonic oscillator functions outside of the

classically permitted region (see Fig. 11-3), it does not introduce

a serious error to consider that the two sets of boundary conditions

are practically equivalent, so that as an approximation we may
use the harmonic oscillator wave functions for the functions S.

The energy levels are, therefore, using the results of Section

lla,

Wv .K = K(K + 1),
- -W+^-> +

(
+
1)*,

(35-19)
in which

and v is the vibrational quantum number (corresponding to the

quantum number n for the harmonic oscillator), which can take

on the values 0, 1, 2, . The functions S(f) are (Sec. 11)

(35-21)

in which a =
4ar*iJ.v'e/h and f = p o=r r e a, and // is

the vth Hermite polynomial.
The values of k, rf ,

and <r for actual molecules are of such

magnitudes that the expression for W can be considerably simpli-

fied without loss of accuracy by the use of the expansions

3K(K
. _ ~

Introducing these into Equation 35-19, we obtain for W the

expression

in which only the first terms of the expansions have been used

and the symbol v e is given by
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.
= ^* (35-22)

Replacing k by its expression in terms of v e and introducing

the value of Equation 35-17 for <r, we finally obtain for W the

expression

K(K +D. - -. (35-23)

The first term is evidently the vibrational energy of the mole-

cule, considered as a harmonic oscillator. The second term is

the energy of rotation, assuming that the molecule is a rigid

body,
1 while the third term is the correction which takes account

of the stretching of the actual, non-rigid molecule due to the

rotation. The terms of higher order are unreliable because

of the inaccuracy of the assumed potential function.

The experimental data for most molecules fit Equation 35-23

fairly well. For more refined work additional correction terms

are needed, one of which will be obtained in the next section.

35d. A More Accurate Treatment. The Morse Function.

The simple treatment which we have just given fails to agree

with experiment in that it yields equally spaced levels, whereas

the observed vibrational levels show a convergence for increasing

values of v. In order to obtain this feature a potential function

U(r) is required which is closer to the true U(r) described in

1 This is seen by allowing k to become infinite, causing the third term to

vanish (because pe >). A rigid molecule would have no vibrationai

energy, so the first term would become an additive constant. The rigid

rotator is often discussed as a separate problem, with the wave equation

1 d ( d--
(
sin t?

sin tf d#\ d

1 dV 87T 2/
+--- + --HV =

0, (35-24)
sin 2 & dv* h* .

the solutions of which are ^ = &MM&KM (tf), in which <I> and are given by
h2

Equations 35-5 and 35-6. The energy levels are WK = K(K + 1)
-

:
OTT2/

The rigid rotator is of course an idealization which does not occur in nature.

Another idealized problem is the rigid rotator in a plane, for which the

wave equation is

dV Sir
2/

The solutions are ^ = sin M<p and ^ = cos M<p, M =
0, 1, 2, ,

and
the energy levels are WM = MV/S^I (Sec. 25a).
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Section 356, especially with regard to its behavior for large

values of r.

Morse 1

proposed a function of the form

f/(r) = D{1 - e-**-"M 2
, (35^26)

which is plotted in Figure 34r-2. It has a minimum value of

zero at r = re and approaches a finite value D for r large. It

therefore agrees with the qualitative considerations of Section 356

except for its behavior at r = 0. At this point the true U(r)

is infinite, whereas the Morse function is finite. However, the

Morse function is very large at this point, and this deficiency

is not a serious one.

With the introduction of this function, the radial equation

35-13 becomes

2Z)6-<r-r ))
U = o. (35-27)

If we make the substitutions

y = -<".> and A = K(K + l)2> (35-28)

the radial equation becomes

ydy a2

The quantity r2/r
2 may be expanded in terms of y in the following

way:
2

? /n
\

~

+ -

, (35^30)

the series being the Taylor expansion of the second expression
in powers of (y 1). Using the first three terms of this expan-
sion in Equation 35-29 we obtain the result

1 P. M. MORSE, Phys. Rev. 34, 57 (1929).
1 This treatment is due to C. L. Pekeris, Phys. Rev. 46, 98 (1934). Morse

solved the equation for the case K = only.
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d*S IdS

dy*
+
ydy

in which

- D -
CQ 2D -

,2 I

- D - C2\S =
0,

(35-31)

The substitutions

(35-32)

(35-33)

6 2 = -

simplify Equation 35-31 considerably, yielding the equation

dz*

in which

(35-35)

Equation 35-34 is closely related to the radial equation 18-37

of the hydrogen atom and may be solved in exactly the same
manner. If this is done, it is found that it is necessary to

restrict v to the values 0, 1, 2, in order to obtain a poly-
nomial solution. 1 If we solve for W by means of Equations 35-35

and the definitions of Equations 35-33, 35-32, and 35-28, we
obtain the equation

(D ~

1 The solutions for v integral satisfy the boundary conditions F > as

_> oo instead of as r (Sec. 36c).
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By expanding in terms of powers of ci/D and c2/Z>, this relatior

may be brought into the form usually employed in the study ol

observed spectra; namely,

K(K

DJP(K + I)
2 -

.( + Y2)K(K + 1), (35-36)

in which c is the velocity of light, and 1

a J2D* =
3SVT
hvec=
40'

hBe
=

D e
= -

(35-37J

For nearly all molecules this relation gives very accurate

values for the energy levels; for a few molecules only is it neces-

sary to consider further refinements.

We shall not discuss the wave functions for this problem,

They are given in the two references quoted.

Problem 35-1. Another approximate potential function which has beer

used for diatomic molecules 2
is

Obtain the energy levels for a diatomic molecule with such a potential func-

tion, using the polynomial method. (Hint: Follow the procedure of Sec. IS

closely.) Expand the expression for the energy so obtained in powers ol

(K + I)
2 - and compare with Equation 35-23. Also obtain the positioi

A1
2

>

of the minimum of U(r) and the curvature of U(r) at the minimum.
Problem 35-2. Solve Equation 35-35 for the energy levels.

1 The symbol o> is often used in place of ?.
2 E. FUES, Ann. d. Phys. 80, 367 (1926).
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36. THE ROTATION OF POLYATOMIC MOLECULES

The straightforward way to treat the rotational and vibrational

motion of a polyatomic molecule would be to set up the wave

equation for ^n,v() (Eq. 34-4), introducing for C/n() an expres-
sion obtained either by solution of the electronic wave equation
34-3 or by some empirical method, and then to solve this nuclear

wave equation, using some approximation method if necessary.
This treatment, however, has proved to be so difficult that it is

customary to begin by making the approximation of neglecting

all interaction between the rotational motion and the vibrational

motion of the molecule. 1 The nuclear wave equation can then

be separated into two equations, one, called the rotational wave

equation, representing the rotational motion of a rigid body.
In the following paragraphs we shall discuss this equation,

first for the special case of the so-called symmetrical-top molecules,

for which two of the principal moments of inertia are equal

(Sec. 36a), and then for the unsymmetrical-top molecules, for

which the three principal moments of inertia are unequal (Sec.

366). The second of the two equations into which the nuclear

wave equation is separated is the vibrational wave equation,

representing the vibrational motion of the non-rotating molecule.

This equation will be treated in Section 37, with the usual

simplifying assumption of Hooke's-law forces, the potential

energy being expressed as a quadratic function of the nuclear

coordinates.

36a. The Rotation of Symmetrical-top Molecules. A rigid

body in which two of the three principal moments of inertia2

1
See, however, C. ECKART, Phys. Rev. 47, 552 (1935); J. H. VAN VLECK,

ibid. 47, 487 (1935); D. M. DENNISON and M. JOHNSON, ibid. 47, 93 (1935).
2 Every body has three axes the use of which permits the kinetic energy

to be expressed in a particularly simple form. These are called the principal

axes of inertia. The moment of inertia about a principal axis is defined by
the expression /pr

2
dr, in which p is the density of matter in a given volume

element dr, r is the perpendicular distance of this element from the axis iii

question, and the integration is over the entire volume of the solid. For *,

discussion of this question see J. C. Slater and N. II. Frank,
" Introduction

to Theoretical Physics," p. 94, McGraw-Hill Book Company, Inc., New
York, 1933.

In case that a molecule possesses an n-fold symmetry axis with n greater

than 2 (such as ammonia, with a three-fold axis), then two principal moments
of inertia about axes perpendicular to this symmetry axis are equal, and the



276 THE ROTATION AND VIBRATION OF MOLECULES [X-36a

are equal is called a symmetrical top. Its position in space is

best described by the use of the three Eulerian angles #, <p, and x
shown in Figure 36-1. tf and v are the ordinary polar-coordinate

angles of the axis of the top while x (usually called ^) is the

angle measuring the rotation about this axis.

Since we have considered only assemblages of point particles

heretofore, we have not given the rules for setting up the wave

equation for a rigid body. We shall not discuss these rules

here 1 but shall take the wave equation for the symmetrical top

Fia. 36-1. Diagram showing Eulerian angles.

from the work of others. 2
Using C to represent the moment of

inertia about the symmetry axis and A the two other equal

moments of inertia, this wave equation is

molecule is a symmetrical top. A two-fold axis does not produce a symmet-

rical-top molecule (example, water). If the molecule possesses two or more

symmetry axes with n greater than 2, it is called a spherical-top molecule,

all three moments of inertia being equal.
1 Since the dynamics of rigid bodies is based on the dynamics of particles,

these rules must be related to the rules given in Chapter IV. For a dis-

cussion of a method of finding the wave equation for a system whose Hamil-

tonian is not expressed in Cartesian coordinates, see B. Podolsky, Phys.

Rev. 32, 812 (1928), and for the specific application to the symmetrical

top see the references below.
2 F. REICHE and H. RADEMACHEB, Z. f. Phys. 39, 444 (1926); 41, 453

(1927); R. DE L. KRONIQ and I. I. RABI, Phys. Rev. 29, 262 (1927). D. M.

DENNISON, Phys. Rev. 28, 318 (1926), was the first to obtain the energy

levels for this system, using matrix mechanics rather than wave mechanics.
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1 di

The angles x and <p do not occur in this equation, although
derivatives with respect to them do. They are therefore cyclic

coordinates (Sec. 17), and we know that they enter the wave
function in the following manner:

^ = Q(&)e iMlf>eiKx, (36-2)

in which M and K have the integral values 0, 1, 2, .

Substitution of this expression in the wave equation confirms

this, yielding as the equation in #

1 d

sin & c

2
COS

2
KM T^-Wf^

= 0. (36-3)

We see that $ = and # = w are singular points for this equation

(Sec. 17). It is convenient to eliminate the trigonometric

functions by the change of variables

at the same time introducing the abbreviation

the result being

The singular points, which are regular points, have now been

shifted to the points and 1 of x, so that the indicial equation
must be obtained at each of these points. Making the sub-

stitution T(x) = x'G(x), we find by the procedure of Section 17

that s equals %\K M|, while the substitution

T(x) =
(1
- xYH(l -

x)
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yields a value of %\K + M\ for s
f
. Following the method of

Section 18c we therefore make the substitution

9(tf)
= T(x) = XW*-*(1 - x)W*+*V(x), (36-7)

which leads to the equation
1 for F

(a
-

0*) + 7F =
0, (36-8)

in which

a = \K
- M\ + I,

ft
= \K + M \ + \K

- M\ + 2.

and

7 - \ + K* - (Yt\K + M\+ yz \K - M\)Q4\K + M\ +
YZ \K -M\ + i).

We can now apply the polynomial method to this equation by

substituting the series expression

F(x) =

in Equation 36-8. The recursion formula which results is

For this to break off after the jth term (the series is not an

acceptable wave function unless it terminates), it is necessary

for the numerator of Equation 36-9 to vanish, a condition which

leads to the equation for the energy levels

fc (J(J + 1) / 1 1\\Wj 'K =
* +K ~

J (36
"
10)

in which

J = j + M\K + M\ + Y2 \K - M\, (36-11)

that is, J is equal to, or larger than, the larger of the two quan-
tities \K\ and \M\. The quantum number J is therefore zero or a

positive integer, so that we have as the allowed values of the

three quantum numbers

J = 0, 1, 2, , )

K =
0, 1, 2,

- -

,
J\ (36-12)

M =0, 1, 2,
- -

, J.)

1 This equation is well known to mathematicians as the hypergeomelric

equation.
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A2

It can be shown that J(J + 1) j-; is the square of the total

angular momentum, while Kh/2ir is the component of angular
momentum along the symmetry axis of the top and Mh/2w the

component along an arbitrary axis fixed in space.
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Fio. 3&-2. Energy-level diagram for symmetrical-top molecule, with A 2(7

and with .4. * J^C. Values of the quantum numbers / and K are given for

each level.

When K is zero, the expression for W reduces to that for the

simple rotator in space, given in a footnote in Section 35c. The

energy does not depend on M or on the sign of K, and hence

the degeneracy of a level with given J is 2J + 1 or 4J + 2, depend-

ing on whether K is equal to zero or not. The appearance
1 of

the set of energy levels depends on the relative magnitudes of

A and (7, as shown in Figure 3&-2.

1 For a discussion of the nature of these energy levels and of the spectral
lines arising from them, see D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).
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The wave functions can be constructed by the use of the

recursion formula 36-9. In terms of the hypergeometric
functions 1

F(a, 6; c; a;), the wave function is

i>jK*(&, <?, x) =

F(-J + y2p-l,J + y2p;l + \K- M\;x),

in which x = %(1 cos #) and

(2J+l)(J+y2\K+M\+y2 \K-M\)\

(j+y2\K+M\-y2 \K-M\)\)
In case that all three principal moments of inertia of a molecule

are equal, the molecule is called a spherical-top molecule (examples:

methane, carbon tetrachloride, sulfur hexafluoride). The energy

levels in this case assume a particularly simple form (Problem

36-2).

It has been found possible to discuss the rotational motion of

molecules containing parts capable of free rotation relative to

other parts of the molecule. Nielsen2 ha? treated the ethane

molecule, assuming the two methyl groups to rotate freely

relative to one another about the C-C axis, and La Coste 3 has

similarly discussed the tetramethylmethane molecule, assuming
free rotation of each of the four methyl groups about the axis

connecting it with the central carbon atom.

Problem 36-1. Using Equation 36-9, construct the polynomial F(x)

for the first few sets of quantum numbers.

Problem 36-2. Set up the expression for the rotational energy levels for

a spherical-top molecule, and discuss the degeneracy of the levels. Calcu-

late the term values for the six lowest levels for the methane molecule,

assuming the C-H distance to be 1 .06 A.

36b. The Rotation of Unsymmetrical-top Molecules. The
treatment of the rotational motion of a molecule with all three

principal moments of inertia different (called an unsymmetrical-

top molecule) is a much more difficult problem than that of the

preceding section for the symmetrical top. We shall outline a

1 The hypergeometric function is discussed in Whittaker and Watson,
"Modern Analysis," Chap. XIV.

* H. H. NIELSEN, Phys. Rev. 40, 445 (1932).

'L. J. B. LA COSTE. Phw. Rev. 46. 718 (1934).
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procedure which has been used with success in the interpretation
of the spectra of molecules of this type.

Let us write the wave equation symbolically as

Ht = W$. (36-15)

Inasmuch as the known solutions of the wave equation for a

symmetrical-top molecule form a complete set of orthogonal
functions (discussed in the preceding section), we can expand
the wave function \f/

in terms of them, writing

(36-16)
JKM

in which we use the symbol ĴKM to represent the symmetrical-top
wave functions for a hypothetical molecule with moments of

inertia A Q ,
BQ (

= AQ), and Co. If we now set up the secular

equation corresponding to the use of the series of Equation 36-16

as a solution of the unsymmetrical-top wave equation (Sec. 27a),

we find that the only integrals which are not zero are those

between functions with the same values of J and M, so that

the secular equation immediately factors into equations corre-

sponding to variation functions of the type
1

+J

K -- J

On substituting this expression in the wave equation 36-15,

we obtain the equation

(36-18)

in which for simplicity we have omitted the subscripts J and M,
the argument from now on being understood to refer to definite

values of these two quantum numbers. On multiplication by
^J,* and integration, this equation leads to the following set of

simultaneous homogeneous linear equations in the coefficients aK :

(36-19)

in which SLK has the value 1 for L = K and otherwise, and HLK
1 The same result follows from the observation that J and M correspond

to the total angular momentum of the system and its component along a

fixed axis in space (see Sec. 52, Chap. XV).
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represents the integral ^l*H^ Q
Kdr. This set of equations has a

solution only for values of W satisfying the secular equation

-J,-J W H-J,-J+I
-

H-J.J

//_/+!,_/ H-j+i,-j+\ W H-J+ i,j
= 0.

(36-20)

HJ,~J HJ,-J+I Hj tJ W
These values of W are then the allowed values for the rotational

energy of the unsymmetrical-top molecule. Wang 1 has evaluated

the integrals HLK and shown that the secular equation can

be further simplified. The application in the interpretation

of the rotational fine structure of spectra has been carried

out in several cases, including water,
2
hydrogen sulfide,

3 and

formaldehyde.
4

37. THE VIBRATION OF POLYATOMIC MOLECULES

The vibrational motion of polyatomic molecules is usually

treated with an accuracy equivalent to that of the simple dis-

cussion of diatomic molecules given in Section 35c, that is, with

the assumption of Hooke's-law forces between the atoms. When

greater accuracy is needed, perturbation methods are employed.

Having made the assumption of Hookers-law forces, we employ
the method of normal coordinates to reduce the problem to soluble

form. This method is applicable whether we use classical

mechanics or quantum mechanics. Inasmuch as the former

provides a simpler introduction to the method, we shall consider

it first.

37a. Normal Coordinates in Classical Mechanics. Let the

positions of the n nuclei in the molecule be described by giving

the Cartesian coordinates of each nucleus referred to the

equilibrium position of that nucleus as origin, as shown in Figure
37-1. Let us call these coordinates q{, q'^ , gjn . In terms

of them we may write the kinetic energy of the molecule in the

form

1 S. C. WANG, Phys. Rev. 34, 243 (1929). See also H. A. KRAMERS and

G. P. ITTMANN, Z. f. Phys. 53, 553 (1929); 68, 217 (1929); 60, 663 (1930);

O. KLEIN, Z. f. Phys. 58, 730 (1929); E. E. WITMER, Proc. Nat. Acad. Sri.

13, 60 (1927); H. H. NIELSEN, Phys. Rev. 38, 1432 (1931).

R. MECKE, Z. /. Phys. 81, 313 (1933).
8 P. C. CROSS, Phya. Rev. 47, 7 (1935).
4 G. H. DIEKE and G. B. KIBTIAKOWSKY, Phya. Rev. 46, 4 (1934).
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3n

283

(37-1)
t-1

in which M, is the mass of the nucleus with coordinate q(. By
changing the scale of the coordinates by means of the relation

i = 1, 2,
-

, 3n, (37-2)

we can eliminate the masses from the kinetic energy expression,

obtaining

T = ^fl. (37-3)

The potential energy V depends on the mutual positions of

the nuclei and therefore upon the coordinates #,. If we restrict

Origin

6

1 1

<*4*5*6

Origin

Origin

Fia. 37-1. Coordinates q{ . . . qt
'

n of atoms measured relative to equilibrium

positions.

ourselves to a discussion of small vibrations, we may expand
V as a Taylor series in powers of the g's,

(37-4)
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in which b,,- is given by

, _
" ~

and the subscript means that the derivatives are evaluated

at the point q\
=

0, # 2
=

0, etc. If we choose our zero of energy

so that V equals zero when g i; g2 ,
etc. are zero, then F is zero.

Likewise the second term is zero, because by our choice of coordi-

nate axes the equilibrium position is the configuration qi
=

0,

<72
=

0, etc., and the condition for equilibrium is

i = 1, 2, ,
3n. (37-5)

Neglecting higher terms, we therefore write

<?7, (37-6)

Using the coordinates q t ,
we now set up the classical equations

of motion in the Lagrangian form (Sec. Ic). In this case the

kinetic energy T
7

is a function of the velocities q* only, and the

potential energy V is a function of the coordinates qi only, and

in consequence the Lagrangian equations have the form

d(dT\
dV

dt\dqj
+

dqk

=
0, k =

1, 2,
-

,
3n. (37-7)

On introducing the above expressions for T and V we obtain the

equations of motion

ft + 5)M<
=

0, k =
1, 2, ,

3n. (37-8)
i

In case that the potential-energy function involves only squares

#? and no cross-products q vqj with i ^ j; that is, if b i} vanishes

for i ^ j, then these equations of motion can be solved at once.

They have the form

qk + bkkqk = 0, k =
1, 2, , 3n, (37-9)

the solutions of which are (Sec. la)

qk = q* sin (V^ + *), * =
1, 2, , 3n, (37-10)

in which the q%'s are amplitude constants and the 8k s phase
constants of integration. In this special case, then, each of the
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coordinates qk undergoes harmonic oscillation, the frequency

being determined by the constant bkk .

Now it is always possible by a simple transformation of

variables to change the equations of motion from the form
37-8 to the form 37-9; that is, to eliminate the cross-products
from the potential energy and at the same time retain the form

37-3 for the kinetic energy. Let us call these new coordinates

Qi(l =
1, 2, , 3n). In terms of them the kinetic and the

potential energy would be written

l (37-11)
i

and

V = l

A^\iQl (37-12)
i

and the solutions of the equations of motion would be

Qi = QJsin (V\it + 5i), I = 1, 2, ,
3rc. (37-13)

Instead of finding the equations of transformation from the

q's to the Q's by the consideration of the kinetic and potential

energy functions, we shall make use of the equations of motion.

In case that all of the amplitude constants Qi are zero except one,

Qi, say, then Qi will vary with the time in accordance with

Equation 37-13, and, inasmuch as the g's are related to the

Q's by the linear relation
3n

(37-H)

each of the q's will vary with the time in the same way, namely,

qk = A k sin (\/M + fii), k =
1, 2, ,

3n. (37-15)

In these equations A k represents the product Bk\Q\9
and X the

quantity Xi, inasmuch as we selected Q\ as the excited coordinate;

the new symbols are introduced for generality. On substituting

these expressions in the equations of motion 37-8, we obtain the

set of equations
3n

-\A k + ^b ikAi =
0, k =

1,2, ,
3n. (37-16)

i-l

This is a set of 3n simultaneous linear homogeneous equations

in the 3n unknown quantities A k . As we know well by this time
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(after Sees. 24, 26d, etc.), this set of equations possesses a solution

other than the trivial one AI = A 2 = =0 only when the

corresponding determinantal equation (the secular equation of

perturbation and variation problems) is satisfied. This equa-

tion is

11 X 612
' '

&l3n

621 022 X 2 3n n /Q7 1 ^xu - \OI-1IJ

In other words, Equation 37-15 can represent a solution of the

equations of motion only when X has one of the 3n values which

satisfy Equation 37-17. (Some of these roots may be equal.)

Having found one of these roots, we can substitute it in Equation
37-16 and solve for the ratios 1 of the A's. If we put

Au = BMQl (37-18)

and introduce the extra condition

M
= J

> (37-19)

in which the subscript I specifies which root \i of the secular

equation has been used, then we can determine the values of

the Bk i%, Q5 being left arbitrary.

By this procedure we have obtained 3n particular solutions

of the equations of motion, one for each root of the secular

equation. A general solution may be obtained by adding all

of these together, a process which yields the equations

3n

QJBfci sin (VXrf + Si). (37-20)

This solution of the equations of motion contains 6n arbitrary

constants, the amplitudes Q Q
t
and the phases 6j, which in

any particular case are determined from a knowledge of the

initial positions and velocities of the n nuclei.

We have thus solved the classical problem of determining the

positions of the nuclei as a function of the time, given any set

of initial conditions. Let us now discuss the nature of the

1 These equations are homogeneous, so that only the ratios of the A'a can

be determined. The extra condition 37-19 on the B's then allows them
to be completely determined.
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solution. As mentioned above, if we start the molecule vibrating
in such a way that all the Q's except one, say Q?, are zero, the

solution is

qk = QQ
iBkl sin (Vxl* + 50, k =

1, 2, , 3n, (37-21)

which shows that each of the nuclei carries out a simple harmonic

oscillation about its equilibrium position with the frequency

(37-22)

All of the nuclei move with the same frequency and the same

phase; that is, they all pass through their equilibrium positions

at the same time and reach

their positions of maximum
amplitude at the same time.

These amplitudes, however,
are not the same for the differ-

ent nuclei but depend on the

values of the BH'S and upon the

initial amplitude, which is

determined by Q?. A vibration

governed by Equation 37-21

and therefore having these prop-
erties is called a normal mode FIG. 37-2.One of the normal modes

of vibration of a symmetrical triatomic

of Vibration of the System (see molecule. Each of the atoms moves in

Fiff 372^ an<^ ou* al n8 a r&dial direction as shown

. . , by the arrows. All the atoms move with
It is not required, however, the same frequency and phase, and in this

that the nuclei have initial special case with the same amplitude.

amplitudes and velocities such that the molecule undergo such a

special motion. We can start the molecule off in any desired man-

ner, with the general result that many of the constants Q? will be

different from zero. In such a case the subsequent motion of

the nuclei may be thought of as corresponding to a superposition

of normal vibrations, each with its own frequency ^/\i/2ir and

amplitude Q. The actual motion may be very complicated,

although the normal modes of vibration themselves are fre-

quently quite simple.

The normal coordinates of the system are the coordinates Qi,

which we introduced in Equation 37-14. These coordinates

specify the configuration of the system just as definitely as the

original coordinates q*.
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The expansion of V given in Equation 37-4 is not valid except

when the nuclei stay near their equilibrium positions. That is,

we have assumed that the molecule is not undergoing transla-

tional or rotational motion as a whole. Closely related to this

is the fact, which we shall not prove, that zero occurs six 1 times

among the roots \i of the secular equation. The six normal

modes of motion corresponding to these roots, which are not

modes of vibration because they have zero frequency, are the

three motions of translation in the x, y, and z directions and

the three motions of rotation about the x, y, and z axes.

37b. Normal Coordinates in Quantum Mechanics. It can be

shown 2 that when the coefficients Bk i of Equation 37-14 are

determined in the manner described in the last section, the

introduction of the transformation 37-14 for the Qk's into the

expression for the potential energy yields the result

V =
(37-23)

that is, the transformation to normal coordinates has eliminated

the cross-products from the expression for the potential energy.

In addition, this transformation has the property of leaving the

expression for the kinetic energy unchanged in form;
3

i.e.,

T =
(37-24)

These properties of the normal coordinates enable us to treat the

problem of the vibrations of polyatomic molecules by the

methods of quantum mechanics.

The wave equation for the nuclear motion of a molecule is

y-i

in which \l/ represents the nuclear wave function ^n,i() of Equa-

1 This becomes five for linear molecules, which have only two degrees of

rotational freedom.
2 For a proof of this see E. T. Whittaker, "Analytical Dynamics,"

Sec. 77, Cambridge University Press, 1927.
3 A transformation which leaves a simple sum of squares unaltered is

called an orthogonal transformation.
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tion 34-4. In terms of the Cartesian coordinates q( previously
described (Fig. 37-1), we write

n 3n

By changing the scale of the coordinates as indicated by Equation
37-2 we eliminate the ATs, obtaining for the wave equation the

expression
3n

2|| + 1?^ - V)* = 0. (37-27)

i = l

We now introduce the normal coordinates Qi. The reader can

easily convince himself that an orthogonal transformation will

leave the form of the first sum in the wave equation unaltered,

so that, using also Equation 37-23, we obtain the wave equation
in the form

/=!

This equation, however, is immediately separable into 3n

one-dimensional equations. We put

t = WQi)WQ 2)
-

^n(Qan), (37-29)

and obtain the equations

each of which is identical with the equation for the one-dimen-

sional harmonic oscillator (Sec. lla). The total energy W is

the sum of the energies Wk associated with each normal coordi-

nate; that is,

3n

W =
JTP*. (37-31)
jfc-i

The energy levels of the harmonic oscillator were found in

Section lla to have the values (v + fyfihvo, where v is the quan-
tum number and v the classical frequency of the oscillator.

Applying this to the problem of the polyatomic molecule, we
see that
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W = W* = (* + ^)A"*' (37-32)
k k

in which vk is the quantum number (vk
=

0, 1, 2, ) and

the classical frequency of the fcth normal mode of vibration.

We have already seen (from Eq. 37-22) that

(37-33)

The energy-level diagram of a polyatomic molecule is therefore

quite complex. If, however, we consider only the fundamental

frequencies emitted or absorbed by such a molecule; that is, the

frequencies due to a change of only one quantum number vk

by one unit, we see that these frequencies are vi, *> 2 , , vzn \

that is, they are the classical frequencies of motion of the

molecule.

This type of treatment has been very useful as a basis for the

interpretation of the vibrational spectra of polyatomic molecules.

Symmetry considerations have been widely employed to simplify

the solution of the secular equation and in that connection the

branch of mathematics known as group theory has been very

helpful.
1

38. THE ROTATION OF MOLECULES IN CRYSTALS

In the previous sections we have discussed the rotation and

vibration of free molecules, that is, of molecules in the gas phase.

There is strong evidence 2 that molecules and parts of molecules

in many crystals can rotate if the temperature is sufficiently

high. The application
2 -

3 of quantum mechanics to this problem
has led to a clarification of the nature of the motion of a molecule

within a crystal which is of some interest. The problem is

closely related to that dealing with the rotation of one part of a

molecule relative to the other parts, such as the rotation of

methyl groups in hydrocarbon molecules. 4

1 C. J. BBBSTER, Z. f. Phys. 24, 324 (1924); E. WIGNER, Gottinger Nachr.

133 (1930); G. PLACZEK, Z. f. Phys. 70, 84 (1931); E. B. WILSON, JR.,

Phys. Rev. 46, 706 (1934); /. Chem. Phys. 2, 432 (1934); and others.

*L. PAULING, Phys. Rev. 36, 430 (1930). This paper discusses the

mathematics of the plane rotator in a crystal as well as the empirical evidence

for rotation.
8 T. E. STERN, Proc. Roy. Soc. A 130, 551 (1931).
4 E. TELLER and K. WEIGERT, Gdttinger Nachr. 218 (1933); J. E.

LENNARD-JONES and H. H. M. PIKE, Trans. Faraday Soc. 30, 830 (1934).
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The wave equation for a diatomic molecule in a crystal, con-

sidered as a rigid rotator, obtained by introducing V into the

equation for the free rotator given in a footnote of Section 35c, is

1

sin

1 S + TT OF - F)* -
0, (38-1)

sin # (

in which # and <p are the polar coordinates of the axis and 7 is

the moment of inertia of the molecule. The potential function V
is introduced as an approximate description of the effects of the

other molecules of the crystal upon the molecule in question.

2V -

e -+-

Fio. 38-1. Idealized potential function for a symmetrical diatomic molecule in

a crystal.

If the molecule being studied is made up of like atoms, such as

is 62 or H 2 , then a reasonable form to assume for V is

V = F (l
- cos 20), (38-2)

which is shown in Figure 38-1. Turning a symmetrical molecule

end for end does not change V, as is shown in the figure by the

periodicity of V with period w.

The wave equation 38-1 with the above form for V has been

studied by Stern,
1 who used the mathematical treatment given

by A. H. Wilson. 2 We shall not reproduce their work, although
the method of solution is of some interest. The first steps are

exactly the same as in the solution of the equation discussed in

Section 18c except that a three-term recursion formula is obtained.

The method of obtaining the energy levels from this three-term

formula is then similar to the one which is discussed in Section

42c, where a similar situation is encountered.

We have referred to the case of free rotation of methyl groups at the end of

Section 36a.
1 T. E. STERN, loc. cit.

1 A. H. WILSON, Proc. Roy. Soc. A 118, 628 (1928).
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The results obtained may best be described by starting with

the two limiting cases. When the energy of the molecule is

small compared with F (i.e., at low temperatures), then the

potential function can be regarded as parabolic in the neighbor-
hood of the minima and we expect, as is actually found, that the

energy levels will be those of a two-dimensional harmonic

oscillator and that the wave functions will show that the molecule

oscillates about either one of the two positions of equilibrium,

with little tendency to turn end over end. When the molecule

is in a state with energy large compared with F (i.e., at high

temperatures), the wave functions and energy levels approximate
those of the free rotator (Sec. 35c, footnote), the end-over-end

motion being only slightly influenced by the potential energy.

In the intermediate region, the quantum-mechanical treatment

shows that there is a fairly sharp but nevertheless continuous

transition between oscillation and rotation. In other words, for

a given energy there is a definite probability of turning end over

end, in sharp contrast with the results of classical mechanics,
which are that the molecule either has enough energy to rotate

or only enough to oscillate.

The transition between rotation and oscillation takes place

roughly at the temperature T = 2F /fc, where fc is Boltzmann's

constant. This temperature lies below the melting point for a

number of crystals, such as hydrogen chloride, methane,
and the ammonium halides, and is recognizable experimentally

as a transition point in the heat-capacity curve. For solid

hydrogen even the lowest energy level is in the rotational region,

a fact which is" of considerable significance in the application of

the third law of thermodynamics.

Problem 38-1. Considering the above system as a perturbed rigid rota-

tor, study the splitting of the rotator levels by the field, indicating by an

energy-level diagram the way in which the components of the rotator levels

begin to change as the perturbation is increased.
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CHAPTER XI

PERTURBATION THEORY INVOLVING THE TIME, THE
EMISSION AND ABSORPTION OF RADIATION, AND

THE RESONANCE PHENOMENON

39. THE TREATMENT OF A TIME-DEPENDENT PERTURBATION
BY THE METHOD OF VARIATION OF CONSTANTS

There have been developed two essentially different wave-

mechanical perturbation theories. The first of these, due to

Schrodinger, provides an approximate method of calculating

energy values and wave functions for the stationary states of a

system under the influence of a constant (time-independent)

perturbation. We have discussed this theory in Chapter VI.

The second perturbation theory, which we shall -treat in the

following paragraphs, deals with the time behavior of a system
under the influence of a perturbation; it permits us to discuss such

questions as the probability of transition of the system from one

unperturbed stationary state to another as the result of the

perturbation. (In Section 40 we shall apply the theory to

the problem of the emission and absorption of radiation.) The

theory was developed by Dirac. 1 It is often called the theory

of the variation of constants; the reason for this name will be

evident from the following discussion.

Let us consider an unperturbed system with wave equation

including the time

#0*0 = h

2in

the normalized general solution of which is

(39-2)

*P. A. M. DIRAC, Proc. Roy. Soc. A 112, 661 (1926); A 114, 243 (1927).
Less general discussions were also given by Schrddinger in his fourth 1926

paper and by J. C. Slater, Proc. Nat. Acad. Set. 13, 7 (1927).

294
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in which the an's are constants, with 2,a*an
=

1, and the

are the time-dependent wave functions for the stationary

states, the corresponding energy values being WQ> TF?, ,

Wnt Now let us assume that the Hamiltonian for the

actual system contains in addition to H (which is independent
of t) a perturbing term H', which may be a function of the time

as well as of the coordinates of the system.
1

(For example,
H f

might be zero except during the period t\ < t < h, the

perturbation then being effective only during this period.)

Since we desire to express our results in terms of the unperturbed
wave functions including the time, we must consider the Schrod-

inger time equation for the system. This equation is

<* + *'>*--3sir (39
-
3)

A wave function satisfying this equation is a function of the

time and of the coordinates of the system. For a given value

of t, say t
r

, ^f(t
f

) is a function of the coordinates alone. By
the general expansion theorem of Section 22 it can be represented

as a series involving the complete set of orthogonal wave functions

for the unperturbed system,

-,**, O, (39-4)

the symbol j(si, ,
ZN, t') indicating that t

f

is introduced

in place of t in the exponential time factors. The quantities

an are constants. For any other value of t a similar expansion
can be made, involving different values of the constants an .

A general solution of the wave equation 39-3 can accordingly

be written as

,
ZN, t)

= 2^*2(*i, -,**, 0, (39-5)

the quantities an (t) being functions of t alone, such as to cause SP

to satisfy the wave equation 39-3.

The nature of these functions is found by substituting the

expression 39-5 in the wave equation 39-3, which gives

1 H' might also be a function of the momenta pxlt ,
which would then

1 JU k d
be replaced by , ....

2m dxi
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The first and last terms in this equation cancel (by Eqs. 39-1 and

39-2), leaving

If we now multiply by ^* and integrate over configuration space,

noting that all terms on the left vanish except that for n m
because of the orthogonality properties of the wave functions,

we obtain

m =
0, 1, 2,

./
n=0

(39-6)

This is a set of simultaneous differential equations in the functions

a>m(t), by means of which these functions can be evaluated in

particular cases.

39a. A Simple Example. As an illustration of the use of the

set of equations 39-6, let us consider that at the time t =
we know that a system in which we are interested is in a particular

stationary state, our knowledge perhaps having been obtained

by a measurement of the energy of the system. The wave func-

tion representing the system is then ^, in which I has a particular

value. If a small perturbation H '
acts on the system for a short

time t'j Hf

being independent of t during this period, we may
solve the equations 39-6 by neglecting all terms on the right side

except that with n =
I] that is, by assuming that only the term

in ai(t) need be retained on the right side of these equations.

It is first necessary for us to discuss the equation for a\ itself.

This equation (Eq. 39-6 with m = I and an = for n ?* I) is

*& - -*>,
in which H'tt = J^*//Vdr, which can be integrated at once to

give

ai() = *-***&", ^ t ^ t', (39-7)
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the assumption being made that a* = 1 at the time t = 0.

This expression shows the way that the coefficient a\ changes

during the time that the perturbation is acting. During this

time the wave function, neglecting the terms with m 5^ Z, is

It will be observed that the time-dependent factor contains the

first-order energy W + H'
llt as given by the Schrodinger per-

turbation theory; this illustrates the intimate relation of the

two perturbation theories.

Now let us consider the remaining equations of the set 39-6,

determining the behavior of the coefficients am(f) with m 7* L

Replacing ai on the right side of 39-6 by its initial value 1

a/(0)
=

1, and neglecting all other an 's, we obtain the set of

approximate equations

dam (f) = ___2

dt

This can be written as__
do(0 = - H '

m i
e h dt

>

in which

(39-8)

and H'mi
is independent of

,
since we have considered H' to be

independent of t during the period <J / ^ V
,
and have replaced

the time-containing wave functions Mf* and ^? by the amplitude
functions $J* and \l/f and the corresponding time factors, the

latter being now represented explicitly by the exponential
functions. These equations can be integrated at once; on intro-

ducing the limits, and noting that a(0) =0 for m 7* I, we
obtain

2*i(Wm- Wi)t'

am (t')
=
H'J-'^^^^^

-, m*l, (39-9)

m which, it is remembered, the subscript I refers to the state

initially occupied and m to other states. In case that the time

t' is small compared with the time h/(Wm Wi), the expression
can be expanded, giving

1 The expression for ai(t) given by Equation 39-7 could be introduced in

place of cu(0) =
1, with, however, no essential improvement in the result.
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am(t>)
= H'Jtf, m*l. (39-10)

At the time t' the wave function for the system (which was

^1 at time t = 0) is approximately

(39-11)

(the prime on the summation sign indicating that the term

m = I is omitted), in which ai is nearly equal to 1 and the am's

are very small. This wave function continues to represent the

system at times later than t', so long as it remains isolated. We
could now carry out a measurement (of the energy, say) to deter-

mine the stationary state of the system. The probability that

the system would be found in the rath stationary state is a*am .

This statement requires the extension of the postulates regarding the

physical interpretation of the wave equation given in Sections lOc and I2d.

It was shown there that an average value could be predicted for a dynamical
function for a system at time t from a knowledge of the wave function

representing the system. The average value predicted for the energy of a

system with wave function = ^an* is W =
2^a*anWn- However, an

n n

actual individual measurement of the energy must give one of the values

W%, W\j W\, etc., inasmuch as it is only for wave functions corresponding
to stationary states that the energy has a definite value (Sec. lOc). Hence

when a measurement of the energy has been made, the wave function

representing the system is no longer ^ = 2an^> kut ^ one * tne functions

n

*J, *!, *, etc.

This shows how a wave function does not really represent the system
but rather our knowledge of the system. At time t = we knew the energy
of the system to be TFJ, and hence we write ^f for the wave function. (We
do not know everything about the system, however; thus we do not know
the configuration of the system but only the probability distribution func-

tion j*^5-) At time t' we know that at time t the wave function was

j, and that the perturbation H' was acting between times t = and t'.

From this information we obtain the wave function of Equations 39-11,

39-10, and 39-8 as representing our knowledge of the system. With it we

predict that the probability that the system is in the mth stationary state

is aam . So long as we leave the system isolated, this wave function repre-

sents the system. If we allow the system to be affected by a known pertur-

bation, we can find a new wave function by the foregoing methods. If we
now further perturb the system by an unknown amount in the process of

making a measurement of the energy, we can no longer apply these methods;
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instead, we assign to the system a new wave function compatible with our

new knowledge of the result of the experiment.
A more detailed discussion of these points will be given in Chapter XV.

Equation 39-10 shows that in case t
f
is small the probability of

finding the system in the stationary state m as a result of transi-

tion from the original state I is

4-2
a*am =

^H'3ff'Jf*t (39-12)

being thus proportional to the square of the time t
f
rather than

to the first power as might have been expected. In most cases

the nature of the system is such that experiments can be designed

to measure not the probability of transition to a single state but

rather the integrated probability of transition to a group of

adjacent states; it is found on carrying out the solution of the

fundamental equations 39-6 and subsequent integration that for

small values of t' the integrated probability of transition is pro-

portional to the first power of the time t
f
. An example of a

calculation of a related type will be given in Section 406.

40. THE EMISSION AND ABSORPTION OF RADIATION

Inasmuch as a thoroughly satisfactory quantum-mechanical

theory of systems containing radiation as well as matter has not

yet been developed, we must base our discussion of the emission

and absorption of radiation by atoms and molecules on an

approximate method of treatment, drawing upon classical electro-

magnetic theory for aid. The most satisfactory treatment of

this type is that of Dirac,
1 which leads directly to the formulas

for spontaneous emission as well as absorption and induced

emission of radiation. Because of the complexity of this theory,

however, we shall give a simpler one, in which only absorption
and induced emission are treated, prefacing this by a general

discussion of the Einstein coefficients of emission and absorption
of radiation in order to show the relation that spontaneous
emission bears to the other two phenomena.

40a. The Einstein Transition Probabilities. According to

classical electromagnetic theory, a system of accelerated electri-

cally charged particles emits radiant energy. In a bath of

1 P. A. M. DIRAC, Proc. Roy. Soc. A112, 661 (1926); A1H, 243 (1927);

J. C. SLATER, Proc. Nat. Acad. Sci. 13, 7 (1927).
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radiation at temperature T it also absorbs radiant energy, the

Tates of absorption and of emission being given by the classical

laws. These opposing processes might be expected to lead to a

state of equilibrium. The following treatment of the correspond-

ing problem for quantized systems (atoms or molecules) was

given by Einstein 1 in 1916.

Let us consider two non-degenerate stationary states m and n

of a system, with energy values Wm and Wn such that Wm is

greater than Wn . According to the Bohr frequency rule, transi-

tion from one state to another will be accompanied by the

emission or absorption of radiation of frequency

_ Wm - Wn
"mn "

h

We assume that the system is in the lower state n in a bath of

radiation of density p(vmn) in this frequency region (the energy
of radiation between frequencies v and v + dv in unit volume

being p(v)dv). The probability that it will absorb a quantum
of energy of radiation and undergo transition to the upper state

in unit time is

Bn-*mp(vmn)-

Bn-*m is called Einstein's coefficient of absorption. The proba-

bility of absorption of radiation is thus assumed to be propor-
tional to the density of radiation. On the other hand, it is

necessary in order to carry through the following argument to

postulate
2 that the probability of emission is the sum of two

parts, one of which is independent of the radiation density and

the other proportional to it. We therefore assume that the

probability that the system in the upper state m will undergo
transition to the lower state with the emission of radiant energy
is

Am-+n + Bm~+np(vmn).

A m->n is Einstein
1

s coefficient of spontaneous emission and Bm^n

is Einstein's coefficient of induced emission.

1 A. EINSTEIN, Verh. d. Deutsch. Phys. Ges. 18, 318 (1916); Phys. Z. 18,

121 (1917).
8 This postulate is of course closely analogous to the classical theory,

according to which an oscillator interacting with an electromagnetic wave
could either absorb energy from the field or lose energy to it, depending
on the relative phases of oscillator and wave.
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We now consider a large number of identical systems of this

type in equilibrium with radiation at temperature T. The

density of radiant energy is known to be given by Planck's

radiation law as

in which k is the Boltzmann constant. Let the number of sys-

tems in state m be Nm ,
and that in state n be Nn . The number of

systems undergoing transition in unit time from state n to state

m is then

NnBn-+mp(vmn),

and the number undergoing the reverse transition is

Nm{A m-+n + Bm->np(vmn)\.
At equilibrium these two numbers are equal, giving

Nn = Am^n + m->npQmn)
(40~2)Nm Bn-+mp(vmn)

The equations of quantum statistical mechanics (Sec. 49)

require that the ratio Nn/Nm be given by the equation

kT -
ehymn/kT 9 (40-3)

From Equations 40-2 and 40-3 we find for p(i>mn) the expression

In order for this to be identical with Equation 40-1, we must

assume that the three Einstein coefficients are related by the

equations
Bn->m = Bm->n (40~5a)

and

A_ = ^B^.; (40-56)

that is, the coefficients of absorption and induced emission are

equal and the coefficient of spontaneous emission 1 differs from

them by the factor Swhv^Jc*.

1 It is interesting to note that at the temperature T = - - - the proba-
K log 2

bilities of spontaneous emission and induced emission are equal.



302 PERTURBATION THEORY INVOLVING THE TIME [XI-40b

40b. The Calculation of the Einstein Transition Probabilities

by Perturbation Theory. According to classical electromagnetic

theory, the density of energy of radiation of frequency v in space,

with unit dielectric constant and magnetic permeability, is

given by the expression

in which E*(v) represents the average value of the square of the

electric field strength corresponding to this radiation. The
distribution of radiation being isotropic, we can write

y3E^) = E1R = TO = ES, (40-7)

Ex (v) representing the component of the electric field in the

x direction, etc. We may conveniently introduce the time

variation of the radiation by writing

Ex(v)
= 2EQ

x(v) cos Zirrt = El(v)(e^
ivi + e-*), (40-8)

the complex exponential form being particularly convenient for

calculation. Since the average value of cos 2 2wvt is % we see

that

P = i*w = ~^M =
jj^rw. (40-9)

Let us now consider two stationary states m and n of an

unperturbed system, represented by the wave functions ^ and

^U, and such that Wm is greater than Wn . Let us assume that

at the time t = the system is in the state n, and that at this

time the system comes under the perturbing influence of radiation

of a range of frequencies in the neighborhood of vmn ,
the electric

field strength for each frequency being given by Equation 40-8.

We shall calculate the probability of transition to the state m
as a result of this perturbation, using the method of Section 39.

The perturbation energy for a system of electrically charged

particles in an electric field Ex parallel to the x axis is

H' = EXJ, (40-10)
;

in which % represents the charge and Xj the x coordinate of the

jth particle of the system. The expression ^e/z, (the sum being
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taken over all particles in the system) is called the component o/

electric dipole moment of the system along the x axis and is often

represented by the symbol jux . We now make the approximation
that the dimensions of the entire system (a molecule, say) are

small compared with the wave length of the radiation, so that

the electric field of the radiation may be considered constant over

the system. In the case under consideration the field strength Ex

is given by the expression

Ex = E*v

Let us temporarily consider the perturbation as due to a single

frequency v. Introducing am(0)
= and an(0) = 1 in the right

side of Equation 39-6 (an being the coefficient of a particular

state and all the other coefficients in the sum being zero), this

equation becomes

O =~
-~

h
"

dr.

3

If we now introduce the symbol pXmn to represent the integral

3

we obtain the equation

dam (t) _ 2irt' m ,

which gives, on integration,

/ _ ^(W

1 -

Of the two terms of Equation 40-12, only one is important,
and that one only if the frequency v happens to lie close to

vmn = (Wm Wn)/h. The numerator in each fraction can vary
in absolute magnitude only between and 2, and, inasmuch as

for a single frequency the term M**J^(") *s always small, the
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expression will be small unless the denominator is also very

small; that is, unless hv is approximately equal to Wm Wn .

In other words, the presence of the so-called resonance denomina-

tor Wm Wn hv causes the influence of the perturbation
in changing the system from the state n to the higher state m
to be large only when the frequency of the light is close to that

given by the Bohr frequency rule. In this case of absorption, it

is the second term which is important; for induced emission of

radiation (with Wm Wn negative), the first term would play

the same role.

Neglecting the first term, we obtain for a*(t)am (t), after slight

rearrangement, the expression

TFm - Wn -

(If Hxmn is complex, the square of its absolute value is to be used

in this equation.) This expression, however, includes only the

terms due to a single frequency. In practice we deal always
with a range of frequencies. It is found, on carrying through
the treatment, that the effects of light of different frequencies are

additive, so that we now need only to integrate the above

expression over the range of frequencies concerned. The

integrand is seen to make a significant contribution only over the

region of v near *>mn ,
so that we are justified in replacing El(v)

by the constant E%(vmn), obtaining

fsin2

(J
}J &

This integral can be taken from < to + <*>
,
inasmuch as the

value of the integrand is very small except in one region; and

J+
sin 2 x

dx =
TT, we can obtain the

- x

equation

tf(OMO = ^GOWO*. (40-13)

It is seen that, as the result of the integration over a range of

values of v, the probability of transition to the state m in time t

is proportional to t, the coefficient being the transition probability
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as usually defined. With the use of Equation 40-9 we may now
introduce the energy density p(vmn), obtaining as the probability

of transition in unit time from state n to state m under the

influence of radiation polarized in the x direction the expression

The expressions for the y and z directions are similar. Thus we
obtain for the Einstein coefficient of absorption Bn->m the

equation

Bn^m =
f{(/O

2 + GO 2 + GO 2
} (40-14a)

By a completely analogous treatment in which the values

n(0) =
0, am (0)

= 1 are used, the Einstein coefficient of induced

emission Bm->n is found to be given by the equation

Bm^n =
fj-IlGO

2 + GO 2 + GO 2
}, (40-146)

as, indeed, is required by Equation 40-5a.

Our treatment does not include the phenomenon of spontaneous
emission of radiation. Its extension to include this is not easy;

Dirac's treatment is reasonably satisfactory, and we may hope
that the efforts of theoretical physicists will soon provide us with

a thoroughly satisfactory discussion of radiation. For the

present we content ourselves with using Equation 40-56 in

combination with the above equations to obtain

OO 2 + GO 2 + GO 2
} (40-15)

as the equation for the Einstein coefficient of spontaneous
emission.

As a result of the foregoing considerations, the wave-mechanical

calculation of the intensities of spectral lines and the determina-

tion of selection rules are reduced to the consideration of the

electric-moment integrals defined in Equation 40-11. We shall

discuss the results for special problems in the following sections.

It is interesting to compare Equation 40-15 with the classical

expression given by Equation 3-4 of Chapter I. Recalling that

the energy change associated with each transition is hvmnj we
see that the wave-mechanical expression is to be correlated with
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the classical expression for the special case of the harmonic

oscillator by interpreting M* as one-half the maximum value

exQ of the electric moment of the classical oscillator.

40c. Selection Rules and Intensities for the Harmonic Oscil-

lator. The electric dipole moment for a particle with electric

charge e carrying out harmonic oscillational motion along the

x axis (a neutralizing charge e being at the origin) has the

components ex along this axis and zero along the y and z axes.

The only non-vanishing dipole moment integrals /**
= e#mn

have been shown in Section lie to be those with m = n + 1 or

ra = n 1. Hence the only transitions which this system can

undergo with the emission or absorption of radiation are those

from a given stationary state to the two adjacent states. 1 The
selection rule for the harmonic oscillator is therefore An =

1,

and the only frequency of light emitted or absorbed is VQ. The

expression for zn ,n_i in Equation ll-25a corresponds to the

value

with a = 4?r
2
wvoA, for the coefficient of spontaneous emission,

with similar expressions for the other coefficients. An applica-

tion of this formula will be given in Section 40e.

Problem 40-1. Show that for large values of n Equation 40-16 reduces

to the classical expression for the same energy.

Problem 40-2. Discuss the selection rules and intensities for the three

dimensional harmonic oscillator with characteristic frequencies ?, vV9

and v,.

Problem 40-3. Using first-order perturbation theory, find perturbed
wave functions for the anharmonic oscillator with V = 2Tr*mv$x

2
-f- ax9

,

and with them discuss selection rules and transition probabilities.

40d. Selection Rules and Intensities for Surface-harmonic

Wave Functions. In Section 18 we showed that the wave

functions for a system of two particles interacting with one

another in the way corresponding to the potential function

1 This statement is true only to within the degree of approximation of our

treatment. A more complete discussion shows that transitions may also

occur as a result of interactions corresponding to quadrupole terms and still

higher terms, as mentioned in Section 3, and as a result of magnetic
interactions.
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7(r), in which r is the distance between the two particles, are

of the form

in which the #,<? functions Qim(&)&m (<p) are surface harmonics,

independent of V(r). We can hence discuss selection rules and

intensities in their dependence on I and m for all systems of

this type at one time.

The components of electric dipole moment along the x, y,

and z axes are

MX = v(r) sin # cos <p,

Mi/
= ju(0 sin tf sin <p,

and

M* = ^W COS #,

in which p(r) is a function of r alone, being equal to er for two

particles with charges +e and e. Each of the dipole moment

integrals, such as

sin * cos

sin

can accordingly be written as the product of three factors, one

involving the integral in r, one the integral in #, and one the

integral in

in which
"

(40-18)

(40-19)

f*lml>m>)

""
(COS#j

and

g**>>) *>. (cos ?)

(40-20)

(In Equations 40-19 and 40-20 the subscripts x, y, and z are

respectively associated with the three factors in braces.)

Let us first discuss the light polarized along the z axis, cor-

responding to the dipole moment /*. From the orthogonality
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and normalization integrals for 3>(<p) we see that

Q*mm>
= for m' 5^ m

and

ff*,.
= I-

In discussing fz lml ,n ,

we consequently need consider only the

integrals with m' = m. It is found with the use of the recursion

formula (Prob. 19-2)

cos

that f*lnl , m ,
vanishes except when V is equal to I + 1 or I 1.

A similar treatment of the integrals for x and y shows that

light polarized along these axes is emitted only when m changes

by +1 or 1, and I changes by +1 or 1.

We have thus obtained the selection rules Am =
0, +1, or 1

and AZ = +1 or 1. The selection rule for Z is discussed in

the following sections. That for m can be verified experimentally

only by removing the degeneracy, as by the application of a

magnetic field; it is found, in agreement with the theory, that

in the Zeeman effect the light corresponding to Am = is

polarized along the z axis (the axis of the magnetic field), and that

corresponding to Am = 1 is polarized in the xy plane.

The values of the products of the factors / and g are

= i/(z + H)(z + H - i)\^

ixa---" (40
~
22)

with similar expressions for the transitions I to Z + 1, etc.

Problem 40-4. Using Equation 40-21, obtain selection rules and

intensities for ju*.

Problem 40-6. Similarly derive the other formulas of 40-22.

Problem 40-6. Calculate the total probability of transition from one

level with given value of / to another, by summing over m. By separate
summation for px , nv,

and M* show that the intensity of light polarized along
these axes is the same.
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40e, Selection Rules and Intensities for the Diatomic Mole-

cule. The Franck-Condon Principle. A very simple treatment

of the emission and absorption of radiation for the diatomic

molecule can be given, based on the approximate wave functions

of Section 35c. For the complex system of two nuclei and several

electrons the electric dipole moment ju(r) can be expanded as a

series in r r
,

M(r) = MO + (r
- r ) + , (40-23)

in which e is a constant. The permanent dipole moment /xo is

the quantity which enters in the theory of the dielectric constant

of dipole molecules; its value is known from dielectric constant

measurements for many substances.

Introducing this expansion in Equation 40-18, we find as a

first approximation that n may change by ot by 1. In the

former case the emission or absorption of radiation is due to

the constant term /z ,
and in the latter case to the term t(r ro),

the integrals being then similar to the harmonic oscillator

integrals. The values of /xnn ' are

Mnn = MO (40-24a)

and

/*.-! - t, (40-246)

in which a = 4ir
2
fjLvQ/h (p, being here the reduced mass for the

molecule). The selection rules and intensity factors for I and
m are as given in the preceding section.

It is found experimentally that dipole molecules such as the

hydrogen halides absorb and emit pure rotation and oscillation-

rotation bands in accordance with these equations. In all

these bands the selection rule Al = 1 is obeyed, and Zeeman-
effect measurements have shown similar agreement with the

selection rule for m. The intensities of lines in the pure rotation

bands show rough quantitative agreement with Equation

40-24a, using the dielectric constant value of /*o, although because

of experimental difficulties in the far infrared the data are as

yet not very reliable. Measurements of absorption intensities

for An = 1 have been used to calculate c. As seen from the

following table, e is of the order of magnitude of /Vro, so that

these molecules may be considered roughly as equivalent to two

particles of charges + and .
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TABLE 40-1

i E. BABTHOLOMJ, Z. phya. Chem. B 23, 131 (1933).

It is also observed that oscillation-rotation bands with
An SB

2, 3, etc. occur; this is to be correlated with the deviation

of the potential function V(r) from a simple quadratic function.

In the foregoing discussion we have assumed the electronic

state of the molecule to be unchanged by the transitions. The
selection rule for n and the intensities are different in case there is a

change in the electronic state, being then determined, according
to the Franck-Condon principle,

1
mainly by the nature of the

electronic potential functions for the two electronic states. As
we have seen in Section 34, there is little interaction between the

electronic motion and the nuclear motion in a molecule, and

during an electronic transition the internuclear distance and
nuclear velocities will not change very much. Let us consider

the two electronic states A and B, represented by the potential
curves of Figure 40-1, in which the oscillational levels are also

shown. If the molecule is in the lowest oscillational level

n' = of the upper state, the probability distribution function

for r is large only for r close to rv We would then expect an

electronic transition to state B to leave the molecule at about the

point PI on -the potential curve, the nuclei having only small

kinetic energy; these conditions correspond to the levels n" = 7

or 8 for the lower state.

This simple argument is justified by wave-mechanical con-

siderations. Let us consider that the wave functions for the

upper electronic state may be written as ^<r'^', in which $
represents the nuclear oscillational part of the wave function

described by the quantum number n', and tya > the rest of the wave
function (electronic and nuclear rotational), the symbol a'

representing all other quantum numbers. Similarly, we write

^V'^n" for the wave functions for the lower electronic state.

1 J. FBANCK, Trans. Faraday Soc., 21, 536 (1926); E. U. CONDON, Phys-
Rev. 28, 1182 (1926); 32, 868 (1928).
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The electric dipole moment integrals MV.VV* *Vvn"> anc*

MVnv" are f ^e f rm

"Vnv'n-
= /^VnW<r<'*n''dr. (40-25)

We assume that in this case, when there is a change in the

w

7

Fio. 40-1. Energy curves for two electronic states of a molecule, to illustrate

the Franck-Condon principle.

electronic state, the dipole moment function /* changes only

slowly with change in the internuclear separation r, being deter-

mined essentially by the electronic coordinates. Neglecting the
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dependence of /z on r, we can then integrate over all coordinates

except r, obtaining

(40-26)

The integral in r, determining the relative intensities of the

Carious rin" bands, is seen to have the form of an orthogonality

integral in r. Hence if the two potential functions VA and VB

were identical except for an additive constant the integral would

vanish except for n' = n"
y
the selection rule for n then being

Att = o. In the case represented by Figure 40-1, the wave func-

tion i/v with n' = is large only in the neighborhood of r = r^.

The wave functions tyn" with n" = 7 or 8 have large values in

this region, so that the bands n' > n" = 7 or 8 will be

strong. The intensity of the bands for smaller or larger values

of n" will fall off. For smaller values of n" the functions i/v

show the rapid exponential decrease in the region near re^

(corresponding to the fact that the classical motion of the nuclei

would not extend into this region); whereas for larger values

of n" the functions \l/n show a rapid oscillation between positive

and negative values, causing the integral with the positive

function ^n > with n r
to be small (the oscillation of ^n"

between positive and negative values corresponding to large

nuclear velocities in the classical motion).

Similarly the transitions from the level with ri 5, the wave
function for which has its maximum values near the points
P2 and P 3 ,

will occur mainly to the levels n" = 2 or 3 and
n" = 11 or 12. 1

40f. Selection Rules and Intensities for the Hydrogen Atom.

The selection rule for Z, discussed in Section 40d, allows only
transitions with AZ = 1 for the hydrogen atom. The lines of

the Lyman series, with lower state that with n = 1 and I = 0,

are in consequence due to transitions from upper states with

I = 1. The radial electric dipole moment integral

has been evaluated by Pauli 2 for several special cases. For

1 For a more complete discussion of this subject the reader is referred to

the papers of Condon and to the discussions in Condon and Morse,
"
Quan-

tum Mechanics/' Chap. V, and RUARK and UREY, "Atoms, Molecules and

Quanta/' Chap. XII.
2 Communicated in Schrodinger's third 1926 paper.
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n" =
1, I" = its value corresponds to the total intensity,

aside from a constant factor, of

(n
1 -

I)
2" 7- 1

* n'

ri(ri + l)*+ l

This has a non-vanishing value for all values of n1

greater than 1.

Hence there is no selection rule for n for the Lyman series, all

transitions being allowed. It is similarly found that there is no

selection rule for n for spectral series in general.

For the Balmer series, with lower state that with n = 2 and
I = or 1, the selection rule for I permits the transitions > 1,

1 >0, and 2 > 1. The total intensity corresponding to these

transitions from the level n = n' to n 2 is, except for a constant

factor,

'"' = i(3n'
2 -

4)(5n'
-

4).

The operation of the selection rule for I for hydrogen and

hydrogenlike ions can be seen by the study of the fine structure

of the lines. The phenomena are complicated, however, by the

influence of electron spin.
1 In alkali atoms the levels with given

n and varying I are widely separated, and the selection rule for I

plays an important part in determining the nature of their

spectra. Theoretical calculations have also been made of the

intensities of lines in these spectra with the use of wave functions

such as those described in Chapter IX, leading to results in

approximate agreement with experiment.

40g. Even and Odd Electronic States and Their Selection

Rules. The wave functions for an atom can all be classified as

either even or odd. An even wave function of N electrons is

one such that ^(#1, y\, Zi, #2, , ZN) is equal to \l/( #1, y\j

Zij %2, , ZN); that is, the wave function is unchanged
on changing the signs of all of the positional coordinates of the

electrons. An odd wave function is one such that t(xi, yi,

Zi, 32, , Ztf) is equal to ~^( x l9 yi, Zi, Xz, ,
zN) t

Now we can show that the only transitions accompanied by the

emission or absorption of dipole radiation which can occur are

those between an even and an odd state (an even state being one

represented by an even wave function, etc.). The electric

1 See PAULING and GOUDSMIT, "The Structure of Line Spectra," Sec. 16.
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N
moment component functions ,exi, etc. change sign in case

that the electronic coordinates are replaced by their negatives.

Consequently an electric-moment integral such as $$

will vanish in case that both ^v and ^n" are either even or odd,

but it is not required to vanish in case that one is even and the

other odd. We thus have derived the very important selection

rule that transitions with the emission or absorption of dipole

radiation are allowed only between even and odd states. Because of

the practical importance of this selection rule, it is customary to

distinguish between even and odd states in the term symbol, by

adding a superscript for odd states. Thus various even states

are written as 1

S,
3
P,

2
D, etc., and odd states as 15, 3P, 2D, etc.

In case that the electronic configuration underlying a state is

known, the state can be recognized as even or odd. The one-

electron wave functions are even for I = 0, 2, 4, etc. (s, d, g, etc.,

orbitals) and odd for I = 1, 3, 5, etc. (p, /, A, etc., orbitals).

Hence the configuration leads to odd states if it contains an

odd number of electrons in orbitals with I odd, and otherwise to

even states. For example, the configuration Is 22s 2
2p

2 leads to the

even states 1

S,
1

D, and 3
P, and the configuration Is 2

2p3d to

the odd states 1P, 1D, 1F, 3P, 3
Z), and 3F.

Even and odd states also occur for molecules, and the selection

rule is also valid here. A further discussion of this point will be

given in Section 48.

Problem 40-7. Show that the selection rules forbid a hydrogen atom

in a rectangular box to radiate its translational kinetic energy. Extend the

proof to any atom in any kind of box,

41. THE RESONANCE PHENOMENON
The concept of resonance played an important part in the dis-

cussion of the behavior of certain systems by the methods of

classical mechanics. Very shortly after the discovery of the

new quantum mechanics it was noticed by Heisenberg that a

quantum-mechanical treatment analogous to the classical

treatment of resonating system can be applied to many problems,
and that the results of the quantum-mechanical discussion in these

cases can be given a simple interpretation as corresponding to a

quantum-mechanical resonance phenomenon. It is not required
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that this interpretation be made; it has been found, however,
that it is a very valuable aid to the student in the development
of a reliable and productive intuitive understanding of the

equations of quantum mechanics and the results of their applica-

tion. In the following sections we shall discuss first classical

resonance and then resonance in quantum mechanics.

41a. Resonance in Classical Mechanics. A striking phe-
nomenon is shown by a classical mechanical system consisting of

two parts between which there is operative a small interaction,

the two parts being capable of executing harmonic oscillations

with the same or nearly the same frequency. It is observed

that the total oscillational energy fluctuates back and forth

FIG. 41-1. A system of coupled pendulums, illustrating the phenomenon of

resonance.

between the two parts, one of which at a given time may be

oscillating with large amplitude, and at a later time with small

amplitude, while the second part has changed jn the opposite

direction. It is customary to say that the two parts of the

system are resonating. A familiar example of such a system is

composed of two similar tuning forks attached to the same base.

After one fork is struck, it gradually ceases to oscillate, while at

the same time the other begins its oscillation. Another example
is two similar pendulums connected by a weak spring, or attached

to a common support in such a way that interaction of the two

occurs by way of the support (Fig. 41-1). It is observed that if

only one pendulum is set to oscillating, it will gradually die down
and stop, while the other begins to oscillate, ultimately reaching

the amplitude of oscillation initially given the first (neglecting the
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fFictional dissipation of energy) ;
and that this process of transfer

of energy from one pendulum to the other is repeated over and

over.

It is illuminating to consider this system in greater detail.

Let Xi and z2 be the coordinates for two oscillating particles each

of mass m (such as the bobs of two pendulums restricted to

small amplitudes, in order that their motion be harmonic),

and let VQ be their oscillational frequency. We assume for the

total potential energy of the system the expression

(41-1)

in which 4w*m\XiX2 represents the interaction of the two oscil-

lators. This simple form corresponds to a Hooke's-law type of

interaction. The solution of the equations of motion is easily

accomplished by introducing the new variables 1

1

y?

l 2)

(41-2)

71
~
vi

Xl

In terms of these, the potential energy becomes

while the kinetic energy has the form

T =

These expressions correspond to pure harmonic oscillation of the

two variables and r? (Sec. la), each oscillating with constant

amplitude, with the frequency \/v% + X and vj with the

frequency V'

v\ X, according to the equations

X t

X t + 5,)

From these equations we obtain the equations

A
-

j

Xl = - cos
V2
-=
V2

COS

X + -^ cos
V2

X - -5= COS
V2

~^~\ f) ,

(41-3)

(41-4)

1 These are the normal coordinates of the system, discussed in Section 37.
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for xi and x2 ,
in which we have put the phase constants 8$ and 5,

equal to zero, as this does not involve any loss in generality-

It is seen that for \/v\ small the two cosine functions differ only

slightly from one another and both x and #2 carry out approxi-
mate harmonic oscillation with the approximate frequency j>o>

but with amplitudes which change slowly with the time. Thus
at t ^ the cosine terms are in phase, so that x\ oscillates with

the amplitude ( + 170)/A/2 and x 2 with the smaller amplitude

(o i/o)/A/2. At the later time t = ti such that

the cosine terms are just out of phase, Xi then oscillating with the

amplitude ( ?7o)/A/2 and x 2 with the amplitude ( + *?o)/A/2-

Thus we see that the period r of the resonance, the time required

for Xi to change from its maximum to its minimum amplitude
and then back to the maximum, is given by the equation

or

; / n \ \** v/

+ X v ^o
~ A A

It is also seen that the magnitude of the resonance depends on

the constants of integration and r;o, the amplitudes of motion

of xi and x 2 varying between the limits A/2o and in case that

?7o
=

o, and retaining the constant value Jo/A/2 (no resonance!)
in case that 770

= 0.

The behavior of the variables Xi and #2 may perhaps be

followed more clearly by expanding the radicals y/v\ + A and

A/^o A in powers of \/vl and neglecting terms beyond the

first power. After simple transformations, the expressions

obtained are

yg
cos

^^o
cos 7rl/0

V2
sm

^o
sm

and

(n r?o) ^ A . ^ . ( ^o 4- T?n) . rt A
Sin 2rr2

- -
V2 ^o V2

It is clear from this treatment that we speak of resonance only
because it is convenient for us to retain the coordinates x\ and
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a?2 in the description of the system; that is, to speak of the motion

of the pendulums individually rather than of the system as a

whole. We can conceive of an arrangement of levers whereby
an indicator in an adjacent room would register values of

,
and

another values of 77. An observer in this room would say that

the system was composed of two independent harmonic oscillators

with different frequencies and constant amplitudes, and would

not mention resonance at all.

Despite the fact that we are not required to introduce it, the

concept of resonance in classical mechanical systems has been

found to be very useful in the description of the motion of sys-

tems which are for some reason or other conveniently described

as containing interacting harmonic oscillators. It is found

that a similar state of affairs exists in quantum mechanics.

Quantum-mechanical systems which are conveniently considered

to show resonance occur much more often, however, than

resonating classical systems, and the resonance phenomenon
has come to play an especially important part in the applications

of quantum mechanics to chemistry.

41b. Resonance in Quantum Mechanics. In order to illus-

trate the resonance phenomenon in quantum mechanics, let us

continue to discuss the system of interacting harmonic oscil-

lators. 1

Using the potential function of Equation 41-1, the wave

equation can be at once separated in the coordinates and 17

and solved in terms of the Hermite functions. The energy
levels are given by the expression

Wn^ = (n + M)AV^T+~X + (n, + K^V^F7
"^ (41-6)

which for X small reduces to the. approximate expression

i / \h^ (n- -
,

-
,

(41-7)

in which n = n$ + n^. The energy levels are shown in Figure

41-2; for a given value of n there are n + 1 approximately

equally spaced levels.

This treatment, like the classical treatment using the coordi-

nates and r?, makes no direct reference to resonance. Let us

1 This example was used by Heisenberg in his first papers on the resonance

phenomenon, Z.f. Phys. 38, 411 (1926); 41. 239 (1927).
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now apply a treatment in which the concept of resonance enters,

retaining the coordinates Xi and xz because of their familiar

physical interpretation and applying the methods of approximate
solution of the wave equation given in Chapters VI and VII;

indeed, if the term in X were of more complicated form, it would

be necessary to resort to some approximate treatment. This

term is conveniently considered as the perturbation function in

applying the first-order perturbation theory. The unperturbed

w

n-5 ^-V
3

1

-3

t

-1

Fia. 41-2. Energy levels for coupled harmonic oscillators; left, with X 0;

right, with X pj/5.

wave equation has as solutions products of Hermite functions

in Xi and 2 ,

(41-8)

with n = ni + n2 , (41-9)

the nth level being (n + l)-fold degenerate.

The perturbation energy for the non-degenerate level n = is

zero. For the level n = 1 the secular equation is found to be

(Sec, 24)

corresponding to the energy values

= (n
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-W _

=
'

giving W = h\/2v . A similar treatment of the succeeding

degenerate levels shows that the first-order perturbation theory
leads to values for the energy expressed by the first two terms

of Equation 41-7.

The correct zeroth-order wave functions for the two levels

with n = 1 are found to be

T
V2'

TI

and

*A "
vl

^

^3 corresponding to the lower of the two levels and ^A to the

upper. The subscripts S and A are used to indicate that the

functions are respectively symmetric and antisymmetric in

the coordinates Xi and x2 . We see that we are not justified in de-

scribing the system in either one of these stationary states as con-

sisting of the first oscillator in the state n\ 1 and the second in

the state n2
=

0, or the reverse. Instead, the wave functions

Ui =
1, n z

= and n\ = 0, n 2
= 1 contribute equally to each of

the stationary states. It will be shown in Section 41c that if the

perturbation is small we are justified in saying that there is reso-

nance between these two states of motion analogous to classical

resonance, one oscillator at a given time oscillating with large

amplitude, corresponding to HI 1, and at a later time with

small amplitude, corresponding to n\ = 0. The frequency with

which the oscillators interchange their oscillational states, that

is, the frequency of the resonance, is found to be X/V ,
which

is just equal to the separation of the two energy levels divided

by h. This is also the frequency of the classical resonance

(Eq. 41-5).

In discussing the stationary states of the system of two inter-

acting harmonic oscillators we have seen above that it is con-

venient to make use of certain wave functions \l/n (#1), etc. which

are not correct wave functions for the system, the latter being
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given by or approximated by linear combinations of the initially

chosen functions, as found by perturbation or variation methods;
and various points of analogy between this treatment and the

classical treatment of the resonating system have been indicated

(see also the following section). In discussing more complicated

systems it is often convenient to make use of similar methods of

approximate solution of the wave equation, involving the forma-

tion of linear combinations of certain initially chosen functions.

The custom has arisen of describing this formation of linear

combinations in certain cases as corresponding to resonance in

the system. In a given stationary state the system is said to

resonate among the states or structures corresponding to those

initially chosen wave functions which contribute to the wave
function for this stationary state, and the difference between

the energy of the stationary state and the energy corresponding
to the initially chosen wave functions is called resonance energy.

1

It is evident that any perturbation treatment for a degenerate
level in which the initial wave functions are not the correct

zeroth-order wave functions might be described as involving
the resonance phenomenon. Whether this description would

be applied or not would depend on how important the initial

wave functions seem to the investigator, or how convenient this

description is in his discussion. 2

The resonance phenomenon, restricted in classical mechanics

to interacting harmonic oscillators, is of much greater importance
in quantum mechanics, this being, indeed, one of the most striking

differences between the old and the new mechanics. It arises,

for example, whenever the system under discussion contains two

or more identical particles, such as two electrons or two protons;
and it is also convenient to make use of the terminology in

describing the approximate treatment given the structure of

polyatomic molecules. The significance of the phenomenon for

many-electron atoms has been seen from the discussion of the

structure of the helium atom given in Chapter VIII; it was there

pointed out (Sec. 29a) that the splitting of levels due to the K

1 There is no close classical analogue of resonance energy.
2 The same arbitrariness enters in the use of the word resonance in describ-

ing classical systems, inasmuch as if the interaction of the classical oscillators

is increased the motion ultimately ceases to be even approximately repre-

sented by the description of the first paragraph of Section 4la.
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integrals was given no satisfactory explanation until the develop-
ment of the concept of quantum-mechanical resonance. The

procedure which we have followed of delaying the discussion

of resonance until after the complete treatment of the helium

atom emphasizes the fact that the resonance phenomenon does

not involve any new postulate or addition to the equations of

wave mechanics but rather only a convenient method of classify-

ing and correlating the results of wave mechanics and a basis for

the development of a sound intuitive conception of the theory.

41c. A Further Discussion of Resonance. It is illuminating

to apply the perturbation method of variation of constants in

order to discuss the behavior of a resonating system. Let us

consider a system for which we have two wave functions, say ^A

and S^j}, corresponding to an energy level of the unperturbed

system with two-fold degeneracy. These might, for example,

correspond to the sets of quantum numbers HI =
1, n 2 =0 and

n\ =
0, n2

= 1 for the system of two coupled harmonic oscillators

treated in the previous section. If the perturbation were small,

we could carry out an experiment at the time t = to determine

whether the system is in state A or in state B] for example, we
could determine the energy of the first oscillator with sufficient

accuracy to answer this question. Let us assume that at the

time t = the system is found to be in the state A. We now ask

the following question: On carrying out the investigating experi-

ment at a later time t, what is the probability that we would

find that the system is in state A, and what is the probability

that we would find it in state 5? In answering this question

we shall see that the physical interpretation of quantum-mechani-
cal resonance is closely similar tp that of classical resonance.

If the perturbation is small, with all the integrals H'mn (m 7* n)

small compared with WQ
n W^ except H'AR and H'BA (for which

WQ
A
= WB), we may assume as an approximation that the

quantities am(f) remain equal to zero except for aA and aB .

From Equation 39-6 we Gee that these two are given by the

equations

aA = -?(H'AAaA + H'ABaB ),*
(41-10)

dB = ^(H'ABaA + H'AAaB),

in which we have taken H'BB equal to H'AA and HBA equal to HAB
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(the system being assumed to consist of two similar parts).

The equations are easily solved by first forming their sum and
difference. The solution which makes cu = 1 and aB = at

i = Ois

aA = e h
AA

cos (

w
,

AB
t }f

\ h /

-H'
aB ie h

(41-11)

The probabilities a%aA and a%aB of finding the system in state

A and state B, respectively, at time t are hence

a^aB = sm*n = _... .

V h

(41-12)

We see that these probabilities vary harmonically between the

values and 1. The period of a cycle (from a*aA = 1 to and

back to 1 again) is seen to be h/2H'AB ,
and the frequency 2H'AB/h,

this being, as stated in Section 416, just I/A times the separation

of the levels due to the perturbation.

Let us now discuss in greater detail the sequence of conceptual

experiments and calculations which leads us to the foregoing

interpretation of our equations. Let us assume that we have a

system composed of two coupled harmonic oscillators with

coordinates Xi and x z , respectively, such that we can at will (by

throwing a switch, say) disengage the coupling, thus causing

the two oscillators to be completely independent. Let us now
assume that for a period of time previous to t = the oscillators

are independent. During this period we carry out a set of two

experiments consisting in separate measurements of the energy
of the oscillators and in this way determine the stationary state

of each oscillator. Suppose that by one such set of experiments
we have found that the first oscillator is in the state n\ = 1

and the second in the state n2
= 0. The complete system is

then in the physical situation which we have called state A in

the above paragraphs, and so long as the system is left to itself

it will remain in this state.

Now let us switch in the coupling at the time t = 0, and then

switch it out again at the time t = t'. We now, at times later



324 PERTURBATION THEORY INVOLVING THE TIME [XI-41c

than t'j investigate the system to find what the values of the

quantum numbers n\ and n z are. The result of this investigation

will be the same, in a given case, no matter at what time later

than t
r
the set of experiments is carried out, inasmuch as the

two oscillators will remain in the definite stationary states in

which they were left at time t' so long as the system is left

unperturbed.
This sequence of experiments can be repeated over and over,

each time starting with the system in the state n\ 1, HZ =

and allowing the coupling to be operative for the length of time t'.

In this way we can find experimentally the probability of finding

the system in the various states n\ 1, n 2
= 0; n\,

=
0, n2

= 1;

m =
0, n2

= 0; etc.; after the perturbation has been operative

for the length of time t'.

The same probabilities are given directly by our application of

the method of variation of constants. The probability of

transition to states of considerably different energy as the result

of a small perturbation acting for a short time is very small,

and we have neglected these transitions. Our calculation shows

that the probability of finding the system in the state B depends
on the value of t' in the way given by Equation 41-12, varying

harmonically between the limits and 1.

Now in case that we allow the coupling to be operative con-

tinuously, the complete system can exist in various stationary

states, which we can distinguish from one another by the measure-

ment of the energy of the system. Two of these stationary

states have energy values very close to the energy for the

states n\ =
1, n 2

= and n\_
=

0, n2
= 1 of the system with

the coupling removed. It is consequently natural for us to

draw on the foregoing argument and to describe the coupled

system in these stationary states as resonating between states

A and B, with the resonance frequency 2HAB/h.
Even when it is not possible to remove the coupling inter-

action, it may be convenient to use this description. Thus in

our discussion of the helium atom we found certain stationary

states to be approximately represented by wave functions

formed by linear combination of the wave functions ls(l) 2s(2)

and 2s(l) ls(2). These we identify with states A and B above,

saying that each electron resonates between a Is and a 2s orbit,

the two electrons changing places with the frequency I/A times
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the separation of the energy levels Is2s 1S and Is2s 38. It is

obvious that we cannot verify this experimentally, for three

reasons: we cannot remove the coupling, we cannot distinguish

electron 1 from electron 2, and the interaction is so large that

our calculation (based on neglect of all other unperturbed states)

is very far from accurate. These limitations to the physical

verification of resonance must be borne in mind; but they need

not prevent us from making use of the nomenclature whenever

it is convenient (as it often is in the discussion of molecular

structure given in the following chapter).



CHAPTER XII

THE STRUCTURE OF SIMPLE MOLECULES

Of the various applications of wave mechanics to specific

problems which have been made in the decade since its origin,

probably the most satisfying to the chemist are the quantitatively

successful calculations regarding the structure of very simple
molecules. These calculations show that we now have at hand

a theory which can be confidently applied to problems of molec-

ular structure. They provide us with a sound conception of the

interactions causing atoms to be held together in a stable mole-

cule, enabling us to develop a reliable intuitive picture of the

chemical bond. To a considerable extent the contribution of

wave mechanics to our understanding of the nature of the

chemical bond has consisted in the independent justification of

postulates previously developed from chemical arguments, and

in the removal of their indefinite character. In addition,

wave-mechanical arguments have led to the development of many
essentially new ideas regarding the chemical bond, such as the

three-electron bond, the increase in stability of molecules by
resonance among several electronic structures, and the hybridi-

zation of one-electron orbitals in bond formation. Some of

these topics will be discussed in -this chapter and the following

one.

In Sections 42 and 43 we shall describe the accurate and

reliable wave-mechanical treatments which have been given the

hydrogen molecule-ion and hydrogen molecule. These treat-

ments are necessarily rather complicated. In order to throw

further light on the interactions involved in the formation of

these molecules, we shall preface the accurate treatments by a

discussion of various less exact treatments. The helium mole-

cule-ion, He, will be treated in Section 44, followed in Section 45

by a general discussion of the properties of the one-electron bond,
the electron-pair bond, and the three-electron bond.

326
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42. THE HYDROGEN MOLECULE-ION

The simplest of all molecules is the hydrogen molecule-ion, Hf,

composed of two hydrogen nuclei and one electron. This mole-

cule was one of the stumbling blocks for the old quantum theory,

for, like the helium atom, it permitted the treatment to be carried

through (by Pauli 1 tod Niessen2
) to give results in disagreement

with experiment. It was accordingly very satisfying that within

a year after the development of wave mechanics a discussion

of the normal state of the hydrogen molecule-ion in complete

agreement with experiment was carried out by Burrau by
numerical integration of the wave equation. This treatment,

together with somewhat more refined treatments due to Hylleraas

rA

A
FIG. 421. Coordinates used for the hydrogen molecule-ion.

and Jaff6, is described in Section 42c. Somewhat simpler and
less accurate methods are described in Sections 42a and 426,

for the sake of the ease with which they can be interpreted.

42a. A Very Simple Discussion. 3
Following the discussion of

Section 34, the first step in the treatment of the complete wave

equation is the solution of the wave equation for the electron

alone in the field of two stationary nuclei. Using the symbols
of Figure 42-1, the electronic wave equation is

e* e 2 e 2 \ ,. .

+ _ + _ _ _^ _
o, (42-1)

in which v2 refers to the three coordinates of the electron and ra

is the mass of the electron. 4

1 W. PAULI, Ann. d. Phys. 68, 177 (1922).
2 K. F. NIESSEN, Dissertation, Utrecht, 1922.
8 L. PAULING, Chem. Rev. 5, 173 (1928).
4 We have included the mutual energy of the two nuclei */HAB in this

equation. This is not necessary, inasmuch as the term appears unchanged
in the final expression for W, and the same result would be obtained by
omitting it in this equation and adding it later.
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If TAB is very large, the normal state of the system, has the

energy value W = Wn = Rhc, the corresponding wave
functions being u

i8A
or ^1^, hydrogen-atorn wave functions

about nucleus A or nucleus B (Sec. 21), or any two independent
linear combinations of these. In other words, for large values

of TAB the system in its normal state is composed of a hydrogen
ion A and a normal hydrogen atom B or of a normal hydrogen
atom A and a hydrogen ion B.

This suggests that as a simple variation treatment of the

system for smaller values of rAB we make use of the same wave

functions u l8^
and U\

SB, forming the linear combinations given by

solution of the secular equation as discussed in Section 26d.

The secular equation is

HAA ~ W HAB -

HBA -AW HBB - W
=

> <&*>

in which

HAA = fuis Hu\ 8 dr,

HAB ~
j^is tiUig UT,

and

A represents the lack of orthogonality of U\
SA
and u\tB

. Because

of the equivalence of the two functions, the relations HAA = HBB
and HAB = HBA hold. The solutions of the secular equation are

hence

Ws = H
^
+AB

(42
_
3)

and

F, = H'* ~
1
AB

-

(42-4)

These correspond respectively to the wave functions

1 ' ' - *

(42-5)
V^ ~h ZA

and

(42-6)

The subscripts S and A represent the words symmetric and

antisymmetric, respectively (Sec. 29a); the wave function fa is
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symmetric in the positional coordinates of the two nuclei A and B,
and \!/A is antisymmetric in these coordinates.

Introducing WH by use of the equation

h 2 e2

(which is the wave equation for ^i*
x),

we obtain for the integral

HAA the expression

'_!+ -^-]u la dr = WH + J + -^w (42-7)n /*.'. I -^
"i ' ^ _ f 1 x '

IB TAB/

in which

In this expression we have introduced in place of rAB the variable

D = (42-9)a v ^

HBA and i?A5 are similarly given by the expression

r = AIT. + X

(42-10)

in which A is the orthogonality integral, with the value

A = e~D (l +D + YsD*), (42-11)

and K is the integral

K = Mu*~ Mi<^T = ~ e
"
c(i + p) - (42

~
12)

It is seen that J represents the Coulomb interaction of an

electron in a Is orbital on nucleus A with nucleus B. K may
be called a resonance or exchange integral, since both functions

^is
4
and Ui8B occur in it.

Introducing these values in Equations 42-3 and 42-4, we
obtain

1 1+A
and
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1

Curves showing these two quantities as functions of rAB are given

in Figure 42-2. It is seen that \l/s corresponds to attraction, with

the formation of a stable molecule-ion, whereas \I/A corresponds to

repulsion at all distances. There is rough agreement between

observed properties of the hydrogen molecule-ion in its normal

state and the values calculated in this simple way. The dis-

sociation energy, calculated to be 1.77 v.e., is actually 2.78 v.e.,

and the equilibrium value of rABj calculated as 1.32 A, is observed

to be 1.06 i.

The nature of the interactions involved in the formation of

this stable molecule (with a one-

electron bond) is clarified by the

discussion of a hypothetical case.

Let us assume that our system is

composed of a hydrogen atom
A and a hydrogen ion J5, and

that even for small values of rAB

the electron remains attached to

nucleus A, the wave function

hierVo^SorTn^: being ,v The energy of the

V2o), calculated for undistorted system would then be HAA ,
and

hydrogen atom wave functions. ^ difference between this and

e
2 / 1\

WH, namely e~2D
[
I + -^ )>

would be the energy of interaction
do \ U/

of a normal hydrogen atom and a hydrogen ion. The curve

representing this energy function, which before the discovery

of the resonance phenomenon was supposed to correspond io

the hydrogen molecule-ion, is shown in Figure 42-2 with the

symbol N. It is seen that it does not correspond to the formation

of a stable bond but instead to repulsion at all distances. The

difference between this curve and the other two is that in this

case we have neglected the resonance of the electron between

the two nuclei A and B. It is this resonance which causes

the actual hydrogen molecule-ion to be stable the energy of the

one-electron bond is in the; main the energy of resonance of the

electron between the two nuclei. (Other interactions, such as

polarization of the atom in the field of the ion, also contribute

to some extent to the stability of the bond. An attempt to

anawer the question of the magnitude of this contribution will

be given in the next section.)
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It is seen from the figure that the resonance interaction sets

in at considerably larger distances than the Coulomb interaction

of atom and ion. This results from the exponential factor

e~2D in HAA, as compared with e~D in the resonance integral K.
For values of rAB larger than 2 A the energy functions Wa and WA
are closely approximated by the values WH + K and Wa K,

respectively. In accordance with the argument of Section

416, the resonance energy K corresponds to the electron's

jumping back and forth between the nuclei with the frequency

2K/h.

Problem 42-1. Verify the expressions given for HAA, HAB, and A in

Equations 42-7 to 42-12.

42b. Other Simple Variation Treatments. We can easily

improve the preceding treatment by introducing an effective

nuclear charge Z'e in the hydrogenlike Is wave functions UI,A

and MIV This was done by Finkelstein and Horowitz. 1 On

minimizing the energy Ws relative to Z' for various values of

rAB , they obtained a curve for Ws similar to that of Figure 42-2,

but with a lower minimum displaced somewhat to the left. They
found for the equilibrium value of rAB the value 1.06 A, in com-

plete agreement with experiment. The value of the effective

atomic number Z f

at this point is 1.228, and the energy of the sys-

tem (neglecting oscillational and rotational energy) is 15.78 v.e.,

as compared with the correct value 16.31 v.e.; the value

of the dissociation energy D e
= 2.25 v.e. differing from the cor-

rect value 2.78 v.e. by 0.53 v.e. The variation of the effective

atomic number from the value 1 has thus reduced the error

by one-half.

The energy of the bond for this function too is essentially

resonance energy. Dickinson 2 introduced an additional term,

dependent on two additional parameters, in order to take

polarization into account. He wrote for the (not yet normalized)

variation function

in which the first two terms represent as before Is hydrogenlike
wave functions with effective nuclear charge Z'e and the remain-

1 B. N. FINKELSTEIN and G. E. HOROWITZ, Z.f. Phys. 48, 118 (1928).
* B. N. DICKINSON, /. Chem. Phys. 1, 317 (1933).
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ing two terms functions such as 2p z as described in Section 21,

Z" -
cos #,

a

in which # is taken relative to a 2 axis extending from nucleus

A toward nucleus B (and the reverse for U%PB). The parameter

o- determines the extent to which these functions enter. The

interpretation of the effect of these functions as representing

polarization of one atom by the other follows from their nature.

The function UI,A + <TU^PA
differs from Uia^ by a positive amount

on the side nearer B and a negative amount on the farther side,

in this way being concentrated toward B in the way expected for

polarization.
1

On minimizing the energy relative to the three parameters and

to r\B ,
Dickinson found for the equilibrium distance the value

1.06 A, and for the energy 16.26 v.e., the parameters having
the values Z f = 1.247, Z" = 2.868, and a = 0.145. 2 The

energy calculated for this function differs by only 0.05 v.e.

from the correct value, so that we may say, speaking somewhat

roughly, that the energy of the one-electron bond is due almost

entirely to resonance of the electron between the two nuclei and

to polarization of the hydrogen atom in the field of the hydrogen

ion, with resonance making the greater contribution (about

2.25 v.e., as given by Finkelstein and Horowitz's function) and

polarization the smaller (about 0.5 v.e.).

It was found by Guillemin and Zener3 that another variation

function containing only two parameters provides a very good
value for the energy, within 0.01 v.e. of the correct value, the

equilibrium separation of the nuclei being 1.06 A, as for all

functions discussed except the simple one of the preceding

section. This function is

1 The introduction of such a function to take care of polarization was

first made (for the hydrogen molecule) by N. Rosen, Phys. Rev. 38, 2099

(1931).
2 It will be noted that Z" is approximately twice Z'. Dickinson found

that the error in the energy is changed only by 0.02 v.e. by placing Z"

equal to 2Z', the best values of the parameters then being Z' = 1.254,

<r = 0.1605.
* V. GUILLEMIN, JR., and C. ZENER, Proc. Nat. Acad. Sci. 16, 314 (1929).



XII-42c] THE HYDROGEN MOLECULE-ION 333

the best values of the parameters being Z f =
1.13, Z" = 0.23.

The interpretation of this function is not obvious; we might say,

however, that each of the two terms of the function represents

a polarized hydrogen atom, the first term, for example, being

large only in the neighborhood of nucleus A, and being there

-z" r-2

polarized in the direction of nucleus B by the factor e ao

-z'
r

multiplying the hydrogenlike function e ao
,
the entire wave

function then differing from Dickinson's mainly in the way in

which the polarization is introduced. The value of the principal

effective atomic number Z' = 1.13 is somewhat smaller than

Dickinson's value 1.247.

A still more simple variation function giving better results

has been recently found by James. 1 This function is

in which and 77 are the confocal elliptic coordinates defined in

the following section (Eq. 42-15), and d and c are parameters?
with best values d = 1.35 and c = 0.448. The value of the

dissociation energy given by this function is D e
= 2.772 v.e.,

the correct value being 2.777 v.e.

42c. The. Separation and Solution of the Wave Equation. It

was pointed out by Burrau 2 that the wave equation for the

hydrogen molecule-ion, Equation 42-1, is separable in confocal

elliptic coordinates and r? and the azimuthal angle (p. The
coordinates and 77 are given by the equations

t =
TAB

(42-15)- rB
^ '

On introduction of these coordinates (for which the Laplace

operator is given in Appendix IV), the wave equation becomes

-0, (4J-I6)

1 H. M. JAMES, private communication to the authors.
* 0YVIND BURRAU, Det. Kgl. Danske Vid. Selskab. 7, 1 (1927).
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in which we have made use of the relation

t>2 P 2
i

TA TB

r2 (2 __ ^2)
and have multiplied through by The quantity

W, given by

W' = W - -, (42-17)

is the energy of the electron in the field of the two nuclei, the

mutual energy of the two nuclei being added to this to give the

total energy W.
It is seen that on replacing \l/(%, TJ, (p) by the product function

this equation is separable
1 into the three differential equations

= -m2
<i>, (42-19)

and

2 _
1}gl + (

_ X 2 + 2 > _ ^ + M )H
=

0, (42-21)^ '
fj C I \ *-^ If ' ^ '

in which

X = --

and

D =
^- (42-23)

The range of the variable is from 1 to o
,
and of 77 from 1 to

+ 1. The surfaces = constant are confocal ellipsoids of revolu-

tion, with the nuclei afc the foci, and the surfaces rj
= constant

are confocal hyperboloids. The parameters m, X, and /z must

assume characteristic values in order that the equations possess

acceptable solutions. The familiar <p equation possesses such

solutions for m =
0, 1, 2, . The subsequent procedure

of solution consists in finding the relation which must exist

1 The equation is also separable for the case that the two nuclei have

different charges.
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between X and ju in order that the t\ equation possess a satis-

factory solution, and, using this relation, in then finding from the

equation the characteristic values of X and hence of the energy.
This procedure was carried out for the normal state of the

hydrogen molecule-ion by Burrau in 1927 by numerical integra-
tion of the and v\ equations. More accurate treatments have
since been given by Hylleraas

1 and by Jaflte.
2

(The simple
treatment of Guillemin and Zener, described in the preceding

fection, approaches Burrau's

in accuracy.) We shall not

describe these treatments in

detail but shall give a brief dis- i

cussion of one of them (that

of Hylleraas) after first pre-

senting the results.

The energy values calculated

by the three authors are given
in Table 42-1 and shown graph-

ically in Figure 42-3. It is seen

that the curve is qualitatively

similar to that given by the very

-08

-0.9

-1.0

-1.2

-1.3
1 2345

r
AB/a

--

,
. , , , c ,. An FIG. 42-3. The energy of the

Simple treatment OI bection 42a normal hydrogen molecule-ion (in units

(Fig. 42-2). The three treat- e2/2oo) as a function of TAB.

ments agree in giving for the equilibrium value 3 of rAB 2.00 a or

1.06 A, as was found for the variation functions of the preceding
section also. This is in complete agreement with the band-

spectral value. Spectroscopic data have not been obtained for

the hydrogen molecule-ion itself but rather for various excited

states of the hydrogen molecule. It is believed that these are

states involving a normal hydrogen molecule-ion as core, with a

highly excited outer electron in a large orbit, having little effect

1 E. A. HYLLERAAS, Z. f. Phys. 71, 739 (1931).
2 G. JAFF, Z. f. Phys. 87, 535 (1934).
3 The average value of TAB for various oscillational states as determined

from band-spectral data is found to be a function of the vibrational quantum
number w, usually increasing somewhat with increasing v. The value

for v = is represented by the symbol r
,
and the extrapolated value corre-

sponding to the minimum of the electronic energy function by the symbol
r f . The vibrational frequencies are similarly represented by w and v.

(or by o>o and w, which have found favor with band spectroscopists) and
the energies of dissociation by Do and D.
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on the potential function for the nuclei; this belief being supported

by the constancy of the values of re and v e (the oscillational

frequency) shown by them. The values of re were extrapolated

by Birge
1 and Richardson 2 to give 1.06 A for the molecule-ion.

TABLE 42-1. ELECTRONIC ENERGY VALUES FOR THE HYDROGEN
MOLECULE-ION

* Interpolated between adjacent values calculated by Burrau, who estimated his accu-

racy in the neighborhood of the minimum as 0.002 Rhc.

t Interpolated values.

The value 1.20528jR/ic for the energy of the molecule-ion is

also substantiated by experiment; the discussion of this com-

parison is closely connected with that for the hydrogen molecule,

and we shall postpone it to Section 43d. The behavior of the

minimum, however, can be compared with experiment by way
of the vibrational energy levels. By matching a Morse curve

to his calculated points and applying Morse's theory (Sec. 35d),

Hylleraas found for the energy of the molecule ion in successive

vibrational levels given by the quantum number v the expression

Wv = -1.20527 + 0.0206 (v + ]/%)
- 0.0005 l(v + Y2 )\ (42-24)

in units Rhc. This agrees excellently with the expressions

obtained by Birge
1 and Richardson 2

by extrapolation of the

observed vibrational levels for excited states of the hydrogen

1 R. T. BIRGE, Proc. Nat. Acad. Sci. 14, 12 (1928).
1 O. W. RICHARDSON, Trans. Faraday Soc. 26, 686 (1929).
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molecule, their coefficients in these units being 0.0208 and

-0.00056, and 0.0210 and -0.00055, respectively.
The value We

= 1.20527#H/*c corresponds to an electronic

energy of the normal hydrogen molecule-ion of 16.3073 v.e.

(using Rnhc = 13.5300 v.e.) and an electronic dissociation energy
into H + H+ of De

= 2.7773 v.e., this value being shown to be

accurate to 0.0001 v.e. by the agreement between the calculations

of Hylleraas and Jaff6. The value of D
,
the dissociation energy

of the molecule-ion in its lowest vibrational state, differs from

this by the correction terms given in Equation 42-24. These

FIG. 42-4. The electron distribution function for the normal hydrogen
molecule-ion (Burrau). The upper curve shows the value of the function along
the line passing through the two nuclei, and the lower figure shows contour
lines for values 0.9, 0.8, ,0.1 times the maximum value.

terms are not known so accurately, either theoretically or

experimentally. Hylleraas's values lead to a correction of

0.138 v.e., Birge's to 0.139 v.e., and Richardson's to 0.140 v.e.

If we accept the theoretical value 0.138 0.002 v.e. we obtain

D = 2.639 0.002 v.e.

as the value of the dissociation energy of the normal hydrogen
molecule-ion.

The wave function for the normal molecule-ion as evaluated by
Burrau corresponds to the electron distribution function repre-

sented by Figure 42-4. It is seen that the distribution is

closely concentrated about the line between the two nuclei,

the electron remaining most of the time in this region.

Let us now return to a brief discussion of one of the accurate

treatments of this system, that of Hylleraas, which illustrates
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the method of approximate solution of the wave equation dis-

cussed in Section 27a.

The variable TJ extends through the range 1 to +1, which
is the range traversed by the argument z = cos # of the associated

Legendre functions Pi
m| of Section 19. With Hylleraas we

expand the function H(r;) in terms of these functions, writing

^to, (42-25)

in which the coefficients ci are constants. Substituting this

expression in Equation 42-20, and simplifying with the aid of the

differential equation satisfied by the associated Legendre func-

tions, Equation 19-9, we obtain the equation

2) cilAij* -n-l(l + 1) jPl-'fo)
= 0. (42-26)

J-M

We can eliminate the factor ??

2
by the use of the recursion formula

- (*- H + D(t- N+2)p ,~
(21 + l)(2l + 3)

n+1

((I
-

\m\ + IX* + \m\ + 1) (I
-

\m\)(l + \m\) ,,

3)
~*~

(21
-

1)(2J + 1
'

which is easily obtained by successive application of the ordinary

recursion formula 19-16. On introducing this in Equation

42-26, it becomes a simple series in the functions />l

(

m|
(i;) with

coefficients independent of rj. Because of the orthogonality of

these functions, their coefficients must vanish independently in

order that the sum vanish (Sec. 22). This gives the condition

- m -
A

'-
(21

-
3) (

-
1)

'-2
(21 + !)( + 3)

which is a three-term recursion formula in the coefficients c/.



XII-42c] THE HYDROGEN MOLECULE-ION 339

We now consider the set of equations 42-28 for different values

of I as a set of simultaneous linear homogeneous equations in the

unknown quantities cj. In order that the set may possess a non-

trivial solution, the determinant formed by the coefficients of

the Cj's must vanish. This gives a determinantal equation

involving X and /*, from which we determine the relation between

them.

We are interested in the normal state of the system, with m =
and I even. The determinantal equation for this case is

*

2

15
X

39

77

2T
X - 20 -

= 0.

(42-29)

The only non-vanishing terms are in the principal diagonal and

the immediately adjacent diagonals. As a rough approximation

(to the first degree in X) we can neglect the adjacent diagonals;

the roots of the equation are then p,
= J^X, M = 1KiX ~

6,

^ = 3$^ 7\
_

20, etc. We are interested in the first of these.

In order to obtain it more accurately, we solve the equation again,

including the first two non-diagonal terms, and replacing /z in

the second diagonal term by J^X. This equation,

fr

2l

=
0,

has the solution

M = + +
in which powers of X higher than the third are neglected. Hyller-

aas carried the procedure one step farther, obtaining

+ %35X
2 + - 0.000013X 4 - 0.0000028X 5

.

This equation expresses the functional dependency of M on X

for the normal state, as determined by the 77 equation. The
next step is to introduce this in the equation, eliminating /*,

and then to solve this equation to obtain the characteristic
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values of X and hence of the energy as a function of rAB . Because

of their more difficult character, we shall not discuss the methods

of solution of this equation given by Hylleraas and Jaffe.

42d. Excited States of the Hydrogen Molecule-ion. We
have discussed (Sec. 42a) one of the excited electronic states of

the hydrogen molecule-ion, with a nuclear-antisymmetric wave

function formed from normal hydrogen-atom functions. This

is not a stable state of the molecule-ion, inasmuch as the potential

function for the nuclei does not show a minimum-

Calculations of potential functions for other excited states,

many of which correspond to stable states of the molecule-ion,
have been made by various investigators,

1

among whom
Teller, Hylleraas, and JafT6 deserve especial mention.

43. THE HYDROGEN MOLECULE

43a. The Treatment of Heitler and London. The following

simple treatment of the hydrogen molecule (closely similar to

that of the hydrogen molecule-ion described in Section 42a)

does not differ essentially from that given by Heitler and London2

in 1927, which marked the inception (except for Burrau's earlier

paper on the molecule-ion) of the application of wave mechanics

to problems of molecular structure and valence theory. Heitler

and London's work must be considered as the greatest single contri-

bution to the clarification of the chemist's conception of valence

which has been made since G. N. Lewis's suggestion in 1916 that

the chemical bond between two atoms consists of a pair of

electrons held jointly by the two atoms.

Let us first consider our problem with neglect of the spin of

the electrons, which we shall then discuss toward the end of the

section. The system comprises two hydrogen nuclei, A and B,

and two electrons, whose coordinates we shall designate by the

symbols 1 and 2. Using the nomenclature of Figure 43-1, the

wave equation for the two electrons corresponding to fixed posi-

tions of the two nuclei is

1 P. M. MORSE and E. C. G. STUECKELBEBG, Phys. Rev. 33, 932 (1929);

E. A. HYLLERAAS, Z.f. Phys. 61, 150 (1928); 71, 739 (1931); J. E. LENNARD-

JONES, Trans. Faraday Soc. 24, 668 (1929); E. TELLER, Z. f. Phys. 61, 458

(1930); G. JAFFE, Z.f. Phys. 87, 535 (1934).
1 W. HEITLER and F. LONDON, Z. f. Phys. 44, 455 (1927).



Xn-43a] THE HYDROGEN MOLECULE 341

+
7*12

(43-1)

For very large values of rAB we know that in its normal state the

system consists of two normal hydrogen atoms. Its wave func-

tions (the state having two-fold degeneracy) are then u ia (1)

Ui
8B(2)

and Ui
8s(l) t6uA (2)

or any two independent linear com-

binations of these two (the wave function WUA (!) representing a

hydrogenlike Is wave function for electron 1 about nucleus A,

r
!2

A rAB B
FIQ. 43-1. Coordinates used for the hydrogen molecule, represented diagram-

matically.

etc., as given in Section 21). This suggests that for smaller

values of TAB we use as variation function a linear combination of

these two product functions. We find as the secular equation

corresponding to this linear variation function (Sec. 26d)

- W i ii
- A 2 TF

u U -W =
0, (43-2)

in which

and

with

Hi n =

A2 =

and ^n =

It is seen that A is the orthogonality integral introduced in Section

42a, and given by Equation 42-11. With Hi i
= Hu u and

Hi ii
= Hu i, the equation can be immediately solved to give



342 THE STRUCTURE OF SIMPLE MOLECULES [XH-48a

Ws = g"
tffi

11

(43-3)

and

WA = fll

j lf2

in
> (43-i)

corresponding to the wave functions

\l/a
=

.. {w la (l)tti, (2) + tii, (!)MI (2)} (43-5)V 2 + 2A 2 * * * -4

and

\l/s is symmetric in the positional coordinates of the two electrons

and also in the positional coordinates of the two nuclei, whereas

\(/A is antisymmetric in both of these sets of coordinates.

On evaluation we find for Hi i the expression

Hi *
=

f f^a)ui,fl(2)(W* -.-.!!.+.!!. + JL}

2WH + 2J + J' + , (43-7)
TAB

in which J is the integral of Equation 42-8 and J r
is

r, .f f{"u.(l)tt 1.,(2)} |
,

J' = 6* I
-4-*- dridr2

J J rw

-^ --<B +T +
!

+

with D as before equal to rAB/a<>.

Similarly we find for HI n the expression

HI n -
JJ^(iK,

K' + A , (43-0)
r*

in which K is the integral of Equation 42-12 and K' ie



Xn-48a] THE HYDROGEN MOLECULE 343

K, _

+
g{A*(7

+ log Z>)

(43-10)

in which 7 =0.5772 is Euler's constant and

A' - e*(l -D + y^\
Ei is the function known as the integral logarithm.

1

(The

integral K' was first evaluated by Sugiura,
2 after Heitler and

London had developed an approximate expression for it.) J'

represents the Coulomb interaction of an electron in a Is orbital

on nucleus A with an electron in a Is orbital on nucleus

B
y
and Kf

is the corresponding resonance or exchange integral.

Substituting these values in Equations 43-3 and 43-4, we
obtain

w 9W j_
e'

.
2J + Jf + 2AK + K'

,. inWs = 2WH + +-r+~&
-

(43-11)

and

Curves representing Ws and WA as functions of rAB are shown in

Figure 43-2. It is seen that WA corresponds to repulsion at all

distances, there being no equilibrium position of the nuclei.

The curve for Wa corresponds to attraction of the two hydrogen
atoms with the formation of a stable molecule, the equilibrium

value calculated for TAB being 0.80 A, in rough agreement with

the experimental value 0.740 A, The energy of dissociation of

the molecule into atoms (neglecting the vibrational energy of the

nuclei) is calculated to be 3.14 v.e., a value somewhat smaller

than the correct value 4.72 v.e. The curvature of the potential

function near its minimum corresponds to a vibrational frequency
for the nuclei of 4800 cm" 1

,
the band-spectral value being

4317.9 cm- 1
.

It is seen that even this very simple treatment of the problem
leads to results in approximate agreement with experiment.

1
See, for example, Jahnke and Emde, "Funktionentafeln."

* Y. SUQIURA, Z. /. Phys. 46, 484 (1927).
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It may be mentioned that the accuracy of the energy calculation

is greater than appears from the values quoted for D e ,
inasmuch

as the energy of the electrons in the field of the two nuclei

(differing from Ws by the term C^/TAB) at TAB = 1.5a is calculated

to be 2Wn 18.1 v.e., and the error of 1.5 v.e. is thus only a

few per cent of the total electronic interaction energy.

It is interesting and clarifying for this system also (as for

the hydrogen molecule-ion) to discuss the energy function for a

hypothetical case. {Let us suppose that the wave function for

the system were ^r
= Uia (1) UisB(2)

alone. The energy of the

system would then be HI i, which is shown as curve N in Figure
43-2. I It is seen that this curve

gives only a small attraction

between the two atoms, with a

bond energy at equilibrium only
a few per cent of the observed

value. The wave function fa

differs from this function in the

interchange of the coordinates

of the electrons, jind we conse-

quently say that the energy
of the bond in the hydrogen

2 3
r
AB/a

-*

Fio. 43-2. Energy curves for the molecule is in the main reso-
hydrogen molecule (in units e 2

/2ao).
~ *

. i

nance or interchange energy.

So far we have not taken into consideration the spins of the

electrons. On doing this we find, exactly as for the helium

atom, that in order to make the complete wave functions anti-

symmetric in the electrons, as required by Pauli's principle, the

orbital wave functions must be multiplied by suitably chosen

spin functions, becoming

~[
V2

and

[a(l)0(2)+0(l)a(2)J,

^0(1)0(2).

There are hence three repulsive states A for one attractive

state S; the chance is K that two normal hydrogen atoms
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will interact with one another in the way corresponding to the

formation of a stable molecule. It is seen that the normal state

of the hydrogen molecule is a singlet state, the spins of the

two electrons being opposed, whereas the repulsive state A is p

triplet state.

43b. Other Simple Variation Treatments. The simple step

of introducing an effective nuclear charge Z'e in the Is hydrogen-
like wave functions of 43-5 was taken by Wang,

1 who found that

this improved the energy somewhat, giving D e
= 3.76 v.e.,

and that it brought the equilibrium internuclear distance re

down to 0.76 A, only slightly

greater than the experimental
value 0.740 A. The effective

nuclear charge at the equilib-

rium distance was found to be

Z e = 1.1666.

There exists the possibility

that wave functions correspond-

-5ve

w|
,0

-15

FIG. 43-3. The mutual Coulomb

ing to the ionic structures H~H+
and H+H~ might also make
an appreciable Contribution to energy of two ions with charges -He

ji r A- r Ai and e as a function of TAB-
the wave function for the nor-

mal state of the molecule. These ionic functions are Uia (I) u\ 9 (2)

and U\
SB(I) UisB(2),

the corresponding spin function allowed

by Pauli's principle being {(!) ft(2)
-

0(1) a(2)}, as for
\/2

\l/s. It is true that for large values of TAB the energy of the ionic

functions is 12.82 v.e. greater than that for the atomic functions,

this being the difference of the ionization potential and the

electron affinity (Sec. 29c) of hydrogen; but, as TAB is decreased,

the Coulomb interaction of the two ions causes the energy for the

ionic functions to decrease rapidly, as shown in Figure 43-3,
the difference of 12.82 v.e. being counteracted at 1.12 A. This

rough calculation suggests that the bond in the hydrogen molecule

may have considerable ionic character, the structures IHH"1
" and

H+H~ of course contributing equally. The wave function

u lt,(2)

1 S. C. WANG, Phys. Rev. 31, 579 (1928).

(43-13)
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-2.16

was considered by Weinbaum,
l

using an effective nuclear charge
Z'e in all the Is hydrogenlike functions. On varying the param-

eters, he found the minimum of the energy curve (shown in

Figure 43-4) to lie at TAB = 0.77 A, and to correspond to the

value 4.00 v.e. for the dissociation energy De of the molecule.

This is an appreciable improvement, of 0.24 v.e., over the value

given by Wang's function. The parameter values minimizing
the energy

2 were found to be

Z' = 1.193 and c = 0.256.

It may be of interest to

consider the hydrogen-mole-
cule problem from another

point of view. So far we have

attempted to build a wave func-

tion for the molecule from

atomic orbital functions, a pro-

cedure which is justified as a

first approximation when rAB

is large. This procedure, as

-2.32
lib1.25

r
AB/a

FIG. 43-4. Energy curves for the

hydrogen molecule (in units e 2/2ao): A, generalized to Complex
for an extreme molecular-orbital wave , . 11 j

function; B, for an extreme valence- CUleS
>

1S caliea

bond wave function; and c, for a valence-bond wave functions y
the

niC name sometimes being used in

the restricted sense of implying

neglect of the ionic terms. Another way of considering the

structure of complex molecules, called the method of molecular

orbitals* can be applied to the hydrogen molecule in the following

way. Let us consider that for small values of TAB the interaction

of the two electrons with each other is small compared with their

interaction with the two nuclei. Neglecting the term e2/r12

in the potential energy, the wave equation separates into equa-
tions for each electron in the field of the two nuclei, as in the

hydrogen-molecule-ion problem, and the unperturbed wave

function for the normal state of the molecule is seen to be the

1 S. WEINBAUM, J. Chem. Phys. 1, 593 (1933).
* Weinbaum also considered a more general function with different

effective nuclear charges for the atomic and the ionic terms and found that

this reduced to 43-13 on variation.

F. HUND, Z. f. Phys. 51, 759 (1928); 73, 1 (1931); etc.; R. S. MULLIKEN,

Phys. Rev. 32, 186, 761 (1928); 41, 49 (1932); etc.; M. DUNKEL, Z.f. phys.

Chem. B7, 81; 10, 434 (1930); E. HUCKBL, Z.f. Phys. 60, 423 (1930); etc.
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product of normal hydrogen-molecule-ion wave functions for the

two electrons. Inasmuch as the function WI,A (!) + ^i a(l)

is a good approximation to the wave function for the electron

in the normal hydrogen molecule-ion, the molecular-orbital

treatment corresponds to the wave function

{ w^(l) + u
l9B(l) } {ul8A (2) + uUj(2) } (43-14)

for the normal hydrogen molecule. It is seen that this is identical

with Weinbaum's function 43-13 with c = 1; that is, with the

ionic terms as important as the atomic terms.

If the electric charges of the nuclei were very large, the inter-

electronic interaction term would actually be a small perturba-

tion, and the molecular-orbital wave function 43-14 would be a

good approximation to the wave function for the normal state

of the system. In the hydrogen molecule, however, the nuclear

charges are no larger than the electronic charges, and the mutual

repulsion of the two electrons may well be expected to tend to

keep the electrons in the neighborhood of different nuclei, as

in the simple Heitler-London-Wang treatment. It would be

difficult to predict which of the two simple treatments is the

better. On carrying out the calculations 1 for the molecular-

orbital function 43-14, introducing an effective atomic number
Z'

y
the potential curve A of Figure 43-4 is obtained, correspond-

ing to re
= 0.73 A, De

= 3.47 v.e., and Z' = 1.193. It is seen

that the extreme atomic-orbital treatment (the Wang curve) is

considerably superior to the molecular-orbital treatment for the

hydrogen molecule. 2 This is also shown by the results for the

more general function 43-13 including ionic terms with a coeffi-

cient c; the value of c which minimizes the energy is 0.256,

which is closer to the atomic-orbital extreme (c
= 0) than to the

molecular-orbital extreme (c
=

1).

For the doubly charged helium molecule-ion, He^~+, a treatment

Dased on the function 43-13 has been carried through,
3
leading

to the energy curve shown in Figure 43-5. It is seen that at

large distances the two normal He+ ions repel each other with the

force e 2
/r

2
. At about 1.3 A the effect of the resonance integrals

1 For this treatment we are indebted to Dr. S. Weinbaum.
2 Similar conclusions are reached also when Z' is restricted to the value

1 (Heitler-London treatment).

*L. PAULING, /. Chem. Phys. 1, 56 (1933).
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becomes appreciable, leading to attraction of the two ions and a

minimum in the energy curve at the predicted internuclear

equilibrium distance re
= 0.75 A (which is very close to the value

for the normal hydrogen molecule). At this distance the values

of the parameters which minimize the energy are Z' = 2.124

and c = 0.435. This increase in the value of c over that for the

hydrogen molecule shows that as a result of the larger nuclear

charges the ionic terms become more important than for the

hydrogen molecule.

,

t 10

Q5
"1^

15 2.0*

FIQ. 43-5. The energy curve for normal He^.

We have discussed the extension of the extreme atomic-orbital

treatment by the inclusion of ionic terms. A further extension

could be made by adding terms corresponding to excited states

of the hydrogen atoms. Similarly the molecular-orbital treat-

ment could be extended by adding terms corresponding to

excited states of the hydrogen molecule-ion. With these

extensions the treatments ultimately become identical. 1 In

the applications to complex molecules, however, it is usually

practicable to carry through only the extremely simple atomic-

orbital and molecular-orbital treatments; whether the slight

superiority indicated by the above considerations for the atomic-

1 See J. C. SLATER, Phijs. Rev. 41, 255 (1932).
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orbital treatment is retained also for molecules containing
atoms of larger atomic number remains an open question.
So far we have not considered polarization of one atom by the

other in setting up the variation function. An interesting

attempt to do this was made by Rosen,
1 by replacing u it (1) in

the Heitler-London-Wang function by Wi,A (l) + <ru
2pA (l) (with

a similar change in the other functions), as in Dickinson's

treatment of the hydrogen molecule-ion (which was suggested

by Rosen's work). The effective nuclear charges Z'e in u it

and Z"e in u2p were assumed to be related, with Z" = 2Z'.

It was found that this leads to an improvement of 0.26 v.e. in

the value of De over Wang's treatment, the minimum in the

energy corresponding to the values re
= 0.77 A, D e

= 4.02 v.e.,

Z' =
1.19, and a = 0.10.

A still more general function, obtained by adding ionic terms

(as in 43-13) to the Rosen function, was discussed by Weinbaum,
who obtained De

= 4.10 v.e., Z7 = 1.190, a- = 0.07, and c = 0.176.

The results of the various calculations described in this section

are collected in Table 43-1, together with the final results of

James and Coolidge (see following section).

TABLE 43-1. RESULTS OF APPROXIMATE TREATMENTS OF THE NORMAL
HYDROGEN MOLECULE

43c. The Treatment of James and Coolidge. In none of the

variation functions discussed in the preceding section does the

interelectronic interaction find suitable expression. A major
advance in the treatment of the hydrogen molecule was made

by James and Coolidge
2
by the explicit introduction of the

1 N. ROSEN, Phys. Rev. 38, 2099 (1931).
8 H. M. JAMES and A. S. COOMDGE, /. Chem. Phys. 1, 825 (1933).
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interelectronic separation r i2 in the variation function (the

similar step by Hylleraas having led to the ultimate solution

of the problem of the normal helium atom). Using the elliptic

coordinates (Sec. 42c)

,. ?AI + rB \ .. TAZ + rB2
j

-. -
, 2

_ -
,

TAB r^a

FAI ~ TB \ TAZ r* 2

TAB TAB

and the new coordinate

2r 12
w = -

y

TAB

James and Coolidge chose as the variation function the expression

P
)> (43-15)

mnjfcp

the summation to include zero and positive values of the indices,

with the restriction that j + k be even, which is required to make
the function symmetric in the coordinates of the nuclei.

Calculations were first made for TAB = 1.40a (the experi-

mental value of r) and 6 = 0.75; with these fixed values the

variation of the parameters can be carried out by the solution

of a determinantal equation (Sec. 26d). It was found that

five terms alone lead to an energy value much better than any
that had been previously obtained,

1 the improvement being due

in the main to the inclusion of one term involving u (Tables

43-2 and 43-3). It is seen from Table 43-2 that the eleven-term

and thirteen-term functions lead to only slightly different energy

values, and the authors' estimate that the further terms will

contribute only a small amount, making De
= 4.722 0.013 v.e.,

seems not unreasonable.

Using the eleven-term function, James and Coolidge investi-

gated the effects of varying 5 and TAB, concluding that the

values previously assumed minimize the energy, corresponding
to agreement between the theoretical and the experimental
value of re ,

and that the energy depends on TAB in such a way as to

correspond closely to the experimental value of ve .

1 It is of interest that the best value found by including only terms with

p = is De = 4.27 v.e., which is only slightly better than the best values

of the preceding section.
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This must be considered as a thoroughly satisfactory treat-

ment of the normal hydrogen molecule, the only improvement
which we may look forward to being the increase in accuracy by
the inclusion of further terms.

TABLE 43-2. SUCCESSIVE APPROXIMATIONS WITH THE JAMES-COOLIDGE

WAVE FUNCTION FOR THE HYDROGEN MOLECULE

TABLE 43-3. VALUES OF COEFFICIENTS cmn jkp FOR NORMALIZED WAVE
FUNCTIONS FOR THE HYDROGEN MOLECULE*

*In a later note, J. Chem. Phys. 3, 129 (1935), James and Coolidge state that these

values are about 0.05 per cent too large.

43d. Comparison with Experiment. The theoretical values

for the energy of dissociation of the hydrogen molecule and mole-

cule-ion discussed in the preceding sections can be compared with

experiment both directly and indirectly. The value

Do = 2.639 0.002 v.e.

for H is in agreement with the approximate value 2.6 0.1 v.e.

found from the extrapolated vibrational frequencies for excited
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states of H 2 . For the hydrogen molecule the energy calculations

of James and Coolidge with an estimate of the effect of further

terms and corrections for zero-point vibration (using a Morse

function) and for the rapid motion of the nuclei (corresponding

to the introduction of a reduced mass of electron and proton)

lead to the value 1 4.454 0.013 v.e. for the dissociation energy
-0 . This is in entire agreement with the most accurate experi-

v=o

v=o-

H+H

De(H 2)
D (H ? )

H 2

FIG. 43-6. Energy-level diagram for a system of two electrons and two protons.

mental value, 4.454 0.005 v.e., obtained by Beutler 2
by the

extrapolation of observed vibrational levels.

Another test of the values can be made in the following way.
From the energy-level diagram for a system of two electrons and

1 H. M. JAMES and A. S. COOLIDGE, J. Chem. Phys. 3, 129 (1935). We are

indebted to Drs. James and Coolidge for the personal communication of this

and other results of their work.
2 H. BEUTLER, Z. phys. Chem. B27, 287 (1934). A direct thermochemical

determination by F. R. Bichowsky and L. C. Copeland, Jour. Am. Chem.

Soc. 50, 1315 (1928), gave the value 4.55 0.15 v.e.
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two protons shown in Figure 43-6 we see that the relation

/(H 2) + D (H+) = /(H) + #o(H 2) (43-16)

holds between the various ionization energies and dissociation

energies. With the use of the known values of /(H) and D (HJ)
(the latter being the theoretical value) and of the extrapolated

spectroscopic value of 7(H 2), Do(H 2) is determined 1 as

4.448 0.005 v.e.,

again in excellent agreement with the value given by James
and Coolidge.

43e. Excited States of the Hydrogen Molecule. Several

excited states of the hydrogen molecule have been treated by
perturbation and variation methods,

2 with results in approximate
agreement with experiment.

Instead of discussing these results, let us consider the simple

question as to what wave functions for the hydrogen molecule

can be built from Is hydrogenlike functions u^ and UB alone.

There are four product functions of this type, uA(l)uB (2),
uB(l)uA(2), uA(l)uA (2), and uB (l)uB (2). The equivalence of

the two electrons and of the two nuclei requires that the wave
functions obtained from these by solution of the secular equation
be either symmetric or antisymmetric in the positional coordi-

nates of the two electrons and also either symmetric or antisym-
metric in the two nuclei. These functions are

uB(l)uA (2)}, {uA(l)uA(2) + uB (l)uB (2)}

III uA(l)uB (2) -
IV uA(l)uA(2) -

functions I and II being formed by linear combination of the two
indicated functions. One of these (I, say) represents the

1 Personal communication to Dr. James from Prof. O. W. Richardson.
2 E. C. KEMBLE and C. ZENER, Phys. Rev. 33, 512 (1929); C. ZENER and

V. GUILLEMIN, Phys. Rev. 34, 999 (1929); E. A. HYLLERAAS, Z. f. Phys. 71,-
739 (1931); E. MAJORANA, Atti Accad. Lincei 13, 58 (1931); J. K. L. MAC
DONALD, Proc. Roy. Soc. A136, 528 (1932). The method of James and

Coolidge has been applied to several excited states of the hydrogen molecule

by R. D. Present, J. Chem. Phys. 3, 122 (1935), and by H. M. James, A. S.

Coolidge, and R. D. Present, in a paper to be published soon.
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normal state of the molecule (Sec. 436, Weinbaum), and the other

an excited state. The term symbol
12+ for these states contains

the letter 2 to show that there is no component of electronic

orbital angular momentum along the nuclear axis; the superscript

1 to show that the molecule is in a singlet state, as shown also

by the symbol SB
, meaning symmetric in the positional coordi-

nates of the two electrons, Pauli's principle then requiring that

the electron-spin function b& the singlet function

and the superscript + to show that the electronic wave function

is symmetric in the two nuclei, as shown also by SN . In

addition the subscript g (German gerade) is given to show that

the electronic wave function is an even function of the electronic

coordinates. Functions III and IV are both antisymmetric in

the nuclei, as indicated by the symbol AN and the superscript ,

and are odd functions, as shown by the subscript u (German
ungerade), III being a triplet and IV a singlet function. A
further discussion of these symmetry properties will be given in

the next section and in Section 48.

Function III represents the repulsive interaction of two

normal hydrogen atoms, as mentioned in Section 43a. Function

II is mainly ionic in character and function IV completely so,

representing the interaction of H+ and H~. Of these IV cor-

responds to a known state, the first electronically excited state

of the molecule. As might have been anticipated from the

ionic character of the wave function, the state differs in its prop-
erties from the other known excited states, having r< = 1.29 A
and ve

= 1358 cm" 1
,
whereas the others have values of re and ve

close to those for the normal hydrogen molecule-ion, 1.06 A
and 2250 cm" 1

. The calculations of Zener and Guillemin and

of Hylleraas have shown that at the equilibrium distance the

wave function for this state involves some contribution from

wave functions for one normal and one excited atom (with
n =

2, 1 = 1), and with increase in TAB this contribution increases,

the molecule in this state dissociating into a normal and an
excited atom.

The state corresponding to II has not yet been identified.

Problem 48-1. Construct a wave function of symmetry type AN8*
from Is and 2p functions.
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43f. Oscillation and Rotation of the Molecule. Ortho and
Para Hydrogen, In accordance with the discussion of the pre-

ceding sections and of Chapter X, we can represent the complete
wave function for the hydrogen molecule as the product of

five functions, one describing the orbital motion of the electrons,

the second the orientation of electron spins, the third the oscilla-

tional motion of the nuclei, the fourth the rotational motion of

the nuclei, and the fifth the orientation of nuclear spins (assuming
them to exist) :

* -

/electronicX / electronic- \ 7
. x/ ,

./ nuclear- \
/ , -x i V - V nuclear \/ nuclear \/ . \
I orbital V spin H .

}( ][ spin I.

I .. A .

*
. A oscillation 7V rotation 71 . . . I

\ motion / \orientation/
\ '\ '

ymentation/

For the normal electronic state the first of these is symmetric
in the two electrons, the second antisymmetric, and the remaining
three independent of the electrons (and hence symmetric),

making the entire function antisymmetric in the two electrons,

as required by Pauli's principle. Let us now consider the sym-

metry character of these functions with respect to the nuclei.

The first we have seen to be symmetric in the nuclei. The
second is also symmetric, not being dependent on the nuclear

coordinates. The third is also symmetric for all oscillational

states, inasmuch as the variable r which occurs in the oscilla-

tional wave function is unchanged by interchanging the nuclei.

The rotational function, however, may be either symmetric or

antisymmetric. Interchanging the two nuclei converts the

polar angle # into TT # and <p into w + <p; the consideration of

the rotational wave functions (Sees. 35a and 21) shows that

this causes a change in sign if the rotational quantum number K
is odd, and leaves the function unchanged if K is even. Hence

the rotational wave function is symmetric in the nuclei for even

rotational states and antisymmetric for odd rotational states.

The nuclear-spin function can be either symmetric or antisym-

metric, providing that the nuclei possess spins.

By an argument identical with that given in Section 296 for

the electrons in the helium atom we know that a system con-

taining two identical protons can be represented either by wave

functions which are symmetric in the protons or by wave func-

tions which are antisymmetric in the protons. Let us assume
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that the protons possessed no spins and that the symmetric
functions existed in nature. Then only the even rotational

states of the normal hydrogen molecule would occur (and only

the odd rotational states of the AN electronic state IV of the

preceding section). Similarly, if the antisymmetric functions

existed in nature, only the odd rotational states of the normal

molecule would occur. If, on the other hand, the protons

possessed spins of % (this being the value of the nuclear-spin

quantum number 7), both even and odd rotational states would

occur, in the ratio of 3 to 1 if the complete wave function were

symmetric or 1 to 3 if it were antisymmetric, inasmuch as there

are for / = % three symmetric nuclear-spin wave functions,

and

and one antisymmetric one,

1 , , ,

In this case, then, we would observe alternating intensities in

the rotational fine structure of the hydrogen bands, with the

ratio of intensities 3:1 or 1:3, depending on the symmetry char-

acter of protons. Similar alternating intensities result from

larger values of /, the ratio being
1 / + 1 to /. It is seen that

1 Thus for 7 = 1 there are three spin functions for one particle, a, 0, and 7,

say, corresponding to ra/ =
-f-1, 0, 1. From these we can build the

following wave functions for two particles, giving the ratio 2:1.

Symmetric Antisymmetric

(A) a(B)

y(A) y(B)

~
a(B)} -={a(A) fi(B)

-
ft (A) a(B)}V2 V2

-={(A) y(B) + y(A) a(B)\ -~(A) y(B) - y(A) a(B)}
V2
-= y(B) -f y(A) ft(B)} -=IA) y(B) - 7 (A)
V2 \/2
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from the observation and analysis of band spectra of molecules

containing two identical nuclei the symmetry character and the

spin of the nuclei can be determined.

It was found by Dennison 1

(by a different method the study
of the heat capacity of the gas, discussed in Section 49e) that

protons (like electrons) have a spin of one-half, and that the

allowed wave functions are completely antisymmetric in the

proton coordinates (positional plus spin). This last statement

is the exact analogue of the Pauli exclusion principle.
2

Each of the even rotational wave functions for the normal

hydrogen molecule is required by this exclusion principle to be

combined with the antisymmetric spin function, whereas each

of the odd rotational wave functions can be associated with the

three symmetric spin functions, giving three complete wave
functions. Hence on the average there are three times as many
complete wave functions for odd rotational states as for even, and

at high temperatures three times as many molecules will be in

odd as in even rotational states (Sec. 49e). Moreover, a molecule

in an odd rotational state will undergo a transition to an even

rotational state (of the normal molecule) only extremely rarely f

for such a transition would result only from a perturbation involv-

ing the nuclear spins, and these are extremely small in magnitude.
Hence (as was assumed by Dennison) under ordinary circum-

stances we can consider hydrogen as consisting of two distinct

molecular species, one, called para hydrogen, having the nuclear

spins opposed and existing only in even rotational states (for

the normal electronic state), and the other, called ortho hydrogen,

having the nuclear spins parallel and existing only in the odd

rotational states. Ordinary hydrogen is one-quarter para and

three-quarters ortho hydrogen.
On cooling to liquid-air temperatures the molecules of para

hydrogen in the main go over to the state with K and

those of ortho hydrogen to the state with K =
1, despite the

fact that at thermodynamic equilibrium almost all molecules

would be in the state with K =
0, this metastable condition

being retained for months. It was discovered by Bonhoeffer

1 D. M. DENNISON, Proc. Roy. Soc. A115, 483 (1927).
2 The spins and symmetry nature for other nuclei must at present be

determined experimentally; for example, it is known that the deuteron has

7 = 1 and symmetric wave functions.
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and Harteck,
1
however, that a catalyst such as charcoal causes

thermodynamic equilibrium to be quickly reached, permitting

the preparation of nearly pure para hydrogen. It is believed

that under these conditions the ortho-para conversion is due to

a magnetic interaction with the nuclear spins,
2 and not to dis-

sociation into atoms and subsequent recombination, inasmuch as

the reaction H 2 + D 2 *=* 2HD is not catalyzed under the same

conditions. The conversion is catalyzed by paramagnetic sub-

stances 3
(oxygen, nitric oxide, paramagnetic ions in solution), and

a theoretical discussion of the phenomenon has been published.
4

At higher temperatures the conversion over solid catalysts seems

to take place through dissociation and recombination.

44. THE HELIUM MOLECULE-ION Hef AND THE INTERACTION
OF TWO NORMAL HELIUM ATOMS

In the preceding sections we have discussed systems of two

nuclei and one or two electrons. Systems of two nuclei and three

or four electrons, represented by the helium molecule-ion He
and by two interacting helium atoms, respectively, are treated

in the following paragraphs. A discussion of the results obtained

for systems of these four types and of their general significance

in regard to the nature of the chemical bond and to the structure

of molecules will then be presented in Section 45.

44a. The Helium Molecule -ion He. In treating the system
of two helium nuclei and three electrons by the variation method
let us first construct electronic wave functions by using only

hydrogenlike Is orbital wave functions for the two atoms, which

we may designate as UA and uBy omitting the subscripts Is for

the sake of simplicity. Four completely antisymmetric wave
functions can be built from these and the spin functions a and ft.

These are (before normalization)

(44-1)

(3) uX3) 0(3) a(3) (3)

1 K. F. BONHOEFFBR and P. HARTECK, Z.f. phys. Chem. B4, 113 (1929).
1 K. F. BONHOEFFER, A. PARKAS, and K. W. RUMMBL, Z. f. phys. Chern.

B21, 225 (1933).

L FARKAS and H. SACHSSB, Z. f. phys. Chem. B33, 1, 19 (1933).
E. WIGNBR, Z. f. phys. Ckem. B23, 28 (1933).
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and

fai = ttj(2)a(2)

a(3) tt,(3) 0(3)

(44-2)

and two other functions, \l/m and fav, obtained by replacing
a by in the last column of these functions. It is seen that the

function fa represents a pair of electrons with opposed spins on

nucleus A (as in the normal helium atom) and a single electron

with positive spin on nucleus B; this we might write as He:
He+. Function ^n similarly represents the structure He-+ :He,

the nuclei having interchanged their roles. It is evident that

this system shows the same degeneracy as the hydrogen molecule-

ion, and that the solution of the secular equation for fa and fai

will lead to the functions \frs and ^A, the nuclear-symmetric and

nuclear-antisymmetric combinations of fa and fai (their sum
and difference), as the best wave functions given by this approxi-

mate treatment. The other wave functions ^m and fav lead

to the same energy levels.

The results of the energy calculation 1

(which, because of its

similarity to those of the preceding sections, does not need to be

given in detail) are shown in Figure 44-1. It is seen that the

nuclear-antisymmetric wave function \I/A corresponds to repulsion

at all distances, whereas the nuclear-symmetric function \f/a

leads to attraction and the formation of a stable molecule-ion.

That this attraction is due to resorance between the structures

He: -He"*" and He-+ :He is shown by comparison with the energy
curve for fa or fai alone, given by the dashed line in Figure 44-1.

We might express this fact by writing for the normal helium

molecule-ion the structure He---He+, and saying that its stabil-

ity is due to the presence of a three-electron bond between the

two atoms.

The function fa composed of Is hydrogenlike orbital wave
functions with effective nuclear charge 2e leads to a minimum
in the energy curve at re = 1.01 A and the value 2.9 v.e. for the

energy of dissociation De into He + He+. A more accurate

treatment2 can be made by minimizing the energy for each value

*L. PAULINO, /. Chem. Phys. 1, 56 (1933).
1 L. PAULING, Joe. cit. The same calculation with Z f

given the fixed value

1.8 was made by E. Majorana, Nuovo Cim. 8, 22 (1931).
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of TAB with respect to an effective nuclear charge Z'e. This

leads to re
= 1.085 A, De

= 2.47 v.e., and the vibrational

frequency ve
= 1950 cm" 1

,
with Z' equal to 1.833 at the equilib-

rium distance. A still more reliable treatment can be made

by introducing two effective nuclear charges Z'e and Z"e, one for

the helium atom and one for the ion, and minimizing the energy

with respect to Z' and Z", This has been done by Weinbaum,
1

who obtained the values re
= 1.097 A, D e

= 2.22 v.e., Z' = 1.734,

and Z" = 2.029. The results of these calculations are in good

agreement with the experimental values given by excited states

of the diatomic helium molecule (consisting of the normal mole-

cule-ion and an outer electron), which are re
= 1.09 A, De

= 2.5

v.e., and ve
= 1650 cm"" 1

.

It is of interest that the system of a helium nucleus and

a hydrogen nucleus and three electrons does not show the

degeneracy of functions \f/i and ^n, and that in consequence the

interaction of a normal helium atom and a normal hydrogen

1 S. WEINBAUM, /. Chem. Phys. 3, 547 (1935).



XII-44b] THE HELIUM MOLECULE-ION 361

atom corresponds to repulsion, as has been verified by approxi-
mate calculations. 1

44b. The Interaction of Two Normal Helium Atoms. We may
write for the wave function for the normal state of a system
consisting of two nuclei and four electrons the expression

N uA(2)a(2) uA(2)0(2) uB(2)a(2) uB (2) 0(2)

w,(4) 0(4)

, (44-3)

in which T/A and MB represent Is wave functions about nuclei

A and B, respectively, and JV is a normalizing factor. This wave
function satisfies Pauli's principle, being completely anti-

symmetric in the four electrons. It is the only wave function

of this type which can be constructed with the use of the one-

electron orbital functions UA and UB alone.

It was mentioned by Heitler and London in their first paper
1

that rough theoretical considerations show that two normal

helium atoms repel each other at all distances. The evaluation

of the energy for the wave function \l/ of Equation 44-3 with

UA and UB hydrogenlike Is wave functions with effective atomic

number Z r = 2
J
/ie was carried out by Gentile. 2 A more

accurate calculation based on a helium-atom wave function not

given by a single algebraic expression has been made by Slater,
3

who found that the interaction energy is given by the approxi-

mate expression

2.43fl

W - WQ = 7.70 - 10-10
e <*>

ergs. (44-4)

This represents the repulsion which prevents the helium atoms

from approaching one another very closely. The weak attrac-

tive forces which give rise to the constant a of the van der Waals

equation of state cannot be treated by a calculation of this type
based on unperturbed helium-atom wave functions. It will

be shown in Section 476 that the van der Waals attraction is

a6 a6

given approximately by the energy term 1.41e 2

^jor 0.607p

1 W. HEITLER and F. LONDON, Z. f. Phys. 44, 455 (1927).
2 G. GENTILE, Z. f. Phys. 63, 795 (1930).
8 J. C. SLATER, Phys. Rev. 32, 349 (1928).
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ergs. The equilibrium interatomic distance corresponding to

this attraction term and the repulsion term of Equation 44-4

is 3.0 A, in rough agreement with the experimental value of

about 3.5 A for solid helium, showing that the theoretical calcu-

lations are of the correct order of magnitude.

45. THE ONE-ELECTRON BOND, THE ELECTRON-PAIR BOND,
AND THE THREE-ELECTRON BOND

In the preceding sections we have discussed systems containing

two nuclei, each with one stable orbital wave function (a Is

function), and one, two, three, or four electrons. We have found

that in each case an antisymmetric variation function of the

determinantal type constructed from atomic orbitals and

spin functions leads to repulsion rather than to attraction

and the formation of a stable molecule. For the four-electron

system only one such wave function can be constructed, so that

two normal helium atoms, with completed K shells, interact with

one another in this way. For the other systems, on the other

hand, more than one function of this type can be set up (the two

corresponding to the structures H- H+ and H+ -H for the hydro-

gen molecule-ion, for example); and it is found on solution

of the secular equation that the correct approximate wave
functions are the sum and difference of these, and that in each

case one of the corresponding energy curves leads to attraction

of the atoms and the formation of a stable bond. We call

the bonds involving two orbitals (one for each nucleus) and one,

two, and three electrons the one-electron bond, the electron-pair

bond, and the three-electron bond, respectively.

The calculations for the hydrogen molecule-ion, the hydrogen

molecule, and the helium molecule-ion show that for these

systems the electron-pair bond is about twice as strong a bond

(using the dissociation energy as a measure of the strength of a

bond) as the one-electron bond or the three-electron bond. 1 This

fact alone provides us with some explanation of the great impor-
tance of the electron-pair bond in molecular structure in general

and the subsidiary roles played by the one-electron bond and the

three-electron bond. 2

1
See, however, the treatment of Li"^ by H. M. JAMES, /. Chem. Phys. 3,

9 (1935).

L. PAULWG, /. Am. Chem. Soc. 53, 3225 (1931).
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There is a still more cogent reason for the importance of the

electron-pair bond. This is the nature of the dependence of the

energy of the bond on the similarity or dissimilarity of the two

nuclei (or the two orbitals) involved. Using only two orbitals,

UA and UB ,
we can construct for the one-electron system only the

two wave functions

and

(together with two others involving 0(1) which do not combine

with these and which lead to the same energy curves). These

correspond to the electronic structures A- B+ and A+ 'B. If

A and B are identical (or if fa and ^n correspond to the same

energy because of an accidental relation between the orbitals

and the nuclear charges) there is degeneracy, and the interaction

of fa and \//u causes the formation of a stable one-electron bond.

If this equality of the energy does not obtain, the bond is weak-

ened, the bond energy falling to zero as the energy difference for

\l/i and \l/u becomes very large.

The three-electron bond behaves similarly. The wave func-

tions (Eqs. 44-1 and 44-2) are closely related to those for the

one-electron system, and the bond energy similarly decreases

rapidly in magnitude as the energy difference for the two wave
functions increases. Hence, in general, we expect strong one-

electron bonds and three-electron bonds not to be formed

between unlike atoms.

The behavior of the electron-pair bond is entirely different.

The principal degeneracy leading to bond formation is that

between the wave functions

a(2) uB(2) 0(2)

and

*n =
uA(2) 0(2) UB(2) a(2)

These correspond to the same energy value even when A and B
are not identical; hence there is just the same resonance stabiliz-

ing an electron-pair bond between unlike atoms as between like

atoms. Moreover, the influence of the ionic terms is such as to
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introduce still greater stability as the nuclei become more unlike.

One of the ionic wave functions

*.-<<
and

corresponding to the ionic structures A :

- B+ and A+ : B~, becomes

more and more important (contributing more and more to the

normal state of the molecule) as one of the atoms becomes more

electronegative than the other, in consequence of the lowering
of the energy for that ionic function. This phenomenon causes

electron-pair bonds between unlike atoms to be, in general,

somewhat stronger than those between like atoms. The dis-

cussion of this subject has been in the main empirical.
1

It has been found possible to apply quantum-mechanical
methods such as those described in this chapter in the detailed

discussion of the electronic structure of polyatomic molecules

and of valence and chemical bond formation in general. Only
in a very few cases has the numerical treatment of polyatomic
molecules been carried through with much accuracy; the most

satisfactory calculation of this type which has been made is

that of Coolidge
2 for the water molecule. General arguments

have been presented
3 which provide a sound formal justification

for the postulates previously made by the chemist regarding the

nature of valence. It can be shown, for example, that one bond

of the types discussed in this section can be formed by an atom
for each stable orbital of the atom. Thus the first-row elements

of the periodic system can form as many as four bonds, by using
the four orbitals of the L shell, but not more. This result and

other results 4
regarding the relative orientation of the bond

axes provide the quantum-mechanical basis for the conception
of the tetrahedral carbon atom. Special methods for the

J L. PAULING, /. Am. Chem. Soc. 64, 3570 (1932).
2 A. S. COOLIDGE, Phys. Rev. 42, 189 (1932).
* W. HEITLER, Z. f. Phys. 47, 835 (1928), etc.; F. LONDON, Z. f. Phys.

50, 24 (1928), etc.; M. BORN, Z.f. Phys. 64, 729 (1930); J. C. SLATER, Phys.
Rev. 38, 1109 (1931).

* J. C. SLATER. Phys. Rev. 34, 1293 (1929); L. PAULING, /. Am. Chem. Soc,

63, 1367 (1931); J. H. VAN VLECK, /. Chem. Phys. 1, 177 (1933), etc.
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approximate treatment of the stability of very complex molecules

such as the aromatic hydrocarbons
1 have also been developed

and found to be useful in the discussion of the properties of these

substances. The already very extensive application of wave
mechanics to these problems cannot be adequately discussed

in the small space which could be allowed it in this volume.

1 E. HUCKEL, Z. f. Phys. 70, 204 (1931), etc.; G. RUMER, Gottinger Nachr.

p. 337, 1932; L. PAULING, J. Chem. Phys. 1, 280 (1933); L. PAULING and

G. W. WHELAND, ibid. 1, 362 (1933); L. PAULING and J. SHERMAN, ibid. 1,

679 (1933), etc.



CHAPTER XIII

THE STRUCTURE OF COMPLEX MOLECULES

In carrying out the simple treatments of the hydrogen mole-

cule-ion, the hydrogen molecule, the helium molecule-ion,

and the system composed of two normal helium atoms discussed

in the last chapter, we encountered no difficulty in constructing a

small number of properly antisymmetric approximate wave
functions out of one-electron orbital functions for the atoms of

the molecule. The same procedure can be followed for more

complex molecules; it is found, however, that it becomes so

complicated as to be impracticable for any but the simplest

molecules, unless some method of simplifying and systematizing
the treatment is used. A treatment of this type, devised by

Slater,
1 is described in the following sections, in conjunction

with the discussion of a special application (to the system of

three hydrogen atoms). Slater's treatment of complex mole-

cules has been the basis of most of the theoretical work which has

been carried on in this field in the last three years.

46. SLATER'S TREATMENT OlF COMPLEX MOLECULES

In the last chapter we have seen that a good approximation
to the wave function for a system of atoms at a considerable

distance from one another is obtained by using single-electron

orbital functions ua(l), etc., belonging to the individual atoms,
and combining them with the electron-spin functions a and ft

in the form of a determinant such as that of Equation 44-3.

Such a function is antisymmetric in the electrons, as required by
Pauli's principle, and would be an exact solution of the wave

equation for the system if the interactions between the electrons

and those between the electrons of one atom and the nuclei

of the other atoms could be neglected. Such determinantal

1 J. C. SI-ATBB. Phya. Rev. 38, 1109 (1931).

366
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functions are exactly analogous to the functions 1 used in Section

30a in the treatment of the electronic structure of atoms.

It may be possible to construct for a complex molecule many
such functions with nearly the same energy, all of which would

have to be considered in any satisfactory approximate treatment.

Thus if we consider one atom to have the configuration Is22 2
2p,

we must consider the determinantal functions involving all three

2p functions for that atom. A system of this type, in which

there are a large number of available orbitals, is said to involve

orbital degeneracy. Even in the absence of orbital degeneracy,
the number of determinantal functions to be considered may be

large because of the variety of ways in which the spin functions

a and can be associated with the orbital functions. This

spin degeneracy has been encountered in the last chapter; in the

simple treatment of the hydrogen molecule we considered the

two functions corresponding to associating positive spin with

the orbital UA and negative spin with UB ,
and then negative spin

with UA and positive spin with UB (Sec. 45). The four wave
functions described in Section 44a for the helium molecule-ion

might be represented by the scheme of Table 46-1. The plus

TABLE 46-1. WAVE FUNCTIONS FOR THE HELIUM MOLECULB-ION, .

and minus signs show which spin function a or ft is to be asso-

ciated with the orbital functions UA and UB (in this case Is func-

tions on the atoms A and
, respectively) in building up the

determinantal wave functions. Thus row 1 of Table 46-1

corresponds to the function ^ given in Equation 44-1.

The column labeled Sm, has the same meaning as in the atomic

problem; namely, it is the sum of the z-components of the spin

angular momentum of the electrons (with the factor A/2*0.

Just as in the atomic case, the wave functions which have different

1 In Section 30a the convention was adopted that the symbol u(i) should

include the spin function a(i} or 0(i). In this section we shall not use the

convention, instead writing the spin function a or explicitly each time.
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values of 2m, do not combine with one another, so that we were

justified in Section 44o in considering only \l/i and ^n.

Problem 46-1. Set up tables similar to Table 46-1 for the hydrogen
molecule using the following choices of orbital functions: (a) Is orbitals

on the two atoms, allowing only one electron in each, (b) The same
orhitals but allowing two electrons to occur in a single orbital also; i.e.,

allowing ionic functions, (c) The same as (a) with the addition of func-

tions 2pt on each atom, (d) The molecular orbital (call it u) obtained by
the accurate treatment of the normal state of the hydrogen molecule-ion.

46a. Approximate Wave Functions for the System of Three

Hydrogen Atoms. In the case of three hydrogen atoms we can

set up a similar table, restricting ourselves to the three Is func-

tions uaj Ub, and uc on three atoms a, fc, and c, respectively, and

neglecting ionic structures (Table 46-2).

TABLE 46-2. WAVE FUNCTIONS FOR THE SYSTEM OF THREE HYDROGEN
ATOMS

The wave function corresponding to row II of Table 46-2 is, for

illustration,

1

tt.(2) (2)

.(3) (3)

U6(2) a(2)

6(3) a(3)

(46-1)

Each of the functions described in Table 46-2 is an approxi-
mate solution of the wave equation for three hydrogen atoms;
it is therefore reasonable to consider the sum of them with

undetermined coefficients as a linear variation function. The
determination of the coefficients and the energy values then

requires the solution of a secular equation (Sec. 26d) of eight

rows and columns, a typical element of which is

#in - &inW (46-2)
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where

#m - JWiMr, (46-3)

and

Ai ir
= JWii*-, (46-4)

H being the complete Hamiltonian operator for the system.

Problem 46-2. Make a table similar to Table 46-2 but including all

ionic functions that can be made with the use of u a , w&, and ue .

46b. Factoring the Secular Equation. In the discussion of the

electronic structure of atoms (Sec. 30c) we found that the

secular equation could be factored to a considerable extent

because integrals involving wave functions having different

values of 2m or different values of 2m/ (the .quantum numbers

of the components of spin and orbital angular momentum,
respectively) are zero. In the molecular case the orbital angular
momentum component is no longer a constant of the motion

(Sec. 52), so that only the spin quantum numbers are useful

in factoring the secular equation.

In the case of the system under discussion, we see from Table

46-2 that the secular equation factors into two linear factors

(2ra, = Y% and %) and two cubic factors (2w5
= ^

and 3^). On the basis of exactly the Same reasoning as used

in Section 30c for the atomic case, we conclude that the roots of

the two linear factors will be equal to each other and also to

one of the roots of each of the cubic factors. 1 The four cor-

responding wave functions are therefore associated with a quartet

energy level, which on the vector picture corresponds to the

parallel orientation of the three spin vectors, the four states

differing only in the orientation of the resultant vector.

The two remaining energy levels will occur twice, once in

each of the cubic factors. Each of them is, therefore, a doublet

level. The straightforward way of obtaining their energy values

would be to solve the cubic equation; but this is unnecessary,

inasmuch as by taking the right linear combinations of II, III,

and IV it is possible to factor the cubic equation into a linear

factor and a quadratic factor, the linear factor yielding the

energy of the quartet level. Such combinations are

1 These statements can easily be verified by direct comparison of the

roots obtained, using the expressions for the integrals given in Section 46c.



370 THE STRUCTURE Of COMPLEX MOLECULES [XHI-46C

A - (11
-

III), (46-5)

B = -(III -
IV), (46-6)

C = -=(IV -
II), (46-7)

and

D = -=(II + III + IV). (46-8)

Since these four functions are constructed from only three linearly

independent functions II, III, and IV, they cannot be linearly

independent; in fact, it is seen that A + B + C = 0. The

factoring of the secular equation will be found to occur when it

is set up in terms of D and any two of the functions A, B, and C.

The energy of the quartet level can be obtained from either of

the linear factors; it is given by the relation

W =^ (4ft-9)

The values of the energy of the two doublet levels are obtained

from the quadratic equation

HAA - A^TF HAB - A^JF
/<t* im

v A w u AW** ' (46-10)
tiBA AIM IT HBB ABB W

in which

HAB =
JA*HBdT,}

AAB JA*Bdr, > (45-11)

Problem 46-8. Indicate how the secular equation for each of the cases

of Problem 46-1 will factor by drawing a square with rows and columns

labeled by the wave functions which enter the secular equation, and indi-

cating by zeros in the proper places in the square the vanishing matrix

elements.

46c. Reduction of Integrals. Before discussing the conclusions

which can be drawn from these equations, let us reduce somewhat

further the integrals HUUI , etc. The wave function II can be

written in the form (Sec. 30a)

l (45-12)
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in which P represents a permutation of the functions uaa, etc.,

among the electrons. A typical integral can thus be expressed
In the form

P, P
Pwa(l)a(l)w6(2)0(2K(3)a(3)dr. (46-13)

Following exactly the argument of Section 30d for the atomic

case, we can reduce this to the form

Hum
p

ti(2)/8(2)w(3)a(3)dr. (46-14)

As in the atomic case, the integral vanishes unless the spins

match, and there can be no permutation P which matches the

spins unless Sw, is the same for II and III. In this case we
see that the spins are matched for the permutations P which

permute 123 into 132 or 231 so that only these terms contribute

to the sum. When the spins match in an integral, the integration

over the spin can be carried out at once, yielding the factor

unity. We thus have the result

Jt**(l) o(l) <(2) a(2) w*(3) 0(3) Hua (l) a(l) ub (2) 0(3) ue(2) a(2)

dr = /u*(l) uf(2) u*(3) Hua(l) uc (2) ub(3) dr = (abc\H \acb),

(46-15)

in which we have introduced a convenient abbreviation,

(abc\H\acb).

In this way we obtain the following expressions:

Hn - (abc\H\abc)
-

(abc\H\bac)
-

(abc\H\acb)
-

(abc\H\cba) + (abc\H\bca) + (dbc\H\caK),

Hnn - (abc\H\abc)
-

(abc\H\bac),
-

(abc\H\abc)
-

(abc\H\cba),

iv - (abc\H\abc)
-

(dbc\H\acb),
-

(dbc\H\ad>),
-

(abc|J9r|bac)i
-

(abc\H\cba).

The expressions for the A's are the same with H replaced by

unity. The integral (dbc\H\abc) is frequently called the Coulomb

integral^ because it involve? the Coulomb interaction of two
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distributions of electricity determined by uaj u\>, and uc . The
other integrals such as (abc\H\bac) are called exchange integrals.

If only one pair of orbitals has been permuted, the integral is

called a single exchange integral; if more than one, a multiple

exchange integral. If the orbital functions ua ,
ub ,

and uc were

mutually orthogonal, many of these integrals would vanish, but

it is seldom convenient to utilize orthogonal orbital functions in

molecular calculations. Nevertheless, the deviation from orthog-

onality may not be great, in which case many of the integrals

can be neglected.

46d. Limiting Cases for the System of Three Hydrogen Atoms.

The values of the integrals Hnm t etc., depend on the distances

between the atoms a, 6, and c, and therefore the energy values

and wave functions will also depend on these distances. It is

interesting to consider the limiting case in which a is a large dis-

tance from 6 and c, which are close together. It is clear that the

wave function ua will not overlap appreciably with either ub or

ucj so that the products uaUb and uauc will be essentially zero for

all values of the coordinates. Such integrals as (abc\H\bac)

will therefore be practically zero, and we can write

#n ii
= ffin in =

(abc\H\abc),

Km iv = HII iv = 0,

#IVIV =
(abc\H\abc)

-
(abc\H\acb),

and

#11111 = -(abc\H\acb),

thus obtaining the further relations

HAA =
(abc\H\abc) + (abc\H\acb),

HBB = (abc\H\abc)
-

and

HAB = -%(abc\H\ab

If we insert these values into the secular equation 46-10 we obtain

as one of the roots the energy value

W =
^ (46-17)

&AA

and we find that the corresponding wave function is just the

function A itself.

It is found on calculation that exchange integrals involving
orbitals on different atoms are usually negative in sign. In
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case that such an integral occurs in the energy expression with a

positive coefficient, it will contribute to stabilizing the molecule

by attracting the atoms toward one another. Thus the expres-

sion for HAA includes the Coulomb integral (abc\H\abc) and the

exchange integral (abc\H\acb) with positive coefficient. Hence
atoms b and c will attract one another, in the way corresponding
to the formation of an electron-pair bond between them (exactly

as in the hydrogen molecule alone). Similarly the function B
represents the structure in which atoms a and c are bonded, and
C that in which a and 6 are bonded.

When we bring the three atoms closer together, so that all the

interactions are important, none of these functions alone is the

correct combination; they must be combined to give a wave
function which represents the state of the system. Therefore

when three hydrogen atoms are near together, it is not strictly

correct to say that a certain two of them are bonded, while the

third is not.

We can, however, make some statements regarding the

interaction of a hydrogen molecule and a hydrogen atom on the

basis of the foregoing considerations. We have seen that when
atom a is far removed from atoms b and c (which form a normal

hydrogen molecule), the wave function for the system is function

A. As a approaches 6 and c the wave function will not differ

much from A, so long as the ab and ac distances are considerably

larger than the be distance. An approximate value for the

interaction energy will thus be HAA/kAA ,
with

HAA ^(Huii -f" Hnini 2Huui)
=

(abc\H\abc) + (abc\H\acb)

-M(dbc\H\bac)
- Y2 (abc\H\cba) - (abc\H\cab),

and a similar expression for A^A. It is found by calculation that

in general the single exchange integrals become important at

distances at which the Coulomb integral and the orthogonality

integral have not begun to change appreciably, and at which

the multiple exchange integrals [(abc\H\cab) in this case] are still

negligible. Thus we see that the interaction energy of a hydro-

gen atom and a hydrogen molecule at large distances is

-}4(abc\H\bac)
-

M(abc\H\cbd).

Each of these terms corresponds to repulsion, showing that the

molecule will repel the atom.



374 THE STRUCTURE OF COMPLEX MOLECULES [XIII-46e

Approximate discussions of the interaction of a hydrogen atom
and hydrogen molecule have been given by Eyring and Polanyi,

1

and a more accurate treatment for some configurations has been

carried out by Coolidge and James. 2

46e. Generalization of the Method of Valence-bond Wave
Functions. The procedure which we have described above for

discussing the interaction of three hydrogen atoms can be

generalized to provide an analogous treatment of a system con-

sisting of many atoms. Many investigators have contributed to

the attack on the problem of the electronic structure of complex

molecules, and several methods of approximate treatment have

been devised. In this section we shall outline a method of treat-

ment (due in large part to Slater) which may be called the

method of valence-bond wave functions, without giving proofs of

the pertinent theorems. The method is essentially the same as

that used above for the three-hydrogen-atom problem.
Let us now restrict our discussion to the singlet states of

molecules with spin degeneracy only. For a system involving
2n electrons and 2n stable orbitals (such as the Is orbitals in 2n

hydrogen atoms), there are (2n)!/2
nn! different ways in which

valence bonds can be drawn between the orbitals in pairs. Thus
for the case of four orbitals a, 6, c, and d the bonds can be drawn
in three ways, namely,

a b

\/
d c d c d c

A B C

There are, however, only .

_/' |
independent singlet wave

functions which can be constructed from the 2n orbitals with
one electron assigned to each Orbital (that is, with neglect of

ionic structures). It was shown by Slater that wave functions

can be set up representing structures A, B, and C, and that only
two of them are independent. The situation is very closely

analogous to that described in Section 466.

1 H. EYRING and M. POLANYI, Naturwissenschaften, 18, 914 (1930);
Z.f. phys. Chem. B12, 279 (1931).

2 A. S. COOLIDGE and H. M. JAMBS, /. Chem. Phys., 2, 811 (1934).
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The very important observation was made by Rumer 1 that

if the orbitals a
y b, etc. are arranged in a ring or other closed

concave curve (which need have no relation to the nuclear con-

figuration of the molecule), and lines are drawn between orbitals

bonded together (the lines remaining within the closed curve),

the structures represented by diagrams in which no lines intersect

are independent. These structures are said to form a canonical

set. Thus in the above example the canonical set (correspond-

ing to the order a, b, c, d) comprises structures A and B. For

six orbitals there are five independent structures, as shown

in Figure 46-1.

<r "S,

N,
BT

ii in im mis:

FIG. 46-1. The five canonical valence-bond structures for six orbitals, and
some of their superposition patterns.

The wave function corresponding to the structure in which
orbitals a and

fr,
c and d, etc. are bonded is

R

P(l) 6(2) (2) c(3) 0(3) rf(4) (4) 1 (46-18?

in which P is the permutation operator described above (Sec.

46c), and R is the operation of interchanging the spin functions

a and of bonded orbitals, such as a and 6. The factor ( 1)
R

equals +1 for an even number of interchanges and 1 for an

odd number. The convention is adopted of initially assigning
the spin function to orbital a, a to 6, etc.

1 G. RUMER, Gottinger Nachr., p. 377, 1932.
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A simple method has been developed
1 of calculating the coeffi-

cients of the Coulomb and exchange integrals in setting up the

secular equation. To find the coefficient of the Coulomb

integral for two structures, superimpose the two bond diagrams,
as shown in Figure 46-1. The superposition pattern consists

of closed polygons or islands, each formed by an even number of

bonds. The coefficient of the Coulomb integral is ^n
~*, where

i is the number of islands in the superposition diagram. Thus
we obtain Hu = Q + , Hm = yQ + , etc., in which

Q represents the Coulomb integral (abed \H\abcd ).

The coefficient of a single exchange integral such as

(db) = (abed \H\bacd )

is equal to //2
n
~*, in which /has the value ^ if the two orbitals

involved (a and 6) are in different islands of the superposition

pattern; +1 if they are in the same island and separated by an
odd number of bonds (along either direction around the polygon) ;

and 2 if they are in the same island and separated by an even

number of bonds. Thus we see that

#11 = Q - lA(ac) + (06) + -

,
Hlu = Q -

2(oc) + (06) +
,
etc.

Let us now discuss the energy integral for a particular valence-

bond wave function, in order to justify our correlation of valence-

bond distribution and wave function as given in Equation 46-18.

The superposition pattern for a structure with itself, as shown

by I I in Figure 46-1, consists of n islands, each consisting of

two bonded orbitals. We see that

pn- _ Hu _ JL^
(~ ^Si /single exchange integrals for bonded\

1

An
" A^ <*-\ pairs of orbitals /

_ i/ single exchange integrals for non-bondedN
72

-^ J \ pairs of orbitals /

+ higher exchange integrals?. (46-19)

It is found by calculation that the single exchange integrals
are as a rule somewhat larger in magnitude than the other

integrals. Moreover, the single exchange integral for two orbitals

1 L. PAULINO, J. Chem. Pkys. 1, 280 (1933). See also H. Eyring and
G. E. Kimball, J. Chem. Phys. 1, 239 (1933), for another procedure.
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on different atoms is usually negative in value for the interatomic

distances occurring in molecules, changing with interatomic

distance in the way given by a Morse curve (Sec. 35d). Those

single exchange integrals which occur with the coefficient +1 in

Equation 46-19 consequently lead to attraction of the atoms

involved in the exchange, and the other single exchange integrals

(with coefficient Y^) lead to repulsion; in other words, the

wave function corresponds to attraction of bonded atoms and

repulsion of non-bonded atoms and is hence a satisfactory wave
function to represent the valence-bond structure under discussion.

The valence-bond method has been applied to many problems,
some of which are mentioned in the following section. It has

been found possible to discuss many of the properties of the

chemical bond by approximate wave-mechanical methods; an

especially interesting application has been made in the treatment

of the mutual orientation of directed valence bonds,
1

leading to

the explanation of such properties as the tetrahedral orientation

and the equivalence of the four carbon valences.

46f. Resonance among Two or More Valence-bond Struc-

tures. It is found that for many molecules a single wave function

of the type given in Equation 46-18 is a good approximation to

the correct wave function for the normal state of the system;
that is, it corresponds closely to the lowest root of the secular

equation for the spin-degeneracy problem. To each of these

molecules we attribute a single valence-bond structure, or

electronic structure of the type introduced by G. N. Lewis, with

two electrons shared between two bonded atoms, as representing

satisfactorily the properties of the molecule.

In certain cases, however, it is evident from symmetry or other

considerations that more than one valence-bond wave function is

important. For example, for six equivalent atoms arranged at

the corners of a regular hexagon the two structures I and II of

Figure 46-1 are equivalent and must contribute equally to the

wave function representing the normal state of the system.
It can be shown that, as an approximation, the benzene molecule

can be treated as a six-electron system. Of the total of 30 valence

electrons of the carbon and hydrogen atoms, 24 can be considered

1 J. C. SLATER, Phys. Rev. 37, 481 (1931); L. PAULING, J. Am. Chem. Soc. 63,

1367 (1931); J. H. VAN VLECK, /. Chem. Phys. 1, 177 (1933); R. HULTGBBN,
Phys. Rev. 40, 891 (1932).
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to be involved in the formation of single bonds between adjacent

atoms, giving the structure

H

HvVH

i i
H/ \/ \H

H

These single bonds use the Is orbital for each of the hydrogen
atoms and three of the L orbitals for each carbon atom. There

remain six L orbitals for the carbon atoms and six electrons, which

can be represented by five independent wave functions corre-

sponding to the five structures of Figure 46-1. We see that

structures I and II are the Kekul6 structures, with three double

bonds between adjacent atoms, whereas the other structures

involve only two double bonds between adjacent atoms. If,

as an approximation, we consider only the Kekul6 structures,

we obtain as the secular equation

fin AI uW HUH AH ii IF

in which also Hu n = Hn and An n = AI i.

The solutions of this are

w = H^ + I*in

Ar i + AI ii

and

TTr HI i Hi n

the corresponding wave functions being ^r -f- \l/u and ^i ^n .

Thus the normal state of the system is more stable than would

correspond to either structure I or structure II. In agreement
with the discussion of Section 41, this energy difference is called

the energy of resonance between the structures I and II.

As a simple example let us discuss the system of four equivalent

univalent atoms arranged at the corners of a square. The two

structures of a canonical set are
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a-b a b

and

d-c d c

I II

If we neglect all exchange integrals of H except the single

exchange integrals between adjacent atoms, which we call

a [a
=

(ab) =
(be)

=
(cd)

=
(da)], and all exchange integrals

occurring in A, the secular equation is found by the rules of

Section 46e to be

Q + a - W lAQ + 2 _
Q+a-W

The solutions of this are W = Q + 2a and W = Q -
2a, of

which the former represents the normal state, a being negative
in sign. The energy for a single structure (I or II) is Wi = Q + a;

hence the resonance between the two structures stabilizes the

system by the amount a.

Extensive approximate calculations of resonance energies foi

molecules, especially the aromatic carbon compounds, have

been made, and explanations of several previously puzzling

phenomena have been developed.
1

Empirical evidence has

also been advanced to show the existence of resonance among
several valence-bond structures in many simple and complex
molecules. 2

It must be emphasized, as was done in Section 41, that the use

of the term resonance implies that a certain type of approximate
treatment is being used. In this case the treatment is based

on the valence-bond wave functions described above, a procedure
which is closely related to the systematization of molecule

formation developed by chemists over a long period of years,

and the introduction of the conception of resonance has per-

mitted the valence-bond picture to be extended to include

J E. HUCKEL, Z. f. Phys. 70, 204 (1931), etc.; L. PAULING and G. W.

WHELAND, /. Chem. Phys. 1, 362 (1933); L. PAULING and J. SHERMAN, ibid.

1, 679 (1933); J. SHERMAN, ibid. 2, 488 (1934); W. G. PENNEY, Proc. Roy.
Soc. A146, 223 (1934); G. W. WHELAND, J. Chem. Phys. 3, 230 (1935).

2 L. PAULING, J. Am. Chem. Soc. 54, 3570 (1932); Proc. Nat. Acad. Sci.

18, 293 (1932); L. PAULING and J. SHERMAN, /. Chem. Phys. 1, 606 (1933);

G. W. WHELAND, ibid, 1, 731 (1933); L. O. BROCKWAY and L. PAULING,
Proc. Nat. Acad. Sci. 19, 860 (1933).
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previously anomalous cases. A further discussion of this point
is given in the following section.

Problem 4&-4. Set up the problem of resonance between three equivalent
structures or functions ^i, ^n, ^m, assuming that J/i i

= Hu u = Hm m,
etc. Solve for the energy levels and correct combinations, putting AI i

= 1

and AI ii
= 0.

Problem 46-5. Evaluate the energy of a benzene molecule, considered

as a six-electron problem: (a) considering only one Kekul6 structure;

(6) considering both Kekule* structures; (c) considering all five structures.

Neglect all exchange integrals of H except

(ab) =
(be)

= (cd)
=

(de)
=

(ef)
=

(fa)
=

a,

and all exchange integrals entering in A.

46g. The Meaning of Chemical Valence Formulas. The
structural formulas of the organic chemist have been determined

over a long period of years as a shorthand notation which

describes the behavior of the compound in various reactions,

indicates the number of isomers, etc. It is only recently that

physical methods have shown directly that they are also fre-

quently valid as rather accurate representations of the spatial

arrangement of the atoms. The electronic theory of valence

attempted to burden them with the additional significance of

maps of the positions of the valence electrons. With the advent

of quantum mechanics, we know that it is not possible to locate

the electrons at definite points in the molecule or even to specify

the paths on which they mov6. However, the positions of maxi-

mum electron density can be calculated, and, as shown in Figure

42-4, the formation of a bond does tend to increase the electron

density in the region between the bonded atoms, which therefore

provides a revised interpretation of the old concept that the

valence electrons occupy positions between the atoms.

The discussion of Section 460 shows that, at least in certain

cases, the valence-bond picture can be correlated with an approxi-

mate solution of the wave-mechanical problem. This correla-

tion, however, is not exact in polyatomic molecules because

functions corresponding to other ways of drawing the valence

bonds also enter, although usually to a lesser extent.

Thus the valence picture may be said to have a definite signifi-

cance in terms of wave mechanics in those cases in which one

valence-bond wave function is considerably more important than

the others, but where this is not true the significance of the
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structural formulas is less definite. Such less definite cases are

those which can be described in terms of resonance. It is notable

that the deficiency of the single structural formula in such cases

has long been recognized by the organic chemist, who found that

no single formula was capable of describing the reactions and
isomers of such a substance as benzene. In a sense, the use of

the term resonance is an effort to extend the usefulness of the

valence picture, which otherwise is found to be an. imperfect

way of describing the state of many molecules.

46h. The Method of Molecular Orbitals. Another method of

approximate treatment of the electronic structure of molecules,
called the method of molecular orbitals* has been developed and

extensively applied, especially by Hund, Mulliken, andHuckel. 1

This method, as usually carried out, consists in the approximate
determination of the wave functions (molecular orbitals) and the

associated energy values for one electron in a potential field corre-

sponding to the molecule. The energy of the entire molecule is

then considered to be the sum of the energies of all the electrons,
distributed among the more stable molecular orbitals with no
more than two electrons per orbital (Pauli's principle). A
refinement of this method has been discussed in Section 436 in

connection with the hydrogen molecule.

As an example let us consider the system of four equivalent
univalent atoms at the corners of a square, discussed in the

previous section by the valence-bond method. The secular

equation for a one-electron wave function (molecular orbital),

expressed as a. linear combination of the four atomic orbitals

ua) ub ,
ucj and u d ,

is

=
0,

q
- W 13 ft

ft q
- W ft

ft q
- W ft

ft ft q
- W

in which q is the Coulomb integral /w(l) H'ua (l) dr and is the

exchange integral /wa (l) H'ub(l) dr for adjacent atoms, H' being
the Hamiltonian operator corresponding to the molecular

* F. HUND, Z.f. Phys. 73, 1, 565 (1931-1932); R. S. MULLIKEN, /. Chem.

Phys. 1, 492 (1933); etc.; J. E. LENNARD-JONES. Trans. Faraday Soc. 25,
668 (1929); E. HUCKEL, Z.f. Phys. 72, 310 (1931); 76, 628 (1932); 83, 632

(1933); Trans. Faraday Soc. 30, 40 (1934).
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potential function assumed. We neglect all other integrals.

The roots of this equation are

Wi = q + 2/3,

W* =
q
-

20.

Since is negative, the two lowest roots are W\ and Wz (or W 3),

and the total energy for four electrons in the normal state is

W = 2Wi + 2W2
= 4g + 4/3.

If there were no interaction between atoms a, b and c, d

(corresponding to bond formation allowed only between a and 6

and between c and d\ the energy for four electrons would still

be 4g + 4/3. Accordingly in this example the method of molecu-

lar orbitals leads to zero resonance energy. This is in poor

agreement with the valence-bond method, which gave the

resonance energy a. In most cases, however, it is found that

the results of the two methods are in reasonably good agreement,

provided that be given a value equal to about 0.6 a (for aromatic

compounds). A comparison of the two methods of treatment

has been made by Wheland. 1 It is found that the valence-bond

method, when it can be applied, seems to be somewhat more

reliable than the molecular-orbital method. On the other hand,
the latter method is the more simple one, and can be applied to

problems which are too difficult for treatment by the valence-

bond method.

Problem 4S-6. Treat the system of Problem 46-5 by the molecular-

orbital method. Note that the resonance energy given by the two methods
is the same if /3

= 0.553 a (using part c of Problem 465).

1 G. W. WHELAND, J. Chem. Phys. 2, 474 (1934).



CHAPTER XIV

MISCELLANEOUS APPLICATIONS OF QUANTUM
MECHANICS

In the following three sections we shall discuss four applications

of quantum mechanics to miscellaneous problems, selected from

the very large number of applications which have been made.

These are: the van der Waals attraction between molecules

(Sec. 47), the symmetry properties of molecular wave functions

(Sec. 48), statistical quantum mechanics, including the theory
of the dielectric constant of a diatomic dipole gas (Sec. 49),

and the energy of activation of chemical reactions (Sec. 50).

With reluctance wre omit mention of many other important

applications, such as to the theories of the radioactive decomposi-
tion of nuclei, the structure of metals, the diffraction of electrons

by gas molecules and crystals, electrode reactions in electrolysis,

and heterogeneous catalysis.

47. VAN DER WAALS FORCES

The first detailed treatments of the weak forces between

atoms and molecules known as van der Waals forces (which are

responsible for the constant a of the van der Waals equation of

state) were based upon the idea that these forces result from the

polarization of one molecule in the field of a permanent dipole

moment or quadrupole moment of another molecule,
1 or from

the interaction of the permanent dipole or quadrupole moments
themselves. 2 With the development of the quantum mechanics

it has been recognized (especially by London 3
) that for most

molecules these interactions are small compared with another

interaction, namely, that corresponding to the polarization of

one molecule in the rapidly changing field due to the iiistan-

1 P. DEBYE, Phys. Z. 21, 178 (1920); 22, 302 (1921).
2 W. H. KEESOM, Proc. Acad. Sci. Amsterdam 18, 636 (1915); Phys. Z. 22,

129, 643 (1921).

F. London, Z. f. Phys. 63, 245 (1930).
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taneous configuration of electrons and nuclei of another mole-

cule; that is, in the main the polarization of one molecule by the

time-varying dipole moment of another. In the following sec

tions we shall discuss the approximate evaluation of the energy
of this interaction by variation and perturbation methods for

hydrogen atoms (Sec. 47a) and helium atoms (Sec. 476), and then

briefly mention the approximate semiempirical discussion for

molecules in general (Sec. 47c).

47a. Van der Waals Forces for Hydrogen Atoms. For large

values of the internuclear distance TAB = R the exchange phenom-
enon is unimportant, and we can take as the unperturbed wave

function for a system of two hydrogen atoms the simple product
of two hydrogenlike Is wave functions,

t = u ltA (l) tti.*(2). (47-1)

The perturbation for this function consists of the potential

energy terms
pi />2 P 1 P <L

H' = - + + (47-2)
TB\ TAZ TAB fiz

Now this expression can be expanded in a Taylor's series in

inverse powers of R TAB, to give (with the two atoms located

on the z axis)

4- I r2r 2

4 ~R*

+ , (47-3)

in which x\ 9 yi, z\ are coordinates of the first electron relative to

its nucleus, and z 2 , 2/2, z 2 are coordinates of the second electron

relative to its nucleus. The first term represents the interaction

of the dipole moments of the two atoms, the second the dipole-

quadrupole interaction, the third the quadrupole-quadrupole

interaction, and so on.

Let us first consider only the dipole-dipole interaction, using
the approximate second-order perturbation treatment 1 of Section

1 The first-order perturbation energy is zero, as can be seen from inspec-

tion of the perturbation function.
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27e. It is necessary for us to evaluate the integral

J^*(#')V *-,

with H' given by

H' = (x lX , + y iy *
- 22 l22). (47-4)

It is seen that the cross-products in (H'Y vanish on integration,

so that we obtain

y\y\
-

** j
or

O/>4 r . Ox>4

=
H/?>1. (47

-5)

This expression, with r\ and r\ replaced by their value 3a*, (Sec.

21c), gives, when introduced in Equation 27-47 together with

WQ = e 2
/a,Qj the value for the interaction energy

w" =
-^w- (47

~6>

The fact that this value is also given by the variation method
with the variation function ^(1 + AH') shows that this is an

upper limit for W" (a lower limit for the coefficient of e2
aJ//2

6
).

Moreover, by an argument similar to that of the next to the

last paragraph of Section 27e it can be shown that the value

8-py is a lower limit to TF' ', so that we have thus determined

the value of the dipole-dipole interaction to within about 15

per cent.

Variation treatments of this problem have been given by Slater

and Kirkwood,
1

Hass6,
2 and Pauling and Beach. 3 It can be

easily shown 4 that the second-order perturbation energy can

be obtained by the use of a variation function of the form

with H' given by Equation 47-4. The results of the variation

1 J. C. SLATER and J. G. KIRKWOOD, Phys. Rev. 37, 682 (1931).
5 H. R. HASS, Proc. Cambridge Phil. Soc. 27, 66 (1931). A roughtreatment

for various states has been given by J. Podolanski, Ann. d. Phys. 10, 695

(1931).

L. PAULING and J. Y. BEACH, Phys. Rev. 47, 686 (1935).
4 This was first shown by Slater and Kirkwood.
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treatment for different functions /(ri, r2) are given in Table 47-1.

It is seen that the coefficient of e
2
al/R

6
approaches a value 1

only slightly larger than 6.499; this can be accepted as very close

to the correct value.

So far we have considered only dipole-dipole interactions.

Margenau
2 has applied the approximate second-order perturba-

tion method of Section 27'e to the three terms of Equation 47-3,

obtaining the expression

-TJTff V/V V*/Q 1.J*JlJ W/ Q X

KTO = 06~ 7>8

1416eV
""

(47-7)

It is seen that the higher-order terms become important at small

distances.

TABLE 47-1. VARIATION TREATMENT OF VAN DER WAALS INTERACTION
OF Two HYDROCJEN ATOMS

f t-
2

1
Variation function uux(l) M,,(2K 1 + -(xiX t + y,y 2

- 2z lz2)f(r > ,
r 2)>

* H = Hass6, SK = Slater and Kirkwood, PB = Pauling and Beach.

f The polynomial contains all terms of degree 2 or less in n and 2 or less in rz.

1 A straightforward but approximate application of second-order perturba-
tion theory by R. Eisenschitz and F. London gave the value 6.47 for this

coefficient [Z. f. Phys. 60, 491 (1930)]. The first attack on this problem
was made by S. C. Wang, Phys. Z. 28, 663 (1927). The value found by
him for the coefficient,

24% 8 =
8.68, must be in error (as first pointed oui,

by Eisenschitz and London), being larger than the upper limit 8 given above.
The source of the error has been pointed out by Pauling and Beach, loc. cit.

2 H. MARGENAU, Phys. Rev. 38, 747 (1931). More accurate values of the

coefficients have been calculated by Pauling and Beach, loc. cit.
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47b. Van der Waals Forces for Helium. In treating the

dipole-dipole interaction of two helium atoms, the expression for

H '
consists of four terms like that of Equation 47-4, correspond-

ing to taking the electrons in pairs (each pair consisting of an

electron on one atom and one on the other atom). The variation

function has the form

^,J

Hass^ 1 has considered five variation functions of this form,
shown with their results in Table 47-2. The success of his similar

treatment of the polarizability of helium (function 6 of Table

29-3) makes it probable that the value -1.413e 2
aSJ/#

6 for W"
is not in error by more than a few per cent. Slater and Kirk-

wood 1 obtained values 1.13, 1.78, and 1.59 for the coefficient

of e
2ab

Q/R* by the use of variation functions based on their

helium atom functions mentioned in Section 29e. An approxi-
mate discussion of dipole-quadrupole and quadrupole-quadrupole
interactions has been given by Margeriau.

1

TABLE 47-2. VARIATION TREATMENT OF VAN DER WAALS INTERACTION OP

Two HELIUM ATOMS

47c. The Estimation of van der Waals Forces from Molecular

Polarizabilities. London 2 has suggested a rough method of

estimating the van der Waals forces between two atoms or mole-

cules, based on the approximate second-order perturbation

treatment of Section 27e. We obtain by this treatment (see

Sees. 27e and 29e) the expression

(47-8)

1 Loc. cit.

8 F. LONDON, Z. f. Phys. 63, 245 (1930).
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for the polarizability of an atom or molecule, in which n is the

number of effective electrons, z* the average value of z 2 for these

electrons (z being the coordinate of the electron relative to

the nucleus in the field direction), and 7 the energy difference of

the normal state and the effective zero point for energy, about

equal in value to the first ionization energy. The van der Waals
interaction energy may be similarly written as

which becomes on introduction of aA and aB

or, in case the molecules are identical,

W" _ __3 0^1W -
j-gj- (47-11)

With a. in units 10~24 cm 3 and / in volt electrons, this is

in which

D = 1.27 2
/.

It must be realized that this is only a very rough approximation.
For hydrogen atoms it yields D = 7.65 (correct value 6.50) and
for helium 1.31 (correct value about 1.4).

For the further discussion of the validity of London's relation

between van der Waals forces and polarizabilities, and of other

applications of the relation, such as to the heats of sublimation
of molecular crystals and the unactivated adsorption of gases by
solids, the reader is referred to the original papers.

1

48. THE SYMMETRY PROPERTIES OF MOLECULAR WAVE
FUNCTIONS

In this section we shall discuss the symmetry properties of

molecular wave functions to the extent necessary for an under-

1 F. LONDON, loc. cit.\ F. LONDON and M. POLANYI, Z. f. phys. Chem. 11B,
222 (1930); M. POLANYI, Trans. Faraday Soc. 28, 316 (1932); J. E. LENNARD-
JONES, ibid. 28, 333 (1932).
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standing of the meaning and significance of the term symbols
used for diatomic molecules by the spectroscopist.

In Section 34 it was mentioned that the nuclear and electronic

parts of an approximate wave function for a molecule can be

separated by referring the electronic coordinates to axes deter-

mined by the nuclear configuration. Let us now discuss this

choice of coordinates for a diatomic molecule in greater detail.

We first introduce the Cartesian coordinates X, Y, Z of the center

of mass of the two nuclei relative to axes fixed in space, and the

polar coordinates r, #, <p of nucleus A relative to a point midway
between nucleus A and nucleus B as origin,

1 also referred to axes

FIG. 48-1. The relation between axes
, 77, and X, Y, Z.

fixed in space, as indicated in Figure 48-1. We next introduce

the Cartesian coordinates *, TK, f or the polar coordinates

r\j #, <pt of each of the electrons, measured with reference, not

to axes fixed in space, but instead to axes dependent on the

angular coordinates # and <p determining the orientation of the

nuclear axis. These axes, , TJ, f ,
are chosen in the following way.

f is taken along the nuclear axis OA (Fig. 48-1), and lies in the

XY plane, its sense being such that the Z axis lies between the

rj and f axes (, 77, f forming a left-handed system, say). It is,

moreover, often convenient to refer the azimuthal angles of all

electrons but one to the azimuthal angle of this electron, using
the coordinates <pi t <p* <pi, <?* <p\, in place of <p\, <pi,

1 It is convenient in this section to use these coordinates, which differ

slightly from those adopted in Chapter X.



390 MISCELLANEOUS APPLICATIONS [XIV-48a

It has been shown 1 that these coordinates can be introduced

in the wave equation, and that the wave functions then assume

a simple form. We have discussed the wave function for the

nuclear motions in detail in Chapter X. The only part of the

electronic wave function which can be written down at once is

that dependent on <pi. Inasmuch as the potential energy of the

system is independent of <pi (as a result of our subterfuge of

measuring the p's of the other electrons relative to <pi), (pi is a

cyclic coordinate, and occurs in the wave function only in the

factor e iA<
Pi, in which A can assume the values 0, 1, 2, .

The quantum number A thus determines the magnitude of the

component of electronic orbital angular momentum along
the line joining the nuclei. [A is somewhat analogous to the

component ML of the resultant orbital angular momentum
(or azimuthal) quantum number L for atoms.] The value of A
is expressed by the principal character of a molecular term

symbol: S denoting A =
0; ft, A =

1; A, A = 2; etc. As
in the case of atomic terms, the multiplicity due to electron spin
is indicated by a superscript to the left,

:S indicating a singlet,
2 2 a doublet, etc.

It may be mentioned that if we ignore the interactions of the

electronic and nuclear motions the wave functions corresponding
to A and A correspond to identical energy values. This

degeneracy is removed by these interactions, however, which
lead to a small splitting of energy levels for A > 0, called A-type

doubling.
2 The correct wave functions are then the sum and

difference of those corresponding to A and A.

In the following sections we shall discuss the characteristic

properties of diatomic molecules containing two identical nuclei

(symmetrical diatomic molecules).

48a. Even and Odd Electronic Wave Functions. Selection

Rules. By the argument of Section 40e we have shown that the

transition probabilities for a diatomic molecule are determined
in the main by the electric-moment integrals over the electronic

parts of the wave functions, taken relative to the axes {, 17, f

determined by the positions of the nuclei. Let us now classify
the electronic wave functions of symmetrical diatomic molecules

1 F. HUND, Z. /. Phy*. 42, 93 (1927); R. DEL. KRONIG, ibid. 46, 814; 60,

347 (1928); E. WIGNER and E. E. WITHER, tfrid. 51, 869 (1928).
s
See, for example, J. H. Van Vleck, Phys. Rev. 33, 467 (1929).
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as even or odd, introducing the subscripts g (German gerade)
for even terms and u (ungerade) for odd terms in the term symbols
for identification. This classification depends on the behavior

of the electronic wave function with respect to the transformation

t> 'mi f *;
~

*?> ff, that is, on inversion through the

origin, even functions remaining unchanged by this operation,
and odd functions changing sign. The argument of Section 400
leads to the following selection rule: Transitions are allowed

only between even and odd levels (g > u
y u*g).

(Although electronic wave functions for diatomic molecules

containing unlike nuclei cannot be rigorously classified as even

or odd, they often approach members of these classes rather

closely, and obey an approximate selection rule of the above

type.)

48b. The Nuclear Symmetry Character of the Electronic Wave
Function. We are now in a position to discuss the nuclear

symmetry character of the electronic wave function for a diatomic

molecule in which the nuclei are identical. Interchanging the

two nuclei A and B converts & into TT # and v into w + <p;

these coordinates, however, do not occur in the electronic wave

function. The interchange of the nuclei also converts the

coordinates fc, r?;, f of each electron into &, ^, f, and hence

r, #i, <Pi into rt-,
TT # t-,

w <p [or <p t <f>i into fa ^i)].

In case that the electronic wave function is left unchanged by
this transformation, the electronic wave function is symmetric

in the nuclei; if the factor 1 is introduced by the transformation,

the electronic wave function is antisymmetric in the nuclei.

The nuclear symmetry character of the electronic wave func-

tion is represented in the term symbol by introducing the super-

script + or after taking cognizance of the presence of the

subscript g or u discussed in Section 48a, the combinations

g and u representing electronic wave functions symmetric ia

the nuclei, and g and u those antisymmetric in the nuclei. Thus

we see that

and

2+ and 2~ are S

27 and 2+ are A".

For A 7 there is little need to represent the symmetry char-

acter in the term symbol, inasmuch as the >S* and AN states
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occur in pairs corresponding to nearly the same energy value

(A-type doubling), and in consequence the + and superscripts

are usually omitted.

The states with superscript + are called positive states, and
those with superscript negative states.

The principal use of the nuclear symmetry character is in

determining the allowed values of the rotational quantum
number K of the molecule. The complete wave functions for a

molecule (including the nuclear-spin function) must be either

symmetric or antisymmetric in the nuclei, depending on the

nature of the nuclei involved. If the nuclei have no spins,

then the existent functions are of one or the other of the types

listed below.

I. Complete wave function SN :

X AX even

odd

X even

AX odd

+
rr ,j AX even - ^ ,,

u, K odd <- 0, X odd

II. Complete wave function ^4*:

+
T, , , AX even

g, K odd <

AX odd

+
T .r AX even -

w, X even < > g, K even

It is seen that in either case the transitions allowed by the selec-

tion rule g <* u are such that AX is even for H > or > +
transitions, and odd for -J

> + or > transitions.

The selection rule AX =
0, 1 can be derived by the methods of

Chapter XI ;
this becomeb AX = for positive *> negative transi-

tions, and AX = 1 for positive * positive or negative nega-

tive transitions.

In case that the nuclei possess spins, with spin quantum
number /, both types of functions and transitions occur (the two

not forming combinations), with the relative weights (/ + I)// or

//(/ + 1), as discussed in Section 4$f.
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Let us now consider a very simple example, in order to clarify
the question; namely, the case of a molecule possessing only one

electron, in the states represented by approximate wave functions

which can be built from the four orbitals UA =
s, pg , px, py about

nucleus A, and four similar ones UB about nucleus B; s, pg, p xj pv
being real one-electron wave functions such as given in Table

21-4 for the L shell. We can combine these into eight functions

of the form SA + SB ,
SA SB ,

etc. If the functions are referred

to parallel axes for the two atoms and taken as in Table 21-4

FIG. 48-2. Positive and negative regions of wave functions , pM , px , and pv
for atoms A and B.

except for a factor 1 for ptB (introduced for convenience),
then they have the general nature shown in Figure 48-2, in which

the functions UA + UB are designated, the plus and minus signs

representing regions equivalent except for sign. From the

inspection of this figure and a similar one for UA UB (in which

the signs are changed for UB), it is seen that the eight functions

have the following symmetry character in the nuclei:
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By the argument given above we know that four of these are

S states, with A =
0, and four are II states. The II states are

those formed from p x and pv (which are the linear combinations

of the complex exponential functions p+\ and p~\). The two
II states UA + UB are separated widely by the exchange integrals

from the two UA UB} and the A-type doubling will cause a

further small separation of the nuclear-symmetric and nuclear-

antisymmetric levels. The exchange terms similarly separate

the UA + uB s and pz functions from the UA UB functions. The
best approximate wave functions would then be certain linear

combinations of the two nuclear-symmetric functions and also

of the two nuclear-antisymmetric functions.

We can now write complete term symbols for the eight elec-

tronic wave functions of our simple example, as follows:

s Pz Px py

UA +UB ^ ^ {

2n+ 2
n-}

The identification as even or odd is easily made by inspection of

Figure 48-2. The two 2IIW terms (one SN and one AN
) are placed

in brackets to show that they form a A-type doublet, as are the

two 2Ug terms.

48c. Summary of Results Regarding Symmetrical Diatomic

Molecules. The various symmetry properties which we have

considered are the following:

1. Even and odd electronic functions, indicated by subscripts

g and u (Sec. 48a). Selection rule: Transitions allowed only
between g and u.

2. The nuclear symmetry of the complete wave function

(including rotation of the molecule but not nuclear spin). Selec-

tion rule: Symmetric-antisymmetric transitions not allowed.

3. The nuclear symmetry of the electronic wave function,

represented by the superscripts + and
, g and u being SN

; g

and u, AN
. Selection rule: &K = for positive-negative transi-

tions, and AK = 1 for positive-positive and negative-negative
transitions. (This is not independent of 1 and 2. In practice

1 and 3 are usually applied.)

We are now in a position to discuss the nature of the spectral

lines to be expected for a symmetrical diatomic molecule. We
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have not treated the spin moment vector of the electrons, which

combines with the angular momentum vectors A and K in various

ways to form resultants; the details of this can be found in the

treatises on molecular spectroscopy listed at the end of Chapter
X. Let us now for simplicity consider transitions among

J S

states, assuming that the nuclei have no spins, and that the

existent complete wave functions are symmetric in the nuclei

(as for helium). The allowed rotational states are then those

with K even for J 2+ and !

2~, and those with K odd for J 2~

and X

2^, and the transitions allowed by 1 and 3 are the following:

'2+ K = 2 4

\^ *\ /* ./ \ / etc.
i/ \ /

'2+ K = 1 3

!2+ K = 2 4
t t t

I I pfp
I I i

etc -

S- K = 2 4

!S- K = 1 3

J 1
etc '

K = 1 3

37 X - 1 3

/ \ / \ etc./ \ S N
XS- K = 2 4

49. STATISTICAL QUANTUM MECHANICS. SYSTEMS IN
THERMODYNAMIC EQUILIBRIUM

The subject of statistical mechanics is a branch of mechanics

which has been found very useful in the discussion of the proper-

ties of complicated systems, such as a gas. In the following

sections we shall give a brief discussion of the fundamental

theorem of statistical quantum mechanics (Sec. 49a), its applica-

tion to a simple system (Sec. 496), the Boltzmann distribution

law (Sec. 49c), Fermi-Dirac and Bose-Einstein statistics (Sec.

49d), the rotational and vibrational energy of molecules (Sec. 49e),

and the dielectric constant of a diatomic dipole gas (Sec. 49/).

The discussion in these sections is mainly descriptive and

elementary; we have made no effort to carry through the difficult

derivations or to enter into the refined arguments needed in a
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thorough and detailed treatment of the subject, but have

endeavored to present an understandable general survey.

49a. The Fundamental Theorem of Statistical Quantum
Mechanics. Let us consider a large system with total energy
known to lie in the range W to W + ATT. We inquire as to the

properties of this system. If we knew the wave function

representing the system, values of the dynamical quantities

corresponding to the properties of the system could be calculated

by the methods of Section I2d. In general, however, there will

be many stationary states of the system (especially if it be a very

complicated system, such as a sample of gas of measurable

volume) with energy values lying in the range W to W + ATF,

and our knowledge of the state of the system may not allow us to

select one wave function alone as representing the system.

Moreover, it might be possible for us to find a set of approximate
wave functions for the system by ignoring weak interactions of

parts of the system with each other or of the system and its

environment; no one of these approximate wave functions

would represent the state of the system over any appreciable

period of time, and so we would not be justified in selecting any
one of them for use in calculating values of dynamical quantities.

Under these circumstances we might make calculations regard-

ing the properties of the system for each of the wave functions

with energy between W and ATF, and then average the various

calculations to obtain predictions regarding the average expected
behavior of the system. The important question immediately
arises as to what weights are to be assigned the various wave
functions in carrying out this averaging. The answer to this

question is given by the fundamental theorem of statistical

quantum mechanics, as follows: In calculating average values of

properties of a system with energy between W and ATF, the same

weight is to be assigned to every accessible wave function with

energy in this range, in default of other information. (The wave
functions are of course to be normalized and mutually orthog-

onal.) This theorem can be derived from the equations of

quantum mechanics (by methods such as the variation of con-

stants, discussed in Chapter XI), with the aid of an additional

postulate,
1 which is the quantum-mechanical analogue of the

1 The postulate of randomness of phases. See, for example, W. Pauli,

"Probleme der modernen Physik," S. Hirzel, Leipzig, 1928.
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ergodic hypothesis of classical statistical mechanics. We shall

not discuss this derivation.

The word accessible appears in the theorem for the following

reason. If a system is known to be in one state at a given

instant, and if it is known that it is impossible for any operative

perturbation to cause a transition to a certain other state, then

it is obviously wrong to include this latter state in the expression
for the average. We have already met such non-combining
states in our discussion of the symmetry of wave functions for

collections of identical particles (Sees. 296, 30a). It was shown
that if the system is known to be represented by a wave function

symmetrical in all the identical particles composing it, no

perturbation can cause it to change over to a state with an

antisymmetrical wave function. The nature of the wave
functions which actually occur is dependent upon the nature of

the system. If it is composed of electrons or protons, the wave
functions must be antisymmetric; if it is composed of hydrogen

atoms, thought of as entities, the wave functions must be sym-
metric in these atoms; etc. Moreover, we may sometimes have

to take the passage of time into consideration in interpreting

the word accessible. Let us consider as our system a helium

atom, for example, which is known at the time t to be in some

excited singlet state, the wave function being symmetric in the

positions of the electrons and antisymmetric in their spins.

Transitions to triplet states can occur only as a result of perturba-

tions affecting the electron spins; and, since these perturbations

are very small, the probability of transition to all triplet states

in a short time will be very small. In predicting properties for

this system for a short period after the time t = 0, we would

accordingly be justified in considering only the singlet states as

accessible.

49b. A Simple Application. In order to illustrate the use of

the fundamental theorem of statistical quantum mechanics, we
shall discuss a very simple problem in detail.

Let us consider a system composed of five harmonic oscillators,

all with the same characteristic frequency v, which are coupled
with one another by weak interactions. The set of product
wave functions ^(a)^f(b)^f(c)^f(d)^(e) can be used to construct

approximate wave functions for the system by the use of the

method of variation of constants (Chap. XI). Here ^(a),



398 MISCELLANEOUS APPLICATIONS [XIV-49b

represent the harmonic oscillator wave functions (Sec. 11),

the letters a, 6, c, d, e representing the coordinates of the five

oscillators. For each oscillator there is a set of functions ^fn (a)

corresponding to the values 0, 1, 2, for the quantum
number na . The total unperturbed energy of the system is

Wn
= (na + H)hv + ' ' ' + (n e + Y^hv = (n + %)hv, in

which n = na + nb + nc + nd + ne .

The application of the variation-of-constants treatment shows

that if the system at one time is known to have a total energy
value close to W%>, where n' is a particular value of the quantum
number n, then the wave function at later times can be expressed

essentially as a combination of the product wave functions for

n =
n', the wave functions for n ^ n' making a negligible

contribution provided that the mutual interactions of the oscilla-

tors are weak. Let us suppose that the system has an energy
value close to \2}^hv, that is, that n' is equal to 10. The product
wave functions corresponding to this value of n' are those

represented by the 1001 sets of values of the quantum numbers

naj
- - -

,
nc given in Table 49-1.

TABLE 49-1. SETS OF QUANTUM NUMBERS FOR FIVE COUPLED HARMONIC
OSCILLATORS WITH TOTAL QUANTUM NUMBER 10

na Kb nc Ud ne na nb nc n<i n e

10 . . . . etc.* (5) 6.2.1.1.0 etc. (60)

9 .1.0.0.0 (20) 5.3.1.1.0 (60)

8 .2.0.0.0 (20) 5.2.2.1 (60)

7 .3.0.0.0 (20) 4 4.1.1.0 (30)

6 .4.0.0.0 (20) A 4 . 3 . 2 . 1 . (120)

5 .5.0.0.0 (10) 4.2.2.2.0 (20)

8 . 1 . 1 . r (30) 3.3.3.1.0 (20)

7 .2.1.0.0 (60) 3.3.2.2.0 (30)

6 .3.1.0.0 (60) 6.1.1.1.1 (5)

6 .2.2.0.0 (30) 5.2.1.1 1 (20)

5 .4.1.0.0 (60) 4.3.1.1.1 (20)

5 .3.2.0.0 (60) 4.2 2.1.1 (30)

4 .4.2.0.0 (30) 3.3 2.1.1 (30)

4 .3.3.0.0 (30) 3.2.2.2.1 (20)

7 .1.1.1.0 (20) 22.22.2 (1)

* The other sets indicated by "etc." are in this case . 10 . . . 0, . . 10 . . 0,

0.0.0. 10 . 0, and . . 10, a total of five, as shown by the number in

parentheses.

In case that the interactions between the oscillators are of a

general nature (the a&, ac, 6c, interactions being different),
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all of the product functions will be accessible, and the funda-

mental theorem then requires that over a long period of time the

1001 product functions will contribute equally to the wave
function of the system. In calculating the contribution of

oscillator a, for example, to the properties of the system, we
would calculate the properties of oscillator a in the states na =

[using the wave function ^o(a)L n* = 1, ,
w =

10, and then

0.4 r

0.3

O.I

0,0
10

FIG. 49-1. The probability values Pn for system-part a in a system of five

coupled harmonic oscillators with total quantum number n = 10 (closed circles),
and values calculated by the Boltzmann distribution law (open circles).

average them, using as weights the numbers of times that

na
--=

0, 1, 2, ,
10 occur in Table 49-1. These weights are

given in Table 49-2. The numbers obtained by dividing by
the total (1001) can be described as the probabilities that oscilla-

tor a (or b, c, ) be in the states na = 0, 1, 2, ,
10.

These probability values are represented graphically in Figure
49-1.

49c. The Boltzmann Distribution Law. We have been dis-

cussing a system composed of a small number (five) of weakly
interacting parts. A similar discussion (which we shall not

give because it is necessarily rather involved) of a system com-

posed of an extremely large number of veakly interacting parts
can be carried through, leading to a general expression for the

probability of distribution of any one of the parts among its
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TABLK 49-2. WEIGHTS FOB STATES OF INDIVIDUAL OSCILLATORS IN

COUPLED SYSTEM

stationary states. 1 The result of the treatment is the Boltzmann

distribution law in its quantum-mechanical form :

// all the product wave functions ^ (a)^(b) of a system

composed of a very large number of weakly interacting parts a,

6, are accessible, then the probability of distribution of one

of the parts, say a, among its states, represented by the quantum
number naj is given by the equation

_^
Pn

a
= Ae kT

, (49-1)

in which Wn
a
is the energy of the part a in its various states and the

constant A has such a value as to make

(49-2)

There is considered to be one state for every independent wave

function ^(a). The exponential factor, called the Boltzmann

exponential factor, is the same as in the classical Boltzmann

distribution law, which differs from Equation 49-1 only in the

way the state of the system part is described. The constant k

is the Boltzmann constant, with the value 1.3709 X 10~ 16
erg

deg"
1

. The absolute temperature T occurring in Equation 49-1

1 That is, among the stationary states for this part of the system when

isolated from the other parts.
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is introduced in the derivation of this equation by methods

closely similar to those of classical statistical mechanics.

Some indication of the reasonableness of this equation is given

by comparing it with the results of our discussion of the system of

five coupled harmonic oscillators. The open circles in Figure
49-1 represent values of Pn

a
calculated by Equation 49-1, with

kT placed equal to %hv (this leading approximately to the average
value %hv for W

n& ,
as assumed in the earlier discussion). It is

seen that there is general agreement, the discrepancies arising

from the fact that the number of parts of the system (five) is

small (rather than very large, as required in order that the

Boltzmann distribution law be applicable).

In Equation 49-1 each wave function is represented separately.

It is often convenient to group together all wave functions

corresponding to the same energy, and to write

_Ei
Pi = APle

kT
, (49-3)

in which p* is the degree of degeneracy or a priori probability or

quantum weight of the energy level Wi.

In case that the wave functions for the part of the system
under consideration are very numerous and correspond to energy
values lying very close together, it is convenient to rewrite the

distribution law in terms of P(W)> such that P(W)dW is the

probability that the energy of the system part lie between W
and W + dW, in the form

_w_
P(W) = Ap(W)e kT

, (49-4)

in which p(W)dW is the number of wave functions for the system

part in the energy range W to W + dW.
As an illustration of the use of Equation 49^i let us consider

the distribution in translational energy of the molecules of a

gas (the entire gas being the system and the molecules the system

parts) such that all product wave functions are accessible. 1

It is found (by the use of the results of Section 14, for example)

that p(W) is given by the equation

p(W) = v
^8

w
, (49-5)

1 We shall see in the next section that actual gases are not of this type.
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in which F is the volume of the box containing the gas and m
is the mass of a molecule. The Maxwell distribution law for
velocities is obtained by substituting this in Equation 49-4 and

replacing W by Hmv2
,
v being the velocity of the molecule.

Problem 49-1. Derive Equation 49-5 with the use of the results of

Section 14. By equating W to the kinetic energy Hmv* (v being the

velocity), derive the Maxwell distribution law for velocities, and from it

calculate expressions for the mean velocity and root-mean-square velocity
of gas molecules.

It will be shown in the following section that the Boltzmann

distribution law is usually not strictly applicable in discussing

the translational motion of molecules.

49d. Fermi-Dirac and Bose-Einstein Statistics. As stated in

the foregoing section, the Boltzmann distribution law is applicable

to the parts of a system for which all product wave functions are

accessible. The parts of such a system are said to conform to

Boltzmann statistics. Very often, however, we encounter systems
for which not all product wave functions are accessible. We
have seen before (Sec. 29, etc.) that the wave functions for a

system of identical particles can be grouped into non-combining
sets of different symmetry character, one set being completely

symmetric in the coordinates of the particles, one completely

antisymmetric, and the others of intermediate symmetry char-

acter. Only the wave functions of one symmetry character are

accessible to a given system of identical particles.

Thus our simple system of five harmonic oscillators would be

restricted to wave functions of one symmetry character if the

interactions a&, oc, 6c, were equivalent, that is, if the

oscillators were identical. 1 It was to avoid this that we made
the explicit assumption of non-equivalence of the interactions in

Section 496. The accessible wave functions for five identical

oscillators would be the completely symmetric ones, the com-

1 In order for the oscillators to behave identically with respect to external

perturbations as well as mutual interactions they would have to occupy the

same position in space; that is, to oscillate about the same point. A
system such as a crystal is often treated approximately as a set of coupled
harmonic oscillators (the atoms oscillating about their equilibrium posi-

tions). The Boltzmann statistics would be used for this set of oscillators,

inasmuch as the interactions depend on the positions of the oscillators in

fipace in such a way as to make them non-identical.
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pletely antisymmetric ones, or those with the various inter-

mediate symmetry characters. It is only the two extreme types
which have been observed in nature. There are 30 completely

symmetric wave functions for n = 10; they are formed from the

successive sets in Table 49-1 by addition, the first being

1

{ (10.0.0.0.0) + (0.10.0.0.0) + (0.0.10.0.0) + (0.0.0.10.0) +

(0.0.0.0.10)}

and the last being (2.2.2.2.2). From these we can obtain

weights for the successive values, similar to those given in

Table 49-2; these weights will not be identical with those of the

table, however, and so will correspond to a new statistics. This

is very clearly seen for the case that only the completely anti-

symmetric wave functions are accessible. The only wave
function with n = 10 which is completely antisymmetric is that

formed by suitable linear combination of the 120 product func-

tions (4.3.2.1.0), etc., marked A in Table 49-1 (the other functions

violate Pauli's principle, the quantum numbers not being all

different). Hence even at tjie lowest temperatures only one of

the five oscillators could occupy the lowest vibrational state,

whereas the Boltzmann distribution law would in the limit

T > place all five in this state.

// only the completely antisymmetric wave functions are accessible

to a system composed of a large number of weakly interacting parts,

the system parts conform to the Fermi-Dirac statistics',
1

if only the

completely symmetric wave functions are accessible, they conform
to the Bose-Einstein statistics.

2

The Fermi-Dirac distribution law in the forms analogous to

Equations 49-1, 49-3, and 49-4 is

Pn = ^- 1 (49-6)

+N
1 E. FERMI, Z. /. Phys. 36, 902 (1926); P. A. M. DIRAC, Proc. Roy. Soc.

A112, 661 (1926). This statistics was first developed by Fermi, on the basis

of the Pauli exclusion principle, and was discovered independently by Dirac,

using antisymmetric wave functions.
2 S. N. BOSB, Z.f. Phys. 26, 178 (1924); A. EINSTEIN, Sitzber. Preuss. Akad.

Wiss. p. 261, 1924; p. 3, 1925. Bose developed this statistics to obtain a

formal treatment of a photon gas, and Einstein extended it to the case of

material gases.
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P< = -f , (49-7)

Ae kT +N
and

P(W) =--> (49-8)

in each of which the constant A has such a value as to make the

sum or integral of P equal to unity. Here N is the number of

identical system parts in which the accessible wave functions

are antisymmetric.

Problem 49-2. Show that at very low temperatures the Fermi-Dirac

distribution law places one system part in each of the N lowest states.

The Fermi-Dirac distribution law for the kinetic energy of the

particles of a gas would be obtained by replacing p(W) by the

expression of Equation 49-5 for point particles (without spin)

or molecules all of which are in the same non-degenerate state

(aside from translation), or by this expression multiplied by the

appropriate degeneracy factor, which is 2 for electrons or protons

(with spin quantum number ^), or m general 27 + 1 for spin

quantum number 7. This law can be used, for example, in dis-

cussing the behavior of a gas of electrons. The principal

application which has been made of it is in the theory of metals,
1

a metal being considered as a first approximation as a gas of

electrons in a volume equal to the volume of the metal.

Problem 49-3. (a) Evaluate the average kinetic energy of the valence

electrons (ignoring the K electrons and the nuclei) in a crystal of lithium

metal at 0A, and discuss the distribution of energy. (6) Calculate the

number of electrons at 298 A with kinetic energy 0.10 v.e. greater than the

maximum for 0A. The density of lithium is 0.53 g./cm
3

.

The Bose-Einstein distribution law in the forms analogous to

Equations 49-6, 49-7, and 49-8 is

P = -
1 (49-9)

Ae kT - N
1 W. PATJLI, Z. f. Phys. 41, 81 (1927); A. SOMMERFELD, Z. f. Phya. 47, 1,

43 (1928); etc. Review articles have been published by K. K. Darrow,
Rev. Mod. Phys. 1, 90 (1929); J. C. Slater, Rev. Mod. Phys. 6, 209 (1934);

etc.
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Pi = ^~ > (4&-10)

Ae** - N
and

P(W) =
, (49-11)

- N

in which the symbols retain their former significance. The Bose-

Einstein statistics is to be used for photons,
1

deuterons, helium

atoms, hydrogen molecules, etc.

For many systems to which Fermi-Dirac or Bose-Einstein

statistics is to be applied the term N is negligible compared to

J?
AekT

j
and the appropriate equations are very closely approxi-

mated by the corresponding Boltzmann equations. Thus helium

gas under ordinary conditions shows no deviations from the

perfect gas laws (Boltzmann statistics) which can be attributed

to the operation of Bose-Einstein statistics. At very low

temperatures and very high pressures, deviations due to this

cause should occur, however; this degeneration
2 has not been

definitely shown to occur for material gases by experiment,
3

the principal difficulty being that real gases elude investigation

under extreme conditions by condensing to a liquid or solid

phase.

49e. The Rotational and Vibrational Energy of Molecules.

In the statistical discussion of any gas containing identical

molecules, cognizance must be taken of the type of statistics

applicable. Often, however, we are not primarily interested in

the translational motion of the molecules but only in their dis-

tribution among various rotational, vibrational, and electronic

states. This distribution can usually be calculated by the use

of the Boltzmann distribution law, the effect of the symmetry
character being ordinarily negligible (except in so far as the sym-

1 With appropriate modifications to take account of the vanishing rest

mass of photons.
* The word degeneracy is used in this sense (distinct from that of Section

14), the electrons in a metal being described as constituting a degenerate

electron gas.
9 G. E. UHLBNBBCK and L. GBOPPBB, Phys. Rev. 41, 79 (1932), and refer-

ences there quoted.
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metry character relative to identical particles in the same

molecule determines the allowed wave functions for the molecule).

In case that the energy of a molecule can be represented as the

sum of several terms (such as rotational, vibrational, electronic,

and translational energy), the Boltzmann factor can be written

as the product of individual Boltzmann factors, and the con-

tributions of the various energy terms to the total energy of the

system in thermodynamic equilibrium and to the heat capacity,

entropy, and other properties can be calculated separately. To
illustrate this we shall discuss the contributions of rotational and

vibrational motion to the energy content, heat capacity, and

entropy of hydrogen chloride gas.

As shown in Chapter X, the energy of a hydrogen chloride

molecule in its normal electronic state can be approximately

represented as

WVtK =
(v + Y2 )hv + K(K + l)g, (49-12)

in which v is the vibrational frequency, I the moment of inertia

of the molecule, and v and K the vibrational and rotational

quantum numbers, with allowed values v = 0, 1, 2, and
K =

0, 1, 2 . At all but very high temperatures the

Boltzmann factor for excited electronic states is very small, so

that only the normal electronic state need be considered. Using

Equation 49-3, we write for the probability that a molecule be

in the state v,K the expression

(49-13)

in which

P, = Be kT
, (49-14)

and
K(K+l)h*

PK = C(2K + l)e
***IkT

, (49-15)

2K + 1 being the quantum weight of the Kih rotational state.

B and C have values such that

= 1 and ^PK
= 1.

-0 JK>0

It is seen that the average rotational and vibrational energy

per molecule can hence be written as
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K(K

or, since the summation over K can be at once carried out for the

first term (to give the factor 1) and that over v for the second

term,

W = Fvib, + TFro,,

with

and
0=0

that is, the average energy is separable into two parts in the

same way as the energy WV ,K (Eq. 49-12). By introducing the

variables 1

hv

h*

these parts can be written as

=o

(49-16)

(49-17)

anc

/r-o

(49-18)

'The symbol a is conventionally used in this way as well as for the

quantity A !
/8ir

s
/, as in Section 35.
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the sums in the denominators corresponding to the factors JB

and C of Equations 49-14 and 49-15. Expressions for the

vibrational and rotational heat capacity CVibr. and Crot. can be

obtained by differentiating with respect to T, and the contribu-

tions of vibration and rotation to the entropy can then be

C
TC C TC

obtained as S^T
=

\ -^-'dT and /Srot
=

I -j^dT.
Jo * Jo 1

Problem 49-4. Considering only the first two or three excited states,

calculate the molal vibrational energy, heat capacity, and entropy of

hydrogen chloride at 25C., using the vibrational wave number v

2990 cm' 1
.

Problem 49-6. By replacing the sums by integrals, show that the

expressions 49-17 and 49-18 approach the classical value kT for large T.

Problem 49-6. Calculate the rotational energy curve (as a function of T)
for hydrogen chloride at temperatures at which it begins to deviate from

zero. The internuclear distance is 1.27 A.

The treatment of ortho and para hydrogen, mentioned in

Section 43/, differs from that of hydrogen chloride only in the

choice of accessible rotational wave functions. For para hydro-

gen K can assume only the values 0, 2, 4,
-

,
the quantum

weight being 2K + 1. For ortho hydrogen K can have the

values 1, 3, 5, ,
with quantum weight 3(2K + 1), the

factor 3 being due to the triplet nuclear-spin functions. Ordinary

hydrogen is to be treated as a mixture of one-quarter para and

three-quarters ortho hydrogen, inasmuch as only the states with

K even are to be considered as accessible to the para molecules,

and those with K odd to the ortho molecules. In the presence
of a catalyst,- however, all states become accessible, and the gas
is to be treated as consisting of molecules of a single species.

Problem 49-7. Discuss the thermodynamic properties (in their depend-
ence on rotation) of the types of hydrogen mentioned above.

Problem 49-8. Similarly treat deuterium and protium-denterium
molecules (see footnote, Sec. 43/).

49f. The Dielectric Constant of a Diatomic Dipole Gas.

Under the influence of an electric field, a gas whose molecules

have a permanent electric moment and in addition can have a

further moment induced in them by electronic polarization

becomes polarized in the direction of the field, the polarization

per unit volume being
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p = F

in which is the dielectric constant of the gas, F the strength of

the applied field (assumed to be parallel to the z axis), N the

number of molecules in unit volume, and a the polarizability of

the molecule. JTe represents the average value of JTg for all

molecules in the gas, JTZ being the average value of the z compo-
nent of the permanent electric moment n of a molecule in a given
state of motion. It was shown by Debye 1 that according to

classical theory ]TZ has the value

* - if
We shall now show that for the special case of a diatomic dipole

gas, such as hydrogen chloride, the same expression is given

by quantum mechanics.

Let us consider that the change of the permanent moment

M with change in the vibrational quantum number v can be

neglected. jrg is then given by the equation

7. = ^PKM1T*(KM), (49-21)
K,M

in which2

PKM = Ae-K(K+*, (49-22)

with a- = h*/8ir
2
IkT, as in Equation 49-16. Our first task is

hence to evaluate JTZ(KM), which is the average value of

jj, t
=

jut COS #

for a molecule in the rotational state described by the quantum
numbers K and M, & being the angle between the moment n of

the molecule (that is, the nuclear axis) and the z axis.

The value of jrz(KM) is given by the integral

W.(KM) = JV*^ cos WKMJT, (49-23)

in which \//KM is the first-order perturbed wave function for the

molecule in the electric field. It is found, on application of the

1 P. DEBYE, Phys. Z. 13, 97 (1912).
2 It is assumed at this point that the energy of interaction of the molecule

and the field can be neglected in the exponent of the Boltzmann factor.

An investigation shows that this assumption is valid
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usual methods of Chapters VI and VII, the perturbation function

being

H' = -/iF cos 0, (49-24)

that JTX(KM) has the value

(see Prob. 49-9).

Inasmuch as PKM is independent of the quantum number M
,

to the degree of approximation of our treatment, we can at once

calculate the average value of JT2(KM) for all states with the same

value of K, by summing JTZ(KM) for M = K,K + l,
- -

,

+K, and dividing by 2K + 1. The only part of 49-25 which
+K

involves any difficulty is that in Af*. The value of V ^f2

M--K
is y$K(K + 1)(2JE + 1); using this, we see that

+K

K() =
2XT1 2 ^(XM) =

'
X > ' (49

~
26)

M--K
Thus we have obtained the interesting result that the only

rotational state which contributes to the polarization is that with

K = 0. The value of JT* for this state is seen from Equation
49-25 to be

E(0)
- -^, (49-27)

and fTg hence is given by the equation

"
^kT j:

<r

(49
~
28)

in which the sum in the denominator corresponds to the constant

A of Equation 49-22. For small values of <r (such as occur in

actual experiments) this reduces to

which is identical with the classical expression 49-20. On
introduction in Equation 49-19, this gives the equation
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Problem 49-9. Using the surface-harmonic wave functions mentioned
in the footnote at the end of Section 35c, derive Equation 49-25, applying
either the ordinary second-order perturbation theory or the method of

Section 27a.

Problem 49-10. Discuss the approximation to Equation 49-28 provided

by 49-29 for hydrogen -chloride molecules (M
- 1.03 X 10~ 18

e.s.u.) in a

field of 1000 volts per centimeter.

It can be shown 1 that Equation 49-30 is not restricted to dia-

tomic molecules in its application, but is valid in general, except
for a few special cases (as, for example, for a molecule with

electric moment largely dependent on the vibrational state, or

on the state of rotation of one part of the molecule about a single

bond, etc.). With the use of this equation the electric moments
of molecules can be determined from measurements on the

temperature coefficient of the dielectric constants of gases and
dilute solutions and in other ways. This has been done for a very

large number of substances, with many interesting structural

conclusions. An illustration is the question of which of the two

isomers of dichlorethylene is the cis and which the trans form,

i.e., which compound is to be assigned to each of the formulas

shown below:

H H H Cl

\ / \ /V>=V^ \j---\j

Cl Cl Cl H
cis form trans form

The trans form is symmetrical and therefore is expected to have

zero electric moment. It is found experimentally that the

compound which the chemists had previously selected as the

trans form does in fact have zero moment, whereas the cis form

has a moment of about 1.74 X 10~ 18 e.s.u. (The unit 10~ 18
e.s.u.

is sometimes called a Debye unit.) Strong evidence for the

plane structure of benzene is also provided by electric-moment

data, and many other problems of interest to chemists have been

attacked in this way.

1 See the references at the end of the section, in particular Van Vleck.
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An equation which is very closely related to Equation 49-30 is

also applicable to the magnetic susceptibility of substances;

indeed, this equation was first derived (by Langevin
1 in 1905)

for the magnetic case. The temperature-dependent term in this

case corresponds to paramagnetism, p representing the magnetic
moment of the molecule; and the other term, which in the mag-
netic case is negative, corresponds to diamagnetism. For

discussions of the origin of diamagnetism, the composition of the

resultant magnetic moment ju from the spin and orbital moments
of electrons, etc., the reader is referred to the references men-
tioned below.

References on Magnetic and Electric Moments

J. H. VAN VLECK: "The Theory of Electric and Magnetic Suscepti-

bilities," Oxford University Press, 1932.

C. P. SMYTH: <>([

Dielectric Constant and Molecular Structure," Chemical

Catalog Company, Inc., New York, 1931.

P. DEBYE: "Polar Molecules/' Chemical Catalog Company, Inc., New
York, 1929.

E. C. STONER: "Magnetism and Atomic Structure," E. P. Button &
Co., Inc., New York, 1926.

The most extensive table of values of dipole moments available at present
is that given in an Appendix of the Transactions of the Faraday Society, 1934.

General References on Statistical Mechanics

R. C. TOLMAN: "Statistical Mechanics with Applications to Physics and

Chemistry," Chemical Catalog Company, Inc., New York, 1927.

R. H. FOWLER: "Statistical Mechanics," Cambridge University Press,

1929.

L. BRILLOTJIN: "Les Statistiques Quantiques," Les presses universitaires de

France, Paris, 1930.

K. K. DARROW: Rev. Mod. Phys. 1, 90 (1929).

R. H. FOWLER and T. E. STERNE: Rev. Mod. Phys. 4, 635 (1932).

50. THE ENERGY OF ACTIVATION OF CHEMICAL REACTIONS

A simple interpretation of the activation energy E of a chemical

reaction such as

A + BC -> AB + C (50-1)

is provided by the assumption that the molecule BC in its normal

electronic state is not able to react with the atom A, and that

reaction occurs only between A and an electronically excited

molecule BC*, E being then the energy difference of the normal

1 P. LANOBVIN, J. de phya. 4, 678 (1905).
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and the excited molecule. A reasonable alternative to this

was given in 1928 by London,
1 who suggested that such a reaction

might take place without any change in the electronic state of

the system (other than that accompanying the change in the

internuclear distances corresponding to the reaction 50-1, as

discussed in Section 34). The heat of activation would then be

obtained in the following way. We consider the electronic

energy TF () for the normal electronic state of the system as a

'BC
'

FIG. 50-1. The electronic energy surface (showing contour lines with
increasing energy 1, 2, 3, etc.) for a system of three atoms arranged iinearly, as a
function of the internuclear distances TAB and rue.

function of the nuclear coordinates . TFo() will have one value

for the nuclear configuration in which nuclei B and C are close

together, as in the normal molecule BC, and A is far removed,
and another value for the AB + C nuclear configuration. (The
difference of these, corrected for the energy of oscillation and
rotation of the molecules, is the energy change during the

reaction.) Now in order to change from one extreme configura-
tion to the other, the nuclei must pass through intermediate

configurations, as atom A approaches B and C recedes from it,

and the electronic energy Wo() would change with change in

1 F. LONDON in the Sommerfeld Festschrift, "Probleme der modernen

Phyaik," p. 104, S. Hirzel, Leipzig, 1928.
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configuration, perhaps as shown in Figure 50-1. The change
from A + BC, represented by the configuration point P, to

AB + C, represented by the configuration point P", could take

place most easily along the path shown by the dotted line.

We have seen in Section 34 that the electronic energy can be
treated as a potential function for the nuclei

;
it is evident that in

order for reaction to take place the nuclei must possess initially

enough kinetic energy to carry them over the high point P' of

the saddle of the potential function of Figure 50-1. The energy
difference TF (P') TFo(P), after correction for zero-point
oscillational energy, etc., would be interpreted as the activation

energy E.

No thoroughly satisfactory calculation of activation energies in

this way has yet been made. The methods of treatment dis-

cussed for the hydrogen molecule in Section 43, in particular the

method of James and Coolidge, could of course be extended to a

system of three protons and three electrons to provide a satis-

factory treatment of the reaction H + H 2 > H2 + H. This

calculation would be difficult and laborious, however, and has

not been carried out. Several rough calculations, providing
values of E for comparison with the experimental value 1 of

about 6 kcal/mole (from the ortho-para hydrogen conversion),
have been made. In Section 46d we have seen that at large
distances the interaction of a hydrogen atom A and a hydrogen
molecule BC is given approximately by the expression

- Y2 (abc \H\ bac)
- Y2 (dbc \H\ cba),

the first term corresponding to repulsion of A by B and the second
to repulsion of A by C. It is reasonable then that the easiest

path for the reaction would correspond to a linear arrangement
ABC, the repulsion of A and C then being a minimum for given
values of TAB and rue. Eyring and Polanyi

2 calculated energy
surfaces for linear configurations by neglecting higher exchange

integrals and making other simplifying assumptions, the values

1 A. FARKAS, Z. f. phys. Chem. BIO, 419 (1930); P. HARTECK and K. H.

GBIB, ibid. B15, 116 (1931).
2 H. EYRING and M. POLANYI, Naturwissenschaften 18, 914 (1930); Z. f.

phy9. Chem. B12, 279 (1931); H. EYRING, Naturivissenschaften 18, 915

(1930), /. Am. Chem. Soc. 63, 2537 (1931); H. PELZER and E. WIGNER,
Z.f. phys. Chem. B15, 445 (1932).
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of the Coulomb and single exchange integrals being taken from

the simple Heitler-London-Sugiura treatment of the hydrogen
molecule or estimated from the empirical potential function for

this molecule. These approximate treatments led to values

in the neighborhood of 10 to 15 kcal for the activation energy.

Coolidge and James 1 have recently pointed out that the approxi-

mate agreement with experiment depends on the cancellation of

large errors arising from the various approximations.
The similar discussion of the activation energies of a number of

more complicated reactions has been given by Eyring and

collaborators. 2

1 A. S. COOLIDGE and H. M. JAMES, /. Chem. Phys. 2, 811 (1934).
2 H. EYRING, /. Am. Chem. Soc. 53, 2537 (1931); G. E. KIMBALL and

H. EYRING, ibid. 64, 3876 (1932); A. SHERMAN and H. EYRING, ibid. 64,

2661 (1932); R. S. BEAR and H. EYRING, ibid. 66, 2020 (1934); H. EYRING,
A. SHERMAN, and G. E. KIMBALL, /. Chem. Phys. 1, 586 (1933); A. SHERMAN,
C. E. SUN, and H. EYRING, ibid. 3, 49 (1935).



CHAPTER XV

GENERAL THEORY OF QUANTUM MECHANICS

The branch of quantum mechanics to which we have devoted

our attention in the preceding chapters, based on the Schrodinger
wave equation, can be applied in the discussion of most questions
which arise in physics and chemistry. It is sometimes conven-

ient, however, to use somewhat different mathematical methods;

and, moreover, it has been found that a thoroughly satisfactory

general theory of quantum mechanics and its physical inter-

pretation require that a considerable extension of the simple

theory be made. In the following sections we shall give a brief

discussion of matrix mechanics (Sec. 51), the properties of angular
momentum (Sec. 52), the uncertainty principle (Sec. 53), and
transformation theory (Sec. 54).

61. MATRIX MECHANICS

In the first paper written on the quantum mechanics 1 Heisen-

berg formulated and successfully attacked the problem of calcu-

lating values of the frequencies and intensities of the spectral
lines which a system could emit or absorb; that is, of the energy
levels and the electric-moment integrals which we have been

discussing. He did not use wave functions and wave equations,

however, but instead developed a formal mathematical method
for calculating values of these quantities. The mathematical

method is one with which most chemists and physicists are not

familiar (or were not, ten years ago), some of the operations
involved being surprisingly different from those of ordinary

algebra. Heisenberg invented the new type of algebra as he

needed it; it was immediately pointed out by Born and Jordan,
2

however, that in his new quantum mechanics Heisenberg was

1 W. HBIBENBERG, Z. f. Phys. 33, 879 (1925).

M. BORN and P. JORDAN, ibid. 34, 858 (1925).

416
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making use of quantities called matrices which had already been

discussed by mathematicians, and that his newly invented

operations were those of matrix algebra. The Heisenberg

quantum mechanics, usually called matrix mechanics, was rapidly

developed
1 and applied to various problems.

When Schrodinger discovered his wave mechanics the question
arose as to the relation between it and matrix mechanics. The
answer was soon given by Schrodinger

2 and Eckart,
3 who showed

independently that the two are mathematically equivalent.

The arguments used by Heisenberg in formulating his quantum
mechanics are extremely interesting. We shall not present

them, however, nor enter into an extensive discussion of matrix

mechanics, but shall give in the following sections a brief treat-

ment of matrices, matrix algebra, the relation of matrices to wave

functions, and a few applications of matrix methods to quantum-
mechanical problems.

51a. Matrices and Their Relation to Wave Functions. The
Rules of Matrix Algebra. Let us consider a set of orthogonal
wave functions 4

^o, ^i, , ^n, and a dynamical quantity

f(9if P')> the corresponding operator
5
being /op.

= /( qit 2~-^-\
In the foregoing chapters we have often made use of integrals

such as

Am - //OP.>MT; (51-1)

for example, we have given /nn the physical interpretation of the

average value of the dynamical quantity / when the system is in

the nth stationary state. Let us now arrange the numbers

fmn (the values of the integrals) in a square array ordered accord-

ing to m and n, as follows:

1 M. BORN, W. HEISENBERG, and P. JORDAN, Z. f. Phys. 36, 557 (1926);

P. A. M. DIRAC, Proc. Roy. Soc. A109, 642 (1925).

E. ScHRtfDiNGER, Ann. d. Phys. 79, 734 (1926).
1 C. ECKART, Phys. Rev. 28, 711 (1926).
4 These functions include the time factor; a similar discussion can be made

with use of the functions ^ , fa 9
not including the time.

8 In this chapter we shall use the symbol /op. to represent the operator

corresponding to the dynamical function /. The subscript "op." was not

used in the earlier chapters because there was no danger of confusion attend-

ing its omission. See Sees. 10, 12.
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f = (/mn)
=

This array we may represent by the symbol f or (fmn). We
enclose it in parentheses to distinguish it from a determinant,
with which it should not be confused.

We can construct similar arrays g, h, etc. for other dynamical

quantities.

It is found that the symbols f, g, h, etc. representing such

arrays can be manipulated by an algebra closely related to ordi-

nary algebra, differing from it mainly in the process of multiplica-

tion. The rules of this algebra can be easily derived from the

properties of wave functions, which we already know.

It must be borne in mind that the symbol f does not represent
a single number. (In particular the array f must not be confused

with a determinant, which is equal to a single number. There is,

to be sure, a determinant corresponding to each array, namely,
the determinant whose elements are those of the array. We have

set up such determinants in the secular equations of the preceding

chapters.) The symbol f instead represents many numbers

as many as there are elements in the array. The sign of equality

in the equation f g means that every element in the array f is

equal to the corresponding element in the array g.

Now let us derive some rules of the new algebra. For example,
the sum of two such arrays is an array each of whose elements

is the sum of the corresponding elements of the two arrays ;
that

is,

//OO + 000 /Oi + 001 /02 + 002
' '

*\

f + g =
( /io + 0io /u + 0ii /i2 + 012 ). (51-2)

It is seen that the arrays add in the same way as ordinary

algebraic quantities, with f + g = g + f . Addition is com-

mutative.

On the other hand, multiplication is not commutative: the product

fg is not necessarily equal to the product gf. Let us evaluate the

mnth element of the array fg. It is

1/0 1 mn =



XV-61a] MATRIX MECHANICS 419

Now we can express the quantity gOD&n in terms of the functions

SF/fc with constant coefficients (Sec. 22), obtaining

That the coefficients are the quantities gkn is seen on multiplying

by Vj and integrating. Introducing this in the integral for

\fg}mn we obtain

k

since f^f^f^kdr is equal to fmk, this becomes

This is the rule for calculating the elements of the array obtained

on multiplying two arrays.

We may continue to develop the algebra of our arrays in this

way; or we can instead make use of work already done by mathe-

maticians. The arrays which we have been discussing are called

matrices, and their properties have been thoroughly investigated

by mathematicians, who have developed an extensive matrix

algebra,
1 some parts of which we have just derived.

Problem 51-1. Show that the laws of ordinary algebra hold for the

addition and subtraction of matrices and their multiplication by scalars;

for example,

f + (g + h) =
(f + g) + h,

of 4- ag = a(f -f g),

at + bf = (a -h 6)f.

Matrix methods, especially matrix multiplication, are often

very useful in solving problems. Thus we have applied Equation
51-3 in Section 27e, after deriving the equation in order to use it.

Another example of the use of this equation is provided by
Problem 51-2.

In quantum-mechanical discussions the matrix f corresponding

to the dynamical quantity /(<? t-, p) is sometimes defined with the

use of the wave functions ^n ,
which include the time (Eq. 51-1),

and sometimes with the wave functions ^w ,
with the time factor

1
See, for example, M. B6cher, "Introduction to Higher Algebra/

1 The

Macmillan Company, New York, 1924.
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omitted, in which case the matrix elements are given by the

integrals

/-. = M^n*. (51-4)

The matrix elements fmn in the two cases differ only by the time

factor e h
,
and as there is no danger of confusion the

same symbol can be used for the matrix containing the time

as for that not containing the time.

Problem 51-2. The elements xmn of the matrix x for the harmonic

oscillator are given by Equation 11-25. Using the rule for matrix multipli-

cation, set up the matrices x2
(
= xx), x3

,
and x4

,
and compare the values of

the diagonal elements with those found in Section 23a.

The non-commutative nature of the multiplication of matrices

is of great importance in matrix mechanics. The difference of

the product of the matrix q/ representing the coordinate #,-

and the matrix p, representing the canonically conjugate momen-

tum PJ and the reverse product is not zero, but ~ .1, where 1
ZTTZ

is the unit matrix, discussed in the following section; that is,

these matrices do not commute. On the other hand, q/ and

p* (with k T* j)j etc., do commute, the complete commutation

rules for coordinates and momenta being

p/q/
-

q/p/
=

p/q*
-

q/q*
-

q*q? =
o,

P*P*
-

P*P;
= 0.

(51-5)

These commutation rules together with the rules for converting

the Hamiltonian equations of motion into matrix form constitute

matrix mechanics, which is a way of stating the laws of quantum
mechanics which is entirely different from that which we have

used in this book, although completely equivalent. The latter

rules require a discussion of differentiation with respect to a

matrix, into which we shall not enter. 1

Problem 51-3. Verify the commutation rules 51-5 by evaluating the

matrix elements (pjqi)mn ,
etc.

1 For a discussion of matrix mechanics see, for example, Ruark and Urey,

"Atoms, Molecules and Quanta," Chap. XVII.
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51b. Diagonal Matrices and Their Physical Interpretation. A
diagonal matrix is a matrix whose elements fmn are all zero except
those with m = n; for example,

The unit matrix, 1, is a special kind of diagonal matrix, all the

diagonal elements being equal to unity:

A constant matrix, a, is equal to a constant times the unit

matrix:

a = al

Application of the rule for matrix multiplication shows that the

square (or any power) of a diagonal matrix is also a diagonal

matrix, its diagonal elements being the squares (or other powers)
of the corresponding elements of the original matrix.

In Section lOc, in discussing the physical interpretation of the

wave equation, we saw that our fundamental postulate regarding

physical interpretation requires a dynamical quantity / to have

a definite value for a system in the state represented by the wave
function Vn only when f

r
nn is equal to (fnn)

r
,
for all values of r.

We can now express this in terms of matrices: // the dynamical

quantity f is represented by a diagonal matrix f then this dynamical

quantity has the definite value fnn for the state corresponding to the

wave function Vn of the set ^
, ^i, .

For illustration, let us discuss some of the wave functions which

we have met in previous chapters. The solutions
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2*iWot\

tyQe
h

),*&!,'

of the wave equation for any system correspond to a diagonal

energy matrix

Fo . .

-0- Wr 6 . .

W2H =
TF 3

so that, as mentioned in Section lOc, the system in a physical
condition represented by one of these wave functions has a

fixed value of the total energy.
In the case of a system with one degree of freedom no other

dynamical quantity (except functions of H only, such as H 2
)

is represented by a diagonal matrix; with more degrees of freedom
there are other diagonal matrices. For example, the surface-

harmonic wave functions GjmO^mfa) for the hydrogen atom
and other two-particle systems separated in polar coordinates

(Sees. 19, 21) make the matrices for the square of the total

angular momentum and the component of angular momentum
along the z axis diagonal, these dynamical quantities thus having
definite values for these wave functions. The properties of

angular momentum matrices are discussed in Section 52.

The dynamical quantities corresponding to diagonal matrices

relative to the stationary-state wave functions ^
, ^i, are

sometimes called constants of the motion of the system. The

corresponding constants of the motion of a system in classical

mechanics are the constants of integration of the classical equa-
tion of motion.

Let us now consider a system whose Schrodinger time functions

corresponding to the stationary states of the system are ^
,

1, , ^, . Suppose that we carry out an experiment

(the measurement of the values of some dynamical quantities)
such as to determine the wave function uniquely. Such an

experiment is called a maximal measurement. A maximal
measurement for a system with one degree of freedom, such as

the one-dimensional harmonic oscillator, might consist in the

accurate measurement of the energy; the result of the measure-

ment would be one of the characteristic energy values Wn ]
and

the corresponding wave function &n would then represent the
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system so long as it remain undisturbed and could be used for

predicting average values for later measurements (Sees. 10, 12;.

A maximal measurement for a system of three degrees of freedom,

such as the three-dimensional isotropic harmonic oscillator or

the hydrogen atom with fixed nucleus and without spin, might
consist in the accurate determination of the energy, the square

of the total angular momentum, and the component of the

angular momentum along the z axis. The wave function cor-

responding to such a maximal measurement would be one of

those obtained by separating the wave equation in polar coordi-

nates, as was done in Chapter V.

It is found that the accurate measurement of the values of N
independent

1
dynamical quantities constitutes a maximal

measurement for a system with N degrees of freedom. In

classical mechanics a maximal measurement involves the accurate

determination of the values of 2N dynamical quantities, such as

the N coordinates and the N momenta, or for a one-dimensional

system the energy and the coordinate, etc. A discussion of the

significance of this fact will be given in connection with the

uncertainty principle in Section 53.

Now let us consider a complete set of orthogonal normalized

wave functions xo> Xi> > Xn', ,
each function Xn' being

a solution of the Schrodinger time equation for the system under

discussion. These wave functions are linear combinations of

the stationary-state wave functions ^fn , being obtained from

them by the linear transformation

in which the coefficients an 'n are constants restricted only in

that they are to make the x's mutually orthogonal and normal-

ized. A set of wave functions Xn' is said to form a representation

of the system. Corresponding to each representation matrices2

f , g', etc. can be constructed for the dynamical quantities

/, g, etc., the elements being calculated by equations such as

fm>*>
=

/X*'/op.Xn'dT (51-7)

1 The meaning of independent will be discussed later in this section.
2 We use primed symbols to indicate that the matrices correspond to the

representation xn f >
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or obtained from the matrices f, g, etc. (corresponding to the

stationary-state representation ^n), by the use of the coefficients

an >n of Equation 51-6.

So far we have discussed the measurement of constants of the

motion of the system only; that is, of quantities which are repre-

sented by diagonal matrices relative to the Schrodinger wave
functions M^o, ^i, ^2 , ,

and which are hence independent of

the time. But in general we might make a maximal measure-

ment consisting in the accurate measurement of N dynamical

quantities /, g*, etc., whose matrices f, g, etc., relative to ^o,

#1,
- -

,
are not all diagonal matrices. In the case of such a

maximal measurement we must specify the time t = t' at which

the measurement is made. An accurate measurement of the

quantities /, g, etc. at the time t = t
1

requires that at the time

t = t' the matrices f, g', etc. be diagonal matrices. In order to

find the wave function representing the system at times subse-

quent to t = t' (so .long as the system remain undisturbed),

we must find the representation Xn' which makes these matrices

diagonal at the time t = t'. The accurate values of /, g, etc.

obtained by measurement will be identical with the numbers

fn'n', gn'n', etc., occurring as a certain diagonal element of the

diagonal matrices f, g', etc., and the wave function representing

the system will be the corresponding Xn'.

It is interesting to notice that the condition that the dynamical

quantity / be represented by a diagonal matrix f
'

in the x repre-

sentation can be expressed as a differential equation. In order

for V to be a diagonal matrix, f'm >n > must equal for m' not equal

to n' and a constant value, fn ' n f
, say, for m' = n'. This means

that on expanding /op.Xn' in terms of the complete set of functions

X only the one term fn'n'Xn' will occur; that is, that

/op.Xn'
=

fn'n'Xn', (51~8)

in which fn > n ' is a number, the w'th diagonal element of the

diagonal matrix f'. For example, the stationary-state wave

functions ^nim for a hydrogen atom as given in Chapter V
satisfy three differential equations,
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and

r * Will ^.

If.**.,. = 2^,
corresponding to the three dynamical functions whose matrices

are diagonal in this representation ; namely, the energy, the square
of the total angular momentum, and the z component of the

angular momentum. For a discussion of this question from a

different viewpoint see the next section.

62. THE PROPERTIES OF ANGULAR MOMENTUM
As pointed out in the previous section, systems whose wave

equations separate in spherical polar coordinates (such as the

hydrogen atom) possess wave functions corresponding not only
to definite values of the energy but also to definite values of the

total angular momentum and the component of angular momen-
tum along a given axis (say, the z axis). In order to prove this

for one particle
1 let us construct the operators corresponding

to Mx ,
Mv ,

and M z ,
the components of angular momentum along

the x, y, and z axes. Since classically

Mx = yp z zpy, (52-1)

with similar expressions for My and M z ,
the methods of Section

lOc for constructing the operator corresponding to any physical

quantity yield the expressions

h ( d d'

h , o v A

(53
_
2)

In order to calculate the average values of these quantities it is

convenient to express them in terms of polar coordinates. By the

standard methods (see Sec. 16) we obtain

M._ iMvw.
= 2< ~ cot * (52-3)

1 The total angular momentum and its z component also have definite

values for a system of n particles in field-free space; see, for example, Born
and Jordan, "Elementare Quantenmechanik," Chap. IV, Julius Springer,

Berlin, 1930.
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and

*~ =
as i- (52

-
4)

We have postulated that the wave equation is separable in

polar coordinates; if we also restrict the potential energy to be a

function of r alone, the dependence of the wave functions on the

angles will be given by

*in(0, <f>, r)
= ei*(0)*m(?)Bn i(r), (52-5)

where 0jm(#)< m (<p) are the surface-harmonic wave functions

obtained in Section 18. Using these and the expressions in

Equations 52-3 and 52-4, we can evaluate the integrals of the

type

Mx(l'm
r

] Im) - Stf>m >nMXOJ,.t lmndT. (52-6)

In order to prove that the square of the total angular momentum
M 2 has a definite value for a given stationary state described by
\^imn ,

it is necessary for us to show that the average value of any

power of M2
is identical with the same power of the average value

(Sec. lOc). By using the properties of matrices given in the

previous section we can considerably simplify this proof. As
stated there, we need only show that Af?D.

is represented by a

diagonal matrix. Furthermore we can obtain the matrix

forM2 from the matrices forMx,
Myy and Mg by using the relation

defining Mz in classical mechanics,

M2 = Ml + M* + Ml, (52-7)

and applying the rules for matrix multiplication and addition.

If we carry out this procedure, we first find on evaluation of

the proper integrals that

^
/

; Im) =
j-

iw

{1(1

in which Sm ', m+i = 1 for m'
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The next step is to obtain the elements of the matrices M*,

M^, and M^ from these by using matrix multiplication, and then

the elements of M 2
by using matrix addition. The final result

is that M 2
is a diagonal matrix with diagonal elements .

2
--

It is therefore true that M 2 has a definite value in the state

\l/imn] in other words, it is a constant of the motion with the

! 1(1 + I)/*
2

value
'

4?r
2

The proof that M z is also a constant of the motion is contained

in Equation 52-10, which shows that M z is a diagonal matrix

with diagonal elements mh/2ir so that its value is mh/Vm for the

state with quantum number m.

Problem 62-1. Carry out the transformation of Equations 52-2 into

polar coordinates.

Problem 52-2. Derive Equations 52-8, 52-9, and 52-10.

Problem 52-3. Obtain the matrices for M*, M%, Ml by matrix multi-

plication and from them obtain the matrix for M2
.

There is a close connection between the coordinate system in

which a given wave equation is separated and the dynamical

quantities which are the constants of the motion for the resulting

wave functions. Thus for a single particle in a spherically

symmetric field the factor $(#, <p) of the wave function which

depends only on the angles satisfies the equation (see Sec. 18a)

It can be shown that the operator for M2 in polar coordinates

has the form

' (52
-
12)

80 that Equation 52-11 may be written

M^nlm = 1(1 + l) Im, (52-13)

since ^ =
<S(tf, <p)R(r) and M*p.

does not affect R(r).

Furthermore the equation for $m(<p), the <p part of ^, is (Sec.

18o)

= -m2
*, (52-14)
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whereas from Equation 52-4 we find that

*?--- (52
-
15)

so that Equation 52-13 may be written in the form

Ml^,*lm =m^nlm . (52-16)

The formal similarity of Equations 52-13 and 52-16 with the

wave equation

Hop.tnlm = Wntnlm

is quite evident. All three equations consist of an operator

acting upon the wave function equated with the wave function

multiplied by the quantized value of the physical quantity repre-

sented by the operator. Furthermore, the operators //op.,

Ml^, and Af* op.
will be fouad to commute with each other;

that is,

ffop.WP.x)
= 3f2

p.(//op.x),

etc., where x is any function of $, <p, and r.

It is beyond the scope of this book to discuss this question more

thoroughly, but the considerations which we have given above for

this special case can be generalized to other systems and other

sets of coordinates. Whenever the wave equation can be

separated it will be found that the separated parts can be thrown

into the form discussed above, involving the operators of several

physical quantities. These physical quantities will be constants

of the motion for the resulting wave functions, and their operators

will commute with each other.

63. THE UNCERTAINTY PRINCIPLE

The Heisenberg uncertainty principle
1 may be stated in the

following way:
The values of two dynamical quantities f and g of a system can be

accurately measured at the same time only if their commutator is

zero; otherwise these measurements can be made only with an

uncertainty A/A0 whose magnitude is dependent on the value of the

commutator. In particular, for a canonically conjugate coordinate

* W. HBISISNBBBG, Z. f. Phys. 43, 172 (1927).
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q and momentum p the uncertainty AgAp is of the order of nuignitude

of Planck
1

s constant h, as is AWA for the energy and time.

To prove the first part of this principle, we investigate the

conditions under which two dynamical quantities / and g can be

simultaneously represented by diagonal matrices. Let these

matrices be f and g', Xn' being the corresponding representation.

The product f'g' of these two diagonal matrices is found on

evaluation to be itself a diagonal matrix, its n'th element being
the product of the n'th diagonal elements fn > and gn > of the

diagonal matrices f and g'. Similarly g'f' is a diagonal matrix,
its diagonal elements being identical with those of f'g'. Hence
the commutator of f and g' vanishes: f'g' g'f'

= 0. The
value of the right side of this equation remains zero for any
transformation of the set of wave functions, and consequently
the commutator of f and g vanishes for any set of wave functions;

it is invariant to all linear orthogonal transformations. We
accordingly state that, in order for two dynamical quantitiesf and g

of a system to be accurately measurable at the same time, their com-

mutator must vanish; that is, the equation

fg _ gf = (53-1)

*nust hold.

A proof of the second part of the uncertainty principle is

lifficult; indeed, the statement itself is vague (the exact meaning
of A/, etc., not being given). We shall content ourselves with

the discussion of a simple case which lends itself to exact treat-

ment, namely, the translational motion in one dimension of a

free particle.

The wave functions for a free particle with coordinate x are

27rt\/2mTy(x-xo) 2iriWt

Ne * e h
(Sec. 13), the positive sign in the first

exponential corresponding to motion in the x direction and the

negative sign in the x direction. On replacing W by p|/2w

this expression becomes Ne h e 2mh
,

in which positive

and negative values of the momentum px refer to motion in the x

direction and the # direction, respectively. A single wave

function of this type corresponds to the physical condition in

which the momentum and the energy are exactly known, that

is, to a stationary state of the system. We have then no knowl-

edge of the position of the particle, the uncertainty Ax in the
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coordinate x being infinite, as is seen from the probability dis-

tribution function ty*ty, which is constant for all values of x

between c and + oo . When Ap x is zero Ax is infinite.

Now let us suppose that at the time t = we measure the

momentum px and the coordinate x simultaneously, obtaining

the values po and x
,
with the uncertainties &p x and Ax, respec-

tively. Our problem is to set up a wave function x which

represents this physical condition of the system One way
of doing this is the following. The wave function

Y A I f> 2(Ap*)o h p 2mh /fn (tt~9\
X. * I v C o UsjJx \OO &)

corresponds to a Gaussian-error-curve distribution e (&?*)*

of the values of the momentum p x about the average value p ,

with the uncertainty
1 Ap z . (The factor J^ in the exponent in

Equation 53-2 results from the fact that the coefficients of the

wave functions are to be squared to obtain probability values.)

A is a normalization constant. On evaluating the integral we
find for % at the time t = the expression

_
x (0)

= Be *> h
, (53-3)

which corresponds to the probability distribution function

for x

X*(0)x (0)
= 2<f

"

(53-4)
with

(53-5)v '

This is also a Gaussian error function, with its maximum at

x = XQ and with uncertainty Ax given by Equation 53-5. It is

seen that the wave function x corresponds to the value /?/2?r

for the product of the uncertainties Ax and Ap x at the time t = 0,

this value being of the order of magnitude A, as stated at the

beginning of the section.

Problem 53-1. Evaluate the normalization constants A and B 2
by

carrying out the integration over px and then over x.

1 The quantity Apx is the reciprocal of the so-called precision index of

the Gaussian error curve and is larger than the probable error by the factor

2.10; see R. T. Birge, Phy*. Rev. 40, 207 (1932).
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Problem 63-2. Carry through the above treatment, retaining the time

factors. Show that the center of the wave packet moves with velocity

po/m, and that the wave packet becomes more diffuse with the passage of

time.

A generdl discussion* by the use of the methods of transforma-

tion theory (Sec. 54), which we shall not reproduce, leads to the

conclusion that the product of the uncertainties A/Agr accompany-
ing the simultaneous measurement of two dynamical quantities

/ and g is at least of the order of magnitude of the absolute value

of the corresponding diagonal element in their commutator

fg gf- (The commutator of x and p x is ^ .1 (Eq. 51-5), the

absolute value of the diagonal elements being h/2ir, in agreement
with the foregoing discussion.) This leads to the conclusion that

the energy W and time t are related regarding accuracy of measure-
ment in the same way as a coordinate and the conjugate momen-
tum, the product of the uncertainties ATF and A being of the

order of magnitude of h (or h/2-n-) . In order to measure the energy
of a system with accuracy ATf, the measurement must be

extended over a period of time of order of magnitude h/AW.

Problem 63-3. Show that the commutator Wt tW has the value

.1 by evaluating matrix elements, recalling that JTOP = and
^Trt 2iri dt

to*.
= t.

It is natural for us to inquire into the significance of the

uncertainty principle by analyzing an experiment designed to

measure x and p x . Many "thought experiments" have been
discussed in the effort to find a contradiction or to clarify the

theory; in every case these have led to results similar to the

following. Suppose that we send a beam of light of frequency
VQ along the axis AO of Figure 53-1, and observe along the

direction OB to see whether or not the particle, restricted to

motion along the x axis, is at the point or not. If a light

quantum is scattered into our microscope at JB, we know that

the particle is in the neighborhood of 0, and by analyzing the

scattered light by a spectroscope to determine its frequency v
t

we can calculate the momentum of the particle by use of the

equations of the Compton effect. But for light of finite fre-

quency the resolving power of the microscope is limited, and oui
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measurement of x will show a corresponding uncertainty Ax,

which decreases as the frequency increases. Similarly the

measurement of the momentum by the Compton effect will show

an uncertainty Ap x , increasing as the frequency increases.

The detailed analysis of the experiment shows that under the

most favorable conditions imaginable the product AxAp, is of

the order of magnitude of h. 1

TO

Source of tight

Fio. 53-1. Diagram of experiment for measuring x and px of particle.

64. TRANSFORMATION THEORY

In discussing the behavior of a system the following question

might arise. If at the time t = t
r
the dynamical property / is

1 For the further discussion of the uncertainty principle see W. Heisenberg,
"The Physical Principles of the Quantum Theory," University of Chicago

Press, Chicago, 1930; N. Bohr, Nature 121, 580 (1928); C. G. Darwin, Proc.

Roy. Soc. A117, 258 (1927); A. E Ruark, Phys. Rev. 31, 311, 709 (1928);

E. H. Kennard, Phys. Rev. 31, 344 (1928); H. P. Robertson, Phys. Rev. 34,

163 (1929); 35, 667. (1930); 46, 794 (1934); and also Ruark and Urey, "Atoms,
Molecules and Quanta/

1

Chap. XVIII; and other references listed at the

end of the chapter.
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found on measurement to have the value /', what is the prob-

ability that the immediately subsequent measurement of the

dynamical property g will yield the value #'? We know one

way to answer this question, namely, to find the wave function 1

X (one of the representation which makes f a diagonal matrix)

corresponding to the value /' of /, to use it to calculate the

average value of all powers of g, and from these to construct a

probability distribution function for g. This is not a very

simple or direct procedure, however; it is of interest that an

alternative method has been found by means of which these

probability distribution functions can be calculated directly.

This method, called the transformation theory,* is a general quan-
tum mechanics within which wave mechanics is included, the

Schrodinger wave equation being one of a large number of

equations of the theory and the Schrodiiiger wave functions a

particular type of transformation functions. We shall not

enter into an extensive discussion of transformation theory but

shall give only a brief description of it.

Let us represent by (g'\f) a probability amplitude function or

transformation function such that (g' |/')* (g'\f) is the probability

under discussion, (g'\f)* being the complex conjugate of (g'\f).

[In case that g' can be any one of a continuum of values,

(g'\f')*(g'\f
r

) is interpreted as a probability distribution function,

the probability that g have a value between g
r and g

f + dg'

being WrWW-]
The Schrodinger stationary-state wave functions are proba-

bility amplitude functions between the energy and the coordi-

nates of the system. For a system with one degree of freedom,

such as a harmonic oscillator, the wave functions ^n are the

transformation functions (x'\W'} between the coordinate x and

the characteristic energy values, and for the hydrogen atom

the wave functions \l/n im (r, #, <p), discussed in Chapter V, are the

transformation functions (r'$'<f>'\nlm) between the coordinates

r, #, and <p of the electron relative to the nucleus and the charac-

teristic energy values Wn ,
the square of angular momentum values

1 In case that the measurement of / is not a maximal measurement many
wave functions might have to be considered.

1 The transformation theory was developed mainly by P. A. M. Dirac,

Proc. Roy. Soc. A113. 621 (1927). and P. Jordan, Z.f. Phy*. 40, 809 (1927)}

44. 1 (1927).
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j 2
r and the angular momentum component values mh/2Tr,

represented by the symbols n, Z, and ra, respectively.

Two important properties of transformation functions are the

following:

The transformation function between / and g is equal to that

between g and /:

(fW = W)* t54-1 )

The transformation function between / and h is related to that

between / and g and that between g and h by the equation

(/W =
/(/'! Wl A'W- (54-2)

In this equation the integration includes all possible values g'

which can be obtained by measurement of g; in case that g'

represents a set of discrete values, the sum over these is to be

taken.

We have often Written the Schrodinger wave equation in the

form

H^n = Wntn.

In the nomenclature of transformation theory this is

W representing a characteristic value Wn of the energy and

(<^|TF') the corresponding transformation function to the coordi-

nates g/. In transformation theory it is postulated that a similar

equation

<7o,.,,,(/' |g')
= jr'tfV) (54-3)

is satisfied by every transformation function (/%') In this

equation gr p. is the operator in the / scheme representing

the dynamical quantity g. We shall not discuss the methods

by means of which the / scheme of operators is found but shall

restrict our attention to the q scheme, in which the operators

are obtained by the familiar method of replacing m by ~ .
-

ZTTI dgk

The transformation functions are normalized and mutually

orthogonal, satisfying the equation

swwirw = v/. (54-4)
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It is interesting to note that this equation signifies that, if the

dynamical quantity / has been found on measurement to have

the value /', immediate repetition of the measurement will give

the same value/' with probability unity, inasmuch as the integral

of Equation 54-4 is the transformation function (/'|/") (see

Eq. 54-2) and Equation 54-4 requires it to vanish except when

/" is equal to/', in which case it has the value 1.

From the above equations we can find any transformation

function (/'|0'), using the q system of operators only, in the

following way: we find the transformation functions (#'|/') and

(#'10') by solving the corresponding differential equations

54-3, and then obtain (/%') by integrating over the coordi-

nates (Eq. 54-4). As an example, let us obtain the transforma-

tion function (p|TF') between the energy W and the linear

momentum p x of a one-dimensional system. The function

(z'|TT') is the Schrodinger wave function, obtained by solving
the wave equation

= W'(x'\W)

as described in the preceding chapters of the book. The trans-

formation function (x'\p'x) between a Cartesian coordinate and

its canonically conjugate momentum is the solution of the

equation

or

and hence is the function

(x'\p'x)
= Ce *

, (54-5)

C being a normalizing factor. The transformation function

(P*\W), the momentum probability amplitude function for a

stationary state of the system, is accordingly given by the

equation

(pi\W) = jCe
* (x'\W'W (54-6)

or

.

= JCe *
*(*')<&'. (64-7)
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On application of this equation it is found that the momentum
wave functions for the harmonic oscillator have the same form

(Hennite orthogonal functions) as the coordinate wave functions

(Prob. 54-1), whereas those for the hydrogen atom afe quite
different. 1

Problem 54-1. Evaluate the momentum wave functions for the harmonic

oscillator. Show that the average value of p
r

x for the nth state given by
the equation

is the same as given by the equation

Problem 64-2. Evaluate the momentum wave function for the normal

hydrogen atom,

f f f Z*i(x'p>x +v'p!,+z'p'.)

(p'*PvP*\nlm)
= J J J Ce h

(x'y'z'\nlm)dx'dy'dz'.

It is convenient to change to polar coordinates in momentum space as well

as in coordinate space.

The further developments of quantum mechanics, including the

discussion of maximal measurements consisting not of the

accurate determination of the values of a minimum number of

independent dynamical functions but of the approximate meas-

urement of a larger number, the use of the theory of groups, the

formulation of a relativistically invariant theory, the quantiza-
tion of the electromagnetic field, etc., are beyond the scope of

this book.
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APPENDIX I

VALUES OF PHYSICAL CONSTANTS1

Velocity of light ..................... c = 2.99796 X 10 10 cm sec-1

Electronic charge .................... e = 4.770 X 10~ 10 abs. e.s.u.

Electronic mass ...................... w = 9 . 035 X 10~M g
Planck's constant .................... h = 6. 547 X 10~27

erg sec

Avogadro's number .................. N = 0.6064 X 1024 mole' 1

Boltzmann's constant ................ k = 1. 3709 X 10~ 16
erg deg" 1

Fine-structure constant ............... ot - = 7.284 X 10""*
he

Radius of Bohr orbit in normal hydro-

gen, referred to center of mass ....... OQ 0.5282 X 10~8 cm
Rydberg constant for hydrogen ........ #H 109677.759 cm" 1

Rydberg constant for helium .......... #H = 109722 . 403 cm" 1

Rydberg constant for infinite mass ..... R*> = 109737.42 cm" 1

Bohr unit of angular momentum ....... = 1 . 0420 X 10"~27 erg sec

Magnetic moment of 1 Bohr magneton MO = 0.9175 X 10~20
erg gauss" 1

Relations among Energy Quantities

1 erg - 0.6285 X 10 12 v.e. = 0.5095 X 10 18 cm" 1 = 1.440 X 1018 cal/mole
1.591 X 10~12

erg 1 v.e. = 8106 cm" 1 = 23055 cal/mole
1.963 X 10-18

erg = 1.234 X 10"4 v.e. = 1 cm- 1 = 2.844 cal/mole
0.6901 X lO""18 erg = 4.338 X 10"6 v.e. = 0.3516 cm" 1 = 1 cal/mole

1 These values are taken from the compilation of R. T. Birge, Rev. Mod.

Phys. 1, 1 (1929), "as recommended by Birge, Phys. Rev. 40, 228 (1932).

For probable errors see these references.
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APPENDIX II

PROOF THAT THE ORBIT OF A PARTICLE MOVING
IN A CENTRAL FIELD LIES IN A PLANE

The force acting on the particle at any instant is in the direc-

tion of the attracting center (see F, Fig. 1). Let the arrow

marked v in the figure represent the direction of the motion at

any instant. Set up a system of Cartesian axes x y z with origin

at the point P and oriented so that the z axis points along v and

the y axis points perpendicular to the plane of F and v, being

directed up from the plane of the paper in the figure.

Fio. II-l.

Then the equation of motion (in Newton's form) in y is

since there is no component of the force F in the y direction.

Therefore the acceleration in the y direction is zero and the

velocity in the y direction, being initially zero, will remain zero,

30 that the particle will have no tendency to move out of the plane

letermined by F and v-
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APPENDIX III

PROOF OF ORTHOGONALITY OF WAVE FUNCTIONS
CORRESPONDING TO DIFFERENT ENERGY LEVELS

We shall prove that, if Wn ^ Wk, the solution $ of the

wave equation

and the solution $ of the equation

N

t-1

satisfy the relation

SWndr = 0; (3)

i.e., that fa is orthogonal to i/>n .

Multiply Equation 1 by i/'*, Equation 2 by \l/n . and subtract

the second from the first. Since V is real, the result is that

N

t-1

If we now integrate the terms of this equation over configuration

space, we obtain

N

~(wn
- wk) (V:MT =

-2^J (**v*Vn " ^v
t-i

If we introduce the expression for v ? in terms of Cartesian coordi-

nates into the integral on the right, it becomes

3N

j-i
441
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In which we have written gi, g2? , q*N in place of

2,
-

> AT. We next make use of the identity

from which we see that

because of the boundary conditions on \l/.

Since every term of the sum can be treated similarly, the

expression 6 is equal to zero and therefore

-j^(Wn Wk) I tktndr =
0,

from which Equation 3 follows, since Wn Wk ^ 0.

If Wn = Wk, so that fa and fa are two linearly independent
wave functions belonging to the same energy level, fa and \l/n are

not necessarily orthogonal, but it is always possible to construct

two wave functions \l/'k
' and i/v belonging to this level which are

mutually orthogonal. This can be done in an infinite number of

ways by forming the combinations

with coefficients a, /3, a', p
r

satisfying the relation

p*p' f\l/Z\t/nd,T
= 0. (8)
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ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS

In Section 16 the general formulas for the Laplace operator v2

and for the volume element dr were given in terms of the quanti-
ties gu, qv ,

and qw defined by Equation 16-4. In this appendix
there are given the equations of transformation (in terms of

Cartesian coordinates) and the expressions for the q's for the 11

sets of orthogonal coordinate systems listed by Eisenhart 1 as the

only such systems in which the three-dimensional Schrodinger
wave equation can be separable. In addition the explicit

expressions
2 for v 2 and dr are given for a few of the more impor-

tant systems. These quantities may be obtained for the other

systems by the use of Equations 16-3 and 16-5.

Cylindrical Polar Coordinates

X = p COS <p,

y = p sin <p>

z = z.

qp = 1, q, =
1, qf = p.

dr pdpdzd<p.

Spherical Polar Coordinates

x = r sin & cos <p,

y = r sin & sin p, (Fig. 1-1),

z = r cos #.

qr = 1, q* =
r, q+ = r sin &.

dr = r2 sin &drd&d<p.

1 L. P. EISENHART, Phys. Rev. 45, 428 (1934).
2 E. P ADAMS, "Smithsonian Mathematical Formulae," Washington,

1922. This book contains extensive material on curvilinear coordinates as

well as other very useful formulas.
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Parabolic Coordinates

X = \/Jrj COS <p,

V sin <

+
4-

Confocal Elliptic Coordinates (Prolate Spheroids)

In terms of the distances rA and rB from the points (0, 0, a)

and (0, 0, a), respectively, and rj are given by the expressions

Spheroidal Coordinates (Oblate Spheroids)

cos

Parabolic Cylinder Coordinates

x = y>(u v), y = -sA?, 2r = 2.

1
/ + tl _ ,
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Elliptic Cylinder Coordinates

v 2
), y = auv, z = z.

/u 2 - v2

V- j'** -v 1 -

Ellipsoidal Coordinates

2 _ (a
2 + u)(a

2 + v)(a
2 + w) 2 _ (b

2 + u)(b* + tQ(b
2 + tip

r

(a
2 - 6 2

)(a
2 - c 2

)

' y ""

(6
2 - c2

)(6
2 - a2

)

;

s2 = ^
(c

2 - a2
)(c

2 6 2
)

(u v)(u K;) 2 _ (v w)(v u)

4 (a
2

-(" w)(6
2

-f- w)(c
2

-f- u) 4 (a
2

-f- v)(6
2

-f~ v)(o
2

2 _ (ta u)(w v)

,x =* u + v + w - a -

Confocal Parabolic Coordinates

( CL
~~~ U i \ CL "" V i \ CL ~~ IV i

.% N ' N / ^ / .

_
fl

(b
-

u)(b
-

v)(b
- w) ^ , . ^ ^v-/v-- /v--/, u>b>v>a>w.

a b

2 _ (U "" V^(U ~ ^) ,v2 _ fo
- U)^ "" W)

^W "
4(a

-
w)(6

-
w)'

9v
~

4(o - v)(b
-

v)'

2 _ (W tt)(t0 V)
w ~

4(o
- w)(&

- w)

A Coordinate System Involving Elliptic Functions

x = u dn(v, k) sn(iy, fc'), y =* u sn(

z = u cn(t>, Jk) cn(w, A?'), & 2 + ^'
2 = 1-

ql = 1, ffj
= ql = w 2

{A;
2 cn 2

(;;, t) + &'* cn 2
(w;, A?')}-

For a discussion of the elliptic functions dn, sn, and en see

W. F. Osgood, "Advanced Calculus," Chap. IX, or E. P. Adams,
"Smithsonian Mathematical Formulae-" p. 245.
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THE EVALUATION OF THE MUTUAL ELECTROSTATIC
ENERGY OF TWO SPHERICALLY SYMMETRICAL

DISTRIBUTIONS OF ELECTRICITY WITH
EXPONENTIAL DENSITY FUNCTIONS

In Section 2?b there occurs the integral

,. rp6Zw doJ J

in which pi = 2Zri/a and dri = p\dp\ sin &id&id<pi, with similar

expressions for p2 and dr 2 , 7*1, #1, <pi and r2 ,
# 2 , <?2 being polar

coordinates for the same system of axes. The quantity pi2

represents 2Zri 2/a ,
in which r i2 is the distance between the

points TI, #1, (p\ and r2 ,
$ 2 , <p2 .

This integral (aside from the factor Ze 2
/327r

2a ) represents the

mutual electrostatic energy of two spherically symmetrical
distributions of electricity, with density functions e~p i and

e~p *, respectively. It can be evaluated by calculating the

potential due to the first distribution, by integrating over

dri, and then evaluating the energy of the second distribution

in the field of the first.

The potential of a spherical shell of radius pi and total charge

bjrp\e~
p
idpi is/ at a point r,

4irple~
p
idpi for r < pi

Pi

and
, 1

r
for r > pi;

that is, the potential is constant within the shell and has the

same value outside of the shell as if the entire charge were

located at the origin.

1
See, for example, Jeans, "Electricity and Magnetism," Cambridge

University Press, Cambridge, 1925, Sec. 74.
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The potential of the complete distribution is hence

47T C r

f
*

<t>(r)
= I e~pip\dpi + 47T I e~pipidpi,

which is found on evaluation to be

*(r) =
^{2-e-(

The integral 7 then has the value

1 =

{2
-

which gives on integration

Ze* 5 5
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NORMALIZATION OF THE ASSOCIATED LEGENDRE
FUNCTIONS

We can obtain the orthogonality property of the functions

P[
ml

(z) and P^(z) as follows: Multiply the differential equation
19-9 satisfied by P[

m]
(z) by P[?

]

(z) and subtract from.this the

differential equation satisfied by Pfi*(z) multiplied by P[
m{

(z).

The result is the relation

= \V(V + 1)
-

1(1 + 1)}P\!*P\*.

If we integrate this between the limits 1 and 1, we obtain the

result

[l'(V + 1)
-

1(1 + l

Therefore, if V ^ I,

C
+l

P\r\(z)P[
m
\(z)dz

= 0. (1)j i

This result is true for any value of m, so it is also true for the

Legendre functions PI(Z), since PI(Z) = Pf(z).

We can now obtain the normalization integral for the Legendre

polynomials. Replacing I by I 1 in Equation 19-2 gives the

equation

P l(z)
=

\(2l
- l)zP l^(z)

- (I-

Using this and the orthogonality property just proved, we obtain

the relation
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J
+ 1 97-1 f + 1

i
{PMWz = L̂T-L

j_ i
Pi-i(*)*Pi(z)dz.

Equation 19-2 can be written in the form

zPi(z) =
gflpi

W + DJVi(s) + HVi(*)},

so that, again employing the orthogonality property, we get

+1 -P +

J-i

This process can be repeated until the relation

is obtained. Po(^) is by definition (Eq. 19-1) the coefficient of

J in the expansion of (1 2tz + t*)~~M in powers of t. It is

therefore equal to unity, so that

J.,
(2)

To obtain the normalization integral for the associated

Legendre functions we proceed as follows. 1 By differentiating

Equation 19-7 and multiplying by (1 z2
)** we obtain

/7PM (~\ N+l .Jlml+l

(1
- ^)Hi =

(1
_ ^ 2 ^P^)-

Mz(l -

Transposing, squaring, and integrating gives

1 Whittaker and Watson, "Modern Analysis," Sec. 15-51.
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where integration by parts
1 has been employed to obtain the

first two terms of the last line.

If we now use the differential equation 199 for P[m{ (z) to

reduce the first term of the last line, we obtain, after combining

terms, the result

We can continue this process and thus obtain

C^{P\^(z)}
2dz =

(I
-

|m| + 1)(Z
- H + 2) I

(I + |m|)(Z + |m|
-

1)
-

(I +
so that

where we have used the result of Equation 2./f dP[
m

udv uv I vdu, we set u = (1 z2
)

'Hml
in order to reduce the first term, and u =

z,
dz

dv -
UZ

to reduce the second term. The term in uv vanishes, In the first case because

(1 z2
) is zero at the limits, and in the second case because P[

m|
(2) is zero

at the limits, if m ^ 0.
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NORMALIZATION OF THE ASSOCIATED LAGUERRE
FUNCTIONS

In order to obtain Equation 20-10, we make use of the generat-

ing function given in Equation 20-8, namely

U.(P, u)

Similarly let

Multiplying these together, introducing the factor e~pp'+
l

, and

integrating, we obtain the equation

00

J[
~e-p>+>U,(p, u)V*(p, v)dp = ^Sl

(s + l)\(uv)'(l
-

u)(l
-

v) ,,-" = "" u ~

where we have expanded (1 uv)~"~
2
by the binomial theorem. 1

The integral we are seeking is (r!)
2 times the coefficient of

(uv)
r in the expansion, which is

1 For the value of the integral
J

p*+
le~apdp see Peirce's " Table of

Integrals."
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-s

In order to obtain the integral of Equation 20-10 we must put
= n + I and s =21 + 1, yielding the final result

fv>
Jo

2n[(n + *)!]*

(n
-

I
-

1)!'
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APPENDIX VIII

THE GREEK ALPHABET

Alpha
Beta

Gamma
Delta

Epsilon
Zeta

Eta

Theta

Iota

Kappa
Lambda
Mu
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Bonds, chemical, types of, 362

Bond wave functions, 374
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300
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Complex molecules, 366ff.
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of, 213
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Constant of the motion, definition

of, 12, 422
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normal, definition of, 287
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Coupled harmonic oscillators, 397
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Ehrenfest, P., 36

Eigenfunction, definition of, 58
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of, 303
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of a system, definition of, 23

Electron, spinning, 207
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Electron density for lithium, 249
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Electron distribution for hydrogen

molecule-ion, 337

Electron distribution function for

lithium, 249

Electron-pair bond, 362
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Electron-pairing approximation, 374

Electron-spin functions for helium,
214

Electron-spin quantum number, 208

Electronic configuration, definition

of, 213

Electronic energy function for dia-

tomic molecules, 266

Electronic energy of molecules, 259

Electronic states, even and odd, 313

Electronic wave function for mole-

cule, 261

Elliptic orbit, equation of, 38

El-Sherbini, M. A., 179

Emde, 343

Emission of radiation, 21, 299

Empirical energy integrals for

atoms, 244

Energy, of activation, 412

of classical harmonic oscillator, 5

correction to, first-order, 159

second-order, 176

and the Hamiltonian function, 16

of hydrogen molecule-ion, 336

kinetic, definition of, 2

of molecules, separation of, 259

potential, definition of, 2

of resonance in molecules, 378
of two-electron ions, 225

values of, for atoms, 246

Energy level, lower limit for, 189

lowest, upper limit to 181

Energy levels, 58

approximate, 180

for diatomic molecule, 271, 274
for harmonic oscillator, 72

for plane rotator, 177

for symmetrical top molecule, 280

vibrational, of polyatomic mole-

cule, 288

Epstein, P. S., 36, 179, 191

Equation, homogeneous, 60

Equations of motion, in Hamil-

tonian form, 14

in Lagrangian form, 8

Newton's, 2

Ericson, A., 225

Ethane molecule, free rotation in,

280

Eucken, A., 26

Eulerian angles, 276

Even and odd electronic states, 313

Even and odd states of molecules,

354

Even and odd wave functions for

molecules, 390

Exchange degeneracy, 230

integral, 212, 372

Excited states, of helium atom, 225

of hydrogen molecule, 353

of hydrogen molecule-ion, 340

and the variation method, 186

Exclusion principle, 214

Expansion, of 1/r,/, 241

in powers of h, 199

in series of orthogonal funfttioips,

151

Eyring, H., 374, 376, 414

Factorization of secular equation
for ari at uii, 2&5

Farkas, A., 358, 414

Fermi, E., 257, 403

Fermi-Dirac distribution ia- 41 13

Fermi-Dirac statistics, 219

Field, self-consistent, 250# ^
Fine structure, of hydrogen spec-

trum, 207

of rotational bands, alternating
intensities in, 356

Fmkelstein, B. N., 331

Fock, V., 252, 255

Force, generalized, 7

Force constant, definition of, 4
Forces between molecules, 3$3

Formaldehyde, rotational fine struc-

ture for, 282

Formulas, chemical, meaning of, 380

Fourier series, 153

Fowler, R. H., 412

Franck, J., 310

Franck-Condon principle, 309

Frank, N. H., 275
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Free particle, 90

Free rotation in molecules, 280, 290

Frenkel, J., 83, 437

Frequency, of harmonic oscillator, 5

of resonance, 320

Friedrichs, 202

Fues, E., 274

Fundamental frequency, definition

of, 290

G

g factor for electron spin, 208

Geib, K. H., 414

General solution of wave equation,

57

theory of quantum mechan-

ics, 416jf.

lized coordinates, 6

alized forces, 7

Generalized momenta, definition of,

14

Generalized perturbation theory,

191

Generalized velocities, 7

Generating function,' ^f?r^associated
uerre polynomials, 131

for aSlpciate ., Legendre functions,

ton of, 77

for^Bierre polynomials, 129

for Legendre polynomials, 126

Gentile, G., 361

Ginsburg, N., 246

Gordon, W., 209

Goudsmit, S., 207, 208, 213, 221,

227, 237, 246, 257, 258, 313

Gropper, L., 405

GroupJ completed, of electrons, 125

definition of, 231

Group theory and molecular vibra-

tions, 290

Guillemin, V., 247, 332, 353

Half-quantum numbers, 199

Hamiltonian equations, 16

Hamiltonian form of equations of

motion, 14

Hamiltonian function, definition of,

16

and the energy, 16

and the wave equation, 54

Hamiltonian operator, 54

Harmonic oscillator, average value

of **, 161

classical, 4

in cylindrical coordinates, 105

energy levels for, 72

in old quantum theory, 30

perturbed, 160

selection rules and intensities for,

306

three-dimensional, in Cartesian

coordinates, 100

wave functions, mathematical

properties of, 77

in wave mechanics, 67jf.

Harmonic oscillators, coupled, 315Jf.,

397

Harmonics, surface, 126

Harteck, P., 358, 414

Hartree, D. R., 201, 224, 250, 254,

255

Hartree, W., 255

Hass6, H. R., 185, 228, 385, 387

Heat, of activation, 412

of dissociation, of .hydrogen mole-

cule, 349, 352

of hydrogen molecule-ion, 336

Heat capacity, of gases, 408
of solids, 26

Heats of sublimation, 388

Heisenberg, W., 48, 112, 209, 210,

226, 318, 416, 417, 428, 432, 437

Heisenberg uncertainty principle, 428

Heitler, W., 340, 361, 364

Helium, solid, equilibrium distance

in, 362

Helium atom, 210

accurate treatments of, 22
excited states of, 225

ionization potential of, 221

normal state of, by perturbation

theory, 162
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Helium atom, polarizability of, 226

resonance in, 321, 324

with screening constant func-

tion, 184

spin functions of, 214

stationary states of, 220

Helium molecule-ion 358, 367

Hermite orthogonal functions, 80

Hermite polynomials, 77, 81

recursion formula for, 71

Hilbert, D., 91, 120, 157, 192

Hill, E. L., 83

Hiyama, S., 179

Homogeneous equation, definition

of, 60

Homogeneous linear equation, solu-

tion of, 169

Hooke's forces in molecules, 282

Hooke's law constant, 4

Hooke's potential energy for dia-

tomic molecules, 267

Horowitz, G. E., 331

Houston, W. V., 221

Hiickel, E., 346, 365, 379, 381

Hultgren, R., 377

Hund, F., 346, 381, 390

Hund's rules for atomic terms, 246

Hydrogen atom, 112

continuous spectrum of, 125

electron affinity of, 225

energy levels of, 42, 124

momentum wave functions of,

436

normal state of, 139

in old quantum theory, 36jf.

old-quantum-theory orbits, 43

perturbed, 172

polarizability of, 185, 198, 205

selection rules for, 312

solution of r equation, 121

solution of theta equation, 118

solution of wave equation, 113

spectrum of, 42

Stark effect of, 178, 195

Hydrogen atoms, three, 368, 414

limiting cases for, 372

wave functions for, 368

Van der Waals forces for, 384

Hydrogen chloride, absorption band

of, 33

Hydrogenlike radial wave functions,

discussion of, 142

Hydrogenlike wave functions, 132

discussion of angular part of, 146

Hydrogeii molecule, 340jf.

excited states of, 353

Hydrogen molecule-ion, 327ff.
Hydrogen spectrum, fine structure

of, 207

Hydrogen sulfide, rotational fine

structure for, 282

Hylleraas, E. A., 222, 225, 226, 335,

337, 340, 353, 436

Hypergeometric equation, 278

Identity operation, definition of, 231

Ignorable coordinates, 108

Independent sets of wave functions,
216

Index of refraction and polarizabil-

ity, 227

Indicial equd ion, 109

Induced emission, 300 ^
Infinite determinant*, sol^jpon of,

339

Infinity catastrophe, 60

Inglis, D. R., 246

Ingman, A. L., 224

Integrals, energy, for atoms, 239

involved in molecular-energy cal-

culations, 370

involving determinant-type wave

functions, 239

Intensities, for diatomic molecule,

309

for harmonic oscillator, 30p
for surface-harmonic wave func-

tions, 306

Interaction, of helium atoms, 361
A

of hydrogen atom and molecule,

373

Interatomic distance in hydrogen

molecule, 349
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Interchange integrals, definition of,

212

Invariance of equations of motion, 7

Inverse permutation, definition of,

231

Ionic"' contribution to bonds, 364

Ionic structures for hydrogen mole-

cule, 345

lonizatjton energy of two-electron

,

'"

ions, 225

lonization potential for helium, 221

lonization' potential for lithium, 247

Ishida, Y., 179

Islands, 376

Ittmann. G. P., 282

Ja& G., 335, 340

Jah|ke, E., 343

James, H. M., 188, 249, 333, 349,

353, 362, 374, 415,

Jeans, J. H., 24, 241

Johnson^ M,,

Johnson, M. H., }

Jordlfe P., 49, 112, J

433, 436
416, 417,

K

f. von, 26

n, W. H., 383

d6 structures, resonance of, 378

>r, G. W., 222

Efemble, E. C., 83, 353

Kennard, E. H., 432

\ area law, 37

,
G. E., 203, 376, 415

y, definition of, 2

,314

, 101, 228, 385, 387

-. *> 282

Klein, 0., 282

Kohlrausch, K^jflT. F., 293

Kramers, H. A., 198, 282

Kronig, R. de L., 276, 293, 390

La Coste, L. J. B., 280

Lagrange's equations of motion, 8

Lagrangian function, definition of, 3

Laguerre polynomials, 129

A-type doubling, 390

LandS, A., 208

g factor for electron spin, 208

Langevin, P., 412

Laplace operator, in Cartesian coor-

dinates, 85

in curvilinear coordinates, 104

Legendre functions, 125

Lennard-Jones, J. E., 191, 206, 290,

340, 381, 388

Lewis, G. N., 340, 377

Lewy, H., 202

Light (see Radiation)

Linear combinations and resonance,

320

Linear independence of wave func-

tions, definition of, 166

Linear momentum, average, of elec-

tron in hydrogen atom, 146

Linear variation functions, 186

Lithium atom, electron distribution

function for, 249

wave functions for, 247

London, F., 340, 361, 364, 383, 386,

387, 388, 413

Loney, S. L., 24

Lyman, T., 222

Lyman series, 43

M

MacDonald, J. K. L., 188, 189, 353

McDougall, J., 254

MacMillan, W. D., 24

Magnetic moment, 412
of electron spin, 208
of hydrogen atom, 147

orbital, 47

Magnetic quantum number, 40, 117

Magnetic susceptibility, 412

Magneton, Bohr, 47

Majorana, E., 353, 359
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Many-electron atoms, 230/.

Margenau, H., 386, 387

Matossi, F., 293

Matrices, 417jf.

Matrix algebra, 417

Matrix mechanics, 416jf.

Maximal measurement, 422

Mayer, J. E., 229

Mayer, M. G., 229

Measurements, prediction of results

of, 66

Mecke, R., 282

Millikan, R. A., 208

Modes of vibration of molecules, 287

Mole refraction, definition of, 227

Molecular energy levels, 259

Molecular orbitals, 346

method of, 381

Molecular wave functions, sym-

metry properties of, 388

Molecule, diatomic, selection rules

and intensities of, 309

Molecules, complex, 366#
diatomic, rotation and vibration

of, 263

polyatomic, rotation of, 275

vibration of, 282

quantum number A in, 390

Moment of inertia, 269, 275

Momenta, generalized, definition of,

14

Momentum, angular, conservation

of, 11

average linear, of electron in

hydrogen atom, 146

operator, 54

Momentum wave functions, 436

Morse, P. M., 54, 82, 108, 249, 272,

312, 340, 437

function for diatomic molecules,
271

Mott, N. F., 83

Mulliken, R. S., 346, 381

Multiplication of permutations, defi-

nition of, 231

Multiplicity of atomic terms, 220

N

Negative states, 392

Nernst, W., 26

Neumann, J. v., 437

Newton's equations, 2

Nielsen, H. H., 280, 282

Niessen, K. F., 327

Non-degenerate energy level^defini-
tion of, 73

Normal coordinates, 282

mode of vibration ^definition
of, 287

Normalization, of amplitudefunc-

tions, 89

of wave functions, 64

for a continuum, 92

Nucle^ r
37pin for hydrogen, bat

Nu icafnimetry of electronic iraye

i vjtions for molecules, 39t r

Nuclear wave function for molecule,

263

Numerical integration, 201

Old qusjitwd diieory, as an approxi-
mation to i quantum mectyjuiics,

198

decline of, 48

One-electron bond, 362 J

Operator, for Hamiltonianp;
for momentum, 54

Operators for dynamical quantitu

66

Oppenheimer, J. R., 260

Orbit, classical, of three-dimen-

sional oscillator, 11

Orbital, definition of, 137

Orbital degeneracy, 367

Orbitals, molecular, 381

Orbits, significance of, i

mechanics, 141

Ortho helium, 221

Ortho hydrogen,

Orthogonal curviliSBar coordinate

systems, 441 >,

Orthogonal functions, a convenient

set of, 195
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Orthogonal functions, expansions in

terms of, 151

Orthogonal transformation, defini-

tion of, 288

prthogonality of wave functions, 64,

89, 441

illation of molecules in crystals,
>

or, classical, in polar coor-

s, 9

_i harmonic, 4

Larmo*n|,
s
in cylindrical coor-

dinates, 105

in old quantum theory, 30

perturbed, 160

tjiree-dimensional, in Cartesian

,' coordinates, 100

in wave mechanics,

oajte-dimensional clap

Para hydro<vn, 357, 408

Parhelium,

33
(

i in field i vee

L quantum
n, F., 222

s, 43 >

58, 112, 209, 210, 219,

327, 403

iion principle for protons, 357

puling, L., 227, 256, 257, 290, 327,

347, 359, 362, 364, 365, 376, 379,

385, 436

Bakeris, C. L., 272

P<4*er, H., 414

Pe&ptration, of the core, 213

non-classical region, 75

. G., 379

L operator, 231

even and odd
>
defini-

tion *

Perturbatfo^use of transitions,

294jf.

definition of. 156s

theory of. 15

Perturbation, theory of, first-order

for a degenerate level, 165

for non-degenerate levels, 156

generalized, 191

involving the time, 294-Jf.

second-order, 176

approximate, 204

Phase integrals in quantum mechan-

ics, 200

Phases of motion, 286

Photochemistry, 26

Photoelectric effect, 25

Photon, 25

Physical constants, values of, 439

Physical interpretation, of harmonic

oscillator functions, 73

of wave equation, 298
of wave functions, 63, 88

Pike, H. H. M., 290

Piaczek, G., 290, 293

Planck, M., 25

Planck's constant, 25

Planck's radiation law, 301

Plane rotator. Stark effect of, 177

Podolanski, J., 335

Podolsky, B., 276, 436

Polanyi, M., 374, 388, 414

Polar coordinates, spherical, 9

Polarizability, and dielectric con-

stant, 227

of helium atom, 226

of hydrogen atom, 185, 198, 205

and index of refraction, 227
of plane rotator, 178

and van der Waals forces, 387

Polarization, of emitted light, 308

of a gas, 227

Polarization energy, of hydrogen

molecule, 349

of hydrogen molecule-ion, 332

Polynomial method of solving wave

equation, 68

Positive states, 392

Postulates of wave mechanics, addi-

tional, 298

Postulatory basis of physics, 52
Potential energy, average, for hydro-

gen atom, 146
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Potential energy, definition of, 2

Potential function for diatomic

molecules, 267

Power-series method of solving wave

equation, 69

Present, R. D., 353

Principal axes of inertia, definition

of, 275

Probability, of distribution func-

tions, 63

of stationary states, 298

of transition, 299

Proper functions, definition of, 58

Properties of wave functions, 58

Quadratic form, minimization of, 203

Quadrupole interaction, 384

Quadrupole moment, definition of,

23

Quantization, rules of, 28

spatial, 45

Quantum of energy, 25

Quantum number, azimuthal, 40,

120

electron-spin, 208

A in molecules, 390

magnetic, 40, 117

orbital angular momentum, 237

radial, 124

rotational, 33

spin for atoms, 237

total, 41, 124

Quantum numbers, 87, 124

half-integral, 48

in wave mechanics, 62

Quantum statistical mechanics, 219,

395jf.

Quantum theory, history of, 25

old, 25jf.

Quantum weight, definition of, 100

R

Rabi, I. I., 276

Rademacher, H.. 276

Radial distribution function for

hydrogen atom, 140

Radial quantum number, 124

Radiation, emission and absorption

of, 21, 299

of kinetic energy, 314

Planck's law of, 301

Rate of chemical reactions, 412

Reaction rates, 412

Recursion formula, definition <ff, 70

for Hermite polynomials, 71

for Legendre polynomials, 126

Reduced mass, 18, 37

Regular point, definition of, 109

Reiche, F., 276

Relativist Change of mass of

elefc^ .T 209

Relati stic doublets, 209

Representation, 423

Repulsion of helium atoms, 361

Repulsive states of hydrogen mol-

ecule, 354

Resonance, among bond structures,

377

energy, ^ ,,r

frequency oi, 320 ; ;

in the hydrog ^n
molccule-MjJj.1 830

332
**

integrals, definition of, !

phenomenon. 214 -

quantum-mechanical, 314, 318

Restrictions on wave functions, 58

Richardson, O. W., 336

Richardson, R. G. D., 202

Rigid rotator, wave functions for,

271

Ritz combination principle, 27

Ritz method of solution, 189

Ritz variation method, 189

Robertson, H. P., 105, 4$2
Robinson, G., 201

Rosen, N., 332, 349 ^
Rotation, of diatomjjfmolecules, 2153

of molecules in cryij&als, 290

of polyatomic molecules, 275

Rotational energ^ of molecules, 259












