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PREFACE

This book is intended as a basic textbook in theoretical meteorology
for students who are preparing for a professional career in meteorology.
It may be helpful to students of such applied sciences as geophysics,

aerodynamics, and hydrology, and to students of various branches of

pure physics.

Tfie aim of the book is to provide the theoretical background for the

understanding of the physical behavior of the atmosphere and its mo-
tions. Only material which is considered indispensable for the practical

meteorologist and weather forecaster has been includ The book is

self-contained and presupposes only some general knowledge of physics
and calculus. Starting from the fundamental coiyepts of physics, it

develops the thermodynamical and hydrodynamical principles by which

atmospheric phenomena and the evolution of the weather may be

explained.

The theory of atmospheric motion is most naturally and conveniently

developed in vector notation. The methods of vector algebra and some

simple operations of vector calculus are therefore consistently used. No
previous knowledge of vector methods is assumed ; the vector operations
are introduced and explained gradually as the need arises as part of the

general development of the subject.

Since the book is intended as a basic introduction to the subject, few

references to original papers are given. ',***' *

T

'

,

The book originated from my lectures on dynamic meteorology given
at the Massachusetts Institute of Technology from 1936 to 1940 and at

the University of California at Los Angeles after 1940. In the selection

and organization of the material I have been greatly aided by studies

pursued under Professor V., Bjerknes at Oslo University in 1926-30, and

under Professor C.-G. Rossby during my years at the Massachusetts

Institute of Technology. In connection with the extensive training

programs for weather officers for the armed forces my two co-authors,

Messrs. Forsythe and Gustin, joined the department as instructors in

dynamic meteorology. During the subsequent joint instruction of the

course by the three authors the earlier mimeographed lecture material

was revised and reorganized several times, and much new material was

added, before the final version of the book was written.

I am much indebted to Professor J. Bjerknes for his permission to



PREFACE iv

include in chapter 10 a large part of our joint paper,
" On the Theory of

Cyclones," Journal of Meteorology, Vol. 1, Nos. 1 and 2, 1944. I am
also greatly obliged to Professor H. G. Houghton of the Massachusetts

Institute of Technology, whose unpublished lecture material on meteoro-

logical thermodynamics was a great help when the first outline of

chapters 2 and 3 was written.

On behalf of the three authors I wish to extend sincere thanks to all

those friends who have given us help and encouragement in our work.

We are very grateful to Professor J. Kaplan, former chairman of the

meteorological department at the University of California at Los

Angeles, for his unfailing support during the preparation of the manu-

script and illustrations. We also are much indebted to Professor H. U.

Sverdrup and Professor M. Neiburger, who have read parts of the manu-

script and made many helpful suggestions.

JORGEN HOLMBOE
UNIVERSITY OF CALIFORNIA

AT Los ANGELES

January 1945
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CHAPTER ONE

DIMENSIONS AND UNITS

1-01. The goal of dynamic meteorology. It is customary to divide

meteorology into several fields, of which dynamic meteorology is one.

Dynamic meteorology starts from pure physical theory and attempts to

give a systematic and quantitative description of the composition and

physical behavior of the atmosphere. The goal is the complete explana-
tion in physical terms of the atmospheric phenomena constituting the

weather. Synoptic meteorology (another of the fields) starts from

weather observations and attempts to describe the current state of the

weather in such terms that its future development may be predicted.

The goal is to forecast the weather without error.

It is clear that the ultimate goals of dynamic and synoptic meteorology
can only be attained simultaneously: the first perfect forecaster would be

the first man who could explain completely the physical behavior of the

atmosphere, and vice versa.

In the present stage of meteorological development certain steps have

been taken in the direction of these goals. It must be understood that

these steps are only a beginning; for the most part the goals still remain

unattained. Nevertheless it is already clear that an understanding of

the atmosphere in physical terms is absolutely essential for the synoptic

meteorologist.

1-02. The tools of dynamic meteorology. Knowing the goal of

dynamic meteorology, we first select the branches of physics which fur-

nish suitable tools. These seem at present to be thermodynamics and

hydrodynamics. Accordingly, chapters 2 and 3 are devoted to thermo-

dynamics, and chapters 4 and 6 to hydrodynamics. The other chapters

are/devoted to more properly meteorological topics.

The presentations will presuppose a certain knowledge of general

physics and of the calculus. We will start from elementary physical

principles and build up all the thermodynamics, vector analysis, and

hydrodynamics used in this book. From the beginning the notation

and subject matter will be adapted exclusively to the needs of meteorol-

ogy. This physical material constitutes a background indispensable for

the understanding of even the most elementary atmospheric phenomena.
In chapter 1 are introduced some important mechanical variables of

general physics, together with their dimensions and units.

1
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1-03. The fundamental variables and their dimensions. A mechani-

cal system is measured by various quantities, such as force and energy.

All these quantities are reducible to three fundamental quantities,

namely, mass, lengthy and time. All other mechanical quantities can

be expressed in terms of these three fundamental quantities and are

called derived quantities. (It should be understood that the selection of

fundamental quantities is by no means unique, but our choice has the

advantage of simplicity.)

The method by which the derived quantities are built up from the

fundamental quantities is best expressed in terms of algebraic expres-

sions called dimensions. There is assigned to each of the fundamental

quantities a dimensional letter in brackets, as follows:

(1) [mass]- [M];

(2) [length] -[L];

(3) [time] - [T].

For completeness, we include a fourth fundamental quantity which we
will need in thermodynamics, namely, temperature:

(4) [temperature] = [0].

A pure number, for example, an angle expressed in radians or a molecular

weight, is assigned the dimension unity:

(5) [pure number] -
[1]

- [LMT].
Since M, L, and T not enclosed in brackets will have other meanings in

this book, it is essential that dimensional formulas always be enclosed in

brackets.

The derived quantities are assigned dimensions which are algebraic

monomials in M, L, T, and 6. The exponents represent the powers of

fundamental quantities contained in the derived quantity. It is

assumed that the reader is familiar with the derived quantities of ele-

mentary mechanics, but for convenience we give brief definitions and the

dimensions of those .of especial use in dynamic meteorology. Many
of these will also be discussed later; those involving temperature will be

introduced in chapters 2 and 3.

Area is ultimately reduced to the area of a rectangle, which is the

product of the lengths of its sides:

(6) [area] = [length] x [length] - [L
2
].

Volume is ultimately reduced to the volume of a rectangular prism,
which is the product of the base area and an altitude :

(7) [volume] - [area] x [length] - [L
3
].
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Density is defined as the mass of an object per unit volume occupied

by the object:

(8) [density] = [mass] + [volume] = [ML""
3
].

Specific volume is defined as the volume occupied by an object per unit

mass of the object (" specific
"
always stands for

"
per unit mass "):

(9) [specific volume] = [volume] * [mass] = [M~
1L3

].

Velocity is the distance traversed per unit of time:

(10) [velocity] = [length] ^ [time] - [LT^
1
].

Acceleration is the change of velocity per unit of time :

(11) [acceleration] = [velocity] + [time] = [LT~
2
].

Force is sometimes taken as a fundamental quantity, but is always
found to be proportional to the mass of an object multiplied by the

acceleration of the object produced by the force:

(12) [force] = [mass] x [acceleration] = [MLT~2
].

Pressure is defined to be the force exerted on a surface per unit area of

surface:

(13) [pressure] = [force] + [area] =

The work done by a force is the product of the force and the length

through which the force moves something:

(14) [work] - [force] x [length] = [ML
2T-2

].

Energy is the measure of the work which can be gotten out of a system

by some procedure. It then has the same dimensions as work:

(15) [energy] = [ML2T~2
].

Specific work is the work done per unit mass:

(16) [specific work] - [L
2T~2

].

Specific energy is the energy per unit mass:

(17) [specific energy] - [L
2T~2

].

Angular velocity is the angular distance traveled per unit of time.

Since [angle] = [1], we have:

(18) [angular velocity] = [angle] 4- [time] [T"""
1
].

Momentum is the mass of something times its velocity:

(19) [momentum] - [mass] x [velocity] - [MLT""
1
].
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Other quantities will be introduced later as the need for them arises.

It should be remarked that a quantity expressed as a vector will be

assigned the same dimensions as the same quantity expressed as a scalar.

Any physical equation can be interpreted as a relation between dimen-
sional quantities. The dimensions of the variables in an equation must

satisfy the algebraic relation expressed by the equation. For example,
the relation force = change of momentum per unit time can be expressed

dimensionally by

[MLT~2
]
- [MLT-1

] -i- [T].

The habit of checking the dimensions of every equation should be

developed. If the dimensions do not balance, the formula is definitely

wrong. If the dimensions do balance, the formula is probably correct

up to a numerical constant or other quantity of dimension unity. In

certain fields, dimensional analysis is used even to derive physical rela-

tions and is a tool of great power.

1-04. Mts units. The definitions of the physical quantities of 1-03

are independent of the particular choice of units used to measure them.

Their dimensions are also independent of the system of units; that is the

peculiar advantage of dimensional analysis.

But as soon as we desire to measure and assign numerical values to

those quantities of 1-03, we must have a system of units. The usual

procedure is first to define the fundamental units the units of length,

mass, and time. Each derived unit is then defined by compounding its

component fundamental units according to the dimensional definition of

the derived unit.

The standard centimeter-gram-second or cgs system of units is uni-

versal and convenient in experimental physics, where the systems gener-

ally considered are of the same order of magnitude as the units. In

meteorology the system under consideration is the atmosphere, whose

magnitude is enormous compared with the cgs units. Hence it is logical

to introduce units which are of atmospheric magnitude, and which at the

same time are easily translatable into the comparable cgs units. The

system adopted by the International Meteorological Conference in 1911

is the meter-ton-second or mts system, and we shall use it exclusively in

this book. The units are defined as follows:

a. The unit of length is one meter, abbreviated 1 m. This was
intended to be one ten-millionth of the length of the meridian from the

pole to the equator at sea level. Since the meridian is divided into

90 degrees of latitude, each degree of latitude was to be a length unit

equal to X 10
6
m, or 1 1 1 km. Although the original computation had
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a small error, the relation

(1) 1 degree of latitude = 111.1 km

is correct and often used in synoptic work. The meter is now fixed by a
standard in Paris, but may always be reproduced in terms of the wave

length of a certain line in the spectrum of cadmium.
b. The unit of mass is one (metric) ton, abbreviated 1 1. It is the mass

of one cubic meter of pure water at its maximum density (near 4C).
c. The unit of time is one (solar) second, defined as I/ (24 60 60) of

the mean time interval between consecutive upper transits of the sun

across the same meridian.

The derived units are obtained as follows: The units of area and
volume are one square meter (1m

2
) and one cubic meter (1 m3

) respec-

tively. The units of density and specific volume are one ton per cubic

meter (1 tm~3
) and one cubic meter per ton (1 m3 f 1

), respectively.

The units of velocity and acceleration are one meter per second (1m s""
1
)

and one meter-per-second-per-second (1 m s~2 ), respectively.

The unit of force is the force which gives a mass of one ton an accelera-

tion of 1 m s~
2

. Unfortunately it has no more specific name than one

ton-meter-per-second-per-second (1 t m s~2
) or one mts unit of force.

The unit of pressure is the pressure developed by an mts unit of force

acting on each square meter and is called one centibar (1 cb). The unit

of work is the work done by one mts unit of force acting through a dis-

tance of one meter, and is called one kilojoule (1 kj). The kilojoule

serves also as the unit of energy. The unit of specific work and specific

energy is one kilojoule per ton (1 kj t"
1

). The origin of the names

centibar and kilojoule will be explained in 1-05.

Angles will be expressed in radians (rad), where 2ir radians equals

360. The unit of angular velocity is one radian per second (1 rad s" 1

).

1-05. Comparison with cgs units. It is presumed that the reader is

familiar with the cgs units, whose definitions are completely analogous
to the mts units. They start from the fundamental units:

(1) 1 centimeter (1 cm) = 10~2 meter;

(2) 1 gram (1 gm) = 10~6 ton;

(3) 1 second (Is) =1 second.

The cgs unit of force, in contrast to the corresponding mts unit, has a

name the dyne. The cgs unit of pressure is the barye. The cgs unit

of work or energy is the erg. Because of the small size of the barye and

erg, the following alternate measures are often introduced, but they are
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not strictly speaking units in the cgs system:

pressure: 1 bar = 106 baryes;

work or energy: 1 joule = 107 ergs.

It is from these names that the mts units get their names. It will be

shown presently that in accordance with their names:

(4) 1 centibar = Iff"
2
bar;

(5) 1 kilojoule = 10
3
joules.

Despite their prefixes, it must be understood that the centibar and kilo-

joule are actually the units of pressure and work in the mts system.

In order to make a convenient reference page, we will tabulate (table

1-05) the quantities so far considered. For each quantity, we give:

(i) its name, (ii) its dimensions, (iii) its mts unit, (iv) its cgs unit, (v) the

number N of cgs units contained in one mts unit of that quantity. For

all the derived quantities used in this book the mts unit is equal to or

larger in magnitude than the corresponding cgs unit; so that in table 1-05,

TABLE 1-05

(Mts unit = cgs unit X N)

To obtain N readily, we start from the relations (1), (2), and (3).

Thus for length [L], N =* 10
2

;
for mass [M], N - 106

;
and for time [T],

N - 1. To obtain N for any derived quantity, we multiply together the

component N's according to the dimensional formula. For example,
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pressure - \MLT
1
T*\. Hence, for pressure, N - 10

6
(lO

2
)"

1

(I)""
2 -

10
4

. This means that 1 cb = 10
4
baryes (= 10~2 bar), which proves

(4). For work, N = 106 (10
2
)
2

(l)"
a = 1010 . Thus 1 kj - 1010 ergs

(= 103 joules), which proves (5).

It should be noted that density and specific volume have the same
numerical values in both cgs and mts units, and that water has unit

density and unit specific volume.

1 -06. Comparison with English units. Even in countries where the

metric system is not in general use, the weather services use metric units

to a very large degree. Hence the reader should become familiar with

the units of table 1-05 to the point where he can use them in everyday
life. To help in this, we give a few comparisons with English units:

Length: 1 m= 39.37 in.;

10,000 ft = 3048m;

1 km = 0.6214 mile f mile;

Mass: It- 2205 (Ib mass) ;

Density: 1 t m~3 = 62.43 (Ib mass)' ft""
3

;

Velocity: 1 m s"""
1 = 2.237 miles hr"1

2| miles hr""
1

;

Pressure: 1 cb = 0.1450 (Ib force) in.-
2

| (Ib force) in."
2

;

Work: 1 kj = 737.6 ft-(lb force).

1-07. Pressure measurement and units. Besides the centibar the

meteorologist must know several other pressure units. In the weather

services pressure is represented in millibars (mb) :

(1) 1 cb - 10 mb.

For this reason it is necessary to caution students repeatedly to convert

pressure to centibars when computing with mts units.

The standard pressure-measuring instrument of meteorology is the

mercury barometer. This instrument is so designed that the pressure
of the air is balanced against a column of mercury (Hg) whose length can

be measured very accurately. The pressure is expressed as the length

of the mercury column, in either millimeters or inches. The pressure
of the mercury column is determined by its weight per unit cross sec-

tion, which for a column of constant height varies with both the density

and the acceleration of gravity. To compare pressure readings made
with mercury barometers at different temperatures and at points where

gravity is different, all readings are reduced to a standard tempera-

ture and a standard value of gravity. For millimeter barometers, the
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standard temperature is 0C, at which the density p of mercury is

13.5955 t m~3
. The standard value of the acceleration of gravity is

gn = 9.80665 m s~2
, which is approximately the sea-level value of

gravity at 45 latitude.

The pressure of one normal atmosphere (1 atm) is that balanced by a

column of mercury 760 mm = 0.760 m long, under the above standard

conditions. It is the reference pressure of physical chemistry. To
evaluate it, we find that

1 atm = (0.76 m) x (13.5955 t m~3
) x (9.80665 m s~2

)
= 101.33 cb.

Thus the normal atmosphere is expressed in mechanical units. We have

(1) 1 atm = 760 mm Hg = 29.92 in. Hg = 101.33 cb = 1013.3 mb.

Another reference pressure frequently used in meteorology is standard

pressure, which is defined to be exactly 100 cb. Thus

(2) 750.04 mm Hg = 29.53 in. Hg = 100.00 cb = 1000.0 mb.

From either (1) or (2), tables are computed to convert pressure from

inches of mercury or millimeters of mercury to millibars. The conver-

sion factor

(3) 1 mb = f mm Hg

is easy to remember and yields all the accuracy usually required for con-

verting millibars into millimeters of mercury.



CHAPTER TWO

THERMODYNAMICS OF A PERFECT GAS

2-01. Thennodynamical systems. Thermodynamics deals with

systems which, in addition to certain mechanical parameters to be

mentioned later, require for their description a thermal parameter, the

temperature. The very definition of temperature requires that a system
be in equilibrium. Thus of necessity thermodynamics is the study of

systems in equilibrium and of processes which can take place in states

differing only slightly from the state of equilibrium. The fact is that

the actual atmosphere is not in equilibrium. Dynamic meteorology is

compelled to make the pretense that equilibrium exists, in order to make
an analysis. We should therefore expect the results to have some slight

disagreements with conditions in the real atmosphere.
The systems considered mostly in dynamic meteorology are infinitesi-

mal parcels of: (i) dry air, which can for practical purposes be con-

sidered as one substance; (ii) pure water substance in any one, two, or

three of the phases solid (ice), liquid (water), or gas (water vapor);

(iii) a mixture of dry air with some water vapor, called moist air; (iv) a

mixture of moist air with some water droplets or ice crystals.

2 '02. The physical variables. The infinitesimal systems considered

will be described thermodynamically by the four parameters mass (dM),

volume (8V), pressure (p), and temperature (T). One system will be

defined so as always to consist of the same particles. Hence its mass

dM and composition will remain constant, and the other parameters,

volume, pressure, and temperature, will be called the physical variables.

The values of the physical variables will completely describe the state

of the system.

203. Volume. The actual volume 8V is conveniently replaced by
the specific volume a = 8V/8M. See 1-03(9). Since the mass dM
remains constant, is directly proportional to the actual volume 8V.

An alternative mass-volume variable is the density p = dM/dV. See

1-03(8). The two variables are related by the equation

(1) ap-1.

By means of (1), one of the variables may be replaced by the other in any

physical equation. Either of them may with equal right be taken as the

mass variable in dynamics, but we shall usually prefer a,

9
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2-04. Pressure. To define the pressure p of a thermodynamic sys-

tem, we must first consider any fixed point P in the system, and any
fixed direction / at P. We assume it possible to place a testing surface

of small plane area dA at the point P, and orient the testing surface nor-

mal to the direction /. The molecules of that part of the system on one

side of the testing surface will bombard the area 6A, giving rise to a force

dFin the direction /. (The molecules on the other side of SA must be dis-

regarded in computing 8F.)

Experiment shows that dF is proportional to 5A for a range of areas 8A

which are neither so large as to exceed the size of the system, nor so small

as to be of molecular dimensions. The proportionality factor is called

the pressure p(P tl) at the point P in the direction I. Thus

Pressure is hence a force per unit area, as in 1-03(13).

Now the important points follow: First, experiment and theory show
that p(P,l) has the same value in each direction /. Thus p depends on

P alone. Second, since our systems are infinitesimal in size, and since

they are in equilibrium, the variation of p with P is negligible through-
out one system.

We are thus able to define the pressure pofa system as the common value

of p(Pf) for all points P and directions I in the system. The pressure (in

mts units) gives rise to a net force of p mts force units normal to the

boundary surface, per square meter of boundary surface.

Although the infinitesimal variation of p throughout a system is negli-

gible in so far as the value of p is concerned, the pressure gradient or rate

of change ofp with respect to distance across the system is of vital importance
in dynamics. The pressure gradient may assume a large value, being the

quotient of two infinitesimals. This will be discussed in chapter 4.

2*05. Temperature. The rigorous definition of temperature is one

of the major results of thermodynamics, rather than being a simple

presupposition of this branch of physics. Thus a logical treatise on

thermodynamics will omit temperature until well into the book, and

then introduce it by a theorem. (See 2-28.) Such a treatment is

bewildering to the ordinary student, and we prefer to follow a less rigor-

ous but more convincing procedure.
We start from the evidence of our senses that we may distinguish

between warm and cold bodies. Experiments reveal that when a warm
and a cold body are put in contact, the former gets colder and the latter

gets warmer. This continues until a state of thermal equilibrium is
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reached, by which we mean that there is no further flow of heat. In

thermodynamics we shall discuss only systems which are in thermal

equilibrium.

Any substance which may be brought into thermal equilibrium with a
mixture of ice and pure water at a pressure of 1 atm (see 107) is said to

have the temperature centigrade (0C). Any substance which may
be[brought into thermal equilibrium with steam immediately over water

boiling at a pressure of 1 atm is said to have the temperature 100C.
No other temperatures are yet defined.

Now consider any gas which will not liquefy in the following experi-

ment. Let its pressure be kept constant at any fixed value pQ . Let its

specific volume at 0C be a - Let aioo be its specific volume at 100C.

It will be found that ioo > o-

When the specific volume has any other value a t , we will define the

centigrade temperature t (0C) by the linear interpolation formula

(1) /- 100 --1::-^--
<*100

~ aO

Of course, this makes temperature dependent on the gas used. All

that can be said in this treatment is that, for the
"
permanent gases

"

like helium and hydrogen, the temperatures so defined are consistent to

within a very small error. This gives us a very reliable
"
gas thermome-

ter
"
from which a mercury or spirit thermometer may be calibrated.

It is desirable to introduce an absolute scale of temperature, whereby
the temperature of a gas is proportional to its specific volume. To do
this we let

We find empirically that TQ = 273.18 for all the permanent gases, mean-

ing that they all have about the same coefficient of expansion I/TV
We then define the absolute temperature T (K) of a system in terms of /

by the relation

(3) r-r + /.

(The K stands for Kelvin.) Let OLT be the specific volume at the abso-

lute temperature T of the gas in the experiment above (i.e., aj at).

Then from (3), (2), and (1) we get

OLTT=TQ t or
OQ

(4)
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Equation (4), representing the proportionality of a. and T at the fixed

pressure po is called Charles's law.

2-06. Meteorological temperature scales. The exact value of the

TQ of 2-05 requires careful experiment, and as a result physicists have

changed the accepted value from time to time. To standardize the

usage in meteorology, which does not require greater accuracy, it is

customary to use the relation

(1) 0C=273K.

This practice will be followed throughout this book. The symbol T
will often be used for 273 (K).

It is presumed that the reader is familiar with the Fahrenheit scale

and knows how to convert it to centigrade by the relation

/, (F) =
I/ (C) + 32.

Every meteorologist using Fahrenheit on synoptic maps should know
the following corresponding values, or a similar table:

/ (C) -40 -10 10 20 30 37 100

// (F) -40 14 32 50 68 86 98.6 212

In dimensional formulas we shall use

(2) [temperature] =
[0].

2-07. Equation of state. In 2-05 we observed that absolute tempera-
ture T is measured by the volume change of a suitable substance. The
reason why this is possible lies in a fundamental property of any of the

thermodynamical systems of 2-01.

This property is that between the physical variables p, a, and T
defining the state of a system there exists a functional relation. The
relation may be written

(i) /(p,,r) - o,

and is called the equation of state of the system. It may be determined

empirically for real systems to any obtainable degree of accuracy, or it

may be prescribed for an idealized system like a
"
perfect gas."

Except at certain transition states the equation of state can be used to

determine the value of any one of the physical variables from the values

of the other two physical variables.

2 -08. The perfect gas. The so-called permanent gases follow to a

close approximation a number of well-known laws. One of these is

Charles's law, given by 2*05(4). Another is Boyle's law, which says that

at a constant temperature the pressure p and specific volume a are
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related by the formula

(1) pa = const,

where the value of the constant depends on the temperature. Two
other laws, known as Avogadro's law and Dalloris law, will be stated in

2-10 and 2-12.

We define a (thermally) perfect gas as a gas which obeys Charles's and

Boyle's laws exactly. No such gas exists, but the purely gaseous sys-

tems considered in meteorology (see 2-01) are so nearly perfect that it is

most convenient to treat them as perfect gases.

2 -09. Equation of state of a perfect gas. We shall show that a per-

fect gas has an equation of state ofform

(1) pa=RT,

where R is the specific gas constant, which depends on the particular

perfect gas considered. To balance dimensions we must have

[R] = [L
2T-20~ 1

].

Thus from table 1-05 it is seen that R is measured in kj t"
1

deg""
1
in the

mts system.

To prove (1), let a = a(T,p) be the specific volume at temperature T
and pressure p. Let T be a fixed temperature, and let pQ be the fixed

pressure of the gas as in 2-05. By Charles's law, 2-05(4),

By Boyle's law, 2-08(1),

(3) P*(T,p) -

Eliminating <*(r,/? ) between (2) and (3), we get

fA\ ^ /T^ .

(4) P<*(T,p) ------- T.
^o

Writing a(T,p) as simply a, and letting R stand for poa(TQ tpQ)/To t we

get (1), as desired.

From (4) we also see that, to determine the numerical value of R, we
need only measure a at say TQ = 273K and po = 101.33 cb. Then

For example, dry air is considered a perfect gas in meteorology. At
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/>o
- 101.33 cb and TQ = 273K, measurements on dry air give for its

specific volume a -

(5) - 773 m3 t"1
(1 atm, 273K).

Then the specific gas constant Rd for dry air is:

2-10. Molecular weights. The numerical value of the specific gas

constant for each perfect gas can be obtained directly from considera-

tions of molecular weight, without actually measuring a(jTo,po) f r

the individual gas.

Each pure gas has assigned to it in chemistry a pure number called the

molecular weight, denoted by m. For our purposes the molecular weight

may be thought of as simply a relative density at uniform pressure and

temperature, based on 32.000 for oxygen. The molecular weights used

in meteorology are given in tables 240 and 2-13.

TABLE 2-10

MOLECULAR WEIGHTS

Helium 4.003

Hydrogen 2.016

Water vapor 18.016

Ifm denotes the molecular weight of a given gas, then m tons of the gas

constitute a ton mole, with dimension [M]. The volume occupied by a

ton mole is called the molar volume, and is denoted by v, with dimen-

sions [M^L8
].

An empirical law called Avogadro's law states that at a fixed tempera-
ture and pressure the molar volume, within a close approximation, is

the same for all permanent gases. At PQ = 1 atm and TQ = 0C, the

molar volume is denoted by VQ :

(1) VQ = 22,414 cubic meters (ton mole)""
1

.

The value (1) is assumed exact for perfect gases.

211. Universal gas constant. Consider a mass of M tons of any

perfect gas, at any pressure and temperature, occupying the volume V.

Its specific volume a is V/M. From the equation of state 2-09(1), we

get

(1) pV=MRT.
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In particular, if the mass is one ton mole, i.e., m tons, then the volume

is v and (1) takes the form

(2) pv - mRT.

Letting pQ - 1 atm and TQ = 0C, we have

T>T- n P<flQ
PQVQ mRiQ or mR = ~~ *

where VQ is given by 2' 10(1). Hence mR = po^o/^o has the same value

for all gases. It is called the universal gas constant and is denoted by R*.

R* has the dimensions [L^T^G""
1

], and in mts units has the value

(101.33) (22,414)
(3) R = ~

273.18

Since R* = mR, we get the formula for the specific gas constant for any

perfect gas in terms of the molecular weight m of the gas:

1

(4) R = R* kj t deg .

m

This is the formula used to get the numerical value of jR for the equation

of state 2-09(1) of any pure gas.

2-12. Mixtures of perfect gases. Dry and moist air are both mix-

tures of several gases, each of which is treated as perfect. Therefore

we must learn how to get the specific gas constant for mixtures.

Let a mixture of volume V cubic meters contain MI tons of gas 1,

M2 tons of gas 2, , M8 tons of gas 5. Let the total mass beM Mk -

Let the respective molecular weights be m\ t m%, , ms . Let the respec-

tive specific gas constants be RI, R2 , ,
R8 , where each Rk = R*/mk ,

according to 2' 1 1 (4) . Assume each constituent is perfect.

According to a fourth empirical law, Dalton's law, each individual

constituent gas will obey its equation of state as though the other con-

stituents were not present. Let p\, p^
'

p8 be the partial pressures

of the constituents. Then by Dalton's law and 24 1 (1 ),

(1) pkV=MkRkT, (t-1, 2,
...

f s).

The total pressure p of the mixture is given by p = Y,Pk- Summing
equation (1) from k = 1 to 5, we get

(2)
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Now, if we pick R such that

(3) MR - MkRk ,

then by (2),

(4) MRT.

But (4) is simply 2-11(1) over again. Thus we have the rule that if we

define R according to (3) above, then a mixture of perfect gases will also

have the equation of state of a perfect gas. The formula (3} says in words

that R is simply a weighted average of the Rk$, each Rk being weighted

according to the mass of gas k present in the mixture. Thus we say
that the specific gas constant is mass-additive in mixtures.

2-13. Molecular weight of dry air. The composition of dry air

varies only slightly. Table 2-13 presents the computation of the

specific gas constant R = Rd of dry air by the method of 2-12. In the

first column are the principal constituents of dry air. In the second

column are their molecular weights (mk). In the third column are their

individual specific gas constants (Rk ) as computed from 2-11(4). In

the fourth column are the masses (Mk) of the constituents in one ton of

dry air (so that M =* 1). In the fifth column are the values of MkRk ,

the total of which is equal to Ra, according to 2-12(3). The computa-
tion shows that, to four figures, Rd = 287.0 kj t""*

1

deg"
1

, in accordance

with 2-09(6).

TABLE 2-13

GAS CONST. PART BY MASS

296.74

259.80

208.13

188.90

0.7552

0.2315

0.0128

0.0005

MkRk

224.10

60.14

2.66

0.09

Dry air 1.0000 = M 286.99 = Rd

It was shown in 242 that a mixture of perfect gases is a perfect gas.

The'Vnolecular weights of the constituents have been used here only as

relative densities, and not as relating to the structure of the gas mole-

cules. It is thus permissible to define a
"
molecular weight

"
for a

mixture, if we choose. The defining relation is 24 1 (4), in order that the

molecular weight may still be a relative density.
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Thus meteorologists define the molecular weight ma of dry air by

R* 8313.6 ^ ^ ,

(1) ma = = ~^r7T = 28.97 (pure number),
/v^ 287.0

With this definition, we have from 2-09(1) for dry air that

(2)
/*--J-**r,

just as for any other gas of molecular weight m,

(3) pa - - #*7\
w

With this definition we may treat dry air as though it were one
"
sub-

stance
"
with the molecular weight m&. In particular, we may treat

dry air as a
"
pure gas

"
by the method of 2-12, whenever it is in turn

mixed with water vapor or other pure substances.

The reader may prove for himself that in the notation of 242 the

molecular weight m of a mixture is given by the formula:

(4) M-= LA*m *=1 \mk)

Thus the reciprocals of molecular weights are mass-additive in mixtures.

2-14. Work in thermodynamics. The definition of work in 1-03(14)
is more precisely formulated in mechanics as follows. When a material

particle under the action of a force F moves through the distance ds in

the direction of the force, the work dW
done by the force is Fds. When the P

direction of movement makes an angle

with the force, only the component
F cos of F in the direction of the

motion contributes to the work, and

the work is given by the expression

(1) dW^ Fds cose. FIG. 2-14.

When the system considered is an infinitesimal element of fluid, the

only force with which this element can do work upon its environment is

that arising from the pressure p on its surface. On each area element dA

of the surface there is a force pdA pushing normal to the surface, by 2-04.

Suppose that under the action of the force, the surface element dA

moves a distance ds in a direction making the angle with the normal

direction, thus arriving at a new position bA' (see fig. 2-14). Then by

(1) the work done by the force acting on dA is equal to pdAds cos 0.
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It is seen that &Ads cos is equal to the volume swept out by the

motion of the area element 5A to its new position 5A'. Consider now

the work dW done by the pressure force in the expansion of a system of

volume F, surface area A, and mass M. Let dV be the total change in

volume of the system, being the sum over the complete area A of the

cylinders swept out by the area elements bA mentioned above. We
see that

(2) dW=pdV.

We shall usually use capital letters to denote quantities referring to

the total mass of a system, and the corresponding small letters to denote

the value of the same quantities referred to unit mass (specific quantities).

Dividing (2) by the mass M, we obtain the expression for the specific

work dw done by the system:

(3) dw = pda.

Our sign convention is sucjhi that if an element expands under its pres-

sure forces, i.e., does work on the environment, then dw is positive. If

the element is compressed by the external pressure force, i.e., has work

done on it by the environment, dw is negative. A system unchanged in

volume can do no work of the type considered here.

2 IS. (a,-/>)-diagram. A convenient diagram for many purposes in

thermodynamics is the (a,-)-diagram, which is a graph of pressure

against specific volume, both variables having linear scales. On account

of its frequent application to atmospheric problems, where pressure

variations are mainly due to vertical displacements of an air element, the

diagram is drawn with pressure increasing downward. Consider any

one perfect gas. Its state (see 2-02) is defined by any two of the vari-

ables />, a, T the third being obtained from the equation of state

2-09(1). Each point on the (a, )-diagram represents by its coordi-

nates a unique pair of values of a and p. It consequently represents a

unique state; conversely, each state is uniquely represented by a point

on the diagram.

Any change of state from (a,p) to (a + da,p + dp) is called an ele-

mentary physical process and is, of course, represented by an infinitesimal

line on the (a,-)-diagram. A finite process is composed of a succession

of elementary ones, and is thus represented by a continuous curve on the

diagram the path of the process.

Let a gas perform an arbitrary process represented in the (a,-p)-

diagram by the curve DD'E (fig. 2-lSa). The specific work dw per-

formed during the elementary process of expansion DD
f
is pda, which is
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measured by the area of the dotted strip. For the finite expansion

process D to , the total specific work w is equal to the integral of

2-14(3):

(D w > pda.

This is measured by the whole shaded area under the curve DE.
Of particular importance is the cyclic process where the system returns

to its initial state (fig. 2-156). While expanding (DUE) the element

does positive work. During the subsequent compression (EGD) work

a -*

FIG. 2-15a.

(X *

FIG. 2-156.

is done on the element and is negative. It must hence be subtracted.

The net work done by the element in the complete cycle is therefore

equal to the area A enclosed by the path representing the cycle in the

(a, -/>)-diagram. Denoting the cyclic path by c we have

(2) pda=* A.

The unit of area on the diagram must of course be that of a rectangle

whose base is the length of a unit (m
3

t""
1
) of a and whose height is the

length of a unit (cb) of p. Multiplying the dimensions of pressure by
those of specific volume, we see that area on the (e*,-/>)-diagram has the

dimensions [L
2T~2

] of specific work. From (2) we have the rule:

The work performed by unit mass in a cyclic process equals the area

enclosed by the path in the (a.,-p)-diagram; the work is positive when

the cycle is taken counterclockwise, and negative when the sense is clockwise.

246. Isotherms of a perfect gas. As an example of a process repre-

sented on the (<*,-)-diagram by a curve, we consider the isothermal

process of a perfect gas. For a particular gas at any constant value T\

of r, the product RTi is a definite, known constant.
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Then the equation of state 2-09(1) becomes

(1) pa = const,

<x -

FIG. 2-16.

whose graph is a rectangular hyperbola in the (a,-p)-diagram (fig.

2-16). The hyperbola is called the isotherm T = TI. It passes through

just those points (a,p) which represent states with temperature TI.

In fig. 2-16 there is also drawn the

isotherm T = 7\ + dT.

Now suppose a system is in the

state represented by the point A in

the figure. Suppose it is desired

to heat the system from temper-
ature TI to TI -{- dT. This may be

done by any of an infinite number
of processes, each of which can be

represented by a line segment start-

ing from A and ending on the iso-

therm TI 4- dT.

We have here pictured just two of these processes. AB is a process

taking place at constant pressure. This is called an isobaric process.

AC is a process taking place at constant volume. This is called an

isosteric process. Note that in the process A C no work is done. In the

process AB, work is done by the system. This will be of significance in

the evaluation of the specific heats in 2-21.

2*17. Heat. It was mentioned in 205 that when two systems at

different temperatures are brought in contact, the warmer gets colder,

and the colder gets warmer. A calorimeter is a standard system with

which different bodies are brought in contact in order to compare their

various temperature changes with those of the calorimeter. Let the

calorimeter have the initial temperature 7\, and let a body to be tested

have the initial temperature T2 > TI. Let the final temperature of the

combined systems be. T'. Then TI < T1

< T2 . Experiments with the

same body under varying temperatures show that the final temperature
T' is determined invariably by the same equation :

where C and Cw are constants.

Comparing different masses of the same substance in the same calorim-

eter, it is found that Cw remains unchanged, and that the constant C
is proportional to the massM of the body : C = cM, where c is a constant

for the substance. The equation (1) has the form of an equation of

conservation, in that the term relating to the body is equal but opposite
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in sign to the term relating to the calorimeter. The equation suggests

that there is something which does not change in the process, and which

flows from the hotter to the colder body. This something is called heat

and will be denoted by A//. Both terms of (1) have the form

(2)

where T1
is the final temperature. The constant C is called the heat

capacity of the system.

Modern measurements have verified the fact that there is conserva-

tion of heat in all processes of thermal conduction. However, it turns

out that the heat capacity is not strictly constant, but rather depends

upon the temperature interval. It is therefore defined by an infinitesi-

mal process. When dH is the amount of heat required to raise the

temperature of a substance from T to T + dT, we define the heat capacity

C at the temperature T as the ratio

It was mentioned that C - cM. The quantity c is the heat capacity per

unit mass, or specific heat of the substance. Let dh = dll/M stand for

the heat imparted per unit mass. Then from (3) :

dh

. The accepted unit of heat in physics is the 75 gram calorie 1 cal,

defined as the heat required to raise the temperature of one gram of pure
water from 14.5C to 15.5C. We shall, however, always express heat

in mts mechanical units of energy (see 2*18).

218. The first law of thermodynamics. The concept of mechanical

energy and its conservation was established by Leibnitz (1693). He
showed that in an isolated system the sum of the potential and kinetic

energies is constant. If a system is not isolated, any loss (or gain) of

energy is compensated for by the accomplishment of an exactly equiva-
lent amount of work by (or on) the system. The conservation^of heat in

all processes of thermal conduction, as formulated in 2-17, was estab-

lished about seventy years later.

The role of the first law of thermodynamics is to bring these two sepa-

rate kinds of conservation into one statement by asserting that mechani-

cal energy and heat are equivalent to each other and interconvertible. This

law was first suggested by Count Rumford (1798). However, the credit

for having set the principle of the conservation of energy upon a firm
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experimental foundation is due to Joule. In a classical experiment in

1849, Joule produced heat by churning water and other liquids with

paddle wheels and thus determined directly the mechanical equivalent of

heat. He found that

(1) lcal = 4.185 x l(T3 kj,

and the joule was named in his honor. S6guin (1839), Mayer (1842),

and particularly Helmholtz (1848) are regarded with Joule as also being

founders of the first law, because of their important contributions to the

understanding of its fundamental physical significance.

Since, according to the first law, heat is equivalent to mechanical

energy, we shall always express heat in kilojoules, with dimensions

[ML
2T~2

]. The conversion to calorie units can always be accomplished
with (1), if desired.

We shall apply the first law to the thermodynamical systems of 2-01.

We shall determine the fate of an infinitesimal amount of heat dll intro-

duced into the system from its environment. Since we are dealing with

systems which are in equilibrium, there is no conversion of dll into ki-

netic or potential energy. The heat dH will in part cause the system
to expand, and thereby do the work dW against external pressure forces.

In part the heat will be used to raise the temperature of the system, and

perhaps also to overcome the resistance of inner forces of attraction

between the molecules. This second portion will be denoted by dU
and is called the change of internal energy of the system. The first law

says in symbols that

(2) dII=dU+dW.

Equation (2) is called the energy equation and is the complete mathe-

matical description of an elementary process performed by a system in

equilibrium.

The internal energy U is a measure of the random molecular excita-

tion of the system. Its value is found to depend only on the state of

the system ; that is, U is a function only of the mass and of the physical

variables p, a, and Tt

If we divide each term of (2) by the mass of the system, we obtain the

energy equation in the form

(3) dh = du + dw = du + pda.

Here u is the internal energy per unit mass; dw is replaced by pda from

2-14(3). Each term in (3) has the dimensions [L
2
T~~

2
] of specific energy.

2*19. Specific heats of gases. The specific heat of a substance was

defined in 2*17 as the ratio dh/dT. This definition is adequate for a solid

or liquid. For a gas, however, we must proceed carefully. Let a gase-
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ous system at temperature T\ be in the state represented by the point A
in fig. 216. As remarked in section 2-16, there are an infinite number of

processes whereby the system can be warmed to the temperature

TI + dT. Each one requires the absorption of a different amount of

heat dh. Thus each process defines a different specific heat dh/dT.
From this multitude we select two specific heats of particular practical

interest: (i) the specific heat at constant volume (cv), defined by the iso-

steric process (da = 0) AC of fig. 2-16; (ii) the specific heat at constant

pressure (cp ), defined by the isobaric process (dp = 0) AB of fig. 2-16.

Thus we have

dh\ dh\
1(1) cv =

The dimensions of specific heat are [L
2T~29~1

].

The two processes selected here must each satisfy the energy equation

2'18(3). This will lead in the next sections to several relations among
the specific heats and the internal energy.

'

2*20. Internal energy of a perfect gas. The (specific) internal

energy u is a function only of p, a, and T. By means of the equation of

state 2-09(1), we may eliminate any one of these three variables, for

example p. Then u becomes a function of two independent variables T
and a, and may be treated by the calculus as such. The change of in-

ternal energy du from any given state may always be expressed in terms

of the changes da. and dT from that state. In the notation of the calcu-

lus:

The symbol du/dT is here interpreted to be the rate of change of u with

respect to jf, in a process for which a is constant. Introducing the

expression (1) into the energy equation 2-18(3), we get

(2) dh =^dT+
(^

+^ da .

This equation is valid for any process. Specializing to the case of the

isosteric process (da = 0), we obtain immediately from (2) and 2-19(1):

> *

Comparing (1) and (3), we see that

(4) du
Oa
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To evaluate du/da, i.e., to see how internal energy varies with a change

in volume, we must have recourse to experiments. A suitable experi-

ment is the so-called
"
expansion into the void." Two vessels, one of

which contains the gas under high pressure, the other evacuated, are

placed in communication by means of a pipe uith a stopcock. The gas

will then rush into the empty vessel without doing work dw, since it is

pushing against no external forces. If the whole system is insulated, no

heat dh is imparted to the system. Applied to this process, the energy

equation dh = du 4- dw gives du = for each step of the process. Denot-

ing the finite changes during the complete expansion with a A, we can

write by means of (4) :

, du du AT
(5) Aw =* cvAi 4- Aa = or = -cv

Oa Oa Aa

Joule performed this experiment and found A7"= for all gases used.

That is, there was no temperature increase during the expansion Aa.

He thus concluded from (5) that du/da = for all gases.

Later experiments permitting more accurate measurements showed an

observable temperature change (Joule-Thomson effect). From such

experiments, du/da is found to be small. The more nearly a given gas is

"
perfect

"
in the sense of 2-08, the nearer du/da is to 0. // is therefore

logical to include in the definition of a perfect gas the stipulation that its

internal energy be entirely independent of volume, or

du
(6) ^ - 0.

Combining (6) with (4), we obtain

(7) du - cJT.

Now by (3) and (6)

which shows that cv is a function of temperature alone. Experiments
show that the variation of cv with temperature is the smaller, the nearer

the gas approaches a perfect gas. A third and last requirement of a per-

fect gas, therefore, is that cv be constant.

The integral, u = cvT+ const, of (7) exhibits explicitly the functional

dependence of u on the state (p, T, a), but (7) itself is sufficient for our

purposes.

2*21. Specific heats of a perfect gas. From 2-18(3) and 2-20(7), we

may write the energy equation of a perfect gas in the form

a) a-
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a very useful equation expressing the heat added in terms of the varia-

tion of the independent variables T and a. In order to compare the

specific heats cp and cvt we need an expression for dh in terms of the

variation of the independent variables T and p. To get this, we differ-

entiate the equation of state pa = RT, whence

(2) pda - RdT - adp.

Substituting for pda in (1) we obtain

(3) dh - (cv + R)dT - adp.

But then we have for isobaric processes (dp = 0) :

J
= cv + R.

Comparing this with the definition 2-19(1) of cp , we see that

(4) cp = cv -f R or cp cv = R.

These equations (4) say with 2-20 thatfor a perfect gas, cp and cv are both

constants j
whose difference is equal to the specific gas constant R. It

will be noted from 2-09 and 2-19 that equations (4) balance dimension-

ally.

That cp is larger than cv was already clear in 2-19, because in heating

at constant pressure the gas must expand, thereby doing external work.

The heat then is only partly used to raise the temperature. Thus more

heat is required to raise it one degree isobarically than isosterically

(where no work is done). See fig. 2-16.

For dry air, which is regarded as a perfect gas, we shall denote the

specific heats by cvd and cpd . From experiments their values are deter-

mined to be as follows:

(5) cvd - 71 7 kj t-
1

deg-
1

;
cpd - 1004 kj t"

1

deg"
1

.

Then by (5), cpd
- cvd = 287 kj t"

1

deg"
1 = Rd ,

in accord with 2-09(6).

These values should be remembered.

Actually cvd and cpd are found experimentally to vary slightly with

temperature, but the variation may be disregarded in the atmospheric

range of temperature.

2*22. Energy equations in logarithmic form. The energy equation

is the starting point for most of the meteorological applications of

thermodynamics. It is therefore desirable to express it in various use-

ful ways. The basic expression is

248(3) dh = du + dw.
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To express dh in terms of the independent variables T and a, we have

2-21(1) dh=cJT+pda.

To express dh in terms of the independent variables T and p, we can

combine 2-21(3) and 2-21(4):

(1) dh = cpdT adp.

The last form will be used most often, since the variables T and p are

those directly observed in the atmosphere.

The energy equation assumes a convenient form when both sides are

divided by the temperature T, and the equation of state pa = RT is used.

Equation 2-21(1) becomes

(2) ^ = C f + *^'
1 1 a

Similarly, (1) becomes

dh dT dpfi\ __ - ~p ___TT~~to
Now by differentiating the logarithm of the equation of state, called

logarithmic differentiation, we get

dp da dTW ~r H ~TP
p a 1

By means of (4) we can eliminate dT from either (2) or (3). Then since

by 2-21 (4) cp = cv + R, we get

f*\ *_ ^ *twJ ^ cp T~ cvTap
The three forms (2), (3), and (5) of the energy equation may be written

together in an order which makes them all easy to remember:

!** _ p dT _ ^L i?^ ^ *?
(6) _ == x^ + cv

-~- =
Cp

- R = cv -\- cpT a T T p pa
Note that the variables in (6) are written in a certain cyclic order, start-

ing with a, r. The constants are written twice in order of magnitude,

separated by a minus sign :

The symmetry of (6) is a superficial aspect of a far-reaching physical

simplification which results from dividing the energy equation by T.

This will be discussed in 2-28. For the present it suffices to note that
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the expressions in (6) are differentials of functions of state. Thus we
have:

(7) j
- d[ln aRTCv

]
- d[\n Tc

*p~
R

]
- d[\n p

c
a.

c
}.

By In x we shall always mean the natural logarithm of x, i.e., the loga-

rithm with base e = 2.71828 .

2 '23. Atmospheric processes. The most fundamental process which
adds or subtracts heat energy to or from a parcel of air in the atmosphere
is radiation. Other important agencies for the exchange of heat are

conduction, turbulent mixing, and internal friction. All these proc-

esses are continually influencing every element of the atmosphere in a

complicated fashion, usually inaccessible to a detailed thermodynamic

analysis. However, they all proceed quite slowly, compared with

another important class of processes, which it will be our primary

objective to analyze.

These other processes are those caused by the motion of the air and

primarily by the vertical motion. They proceed with relative rapidity,

so that they can profitably be investigated by neglecting the influences

of the slow processes involving heat exchange between the system and its

environment. We shall therefore concentrate our attention on proc-

esses for which there is assumed to be no heat exchange between the

system and its environment. Such a process is called adiabatic.

Later, in chapter 3, we shall discuss processes which are not strictly

adiabatic, but there the heat exchange will be small.

2-24. Adiabatic processes of a perfect gas. The condition which

must be satisfied for an adiabatic process is by definition dh = 0. In

2 22 there are many expressions involving dh and other variables.

Each of them becomes a differential equation of the adiabatic process of

a perfect gas, when dh is replaced by 0. For reference, they are repeated

here:

(1) du + dw=Q;

(2)

(3)

(4) ^^.f^f-A^-a T 1 p p a

(5) d[ln a
R
r*} - d(ln T

e

"p-
R

]
= d[ln p

e
>a

e
>>}
- 0.
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From the integration of (5), we get three equivalent relations between

the variables of state in an adiabatic process:

(6) aRTCv - const; TCpp~
R = const; p

Cvac
*> = const.

Defining two pure numbers K and rj by the relations

/*\ -^ j CP
(7) K - and 77

= >

p Cv

we can rewrite the more important two of the equations (6) in the form :

(8) > T = const -p";

(9) ^a17 - const.

These are the equations derived by Poisson (1823), and generally bear

his name. For this book, (8) is the more important, and K will be used

often. Formula (9) will be discussed presently for illustration; the use

of 17 is not standard in meteorology. Both K and ry have dimension [1].

It must be understood that the constants of integration in (8) and (9)

are fixed for one adiabatic process, but they will have different values for

other adiabatic processes. They are each determined separately from

the values of the physical variables at a given initial state, exactly as the

constant in the equation of a straight line of slope 6,

y = 6x -f const,

is determined by knowing one point on the line.

We may also rewrite (8) and (9) in terms of the values pi, i, 7*1 of

the variables at an initial state:

$
(11)

These equations are analogous to the point-slope equation of the straight

line referred to above :

y-yi- 6(x-xi).

For dry air, the Poisson constants K and i\ have the following values:

(12) Kd = - 0.286, rid - ^ - 1.400.

Cpd Cvd

These values should be remembered.

2*25. Adiabats on diagrams. Each adiabatic process, like any other

process, is represented by a definite curve on the (a,-)-diagram. The
curve is called an adiabat, and its equation is 2-24(11). The whole
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family of adiabats is given by 2*24(9)

pot
1 = const,

as the constant varies. The family of isotherms was found in 2-16 to be

given by the equation 216(1)

pa = const,

as the constant varies. The adiabats and the isotherms are distinct

curves, since r; > 1. The actual shape of the adiabats depends on the

value of rj. For dry air, when t\
=

17^, they are called dry adiabats.

100 cb
700 2500 3000

FIG. 2-25a. (a, p)-diagram.

In fig. 225a we have an (,-/>)-diagram for the range of values of a

and p observed in the lower atmosphere. The isotherms T * 200, 300,

400, and 500 are drawn in solid lines; the dry adiabats 6 - 200, 300, 400,

and 500 are drawn in dashed lines. 6 is defined in 2*26. The adiabats

have the same asymptotes as the isotherms, but their slope

(dp/da = qp/oi) is steeper than the slope (-dp/da = p/a) of the

isotherms.

The (a,-p)-diagram is very suitable for a theoretical analysis of
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atmospheric processes, since work is measured by an area on the dia-

gram, as in 2-15(1). However, it is very inconvenient in actual practice

for several reasons. First, neither the adiabatic nor the isothermal

processes are represented by straight lines. Second, the variation of the

variables requires that the adiabats and isotherms meet at too small an

angle for easy discrimination. See fig. 2-25a. Third, the areas of most

importance in meteorology are spread out inconveniently on the page,

making it difficult to design this diagram as a well-shapecj, large-scale

chart for detailed use.

I

10

20

40

60

80
100]

\
\

0K 100 200 T -^. 300

FIG. 2-256. Stuve diagram.

400

Much better diagrams for practical purposes are those involving p
and T as coordinate variables. These are more logical anyway, being

those directly measured. The simplest of these diagrams is the Sttive

diagram, which is the basic diagram on which the so-called pseudo-

adiabatic chart is drawn. The Stuve diagram is designed to make the

adiabats straight lines, while keeping p and T as the coordinate variables.

This is accomplished by the device of using a linear temperature scale,

but making the pressure coordinate represent pressures in terms of their

*dth powers. Thus the isobar p cb will be p
Kd units from the axis p - 0.

The scale is for convenience still labeled in centibars. (See fig. 2-2S&.)

But now from 2-24(8) it will be seen that each dry adiabat will be a

separate straight line through the origin (p = 0, T = 0). These are

drawn in the figure, and finally the portion of the diagram of greatest



31 Section 2-26

meteorological interest is drawn in heavy lines and enclosed in a frame.

The rest is usually omitted from the meteorological charts.

The fact that in older books the value KA = 0.288 was used explains

why this value occurs on many pseudo-adiabatic charts.

2 -26. Potential temperature. The various dry adiabats on the Stiive

diagram (or any other diagram) need to be labeled. The standard

method is to label each adiabat by the temperature 6 at which it crosses the

isobar p = 100 cb. Any parcel of dry air is in some state (p, T, a), which

is uniquely defined by p and T. If we plot this state on the diagram, it

will lie on some dry adiabat. The correspondingvalue of 6 is the tempera-
ture read off the same dry adiabat at 100 cb. This temperature 6 is

defined to be the potential temperature of the parcel of air in the state

(p, !T, a). In physical language the potential temperature is the tem-

perature which the air parcel assumes when compressed (or expanded)

adiabatically to a pressure of 100 cb. 6 is always expressed in degrees

absolute and has the dimension [0] of temperature.

By 2-24(10) we see that the potential temperature 6 of dry air can be

computed from the formula

The student should be able to use formula (1) readily, with the aid of

logarithm tables, even though in practice 6 is usually estimated from a

diagram. When is given a constant value, (1) gives the variation of T
and p in the dry-adiabatic process. It is equivalent in this respect to

2-24(8).

The potential temperature is an invaluable aid to the thermodynami-
cal study of the atmosphere. The main reason for this is that, as

mentioned in 2-23, short-term atmospheric processes are adiabatic.

Unless the air is saturated, they are approximately dry adiabatic. But
in a dry-adiabatic process, 6 remains unchanged, even though T and p
may change a great deal. Such a quantity, which remains invariant

under dry-adiabatic processes, is called a conservative property of atmos-

pheric air. Thus potential temperature is conservative, and as such

may be used to identify air masses through a short interval of time (say

24 hours).

For dry air still another form of the energy equation can be obtained

by logarithmic differentiation of (1). We get

dO dT dp dT Rd dp
(2) T ==

~Tr
~*d T~

=3
~Tr ~~T~T >

6 T P T cpd p
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where

obtain

(3)

has been removed by 224(12). Multiplying (2) by cpd,

dO dT
cpd - cpd

- dp

Comparing (3) with 2-22(6), we see that

(4)
dh dd Jf f

_

- cpd j
= d(cpd lnO).

By (4) we see that when dh = 0, then dO = (which we already knew
We can also compute the magnitude of the change dO of potenti;

temperature, due to the introduction of dh kj t""
1
of heat.

// must be emphasized that sofar 6 is defined onlyfor dry air.

2 '27. Differentials and functions of state. A physical variable

called a function of state if it can be expressed as a single-valued math
matical function of two of the variables a, p, T defining the state: fc

example, as a function of a and
\

In physical language, a variable

a function of state whenever in tf

(a,-)-diagram it is possible 1

draw lines along which the var

able assumes one constant valui

Such lines are called isopleths of th

variable. Some of the functior

of state so far considered are no

listed, together with the sped;
names (if any) of their isoplethi

P 227 p (isobars), r(isotherms), 0(adu

bats) ,a (isosteres) , p (isopycnics) , i

The differentials so far considered may be placed in two groups. I

the first group are dp, dT, dO, da, dp, and du, all of which are differentia!

of the functions of state just mentioned. The differential of any fun<

tion of state is called an exact differential.

In the second group are dw and dh, which are not differentials of fun<

tions of state, and are therefore called inexact differentials. That is, n

functions of state w and h exist whose differentials are dw and dh. This wi

be proved below.

We first quote a theorem from the calculus:

(1 ) The integral ofan exact differential around a closed path is zero.

The rigorous proof of (1) may be found in any textbook of advance

calculus. The general idea may be illustrated by considering f d1

where c is the closed path 13421 in the (a,-p)-diagram of fig. 2-2'
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Starting the integration at 1, it turns out that the integral fdT along c

from 1 to 3 is equal to the net change of T between 1 and 3. This can be

measured by subtracting the T-value T\ of the isotherm through 1 from

the jf-value T$ of the isotherm through 3, giving T3
- 7\. Let the inte-

gration be continued through points 4 and 2 back to the starting point 1

again. The value of fcdT will be the net change of T over the complete

path. This will be obtained by subtracting the T-value T\ from itself,

giving zero.

Now let us integrate the energy equation 2-18(3) around a cyclic path c

enclosing the positive area A. By (1), fcdu= 0. Using 2' 15 (2), we
then have

(2) /dh
= / du + / dw - / dw - A > 0.

Jc Jc Jc

From (2) , we see that neitherfcdh nor fcdw is zero. It then follows from

(1) that dh and dw cannot be exact differentials, as asserted previously.

Exact differentials are very handy to deal with mathematically.

The integral from 1 to 2 of any exact differential d<p may be evaluated as

the difference <p2
-

<Pi in the values of the ^-isopleths between states 1

and 2. For an inexact differential like dw, on the other hand, there are

no isopleths to draw, and J\dw depends entirely on the path of integra-

tion from 1 to 2. See 2-15.

2*28. Entropy. Equation 2-26 (4) states that for dry air dh/T is equal

to the differential of the function of state cpd In 9. From 2-22(7) it is

seen that for any perfect gas dh/T is the differential of a function of

state, namely, any of the functions in brackets in 2-22(7), which differ only

by a constant. According to the definitions of 2-27, in these instances

dh/T is an exact differential.

The foregoing are but instances of a very general thermodynamical

theorem, whose proof is given in any standard textbook on thermo-

dynamics. This asserts for an arbitrary system, whether or not the

equation of state and the internal energy function are known, that the

expression dh/T is always an exact differential. As such it is the differen-

tial of a function of state which is called the (specific) entropy of the

system, denoted by s. The dimensions of specific entropy are those of

specific heat, namely, [L*!*""^""
1
]. The total entropy S is equal to s

times the mass of the system.

We have always

, dh [dh
(1) ds = or 5= / + const.
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Being defined differentially, s is known only up to an arbitrary constant.

For dry air, because of 2-26(4),

(2) s = Sd = cpd In + const.

For any perfect gas, because of 2-22(7),

(3) 5 = In [a
RTCv

] + const = In [T
c
^p~

R
] + const - In \p

c
*cf*] + const.

In general, for any system

(4) 5 = some function of a, p, and T.

Since by (1) an adiabatic process (dh = 0) is a process for which

entropy is constant (ds = 0), adiabatic processes are often called isen-

tropic.

The factor 1/Tis called an integrating factor for the inexact differential

dhj since dh/T is exact. It is this which yields the logical definition of

temperature mentioned in 2-05: logically temperature is simply the

reciprocal of the integrating factor for dh.

The fact that ds is exact makes entropy very important as a heat

variable in thermodynamics. Because of its abstract definition, how-

ever, entropy is rather bewildering to the student, and we shall use it as

little as possible. For dry air, the concrete meteorological variable 6

can completely replace entropy.

229. Thermodynamic diagrams. It has already been shown that

thermodynamic processes can be represented and studied on a diagram

whose coordinates are the independent variables of the system. Any
such diagram is called a thermodynamic diagram, and the first example
was the (,-/>)-diagram of 2-15 and 2-25. Another was the Stiive

diagram of 2-25. We shall conclude this chapter with a discussion of the

emagram and tephigram.

A great deal of dispute is heard among meteorologists as to which are

the best diagrams. The majority of problems can be worked theoreti-

cally with equal facility on all the basic diagrams, since they are all maps
of each other. What really makes one diagram easy to use is the

accuracy, clarity, and convenient scale with which its plate has been

drawn. For certain special problems, special scales are required, and

these can (usually ) be put on any diagram, but in practice they are found

only on special prints made for the purpose.

As for the basic diagrams in frequent use in the United States the

Stiive diagram, the emagram, and the tephigram it is most important

that the student first realize their similarities, not their differences.

The fact is that all are
"
maps

"
of each other. Like all maps, all can

show the same lines, if desired. Finally, like all maps, each bears the

individuality of the particular projection.
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230. Important criteria of the diagram. There are three criteria

which we shall use to examine each diagram after it has been defined.

(i) How large an angle is there between the isotherms and the adia-

bats? A large angle is desirable, since soundings drawn on the diagrams
will be analyzed on the basis of their slopes. The larger the angle, the

easier it is to distinguish important changes of slope.

(ii) How many of the important isopleths (isobars, isotherms, adia-

bats, etc.) are straight lines? The more straight lines and the less

curved lines, the easier the diagram is to use.

(iii) Is the work done in a cyclic process proportional to the area

enclosed by the curve representing the process? This is an essential

feature in theory, and it is important in practice for certain operations.

On the whole, however, this feature has probably received too much

emphasis in meteorology.

2 -31. Stiive diagram. As it was discussed in 2-25, the Stiive diagram
need not be defined again. The student should get a pseudo-adiabatic

chart and make sure he can determine the pressure, temperature, and

potential temperature of any point on it. The other lines will be intro-

duced in chapter 3. As for the criteria of 2-30:

(i) Theoretically, by stretching the T axis sufficiently, the angle

between adiabats and isotherms in the atmospheric range could be made

arbitrarily close to 90. In practice, to keep the diagram more or less

square and legible, the angle is near 45. See fig. 2-256.

(ii) Isobars, isotherms, and adiabats are all straight lines.

(iii) The work done is not proportional to the area enclosed but

depends also on which pressures the area covers. The variation is rather

gradual. For example, one square centimeter represents about 25%
more energy at 40 cb than the same area at 100 cb.

2 32. Emagram. The emagram is a graph of -In p against T.

It was specifically designed to be a pressure-temperature graph having
the work-area property (iii) of 2-30. From this property Refsdal gave
the diagram its name, as an abbreviation for

"
energy-per-unit-mass

diagram." It is sometimes also named after Hertz, Neuhoff, and

Vaisala, who discussed the diagram and added features to it.

The emagram has a linear temperature scale on the horizontal axis,

and a logarithmic pressure scale, increasing downward, as a vertical

coordinate. Since as -0, lim(~ln /?)= oo, the diagram must in

practice be cut at some low pressure, usually 4 cb.

After the axis scales have been drawn (see fig. 2-32a) the adiabats are

drawn in by formula 2-26(1), or else they are plotted from a Stiive dia-

gram. The equation of any adiabat can be obtained by taking the
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logarithm of 2-26(1) for 6 - const:

(1) In p = - In T + const.
"d

Formula (1) shows two things. First, each adiabat is a logarithmic
curve on the emagram, becoming steeper with decreasing T. Second,

100 200 300
r

FIG. 2-32a. Emagram.

400

any two adiabats may be brought into coincidence by a displacement

parallel to the In p axis, so that all adiabats are congruent. As for the

criteria of 230:

(i) As in the Stiive diagram, the angle between adiabats and iso-

therms in the atmospheric range can be adjusted to any value short of

90. But again the convenience of scale and economy of paper dictate

that the angle be about 45.

(ii) The isobars and isotherms are straight lines, but the adiabats are

logarithmic curves.

(iii) The work w done in a cyclic process c is proportional to the

area A 9
enclosed by c on the emagram. To see this, we recall from
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2-21 (2) that

dw pda

Hence the work w is given by

(2) ldw = iRddT- \adp= - / adp,
Jc Jc Jc Jc

where one integral is by 2-27(1). Now a = RdT/p by the equation of

state. Hence from (2)

(3) w = -
P

[
Jc

The last equality follows for the emagram, whose coordinates are T and
In />, just as 2'15(2) is true for an (a, p)-diagram.

20^4)

200 220 240 260 280 300 320

FIG. 2-326. Emagram.

One other feature of the emagram as drawn in practice must be men-

tioned. Note in fig. 2-32a that the isobars for p = 4, 8, 12, 16, and 20 cb

appear to have exactly the same relative position and spacing as the

isobars whose pressures are respectively five times as large, namely,

p = 20, 40, 60, 80, and 100 cb. Thus the portion of the coordinate grid

on the emagram between 4 cb and 20 cb appears to be congruent to that
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portion between 20 cb and 100 cb. If the graph were cut in two at 20 cb

and the two halves superimposed as in fig. 2-32, then each isobar would

represent two pressures: (i) a
"
high

"
pressure above 20 cb; (ii) a

11

low
"
pressure under 20 cb, which is one-fifth of the corresponding high

pressure.

The reason for the congruence of the high- and low-pressure scales is

the logarithmic pressure scale. To draw a logarithmic scale, a base line

is fixed, corresponding to the isobar p = 1 (In p = 0). A unit of length

is fixed. The isobar for p cb is drawn In p units away from p = 1 . Now
In 5p = In 5 -f In p. Hence the isobar for 5p cb is just In 5 -f In p units

away from p = 1. Hence the isobar for 5p cb is found just In 5 units

below the isobar for p cb. This results in the congruence mentioned.

Not only the isobars do double duty in fig. 2*326, but the adiabats also

can serve with either the high pressures or the low pressures by simply

changing the value of their label 0. This follows from the fact that all

adiabats are congruent to each other.

Fig. 2 -32b is drawn with the low pressures in parentheses. The values

of to be used with the low-pressure scale are also in parentheses. The

high pressures and corresponding values of 6 are without parentheses.

The diagram has also been cut to the atmospheric temperature range.

The student should get an emagram and become familiar with the scales

introduced here.

Exercise. Prove that if an adiabat has the value 8 = 61 on the high-pressure

scale, then it has the value = 5** 0i on the low-pressure scale. Check fig. 2-32&

by this formula.

233. Tephigram. The tephigram is a graph of In against T.

This diagram has a linear temperature scale and a logarithmic 6 scale

which is a linear entropy scale, by 2-28(2). The diagram was adopted

for meteorological use by Shaw (who used the symbol </>
for entropy),

and was called by him a T-<t>-gram or tephigram. The coordinates are

shown in fig. 2-33a.

The equation for the isobars in terms of T and as independent vari-

ables is given by 2-26(1). For each isobar, p is constant, whence
- const r. Thus,

(1) In 6 - In T + const (isobar).

From (1) we see that each isobar is a logarithmic curve on the tephi-

gram. Furthermore, all isobars are congruent, and any two isobars may
be brought into coincidence by a displacement parallel to the In axis.

See fig. 2-33a. Equations 2-32(1) and 2-33(1) may be compared.
In fig. 2-33a the approximate range of variables commonly used is out-
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lined with a rectangle. This rectangle is then rotated, so that the iso-

bars are roughly horizontal. A sketch of the resulting diagram is shown

in fig. 2-336. As for the criteria of 2-30:

(i) The angle between the adiabats and isotherms is exactly 90,

since these lines are the coordinates of the tephigram. This 90 angle is

probably the greatest advantage of this diagram.

i-200

LlOO
0K 100 200 300

FIG. 2-33a. Tephigram. FIG. 2-336. Tephigram.

(ii) The isotherms and adiabats are straight lines, whereas the iso-

bars have a curvature which is slight in the atmospheric range.

(iii) The work w done in a cyclic process c is proportional to the area

A" enclosed by c on the tephigram. To see this, note from 2-26(4)

that

(2) dh - cpdTd(ln 0).

Now by (2) and 2-27(2),

(3) w = / dw B /

J c J c </.
dh - cpd / Td(ln 0).

But the last integral is cp^A
h
\ whence w is proportional toA ".

The student should get a tephigram, and become completely familiar

with the coordinates so far introduced. Above all, he should see that the

Stiive diagram, emagram, and tephigram are all minor distortions of

each other.



CHAPTER THREE

THERMAL PROPERTIES OF WATER SUBSTANCE AND
MOIST AIR

3 -01. Isotherms of water substance. The preceding chapter has

treated the thermal properties of dry air in equilibrium as a special case

of a perfect gas. Any real gas actually behaves nearly like a perfect

gas in a temperature range where it can neither liquefy nor solidify.

The isotherms of a real gas are therefore nearly rectangular hyperbolas

or *-

FIG. 3-Ola. FIG. 3-016.

in the (a,p)-diagram. (See fig. 3-Ola and compare fig. 2-16. Here we

follow the practice of physicists in having pressure increase upward.
This is convenient, since the system considered at present is not the

atmosphere. Cf. 245.)

Water substance, however, does liquefy and freeze in the atmosphere.

Its isotherms are therefore complicated. Consider a sample of pure

water vapor in a cylinder. We shall denote the vapor pressure by e,

reserving p for pressure in the atmosphere. Let the vapor be com-

pressed by a piston while the system remains at a constant temperature

of say 300K. We shall follow the true isotherm 300K on an (a.e)-

diagram, as drawn from empirical evidence. See the schematic diagram

in fig. 3-016.

The specific volume a will roughly follow the perfect gas behavior from

A until the vapor becomes
"
saturated

"
at a definite pressure, depend-

ing on the temperature. This pressure is called the saturation vapor

40
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pressure, and in the present instance equals 3.6 cb (see point B). Fur-

ther compression by the piston does not change the pressure e. Instead,

the vapor gradually condenses, and the isotherm proceeds from B

(a 39,000 m3 t"
1

) to C (a 1 m3 t" 1

), where we have only liquid

water. After this, further compression can reduce a but very little,

since water is nearly incompressible. Thus the isotherm continues from

C nearly parallel to the e axis to D and beyond.

If we follow the isotherm 250K in the same manner (see dotted line in

fig. 3-016), we get a similar pattern, except that no liquid stage occurs.

The vapor starts to solidify directly to ice at e = 0.077 cb, a 1.5 X 10
6

m3
IT

1
(point #') All the vapor is solidified into ice at the point C 1

(a 1.09 m3 ^1

). Further compression of the ice at ordinary high

pressures results in no significant volume change.

3*02. (a,e)-diagram and the triple state. The above considera-

tions show that we must examine in some detail the behavior of water

substance under equilibrium conditions. To a certain extent it is possi-

ble to describe the liquid and vapor phases of all fluids by one equation,

Vapor

T >T
C

T<T

FIG. 3-02.

the van der Waals equation of state. Since the van der Waals formula is

not very successful with water and water vapor, and since it does not

even pretend to describe the solid phase, we will omit any such discus-

sion. We prefer to give the (a,e)-diagram obtained from experiments on

water substance.

Fig. 3-02 shows a number of isotherms in the (ct,e)-diagram. For

temperatures above the critical temperature Tc (647K for water sub-

stance), the vapor never condenses, and the isotherms are roughly like
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those for a perfect gas. For temperatures between the triple state

temperature Tt (273K for water) and Tc ,
the isotherms look like the solid

line in fig. 3-016. The significance of Tt and Tc is explained in this and

the following sections. For T < Ttl the vapor condenses directly to ice

on compression, as shown. On further compression the specific volume

of the ice remains near 1.09 m3
t""

1
,
until at high enough pressures the

ice melts to water, or else changes to a second crystalline form of ice.

Neither of the last processes is represented in fig. 3-02, as it would unduly

complicate the left side of the diagram. The ice - water transition will

be discussed in detail in section 3' 13.

The empirical evidence thus shows that the (a,e)-diagram is divided

into several regions, each region representing one type of phase equilib-

rium for water substance. Some of these regions are outlined with

heavy lines in fig. 3-02 and are labeled vapor, water, water & vapor, ice

& vapor. The regions ice and ice & water have been omitted.

The line A3 represents all states where the three phases ice, water,

and vapor can exist simultaneously in equilibrium in any relative pro-

portions. This is the triple state. It is found to occur for water sub-

stance at

(1) e= 0.611 cb; Tt
- TQ = 0.007SC.

The corresponding specific volumes of ice, water, and vapor are respec-

tively (in m3 t"
1

)

(2) a; = 1.091; aw - 1.000; av 206,000.

One phenomenon has been entirely omitted in this discussion, the

supercooling of water. The discussion of this topic is reserved i i

section 3-15.

3-03. The critical state. The point C in fig. 3-02 is the point where

the critical isotherm touches the water & vapor region. The correspond-

ing state is called the critical state. For water substance, the critical

state occurs at approximately*

(1) ec = 22,100 cb 218 atm; TC -647K; c
- 3.1m3

IT
1

.

The critical temperature Tc is the highest temperature at which water and

vapor can co-exist in equilibrium. The critical pressure ec is similarly

the highest pressure at which water and vapor can co-exist in equilib-

rium. The critical specific volume ac is the value of a observed at the

critical temperature and pressure.

* N. Ernest Dorsey (comp.), Properties of Ordinary Water-Substance, Reinhold

Publishing Corp., New York, 1940; p. 558.
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It is seen from fig. 3-02 that it is possible to take a sample of vapor into

the state labeled water without passing through any transition zone, for

example, by keeping the pressure greater than ec \ i.e., there is no bound-

ary curve in fig. 3-02 separating water from vapor. This corresponds to

the experimental fact that vapor goes into water at these pressures with-

out any abrupt transition.

It is arbitrary whether we call the fluid a vapor or a liquid in this

region. For a. < ac , the critical isotherm is customarily taken as the

boundary between vapor and liquid. We then have the following rule

pertaining to all fluids : It is impossible to liquefy a substance at tempera-

tures higher than the critical. This law explains why the permanent

gases of the air are never liquefied at atmospheric temperatures: their

critical temperatures are too low.

Table 3-03 gives the critical data* for some permanent gases and

carbon dioxide.

TABLE 3-03

GAS Tc (K) pc (cb) <xc (m
3 1" 1

)

He 5.2 230 14.4

H2 33.2 1300 32.2

N2 126.0 3390 3.2

O2 154.3 5040 2.3

CO2 304.1 7400 2.2

3*04. Thermal properties of ice. Beginning with ice, we shall dis-

cuss separately the thermal properties of the three phases of water sub-

stance and the various changes of phase.

Ice, the solid phase of water substance, is known to exist in several

different crystalline states, each of which is properly a phase itself.

Since only one of these phases occurs in the atmosphere, we shall ignore

the others

At 0C the specific volume oti of ice is given by

(1) on- 1.091 ms t"1
.

On cooling below 0C ice contracts so slowly that we may regard as

constant for our purposes.
The specific heat Ci of ice (cf. 2-17) varies with temperature, but the

0C valuef

(2) a - 2060 kj IT
1

deg-
1

is sufficiently accurate for atmospheric problems.
* Charles D. Hodgman (edit.), Handbook of Chemistry and Physics, 25th edition,

Chemical Rubber Publishing Co., Cleveland, 1941; pp. 1703-1705.

t Edward W. Washburn (editor-in-chief), International Critical Tables of Numeri-

cal Data, McGraw-Hill Book Company, New York, 1926 ff., 7 vol. and index; vol. 5,

p. 95.
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3-05. Thermal properties of water. The specific volume aw of

(liquid) water assumes its least value ctw = 1.00 m3
t"

1
near 4C. (This

value will be recalled from section 1-04 as the definition of unit specific

volume.) aw increases somewhat at higher and lower temperatures,

getting as high as 1.043 m3
t"

1
at 100C. In the atmosphere we shall

use

(1) aw = 1.00 m3 ^1

in computations, regarding aw as constant for practical purposes.

The specific heat of water is denoted by cw ,
and it varies slightly with

temperature. The gram calorie was defined in 247 as the heat required

to heat one gram of water one degree at 15C . Referring to the mechani-

cal equivalent of heat, 2-18(1), we have at 15C

(2) cw,
= 4185kjt-

1

deg-
1

.

In our subsequent work we shall treat cw as a constant with this value.

3 '06. Equation of state of water vapor. As in section 3-01, the pres-

sure exerted by water vapor will be denoted by e. The other physical

variables relating to water vapor will be denoted by the subscript v,

for example, av . With the assumption that water vapor behaves closely

enough like a perfect gas, its equation of state 2-09(1) has the form

(1) eav =RvT.

The gas constant Rv is computed from the relation 2-11(4), J?*

where mv (= 18.016) is the molecular weight of water vapor. This gives

> a-S
For later work it is convenient to express Rv in terms of Rd, using the

relation R* = mJRv = mdRd ,
where by 2-13(1) md (= 28.97) is the

molecular weight of dry air. Thus

where

(4) c = -- - 0.622.
nid

By introducing in (1) the expression (3) for Rv , the equation of state for

water vapor takes the form in which we will generally write it:

(5) eav
=



45 Section 3-07

It will be useful later to know the magnitude of av under certain special

conditions. The following values are computed from (5). At the

normal boiling point

(6) (av )i atm , 373
= 1699 m3

t"
1

.

Saturated vapor at the triple state (nearly 0C) has

(7) MOMI cb, 273
= 206,200 m3

IT
1

.

Saturated atmospheric air seldom is warmer than 35C. The corre-

sponding saturation vapor pressure (5.62 cb) is therefore the highest,

and the corresponding value of av is the lowest, value which normally
occurs in the atmosphere. This value is

(8) (a,) 5.62 cb, 308 - 25,290 m3
t"

1
.

As a check on the accuracy of (5), we give the values of otv in the three

cases above, as taken from experimental data in the Handbook of Chemis-

try and Physics:*

Ml atm, 373
= 1671 m3

t"
1

}

(t)o.Gii cb, 273
= 206,300 m3 t" 1

\-
(empirical).

(<Os.e2 cb, 308
= 25,250 m3

t"
1

J

Thus it will be seen that at atmospheric temperatures (5) gives all

accuracy possible from the data. At the boiling point a 2% error is

found. For temperatures and pressures approaching the critical, it is

found necessary to use a more refined equation of state.

3-07. Specific heats of water vapor. For ice and liquid water the

specific heats Ci and cw are practically independent of the type of process

used to heat the substance. For water vapor, however, as in section

2-19, we must distinguish various specific heats. The specific heat of

water vapor at constant pressure will be denoted by cpv . The specific

heat of water vapor at constant volume will be denoted by cvv .

The variation of cpv and cvv with temperature is quite considerable.

Furthermore, there are few data available as to their values at atmos-

pheric temperatures. Simply to fix the magnitudes of these quantities

for our calculations, we shall regard cpv and cvv as constants in the atmos-

phere, with the following values:!

(1) cpv
= 1911 kj r 1

deg-
1

;
cvv = 1450 kj 1T1

deg-
1

.

*
Op. cit., pp. 1772-1777.

t cpv is converted to mechanical units from an estimated value given in Dorsey,

op. cit., p. 599, line 4. The value of cvv ,
chosen so that our equation 3-07 (2) is satis-

fied, is near the mean of two determinations reported by Dorsey, op. cit., p. 105.
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These values may be as much as 2% in error. With the chosen values,

we have

(2) cpv
- cm = 461 RV1

which agrees with 2-21 (4). Since water vapor is in some ways far from

being a perfect gas, cpv
- cvv may actually differ from Rv , but the order

of magnitude is correct.

3 -08. Changes of phase. In sections 3-01 and 3-02 it was stated that

at certain pressures and temperatures an equilibrium may exist between

any two phases, for example, between liquid water and water vapor. To
make the following discussion apply to all three phase-equilibria, we
shall denote the phases by 1 and 2. The pressure at which the two

phases are in equilibrium will be denoted by e8 . This notation will be

used throughout the chapter.

Consider now a process where a unit of mass transforms at equilibrium

from phase 1 to phase 2. The equation of energy 2-18(3) can be written

in the following form, since dh = Tds by 2*28(1) :

(1) dh = Tds = du+eada.

Here 5 is the specific entropy of the system. The complete change of

phase will be represented by integrating (1) from phase 1 to phase 2;

(2)

Z Z Z Z

I dh=
I

Tds= I du+ I eada.

The first integral represents the total amount of heat absorbed by the

unit mass in phase 1 in order to cause it to transform completely into

phase 2. It is known as the latent heat of the transformation 1 to 2, and

will be denoted by Li 2 - Latent heat has the dimensions [L
2
T~~

2
] of

specific energy. The pressure and temperature remain constant during
the transformation (see fig. 3-01&), so that (2) may be integrated:

(3) Li2 - T(s2 - si) - (u2
-

ui) + e8 (a2
-

e*i).

The equation (3) will be used in later work.

For the present it suffices to realize that, at each pressure e8 and corre-

sponding temperature T where two phases can co-exist, there is a definite

latent heat Li 2 . 12 varies with temperature, and it is different for

each of the three phase transformations. Also, Lj 2 is equal to the

amount of heat released by a unit mass in phase 2 when it transforms to

phase 1. (That is to say, Li 2 = -21-)
The three possible phase transformations of water substance are:

water -
vapor (wv), ice<~>vapor (iv), and ice<->water (iw). The corre-
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spending latent heats are called respectively: latent heat of evaporation

(Lwv , always written L), latent heat of sublimation (Lt
-

v ), and latent heat

of melting (Liw ). All these transformations will be discussed in detail

later.

For reference we give the values of the latent heats at 0C for water

substance.*

(4) L= 2.500 X 10
6
kj f1

;

(5) I,*- 2.834 x It^kjIT
1

;

(6) Liw - 0.334 x 106 kj IT
1

.

These values will be used for most purposes as constants in the atmo-

spheric range of temperatures.

3 -09. Variation of the latent heats with temperature. The variations

of the latent heats with temperature are relatively small but can be ob-

tained from theory. We shall give the argument for L. For the case

of the latent heat of evaporation 3-08(3) takes the form

(1) L = es (av - aw ) -f (uv
- uw ).

At atmospheric temperatures we may neglect aw (= 1) against avt which

was seen in 3-06(8) to exceed 25,000. By replacing e8av by RVT from

3-06(1), (1) becomes:

L = RVT + uv
- uw ,

or in differential form

(2) dL = RjlT 4- duv
- duw .

Since the vapor behaves nearly like a perfect gas, we note from 2-20(7)

that duv = cvvdT. Since aw is practically constant, the energy equation

2-18(3) for the liquid reduces to dh = duw . And from the definition of

cw ,
we see that dh = CwdT. Thus duw = cwdT, which when introduced

in (2) yields

dL = (Rv 4- cvv
- cw)dT = (cpv

- cw)dT.

The last step is according to 3-07 (2) . Finally, dividing by dT we get

dL
(3) = cpv

- cw ,

al

which contains the following simple rule: Tlte rate of change of the latent

heat L with temperature is equal to the change of the specific heat at constant

pressure from the liquid to the vapor phase. Note that (3) checks dimen-

sionally.

*
Dorsey, op. cit., pp. 616-617. We assume L& = L 4* Liw .
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Integrating (3) and using the values of the specific heats in 3-05 and

3-07, we have in the atmospheric range -40C to 40C the good approxi-
mation :

L - Lo + (7 - To) (cpv
- cw )

- Lo - 2274(r - 273),

where LQ is the value of L at 0C in 3-08(4). Introducing this value, we

get the final formula

(4) L = (2.500 -0.002274*C) X 106 kj f1
(in the atmosphere).

Inspection of (4) justifies the ordinary approximation that L is constant

in the atmosphere.
The reader may show similarly that

(5) L iv
- (2.834

- 0.000149/C) X 10
6
kj t"1

(near 0C).

Thus Liv has a variation with temperature only 7% as large as that of L.

Hence Lt
-

v is still more appropriately taken to be constant.

For L{W an essential modification of the above argument is required.

Since, however, the melting temperature of ice is almost constant in the

atmosphere (see 3- 13), the dependence of Liw on temperature is unim-

portant to meteorology. On the other hand, (4) and (5) are sometimes

used in meteorological investigations requiring accuracy.

3 10. Clapeyron's equation. Consider water substance in two

phases, called 1 and 2 as in 3-08. For each temperature T less than Tc ,

there is one saturation pressure e8 at which the phases 1 and 2 are in

equilibrium. Conversely, for each pressure e less than ec , there is one

transformation temperature at which the equilibrium exists. Let the

two phases be numbered so that in equilibrium s2 > $i i-e - so that heat

must be added to phase 1 to convert it to phase 2.

It is now our purpose to obtain a differential relationship between the

saturation pressure es and the transformation temperature T just defined.

From the latter equality of 3-08(3), we have at the state (7>a ) :

(1) ui

where the subscripts refer to the two phases. Both sides of (1) have the

same form, showing that the function

(2) (f>= u + e8a- Ts

remains constant during the isothermal-isobaric change of phase. The
function <p is known as the thermodynamic potential, and it is a function

of state alone. It has the dimensions [L
2T~2

] of specific energy.

We now consider the isothermal change of phase at the temperature

T + dT and the corresponding pressure e8 + de8 . As above, the thermo-
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dynamic potential will be constant throughout the change of phase at

T + dr. Let its value be <p + d<p. By differentiating (2), we get

dtp = du + eada Tds + ades
- sdT.

But the first three terms on the right are zero, according to the energy

equation 3-08(1). Thus

(3) d<p = ade8
- sdT.

Since ^? remains constant in the change of phase at (T,e8 ), and since

<p + d<p is constant in the change of phase at (7" + dT,e9 -\- de8 ), it follows

that d<p remains constant during the transformation from the phase 1 to

the phase 2. We have therefore from (3):

or by rearrangement :

de8

(4) dT Ot<2 Oil

But $2-51 = 1,12/7", from 3-08(3). Hence we get the desired final

differential relationship between es and T:

Ll2

dT T(ct2 OL\)

Equation (5) is Clapeyron's equation, found by Clapeyron in 1832 and

later derived from the modern point of view by Clausius.

Since Clapeyron 's equation holds for any two phases, we may write

down the three forms it takes:

de8 L
(6) = -- (water^vapor) ;

al 1 (av aw )

ti\
^e* ^iv r \

(7) 7^.= ^-T (ice^-> vapor);dT T(av
-

oti)

/rt\ (*&& J-^IW ,. V

(8) J^=~^(
-

N (ice<->water).
al l (aw - oti)

For equilibrium between each pair of phases the pressure e8 and tempera-
ture T satisfy the corresponding Clapeyron equation. Each of the

equations may be integrated to give a curve in the (T,e)-diagram, which

we shall call respectively the evaporation curve, the sublimation curve, and

the melting curve. Along the evaporation curve there exists equilibrium

between water and vapor. Along the sublimation curve there exists

equilibrium between ice and vapor. At the point where these two curves
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intersect there is equilibrium among all three phases. It follows there-

fore that the melting curve, representing equilibrium between ice and

water, must pass through the intersection of the other two curves. This

common point on all three curves is the triple point, and the correspond-

Critical point-

Ice

Evaporation
curve

^^x^Triple point

Sublimation curve
Vapor

m ^

FIG. 3-10.

ing state is the triple state mentioned in 3-02. A schematic (7-dia-
gram is given in fig. 3-10.

In the next sections we shall give a more detailed discussion of each

of the three changes of phase of water substance.

3-11. Saturation vapor pressure over water. In the case of the

water-vapor transformation, the pressure e8 is called the saturation

vapor pressure (over water). The corresponding temperature T at which

the transformation takes place is called the evaporation temperature (or,

sometimes, boiling temperature) . The curve showing the variation of es

with T on a (!T,e)-diagram is the evaporation curve, and 3-10(6) is the

differential equation of this curve. The evaporation curve is known to

pass through these three points:

(triple point) ;

(normal boiling point) ;

(critical point).

The critical point is of course one end of the evaporation curve.

Now aw = 1 and av > 25,000 in the atmosphere (see 3-06). Using
the equation of state 3-06(5), we can therefore replace av aw by
av - RdT/ (ee8 ), with sufficient accuracy. Then 3-10(6) takes the form

(4)
J.

de.

e,dT"
(water *-

vapor),



51 Section 3-11

an important form of Clapeyron's equation. Equation (4) can also be

written

(5) d(lne8)= ~lT d [^Rd V,

In 3-09 it was shown that in a limited range of temperatures (such as

the atmospheric range) L may be regarded as constant. With this

assumption (5) represents a straight line on a (- 1/ T, In e)-diagram.

By using the value L = 2.500 x*10
6
kj t"

1
, (5) becomes

(6) d(ln e8 ) = -5418 d (-
j

(water <->vapor, -40C to 40C).

Or in base 10 logarithms:

(7) d(loges)= -2353d(-j (water <-->vapor, -40C to 40C).

Integrating (7), with the initial condition (1), gives

2353
(8) log e, - 8.4051 - (water** vapor, -40C to 40C).

Equation (8) provides a convenient graphical method of determining ea

in the atmospheric range. Fig. 3-1 la shows a graph of log e against

1/r, for temperatures up to the critical. In the atmospheric range,

the slope of the evaporation curve is 2353, which is represented by the

10
5

10
4

tlO3

5 100

10

1

0.1 cb

Critical point

C
B

Normal

boiling point

Triple point

250 K 350 450 650

FIG. 3-1 la.

Ocb

line AB in the figure. The variation of L at high temperatures causes

the true evaporation curve to bend slightly (curve AC), so as to go to

the critical point. The evaporation curve may then be transferred to a

linear (T,e)-diagram, where the curve shows extreme curvature (see

fig. 3-116). All physical and meteorological handbooks contain tables

giving e8 as a function of 7", as determined from experiments.
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If the formula 3-09(4) for L is introduced into 3*11(4), an integration
can be carried out to yield the Magnus formula for e8 :

2937 4
(9) log es - - - 4.9283 log T+ 22.5518

(water*--*vapor, -40C to 40C).

Table 3-11 shows in parallel rows the values of es from the simple formula

(8), from (9), and from empirical data. (The observed values at tem-

peratures below 20C are unreliable, since the water tends to freeze.)

As might be expected, the values derived from (9) show closer agreement

TABLE 3-11

T-TQ -30C -20C -10C 0C 10C 20C 30C

ea from (8), cb 0.0527 0.1273 0.2873 0.611 1.232 2.37 4.36

^from(9) 0.0509 0.1254 0.2862 0.611 1.228 2.339 4.247

^observed ............ 0.2865 0.611 1.228 2.338 4.243

with the observed values than those derived from (8), but the difference

is less than one millibar throughout the atmospheric range, and for the

most common temperatures the simple formula (8) gives all the accuracy
needed.

312. Saturation vapor pressure over ice. The ice<~>vapor trans-

formation can be treated in complete analogy to 3-11. Since the re-

semblance is so close, and since the transformation is less important,

we shall go over it rapidly.

In the case of the ice<~>vapor transformation, the pressure es is called

the saturation vapor pressure over ice. The transformation temperature
T is called the sublimation temperature at the pressure e8 . The curve

giving es as a function of 7" is the sublimation curve. As stated in 3*10,

the sublimation curve is known to pass through the triple point of

3-11(1).

Clapeyron's equation 3-10(7) is the differential equation of the subli-

mation curve. Repeating the argument which led to 3-11(4), we may
obtain the differential equation in the form

/(gx
1 des eLtv

(1)
- = -2 (ice <--> vapor).
es al

In the atmospheric range Liv may be regarded as constant. Taking its

value from 3-08(5), we get the analog of 3-11 (8) :

^fifii

(2) log es = 9.5553 - =- (ice~>vapor).
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The sublimation curve plotted on a graph of log e against -1/T is a

straight line (fig. 3-12a). For comparison the evaporation curve is

drawn as a broken line. The sublimation curve is steeper than the

evaporation curve and lies at slightly lower pressures. It should be

Icb

0.5

B
al

0.05

Triple point

0.8cb

0.6

0.4

0.2

230 K 250 270

FIG. 3-12o.

O.O

Triple point

230 K 250 270

FIG. 3-126.

290

noted that the sublimation curve does not extend above the triple point,

since ice cannot be heated above this temperature. However, water

can be cooled below its freezing point, and such supercooled water is

usually found in the atmosphere. (See 345.) Consequently the

evaporation curve must be drawn to about -30C.
In fig. 3-126 the same curves are drawn on a linear (T,e)-diagram.

3'13. Pressure and temperature of melting. The treatment of the

ice->water transformation is similar to that of 341 and 3-12, but it

differs in that the equation of state for water vapor does not enter into it.

In the case of the ice-water transformation, the pressure es is called the

melting pressure of ice, and the corresponding temperature T is called

the melting temperature of ice. Whenever ice and water are in equilib-

rium with each other at a surface of mutual contact, the hydrostatic

pressure of the water on the surface is the melting pressure and the

temperature is the corresponding melting temperature.

The curve giving es as a function of T is the melting curve. It passes

through the triple point

(1) e8 = 0.611 cb, T - TQ = 0.0075C,

and also through the normal melting point

(2) e8 - 101.33 cb, T - TQ - 0C.
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The differential equation of the melting curve is Clapeyron's equation
in the form 3-10(8):

/. N

(ice<->water).
al 1 (aw oii)

Introducing the practically constant values: LIW = 0.334 x 106 from

3-08(6), ai = 1.091 from 3-04(1), and aw = 1.00 from 3-05(1), we get at

T= 273K:

de
(3) - - 13,440 cbdeg""

1
(ice<->water).

al

We note from (3) that the melting curve is the only one of the three

phase-transformation curves which has a negative slope in the (7-
diagram ; i.e., the melting temperature decreases with increasing pressure.

We note also that the curve is very steep, being nearly isothermal (see

fig. 3-10).

As a verification of (3), we may compute the theoretical pressure differ-

ence between the normal melting point (1) and the triple point (2).

Introducing dT = 0.0075 in (3), we get des = 100.8. The empirical

value is 100.7 cb, from (1) and (2).

The drop in melting point with increasing pressure has the following

effect. When ice at a temperature slightly below 0C is subjected to

high pressure, it is brought into a state above its melting point. It is

therefore converted into water but freezes again as soon as the pressure

is released. This phenomenon is called regelation, and it accounts for the

plasticity of ice which permits the flow of glaciers.

3-14. Complete (J,e)-diagram. In fig. 3-10 are combined into one

schematic diagram the three transformation curves just discussed. For-

getting about the dotted extension of the evaporation curve below the

triple point, we see that the (I-diagram is divided into three regions.

These represent the ice, water, and vapor phases; they are labeled

accordingly. The phase of water substance is uniquely determined by
its temperature T and pressure e, except along the curves where two

phases can exist in equilibrium.

Any equilibrium process must have a continuous path on the (T,e)~

diagram. Thus a change of phase must occur on one of the transforma-

tion curves and ordinarily will occur only on these curves. An excep-

tion is found when we pass from the vapor region to the water region

through pressures higher than the critical. This corresponds to a con-

tinuous physical process with none of the usual properties of a change of
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phase. There is probably likewise a critical point on the melting curve

with similar properties. There is, however, no critical point on the

sublimation curve, which must extend to absolute zero.

3-15. Supercooled water. The dotted extension below 0C of the

evaporation curve has a physical significance. Suppose that we have

vapor and water in equilibrium, and cool them carefully. At the triple

point the water ordinarily freezes but, if the water is pure, the ice phase

may fail to appear. The vapor-water combination continues to cool and
follows the evaporation curve. This supercooled state is thermodynami-

cally unstable, and the slightest disturbance will make the system jump
into the stable state on the sublimation curve.

The droplets in clouds and fogs which are formed by condensation

above 0C will usually assume the supercooled liquid state on cooling

below 0C. According to experience most cloud elements are still

liquid at 10C, and water droplets may be found down to -30C.
When ice particles are brought into a cloud of supercooled drops at a

fixed temperature, the system is no longer in equilibrium. The vapor is

saturated with respect to the water drops, but is supersaturated with

respect to the ice particles; i.e., e is larger than the saturation vapor pres-

sure over ice (see fig. 3-12&). The result is condensation of vapor on the

ice particles. But the loss of vapor means that e becomes less than the

saturation vapor pressure over water. Thus water evaporates. The net

result of the two processes is a growth of the ice crystals at the expense
of the water droplets. This goes on until all the water drops have

evaporated. This process goes on most rapidly near 12C, where

the saturation vapor pressure over water most greatly exceeds that over

ice.

Two important meteorological applications of the above phenomena
may be mentioned: (i) When a supercooled fog moves over a snow-

covered surface, it tends to dissolve; (ii) when a relatively small number

of ice crystals are present in a cloud of supercooled water droplets, the

ice crystals grow enormously. They can therefore no longer remain

suspended in the air, and they start falling. Bergeron assumes that

tiny ice crystals are always present above a certain level as the end

product of disvsipated cirrus clouds. When a cloud grows in thickness

precipitation may be expected from it when its top has reached the ice

crystal level. Although the indications are that other factors also con-

tribute to the formation of precipitation, the effect mentioned here is

undoubtedly an important one.

3*16. Thermodynamic surface of water substance. The fact that

there are three variables of state, namely, e, T, and a, suggests a three-
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dimensional representation of the state of water substance. Let three

coordinate axes measure e, T, and a, respectively. Each state (e,T,a) of

water substance is then represented by a unique point in space.

As shown in 2-07, water substance cannot assume an arbitrary state

(e,T,a), but only those states (e^T^ot) which satisfy an equation of state

of type

(1) f(e,T,a) = 0.

It is not possible to express relation (1) exactly in terms of one elemen-

tary function. The equation of state can, however, be expressed approxi-

mately in a restricted range of states. See 3'06(5), for example.
The nature of the equation of state is such that all the points (e,T,a)

satisfying (1) lie on a continuous surface. This is called the thermo-

dynamic surface for water substance and is a representation of all possi-

ble states of water substance. This surface is shown in fig. 3-16. Each

Ice and water

(hidden)

FIG. 3-16. Thermodynamic surface of water substance.

phase is represented by an area on the surface. Each region of equilib-

rium between two phases is represented on the surface by an area where

the isotherms are parallel to the a axis. The thermodynamic surface

reduces to fig. 3-02 when projected on the (a,e)-plane, i.e., when

viewed parallel to the T axis. It reduces to fig. 3*10 when projected

on the (7-plane, i.e., when viewed parallel to the a axis.

The construction and study of a model of the thermodynamic surface

will greatly enhance the understanding of the thermodynamic properties

of water substance.
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317. Moist air. Thus far in chapter 3 we have treated the thermo-

dynamics of pure water substance. The real atmospheric air with its

variable admixture of water vapor will be called moist air. Its thermal

properties are obtained by combining the thermal properties of the dry
air and the water vapor. The question arises whether the presence of

the dry air constituents in any way influences the thermal behavior of

the water vapor. As long as the vapor is unsaturated it behaves very

closely as a perfect gas and, according to Dalton's law (see section 2-12),

its state is unaffected by the presence of the dry air. When moist air is

brought in contact with a water surface, equilibrium is reached when
there is equilibrium between the water vapor in the air and the liquid

water. This situation is of course not identical with the one discussed

in section 341 where no foreign substance was present. We have no

right to assume a priori that the saturation vapor pressure will be the

same in the two cases. However, it has been found that for practical

purposes the atmosphere does not influence the saturation vapor pressure;

i.e., the partial pressure of water vapor in saturated air is equal to the

saturation pressure of pure water vapor.

3-18. Moisture variables. Dry air is treated as an invariable per-

fect gas, according to section 2*13. Since, however, the proportion of

water vapor in the atmosphere varies greatly, we must introduce vari-

ables measuring the moisture content of a parcel of air.

The first of these is the (partial) vapor pressure e of water vapor in the

parcel. Here e has the same meaning as heretofore in chapter 3. It

has the dimensions fML~
1
T~~

2
] of pressure.

Two other moisture variables arc the dimensionless ratios w and q

now to be defined. Let the parcel of moist air with total mass M con-

sist of Ma tons of dry air mixed with Mv tons of water vapor. Thus

Md+MV
= M. Then the mixing ratio w is defined by:

(1) w=* -
(pure number).

Md

Thus w is the mass of water vapor per ton of dry air.

A closely related variable is the specific humidity q defined by:

M
(2) q = -77 (pure number).M
Thus q is the mass of water vapor per ton of moist air.

Now we see that

1 M Mv+Md _ 1
Md =l I,

q

~~ Mv Mv Mv w
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whence by solving for q and w:

w q
(3) q = and w = -

1 + w 1 - q

For absolutely dry air, w = q = 0. For pure water vapor, w = oo and

q = 1. q is always less than w. It will be shown in 3-20 that in the

atmosphere usually w < 0.04. Then from (3) we see that q/w > (1.04)"
1

0.96. Thus q and w differ by at most 4%, and usually much less.

For most practical purposes, we can use w =
q. For this reason the names

of w and q have been confused in meteorological literature. Logically

one of the two variables could well be omitted, but current usage makes
it necessary to know both.

The numerical values of w and q are found between and 0.04. We
shall usually express these numbers as parts per thousand. For exam-

ple, the value 0.0154 will be written 15.4 x 10~3 . Some authors omit

the factor 10~3
,
and speak of

"
15.4 per mille

"
(15.4 %o) or

"
15.4

grams per kilogram.'
1

In applying these numbers to thermodynamical

formulas, the factor 10~~
3 must be added.

3-19. Relative humidity. The maximum vapor pressure obtainable

at a given temperature is the saturation vapor pressure over water (not

over ice). This will be denoted by es throughout this discussion. In

3'11 it was shown that es depends only on the temperature, and in 3'17

we mentioned that the presence of dry air leaves this property of e8

unchanged. Any attempt to raise e above es will usually cause conden-

sation to liquid water.

The values of w and q for saturated air are called the saturation mixing
ratio (ws ) and the saturation specific humidity (qs ) respectively. Thus

we have

(1) e ^ e8 \
w ^ wa ] q^ q8 .

Many meteorological and physiological phenomena involving the
"
wetness

"
of the air depend not on the quantity (w) of vapor present

but rather on the degree of saturation. This is true of the hair hygrome-
ter used in meteorographs to measure vapor content. It is also true of

the comfort of a person living in the air. The degree of saturation could

be measured by any of the quantities w/wa , q/q8 , or e/es . It is the uni-

versal practice to use the third, called the relative humidity (r) . We have

(2) r=^-e8

Thus r lies between and 1.00. In practice it is expressed as a per cent.

If r = 22%, then r is to be given the value 0.22 in our formulas. In
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words, f indicates what per cent the actual vapor pressure is of the-

saturation vapor pressure over water at the same temperature.

The meteorograph reports relative humidity as a primary measure-

ment. Thus the state of the upper air is originally described by total

pressure p, temperature T, and relative humidity r. The main problem
of the next sections is to obtain the values of w, q, and e from p, T, and r.

This will be done both numerically and graphically.

3 '20. Relations among the humidity variables. The first task is to

express w in terms of e. The total pressure p of a parcel of air is by
Dalton's law (242) the sum of the partial pressure pd of the dry air and
the vapor pressure e of the water vapor. Thus

(1) Pd=p-e.

Let Md tons of dry air and Mv tons of vapor separately fill an entire

volume V. We write the equations of state of each component sepa-

rately in the form 2-11(1):

eV = MvRvT (water vapor);

pdV= MdRdT (dry air).

We take the ratio of these equations, and introduce Mv/Md = w from

3-18(1) and Rv/Rd = 1/e from 3-06(3). We then have

(2) ^ W
'

Pd 6

Solving for w and using (1), we get

(3) w = (exact).
p- e

Thus w is obtained from p and e. This is a very important formula to

know. If the air is saturated, we get as a special case of (3) :

(4) W'=T~
~

(exact).
p- es

We can now estimate the largest value of ws likely to occur in the

atmosphere, say that for saturated air at 36C and 100 cb. From
3-11 (8) we determine that es 6 cb. Then from (4)

In everyday synoptic work, w rarely exceeds 20 X 10~~
3

.

Solving (3) and (4) for the vapor pressure, we get the occasionally
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useful relations:

(5) --3L; ,.-*L (exact).
c + w e+w8

The relations (5) can be replaced for most practical purposes by the

important approximate formulas

P P
(6) e ~ - w\ ea w8 (approximate).

Formulas (6) are obtained by ignoring w and ws in the denominators of

(5), since these are quite small in comparison with c. Formulas (6)

are the more accurate, the smaller w and ws are. The error in (6) rarely

exceeds 3%.

3*21. Numerical determination of mixing ratio. Now suppose p, T,

and r are known, and w is desired. The following calculation is carried

out: (i) The saturation vapor pressure es is obtained from T alone,

according to formula 3-11(8); (ii) we get e = res ,
from 3-19(2); (iii) we

get w from p and 6, by 3-20(3). If desired, q can be obtained from

348(3), or with a small error q = w. Thus the problem stated above is

solved in principle. This should be carefully understood.

However, this algebraic procedure involves laborious numerical com-

putations for each determination of w. For all the accuracy required in

practice, a graphical procedure is much quicker. This will be described

in section 3-23.

Another important problem is one that will arise in the use of the dia-

gram : given ws and r, to determine w. The exact solution is independent
of p and could be obtained as follows: (i) Get es from 3-20(5); (ii) then

get'*e from 3-19(2); (iii) then get w from 3-20(3). The result of this

algebra would be

The following approximate solution is the one invariably used in prac-

tice: Take the ratio of the two equations 3-20(6), obtaining

w

Hence

(2) w rw8 (approximate).

A comparison of (2) and (1) shows that (2) is exact when r = and also

when r - 100%. It can be shown that w obtained from (2) is usually

in error hy not more than 0.2 x 1(T3
,
which is accurate enough for most
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purposes. The error can be as much as 0.6 x 10~3
, when wa = 40.0 x

10~3 and r - 50%.

3 -22. Vapor lines on the diagrams. Since es is a function of T alone

(see 341), it follows from 3-20(4) that w8 is a function of p and T. Since

all the meteorological diagrams contain the variables p and T, it is

possible to draw curves of constant ws on each diagram. These curves

should properly be called mixing ratio lines for saturated air, but we shall

refer to them simply as vapor lines.

The shape of the vapor lines depends on the diagram. The differen-

tial equation of a vapor line may be obtained as follows: From 3*20(5)

if w8 const, then es = (const) p. Hence d(log p) = d(log e8 ). Intro-

ducing the expression 3-11(7) for (/(log es ), we have

(1) d(\og p) = -2353 d (
-
j

(vapor line).

By integrating (1) it is seen that on the emagram each vapor line is a

segment of a hyperbola, and that all vapor lines are congruent.
In the atmospheric range, the vapor lines are nearly straight lines on all

diagrams. They always have a slope between that of the dry adiabats

and that of the isotherms. That is, on each vapor line as p decreases,

T decreases but 6 increases. The vapor lines on a tephigram are shown
in fig. 3-36. The student should study the vapor lines on all the dia-

grams at his disposal. See 3-18 for the usual method of labeling them.

323. Graphical determination of w, <f, and e. We now consider the

graphical solution of the problem mentioned at the end of 3-19: given

p, T, and r, to determine w, q, and e.

(i) To determine w, first plot the point (T,p) on any thermodynamic

diagram. Interpolating between the vapor lines, find the value of w8 \

this should be accurate to 0.1 X 10~3
. Finally, multiply w8 by r to

obtain w, according to 321(2).

(ii) To determine q, simply take q = w. More accuracy is neither

necessary nor compatible with the approximation already made in (i).

(iii) To determine e, first obtain the value of e8 . Since es depends on

temperature alone, it will be the same at the point (T, 62.2 cb) as it is

at the point (T,p). Read the value w8 of the saturation mixing ratio at

the point (T, 62.2 cb). Then by 3-20(6),

1

Hence e8 103ze^ millibars. Finally, the value of e is equal to reB . This

completes the graphical solution of the problem mentioned.



Section 3-23 62

The rule for getting ea at any temperature can be expressed in words:

The value in millibars of the saturation vapor pressure ea at the temperature
T is approximately equal to the value in parts per thousand of the satura-

tion mixing ratio at the temperature T and pressure 622 mb. Thus a dia-

gram can replace a table of vapor pressures, with an error rarely exceed-

ing 4%.
One additional step will correct practically all this inaccuracy in e8 .

Having found iv'a above, express it in parts per thousand, and add it to

622, to get a pressure pi in millibars. Then go to the point (T,pi)
and read the value w'

f
of the saturation mixing ratio. This will be

almost exactly e8 in millibars. The reason follows from the exact for-

mula 3-20(5):

Pi tt Pi n 62.2 -MOV' ft 1

.- ^ % + w^ - -

The error committed here is negligible, compared with that in (1 ).

3*24. Thermal properties of moist air. Moist air for which the rela-

tive humidity is 100%, i.e., e= ea ,
is called saturated. Otherwise the

moist air is called unsaturated (e < es ). We have seen that the water

vapor seldom comprises more than a few per cent of the air. As a result,

during any process which does not lead to condensation, moist air

behaves like a perfect gas whose thermal properties differ only slightly

from those of dry air.

In 3-25 and 3-26 will be given the equation of state and the values of

the specific heats for moist air, using the general theory of chapter 2.

There will be given explicitly the small deviations from dry air caused

by the presence of vapor. These deviations will be expressed in terms

of the parameters w and q expressing the variable vapor content of moist

air.

In section 3-27 the adiabatic process for unsaturated air is considered.

This also is nearly the same as that for dry air. However, as soon as

saturation is reached in the adiabatic process, any further cooling leads

to condensation with consequent release of relatively large amounts of

latent heat. As a result there is a sudden transition to new types of

adiabatic processes, to be discussed in sections beginning with 3-30.

Thus it is vitally important to distinguish between the behavior of air

in its so-called unsaturated stage and its behavior in the saturated stage.

The unsaturated stage is called by some authors the dry stage, although
it does not deal with truly dry air.

The notation used here is in so far as possible governed by the follow-

ing principles. For dry air the constants and variables are given the
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subscript d. For water vapor they are given the subscript v. For moist

air and hence for the atmosphere in general they are given no subscript.

However, the adoption of a notation is always limited by the usage well

established by previous writers. There are also difficulties inherent in

the nature of a science. As a result, there will always be certain incon-

sistencies. For example, the vapor pressure might well be denoted by

pvj but e is always used. The temperature T is the same for all compo-
nents of a system in equilibrium; hence no symbols Td or jTv are needed.

3*25. Equation of state of moist air; virtual temperature. Let a

parcel of one ton of moist air have the specific humidity q. Then the

parcel contains Md = 1 -
<z

tons of dry air and Mv = q tons of water

vapor. According to 242 (3), the specific gas constant R of the mixture

is given by

1-R-MdRd+MJR*, or
( }

But by 3-06 (3) we can write Rv = Rd/e. Hence

Evaluating (1/e)
- 1 and using q w

t we get the important formulas

(2) = (1 + Q.6lq)Rd (1 + Q.6lw)Rd .

Thus the presence of water vapor will raise the specific gas constant of

atmospheric air from the value Rd = 287 up to a maximum of 294 (cor-

responding to q - 40 x 10~3 ).

Using (2), we can write the equation of state of moist air:

(3) pa =RT= Rd (l + Q.6lq)T.

We see from (3) that moist air of specific humidity q in the state (p,T)

has the same specific volume as dry air would have in the state (/>,jT*),

where

(4) r* - (1 + 0.61g)r (1 + 0.6lT;)r.

The temperature T* is called the virtual temperature of the moist air and

is by definition the temperature of dry air having the same pressure and

specific volume as the moist air.

The expressions (3) and (4), when combined, give an alternative form

of the equation of state for moist air :

(5)

'

pa -
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Thus to compute a. we have our choice of using the real temperature T
with an altered gas constant -R, or of using a fictitious temperature T*

with the dry air gas constant R*. The former method of equation (3)

is perhaps simpler for computations. The use of virtual temperature and

(5) affords a great simplification of later dynamical theory.

3 26. Specific heats of moist air. Consider the one-ton parcel of

moist air described in 3-25 above. Let there be introduced the quantity

dh of heat into the parcel. As a result the parcel is heated from tempera-

ture T to T + dT. This temperature rise dT is experienced by both the

dry air and the water vapor. Let dhd be the amount of heat received

by the dry air
, per ton of dry air. Let dhv be the amount of heat received

by the water vapor, per ton of water vapor. Then in the notation at the

start of 3-25:

(1) dh= Mddhd +

By dividing both sides of (1 ) by dT and writing Md andMv in terms of g,

we have

dh dhd dhv

(2) = (1 -<Z) -7-4-27,7;
'

dT di dT

Now (2) holds for an arbitrary process in which q (and hence w) are

constant. If the process is at constant pressure p for the whole parcel,

then from 3-20(5) we find that it proceeds at a constant partial pres-

sure e for the water vapor and hence at a constant partial pressure

pd = p - e for the dry air. At constant />, dh/dT becomes by 2-19(1)

the specific heat cp of moist air at constant pressure. Since e and pa are

constant, the other two quotients in (2) are specific heats at constant

pressure. Hence from (2) we have

cp
- (1

~
<l)Cpd + q cpv cpd \ 1 + (^

- M q

Evaluating cpv/cpd from 3-07(1) and 2-21(5), we have the important
formulas

(3) cp
= (1 + 0.90q)cpd (1 + 0.9Qw)cpd .

Thus the presence of water vapor will raise the specific heat of air from

cpd
= 1004 to a maximum of 1040. A similar analysis for the specific

heat cv of moist air at constant volume gives the less used formulas

(4) cv - (1 -f l.Q2q)cvd (1 + l.Q2w)cvd .

3 -27. Adiabatic process of unsaturated air. The adiabatic process of

unsaturated air (the unsaturated stage of 3-24) is a special case of the
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adiabatic process of any perfect gas. A certain parcel of moist air is

under consideration. Since no condensation takes place in the unsatu-

rated stage, the value of q is constant. Then R, cv , and cp have the

numerical values given by 3-25(2), 3-26(3), and 3-26(4). With these

values, the equations of section 2-24 define the adiabatic process exactly.

There only remains in theory to evaluate the constants K = R/cp and

t\
= cp/cv of 2-24. We have

1 + 0.61?
. ,

(1 + 0.90tf)cp<i 1 + 0.90(2

where K# = 0.286 by 2-24(12). Since q is always small, we can expand

(1 -f O^Og)"
1
in a power series and then can neglect squares and higher

powers of q. We finally obtain with all necessary accuracy the impor-
tant formula

(1) K (1
- 0.29q)Kd (1

- Q.29w) Kd .

A similar derivation gives a formula important in acoustics, but not

used by us:

We see from (1) that the presence of water vapor will lower Poisson's

constant K from its dry air value of 0.286 to a minimum of 0.283.

Let a parcel of moist air be in the initial state (T,p) , where p < 100 cb.

According to 2-24(10), the temperature T\ and pressure p\ at any other

state in the unsaturated adiabatic process will be given by:

(2) T, =

The equation (2) defines a curve which might be plotted on any meteoro-

logical diagram, to be called an unsaturated adiabat. Since K varies with

q, through (T,p) there would be a different unsaturated adiabat for each

value of q. Let q be fixed, and consider the corresponding adiabat (2).

This curve will intersect the 100-cb isobar at a temperature U , where

(3) U =

Now on the diagram there is a dry adiabat through (7\/>) with the poten-
tial temperature 6, where by 2-26(1):

(4) 8-:

This 6 is the temperature which dry air in the state (T,p) would attain

after adiabatic warming to 100 cb. Comparing (3) with (4) and remem-
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bering that K is slightly less than *d, we see that 6U is slightly less than 0.

Thus the adiabatic change of temperature with pressure is slightly less for
moist air than for dry air. This rule holds for adiabatic cooling in the

unsaturated stage, as well as for warming. It is ultimately a conse-

quence of the water vapor's greater heat capacity.

From (3) and (4), it can be shown that the dry adiabat and the steep-

est unsaturated adiabat through the same point at 40 cb will have a

temperature difference of about one degree at 100 cb. Hence in practical

problems the dry adiabats can safely be used for moist unsaturated air with-

out committing a significant error. This is invariably done in practice,

and the unsaturated adiabats are never drawn on a diagram.
The potential temperature 6 has so far been defined only for dry air.

For moist air in the state (T,p) we have the choice between defining 0:

(1) by (4) above; or (ii) as equal to the Bu of (3) above. Definition (i)

permits to be read directly from the dry adiabats of the meteorological

diagram. Definition (ii) would preserve the property that 6 is equal to

the temperature of the parcel after adiabatic compression to 100 cb.

No definition can do both of these things.

In order to keep our theory in the closest harmony with meteorological

practice, definition (i) has been chosen, so that for moist or dry air,

potential temperature is defined by the equation (4) above, i.e., by 2-26(1).

For practical purposes we shall assume that the moist unsaturated adia-

batic process is represented by the dry adiabats = const.

3*28. Virtual potential temperature; characteristic point. Accord-

ing to the formula 3-27(4), every point (T,p) on a meteorological dia-

gram has a definite value of 6 assigned to it, which may be read directly

from a diagram by interpolation between the dry adiabats. It is some-

times convenient to use the so-called virtual potential temperature 6*.

This 6* is the value of 6 for the point (T*,p). According to 3-27(4),

"
For moist air in the state (T tp), T* is determined from 3-25(4), and

from 3-27 (4). Introducing these into (1), we get

(2) *-(! + 0.619)0 (1 + 0.61^)0.

Thus 6* bears the same relation to that T* bears to T.

Consider now unsaturated air in the initial state (T,p) and having the

mixing ratio w. The point (T,p) plotted on a diagram is called the

image point of the air. When this air performs an adiabatic process its

image point moves nearly (see 3-27) along the dry adiabat through the
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point (T,p). For an adiabatic compression the air will always remain

unsaturated, and its image point continues along the dry adiabat.

When the process is an adiabatic expansion the image point will move

along the adiabat to the point (T8jp8 ) where saturation is reached.

(See fig. 3*38). Rossby has named this the characteristic point, and it is

conveniently determined as the point where the dry adiabat through
the image point intersects the vapor line wa w. Thus the coordinates

of the characteristic point may be thought of as (0,w)> where 6 and w are

the values of these respective variables at the image point. Note that

6 and w remain unchanged throughout the adiabatic process from image

point to characteristic point.

The point (T8,p8 ) marks the end of the unsaturated stage. Further

adiabatic expansion results in condensation of part of the water vapor
with the release of latent heat which is added to the air. This requires a

separate investigation, to be given in the sections beginning with 3-30.

3*29. Useful approximate formulas. If a meteorologist has frequent

occasion to use the virtual temperature T* or the moist air constants R,

cp1 and K, the following formulas are recommended. The formula (1)

for the virtual temperature is especially useful in working on a diagram.
In using formula 3-25(4) in the lower atmosphere we can use the

average value 273K for T. Thus we have

(o.ei)(273)w

This gives the formula

(1) r*

Formula (1) is almost exact at T = 273K, and is good enough for most

purposes in the atmosphere.

ForU,wehaveby3-2S(2)thatlZ 1^+0.611?^- 287 + 0.175

For many purposes we can use

(2) U

For cp we have similarly from 326(3),

(3) cp 1

For ic we get from 3-27(1) a similar, but less accurate, formula

All these formulas can be used mentally.

3*30. The adiabatic processes of saturated air. When saturated air

expands adiabatically it will continue to remain saturated during the
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process, and some of the vapor will condense to water or ice. If the air

were enclosed in an adiabatic container during the expansion, the prod-
ucts of condensation would remain in the system and would evaporate

again if the process were reversed into an adiabatic compression. This

process which is both reversible and adiabatic is called the reversible satura-

tion-adiabatic process.

In the atmosphere the above conditions are not usually satisfied.

Condensation is in most cases followed by precipitation, so that some of

the condensed water or ice is removed from the system. The extreme

case where all the products of condensation fall out of the air is called the

pseudo-adiabatic process. This process is evidently not reversible, and

neither is it strictly adiabatic, since the condensation products remove

some heat from the system when they fall out. (In fact, the system
itself is constantly changing in mass and composition.) The real atmos-

pheric processes lie somewhere between the two extremes just described.

The reversible saturation-adiabatic process is divided into three stages:

(i) At temperatures above 0C there is the rain stage, where the vapor
condenses to water, and the water vapor has the saturation vapor pres-

sure over water; (ii) at 0C there is the hail stage, where the condensed

water freezes to ice; (iii) at temperatures below 0C there is the snow

stage, where the vapor condenses directly to ice, and the water vapor has

the saturation vapor pressure over ice. The pseudo-adiabatic process

has only a rain stage and a snow stage, since no water is retained to be

frozen in a hail stage.

In the real atmospheric process, the temperature of the transition

between the rain and snow stages is usually below 0C, owing to the

tendency of the water droplets to remain in the supercooled liquid stage.

The snow stage differs relatively little from the rain stage. The hail and

snow stages would require a separate discussion, but are meteorologically

less important than the rain stage. The effect of an unknown amount of

mixing makes the true atmospheric processes differ somewhat from the

ideal processes described above. For all these reasons we shall confine

our discussion to the rain stage and make the approximation that the

entire adiabatic process is in the rain stage.

The adiabatic expansion of saturated air was first investigated by

Hann, and by Guldberg and Mohn. A more nearly complete discussion

was given by Hertz (1884) and Neuhoff (1901). The distinction

between the reversible saturation-adiabatic and the pseudo-adiabatic

process was made by von Bezold (1888). A thorough discussion of both

processes with, numerical comparisons between them was made by

Fjeldstad (1925).

Both the reversible saturation-adiabatic and the pseudo-adiabatic
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processes can be expressed in the form of differential equations involving

d'F, dp, and dw8 . By wa we mean the saturation mixing ratio over water

in the state (T,p). Since the air is always saturated, w8 is also the actual

mixing ratio of the air. Immediately upon expansion from the charac-

teristic point, the temperature starts to decrease. This causes wa to

decrease. Hence some water vapor condenses to liquid water, releasing

some latent heat. This heat is used to warm the whole system, includ-

ing the moist air. Hence the cooling proceeds at a slower rate than in the

dry-adiabatic process. As a result of this argument, it follows that the

adiabats for saturated air must have a slope between that of the dry adiabats

and the vapor lines. See fig. 3-3 1.

If the reader is interested only in an approximate equation for these

adiabatic processes, he should go to section 3-34 at once.

3-31. Exact equation of the pseudo-adiabatic process. To derive the

exact equation for the pseudo-adiabats, let the saturated air be in the

state (T,p,ws ) represented by A in fig. 3-31. After a small pseudo-
adiabatic expansion, the air is in the state (r+ dT,p + dp,w8 + dw8 )

represented by B in the figure. Note that dT, dp, and dw8 are all nega-
tive. Let us consider a mass of

l + w8 tons of moist air, made up of

one ton of dry air and wa tons of

water vapor. In the pseudo-adia-

batic process AB, the quantity dw8 p + dp-
of water vapor condenses and drops

out as precipitation. The conden-

sation releases the quantity of heat

dll = -Ldw8 ,

p,

FIG. 3-31.

(1)

which is used to heat the moist air.

From 2-22(3) the heat dh absorbed

by the moist air per unit mass is related to the temperature change dT
and pressure change dp as follows:

(2) dh=cpdT-RT -

P

Here cp and R are the thermal constants for moist air. Since the mass

of moist air is 1 + w8 , we see that

(l + w.)dh.(3)

Combining (1), (2), and (3) we have

(4) Ldw, i
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Equation (4) is an exact form of the differential equation for the pseudo-
adiabatic process.

It is convenient to express (4) in terms of the constants cpd and Rd
for dry air. We substitute for R from 3-25(2) and for cp from 3-26(3).

Multiplying through by (1 + wa ) and ignoring squares of ws , we get

(5) -Ldw, -
(1 + 1.90w9)cp4lT - (1 4- 1.61w8)RdT

P

Equation (5) can be shown to be equivalent to that derived by Fjeldstad.

3*32. Exact equation of the reversible saturation-adiabatic process.

As stated in 3*30, in the reversible saturation-adiabatic process the con-

densed water is retained in the system in the form of cloud droplets.

Let w be the total mass of water substance in a saturated parcel contain-

ing unit mass of dry air. The system will then consist of 1 -f w8 tons of

moist air and w - w8 tons of liquid water. Let the air be in the state

(T,p,w8 ) represented by point A in fig. 3-31. Let the expansion to the

state (T+dT,p + dp,w8 + dw8 ) take place. As in 3-31 the quantity

dw8 tons of vapor will condense and release the quantity of heat

(1) dlli - -Ldw..

A second source of heat is the cooling of the w - w8 tons of water through

dT degrees. This provides the quantity of heat

(2) dH2 = -cw (w - w8)dT,

where cw is the specific heat of water. The total heat dHi 4- dH2

released by the process is absorbed by the moist air. For the 1 + wa

tons of moist air this heat is equal to

(3) (l + w

Equating the total heat released in (1) and (2) to the heat absorbed in

(3), we get

-Ldw9
- cw(w - w9)dT - (1 + w8 ) cpdT - RT I

Introducing Rd and cpd and transposing the term -cw(w - we)dT give

-Ldw8 - ["
L
l + 1.90w9 + (w- w.) cpddT-

P

Putting in the value cw/cpd - 4185/1004, we get the final form

(4) -Ldw8 - [1 + 1.90nr. + 4.17(w - w8 )]cpddT- (1 +
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Equation (4) is an exact form of the differential equation for the reversi-

ble saturation-adiabatic process. It will be noted from (4) that there is

a different reversible saturation adiabat through (T,p) for each value w
of the total water content. They differ only slightly from each other and

from the pseudo-adiabat.

3-33. Critique of the two equations. Equations 3-31 (5) and 3-32(4)

cannot be integrated directly in their present form. The latter can be

written in terms of the variables w8 , /></, and T and is directly integrable

in that form, a fact of questionable practical value, since pd is not a con-

venient variable to use. The former equation seems non-integrable in

terms of elementary functions, a consequence of its representing a non-

adiabatic process.

Either equation may be integrated numerically to any desired degree
of accuracy by a series of small steps. To do this, a second relation

between dwSJ AT, and dp is obtained by differentiating 3*20(4), which

expresses the physical condition that the air remains saturated. See

5-10(6). This second relation may be combined with the equation of

either saturation process, and the two can be solved simultaneously
for dT and dp in terms of dw8 . The work is very laborious in practice.

This numerical integration shows that the pseudo-adiabatic process

cools slightly faster than the reversible saturation-adiabatic process.

This is due to the loss of the heat content of the precipitated water. The
difference is very slight and, in comparison with the effects of radiation

and turbulent exchange of heat, may be neglected in practical problems.
It is therefore immaterial for practical purposes whether the adia-

batic process of saturated air is calculated from the reversible satura-

tion-adiabatic or from the pseudo-adiabatic equation, provided the

process is an expansion. The practical difference between the two

appears when the process is reversed. When the condensed water

remains in the air, the process is reversible, and the compression returns

along its path of expansion. However, when a pseudo-adiabatic expan-
sion is followed by compression, the compression nearly follows a dry
adiabat.

3*34. Simplified equation of the adiabatic process of saturated air.

Let a parcel of 1 -f- w8 tons of saturated moist air be in the state (p,T,w8)

represented by A in fig. 3-31. The parcel thus contains one ton of dry
air and w8 tons of water vapor. After a small adiabatic expansion the

air is in the state (T+ dT,p -f dp,w8 + dw8 ) represented by B in that

figure. Note that dT, dp, and dw8 are all negative.

Now the condensation of dw8 tons of water vapor will release the

quantity of heat Ldw8 . Let us make the slightly incorrect assumption
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that this latent heat is used exclusively to heat the ton of dry air; i.e.,

we ignore the heating of the wa tons of water vapor. Then by 2-22(3)

the heat dh absorbed by the dry air is related to the temperature change

dT and pressure change dp as follows:

dh = cpddT -
P

Equating dh to Ldwa ,
we arrive at an important approximate equation :

( 1 ) -LdwB
= cpddT - RdT - ''

It will be observed that the exact equations 3-31(5) and 3-32(4) both

reduce to (1) when the small correction factors to cpa and Rd are neg-

lected. The solutions of (1) are found to lie very close to the exact solu-

tions of 3-31 (5) and 3-32(4). In view of the element of uncertainty in

atmospheric problems, we are quite justified in using the equation (1)

as an acceptable formula for the adiabatic process of saturated air. This

will be done, and the process described by (1) will in the following be

called the saturation-adiabatic process. The corresponding lines on the

diagram will hereafter be called saturation adiabats. It will be shown in

section 3-36 how these lines are constructed on the diagram.
From 226(3), we may write (1) in the form

Ldws dO
(2)

-
-*7*

From (2) the change dO of potential temperature in fig. 3-31 can be

expressed in terms of dws .

3 -35. Isobaric warming and cooling. For two later sections (3-36

and 3'39) it is necessary to compute the temperature change resulting

from isobaric evaporation from, or condensation into, a parcel of air.

Let a parcel of moist air, saturated or not, be in the state (T,p,w).

Suppose that some vapor is condensed from the parcel, or that some

water is evaporated into the parcel. Let either process take place at

constant pressure, the latent heat being supplied to or taken from the air.

In the case of condensation the resulting change dw of mixing ratio is

negative, and the air absorbs the latent heat by warming. In the case of

evaporation dw is positive, and the air provides the latent heat by cool-

ing. Let (dT) p be the resulting isobaric change in the temperature of the

air. The air thus finishes in the state [T + (dT)p,p,w 4- dw].

The expression giving (dT)p in terms of dw is easy to obtain. In the

case of condensation, the latent heat made available to the moist air (per
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ton of dry air) is -Ldw. We shall, as in 3-34, assume that this heat is

used exclusively to heat the ton of dry air. Since the process is isobaric,

the heat dh absorbed by the air is from 2-22(3)

dh = cpd(dT)p .

Equating the heat Ldw released to the heat dh absorbed by the air, we

get

(1) -Ldw = cpd (dT) p .

It will be seen that (1) is valid for either condensation or evaporation.
It should be noted that formula (1) is mathematically equivalent to the

special case dp = of formula 3-34(1).

For easy computation, we solve (1) for (dT)p and substitute for L and

cpd their values from 3-08(4) and 2-21 (5). The result is

(2) (dT)p = -2.5(l(AfaO.

By grouping 103 with dw we have expressed dw in parts per thousand, as

on a diagram. Equation (2) can thus be expressed in words:

At constant pressure, adiabatic condensation of one part per thousand of

vapor will warm moist air two and one-half degrees. At constant pressure,

adiabatic evaporation of the same amount of water into air will cool the

air two and one-half degrees.

3-36. Graphical construction of the saturation adiabats. The con-

struction of the saturation adiabats can be carried out on a diagram very

quickly by using 3-35(2). The method is equivalent to a numerical inte-

gration of the equation 3-34(1). Suppose saturated air is in the state

(T,p,ws ) represented by A in fig. 3-31. Let dws be fixed at some con-

venient small negative value, generally -1 X 10~3 or -2 x 10~3
. It is

desired to find the point B (see fig. 3-31) where the saturation adiabat

through A crosses the vapor line w8 + dw8 . For this construction we

replace the saturation-adiabatic processAB by another adiabatic process

AA fB consisting of two parts : (i) The latent heat released by the conden-

sation of -~dw8 tons of vapor is used to warm the air at constant pressure

along the path AA
f

\ (ii) the now unsaturated air is brought back to

saturation by a dry-adiabatic expansion A *B. Both (i) and (ii) are

easily performed graphically.

According to 3-35(2) the warming .4.4' will amount to 2.5 degrees for

each part per thousand of vapor condensed. Thus A r
is easily plotted.

The point B is found at the intersection of the dry adiabat through A
f

with the vapor line w8 -f dw8 . When B has been obtained, the same pro-

cedure can be repeated from that point, and so on. We thus obtain a

series of points^, B, C, D, on the saturation adiabat. A smooth
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curve can be put through these points for as long a distance as we choose

to carry out the process.

The approximation 3-35(2) is consistent for infinitesimal dwa with the

approximate equation 3-34(1) defining the saturation-adiabatic process.

The adiabatic process AA *B described above is therefore equivalent to

the saturation-adiabatic process AB of 3 '34, as long as dws is infinitesi-

mal. For finite values of dwa , however, the method of the present sec-

tion has a small error. The smaller the numerical values chosen for

dw8 ,
the more accurate the method is in practice. In this way it is

limited only by one's ability to read the diagrams.

FIG. 3-36.

As an example we will compute the saturation adiabat through
T 20C, p = 100.0 cb. This and other saturation adiabats are shown

on the tephigram in fig. 3-36. A calculation yields w8
= 14.9 X 10~~

3
.

The remaining steps have been done on a large tephigram and are shown

in table 3-36. The student should follow the calculations on some

legible diagram.
There will be discrepancies on another diagram, of course, because of

the human factor and the fact that few meteorological diagrams are

made from strictly accurate plates. The point is that this method is
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convenient and reliable. More will be said in 3-38 about the asymptotic

dry adiabat mentioned in table 3-36. It is labeled 6 = 6e .

TABLE 3-36

POINT r(C) p(cb) 10 3
w, 10*dwa (dT)p 0(K)

A 20.0 100.0 14.9 -0.9 2.25 293.0

A* 22.2 100.0 295.2

B 18.4 95.8 14.0 -2.0 5.0 295.2

B' 23.4 95.8 300.4

C 14.4 85.8 12.0 -2.0 5.0 300.4

C' 19.4 85.8 305.7

D 9.8 76.3 10.0 -2.0 5.0 305.7
D' 14.8 76.3 311.2

E 4.9 67.7 8.0 -2.0 5.0 311.2

E' 9.9 67.7 316.8

F -1.0 59.2 6.0 -2.0 5.0 316.8

Ff
4.0 59.2 ,. 322.8

G -8.4 50.2 4.0 -2.0 5.0 322.8

G' -3.4 50.2 329.2

H -19.7 40.3 2.0 -1.0 2.5 329.2

H' -17.2 40.3 332.6

7 -29.2 34.0 1.0 -0.5 1.25 332.6

/' -28.0 34.0 334.6

/ -37.8 29.5 0.5 -0.5 1.25 334.6

f -36.5 29.5 336.2

(asymptotic dry adiabat: 6 = 336.2)

3 -37. Nomenclature. A number of temperatures and potential

temperatures of moist air are used by meteorological writers. There is

fair agreement on the definitions of the variables to be introduced, but

there is very little agreement on the names to be given them. It is

therefore important to learn the variables in terms of definite operations
on a diagram. By means of the operations themselves it is possible to

distinguish what an author means by a certain complicated name.

Concerning our own terminology the word wet bulb or subscript w
always refers to temperatures attained by a parcel after it has been

completely saturated. The word equivalent or subscript e always refers

to temperatures attained by a parcel after it has been completely dried

out. The word potential (or letter 6) always refers to a temperature
attained after some kind of adiabatic compression to 100 cb.

Any temperature with the prefix isobaric or subscript i is that attained

by a parcel after being saturated or dried out at constant pressure.

These are in contrast to temperatures labeled by a prefix adiabatic or

subscript a. The latter are temperatures attained after a parcel has been

saturated or dried out along dry and saturation adiabats.
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3-38. Definitions of Ow ,
Oe ,

Taw ,
TaeJ Td. The method of labeling dry

adiabats can be applied to the saturation adiabats. Every saturation

adiabat intersects the isobar p = 100 cb. The value of the temperature
at this intersection is called the wet bulb potential temperature, and is

denoted by 6W . See fig. 3-38. The value of 6W uniquely labels the

saturation adiabats. On many diagrams the saturation adiabats are

drawn at intervals for Ow of 2C.
A parcel of moist air is said to have the wet bulb potential temperature 6W

of the saturation adiabat through the characteristic point (see 3-28) of the

parcel.

FIG. 3-38.

Another way of labeling the saturation adiabats is obtained from the

fact that as w8 approaches 0, the saturation adiabat approaches asympto-

tically a certain dry adiabat. (This is not proved here but is plausible

from a diagram.) The potential temperature of this asymptotic dry
adiabat is called the equivalent potential temperature and is denoted by Be .

This value of 6e uniquely labels the saturation adiabat. On some dia-

grams the value of Oe is given at the low-pressure end of each saturation

adiabat. On other diagrams e must be computed according to the

method described in 341.

A parcel of moist air is said to have the equivalent potential temperature e

of the saturation adiabat through the characteristic point of the parcel.
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The two potential temperatures Ow and Qe are both used in the litera-

ture and both must be familiar to the meteorologist, even though either

one of the two would be quite sufficient in theory.

Consider any parcel of moist air with pressure p, wet bulb potential

temperature Ow ,
and equivalent potential temperature 6e . The tempera-

ture at the point where the saturation adiabat 6W crosses the initial

isobar p is called the adiabatic wet bulb temperature and is denoted by
Taw - See fig. 3-38. The temperature at the point where the dry adiabat

6 = e crosses the initial isobar is called the adiabatic equivalent tempera-
ture and is denoted by Tae .

The dew point temperature Td of a parcel of moist air is the temperature
at which the air would become saturated if it were cooled isobarically

without change of mixing ratio. This temperature is that of the inter-

section of the initial isobar with the vapor line w8
= w. See fig. 3-38.

The cooling process defining Td is not an adiabatic process.

Each of the temperatures just defined has found theoretical and practi-

cal applications to meteorology, and should be known. Each can be

defined by an ideal physical process on the initial parcel, and the student

should have no trouble in stating the processes needed. For example,
Tae is attained by a parcel from the successive application of three

processes: (i) expanding the parcel by a dry-adiabatic process until it

becomes saturated at the characteristic point; (ii) completely drying
the parcel out by a saturation-adiabatic expansion to very low pressure;

(iii) compressing the resulting dry air dry adiabatically to the initial

pressure.

3 '39. Definitions of Tie and Tiw . Consider the fictitious process

where a parcel of moist air is dried out by an isobaric process which is

also adiabatic. That is, we suppose that all the water vapor is condensed

out of the parcel, the latent heat released being used to heat the air

itself. The resulting temperature is called the isobaric equivalent tem-

perature and is denoted by Tie . It can be shown that for moist air we

always have

(1)
' Tie < Tae .

Both the processes which define Tae and Tie are adiabatic, and the

amount of latent heat released is the same in both of them. The final

temperatures are, however, different, since the two processes follow

different paths in the diagram and therefore perform different amounts of

work.

In contrast to the temperatures defined in 3-38, which are usually

obtained graphically, Tie is obtained by a simple calculation. From

3-35(2) each part per thousand of vapor condensed will heat the air
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2.5C. Hence with good accuracy,

(2) rie

where w is the mixing ratio of the air.

The corresponding wet bulb temperature is obtained from the initial

parcel by evaporating water vapor into the parcel isobarically and

obtaining the necessary latent heat by cooling the parcel. This process

may be assumed to take place when precipitation falls through a layer

of unsaturated air. Thus the mixing ratio rises from its initial value w,

while the temperature falls from its initial value T. The temperature
where the air becomes saturated is called the isobaric wet bulb temperature

and is denoted by T^w . The corresponding saturation mixing ratio is

denoted by WiW . It can be shown that for unsaturated air we always
have

1 aw < * iwi

for the same reason as in the case of the equivalent temperatures. The

difference T^ Ta\o rarely exceeds a few tenths of a degree. For this

reason many authors lump the two into a single
" wet bulb tempera-

ture."

TW can be very accurately obtained by a combination of reading a

diagram and numerical interpolation, as follows. Integrating 3-35(2)

between the initial state and the saturated state, we get

Tiw -T-- 2.5 x 10
3
(wt

-w - w).

This may be written in the form

(3) Tiw + 2.5(10
3wiw )

- T+ 2.5(10
3
ze/)

- Tie .

Since both TiW and WiW are unknown, (3) cannot be solved directly.

For any temperature T on the initial isobar, the corresponding satura-

tion mixing ratio wa can be read from a diagram. Then the variable

quantity

can easily be computed. Now the solution Tiw of (3) is the value of T
such that aT = 7\e . This is most easily found by choosing a T likely to

be a little too low, for example Taw , and another T likely to be a little

too high. On computing a^p for both of these guesses, a direct interpola-

tion will yield the T for which aT = Tie- This T is T{w . All tempera-
tures may be expressed in centigrade in this computation.
A more important problem in practice is to obtain w, being given Tand

TiW . This is much easier, since from a diagram we can get WiW at once.
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Then (3) can be solved for w, yielding the so-called psychrometricformula

(4)

The importance of this formula will appear in the next section.

It can be shown that the temperatures defined so far stand in the

following relation for moist unsaturated air:

T8 <Td < Taw < Tiw <T< Tie < Tae-

This can be used as a check on the computations.

3 '40. Surface observations. The humidity is obtained in surface

observations by measuring the
"
wet bulb temperature

"
with a

psychrometer. The evaporation from the damp cloth lowers the

temperature by a very complex process, which probably cannot be ade-

quately described. Though it is an isobaric process, it certainly is not

adiabatic, so that the temperatures of 3-39 do not strictly apply. How-

ever, it isfound that with very little error we can assume the wet bulb tempera-

ture to be equal to Tiw .

With this assumption, we can regard the raw data of a surface obser-

vation as being the values of T, Tiw , and p. From the psychrometric

formula 3-39(4) we can get w. Thus we have the state of the air in

terms of T, p, and w. From this point on all other desired quantities can

be obtained as outlined previously.

In particular: r can be obtained from 3-21(2) ; T*, from the method of

3-38; and e, from the method of 3-23. These are the moisture variables

usually reported in a surface observation and obtained from psychro-
metric tables. The present discussion has shown how a surface observa-

tion report can be prepared independently of such tables by methods

which are rapid and practical, requiring only a diagram.

3-41. Example. The following example will show how the formulas

and processes described in this chapter are used to evaluate the different

variables. The graphical operations are done on a tephigram like that

of fig. 3-36.

Given air in the initial state T - 13.5C, p - 90.0 cb, w - 3.0 X 1(T3 .

The following quantities are obtained immediately by calculation:

T*,R, cp , *, a:

By 3-29(1), r* - 13.5 + }3 - 14.0C - 287.0K.

By 3-29(2), R - 287 + }3 - 287.5 kj t"1
degf

1
.

By 3-29(3), cp - 1004 + A3 = 1006.7 kj t"
1

deg~
l

.

By 3-29(4), K - 0.286 - 3(0.0001) = 0.286.

By 3-25(5), a - (287)(287)/(90) - 915 m3 t"1
.
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The following quantities are usually obtained from a diagram : wa , 8,

Pai * 81 vwt 1 oiy , C ,
1 aei 1 di &S-

Plotting the image point (13.5C, 90.0 cb) on a diagram, we read

W8 =11.0xl0~
3 and we interpolate 6 = 295.5K between the dry

adiabats. Following this same interpolated adiabat to the point where

it intersects the vapor line w8
= 3.0 x 10~3

, we read the pressure ps = 68.3

cb and temperature T8
= -8.2C. This point is the characteristic

point. The saturation adiabat through this point intersects the 100-cb

isobar at the temperature 6W = 10.0C = 283.0K.

Going back up the same saturation adiabat, we read the temperature

Taw where it crosses 90.0 cb, getting Taw = S.OC. We continue on the

saturation adiabat to the point ( -24.9C, 51.2 cb) where it crosses the

vapor line wa
= 1 X 10~~

3
. We get de by following the construction of

section 3-36. Since W3ws
= 1, we add 2.5C isobarically to the last

point mentioned and get ( -22.4C, 51.2 cb). We read the potential

temperature Oe
= 304K. (This is the only safe method on most dia-

grams, as it is impossible to estimate which dry adiabat the saturation

adiabat is approaching.) Following the dry adiabat 6 = Oe to 90.0 cb,

we read TM - 21.8C.

We now read the dew point temperature Td = -4.7C at the intersec-

tion of the vapor line ws 3.0 X 10~3 with the initial isobar p = 90.0 cb.

To get e8 ,
we follow the isotherm T = 13.5C to its intersection with

the pressure 622 mb (see section 3-23). Here 10
3w = 16, which when

added to 622 gives 638. At (13.5C, 638 mb) we read 10X' - 15.5,

so that ea = 15.5 mb = 1.55 cb.

At this stage, we can obtain r, e, Tie , and Tiw by calculation. By
3-21(2), r w/wa

= 3.0/11.0 = 27%. Then by 3-19(2), e = re, =

(0.27)(1.55) - 0.418 cb. From 3-39(2), Tie
- 13.5 + 2.5(3) - 21.0C.

To get Tiw we follow the method of section 3-39. We use Taw = 5.0C
as the first guess. From the diagram at (5.0C, 90.0 cb), w8

- 6.1 x
10~3 . Thus

a5
= 5.0 + (2.5) (6.1) - 20.25.

Similarly, trying 6.0C as a second guess, with the corresponding value

w9
- 6.5 X 10""

3
,
we have

a6 = 6.0 + (2.5) (6.5)- 22.25.

Interpolating between 5 and 6 to get ar - Tie
- 21.0, we get

21.0 -20.25^
22.25- 20.25

~ 5-4U

Several of the graphical operations can be checked by use of formulas,

if desired, but unless exceptional accuracy is desired this is unnecessary.



CHAPTER FOUR

HYDROSTATIC EQUILIBRIUM

4-01. The hydrostatic problem. The preceding chapters have
treated the physical behavior of individual air elements. We shall now

proceed to discuss the distribution of air elements in space. In the

present chapter the case will be considered where the atmosphere is in

equilibrium. Although this case never holds in practice, there are

several reasons why it is important to examine the atmosphere in this

state. First, it serves as the natural introduction to the more compli-
cated general problem of the atmosphere in motion. Second, the analy-
sis of a resting atmosphere will provide useful insight into the general
laws for the distribution of mass and pressure. Third, it will be shown
later (see 7-14) that an important practical problem can be solved with

sufficient accuracy by assuming the atmosphere at rest.

This so-called hydrostatic problem consists in determining the dis-

tribution in space of the physical properties of the air elements, i.e., their

pressure, temperature, specific volume, and density. Our knowledge of

this distribution is in practice obtained by a series of meteorological

observations, which are taken simultaneously at the surface of the earth

and, to a less extent, from the free atmosphere. The surface observa-

tions give values of the atmospheric variables at fixed points. The

upper air observations on the other hand are made by sounding instru-

ments which give simultaneous values of the atmospheric variables,

pressure, temperature, and humidity. The soundings give no direct

information about the position in space where the various values occur.

Thus the problem to be solved in order to determine the distribution in

space of mass and pressure is to refer the upper air observations to geo-

metric points, or more specifically to determine the heights which corre-

spond to the various pressure values along an aerological ascent. The
solution of this problem is the practical aim of this chapter.

4 '02. The fields of the physical variables. Each geometrical point

within the region of the atmosphere is occupied by an infinitesimal ele-

ment of air in a certain physical state, characterized by certain definite

values of the physical variables p, a, T. A region where every point has

a definite value of a physical property assigned to it is known as a field

of that property.

81



Section 4-02 82

Let us consider any one of the physical variables, for instance, the

pressure. Apart from certain singular points the pressure will from

every point in space increase in certain directions and decrease in others.

Thus, through every point there is a surface on which the pressure does

not change, which separates the region of increase from the region of

decrease. This surface does not terminate anywhere in the interior of

the atmosphere; it either is closed or continues until it intersects the

surface of the earth. This surface is called an isobaric surface. It

divides space into a region of higher pressures on one side and a region of

lower pressures on the other side. Consider now two isobaric surfaces

characterized by the pressures p and p + S/>. These surfaces do not

intersect, for the pressure has only one value at a point. The normal

distance between the two surfaces is everywhere small if the pressure

interval dp is sufficiently small. The two surfaces bound a thin layer

which is known as an infinitesimal isobaric layer. The whole atmosphere

may accordingly be divided into a large number of thin isobaric layers.

In practice it is unnecessary to draw many surfaces, since a small number

gives a sufficiently clear picture of the pressure field. Generally the sur-

faces p = 0, 1, 2, cb are selected. The layers defined by these sur-

faces are called the isobaric unit layers. This method of representation is

essentially the one used in practical meteorology. The isobars which

are drawn on the synoptic weather map are the intersections between the

isobaric surfaces and mean sea level. If similar isobars are drawn in a

number of level surfaces sufficiently close together, one obtains in prac-

tice the three-dimensional picture. We shall in the following discussion

only occasionally make use of the two-dimensional isobars in the level

surfaces, and generally think of the pressure field in terms of its isobaric

unit layers.

A similar geometrical representation of the temperature field is given

by the isothermal surfaces and the isothermal unit layers. The mass

field may be represented either by the specific volume or by the density.

According to 2-03(1), a surface a = const is always a surface p = const,

so these two variables define the same family of surfaces. However, the

selection of unit surfaces and unit layers is different, depending upon
which of the two is used for the description of the mass field. When the

specific volume is used, the mass field is geometrically represented by the

isosteric surfaces and unit layers. The surfaces and unit layers of den-

sity are called isopycnic.

Any physical quantity whose field can be described by one single

numerical value in each point in space may be given a similar geometrical

representation. There is no essential difference between such fields, and

accordingly they may be treated mathematically as quantities of the
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same kind. It is then unnecessary to derive the mathematical rules for

such quantities more than once. Physical quantities of this kind are

known in mathematical physics as scalars, and their fields as scalarfields.

We shall presently meet other physical quantities which for their descrip-

tion require more than one number in each point. Before these quanti-

ties are discussed we shall introduce analytical expressions for the

scalars.

403. The coordinate system. The fundamental tool which is used

to describe geometrical quantities in analytical terms is the coordinate

system. The ideal system for atmospheric problems would of course be

one with spherical coordinates. For most purposes, however, the Car-

tesian or rectangular system is satisfactory, and is preferable because of

its great simplicity. The Cartesian system generally adopted in mathe-

matical physics is the so-called right-handed system, which by definition

is such that a rotation in the

xy plane from the positive x .

axis to the positive y axis will

drive a right-handed screw in

the direction of the positive z

axis. See fig. 4-03. It then

follows that the rotations y to

z and z to x will also give the (north)

right-handed screw displace-

ments along the positive x

axis and y axis respectively. x (east)

We shall later apply this FlG> 4 . 3. The standard system of coordinates.

right-handed screw rule when-

ever the rotation in a plane is associated with a positive direction along

the axis of rotation.

In meteorology this system of coordinates is generally given a fixed

position and orientation with reference to the earth. The origin is

placed at some special point, fixed in the earth's surface. The xy plane

is chosen as the plane tangent to the surface of the earth at the origin,

with the x axis to the east and the y axis to the north. This choice

automatically fixes the direction of the z axis as pointing vertically up-

ward. This system will be referred to as the standard system.

4*04. Analytical expression for scalar quantities. It was shown in

section 4*02 that any scalar quantity may be represented geometrically

by its surfaces of constant value of the scalar, or more specifically by its

equiscalar unit layers. Let the scalar be denoted by e, and consider first

one of its surfaces defined by the value ei. The equation for this surface
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in a rectangular system of coordinates will be of the form ei =

where &(x,y,z) is a certain definite mathematical function of the variables

x, y, z. If this function is put equal to another constant value e2 close to

61, we obtain the equation for another surface: 2= *(x,y,z), which

generally is close to the surface ei ,
and so on. Thus the whole scalar field

may be described analytically by the expression

(1) e=e(w).

By successively giving e the values 0, 1, 2, this expression gives the

equations for the equiscalar unit surfaces.

The expression (1) cannot, of course, be specified further, since it repre-

sents all possible functions. Under real conditions in the atmosphere the

distribution and shape of the equiscalar surfaces of the physical variables

are in general so complicated that it is impossible to express the corre-

sponding functions (1) in terms of explicit mathematical expressions.

Nevertheless we know that the functions exist, and that they are con-

tinuous and single valued in space, except along frontal surfaces. This

information is sufficient for the theoretical analysis of their dynamical
behavior.

The fields of the three scalar quantities with which we are primarily

concerned are expressed mathematically as follows:

(2) p - />(*,?,*); - (*,?.*); r- r(* fy f ).

These expressions, or the equivalent geometrical representation by unit

layers, define the fields of these quantities at a certain fixed time. In

the case of equilibrium this representation is complete. If the atmos-

phere is in motion, however, the fixed points (x,y,z) will continually be

occupied by new particles, bringing their physical properties along with

them. For each new instant we would have a new distribution in space

of the unit layers and a new set of functions (2). This is analytically

expressed by introducing the time t as an additional variable, which

gives :

(3) p . p(x,y,z,t) ; a = a(x,y,zj) ; T T(x,y,z,t).

When t here is given a constant value /o. we are back to the expressions

(2) for a given instant. When / changes, the expressions (3) describe

how the surfaces change their position with time.

4-05. Vectors. The physical condition for the equilibrium of a

system is that the forces acting upon it are in balance, or that their

resultant is zero. Thus the study of equilibrium brings in a new physi-

cal concept, force. Force belongs to a class of physical quantities differ-
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ent from the scalars. Whereas a scalar is characterized by magnitude

only, and can be represented by one number when the units are chosen,

force has direction as well as magnitude. Other physical quantities

belonging to this class are displacement, velocity, acceleration, etc.

These directed quantities are known as vectors.

Any vector may be represented geometrically by an arrow, pointing
in the assigned direction, whose length is equal to the magnitude of the

vector. Since all vectors thus have the same geometrical representation,

the mathematical rules which apply to one of them apply to them all.

These rules may be developed without specification of the physical nature

of the vectors.

The vectors will in the following be denoted by bold-face letters, and

their magnitudes by the corresponding letters in ordinary type. Thus if

a vector is denoted by a, we have by definition |a|
= a. We shall often

deal with vectors of unit length. Thus if 1 is a unit vector we have by
definition

|l|
= 1.

Consider an arbitrary vector a and an arbitrary straight line / with an

assigned positive direction determined by a unit vector 1 (fig. 4'05). It

is always possible to pass planes normal to / through the two endpoints of

the vector a. The projection of the vector on the line, defined by this

operation, is called its component

along the direction / and will be

denoted by ai. The component
is a pure number, and hence a

scalar. It is positive when the

projection extends in the direc-

tion of 1, and negative when it \

extends in the opposite direc-

tion. When the operation illus-

trated in fig. 4'05 is applied to the three axes of the coordinate system we
obtain the rectangular components ax ,

ay , az of the vector a.

If e is a scalar and a is a vector, the expression ea is used to represent

a vector e times as long as a, having the same direction if e is positive, the

opposite direction if e is negative. In particular, if e = -1, then ea = -a
is a vector equal in magnitude to a, but having the opposite direction.

If A is a unit vector in the direction of the vector a, then a = aA. It is

important to note that the component a\ is not a vector, but that

a /I is a vector.

Before we take up the discussion of the state of equilibrium, it is

necessary to derive a few simple mathematical rules for vectors which

will be needed in this discussion. The immediate need will be the

expression for the resultant of the acting forces.
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406. Vector sum. The resultant of two forces acting on the same

particle is by physical definition a third force whose effect on the particle

is identical to the joint effect of the two forces. Experiments show that

when the two forces are represented by arrows (fig. 4*06a), their result-

ant is geometrically represented by the diagonal in the parallelogram

FIG. 4-06a.

defined by the two arrows. This law of the parallelogram is also valid

for displacements, velocities, accelerations, etc., or more generally for all

vectors.

The parallelogram is conveniently replaced by the triangle (fig. 4-066)

defined by the two vectors. Their resultant is the third side of this tri-

angle. We shall introduce for the resultant c of the vectors a and b the

notation

(1) c

and call c the vector sum of the two vectors. Similarly the sum of three

or more vectors is obtained by constructing a polygon of the vectors,

and drawing a vector from the initial point of the first to the terminal

point of the last. By inspecting this polygon it is easily verified that

the commutative and associative laws are valid for vector addition.

If the polygon representing the sum of two or more vectors is closed,

the vector sum is the zero-vector, denoted by 0. Thus the vector sum of

a and -aisO:

- a - a.

The zero-vector, being a vector of zero magnitude, should be distin-

guished from the scalar zero.

An important example of the vector sum is the representation of a

vector a in a rectangular system of coordinates. The three unit vectors

along the positive axes of x, y, z will be denoted by i, j, k. If the opera-

tion illustrated in fig. 4-05 is applied to the three axes of the system, we
obtain the three vectors axi, avj, a2k. According to the above rule their

sum is equal to the vector a; hence

(2) a = axi + avj + ozk.
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A similar expression may be derived for the vector b. When these

expressions are introduced in (1), we obtain

(3) c - a + b - (ax + bx )i + (av + 6y)j + (a, + b. )k.

The rectangular components of a + b are obtained by adding corre-

sponding components of a and b. This rule also follows directly from

fig. 4-066, by projecting the triangle upon an arbitrary straight line /

by planes normal to /.

4*07. Scalar product. Another important vector operation is exem-

plified by the element of work 2*14(1), where the two vectors in question

are the force and the infinitesimal displacement. Let a and b be any

a

FIG. 4-07o. FIG. 4-076.

two vectors, and let 6 be the angle between them (fig. 4-07a) . The scalar

quantity ab cos B is defined as the scalar product or dot product of the two

vectors, and is indicated by placing a dot between the factors. Hence by
definition,

(1) ab ab cos - aba .

In the third expression we have used the notation ba for the component
of b along a. Thus the scalar product of two vectors is a scalar. Obviously

a-b - b*a;

i.e., scalar multiplication obeys the commutative law.

Let ba and ca be the components of b and c along a. From fig. 4-076

it is clear that 6a -f ca is the component of b + c along a. From the

equation

(2)

it follows by using the rule (1) on each term that

(3) a*(b+ c) - a-b-f ac.

This proves that the distributive law is valid for scalar multiplication.

If two vectors are parallel and have the same sense, cos 6 1, and their

scalar product is equal to the regular product of their lengths. If the
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two vectors are perpendicular, cos 6 = and their scalar product is zero.

Conversely, if a scalar product is zero, one of the vectors is zero or else the

two are perpendicular.

Applying the definition (1) to the unit vectors i, j, k, we obtain

(A\
H =

i'i
= k-k = 1

;w
i-j

- j-k = k-i = 0.

To obtain another expression for a*b, we first write a and b in compo-
nent form, as in 4-06(2). Then, according to (3), we take the scalar

product of each term of a with each term of b. Finally, applying (4),

we see that

(5) ab = axbx -f ayby + azbz = ab cos 0.

All three equivalent expressions in (5) for the scalar product are useful,

according to the nature of the theoretical problem. We shall generally

use the compact expression to the left, and only make use of the expanded
forms in practical applications.

4*08. Mechanical equilibrium. A system is in mechanical equilib-

rium when the resultant of the forces acting upon it is equal to zero.

Applied to the atmosphere, this principle can be formulated as follows :

The atmosphere is in equilibrium when for any arbitrary part of the atmos-

phere (not necessarily infinitesimal) the resultant of all the acting forces is

zero. There are two sets of forces to be considered in the atmosphere:
the external forces acting upon the air elements from without, and the

internal forces arising from the interaction between the air particles

themselves. The only external force in the atmosphere is the force of

gravity. In the case of equilibrium the only internal force is the pressure

force. In order to formulate the equilibrium condition mathematically
it is necessary to know the analytical expressions for these two forces.

4*09. The force of gravity. By the force of gravity we mean the

force imparted by the earth to a unit mass which is at rest relative to the

earth, i.e., which rotates with the earth. Since it is a force per unit

mass, it has the dimensions [LT~
2
] of acceleration and indeed is some-

times called the acceleration of gravity. The force of gravity is a vector

denoted by g, whose magnitude is therefore g.

If the earth had no rotation, the force of gravity would be identical to

the force ga of pure gravitational attraction, directed toward the center

of the earth. The earth would be a perfect sphere whose gravity would

have the same magnitude everywhere on its surface. According to

Newton's law of universal gravitation, the magnitude ga of the force of

gravitation on a unit mass situated at the distance r from the earth's
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center is K/r
2

. Here K is a constant fixed by the mass of the earth.

See 6-08.

Since the earth is actually rotating, the force observed as gravity is

the resultant of ga and the centrifugal force arising from this rotation.

(This will be discussed in more detail in section 6-10, in connection with

motion relative to the earth. ) The centrifugal force is directed outward,

FIG. 4-09. The force of gravity.

normal to the axis of the earth. Its magnitude is numerically equal to

Q?R, where ft is the angular speed of the earth and R is the distance from

the axis. Let R be the vector from the axis of the earth, extending
normal to the axis and ending on the point in question. Then the cen-

trifugal force is 2
2
R. Fig. 4-09 is a schematic diagram of these forces

in which the eccentricity of the earth has been exaggerated.
The force of gravity g is the vector sum of ga and fi

2R. It is impor-
tant to note that the motion of the earth enters into the definition of

gravity. Thus the equilibrium we are considering is no real equilibrium,

but rather a state where the earth and the atmosphere rotate together as

a rigid system. We shall call this state relative equilibrium. It will be

explained in section 640 why this state can be investigated as though it

were a real equilibrium.

At present we wish to derive an expression for the dependence of g

upon the latitude <p and height z above the surface of the earth. The

angle between g and g is very small. Hence the magnitude of g can be

closely approximated by subtracting from ga the length of the projection

AB of fi
2R on ga . But the length of AB is equal to ti?R cos <f>. See

fig. 4-09. Since R = r cos <p, we can write

(1) length of AB - Q2
r cos2 <p.
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As above, we have for the magnitude of g :

(2) fo-pr

Subtracting (1) from (2), we get an approximate expression for the

magnitude g^ of the force of gravity at latitude ^:

j/r

(3) gv = ^
- fl

2
' cos

2
,.

Letting 45 be the value of g at 45 latitude, we have, from (3),

(4) g45=*-*fl
2
r.

Eliminating K/r
2 between (3) and (4), we find

(5) gv
- g45 - %

2
r cos 2<f>.

Now r is approximately constant on the earth's surface. Hence the

expression 12
2
r is nearly constant, and (5) suggests that a formula for gv

should take the form

(6) gv
- 45(1

-
a>\ cos 2?) (#i = const).

To get an expression for the variation of gravity with elevation 0,

we fix our attention on the poles, where the centrifugal force vanishes.

At the height z above the pole, the distance from the center of the earth

is r + 2, whence from (3) the gravity gz becomes

At the ground we have the value g of gravity

(9) go = ^'
Dividing (8) by (9), we get

Hence to a good approximation

*o

Since r is approximately constant, formula (10) suggests that a formula

for gt at any height should take the form

(11) gz - go(l
-

02*0 tea - const).
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Putting (6) and (11) together, we have a suggested type of formula for

the value g^tZ
of gravity at latitude <p and elevation z:

(12) gViZ
-

g45,o(l
-

CL\ cos 2<p)(l
- a2z).

The actual best values of ai and a2 in (12) can be found only by statisti-

cal methods, based on measurements of gravity. These measurements

are obtained from pendulum experiments all over the earth, and they

yield the formula

(13) g^z
- 9.80617(1 - 0.00259 cos 2?)(1 - 3.14 x KT7

z),

where z is the elevation in meters. The value of a2 in (13) can

be obtained from (10), but the value of a\ is some 50% larger than that

computable from (5).

Denoting the sea level value of gravity at the pole by gp, and the value

at the equator by g#, we get approximately in m s~2 :

(14) flr-9.78; 45= 9.81; gP = 9.83.

It is sufficient to remember these values for our later discussions.

Now that the physical nature of the force of gravity has been estab-

lished, our next task will be to derive a suitable analytical expression for

it. Equation (13) cannot be used for this purpose, since it gives no

information about its direction. The first step toward the analytical

expression is to find a geometrical representation of the force of gravity.

A very simple and convenient representation is obtained by means of the

geopotential.

4-10. The field of geopotential. Consider an isolated particle of unit

mass moving through the field of gravity along an arbitrary path. Let

dr be an infinitesimal vector displacement of length ds along this path,

and let be the angle between the force of gravity and dr. The work dw
of gravity on the particle during this displacement is, according to

2-14(1) and 4-07(1),

(1) dw = gds cos - gvfr.

The work is positive if the angle is acute, and negative for an obtuse

angle. This work can, according to the principle of the conservation of

mechanical energy (section 2-18), be provided only through some

expenditure of energy. Since the particle is isolated and undergoes no

physical changes during the motion, the energy must be stored in the

particle as a consequence of its position in the gravitational field. This

form of energy which is released whenever a particle moves in the field

of gravity is called potential energy. Denoting the change in the poten-
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tial energy of unit mass during its displacement dr by d<t>, the conserva-

tion of energy gives dw + d<t>
= 0, which introduced in (1) gives

(2) d<t>
= -g'dr.

We see that d<t> is an exact differential (section 2-27) by letting the particle

return to its initial position after having moved in an arbitrary closed

path. The final state is then in every respect identical to the initial,

and the conservation of mechanical energy requires that the total

amount of energy gained during this motion is zero. Thus is a function

only of the position in space, i.e., a function of the coordinates x,y,z.

Hence

(3) * -*(*,?,*).

We shall now introduce the letter 8 to denote differentials which repre-

sent the difference in value of some physical variable between two points

in space, the difference being computed at a fixed time. Differentials

denoted with 6 are called
"
geometrical differentials." We shall reserve

the letter d for differentials representing the change in value of some

physical property of a particle during a process on that particle. Such a

process will consume a certain amount of time dt, in contrast to

the instantaneous nature of the geometrical differentials. Differentials

denoted with d are called
"
process differentials." As an example of

the distinction made here, the thickness of a falling leaf would be 62,

but the distance the leaf dropped during a certain time would be dz.

An example of the geometrical differential is the variation in between

two points in space separated by a small distance. The distance is

denoted by 5r, and the corresponding variation in is 50. We have from

the above argument that

(4) 60 = -g'6r.

Equation (4) refers to as a function of position in space; equation (2)

refers to the change of potential energy of a moving particle. Since

is a function only of position in space, 50 is according to section 2-27 an

exact differential of the three variables x,y,z.

We notice that when the angle between g and 5r is acute 50 is nega-

tive and the potential energy decreases in the direction of 6r; when is

obtuse 50 is positive and the potential energy increases in this direction.

For displacements normal to the force of gravity (6 90), 60 equals 0, so

any such displacement is contained in a surface = const. These sur-

faces, which are defined analytically by giving constant values to in

(3), define the horizontal in each locality and are called level surfaces.

To examine the variation in from level to level we consider a displace-

ment in the direction opposite to gravity and hence normal to the level.
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Denoting this displacement by Sz we have from (4), since cos 9 = 1 :

(5)

'

50 = gdz.

Thus the variation in < is equal to g per unit displacement normal to the

level. Therefore if the potential energy is known at one level, its value

can be computed for any other level by integration of (5). Let this

known value at the reference level 3 be <fo- Its value at any other level

z\ is then <i, where

-o-
J

(6) 0i - 4>
-

/ g8z.

^We are never concerned with absolute values of energy, but only with

its variations. Therefore we may choose our reference level as we please

and give this level an arbitrary value of potential energy. The simplest

choice is the surface of mean sea level as reference level. We shall assign

to this level the potential energy value zero. Once this choice has been

made, the potential energy throughout space is prescribed and is given
at the elevation z by the expression

2

(7) <t>
=
J

gSz.

The integration is taken along a vertical from sea level to the point in

question, i.e., along a path normal to the level surfaces. The integral is

easily evaluated when the expression 4-09(13) for g is introduced. To
obtain the complete three-dimensional distribution of the integral

must be computed for each latitude <p. The function in (3) may accord-

ingly be considered a known function. Since this function is physically

derived from the concept of potential energy in the field of gravity, it is

known as the potential of gravity or the geopotential. We shall usually

write it in the general form (3) and in our imagination represent this

function by its surfaces for unit values of 4>.

These surfaces not only give a clear geometrical picture of the func-

tion 0. They also can be used to define the force of gravity. Denoting
the thickness of the unit layer by h<j>,

we have from (5), when the varia-

tion of g through the layer is neglected,

5z h+

From this expression and the previous discussion we may formulate the
rx'kll/viirtfinr oirviril/a fiilA*
following simple rule:
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The force of gravity is normal to the surfaces <t>
= const, is directed toward

decreasing values of <, and its magnitude is equal to the reciprocal of the

thickness of the unit layer of </>. The gcopotential unit layers provide a

convenient geometrical representation of the force of gravity. The

corresponding analytical relation will give us the mathematical expres-

sion for this force. Before proceeding to derive this expression it will be

useful to examine the distribution of the geopotential unit layers quanti-

tatively.

4-11. Dynamic height. Geopotential was defined physically as the

potential energy per unit mass. It is therefore measured in specific

energy units (see table 1'05), and has the dimensions [L
2
T~~

2
]. In the

mts system this unit is 1 kilojoule per ton. We can therefore give

4-10(8) the following quantitative interpretation: When the level sur-

faces are drawn at intervals of 1 kilojoule per ton, the thickness of the

layers is h^ 1/g meter, or approximately 1 decimeter. This means

that if 1 ton of mass is lifted this vertical distance its potential energy
increases by the amount of 1 kilojoule. We can therefore now obtain a

clear quantitative picture of the distribution of the geopotential unit

layers. The bottom layer has the mean sea level as its base, and its

thickness is approximately 1 decimeter. The layer has its maximum
thickness at the 'equator (h^

= 1/9.78 meter 1.022 dm), and becomes

gradually thinner toward the pole where it has its minimum thickness

(h^
= 1/9.83 meter 1.017 dm). The next layer follows on top of this,

with practically the same thickness as the bottom layer in each latitude,

and so on. For practical estimates it is sufficient to remember that the

thickness of the geopotential unit layer is roughly 2% thicker than

1 decimeter and that its equatorial thickness is \% larger than its polar

thickness.
|

Since the field of gravity is constant, the level surfaces are fixed sur-

faces in space, and can therefore be used as reference surfaces indicating

the vertical distance between a point in space and sea level. This dis-

tance is uniquely determined by the value of the geopotential at the

point, i.e., by the number of geopotential unit layers between the point

and sea level. It is for this purpose convenient to introduce a termi-

nology which is more suggestive of height than the energy expression

kilojoule per ton. Since now the unit increase of geopotential roughly

corresponds to a height of 1 decimeter, we are led to introduce for the geo-

potential unit the name dynamic decimeter (abbreviated dyn dm). We
therefore have by definition

(1) 1 kj t"
1 - 1 dyn dm.
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With the same terminology the geopotential of a unit mass at a point in

space is referred to as the dynamic height of the point. When, for in-

stance, a point has the dynamic height <p
= 100 dyn dm, this means both

that its vertical distance above the ground is roughly 102 dm, and that

the potential energy of 1 ton at this point is 100 kj. The dynamic
decimeter has of course the dimensions [L

2T~2
] of specific energy.

A measure in frequent use is the dynamic meter (abbreviated dyn m),
defined by

(2) 1 dyn m 10 dyn dm.

The dynamic meter is thus approximately 2% longer than the true

meter.

4-12. Analytical expression for the force of gravity. The expression

for the force of gravity is derived from its relation to the geopotential.

We return to 4-10 (4), which defines the concept of geopotential. This

equation has, from 4-07(5), the following alternative forms:

(1) -50 = gxbx + gy&y + gzdz = g-5r.

The geopotential is according to 4-10(3) a single-valued function. Its

variation from the point (x,y,z) to the point (x -f dx,y -f dy,z + 6z) is

d0 d0 d0
(2) d<t>

- ^ dx + -~
5y + -^ 8z = 5r-V0,

d# by da;

where 5r = i8x -f j&y + k&s. The expression in the middle is the scalar

product of the vector 5r and the vector i(d0/d#) + j(d< /dy) + k(50/ds),

whose rectangular components are the three partial derivatives of <t>.

We introduce for this important vector the more convenient notation

V< (read
"
del "). Hence by definition

(3) v< =i^ +j^ + k^.dx by cte

This notation has already been introduced in the last expression on the

right in (2). The expressions (1) and (2) are equal but opposite in sign.

Hence, comparing the two scalar products, it follows that

5rg - -6rV< or 6r(g -f V<) - 0.

Since their scalar product is zero, one of the two vectors 5r and (g + V<)
must be zero, or else they are perpendicular. The vector Sr is by defini-

tion different from zero, and its direction is arbitrary. The only possi-

bility is then g + V< 0, or

(4) g = -V0.

This is the analytical expression for the force of gravity.
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The rectangular components of g are obtained by introducing in (4)

the explicit form (3) of V<t>. Since the coordinate system is arbitrary the

component of g along an arbitrary direction / is:

d*
(5) ft--^.

In the standard system denned in section 4'03 the xy plane is tangential

to the level surface. Therefore

50
(6) gx - 0; gy - 0; gz

- - -g.
oz

The analytical expression (4) and the geometrical connection between

the force of gravity and the geopotential unit layers (section 4-10) are

completely interrelated, and the nature of this relationship is entirely

mathematical. The physical meaning of the vector g and the function

is purely incidental. Any vector which is analytically denned by one

single scalar function through an expression like (4) is geometrically

related to the unit layers of the function in the same way. A vector of

this kind is called a potential vector, and the corresponding scalar function

is called the potential of the vector. It will be shown presently that the

pressure force is a vector of this kind. Owing to their fundamental

importance in atmospheric dynamics, the geometrical properties of these

vectors should be well known. We shall therefore derive these proper-

ties once more without any reference to the special case of the field of

gravity.

4*13. Potential vector; ascendent; gradient. Let e=e(x,y,z) be

any scalar function of the type discussed in section 4-04. This function

may be represented by its unit layers, defined by the surfaces e = 0, 1, 2,

. The vector Ve which has the function e as its potential is defined

by an equation similar to 442(2):

(1) 5s - 5r*Ve = |$r| |Ve| cos 0.

By using the rules for the scalar product (section 4-07), we may derive

the geometrical relation between the vector Ve and the unit layers of e.

The displacement 5r is at our disposal and may be given an arbitrary

direction in the field. If Sr is chosen perpendicular to Ve, their scalar

product is zero. Hence from (1) 6e= 0; the displacement 5r is in a

direction where the function e has no changes, i.e., in a surface e = const.

The vector Ve is therefore directed normal to the equiscalar surfaces. To

investigate its sense we shall give the displacement 5r the same direction

as the vector Ve. Denoting the magnitude of this displacement with
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5w, it follows from (1), since cos 6 - 1 for this displacement, that

(2) &-*|V|.

The quantities on the right are the numerical values of the two vectors,

and their product is therefore a positive quantity. The variation 6e

in the direction of Vs is thus a positive quantity; in other words the

vector Ve is directed toward increasing values of its potential. I ts magnitude
as obtained from (2) is

where he denotes the thickness of the unit layer. The geometrical rela-

tion between the vector Ve and the function e is thus identical to the rela-

tion derived in section 4-10 between gravity and geopotential, except

for the sign. The vector Ve is known as the ascendent of the function e
;

the opposite vector -Ve is called the gradient of e. The former is the

mathematically convenient vector, whereas the latter generally is the

physically important vector. With this new terminology the force of

gravity is the geopotential gradient, which is a vector normal to the level

surfaces, directed toward decreasing geopotential, and numerically equal

to the reciprocal of the thickness of the geopotential unit layer.

4*14. The pressure field in equilibrium. The force which balances

the force of gravity and thus determines the state of equilibrium is the

so-called pressure force, arising from the interaction between the air

particles. It will be shown that there exists a relation between this force

and the pressure field similar to that connecting the force of gravity and

the geopotential field.

To investigate the pressure field in equilibrium we shall apply the

principle mentioned in section 4-08 to certain selected parts of the fluid,

defined by closed boundaries, which in each case will be specified. In

all cases the pressure forces in the interior of the selected part will appear
in pairs, and hence give no contribution to the resultant. The only

pressure forces left are those acting on the surface which encloses the fluid

part. If the pressure at a certain point in this surface is />, the pressure

force on an infinitesimal element 5-4 of the surface has, according to the

definition 1-03(13), the magnitude pdA and is directed normal to the

surface element. As stated in 2*04, the pressure at a point is inde-

pendent of the orientation of the surface element on which it acts.

Therefore, although defined as a force per unit area, it can at each point
in space be expressed by a single numerical value. Thus pressure is a
scalar quantity.
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To find the distribution of pressure, we apply the equilibrium condi-

tion to a thin cylindric fluid element situated with its axis in a level

surface (fig. 4'14a). The end faces of the cylinder are normal cross

sections with area dA . Since the resultant of the forces acting upon this

FIG. 4-14a.

fluid element is zero, its component along the axis of the cylinder is also

zero. The force of gravity has no component in this direction, and

neither have the pressure forces acting on the side wall. There remain

only the pressure forces on the two end faces. Hence

(6)
*

pidA - p25A = or pi = p2 .

This holds regardless of the length or orientation of the cylinder; conse-

quently any equipotential surface is also a surface p = const, an isobaric

surface.

In order to study the variation in pressure from level to level, we con-

sider a cylindric fluid element whose axis is normal to the levels, and

whose base and top are contained in two levels with the respec-

tive geopotential values <f> and <+&/> (fig. 4-146). It has just been

shown that these levels also are isobaric surfaces defining certain definite

pressure values p and p -f dp. We shall apply the equilibrium principle

to this cylindric element and find the component of the resultant force

along the axis. Let the mass of

the cylinder be 8M. The force

of gravity contributes to this

component with its full amount

gdM. The pressure forces acting

upon the side wall of the cylinder

have no component along the

axis, whereas the pressure forcesp

FIG. 4-

its cross-section area.

on the top and bottom faces con-

tribute with their full amount.

Let 52 be the height of the cyl-

Its volume dV and its mass 8Minder and dA

are then

(7)

Using the expression 4-10(8) for g and choosing the positive direction

along the axis upward, we have for the component of the resultant force
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along this direction

The equilibrium principle requires that the resultant be zero. Thus,
when we introduce 8A = 8V'/8z in the last term, we have

(8)

This equation can be used directly to discuss the distribution of pressure

and mass in equilibrium. Before this discussion is taken up, the equa-
tion will be used to derive the analytical expression for the resultant

pressure force upon the cylindric element.

4-15. The pressure gradient. The first term on the left in 4-14(8)

is the total resultant of gravity acting upon the cylindric element. The
total resultant of gravity is balanced by the total resultant of the pres-

sure forces upon the boundary enclosing the element. It follows there-

fore that the resultant pressure force is directed upward, so the pressure

on the bottom face of the cylinder is greater than the pressure on the top
face. In other words 8p is a negative quantity, and the pressure

decreases upward. The resultant pressure force is thus a vector normal

to the isobaric surfaces and directed toward decreasing pressure. Its

magnitude is given by the second term on the left in 4-14(8). Since this

is the pressure force on an element which has the volume 5V, the magni-
tude of the pressure force per unit volume is

8p
> i

where hp denotes the thickness of the isobaric unit layer. According to

the discussion in section 4-13 the pressure force per unit volume is there-

fore a potential vector, whose potential is the pressure. Since it is

directed toward decreasing pressure, the pressure force per unit volume is

the gradient of the pressure, or simply the pressure gradient. Using the

notation of section 4*13 we can therefore write:

(2) the pressure force per unit volume = -V.

The expression (2) for the pressure force has been derived here for the

state of equilibrium. However, this expression is completely determined

by the pressure field and is thus entirely independent of the field of

gravity, or of the simple relation between the two fields in the state of

equilibrium. We may thus conclude that the expression (2) for the
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pressure force is valid for any state of motion of the fluid. This state-

ment can be proved rigorously by more advanced mathematical meth-

ods. We will, however, accept it here on the strength of the physical

evidence and use the expression (2) when the equation of motion is

derived.

The rectangular components of the pressure force are obtained by

introducing in (2) the explicit form of V/> from 4*12(3) :

d/> dp bp
(3) _v #= _i-?_j-?_k-fd* dy dz

Since the system (x,y,z) is arbitrary, we conclude that the component of

Vp along an arbitrary direction / defined by the unit vector 1 is

(4) (_v/>), - -l-V/> - -|.

In practical problems we shall generally want to distinguish between the

vertical component -
(d/>/ds)k and the horizontal component

(5)

of the pressure gradient. We have accordingly

d/>
(6) -Vp= -V//p-k-~.

oz

Since the vector -Vp is normal to the isobaric surface, the horizontal

vector -V///> is normal to the lines of intersection between the isobaric

surfaces and the level. These lines are the horizontal isobars in the

constant-level maps. If dnji is an infinitesimal horizontal distance nor-

mal to the isobars, and hpn is the normal distance between unit isobars,

it follows from (4)

(7)
|

v ,,p|

Thus the two-dimensional relation (7) between the horizontal pressure

gradient and the isobaric unit channels in a level surface corresponds to

the three-dimensional relation (1) between the pressure gradient and the

isobaric unit layers. In mts units (7) has the following meaning: If the

normal distance between two isobars with a pressure difference of 1 cb

(10 mb) is hpH ni, the horizontal pressure force per cubic meter is

1/hpH mts units of force.

4-16. The hydrostatic equation. From the expressions for the two

forces which act upon the atmospheric elements the equation of relative
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equilibrium can be written down directly. Consider an infinitesimal

element of air which has the mass dM and the volume 8 V. From 4-12 (4)

the force of gravity on the element dM is -6MV0. From 4-15(2) the

force of pressure per unit volume is -
V/>, and therefore the pressure force

on the volume 5V is -5FV/>. In equilibrium the resultant of these

forces is zero; hence

(1) 0= -SMV</>-3FV/>.

This equation may be referred to unit mass by dividing it by dM, or to

unit volume by dividing by d V. Thus we obtain the equation of relative

equilibrium in two equivalent forms

(2) --V0-V/>; 0= -pV<-V/>.

These equations are valid for every air element in a resting atmosphere.
For the further discussion of the hydrostatic state the vector equations

(2) are most conveniently transformed into scalar equations. For this

purpose we consider an arbitrary infinitesimal displacement Sr. The

corresponding variations of geopotential and pressure are, according to

4-13(1),

Thus by performing scalar multiplication of the two vectors in (2) by
the line element 6r we obtain

(3) 6</>=-aty; dp=-P8<t>.

The second equation in (3) could incidentally have been derived directly

from 4*14(8) by dividing out the two common factors dV and 8z. It will

be shown presently that either of the equations (3) gives a complete

dynamical description of equilibrium, and therefore both are equivalent

forms of what is known as the hydrostatic equation.

It was shown in section 4-14 that the isobaric surfaces coincide with the

level surfaces in equilibrium. This fact is expressed mathematically by
the equations (2), since the two gradient vectors are normal to their

respective equiscalar surfaces. A geopotential layer of the dynamic
thickness 8<t> will thus define an isobaric layer through which the pressure

varies by the amount dp, so the variations 5<t> and 8p are characteristic

for the whole layer. It follows then from (3) that the mass variables

8<t> 8p
(4) a-- and />

= ---
Sp 50

are constants throughout the layer. If the layer is of finite thickness,

these equations define certain mean values of a. and p within the layer.

For an infinitesimal layer ($<
-> 0) the equations (4) give the values of a.
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and p on the level surface, and these values are constant on the level.

Thus in the state of equilibrium the isosteric and the isopycnic surfaces

also coincide with the level surfaces, and we can formulate the fol-

lowing important rule: The state of equilibrium is characterized by

complete coincidence between the surfaces of constant pressure and constant

mass, both sets of surfaces being horizontal throughout the atmosphere.

After the discussion of motion is taken up, it will be shown that certain

states of motion are also characterized by the coincidence between the

surfaces of constant pressure and constant mass. (However, only in

the hydrostatic state are they also horizontal.) Whenever the state of

the atmosphere is such that the isosteric surfaces coincide with the

isobaric surfaces, the mass field is said to be barotropic (meaning:
directed in accordance with the pressure field). In general the terminol-

ogy is further simplified by omitting
"
the mass field," and thus the

atmosphere itself is said to be barotropic when the above condition exists.

In the usual case, where the isosteric surfaces intersect the isobaric sur-

faces, the atmosphere is said to be baroclinic. With this terminology we
have the rule : In the state of equilibrium the atmosphere is barotropic.

The equations (2) can be given a simple geometrical interpretation by
means of the unit layers, here given only for the first equation. Both

vectors are numerically equal to the reciprocal of the thickness of their

respective unit layers, by 4-13(3), so that

(5) = a f

J
, or hp - ah^

Thus the isobaric unit layer contains a. geopotential unit layers. Explic-

itly in mts units this rule may be expressed as follows: An isobaric layer

of 1 centibar has a dynamic thickness of a dynamic decimeters. (If the

variation of specific volume through the layer is appreciable, the mean

value of a in the layer must be taken.)

To get a rough idea of the order of magnitude of this thickness, con-

sider a layer of dry air next to the ground, whose temperature at the

100-cb level is 273K. The corresponding value of a. from the equation

of state 2-09(1) is 287 273/100 = 784 m3
t""

1
. If the specific volume

has this constant value throughout the isobaric unit layer 100-99 cb, the

thickness of this layer is 784 dyn dm or approximately 800 dm. This

gives the approximate rule that near the ground an increase in height of

80 m corresponds to a pressure drop of about 10 mb, or 8 m to a drop of

1mb.

By a homogeneous atmosphere is meant an atmosphere of constant

density (and hence constant specific volume). If the above value

a - 784m3
tT

1

prevailed throughout the atmosphere, the pressure at the
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height of 8000m would be 1000 mb less than at the ground, or practically

zero. Thus the height of a homogeneous atmosphere whose pressure

and temperature at sea level are 100 cb, 273K is approximately 8000 m.

4-17. Distribution of pressure and mass in equilibrium. It was

shown in the preceding section that the mass field is barotropic in equilib-

rium, and that the equiscalar surfaces of mass and pressure are both

horizontal. The distribution of pressure and mass is known throughout

the atmosphere if it is known along one single vertical. The distribution

along a vertical is obtained by integration of the equations 4-16(3),

yielding
b &

(1) ,-*,-- [asp; pb -pa =- I

The second of the equations (1) has mainly theoretical interest. It

reveals the physical cause or origin of atmospheric pressure. By 4-10(5)

we substitute 5</>
= g8z and have

b

(2)

Now pgdz is the weight of an air column of unit cross section and height

dz. Thus (2) says that the pressure difference between any two levels a

and b is the weight J
b
apgbz of the column of air of unit cross section extend-

ing between the two levels. Hence the pressure at any level is the total

weight of a vertical column of unit cross section extending from this level to

the top of the atmosphere. This is a principle to remember in all meteoro-

logical work.

The first equation (1) is known as the barometric height formula. It

solves the fundamental problem of hydrostatics referred to at the begin-

ning of the chapter to determine the dynamic heights which corre-

spond to the various pressure values along an aerological ascent. Most
of the remainder of this chapter will be devoted to a discussion of this

equation.

The aerological sounding gives simultaneous values of pressure,

temperature, and relative humidity. According to sections 3-21 and

3-23, from these data we can obtain the mixing ratio w. Thus for every

point along the ascent we have the values of p, T, w. The correspond-

ing value of a is found from the equation of state for moist air 3-25(5):

m
(3) a
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where T* is the virtual temperature 325(4), and Rd is the specific gas
constant for dry air. When this expression for a is introduced in (1),

the integrand becomes -R<iT*8p/p RdT*d(ln p). Then (1) takes

the form
o

.*/(4) &- =
-Rd]

T*8(\np),

a

which is the barometric height formula adapted for practical use.

Several graphical methods can be used to evaluate the dynamic height

from formula (4) when simultaneous values of pressure and virtual tem-

perature are known along a vertical. Before discussing these methods

it is useful to investigate the state of equilibrium when the virtual tem-

perature is a linear function of the geopotential. This simple tempera-
ture distribution is not only of great theoretical interest, but it also

serves as a useful approximation of real atmospheric conditions.

4-18. The atmosphere with constant lapse rate. It is evident from

4-17(4) that in hydrostatic problems the moist air may be treated as

though it were dry air by replacing the real temperature by the virtual

temperature. (This is one of the great advantages of virtual tempera-

ture.) We shall systematically use virtual temperature in this chapter.

In the special case of a dry atmosphere the virtual temperature auto-

matically becomes the real temperature.

By combining 4-16(3) and 4-17(3) the hydrostatic equation takes the

form

(i) s=-i?dr*^.p

To integrate this equation the distribution of virtual temperature must

be known, either as a function of pressure or as a function of the dynamic

height <t>. The integration is particularly simple when T* is a linear

function of <t>.

We define the lapse rate of virtual temperature 7* at any point in the

atmosphere by the equation

5T*
(2) fff.
Thus 7* has the dimensions [0L~

2T2
], and in mts units is measured in

degrees per dynamic decimeter. To say that T* is a linear function of

is equivalent to saying that 7* is a constant or that the atmosphere has a

constant lapse rate (of virtual temperature).

We shall now determine the relations between 7
1

*, p, and <t> when the
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lapse rate has the constant value 7*. We shall assume for the present
that 7* > 0, i.e., that temperature decreases with height. We denote

the arbitrary initial conditions at sea level by the notations:

(3) r*=r*; p = po; 0=0.

Integration of (2) with the initial condition (3) gives

(4) r*=r-7*0 or - !_:*.
^0 ^0

When d<t> is eliminated between (1) and (2), we get

Integrating (5) with the initial condition (3), we have finally

vflrfV

(6)

From (2) and (6) we obtain the following important rule: When, in the

state of equilibrium, the virtual temperature is a linear function of the geo-

potential with the constant lapse rate 7*, it is also proportional to the power

of the pressure.

Elimination of T*/T% between (4) and (6) gives

I 'v* h

(7) p

Equations (4, 6, 7) summarize the relations between T*, p, and 0. We
note from (4) and (7) that both p and T* vanish at the level

(8) *i-^|-
7*

This level fa is called the dynamic height of the atmosphere of constant lapse

rate. For < > fa there is no more air. We note that fa depends only on

TO and 7*.

When 7* is given certain particular values, we obtain three important

special cases to be discussed in the next three sections.

4 19. The homogeneous atmosphere. When 7* is given the special

value 1/Rd, then R<TY* = 1, and the formula 4-18(5) becomes

a)
'

=
s

j
If we differentiate logarithmically the equation of state 3-25(5),
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pa - RjT*. we get

y* p a

Comparing (1) and (2), we see that in the present case 8a 0, or

a const. Thus when 7* = l/12<j we are dealing with a homogeneous

atmosphere (defined in 4-16). Conversely, for a homogeneous atmos-

phere,

(3) 7* = yh - - 0.00348 deg (dyn dm)"
1

,

amounting to a temperature drop of about 35C per dynamic kilometer.

For a homogeneous atmosphere the equations 4-18(4, 6, 7) simplify to

(4) r*=r*-^ ; -,=
p
--, p- t

L *

The dynamic height fa of the homogeneous atmosphere is obtained from

either (4) or 4-18(8):

(5) fa

(This formula could have been obtained immediately by integrating

4*17(1) for a. = const, and using the equation of state.) In the special

case r - 273K, fa - 78,351 dyn dm ( 8000 m, as shown at the end of

4-16).

In the real atmosphere the lapse rate never is as large as 7^, except

possibly in thin layers near the ground. The reason is that such an

atmosphere would be too unstable, as will be shown in chapter 5. Still,

the homogeneous atmosphere is a useful concept for theoretical discus-

sion.

When 7* > l/Rd, the density increases with height, giving even

stronger instability than for the isosteric mass distribution just con-

sidered. When 7* decreases from l/Rd, one gradually approaches con-

ditions similar to those generally encountered in the real atmosphere.
Another ideal case is the following.

4-20. The dry-adiabatic atmosphere. When 7* is given the special

value l/Cpd, then R<r(* = Rd/Cpd *d, and 4-18(6) takes the form

(i) r* = T

By substituting this expression for T* in 3-28(1), we see that the virtual
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potential temperature 0* at all levels is given by

(2) 0* = T*
I )

- const.
\Po/

Thus an atmosphere with 7* = l/cpd is characterized by constant virtual

potential temperature, meaning that all points (T*,p) lie on the same dry
adiabat. From this property such an atmosphere is called a dry-adia-

batic atmosphere. It has the lapse rate

(3) 7* - Id - - 0.000996 deg (dyn dm)-
1

,

Cpd

amounting to a temperature drop of about 10C per dynamic kilometer.

For a dry-adiabatic atmosphere, the equations 418(4, 6, 7) take the

form:

* & r* f P\**
(4) r* = Tn -^

: * = I I ; t> = i\ / \J
"

rr*if \ J\ I
Cpd * \fOf

The dynamic height fa of the dry-adiabatic atmosphere is obtained from

either (4) or 4-18 (8):

(5) <bd
= CpdT^.

In the special case T* - 273K, fa - 274,100 dyn dm, or almost

28,000 m.

When in the dry-adiabatic atmosphere the virtual temperatures at the

levels fa and fa are respectively T* and T*, we have from the first

equation (4) :

f/Z\ i I fT& T^\ < f\f\A / T^* 'T^* \

(o; 06 - fa = cpd(l a
- 1 b )

= 1004(7 - Ib).

It will be shown in 4-24 how this formula permits a quick evaluation of

height when little accuracy is required.

The transition from the homogeneous to the dry-adiabatic atmosphere

corresponds to the decrease of 7* from approximately 0.0035 to approxi-

mately 0.0010, with a corresponding increase of the top of the atmosphere
from near 8 km to nearly 28 km. When 7* is decreased to 0, it is evident

from 448(8) that the height of the atmosphere becomes infinite. This

limiting case is discussed next.

4 '21. The isothermal atmosphere. When 7* - 0, we have immedi-

ately from 4-18(2) that T* has the constant value TQ throughout, so the

atmosphere is isothermal. In this case the integrations of 4-18 no longer

remain valid. However, we can in this case integrate 417(4) directly,

obtaining

(1) *-
Po
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Solving for p, we get

(2) />-

Thus the pressure decreases exponentially upward, but never vanishes.

This verifies the statement that the upper limit of the isothermal atmos-

phere is at infinity.

When in the atmosphere the virtual temperature between the levels a

and 0& has the constant value T*, we have from (1) that

(3) 0&-0 = #dr*ln^.d m n
pb

'

It will be shown in 4-24 how this formula is used for the accurate evalua-

tion of height.

The real atmospheric distribution of pressure and virtual temperature
is rather complex and variable. However, within a thin layer the lapse

rate may always be treated with good approximation as constant. Such

a thin layer may therefore be considered as part of an atmosphere of con-

stant lapse rate.

4*22. Atmospheric soundings. An aerological sounding provides, as

stated in 4-17, a set of simultaneous values of T* and p. These values

can be plotted on any thermodynamic diagram of chapter 2. The points

are customarily joined with straight lines, and the result is a polygonal

curve representing a vertical column of the atmosphere. The curve is

briefly called the (virtual temperature) sounding.

The sounding should be distinguished from the process curves so far

discussed on the diagram (for example, the adiabats). The process

curves represent the change in the physical properties of one parcel of air

during a process in which the parcel changes its state. These were much
discussed in chapter 2. The sounding is an instantaneous picture of the

state of a whole geometrical column of air. The distinction is analogous

to that made in section 4-10 between the differentials d and d. A small

variation of pressure on a sounding would be dp ;
a small change of pres-

sure during a process would be dp.

4*23. Graphical representation of dynamic height. We shall now
return to the practical problem of evaluating the dynamic height when a

sounding is presented. The theoretical basis for this evaluation is the

barometric height formula 44 7 (4), which we repeat here in slightly

modified form :

(1) 06 - 0a - R
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This has a simple graphical representation on the emagram. Let the

virtual temperature sounding between the levels a and b be plotted on an

emagram. Let A denote the area bounded by the sounding, the isobar

p - pa ,
the isobar p - pb , and the isotherm T = 0K. See fig. 4-23.

Since the emagram is a graph of -In p against T, the area A is given by
6

(2) A = r*8(-ln />),

just as an analogous formula, 2-32(3), held for the process curves of

chapter 2. (The boundary of A in (2) is not a process curve, and the

area A is not to be thought of as work or heat.) Combining (1) with

(2), we see that <fo
-

<t>a = RaA. Thus the dynamic thickness of any
layer in the atmosphere is proportional to the area A of fig. 4-23.

Any diagram with the property (iii) of 2-32 is (up to a factor of pro-

portionality) an area-preserving

transformation of the emagram.
This includes the tephigram,
the (a,-)-diagram, and certain

other diagrams not however

including the Stiive diagram.
Hence for any of these included

diagrams we have the following
rule: The dynamic height between

the pressure levels a and b is (up to

a proportionality factorfixed by the

diagram) equal to the area enclosed

300

FIG. 4-23. Dynamic height on emagram.

at the isobar p pb ,by the virtual temperature sounding, the isobar p
and the isotherm T = 0.

Fig. 4-23 demonstrates how the dynamic thickness depends on the

sounding. The warmer the sounding, the thicker must be a given iso-

baric layer, since the sounding encloses a larger area. This is physically
obvious. The warmer air is less dense, and it takes a longer unit column
between levels a and b to build up the weight of air which, according to

4-17, is responsible for the given pressure difference pa - pb . The same
fact may be seen from 4-16(5), according to which the thickness of an
isobaric layer is directly proportional to its specific volume.

4*24. Adiabatic and isothermal layers. According to the rule of

4-23, two different soundings between the pressure levels a and b will

have the same dynamic thickness whenever they have equal areas A.
To evaluate the thickness of an arbitrary layer, we replace the real
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sounding between a and & by a fictitious sounding which has an equal
area. We give the fictitious sounding such a temperature distribution

that its dynamic thickness is easy to evaluate. In practice either dry-
adiabatic or isothermal layers are chosen, since their evaluation was
shown in 4-20 and 4-21 to be simple. Both give useful methods for the

evaluation of height.

a. Determination of height by dry-adiabatic layers. The real virtual

temperature sounding between the levels a and b is represented by the

heavy curve in fig. 4-24<z. It defines an area A like that shaded in

fig. 423. Each adiabat between the levels a and b defines a certain area

A '

of the same type. In order to make A '

equal A , we choose the adia-

bat for which the areas A \ and A 2 in fig. 424a are equal. This is easily

estimated by the eye. Then the fictitious dry-adiabatic layer between
the levels a and b is equivalent in dynamic thickness to the real layer.

According to 4-20(6), the dynamic thickness of the dry-adiabatic layer
is given by

(1) -
<t>a - 1004(7? - 7?) (in dyn dm).

Here 7? and 7? are the virtual temperatures where the dry adiabat

crosses the isobars p = pa and p =
pi,, respectively. See fig. 4-24a. In

FIG. 4-24a. Equivalent adiabatic

layer.

FIG. 4-246. Equivalent isothermal

layer.

practical work heights are generally measured in dynamic meters.

Using the symbol // for dynamic height measured in dynamic meters, we
have the following approximate formula for the dynamic thickness:

(2) //6 - IIa 100(7? - 7?) (in dyn m).

Formula (2), first suggested by Stiive, is very convenient for rapid work
when only approximate values are needed. Each 0.1C error in reading

7? or 7? yields an error of 10 dyn m in Hb
- Ha . For accurate height
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evaluation a second method based on the isothermal layer is therefore

needed.

b. Determination of height by isothermal layers. The real virtual

temperature sounding between the levels a and b is represented by the

heavy curve in fig. 4-24&. By visual estimation a mean isotherm

7"= 7^ is drawn so that A% = A 4 . By the construction the fictitious

isothermal layer T = T^ has the same area A as the real layer. Hence

by the rule of 4-23 this fictitious layer has the same dynamic thickness

as the real layer. But, according to 4-21(3), the dynamic thickness of

the isothermal layer is given by

* Pa

For practical purposes we prefer to express the mean virtual tempera-
ture in centigrade and the height in dynamic meters. Then (3) becomes:

(4) Ih - Ua - 28.7(273 + ) In >

Pb

where ^ is the mean virtual temperature in degrees centigrade.

Formula (4) is the basis of all accurate height computations. For

routine work tables have been constructed from (4), based on the tables

of V. Bjerknes (1912).

4-25. The Bjerknes hydrostatic tables. Since the three variables

C> Pa, and pb in formula 4-24(4) vary within wide limits, no direct tabu-

lation of lib Ha is possible in one single table. Bjerknes invented four

tables* which conveniently solve all problems of determining dynamic

height. In the tables pressures are expressed in millibars. The tables

are referred to by their original numbers to facilitate reference. In

section 4-26 we shall discuss the U.S. Weather Bureau's adaptation of

these tables.

The standard isobaric surfaces are the surfaces for which p = 1000, 900,

,
100 mb. The standard isobaric layers are the layers between adja-

cent standard isobaric surfaces, for example, between 800 mb and 700mb.

Table 9M is computed directly from 4-24(4) by giving pa/pb succes-

sively the values 10/9, 9/8, -, 2/1, and C integral values in various

ranges between -109C and 49C. For each value of pa/pb and each

tabulated value of /*
,
the table givesHb

- Ha in dynamic meters. Hav-

ing obtained C fr m an emagram for a standard isobaric layer, table 9M
gives directly the dynamic thickness of the layer. The part of table 9M
covering the layer between 1000 mb and 900 mb is given here.

* V. Bjerknes, Dynamic Meteorology and Hydrography, Washington, 1912.
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TABLE 9M

DISTANCE BETWEEN STANDARD ISOBARIC SURFACES IN DYNAMIC METERS

900mb

1000 mb

The derivation of the other three tables is best understood after a

simple transformation of the fundamental formula 4-24(4). This for-

mula can be expanded into two terms. The first term is

(1) (28.7) (273) In i

Pb

which is the dynamic thickness of the layer when

term may be written

(2) A/7.

t

- 0C. The second

When these twowhich becomes a temperature correction to (1).

expressions are introduced into 4-24(4), we have

(3) ffft-fla- (//6-//a)o+A//.

Thus when (7/6
- //a )o and A// are obtained separately, the true dy-

namic thickness //& - Ha is obtained by algebraic addition.

Table 10M is computed from (1) by giving pa successively the stand-

ard pressure values 1000, 900, ,
100 mb. For each of those values,

pb is given pressure values for each millibar from 100 mb above pa to

100 mb below pa > For each value of pa and />&, table 10M gives the

dynamic thickness (Hb - //a)o when / = 0C. A sample of the part of

table 10M for pa = 1000 mb is given here, covering pb between 1000 mb
and 1049 mb. All distances are negative, since pb > pa -

Table 11M isf computed from (1) by giving pa the value 1100 mb, a

value chosen to avoid negative heights. The pressure pb is here ex-

t Called table 1 1*M in the original tables. The orginal table 11M is a seldom used

combination of tables 9M and 10M, set up in different form.
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TABLE 10M

DISTANCES FROM THE 1000-MB SURFACE AT 0C IN DYNAMIC METERS

1000mb.

tended over all values from 1099 mb to 1 nib, and the table gives the

dynamic thickness (lib // )o of a layer between pa and pb when
/* = 0C. By using this table for any two pressure levels pb and pbt

we can obtain by subtraction the dynamic thickness of a 0C layer

between the two levels pb and pb . As table 11M is seldom used in prac-

tice, no sample of this table is given.

Table 12M gives the temperature correction AH which is applied to all

heights obtained from tables 10M and 11M. It is computed from

formula (2) with (7/6
- Ha ) G as one argument and t*n as the other. The

correction has the same sign as /* . A sample of table 12M is given here

for (Hb Ha)o between 150 and 190 dyn m and for
*
between and

49:

TABLE 12M

TEMPERATURE CORRECTION FOR TABLES 10M AND 11M

The temperature correction A// for (//ft #a)o =173 dyn m and / = 34 is calculated as follows:

For 170 dyn m and 30C, we read 19 dyn m. For 170 dyn m and 4C, we read 2 dyn m. Hence

AH = 19 + 2 = 21 dyn m.

Tables 10M and 12M, according to (3), determine the height above or

below the nearest standard surface of any salient point of the sounding

curve (highest point, tropopause, inversion, front, etc.)- Tables 11M
and 12M determine by double operation and a subtraction the height

between any two salient points, for example, between the surface of the

earth and the top of the ascent. Table 11M should only be used for

rather rough estimates of the total height, since appreciable errors may
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be brought in by the graphical estimate of the mean virtual temperature
of a thick layer.

Greater accuracy is obtained when the total layer is divided into the

standard layers, and its thickness measured as the sum of the thicknesses

of these layers. Thus the accurate determination of height by means of

the tables is performed by the following three operations :

1 . Determination of the dynamic height of the 1000-mb surface. This

is done with the aid of table 10M and the correction table 12M.

2. Determination of the dynamic thicknesses of each of the standard

layers. These are obtained directly from table 9M.
3. Determination of the dynamic height of the top of the ascent above

the highest standard isobaric surface. This is done with the aid of

table 10M and the correction table 12M.

When the results of 1, 2, and 3 are added we obtain the total dynamic

height of the sounding, and also the dynamic heights of the standard iso-

baric surfaces. The heights of other salient points along the ascent

curve can be found from tables 10M and 12M. These points are, how-

ever, determined more conveniently and with sufficient accuracy through
an interpolation on a pressure dynamic height curve. This curve can be

drawn on the same emagram where the original virtual temperature

sounding curve was plotted for the determination of the values of t^

(see fig. 4-27). It is constructed from the dynamic heights of the stand-

ard isobaric surfaces. We use the pressure scales of the emagram and

introduce a horizontal scale of dynamic height, increasing from right to

left, with at sea level. In an isothermal layer the pressure dynamic

height curve is a straight line, according to 4-21(1). Elsewhere it is

slightly and smoothly curved. The lack of smoothness of the curve

indicates errors in the height computation. The height of any salient

point is found by following the isobar from the sounding curve to the

pressure dynamic height curve, and reading the corresponding dynamic

height on this curve.

4-26. U.S. Weather Bureau hydrostatic tables. The U.S. Weather

Bureau has published hydrostatic tables used in all official height evalua-

tions in this country. They are computed from Bjerknes' tables, but

they are different in two respects : First, all heights are expressed in terms

of the unit 0.98 dyn m. This is a unit nearly equivalent to the geometric
meter. All dynamic height values in these tables are thus 2% larger

than those in Bjerknes' original tables. Second, there have been added

a number of interpolated standard isobaric surfaces for greater accuracy,

namely, the 350, 250, 175, 150, 125, 80, 60, 50, 40, 30, 20, 15, 10, and
5-mb surfaces. Having noted these general differences, we describe

these tables briefly:
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Table 1 is Bjerknes' table 9M, with some unimportant reductions in

the tabulated range of /.

Tables 2 and 2a are Bjerknes' table 10M. Except at pressures above

800 mb the arbitrary pressure levels pb are referred only to the next higher
standard pressure pa > pi,.

Table 3 is Bjerknes' table 12M, made longer and simpler by tabulating

directly for every degree of C-
There is no table corresponding to Bjerknes

1

table 11M.

4-27. Height evaluation on a diagram. An accurate graphical

method for height determination has been invented by Vaisala. It com-

bines the emagrarn with certain scales which are equivalent to Bjerknes'

tables. The scales will be described in the same order as the tables in

4-25, in order to facilitate comparison. An emagram with Vaisala's

scales is drawn in fig. 4-27. The dry adiabats and other curves are

omitted for clearer reading.

1. The first scales to observe are those located along isobars in the

middle of each standard layer. These scales correspond to table 9M,
from which they have been plotted, and on a large-scale diagram can

be read to an accuracy of nearly one dynamic meter. To get the thick-

ness in dynamic meters of any standard isobaric layer, we simply read

this scale at the point where the mean virtual temperature isotherm

crosses this scale.

2. The double scale labeled B at the bottom of the diagram gives the

dynamic thickness (//iooo
~ HP )Q of the layer between the 1000-mb

level and the pressure p. It assumes the mean virtual temperature 0C.
This replaces the most commonly used part of table 10M. It has an

accuracy of about one dynamic meter on a larger diagram showing
more detailed scales. It is used to get the dynamic height of the

1000-mb level above or below the station for stations not too far from

sea level.

3. A scale on the right edge of the diagram gives directly the dy-
namic height in dynamic kilometers from the 1000-mb level to any other

pressure level p, when the mean virtual temperature of the column is 0C.
This scale replaces table 11M, except that Vaisala has used 1000 mb
instead of 1100 mb as the reference level. By means of this scale and

a subtraction the dynamic thickness may be determined between two

arbitrary pressure levels in an atmosphere where f^ = 0C. The accu-

racy is about 10 dynamic meters on a detailed scale.

4. The scale labeled A at the bottom of the diagram gives the factor k

by which the heights derived in 2 and 3 above must be multiplied, when
the mean virtual temperature is different from 0C. Scale A uses the

temperature scale of the emagram. This temperature correction doeo
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FIG. 4-27. Computation of height on emagram.

the same job as table 12M, but is designed for slide rule computation. If

the mean virtual temperature is /C, then the dynamic thickness

Cff6 - Ha)t at /C is given by

From 4-25(2, 3) we see that k - 1 + (//273).
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By the use of the scales described in 1, 2, and 4 we can determine the

heights for a sounding beginning at any pressure within the range of

scale B. This method is quite as accurate as the use of Bjerknes' tables.

The errors in either method are less than the instrumental errors. For

pressures below 200 mb, Vaisala's diagram contains a low-pressure scale

(described in 2-32), but this has been omitted in fig. 4-27. There is

customarily a scale of the type described in 1 above associated with these

low pressures.

4-28. Example of height computation on the diagram. We suppose
that a radiosonde observation has been received for a station whose ele-

vation is 50 m (49 dyn m) above sea level. By some procedure the

virtual temperatures t* have been computed at the pressures p received

in the ascent, and we have the following table for p and /*. The highest

pressure is at the ground.

TABLE 4-28

1020 8 540 -3
960 14 400 -20
870 13 280 -40
700 8 200 -50

This virtual temperature sounding is plotted as a solid line in fig. 427,
with the customary linear interpolation between the points received.

The following steps are carried out in order. They have been performed
on a larger diagram with more detailed scales than fig. 4-27, but the

reader can follow the work on that figure.

1. The dynamic height II8 in dynamic meters of the station is written

in the right-hand corner of the diagram : 49.

2. The dynamic thickness (//iooo
- ^)t of the layer up to 1000 mb

is obtained as follows: Opposite the ground pressure 1020 mb on scale B
is read (//iooo

- H8 )
= 155 dyn m. From the sounding we see that the

mean virtual temperature for the layer 1020 mb to 1000 mb is 9C.

Opposite 9C on scale A is read k = 1.033. According to equation

4-27(1), (//100o -#*)* = (155) (1.033)= 160 dyn m. The number
160 is written between 1020 mb and 1000 mb in a column to the left of

the station elevation.

The reader can obtain (ffiooo
- #)o = 155 from our sample of table

10M, with an additive correction AJ7 = 5 from our sample of table 12M.

This gives (#1000 - #)< = 160, confirming the above graphical work.

3. The dynamic height HIQOO of the 1000-mb level is obtained by
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adding 160 to 49, giving 209 dyn m; 209 is written above 49, on the

1000-mb isobar.

4. The dynamic thickness //goo
- //iooo of the layer from 1000 mb

to 900 mb is obtained as follows: A mean isotherm C IS found for this

part of the sounding in fig. 4'246. (A transparent ruler is usually

used for this.) In this case /* = 13C, and this isotherm crosses the

height scale for this layer at 865 dyn m. This is the dynamic thickness

of the layer in question; it is posted in this layer above the figure 160.

The reader can also obtain //goo
- //iooo =* 865 from our sample of

table 9M.
5. 865 is added to 209 to give the dynamic height 1074 dyn m for the

900-mb level.

6. In similar fashion the dynamic thickness //& IIa is found for

each of the standard isobaric layers, and the values are posted in the same

column above 160.

7. The dynamic heights of the standard pressure levels are posted in

the column above 49. They are always the cumulative totals of the

lib Ha for lower layers, plus the dynamic height of the ground. All

these heights have been posted in fig. 4-27, ending with // = 12,121 dyn m
at 200 mb.

8. A pressure dynamic height curve is drawn as follows: The same

pressure scale is used, but the horizontal axis is now converted into a

dynamic height scale. It increases from right to left and is labeled in

dynamic kilometers at the top of fig. 4-27. With these scales the ground

pressure and each of the standard pressure values are plotted against the

corresponding dynamic heights from the last column. For example: at

p 1020 mb is plotted // = 49 dyn m ; at p = 1000 mb is plotted // = 209

dyn m ;
etc. In fig. 4-27 the last point plotted is 9446 dyn m at 300 mb.

These points are drawn as circles in the figure.

The points just plotted are joined with straight line segments to form

the pressure dynamic height curve (the broken curve in fig. 4*27).

This curve should show no marked irregularities; if such exist all the

work should be checked. The curve should be more or less parallel to

a dry adiabat (see fig. 2-32&).

From the pressure dynamic height curve and the sounding one can

obtain all necessary information about the ascent. For example, the

pressure at 10,000 ft (2990 dyn m) can be read as the pressure opposite

2.99 dyn km on the pressure dynamic height curve. It is 716 mb in this

case, and the error should never exceed 1 mb. The virtual temperature

at 10,000 ft can be read as the temperature where the sounding crosses

the pressure 716 mb. It is 8.3C in this case, and the accuracy is limited

only by the original data.
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4-29. Further remarks. The steps 2 and 3 of the method of 4-28 are

modified slightly in case the ground pressure is less than 1000 mb. As

long as the pressure is within the range of scale B in fig. 4-27, the idea is

to introduce a fictitious isothermal column down to 1000 mb. The
thickness -Hiooo Us of this fictitious column is obtained from scale B.

This number will be negative, and it is therefore subtracted from the

ground elevation to give the dynamic height of the fictitious 1000-mb

level. By using the fictitious and the real columns, the thickness of the

layer between 1000 mb and 900 mb is then determined, and the process of

4'28 is continued.

If the ground pressure is too low for scale 5, it is necessary to compute
the dynamic height from the ground up to the next standard pressure

level by use of 4-24(4), or from Bjerknes' tables. After that the method
of 4-28 can be applied.

The scale described in 3 of 4-27 is never used for accurate height evalu-

ations; it is used only for rough estimates of height.

Vaisala's diagram contains two other scales not mentioned so far and

not shown in fig. 4-27. The first gives immediately the difference

between the actual temperature t and the virtual temperature t* for

saturated air. If the air is unsaturated the correction is mentally

multiplied by r. With these scales the virtual temperature sounding

may be plotted readily from the true temperature sounding. The other

scale is designed to give directly the height correction in dynamic meters

for saturated air due to the difference between /* and /. If these scales

are used, the true temperature sounding is plotted instead of the virtual

temperature sounding. The procedure of 4-28 is then carried out on the

sounding as plotted. Before each height is posted, however, there is

added to it the height correction for saturated air (from the scale)

multiplied by r. This yields the same values of Hb Ha as the method

of 4'28. The two methods give equally accurate results, and the choice

between them is a matter of taste.

4-30. U.S. standard atmosphere. The U.S. standard atmosphere

(also called the N.A.C.A. atmosphere) was adopted in 1925 by the

N.A.C.A.* to serve as a standard for all aeronautic work. The standard

atmosphere is conveniently described by letting the pressure p be the

independent variable, and considering standard temperature Tp and

standard altitude zp as unique functions of p. These functions may be

obtained by a pressure-height calculation on a fictitious column of dry

air with the following properties:

* National Advisory Committee for Aeronautics, Technical Reports 147, 218, 246,

538, Supt. of Documents, Washington, D.C.
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(i) The level where the pressure is PQ (= 101.33 cb) serves as the

origin for measuring standard altitude, and is called the base level. The
base level either may or may not coincide with sea level.

(ii) The standard temperature Tp at the base level is 288K (15C).

Up to the level where zp is 10,769 m, the standard temperature drops

6.5C per (geometric) kilometer rise, corresponding to the constant

lapse rate

(1) 7 - deg (dyn dm)""
1

.

n

At and above 10,769 m the standard temperature has the constant value

218K (-55C). Thus

(288
- 0.0065zp (zp ^ 10,769 m)

(2) P
~l218 (zp ^ 10,769m).

(iii) Gravity is assumed to have the standard value gn (= 9.80665

m s~~
2
) of section 1-07, and Rj is assumed to be 287.076 kj t"

1

deg""
1

.

We can obtain p as a function of zp (below 10,769 m) by putting (1)

into 4-18(7). We get

to
oofi^

1 -^TP" Po

Substituting the constants from (iii) and using (2), we get

- 0.00002257zp )
5 -266

]

(3) p-{ /rp \
5 -250

\ (zp S 10,769

From (3) the pressure pa at the base of the isothermal layer is

Pa - po(0.75694)
5 '256 = 0.23145/>o - 23.452 cb. In the isothermal layer

formula 4-24(3) yields the following:

--.

P

Setting <t>
- a = gn(zP

- 10,769) and pa - 23.452, we can sofve for zp ,

obtaining
23 452

(4) Zp
- 10,769 + 6381.6 In - (zp

* 10,769 m).
P

To exhibit p as the independent variable, we solve (2) and (3) for

Tp and zp ,
and combine them with (4). Thus

//A 0.19028

288 (p^ 23.452 cb)rTp
(p 23.452 cb).
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f T /\0.19028-|
44,308 1 -

( ) (p ^ 23.452 cb)

(6) 2p =
L Vft)/ J

2
10,769 + 6381.6 In ?^*52 (p ^ 23.452 cb).

L P

Formulas (5) and (6) completely describe the standard atmosphere.

They obscure the fact that this atmosphere has a constant lapse rate in

its lower portions. On the other hand, they emphasize the fact that

pressure is the independent variable to which both standard tempera-
ture and standard altitude are referred. Based on these formulas, there

have been constructed tables of the U.S. standard atmosphere which are

convenient for use in computations. (See, for example, N.A.C.A.

Technical Report 538.)

Since, by (5), Tp is a function of />, a sounding of the standard atmos-

phere may be plotted on any thermodynamic diagram. As explained
in section 4-23, the standard altitude zp is proportional to the area on an

emagram to the left of the sounding of the standard atmosphere between

the isobars pQ and p. The construction and study of such a diagram will

answer most theoretical questions about the standard atmosphere and

the pressure altimeter.

It should be observed that the definition of the U.S. standard atmos-

phere is not given in dynamic terms, since the lapse rate is originally

expressed with geometrical meters instead of with dynamic height units.

As a result formulas (5) and (6) are mutually consistent only when

gravity has the standard value gn . If gravity has a constant value g

other than gn ,
the reader may show that formula (6) is a correct expres-

sion for altitude as a function of pressure in an atmosphere for which the

temperature is equal to Tp multiplied by g/gn -

4-31. The pressure altimeter. In an airplane height is usually

measured with a pressure altimeter. This instrument is an aneroid

barometer whose dial is graduated in height units instead of pres-

sure units. The scale is made with equal height units spaced uni-

formly around the dial. At its normal setting the mechanism is cali-

brated so that at each pressure p the pointers indicate the standard

altitude given by 4-30(6). At all levels in the standard atmosphere the

altimeter with this setting will correctly indicate the true altitude above

the base level defined in 4-30 (i).

In practice it is desired to have the altimeter indicate altitude above

sea level (briefly called sea level altitude) . This is accomplished by rotat-

ing the height scale relative to the barometer and the pointers. If the

altimeter is in the standard atmosphere, the height scale is rotated just
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far enough to increase all height readings by the sea level altitude of the

base level. After this is done, the altimeter will correctly indicate the sea

level altitude of any level in the standard atmosphere. (In practice the

height scale is fixed, and the rest of the mechanism is turned; the effect

is identical with that just described.)

Before the height scale was turned, the instrument indicated zero

altitude at the pressure po (which is equal to 29.92 in. of mercury). In

this position the
"
altimeter setting

"
is said to be 29.92. After the

height scale was turned, the instrument indicated zero altitude at sea

level. The pressure at which the instrument will read zero altitude is

called the altimeter setting. It is usually expressed in inches of mercury,
and in the standard atmosphere we have just seen that it is also the

pressure at sea level.

The altimeter setting is the only pressure indication which is visible

on the altimeter. It serves at all times to represent the amount by
which the height scale has been rotated from its normal setting. When
the altimeter setting p\ is put in 4-30(6), it determines an altitude z

Pl

which may be positive or negative. No matter what the true atmos-

phere is like, a mechanically perfect altimeter with the altimeter set-

ting pi will indicate at each pressure p the corresponding standard alti-

tude zp minus z
Pl

.

In each airways weather station there is computed several times a day
the altimeter setting which will cause an altimeter to indicate the true

altitude of the field when the plane is resting on the runway. The reader

may show from the last paragraph that the correct altimeter setting may
be determined as follows:

(i) Determine the standard altitude zp of the field by putting the

pressure at the field into 4-30(6).

(ii) Subtract the true altitude z of the field from zp , to obtain a

height. Let this height be denoted by z
Pl

.

(iii) Determine from 4-30(3) the pressure pi corresponding to the

height z
Pl

. This pressure is the altimeter setting. These operations

may be performed quickly with the aid of tables of the standard atmos-

phere. In practice the whole procedure is incorporated into a single-

entry table giving the altimeter setting p\ for each pressure p at the field.

It should be stressed that the altimeter setting for any one station

depends only on the station pressure. In this respect it is very different

from the variable reduction to a
"
sea level pressure

"
used as the pres-

sure report for the synoptic maps.

4*32. Altimeter errors. Apart from mechanical and calibration

errors a pressure altimeter is subjected to two types of errors which are
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inherent in its design. The first arises when a plane lands at an airport

with an altimeter setting which is incorrect for that airport. The second

arises when a plane is high over the ground, if the intervening atmosphere
is different from the standard atmosphere.
The first error is rather simple to visualize and measure. From

430(6) each millibar variation in p represents (near /> ) a variation of

between 8 and 9 m in zp . Thus an altimeter will be wrong by 8 or 9 m
for each millibar error in altimeter setting (about 3 m for each 0.01-in.

error in altimeter setting). For example, suppose an altimeter was set

correctly for a sea level field of take-off where the pressure was 1030 mb.

Then on landing with the original setting at a sea level field where the

pressure is 980 nib, the plane will hit ground when the altimeter indicates

420 m above sea level!

To explain the second error suppose that an altimeter is set correctly

for a sea level station under the plane. Suppose the mean virtual

temperature T^ of the air column beneath the plane differs from the

mean temperature TA of the standard atmosphere. Suppose also that

gravity g in the column differs from the value gn of the standard atmos-

phere. Then the altimeter will have an error which can be estimated

from 4-24(3). Let the sea level pressure be pa \ let the plane be at the

pressure pb. Then the true dynamic height of the plane is

(1)
Pb

The altimeter will indicate an altitude corresponding at gravity gn to

the dynamic height <J>A given by

(2) 0A-287rA ln^.
Pb

Comparing (1) and (2), we see that

T*

Hence the true altitude z - </>/g is given in terms of the indicated altitude

ZA - 4>A/gn by the formula

rr\% rrt%

,~\ * m f>n * m
(3) a- --

ZA ZA .

TA g TA

Since TA is not far from 280K at the lower flight altitudes, we see from

(3) that each 2.8C departure of T* from TA will cause about a 1%
error in the altimeter. If the actual air is colder than the standard

atmosphere, the altimeter will read too high. If the actual air is warmer
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than the standard atmosphere, the altimeter will read too low. Since g

never differs from gn by more than J% at flight levels, the maximum

gravity error is equivalent to the error introduced by a variation in T
of merely 0.7C. Thus the variation of gravity can usually be ignored in

comparison with the variation of !T*.

The determination of TA in practice can be made exactly from tables.

The accurate determination of T% is very difficult in flight, since the

plane is constantly passing over new columns with unknown tempera-
ture distributions.



CHAPTER FIVE

STABILITY OF HYDROSTATIC EQUILIBRIUM

5-01. The parcel method. In this chapter we shall develop methods

for determining the vertical stability at any level of the atmosphere
where hydrostatic equilibrium prevails. The level of the atmosphere
which will be investigated is called the reference level.

First imagine that a small parcel of air is displaced infinitesimally

upward or downward from this reference level. By studying the subse-

quent motion of the displaced parcel, we shall formulate certain criteria

of stability: If the parcel tends to move back to the reference level, the

atmosphere is said to be stable at that level
;
and if the parcel tends to

move away from the reference level, the atmosphere is said to be unstable

at that level. This method of characterizing the vertical stability is

called the parcel method.

If the parcel were to mix with the surrounding air it would lose its

identity, so we shall assume that the parcel is displaced without mixing.

Moreover, although the displacement would actually disturb the environ-

ment near the parcel, we shall further assume that the environment

remains undisturbed. These assumptions are certainly very artificial,

for the parcel must actually stir up and mix with the air through which it

moves. It would be better to examine a small continuous displacement
of a whole region. Then the stability criteria would depend upon the

increase or decrease of the entire motion subsequent to the initial dis-

placement. However, such an analysis requires advanced hydrody-
namical technique and moreover gives the same stability criteria as the

parcel method. The simpler parcel method will therefore be used here.

It will be seen presently that the stability is determined by comparison
of the densities of the parcel and of the surrounding air. Properties of

the parcel will be denoted by primed symbols and properties of the envi-

ronment at the same level will be denoted by unprimed symbols.

Any change of a thermodynamic property of the parcel is an individ-

ual variation, depending upon the process which the parcel undergoes

and is designated by the differential symbol d (see section 4-10). Al-

though the environment is assumed undisturbed by the motion of the

parcel, the properties of the environment will generally vary from level

to level. Accordingly, as the parcel moves to new levels its environ-

125
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ment undergoes a variation which then is a spatial variation and is

designated by the geometrical differential symbol d (see section 4-10).

At the reference level < the parcel and its environment have exactly

the same thermodynamic properties, for the parcel has yet to be sepa-

rated from the environment. However, the properties of the displaced

parcel at any other level will usually differ from the properties of the

environment.

Since the environment is in hydrostatic equilibrium, the resultant

buoyant force at any level is zero. Thus taking the z component of

equation 4-16(2), we have

f>pO.-g-a--

In general the parcel will have a vertical acceleration i>z = z. By New-
ton's second law of motion this acceleration is equal to the resultant

buoyant force per unit mass. We shall now assume that throughout the

entire motion the parcel will adjust its pressure to the pressure of the

environment. Thus

3 '*PZ= ~g- OL

dz

Elimination of dp/dz from the above equations gives

/< \
a'~ a

(1) z=g
a

This relation equates the acceleration to the resultant buoyant force

acting on unit mass of the parcel. The buoyant force is expressed in

terms of the specific volumes of the parcel and the environment. This

force is upward if the parcel is lighter than the environment (a > a)

and downward if the parcel is heavier than the environment (a < a).

5-02. Stability criteria. The specific volume is not directly available

from aerological data, so the buoyant force is more conveniently

expressed by the virtual temperature. The equations of state 3-25(5)

for the parcel and for the environment show that 5-01 (1) may be written

T1*' _ T*
(D 2 = g y;

We shall investigate only infinitesimal displacements from the refer-

ence level 00- The geometric height coordinate z will be measured from

this level, so the dynamic height of both the parcel and the environment

above the reference level is d<t>
- d$ gz. Let the virtual temperature at
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<o be TQ . The virtual temperature variation in the environment is

57"*

(2) T* - 7 o*
= 5r* = -

5* = -y*gz.
6q>

Here the virtual temperature lapse rate 7* in the environment is defined

by the spatial derivative

__*r*,7
50

*

An individual virtual temperature lapse rale 7*' of the parcel may also be

defined by the individual or process derivative

d<t>

The change of the virtual temperature of the parcel is then

dT* f

(3) - r*' - r* - dr*' - -d<t>=-y*'gz.
d<t>

Subtraction of (2) from (3) gives

T*' - T* = g(y* - T*').

Equation (1) may then be written in the final form

2

(4) 2-^5 (7* - 7*')z-

The reference level will be stable, indifferent, or unstable according to

the following three conditions, read respectively from top to bottom :

(5) 7* | 7*'.

That is, the atmosphere is stable at the reference level if the acceleration

and the displacement have opposite signs, so the parcel tends to move
back to the reference level. The atmosphere is indifferent if the acceler-

ation is zero. And it is unstable if the acceleration and the displace-

ment have the same sign, so the parcel tends to move away from the

reference level.

If the virtual temperature sounding curve is available, we can easily

determine whether any level of the sounding is stable, indifferent, or

unstable, once the individual or process virtual temperature lapse rate

is known.

5-03. The individual lapse rate. The individual virtual temperature

lapse rate in any process has been defined as

, _dT*'y "
d<t>

'
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where dT* f
is the change of the virtual temperature of a parcel lifted

through the dynamic height d<t>. Since it is assumed that the parcel

travels through an undisturbed environment, the dynamic height is

measured in the environment. The environment is in hydrostatic

equilibrium, so 60 = d<t>
= -adp. The individual virtual temperature

lapse rate is then given by

dr^\
dp/a\ dp

Here the derivative in parentheses is determined completely by the

process, whereas the specific volume a. refers to the environment. How-

ever, since we consider only an infinitesimal displacement from the

reference level, where o! = a, the individual virtual temperature lapse

rate for the parcel method depends only on the process. Thus

7*' =

If we replace T*
f

by Tf

,
the above argument will also apply to the

individual lapse rate of temperature, 7' = -dT'/dQ. As explained in

2'23 the temperature changes caused by radiation, conduction, or mixing

are slow compared with the changes caused by the vertical motion of the

parcel. Consequently the process performed by the parcel displaced

vertically from its reference level is nearly adiabatic. In the following

we shall consider the process to be strictly adiabatic. The process is

then either an unsaturated or a saturated adiabatic process. The
individual temperature lapse rate 7' for an adiabatic process will be

denoted by yu for an unsaturated parcel and by ys for a saturated parcel.

Since the parcel does not mix with its environment, the mixing ratio

of an unsaturated parcel has the constant value WQ throughout the dis-

placement. Individual differentiation of

3-25(4)

with respect to dynamic height gives for an unsaturated adiabatic

process

(1) 7*'= (1 + 0.61w6)7.

As explained in section 3-27 the process curves for an unsaturated adia-

batic process nearly coincide with the dry adiabats. Therefore the lapse

rate yu of temperature along an unsaturated adiabatic process curve is

almost equal to the dry adiabatic lapse rate 7<*= l/cpd . See 4-20(3).

The lapse rate of virtual temperature along the unsaturated adiabats is
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then given approximately by

(2) 7*' yu 7d (unsaturated process),

for the factor 1 + 0.61w in (1) is nearly equal to 1.

When a saturated parcel is displaced upward it will perform a satura-

tion-adiabatic process. Since condensation occurs, the mixing ratio wa

of the parcel decreases. Differentiation of equation 3-25 (4) with respect

to dynamic height then gives

(3) 7*' - (1 + 0.61^)7, - 0.61 T*
d<j>

The lapse rate of temperature along a saturation-adiabatic process curve

is y8 . The lapse rate 7*' may easily be visualized by constructing the

virtual temperature curve of a saturated parcel whose image point

follows a saturation adiabat. As the mixing ratio decreases the two

curves become closer, so the virtual temperature of the parcel decreases

more rapidly than the temperature of the parcel. This result is also

evident from (3), for dw'8 /d<t> is negative. The correction term

-Q.61T'dw's /d<t> is then positive. In the lower troposphere this correc-

tion term may be as large as 10%. See equation 5 '11(4). For rough

calculations, however, we may make the approximation

(4) 7*' 7 (saturated process).

An exact formula for yu and y8 will be given later in section 5-10.

In the following sections stability criteria will be presented in terms

of the lapse rates of temperature yd along a dry adiabat and y8 along a

saturation adiabat, since these adiabats are usually drawn on meteoro-

logical thermodynamic diagrams. If the exact form of the stability

criteria is wanted, the individual virtual temperature lapse rate 7*'

must be computed.

5-04. The lapse rate in the environment. Although the lapse rates

7*' and 7' for the process are always nearly equal, the lapse rates 7*

and 7 in the environment may be quite different, for the vapor stratifi-

cation in the atmosphere is arbitrary. Spatial differentiation of the

relation

3-25(4) T*= (l + 0.61w)r

with respect to dynamic height gives

(1) 7* - (1 + 0.61wh - 0.6ir-^-

When 7* in the stability conditions 5-02(5) is expressed by (1), we
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find that the reference level is more stable than the temperature sound-

ing indicates, if the mixing ratio increases with height; and it is less

stable, if the mixing ratio decreases with height. In particular, the top

of a cloud may be less stable than the temperature sounding indicates,

especially if the cloud is below a dry inversion. For example, let us find

what moisture distribution would make an isothermal atmospheric layer

(7 = 0) have a virtual temperature lapse rate equal to the dry-adiabatic

lapse rate (7*= l/cpd). Equation (1) then becomes

to_ 1

60
~ ~~

Q.6lcpdf

This variation is not too improbable, for the thickness &z of the layer

having a constant variation of mixing ratio from the value w at the

bottom to the value at the top is given by

Q.6lcpdTw
Az =

g

For instance, the thickness of a layer saturated at the bottom and dry at

the top, having a mean pressure of 90 cb and a mean temperature of

10C, is 150 m . Such a layer might be found at the top of a stratus deck.

5-05. Stability criteria for adiabatic processes. The stability cri-

teria 5-02(5) for an infinitesimal adiabatic displacement can now be

assembled finally. If the parcel is unsaturated the three stability con-

ditions are, from 5-03(2),

(1) 7* I 7d-

And if the parcel is saturated the three stability conditions are, from

5-03(4),

(2) 7* I 7,.

The graphical use of these criteria is illus-

trated in fig. 5-05, which represents a small

section of a thermodynamic diagram. The
virtual temperature at the reference level is

represented by the point PQ. Through PQ
the dry and saturation adiabats aj and a*

are drawn . Any virtual temperature sound-

ing curve c* through P* may be classified with respect to these adi-

abats. The five possible classifications, illustrated in fig. 5-05 by the

curves c88t c^, us ut tm arer

(55) The sounding curve c88 is said to be absolutely stable if above the

reference level it is warmer than the saturation adiabat a*, that is, if
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7* < T ; for then the reference level is stable no matter whether the air is

saturated or unsaturated.

(is) The sounding curve ct
*

is said to be saturated indifferent if it

coincides with the saturation adiabat a* , that is, if 7* = 7,; for then the

reference level is indifferent if the air is saturated and stable if the air is

unsaturated.

(us) The sounding curve c^ is said to be conditionally unstable if it

lies between the saturation adiabat a* and the dry adiabat aj, that is, if

7d > 7* > 7 ; for then the reference level is unstable if the air is satu-

rated and stable if the air is unsaturated.

(ui) The sounding curve c*^ is said to be dry indifferent if it coincides

with the dry adiabat 0%, that is, if 7* = 7^; for then the reference level is

unstable if the air is saturated and indifferent if the air is unsaturated.

(uu) The sounding curve c^u is said to be absolutely unstable if above

the reference level it is colder than the dry adiabat #, that is, if 7* > 7^;

for then the reference level is unstable no matter whether the air is

saturated or unsaturated.

Notice that these definitions refer only to the slope of the sounding
curve c* at the reference level and do not give the actual stability at that

level, because the stability depends upon whether the air is saturated or

unsaturated.

5-06. Stable oscillation. If the reference level is stable, the accelera-

tion of the parcel will counteract the displacement. Therefore the parcel

will eventually stop and be driven back by the buoyant force to its

equilibrium or reference level. However, its inertia will carry it past

this level. Consequently the parcel will oscillate about the equilibrium

level.

This can be shown analytically, for if the parcel is stable, a positive

number v
2 can be defined as follows:

Equation 5-02(4) may then be written

2+ A=0.

The solution of this second-order differential equation is well known. It

is the equation for a simple harmonic oscillator. Thus

z *= A sin vt.

That is, the parcel oscillates about its equilibrium level (z - 0) with the

amplitudeA and the circular frequency v. The period r or time required
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for one complete oscillation is

Evidently the more stable the reference level is, the smaller the period
will be. As an example let us find the period of oscillation in a dry iso-

thermal layer. We then have 7* = 0, 7*' = l/cpd, so (1) becomes

27T

g

If the temperature TO is 0C, the period is 335 sec. However, since the

lapse rate is usually nearer the dry-adiabatic lapse rate, the period of

oscillation is in general much longer.

5-07. Finite displacement. So far we have characterized the stabil-

ity of the reference level for an infinitesimal displacement. We shall

now investigate the stability of an atmospheric layer for a finite displace-

ment of a parcel from its reference level. As before, we shall assume

that the parcel does not disturb the environment and does not mix with

the environment. These two assumptions are physically contradictory.

If the parcel is small enough not to disturb the environment, it will

rapidly mix and lose its identity. On the other hand, if the parcel is

large enough to retain its identity throughout a finite displacement, its

motion will cause compensating currents in the environment. Never-

theless, it is useful to examine this fictitious case as a first approximation

to the theory of convection. Later in section 5-09 we shall allow for

compensating motion in the environment.

The analysis of section 5-01 holds for any level <t> reached by the dis-

placed parcel. Therefore the equation

dvz a a
5-01(1)

z = g
at a

is valid for the parcel even after it has been displaced through a finite

vertical distance. When the acceleration on the left-hand side of this

equation is multiplied by the height increment dz, we find

/^ j dv* j
(i) *--,#.

This is the change of the kinetic energy per unit mass of the parcel while

it moves through the height dz. When the buoyant force on the right-

hand side is multiplied by dz, we find

a a a a f

a
~~

a
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This is the work done by the buoyant force on unit mass of the parcel

while it moves through the height dz. As shown in fig. 5-07, dA is the

area on an (,-/>)-diagram (or any other equivalent-area diagram such

as the tephigram or the emagram) of the isobaric strip dp between the

virtual temperature sounding curves c*', c* for . .,

the process and for the environment respectively. /

Since the expressions (1) and (2) are equal, we ^~

have by integration

(3) v
2
zb
-

)
= -

Thus the change of kinetic energy for any part of

the finite displacement is equal to the area A be-

tween the pressures pa and pb at the limits of the

displacement, as shown in fig. 5*07. The area A is

positive if the process curve c*' is warmer than the

sounding curve c*, and negative if the process FIG. 5-07. Work per-

curve is colder. Therefore when a parcel ascends formed on ascending par-

through a colder environment its kinetic energy
cel bv b"yant force,

j i r . A j shown on tephigram.
and, hence, its rate of ascent increase. And &

when a parcel ascends through a

warmer environment its kinetic

energy and rate of ascent de-

crease.

5-08. Latent instability. We
shall now examine the stability

of a conditionally unstable layer

with respect to a finite displace-

ment. Fig. 5*08a shows such a

layer schematically represented

on a tephigram. Every level of

the sounding curve c* from P
to Q* is conditionally unstable.

Consider the individual proc-

ess curves c', c*' of an unsatu-

rated parcel displaced upward
from the reference level P

, PQ.

Lifting

condensation

>N level

Level of free

convection

FIG. 5-08<z.

Reference level

Latent instability, shown on

tephigram.

will follow the dry adiabat ad upward from P to the characteristic

point P9 ,
where the parcel becomes saturated (see section 3-28) .
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The level where this point is reafched is called the lifting condensation
level. At the same time the virtual temperature image point of the

parcel will follow the dry adiabat aj upward from P* to the virtual

temperature characteristic point P*. Since the sounding curve c* is

conditionally unstable, the parcel ascends through warmer environment,
so its kinetic energy and rate of ascent decrease. If the parcel did not

receive a sufficiently strong impulse at the reference level to reach the

level P8 , it would sink back toward the reference level. However, if the

parcel is still ascending at the lifting condensation level, its image point
will subsequently follow the saturation adiabat as upward from P8 . At
the same time its virtual temperature image point will follow the satura-

tion adiabat as upward from P*.

Notice that the curves c*, c*' intersect at the point P*. The area

PjP*P* represents the decrease of the parcel's kinetic energy during the

ascent. If the kinetic energy of the initial impulse is less than this area,

the parcel will sink back toward the reference level. But if the kinetic

energy of the initial impulse is greater than this area, the parcel spon-

taneously will ascend beyond P* through a colder environment. Conse-

quently the atmosphere is unstable with respect to the reference level if

the initial impulse is strong enough for the parcel to reach the level P*.

This level is called the level offree convection with respect to the reference

level. And the atmosphere above the level of free convection is said to

be latently unstable with respect to the reference level (Normand, 1938).

Above the level of free convection the parcel will avScend through a

colder environment and gain kinetic energy until it reaches the level R*
where the curves c*, c*

f

again intersect. The parcel will arrive at this

level with kinetic energy equal to the area enclosed by the curves c*,

c*' plus the kinetic energy surplus at the level of free convection. At
the expense of this energy it can penetrate into the stable region above
-R* until all its kinetic energy is consumed.

The level of free convection of a given reference level is determined by
the point of intersection between the virtual temperature sounding curve

and the saturation adiabat through the virtual temperature characteris-

tic point. If the parcel is close to saturation at the reference level, the

vertical distance to the lifting condensation level and also the distance

to the level of free convection are small. So the kinetic energy of the

initial impulse required to release the latent instability of the air at that

level is also small. On the other hand, if the air at the reference level is

far from saturation, the lifting condensation level is much higher and
the corresponding saturation adiabat may not intersect the sounding
curve, as indicated in fig. 508&. In this case no level of free convection

and, hence, no latent instability exist with respect to the reference level.
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The layers of latent instability, if any, are conveniently determined
when both the virtual temperature sounding curve and the virtual

temperature characteristic curve are plotted, as shown in fig. 5-08c.

The virtual temperature characteristic curve c* connects the virtual

temperature characteristic points P* corresponding to each point P* of

Lifting _^
condensation P

8

level

Reference level
s

FIG. 5-086. FIG. 5-08c.

c*. The layer of latent instability is determined by the point Q* on c*

at which a saturation adiabat is tangent. This saturation adiabat inter-

sects the virtual temperature characteristic curve at some point P*!

corresponding to the reference level P\ . Latent instability exists for all

levels below the level Pj, for the saturation adiabats corresponding to

these levels intersect the sounding curve c*. However, latent instability

does not exist for any level above the level P^, for the corresponding satu-

ration adiabats do not intersect the sounding curve c*.

5-09. The slice method. One shortcoming of the parcel method is

that the effect of compensating motion of the environment is neglected.

We shall now allow for this effect by considering an extended region of

the atmosphere at a given reference level. The method for studying

such a region was first developed by J. Bjerknes (1933) and is called the

slice method.

Let the region initially be completely saturated and also be homo-

geneous in all thermodynamic properties at any level near the reference

level 00- Within the region there may be several columns of ascending

motion. In the remaining part of the region the air surrounding these

columns will have a compensating downward motion, as indicated in

fig. 5'09a. Let the total area with ascending motion beA '

and the aver-

age speed of ascent be v
f

z . And let the total area with descending motion

be A and the average speed of descent be v8 . We shall further assume
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that the mass ascending through the reference level in the time inter-

val dt is equal to the mass descending through in the same time

interval.

These assumptions represent a simplified model of the atmosphere at a

level of initial cumulus development. The ascending air will form

clouds by saturation-adiabatic condensation . And the ascending motion

in the cloud columns is compensated by descending motion in the sur-

rounding air. The atmosphere at the reference level 0o will be called

stable if the cumulus growth is retarded, indifferent if the cumulus growth
is neither retarded nor accelerated, and unstable if the cumulus growth
is accelerated.

In the time interval dt an atmospheric slice of area A and height

dz = vzdt will be transported downward through the reference level.

The volume of this slice is dV = Adz and its mass is

CD

Substituting here dz

(23

dM = pAvzdt = pAdz.

d<t>/g and subsequently pd<t>
= dp, we have

pAd<(> AdpdM-
g

The mass of the ascending slice may be obtained by a similar argument.
Thus dM' is given by equations similar to (1, 2) wherein symbols refer-

ring specifically to the ascending slice are primed.

Initially the thermodynamic properties are homogeneous throughout
the reference level, so p' = p. Therefore, from (1, 2), the initial ratio

dM'/dM is equal to any one of the following expressions :

A A'dz A'd<t>' A 'dp'____ _ _
dM Avz Adz Ad(j> Adp

Since the upward and downward transports of mass through <o are

assumed equal, dMf = dM. Accordingly, we have from the above

equations
A f

vz dz_ d<t> dp
( '

^
/
= '^' r

For simplicity we shall assume that there is no horizontal advection
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within the region, so local temperature changes must be caused entirely

by vertical motion. As in the previous sections the individual tempera-
ture changes may be considered adiabatic. Consequently the ascending
air will be cooled saturation-adiabatically, whereas the descending air

will be heated dry-adiabatically. The individual lapse rate in the

columns of ascending air is then y8 , and the individual lapse rate in the

descending air surrounding the cloud columns is 7^.

So far nothing has been implied as to the distribution of temperature

near the reference level except that the lapse rate 7 is the same both in

the cloud columns and in the surrounding air. Although the analysis

can be carried through for any value of 7, the most interesting case

occurs when the reference level is conditionally unstable, that is, when

yd > 7 > 7- The following analysis will be confined to this case.

dp

\r
'

\
r

'

. C-

FIG. 5-096.

As shown in fig. 5-096, the sinking air which started from the level

<o + d$ with the initial temperature T = T -
yd<t> descends dry-adia-

batically and arrives at the reference level < with the temperature

(4) Ti = T + ydd<t> = To + (TH
- 7)d*-

Since 7d > 7, T\> 7V Therefore at the reference level the region A
becomes warmer owing to the subsidence.

During the same time interval the ascending air which started from

the level <fo
- d^ with the initial temperature T 1 = TO + yd<t>' cools

saturation-adiabatically and arrives at the reference level with the tem-

perature

(5) T( - T 9 -
y*d<t>' - T + (7 - ys )d<t>'.

Since 7 > 7, T( > TQ . Therefore at the reference level the region A
f

becomes warmer owing to release of latent heat.
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As in the parcel method, the stability is determined by the buoyancy of

the cloud columns relative to the surrounding air. Since both regions

are initially saturated and at the same pressure, the buoyancy depends

only upon the temperatures T( and T\. The atmosphere at the -refer-

ence level is stable, indifferent, or unstable according to the following

three conditions, read respectively from top to bottom :

(6) 21 1 2V

From (3) we have d<t>~A
f
and d<j>

r ~A. Therefore, when equations

(4, 5 ) are substituted in (6) , the three stability conditions may be written

(7) A(y - 75 ) ^ A' (yd 7)-

A useful form of (7) is obtained by evaluating the lapse rate 7* for

which the convection is indifferent. This critical lapse rate is the

weighted average of the lapse rates 7^, ys . Thus

(8) 7<

' *~
Jt ~

A' + A

The final form of the three stability conditions is simply expressed in

terms of the critical lapse rate 7,- as follows:

(9) 7 | 7.'.

This form of the stability conditions for the slice method is similar to

the form of the stability conditions for the parcel method. However, in

the parcel method the critical lapse rate is yd if the air is unsaturated, and

it is 7S if the air is saturated. Equation (8) shows that when the air is

conditionally unstable the critical lapse rate for the slice method lies

between these two extremes; that is, yd > 7,- > 7S .

Evidently the slice method can be more generally applied than the

parcel method. Indeed, the results of the parcel method may be

obtained as special cases of the slice method. Let the area of the region

A 1

+ A be constant. Then, as A 1

0, each finite ascending column

contracts into an infinitesimal filament ascending saturation-adiabati-

cally through an undisturbed environment, and from (8) 7* y8 . As

A > 0, the finite descending region becomes an infinitesimal filament

descending dry-adiabatically through an undisturbed environment, and

from (8) 7i > yd- Therefore, since the lapse rate 7 of the region lies

between 7* and 7^, the cumulus convection is accelerated (7 > 7,-) if the

areal ratio A*/A is small enough. And the cumulus convection is

retarded (7 < 7*) if the reciprocal ratio A/A' is small enough.

So far we have assumed that the regions of ascending and descending

motion are given. Actually the extent of these regions can be deter-
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mined only after the cumulus development starts. A perturbation with

sufficiently narrow columns in an initially saturated reference level would
be unstable. Moreover, the perturbation is more unstable, the narrower

the columns. However, a very narrow ascending air column would

rapidly be destroyed by turbulent mixing. Therefore the ascending
columns must have a certain finite minimum cross section in order to

maintain the upward convection. The column cross section actually

selected by the perturbation must be small enough to be unstable and

yet large enough not to be destroyed by the consequent convection.

As shown in fig. 5-096 the instability is insured by T( > T\. The
difference T{ T\ required to maintain unstable convection may be

quite small, whereas the difference T\ TO may be comparatively large.

The effect of such convection would be to heat the reference level and all

subsequent levels reached by the convective columns. This heating is

supplied by release of latent heat of condensation in the ascending air and

by subsidence in the descending air. Since all levels reached by the

convection are heated, heat is transported upward by the convective process.

This process is the most important means of transporting heat upward
in the troposphere.

At the highest levels reached by the convection the heat is distributed

horizontally from the tops of the ascending columns. The heat which is

transported downward to the levels below by subsidence is thereby con-

tinually replenished by the latent heat released at the top of the convec-

tive region. Accordingly, the heating of the entire region affected by the

convection is ultimately supplied by the latent heat of condensation

released by the upward convection.

5-10. Formulas for yu and y 8 . In section 5-03 certain unsaturated

and saturated process lapse rates yu and y s were defined. For the pur-

pose of estimating stability yu can be closely enough approximated by
y<i, and y s can be well enough estimated from a diagram. For other

purposes, however, it is important to have exact formulas for these

lapse rates. These will now be derived.

The adiabatic process for unsaturated air is given by

2-24(3) = cpdT - adp,

where cp = cpd(l + 0.90w) is the specific heat of moist air at constant

pressure. As in 5-03, the individual change of dynamic height is given

by the hydrostatic equation: d<t>
= -adp. Hence we have

dT 1

(1) 7u =- =-.
(t(f> Cp
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This formula shows that when w = 0, yu reduces to l/cpd, i.e., to yd*

See 4-20(3).

The value of ya at any point in the atmosphere depends on which of the

saturation-adiabatic processes (see 3-31, 3-32, 3-34) the lifted air parcel

is presumed to follow. We shall give the formula for the pseudo-adia-

batic process. According to 3-31(4) this process is described by the

equation

(2) -Ldws
= (1 + ws ) (cpdT - adp).

In order to evaluate y s ,
we must first express dws in terms of dT and dp.

We note from 3-20(4) that

ee?

(3) w.---^-.
P - es

Differentiating (3) logarithmically, we find after collecting terms that

... dws p /des dp\
iq.\

---- = i -- _ i .

ws P- ea \es pi

But from (3) we see that

t) Wo
(5)

~JL- = 1 + -- = 1 + 1.6lwa .

p - es e

Substituting (5) and Clapeyron's equation 3-11(4) into (4), we get

This may be transformed further by noting that R = Rd(l + 0.61w):

dwa 1 + .61wi,) RT 1" '

p
P
\

'

ws 1 + 0.61w8 RdTl T

When we simplify the right-hand side and use pa = RT, we get

_ dws (l + w
T

This is the second relation between dws , dp, and dT referred to in sec-

tion 3-33. By putting (6) into (2), canceling (1 + wa ), and collecting

terms, we get

f Lwa c/Xl +

L RdT T

We substitute d<t>
- -adp, and introduce two abbreviations:

,. Lw8 eL(l -f- 0.61w8 ) eL
(7 ) M-^-^;, "--

cpT cpd (l
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We then get

Now 7a=-d7Vd0; and l/yu = cp , by (1). Hence -cp (dT/d<l>)

7s/7u> This ratio is denoted by w:

(9) n-^.
7u

We then get from (8) and (9) :

1 + M
(10) W = -

7a = "7*.
1 + W

This formula (10) is the desired formula expressing 7* in terms of the

known meteorological variables of (1) and (7).

From (10) we may compute n and hence 7., at any point on a diagram.
It is seen that < n < 1. A typical value of n for the lower tropo-

sphere is that determined for the state T = 275K, p = 90 cb, where

ws
= 5 X 10""'*. From (7) we obtain p.

= 0.159, v = 5.62, whence from

(10) n = 0.61. This corresponds to 7 S
= 0.00061. This is a tempera-

ture drop of approximately 6C per kilometer rise, which is accordingly

used as a value of the saturation-adiabatic lapse rate for many rough
calculations. The minimum value of ys found in the atmosphere may be

estimated as that at T = 309K, p = 100 cb, w8
= 40 X 10~3

,
for which we

compute 7S
= 0.000325.

Formula (10) is valid for either the rain stage or the snow stage of the

pseudo-adiabatic process (see 3-30). The only difference is that in the

snow stage the latent heat L of evaporation in (7) should be replaced by
the latent heat Li v of sublimation.

5-11. Rate of precipitation. A useful application of the saturation-

adiabatic lapse rate is the evaluation of the amount of precipitation which

falls from an ascending saturated layer. The assumption is made that

the process is pseudo-adieibatic (see 3-30), so that all the condensed

water falls out as precipitation. The method, given below, of finding

the rate of precipitation was developed by Fulks (1935).

Consider a saturated sample of air containing one ton of dry air. It

will contain w8 tons of water vapor and thus its total mass is (1 + w8 )

tons. If this mass is lifted one meter, dws/dz tons of vapor will be

condensed. The amount of precipitation per ton of saturated air when

lifted one meter is therefore

(1)
1 dw

.

1 + w8 dz
'
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Consider next a vertical column of saturated air having the cross-

sectional area of one square meter and the dynamic height of one dy-

namic decimeter. The volume of this column is l/g cubic meters, and its

mass is p/g = I/ (ag) tons. Let P' be the number of tons of precipitation

from this column when it is lifted one meter. From (1) we then have:

(2) P'- * dw8 ^_ 1 dwa
^

(1 + w8)ag dz (1 + w8 )ot d<t>

'

To evaluate dw8/d<t> we divide 5-10(2) by d<t>:

(3, *- +

By using d<t>
= adp, and n = cp (dT/d(t>) from 540(9), we can solve

(3) for -dwa/d<t>:

/*x dw* ,< \ C 1
"" n)

(4) (!-*- w8 )

From (2) and (4) we get the final formula for P7
:

(s) P'"^r'
where n is given explicitly by 540(10). As a dimensional check of (5),

we note that P' is defined to be a mass, per dynamic unit column

expressed in (meters)
2 X dynamic decimeters, per meter lift. Hence

we should have

The right side of (5) has these dimensions, since n is a pure number.

We now define P to be the rate of precipitation in millimeters per hour

from a saturated layer 100 dyn m thick ascending at the speed of one

meter per second. Obviously P is independent of the area of the surface

on which the precipitation falls, so we shall consider one square meter

on the ground. Above this area are 1000 columns like that of the previ-

ous discussion. In one second they will rise one meter, and each will

drop P* tons of precipitation. In one hour they would at the same rate

collectively provide 3.6 X 10
6 P' tons of precipitation. One ton of water

in a unit column will have a height of one meter, or 1000 mm. Conse-

quently, in one hour this 100-dyn m layer will give 3.6 X 109 P' mm of

precipitation. We thus have from (5) :

(6) P - 3.6 X 10
9^^ mm hr"1

.

oL
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Formula (6) is the practical form of the precipitation equation. In

general, if the saturated layer were AH dynamic meters thick, rising at

the speed of vz meters per second, then the rate of precipitation would be

<"

For the snow stage L in (6) should be replaced by ,,-.

30

10 20 30

FIG. 5*12. Precipitation lines on emagram.

-30-20-10
T

5*12. Precipitation lines on the emagram. Since both n and a in

541 (6) depend only on p and T, it is possible to draw lines of constant P
on any thermodynamic diagram. They are shown in fig. 5-12 on an

emagram, and the value of P is given for each line. There are two sepa-
rate families of lines. Those marked with R are for the rain stage.

Those marked 5 are for the snow stage. Both sets of lines are due to

Fulks.

We give a simple example of the use of the precipitation lines. Let us
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suppose that a saturated isothermal layer extends between the pressure
levels 900 mb and 600 mb. The temperature of the layer is 10C, and it

is known to have the vertical velocity 0.3ms"
1

. It is desired to estimate

the resulting rainfall in millimeters per hour.

We break the layer up into the three sublayers 900-800 mb, 800-700

mb, and 700-600 mb. For each layer we perform the following calcu-

lations: (i) We determine its thickness A/7 in dynamic meters using any
convenient method; (ii) we determine the value of P at the midpoint of

the sublayer from the precipitation lines; (iii) we determine the precipi-

tation from that sublayer using formula 5-11(7). The resulting figures

in (iii) are then added, to give the total rainfall in millimeters per hour.

The calculation is summarized in the following table.

SUBLAYER *
,

AH
- ,

(m s- 1
) (dyn m) 100

900-800 mb 0.3 960 0.72 2.1

800-700 mb 0.3 1090 . 67 2.2

700-600 mb 0.3 1250 0.60 2.3

Total rainfall in mm hr~~
l = 6.6

In practice the determination of vz is quite difficult, and it limits the

accuracy of the whole procedure. There is consequently little need of

much accuracy in the determination of either A77 or P.



CHAPTER SIX

THE EQUATION OF MOTION

6-01. Kinematics. In chapter 4 we examined the atmosphere in a

state of relative or hydrostatic equilibrium. That is, we considered the

atmosphere when it is rotating with the earth. We know from experi-

ence that motion in the free atmosphere is much more complicated. In

order to investigate this more complicated motion we must advert to

kinematic and dynamic concepts.

The description of motion is called kinematics. Consider a moving
point. Let its position P be described from a reference frame which

we may think of as a Cartesian coordinate system centered at some

point O. P is then specified by a coordinate triple (x,y,z).

However, another and equivalent way of representing P is to draw
the directed vector length from to P. This vector is called the position

vector of P and is symbolized by r. The x,y,z components of r are merely
the distances x,y,z. Hence

(1) r= xi + y) + zk.

Here i,j,k may represent any set of rectangular unit vectors. In later

applications we shall let i,j,k represent the standard system defined in

4-03.

6-02. Velocity. As the point moves along the path c shown in

fig. 6-02, it occupies different positions at different times. At the time /

let its position be P and its position vector be r = r(/) At the later time

/i = t + A/ let its position be PI and its posi-

tion vector be TI = r(/ + A) Corresponding to

the time difference A/ = t\ /, the position vec-

tor difference may be denoted by Ar = TI
- r.

Since the vector difference ri - r is the vector

from the terminus of r to the terminus of TI, Ar

is the vector from P to PI.

The quotient Ar/A2 is also a vector. It has
4-U J- *.* J A A 4-Uthe same direction and sense as Ar. As the

time increment becomes smaller, P will approach PI, and the quotient

will approach a limiting value. This limiting value is defined to be the

145
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velocity at P, and will be denoted by v. We then have

(1) v-lim-1 - = lim .

*

This vector limiting process is quite analogous to the familiar scalar

process of differentiation. Hence the usual symbols for derivatives may
be extended to vectors.. So we may write

(2) V= f =f '

where the dot placed above a symbol is equivalent to the operation d/dt

upon that symbol. We shall continue to use the differentiation symbol d

as we have used it here : to denote variation with respect to a designated or

individual point.

The approach of PI to P along the path c not only defines the velocity,

but also defines the tangent line to the path. Consequently the velocity

must be along the tangent. We shall call the unit vector along the path
in the direction of the motion the unit tangent and denote it by t. Let 5

represent a linear coordinate along the path, so that ds = \dt\. The
unit tangent is then defined by

dr dr

Since the unit tangent is the unit vector along the velocity, we have

v ut, where the numerical value of the velocity, called the speed, is

(3) ,-W-t*-*.^ } ' !

\dt dt

The rectangular components of the velocity may be obtained by sub-

stituting the rectangular components of r\ and r into (1) and finding the

limit. Since i, j, k are vectors fixed in the coordinate frame, the rate of

change of the position vector may be expressed in terms of the rates of

change of its components as follows :

r = xi + yj + zk.

Therefore the rectangular components of the vector derivative of a posi-

tion vector are the scalar derivatives of the rectangular components of

the position vector.

6-03. Differentiation of a vector. Any vector a which is a continu-

ous single-valued function of the scalar variable u may be represented as

a position vector. Let the vector a be drawn from a given origin 0.
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As the variable u increases, the terminus of a traces a continuous curve,
called the terminal curve, similar to the path traced by the terminus of the

position vector.

The vector derivative of a = a(w) is defined as

/i\
da

i-
ai~a ,.

Aa
(1) = hm- = lim 9

du
Ul^u HI- u Au__>o AM

where Ui = u+Au and ai = a(u+&u). Evidently by definition

da/du is tangent to the terminal curve. Thus the derivative of a vector
is easily visualized when the vector is represented as a position vector

and the terminal curve is drawn.

By expanding ai and a into rectangular components we get for the

rectangular components of the derivative:

(2) .

du du du du

Therefore the rectangular components of the vector derivative of a are

the scalar derivatives of the rectangular components of a.

The rules for differentiating functions, sums, and products involving
vectors correspond to the rules for differentiating functions, sums, and

products of scalars. That is,

... da dadw
(3) 7~ = T" T"' w=* w (w )

du dw du

... d , . . da db ^

(4) ;r(a + b>-;r + ;r
f

du du du

/e\ ^
/ \

^ e ^a
(5) T^-T^+tT 9

du du du

t*\ &
f ^ &*

t_
d**

(6) (a-b)- -b+.a.
du du du

These rules are easily verified either by writing the derivatives as limits,

according to (1), or by resolving the vectors into rectangular components
and applying (2).

The rule (6) can be used to show that the derivative of a unit vector is

normal to that vector. For differentiation of aa = 1 gives

da da da
a + a- - 2a - 0.

du du du

This result could be anticipated geometrically, for the terminal curve of a

unit vector is constrained to lie on the surface of a unit sphere. Since
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da/du is tangent to this terminal curve and consequently tangent to the

sphere, it must be normal to a.

All the definitions and results of this section also apply to partial

derivatives symbolized by

6-04. Acceleration. The position of a moving point has been

described by the position vector r = r(/) issuing from an origin O. As

time passes, the terminal point of the position vector moves along the

path c with the velocity v = v(/).

A clear picture of the variation of the velocity

is obtained by transferring the origin of the

vector v from the path point P to the origin 0,

as shown in fig. 6-04. The terminal point P
f
of

the transferred velocity vector is called the image

point. As time passes, this image point traces a

terminal curve c' called the hodograph of the

velocity. To each instant / there corresponds a

definite point P on the path c and a definite

image point P
f
on the hodograph c '. P repre-

sents the position of the moving point and P f

represents its velocity.

The velocity of a point is the individual rate of change t of the posi-

tion vector. The individual rate of change of the velocity v = dv/dt

will be called the acceleration of the point. The acceleration is readily

obtained from the hodograph. For, as shown in the figure, the point P
moves with the velocity f along the path c traced by r. And the image

point P' moves with the velocity v along the hodograph c' traced by v.

Accordingly, the acceleration of a moving point along the path is equal to the

velocity of the image point along the hodograph.

From 6'03(2) the rectangular components of the acceleration are

given by

(1)

In the next section we shall derive another and more useful expression

for the acceleration.

6-05. Curvature. When the relation v = vi is differentiated we find

(1) v= vt+ vi.

Since the derivative of a unit vector is normal to that vector, t and t are

perpendicular. Consequently the acceleration has here been split into

components tangential and normal to the path. We shall call the unit

vector along the derivative of the unit tangent the unit normal and
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denote it by N. That is,

All the normals to the unit tangent lie in the plane perpendicular to the

path. To find the direction of the unit normal at a point P on the path,
we must examine the motion along the path in the neighborhood of P.

Suppose that the unit tangent t is

drawn at P as in fig. 6'05a. Let us

select another point PI near P and draw
the unit tangent ti at that point. The
vectors t and ti are of unit length.

Therefore, as PI -> P, the length of the

vector At = ti t becomes numerically

equal to the angle A^ between t and ti-

Thus

(3)
]*J

1.
FIG. 6-05a.

The rate of change of the unit tangent may be expressed by means of

(2), (3), and 6-02 (3) as

where K = d\f//ds is called the curvature of the path c at P. Curvature is

a geometric rather than a kinematic concept: it is measured by the

angular turn A^ of the tangent through the arc length As. That is, the

curvature of a curve at a point P on the curve is defined as

(5) K lim - -f
P.-+P As as

Evidently this formal definition corresponds to the intuitive notion of

curvature. For instance, as shown in fig. 6OS6, the curvature of a circle

of radius R is

ds R

This result is important: The curvature of a circle is the reciprocal of the

radius of that circle. A straight line may be regarded as a circle of infi-

nite radius having zero curvature.

The path in the neighborhood of P may always be replaced by a circle
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having the same curvature as the path. Before constructing this circle

let us first consider the construction of the tangent line at P. Choose a

point PI on the path c near P. The two points P and PI determine a

straight line. As PI - P this line approaches a limiting line tangent to

the path at P.

Consider now two distinct points,

PI and P2 ,
on the path c near P.

The three points P, Pit P2 deter-

mine a circle. As P2 > PI -> P this

circle approaches a limiting circle

called the circle of curvature to the

path at P. The plane of this circle

is called the osculating plane.

Suppose that the path contains the

three points in the order P, P 1? P2 .

The unit tangent ti is defined by the

approach of P2 to P\ , and the unit

tangent t by the approach of PI to

P. Consequently, as P2 > PI > P,

ti and t become coplanar with the osculating plane. Since both unit

tangents are along the path, their difference is directed toward the

center of the circle of curvature. This center will be called more

briefly the center of curvature.

As P2 -> PI - P the unit tangents ti and t define the curvature of the

path and also the curvature of the circle of curvature. Hence both

curvatures are the same. Accordingly

FIG. 6-056. Curvature of a circle.

(6)

where K is the curvature of the path, and R, called the radius of curva-

ture, is the radius of the circle of curvature.

When the expression (4) for the rate of change of the unit tangent is

substituted in (1), we find

The tangential component of the acceleration is called the tangential

acceleration. It is numerically equal to the rate of change of the speed.

Accordingly a moving point speeds up or slows down only in the direction of

motion. Notice that v is not the magnitude of the acceleration.

The normal component of the acceleration is called the centripetal

acceleration, for it is directed toward the center of curvature. The
vectorK of magnitudeK and directed toward the center of curvature will
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be called the vector curvature. Thus, K = KN. Accordingly the cen-

tripetal acceleration is v
2K.

The centripetal acceleration may be expressed in another form by

extending the notion of angular speed from the rate of angular rotation

along a fixed circle to the rate of angular rotation along the osculating

circle. This generalized or instantaneous angular speed, denoted by

co, is defined as

,
W

(7)
-

5r
-

As a consequence of this definition

'ds dsd\l/ o)

The vector R of magnitude R and directed away from the center of

curvature will be called the vector radius of curvature. Thus R - KN.
So the centripetal acceleration is -to

2R.

When the centripetal acceleration is expressed by v
2K or 2

R, the

acceleration becomes

(9) v

(10) v-t5t-oj2
R,

respectively.

The unit tangent and the unit normal constitute an orthogonal system
in which the expressions for velocity and acceleration are particularly

simple. Any system so intimately connected with the motion will be

called a natural system. And metric coordinates along the unit vectors

of a natural system will be called natural coordinates. We shall make
extensive use of such coordinates in the following.

6-06. Reference frames. Let us denote by F the reference frame

from which the motion of a point is described. The operations by which

the position vector, the velocity, and the acceleration of the point have

been obtained are defined only with respect to F. Suppose that the

motion of the same point throughout the same interval of time is de-

scribed from another reference frame Fa . With respect to Fa a position

vector, velocity, and acceleration may also be defined. In general the

position vector and its derivatives observed from Fa will differ from the

corresponding vectors observed from F. For each frame may move and

change relative orientation in any arbitrary manner.

Suppose that the frame F is rigidly attached to the earth. Such a

frame is called a relative frame. Quantities referred to the relative frame

will be called relative and their symbols will carry no subscript.
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Let the frame Fa be attached to some point on the axis of the earth and

be oriented so that the stars appear fixed. In this frame the axis of the

earth also appears fixed. In dynamic meteorology such a frame is called

an absolute frame (see 6*07). Quantities referred to the absolute frame

will be called absolute and their symbols will be distinguished by the

subscript a.

In practice the motion of the atmosphere is always referred to a rela-

tive frame. But, as we shall see in the following chapter, the dynamical

description of the motion is referred to an absolute frame.

6-07. Dynamics. The motion of material points or particles is not

arbitrary but depends in a definite way upon the presence of other matter.

The formulation and consequences of this dependence constitute the

science of dynamics. We shall not define or develop the fundamental

dynamical concepts; we shall suppose that these notions arc understood.

Indeed, they have already been introduced and used in the preceding

chapters.

If mass and force are understood, then dynamics can be founded upon
Newton's second law of motion, the fundamental dynamical law. This

law may be formulated as follows : The resultant force acting upon a parti-

cle is proportional to the mass of the particle, and is proportional to the

acceleration of the particle as observedfrom an absoluteframe. When units

are properly chosen, as in the mts system, the acceleration and the

resultant force per unit mass are equal.

Newton's second law should properly refer the motion to a frame

located at the center of gravity of the solar system and fixed with respect

to the stars. Although this refinement is required for astronomical cal-

culations, it is unnecessary for the dynamics of the atmosphere. We
shall consider here that a frame located at a point on the axis of the earth

and fixed with respect to the stars is an absolute frame, valid for the state-

ment of Newton's second law.

In the atmosphere the acting forces are the pressure force, the force of

gravity, and the frictional force. Here we shall suppose that the fric-

tional force is absent. Later in chapter 9 the effect of friction will be

considered. The pressure force arises from the interaction of the air

elements and is independent of the reference frame from which it is

observed. However, as we have seen in 4-09, the force of gravity is

measured upon the rotating earth and depends upon the rotation.

6-08. The force of gravitation. An observer fixed in absolute space,

not rotating with the earth, would measure the force of gravitation rather

than the force of gravity. The force of gravitation arises from the

attraction between mass points and is given by Newton's law of universal
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gravitation. The force of gravitation acting upon a unit mass at a dis-

tance r from the center of the earth is directed toward the center, and its

magnitude ga is given by

,
GM

(1) fo--^--

Here G is the universal gravitational constant, and M is the mass of the

earth. G has the dimensions [M""
1L3T

W"2
], so it has the same value in

both mts and cgs units. This value is 6.658 X 10~~
8

. The mass of the

earth has been found by astronomical measurements to be 5.988 X 1021

tons.

Formula (1) holds only if the mass of the earth is symmetrically dis-

tributed about the center of the earth in homogeneous concentric spheri-

cal shells. Actually the earth is nearly an oblate spheroid of revolution

slightly depressed at the poles. Moreover, the mass of the earth is asym-

metrically distributed. Hence (1) cannot hold exactly. But it does

give a good approximation to the actual force of gravitation.

Since the earth is a spheroid, the polar and equatorial radii are differ-

ent. The polar radius is af> = 6357 km, and the equatorial radius is

aE = 6378 km. A sphere with the radius a = 6371 km has very nearly

the same volume and area as the earth. The value a will be used for the

mean radius of the earth. Introducing this value into (1), we find the

mean value of the force of gravitation at the surface of the earth to be

/~* ii/r

(2) g --r - 9.822 m s~2 .

a

The force of gravitation is directed toward the center of the earth.

If it has a potential, the equipotential surfaces must then be spherical.

The normal distance between two infinitesimally separated spherical

surfaces is dr. Consequently, if a gravitational potential <j>a exists, it

must satisfy the relation

When (1) is substituted for gaj the existence of the gravitational potential

0o is proved, for

Thus, by integration,
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If the constant of integration C is evaluated so that <f>a = at sea level at

the poles, then

(3) *a -GAf(---\aP r
t

The gradient of the gravitational potential is the vector force of gravi-

tation ga . Thus

(4) go - -V0a-

This force ga is the force of gravitational attraction of the earth acting

upon a particle of unit mass.

By the argument of 4-10 it can be shown that a gravitational poten-

tial <f>a exists for any distribution of mass. Consequently the gravita-

tional force ga is the gradient of this potential. That is, (4) holds for any
distribution of the mass of the earth.

609. The equation of absolute motion. The mathematical formula-

tion of Newton's second law of motion is known as the equation of abso-

lute motion. The forces observed from the absolute frame acting upon a

particle of unit mass are the gravitational force ga and the pressure force.

In section 4*15 the pressure force per unit volume was shown to be

V/>. Consider the pressure force acting upon a parcel of mass 8M
and of volume dV. This force is 5Wp. The pressure force per unit

mass, denoted by b, is then

W
(1) b= - V= -V.

5M

Newton's second law requires that the absolute acceleration v equal
the resultant of the pressure force b and the gravitational force g .

Thus!

(2) v = b + go = -aVp -
V</>.

This is the equation of absolute motion referred to unit mass. The equa-
tion of absolute motion referred to unit volume is obtained from (2) by
multiplication with the density p. Thus

(3) pva = -Vp - pV0 -

Although this equation is sometimes useful, hereafter the equation of

absolute motion referred to unit mass will usually be intended when the

equation of absolute motion is mentioned.

The equation of absolute motion (2) may be expressed as an equilib-

rium of forces by defining a force fa equal and opposite to the absolute



155 Section 6- 10

acceleration. Thus

(4) fa = -Va .

This force fa is called the inertial force of reaction. For it arises from the

inertia of a particle moving relative to the absolute frame, and it com-

pletely balances the resultant of all the acting forces. So the equation of

absolute motion may be stated

(5) 0=b + ga + f .

That is, the resultant of all forces per unit mass, including the inertial

force of reaction, is always zero. This formulation of Newton's second

law is physically significant to an observer attached to the moving parti-

cle, for he is unable to distinguish between real forces and the inertial

force of reaction. Accordingly, whenever forces are measured upon a

body accelerating relative to the absolute frame, inertial forces appear.
The equation of absolute motion refers the acceleration to an absolute

frame Fa . Since these equations express so simply the dynamic con-

ditions which control the motion, the dynamics of a process is often better

understood when the motion is referred to the absolute frame.

However, an observer fixed on the earth can express his observations

more conveniently with respect to a relative frame F fixed to the earth.

In order to use the equation of motion, observations relative to F must

be referred to the absolute frame Fa . That is, we must know how motion

as observed from a relative frame would appear from the absolute frame.

Evidently this depends upon the motion of the relative frame with respect

to the absolute frame.

6-10. The acceleration of a point of the earth. The earth rotates as

a solid body from west to east with a constant angular speed which will

be denoted by 12. 12 is then determined by the period of rotation of the

earth with respect to the fixed stars. This period is called the sidereal

day from the Latin word for star. Therefore, 12 is given by

2ir rad
ft = .

1 sidereal day

Since the earth moves around the sun, the sidereal day is different from

the solar day or day, which is the period of rotation of the earth with

respect to the sun. In one year, or approximately 365^ solar days, the

earth has rotated 365^ times with respect to the sun. The earth has in

one year also made one complete revolution in absolute space around the

sun from west to east. Hence in one year the earth has made 366|
revolutions with respect to the stars. Therefore

1 year - 365\ solar days - 366J sidereal days.
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Consequently the angular speed of the earth is given by

(1) _
'

= 7.292 x l<r5 rad f1
.

365f solar days

We may consider that the particles of the earth form a space of points

called relative space. This space may be extended to include every point

which appears at rest when observed from a point of the earth. Every

point of relative space rotates with the constant absolute angular speed 12

around the axis of the earth in a fixed circle of curvature centered on the

axis. This circle is called a zonal circle and the plane of the circle, its

osculating plane, is called a zonal plane. Since a point at rest in relative

space moves with constant speed, its acceleration is purely centripetal

and lies in the zonal plane, directed toward the axis of the earth. The
absolute acceleration of a point fixed in relative space will be called the

acceleration of a point of the earth and denoted by ve . Then by 6'05 (10)

(2) ve =-fl
2R.

The equal and opposite inertial force of reaction fG is called the cen-

trifugal force of a point of the earth. Thus,

(3) fe =fl
2R.

So the equation of absolute motion for a particle at rest in relative space

is, by 6-09(5),

(4) 0=b+ga + fc .

This is the equation of relative or hydrostatic equilibrium, expressed

from the absolute frame. The same equation, expressed from the rela-

tive frame, has already been obtained in 4'16(2) and is

0=b + g.

Evidently to an observer at rest in absolute space the pressure force is

balanced by the force g -f fe - But to an observer at rest in relative

space, the pressure force appears to be balanced by a single force, the

force of gravity g. Accordingly we have

(5) g=ga+fc .

That is, as stated in the last section, a moving observer is unable to dis-

tinguish between real and inertial forces.

On a given zonal circle the magnitudefe = fl
2
J? of the centrifugal force

is constant. The equiscalar surfaces of R are cylinders of revolution

coaxial with the axis of the earth. So by 4-13 the ascendent of R is a
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unit vector normal to those cylinders and directed away from the axis of

the earth. Hence

Since the angular speed of the earth is constant, the centrifugal force is

the gradient of a centrifugal potential C . Thus

where the centrifugal potential is given by

The equipotential surfaces of e coincide with equiscalar surfaces of R;
they are cylinders of revolution coaxial with the axis of the earth.

Since both the gravitational force and the centrifugal force are poten-
tial vectors, the force of gravity is also a potential vector. This was
shown independently in chapter 4, where the potential of gravity was
denoted by <. Equation (5) may then be rewritten in terms of poten-
tial vectors as

This equation shows that the potentials 0, < tt ,
and <j>e are related by

(6) <t>
=

<t>a + <t>e .

The potential <t>a in (6) may refer to any distribution of the mass of the

earth. If, in particular, the earth is regarded as made up of homogene-
ous spherical shells, then <f>a is given by 6-08(3), and (6) becomes

(7)
aP

The geopotential surfaces of constant </> are found graphically by draw-

ing spherical surfaces for <t>a and cylindrical surfaces for <j>e . Both sur-

faces are surfaces of revolution which are completely defined by their

intersections with any plane through the axis of the earth, called a

meridional plane. Consequently the surfaces of constant <
, e and <

are completely represented by their traces on a meridional plane. The
lines of constant gravitational potential are circles concentric with the

center of the earth. And the lines of constant centrifugal potential are

straight lines parallel to the axis of the earth. The diagonal curves of

unit values of these two sets of lines form the meridional geopotential
lines.

The meridional traces of the potentials , </>c , and <t> are illustrated in

fig. 6-10. Here the potential unit for which the traces are constructed is

107m2
s~~

2
. The shape of the geopotential surfaces has been exaggerated
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-2.0

FIG. 6-10. Geopotential levels.

by drawing for a centrifugal potential which represents an angular speed

ten times that of the earth. Notice that the geopotential surfaces are

inflated in the direction away from the axis of the earth. In that direc-

tion the centrifugal force becomes stronger and the gravitational force

becomes weaker. Hence the dis-

tance between consecutive cen-

trifugal potential traces decreases,

and the distance between consecu-

tive gravitational potential traces

increases. Accordingly the geo-

potential surfaces far from the

axis of the earth are nearly given

by the cylindrical centrifugal po-

tential surfaces, and the geopoten-
tial surfaces near the axis of the

earth are nearly given by the

spherical gravitational potential

surfaces. Although the geopoten-

tial surfaces near the surface of the earth are actually inflated toward

the equator, they are very nearly parallel, as explained in section 4-11.

From (7) the surface < = coincides with the surface of the earth at

the poles. This geopotential surface is found to be very nearly ellipsoi-

dal with a difference of 11 km between the polar and equatorial radii.

The values aP and a# obtained from geodetic measurement show that

the difference should be 21 km (see section 6-08). This discrepancy is

due to the assumption that the mass of the earth is distributed in homo-

geneous concentric spherical shells. If, instead, $a in (6) represents the

potential of a homogeneous oblate spheroid, the geopotential surfaces

will be more nearly correct. The remaining discrepancy, due mainly
to irregularities of mass distribution in the crust of the earth, is small.

6-11. Zonal flow. The equation of motion for a point rotating with

the earth expresses the complete balance between the force of gravity

and the pressure force. Accordingly, the isobaric surfaces must coincide

with the geopotential surfaces. The ocean and the interior of the earth

may be considered as viscous fluids rotating as a solid body with the

absolute angular speed Q. So the isobaric surfaces in the earth and in

the ocean are normal to the force of gravity. If the earth, the ocean,

and the atmosphere rotate together as a solid body, the unit isobaric

surfaces are then everywhere coincident with the geopotential surfaces.

Since the thickness of an isobaric unit layer is proportional to the specific

volume, the isobaric unit layers are very thin in the earth, thicker in the

ocean, and much thicker in the atmosphere.
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Let us now examine an atmosphere rotating around the axis of the

earth with the absolute angular speed coa . If coa is constant along each

zonal circle and constant in time, the atmospheric flow is called zonal.

In arbitrary zonal flow coa may vary from circle to circle. However,
for simplicity we shall consider wa constant for all zonal circles.

In zonal flow the acceleration is purely centripetal, so the inertial

force of reaction is a centrifugal force, given by

(1) fa==CO*R.

And the equation of absolute motion is

(2) 0=b

When the atmosphere and the earth rotate together as one body, we
have w = 12 and therefore fa = fe . Equation (2) then becomes identical

with equation 640(4) for relative or hydrostatic equilibrium.

Since the centripetal acceleration and the force of gravitation are

meridional vectors, the pressure force and, consequently, the pressure

gradient are also meridional vectors. Hence the isobaric surfaces must

be normal to any meridional plane and are therefore surfaces of revolu-

tion about the axis of the earth. The whole pressure field is then com-

pletely determined by the meridional isobars,

that is, by the lines in which the isobaric sur-

faces intersect a meridional plane.

The surfaces of constant gravitational poten-

tial appear as concentric circles in the meridio-

nal plane. Unless the absolute angular rotation

is zero, the meridional isobars are depressed at

the poles. This conclusion is illustrated by the
_,. f , , ,. f ,. f FIG. 6-1 la. Meridional

vector diagram of the equation of motion for
isobar n zonal flow

zonal flow in fig. 64 la.

The centrifugal force o^R is the same for either sense of the absolute

rotation about the axis of the earth. Consequently the isobaric sur-

faces will be the same for either sense of rotation of the same magnitude.

Although the two senses of the absolute rotation of the atmosphere are

dynamically indistinguishable, they may be distinguished kinematically

according to the sense of the earth's rotation. When the atmosphere
rotates zonally with the same sense as the earth, o>a will be defined as

positive. And when the atmosphere rotates with the opposite sense,

co will be defined as negative. In order to conform with later sign con-

ventions this definition will apply only to the northern hemisphere.

However, the results for constant zonal flow may easily be extended to
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the southern hemisphere, for both the field of rotation and the pressure

field are symmetric about the equator.

When coa is varied, the isobaric surfaces change orientation with respect

to the surfaces of constant gravitational potential and of constant geo-

potential. In the diagrams of fig. 6-116 four orientations of the isobaric

surfaces, represented by the meridional isobars, are illustrated. Only
one quadrant of the meridional plane is shown in the diagrams. The
isobaric pattern is symmetric both about the equator and the axis of

the earth.

In diagram 6 the absolute angular speed is zero, and the atmosphere
is in absolute equilibrium. The isobaric surfaces then coincide with the

spheres of constant gravitational potential. In all the other diagrams
the isobaric surfaces are depressed at the poles.

In diagram b\ the centrifugal force of the atmosphere is less than that

of the earth. Therefore the isobaric surfaces are less depressed at the

poles than are the geopotential levels, and any constant level has a belt of

low pressure at the equator.

In diagram 63 the centrifugal force of the atmosphere is the same
as that of the earth. The pressure force is equal, but opposite in

direction, to the force of gravity. Therefore the isobaric surfaces

coincide with the geopotential levels.

In diagram 63 the centrifugal force is greater than that of the earth.

So the isobaric surfaces are more depressed at the poles than are the geo-

potential levels, and any constant level has a belt of high pressure at the

equator.

The absolute zonal rotation is observed from the earth as a relative

zonal rotation with the relative angular speed co. Evidently the abso-

lute angular speed cofl is the algebraic sum of the positive angular speed 12

of the earth and the angular speed co relative to the earth. Thus

(3) co = co H- fi.

When co > the relative zonal wind blows from the west. When co * 0,

the atmosphere is in relative or hydrostatic equilibrium. And when
co < the relative zonal wind blows from the east.

Relative zonal rotation in the same sense as the absolute rotation of

the earth will be called cyclonic, and rotation in the opposite sense will be

called anticyclonic. Zonal flow is then cyclonic when co > and anti-

cyclonic when co < 0. Later the terms cyclonic and anticyclonic will be

generalized. However, the conventions adopted here for zonal flow in

the northern hemisphere will still hold.

The diagrams 61, 62 , 63 of fig. 6-116 each represent both a positive and

negative absolute rotation of the same strength. However, the pressure
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FIGS, 6-116 and c. Pressure field in zonal flow.
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field is not the same for positive and negative relative rotation of the

same strength. In fig. 6-1 Ic the diagrams of fig. 6-116 are redrawn in

order of decreasing co. Diagrams 6 lf b2 , ^3 correspond respectively tc

diagrams c\, c2t 3 when the absolute rotation is positive, and to diagrams

c'li c2t c'3 when the absolute rotation is negative.

In diagram c2 the relative angular speed is zero, and the atmosphere is

in relative or hydrostatic equilibrium. The isobaric surfaces are then

horizontal, so the pressure in any horizontal level is constant.

Diagram c% represents the only case of cyclonic or positive relative

rotation. Relative to the horizontal levels the isobaric surfaces slope

downward from the equator to the poles. So any horizontal pressure

field has low pressure at the poles and a belt of high pressure at the

equator. As the cyclonic rotation increases, the meridional slope of the

isobaric surfaces becomes steeper, and the strength of the horizontal

pressure field increases.

All the remaining diagrams in fig. 6-llc represent anticyclonic rota-

tion of increasing strength taken in the order c\, CQ, c[, c^ 3. Evidently

anticyclonic flow is more complex than cyclonic flow. Diagram c\

shows the anticyclonic rotation of moderate strength. Here the isobaric

surfaces slope downward from the poles to the equator. So any hori-

zontal pressure field has high pressure at the poles and a belt of low

pressure at the equator.

When the strength of the anticyclonic flow is increased, the slope of the

isobars becomes steeper, until, as shown in diagram c0t the critical value

co = 12 is reached. Here the horizontal pressure field has a maximum

strength with polar high pressure and equatorial low pressure, and the

isobaric surfaces are spherical.

Diagram c{ shows that the horizontal pressure field again becomes

weaker with further increase of the anticyclonic rotation. At the second

critical value co = 2S2 the isobars become horizontal, as shown in dia-

gram c'2 , so the pressure in any horizontal level is constant.

Diagram c-3 shows the anticyclonic flow increased beyond the value

212. The isobaric surfaces then slope downward from the equator tc

the poles as in cyclonic flow. Any horizontal pressure field has low

pressure at the poles and a belt of high pressure at the equator.

Zonal flow may be considered to have two centers: one at either pole,

For cyclonic flow (see 3) the centers always have low pressure in any
horizontal level. And for anticyclonic flow of strength less than -2fl

(ci, CQ, c[) the centers have high pressure in any horizontal level. But

for anticyclonic flow of strength greater than -212 (^3), the centers again

develop low pressure in any horizontal level.

Zonal anticyclonic flow of the types c{, c'2 , 3 would never occur in the
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atmosphere. Although such anticyclonic flow is dynamically possible,

no mechanism exists for generating absolute zonal rotation opposite to

that of the earth.

Later, when arbitrary horizontal flow is examined, it will be helpful to

return to this section, for any horizontal flow will be shown locally to be

similar to zonal flow. However the dynamics of zonal flow is simpler and
should first be clearly understood.

6'12. Angular velocity. In section 6-05 we defined the angular

speed a for an arbitrary motion of a point. The plane of rotation is the

osculating plane, and the axis of rotation is the line normal to the osculat-

ing plane through the center of curvature. We shall now show how the

rotation may be expressed vectorially.

The rotation is completely specified by the numerical value of the

angular speed, the orientation of the axis, and the sense of the rotation.

Hence, a vector of magnitude o> directed along the axis of rotation accord-

ing to the right-handed screw rule (section 4-03) expresses all the neces-

sary information about the rotation. This vector is called the angular

velocity and will be denoted by w. In particular, the angular velocity
of the earth will be denoted by fl. Since the earth rotates from west to

east, Q is directed from south to north parallel to the axis of the earth.

The relation between the linear w
speed v and the angular speed co is

v = ojjR. The vector R of magnitude
R is the radius vector directed from

the center of curvature on the axis of

rotation to the point whose motion is

being considered. Let the radius vec-

tor from any point on the axis of rota-

tion to the moving point P be denoted

by r. And let 6 (^ ?r) be the angle

between the angular velocity o> and the

radius vector r, as shown in fig. 612.

radii R and r is then

R = r sin 8.

The velocity v is a vector normal to the plane of o> and r. Its magni-
tude is

v = cojR = (jor sin 0.

And its sense is given by the right-handed rotation o> - r through the

angle 6. Consequently the two vectors o> and r define the velocity com-

pletely. Any vector similarly defined by two vectors is called the

vector product of the two vectors.

Axis of

rotation

FIG. 6-12.

The relation between the scalar
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6-13. The vector product. Let a and b be any two vectors, and let

i TT) be the angle between them. The vector product v of these two

vectors is indicated by a cross between them. Thus

v= axb.

The vector v is defined to be perpendicular to the plane through a and b

and to have the magnitude

(1) v - ab sin 0.

The sense of v is given by a right-handed rotation a-b through the

angle B.

Let the vector b be projected into the plane perpendicular to a. This

projection is a vector denoted by b# in fig. 6-13a. Its magnitude, given

by bit b sin 0, is the altitude of the parallelogram having the base a

FIG. 6-13a. Vector product.

and the side b. So the numerical value of the vector product is equal to

the area of the parallelogram, for v ab^. Hence the vector product may
be considered as obtained by a positive rotation of b^ about a through a

right angle and subsequent multiplication by a.

When the order of the two vectors in the vector product is reversed,

a new vector product is obtained whose magnitude still is given by (1).

However the rotation b - a is opposite to the rotation a - b, so

(2) bxa= -axb.

Hence the vector product does not satisfy the commutative law but

changes sign when the factors are permuted.
If the two vectors a, b are parallel, the area of the parallelogram is

zero, and the vector product is zero. And if the two vectors are per-

pendicular, the vector product has the magnitude v * ab. Therefore the
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(3)

vector products of the rectangular unit vectors are:

ixi=0, jxj = 0, kxk=0,
ixj = k, jxk=i, kxi=j.

Although the vector product is not commutative, it is distributive

with respect to addition. Thus

(4) ax (b-f c) = axb-f axe.

The proof for this is demonstrated geometrically in fig. 6*136. All the

vector products in (4) are in the plane normal to a. Suppose that this

plane is the plane of the page and the vector a is directed toward the

reader. The projection of a onto the page is the point labeled A . The
vectors b and c project into the vectors b

the triangular representation of the sum
b + c projects as a triangle, we have

(5) (b + C)AT - bN -f c^.

The required vector products are obtained

by positive rotation about a (counter-

clockwise in the diagram) of the vectors

in (5) through a right angle and multipli-

cation by a. The vector equality (5) is

not affected by the operations of rotation

and c# respectively. Since

FlG *

and multiplication, so the distributive law (4) holds for the vector product.

With the aid of this law we can obtain the rectangular components of

the vector product. Let the two vectors be resolved into components
and unit vectors. When the vector product is expanded by the distribu-

tive law, and the vector products of the unit vectors i, j, k are reduced by

(3), we find that the vector product a x b is given by

(aybz
- azby)i + (a zbx - axbz }] + (axby

- ayix)k.

This expansion may also be written as a determinant which is easier to

remember. Thus

(6) axb a-x

bx

The change in sign of the vector product with the reversal of the order

of the factors appears here as a property of the determinant. For the

interchange of two rows changes the sign of the determinant.

The derivative of the vector product is obtained by differentiating (6) .

Thus

(7)

d da , db
(axb) = xb + ax

du du du
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This rule accords with the usual process of differentiating a product.

Notice, however, that the order of the factors in the vector product must
be preserved.

6'14. The scalar triple product. Although only the properties of the vector

product are required in this chapter, we shall later encounter the scalar prod-
uct of a vector with a vector product. This scalar product is then of the type:

a(b x c) = av = avv.

Since both factors in a vector product must be vectors, the parentheses enclos-

ing the vector product in the above expression may be omitted. The scalar

expression ab X c, involving three vectors, is called the scalar triple product.

Geometrically this scalar represents the volume of the parallelepiped having
the three vectors a, b, c as edges. This is easily seen from fig. 6-14. The

vector product v = b X c is numerically equal
to the area of the base parallelogram whose

sides are b and c. The altitude of the par-

allelepiped above this base of area v is the

1-
--y

T-
j I component av of a normal to the base. So

f ! / 1 the volume of the parallelepiped is avv: the
* '

product of its base and altitude. But avv is

also the value of the scalar triple product.

The scalar triple product is positive when
u a and v lie on the same side of the plane

FIG. 6-14. Scalar triple product,
through band c. If they lie on the oppo-
site sides of this plane, the scalar triple prod-

uct is negative. And if a lies in the plane the volume of the parallelepiped
is zero, so the scalar triple product is also zero.

The volume of the parallelepiped may be obtained by considering any two
of the vector edges a, b, c as bases. By the right-handed screw rule all the

rotations b- c, c~*a, a > b about a, b, c respectively have the same sense.

Therefore,

(1) ab x c = b-c x a = ca x b.

Hence the scalar triple product does not change by cyclic permutation of its

vectors. The non-commutative property of the vector product shows that

the scalar triple product changes sign when the cyclic order of the vectors is

altered. The scalar triple product is positive if the three vectors taken in

cyclic order are relatively arranged as the axes of a right-handed coordinate

system.

Since the order of the factors in a scalar product may be reversed, we obtain

from (1)

(2) abxc = caxb = axbc.

Hence the dot and cross can be interchanged without affecting the value of the scalar

triple product. Geometrically this result is evident from the diagram.
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The scalar triple product may be expressed as a determinant of the rectangu-

lar components of the three vectors a, b, c. From 6-13(6) we find

(3) ab x c = a

i ) k
bx bv bg

Cx Cy Cg

CLX Q>

bx bv

Here the properties of the scalar triple product appear as the properties of the

determinant.

6-15. The velocity of a point of the earth. The concept of the vector

product has been introduced for the purpose of expressing the velocity of

rotation. We may now write

(1) v= <oxr= coxR,

where r is a radius vector from any point on the axis of rotation, and R
is the radius vector from the center of curvature.

In accordance with earlier conventions the absolute velocity of a point

fixed in relative space will be called the velocity of a point of the earth and

will be denoted by ve . This velocity is given by

(2) ve = flxr = xR,

where r is a position vector from any point on the axis of the earth, and

R is the radius vector in the zonal plane.

The velocity of a point of the earth is by definition the time derivative

of its position vector. Let the position vector be drawn from the axis

Axis of earth

A

FIG. 6-15a. FIG. 6-155.

of the earth as in fig. 6-lSa. In the time interval dt the point moves from

P to Pe through the displacement der. The velocity of a point of the

earth is then
v

der
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The acceleration of a point of the earth is obtained by repeating the time

differentiation on ve . Thus

w a

dt

Introducing here the vector product (2) for ve , we find

de
ve
= (Q xr) = Oxv6 .

at

It was shown earlier, in 6-10(2), that the centripetal acceleration of a

point of-the earth is given by -12
2R. It is readily seen from fig. 6-156

that the vector product x ve has the same value. This vector product,

perpendicular to fl and to ve ,
is in the zonal plane and is directed toward

the axis of the earth. And its magnitude is $lve Q?R. Consequently
ve = -12

2R. This expression for the centripetal acceleration of a point

of the earth has here been independently verified.

6-16. Absolute and relative velocity. In the last section we exam-

ined the absolute motion of a point of the earth. The motion is that of a

particle at rest relative to the earth. We shall now examine an arbitrary

motion of a particle moving with respect to both an absolute and a rela-

tive frame.

Let the position of the particle be traced by a position vector r issuing

from a point on the axis of the earth. Suppose the particle is located at

the point labeled P in fig. 6-16. During the time interval dt let the point

move to any arbitrary point Pa - In the same time interval the point of

the earth coinciding with the initial position of the particle will rotate

around the axis of the earth from P toPe . We have already denoted the

displacement from P to Pe of a point of the earth by de*- The displace-

ment of the particle from P to Pa , as observed from an absolute frame,

will be denoted by daf- And the displacement from Pe toPa , as observed
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from a relative frame, will be denoted by dr. The three displacements
are shown in fig. 6-16. Evidently the absolute displacement is the

vector sum of the displacement of the coinciding point of the earth and

the relative displacement. Hence

dar = dr + der.

Dividing this equation by the time interval dt required for the displace-

ments, we find

daT^dr dcT
( }

[dt

""

dt dt

'

The velocity of the coinciding point of the earth is

dfr
ve

= = flxr.
at

So equation (1) may also be written:

<*> =!+"<
The rate of change with respect to the absolute frame of the position

vector is by definition the absolute velocity,

And the rate of change with respect to the relative frame of the position

vector is the relative velocity,

_dr~
dt

Consequently equation (2) may be written

(3) v = v+ ve
= v + lixr.

The absolute velocity of a particle is then equal to the vector sum of its

relative velocity and the velocity of the coinciding point of the earth.

The position vector r must issue from a point on the axis of the earth.

For in the above derivation the origin of r must be fixed both in the

absolute frame and in the relative frame.

6*17. Absolute and relative acceleration. In section 6-04 it was

shown that the acceleration of a point moving along the path may be

considered as the velocity of its image point moving along the hodograph.
When a particle moves in an arbitrary path, the hodograph of the abso-

lute velocity may be obtained by drawing the absolute velocity vector

issuing from an origin on the axis of the earth. This vector may be con-
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sidered as the position vector of the image point moving along the abso-

lute hodograph. The relation between the absolute and relative veloci-

ties of the image point may then be obtained in the same fashion as for

the real particle when r in equation 6*16(2) is replaced by V . We then

get

/4N dava dva

Let the absolute velocity be expressed as the sum of the relative

velocity and the velocity of the coinciding point of the earth. Then

dVa/dt becomes

d d dv-
(v + v,) - - (v + Q x r) - + Q x v.

at at at

And Q x v becomes

flx(v + ve )
= Qxv-fQxve = Oxv + vc .

The rate of change with respect to the absolute frame of the absolute

velocity is by definition the absolute acceleration,

And the rate of change with respect to the relative frame of the relative

velocity is the relative acceleration,

Therefore when the expressions derived above for dva/dt and for

fl x v are added we find

(2) v - v + 20 x v + 1,.

This equation relates the absolute and relative accelerations. It shows

that the acceleration of a particle with respect to an absolute frame may
be considered as the sum of three accelerations. The first term is the

acceleration of the particle with respect to a relative frame. The last

term is the centripetal acceleration of the coinciding point of the earth.

The middle term is called the Coriolis acceleration.

6-18. Absolute and relative zonal flow. A clear idea of the physical

significance of the Coriolis acceleration, so called after its discoverer, is

afforded by considering the special case of zonal flow. We have already
discussed this simple type of flow (section 6-1 1). The relation between

the absolute and the relative acceleration may be derived independently
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for this motion without reference to the general theory. In accordance

with the previous notation we shall let <o denote the absolute angular

speed with sense and w the relative angular speed with sense. These

two angular speeds are related by co = o> -f 12.

The absolute centripetal acceleration of a particle is

Va - -0>aR,

and the relative centripetal acceleration is

v = -co
2
R.

If the absolute centripetal acceleration is expanded we find

-o>
2R - -(co + 12)

2R = -co
2R - 2coS2R - 12

2
R,

or, by substitution of the absolute and relative centripetal accelerations,

va - v - 212R + ve .

Comparison of this equation with 6*17(2) shows that the third term

is the Coriolis acceleration; thus

2flxv= -2col2R.

This equation is readily verified with the aid of fig. 6*156, when in that

diagram v replaces ve .

6-19. The equation of relative motion. When flow in the atmos-

phere is observed from a relative frame, the absolute acceleration is

obtained from the relative motion by the relation

6-17(2) v = v+ 2flx v+ve .

The equation of absolute motion is

6-09(2) v =b + go .

When the absolute acceleration is eliminated between these two equa-

tions, we find

tf = b- 2Qxv4-g - Ve .

This equation has a clear meaning according to the principle of inertial

forces : The acceleration relative to the earth is equal to the sum of all the

forces, including the inertial forces arising from the absolute motion of

the relative reference frame. The inertial force ve has already been

called the centrifugal force of a point of the earth. Moreover, it has

been shown in 6-10(5) that the sum of the last two terms in the above

equation constitutes the force of gravity g. Hence,

(1) *=b-2
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The inertial force -20 xv is called the Coriolis force. This force is

equal and opposite to the Coriolis acceleration. Since the Coriolis

force acts normal to v, it has no component along the relative motion.

Consequently it cannot contribute to the speeding up or slowing down of

a particle relative to the earth. For this reason the Coriolis force is

often called the deflecting force. The Coriolis force will be denoted

more briefly by c,

(2) c=-2Qxv.

Equation (1) may then be written

(3) v = b + c +"g.

This equation is called the equation of relative motion, for it expresses

Newton's second law of motion with respect to observations from a rela-

tive frame. The equations of absolute and relative motion are com-

pletely equivalent. Both describe the same motion, but from a different

viewpoint. And both yield the same physical result for any given prob-
lem. But when the problem admits of clear visualization in absolute

motion, the equation of absolute motion is simpler to use, and the dy-
namics is easier to understand. For this reason zonal flow is described

from the absolute frame. In general, however, the equation of relative

motion is used, for it is usually too difficult to visualize a given relative

flow from the absolute frame.



CHAPTER SEVEN

HORIZONTAL FLOW

7*01. Horizontal flow. Observations show that every large-scale

current in the atmosphere is nearly horizontal. Appreciable vertical

motion is usually confined to local convective currents, to boundary

regions separating different air currents, or to mountainous regions where

the air flow is influenced by topography. Regions of ascending air

currents are often marked by the formation of clouds and precipitation

due to lifting. These regions of vertical motion will be discussed later.

We shall now examine flow which is strictly horizontal.

The equations of motion derived in the last chapter are certainly valid

for horizontal flow. However, these equations do not account for the

frictional forces acting near the surface of the earth. Consequently we

may apply the results of this chapter on horizontal flow to real currents

only when the flow occurs in the free atmosphere above the friction layer

and when the regions of strong vertical motion are excluded.

The simplest type of horizontal flow is zonal. We shall find that many
properties of zonal flow are also properties of arbitrary horizontal flow.

7-02. Natural coordinates for horizontal flow. The plane tangent to

the level surface is called the horizontal plane. Evidently at the point of

tangency this plane is normal to the force of gravity and to the unit

vector k directed toward the local zenith. Since the unit tangent is in

the horizontal plane, t and k are orthogonal.

In describing horizontal motion it will be convenient to introduce a

unit vector orthogonal both to t and to k. This vector is a horizontal

vector normal to the motion and is called the horizontal unit normal.

The horizontal unit normal will be denoted by n, and the linear coordi-

nate along it will be denoted by n. The three coordinates along the unit

vectors t, n, k are then s, n, z respectively. The sense of the horizontal

unit normal will be chosen so that t, n, k is a right-handed triple having
the same relative arrangement as i, j, k. Accordingly the horizontal unit

normal, viewed from the zenith, points to the left of the unit tangent.

Notice that the horizontal unit normal n is in the horizontal plane and

directed to the left of the motion; whereas the space unit normal N is in

the osculating plane and directed toward the center of space curvature.

The coordinate system described above constitutes a natural orthog-
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onal coordinate system. When the flow is toward the east, this system
coincides with the standard orthogonal coordinate system described in

section 4-03. Both systems change orientation from point to point on

any level surface. Hence they are valid only in the immediate neighbor-

hood of the origin of the coordinates. For this reason they are called

local coordinate systems.

7'03. Standard and natural components. The equation of relative

motion is a vector equation. This equation is equivalent to three scalar

equations along three non-coplanar lines. We shall resolve the equation
of relative motion along the three natural coordinates s, n, z and also

along the three standard coordinates x t y, z. In both systems the vertical

coordinate z is, of course, the same.

Let a be an arbitrary vector. Let 1 be a unit vector along any line /.

The projection of a along / is a/1; see 4*05. Any vector is the sum of

its projections along three perpendicular axes; see 4*06. So a is ex-

pressed in natural coordinates as

a = a,t -f

and in standard coordinates as

a - axi + avj

The vector a may also be projected into any plane. This projection

is a vector equal to the sum of the two projections of a along any two

perpendicular lines in the plane. Let the vector projection of a in the

horizontal plane be denoted by a# . This vector is then given by

a// - a8t -f- ann = axi + ayj.

Moreover, the vector a is equal to the sum of its projection in a plane

and its projection along the normal to that plane. Thus

a - ajy + azk.

The equation of relative motion

6-19(3) v = b+c + g

expresses Newton's second law: The observed relative acceleration

equals the resultant of all acting forces, including inertial forces due to

the motion of the relative frame. The vectors in the equation of rela-

tive motion can be projected along any line or into any plane. The pro-

jected equation expresses Newton's second law along that line or in that

plane: The relative acceleration projection equals the sum of all the

force projections.
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Therefore the equation of relative motion projected along the line / is

(1) vi~bi+ci + gi.

And the equation of relative motion projected into the horizontal plane is

(2) VH = b// + c//.

Here g# does not appear, for the force of gravity has no horizontal

component.

704. The acceleration. The acceleration of a particle in arbitrary

motion is

6-05(9) v = i>t+v
2K.

The vector curvature, directed toward the center of curvature and nor-

mal to the unit tangent, is then given by

(1) K = #Bn + *zk.

Therefore the acceleration becomes

v = vt + v
2Kna. + v

2
KJt.

The natural components for horizontal flow are then

(2) *. = *,

(3) i>n = v*Kn ,

(4) *. = v
2Kt .

The horizontal and vertical components of the centripetal acceleration

contain respectively the horizontal and vertical components of the vector

curvature. These curvature components will now be examined in detail.

7*05, Cyclic sense. When the motion of a particle is horizontal, the

path of that particle must lie in a level surface. Although a level surface

is not exactly spherical (section 6-10), it may be considered spherical in

so far as the geometry of the path is concerned.

The intersection between a sphere and an arbitrary plane is always a

circle. If the plane passes through the center of the sphere, the circle is

called a great circle. Otherwise, the circle is called a small circle. The
circle cut by the osculating plane at any point of a spherical path is the

circle of curvature at that point. Its axis of rotation is perpendicular

to the osculating plane at the center of curvature and passes through the

center of the earth.

Momentarily a particle moves along the circle of curvature about the

axis of rotation. The particle may move with either cyclic sense along

this circle. If the circle of curvature is a small circle, the cyclic sense
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will be defined as positive when the particle appears from the local zenith

to be moving counterclockwise, and as negative when the particle appears
to be moving clockwise. This definition is illustrated in the left-hand

(c
+

) and right-hand (c~~) diagrams of fig. 7-05. The lower diagrams are

FIG. 7-05. Cyclic sense.

in the plane perpendicular to the path and show the particle at P moving

away from the reader. And the upper diagrams show the circle of

curvature projected on the horizontal plane as it appears from the zenith

at P.

If the circle of curvature of a particle is a great circle, the osculating

plane passes through the local vertical. Consequently the path of the

particle appears from the local zenith to be straight, as shown in the

center diagram (g) of fig. 7*05. Flow momentarily along a great circle

will be called geostrophic. Evidently geostrophic flow represents the

transition between the positive and negative cyclic senses. So the

cyclic sense of geostrophic flow may be defined either as positive or as

negative.

In section 6-05 the quantities ^, K, R, co were defined as positive.

However, for the discussion of horizontal flow it will be convenient to

assign to them the cyclic sense as defined above. Accordingly in many
of the equations of section 6-05 the symbols ^, K, R, o> must be replaced

by their absolute values. But this is not necessary in some equations,

namely, in 6-05(5, 6, 7, 8).

Notice that the cyclic sense of rotation of a particle fixed to the earth is

positive in the northern hemisphere and negative in the southern hemi-

sphere. So 12 is positive in the northern hemisphere and negative in the

southern hemisphere. For this reason the cyclic sense of zonal flow in
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the southern hemisphere was not defined in section 6-11. However, all

the equations of zonal flow so far introduced are valid in both hemi-

spheres for either cyclic sense of rotation.

Internal consistency within this chapter requires that 12 have sense.

That is, if the sense of angular rotation is distinguished by assigning

cyclic sense to angular speeds, then, in particular, cyclic sense must be

assigned to the angular speed of the earth. Accordingly the definitions

and equations of this chapter apply to any horizontal flow in either hemi-

sphere. However, since it is customary to regard 12 as positive, we shall

strictly observe all the consequences of the cyclic sense convention in

this chapter only.

7-06. Angular radius of curvature. Let 6 be the acute angle (^ ?r/2)

between the osculating plane and the horizontal plane. The angle 6

will be called the angular radius of curvature, for, as shown in fig. 706a,
z

FIG. 7-06a. Angular radius of curva-

ture.

FIG. 7-06&. Nat ural components of K.

it is the angle subtended at the center of the earth by the radius of curva-

ture. In particular, the angular radius of curvature for zonal flow is the

colatitude.

The atmosphere may be considered as a thin blanket enveloping the

earth. Whenever atmospheric flow is investigated, the distance to an

air particle from the center of the earth is nearly equal to the mean

radius of the earth. Consequently the radius of curvature subtending 6

is R = a sin 0, and its reciprocal, the curvature, is

This equation is valid for flow with either cyclic sense when we adopt the

convention that 6 has the same sign as the cyclic sense.
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The vector curvature appears from the zenith to point to the left of

flow with positive cyclic sense, and to the right of flow with negative

cyclic sense. (See fig. 7-05.) The horizontal unit normal always points

to the left of the flow, so the normal component Kn = K*n of the vector

curvature has the same sign as the cyclic sense. It is seen from fig. 7-066

that the normal component of the vector curvature is

(2) Kn = K COS 0.

Evidently this equation is valid for flow with either cyclic sense.

Since the center of curvature lies below the horizontal plane, the

vertical component Kz of the vector curvature is always negative. So,

as shown in fig. 7-066, this vertical component is

(3) Kz
= -K sin 0.

The curvature K may be eliminated from the expressions for Kn and

Ka . When (1) is substituted in (2) and (3), we find

1

(4)

(5)

a tan

_ 1

a

We shall now show that these projections of the vector curvature of the

spherical path are the curvatures of the corresponding projections of the

spherical path.

7-07. Horizontal curvature. When the spherical path of a particle

is projected onto the horizontal plane, a curve called the horizontal path
is obtained. The curvature of this

horizontal path is called the horizontal

curvature and will be denoted by K/f.

Consider an arc of an arbitrary

spherical path c near the point P; see

fig. 7-07a. This arc may be thought
of as being in the osculating plane w

of the spherical path at P. When
the path c is projected from w onto

the horizontal plane TTH at P, we
obtain the horizontal path CH- The
line of intersection between the planes
TT and wfj is the line PAA\, tan-

gent at the point P both to c and CH. The two curves c and CH define

a cylinder normal to the horizontal plane TT#, whose generators are the

Horizontal curvature.
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lines of projection from c to CH- The plane tangent to this cylinder along

the generator P\P\n intersects the tangent line at the point A. And
the plane through the generator PIPI// normal to the line PAAi inter-

sects the line PAAi at AI. The angle PIA \P\n is then the angle 6

between the osculating plane and the horizontal plane.

The curvature of the spherical path c at P is by definition

6-05(5) #=^>as
where dfy = ^ AiAPi is the angular turn of the tangent to c through the

infinitesimal arc length ds = PP\. Similarly the curvature of the hori-

zontal path CH at P is

(^^ v
(1) KH = -

>

dsn

where d\f/H = ^ A\AP\n is the angular turn of the tangent to CH

through the arc length dsn = PPi//.

As Pi,Pi//->P, the arc length ds along c and dsn along CH become

equal, so in the limit

- -
dsn PPi n

'

And as PI,PI// > P the angles df, d^n have the limiting ratio

ir _ ^iPi_?/ _~ "~ " OS "

d$
"
AA l

Therefore the horizontal curvature is given by

dsKH == = -77 ~T 3^
= cos

ai^ a5 as//

And finally from 7-06(2) we find

(3) #// = K cos

Consequently, /Ae curvature of the horizontal projection of the path is equal

to the horizontal component of the vector curvature. So, from 7-06(4), the

horizontal curvature may be expressed in terms of the angular radius of

curvature as

(4) KH =--W H
a tan 8

Evidently the horizontal path is less strongly curved than the spherical

path. The horizontal projection of the circle of curvature of a spherical
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path is an ellipse (see fig. 7-05). The horizontal curvature is the curva-

ture of this ellipse at the point P. However, the horizontal curvature

may also be considered as the curvature of a circle, the horizontal circle

of curvature, whose radius RH is the reciprocal of KH- This radius is

called the radius of horizontal curvature and is given by

RH = a tan 6.

Notice that the smallest numerical value of the space curvature for

horizontal flow is the curvature of a great circle. Since an arc of a great

circle projects into a straight line on the horizontal plane, the horizontal

curvature of a great circle is zero. Hence geostrophic flow, which is

great circle flow on the earth, projects

as linear flow in the horizontal plane.

For this reason the cyclic sense of geo-

strophic flow is unimportant.
The horizontal curvature has consider-

able practical importance because the

meteorologist must work with plane maps
of the earth. The curvature of a curve

represented on a plane map of the earth is

more nearly given by the horizontal cur-

vature than by the space curvature, for

a good map of the earth combines the

horizontal plane projections at every

point of the mapped region into a whole

map with as little distortion as pos-

sible.

H

FIG. 7-076. Vertical component
of w.

The horizontal curvature is closely associated with the component co^

of the angular velocity about the local zenith. Fig. 7-07& shows that this

component is

(5) CO;5=COCOS0.

Since, by (3), KH = K cos0, the relation

6-05(8)

may be expressed as

(6)

,--,

V =

Thus, as a particle moves along a spherical path with the angular speed

co, its projection moves along the horizontal path with the angular

speed coz .
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7*08. Geodesic curvature. Let PI and P% be any two distinct points on a

surface cr. The shortest curve in <r joining PI and P% is a geodesic of cr. Physi-

cally this geodesic can be visualized as the curve taken by a taut thread

stretched between P\ and P% on the convex side of a shell having the surface <r.

If a is planar, the geodesies of a are straight line segments. And if cr is spheri-

cal the geodesies of cr are great circle arcs.

The geodesic curvature KQ of a curve c on a is defined as

K d
+",K" ~'

where d\l/a is the angular turn of the geodesic, tangent to the curve, through the

arc length ds. The construction of the angular turn between the geodesies g

FIG. 7-08a.

and gi, tangent to c at P and PI respectively, is illustrated in fig. 7-08a for a

plane curve, and in fig. 7-086 for a spherical curve. Notice that the geodesic

curvature is a generalized concept of curvature defined by an operation

entirely on the given surface.

FIG. 7-086.

If <r is planar, evidently the geodesic curvature is the ordinary curvature.

But if a is curved, the geodesic and ordinary curvatures are different. We
shall now show that the geodesic curvature of a spherical curve is the horizon-

tal curvature. Such a brief treatment will naturally be incomplete.

The spherical geodesies g and g\, represented in fig. 7-08c, are great circles

whose planes intersect the horizontal plane tangent at P in the straight lines
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gn and gin respectively. On the spherical surface g and g\ meet at A, and on

the horizontal plane gn and g\n meet at AH- As PI JP, we see that A,An*P
and thatd\l/ff,d\l/ >0. However, in the limit,

= 1.

By 7-07(1, 2) we finally obtain

ds d\l/n dsu ds

Consequently the geodesic curvature of a spherical curve is equal to its horizontal

curvature. The curvature ///, which occurs so often in the description of

horizontal flow, may then be considered either as the geodesic curvature of the

spherical path or as the planar curvature of the horizontal projection of the

spherical path.

FIG. 7-08c.

709. Vertical curvature. Let the plane through the unit tangent
and normal to the horizontal plane be called the vertical plane. When
the spherical path is projected onto this vertical plane we obtain a curve

called the vertical path whose curvature is the vertical curvature.

If the argument of section 7-07 is applied to the vertical path, we find

that the curvature of the vertical path is equal to the vertical component
of the vector curvature. Therefore the vertical curvature is Kz . Its

reciprocal, the radius of vertical curvature, will be denoted by Rz . From

7-06(5) this radius is

Rz = a.

Since a is the radius of a great circle, the spherical path projects into the

vertical plane as an arc of a great circle no matter how strongly curved the

spherical path may be. Again we see how important is the notion of the

great circle in horizontal flow.

In fig. 7-09 the three radii of curvature R, RH, and Rz are drawn to the
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moving point P from the centers of curvature C, C#, and Cz respectively.

These centers are collinear points on the axis of rotation. The angular
radius of curvature is then subtended both by R and

H

FIG. 7-09.

Since the horizontal and vertical components of the vector curvature

represent curvatures, the horizontal and vertical components of the

centripetal acceleration represent centripetal accelerations. As a parti-

cle moves along a spherical path, its projection in the horizontal plane
moves along the horizontal path with the centripetal acceleration Kuv2

,

and its projection into the vertical plane moves along the vertical path
with the centripetal acceleration Kzv

2
.

7*10. The angular velocity of the earth. The angular velocity of the

earth is a vector parallel to the axis of the earth and extending northward.

Since the natural coordinate system coin-

cides with the standard coordinate system
for a particle fixed to the earth, the simplest

decomposition of Q is afforded by standard

coordinates. Moreover, we shall find that

the natural coordinate components of fl are

not required.

Since the angular velocity of the earth is a

meridional vector,

(1) fix =0. Equator

The other standard components are in the FlG- Ma Rectangular corn-

meridional plane. Fig. 7-10 shows that ponentsofo.

these components are easily expressed in terms of the latitude <p. The
component to the local north is

(2) n,-|i

Pole
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and the component along the local vertical is

(3) Qf -|n|sin?.

The vertical component of the earth's rotation is positive in the northern

hemisphere and negative in the southern hemisphere. Equation (3)

is valid in both hemispheres when the latitude angle tp is considered posi-

tive in the northern hemisphere and negative in the southern hemisphere.
Since 12 is positive in the northern hemisphere and negative in the

southern hemisphere, the component of the earth's rotation about the

local zenith may also be written

(4) 122
= 12 sin

\<p\.

Evidently equation (2) is not altered by the sign of the latitude. The

component of to the local north is always positive.

The components of the angular velocity of the earth are required for

the decomposition of the Coriolis force.

711. The Coriolis force. The Coriolis force is given by the vector

product

6-19(2) c=-2flxv.

We shall evaluate this vector product in standard and natural compo-
nents by using the determinant expression 6-13 (6).

The Coriolis force may then be expressed in standard components by
the determinant:

j k
-2

Expansion of this determinant gives

c = 212^1 - 212>J + 2!2yifek.

So the standard components of the Coriolis force are:

(1) ^=212^,

(2) cv =-2Qzvx ,

(3) cz = 2Qvvx .

And the Coriolis force may be expressed in natural components by the

determinant:

t n k
-2 12, 12n

v
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Expansion of this determinant gives

So the natural components of the Coriolis force are:

(4) c*=0,

(5) cn

(6) cz

Since the Coriolis force is normal to the velocity, the tangential com-

ponent ca is zero. It is for this reason that the Coriolis force has been

called the deflecting force.

The normal component cn is then the only horizontal component. The
vertical component of the earth's angular velocity occurring in the ex-

pression for cn is positive in the northern hemisphere, zero at the

equator, and negative in the southern hemisphere. Accordingly the hor-

izontal Coriolis force as seen from the zenith acts to the right in the

northern hemisphere, is zero at the equator, and acts to the left in the

southern hemisphere.

Since the only horizontal component of the Coriolis force is normal

to the flow, the horizontal vector component c// is given by

We shall define the vector flz , extending along the local vertical, by

Therefore the horizontal vector component of the Coriolis force may be

written in the form

(7) c# = -2tizvn = -2^zv\a xt = -2QZ xv.

Finally, the vertical component cz is given either by (3) or by (6).

Both expressions are, of course, the same. However the standard com-

ponent form is more convenient to use.

7- 12. The pressure force and the force of gravity. So far the com-

ponents of two vectors in the equation of relative motion have been

found. The other two vectors are the force of gravity and the pressure

force. These forces are easily resolved.

The components of the force of gravity have already been obtained in

442 (6) . This force has no horizontal components, so ga , gn , gx, gy are all

zero. The only component of the force of gravity is in the vertical, so

gz
- g*k - -g.

The components of the pressure force may be obtained by reference to
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section 4-15. When equation 4-15(4) is multiplied by the specific vol-

ume, we find for the component of the pressure force in the direction /

bi = aWp = a >

and the horizontal pressure force is

(1) bff = -otVnP-

This horizontal force acts normal to the horizontal isobars toward lower

pressure.

7-13. The component equations of relative motion. We have

examined the standard and natural components of each vector in the

equation of relative motion. The component equation along any line /

is

7-03(1) vi
= bi + ci -f- gi.

This equation shows that the relative acceleration component equals the

sum of the force components. The components i>i, 6j, ci, gi have been

obtained in the previous sections. They are assembled in the following

table.

The standard component equations are given by the first three rows

of the table. They are

(1) -a



187 Section 7-14

d/>

(2) !>=- ^-
dp

(3) t>* --a -^+

These equations are displayed here for reference. They are often used

in the investigation of atmospheric dynamics when it is desired to have

the orientation of the coordinate system independent of the motion

(see chapter 12).

However, we shall examine in detail only the natural component equa-

tions, given in the last three rows of the table. They are

(4) ,
,

|,

(5) KHv2 = -<x^-2nzv,
on

v
2 d

(6) --=_- +2Qj>x -g.
a oz

These component equations along the natural coordinates 5, n, and z

are called the tangential, normal, and vertical equations respectively.

They will be discussed in the following sections.

7 14. The vertical equation. The vertical equation of relative

motion equates the vertical centripetal acceleration to the sum of the

vertical components of the acting forces. Thus,

vz = b, + cz
-

g.

The force of gravity occurring in this equation is the resultant vertical

force measured by an observer fixed to the earth. However, if the

observer moves horizontally relative to the earth the resultant vertical

force which he measures is not equal to the force of gravity, for it also

includes the vertical inertial forces due to the motion, namely, the verti-

cal centrifugal force and the vertical Coriolis force. The resultant verti-

cal force will be called the virtual gravity. Its magnitude g* is given by

v
2

A moving particle will be called
"
heavier," if g* > g, and

"
lighter," if

*<
The vertical centrifugal force is the centrifugal force which would be

exerted on the projection of the particle moving along the vertical path..?
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Since the vertical path is an arc of a great circle, the effect of the vertical

centrifugal force opposes the force of gravity, always making the particle

lighter.

The vertical Coriolis force acts upward when the particle moves

toward the east and downward when the particle moves toward the west.

So its effect is to make the particle lighter for eastward motion and heav-

ier for westward motion. Moreover, for a given horizontal velocity the

effect of the vertical Goriolis force, being proportional to cos <p, is zero at

the poles and greatest at the equator.

Even for the strongest flow speeds (100 m s" 1

) attained by the atmos-

phere the centrifugal and Coriolis correction terms to the force of grav-

ity are small. The greatest error occurs in eastward flow at the equator.

For v = 100 m s"1
the centrifugal correction is then 0.0016 m s~2 . And

the Coriolis correction is 0.0146 m s~2 . So the total error is

0.0162 m s~2 . When this error is compared with the mean value

g = 9.81 m s~~
2

,
we find that the correction terms are usually negligible

for horizontal atmospheric flow. Hence g* may usually be replaced by g.

That is,

(1) g*~g.

When the vertical equation is expressed in terms of the virtual grav-

ity, we find

(2) b, = g*.

The vertical pressure force is then completely balanced by the force of

virtual gravity. (2) is called the generalized hydrostatic equation.

When the relative flow is zero, g* = g, and (2) becomes the hydrostatic

equation.

For an atmosphere in horizontal motion height should be computed by
the generalized hydrostatic equation. However, by (1) the hydro-
static equation is approximately satisfied. In fact, the error introduced

by neglecting the inert ial contributions to the virtual gravity is less than

the unavoidable instrumental errors of the sounding equipment. There-

fore the practical use of the hydrostatic equation in chapter 4 for com-

putation of height is justified whenever the atmospheric flow is hori-

zontal.

715. The tangential equation. The tangential equation of relative

motion equates the change of speed to the tangential component of the

pressure force. Thus

(1) *-&.- -a^-
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A particle moving horizontally changes speed only when crossing hori-

zontal isobars. A particle moving toward lower pressure speeds up, and

a particle moving toward higher pressure slows down. Since a particle

moving along a horizontal isobar is not subject to a tangential pressure

force, it moves momentarily with constant speed. Horizontal flow

along the isobars, and therefore normal to the pressure gradient, is called

gradient flow. Gradient flow, accordingly, occurs at points where

v = 0, that is, at points of constant or extreme (maximum, minimum)
speed.

If the flow at every point of the atmosphere were gradient flow, the

horizontal isobars would everywhere be tangent to the wind direction.

But in general the atmospheric flow is gradient only at isolated points.

However, at any instant curves can be drawn which are everywhere

tangent to the wind direction. Such curves are called streamlines. The
streamlines give a snapshot of the flow direction throughout the entire

atmosphere at a fixed time; they represent the flow pattern at that time.

Usually this flow pattern varies from instant to instant. If the flow

pattern is the same at every instant, the flow is called steady. The
flow direction at every point is then independent of time.

We must make a clear distinction between a streamline and a path.

A streamline is a curve tangent to the velocities of different air particles

at a given instant, whereas a path is a curve tangent to the velocities of a

given air particle at different instants. At a fixed time a streamline can

be drawn through any given point of the atmosphere. Through the

same point a path can also be drawn, namely, the path of the air particle

which momentarily occupies that point. Since these two curves, the

path and the streamline, have the same direction at the given point, they
are tangent curves, but in general the two curves have different shapes.

If the flow is steady, the path and the streamline through the given point

coincide.

In the atmosphere the flow patterns are usually changing, so the

streamlines and the paths have different shapes. However, horizontal

currents in the atmosphere change speed rather slowly. When the

current speeds up it flows slightly across the isobars toward lower

pressure, and when the current slows down it flows slightly across the

isobars toward higher pressure. The streamlines are therefore nearly

along the isobars. This practical rule allows the horizontal pressure
field to be drawn with considerable accuracy from a few scattered wind

and pressure data. The relation between the streamlines and the iso-

bars will be examined in more detail in chapter 12.

This discussion holds only for horizontal flow in the free atmosphere
above the frictional layer. Near the surface of the earth the motion has
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a component toward lower pressure as a consequence of friction. The
flow under frictional forces will be treated in chapter 9.

716. The normal equation. The normal equation of relative motion

equates the horizontal centripetal acceleration to the resultant of the

normal pressure force and the horizontal Coriolis force. Thus

(1) vn =bn +cn .

Although this equation clearly shows the dynamics of the flow, the kine-

matics is better understood when vn and cn are expressed in terms of the

speed. We then obtain from (1)

(2) Knv
2
+2ttzv- bn = 0.

This equation is quadratic in v. Since ilz = |fl| sin <p, the speed depends
on the horizontal curvature, the latitude, and the normal pressure force.

The latitude is by our convention (see section 7*10) positive in the

northern hemisphere and negative in the southern hemisphere. The
two latitudes (^, -^>) will be called corresponding latitudes. At corre-

sponding latitudes the normal equation (2) gives the same speed v for <p,

KH, bn in the northern hemisphere as for <p, Kit, bn in the southern

hemisphere. At corresponding latitudes, (Kn> Kn) will be called

corresponding horizontal curvatures, and (bn ,
-bn ) will be called corre-

sponding normal pressure forces.

These definitions of correspondence are equivalent to replacing n in

the northern hemisphere by n in the southern hemisphere. That is,

the direction to the left of the flow in the northern hemisphere corresponds to

the direction to the right of theflow in the southern hemisphere. The physi-

cal reason for this interchange is clear; the horizontal Coriolis force acts

to the right of the flow in the northern hemisphere and to the left of the

flow in the southern hemisphere. In corresponding flow the normal pres-

sure force and the horizontal centripetal acceleration in both hemispheres
have the same orientation with respect to the horizontal Coriolis force.

If the normal pressure force is opposite to the horizontal Coriolis

force, the flow is called baric; and if the normal pressure force is along the

horizontal Coriolis force, the flow is called antibaric (see fig. 7-16). In

the northern hemisphere the flow is baric if low pressure lies to the left

of the flow, and antibaric if low pressure lies to the right. In the south-

ern hemisphere the flow is baric if low pressure lies to the right of the

flow, and antibaric if low pressure lies to the left. Finally, if the normal

pressure force is zero the flow is called inertial, for the only horizontal

force, the horizontal Coriolis force, is an inertial force.

If the horizontal centripetal acceleration is opposite to the horizontal

Coriolis force, the flow is called cyclonic-, and if the horizontal centripetal
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acceleration is along the horizontal Coriolis force, the flow is called anti-

cyclonic (see fig. 7-16). In the northern hemisphere flow curved to the

left is cyclonic and flow curved to the right is anticyclonic. In the south-

ern hemisphere flow curved to the right is cyclonic and flow curved to

the left is anticyclonic. Finally, if the horizontal centripetal accelera-

tion is zero the flow is gcostrophic.

The above definition of cyclonic and anticyclonic sense generalizes to

arbitrary horizontal flow the definition given earlier for zonal flow.

This generalization is more clearly exhibited by the following equivalent

definition of cyclonic and anticyclonic sense, based upon the sense of the

Baric

H

Northern hemisphere
Antibaric Cyclonic

I;

H
in

Anticyclonic

Equator

H

Baric Antibaric Cyclonic

Southern hemisphere

FIG. 7-16.

Anticyclonic

earth's rotation about the local zenith. Flow which appears from the

local zenith to have the same sense as the rotation of the earth about that zenith

is cyclonic, andflow which appears to have the opposite sense is anticyclonic.

Both this definition and the definitions of positive (counterclockwise)

and negative (clockwise) cyclic sense refer to the flow as it appears from

the local zenith. That is, these definitions refer to the horizontal path
of the flow. Cyclic sense is defined according to an arbitrary rule,

whereas cyclonic sense and anticyclonic sense are defined according to

the sense of a physically given rotation the rotation of the earth about

the local zenith.

Cyclonic flow and anticyclonic flow are defined according to the orien-

tation of the horizontal centripetal acceleration with respect to the hori-

zontal Coriolis force. Baric flow and antibaric flow are defined accord-

ing to the orientation of the normal pressure force with respect to the

horizontal Coriolis force. These definitions do not apply at the equator
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where the horizontal Coriolis force is zero. However, even at the equa-

tor the definitions of geostrophic flow (KH = 0) and of inertial flow

(bn 0) apply.

Before examining the normal equation for arbitrary horizontal flow,

we shall consider the three simple but physically important flow types

which occur when one term of the normal equation is zero.

7-17. Geostrophic flow. Flow along a great circle is geostrophic.

The horizontal curvature and the horizontal centripetal acceleration are

then zero, so the normal pressure force is completely balanced by the

horizontal Coriolis force. The two forces are equal and opposite, and

the normal equation becomes

(1) 0=Jn + cn .

Since the normal pressure force is opposite to the horizontal Coriolis

force, geostrophic flow is baric. That is, a geostrophic current has low

pressure to the left in the northern hemisphere and low pressure to the

right in the southern hemisphere. This rule, known as the baric wind

law, was discovered empirically by Buys Ballot in 1857.

The geostrophic wind speed will be denoted by vg . Solving equation

(1) for this speed, we find

Notice that geostrophic flow is the same for corresponding normal pres-

sure forces at corresponding latitudes.

The dependence of the geostrophic wind upon the normal pressure

force and the latitude is shown graphically in fig. 7-1 7a. Isopleths of vg

are plotted against linear coordinates of bn and $lg . The vg isopleths are

straight lines radiating from the point bn = 0, <p
= off the graph. Since

the geostrophic wind becomes infinite at the equator for any non-zero

normal pressure force, geostrophic flow cannot be realized in equatorial

regions. So the graph is cut off at
<f>
= 30.

To evaluate the normal pressure force the horizontal pressure field

must be known. Let the horizontal pressure field be represented by
horizontal isobars drawn for the pressure interval A. The variation of

pressure in the n direction may be found by measuring the distance An
normal to the flow between consecutive isobars.

The most convenient unit of distance on a weather map is the degree
of latitude. This unit is independent of the map projection. If the

earth is regarded as a sphere of radius a, the degree of latitude has the

constant length of Tra/180 - 111.1 km. See 1-04(1).

Let the distance Aw, expressed in degrees of latitude, be Hn . Then
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Aw = 1.11 x W5Hn . If Hn is measured toward lower pressure between
isobars drawn for 5-mb intervals, then A = -0.5, and

(3)
a

,- -a ^=4.50X10-"-^Aw Hn

10 15 20 25 30 35 40

2015 10 8 7 6 5 4

-Hn v

5
700f3(>

800

900

1000

1100

1200

1300

1400

2.5

10 15 20 25 30 35 40

2015 10 8 7 6 5

Top: FIG. 7-17a; middle: FIG. 7-176; bottom: FIG. 7-17c.

The graphical solution of this equation is shown in fig. 7-176. Isopleths
of Hn are plotted against linear coordinates of bn and a. The Hn iso-
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pleths are straight lines radiating from the point bn = 0, a = off the

graph.

When bn is eliminated from (2, 3), we find

(4)

This elimination of bn may be performed graphically in two operations:
the first on fig. 7-1 la and the second on fig. 7-176. When these figures

are superposed, the vg isopleths and the Hn isopleths radiate from the

same point. So both sets of isopleths may be represented by one set of

lines. Fig. 7-17c shows the superposed graphs with one set of lines.

These lines are drawn for integral values of IIn . They are labeled for

IIn along the bottom and right side. And they are labeled for vg along
the top. The left side serves both as an a coordinate and a <p coordinate.

Fig. 7-17c gives vg
= vg (a,Hn ,<p). a is not directly available from

meteorological observations. From the equation of state we have

4-17(3) a =

W
80,

iio:

This equation is represented graphically in fig. 7-l7d. Isopleths of p
are plotted against linear coordinates of a and T*. The p isopleths are

straight lines radiating from the

point a. = 0, T* = off the graph.
The complete practical solution

vg
= vg(p,T*JIn ,<p) is obtained by

joining fig. 7-1 7d to the left side

of fig. 7-1 7*;. The resulting graph
is shown in fig. 7-1 7e, and an ex-

ample of the procedure is illus-

trated in fig. 7-17/. From the data

^ p = 100 cb, T* = 0C, Hn - 3, p =

-50-40-30-20-10 10 20 30 45, the value vg
= 11.4 m s"1

is ob-

r*(C) tained. The elimination of bn is

* TJ ^ t. r r
shown in this diagram by the line

FIG. 7-17o. Graph of equation of state. , u f , u , ,,
labeled bn = const connecting

the operations in the two superposed graphs.
In practical application the value of the speed is not so much required

as the displacement of an air parcel from one weather map to the map
twelve hours later. The unit of distance is again the degree of latitude.

The total twelve-hour displacement in degrees of latitude is denoted by
D. If the speed is constant throughout the twelve-hour interval
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FIG. 7-17e. FIG. 7-17/.
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between maps, D is merely a constant multiple of v. Thus

Even though the current speeds up or slows down, the value defined by
(5) can be calculated. Evidently this value of D is often more useful

than is the value of v. A scale of D has been placed along the vg scale in

fig. 7-1 7e. The displacement in the above example is D = 4.4.

7-18. Inertial flow. When the pressure force has no normal com-

ponent, the horizontal flow is inertial. The horizontal centripetal

acceleration is then equal to the horizontal Coriolis force, and the normal

equation becomes

(1) vn =cn .

Both the centripetal acceleration and the Coriolis force are zero for a

resting particle, so (1) is satisfied by

(2) IF-O.

However, (1) also has a non-zero solution which will be denoted by v*.

This non-zero inertial wind speed is then given by

(3) -

Since the horizontal centripetal acceleration is along the horizontal

Coriolis force, inertial flow in both hemispheres is anticyclonic. An
inertial current crossing the equator must then change cyclic sense. So

inertial flow at the equator is geostrophic.

The graphical solution of (3) is shown in fig. 7-18a. Isopleths of v

are plotted against linear coordinates of Q2 and KH. The Kn coordi-

nate is labeled both in multiples of the curvature of a great circle and in

degrees of angular radius of curvature. The v* isopleths are straight

lines radiating from <p
= 0, KH = 0. They intersect any coordinate of

constant latitude in a reciprocal Vi scale. This fact will be useful later.

For inertial flow the angular speed of the horizontal projection of a

particle is, from (3) and 7-07(6),

(4) uzi

And the angular speed of inertial flow along a spherical path is, from

7-07(5),

(5) = ****' a -
2 *

W*
~~

cos e
~

cos
'



197 Section 7- 18

When the flow is zonal, the angular radius of curvature is the colatitude.

Therefore cos 6 = sin |^|, and (5) becomes wz
- = -2Q by 7-10(4). From

(2) , the angular speed of inertial flow may also be zero. Both results are

verified in fig. 6'llc2,2 Inertial zonal flow occurs only when the iso-

baric and level surfaces coincide.

Inertial flow can be realized momentarily by a horizontal current

flowing directly across horizontal isobars toward lower pressure. This
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FIG. 7-18a. Graph of inertial wind speed.

current would curve anticyclonically and become baric. It would also

speed up, for the pressure force at the moment of inertial flow would be

wholly tangential.

However, as in zonal motion, inertial flow over an extended region can

be realized only when an isobaric surface is level. Both the normal and

the tangential pressure forces are then zero. And a current will move

anticyclonically with constant speed in an inertial path. Since the

magnitude of the earth's rotation about the local zenith is greater near

the poles and zero at the equator, the curvature of the inertial path is

also greater near the poles and zero at the equator.

An inertial path crossing the equator will oscillate about the equator

between the corresponding latitudes <p, <p, as shown in fig. 7486. An

inertial path not crossing the equator will oscillate between two lati-

tudes <pP , <pEj as shown in fig. 7-18c. The path will be looped, for the
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curvature is greatest at the latitude <pp nearest the pole and least at the

latitude tpE nearest the equator.

As z;t-->0, the inertial path becomes more strongly curved, and the

inertial circle of curvature shrinks to a point. The limiting inertial

period r^ required for the particle to rotate about this inertial circle

centered at the latitude <p is given by

2ir 2ir 1 sidereal day
(6) Ti - : :

- -

-,-r-T =
r-r-j

|co2i-| 2\\lg\ 2 sin
\<p\

The particle completes one loop of the inertial path approximately in the

inertial period r,-.

n n

FIG. 7-186. FIG. 7-18c.

The inertial period is simply related to the period of relative revolu-

tion of the plane of oscillation of a freely suspended pendulum. This

plane maintains its orientation in space, while the earth rotates under it

with the angular speed $lz . It appears from the earth as if the pendulum

plane rotates about the vertical in the opposite direction. The period

of revolution of the pendulum plane is called the pendulum day, and is

given by
27T sidereal day~~

Evidently rp
= 2r, so the inertial period is one-half of the pendulum day.

7-19. Cyclostrophic flow. Whenever horizontal flow in the northern

hemisphere is compared with horizontal flow in the southern hemisphere,

the direction of the horizontal Coriolis force and the sense of the earth's

rotation about the local zenith are important. At the equator both the

horizontal Coriolis force and the earth's rotation about the zenith are

zero, so the normal equation becomes

(i) * - &.



199 Section 7-20

Unless the normal pressure force is zero, equatorial flow cannot be geo-

strophic. The circle of curvature is then a small circle, and the flow is

called cyclostrophic. By (1) the center of horizontal curvature of a

cyclostrophic current lies on the low-pressure side of the current.

When (1) is solved for the cyclostrophic wind speed vc we find

z>

(2) ' KH
This equation is represented graphically in fig. 7-19. Isopleths of vc

are plotted against linear coordinates of bn and KH- These isopleths are

straight lines radiating from the point bn = 0, KH = 0. The normal

pressure force bn may be evaluated from the graphs for geostrophic flow.

20
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10

2.51

10

OJ-90.

FIG. 7'19. Graph of cyclostrophic wind.

720. Arbitrary horizontal flow. The normal equation of horizontal

motion is

7-16(1) vn =bn + cn .

We have examined this equation when one of the three terms is zero. In

general all three terms are important.

In order to use the normal equation the direction of the flow or the rate

of change of speed must be known . Let /3 be the angle measured counter-

clockwise about the zenith from the horizontal pressure force b# to the

horizontal unit normal n as shown in fig. 7-200. ft is also the angle
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between the isobar p and the flow direction s. Evidently the normal and

tangential components of the pressure force are bn = bH cos ft and

ba = bjj sin 0, respectively. Since v = b8 ,
the normal pressure force may

be expressed in terms of the horizontal pressure gradient and the rate of

change of the speed as follows:

At points where the current is gradient 0, 68 ,
and v are all zero; the

current flows momentarily along the horizontal isobars with constant or

extreme speed. In general the current overflows slightly across the

isobars toward lower or higher pressure (see 7-15).

As shown in fig. 7-206 (valid for the northern hemisphere) a given wind

speed is compatible with any normal pressure force at a given latitude.

In the diagram vnj bnj and cn are measured from the point /. Since <p

and v are given, the horizontal Coriolis force is constant; cn extends to

the right from / to the fixed terminal point G~,

f
.^

n- .-n

FIG. 7-20a. FIG. 7-206.

Let the normal pressure force extend from / to a variable terminal

point B. If B is at / the flow is inertial, for bn = 0. If B is to the left

of /, the flow is baric. And if B is to the right of /, the flow is antibaric.

The horizontal centripetal acceleration vn is determined by the normal

equation as the sum of bn and cn . The terminal point of vn then lies to

the right of B by the length cn - ICT.

When B is at G, the horizontal centripetal acceleration is zero; so

KH = and the flow is geostrophic along the straight horizontal path g.

If B is to the left of G, the flow is cyclonically curved to the left of g.

And if B is to the right of G, the flow is anticyclonically curved to the

right of g.

When B is at /, the path is the inertial path i. When B lies to the left

of / between G and /, the flow is anticyclonically curved between g and i.

And when B lies to the right of /, the flow is anticyclonically curved to

the right of i.
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It is clear that cyclonic flow and geostrophic flow are always baric.

Anticyclonic flow is baric when the path is less curved than the inertial

path, and antibaric when the path is more curved than the inertial path.

7-21. Maximum speed. We recognize in arbitrary horizontal flow

many characteristics of zonal flow. Cyclonic flow and baric, inertial,

and antibaric anticyclonic flow all appear in fig. 6- lie. Geostrophic
flow also occurs, but only at the equator.

In zonal flow we found that the horizontal pressure field builds up to a

maximum and then decreases as the angular speed increases anticycloni-

cally. In the northern hemisphere this maximum field occurs when the

relative angular speed has the value 2. The pressure field in arbitrary

anticyclonic flow behaves similarly, as illustrated for the northern hemi-

sphere in fig. 7 -2 la. Here the latitude and the anticyclonic curvature

are fixed. Hence cnj vn ,
and consequently bn are determined only by the

speed. The speed increases linearly along the line labeled v. The
terminal points of the abscissas cn , vn , and bn are plotted for all speeds
between v = and v = vt-. The horizontal Coriolis force acts to the right

and is a linear function of the speed. So the terminal point of cn de-

scribes a straight line through
v = 0. In anticyclonic flow the

horizontal centripetal accelera-

tion is directed to the right

and is a quadratic function of

the speed. So the terminal

point of vn describes a parab-

ola through v = 0. When the

speed is zero, bn is zero; and

bn is also zero when the speed

is inertial. Between these two

speeds the horizontal pressure

field is baric; bn rises para-

bolically to a maximum and

then diminishes. The maximum occurs at one-half the inertial speed,

as in zonal flow.

This result may be established analytically. When the normal equa-

tion is differentiated with respect to v for a fixed curvature and latitude,

we find

ov

'n max

Left: FIG. 7-21a. Right: FIG. 7-216. Maxi-
mum normal pressure force.

The normal pressure force is a maximum when 56n/dv = 0. The speed
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at which this maximum occurs is denoted by Umax- From the above

equation and 7*18(3) we have

/IN Vi
(1) *w - - ~ -

9
*

2

The angular speed of maximum flow is from 748(5)

(fy\ _. TT * z
,Wmax max "2

"" ~~

cos 0'

This result may be checked for the case of zonal flow. The angular
radius of curvature is then the colatitude, and (2) becomes <omax = - ft as

required. The corresponding angular speed of the horizontal projection

of the flow is from 748(4)

(3) <o2max = flmax KH = = Qz .

For a given latitude and anticyclonic curvature the same normal

pressure force (bn \
= bn2 ) occurs at v = v\ and at v = v2 ,

as shown in

fig. 7 '21&. That two speeds satisfy the normal equation is to be expected

from the quadratic form of the equation. The diagram shows that v\

and v2 are symmetric about t>max . Hence

(4) vi + v2 = 2z;max - Vi.

Although both speeds v\, v2 are dynamically possible, only the smaller

speed occurs in large-scale anticyclonic currents. The reason for this

will be given later in section 1145. There we shall examine the mecha-

nism by which atmospheric circulation is generated.

The speed of a large-scale anticyclonic current must satisfy the relation

(5) v ^ <;max .

Anticyclonic speeds greater than z;max will be called abnormal. Not only

is the faster current in baric anticyclonic flow abnormal, but inertial

currents and antibaric anticyclonic currents are also abnormal. There-

fore antibaric flow and inertial flow seldom occur in the atmosphere.

Even where an isobaric surface is level over an extended region, inertial

flow as described in section 748 will not often develop; rather the entire

region will have no wind. That is, when bn = 0, the solution of the nor-

mal equation satisfying (5) is v = rather than the abnormal solution

V = Vi.

Equation (5) and its consequences apply only to large-scale anti-

cyclonic flow in the atmosphere. All solutions of the normal equation

are observed in small-scale mechanically produced vortices, in small-scale
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atmospheric eddies produced by friction, and possibly in other small-scale

atmospheric vortices.

722. Solution of the normal equation. The values of vg , Vi, and vc

can be computed from the equations

9O
7-18(3) ^-

7-19(2)

where Km fl, and bn refer to arbitrary horizontal flow. These speed
values may be regarded not as the actual current speeds but as speed

parameters characterizing arbitrary flow. As parameters, vg , v^ and vc

need not satisfy the conditions required for geostrophic, inertial, or

cyclostrophic flow. For example, although v+ as a real current speed
cannot be negative, Vi is negative as a parameter describing cyclonic flow.

The three parameters are not independent. They are linked by the

relation

CD ?.

fc fc 9

In terms of any two of tftese parameters, the normal equation

7-16(2) KHv
2
4- 212*1;

- bn -

may be simply expressed in three ways. Dividing the normal equation

by K//, we obtain the first relation:

(2) v
2 - V*,-v

2
c
= Q.

When (1) is substituted into (2), we find the second relation:

(3) v
2 -

Vi(v
- vg )

- 0.

The third relation is derived from (2) by division with v
2
, and subsequent

substitution of (1):

v
2

v

(4)
i|
+
^~

1 = -

Since vg , v, and vc have the same sign for corresponding flow in both

hemispheres, the equations (2, 3, 4) are free from the arbitrary sign con-

ventions of 746(2).



Section 7-22 204

Each of the expressions (2, 3, 4) contains the unknown v and two
known parameters. Isopleths of v can then be drawn in a diagram with

any two parameters as coordinates. Usually atmospheric flow is

strongly influenced by the pressure field. Near the equator the flow is

almost cyclostrophic; in higher latitudes the flow is almost geostrophic.
Therefore the most convenient graph for representing all latitudes is

constructed from (4). However, if we are mainly concerned with the

higher latitudes (|^| ^ 30), (3) should be used. And in equatorial
latitudes (M ^ 30) (2) should be used.

FIG. 7-22a.

In fig. 7-22a is shown the graph for (3), solving the normal equations
in higher latitudes. The coordinates have been chosen so that the iso-

pleths of v will appear as straight lines. For this purpose the linear

coordinates must be vg and l/V{.

The only curved line in the diagram is the envelope of the isopleths.

Every isopleth is tangent to the envelope at a point halfway between the

intersections of the isopleth with the two axes. Since the Vi scale is

reciprocal, the Vi coordinate of this tangent point is Vi = 2v. From
7-21(1) 2z;max ; so any point on the envelope represents maximum
anticyclonic flow. It also divides the isopleth into two branches. The
lower branch represents the flow v ^ z/max ,

and the upper branch repre-
sents the abnormal flow v ^ pmax .

The diagram is divided into four quadrants. In the lower quadrants
the flow is cyclonic (v,- < 0), and in the upper quadrants the flow is anti-

cyclonic (vi> 0). In the right quadrants the flow is baric (vg > 0),
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and in the left quadrants the flow is antibaric (vg < 0). The positive
horizontal axis represents geostrophic flow (v=*vg ), and the positive
vertical axis represents inertial flow (v

FIG. 7-226.

Negative speeds have no physical significance and are not repre-
sented by isopleths on the diagram. As a result two regions of the dia-

gram are not covered by isopleths. These regions represent impossible
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flow. The lower left quadrant represents antibaric cyclonic flow. This

type of flow is impossible, for, as indicated in section 7-20, cyclonic flow

must be baric. The region to the upper right bounded by the envelope
represents impossible baric anticyclonic flow for which bn > 6nmttx

(see fig. 7-216).

We shall give the complete practical solution of the normal equation
in the form (3). The independent variables are p t T* 9 Hn , <p, and 6.

The required values for a current are v and D.

For practical use the upper branches of the isopleths, representing
abnormal anticyclonic flow, are deleted, so only the right-hand baric

101=5

a =784 Anticyclonic

v=15.7
D = 6.1

FIG. 7-22c.

quadrants remain. The lower cyclonic quadrant may be superposed
over the upper anticyclonic quadrant by folding along the horizontal

vg axis. The cyclonic isopleths then slope upward to the right, and the

anticyclonic isopleths slope upward to the left. The parameter vg is

found by joining fig. 7-l7e to the bottom edge of the superposed quad-
rants. The parameter Vi is found by turning fig. 7-18a over, cutting it in

half along the coordinate <p 30, and joining the higher latitude half

to the left-hand side of the superposed quadrants. Both joinings are

permissible, for the vg isopleths intersect <p
= 30 in a linear vg scale, and

the Vi isopleths intersect <p
= 30 in a reciprocal Vi scale. The resulting

graph shown in fig. 7-226 gives v - v(p,T*,Hn ,<p,6). An example of the

procedure is illustrated in fig. 7-22c for the following data: p 100 cb,
r*- 0C, Hn = 3, ?- 45, 0= 5. The geostrophic speed and dis-

placement are obtained as in fig. 7-17/. If the flow is cyclonic, then
v - 9.7 m s""

1 and D = 3.8. And if the flow is anticyclonic, then
v- 15.7 m s"1 and D - 6.1.
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In this example the cyclonic speed is less than the geostrophic value,

and the anticyclonic speed is greater. The graph shows clearly that

cyclonic flow is always subgeostrophic and that anticyclonic flow is

always supergeostrophic. Analytically this result is obtained from (3),

which shows that v
2 = Vi(v vg ) > 0. For cyclonic flow (vi < 0) we

have v < vg , and for anticyclonic flow (vi > 0) we have v > vg .

7-23. Horizontal curvature of the streamlines. The curvature KH
is the horizontal curvature of the path of a particle. Since it is impos-
sible to tag individual particles of air, the path cannot be observed

directly. It is true that the approximate path may be inferred by suc-

cessive displacements on consecutive weather maps. However, this

method is both unsatisfactory and tedious. Fortunately the curvature

of the path can be obtained from the streamline curvature. The hori-

zontal streamlines are readily available on a synoptic constant-level

weather map. They are curves everywhere tangent to the*wind direc-

tion. The streamline and the path through a given point are both tan-

gent to the velocity at that point. But in general the two curves have

different curvatures.

The relation between the curvature of the path and the curvature of

the streamline at an arbitrary point P is obtained as follows: Let $H
denote the angle, measured counterclockwise, from east to the projec-

tion of the wind direction on the horizontal plane at P. At a given time

\[/H is a function ^// = $H(SH)I of the arc length s// along the horizontal

projection of the streamline. If the flow pattern is steady, this function

is the same at all times. If the flow pattern is changing, the wind direc-

tion at every point is also a function of time. The wind direction along

the streamline through P is then

Consider now the particle initially at P. During the time element dt

this particle moves the infinitesimal distance ds = dsn along its path
which is tangential to the streamline. The corresponding change of tyu

on the particle is then

t\\ Jt
(i) ^
The horizontal curvature of the path is defined by the angular turn of

the wind along the horizontal projection of the path:

7-07(1)

We shall denote the horizontal curvature of the streamline by
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This curvature is defined by the angular turn of the wind along the hori-

zontal projection of the streamline at a fixed time :

>./. __

(2) KHS
SH

The speed of the particle is v = ds/dt - dsH/dt.

When (1 ) is divided by dsn and the above notations are introduced we
find

f^ K K j.
(3) KH-KBS + -

The expression d^^/d/ is the local turning of the wind at the point P. In

practice the local turning of the wind is determined by the wind record-

ings at a fixed station, or approximately by the wind change at the

station between consecutive maps.

Equation (3) gives the path curvature in terms of the streamline

curvature and the local turning of the wind. The two curvatures at a

given point in the atmosphere are equal only if.the wind direction at that

point does not change. In particular, if the wind direction is independ-
ent of time at every point in the atmosphere, that is, if the flow is

steady (see section 7-15), then the path and streamline curvatures are

everywhere equal. This result confirms the previous statement that for

steady flow the streamlines and paths coincide.

Since the atmosphere is actually characterized by changing flow

patterns, the streamline and path curvatures are usually different. The
two curvatures need not even have the same sign. We must then be

careful about the usage of the words
"
cyclonic,"

"
geostrophic," and

"
anticyclonic." Heretofore, we have characterized the flow of individ-

ual particles. However, in synoptic practice the flow is designated as

cyclonic, geostrophic, or anticyclonic according to the instantaneous

streamline pattern.

When (3) is substituted into the normal equation 7-16(2), we find

(4) KH&? + (* +~
)

- &n - 0.

This relation may be expressed in the same form as the normal equation

by letting the coefficient of the linear term be denoted by the symbol
2QzS . Thus

dj,rr

(5) 20,5-20, +^-
The normal equation then becomes

(6) Kffsv
2 + 2tozSv -bn - 0.
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When the normal equation is expressed in the form (6), the coeffi-

cients can be evaluated directly from meteorological data. Since the

horizontal streamlines almost coincide with the horizontal isobars,

KHS may usually be replaced by the horizontal curvature of the hori-

zontal isobars.

If the angular radius of curvature of the horizontal streamlines is

denoted by 6s, the normal equation may be solved for v=

v(p,T*,Hn ,ftzs,Os)by the methods and graphs introduced in the previous

sections. The geostrophic, inertial, and cyclostrophic wind parameters

must, however, be replaced by the fictitious parameters v
ffs, v^s, and

vcs respectively. These new parameters are defined by the equations

7-17(2), 7-18(3), 7-19(2) wherein UzS replaces Qz and Kns replaces^.
In order to compute the values of vgS , Vis, and vc$ graphically the

linear Oz scale should be replaced by a linear Qzs scale, and &2s itself

must be computed from (5). However, only the coordinate labels of the

graphs are changed; the graphical operations are the same.



CHAPTER EIGHT

WIND VARIATION ALONG THE VERTICAL

8-01. Geostrophic gradient flow. We have stated in the last chap-
ter that a horizontal current above the surface layer flows nearly along
the horizontal isobars. In general the current overflows across the hori-

zontal isobars toward lower or higher pressure (see section 7-15). But
this overflow is usually so slight that the current is nearly gradient.

Moreover we have seen that cyclonic flow is subgeostrophic, and anti-

cyclonic flow is supergeostrophic. Since a broad horizontal current

above the surface layer is not often strongly curved, large-scale horizon-

tal flow is approximately geostrophic, except in equatorial regions.

Horizontal flow in the free atmosphere is then approximately geostrophic

gradient flow.

In order to examine the wind variation along the vertical we shall

assume that the flow is both geostrophic and gradient. The velocity of

this flow will be denoted by vg and will hereafter be called more briefly

the geostrophic wind. Although only geostrophic flow will be investi-

gated here, the deviation of this flow from any horizontal flow can be

estimated qualitatively. If the actual wind velocity v is considered as

the resultant of the velocity vg and a deviation velocity, the following

analysis applies only to the geostrophic velocity. However, since v is

often nearly equal to vg ,
the analysis of geostrophic flow yields several

important approximative rules.

The horizontal acceleration of a horizontal current is, from section

7-13,

VH = vt 4- K fjv
2
n..

When the current is both geostrophic (Kn = 0) and gradient (v = 0),

the horizontal acceleration v// is zero. Therefore the equation 703(2)
of relative motion in the horizontal plane becomes

(1) - b// + c//.

That is, the horizontal pressure force and the horizontal Coriolis force

are in complete balance.

Since by 7-12(1) the horizontal pressure force is aVnp, and since by
741(7) the horizontal Coriolis force is 2QZ xv, equation (1) may be

expressed as

(2) 2Q2 xva
= b# =

210
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The scalar form of this vector equation of geostrophic gradient flow is

(3) 2Q,vg
= ft*.

Here bn occurs, rather than the bn of 7-17(2), for gradient flow is along
the horizontal isobars.

8*02. Isobaric slope. The speed of a geostrophic gradient current

determines the isobaric slope. Let the acute angle between an isobaric

surface and the horizontal level be 6P . Then, as shown in fig. 8-02, the

isobaric slope is

(1) tan ep
bz 5n

Here dzp isf the rise of the isobaric surface above the horizontal level

through the normal distance -8n.

Since bz = g* and &// = 2ttzvgi
we also have, from 7-14(1),

(2) tan ep = -^ = ^
g g g

The isobaric slope is then determined dynamically by the strength of

the geostrophic wind. Even for the strongest speeds occurring in the

atmosphere the isobaric slope is small. For example, when vg = 100

m s""
1 and v = 45 the isobaric slope is ,

about 1/1000.
*

From the hydrostatic equation the

dynamic thickness of an isobaric layer

is given by the mean specific volume

of the layer. The variation along H-
the vertical of the isobaric slope and

,, r .1 , i - i FIG. 8-02. Isobaric slope,
consequently of the geostrophic wind K

depends on the variation of the specific volume within the isobaric

layer. If the specific volume has no variation within the isobaric

layer, the layer is barotropic, and the two isobaric surfaces bounding the

layer have the same slope. So the geostrophic wind does not change

throughout the layer. But if the specific volume varies within the iso-

baric layer, the layer is baroclinic and is inflated in the direction of

increasing specific volume. So the slope of the upper bounding isobaric

surface differs from the slope of lower bounding isobaric surface.

Accordingly the geostrophic wind varies along the vertical.

t The symbols zp and Tp of this and the following section do not represent the

same quantities as the'symbols zp and Tp of section 4-30.
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8 03. The thermal wind equation. The above argument may be

developed analytically by differentiating the geostrophic wind equation

along the vertical with respect to dynamic height. Since the latitude is

constant along the vertical, application of d/d0 to 8-01 (2) gives

(1) 2Q,x^~^.
50 50

Here 5va/50 is the variation or shear of the geostrophic wind along the

vertical. The wind shear may be clearly visualized, as shown in

fig. 8-03a, by drawing the vectors vg for a given vertical at a given time,

issuing from a common origin 0. The terminal curve of vg represents
the distribution of wind along the vertical, with either dynamic or geo-
metric height as the scalar variable. (See section 6-04.) This terminal

curve will be called the shear hodograph. The wind shear is tangent to

the shear hodograph and is directed toward increasing values of the

height variable.

FIG. 8-03o. Hodograph of wind dis-

tribution along a vertical.

FIG. 8-036. Definition of ap .

(2)

The variation of the horizontal pressure force along the vertical is

j>/_ A ^ ^*7v,_ d

,^
C

b*""" ~b</>

From the expressions 8-02(1, 2) for the isobaric slope we have

(3) -^ a 00

1 da bu 1 da fap~ ~-- n = - n.
a Oz g a OZ dn

The partial differentiation symbols 5/d0 and V# are commutative. So,

by the hydrostatic equation 5/>/d0 = -p, we have

(4)
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When the horizontal volume gradient is expressed in the natural system
and the equations (3, 4) are added, we find

d<t> a ds a \dn dz dn

Consider now the projection into the horizontal plane of the isosteric

lines drawn on an isobaric surface, as shown in fig. 8'036. These lines

define a horizontal field which will be denoted by ap . The ascendent

V#<*p of this field will be called the horizontal isobaric volume ascendent.

In the natural system this ascendent is expressed

dap dap

Since vg is along the horizontal isobars, the variations dap and da along
the wind are equal. Therefore,

dap da

ds ds

However, in the vertical plane normal to the wind direction the specific

volume varies in both the n and z directions. That is, a = a(n,z). So

an arbitrary variation da in the vertical (w,z)-plane is given by

da ^ da
da = dn + dz.

dn dz

In particular, when the variation is taken along the isobaric surface,

da = dap and dz = dzp . Therefore,

dap da da dzp

dn dn dz dn

The above expressions for the natural components of the horizontal

isobaric volume ascendent show that (5) may be written

(6) ^ = _I^E.
d<t> a

Consequently we have, from (1),

(7) 2QZ x =
a

This is the mathematical formulation of the dependence anticipated

qualitatively in the last section. Evidently the geostrophic wind has no

shear through a barotropic layer, since ap is constant for such a layer.

The specific volume is not immediately given by aerological data, so
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for practical use (7) must be expressed in terms of the virtual tempera-

ture. Since the pressure variation along an isobaric layer is zero,

logarithmic differentiation of the equation of state gives

(8)
a i

Therefore equation (7) for the geostrophic wind shear becomes

This relation, known as the thermal wind equation, could also have been

anticipated qualitatively. For within an isobaric layer an increase of

virtual temperature always occurs with an increase of specific volume.

Therefore the layer is inflated in the direction of increasing temperature.

Usually the virtual temperature correction is so small, in comparison
with the spatial variation of temperature, that T* may be replaced by T.

Although the following argument applies strictly only to the virtual

temperature, we shall for convenience write T for T*.

8*04. Isothermal slope. The atmosphere is often analyzed synopti-

cally by constructing the fields of the atmospheric variables in a series of

constant-level charts. Although the horizontal temperature gradient is

directly accessible from these charts, the isobaric horizontal temperature

gradient, which occurs in the thermal wind equation, is not so easily

available. We shall show in the next section that the difference between

these two gradients is negligible. First, however, we shall derive another

expression for the wind shear.

Equations 8-03(6, 8) may be combined to give

(1)
~

"TTT
= " r~

'

00 a T

Substituting here for 5b#/50, we have, from 8-03(2, 3, 4),

-

a a a 00

To express this equation in terms of the temperature instead of the

specific volume, differentiate the equation of state logarithmically. We
then find the following vector and scalar relations:

V//<* Vjyr _ Vnp Vgr bjy

a
"

r" p
"

T pot
;

!^_i^_!^_i<>r j_.
a 50

"
r &0

"
p d0

"
T 50

+
pa
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If these relations are substituted in (2), the term bn/pa occurs twice

with opposite signs. From (1) the logarithmic volume and tempera-
ture ascendents are equal, so equation (2) becomes

v//rp v//r~~'~ "" *'

Comparison of equations (2, 3) shows that each symbol a in (2) has been

replaced in (3) by the symbol T.

The expression (dr/d<)b// in (3) is determined by the isobaric slope,

for, by 8-02(2), we have

ar dr&tf dr
T- b// = --- n = tan pn.
O0 OZ g OZ

Similarly the expression VnT in (3) is determined by the isothermal

slope. Let OT be the acute angle between the isothermal surface and the

level surface. Moreover, let nT be a horizontal unit vector, whose linear

coordinate is UT, normal to the horizontal isotherms and pointing toward

colder air. The isothermal slope then depends upon the rise 8z? of the

trace in the (w^,2)-plane of the isothermal surface above the horizontal

level through the normal distance ^ buy. Thus

8zT
tan BT = ^-

OUT

The upper sign (minus) is required when the temperature decreases with

height. This is the usual case in the atmosphere. However, in layers

where the temperature increases with height, the lower sign (plus) is

required.

The horizontal temperature ascendent is then given by

br &r dzT ar- nr = - nr - - tan OTTLT ,

OUT 02 OUT Oz

where all variations are taken in the (wy,2) -plane. When the above

expressions for the isobaric and isothermal slopes are substituted in (3),

we have

-jr*
-

J. -^ ( tan eTnT - tan pn).

Therefore the thermal wind equation 8-03(9) takes the form

>^ 1 PvT1

(4) 20, *
f
- - ~jr ^ tan 6>rnT ~ ten ^ :

O<p JL OZ

According to this formula the geostrophic shear may be attributed
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partly to the slope of the isobaric surface and partly to the slope of the

isothermal surface. The isobaric slope is determined by the geostrophic

speed and is always very small (see section 8-02). Since no similar

dynamical control restricts the slope of the isothermal surface, any iso-

thermal slope may occur in the atmosphere.

8*05. The approximate thermal wind equation. We shall now show

that the part of the shear attributed to the slope of the isobars is so small

that it may be neglected for practical purposes. Suppose that the iso-

thermal surfaces are horizontal. Accordingly OT = 0, and the shear may
be attributed entirely to the isobaric slope. Division of the scalar form

of 8-04 (4) by 2&zvg = g tan Op then gives

Here the magnitude of the shear is proportional to the lapse rate.

The maximum lapse rate ordinarily found in the atmosphere is the dry

adiabatic, yd = l/cpd- For this lapse rate the percentual wind shear is

1 |dv,| 1

Vg 50 CpdT
3.6% per dyn km,

where the numerical percentage has been evaluated at T = 0C. Even

this maximum strength of the shear is extremely small; in fact it is

smaller than the error of measurement of the wind. Consequently the

part of the shear attributed to the isobaric slope may be neglected for all

practical purposes. Therefore, by 8-04(3), a good approximation to the

thermal wind equation is obtained when the horizontal isobaric tempera-
ture gradient is replaced by the horizontal temperature gradient. Thus

the approximate form of equation 8-03(9) is

Whenever the horizontal temperature gradient gives appreciable geo-

strophic shear, the above approximate thermal wind equation may be

used. Comparison of this equation with the equation of geostrophic

flow 8-01 (2) shows that the wind shear and the horizontal temperature

gradient have the same relative orientation as the wind and the horizon-

tal pressure gradient. So the following law, similar to the baric wind

law, holds for the wind shear : The geostrophic wind shear is directed along

the horizontal isotherms, with low temperature to the left of the shear in the

northern hemisphere, and with low temperature to the right of the shear in the

southern hemisphere.
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This rule gives the direction of the geostrophic wind shear. For

numerical computation of the strength of the shear (1) must be expressed
in scalar form. In practical application the strength of the shear is

measured by the magnitude |Av^| of the velocity variation through a

finite layer of dynamic thickness A</>
= gAz. Let the mean temperature

through the layer be T, and let Aw^ be the distance between horizontal

isotherms drawn for the interval AT". The scalar form of (1) is then

(2)
Az

On upper level maps the horizontal isotherms are usually drawn for a

temperature interval of 5C. If the distance between isotherms,

measured toward lower temperature and expressed in degrees of latitude,

is IITj then Awr = 1.11 x 10
5f/r and |Ar| = 5. The deviation of the

mean temperature of a layer in the troposphere from the value T = 0C
does not appreciably alter the value of the shear. Therefore equation

(2) is approximately given by

Az

In weather reports the upper winds are given for every 1000 ft along
the vertical. The shear at any one of these levels is measured by the

shear of the wind from the level 1000 ft lower to the level 1000 ft higher.

Thus Az = 2000 ft = 610 m. Moreover the speed is reported in miles per
hour rather than in meters per second. Let &ug be the magnitude of the

geostrophic shear, expressed in miles per hour. From the conversion

table in section 1-06 the shear |AvJ is then given by Au /2.237. With
these values for |Av ff |

and Az, the above equations may be written

Z/VAw0sin <p 15.1.

This form of the approximate thermal wind equation, first suggested by

Neiburger, corresponds to equation 7-17(4) for the geostrophic wind.

Comparison of the formulas for the geostrophic wind and for the geo-

strophic wind shear show that the two equations are completely analo-

gous. The geostrophic wind formula may be used to gauge the distance

between horizontal isobars from wind reports. And the geostrophic

wind shear formula may be used to gauge the distance between horizon-

tal isotherms from wind shear reports. However, it should always be

remembered that the practical use of these formulas is based on the

assumption of geostrophic gradient flow. Although this type of flow

is actually seldom realized, it often does give a fair approximation to the

real flow in the free atmosphere above the friction layer.
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8-06. Analysis of the shear hodograph. The wind distribution

along the vertical at a meteorological station is obtained directly from a

pilot balloon observation. From the drift of the pilot balloon the wind

is determined at equally spaced levels for instance, at every 1000 ft

above sea level. The shear hodograph is constructed by marking the

terminal points of the wind velocities drawn from the origin of a polar

coordinate diagram. The consecutive terminal points are then con-

nected by straight line segments as shown in fig. 8-06a. The real hodo-

graph is, of course, a smooth curve. But it is not advisable to draw it

with more details than the actual observations indicate, particularly if

the hodograph has many irregularities and kinks. The terminal point

of the surface wind is labeled 5, and the succeeding terminal points of the

upper level winds are labeled by numbers indicating the elevation of the

wind levels in thousands of feet above sea level. Although the wind

vectors are drawn here for illustration, they are usually omitted. The
mean shear through each 1000-ft layer is represented by the directed

segment from the terminal point of the wind at the bottom of the layer

to the terminal point of the wind at the top of the layer.

10 mph

FIG. 8-06a.

Let fig. 806a represent the shear hodograph drawn from a pilot balloon

observation taken in the northern hemisphere. Here the hodograph
has not been drawn in the surface or friction layer S-> 3. For in the

friction layer, usually about 3000 ft deep, the wind cannot be considered

geostrophic. The wind distribution in the surface layer requires a

separate analysis which will be presented in the next chapter. How-

ever, at higher levels the reported wind and the shear may often be

assumed to be geostrophic. By the approximate thermal wind equation
this shear is along the horizontal isotherms, with colder air to the left.

Thus, in the layer 3 8 of the diagram the mean horizontal isotherms

run approximately northwest-southeast, with colder air to the northeast
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of the station. And in the layer 8-> 13 the mean horizontal isotherms

run approximately southwest-northeast, with colder air to the northwest.

As pointed out by Rossby and collaborators, the shear hodograph
shows qualitatively the horizontal direction toward the regions of maxi-

mum or minimum vertical stability. The direction of the mean hori-

zontal isotherms for the two layers 3-> 8 and 8 > 13 has been indicated

by two intersecting straight lines in the simplified shear hodograph
shown in fig. 8-06&. In the four sectors bounded by these lines the verti-

cal temperature distribution is different. In the sector opening toward

the east warm air lies over cold air, so the vertical temperature distribu-

N

W-4 E

S Warm
Cold

Vo
Warm /\

XWarm\
' Warm %%

FIG. 8-06&.

tion is relatively stable. In the opposite sector opening toward the

west, cold air lies over warm air, so the vertical temperature distribution

is relatively unstable. Therefore, in this example the direction toward

the region of maximum vertical stability is toward the east, along the

shear at the level 8.

The following rule gives the direction toward the region of maximum
or minimum vertical stability at a level where the shear hodograph is

appreciably curved: The shear points toward the region of maximum

stability if the concave side of the hodograph encloses colder air, and points

toward the region of minimum stability if the concave side encloses warmer

air. This rule, valid in both hemispheres, must be qualified further. At

the level to which the rule applies the hodograph must be significantly

curved as well as appreciably curved. That is, the level must lie between

two fairly deep layers through which the hodograph is nearly straight,

as in the example. The above qualified rule may be derived mathe-

matically by differentiation of the thermal wind equation along the

vertical (d/d<).

Finally, the shear hodograph also shows qualitatively the tendency, or

local change with time, of the stability along the vertical. In the lower
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layer 3 -* 8 of the shear hodograph (fig. 8-06a) the wind blows across the

isotherms from a warmer region, so the temperature in that layer will

rise. At the level 8 the wind blows along the isotherms, so the tempera-
ture of that level will not change. And in the upper layer 8-* 13 the

wind blows across the isotherms from a colder region, so the temperature
in that layer will fall. The consequent change of the vertical tempera-
ture distribution is illustrated in fig. 8-06. The full-drawn sounding
curve represents the temperature distribution along the vertical at the

time of observation. As explained above, advection of temperature will

change this temperature distribution toward the dashed sounding curve.

Consequently the sounding will become less stable.

The following rule applies to the tendency of the vertical stability at a

level where the shear is along the wind : The sounding becomes less stable

if the concave side of the hodograph encloses colder air, and becomes more

stable if the concave side encloses warmer air. This rule, valid in both

hemispheres, applies only if the shear hodograph is both significantly and

appreciably curved. It may be derived mathematically by local time

differentiation of the thermal wind equation (d/d)-

Both the above rules are useful in weather analysis and forecasting.

By the first rule the distribution of vertical stability in space can be

inferred from the shear hodograph. And by the second rule the local

change of vertical stability with time can be inferred. However, these

rules should be applied only where the shear hodograph is appreciably

and significantly curved, and where the flow is approximately geostrpphic

gradient flow.

8-07. Fronts. We have examined the wind shear through an atmos-

pheric layer in which the mass field, represented either by the specific

Transitional

layer x

FIG. 8-07a. FIG. 8-076.

volume or the density, varies continuously. We shall now examine the

shear through a surface of discontinuity in the mass field. Such a sur-

face is called afrontal surface or more briefly afront.
A real front in the atmosphere is never a sharp discontinuity. As

shown in fig. 8-07a, it is a transitional layer with rapid but continuous

variation of the specific volume or of the density. However, it is often
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convenient to treat this transitional layer as a surface of discontinuity

separating two air masses. At any point of the front the density under-

goes an abrupt finite change from the lighter to the denser air mass. As
shown in 8'07& the isosteric surfaces enter the frontal surface from one

side, follow the front for a certain distance, and leave the frontal surface

on the other side.

8-08. The dynamic boundary condition. Consider any point P on
the frontal surface of discontinuity. AsP is approached from within the

dense air mass, the physical variables (p, a, p, T, v) approach definite

values, which will be denoted by unprimed symbols. And as the pointP
is approached from within the light air mass, the variables also approach
definite but in general different values, which will be denoted by primed

symbols. The difference of these two values, the dense air mass value

minus the light air mass value, will be indicated by the symbol A. Thus
the density difference at the front separating two air masses is

(1) p-p'=Ap>0.

This condition can be taken as the definition of the front. In the special

case where Ap = 0, the air mass discontinuity disappears, and the front

is nonexistent.

Although the mass field is discontinuous at the front, dynamic princi-

ples require that the pressure field be continuous. That is, the pressure

value at a given point on the front must be the same in both air masses.

For otherwise the pressure gradient and pressure force would be infinite.

Therefore, at any point in the frontal surface we have

(2) A/> - 0.

This condition is known as the dynamic boundary condition.

The differentiation symbol 6 has been used to denote variation at a

fixed time between neighboring points of space. The variation of the

pressure difference through a front between two neighboring points on the

frontal surface is, from (2),

(3) *(*p) = A(#) = 0.

This equation expresses the dynamic boundary condition in differential

form. It is valid only when the differentiation is taken in the frontal

surface.

Let the differentiation be performed along the vector line element 5rF

in the frontal surface. Then from 443(1) we obtain the following

expression for the dynamic boundary condition :

(4) A(S) . A(W/0 - a>fA(Vp) - 0.
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This equation shows that the frontal surface is perpendicular ^to the

variation of the pressure gradient through the front. Let the variation

of the pressure gradient be denoted by the vector F. Thus

(S) F= A(-V/0

The dynamic boundary condition (4) requires that F be a vector per-

pendicular to the frontal surface, as illustrated ity fig. 8'08a.

FIG. 8-08a. F = A(- Vp). FIG. 8-086. F = -

The same result can be obtained differently, as illustrated in fig. 8-086.

First assume that the cold air mass extends beyond the front and that

the pressure throughout the entire frontal region is given by the field p.

Next assume that the warm air mass extends beyond the front and that

the pressure throughout the entire frontal region is given by the field p'.

The extended pressure fields p, p' are represented in the diagram by
dashed isobars dividing the frontal region into unit isobaric layers.

Consider now the fictitious situation where both fields p, p
f
are extended

through the front. The two sets of isobaric units layers intersect each

other and divide the frontal region into tubes of parallelogrammatic
cross section. It is readily seen from the diagram that the unit surfaces

of constant A/> are the diagonal surfaces of these tubes. But according
to (2) one of these surfaces, namely, A = 0, is the frontal surface.

Therefore the frontal surface must be normal to the vector F = -V(A),
as shown by equation (S).

8*09. Application of the dynamic boundary condition. The general
relation between the frontal surface and the pressure field is given by the

dynamic boundary condition. Some of the consequences of this con-

dition have already been explained. Further consequences will now be

derived which may be applied directly to the weather map.
The difference between the two values of a physical quantity at a front

has been indicated by the symbol A. The arithmetic mean of these two
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values will be indicated by a superior bar (""). For instance, the mean
value of the density at a front is p = (p + p')/2.

Since p = p
f
at a front, the equation of state p = p/RT* shows that the

density and temperature differences through a front are related by

* P -/ r*'-r* AI

Hence, from 8O8(1) the virtual temperature difference AT
1*

is always

negative. In the following we shall distinguish the air masses at the

front by virtual temperature, rather than by density; we shall call the

dense air mass cold and the light air mass warm. Henceforth we shall

write T for T* as in the thermal wind equations.

The front may be stable or unstable, depending upon the arrangement
of the cold and warm air masses. The front is stable if the cold air flows

in a wedge under the front and warm air flows above. And the front is

unstable if the warm air flows in a wedge under the front and cold air

flows above, for in this case thermal convection would immediately de-

stroy the frontal discontinuity. There-

fore we shall in the following consider

only stable fronts.

The slope of the frontal surface may
be obtained by the method used for the

isobaric and isothermal slopes. Let F

be the acute angle between a frontal

surface and a level surface. As shown
FJG 8 .09a Fronta , slope>

in fig. 8*09a, the slope of a stable front with the cold air flowing below

the front and the warm air flowing above is

(2) tan 0, =

The horizontal and vertical components of F are obtained from the

definition: F= A(V/>). Thus the vertical component Fz is

F, = F-k--A(V/>r - (I)
Since for all practical purposes the hydrostatic equation 'bp/'bz = gp

is valid, we have finally

(3) Fz

In order to find the horizontal component of F, we shall introduce the

horizontal orthogonal unit vectors t/?, nF whose linear coordinates are

sF , nF respectively. The two unit vectors will be oriented so that tr
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is along the front with nF to the left and pointing toward the warm air.

For a stable front nF is along the horizontal projection of F. Thus

(4) FH = F-n, = -A(Vp-n,) = -A
( ^-

so the slope of a stable front is given by

(5) tan 6F = -

The inequality (4) gives one condition that must be satisfied by the

horizontal pressure field near a stable front. Since the vector F is

normal to the front, a second condition may be obtained as follows:

(6) F-t,

The two conditions (4): A(d/dj,) < and (6): A (&/>/&$,,) = 0,

derived from the dynamic boundary condition, restrict the variation of

the horizontal pressure field in the neighborhood of a front. Nine possi-

ble combinations of the two conditions are shown in fig. 8-09. These

diagrams show the front and the isobars in a level surface. The cold air

covers the upper half of each diagram and the warm air covers the lower

half.

dS*

dp'

H

H

H

H

FIG. 8-096. Nine possible horizontal pressure fields in the neighborhood of a

front.
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In the diagrams of the center column the horizontal pressure gradient

has no component along the front, so the horizontal isobars are parallel

to the front. In the diagrams of the left-hand column the horizontal

pressure gradient has a component to the right along the front. And
in the diagrams of the right-hand column the horizontal pressure gradi-

ent has a component to the left along the front. Notice that the hori-

zontal isobars intersecting the front have a kink pointing from low to high

pressure. This rule, valid in both hemispheres for any stable front, is

extremely useful in the frontal analysis of constant-level weather maps.

8-10. The kinematic boundary condition. The dynamic boundary
condition is a restriction on the pressure field at the front. There is also

a restriction"on the field of motion at the front, for the two air masses on

either side of the front cannot move so that a void develops between them

or so that they interpenetrate. That is, the velocity components VN,

v'N of the cold and warm air masses normal to the front are equal. Thus,

(1)

This condition is known as the kinematic boundary condition.

Let NF be the unit vector along the vector F, normal to the frontal sur-

face. The velocity components VN, v
r

N are respectively v*NF , v^N^.
So the kinematic boundary condition may be written

A(vNF )
= !VAv = 0.

Multiplication of this equation by the magnitude |F| gives the following

useful form of the kinematic boundary condition :

(2) A(vF) = F-Av = 0.

This equation requires that the velocity difference between the cold and

warm air masses be along the front. That is, the two air masses may
slide along the front with any tangential velocity difference.

The kinematic boundary condition is illustrated in fig. 8-10. Here the

plane of the page represents any plane intersecting the front, and the

arrows represent the projection of the velocities v, v
7
into this plane.

The arrangement of the nine diagrams corresponds to the arrangement of

the nine diagrams in fig. 8'096.

Since the front separates the two air masses, the speed of the front is

given by the velocity component normal to the front. Therefore in the

diagrams of the center column the front is stationary (UN = 0), and in the

diagrams of the right- and left-hand columns the front is moving

(VN T* 0). A moving front actively pushed by the cold air mass (VN > 0)

is called a cold front. And a moving front actively pushed by the warm
air mass (VN < 0) is called a warm front. Consequently, the diagrams of
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the left-hand column represent cold fronts, and the diagrams of the

right-hand column represent warm fronts.

If the flow in the two air masses at the front is horizontal, vz = 0. So,

by expansion of the scalar product vF, the kinematic boundary condi-

tion (2) may be written

(3)

HereF/f is a horizontal vector normal to the front in the horizontal level.

Moreover, if the front is stable F# points toward the warm air mass.

Therefore the unit vector n^ is along F#.

vN >Q Vs0 vN <0

\\\
\ \ \

\ \ \

\\\

FIG. 8-10. Nine possible velocity fields in the neighborhood of a front in the

northern hemisphere.

8-11. Front separating two arbitrary currents. The dynamic and

kinematic dynamic boundary conditions apply to any front. Since well-

defined moving fronts are always marked by extensive cloud, systems,

atmospheric flow near moving fronts cannot be horizontal. The vector

F normal to the front is defined as the difference of the pressure gradient

through the front. When the equation of motion is expressed in the

absolute frame, we have from 6-09(2)

(1) -F- A(V) = A[P (g -va)].

And when the equation of motion is expressed in the relative frame, we
have from 6-19(3)

(2) -F
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The frontal slope may be obtained by the method used in section 809
as the ratio between the horizontal and vertical components of F. When
the front separates two arbitrary currents the general formula for the

frontal slope is too complicated for practical evaluation. However, the

frontal slope is readily evaluated when the flow in the two air masses

separated by the front is zonal or geostrophic. A front separating two

constant zonal currents will be called a zonal front. A zonal front is a

stationary surface of revolution about the axis of the earth, and is com-

pletely defined by its trace in a meridional plane. A front separating two

geostrophic currents is called a geostrophicfront. In section 8-13 we shall

show that a geostrophic front also is stationary.

8'12. The zonal front. In zonal flow the absolute acceleration is,

from section 641, V = -wR. Therefore equation 8-11(1) becomes

(1) -F- A[p(g+2R)].

Only small percentual variations of p and o> will be considered here, so

we may treat the symbol A as a differentiation symbol. Therefore, since

ga and R do not vary through the front, (1) may be written

(2) -F - AP (g + w*R) + 2pw AwaR.

To simplify this equation we shall define

gA = go + WR,

/3
= 2poJaAcoa .

The vector g^ will be called the apparent gravity, for to an observer mov-

ing zonally with the absolute angular speed c3 the force of apparent

gravity replaces the force of gravity g = ga + 12
2R. Moreover, a sur-

face <j>A normal to gA, called an apparent level, replaces the geopotential

level <t> normal to g. Introducing the quantities g^ and ft into (2), we
have

(3) -F~gAAp+/3R.

Since ft has the same sign as Awa , we may distinguish the following

three cases according to the sign of Awa .

(i) Aca a < 0. Here the warm air rotates faster than the cold air.

The orientation of -F is shown in the upper diagram of fig. 842a, and

the corresponding orientation of the stable zonal front is shown in the

lower diagram. The cold air is then on the polar side of the front and

the warm air is on the equatorial side. This is the usual geographical

distribution of temperature.

(ii) Awa = 0. Here the angular speed does not vary through the

front. The isobaric surfaces in both air masses and the frontal surface,
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being normal to the apparent gravity, coincide with the apparent levels.

The sea surface may be considered as a front separating the dense mass

of water from the light mass of air. When the ocean and atmosphere
have the same zonal rotation, the sea surface is an apparent level.

And if, in particular, wa = 12, the sea surface is a geopotential level as

indicated earlier.

(iii) Ao?a > 0. Here the cold air rotates faster than the warm air.

The orientation of -F is shown in the upper diagram of fig. 8*126, and

the corresponding orientation of the stable zonal front is shown in the

lower diagram. The cold air is then on the equatorial side of the front

<0

FIG. 8-12a. FIG. 8-126.

and the warm air is on the polar side of the front. Although this is an

unusual geographical distribution of temperature, such a front may
develop in winter on the polar side of a cold continental region, with open
water off the coast.

In all figures the apparent level has been shaded. If o5 = 12 this

apparent level may be taken as the surface of the earth. If Z5a < 12 the

apparent level slopes downward toward the equator. And if o> > 12

the apparent level slopes downward toward the poles.

Notice that in both cases (i) and (iii) the stable zonal front has the

faster rotating air on the equatorial side of the front and the slower rotat-

ing air on the polar side. Therefore the horizontal shear of the two zonal

currents at the front is always cyclonic.

We shall now find the slope of the frontal surface with reference to the

apparent level. Let FAH and FA Z be the apparent horizontal and verti-

cal components of the vector F. The acute angle between the front and

the apparent level will be denoted by 6AF . Therefore, in analogy to
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8-09(2), the apparent frontal slope is given by

/
F

tan 6AF =

Let the angle between the apparent level and the axis of the earth as

shown in fig. 8'12c be denoted by <PA, called the apparent latitude. The

apparent horizontal and vertical components of R are then R sin <PA and

R cos <PA respectively. Consequently we have for the apparent horizon-

tal and vertical components of F, from (3) :

FA. - gAAP
- PR cosM .

The frontal slope is then given by

-
tan 9AF tan *>A |0|U sin ^ FlG- 8 ' 12*- Apparent latitude.

Here the plus sign should be taken when Acoa < 0, and the minus sign

when Awa > 0. Usually the frontal angle 0^.is small, compared with the

apparent latitude <PA, so the reciprocal of tan <?A may be dropped from

the above equation. Thus

2coa sin (p a _
(4) tan OAF = ------

:
---

P-
gA Ap

For practical use the density difference should be expressed by the

temperature difference according to 8-09(1). Moreover, for all practical

purposes the apparent level coincides with the geopotential level. So

the final approximate form for the slope of a zonal front is

The two equations (4, 5) are always nearly equivalent. In particular,

when wa = 12, they are exactly equivalent.

8'13. The geostrophic front. When the vectors in equation 8*11(2)

are projected into the horizontal plane, we obtain

-Ftf - A(V///>) - A[p(c/7 - V/7 )].

For geostrophic gradient flow, v// = and c# = -2tizvgn (see section

? 1 1 ) . Moreover, 12Z does not change through the front. Consequently
the above equation may be written

(1) F# = 2
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Let us form the scalar triple product F//'F# xk. The volume of the

parallelepiped having the three vectors F//, F//, k as edges is, of course,

zero. Accordingly from (1) we have

0= 2

The factor multiplying p inside the parentheses may be simplified as

follows:

xk = 00FVt

By the kinematic boundary condition this factor has the same value on

either side of the front, and consequently may be taken outside the

symbol A. Thus we have finally

(2) 2^F7/
-

V(7Ap - 0.

The density difference Ap is by definition positive, so the scalar product

F#*V0 is necessarily zero except at the equator. Therefore the geo-

strophic flow is parallel to the front. Since the front moves only if the

air masses have a velocitycomponent normal to the front, geostrophicflow

in the two air masses separated by a front is possible only if the front is

stationary.

The slope of a stationary front separating two geostrophic currents

may now be expressed by the geostrophic speed. From 8-09(2) the

frontal slope is equal to the ratio Fn/Fz . The value of the vertical

component Fz is, from 8-09(3), Fz
= gAp. And since the unit vector TLF

is along F/f for a stable front, the horizontal component FH is, from (1),

(3) FH - F/7-n^ - 2n,A(p^n-nF ).

Since the unit vector nF is 90 to the left of t,,., and the unit vector n

is 90 to the left of t, the angle between n and n^ is also the angle between

t and tF . Therefore

VglL'TLp
=

Vgt'tp
=

Vg'tf.

And the frontal slope is

The slope of a stable front is always positive, so A(pv<7 )
-tf. is positive

in the northern hemisphere and negative in the southern hemisphere.

Consider a stable geostrophic front in the northern hemisphere. The
horizontal unit vector tF is along the front, with warm air to the left and

cold air to the right. Therefore, the vector difference of geostrophic

momentum A(pv^) also must have warm air to the left and cold air to the

right, as shown in the three diagrams of fig. 8-13a.

These diagrams show that the horizontal shear of the geostrophic momen-
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turn at a stable geostrophic front is always cyclonic. We have already seen

that a similar rule applies to a stable zonal front. Although the rule

has been derived only for stationary fronts, observations show that it

usually applies to moving fronts. For this reason the diagrams of

fig. 8 10 have been drawn with cyclonic shear.

P'V'

FIG. 8-13a. Shear of momentum at a geostrophic front.

We have shown in section 7-16 that the direction to the left of the flow

in the southern hemisphere corresponds to the direction to the right of

the flow in the southern hemisphere. Therefore, the direction of the

arrows showing the geostrophic momentum in fig. 8-13a should be re-

versed in the southern hemisphere. However, the rule stated above is

still valid.

A useful form for calculating the frontal slope is obtained by making
the approximation

g

Equation (4) then becomes

(5) tan

The magnitude of the first term on the right is, from 8-02(2), the slope
tan 9P of an isobaric surface in a geostrophic current with the speed vg .

Consequently the magnitude of the second term on the right is, from

8-09(1), given by

Here the plus sign should be taken when the warm air has the larger

speed, and the minus sign when the cold air has the larger speed.
The expression on the right of equation (6) is tabulated below for

T = 0C and for reasonable wind and temperature differences through a

front at 45 latitude. These values indicate that the isobaric slope

( < 1/1000) can be neglected for rough approximations. So the practi-
cal formula for the slope of a geostrophic front is

(7) tan dF -
g

f.
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This formula, known as Margules' formula, is equivalent to the approxi j

mate expression 8*12(5) for the slope of a zonal front. Moreover, as we
shall now show, Margules

1

formula also expresses the slope of a transi-

tional frontal layer.

Real fronts in the atmosphere are transitional layers with rapid but

continuous variation of the temperature and wind through the layer.

If the flow throughout the transitional layer is geostrophic, the slope of a

stationary transitional layer may be derived from the practical thermal

wind equation.

We shall assume that the horizontal isotherms are parallel to the fron-

tal layer. This assumption is not too restrictive, for the horizontal iso-

steres and isobars are almost parallel toa station-

ary front. The coordinate UT is then measured

normal to the horizontal trace of the frontal

layer. Therefore, as shown in fig. 8-13&, the

2\zF slope of a stable transitional layer is given by
'Op

^

FIG. 8-13&.
tan e* = ~

~ F̂

=
A~

*

When the geostrophic shear Av /AzF is measured vertically through
the frontal layer and the temperature variation AT is measured hori-

zontally through the layer, the approximate thermal wind equa-

tion 8-05(2) may be written in the form

Transitional

layer
An*

2GL
tan 6F = ~ = 7-

]Ay,|
-

This equation is Margules' formula for a transitional frontal layer. The

wind variation through a continuous frontal layer has the same approxi-

mate form as the wind variation through a frontal surface of

discontinuity.



CHAPTER NINE

WIND VARIATION ALONG THE VERTICAL IN THE
SURFACE LAYER

0*01. Dynamics of friction. The principles which have been derived

in the two foregoing chapters are not applicable in the lowest layer of the

atmosphere. The motion is here strongly influenced by friction and
must be studied with an equation of motion in which the frictional force

is included. The aim of this chapter is to determine how far up from the

ground this frictional influence extends, and to find the main characteris-

tics of the motion in the layers below, where friction operates.

Let the frictional force per unit mass be denoted by m. The equation

of motion in the layer of frictional influence next to the ground is then

(1) v=b+c + g + m.

The frictional force depends in a rather complicated way upon the state

.of the motion and the physical state of the atmosphere. The general

problem of the effect of friction upon an arbitrary motion is not yet

accessible to rigorous dynamical treatment. In what follows we shall,

therefore, confine our discussion to the simple case of steady great circle

flow.

9 '02. Steady great circle flow. The state of motion to be considered

in the surface layer is great circle flow, constant throughout each level,

and having the proper variation in direction and magnitude from level to

level. The problem will be to determine what the velocity variation

with height must be if this flow shall remain steady under the influence of

friction.

Since the motion is constant great circle flow, the horizontal accelera-

tion is zero, and the horizontal equation of motion becomes

(1) = b// + c// + m//.

The balance of these three forces is shown schematically in fig. 902a.

The horizontal Coriolis force is expressed in terms of the velocity as

follows :

7-11(7) c*- -2Q,xv.

The motion may be resolved into one component equal to the geostrophic
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velocity along the isobar, and an additional component which we shall

call the geostrophic deviation, denoted by u (see fig. 9*02a). Thus

(2) v - va + u.

Substituting this in the expression for c#, we have

This equation gives the actual Coriolis force as the resultant of two

vectors, one being the Coriolis force in a motion with the geostrophic

wind, and the other the Coriolis force resulting from the deviation from

the geostrophic wind. By definition the Coriolis force of the geostrophic

wind is balanced by the pressure force:

8-01(2) b//= 2Q2 XV0.

Substituting this expression and (3) in (1), we obtain for the frictional

force

(4) m// =* 20,; xu.

This equation states that the deviation u of the actual wind from the geo-

strophic wind must be such that the Coriolis force resulting from the

deviation will balance the frictional force. The three equations for

P

FIG. 9-02a. FIG. 9-026.

state: (i) that the force triangle, fig. 9-02a, is similar to the

velocity triangle, with the factor of proportionality 2Q* (taken equal to

one in the diagram) ; (ii) that the force triangle is turned 90 to the right

of the velocity triangle in the northern hemisphere.

Equation (4) is the basic equation for steady motion in the surface

layer. When the proper expression for ma is known, the geostrophic
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deviation is obtained by integration, and the total motion is subse-

quently obtained from equation (2).

The first attempt to study the influence of friction between the atmos-

phere and the surface of the earth was made by Guldberg and Mohn in

1875. They assumed that the frictional force is directed opposite to the

velocity and that its magnitude is proportional to the speed. The

velocity triangle then becomes a right triangle, as shown in fig. 9-026.

If the factor of proportionality k is assumed to decrease with height, the

angle \l/ which the wind makes with the isobars has a maximum at the

ground and decreases with elevation.

This solution explains in a qualitative way some of the observed

features of the motion in the surface layer, notably that the wind has a

component toward lower pressure. However, although it is true that

the frictional force in a qualitative sense may be expected to act against

the motion and tend to slow it down, there is no reason to believe that the

expression for the frictional force is so simple as Guldberg and Mohn
assumed. In order to derive a rational theory for atmospheric friction

it becomes necessary to examine the physical mechanism of fluid resist-

ance in some detail.

9-03. The viscous stress. Consider a layer of fluid enclosed between

two rigid horizontal plates separated by a distance z, as in fig. 9-03a.

The lower plate is at rest, and the upper plate is kept in steady horizontal

motion with the velocity v. When steady conditions are established,

experiments show that the velocity of the fluid increases linearly from

zero at the resting plate to the velocity v at the moving plate; in other

words the shear is constant throughout the layer. This motion develops
as a consequence of the viscosity or internal friction which arises from the

irregular random motion of the fluid molecules.

FIG. 9-03a. FIG. 9-036.

Experiments show further that in order to keep the upper plate in

steady motion it is necessary to apply a tangential force which is propor-

tional to the velocity of the plate and inversely proportional to the dis-

tance z between the two plates. If this force, referred to unit area of the

plate, is denoted by T, we have

(1) T~-
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As no accelerations exist, the force on the upper plate is balanced by an

equal and opposite force on the lower plate in order to keep it at rest, as

shown in fig. 9-036. Consider now a vertical column with unit cross

section, extending from the lower plate to an arbitrary horizontal plane
AB between the two plates. The force -r on the lower face of this

column has to be balanced by a force T on the top face of the column in

the plane AB. This force, which is caused by the frictional interaction

between the fluid layers on both sides of the plane, is called the viscous

stress. In the ideal experiment described here we find that the viscous

stress has the same value at every point in the fluid layer, and from (1)

it is proportional to the constant shear in the layer.

Since the stress is caused by molecular action, it is evident that it can

depend only on the velocity distribution in the immediate vicinity of the

plane across which it acts. We may therefore generalize the above result

to the case of horizontal motion which is constant on each horizontal

plane, but where the velocity has an arbitrary variation along the verti-

cal, as in fig. 8-03a. Also here we may expect that the stress at any level

is proportional to the shear, dv/dz, at that level. Denoting the factor

of proportionality by M we have then

dv
(2) T-M-.

This relation, which was discovered by Newton, is called Newton's for-

mula for the stress. The proportionality factor /* is called the viscosity.

The viscosity is found to be a physical property of the fluid. It is inde-

pendent of the velocity distribution, the dimensions of the system, and

so forth.

9-04. The viscosity of a perfect gas. Since the stress is created by
the molecular motion, we should be able to derive Newton's formula

theoretically if the molecular motion is known. In a liquid fluid nothing

is known of the molecular motion, but for a gas Newton's formula can be

derived from the kinetic theory, as shown by Maxwell.

The kinetic theory states that the molecules of a gas move with a

random distribution of velocities, and that the kinetic energy of this

motion is the internal heat energy of the gas. Being random oscilla-

tion, such motion contributes nothing towards moving the gas as a

whole. Let the molecules in addition to this random heat motion

have an ordered streaming motion which is constant in planes parallel

to AB in fig. 9'04. Consider the conditions at the plane AB. As a

result of the random heat motion, molecules from below will pass up-

ward, and from above downward, each carrying along with them the
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streaming momentum corresponding to the layer where they experi-

enced their last impact. There is accordingly a transport of momen-
tum through the plane, whereby the faster moving upper layer loses

momentum, and the slower moving lower layer gains momentum.
The process may be likened to the case of two trains moving in the same
direction along parallel tracks, but ^v
with somewhat different speeds. If I V v + z

**

the passengers jump from one train to ^ /

the other, the faster train will be slowed ^
j

- yv-B
down, and the slower train will be L /

accelerated. According to Newton's '-*>' v -~ L
second law the rate of change of mo-

1 4. 4 C FlG- 9 '04 -

mentum is equivalent to a force ex-

erted by the upper layer on the lower layer. This force is the viscous

stress.

We shall now express this idea in mathematical form. Let c be the

average speed of the heat motion when the flow velocity is subtracted.

Let m be the mass of each molecule, and let N be the number of mole-

cules per unit volume. To simplify matters, assume that one-third of

the molecules move perpendicular to the plane, one-half of this number

N/6 moving downward, and the other half upward. The number pass-

ing downward per second through unit area is then Nc/6. These mole-

cules experienced on an average their last collision at the distance of the

meanfree path L, and each has the streaming momentum m[v -f (5v/dz)L]

characteristic of this level. Thus per unit area and time at the plane AB
we have :

the downward momentum transport => ^Nmc I v -f L 1

And by the same reasoning we have:

the upward momentum transport = %Nmc ( v - L
J

The product Nm is the mass per unit volume, or the density p.^. 'The net

downward transport of momentum per unit area and time,

is the stress which the fluid above the plane exerts on the fluid below the

plane. This equation is Newton's formula, 9-03(2), and gives for the

viscosity the expression

(2) M - $pcL.



Section 9-04 238

This relation shows that the viscosity is a physical property of the fluid.

Further, since pL is constant for a given gas, the viscosity is independent
of the density and hence of the pressure of the gas. Since the tempera-

ture is proportional to the square of the mean heat speed c, the viscosity

is proportional to the square root of the temperature. The independence
of pressure is well substantiated by experiments, but the increase with

temperature is somewhat greater than this theory indicates.

9-05. Viscosity of air and water. Viscosity is measured by letting

the fluid flow through a circular pipe under the influence of a known

pressure gradient and recording the rate of discharge. Some values of

the viscosity of air and water, obtained from such measurements, are

given in table 9-05. The dimensions of viscosity are, from 9-04(2),

[/*]
= [ML"

1
!"""

1
], and the numerical values in the table are in mts units.

TABLE 9-05

VISCOSITY IN MTS UNITS

TC Air Water

1.7 X 10~8
1.8 X l<r6

100 2.2 X 10~8 0.2 X 10~6

In water the viscosity decreases rapidly with increasing temperature, as

is generally true in all liquid fluids. In air the viscosity increases with

temperature, in qualitative agreement with Maxwell's theoretical expres-

sion 9-04(2). However, it is seen that the actual increase is more rapid

than the theory predicts. For both air and water the viscosity is prac-

tically unaffected by pressure changes, even up to 100 atmospheres.

The viscosity of air and water is quite small. For comparison the

viscosity of glycerin at 20C is about 9 X 10~4 mts units.

9 '06. The ffictional force. In the special case of horizontal motion

with shear the frictional force is readily expressed by the shearing stress.

Consider a vertical column of unit cross section extending from the level z

to the level z 4- dz. See fig. 9-06. Let -r be the stress exerted on the

bottom face by the fluid below, and T + (dr/dz)dz the stress exerted on

the top face of the column by the fluid above. These stresses may have

different horizontal directions. The resultant of these stresses,

(dT/dz)6z, is the frictional force on the volume element 8V = 8z. The
frictional force per unit volume is therefore dr/dz, and the frictional force

per unit mass is

(1) mH =a
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Note the analogy between this expression for the frictional force and the

expression -aVp for the pressure force. Like the pressure, the stress is

defined as a force per unit area. The pressure gradient is the pressure

force per unit volume, and similarly the variation of the stress per unit of

height is the frictional force per unit volume. To obtain the correspond-

ing forces per unit mass the volume forces are multiplied by the specific

volume.

Only in the special case of horizontal motion with uniform velocity at

each level has the frictional force the simple form (1). If the motion

also has horizontal shear,

tangential stresses on the

vertical side faces of the

fluid particles will result,

and the horizontal gradients

of these lateral stresses add

to the frictional force. If

the stress on a horizontal

face is r2
, and the stresses

on the vertical faces normal
FIG. 9-06. Variation of the stress with height.

to the x axis and the y axis are respectively rx and TV ,
it can be shown

that the general expression for the frictional force is

(2) m
dj

+
?

The analogy with the expression for the pressure force is here complete.

In all large-scale atmospheric currents the horizontal shear of the wind

is extremely small in comparison with the vertical shear in the surface

layer. The lateral stresses TX and iy are then correspondingly small, and

the frictional force is in the first approximation given by the simple

formula (1).

9 '07. Total mass transport in the surface layer. When the expres-

sion 906(1) for the horizontal frictional force is introduced in the basic

dynamic equation for steady motion in the surface layer, 9-02(4), we
have

(1) a - = 2\LZ x u.
Oz

When this equation is multiplied by the density, we have

fr" ^= 2Q2 xpu.

Integrating this equation along a vertical extending from the ground,
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where the stress is TO , to the top of the atmosphere, where the stress is

zero, we have
oo

(2) -TO = 2Q2 x / Pu8z.

o

The integral on the right represents the total transport of mass resulting

from the geostrophic deviation through a vertical column of unit cross

section extending from the ground to the top of the atmosphere. Denot-

ing this mass transport by Ftt ,

00

(3) Fu - / puSz,

equation (2) can be written

(4) -TO- 2Q2 xFtt .

The physical interpretation of this equation is simple. Consider the

total vertical column of air, having unit cross section and extending from

the ground to the top of the atmosphere. No acceleration exists within

this column, and the resultant of all the acting forces is therefore zero.

The horizontal pressure forces acting on the column are balanced by the

Coriolis forces which result from the geostrophic part of the motion.

The only remaining external force is the stress -TO exerted by the

surface of the earth on the bottom face of the air column. To balance

this stress the air in the column must have a motion in addition to the

geostrophic wind (that is, a geostrophic deviation) such that the sum of

the resulting Coriolis forces throughout the complete column is equal
and opposite to the stress. The total mass transport of the geostrophic

deviation is therefore directed at right angles to the surface stress and is

proportional to the stress, in accordance with equation (4).

We may similarly define the mass transport F of the actual wind and

the mass transport F^ of the geostrophic wind:

(5)

00 00

'- / pv8z, F0= /

When the equation v = vg + u is multiplied by p and the three terms are

integrated from the bottom to the top of the atmosphere we have then

(6) F = F, + Ftt .

Equations (4) and (6) are illustrated by fig. 907.
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A problem of considerable practical importance is that of evaluating
the total transport of air across the isobars. According to (6) only the

part FM of the total mass transport contributes to the cross isobar trans-

port. The component of FM normal to the isobar can be evaluated from

(4) when the direction and the magnitude of the surface stress TO are

known.

The surface stress is proportional to the wind shear immediately above
the ground and is therefore directed along the wind at a short distance

above the ground, say at the anemometer level where the surface wind is

measured. It is rather plausible,

and also borne out by theory

(see H. U. Sverdrup:
"
Oceanog-

raphy for Meteorologists," Pren-

tice-Hall, 1942, p. 119) that the PX***^ j?
* P

magnitude of the surface stress at
*^

*o

any given station depends only FIG. 9-07. Mass transports in a vertical

upon the anemometer wind speed.
column from the ground to the top of the

The cross isobar transport can atmosphere.

therefore be determined entirely from an observation of the surface

wind when the direction of the isobar is known.

It should be noted that the above relation between the surface stress

and the cross isobar transport does not involve any assumptions as to

the wind distribution along the vertical.

9-08. Wind distribution in the surface layer. We shall now turn to

the main problem of this chapter, namely to determine the wind dis-

tribution along the vertical in a steady straight current. To simplify
the mathematical problem it will be assumed that the horizontal pressure
force and, hence, the geostrophic wind have the same direction and mag-
nitude at all levels, and further that the specific volume is independent
of height. The latter assumption is not so serious a violation of actual

conditions as it may seem, for it will be shown that the effect of friction

is mainly confined to the lowest kilometer. Finally it will be assumed
that the viscosity is independent of height. The justification of that

assumption will be considered below.

When Newton's formula 9-03(2) for the stress is substituted in 9-07(1),
we have

(1) OtfJL r-~2
= 2Q Z XU.

In this equation the height 2 is the only independent variable. Differen-

tiation with respect to height will in the remaining part of this section

be denoted by primes. Since the geostrophic wind is assumed inde-



Section 9-08 242

pendent of height, the variation with height of the actual wind is equal

to the variation of the geostrophic deviation. Equation (1) can then be

written

(2) ex/m" = 2Q2kxu.

The three scalar parameters 122 , a, JJL are, according to our assumptions,

constant along the vertical. They are replaced by a single constant /3
2

,

given by

(3) ? = -*-;
an

here ft

2
is positive in the northern hemisphere and negative in the

southern hemisphere. Then equation (2) takes the form

(4) u"=2/3
2kxu.

The solution of this homogeneous linear differential equation can be

written down directly if the two-dimensional vector u is treated as a

complex variable. A more elementary solution is given here. We
introduce a natural system of reference t, n, k referred to the velocity u,

such that

(5) u = wt.

The derivatives of the two unit vectors t and n are

t' = 0'n,

<6>

where 0' = d0/dz represents the rate at. which the vector u turns with

increasing height. Differentiation of (5) gives for the shear of u

(7) u'-tt't+fl'wn.

The shear is here expressed as the sum of its natural components tangen-

tial and normal to the vector u. There is a close formal analogy between

this development for the shear and the development in section 605 for

the acceleration, the only difference between the two being that one

represents differentiation with respect to height and the other differentia-

tion with respect to time. When (7) is differentiated once more, and the

relations (6) are considered, we have

u" - \u" - 0'
2
u]t + [0V + (0'tt)']n.

The vector product in (4) becomes

kxu= z*(kxt) = wn.
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Substituting these expressions in (4), we obtain the two component

equations

(8) u" = 0'V

(9) 0V + (0'w)' = 20
2

.

The general solution of this simultaneous system (8, 9) is rather compli-
cated. However, we are only interested in the special solution for which

u remains bounded as z - oo. This is the boundary condition for the

system (8, 9). If it were violated, we should have infinitely high veloci-

ties at the top of the atmosphere, which is physically impossible.

To find the special solution, we first assume that 0' is constant. Then

(9) takes the form

(10) 0V -
f3?u.

Differentiation of (10) gives

(11) 0V'=/3V.

Elimination of u between (8) and (10) gives

(12) 0V'-^V.P

Comparison of (11) and (12) shows that 0'
4 =

/3
4

, whence for the system

(8, 10) to be consistent we must have /2 =
/3
2

. Since
/2

is positive by

physical definition, the plus sign applies to the northern hemisphere and

the minus sign applies to the southern hemisphere. Restricting the

further discussion to the northern hemisphere, we see then that (10)

takes the form

(13) u = Q'u.

It is clear that (8) is a consequence of (13), so that the solution of the

system (8, 13), i.e., the special solution of (8, 9) for constant 0', is obtained

by solving (13) alone.

The solution of (13) is well known to be

(14) u = u e",

where UQ is the value of u at z = 0. Now, in order that u be bounded as

z > oo, we see from (14) that 0' must be negative. Since 0'
2 =

j3

2
, it

follows that

(15) 0' = -ft

where j3 is the positive root of ft

2
. We then have from (14) that

(16) u = HOC-'*.
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Equations (15) and (16) give the northern hemisphere solution of the

system (8, 13). It can be shown by more advanced methods without

any assumption about 6
f
that (15, 16) is the only solution of the system

(8, 9) that obeys the boundary condition at the top of the atmosphere.
In interpreting (16), the simplest condition would be that the velocity

v at the ground be zero, whence from 9-02(2) w =
|va |. However, the

dynamical conditions at the ground are more complicated than assumed

here and must be studied with an equation different from (4). The
solution of (4) can therefore not be extended to the ground, but only to a

somewhat higher level (say 10 m above the ground). This level may
arbitrarily be taken to be the

" anemometer level
"
where the surface

wind is measured. Let V be the velocity at the anemometer level, and

let U be the corresponding geostrophic deviation (see fig. 9'08) ; thus

v = V0 + U .

Hence, when the height z is measured from the anemometer level, the

UQ of (16) is equal to |u |

=
|v

-
v^|. The equation (16) then says that

the magnitude of the geostrophic deviation decreases exponentially with

FIG. 9-08. Ekman spiral.

increasing height from the maximum value UQ at the anemometer level.

The turning of the wind with height is given by (15). Here 6 is the

angle from an arbitrary fixed direction to the direction of u. To simplify

the formulas we shall measure the angle 6 from the direction of U at the

anemometer level, so that = 0. The integral of (15) is then

(17) e fa.

The explicit solution at the anemometer level and above is given by
combining equations (16) and (17); thus

(18) u = uQe
e

and 6 = -fa.

The geostrophic deviation turns linearly with height in a negative sense,

and its magnitude decreases exponentially with the angle of turning.

The equation (18) is the equation for the hodograph in polar coordinates.

It is the well-known expression for the logarithmic spiral. The solution

is known as the Ekman spiral after W. F. Ekman, who solved the corre-

sponding problem for the surface layer of the ocean in 1902.
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Fig, 9-08 illustrates schematically the velocity distribution in the

layer next to the ground. It shows the velocity V and the geostrophic

deviation UQ at the anemometer level, and also the hodograph of u.

The latter is, of course, also the hodograph of the total velocity v. Two
values of u, for the angles 6 =

-^TT
and = -

^TT, which correspond to

the levels z =
far/8 and z = |-7r//3, are indicated in the diagram.

9 09. Relationbetween surface velocityand geostrophic velocity* The

analysis in the preceding section does not give any information regarding
the direction and magnitude of the surface wind (at the anemometer

level).

The behavior of the surface wind is determined by the dynamics of the

bottom layer, from the anemometer level down to the ground. The

theory of this layer will not be treated in this book. It must suffice to

mention a few of the results. It can be shown that the turning of the

wind in the bottom layer is negligible, and so the wind and the shear of

the wind have here approximately the same direction. Applying this at

the anemometer level, we have

(1) V =KVo.

The scalar factor of proportionality K depends upon the height of the

anemometer level and the roughness of the ground. For example, if

the anemometer level is at 10 m and the ground is open grassland, the

proportionality factor is 55 m.

A well-known geometrical property of the logarithmic spiral is that

the tangent at any point makes the constant angle of 45 with the

radius vector. This is readily shown from the formula 9-08(7) for the

shear. Substituting here for u and 0' from 9-08(13, 15) we find

(2) v' = u'= -0tt(t+n).

The shear is directed along the tangent of the hodograph. From (2)

the shear is parallel to the vector t -f- n, which makes an angle of 45

with t and hence with the radius vector u. Applying this result at the

anemometer level, where from (1) the velocity and the shear are parallel,

we find that the angle between the directions of v and -UQ is 45, as

shown in fig. 9*09. It follows then immediately from the diagram that

Vgsin fa vecos fa VQ, or

(3) PO = vg (cos ^ ~ sin ^ )-

Another relation between the surface wind and the geostrophic wind

is obtained as follows. The magnitude of the shear at the anemometer
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level is, from (2),

(4) K|

Taking the magnitude in equation (1) and substituting from (4), we find

(5) vQ

v
f

FIG. 9-09.

Further, by inspection of fig. 9-09,

(6) vg sin \!/Q
= o sin 45

And finally when UQ is eliminated from (5) and (6)

(7) VQ - 2KJ3vg sin ^ -

This relation, together with the relation (3), determines the direction and

magnitude of the surface wind. When the ratios between the two equa-

tions are taken, both VQ and vg are eliminated and we find

(8) cot ^o=l + 2/c/3.

The angle ^ between the surface wind and the isobar is thus less than

45, which also is directly apparent from the diagram. The actual

numerical value of the angle, and hence of the surface wind speed, depends

upon the magnitude of the two parameters K and ft.

910. The geostrophic wind level. The velocity distribution in

fig. 9-08 agrees at least qualitatively with actual observations in a region

with straight isobars over level ground. The surface wind is consider-

ably smaller than the geostrophic wind, and it has a component across

the isobars toward lower pressure. With increasing elevation the wind

speed increases, and its direction approaches that of the geostrophic

wind. The lowest level where the wind becomes parallel to the isobars

is called the geostrophic wind level. As shown in fig. 940, this level is

reached when the /geostrophic deviation has turned an angle

QH ** (f* + ^o) The height // of the geostrophic wind level measured

from the anemometer level is determined by QH " pH When the
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above value for 0# is used, we find

(1) H-
J(iir

+ lM

In the second expression to the right the value of has been introduced

from 9-08(3). At the equator the height of the geostrophic wind level

would become infinite. The physical reason for this is the fact that the

FIG. 9-10.

horizontal Coriolis force is zero at the equator, and hence no deflection

of the motion can create forces which will balance the pressure force and

the frictional force. The above discussion is therefore invalid close to

the equator.

The height II is proportional to V /* and hence increases with the

viscosity of the air, which might be expected a priori. If the

friction is caused by molecular action only, p, is the molecular

viscosity. As an example take the 0C value, /z
= 1.7 X 10~8 mts

units, and a = 850 m3
t""

1
. These values introduced in (1) give for the

height of the geostrophic wind level at 40 latitude the value 1.6 m.

Under the influence of molecular viscosity the layer of frictional influ-

ence in the atmosphere would only have a thickness of 1 to 2 m.

We know by experience that the geostrophic level is found much

higher up. The height varies widely, depending on the nature of the

surface of the earth and the stability of the air. A rough average value

at 40 latitude is about 1500 m, or roughly one thousand times the value

derived above. Substituted in (1), this value of the height would

require that the viscosity be about 1.6 X 10~~
2 mts units, or roughly one

million times larger than the molecular value. It is evident from this

that the internal friction is created by an enormously more powerful

agent than the molecular motion. This agent is the atmospheric

turbulence, and the viscosity which is found in the example above is the

turbulent viscosity or eddy viscosity ne .

9- 11. The eddy viscosity. To complete the present discussion some

qualitative remarks concerning the eddy viscosity will be made. It
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appears that the main characteristics of turbulent flow can be described

by considering the motion as the resultant of a certain mean flow and a

random eddy flow, the latter giving no net transport of mass in any
direction. This is evidently analogous to the molecular heat motion

superimposed on the streaming flow of the air (section 904).
Consider the simple case where the mean flow is horizontal and is also

steady and uniform in each horizontal level. The turbulent eddies will

carry parcels of fluid from level to level, mixing rapidly into their new

surroundings. The net result of this is a transport of mean momentum
across the planes of constant mean flow. The slower streaming fluid on

one side of the plane gains momentum at the expense of the faster stream-

ing fluid on the other side. This momentum transport is equivalent to

a tangential stress, called the eddy stress, across the planes of constant

flow. It is equal to the rate of flow of momentum across unit area.

To obtain an expression for the eddy stress it is assumed that the

parcels of air which are affected by the eddies move a certain average dis-

tance I before they lose their identity and mix with their new environments.

The distance / is called the mixing length. It corresponds to the mean
free path of molecular motion, although its physical definition is less

precise. Let w be the average component of the eddy velocity perpen-

dicular to the plane of constant flow. By reasoning similar to that in

section 9-04 we find that the rate of momentum flow across unit area,

and hence the eddy stress, is proportional to pwlfivfoz), where v is the

velocity in the mean flow. The factor of proportionality is usually

included in the definition of the mixing length, so

dv
(1) r=pwl

oz

This formula for the eddy stress is analogous to Newton's formula for

the molecular stress. It brings out the formal analogy between the

dynamical action of molecular and eddy motion. The expression

pwl is dimensionally a viscosity and plays the role of viscosity in the

above formula. It is therefore called the eddy viscosity and denoted

by He'-

(2) ^ - PWI.

There is some similarity between this expression and Maxwell's formula

9-04(2) for the molecular viscosity. But, contrary to the molecular

viscosity, the eddy viscosity is not a physical property. The mixing

length depends upon the roughness of the ground, the distance from the

ground, and also on the velocity distribution in the mean flow. The
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vertical eddy component w depends upon the mixing length and the

shear of the mean flow.

Several methods exist whereby the eddy viscosity and its distribution

with height can be determined directly from the vertical wind distribu-

tion. From such determinations it is found that the eddy viscosity first

increases from the ground upward, and then decreases again higher up.

The actual values are found to vary within a wide range. Over a rela-

tively level ground and with moderate stability the range is roughly from

0.5 X 10~2 to 5 X 10~2 mts units, with an average value of about 10~2 .

From the formula (2) this average value would correspond to a mixing

length of 8 m and a vertical eddy velocity of 1 m s"1
.

The analysis of the frictional layer in the preceding sections is valid

for a turbulent layer when the eddy viscosity is used, and when it is

further assumed that the eddy viscosity is constant in the layer. See

9-08(1). The above remarks would indicate that the assumption of a

constant eddy viscosity is unjustified. Nevertheless, the solution for a

constant eddy viscosity having the average value of the layer is a useful

first approximation to what actually happens.



CHAPTER TEN

MECHANISM OF PRESSURE CHANGES

10*01. Equation of continuity. One important physical principle

which has not yet been considered is that of the conservation of mass.

This principle states that no fluid mass can be created or destroyed.

Consider an arbitrary fixed volume bounded by a fictitious closed bound-

ary at any place in an air current. Air will then flow through this

FIG. 10-01. Net inflow of mass along x axis.

volume, passing in through the boundary from one side and escaping

through the boundary on the other side. The principle of the conserva-

tion of mass requires that the net inflow of mass into thefixed volume in a

given time equal the increase of mass within the volume during the same time.

To express this statement in mathematical form, let the fixed volume

be an infinitesimal parallelepiped BV = 5x5ydz, as in fig. 10-01. The net

inflow along the x axis into the volume 5 V during the time element dt is

(pvx)8ydzdt
- 4- = -

(Pvx )dVdt.

Here pvx is a mean value for the area dydz. Similar expressions are

obtained for the net inflow along the y axis and the z axis. The sum of

these three expressions represents the total net inflow of mass into the

volume 5V in the time dt :

-I"-Ldx

d
' + r- dVdt.

This inflow of mass must cause an increase of density in the volume ele-

ment from the value p at the time / to the value p -f (dp/dt)dt at the time

250
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/ -f dt. The increase of mass in the volume 8V during the time dt is there-

fore

The principle of the conservation of mass requires that the two expres-

sions (1) and (2) be the same. When the factors 8V and dt are divided

out, we obtain the two equivalent expressions for the rate at which mass

flows into a fixed unit volume. When these are equated we have

I-
This equation is known as the equation of continuity. The expression

on the right can be written more conveniently in vector notation when
the following convention is adopted. The operation symbol V used in

442 may be considered as a vector with the rectangular components

d/djc, d/cty, 5/dz. The part of equation (3) enclosed in brackets is then

the scalar product of the vector operator V and the momentum vector

pv; thus

(4) V-(pv) = (pvx ) + (pvy) + (pvz ).
Ox oy Oz

The expression in (3) represents the rate of inflow or convergence of mass

into unit volume. The quantity in (4), having the opposite sign, repre-

sents the outflow and is called the divergence of the vector pv. It is

sometimes denoted div(pv). Since pv represents the flow of mass the

divergence V(pv) of this vector is called the mass divergence.

With the notation (4) the equation of continuity takes the form

dp
(5)

= -V(pv).
dt

An alternative form of the equation of continuity will be derived in the

next section.

10*02. Divergence. The compact vector expression for the mass

divergence, V(pv), can be developed as follows:

(1) V(pv) = v-Vp + pV'v.

This formula is verified by performing the differentiation on the right in

10'01(4) and expressing the result in vector notation. Accordingly the

divergence operator V follows the rules of differentiation when operat-

ing on the product of a vector and a scalar.

The first term on the right in (1) is the scalar product of the velocity
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and the density ascendent. The second term on the right contains the

expression

, . &Vx bvy bvz
(2) V-v= -+-* + -*,

ox oy oz

which is the divergence of the velocity field. The physical meaning of

the velocity divergence is obtained as follows: Consider a moving ele-

ment of air which at the time / fills the rectangular space 8V - dx8ydz of

fig. lO'Ol. At the time t + dt this element will form an oblique parallele-

piped whose angles differ infinitesimally from right angles. Its edges,

to the first order in dt, are

The volume of the element at the time / + dt is given, to the first order in

ft, by the product of the three edges:

-
I" 1

L

When we divide by dV = dxdydz, we have

1

dt

,5 F dt

This equation shows that the divergence of the velocity measures the

ate of expansion per unit volume of the moving air elements. Equa-
:ion (3) is a purely kinematic relation which is a consequence of the

geometry of the motion.

If dM = pdV is the mass of the moving element, we have on account of

,he conservation of mass that

pdV = const.

Jpon logarithmic differentiation, we obtain

vp at 8V dt

substituting here for the divergence from (3), we have

dp
;4)

- = -pvv.

This is the second form of the equation of continuity.

10*03. Horizontal divergence. Since the motion of the atmosphere
s mainly horizontal, it is sometimes convenient to write the divergence
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as the sum of the horizontal divergence,

(1)

and the vertical divergence, &vz/bz. Thus according to 10-02(2)

(2)
dz

The physical significance of the horizontal divergence is similar to that

of the three-dimensional divergence. Consider, at the time /, the small

horizontal area 5A = dxdy which forms the base of the parallelepiped of

fig. 10-01. Even though the motion may have a vertical component we
shall assume that this area element moves in the horizontal plane with

the horizontal velocity components. When the argument of the last

section is repeated for this area we find

(3) 1 <">-**

The horizontal divergence is then the rate of areal expansion per hori-

zontal unit area of a fictitious element moving with the horizontal com-

ponents of the motion. If the motion is strictly horizontal, the hori-

zontal divergence is represented by the rate of areal expansion of the

real fluid element per unit area.

10*04. Individual and local change. The change at a fixed point of a

physical variable is called the local change of that variable. The local

changes of pressure and temperature, for example, are those which are

recorded by a barograph and a thermograph at a fixed station. The
local rate of change is denoted by partial differentiation with respect to

time, b/d/. The change which occurs on a given particle during its

motion is called the individual change. The individual rate of change is

denoted by the differentiation symbol d/dt, or by the dot symbol.

It is important to note the difference between the individual and the

local rate of change. To find the relation between them, consider any
one of the physical variables, for instance the density. In accordance

with 4-04(3) the density field is analytically expressed as a function of

the rectangular coordinates x, y, z, and the time t: p = p(x,y,z,t). The

variation of the density from the point (x,y,z) at the time t to an arbi-

trary neighboring point (x + dx, y + dy, z + dz) at the time / + dt is

given by

(1) dp = ^dx +^dy + ^dz+^dt = drVP + ~-dt.
d# by dz at at
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This expression has general validity for arbitrary variations dr and dt.

We shall, however, specialize it so that dr is the displacement during the

time dt of the particle which has the position (x,y,z) at the time /.

dr/dt = v is then the velocity of the particle, and the corresponding dp

is the individual change; thus

dp dp
(2)

= + vVp.

The individual rate of change is here expressed as the sum of the local

rate of change and a second term, vVp, which is called the advective rate

of change. The latter represents the change of density of the moving

particle due to its motion into regions of different density. The for-

mula (2) is readily verified for the following two special cases: (i) Equi-
librium : The velocity is zero and therefore the advective change is zero.

Every particle remains at rest and its individual change is identical to

the local change in the field, (ii) Steady state: The field of density

remains fixed in space and thus no local changes occur. The individual

change on a particle can then only arise from a motion into a region of

different density, i.e., from an advective change, in accordance with the

formula. The relation between individual and local change has here

been derived for the density. Obviously the derivation holds for any
other physical variables in the atmosphere, vectors as well as scalars.

The equation of continuity offers a good illustration of the local and the

individual change of density. In its first form, 10-01(5), it expresses

the local change of density as the mass convergence into unit volume.

In its second form, 10-02(4), it expresses the individual change of

density in terms of the velocity convergence. That the two forms are

equivalent follows from the fact that the one is transformed into the

other when the relation (2) between the individual and local change is

used. Substituting, for example, from (2) into the second form,

10-02(4), we have

dp
-pV-v

dt

or, after rearrangement,

~ - (vVp + pV'v) = -V'(pv).

This is the first form of the equation of continuity, 10-01 (5).

10*05. Relative change in a moving pressure field. The pressure

field in a constant-level map moves over the map in a more or less regu-

lar way, and the internal change in shape and structure of the pattern is
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usually slow and gradual. Certain features of the pressure field for

example, troughs, wedges, centers of high and low pressure can be

identified from one map to another. The first step in the preparation

of a weather forecast is to determine the displacement of the pressure

field during the time of the forecast period. The second step is to evalu-

ate or estimate the changes which will occur in the meteorological vari-

ables relative to the moving pressure field during the same time.

These relative changes are related to the local changes by a formula

similar to 10-04(2). To find this formula consider an identifiable point

in the moving pressure pattern, for example, the point of intersection of

a wedge line with one of the latitude circles. Let this identifiable point

move through the displacement dp during the time interval dt* From

10-04(1) the relative change of density at this point during its displace-

ment is

dp
(1) dip-dirVp + ^dt.

The velocity of propagation of the pressure system is d$/dt = c, and

therefore

dip dp

The relative change in the moving pressure field is thus the sum of the

local change and the advective change due to the movement of the

pressure field.

The formula (2) holds for the change of any physical variable. Of

particular interest is the relative change of the pressure itself:

(3, *-*+**
The relative change of pressure, dip/dt, which indicates the deepening or

filling of the pressure pattern, is thus expressed as the sum of the local

pressure change and the convective change caused by the movement of

the pressure pattern. The relation between the relative and the local

change was first studied by Petterssen (1933). From the formula (3)

Petterssen derived a number of kinematic formulas for the movement of

troughs, wedges, and pressure centers. A comprehensive discussion of

these formulas and of their application to weather forecasting is found in

Petterssen's book
"
Weather Analysis and Forecasting."

10*06. The pressure tendency. In synoptic meteorology the local

pressure change in the atmosphere is called the pressure tendency. The

systematic study of the mechanism of local pressure changes was started
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by J. Bjerknes in 1937. One important application of Bjerknes' theory
is that it explains the pressure changes occurring during the development
of the cyclone. This cyclone theory will be found in sections 10-1 7-10-20

below. First the tools of analysis must be developed, and some pre-

liminary studies of simplified atmospheric models must be carried out.

The treatment is essentially the same as that presented in a paper by

J. Bjerknes and J. Holmboe.*

10-07. The tendency equation. The new tool of analysis introduced

by Bjerknes in 1937 was the so-called tendency equation. This equa-
tion is obtained by a combination of the hydrostatic equation and the

equation of continuity.

The hydrostatic equation is assumed to be valid in all aerological com-

putations leading to the construction of the upper-level pressure maps.
For their theoretical interpretation we can therefore safely take our start

from the hydrostatic equation

4-16(3) -3/?p5</>.

The pressure at any level < is then obtained by integration of this equa-
tion from the level <f> to the upper limit of the atmosphere <

, where

the pressure is zero; thus

a)

The pressure is here represented as the weight of the vertical column of

air of unit cross section extending from the level to the top of the

atmosphere.
The local rate of change of the pressure at the level is evidently given

by the change in weight of the vertical column. It is obtained by partial

differentiation of (1) with respect to time:

(2)

The local rate of decrease of density is, from the equation of continuity

10*01(5), equivalent to the mass divergence:

*>P , x , x
&

/ x= V*(pV) VH*(PV) + r- (p>Vz ).
Ot OZ

The last expression on the right gives the mass divergence as the sum of

horizontal and vertical mass divergence. When this is substituted in

*
J. Bjerknes and J. Holmboe,

" On the Theory of Cyclones," Journal of Meteor-

ology, vol. I, No. land 2, 1944.
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equation (2), we have

The local pressure change at the level < is here represented explicitly as

the change in the weight of the vertical air column. This change is

caused in part by horizontal divergence of mass above the level <t> and

in part by the vertical transport of mass through the base of the column.

Equation (3), known as the tendency equation, was derived by

Margules (1904), but most of its practical applications date from 1937.

The first term on the right will be referred to as the divergence term. In a

qualitative sense we may visualize positive horizontal mass divergence
as a horizontal spreading of air, and negative divergence, i.e., conver-

gence, as a horizontal crowding of air. This makes the physical inter-

pretation of the divergence integral in the tendency equation quite clear:

Horizontal convergence increases the mass of air within the vertical

column and shows up as a pressure rise at the base of the column.

Horizontal divergence decreases the

mass of air present within the column

and makes the pressure fall at the base

of the column. These effects are shown

schematically in the left part of fig.

10-07.

Equally obvious is the meaning of the

second term on the right in the tendency

equation, which will be called the verti-

cal motion term. An influx of air from

below into the column increases the

weight of air inside it and thereby also

the pressure at its base. Correspond-

ingly, an outflow of air downwards

through the base of the column repre-

sents a loss of weight of the column and

a decrease of pressure at the base.

These effects are illustrated by the

right part of fig. 10-07.

On a level part of the surface of the earth the vertical motion is zero

and the tendency equation reduces to

(4)
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All large-scale pressure changes observed on the surface map (except

special mountain effects) should be explicable in terms of this equation.

The problem of finding the distribution of horizontal mass divergence
will be discussed at some length in this chapter.

A modified form of the tendency equation can be used to compare the

tendency at the ground (assumed to be horizontal) with the tendency
at an arbitrary upper level of the same vertical column. When the

tendency at the level <, equation (3), is subtracted from the tendency at

the ground, equation (4), we find

The tendency at the level < may be computed from this equation when
the tendency at the ground, the vertical motion at the level <, and the

horizontal mass divergence below the level < are known. The practical

solution of this problem is discussed further in the next section.

10-08. The advective pressure tendency. The divergence term in

the modified tendency equation 10-07(5) may be separated into two

parts. When the horizontal mass divergence is developed according to

the formula 10*02(1), we have

and when the resulting expression on the right is substituted in 10-07(5),

we find

(ID
"
(^

It is plausible that horizontal divergence below a fairly low level is

accompanied by descending motion at that level, and that horizontal

convergence below the level is accompanied by ascending motion at that

level. The second and the third term on the right in (1) then have

opposite signs. The sum of these two terms is, by 10-02(4),

When the plausible assumption is made that the density of the air parti-

cles changes only as a result of their vertical displacements, the last inte-

gral to the right in (2) can be evaluated. It is then found that is

proportional to the vertical stability of the air, and vanishes for an adia-
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batic lapse rate. For the stability which normally occurs in the tropo-

sphere the joint contribution, e, from the secondand third terms in (1) to

the tendency difference can for rough approximations be neglected.

In the following discussion it will be assumed that the conditions are

such that the quantity e can be neglected in equation (1). That equa-
tion then reduces to

The difference between the pressure tendencies at the ground and at the

level represents the rate of change in the weight of the intermediate air

column. According to (3) this change of weight is caused by the hori-

zontal advection of air from regions of different density in the layers

below the level <. Thus if the motion has a component from the region

of denser air, vV//P < and the column becomes heavier. The pressure

tendency evaluated from (3) will be called the advective pressure

tendency.

Rossby has shown that the integral in (3) can be reduced to a simple

form which can be evaluated from a pilot balloon observation, if it is

assumed that the wind is geostrophic. The advective pressure change
which is obtained on the basis of this assumption may be considered as a

first approximation which is good in a broad and fairly straight current,

but is less reliable in regions with strongly curved and rapidly changing
streamline patterns. When the wind is assumed geostrophic, the

approximate thermal wind equation 8-05(1) is valid; thus

(4) 20.x--^
The isobaric horizontal gradients have here been replaced by the hori-

zontal gradients, the two being always very nearly equal, due to the small

inclination of the isobaric surface. When the value of VHP from (4)

is substituted in the integral of (3), we find

*

(pvJ
xSv.

The integral element in the first integral is a scalar triple product (see

section 614). It changes sign when the cyclic order of the three vectors

is changed. Since 2Q,Z is a constant vector along the vertical of integra-

tion, it may be taken outside the integral sign, giving the final expression

on the right-hand side.

If p represents the mean density in the layer below the level <, equa-
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tion (5) becomes

(6)

The integral has a simple geometrical interpretation and can be evalu-

ated graphically from the hodograph of the wind shear (fig. 8-06a).

The magnitude of v x v is equal to twice the area 5A swept out by the

lorizontal wind vector v from the level <j> to the level <t> -f 60, as in

ig. 10-080. The integral from the ground to the level <t> is thus twice

the total vector area A swept out by the velocity between the two levels :

see 11-13. Thus

(7)

V

*/
vx6v.

The vector A is directed along the vertical, upward if the wind turns to

;he left with increasing height, and downward if the wind turns to the

ight. Introducing (7) into (6) we find

(cbi

FIG. 10-08a. Vector area increment.

lOmph

FIG. 10-086. Equivalent sectorial

area under hodograph.

n the last expression A has always the same sign as the sense of turning
if the wind with height. A is an area in the hodograph plane and has

he dimensions [L
2T~2

] of velocity square. If mts units are used, the

quation gives the tendency difference in centibars per second. In

tactical applications it is more convenient to express the tendency in

nillibars per three hours, and also to measure the velocity in miles

>er hour: 1 cb s""
1 - 1.08 x 105 mb (3 hr)-

1
,
and 1 (mile hr"1

)
2 -

1.200 m2
s-2 . Thus from (8)

) -[ - 8 -64 X mb (3 hr)-
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where A is expressed in (miles hr""
1
)
2

. The formula is used primarily to

compute the advective pressure tendency on an upper-level map, for

instance the 10,000-ft map, from a pilot balloon observation and the

known tendency at the ground. If we assume the value 922 m3
tT

1
for

the mean specific volume of the column from the ground to 10,000 ft,

i.e., the value of at p = 850 mb, T = 273K, the formula takes the form

*)-(*) - 6 '83 x 10-34 sin * mb (3 hr)-
1

The practical procedure in computing the 10,000-ft advective pressure

tendency from this formula is shown schematically in fig. 10-086. The

hodograph of the wind distribution along the vertical from the ground to

the 10,000-ft level as obtained from a pilot balloon observation is plotted

on a polar diagram. The points for the surface and each 1000 ft of ele-

vation are marked 5, 1, 2, ,
10. The variation of the wind in the sur-

face layer (schematically shown as an Ekman spiral) is primarily caused

by friction. The density advection in this layer is not in accord with

the simple formula (10), which was derived on the assumption that the

wind is geostrophic. Although the advection in the frictional layer may
be of some consequence, its contribution is omitted from the computa-

tion, since no simple technique is at hand for its evaluation. A rough

average value for the geostrophic wind level over land is 3000 ft. The
contribution to the advective pressure change between the geostrophic

level and the 10,000-ft level is measured by the area under the hodograph
between these levels. Instead of evaluating this area directly, we may
evaluate the area of an equivalent circular sector. The circular arc has

been drawn such that the two triangular areas are equal. The area of

the circular sector is -%6v
2

, where is the sectorial angle, measured in

radians, and v is the mean speed of the layer measured in miles per hour.

Introducing this value in the formula (10), we find

(11) (
I -(T-) - 3.42 x l<T3Ov2 sin ^ mb (3 hr)-

1
.

\&/o \&/io

The area %0v
2 can be read off the diagram directly if lines of constant

value of 6v
2
are drawn in the polar diagram. One such line is shown in

fig. 10-08c. For a given latitude the tendency difference is directly pro-

portional to the area. The lines of constant Ov
2
may therefore be drawn

and labeled directly for unit values of the tendency difference, as shown

in fig. 10-08d. The diagram has been computed for the latitude 40.

In practical use the diagram is drawn on transparent paper, or prefer-

ably a thin sheet of celluloid. When the pilot balloon hodograph has

been plotted on a regular polar diagram the transparent area computer,
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fig. 10-08d, is placed on top of it. If, in the northern hemisphere, the

wind turns to the right with increasing height (warm air advection), the

base line of the computer is placed along the 10,000-ft velocity vector.

= const

FIG. 10-08c. Line of constant sectorial area.

The area and hence the tendency difference is negative in this case. If

the wind turns to the left (cold air advection), the base line of the area

computer is placed along the 3000-ft velocity vector. The area and
hence the tendency difference is positive in this case.

6 mb

70 60 50 40 30 25

ft,
= 1.5 1.3 1.2 1.0 0.8 0.7

FIG. 10-08d. Area computer for advective pressure change.

If the computer is used for a station in another latitude <p, the values

indicated by the computer must be multiplied by the factor

kv = sin ^>/sin 40. The values of this correction factor for a number of

latitudes are listed below the base line of the computer.
It should be noted that the 10,000-ft tendency as obtained by this

method is only a first crude approximation. The method is based on the

assumptions that the quantity e in (2) is zero; that the wind is geo-

strophic; that advection in the frictional layer can be neglected ; and
that 1/p is near 922m3

1"
1

.
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10-09. Relation between the horizontal divergence and the field of

pressure. The equation of motion implicitly contains the relation

between the field of motion and the pressure field. By making suitable

assumptions it is possible to estimate the distribution of the horizontal

divergence directly from the horizontal pressure field.

In the layer of frictional influence near the surface of the earth the

winds have a systematic component across the isobars from high to low

pressure (chapter 9). Every
"
low

"
is then a region of horizontal mass

convergence and every
"
high

"
a region of horizontal mass divergence,

within the layer of friction. However, the layer of friction represents

only about one-twentieth of the weight of the atmosphere, and any hori-

zontal divergence in this layer may easily be overcompensated by hori-

zontal divergence in the remaining nineteen-twentieths of the atmos-

phere.

In the free atmosphere, above the layer of frictional influence, the

wind is in the first approximation geostrophic, blowing parallel to the

isobars of the pressure map. Furthermore, at any given latitude

the geostrophic wind is inversely proportional to the distance between

the isobars. We can therefore think of the isobars of a constant-level

pressure map as representing the horizontal motion of the air in the

same level. The air flows along
"
isobaric channels

"
covering the strips

between successive isobars. Where the channel is wide, the air flows

slowly, whereas in the narrow parts of the channel the air flows rapidly.

The product of the density p, the wind speed v, the channel width 8n,

and the constant channel depth 8z defines what may be called the trans-

port capacity dF of the isobaric channel :

(1) 8F=pvdndz.

The transport capacity is practically constant for a reasonably straight

channel which runs about west-east along a circle of latitude.

If the transport capacity of isobaric channels were constant all over

the map there would be no convergence or divergence to produce pres-

sure changes. Every isobaric channel would be like a well-regulated

river with constant transport all along, so that no local accumulations or

depletions would occur. However, this is fulfilled only approximately
in the atmosphere, because the geostrophic wind is only a first approxi-

mation to reality. Actually the isobaric air channels change their trans-

port capacity somewhat from point to point. The places of minimum

transport capacity will then be
"
bottlenecks

"
in the flow of air. The

air approaching a bottleneck will crowd horizontally and cause a longi-

tudinal mass convergence in the current, whereas beyond the bottleneck

there will be longitudinal mass divergence. To complete the list of
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shortcomings of the geostrophic wind, the air does not follow strictly

along the isobaric channels but overflows slightly from the one to the

other. It overflows toward lower pressure when the air speeds up, and
toward higher pressure when the air slows down. This also may cause

horizontal mass divergence which will be referred to as transversal mass

divergence. For brevity, we shall hereafter in chapter 10 write
"
diver-

gence
"

instead of
"
mass divergence."

In the following, the longitudinal and transversal divergence will be

evaluated quantitatively, or estimated qualitatively, for selected simple

patterns of flow under the two general headings: (i) wave-shaped flow

patterns, and (ii) closed flow patterns. These flow patterns, of course,

correspond to wave-shaped isobar patterns and closed isobar patterns

respectively. The former are mainly observed in the upper levels; the

latter, in the lower levels of the traveling cyclones. The results from the

study of these fundamental patterns will thus ultimately throw some

light on the mechanism of the composite cyclonic disturbances.

10- 10. Longitudinal divergence in wave-shaped isobar patterns.

The type of wave-shaped isobar pattern to be studied is shown sche-

matically in fig. 10'lOa. The amplitude of the wave disturbance has a

maximum in the middle of the pattern and tapers off to the north and to

the south of this latitude. This resembles the usual pressure distribu-

N

W E

FIG. 10-lOa. Wave-shaped isobar pattern.

tion on an upper-level map above a moving cyclone in the latitudes of

the westerlies. In order to facilitate the discussion it has been assumed
that the isobars are symmetric with respect to the trough lines and the

wedge lines, and that these lines are straight lines with north-south orienta-

tion.

It follows from the symmetry of the pattern with respect to the trough
lines and the wedge lines that these lines are the places of maximum or
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minimum transport capacity of each isobaric channel. To estimate the

distribution of longitudinal divergence, it is thus sufficient to evaluate the

transport capacity of the isobaric channels at their southern bends

(where they intersect the trough lines) and at their northern bends

(where they intersect the wedge lines). From the place of minimum to

the place of maximum transport capacity (along the direction of the

current) there will be longitudinal divergence, and from the place of

maximum to the place of minimum transport capacity there will be

longitudinal convergence.

The trough lines and the wedge lines are not only the places of maxi-

mum or minimum transport capacity of the isobaric channels but are also

the places of maximum or minimum speed. At such points the flow is

gradient flow along the isobars, so that in the normal component equa-
tion of motion,

7-13(5) KHv
2 + 2to> sin p = - - ~

>

p on

8n is measured normal to the isobar. Therefore 8n is the width of the

isobaric channel bordered by the isobars p and p -f 8p. In the following

the horizontal curvature KH will be denoted by K. No ambiguity will

arise, for only horizontal curvatures will be used.

Multiplying equation 7-13(5) by pdndz and introducing the notation

67? for the transport capacity from 10-09(1), we have

(1) 8F(Kv + 2ft sin <p)
= -dpdz = const.

The channel depth 62 and the pressure difference across the channel

dp are both constant all along the isobaric channel. The transport

capacity at the places with gradient flow is accordingly proportional
to the reciprocal of the quantity

(Kv+2Q sin tp). The distribution

of longitudinal divergence is there-

fore obtained by comparison of the

values of this quantity at the places

where the isobaric channel inter- ^ in < n , T , . , f r
, f . f f ,

FIG. 10-106. Isobanc channel from
sects the trough line and the wedge thc pattern in fig 1(MOa-

line.

Fig. 10'lOft shows an arbitrary isobaric channel in the pattern of

fig. 10-10a, bordered by the isobars with the pressures p and p + bp.

The channel has its cyclonic bend at the latitude <p where it intersects

the trough line, and its anticyclonic bend at the latitude <p' where it

intersects the wedge line. Obviously the relation <p

f

> v holds in all

cases. In the following all the quantities at the cyclonic bend will be
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denoted by unprimed symbols, and the corresponding quantities at the

anticyclonic bend by primed symbols. Note that 8p < 0.

The transport capacities dF' and dF at the two bends must satisfy one

of the following three conditions

(2) IF* | dF.

The upper condition states that the bottleneck in the current is at the

cyclonic bend of the isobaric channel. West of this bend air accumu-

lates and causes longitudinal convergence; east of the bend there will be

longitudinal divergence. The middle condition states that the transport

capacities are the same at the two bends, so the longitudinal divergence

is zero. The lower condition states that the bottleneck in the current

is at the anticyclonic bend of the isobaric channel, so the flow has longi-

tudinal convergence to the west of this bend and longitudinal divergence

to the east of it.

According to equation (1) the conditions (2) can be written

(2') Kv + 20 sin <p | K'V' + 20 sin <p

or, after rearrangement of the terms,

(3) Kv K'V' ^20 (sin <p' sin <p) 40 cos - sin -

JL t

The angle (<p

7

-f <p)/2 is the central latitude
<f>, around which the isobaric

channel winds, and trie angle (<?' <p)/2 is half of the difference in lati-

tude between the northern and the southern bends of the channel. The
latter may be called the angular amplitude of the isobar and is denoted by
ap ; thus

fA\ -
(4) <f>

= i ap =

With these notations introduced, (3) takes the form

(5) Kv - K'v* | 40 cos sin <rp .

This formula contains the horizontal curvatures of the air trajectories at

the southern and the northern bends of the isobaric channel. These

curvatures depend upon the shape of the streamlines and the speed of

propagation of the wave disturbance.

The horizontal curvature K of the path is related to the horizontal

curvature Ks of the streamline by the equation

7-23(3) j&
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where cty/dtf is the local rate of turning of the wind. At any identifiable

point in the moving pressure pattern the relative rate of turning of the

wind is given by

10 '

05(2) f=! +c 'v*-

Let the identifiable point be the intersection between the trough line (or

the wedge line) and one of the circles of latitude. The velocity c is then

a zonal vector, tangential to the path at the troughline, and so

cV^ = c(<ty/ds). Furthermore the wind is always zonal at the trough

line, so the relative turning of the wind, d#l//dt, is zero. Accordingly, the

local rate of turning of the wind at any point on the trough line or the

wedge line is

ty W= - c-~ = -cKS -

dt ds

d^/ds is by definition (see section 7-23) the horizontal curvature of the

streamline. Substituting this expression for the local turning into the

general formula 7-23(3), we have at the two bends

Let v be the mean zonal wind in the isobaric channel, and let At; be

the half difference of the speeds at the northern and southern bends.

Thus:

-
~

(7) v =
j-

> A0 --

Introducing these in (6), we find

Kv= Ks (v-c)-

K'v' - KS(V - c)

The difference between these expressions is

(8) Kv - K'v' - (Ka - K'a ) (v
-

c)
- (Ks + K's ) Av.

Substituting this in (5) and solving for v - c, we have finally

f*\ A > 40 cos y sin (TP Jgfl + JC&
(9) '~ e * KS -K'S +1^WS ^
The expression on the right has the dimensions of a velocity. It is

completely determined by the geographical location and geometry of the
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pattern, and by the difference of wind speeds at the northern and south-

ern bends of the isobar. We shall in the following refer to this quantity

as the critical speed and denote it by vc \ thus

MAN 4Q cos ? sin <rp Ks + K's
(10) vc f + - =7 Ai>.

AS AS AS AS

With this notation introduced, equation (9) takes the form

(11) v-c\vc .

'

i) c is the mean value of the zonal speed relative to the moving wave

pattern, and will be called more briefly the relative zonal wind.

The three conditions (11) are equivalent to the three conditions (2)

taken in the same order : Thus, if the relative zonal wind is supercritical,

that is, greater than the critical speed, the bottleneck in the current is at

the cyclonic bend of the isobaric channel, so the flow has longitudinal

convergence to the west of the trough and longitudinal divergence to the

east of the trough. If the relative zonal wind is critical, that is, equal to

the critical speed, the transport capacities are the same at the two bends,

so the longitudinal divergence is zero. If the relative zonal wind is sub-

critical, that is, less than the critical speed, the bottleneck in the current

is at the anticyclonic bend of the isobaric channel, so the flow has longi-

tudinal convergence to the east of the trough and longitudinal divergence

to the west of the trough.

The expression (10) for the critical speed becomes much simpler when

the curvature is numerically the same at the cyclonic and the anti-

cyclonic bends, that is, when KS = -K's . The second term on the

right side of equation (10) is then equal to zero, and the critical speed is

, N 212 cos sin orp
(12) vc =

&s

So far no analytical expression has been specified for the streamlines or

the isobars. The only restriction in the choice of isobaric pattern pre-

scribes that the isobars should be symmetrical with respect to the north-

south trough lines and wedge lines. The critical speed may be deter-

mined directly on the weather map from (10). If the curvatures at the

two bends are numerically equal, we may use formula (12). This for-

mula may be simplified still further when the streamlines are assumed to

be sine curves.

10-11. Critical speed in sinusoidal waves. In order to treat the

streamlines as simple sine curves, it is necessary to consider the surface

of the earth as flat and the latitude circles as straight parallel lines in the
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region between the two bends. A sinusoidal streamline can then be

drawn winding between the latitudes <p and ^', as shown in fig. 10*11.

In a standard system of coordinates with the origin at the point where

the streamline intersects the central latitude at the time t = 0, this

streamline has the equation

(1) y = AS sin k(x- ct).

FIG. 10-11. Sinusoidal streamline.

Here A $ is the amplitude and c is the speed of the wave. If L$ is the

wave length, k = 2ir/Ls is called the wave number and represents the

number of waves in the linear interval of 2ir length units.

If the latitudinal amplitude of the streamline is denoted by 0-5, the

linear amplitude A s on the horizontal plane is defined by projection as:

(2) AS = a tan

The linear wave length L$ can be expressed by the angular wave length

of longitude X# as follows:

cos

The angular wave length defines an angular wave number n

which gives the number of waves along the total circumference of the

latitude circle. The relation between the linear wave number k and the

angular wave number n is

(3)

2*

Ls

2-ir n

\sa cos q> a cos

The curvature of the streamline is by definition the angular turn of its

tangent per unit arc length along the streamline; thus

(4) Ks -
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If
\f/

is the angle between the tangent and the x axis, then

by
tan v =

dx

Differentiating this formula with respect to the arc length 5, we have

,
cos

2
^ 65

At the southern and northern bends, where the streamline is parallel to

the x axis, cos
2
^ = 1 and 65 = dx. Therefore from (4) and (5) we have

When (1) is differentiated twice with respect to #, we find for the curva-

ture of a sinusoidal streamline at the two bends

(6) Ks = -k2A s sin k(x - a) - k2A 8 .

In the last expression on the right the positive sign should be used at the

southern bend and the negative sign at the northern bend.

By substituting in (6) the values for ^4^ from (2) and for k from (3),

the curvature at the southern bend becomes

n2 tan <TS

Ks --
g
--

a cos

When this expression for Kg is introduced in 1(MO(12), we find for the

critical speed in a sinusoidal flow pattern the expression

212 a cos
3

<p sin <rp
(7) vc o

n2
tan

This formula was derived by Rossby (1939) from the principle of con-

servation of vorticity (see 12-05). It will follow from (7) and 12-05(12)

that the amplitude factor sin o-^/tan ap is equal to one. This would

indicate that the streamline amplitude is slightly larger than the isobar

amplitude. However, in section 12-06 it will be proved that the two

amplitudes are equal at the level of zero longitudinal divergence. This

apparent error in the formula (7) comes from the fact that it has been

derived by combining spherical and plane methods. The basic formula

10-10(12) is exact on a spherical level for a wave-shaped isobar with the

same streamline curvature at the northern and the southern bends.

This formula cannot be specialized to a curve in a
"
plane level

"
with-

out causing a slight degree of inconsistency.

The critical speed in a sinusoidal flow pattern is thus a function of the

latitude and the angular wave number. The critical speed is large for
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long waves in low latitude, and small for short waves in high latitude.

Some values of the critical speed, as computed from (7), are given in

table 10-11.

TABLE 10-11

ve = (2flacos
3
^>)/w

2
(M s""

1
) TABULATED

For long waves it seems unwarranted to consider the earth as flat and

to neglect the curvature of the latitude circles. No detailed discussion

of this question will be given here. It may suffice to mention that

waves spanning over one-half to one-third of the circumference of the

earth must be treated by spherical methods. Practical synoptic cases

are more likely to deal with wave numbers around n = 6 or more (wave

lengths 60 of longitude or less), and in such cases the difference between

the flat and the spherical treatment seems to be insignificant.

10*12. Transversal divergence in wave-shaped isobar patterns. We
now turn our attention to that part of the horizontal divergence which

is caused by the overflow of mass from the one isobaric channel to the

other, i.e., the transversal divergence. Fig. 10-12 shows the same ideal-

ized pressure pattern which was discussed in section 10-10. Aqualitative

estimate of the transversal divergence in this pressure pattern is obtained

by considering the inflowand outflow of mass across the northern straight

isobar p = po 4 (cb), and across the southern straight isobar p pQ .

Suppose for a moment that the isobar pattern in fig. 10-12 is station-

ary. Particles at the northern edge of the pattern will then have their

maximum speed while passing the longitudes of the wedges and minimum

speed while passing the longitudes of the troughs. In order to change

speed in that rhythm the particle must have a component toward high

pressure while it slows down, i.e., from the wedge to the trough (see

section 7-15). And it must have a component toward low pressure

while it speeds up, i.e., from the trough to the wedge. The flow at the

northern edge must therefore be as qualitatively indicated by the stream-
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line (dotted line) in the diagram. The analogous analysis along the

southern straight isobar leads to a streamline with opposite phase.

There is thus outflow from the region east of the trough, both across the

northern and the southern edge of the isobar pattern, and therefore

transversal divergence from this region. And there is transversal con-

vergence into the region west of the trough.

N

P.- 3

Po-2
W

Po-1

Po-4

Po-2
E

Po-1

FIG. 10-12. Flow pattern for the isobar pattern in fig. 10-lOa.

If the pressure system is moving, the same rule holds, provided that

the system does not move eastward faster than the mean speed of the air,

i.e., provided that the relative zonal wind is from the west. If the pres-

sure system moves eastward with the mean zonal speed, the relative

zonal wind is zero, arid the transversal divergence of the flow pattern is

zero. If the pressure system moves eastward faster than the air, the

relative zonal wind is from the east; the particles at the northern edge
of the frame slow down east of the trough (while being overtaken by the

trough), and they speed up to the west of the trough (while being over-

taken by the wedge). The streamlines at the northern and southern

edges of the frame will then have the opposite phase from those shown in

fig. 1042 and consequently give transversal convergence into the region

east of the trough and transversal divergence from the region west of it.

These rules may be summarized as follows: The transversal divergence

and the relative zonal wind have the same sign in the region to the east of the

trough, and have opposite signs in the region to the west of the trough.

The above rule only gives the sign of the transversal divergence. The
mean divergence over a given area is obtained by dividing the total out-

flow from that area by the area. The areas of outflow and inflow in the

wave pattern, fig. 10-12, are proportional to the meridional distance

between the northern and southern straight isobars. The transversal
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divergence is therefore proportional to the reciprocal of the width of the

pattern and is zero for a pattern of infinite lateral extent. All the isobars

then have the same shape, and the longitudinal divergence is the total

horizontal divergence.

10-13. Total horizontal divergence associated with wave-shaped
isobar patterns. The total horizontal divergence is the sum of the

longitudinal and the transversal divergence. The following three alter-

natives may occur :

1. v c > vc : The relative zonal wind is from the west and is greater

than the critical speed ;
the longitudinal and the transversal divergence

are both positive to the east of the trough and are both negative to the

west of the trough.

2. v c < 0: The relative zonal wind is from the east; the longi-

tudinal and the transversal divergence are both negative to the east of

the trough and are both positive to the west of it. In both cases 1 and 2

the two parts of the horizontal divergence have the same sign at any point

of the flow pattern.

3. vc > v c > 0: The relative zonal wind is from the west and is

smaller than the critical speed; the longitudinal divergence is negative to

the east of the trough and positive to the west of the trough ; the trans-

versal divergence is positive to the east of the trough and negative to the

west of it. The two parts of the horizontal divergence then counteract

each other throughout the field. For a certain value of the relative

zonal wind less than the critical speed but larger than zero the longi-

tudinal divergence is balanced by transversal convergence and the total

horizontal divergence is zero.

The distribution with height of the horizontal divergence in an actual

synoptic situation can be estimated with the aid of the above rules for

longitudinal and transversal divergence. In general, the strength of the

zonal circulation and hence also of the relative zonal circulation increases

with height. In the region to the east of every trough and to the west of

every wedge there is longitudinal divergence above the level where the

relative zonal wind has the critical speed, and there is longitudinal con-

vergence below that level. In the same region there is transversal

divergence above the level where the relative zonal wind is zero, and

transversal convergence below that level. Between the level of zero

longitudinal divergence and the level of zero transversal divergence the

two effects will have opposite signs. At some intermediate level the

longitudinal and the transversal divergence are equal and opposite, and

the total horizontal divergence is zero.

The distribution both of the longitudinal and the transversal diver-



Section 10-13 274

gence depends upon the relative zonal wind and hence upon the speed

of the wave. The speed of the wave prescribes the pressure tendency.

The pressure tendency is, from the tendency equation 10-07(3), a direct

consequence of the distribution of horizontal divergence. Thus the

horizontal divergence, the speed of the wave, and the pressure tendency
are interdependent : The wave will travel with such a speed that the pressure

tendencies arising from the displacement of the pressure pattern are in

accordance with the field of horizontal divergence.

The three-dimensional structure of the wave disturbance may be

analyzed from this point of view. The conditions are fundamentally

different in a barotropic and in a baroclinic current. Only the rather

unreal barotropic case is as yet accessible to investigation by rigorous

dynamical analysis. In order to gain the greatest possible experience

we shall first examine the barotropic wave. Later we shall proceed to

the qualitative analysis of the much more complicated conditions in the

real atmospheric waves, which are always baroclinic.

10-14. Barotropic waves in a westerly current. To simplify matters

we shall assume that the wave pattern has infinite lateral extent, so that

all isobars have the same shape. The transversal divergence is then

always zero, and the total horizontal divergence is equal to the longi-

tudinal divergence.

In a barotropic current the isothermal surfaces coincide with the iso-

baric surfaces. The dynamic thickness of each isobaric layer is therefore

constant throughout. The slope of all isobaric surfaces is then the same

along any given vertical, and the geostrophic wind has no vertical shear

(see section 8-03). The strength of the zonal circulation and the shape
of the streamline pattern of thewave are therefore the same at every level.

The pressure tendency at the ground indicates whether the wave

moves or not. If we assume that the surface of the earth is flat this

tendency is

uu

w\ _ f
,5//o J

10-07(4) (^j --
/ V/f(pv)5.

\O//o J

The sign of the mass divergence is determined from the three conditions

10-10(11) v-c^vc .

The mean zonal wind v has the same value at all levels in a barotropic

current; the speed c of the wave is characteristic of the entire wave and

therefore independent of height; the critical speed vc is determined by the

wave length and so is also independent of height. Thus the mass diver-
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gence has the same sign throughout any vertical column. Fig. 10-14

illustrates the barotropic wave for each of the three conditions 10-10(11).
The diagram to the left represents a wave for which the relative zonal

wind is supercritical,

(1) v-c>vc .

The bottleneck in the current will then be at the cyclonic bend of every
isobaric channel. Air is accumulated at all levels to the west of the

trough, and is depleted at all levels to the east of the trough. At the

v-c > v

+ 00 +

FIG. 10-14. Propagation of barotropic wave.

ground the pressure is therefore rising to the west of the trough and fall-

ing to the east of it. So the wave moves to the east (c> 0), and hence

from (1) v > vc .

The center diagram represents a wave for which the relative zonal

wind is critical,

(2) v - c = vc .

The transport capacities are the same at the two bends of each isobaric

channel. The entire flow is non-diverging and the pressure tendency

at the ground is zero. So the wave is stationary (c = 0), and hence

from (2) v = vc .

The diagram to the right represents a wave for which the relative

zonal wind is subcritical,

(3) v-c< vc .
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The bottleneck in the current will then be at the anticyclonic bend of

every isobaric channel. Air is accumulated at all levels to the east of

the trough and is depleted at all levels to the west of the trough. At the

ground the pressure is therefore rising to the east of the trough and fall-

ing to the west of it. So the wave moves to the west (c < 0), and hence

from (3) v < vc .

The above results may be summarized as follows:

(4) v - c | vc ,

(5) c 1 0,

(6) o | vc .

We have shown that the three conditions (4) read from top to bottom

imply the conditions (5) taken in the same order. The conditions (4)

and (5) combined give the conditions (6) . It is readily seen that any one

of (4), (5), (6) implies the other two. Thus from (5, 6) the barotropic

wave moves eastward when the mean zonal wind is supercritical; it is

stationary when the mean zonal wind is critical; it moves westward when the

mean zonal wind is subcrilical.

For waves of finite width the transversal divergence is different from

zero. The only reformulation of the above rules is, then, that the

stationary, non-diverging wave occurs for a smaller value of the zonal

wind than the critical speed.

The tendency at upper levels is given by the complete tendency

equation

10-07(3) ^ - -

JV/,-Gv)8*
+(.)*

We have shown that the divergence has the same sign throughout any

given atmospheric column, so the divergence term has the greatest magni-
tude at the ground and decreases with height. The vertical motion

term is zero at the ground and increases in magnitude with height. In

the special case of a homogeneous current (p independent of p) the pres-

sure tendency would be the same at all levels. Here the decreasing con-

tribution from the divergence term with height is exactly balanced by
the increasing contribution from the vertical motion term. In the more

general barotropic case where the density decreases with height, both

the pressure amplitude and the total tendency decrease upward. In this

case the contribution from the divergence term must decrease more

rapidly with height than the contribution from the vertical motion term

increases.

The zero isallobars at all levels coincide with the trough lines and the
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wedge lines. This means that the amplitude of the pressure wave does

not change with time; in other words, the barotropic wave is a stable

wave, which moves without any changes in its internal structure. This

result is in complete accord with classical wave theory. The only

destabilizing factor, shear, is absent in the barotropic wave, so the wave
must be stable.

10*15. The relative streamlines. We shall now examine waves in a

baroclinic westerly current. In a barotropic current the isotherms coin-

cide with the isobars at all levels, but in a baroclinic current they will

generally intersect the isobars. Therefore the structure of the wave will

be different from level to level, and will also change with time.

The internal structure of a ^^
moving wave is deformed by
the relative wind, that is, the

wind as seen by an observer who v c>

moves along with the wave.

The streamlines of this relative

wind are the relative stream-

lines. Let v be the wind and c

the velocity of propagation of ^ ^^
Al_ , * i ,- FIG. 10-15a. Streamline and relative
the wave. Ihe wind relative

streamline.
to the wave is then v - c. The
relative streamlines are the streamlines of the velocity field V c. See

fig. 10-15a.

At the trough lines and the wedge lines of the streamline pattern both

the real wind and the relative wind are zonal. These meridians are

therefore also the trough or wedge lines of the relative streamline pattern.

So both patterns have the same wave length, but their amplitudes are in

general different. The streamlines are by definition everywhere tan-

gential to the velocity. Let dy$ and 8yR be the respective meridional

increments on the streamline and on the relative streamline, correspond-

ing to the same zonal increment 8x. The differential equations for the

streamlines and the relative streamlines are then respectively

dx

8x vx - c

Taking the ratio of these equations, we have
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The ratio on the right side in (1) is constant in the special case where,

throughout the level, the zonal wind component vx has the constant

value v of the actual wind at the trough line and at the wedge line.

Equation (1) may then be integrated. If the integration is taken from
the inflection point (the central latitude) to the wedge line, we find

(2) 4*.Llf.
AR V

When the wind speed v at the trough line is different from the wind

speed v' at the wedge line, the ratio between the two amplitudes is not so

simple as indicated by (2). However, if the difference v
f - v is small

compared to the mean speed v, it can be shown that the amplitude ratio

has the approximate value

(3)
As
AR

v-c

Thus, in a wave where the variation in the zonal wind is not too large, the

ratio of the streamline amplitude to the relative streamline amplitude
is the same as the ratio of the mean relative zonal wind to the mean zonal

wind.

Fig. 10-156 shows the streamline (full line) and the relative streamline

(broken line) for three different values of the speed. In all three cases

the streamline is the same. The relative streamline is obtained from

the formula (3), or directly by inspec-

tion of the velocity vector diagrams in

the figure. In the upper diagram the

wave is stationary (c = 0), and the

relative streamline coincides with the

streamline, AS = AR. In the middle

diagram the wave moves toward the

right with a slower speed than the

air. The relative streamline is here

in phase with the streamline, but

the amplitudes differ in the sense

AS < AR. In the lower diagram the

wave moves to the right with a greater

speed than the air. In this case the

relative zonal wind is negative, so the amplitudes A s and AR have

opposite signs. The relative streamline is 180 out of phase with the

streamline.

A wave moving without change of shape appears stationary to an ob-

server moving along with the wave. For such a wave the relative

FIG. 10-156.
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streamlines are also the relative paths. The relative streamlines thus

indicate the true meridional displacements of the air particles.

10*16. Stable baroclinic waves. A wave whose shape and internal

structure do not change during its propagation will be called stable.

We shall investigate whether stable waves can exist in a baroclinic

current, and study the three-dimensional structure of such waves.

We shall assume that the motion is nearly horizontal and that the

temperature of individual particles is conserved. If the relative stream-

lines were to intersect the isotherms, the temperature field relative to

the moving wave would be deformed and the wave would not be stable.

Therefore in a stable baroclinic wave the relative streamlines must coincide

with the isotherms.

This rule implies that the isotherms have the same shape at all levels

if the wind is assumed to be geostrophic. By the thermal wind equation,

8*05(1), the shear of the geostrophic wind is directed along the horizontal

isotherms. Since, now, a stable wave moves with the same speed at all

levels, the shear of the wind is also the shear of the relative wind. So

the shear of the relative wind at any level is directed along the isotherms

and, hence, along the relative streamlines at that level. Thus the rela-

tive wind does not turn with height, so the relative streamlines have the

same shape at all levels.

This property of the relative streamlines, combined with the relation

between the relative and the real streamlines, makes it possible to pre-

dict the whole three-dimensional structure of a stable baroclinic wave.

The main features of such a wave are shown schematically in fig. 10-16.

The central part of the diagram represents horizontal maps at four

selected levels, with one streamline and one relative streamline drawn in

each map. The relative streamlines (broken lines) have been given the

same shape at all levels. The wave is assumed to move toward the east.

The speed of the wave is the same at all levels. But on account of the

baroclinic temperature field (warm to the south and cold to the north)

the zonal wind increases with increasing height, as indicated in the left

part of the diagram. At some level the speed of the zonal current must

be equal to the speed of the wave. At that level the relative zonal wind

is zero; from 10-15(3), AS = 0, so the streamlines are straight. Below

that level the air is being overtaken by the wave and the streamlines are

180 out of phase with the relative streamlines. Their amplitude
increases with increasing depth below the level of straight streamlines.

Above the level of straight streamlines the air overtakes the wave; the

streamlines are in phase with the relative streamlines; and AS < AR.
When the streamlines are identified as isobars, it is readily seen that
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the change of the pressure distribution from level to level is qualitatively

in accord with the hydrostatic equation. The warm trough at low levels

vanishes with height and is surmounted by a warm pressure wedge, whose

isobar amplitude increases with height. Correspondingly, the cold

pressure wedge at low levels vanishes with height, and is surmounted by
a cold trough whose isobar amplitude increases with height.

We can now estimate the transversal, longitudinal, and total mass

divergence in the various parts of the wave. This estimate, as applied to

the column AA ,
is shown qualitatively in the three graphs to the right in

fig. 10-16.

The transversal divergence is zero at the level where the relative zonal

wind is zero (v
= c). Above that level the relative zonal wind is posi-

tive, so there is transversal divergence to the east of the trough and trans-

Trans Long Total

\ X

FIG. 10-16. Distribution of divergence in a stable baroclinic wave.

versal convergence to the west of it. Below the level where v=* c, the

relative zonal wind is negative, so there is transversal convergence to the

east of the trough and transversal divergence to the west of it. There-

fore the column AA has transversal divergence both above and below

the level where v = c.

The longitudinal divergence is zero at the level where the relative

zonal wind is critical (v
- c = vc ). Above that level the relative zonal

wind is supercritical, and the bottleneck is at the cyclonic bend. So

there is longitudinal divergence to the east of the trough and longi-

tudinal convergence to the west of it. Below the level where v c - vc

the relative zonal wind is subcritical, and the bottleneck is at the anti-

cyclonic bend. So there is longitudinal convergence to the east of the



281 Section 10-17

trough and longitudinal divergence to the west of it. Therefore the

column AA has longitudinal divergence above the level where v - c = vc

and also below the level where v = c. Between these levels the column
AA has longitudinal convergence, for the relative wind is subcritical,

and the column is to the east of the trough. .

The total horizontal divergence is obtained by addition of the trans-

versal and longitudinal parts. For the column AA it is positive at all

levels except in a layer whose base is the level where v = c, and whose

top is below the level where v - c = ve .

If the level is interpreted as a flat part of the earth's surface, it seems

rather likely that divergence may dominate at AA , and convergence at

BB. This would mean pressure fall at the base of column AA and

pressure rise at the base of BB. This again would make the pressure

wave at the ground move westward, contrary to our initial assumption.
The only place and time that a trough like that shown in fig. 1046
could move eastward would then be while the trough is over a mountain

range. The downward velocity on the lee side of the mountain could

then be strong enough to overcompensate the effect of convergence in the

column BB above and produce pressure fall ahead of the trough. Like-

wise the upslope wind on the west side of the mountain could overcom-

pensate the effect of the divergence in column AA and produce pressure

rise behind the trough.

If now the wave pattern moves eastward, columns like AA with a pre-

ponderance of divergence will arrive over the lee side of the mountain.

The influence of downward motion and divergence will add up in the

tendency equation, and a strong pressure fall at the ground will result,

which will continue on the lee side till columns with a preponderance of

convergence arrive after the passage of the upper-level trough. This is

equivalent to a deepening of the low-level trough over the lee slope of the

mountain and a belated arrival of the following high-pressure wedge to

the same region.

10*17. The first formation of the baroclinic wave. We are now

ready to take up the fundamental problem in J. Bjerknes' theory of

pressure changes. That problem, as mentioned in section 10-06, deals

with the study of the mechanism of pressure changes in the moving

cyclones. In what follows we shall discuss the incipient wave in the

baroclinic westerly current, characterized by the usual decrease of tem-

perature along the isobaric layers towards the pole. To simplify the

discussion we shall assume that the wave disturbance has infinite lateral

extent with zero transversal divergence. We shall see later that the

results are in principle the same for waves with finite width.
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The fields of longitudinal and transversal divergence have the zero

lines along the troughs and along the wedges. Consequently, horizontal

divergence does not explain the first formation and intensification of the

wave disturbance. The only alternative is vertical motion, downward
where the trough is formed and upward where the wedge is formed.

This would explain why the wave pattern of upper isobars always forms

with a definite phase lag, relative to the frontal wave disturbances in the

lower atmosphere. The upward motion over the warm front surface

creates the incipient upper wedge, and the downward motion behind the

center at the ground creates the incipient upper trough.

The complete description of that process in terms of the equations of

dynamics and thermodynamics is not yet within reach, so we must con-

fine our treatment to qualitative reasoning. Let us consider two limit-

ing cases:

1. The influence of the vertical displacement on the pressure change
at the level is completely compensated by divergence or convergence
in the air column above, so that everywhere

**

This is the usual assumption when the vertical stability is examined.

2. The influence of the vertical displacement on the pressure change
at the level is not at all compensated by divergence or convergence in

the air column above, so that everywhere

The real case is likely to lie somewhere between (1) and (2) and will

depend on the character of the initial undisturbed flow and the intensity

and spatial extent of the vertical disturbance.

Fig. 10-17a illustrates case (1). The upper part represents a vertical

west-east cross section through the center of the young frontal wave.

The intersection with the frontal surface appears in the diagram as an

approximate sine curve tangent to the ground. In the reference level

the isobars were initially straight and parallel to the path of the incipient

wave, so that the line 00 on the vertical cross section was an isobar in the

initial stage. According to equation (1) the isobar p = pQ stays in the

position <t><t> also after the vertical motion has started. The isotherms

in the reference level were initially straight and parallel to the isobars,

so that 00 in the vertical cross section also was an initial isotherm. The
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vertical displacement A</> changes the temperature at the constant level <t>

by

(3) Ar=

where yd is the dry adiabatic lapse rate, and 7 the actual lapse rate.

The new isotherm position is consequently raised in the region of descent

and lowered in the region of ascent.

Front

FIG. 10-17a. Vertical displacements with complete compensation by divergence in

the air column above.

In the initial stage the isobaric surfaces slope gently down toward the

pole and the isothermal surfaces slope the same way at a steeper angle.

The isobaric surfaces stay fixed also in the perturbed state. However,
the isothermal surfaces move up in the region of descent and down in the

region of ascent, thereby maintaining their meridional slope. Conse-

quently, the horizontal map in the reference level </> (lower part of

fig. 10-1 la) retains its straight west-east isobars also in the perturbed
state. The isotherm T = 7"o, at first straight west-east and coinciding

with the isobar p = po, becomes sinusoidal in the new state. Isotherms

to the north and south of T = T behave similarly. They define a warm

tongue extending northward in the region of descent, and cold tongue

extending southwards in the region of ascent.

The case (2) is illustrated in fig. l(M7fr. Since no horizontal diver-

gence is present, no internal changes occur in the vertical air columns.

They move up and down as solid columns. The vertical cross section

(upper part of the diagram) shows how isobars and isotherms alike are

lifted and lowered just as much as the air particles themselves. The
lower part shows how sinusoidal isobars and isotherms result on the hori-

zontal map in the reference level. The cold tongue coincides with the
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pressure trough and the warm tongue with the pressure wedge. The

north-south amplitude of the isobars is considerably greater than that of

the isotherms, the reason being that the isobaric surfaces have a much
smaller meridional slope than the isothermal surfaces.

Figs. 10'17a and b show only the initial effect of the lowering and rais-

ing of two adjacent portions of the baroclinic upper westerly current.

After the upper wave has formed and the isobars and isotherms intersect

FIG. 10-176. Vertical displacements without any compensation by divergence in

the air column above.

on the upper-level map, the horizontal advection starts to move the iso-

therms. This process is shown in fig. 10-1 7c. The initial state has been

selected as a compromise between the two limiting cases represented by

figs. l(M7a and b. The initial isotherm in 10-1 7c has been made straight

west-east, as a compromise between the sinusoidal isotherms with oppo-

site phase in figs. 1017a and b. This initial straight isotherm is num-

bered 0, and the subsequent positions reached by the same isotherm

under the influence of horizontal advection relative to the wave are

numbered 1, 2, , 6. We shall stipulate that the air moves eastward

faster than the wave (the usual case in the upper air). The relative

streamlines are then in phase with the isobars but have greater north-

south amplitude (see fig. 10-155). The result of the advection is obvi-

ously the formation of a warm tongue in the region of southerly wind

components and a cold tongue in the region of northerly wind compo-
nents. If the advection is allowed to continue undisturbed while the

particles move one-quarter of the wave length, the warm tongue would
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arrive at coincidence with the pressure wedge, and attain a north-south

amplitude twice that of the relative streamlines. However, extrapola-
tion of the isotherm advection so far ahead has little practical value
because the isobars also change during the process.

FIG. 10-1 7c. Horizontal advection of an initially straight isotherm.

Let us consider an early stage in the isotherm advection in fig. 10-17c,
and look for the change to be expected in the isobar pattern. The lower

non- divergence

Conv

Div

v -*

Isobar

Isotherm

FIG. 10-17d. Structure of a young unstable wave in a baroclinic westerly current.

part of fig. 10-17d shows the horizontal map at the level </>. The tem-

perature and pressure waves are out of phase with each other, so the

crests and troughs of the pressure wave must tilt, as shown in the upper
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part of the figure. This upper diagram, representing the vertical cross

section along the path of the wave, contains three successive isobars.

The vertical distance between them is greatest in the warm tongue.

The pressure crest therefore tilts westward (toward warm) with in-

creasing height. And the pressure trough also tilts westward (toward

cold) with height.

The variation of the zonal wind with height in the warm air immedi-

ately south of the polar front is shown in the right-hand diagram of

fig. 10- 1 Td. The zonal wind increases with height in the troposphere to a

maximum value at the tropopause and decreases from there up. The
wave is assumed to move with a slightly slower speed than the warm air

at the surface. This choice is plausible, since the surface air always over-

takes the wave and ascends over the warm front. The relative zonal

wind then increases from a small positive value at the ground to a maxi-

mum value at the tropopause. Since the transversal divergence is zero,

the flow is non-diverging at the level where the relative zonal wind is

critical. The horizontal divergence ahead of the trough is positive

above the level of non-divergence and negative below that level. In a

westerly current of given strength the height of the level of non-diver-

gence depends on the wave length. For short waves the level of non-

divergence is low. As the wave length increases, the level of non-

divergence is raised to greater heights until the tropopause is reached.

For still longer waves no level of non-divergence exists.

Let us first examine a short wave whose level of non-divergence is

below the reference level </>, as indicated in the figure. Consider a verti-

cal column of air extending upward from the reference level at the posi-

tion of the trough line in that level. The pressure change at the base of

this column indicates whether the trough is deepening or filling on the

reference level map. First, the trough would deepen if the air continues

to descend at the base of the column after the initial wave has developed.

But, even if that downward motion has ceased, deepening would still

continue if the integral of horizontal divergence in the column above the

reference level shows depletion of air. Because of the westward tilt of

the trough, the vertical column is east of the trough at all levels above the

reference level. So the entire column has horizontal divergence, and

the pressure tendency at its base is negative. Similar reasoning for the

crest of the pressure profile shows that the pressure wedge on the map in

the reference level must be building up, even though the upward motion

which started the wedge may have ceased. Thus, a baroclinic westerly

current is dynamically unstable for waves whose level of non-divergence is

sufficiently low, and tends to make these waves grow strong, however weak

they may be at the start.
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Let us next consider long waves where no level of non-divergence
exists. The relative zonal wind at all levels is then subcritical, so the

flow has horizontal convergence at all levels ahead of the trough. The

long waves therefore would move westward. However, such waves

would have no opportunity to develop. Since the trough and the wedge
would tilt westward, the pressure would rise in the trough and fall on the

wedge at all levels, and the initial disturbance would be damped out.

Therefore the baroclinic westerly current is stable for these long waves.

The waves which develop in the westerlies above the polar front

always have finite lateral width and, consequently, have transversal

divergence. The only way in which transversal divergence can influ-

ence the above result is to make the total horizontal divergence zero for a

somewhat smaller value of the relative wind than the critical speed.

Other things being equal, the transversal divergence therefore lowers the

level of non-divergence, and makes the waves of finite width more

unstable than the infinitely wide waves.

The same kind of dynamic instability exists whenever the temperature
in a given isobaric surface decreases toward the left (right in the southern

hemisphere) across the current, or, as it also may be expressed, whenever

the speed of the current increases with height. The principal region of

dynamical instability is thus the temperate region of westerlies. These

westerlies are dynamically more unstable in winter than in summer.

This explains, in a general way, the storminess in middle latitudes and
its seasonal cycle.

If the direction of the horizontal temperature gradient is reversed in

the preceding discussion, we obtain a system where the troughs and

wedges tilt eastward with height. Any disturbance in this system will

therefore be damped out. In the stratosphere of the temperate zone

the westerlies decrease with height. So independently intensifying

waves seem excluded in this region. In winter at latitudes greater than

60 the stratosphere temperature decreases toward the pole, so the

westerlies must increase with height. In this region and season active

wave formations may have their birth in the stratosphere and grow
because of dynamic instability.

Easterly currents are dynamically unstable only when they flow

between a warm high and a colder low. This involves a reversal of the

normal meridional temperature gradient, and is hence very rare in high

latitudes. However, such a reversal is normal in summer in the low

latitudes between the thermal and the geographical equators. So the

equatorial easterlies in summer (especially late summer) exhibit some

dynamical instability. This is probably significant for the formation of

tropical cyclones.
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10*18. Horizontal divergence in closed cyclonic isobar patterns. The

layers from the ground up to roughly 3 km elevation show more compli-

cated pressure patterns than the higher layers. In the lower layers

closed isobars around centers of high and low pressure frequently

occur. Occasionally such closed pressure patterns also extend to layers

well above 3 km.

The simplest closed low (or high) for theoretical treatment is the one

with the center at the pole, surrounded by circular zonal isobars coincid-

ing with circles of latitude. Any ring-shaped channel between two

neighboring isobars will then follow a constant latitude and will therefore

have the same transport capacity throughout. So there is no region of

accumulation or depletion of air and no pressure changes will occur. The
circular vortex centered at the pole is thus a possible steady state. In

fact it also exists in the atmosphere permanently. The upper westerlies

of the temperate latitudes are part of the huge cyclonic vortex centered

at the pole. (At the ground the polar low is concealed, since the cold

polar air contributes enough surplus weight in the lower layers to make
the minimum of pressure disappear.)

If a low with concentric circular isobars is centered at some latitude

away from the pole, the isobaric channels surrounding the center will not

have equal transport capacity all around. Let us compare the transport

capacity at the northernmost and southernmost points of the ring-

shaped isobaric channel (fig. 10-18a). On account of the symmetry
these points are places of maximum or minimum speed, where the wind is

gradient wind. Assume for simplicity that the density is the same, and

hence that the horizontal pressure force has the same value at the two

points. When the normal component equation, 7-13(5), is differentiated

with respect to latitude, keeping the curvature and the pressure force

constant, we find

bv vti cos <pMA __ _ .

&<p Kv + 12 sin <p

This shows that the gradient wind increases with decreasing latitude.

The southernmost point of the ring-shaped isobaric channel has the

maximum speed, and the northernmost point has the minimum speed.

Since the isobaric channel has the same width at the two bends, the

transport capacity is directly proportional to the wind speed. So the

bottleneck of the channel is at the northernmost point. The whole

western half of the vortex then exports more air to the eastern half than

it receives in return. Air will be depleted from the western half of the

vortex and accumulated in the eastern half. If the vortex extends with

a vertical axis all the way up through the atmosphere, the pressure would
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fall in its western part and rise in the eastern part. The low and the

associated vortex would move westward. The stationary circular vortex

reaching to the top of the atmosphere is thus impossible unless it is

centered over the pole.

FIG. 10-18a. Concentric circular iso-

baric channel.

<T

FIG. 10-186. Eccentric circular iso-

baric channel.

The tendency for westward displacement of closed lows is counter-

acted if the pressure pattern is made eccentric, as shown in fig. 1O18&.

The isobaric channel is narrow in the south and wide in the north.

According to equation 10-10(1) the transport capacity, dF=pv8ndz,
will be equal at the southernmost and northernmost points if

(2) Kv + 212 sin <p
= K'V' + 2ft sin <p.

If the central latitude y and angular amplitude <rp are introduced from

10-10(4) and the subscript (p) is dropped, (2) becomes

(3) Kv - Kf
v' = 412 cos sin cr.

If the circular pressure pattern moves along the west-east direction,

the relation between the curvature of the path and the curvature of the

streamline at the southernmost point and the northernmost point of the

isobaric channel is given by

Kv = KS(V c),

10-10(6)
K'v' - K's (v' + c).

The circular isobar has the angular radius of curvature a and hence, in

analogy to 7-07(4), its horizontal curvature is Kp
= I/ (a tan a). Since,

now, the streamlines coincide very nearly with the isobars, we have

approximately that K$ = K's *= Kp
= I/ (a tan a), and consequently

Kv - K'v' - Ks (v
- v' - 2c

a tan <r

When this expression is substituted in (3), we get the condition for equal
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transport capacity at the southernmost and the northernmost points in a

circular isobaric channel :

(4) v v' 2c = 4 8 a cos <p sin a tan a.

An isobaric pattern which in all isobaric channels satisfies equation (4)

will be said to have the critical eccentricity, which makes the eastern and

the western half of the vortex import equal amounts of air from each

other during any given time. "We see from (4) that, approximately,

v - v - 2c = 4 ft a<r
2
cos .

The values of v v
f

2c in (4) are given in table 10-18 for values of a

TABLE 10-18

(v t/ 2c) IN M s" 1 FOR CRITICAL ECCENTRICITY

up to 20. The table shows what velocity difference there must be

between the southernmost and the northernmost point of a stationary

ring-shaped isobaric channel in order that the channel shall have equal

transport capacities at the two points. The value of v v
f

2c for the

critical eccentricity increases with increasing distance from the pole

and increasing radius of the channel. A stationary low with exactly the

critical eccentricity for all isobaric channels would have almost concen-

tric isobars near the center and increasingly eccentric isobars toward the

outskirts. Isobaric channels of 20 radius require impossible winds to

have the critical eccentricity.

If the low moves toward the east, the values in the table must be aug-

mented by twice the speed of the low to give the velocity difference v - v'

needed for critical eccentricity. If the low moves westward the tabu-

lated values must be diminished by the same amount. So the critical

eccentricity is accentuated if the low moves toward the east and less

pronounced if the low moves toward the west.
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The actual eccentricity of closed flow patterns on the map, as

expressed by the difference in wind velocity at the southernmost and

northernmost points of individual isobaric channels, may be compared
with the tabulated values for the critical eccentricity. It will generally

be found that closed circulations have subcritical eccentricity. That is,

they do not have enough eccentricity to make the eastern half of the

vortex export as much air to the western half as it receives in return.

The total accumulation or depletion of air in a half-vortex depends not

only on the exchange of air with the other half of the vortex but also on

the inflow or outflow across the limiting outer isobar. In an eccentric

vortex, like that in fig. 10-18&, the flow of air from the velocity maximum
in the south to the velocity minimum in the north would be associated

with a slight component of motion across the isobar towards high pres-

sure. This represents a depletion of air from the eastern half of the

vortex. Corresponding reasoning for the western half shows an inflow

across the outer isobar and accumulation of air in that part.

Thus eccentricity tends in two ways to deplete air from the eastern

half of the vortex, and accumulate air in the western half, and thereby
counteracts the latitude effect which makes the eastern half gain and the

western half lose air. The flow is actually non-diverging for slightly

subcritical eccentricity.

10*19. Closed cyclonic isobar patterns surmounted by wave-shaped

patterns. The above treatment of the cyclonic vortices in temperate
latitude tends to show that only those low-pressure patterns can move
eastward which have packed isobars to the south and open isobars to the

north of the center. The lower the latitude the greater the eccentricity

required. However, that result is valid only for cyclones which reach

with essentially the same closed isobaric patterns to the top of the

atmosphere. The usual cyclone of the temperate latitudes has closed

isobars only in the lowest 2 or 3 km of the atmosphere. Higher up it

appears only as a trough in the upper west-east trend of the isobars.

The treatment of such cyclones will show that, although a pattern of

packed isobars to the south and open isobars to the north of the center is

favorable for a rapid displacement eastward, such a pressure pattern is

by no means necessary for the eastward displacement of the ordinary

cyclone in temperate latitudes.

Fig. 10' 19 represents a schematic picture of the processes which

produce the pressure changes in the ordinary eastward moving

cyclone in temperate latitudes. It has been assumed that (v
-

t/) <
412 acr

2 cos + 2c. According to 10*18(4) this implies that the pressure

distribution around the closed center in the lower atmosphere is not
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sufficiently eccentric to cause a depletion of air in front of the center, and
an accumulation of air behind. In the layers with closed isobars we have
horizontal convergence in front of the cyclone and horizontal divergence
in the rear. Higher up, where the cyclone is represented by a trough in

the west-east isobars, there will, according to our earlier results, be hori-

zontal divergence in front of the trough and horizontal convergence
behind.

Upper level

isobars

Surface

isobars

Sinusoidal

isobars

Closed isobars

Friction layer

Propagation

FIG. 10-19. Closed cyclonic isobar pattern surmounted by wave-shaped pattern.

A column fixed in space at A (while the air is flowing through it) will

gain weight by the convergence in the lower layers and will lose weight

by the divergence in the upper layers. In order that there shall be a net

loss of weight of the whole column, more air must be removed in the

upper layers than accumulates through convergence in the lower layers.

The fall of pressure ahead of the cyclone depends on that.

A column fixed in space at B will gain some weight by the convergence
in the friction layer, but will normally lose more than that by the diver-

gence in the superjacent layers of closed isobars. Above the level where

the closed center disappears, column B will gain weight by the conver-
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gence prevailing behind the upper air trough. The net effect of the

changes in weight of column B should be positive, so as to give a rise in

pressure behind the moving cyclone. Again this demands that the

influence from the upper layers shall overcompensate the influence from

the lower layers.

Fig. 10-19 explains in a qualitative way how centers of low can have

falling pressure in front and rising pressure in the rear, although the

analysis of the horizontal flow in the low layers shows accumulation of

air in front of the center and depletion of air in the rear. The general
west-east drift of centers of low is thereby explained very much in accord-

ance with the old rule of thumb : The centers move along with the upper
current. We now have obtained the physical explanation for this rule:

The upper current provides for depletion of air in front of the center and

accumulation of air behind the center.

Actually there is a phase difference between the upper trough and the

cyclone center at the ground, the upper trough lagging a little. Because

of that phase lag upper air divergence takes place vertically above the

central area of the cyclone. If the upper air divergence at that place is

strong enough to overcompensate the convergence of air into the cyclone

center in the lower layers, there will be falling pressure at and around the

center. In that case the cyclone is deepening. This process of intensi-

fication evidently depends on the phase lag and the backward tilt of the

upper trough, which again (according to section 10*17) reverts to the

vertical shear as the primary cause for wave instability.

It is furthermore evident from fig. 10-19 that deepening is most likely

to occur if the pressure pattern changes from closed isobars to wave-

shaped isobars at a relatively low level. This is characteristic of young

cyclones. The first level to have closed isobars around a new cyclone is

the surface level. As the cyclone grows it develops closed isobars at

successively higher levels. The older the cyclone, the higher up will be

the level of transition from closed to wave-shaped isobars, and the more

the pressure changes will be influenced by the lower pattern of closed

isobars. Finally the influence of the lower pattern will cancel or over-

compensate that of the upper pattern, and the cyclone will stop or turn

slightly retrograde. This, too, is very well corroborated by nature.

Cyclones move fast eastward while they are young, but slow down when

they get old and deep, sometimes even retrograding a little toward the

west in their last phase.

It is interesting to note that the vortex in the surface layers, while

being forced along by the influence of the
"
upper current," counteracts

that displacement by piling up air in front. Thus if a vortex of given

eccentricity is forced to move to the east, 'that eccentricity becomes the
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more subcritical, the faster its eastward speed. In an eastward moving
low the air will accumulate in the eastern half at the expense of the air

in the western half, even though the same pressure pattern when station-

ary maintained non-divergence. This again means that the pressure fall

in the front half and the rise in the rear half, both originating in the

upper current, will be reduced respectively by the convergence and

divergence in the lower layers. This effect increases with increasing

eastward speed of the system and thus acts as a regulator of the speed.

The next step in the treatment of the pressure changes in moving

cyclones should be to modify the circular isobars at the surface so as to

accommodate fronts. Obviously there are a great many problems left

for future work concerning the distribution of divergence in pressure

fields with non-circular isobars delimiting more or less sharply defined

troughs, etc. However, it is expected that the fundamental difference

between the front and the rear of the moving cyclone, as represented in

fig. 1(M9, will remain as a background pattern upon which frontal effects

are superimposed.

1020. Closed anticyclonic isobar patterns. The analysis of pressure

changes associated with moving highs can be carried out in analogy with

the above analysis of the pressure changes in moving lows.

The anticyclone with concentric circular isobars is impossible as a

steady state except when centered at the pole. At other latitudes

steady-state anticyclones extending to high levels must have eccentric

isobars, with the maximum pressure gradient on the polar side of the

center. The usual moving anticyclone does not extend far from the

ground as a system of closed isobars, but it is surmounted by a wedge.

The upper wave-shaped flow pattern produces accumulation of air over

the front half of the high and depletion of air over the rear half, and

thereby makes it move eastward. The lower closed flow pattern pro-

duces the opposite effect, but it is overcompensated by the contribution

of pressure change superimposed from the high layers. Since the upper

wedge usually lags behind the position of the center of high at the

ground, the upper flow pattern produces an accumulation of air over the

central region of the high. If that accumulation of air is sufficient to

overcompensate the outflow of air in the frictional layer near the ground,

the high will intensify.



CHAPTER ELEVEN

CIRCULATION AND VORTICITY

11*01. Method of line integrals. Many problems of atmospheric
motion are studied quite conveniently by a special method which

involves the application of line integrals. This method has a close

analogy to the general method used in the mechanics of rigid bodies. In

this field of science all internal deformations are neglected, and the body
is studied as a rigid entity. The internal forces in the body, which

appear in pairs, are thus eliminated from the problem.

Similarly, in hydrodynamics we may consider as an entity a group of

fluid particles lying on a closed curve, and then neglect all differences

between the particles in the group. The dynamics of such a group is

determined by equations with one of the acting forces eliminated.

These equations are much simpler than the general equation of motion.

11 -02. Line integral of a vector. Each of the physical vectors,

velocity, acceleration, and gravity, is defined at every point in the

atmosphere. Let a denote any one of these vectors. In the field of a

consider an arbitrary curve connecting an initial point with the position

vector TI and a terminal point with the position vector r2 , fig. 11 *02.

Let this curve be divided into infinitesimal curve elements. Each curve

element defines an infinitesimal

vector 5r, whose sense is given

by the direction from rj to r2

along the curve. Since the curve

is located in the field of a, the

vector a has at any given time a

definite value at each point on n^^ ]
ar

the curve. When scalar multi-

plication of each of the elements

5r by the corresponding vector a is performed, we obtain infinitesimal

scalar products. The sum of these products defines by its limit the

curvilinear integral (line integral) of the vector a, which is denoted as

follows:
2

(1)
' = / aSr.

i
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Mathematically there is no difference between this integral and those

defined in ordinary calculus. Both are limits of sums of infinitesimal

quantities. In (1) the integral element is the scalar product which,

according to 4'07, may be written in any of the following scalar forms:

(2) a-5r = arfs = ads cos 6 = axdx -h a ydy -f azf>z.

We shall, however, prefer to use the compact expression (1).

It follows from (2) that only the tangential component a^ of the vector

is subjected to the integration. In the special case where the vector is

the velocity, the integral (1) is known as the procession and is denoted

byP; thus

/

A similar terminology is used in the general case (1) where the physical

nature of the vector is unspecified, and the integral (1) is called the pro-

cession integral of the vector a.

When the curve of integration in (1) is a closed curve, the initial and

the terminal points will coincide, and the integral becomes a cyclic

integral. Denoting the closed curve by c we shall introduce for

the curvilinear integral of a around the closed curve the notation

(3)
/a'Sr.

In the special case when the vector is the velocity, this integral is called

the circulation, and is denoted by C; thus

(3') C=
/
J c

In the general case (3) the integral is called the circulation integral

of the vector a.

It is important to keep in mind the complete generality of the integral

defined above. The geometrical properties and the physical nature of

the vector field may be completely arbitrary, and the curve of integra-

tion may have any shape and location in the field. Thus there is a

priori no relation between the vector field and the curve, except that the

entire curve must be within the region where the vector is defined. The

physical interpretation of the integrals is evident in the special case

where the vector is the velocity. The interpretations for other physical

vectors are given in the following sections. The evaluation of the

integrals can only be performed when the vector field and the curve of
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integration are known. However, our aim is not to evaluate the inte-

grals, but rather to develop general laws for their behavior. These laws

make it possible to investigate further the dynamical relations between

the motion and the fields of the physical variables.

11*03. Line integrals of the equation of absolute motion. We shall

first consider absolute motion, where a simple physical interpretation

of the results is possible. The equation of absolute motion can be

written in the following two equivalent forms:

PV - -

where in (la) the equation is referred to unit mass, and in (16) to unit

volume.

Following the procedure outlined in the preceding section, we perform
scalar multiplication of each of the vectors in these equations by the

vector line element 5r of an arbitrary curve in the atmosphere. Accord-

ing to 4-13(1) the scalar products of the potential vectors are

(2) V<t>a*dr = 50a , V/>-5r = dp;

here 6< a and dp are the variations respectively in the potential of gravi-

tation and in pressure from the initial to the terminal point of the vector

element dr. Thus the result of the scalar multiplication in (1) is

(36) pva 5r = pd<t>a dp.

Each of the expressions may be integrated along the curve from an

initial point 1 to a terminal point 2 on the curve. We thus obtain the

following relations between the procession integrals of the vectors in the

equation of motion :

2 2

(4a) <t>az
-

i
- -

]
adp -

J
va.5r,

1 i

2 2

(46) P2 - Pi - ~
/ P$*a - /

The first of these equations is the dynamic generalization of the baro-

metric height formula.

Each of the equations (4) remains a full equivalent of the equation of

motion, as long as we have free choice of the curves. This generality is
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lost when the curves are subjected to special conditions, but in return we
obtain useful special theorems. We shall consider two such speciali-

zations :

1. Equilibrium curves. In any field of motion an infinite number of

curves may be drawn normal to the acceleration. These curves are

called equilibrium curves. If the integrals (4) are taken along an equi-

librium curve, the equations reduce to the hydrostatic forms:

(5a)

z

!

~
<t>al

= -
/ Otdp,

(56) P2 - Pi

X

Thus the barometric height formula, which is approximately fulfilled

for an arbitrary curve, is fulfilled exactly along the equilibrium curves.

These curves may, under special simple conditions, be rather easy to

determine. For example, for steady zonal motion the only acceleration

is the centripetal acceleration, so that one system of equilibrium curves

consists of the lines parallel to the axis of the earth ; another system

consists of the circles of latitude.

2. Isobaric curves and horizontal curves. If the curve in ^4a) lies in an

isobaric surface, and the curve in (46) in a level surface of <f>a ,
the equa-

tions reduce to

z

-
/ va-5r,

2

(66) p2 - Pi
- /pva-5r.

The first of these formulas indicates that the isolines of <t>a on an isobaric

surface run normal to the isobaric component of the acceleration; the

other, that the isobars in a level surface of <t>a run normal to the compo-
nent of the acceleration in that surface.

11*04. Primitive circulation theorems in absolute motion. We
shall next consider the case where the line integrals in the two equations
1 1 '03 (4) are taken along a closed curve. The initial and terminal points

of the integration are then identical, and the procession integrals become
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circulation integrals; thus:

(la) (v -5r=-
I adp,

J c J c

/
pva-5r = -

/ pS<f>a .

Jc J c

These equations connect the circulation of the vectors va and pva with

cyclic integrals of the physical variables. In (la) the potential of gravi-

tation is eliminated, and in (16) the pressure is eliminated. They are

known as the circulation theorems and were derived by V. Bjerknes in

1898. Both theorems are fundamental for the study of physical hydro-

dynamics.
The theorem (16) has been given a useful mechanical interpretation

by E. Hoiland (1939). He considers a closed fluid tube with the

infinitesimal constant cross section 5A and applies the theorem (16) to a

curve which is the central line in this tube. If we multiply (16) by the

constant 5A and introduce -5$ = -V$a*5r = ga*6r, we have:

/ 8Apva-8r = I
J c J c

(2) / &4pv -5r= / 8Apga98r.

J c J c

Let VT and gar denote the components of the acceleration and the gravi-

tation tangential to the tube in the direction of the vector element 5r.

With these notations equation (2) takes the form:

(2') I vr (p8A8s) -
J

gaT (P8A8s),

or, since p8A8s - 8M is the mass contained in the tubular volume

element 8V = 8A 8s:

(2") I
vT8M= I

Jc Jc

This equation, which is equivalent to the circulation theorem

clearly reveals the analogy between this theorem and the equation of

motion of a rigid body. By considering the particles in a closed tubular

fluid filament we have a mechanica system for which the pressure forces

have no resultant in the direction tangential to the filament. The inte-

gral of the mass multiplied by the acceleration tangential to the fila-

ment is therefore determined by the gravitation alone. Hoiland calls

the integral fci>T8M the total mass acceleration along the filament. In

this terminology the circulation theorem (16) can be stated as follows:

An arbitrary closedfluidfilament with constant cross section has a total mass
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acceleration along itself equal to the resultant of theforce of gravitation along
thefilament. This theorem is particularly important in the study of the

stability of steady flow.

The theorem (la) can be given a similar mechanical interpretation by

considering a closed fluid filament of cross section dA
, -where pdA is a

constant along the filament. The particles composing this fluid fila-

ment represent a mechanical system where the resultant of gravitation

tangential to the filament is zero. Another interpretation of the circu-

lation theorem (la), which has been of great importance for the develop-
ment of modern meteorology, has been given by V. Bjerknes. This

interpretation will be discussed in the following section.

, ," 11 -05. The theorem of solenoids. It was shown in section 423 that

the pressure integral fadp has a simple'graphical representation in the

(c*,-/0-diagram. Corresponding values of pressure and specific volume

along a vertical curve in the atmosphere define a certain curve in the

(a, -p) -diagram, or in the emagram, as in fig. 4-23. This curve, known
as the sounding curve, represents the vertical curve in the atmosphere,
and shows how the fields of pressure and mass are distributed along this

vertical.

Consider now an arbitrary geometrical curve in the atmosphere. At

any given instant this curve may be represented in the (a, p)-diagram

by a curve which is determined by the distribution of pressure and mass

along the atmospheric curve. We shall refer to the latter as the image
curve of the atmospheric curve. When the atmospheric curve is closed,

its image curve is also closed. The pressure integral fcadp in the cir-

culation theorem ll-04(la) is equal to the area enclosed by the image

curve, and its sign is determined by the sense of the integration around

this curve. The sign is positive if the integration has the sense of the

rotation from the positive a axis to the negative p axis, and negative if

the integration has the opposite sense.

Theisobaric unit layers in theatmosphere are represented in the (a?, /?)-

diagram by horizontal stripes of unit width, and the isosteric unit layers

are represented by vertical stripes of unit width. Taken both together
the isobaric and isosteric unit surfaces divide the atmosphere into a

system of tubes with parallelogrammatic cross sections. These unit

tubes are known as the pressure-volume solenoids or the (a,-)-sole-
noids. Each solenoid in the atmosphere is represented by a unit square
in the (a, -p)-diagram, as shown in fig. ll05a. The sign of the unit

square is positive when the integration along its edge has the sense of the

rotation from the positive a axis to the negative p axis. Correspondingly
a positive sense may be assigned to the solenoid, defined by the right-
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handed rotation (through an angle less than 180) from the volume

ascendent Va to the pressure gradient -Vp. (In fig. ll05a the sole-

noids are directed out from the paper.)

Consider an arbitrary closed curve in the atmosphere and the corre-

sponding image curve in the (,-/>)-diagram. The two curves are

denoted respectively by c and c
f
in fig. 1 1 05a. The area enclosed by the

o* * t
o o
+ +
CO *

FIG. ll-05a. Pressure-volume solenoids enclosed by atmospheric curve, and equiv-

alent area on (a, )-diagram.

image curve c
1

equals the number of unit squares contained within the

curve. And since the integral -fc a5p is equal to this area, it is also

equal to the number of pressure-volume solenoids embraced by the

atmospheric curve c. The solenoids are counted algebraically. If their

sense, as defined above, is the same as the sense of integration along the

curve, they are counted positive; if their sense is opposite, they are

counted negative. In fig. ll-05a the sense of integration indicated by
the arrow on the curve is the sense of the solenoids. The solenoids are in

this case counted positive, and the integral -fc a5p, taken in the indi-

cated sense, is accordingly positive. Had the integration been taken in

the opposite sense, the solenoids would have been counted negative.

Denoting the algebraic number of solenoids embraced by an arbitrary

closed curve in the atmosphere by Na^p , we can write

(i)
- I a8p

J c

This is the theorem of solenoids. When this theorem is combined with

the circulation theorem ll-04(la), we obtain

(2) N<a, p-

In this form the circulation theorem can be stated: Along an arbitrary

closed curve in the atmosphere the absolute acceleration has at any time a

circulation equal to the algebraic number of pressure-volume solenoids
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embraced by the curve. The circulation has the same sense as the solenoids,

the sense of the rotation from volume ascendent to pressure gradient.

This interpretation of the circulation theorem was given by
V. Bjerknes. It does not reveal the underlying mechanical principle as

clearly as Holland's interpretation. But the solenoid theorem has great

practical advantages, particularly in the science of synoptic meteorology,
where the physical fields are represented graphically by their unit layers,

so the solenoids are directly accessible.

As an example consider the ideal case shown in fig. ll-OSfe. The dia-

gram to the left represents a meridional cross section through the lower

troposphere, symmetric with respect to the axis of the earth. It shows

schematically the mean distribution of pressure and mass in winter.

The isobaric surfaces are drawn for every 10 cb, the isosteric surfaces for

every 100 m3 F"1
. The mts-solenoids are thus obtained by increasing the

number of isobars ten times, and the number of isosteres one hundred

times. The solenoids are in this case annular tubes parallel to the circles

of latitude, and their sense is from east to west. Consider the closed

atmospheric curve 1231, composed of the isobaric segment 12, the iso-

steric segment 23, and the vertical segment 31 along the axis of the earth.

Vcr
-Vp

700 800 900
Of*-

FIG. ll-OSb. Idealized distribution of solenoids in meridional cross section.

The corresponding image curve in the (<*,-)-diagram, to the right in

fig. 11*056, is the triangle enclosing the shaded area. We shall now

apply the circulation theorem (2) to this curve, integrating along the

curve with the sense indicated by the numbers. The area of the image
curve is then positive, and the solenoids embraced by the atmospheric
curve have the same sense as the integration, the sense of the rotation

from volume ascendent to pressure gradient. Both results show that the

acceleration has a circulation along the curve in the direction indicated

by the numbers. The same result is obtained when the circulation

theorem is applied to the curve 1431.
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Consider finally the atmospheric curve 12341, whose image curve is

the broken line 12321, which has zero area. The acceleration has no

circulation along this curve. This result is also obtained directly from

the theorem of solenoids. The solenoids to the right of the axis have the

same sense as the integration and are counted positive. The solenoids

to the left of the axis have opposite sense and are counted negative.

Due to the symmetry there are equal numbers of positive and negative

solenoids, so the total algebraic number of solenoids embraced by the

curve 12341 is zero.

The above example shows that the information which can be gained

from the theorem is greatly influenced by the selection of the curve. The
curves 1231 or 1431 give the useful information that the acceleration has

a tangential resultant along these curves in the direction indicated by
the numbers. The curve 12341 gives the trivial result of no tangential

resultant. One guiding principle for the selection of the curve is that it

should embrace only solenoids of the same sign. Only with such curves

can the full dynamical effect of the solenoids be estimated.

11-06. Practical forms of the theorem of solenoids. Since pressure

and specific volume are the physical variables which enter directly into

the atmospheric equations, the pressure-volume solenoids give the

simplest rules when applied to dynamical problems. This is analogous

to the fact that the (a,-/?)-diagram is the simplest therrnodynamical

diagram for the study of thermal energy transformations.

In practical meteorology the (,/>)-diagram is replaced by the ema-

gram or the tephigram, which have the important meteorological vari-

ables as their coordinates. Similarly, the pressure-volume solenoids

may be replaced by the pressure-temperature solenoids or the tempera-

ture-entropy solenoids. The relations between these three kinds of

solenoids are the same as the relations between the (a,-p)-diagram, the

emagram, and the tephigram. If the same closed atmospheric curve is

plotted in these three diagrams, the areas enclosed by the corresponding

image curves in the diagrams are proportional; thus

(1)
-

/ abp
= Rd / In p dT - -cpd /

In 8T.
Jc Jc Jc

The first integral is the pressure integral in the circulation theorem and

is equal to the number of (a, -p) -solenoids embraced by the atmospheric

curve. The second and third integrals in (1) may be given a similar

interpretation.

The second integral is equal to the area enclosed by the image curve

in the emagram. It is positive if the integration has the sense of the
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rotation from the negative In p axis to the negative T axis. This area is

also equal to the number of ( In /?, 7") -solenoids defined by the iso-

thermal unit layers and the unit layers of In p. The sense of these sole-

noids is defined by the rotation V- V7" from pressure gradient to

temperature gradient. The number of these solenoids embraced by the

atmospheric curve will be denoted by N\n pt_T .

The third integral is equal to the area enclosed by the image curve in

the tephigram and is therefore also equal to the number of (In 0, T)-

solenoids. These solenoids are defined by the isentropic and the iso-

thermal unit layers and have the sense of the rotation V(ln 0) V7'

from entropy ascendent to temperature gradient. The number of these

solenoids which are embraced by the atmospheric curve will be denoted

by Ninet^T . Introducing these notations in (1), we obtain

(2) Nat_p = RdN^in pt^T = CpdN\n Q,-T*

The three kinds of solenoids in (2) are always parallel. The pressure-

volume solenoid is by definition parallel to the line of intersection of the

isobaric and the isosteric surface, along which both pressure and specific

volume are constant. From the equation of state the temperature is

constant along this line, and from Poisson's equation the potential tem-

perature is also constant along the same line.

In synoptic analysis the isobars and isentropes are drawn for unit

values of p and 0. The determination of the solenoids in (2) requires the

isobars and isentropes for unit values of In p and In 0. To overcome this

practical inconvenience, consider one of the temperature-entropy sole-

noids, defined by two isothermal surfaces with the temperature differ-

ence AT - 1, and two isentropic surfaces with the entropy difference

A(ln0) = 1. The variation A0 in potential temperature through the

isentropic unit layer is given approximately by A0/0 = A (In 0) = 1, or

A0 = 9, where S is a mean potential temperature in the layer. Accord-

ingly, an isentropic unit layer contains potential temperature unit

layers, and one temperature-entropy solenoid contains temperature-

potential temperature solenoids. Denoting by Ne,-r the number of the

latter solenoids embraced by the atmospheric curve, we then have

(3) N0 t-T - ^in^.-r. N-p,-:r =
/>AT-inp,-r-

The second expression is obtained by a similar consideration of the

( -In />, r)-solenoids. When the expressions (3) are introduced in (2),

we have
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This gives the relations between the number of pressure-volume sole-

noids, pressure-temperature solenoids, and temperature-potential tem-

perature solenoids which are embraced by the same atmospheric curve.

In a dry atmosphere the solenoids are defined by the real temperature
and potential temperature. In a moist atmosphere the virtual tempera-
ture and virtual potential temperature must be used; see 3-28.

Practical forms of the circulation theorem are obtained when the

second and third expressions in (4) are introduced in the fundamental

theorem 11-05(2); thus

(5) -r-
Jc Pi 6

When the unit isotherms, and the unit isobars or the unit potential iso-

therms have been drawn in a vertical cross section through the atmos-

phere, one of these theorems may be used to obtain a general idea of the

distribution of the acceleration in the cross section. For rough esti-

mates, the numerical factors (Rd/p) and (cpd/~) are obtained from

mean values of p or 6 within the curve. The variation in the factor

(cpd/B) is small within the lower half of the troposphere where the range

of potential temperature is about 270-330. A rough average value of

(cpd/0) is thus 3.3, which gives the approximate rule: Each tempera-

ture-potential temperature solenoid contains about 3 pressure-volume

solenoids.

The formulas (5) are used only for qualitative estimates of the dis-

tribution of the acceleration when the physical variables are represented

graphically by their unit layers. When the solenoid number is wanted

more accurately, it is determined by integration around a
"
rectangu-

lar
"
curve composed of two isobaric and two vertical curve segments.

According to (1) we have for any closed atmospheric curve

-Rd I
Jc

(6) Nat-p =-Rd I T*(lnp).
Jc

The two isobaric curve segments give no contribution to the integral on

the right. Along .the vertical segments of the curve the integral is

identical to the barometric height formula. Let pi and p2 be the pres-

sures respectively on the lower and the upper isobar, and let A and B
denote the colder and the warmer vertical, having respectively the mean

temperatures TmA and TmR . Denoting by <t>A and <f>B the dynamic
thicknesses of the isobaric layer (pi

- p2 ) at tne two verticals A and B,

we see from 4-24(3) that

(7) Na,-p \

= Rd (TmB - TmA ) In^ - ^ - +A .

P2
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With the aid of the second expression the number of solenoids is con-

veniently evaluated. The problem has been reduced to the determina-

tion of the dynamic heights of the two verticals. The last expression in

(7) shows that the number of solenoids contained in the isobaric layer

between the two verticals is equal to the variation in dynamic thickness

of the layer, or the dynamic inflation of the isobaric layer. In the special

case of an isobaric unit layer this result is obtained directly from 4-16(5),

which contains the rule that the dynamic thickness of the isobaric unit

layer is equal to a. The dynamic inflation of the isobaric unit layer

from A to B is aH <XA ,
which evidently is equal to the number of sole-

noids in the layer between A and B.

Table 11-06 has been computed from the formula (7), with the pressure

TABLE 11-06

NUMBER OF PRESSURE-VOLUME SOLENOIDS

on the lower isobar at the standard value pi = 100 cb. The table gives

the number of solenoids contained in a curve bounded by this lower

isobar, an upper isobar of pressure p2 and two verticals with the mean

temperature difference TmB TmA .

As an example consider a closed meridional curve having one vertical

at the pole, the other at the equator, and having the upper isobar

p2 SB 30 cb and the lower isobar p\ 100 cb. This curve will embrace

the majority of the solenoids of the troposphere. In winter the difference

of mean temperature between the two verticals is about 40. It is seen

from the table that the corresponding number of solenoids is 13,820.

This result also signifies that the isobaric layer 100-30 cb has a dynamic
inflation of 1382 dyn m from the pole to the equator.

11-07. Dynamic balance of steady zonal motion. The utility of the

circulation theorem 1 1-05 (2) for the study of atmospheric motion may be

illustrated by considering steady zonal motion. This field of motion is

sometimes referred to as a circular vortex. The absolute acceleration is

here the centripetal acceleration -co^R. For an arbitrary curve in the
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circular vortex the circulation theorem becomes

a) -
f <iL-dT = Na ._p .

J c

We shall first examine the distribution of the solenoids in the circular

vortex. It was shown in section 6-11 that the pressure field is symmetric

about the axis of the earth. It is easy to see that the mass field is also

symmetric about the axis. Since the isobaric surfaces are surfaces of

revolution, the pressure gradient -V has a constant magnitude along

any one of the circles of latitude. According to the equation of motion

the pressure force per unit mass -aVp is constant in magnitude along

each latitude circle. The specific volume is the ratio of the magnitudes

of the pressure force and the pressure gradient. Hence, a = |V/>|/|V/>|

is constant along each latitude circle, which proves that the isosteric

surfaces are surfaces.of revolution about the axis of the earth. The sole-

noids are therefore annular tubes parallel to the circles of latitude.

-Vp

3

"S
(/)

3

R

FIG. ll'07a. Solenoids in balanced

zonal motion.

FIG. 11-076. Circulation theorem ap-

plied to rectangular meridional curve.

The sense of the solenoids is determined by the rotation from volume

ascendent to pressure gradient. Under normal conditions the cold and

heavy masses are located in the polar region, as shown in fig. ll07a.

In this normal atmospheric vortex with a cold core the solenoids are

in the northern hemisphere directed from east to west. In the abnormal

vortex with a warm core the solenoids have the opposite sense.

From the circulation theorem (1) the tangential resultant of the

centripetal acceleration along any closed meridional curve has the same
sense as the solenoids, Consider first the normal vortex with a cold

core. Let the meridional curve be a rectangle, with sides parallel and
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perpendicular to the axis, fig. 11*07&. The "
height

"
of the rectangle

in the direction of the axis is arbitrary, but its width normal to the axis

is infinitesimal, denoted by 61?. Let further coa2 and co i denote the

angular speed at the top and the base of the rectangular curve.

(Here
"
up

" and " down "
refer to the equatorial plane.) Since the

axial sides of the rectangle are equilibrium lines (perpendicular to the

acceleration), they give no contribution to the circulation integral in

(1). Thus, when the integration has the sense of the solenoids,

(2) (u
2
a2
-

The solenoid number is positive, so u?l2 > ufai* The rectangular curve

maybe placed anywhere in the meridional plane ;
therefore throughout

the vortex the angular speed increases with increasing distance from the

equatorial plane. When a similar analysis is applied to the abnormal

vortex with a warm core, we find that the angular speed decreases with

increasing distance from the equatorial plane. When the specific volume

is constant within each isobaric layer, the vortex contains no solenoids

and is said to be barotropic. The angular speed is constant along any
line parallel to the axis in the barotropic vortex. When "

height
"

refers to the equatorial plane, the above results may be condensed into

the following rule . The strength of rotation in the circular vortex increases

with height when its core is cold, decreases with height when its core is warm,
and the rotation is independent of height when the vortex is barotropic.

It is possible to derive these rules directly from simple physical reason-

ing. When the circulation integral in (1) is transferred to the right-hand

side,

(3) 0-/4Jc

the theorem becomes an equation of equilibrium. The two terms on the

right must be balanced for any meridional curve if the vortex shall be

maintained as a steady state. Consider the dynamical effect of each

of the terms in the normal atmospheric vortex with the cold core, as

illustrated in fig. ll'07c. The solenoids tend to produce a
"
direct

"

meridional circulation around the solenoids: the heavier masses in the

polar region tend to sink down and spread out southward along the sur-

face of the earth, with a compensating northward flow aloft of the lighter

masses from the equator. This circulation is prevented by the circula-

tion of the centrifugal force. The strength of the zonal circulation and
hence the centrifugal force increases with

"
height,'

1

so the centrifugal

forces tend to produce a
"
retrograde

"
circulation around the sole-

noids. The action is similar to that of a centrifugal pump. The heavy



309 Section 11-08

masses near the axis are prevented from sinking by the
"
centrifugal

suction
"
arising from the stronger intensity of the vortex aloft. When

the action of the solenoids and the action of the centrifugal suction have

the same intensity everywhere in the vortex, no meridional circulation

will arise, and the motion remains steady. The balance of the vortex is

thus established by a complete adjustment between the mass field and
the field of motion. It is important to note that the balance is controlled

only by the variation in angular speed parallel to the axis. The varia-

tion of angular speed in the radial direction may be arbitrary.

Pole

Warm Warm

FIG. ll-07c. Dynamic balance of zonal motion.

We may finally consider the case where the atmosphere initially moves

as a circular vortex, but where the initial distribution of angular speed
and mass is such that the equation (3) is not satisfied. This vortex is

unbalanced and a meridional circulation will result in the direction of the

dominating effect. When the solenoidal effect dominates, that is, when
the heavy masses are raised too much in the polar region, a

"
direct

"

circulation around the solenoids results. When the centrifugal suction

dominates, that is, when the angular speed increases too rapidly with
"
height," a

"
retrograde

"
circulation against the solenoids results.

During the subsequent meridional circulation both the solenoidal effect

and the centrifugal effect are modified, and the question arises whether

the motion approaches the steady state of a balanced vortex. This prob-
lem is intimately connected with that of the stability of the circular

vortex. It can be shown that the stability depends primarily upon the

variation of angular speed in the radial direction.

11 08. Thermal wind in zonal motion. The rules for the dynamical
balance of (absolute) zonal motion are in qualitative agreement with the

rules derived in section 8-03 for the variation of the wind with height.

In the vortex with the cold core, where the isobaric temperature gradient

is directed towards the pole, the west wind increases with
"
height/' so

the shear of the wind is directed toward the east in accordance with the
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thermal wind formula. It is possible to derive a thermal wind formula

for the shear of the wind in zonal motion directly from the circulation

theorem, 11'07(1). For this purpose the solenoid number is replaced

by the pressure integral 11*05(1);

thus

(1)

, .

- / o,*R-Sr=- / aS
J C JC

FIG. 11-08.

The theorem is applied to an infin-

itesimal meridional curve, consisting

of two isobaric curve elements (2

and 4), and two equilibrium line ele-

ments (1 and 3) parallel to the axis,_ as shown in fig. 11-08. The sense

. .
,

. . .
,
of the integration is indicated by the

Evaluation of thermal wind " J

in zonal motion. numbers. Both integrals m (1) are

easily evaluated for this curve.

The pressure integral vanishes along the isobaric elements 2 and 4,

and the equilibrium line elements give the contribution

(2)
-

Here 5sp is the length, measured southward, of the isobaric elements 2

and 4. Since (2 ) is taken along equilibrium lines we have from 1 1 -03 (5a)

d<t>a =* -adp, where d<f>a is the variation in the potential of gravitation

from the lower to the upper isobar along the equilibrium lines 1 or 3.

The potential of the centrifugal force is constant along the equilibrium

lines, so from 640(6) 5</ a = & where 5</> is the corresponding variation

in geopotential along the equilibrium line. Introduced in (2) this gives

(2')
f 1 /&-
/ a8p -(
Jc a\65

The acceleration integral on the left in (1) vanishes along the equilib-

rium lines. The isobaric curve elements (6r2 - -6r4 = 5rp ) give the

contribution

(3)
-

/
t

J c

The vector element 6rp is directed southward along the isobaric layer.

Let
<f>p denote the angle between the isobar and the axis of the earth.
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-

/ c^R-5r = 2coa sin <ppR (f~ )
JC \0<t>/R
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Then R*Srp = Rf>sp sin <pp ,
so (3) takes the form

\

d(t>8sp .

Here Rdua = 8v is the variation in linear velocity along the equilibrium

line from the lower to the upper isobar. When (2') and (3') are intro-

duced in (1), we obtain

(4) 2o>a sin <pp
a\ds/p

This formula expresses quantitatively the result which was derived in

the previous section: If the specific volume increases southward along
the isobaric layer (vortex with cold core) the west wind increases with

the distance from the equatorial plane.

Equation (4) gives the rate of increase of the west wind with the dis-

tance from the equatorial plane as a function of the rate of inflation of

the isobaric layer. This formula is similar to equation 8-03(7), which

gives the shear of the geostrophic wind with increasing height. However,
whereas 8-03 (7) and the subsequent thermal wind formulas are approxi-

mate, based upon the assumption that the hydrostatic equation is valid,

equation (4) is an exact result. Since o> never departs appreciably from

fi, and the isobars are very nearly horizontal, we have approximately
o>a sin <pp fi sin <p

= ttz . Assuming further that the velocity variation

can be measured along the local vertical, instead of along the direction

parallel to the axis of the earth, we have from (4)

2Q5p !&*_ 1_2>T

which agrees with the approximate thermal wind equation 8-05(1).

11*09. Circulation theorems in developed form. The primitive

circulation theorems are valid for arbitrary closed curves, when the

integration along the curve is performed at afixed time. The analysis of

the mass distribution in zonal motion offers only one example of the

numerous problems of a similar nature which may be successfully inves-

tigated with the aid of these theorems. The theorems reveal various

characteristics of the instantaneous situation in the atmosphere. The

primitive circulation theorems can therefore be characterized as diag-

nostic theorems.

More specialized theorems can be obtained by application of the cir-

culation theorems to individual fluid curves consisting of the same fluid

particles at all times. These individual circulation theorems make it
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possible to estimate changes in the motion from one instant to the next,

and can therefore be characterized as prognostic theorems.

1 1 10. Transformation of the acceleration integral for closed individ-

ual curves. An individual curve is defined as a curve which, once

chosen, will always later consist of the same fluid particles. Let fir be a

^
vector line element of such a curve. This

d*
^rjf, / A M element will move with the fluid and during

- ~*~~~T I** the motion will generally change its length

vdtl /(v+ 8 v) dt and orientation. If fir is the vector element

--- ,/'
* ---. * (see fig. 1140) at the time t, its position at

the time / -f dt is determined by the displace-

ments of its endpoints during the time ele-

ment dt. It follows directly from the diagram, when we follow the two

vector paths A to B, that

d
(1) vdt 4- fir + T (fir)* = fir + (v + to)dt.

dt

Hence

(2) | (ar) = Sv,

where 5v is the variation of v at the time t from the initial to the terminal

point of the vector element fir. The result (2) also follows directly from

the fact that the two operations d/dt and 5 are independent and therefore

interchangeable.

With the aid of (2) the acceleration integral in the primitive circula-

tion theorem 11 '04 (la) can be transformed. The integral element in

this integral may be developed as follows :

(3) v-fir = j (v-fir)
- v- j (fir).

dt dt

Substitution from (2) in the last term on the right gives

(3') v-fir - I (v-Sr)
- vfiv = | (vfir)

- 5

(^
The last step is evident, since fi(v

2
)
= 5(vv) * 2vfiv. When (3

;

) is

integrated around an arbitrary individual curve, the integral of the total

differential fi(*>

2
/2) vanishes, and we have

The geometrical summation fc and the time differentiation d/dt are inde-
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pendent for the same reason as in (2) and are therefore interchangeable.

The last integral in (4) is by definition the circulation C. Using this

notation (4) becomes

This important theorem was derived in 1869 by Lord Kelvin. It can

be stated as follows: The circulation integral of the acceleration taken

around a closed individual fluid curve is equal to the rate of change of the

circulation of the curve. From this theorem Kelvin derived another

theorem concerning the physical nature of the circulation.

11-11. Individual circulation in absolute motion. Kelvin's theorem

holds both for absolute and relative motion. We shall apply it to the

circulation theorem for absolute motion, 11-05(2). Substituting here

from 11-10(5), we find for a moving fluid curve

(!) f-AW
This is the theorem of individual circulation in absolute motion.

The theorem was originally developed by Lord Kelvin for the special

case of a fluid whose density is a function of the pressure only, p = p(p).

Accordingly the density and, hence, the specific volume are constant on

every isobaric surface. The isobaric and the isosteric surfaces coincide

throughout the field, so no solenoids exist. Such a fluid is called auto-

barotropic (its mass field is automatically determined by the pressure

field). In general, a fluid like the atmosphere is not autobarotropic,

since the density depends not only upon the pressure but also upon the

temperature and the humidity. Since an autobarotropic fluid contains

no solenoids, theorem (1) reduces to

(2) ^=0 or Ca=Ca0 .

Cao is the initial circulation of the fluid curve and Ca its circulation at an

arbitrary later instant. Theorem (2) states: The absolute circulation of

a closedfluid curve is conserved in an autobarotropicfluid. This theorem is

the hydrodynamical equivalent of the law of conservation of angular

momentum in elementary mechanics.

The complete theorem (1) was later developed by V. Bjerknes (1898)

and can be stated as follows : The rate of change of the absolute circulation

of a closed individual fluid curve is equal to the number of pressure-volume

solenoids embraced by the curve. This theorem is equivalent to the
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theorem in the mechanics of rigid bodies stating that the rate of change
of the angular momentum of a system is equal to the resultant moment
of the acting forces.

11-12. Circulation of the latitude circles in zonal motion. To
illustrate the circulation theorem, 11-11 (1), we shall examine the changes
of the zonal circulation in a balanced circular vortex, when the vortex is

disturbed by a symmetric perturbation. It was shown in section

11-07 that the solenoids in the circular vortex are annular tubes around

the axis of the earth. Let the vortex be disturbed by a vortex ring per-

turbation, such that the particles on each parallel circle are given merid-

ional impulses of equal strength and direction. This perturbation will

not destroy the axial symmetry of the motion. Fluid curves which

coincided with the circles of latitude before the perturbation are still

circles of latitude after the perturbation, expanded from their original

position at certain levels and contracted at other levels. Consequently
the solenoids will remain annular tubes about the axis. So the expand-

ing and contracting circles will never embrace solenoids and, from the

theorem 11-11(1), their absolute circulation remains individually con-

stant. Thus

/i r*

(1)
- = or Ca - const.

at

The absolute circulation of the latitude circle in zonal motion is

(2) Ca - /
v 6r - 2wRva - 27rR

2wa .

J c

Substituting this expression in (1) we find

(3) R2
ua - const.

This result resembles the law of conservation of angular momentum for

a single particle. It could have been derived directly from this princi-

ple, for the moment about the axis of the forces acting on the fluid circle

is zero. Equation (3) gives the simple rule that the absolute angular

speed of an expanding or contracting circle changes in inverse proportion
to the square of its radius.

11-13. Relation between absolute and relative circulation. The
absolute circulation and the relative circulation are defined by the

expressions

(1) i

-
/
va'5r, C - /

J c J c
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The absolute and relative velocities are related by

6-16(3) v

where r is the position vector from an origin on the axis of the earth.

We perform scalar multiplication of the three vectors in this equation

by the vector line element dr of a closed fluid curve c and integrate

around the curve. Introducing the expressions (1) we find

(2) C + xr5r.

The integral on the right is the absolute circulation of the curve con-

sidered momentarily fixed to the earth. In the scalar triple product

under the integral sign the dot and the cross may be interchanged (see

section 6-14): Q x r*5r = QT x dr. Each integral element is then the

scalar product of the constant vector Q and the vector r x 6r, so Q can

be taken outside the integral sign. Thus

C+Q- rx5r.(3)

This integral is the vector sum of the vector elements r x Sr taken around

the curve. When the curve c lies in a plane the geometrical meaning of

this vector integral is obtained as follows. Let the plane of the curve

shown in fig. ll'ISa intersect the axis of the earth at the point 0, which

FIG. 1 1 1 3a. Vector area of closed curve.

may be chosen as the origin of the vector r. The vector product r x dr

is directed normal to the plane and is numerically equal to the area of the

parallelogram formed by the two vectors. Thus the vector
-J-r

x dr has

the magnitude of the shaded triangular area defined by the two vectors.

The integral of the vector ^r x dr taken along the upper branch of the

curve from the point 1 to the point 2 is therefore a vector normal to the

plane of the curve, having the same sense as the integration, and numeri-

cally equal to the sectorial area under the branch 1 -> 2 of the curve.
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The integral from 2 to 1 along the lower branch of the curve is a vector

with opposite sense, having the magnitude of the sectorial area under

the branch 2 -> 1 of the curve. The total integral around the whole

curve is therefore a vector normal to the plane of the curve, with the

same sense as that of the integration, and numerically equal to the area

enclosed by the curve. This vector is called the vector area of the curve

and will be denoted by A, where A is the enclosed area. Accordingly
we have

(4) A--J /
rx5r.

This result, here derived for a plane curve, can be shown to hold generally

for any skew curve, where r may be taken from an arbitrary origin. A is

then a vector normal to the plane on which the projection of the curve

encloses a maximum area, and is numerically equal to this area. When
(4) is introduced in (3), we have

(5) Ca C+20-A.

This equation gives the relation between absolute and relative circula-

tions on the earth.

Equation (5) can be verified directly for the special case of zonal

motion. Consider one of the latitude circles with radius Jf?, and per-

form the integration in the circulation integrals from west to east. The
absolute circulation is

(6) Ca - /
v-6r - 2wRva - 2irR

2
a .

Jc

And the relative circulation is

(7) C =
/

v-5r - 2wRv - 2irJ8
2

.

J c

The vector areaA of the latitude circle is parallel to the axis of the earth,

directed toward the north, and its magnitude is irR
2

. Thus

(8) 2Q'A - 2irR
2
tt.

Substituting the three expressions (6, 7, 8) in (5) and dividing out the

factor 27rR
2

,
we find coa = co + fi, which verifies the theorem.

The sign of the scalar product in (5) is determined by the angle
between the two vectors and A. The sense of the vector A is deter-

mined by the sense of integration along the curve, which is open for

choice. We shall now choose the sense of integration so that it has the



317 Section 11-14

same sense as the rotation of the earth, as shown in fig. 11-136. With
this choice the angle between Q and A is always acute (except when the

plane of the curve is parallel to the axis of the earth). Let S be the

positive area enclosed by the equatorial projec-

tion of the curve. The scalar product Q*A is

then always a positive quantity equal to OS,
which introduced in (5) gives

(9) C+

FIG. 11-136. Equatorial

projection of area of closed

curve.

Since the sense of integration has been chosen, a

unique sign convention for the circulation is

introduced: Circulation with the same sense as

the rotation of the earth is positive, and circu-

lation with the opposite sense is negative. For

horizontal curves which do not intersect the

equator the circulation is then cyclonic in

both hemispheres if it has the same sense as

the rotation of the earth, and anticyclonic if it has the opposite
sense.

11 -14. Individual circulation relative to the earth. The theorem for

the change in relative circulation is obtained by time differentiation of

equation 11-13(9); thus

dCa dC d2

~dT
=
lu

+ 2n
lu'

Substituting here for dCa/dt from 11-11 ( 1 ) and solving for dC/dt, we find

dC d%
- #a ,_p -212 .

(1)

With the chosen sense of integration the solenoidal term is positive when

the sense (V V/0 of the solenoids is the same as the rotation of the

earth, and is negative when the solenoids have the opposite sense.

Equation (1) is the theorem of circulation relative to the earth of an

individual fluid curve. It is the most important of the circulation theo-

rems for the study of atmospheric motion and is in usual meteorological

language referred to simply as the circulation theorem. It can be stated

as follows: The rate of change of the circulation relative to the earth of an

arbitrary closed fluid curve is determined by two effects: (i) the solenoid

effect will tend to change the circulation in the sense of the solenoids by an

amount per unit time equal to the number of solenoids embraced by the

curve, (ii) The inertial effect will tend to decrease the circulation by an
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amount per unit time proportional to the rate at which the projected area of

the curve in the equatorial plane expands.

This theorem holds for any closed fluid curve if the effect of friction is

neglected. By appropriate choice of the curve many types of atmos-

pheric motion which are too complicated for complete analytical treat-

ment can be examined qualitatively.

It should be noted that the inertial term vanishes when the relative

motion is zero. So the primary origin of the circulation (both absolute

and relative) is the dynamic action of the solenoids. The effect of the

inertial term is to modify relative circulation which already exists. This

modification is of importance for every large-scale motion of the atmos-

phere.

The significance of the inertial term becomes clear when we consider

curves which embrace no solenoids. This will be the case for any curve

in an autobarotropic fluid, but the results will hold with rough approxi-

mation for horizontal curves, since in general few solenoids intersect the

horizontal levels. In this case equation (1) may be integrated, and the

circulation theorem becomes

(2) C- C = 2fl(Z -S).

This equation gives the following rule : A closed fluid curve, moving from

one position into another, gains (or loses) an amount of circulation which

is proportional to the decrease (or increase) in the area enclosed by the

equatorial projection of the curve. For horizontal curves which do not

intersect the equator the rule is simply: The curve gains cyclonic circula-

tion while its equatorial projection contracts, and it gains anticyclonic

circulation while its equatorial projection expands.

11 -IS. Circulation of the circles in a local vortex. The rule at the

end of the preceding section explains in a qualitative way how cyclonic

and anticyclonic circulations are generated in the atmosphere. It is a

well-known empirical fiact that a cyclone with closed isobars in the

lower layers has horizontal convergence toward the central region, and

consequently ascending motion with clouds and precipitation in the

central part of the cyclone. Therefore all closed horizontal curves

embracing the cyclone center contract and gain cyclonic circulation.

Similarly the air over an anticyclone subsides and spreads out hori-

zontally in the lower layers. So horizontal curves embracing the anti-

cyclone center will expand and gain anticyclonic circulation.

Although these qualitative rules for the generation of cyclonic and

anticyclonic circulations are similar, there is an important difference

between the two processes when they are compared quantatively. To
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demonstrate this difference we shall examine the following idealized

model: The cyclone (or anticyclone) is assumed to have circular con-

centric streamlines with a uniform speed on each streamline. This

model may be called a local circular vortex. We shall further assume that

symmetrical convergence toward (or divergence from) the central region

occurs in the vortex, and examine the change of circulation of the con-

tracting (or expanding) fluid circles. If no solenoids intersect the hori-

zontal levels, the circulation of the fluid circles changes in accordance

with the theorem 11-14(2); thus

(1) C-f 2QS - const.

Although the result will be valid in both hemispheres, we shall in the

following restrict the discussion to a local vortex in the northern hemis-

phere. Let R denote the radius of an arbitrary circle in the vortex, and

let co be the relative angular speed on this circle. The circulation around

the circle is then

O\ / 9-.J?2/%
(2) C = ZTTK co.

Positive values of co mean cyclonic circulation

and negative values mean anticyclonic circula-

tion. The area enclosed by the circle is A =

TrR
2

,
and the equatorial projection of the area

(see fig. IMS) is

Axis of

local vortex

V

(3) S - A sin <p
= sin <p,

where <p is the latitude of the axis of the vor-

tex. Substituting these values of C and S in (1)

and dividing out the constant factor 2?r, we find

(4) R2
(w+ const.

Equator

FIG. IMS. Equatorial

projection of circle in local

vortex.

In the special case where the axis of the local vortex coincides with the

axis of the earth this equation is identical to 11*12(3). Equation (4)

gives the corresponding law for a vortex in arbitrary latitude: On a

given fluid circular streamline, which expands or contracts because of

symmetric horizontal divergence or convergence, the quantity (co + $2,)

is inversely proportional to the square of the radius.

f-
If the vortex has horizontal convergence toward the axis, the circles

contract and co increases, so the vortex gains cyclonic circulation. As
the convergence continues, the radius of the contracting circle ap-

proaches zero, and from (4) co + fiz
- >

,
or co -* < . Thus the cyclonic

angular speed will increase indefinitely if the convergence continues to

operate.
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If the vortex has horizontal divergence out from the central region,

the circles expand and w decreases, so the vortex gains anticyclonic circu-

lation. If the expansion were to continue until the radius approaches

infinity, we should have from (4) co + Slz -> 0, or w -> - 12^. Actually the

expansion can never proceed so far, so the anticyclonic angular speed
which is generated by horizontal divergence is always numerically smaller

than the critical value 12Z . This limiting value corresponds to the

anticyclone with the maximum strength of the horizontal pressure field,

as was shown in section 7-2 1.

11*16. Vorticity. Any horizontal area A bounded by a closed curve

may be divided by two families of curves into infinitesimal elements dA,

as shown in fig. 11-16. The sum of the circulations around the bound-

aries of these elements, taken all in the

same sense, is equal to the circulation

around the original boundary of the whole

area. For in the sum the procession along
each side common to two elements comes in

twice once for each element, but with

opposite sense and therefore disappears

from the result. There remain then only
the processions along those sides which are

part of the original boundary. Thus, if C
denotes the circulation around the original boundary of A, and dC
denotes the circulation around an arbitrary element 8A

, we have

FIG. 11-16. Addition of circu-

lation.

C= / 3C,(i)

where the summation is extended over all the elements $A.

The limit of the ratio of the circulation BC around an infinitesimal ele-

ment to the area 8A of that element is called the vorticity, and is denoted

by f . Thus

'-a-
In a rough sense the vorticity is the circulation around unit horizontal

area. When 8C is eliminated from (1) by means of (2), we have

(3) L
This theorem, given by Stokes (1854), states: The circulation around a

closed horizontal curve bounding any finite area A is equal to the integral

of the vorticity taken over the area A.



321 Section 11-18

The two-dimensional theorem stated here is only a special case of

Stokes's theorem. The general three-dimensional theorem has the

same form as (3) and is valid for an arbitrary surface in space bounded

by a closed curve. The vorticity is then a vector and the scalar quan-

tity f, as defined by (2), is the component of the vector vorticity along

the normal of the surface element 8A . For horizontal areas and curves

the quantity f, which in the following will be called the vorticity, is

actually the vertical component of the vector

vorticity.

11-17. The vorticity in rectangular coordi-
' s A

nates. Let the horizontal element of area y

be the infinitesimal rectangle 8A = 8x8y shown x x+dx
in fig. 1M7. The circulation 8C around this

FIG n ^
element, taken in the sense of the positive z

axis (that is, with positive cyclic sense), is the sum of the processions

along each of the four sides:

/ &Uj, \ ( &ux \
8C ~ vx8x + (

vy + 8x
] 8y

-
[
vx + 8y ]

8x - vy8y,
\ d* / \ by J

which reduces to

(1) 8C>

Dividing both sides by the area 8A = 8x8y, we have from 1116(2) that

8C fay dvx

Equation (2) gives the analytical expression for the

vorticity in rectangular coordinates.

1 1 18. The vorticity in natural coordinates. Next
let the horizontal surface element be the infinitesimal

area defined by two streamlines and two straight

lines normal to the lower streamline, as in fig. 11 18.

In the figure the two normals are extended in the

horizontal plane to their point of intersection, which

is the center of horizontal curvature of the lower

streamline. Let v be the speed on the lower stream-

line, and let s, n be natural coordinates, as in 7-02.

The circulation around this surface element, taken in the positive sense

as shown by the arrows, is

8C - vRsty - [
v + 8n

) (Rs -
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When the multiplication is performed, this expression reduces to

(1) SC = (-J-
- ^ +~^ 8n] RsWn.

\Rs dn Rs dn /

The third term in the parentheses approaches zero with 8n. Thus, when
both sides of the equation are divided by the area of the element,

bA - Rstybn, we have

(2) f-rz- 1^-;?'dA On

which is the analytical expression for the vorticity in natural coordi-

nates. According to this formula the vorticity manifests itself at any
point in a horizontal current by the curvature of the streamlines, or by
the horizontal rate of shear, or both. In absence of shear the vorticity

has the same sign as the curvature. In a straight current the vorticity

is positive if the speed increases to the right of the current, and negative

if the speed increases to the left.

In the special case where the motion is a constant rotation with the

angular speed w about a vertical axis, the streamlines are concentric

circles. The speed is here v = wUs, and the rate of shear is cto/dw =

du/dlZs = o>. Substituting these values in (2) we find

(3) f-2.

In the field of constant rotation the vorticity is constant throughout and

is equal to twice the angular speed of rotation. It can be shown that the

vector vorticity in this case is a vector along the axis and is equal to

twice the angular velocity.

11-19. Absolute and relative vorticity. The relation between abso-

lute and relative circulations is given by the equation 11*13(5). If the

curve is the edge of an infinitesimal horizontal surface element dA, and

the absolute and relative circulations are denoted respectively by dCa
and BC, we have

(1) C-C+21HA.
Here 5A is the vector area of the surface element. Defining the circu-

lation as positive when it has the same sense as the positive vertical,

we have in both hemispheres 5A &4k. Substituting this in (1), and

dividing the whole equation by 8A, we find that

(2) ra-r+2o-k

With the sign convention chosen here, the absolute and relative vorticities

are positive in both hemispheres when their sense is that of the positive
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vertical. This sign convention is in accordance with the one intro-

duced in chapter 7 for the angular speed. Accordingly, cyclonic vortic-

ity is positive in the northern hemisphere and negative in the southern

hemisphere. It should be noted that this sign convention is different

from the one used for the circulation in 1 1 -13 (9) and subsequently for the

circulation theorem in 11-14(1). In those formulas the circulation with

the cyclic sense of the earth's rotation was positive. That gave the

simplest rules for circulation of curves with an arbitrary orientation

in space. In the northern hemisphere the two conventions are the same
;

in the southern hemisphere they are opposite.

If the atmosphere is at rest, the relative vorticity is everywhere zero.

The absolute vorticity about the vertical is in this case 2S2Z , and the

vector vorticity can be shown to be 212; see 11-18(3). In the general

case the absolute vorticity is the sum of the vorticity relative to the

earth and the absolute vorticity of the earth.

1120. The theorem of absolute vorticity. From the theorems of

circulation of individual moving curves equivalent theorems for the

vorticity of individual moving particles may be derived. Consider an

infinitesimal horizontal surface element 5A in a horizontal or nearly

horizontal current. If the surface element is part of the fluid, its

boundary will remain a closed curve moving with the fluid, and its

absolute circulation 5Ca will change in accordance with the general

theorem 11-11(1). Since the element is horizontal
,
the solenoids may be

neglected, and the theorem takes the form

(i) I (c.) = o.

Since SA is infinitesimal, we have from 11-16(2)

(2) SCa-T^M-M*.8A

Substitution of (2)*in (1) gives

Jfat

or, when the differentiation is performed,

(3)v

fa dt 5A dt

The second term is the rate of horizontal expansion of the moving ele-
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ment per unit area. From 10-03(3) this is the horizontal divergence

V#*v. Hence equation (3) can be written

This theorem is equivalent to the theorem 11-11 (2) for horizontal motion.

It states that the rate of change of the absolute vorticity of a moving
element is proportional to its horizontal divergence. It should be noted

that the theorem is exact only when the motion is strictly horizontal and

the fluid autobarotropic. However, all large-scale atmospheric currents

are so nearly horizontal, and the number of solenoids which intersect the

horizontal levels are so few that the theorem can be used with sufficient

accuracy at levels above the layer of friction. The theorem (4) is a

special case of the famous vorticity theorem of Helmholtz (1858). The

physical significance of Helmholtz' theorem, which involves the vector

vorticity, is in every respect equivalent to that of the circulation theorem,

11-11(1).

11-21. The theorem of relative vorticity. When the expression

11-19(2) for the absolute vorticity is substituted in the theorem 11-20(4)

we have

d
(1)

-
(f + 2QZ )

- -
(f + 2az)V//'V.

dt

This is the theorem of relative vorticity. For horizontal motion it is

equivalent to the theorem of relative circulation 11-14(2) and can also be

derived directly from this theorem. The theorem (1) was derived by
Rossby (1938) and has been used extensively by him and others for the

analysis of the flow pattern in stationary and moving atmospheric
waves.

Although the circulation theorem has a much simpler form and can be

stated in brief and precise terms, the vorticity theorem has great advan-

tages, particularly for the investigation of the structure of horizontal flow.

The main reason is that the vorticity can be expressed analytically in

terms of the velocity components, as in 11-17(2), or in terms of the

curvature and shear of the flow pattern, as in 11-18(2).

The vorticity theorem (1) takes a convenient form when the differen-

tiation is performed on the latitude term 2$lz . We have

(2) j (2Q2 )
- 2Q (sin ^>)

=* 2Q cos <p

Here d<? is the change of latitude of the moving particle during the time
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element dt. Introducing the linear meridional displacement dy = ad<p,

we have

f3 )
*? . A ?y = ^ .

^ '
dt a dt a'

This is valid in both hemispheres when the y axis points to the north (the

standard system), and when <p is counted positive in the northern hemi-

sphere and negative in the southern hemisphere. Substituting (3) in

(2), we have

d ,
212 cosv?

(4)
-

(20.) =-5? v
dt a

The vorticity theorem (1) can therefore be written

df 217 cos <p

(5) = --~vy - (f + 2Q,)Vjyv.
at a

If the horizontal flow is non-diverging, equation (5) becomes

d 2 12 cos <p

The factor (2Q cos ^>)/a is positive in both hemispheres, so the vorticity

decreases when the particle moves north and increases when the particle

moves south. This rule is equivalent to the result already obtained in

section 1144 from the circulation theorem: When the particle, con-

sidered as a small horizontal disk, moves toward the pole its equatorial

projection increases, and it gains anticyclonic vorticity. When the

particle moves toward the equator its equatorial projection decreases,

and it gains cyclonic vorticity.

11-22. Air current crossing the equator. As an example of the use

of the vorticity theorem, consider a non-diverging current crossing the

equator. Near the equator we have approximately cos^>=l, so

11-21(6) becomes

m *--*?,(1) dt' a
v

If the current crosses the equator from south to north, the vorticity of

the particles moving with the current will decrease in both hemispheres.

If the vorticity is zero at the southern origin of the current, the particles

will arrive in the northern hemisphere with negative vorticity, which

here is observed as anticyclonic. If the current crosses the equator from

north to south, the particles will arrive in southern latitudes with posi-



Section 11-22 326

tive vorticity, which here means anticyclonic vorticity. Therefore air

which has newly crossed the equator has a tendency to show anticy-

clonic vorticity. According to 11'18(2) this vorticity shows up in the

current as anticyclonic curvature or anticyclonic shear. In a broad

current the shear is generally small, and the vorticity appears mainly as

anticyclonic curvature of the current. A good example of this effect

is found in the summer monsoon in India. As the thermal low develops

over the Asiatic continent, a branch of the south-east trade wind of the

southern hemisphere is forced to bend northward. As this current

crosses the equator, it bends anticyclonically and arrives over India as a

monsoon from the southwest.

1 1 23. Air current crossing a mountain range. If a broad and fairly

straight current of air crosses a mountain range, it is well known from

weather maps that a trough develops in the streamlines on the lee side of

the mountain. This deformation of the current is easily explained in a

qualitative sense from the vorticity theorem.

FIG. 11*23. Air current crossing a mountain range.

For simplicity it will be assumed that the current is a straight zonal

current flowing from west to east, and that there is no horizontal shear

in the current. Let this current be obstructed by a mountain range

running normal to the current, as in fig. 11-23. Although the results

will be valid in both hemispheres, we shall consider only the conditions

in the northern hemisphere. We shall neglect the influence of friction

in the surface layer and shall study the pure inertial effect caused by the

presence of this obstacle. An air particle near the ground will flow

uphill on the windward side and descend on the lee side of the mountain.
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If the stratification of the air is stable, the flow at higher levels will be

less modified by the obstacle, and above a certain level the deformation

is negligible. The air below this level is subjected to vertical shrinking

and horizontal divergence during its approach to the crest of the moun-

tain, and to vertical stretching and horizontal convergence during its

descent on the lee side of the mountain. The corresponding changes of

the vorticity during the crossing are given by the vorticity theorem

11-21(5):

dt a
y

Since the current is zonal, vy 0, and the theorem reduces to

d
(2) (r ~H 2 2 sin ^)V//*v

Hence the air particles gain anticyclonic vorticity on the windward side

of the mountain, where the horizontal divergence is positive, and they

gain cyclonic vorticity on the lee side of the mountain, where the hori-

zontal divergence is negative. Since the current arrives at the obstacle

without curvature or shear, and hence without any vorticity, the air

particles acquire increasing anticyclonic vorticity during their climb.

They pass over the crest of the mountain with a maximum of anti-

cyclonic vorticity, which they subsequently lose during their descent on

the lee side.

If the current and the mountain have infinite lateral extent to the

north and to the south, no horizontal shear develops during the crossing.

Thus the vorticity can show up only as a change of curvature of the

current as indicated in fig. 11 -23: increasing anticyclonic curvature on

the windward side, maximum of anticyclonic curvature on the crest,

and decreasing anticyclonic curvature on the lee side.

If equation (2) were valid during the entire crossing, the particles

would lose exactly the same amount of vorticity during the descent as

they gained during the ascent, and the current would leave the mountain

as the straight current indicated by the broken streamlines. However,
as soon as the anticyclonic turning begins, the particles obtain a velocity

component toward the south, and the subsequent deformation of the

current is controlled by the complete vorticity theorem, equation (1).

Since vy < 0, the latitude term is positive during the entire crossing. It

counteracts the effect of the divergence until the crest is reached, but it

cannot reverse the sign of this effect. Beyond the crest the latitude

term and the divergence term have the same sign. The particles thus

gain more vorticity during their descent than they lost during the ascent,
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and the current will leave the mountain with cyclonic curvature, as

indicated by the full streamlines in the figure.

In the absence of other kinds of divergence beyond the mountain

range, the vorticity is from then on controlled only by the change in

latitude. As a consequence the current gains cyclonic vorticity and

curvature as long as the particles move south, that is, until the wind

becomes a pure west wind. At this point the current has a maximum of

cyclonic curvature and will consequently bend north. As the particles

move north they lose their cyclonic vorticity and subsequently gain

anticyclonic vorticity, so that the current eventually bends back anti-

cyclonically again, and so on.

The effect of the mountain range upon an air current crossing it is thus

to generate a stationary wave in the current beyond the mountains,

beginning with a cyclonic trough immediately behind the mountain.

Only this first cyclonic trough is usually well developed on the weather

maps. The rest of the wave train is probably damped out by friction

and other kinds of horizontal divergence which have not been considered

here.

The stationary wave which develops in a current crossing a mountain

range must evidently satisfy the tendency equation 10-07(3). Since the

wave is stationary the pressure tendency must be zero throughout; thus

(3)

00

/

The vertical motion at any point must have just the right value to

balance the effect of divergence in the vertical column above the point.

In a qualitative sense it is seen that this condition is satisfied. The

upslope wind on the west side of the mountain will cancel the effect of

the horizontal divergence in the vertical column above, and likewise the

downslope wind on the lee side of the mountain will cancel the effect of

the horizontal convergence in the vertical columns in this region.

11*24. Non-diverging wave-shaped flow pattern. In section 10-10

we made use of the concept of transport capacity in isobaric channels to

examine the conditions for longitudinal mass divergence in wave-

shaped patterns. In particular, we obtained the critical condition for

zero longitudinal mass divergence by this transport method. A similar

result may be derived from the vorticity theorem, as shown by Rossby.
In this section we shall consider some of the physical implications of this

vorticity method, and also attempt to bring out the points of similarity and

difference between the two methods.
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Consider a westerly current without horizontal shear, upon which is

superimposed a wave disturbance of infinite lateral extent. The stream-

line amplitude is then independent of latitude. In such a wave the

transversal divergence (section 10-12) is zero, and the total horizontal

divergence is equal to the longitudinal divergence. We shall assume that

there exists a level where the velocity divergence is zero and examine the

conditions at that level.

We first note that, since both the transversal divergence and the

longitudinal divergence are zero at that level, the zonal velocity com-

ponent must be constant throughout the level, having the value v of the

actual speed at the trough line and the wedge line. Fig. 11-24 shows an

FIG. 11-24.

arbitrary streamline at the level of non-divergence, and also the path of

the particle which at the time of the diagram is located at the inflection

point of the streamline. The relation between the wave length LS of the

streamline and the wave length L of the path is obtained as follows:

Let T be the period during which the particle traverses one complete
wave length of its path; thus

(1) L=vT.

The particle arrives at the northern bend of the path after the time

^r. The arrival of the particle at this point is simultaneous with the

arrival of the streamline crest, because the wind must be from the west

on this meridian at that time. Therefore the wave, moving with the

speed of propagation c, travels the distance \(L- LS) during the time

J7*; hence

(2) L - Ls - cT.

Taking the ratio between (2) and (1) and rearranging, we find

(3) ^l.Llf.
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The relation between the amplitude A s of the streamline and the

amplitude A of the path is obtained by considering the relative stream-

lines. As stated at the end of section 10*15, the relative streamlines

are also the relative paths, and they therefore indicate the true meridional

displacement of the air particles. So the amplitude AR of the relative

streamline is equal to the amplitude A of the path. From 10-15 (2)

we have then

(4)

Accordingly, the amplitudes of the streamline and the path have the

same ratio as their wave lengths, the ratio being that of the relative

zonal wind to the actual zonal wind.

At the level of non-divergence the vorticity theorem 11-21 (1) becomes

-(f+2nsin^) = 0.

According to this theorem the absolute vorticity, f -f 2Q sin^>, remains

constant for any given individual particle while it moves along the path.

Since the current has no shear at the trough line and at the wedge line,

the relative vorticity f at these lines is, from 11-18(2),

Equating the absolute vorticity of the particle at the southern bend P
of the path (where the particle passes the longitude of the trough line)

to its value at the northern bend Pf

of the path (where the particle passes

the longitude of the wedge line), we have

(5) vKs + 20 sin <?P vK's + 2fi sin <pp.

This formula resembles 10-10(2') for the transport capacity in a wave-

shaped isobaric channel. When the longitudinal divergence is zero that

formula becomes

(6) Kv + 2Q sin <t>s - Kf
v + 212 sinw

<?s and <ps' are the latitudes respectively of the northern and the southern

bends of the isobaric channel (assumed coincident with the streamline).

Although the two formulas (5) and (6) are similar, they are the state-

ments of different physical principles. The vorticity formula (5) is

satisfied when the horizontal velocity divergence is zero and the current

is barotropic. This formula contains the curvatures of the streamline

and equates the absolute vorticity at the southern and northern bends

of the path at the times when the moving particle occupies these points.
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The transport formula (6) is satisfied when the longitudinal mass diver-

gence is zero. This formula contains the curvatures of the path and

equates the transport capacities at the southern and northern bends of a

streamline at one fixed time.

In general the two principles are not equivalent, for zero mass diver-

gence usually does not mean zero velocity divergence. However, in the

special case considered here the two formulas (5, 6) are equivalent. To
show this we first rearrange the terms and write the two formulas as

follows:

(7) (Ks KS)V = 212 (sin <pp > sin <pp)
= 412 cos sin o>,

(8) (K K f

)v = 212 (sin <?$' s^n <f>s)
= 412 cos <p sin 03.

V is the central latitude of the streamline and the path, and o>, as are

the angular amplitudes respectively of the path and the streamline.

Taking the ratio between (7) and (8), we find

K - K' sin ffSW ~ ^7 =
/vs &s sin <fP

The formulas 10'10(6) give the kinematic relations which exist between

the curvatures of the streamline and the path at the two bends. Substi-

tuting in (9) for K and K 1
from 10-10(6), we find:

(10)
sin <rp

A comparison of this formula with (4) would seem to indicate that (10)

is slightly incorrect. The error is however only apparent. As in for-

mula 10-11 (7), the apparent error comes from a combination of spherical

and plane methods. The two formulas (5, 6) are valid on a spherical

level. When they are applied to streamlines and paths in a
"
plane

level/' for which the formula (4) is derived, a slight inconsistency will

result.

The formula (9) is then correct at a level of non-divergence, and

accordingly the two formulas (5, 6) are consistent. Later, in chapter 12,

it will be shown how the condition for non-divergence is derived directly

from the vorticity theorem.

11-25. Export. The vector area A of a closed curve was defined in

section 1 1-13 as a vector normal to the plane of the curve arid numerically

equal to the area enclosed by the curve. Consider any closed fluid curve

which moves along in a current. During a time element dt a vector line

element Sr of the curve sweeps over the vector area vdt x 5r. The rate at
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which the vector area of the curve changes is accordingly

This result can also be obtained by differentiation of equation 1 1 -13 (4) .

We shall apply (1) to any horizontal curve in a horizontal atmospheric
current. Taking the integration in the cyclic sense of the positive verti-

cal, we have for such curves thatA = Ah, where A is the area enclosed by
the curve. Performing scalar multiplication in (1) with the vertical

unit vector k, and interchanging the dot and the cross in the scalar triple

product under the integral, we find

(2)
d̂t

Let n be a horizontal unit vector normal to the curve, directed out from
the region enclosed by the curve, and let 6s be the length of the vector

element 5r. Then dr xk = nfo, and accordingly

(3) k x v5r = vSr xk = vnSs = vn?>s.

It follows then that only the velocity component vn normal to the curve

is subjected to the integration in (2). The integral in (2) is called the

export, and will be denoted by E. Thus by definition

/dAkxv8r-
dtI,

There is a close mathematical analogy between the export and the circu-

lation. Both are represented by line integrals around a closed curve, one

integrating the normal component of the velocity and the other the

tangential component.
The export has an additive property similar to that of the circulation,

1 1 1 6 ( 1 ) . Let the area A which is enclosed by the curve be divided into

infinitesimal elements 8A by two families of curves, as in fig. 11-16.

The sum of the exports 8E from these elements is equal to the export E
through the original boundary of the whole area. For in the sum the

transport through each side common to two elements comes in twice

once for each element and therefore disappears from the result.

There remain then only the transports through those sides which are

parts of the original boundary, and consequently

(5) E - / dE.
JA

The export dE from the element dA is, from (4), given by
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d(8A)/dt. And the export per unit area has the limiting value

The expression on the right is, from 10-03(3), the horizontal divergence
of the velocity field. When dE is solved from (6) and substituted in

(5), we obtain:

(8) E= I V//-V&4.
JA

This theorem was derived by Gauss (1813) and states: The export

through a closed horizontal curve bounding an area is equal to the integral

of the horizontal divergence over that area.

The two-dimensional theorem stated here is only a special case of

Gauss's theorem. The general three-dimensional theorem states that

the export through a closed surface bounding a region is equal to the

volume integral of the divergence over that region.

1 1 '26. Irrotational vectors. A vector a is called irrotational in a given

region if, for all closed curves in that region, the circulation integral of

the vector is zero:

(1) / a-5r=0.
JC

We have shown earlier that the circulation integral of a potential

vector Ve is zero for any closed curve in the field of e. The potential

vector is accordingly irrotational. We shall now prove the converse

statement, namely, that any irrotational vector a is potential. That is,

we shall prove that the vector a can be represented as the ascendent of a

scalar function s, which is called the potential of a.

Consider an arbitrary closed curve in the field of the irrotational

vector a. Any two points P and P on this curve divide the curve into

two branches. Since the circulation integral (1) is zero, the procession

integral of a from P to P along one branch is the negative of the pro-

cession integral from P to PQ along the other branch. The integral from

PQ to P has accordingly the same value along both branches of the closed

curve. Since the closed curve is arbitrary, we conclude that the proces-

sion integral of an irrotational vector is independent of the path. Let

P be a fixed point and P a variable point. For any path from PQ to P,

the integral

(2) e
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is then independent of the path. The integral e is therefore a function

only of the position of the variable point P. The total differential of e

is from (2)

(3) te - a^r,

where 5e is the variation of e through the displacement 8r. But, accord-

ing to 443(1), the total differential of the scalar function e can also be

written

(4) 8s = Ve'5r.

Since (3) and (4) hold for every direction of 6r, we have

(5) a = Ve,

which proves the statement made at the outset.

The irrotational vector has thus two fundamental properties: (i) Its

circulation integral around every closed curve is zero, (ii) It can be

expressed as the ascendent (or gradient) of a scalar function, called the

potential of the irrotational vector. Either one of these properties might
be used as the definition of irrotational.

1127. Velocity potential. It was shown in section 11*11 that the

absolute circulation of individual fluid curves is conserved in an auto-

barotropic fluid. If the motion of such a fluid is started from absolute

rest, the circulation of any fluid curve is initially zero and will then

remain zero during the subsequent motion. The velocity is therefore

an irrotational vector, and so the motion is called irrotational. For

such a motion there exists, as shown in the preceding section, a scalar

function <p> such that

(1) va -V^.

The function <p is called the velocity potential. Therefore irrotational

flow also is called potential flow.

The above considerations lead to the following important conclusion :

If an autobarotropic fluid (without friction) is started from rest, its

motion is potential at any later time.

The existence of a potential makes the study of the motion rather

simple. This is because the potential is a single scalar function, whereas

the components of the velocity are a set of three scalar functions. The

study of the motion of autobarotropic fluids has for this reason been

brought to a high level of perfection in the field of classical hydrodynam-
ics. However, the atmosphere is in general baroclinic, and the solutions

of potential flow have therefore only limited interest for meteorology.
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11-28. Stream function. Another application of the irrotational

vector, which is useful for the study of atmospheric motion, will now be

discussed. Consider any horizontal current in the atmosphere, and
assume that in this current a level exists where the horizontal divergence
of the velocity is zero. From Gauss's theorem 11 -25 (8) the export

through any closed curve in that level is zero. Therefore, from 1 1 -25 (4) ,

(1) / kxv6r=0
Jc

for every closed horizontal curve in the level of non-diverging flow. The
horizontal vector k x v is then irrotational at the level of non-divergence

and, as shown in section 11-26, there exists a scalar function
\l/

at that

level such that

(2) kxv=-V^.

The velocity is perpendicular to the vector -V& and is therefore every-

where parallel to the lines of constant \l/. These lines are consequently
the streamlines, and the function \l/ is for this reason called the stream

function. We have then the following important rule: If a level of non-

divergence exists in a horizontal current, the motion at that level can be

described by a scalar stream function which is constant along the stream-

lines. The stream function was introduced in this way by Lagrange

(1781 ) and is sometimes called Lagrange's stream function. The stream

function has, from (2), the dimensions

(3) M -

The variation of the stream function from streamline to streamline is

obtained by integration of (2). If P is a fixed point on the streamline

^o and P is a variable point, the value of ^ at P is given by
p P

[kxvdr=[vt"~

"J
XV

~J
Vn S '

Po Po

In the second integral vn represents the velocity component normal to the

path of integration; see 11-25(3). The variation of the stream function

fronTstreamline to streamline accordingly measures the velocity trans-

port in the channel between the two streamlines. That this transport is

constant all along the channel is just another statement of the fact that

the flow is non-diverging.

The existence of a stream function in a surface of non-diverging flow

holds quite generally without any restriction as to the shape of the sur-

face. The stream function may always be expressed analytically in
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terms of curvilinear coordinates in the surface. If the levels are con-

sidered as spherical, the stream function in a level of non-diverging flow

is most conveniently expressed in spherical coordinates. If only a

limited region of the earth is considered, the level may in the first approx-

imation be assumed a plane surface. The stream function can then be

expressed as a function of the rectangular coordinates #, y of the standard

Cartesian system. In this case the rectangular components of (2)

become

As a check we may substitute these values for the velocity components
in the Cartesian expression for the horizontal divergence,

10-03(1) v//
.v =^ + ^.bx by

It is seen that the horizontal divergence is zero when the velocity field

satisfies the conditions (4).

The Cartesian expression for the vorticity is given by

iM7(2) r-!r-!r-Ox Oy

At a level of non-divergence where the velocity field is represented by a

stream function ^, the vorticity may be expressed in terms of the stream

function. When the values (4) of the velocity components are sub-

stituted, we find that

If the vorticity is equal to zero, (5) becomes Laplace's differentiafequa-
tion for two dimensions. Accordingly, the flow at the level of non-

divergence is irrotational if the stream function satisfies Laplace's

equation.



CHAPTER TWELVE

THEORY OF WAVES IN A ZONAL CURRENT

12*01. The atmospheric equations. The final goal of dynamic

meteorology is the theoretical prediction of the weather, that is, from

dynamic theory to determine the state of the atmosphere at some future

time when its initial state is known. We are still far from the solution

of this most general problem in atmospheric dynamics.

According to a fundamental mathematical principle a problem has no

definite solution unless the number of independent equations is equal to

the number of unknown variables. The unknown future state of the

atmosphere is described by the velocity and the three physical variables

of state. To solve for the vector variable v and the three scalar variables

p, a, r, one vector equation and three scalar equations are required.

The one vector equation is the equation of motion. The three scalar

equations are: the equation of continuity, the equation of state, and the

equation of energy. The solution of the general problem of atmospheric

motion calls for the integration of these simultaneous atmospheric

equations.

However, the atmosphere is much too complex a
"

fluid system
"
to

allow complete integration of the atmospheric equations with our

present knowledge. Not only is it heterogeneous and of variable com-

position due to condensation and evaporation, but it is also a
"
thermally

active
ff

fluid continually receiving or losing heat. The atmospheric

heat exchange is maintained primarily by radiation and condensation,

which both depend upon the amount of water vapor in the air. The

spatial distribution of the water vapor is continually being changed by
the motion of the atmosphere. The motion, on the other hand, is pri-

marily caused by the thermal action of heating and cooling and thus

depends upon the moisture distribution. This interdependence between

the motion and the distribution of water vapor leads to insurmountable

mathematical difficulties in any complete theoretical analysis of atmos-

pheric motion. However, some knowledge about the dynamic behav-

ior of the atmosphere can be gained without complete integration.

The earlier chapters in this book illustrate one type of theoretical

approach. A number of simple dynamic rules were developed from the

several atmospheric equations. These rules were used to study the

337
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motion which is actually observed in the atmosphere. The problem was
to understand the observed behavior of the atmosphere and explain the

evolution of the weather in terms of these dynamic rules. The study of

wave motion in the westerlies in chapter 10 is a good example of this

type of mixed theoretical-empirical approach.
If we wish to study the atmosphere with strictly theoretical methods,

we must make some simplifying assumptions. Actually the equation
of energy introduces an additional variable: the heat imparted to the

moving particle. This would require further equations from the field

of conduction and radiation of heat. It is therefore customary to elimi-

nate the heat from dynamic problems by assuming that the changes of

state of the air are prescribed. The temperature may then be elimi-

nated from the equations of energy and state. The resulting equation,

which gives the specific volume (or density) of the air particles as a func-

tion of their pressure, is called the equation of piezotropy, and an atmos-

phere whose physical behavior is restricted in this way is called a piezo-

tropic atmosphere. For example, if the air particles are restricted to

adiabatic changes the piezotropic equation is Poisson's equation. It

should be noted that no work is performed by the air in a piezotropic

atmosphere. The equation of piezotropy is for each particle represented

by a line in the thermodynamic diagram. The particle can perform

only processes along that line, and hence no cyclic process encloses any
area. Therefore the piezotropic atmosphere, which is the only case as

yet accessible to rigorous dynamic analysis, is thermally inactive.

Even for the piezotropic atmosphere we find that the complete inte-

gration of the atmospheric equations is too difficult. However, we

already know one simple solution of the atmospheric equations, namely,

steady zonal motion; see 11-07. Here the fields of pressure and mass

are symmetric about the axis of the earth, and the air moves along the

circles of latitude without any changes of state. The equations of con-

tinuity, state, and energy are then automatically satisfied. And the

equation of motion is satisfied when the variation of the wind in the

direction of the axis has the value prescribed by the solenoids; see

11*08(4). This solution also has great practical value, for it represents

the first approximation to the motion actually observed in the atmos-

phere, when the variations arising from the asymmetric distribution of

continents and oceans are eliminated. The moving cyclones and anti-

cyclones which cause the daily changes in the weather are superimposed
on this zonal motion. We know that these disturbances have closed

circulation only in the lowest part of the atmosphere, and that in upper
levels they are surmounted by wave-shaped flow patterns superimposed

on the general westerly current. We also know that these upper waves
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initially have small amplitudes, so that the wave motion may be regarded
as a small perturbation superimposed on a steady zonal current.

The first step in a rational theory of atmospheric motion is therefore

the study of wave-shaped perturbations with small amplitudes super-

imposed on a zonal current. In this problem the general atmospheric

equations are reduced to linear equations which can be treated with

relatively simple mathematical methods. V. Bjerknes has developed
the general form of the linear atmospheric perturbation equations for

small perturbations superimposed upon a completely arbitrary motion.

With the aid of these perturbation equations H. Solberg and later C. L.

Godske and B. Haurwitz have solved a large number of atmospheric

problems in particular, problems connected with wave motion in a

sloping frontal surface separating two zonal currents. The solutions of

these problems have thrown much light upon the dynamics of the forma-

tion and development of cyclones. A complete treatment of the per-

turbation theory, and some aspects of the dynamic cyclone theory is

given in Physikalische Hydrodynamik* chapters 7-13.

In the present chapter we shall consider only waves in a zonal current

without internal frontal discontinuities. The complete solution of

waves in a barotropic zonal current is discussed in sections 12'05-12-07.

The dynamics of wave motion in baroclinic currents is discussed quali-

tatively later in section 12*08.

12*02. Autobarotropy. An atmospheric current has been called

barotropic when the surfaces of constant specific volume (the isosteric

surfaces) coincide with the isobaric surfaces throughout the current.

In the general baroclinic case the isosteric surfaces intersect the isobaric

surfaces, and the current contains solenoids.

In the barotropic case the geometric distribution of density is deter-

mined completely by the pressure distribution. Accordingly there

exists for each barotropic situation a relation of the form p = p(p),

known as the equation of barotropy. For example, an atmospheric layer

in hydrostatic equilibrium and having a constant lapse rate of virtual

temperature is barotropic. Its equation of barotropy is given by

448(6) when the virtual temperature is eliminated by means of the

equation of state.

Both barotropic and baroclinic currents may be specified to be

piezotropic; that is to say, the physical changes of the individual moving

particles may be prescribed by an equation of piezotropy (section 12-01).

A current which at a given moment is barotropic does not, in general,

* V. Bjerknes, J. Bjerknes, H. Solberg, and T. Bergeron, Physikalische Hydro-

dynamik, Springer, Berlin, 1933.
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remain barotropic even if its changes are piezotropic. Assume, for

instance, that the air within a dry atmospheric layer in hydrostatic

equilibrium changes state adiabatically. The layer is then both baro-

tropic and piezotropic. When this layer is disturbed, it will remain

barotropic if the lapse rate is dry adiabatic. But for any other value of

the lapse rate the layer will become baroclinic.

In general a barotropic atmosphere will not remain barotropic unless

its equation of barotropy is identical to its equation of piezotropy. If

this condition is satisfied, the atmosphere is said to be autobarotropic.

The corresponding equation of autobarotropy describes both the geo-

metric distribution of the mass field in terms of the pressure field at any

given time and also the physical change of each individual air particle

during its motion. Simple examples of autobarotropy are: (i) an

incompressible homogeneous atmosphere, (ii) an adiabatic atmosphere
with adiabatic changes of state, (iii) an isothermal atmosphere with iso-

thermal changes of state.

The barotropic currents which are investigated in the following sec-

tions are always assumed to be autobarotropic. For convenience they

will nevertheless be referred to simply as barotropic currents.

12*03. Boundary conditions. In order to obtain explicit solutions

of the atmospheric equations boundary conditions must be introduced.

At an internal boundary (or frontal surface) separating one air mass

from another air mass with different motion and physical properties

two boundary conditions must be satisfied, namely, the dynamic and the

kinematic boundary conditions; see sections 8-08, 8-10. The solutions

of cyclone waves in the polar front must satisfy both these boundary
conditions.

At an external boundary or free surface the kinematic boundary con-

dition is automatically satisfied, for the motion of a free surface is not

restricted. The dynamic boundary condition at a free surface requires

simply that the pressure be zero. The only free surface of the atmos-

phere is its outer limit.

At a fixed rigid boundary the dynamic boundary condition is auto-

matically satisfied, for the fixed boundary can take up any pressure

exerted by the fluid. The kinematic boundary condition at a fixed

boundary requires that the velocity component normal to the surface be

zero. The only rigid boundary of the atmosphere is the surface of the

earth. On a level part of the surface of the earth the boundary condi-

tion is therefore that the vertical motion is zero.

In the single layer problem to be discussed below the only two bound-

ary conditions to be satisfied are then : (i) p = at the top of the atmos-

phere, (ii) vg at the surface of the earth.
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12*04. Sinusoidal waves in a westerly current. Some of the proper-

ties of waves in a westerly current were derived in chapter 10 with the aid

of the transport method and the tendency equation. We shall now
derive these results more rigorously by solving the atmospheric equations

for small perturbations of a zonal current. We shall frequently refer to

the earlier results during the development in the following sections.

Whenever possible we shall use the same notations as in chapter 10.

In chapter 10 it was unnecessary to specify the analytical expression

for the streamlines or the isobars. The results hold on a spherical earth

for any wave-shaped flow pattern symmetrical about the north-south

trough and wedge lines. Only in section 10-11 was the theory specialized

to a sinusoidal wave on a flat earth. In the following we shall restrict

our investigation to simple harmonic waves with sinusoidal streamline

patterns. For such waves we shall be able to undertake a more complete

quantitative analysis than was ever possible in chapter 10, and the

mathematical treatment can be extended to levels of diverging flow.

Although much of the theory has been developed for a spherical earth

by Haurwitz, we shall, in order to simplify the mathematical treatment,

assume that the earth is flat. That is, as in 10-11, we shall consider a

limited region of the earth where the levels may with sufficient accuracy
be assumed to be horizontal planes. Within such a region the circles of

latitude will be considered as parallel straight lines.

As in chapter 10, we shall first examine waves in a barotropic westerly

current, and later proceed to the study of waves in the more real baro-

clinic westerly current.

12 -OS. Waves in a barotropic current. It was shown in section 1 1 -07

that the speed of a barotropic zonal current has no variation in the direc-

tion parallel to the axis of the earth. The speed may have any variation

normal to the axis. We shall now consider a barotropic westerly current

which has no horizontal shear. Therefore in any given level the current

has the same speed at all latitudes. It follows then that the current has

the same speed at all levels within the region we consider.

In this barotropic current we shall examine a sinusoidal wave disturb-

ance which has infinite lateral extent, so that all the streamlines have the

same- amplitude. We shall first assume that a level of non-divergence
exists and study the motion at that level. The wave-shaped flow

pattern at the level of non-divergence can be described by a stream func-

tion (section 11-28). Introducing a standard Cartesian system of

coordinates, we shall show that this stream function has the form

(1) \l/
= v[y

- AS sin k(x d)\\

where A $ is the streamline amplitude; k = 2w/Ls is the wave number
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(see 10-11); and c is the speed of the wave. The constant factor v

must have the dimensions of a velocity to make the expression for the

stream function dimensionally correct; see 11-28(3). It will be shown

presently that v is the speed of the undisturbed current.

At the time t an arbitrary streamline \l/
= const in the flow pattern

(1) intersects the y axis at the ordinate yQ = -$/v. Substituting the

value \l/
- -vyQ ir*(l) and dividing out the constant factor v, we find the

equation for the streamlines:

(2) y - y^ - AS sin k(x - ct).

The different streamlines are obtained by assigning different values to

yQ . They are all congruent sine curves. The streamline passing

through the origin at the time t is the same as that examined in

section 10-11.

The rectangular velocity components corresponding to the stream

function (1) are obtained from the expressions 11-28(4). We find

(3 )

v* ~ *

vv = vkAg cos k(x ct).

The zonal velocity component has the constant value v throughout the

level of non-divergence. Hence the westerly current has the same speed
in all latitudes, in accordance with the assumption made at the outset.

The paths of the individual air particles in the moving flow pattern .(2)

are obtained by integration of the simultaneous system

dx

*-'
(4)

dy - vkAs cos k(x - ct).
at

The x equation can be integrated independently of the y equation. The
air particles which are on the y axis at the time t = have at any later

time / the abscissa

(5) x - vt.

Substitution of this value of x in the y equation gives dy/dt =

vkAs cos k(v-c)t. This equation can now be integrated. The air

particle which has the ordinate yQ on the y axis at the time / has at

any later time t the ordinate

(6) y yo + AS sin k(v c)t.

The equations (5, 6) give the position of the particle with the initial
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coordinates (0,yo) as a function of time. When the time is eliminated,
we have

/*\ V
A -.

(7) y - yo =- As sin- kx.
V C V

This is the equation for the paths of the particles which cross the y axis

at the time t 0. All the paths are congruent sine curves with the

amplitude A = A$v/(v c) and the wave length L = Lgv/(v - c).

This is in accordance with the more general formulas 11-24(3, 4).

The vorticity of the velocity field (3) is obtained from 11-17(2). We
have

(8) f = * - = -vk*A s sin (*
-

ct).
dx by

The vorticity of the flow pattern (2) is thus independent of latitude. Its

maximum cyclonic value, vk
2A$ = vKs, occurs at the trough line, and

its maximum anticyclonic value, vk
2A$ = vK$, at the wedge line;

see 10-11(6). The vorticity is zero halfway between these lines, where

the streamline has zero curvature.

We shall now examine what restrictions the vorticity theorem imposes

upon the flow pattern (2). For non-diverging barotropic flow the

vorticity theorem is

df 212 cos <p

11-21(6)
- +--vv =Q.
at a

The individual change of the vorticity may be separated into local

and advective change by 10-04(2). Since the motion is horizontal we
have

1-1 i-i-l-
When the value (8) for the vorticity is substituted in the three terms on

the right side in (9), and the indicated differentiation is performed, we
find

(10) -7-
-

(c
- v)vk*A 8 cos k(x - ct) - -k2

(v
- c)vy.

at

With this value for df/dt the vorticity theorem becomes

9 / 20a cos3 <p\

(11) -k2

(v-c-
-~

2
-

j
vy
= 0.

In the parentheses the angular wave number n has been substituted for

the linear wave number k from 10-11(3).



Section 12-05 344

If the value of v satisfies equation (11), the stream function (1) repre-

sents a moving wave-shaped flow pattern of such a nature that the

individual particles retain constant absolute vorticity. Of all the flow

patterns represented by (1), only the special one which also satisfies (11)

has physical reality. This solution, characterized both by non-diver-

gence and conservation of individual absolute vorticity, requires that the

west wind relative to the moving wave have the critical speed :

2fla cos
3

(p

(12) v-c-- -=vc .

n

This result, obtained by Rossby, is approximately the same as that

derived from the transport method; see 10-11(7) and 10-10(11). The
earlier result holds for the level of zero longitudinal divergence, which in

the present case of an infinitely wide wave is the level of zero horizontal

divergence.

Since the west wind must have the same speed at all levels in a baro-

tropic current, equation (12) is satisfied at every level if it is satisfied at

any one level. Therefore, as stated in section 10-14, if a level of non-

divergence exists in a barotropic current, the entire flow is non-diverging.
The pressure tendency is then zero at every point in the field, so the

wave is stationary (c
= 0). Therefore in a barotropic current the con-

dition (12) is satisfied for a stationary wave only.

Conversely, if the barotropic wave moves, the flow has horizontal

divergence at all levels, and at no level can the velocity field be repre-

sented by a stream function. However, if the wave has the same

streamline amplitude in all latitudes, we shall show that the velocity

field at a level of diverging flow is given by

vx = v + &vsmk(x-ct),
cos k(x - ct).

Here v is the mean zonal wind; v+ &v and v- Av are the wind speeds

at the wedge and trough lines, respectively. As in 1010(7), &v may
be either positive or negative. Both v and Az> are assumed to be inde-

pendent of latitude. The significance of the amplitude factor A so will

be explained presently.

Since the streamline by definition is tangent to the velocity, the

differential equation for the streamlines is

When the velocity components (13) are substituted in (14), this equa-
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tion can be integrated. The explicit equation for the streamlines of the

velocity field (13) is found to be

v f Az; "I

(15) y - yo = ASO In 1 -f sin k(x - d)
Az; L v J

Here as in (2) yo is the ordinate where the streamline intersects the

y axis at the time / = 0. The amplitude -4^ of the northern bend meas-

ured from th latitude y = yQ is different from the amplitude A 3 of the

southern bend. The two amplitudes are

Az;

(16)

A s = -AsQ-^-
Az;

Evidently all the streamlines in the field (13) have the same amplitudes.

If the horizontal divergence is small, \&v\ is small compared with v. We
then have to the first order of approximation from (16) that A$ = AS
A so, and from (IS) that

(16') y - yo = AS sin k(x - ct).

The streamlines are then approximately the same as the sinusoidal

streamlines (2) at a level of non-divergence. The diverging velocity

field (13) thus approaches the non-diverging velocity field (3) when
A*;->0.

The zonal velocity amplitude Az; is evidently proportional to the

difference in transport across the trough line and the wedge line and is

therefore a qualitative indication of the horizontal divergence in the

current. The relation between Az; and V//*v is obtained by substitution

of the velocity components (13) in the Cartesian expression 10-03(1)

for Vjy'v. We then find that

(17) V//-V - r + r - Ai* cos k(x - ct\
b# by

or when vv is substituted from (13),

(18)

This formula shows that the divergence is zero at the trough line and

wedge line and has a maximum or minimum value halfway between these

lines.

Another expression for the horizontal divergence is obtained from the
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vorticity theorem 11 -2 1(5):

(19) 7, i vy
at a

It is readily seen from (8) that the diverging field (13) has the same

vorticity as the non-diverging field (3). The individual vorticity change
in the field (13) is then given by the following equation similar to equa-
tion (10):

(20) f =-k2
(vx -c)vv .

at

Substituting this expression in (19) and introducing the critical speed
vc = (22 a cos3 <p)/n

2
, we find

(21) (f + 212JV//-V - k
2
(vx

- c - vc )vy .

This formula confirms the results obtained from the conditions 10-10(11).

In the region to the east of the trough (vy > 0) the longitudinal diver-

gence has the same sign as the deviation vx - c - vc of the relative zonal

wind from the critical speed. The formula (21) gives the quantitative

expression from which the longitudinal divergence can be evaluated when
the deviation vx - c - vc is known.

When the ratio is taken between (21) and (18), we find

(f + 2^)Aw - vk
2A So(vx - c - vc ).

Substituting here the value of vx from (13), we obtain

(22) 2(f -f- 0,)Ai>
= vk

2Aso (v
- c - v ).

This equation demonstrates the physical limitations of the theory pre-

sented here. .From (8) the vorticity is given by

(22') f - -vk2A SQ sin k(x - ct),

a function of (x
-

ci). All the other quantities in (22) are constants

along any given latitude. Equation (22) is then wrong, unless the

velocity components of the wave disturbance in (13) are small. If the

two amplitude factors &v and A$Q are small of the first order, the prod-

uct fAv becomes smalj of the second order and may be dropped from

(22). We then have:

(23) 20,A - vk
2A So(v - c - vc),

which is now consistent. The simple harmonic wave motion (13) is

therefore, strictly speaking, physically possible only when the velocity

components due to the wave disturbance are infinitesimal. Neverthe-

less, it is reasonable to assume that the theory holds approximately also

for waves of not too large finite amplitude.
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12*06. The pressure field in the barotropic wave. When the motion

is specified, the pressure field can be obtained from the equation of

motion. The field of motion in the barotropic wave in the preceding

section is given analytically in terms of the standard Cartesian com-

ponents x,y. Accordingly, we shall use the Cartesian components of the

equation of motion :

7nm ^ ^ 2n/ lOll ) CL Za^Z/fji
dx dt

7-13(2) -a^--^+ 20,1^.
dy dt

The individual time derivatives of the velocity components are sepa-
rated into local and advective derivatives by 10-04(2). Since the motion

is horizontal, we have:

dvx dvx
^

dvx dvx dvx

dt
~

dt
Vx ~

dt
V*

dx
Vy

dy
1

(1)

dvy dvv dvjj dvji dvy
ss

-|- V*V^w == ~h DX ~t~ Vy
*

dt dt dt dx dy

Non-diverging flow: We shall first examine the pressure field of the

barotropic wave 12-05(2) at a level of non-divergence. When the

velocity components 12-05(3) of this wave are substituted in the three

terms on the right side in the equations (1) and differentiations are per-

formed, we find the components of the acceleration at the level of non-

divergence :

,

dt

(2)
dv2 _

(v _ c)vk
2As sin k(x - ct).

dt

The acceleration has no component in the # direction, so the total acceler-

ation is everywhere directed along the y axis.

At the inflection points of the streamlines, halfway between the

trough line and the wedge line, the acceleration is zero. This result may
also be anticipated from earlier knowledge, if we for a moment imagine
the acceleration separated into tangential and normal components. A
particle at the inflection point on a streamline is from 12-05(7) also at

the inflection point of its path. So the curvature of the path and hence

the normal acceleration are zero. Furthermore, vy has an extreme value

at the inflection point. So the actual speed of the air has the maximum
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value v(l + k2
A$)$ at this point, and hence the tangential acceleration is

zero. The flow at an inflection point on a streamline is then both geo-

strophic and gradient. Consequently the isobars are parallel to the

streamlines at the points of inflection on the streamline.

At the trough and wedge lines the acceleration has its extreme values.

At the trough line it is

(3) *

trough

and at the wedge line it has the same numerical value, with negative

sign. At every point on these lines the acceleration is directed normal

to the path, so the tangential acceleration is zero. This also follows

from the fact that the air speed has the minimum value v at the trough

and wedge lines. At these lines the paths 12-05(7) have, from 10-11 (6),

the curvature d?y/dx
2

. At the trough line the curvature is K -

(v c)k
2
Ag/v. This verifies the last expression on the right in (3),

the normal acceleration. Thus the tangential acceleration is zero, so the

isobars are parallel to the streamlines at the trough and wedge lines.

Hence these lines are also the trough and wedge lines of the pressure

pattern.

The acceleration field (2) thus immediately reveals several charac-

teristics of the pressure field at the level of non-divergence. The isobars

are in phase with the streamlines, and have the same wave length. They

Streamline

Isobar

FIG. 12-06a. Isobar in sinusoidal non-diverging current.

are parallel to the streamlines at the points of inflection on the stream-

lines. The speed of the air has a minimum at the trough and wedge
lines, and a maximum halfway between these lines, at the inflection

points. Therefore air approaching the trough and wedge lines flows

across the isobars toward higher pressure, and air leaving these lines

flows across the isobars toward lower pressure. A pressure field which
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satisfies these specifications is shown qualitatively by the isobar in

fig. 12-06a. The isobar is, of course, only roughly sinusoidal.

The analytical expression for the pressure field is obtained when the

acceleration components (2) and the velocity components 1205(3) are

substituted in the component equations of motion. We find then

(4)

ftp
-a ~- = -2Q9vkA a cos k(x - ct),

ox

-a - -
(v
- c)vk?A s sin k(x - ct) +

fty

We shall first integrate these equations for the special case of a homo-

geneous and incompressible current. Later it will be shown how the

result is modified for an arbitrary barotropic current.

At any given time the pressure variation dp between any two neighbor-

ing points separated by the horizontal vector element Sr is given by

ftp ftp

(5) Bp = V///>-5r =
-^

dx + ^ dy.

Let po denote the pressure at the origin at the time / = 0. The pressure

at the same time at any other point (x,y) in the level is obtained by
taking the line integral of dp along any path from the origin to the point

(x,y). The integration is particularly simple when the path is taken

along the y axis from the origin (0,0) to the point (Oj), and from there

parallel to the x axis to the point (x,y). We note that dx = along the

first part of this path (which coincides with the y axis), and that 8y =

along the second part of the path (which is parallel to the x axis). The
line integral of (5) from the origin to the point (x,y) is then

(0,y) (x,y)

f ?>P

(6) P-PO-
J fy y

(0,0) (0,1,)

When this equation is multiplied by the constant factor -a and the

expressions (4) are introduced, both integrals are easily evaluated. The
results written in the reverse order are:

(7) a(pQ - p) = 2$lzvAs sin k(x ct) -f 2ftra (cos <pQ cos ^>),

where <?Q and <p are the latitudes respectively of the origin and the

ordinate y.

The expression (7) may be checked by differentiating it partially with

respect to x and y, and comparing the results with (4). The partial

derivative of (7) with respect to x gives the x component of (4). But
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the partial derivative of (7) with respect to y is

5/> 212 cos v> . . ,.
a -- ik4s sin k(x ct)

To make this expression the same as the y component of (4), we must
have:

/ON / M.2
212 COS p 2

(8) (v
- c)k

z - = z/c .

a

This condition has already been derived twice earlier, first by the trans-

port method 10-10(11), and then in the last section 12-05(12) by the

vorticity method.

The condition v c - vc = at the level of non-divergence is thus

derived here independently for the third time, and this time directly from

the equations of motion (4). Only when the value of v satisfies this con-

dition will the velocity field 12-05(3) represent a solution of the equation

of motion. Only then will the velocity field be adjusted to a pressure

field (7) which is dynamically possible and consistent with the motion.

When the condition v - c - vc
= is satisfied, equation (7) gives the

analytical expression for the pressure field in a homogeneous wave. For

an arbitrary barotropic wave the development is similar. The equation

of autobarotropy gives a as a function of p. We may therefore define a

function TT of p as follows:

(9) \CLt

The function ir is called the barotropic pressure function. It is equal to

the dynamic elevation of the top of the atmosphere above the point

with the pressure p. We have STT - a8p, and therefore dir/dx = adp/dx,

d7r/dy = abpfoy. When these expressions are substituted in (4) the

integration may be carried out exactly as in the homogeneous case, and

we find the following equation similar to equation (7) :

(10) VQ - IT - -2Q,zvAs sin k(x - ct) + 212m (cos <pQ
- cos <p).

Here TTO = ic(po) is the value at the origin at the time / 0. An isobar,

9T - const, of the barotropic field (10) has the same shape as the corre-

sponding isobar in the homogeneous field (7). Only the spacing of the

isobars is different.

Consider the isobar PQ passing through the origin at the time t 0;

from (7) it has the equation:

2!2a (cos <p
- cos <?$) -212^5 sin k(x - ct).
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IntroducingA $ = a tan <TS and dividing out the factor 2fia, we find

(11) cos <p cos <PQ
= tan <TS sin <p sin k(x ct).

Since the origin may be placed in any latitude, this equation holds for

any isobar in the field. Equation (11) confirms the earlier results as to

the relation between the pressure pattern and the flow pattern: The
two patterns are in phase and have the same wave length. The equa-
tion shows further that the shape of the isobar is independent of v and c.

Therefore, the shape of the pressure pattern is completely determined

by the shape of the flow patterns, and it is independent of the propaga-
tion of the flow pattern and the intensity of the flow.

To investigate how much the pressure pattern deviates from the flow

pattern, we shall determine the latitudes of the southern and northern

bends of the isobar (11). As in 1(MO, we denote these latitudes respec-

tively by <p and ^/. At the two bends we have then from (11):

cos (p cos tf>n = tan <TS sin ^>,

/ . /
cos <p cos <PQ

= tan S sm <p .

Subtracting the lower from the upper equation, and introducing the

notation of 10-10(4), we find:

2 sin sin <rp = 2 tan 0$ sin <p cos <rp ,

or

(13) tan op = tan <?$

The isobars and the streamlines have the same amplitudes at a level of

non-divergence.

If the wave is stationary this result follows immediately from a funda-

mental theorem by Bernoulli. This theorem is most conveniently
derived from the tangential equation of motion: Using the formula

10-04(2), the tangential acceleration is expressed as the sum of the local

and the advective changes:

dv dv

In steady flow no local changes occur, so dv/bt - 0. The component of

Vfl along v is cto/ds, so the advective change is v*V - vdv/ds. We sub-

stitute this value of the tangential acceleration in 7*13(4) and find

dv dp0--= -a -

5s bs

Introducing from (9) the barotropic pressure function IT we have
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adp/ds - d7r/ds. The above equation then becomes :

(14) s(l
+

This is Bernoulli's theorem in differential form. It may be stated as

follows: When a barotropic fluid has any steady horizontal motion the sum

of the kinetic energy per unit mass and the barotropic pressure function has

no variation along the streamlines. The theorem is named after Daniel

Bernoulli (1700-1783), who founded the science of hydrodynamics.

We shall now apply Bernoulli's theorem to the stationary barotropic

wave. Since the speed is the same at the southern and northern bends

of the streamline, the barotropic pressure function also has the same

value at these points. So the same isobar passes through both bends

of the streamline and has accordingly the streamline amplitude. Ber-

noulli's theorem also shows that the streamlines have their highest

pressure at the trough and wedge where the speed is minimum, and their

lowest pressure at the inflection points where the speed is maximum;
see fig. 12-06a. The pressure drop along the streamline from trough (or

wedge) to inflection point is given by :

For example, at a level where v = 10 ms"1
,
a = 1000 m3 IT1

, a wave at

60 lat having n = 6, 0-5 = 5 would have a pressure variation A = O.S

mb along its streamlines. The deviation of the isobar from the stream-

line in a stationary wave may be estimated by this method.

The deviation of the pressure pattern from the flow pattern is obtained

more directly from the equations (12), which hold for both a moving and

a stationary wave. When these equations are added we find

2 cos ^ cos <7P
- 2 cos y?

= -2 tan 0-5 cos sin <rp .

We substitute here from (13) as = *P > and find after rearrangement of

the terms:

(15) , COS COS <?Q COS <7p .

The central latitude of the isobar is accordingly north of the latitude

<f>Q ,
as indicated in fig. 12-Ofo. Equation (IS) holds for any isobar in the

field. The isobar passing through the inflection points of an arbitrary

streamline deviates at the trough and wedge from that streamline by the

amount ^ - <?Q. The values of -
y? f r different latitudes and ampli-

tudes are shown in table 12-060, computed from (15). The value of

^ <?$ is a good indication of the deviation of the pressure pattern from

the flow pattern. In a given latitude the deviation is determined com-
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pletely by the amplitude of the isobar and is independent of the wave

length, the wind speed, and the speed of the wave. In high latitudes the

deviation of the two patterns is negligible. In low latitudes the devia-

tion is appreciable, particularly when the amplitude is large.

It was shown in section 10-14 that the non-diverging barotropic wave
must be stationary. It may therefore seem unnecessary to investigate

its pressure field as if it were a moving wave. However, the results

derived above will hold approximately at a level of non-divergence in a

baroclinic wave. We shall therefore need the general derivation for

moving waves later in the study of the baroclinic waves.

Divergingflow: We shall now examine the pressure field in the moving

barotropic wave, which has horizontal divergence at all levels. It has

been shown that the velocity field at any level in such a wave is given by
12-05(13) when the two amplitude factors |Ay| and A so are sufficiently

small. For small
|AI>|

the amplitude factor A so becomes the streamline

amplitude A s ;
see 12-05(16). In the following development we shall

accordingly write A so = AS and drop all terms containing squares or

products of Az; and A s. The streamlines of the wave 12-05 (13) are given

by 12-05(15). For infinitesimal amplitudes this expression becomes

(16) y - yQ = AS sin k(x - ct).

The flow pattern has simple sinusoidal streamlines as in the case of non-

diverging flow.

The pressure field is obtained from the equations of motion. We
first substitute the velocity field 12-05(13) in (1) and find the corre-

sponding acceleration field:

- = (D c) &vk cos k{x ct),
at

(17) *2 = _
(
_ c)vk

2As sin k(x ct).
at
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These expressions and the velocity components are introduced in the

component equations of motion, which then become:

d
-a =* \(v - c)Av - 2SlzvAs\k cos k(x - ct),

ox
(18)

-a:~ = -[(t>
- c)D^

2
yl 5 - 2Q,At>] sin *(* - d) + 20,0.

d^

These equations may now be integrated exactly like the equations (4),

and we find an equation similar to (10) :

(19) TTO
- TT = [(v

- c)Av -2QJ)As] sin k(x - ct) + 2fiat> (cos^ - cos^),

where ir is given by (9). The partial derivative of (19) with respect to

x gives the x equation (18). The partial derivative of (19) with respect

to y is the same as the y equation (18) only when

(20) 2Uz&v - vk
2A s (v -c)-QA s = vk

2A s (v -c- vc ).
a

But this is the earlier condition 12-05(23), derived from the vorticity

theorem. Only when the parameters in the velocity field 12-05(13)

satisfy this condition does that field represent a solution of the equation

of motion.

We substitute in (19) the value of Az; from (20) and introduce two

abbreviations:

k n

2Q2

"~

120 sin 2<p*

(22) 77f2
(v-c)(y~c-t;c).

The resulting equation

(23) TTO
- TT = -20,8(1 -

r})A s sin k(x - ct) + 2tiav (cos ^ - cos ^)

gives the barotropic pressure function in the wave with the velocity field

12'05(13). We shall now study the relation between the flow pattern

(16) and the pressure field (23) in this wave.

For the isobar TTO through the origin at t = we find, similar to (11),

(24) cos <p cos <?Q
= -

(1 77) tan crs sin v sin k(x ct).

This equation differs from (11) only in the amplitude factor (1 TJ).

When the development subsequent to (11) is repeated for (24), we find

(25) tan <rp = (1
-

rj) tan cr^,

(26) COS <p
= COS <{>Q COS ffp .
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The deviation - VQ between the central latitudes of a streamline and

the isobar passing through its inflection points is from (26) and (15) the

same in the diverging and the non-diverging wave.

The amplitudes are equal when rj
= 0, that is, when the relative zonal

wind either is zero or has the critical speed vc . In the first case both

amplitudes are zero; see 10*15(3). In the second case the flow is non-

diverging and (25) reduces to (13). For supercritical and for negative

relative zonal wind (77 > 0) the streamline amplitude is larger than the

isobar amplitude. For subcritical, positive relative zonal wind (rj < 0)

the streamline amplitude is smaller than the isobar amplitude; see

fig. 12-066.

For any given value of the relative wind the magnitude of the ampli-
tude difference is determined by the factor

2
in 17. The values of for

different latitudes and wave numbers are shown in table 12-066. For a

TABLE 12-066

= n(Qa sin 2^)~
1 M" 1

s, TABULATED

given wave length the minimum value of occurs at 45 lat and its varia-

tion in the belt from 30 to 60 lat is quite small. To estimate the value

of 77 in this range of latitudes, consider a case where the relative zonal

wind and its deviation from the critical speed both have the order of

magnitude 10m s"1
. For a relatively long wave (n = 6) rj is then about

0.02. For a short wave (n 20) r; is about 0.2. We shall show in the

next section that rf is usually very small in the barotropic wave. So the

amplitude difference is therefore negligible. However, the above analy-

sis also holds approximately at a level of diverging flow in a baroclinic

wave. Since the wind increases with height in these waves, both the

relative wind and its deviation from the critical value may be large at

high levels. Here TJ, and hence the amplitude difference, may be appre-

ciable, particularly for short waves in very high or very low latitudes.

It remains to show how the isobar runs at the inflection points of the

streamline. Let if/s and \l/p denote the angles which the streamline and

the isobar make with the x axis at these points. Differentiation of (16)
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and (24) gives at the inflection point east of the trough:

therefore

(27) tan^p = (1-tj) tantf^.

Accordingly, the angle \l/$ ^p has the same sign as rj. For non-

diverging flow (77
= 0) the isobar is parallel to the streamline at the

inflection point in accordance with the earlier result. For supercritical

and for negative relative zonal wind (77 > 0) the air at the inflection point

Streamline

} isobars

FIG. 12-066. Isobars in sinusoidal diverging current.

east of the trough flows across the isobar toward higher pressure. And
for subcritical, positive relative zonal wind (rj < 0) the air at that point

flows across the isobars toward lower pressure. The three cases are

shown schematically in fig. 12-06&. Since t? is very small in the baro-

tropic wave, the isobars are here nearly parallel to the streamlines at the

inflection point.

12*07. The speed of propagation of the barotropic wave. In the

analysis in the preceding section not all the atmospheric equations at our

disposal have been used. The equations of state and of thermal energy
are automatically accounted for by the equation of autobarotropy.

Besides this condition only the horizontal component of the equation of

motion has been considered so far. The remaining equations are the

vertical (hydrostatic) equation and the equation of continuity. These

equations enable us to find the speed of propagation of the barotropic

wave.
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It was shown in section 10-07 how the hydrostatic equation and the

equation of continuity combine into the tendency equation. We shall

first evaluate the pressure tendency at the surface of the earth. The

tendency equation is here
oo

10-07(4) f-.

Note that by writing the tendency equation in this form we make use of

the boundary condition vz
= at the lower boundary of the atmosphere.

We separate the mass divergence into two terms, as follows:

V//.(pv) - pV//*v + vV//p.

It was stated in the preceding section that the isobars, and hence the

isosteres, are very nearly parallel to the streamlines in the barotropic

wave, so vV//p 0. The justification of this approximation is dis-

cussed at the end of this section. Substituting from 12-05(17) for the

horizontal velocity divergence we find then

V#*(pv) = p&vk cos k(x ct).

The value of &v is given by 12-06(20). It was shown at the outset in

section 12-05 that the barotropic current has the same speed at all

levels. That makes &v also the same at all heights. The tendency at

the surface is therefore

(1) = &vk cos k(x - ct)
I

p8<t>.

o

From the hydrostatic equation we have pd<t>
=

-5/>. Hence the integral

in (1) is equal to the pressure, />, at the ground. Note that we here

make use of the boundary condition p = at the upper boundary of the

atmosphere.
We multiply equation (1) by -a, introduce from 4-19(5) ap**

RdT* = fa, and from 12-06(9) the barotropic pressure function TT.

We then get

(2)
- = fa&vk cos k(x - ct),

Qt

where fa is the dynamic height of the homogeneous atmosphere.
Partial differentiation of 12-06(23) with respect to time gives on the

other hand

(3)
- = 2Q2vAsc(l ~ rj)k cos k(x - ct).
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Since the two expressions (2, 3) must be the same, we have the condition:

(4) <feAf - 2&zvA sc(\ - r;).

Earlier we derived the condition

12-06(20) 2QzAv k2vA s (v -c- vc ).

Only when the parameters in the velocity field 12-05 (13) satisfy both

these conditions does that field represent a solution of the complete set

of atmospheric equations for a barotropic wave.

We now take the ratio of the two dynamical conditions above and

introduce from 12-06(21). The resulting equation is

(5) ^(tJ-c-O-ctt-*).

Note that the complete set of atmospheric equations and also the

boundary conditions at the bottom and at the top of the atmosphere
were needed to derive this equation. Equation (5) then represents the

complete solution for a wave in a barotropic zonal current. It gives c

implicity as a function of latitude, wave number, and zonal wind speed.

However, since t\ contains c
2

, (5) is a cubic equation in c and therefore

rather difficult to discuss in its present form. To facilitate the dis-

cussion we transform it as follows: First we multiply (5) by (v
-

c)

and introduce rj from 12-06(22). We then get

or

We now substitute again for r\ and divide out the factor (v c). The

resulting equation is:

(6) c - ?(<i>h + c(v - c)](v
- c - v ) (exact).

The numerical value of <t>h
= R&T* is about 2802 mV~2

, whereas c(v c)

certainly must be less than say 28
2 m2

s"~
2

. The value of c with an error

of less than 1% is therefore

(7) c~?<t>h(v-c-vc ).

This equation confirms the qualitative rules derived earlier in sec-

tion 10-14. The wave is stationary (c = 0) when the zonal wind has the

critical speed. The wave moves toward the east (c > 0) when the zonal

wind is supercritical and toward the west (c < 0) when the zonal wind is

subcritical. Equation (7) shows further that c is proportional to

v - c - vc . From 12*05(18, 23), that means that the speed of the wave is

proportional to the horizontal divergence in the current, which is just

what the tendency equation predicts in a qualitative sense.
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Solving finally for c from (7), we have

2
</>

(8) c = (v
- vc )

~
(first approximation).

1 + <t>h

Rossby (1939) derived essentially the same formula as (8). The
mts values of for different latitudes and wave numbers are given in

table 12-06&. Corresponding values of the non-dimensional factor in

(8) are given in table 12-07. The table has been computed for <fo =

TABLE 12-07

+ ^h)" 1 TABULATED

2802 = 78,400 m2
s

2
,
which corresponds to a surface temperature of

about 273K. However, the values in the table can be used safely for

any observed surface temperature. The table shows that the non-

dimensional factor in (8) is considerably smaller than 1 for long waves in

middle latitudes, but the factor rapidly approaches 1 for shorter waves.

For waves of the same order of magnitude as those actually observed in

the atmosphere (wave lengths 60 of longitude or less) the wave moves

approximately in accordance with the simple formula

c = v vc (second approximation).

The barotropic waves move then approximately as though the flow were

non-diverging. Physically, this means that the deviation from non-

divergence required to move the barotropic waves along with the speed c

is a small fraction of c if the wave is short but is a considerable fraction

of c for very long waves. The values of vc were given in table 10-11.

It remains to find the value of rj for the barotropic wave. We substi-

tute in (5) for c from (6) and divide out the factor
2

(t>
- c - vc). We

find then

or, when we solve for

m >- c)
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Since c(v - c) usually is less than 1% of <fo, r? will be smaller than 0.01.

Therefore the isobars have practically the same amplitudes as the stream-

lines and they are very nearly parallel to the streamlines at the inflection

points. This makes permissible the neglect of the horizontal density

advection v*V#P in the tendency equation, which is the only physical

approximation made in this section.

12-08. Waves in a baroclinic current. The atmosphere is always
more or less baroclinic, with cold and heavy masses in the polar regions,

and with warm and light masses in the equatorial region. The isobaric

layers are accordingly inflated in the direction from the poles to the

equator. In the case of zonal symmetry the undisturbed zonal current

increases in intensity with increasing distance from the equatorial

plane in accordance with the exact formula:

(dv\

1 /da\
^i)

- -(T)
b<t>/R a\5s/ p

We shall consider only the belt of latitudes which has west winds at the

surface of the earth. Within this belt the west wind increases in all

latitudes with increasing distance from the equatorial plane. In the

direction normal to the axis the speed may have any variation. To

simplify matters we shall assume that the wind is constant throughout
each horizontal level. The vertical shear of the wind, 5v/50, is then also

constant throughout each level. Since the isobaric surfaces are nearly

horizontal we have further coa sin <pp Q,z . The above formula becomes

then approximately :

- -
d</> 2B, T dy 2Qa d(cos^)

which is identical to the thermal wind formula for the geostrophic wind.

The assumption of a constant wind throughout each level therefore pre-

scribes the variation of the temperature with latitude to be as follows:

In T - In TP + p cos ^.

TP is the temperature at the pole and = 212adt>/d<.

If a harmonic wave disturbance is superimposed on this baroclinic

westerly current, the resulting velocity field at an arbitrary level is given

by
vx **v+&o sin k(x ct) t

vy
= vkAs cos k(x - ct) .

The symbols have the same meaning as in 12-05(13). For small
|Air|

we have shown from 12-05(16) that A $ is the streamline amplitude.



361 Section 12-08

The streamlines of the velocity field (1) are, from 12-05(16'),

(2) y yo = .4s sin k(x ct).

Just as in 12 -05 (22'), we find that the velocity field (1) has the vorticity

(3) f -vk2A s sin k(x - ct).

And, just as in 12-05(17), we find that the velocity field (1) has the

divergence

(4) V//-V = Avk cos k(x - ct).

If the motion (1) shall be dynamically possible, the expressions (3, 4)

for the vorticity and the divergence must satisfy the vorticity theorem

11-21(5):

(5)
at a

It should be noted that this theorem is exact only when no solenoids

intersect the horizontal level; see 11-20. In the undisturbed baroclinic

current the solenoids are directed along the latitude circles and do not

intersect the levels. When the baroclinic current is disturbed by the

wave perturbation the field of solenoids is modified too. But the sole-

noids will remain approximately horizontal and very few will intersect the

levels. The vorticity theorem (5) therefore applies, in the first approxi-

mation, to the velocity field (1) of the baroclinic wave. When the values

(3, 4) of the vorticity and the divergence are substituted in (5), and

higher order terms are neglected, we find that:

(6) 2QzAv = vk
2A s (v-c- vc ).

When Az; satisfies this equation, the velocity field (1) represents a flow

pattern which is physically possible at all levels. The critical speed vc

(see table 10-11) is determined by the wave length and the latitude and

has the same value at all levels. The strength of the relative zonal

circulation, v c, increases with height in the baroclinic westerlies. If it

is assumed that the wave moves with a slightly lower speed than the air

at the ground, the relative zonal wind increases from a small positive

value at the ground to a maximum value at the tropopause. The devia-

tion A0 is zero and the flow is non-diverging at the level where the rela-

tive zonal wind has the critical value, v - c - vc = 0. Above the level of

non-divergence the relative zonal wind is supercritical, and At; > 0.

The bottleneck of the flow is then at the cyclonic trough, which there-

fore has divergence to its east. Between the level of non-divergence

and the ground the relative zonal wind is subcritical, and Av < 0. The
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bottleneck of the flow is here at the anticyclonic wedge, and the flow has

convergence to the east of the trough.

The pressure field in the wave with the velocity field (1) is obtained

by the procedure outlined in section 12-06. Just as in 12*06(24), we find

for the isobar through the origin at the time / = the equation :

(7) cos <p cos <PQ
= (1 i?) tan <?$ sin <p sin k(x ct),

where

(8) -n=?(v-c)(v-c-vc ).

The relation between the amplitudes of the streamline and the isobar is:

(9) tan ffp = (1
-

r?) tan S .

The relation between the central latitude <pQ of the streamline and the

central latitude <p of the isobar passing through its inflection points is:

(10) cos <p
= cos <PQ cos >

The deviation between the isobars and the streamlines at the inflection

points is given by 12-06(27) :

(11) tan
\l/p

= (1
-

rj) tan \l/s .

The relation between the pressure pattern and the flow pattern at the

various levels of the baroclinic wave is readily obtained from the three

formulas (9, 10, 11). The deviation between the two patterns depends

I

10 20 0.1
v *

17
*

FIG. 12-08.

upon the value of 17. From (8) rj is zero at the level where the relative

zonal wind is zero and at the level of non-divergence, where the relative

zonal wind has the critical speed. At these levels the isobars are tan-

gential to the streamlines at the points halfway between the troughs
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and the wedges, and the two patterns have exactly the same amplitudes.

Above the level of non-divergence and below the level where the rela-

tive zonal wind is zero rj is positive. And in the layer between those

two levels 77 is negative; fig. 12-08. The corresponding deviation of the

isobars from the streamlines is as indicated schematically in fig. 12 '066.

In the barotropic waves the relative zonal wind never deviates much
from the critical speed. So 77 is always small, and the pressure pattern

coincides approximately with the flow pattern at all levels in the baro-

tropic waves. In the baroclinic waves, on the other hand, the relative

zonal wind may be considerably greater than the critical speed at levels

high above the level of non-divergence; see fig. 12-08. At these levels

the magnitude of 17 becomes appreciable, and therefore the departure of

the pressure pattern from the flow pattern is no longer negligible. As a

general rule the deviation between the two patterns is most pronounced
at high levels when the level of non-divergence is low and the current is

strongly baroclinic.

The above remarks throw some light upon the dynamics of the baro-

clinic waves and on their three-dimensional structure. The principal

problem remaining to be solved for these waves is the determination of

their velocity of propagation. To solve that problem the tendency

equation would have to be integrated for the baroclinic wave. The

integration was rather simple for the barotropic wave, because the

horizontal divergence is independent of height and the flow patterns at

all levels are in phase. In the baroclinic waves not only does the hori-

zontal divergence vary with height, but the troughs and wedges will in

general tilt with height because of the asymmetry between the tempera-
ture field and the pressure field; see fig. 10*17d. The points along
a vertical column will therefore have different positions relative to the

flow pattern at different levels. This makes the integration of the

tendency equation for the baroclinic waves very difficult. When we
have successfully performed the integration, the velocity of propagation
of the baroclinic wave can be determined, and the conditions for dynami-
cal instability of the waves, as derived by qualitative reasoning in sec-

tion 10*17, can be obtained.
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Anticyclonic sense, 191, 317, 323
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Coriolis force, 172, 184

components of, 184

horizontal, 185

Corresponding curvatures, 190

Corresponding latitudes, 190

Corresponding normal pressure forces,

190

Critical constants, for permanent gases,

43

for water substance, 42

Critical eccentricity, 290
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Critical speed, 268, 271, 344
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Density, 3, 9

local change of, 253
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Density advection, 259

Derivative, individual, 146, 253

local (time-), 253

of a vector, 146, 165, 251, 312

Deviation, gcoslrophic, 234, 244

Dew point temperature, 77
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Dry-adiabatic atmosphere, 107
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Dry-adiabatic process, 28

Dry adiabats, 29

Dry air, composition of, 16

equation of state of, 13

molecular weight of, 17

Poisson's constants for, 28, 31

specific gas constant of, 14, 16

specific heats of, 25
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Dynamic boundary condition, 221,
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Dynamic height, 94
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Dynamic instability, 286

Dynamic meter, 95
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angular velocity of, 163, 183

mass of, 153
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specific, 3, 94
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Entropy, 33

specific, 33, 46
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Equation, Clapeyron's, 49, 50-1

hydrostatic, 101, 188

normal, 187, 190, 203

of absolute motion, 154

of continuity, 250, 252, 337

of energy, 22, 337

of relative equilibrium, 101, 156

of relative motion, 171, 174, 337

components of, 186

projections of, 174

of state, 12, 337

of dry air, 14

of mixture of perfect gases, 1 5

of moist air, 63

of perfect gas, 13

of water vapor, 44

Poisson's, 28

tangential, 187, 188, 351

tendency, 256

thermal wind, 212, 214, 216, 311

vertical, 187

Equations, atmospheric, 337

component, of relative motion, 186

of horizontal flow, 186, 187, 188, 203

perturbation, 339

Equilibrium, equation of relative, 101,

156

hydrostatic, 102

indifferent, 127, 131, 138

mechanical, 88

of zonal motion, 308

phase, 42, 48, 50

pressure in relative, 97

relative, 101, 102, 156

stable, 127, 130, 138

thermal, 10

unstable, 127, 130, 138

Equilibrium curves, 298

Equiscalar surface, 83, 96

Equiscalar unit layer, 97

Equivalent potential temperature, 76

Equivalent temperatures, 77

Erg, S

Evaporation, latent heat of, 47

Evaporation curve, 50, 51

Evaporation temperature, 50

Exact differential, 32, 92

Export, 331

Fahrenheit degree, 12

Field, 81

scalar, 83

First law of thermodynamics, 2 1

Flow, antibaric, 190, 204

anticyclonic, 191, 204, 207

baric, 190, 201, 204

cyclonic, 190, 204, 207

cyclostrophic, 199

geostrophic, 176, 192, 233, 245, 263

geostrophic gradient, 210, 348

gradient, 189,265,348

great circle, 233

horizontal, 173

equations of, 186, 187, 188, 203

inertial, 190, 196, 200

irrotational, 333

potential, 334

steady, 189, 208,352

zonal, 158, 170, 306

Flow pattern, 189

closed, 264, 288, 294

wave-shaped, 264, 328, 341

Force, 3

centrifugal, of a point of the earth, 89,

156

Coriolis, 172, 184

components of, 184

horizontal, 185

frictional, 233, 2^8

inertial, 155, 156, 171, 172

of gravitation, 88, 152

of gravity, 88, 156

components of, 96, 185

pressure, per unit mass, 88, 97, 154

components of, 186

horizontal, 186

horizontal normal, 190, 200

per unit volume, 99

Frame, reference, absolute, 152

relative, 151

Frequency, circular, 131

Frictional divergence, 263

Frictional force, 233, 238

Front, 220

boundary conditions at, 221, 225, 340

geostrophic, 227, 229

pressure distribution at, 224

shear at, 228, 231

slope of, 223, 229, 231

wind distribution at, 226, 231
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Front, zonal, 227

Frontal surface, 220

Gas constant, specific, 13, 15

for dry air, 14, 16

for mixtures, 16

for moist air, 63, 67

for water vapor, 44

universal, 15

Gases, perfect, 13, 15, 24, 25

equation of state of, 13

laws of, 12

mixture of, 15

specific heats of, 25

permanent, 11, 43

Gauss's theorem, 333

Generalized hydrostatic equation, 188

Geodesic, 181

Geodesic curvature, 181

Geometric differential (6), 92, 126

Geopotential, 93, 157

Geopotential level, 92

Geopotential unit layer, 94

Geostrophic deviation, 234, 244

Geostrophic flow, 176, 192, 233, 245, 263

Geostrophic front, 227, 229

Geostrophic gradient flow, 210, 348

Geostrophic speed, 192, 203

Geostrophic velocity, 210, 233-4

Geostrophic wind level, 246

Geostrophic wind shear, 212, 216, 231

Gradient, 97

horizontal pressure, 100

pressure, 99

temperature, 216

Gradient flow, 189, 265, 348

geostrophic, 210, 348

Gradient wind diagram, 205

Gravitation, force of, 88, 152

Newton's law of universal, 88, 153

potential of, 153

Gravity, acceleration of, 88

apparent, 227

force of, 88, 156

components of, 96, 185

potential of (geopotential), 93, 157

standard, 8, 120

virtual, 187

Great circle, 175, 180, 181, 182

flow on, 233

Hail stage, 68

Heat, 20

mechanical equivalent of, 22

latent, of evaporation, 47

of melting, 47

of sublimation, 47

of transformation, 46

specific, 21

at constant pressure, 23

at constant volume, 23

of dry air, 25

of ice, 43

of moist air, 64, 67, 139

of water, 44

of water vapor, 45

Heat capacity, 21

Heat transport, vertical, 139

IIeating, adiabatic, 68

isobaric, 72

Height, dynamic, 94

computation of, 114, 115, 117

by dry-adiabatic layer, 1 10

by isothermal layer, 1 1 1

on emagram, 117

of homogeneous atmosphere, 103, 106,

357

Helmholtz' vorticity theorem, 324

Hodograph, 148

area under, 260

of moving particle, 148

shear, 212, 218

Holland's theorem, 299

Homogeneous atmosphere, 102, 105

height of, 103, 106, 357

Horizontal Coriolis force, 185

Horizontal curvature, 178, 182, 265

circle of, 180

radius of, 180

Horizontal divergence, 253, 324, 333

Horizontal flow, 173

equations of, 186, 187, 188, 203

Horizontal (geopotential) levels, 92

Horizontal path, 178

Horizontal plane, 173

Horizontal pressure force, 186

Horizontal pressure gradient, 100

Horizontal shear, 322

Horizontal unit normal, 173

Horizontal vector projection (vector

component), 174
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Humidity, relative, 58

^specific, 57

saturation, 58

Humidity variables, 57

Hydrostatic equation, 101

generalized, 188

Hydrostatic equilibrium, 102

stability criteria for, 127, 130, 138

Hydrostatic tables, Bjerknes, 111

U. S. Weather Bureau, 114

Ice, thermal properties of, 43

Image curve, 300

Image point, 66, 76, 133, 148

Indifferent equilibrium, 127, 131, 138

convectional, 138

dry-, 131

saturated-, 131

Individual circulation theorem, 311

Individual derivative, 146, 253

Individual differential (d), 125, 146

Individual lapse rate, 128, 139

Inertial circle, 198

Inertial flow, 190, 196, 200

Incrtial force, 155, 156, 171, 172

Inertial path, 198, 200

Inertial period, 198

Inertial speed, 196, 203

Inexact differential, 32

Instability, 127, 130, 138

absolute, 131

conditional, 131

convectional, 138

dynamic, 286

latent, 134

shear, 277, 286

Integral, circulation, 296

line, 19, 32

of a vector, 295, 296

Integrating factor, 34

Internal energy, 23

Irrotational flow, 333

Irrotational vector, 333

Isentropic, 34; see also Adiabatic process

Isobaric channel, 100, 263

transport capacity of, 263

Isobaric heating, 72

Isobaric layer, standard, 111

unit, 82, 102

Isobaric process, 20

Isobaric slope, 211

Isobaric surface, 82, 102, 111, 211

standard, 111

Isobaric unit channel, 100

Isobaric unit layer, 82

dynamic thickness of, 102

Isobaric volume ascendent, 213

Isobars, 32, 100

and streamlines, 189, 200, 270, 272,

289, 348, 356, 362

closed patterns of, 264, 288, 294

horizontal, 100

at front, 224

in zonal flow, 160

on sea level map, 82

wave-shaped patterns of, 264, 272, 351

Isopleths, of cyclostrophic speed, 199

of geostrophic speed, 195

of gradient speed, 204

of inertial speed, 197

on thermodynamic diagrams, 35, 36,

39, 61, 73, 74

Isosteric process, 20

Isosteric surface, 82, 102

Isotherm advection, 220, 279, 285

Isothermal atmosphere, 107

Isothermal layer, height of, 111

Isothermal slope, 214

Isothermal surface, 82, 215, 283

Isotherms, 32

in stable baroclinic wave, 279

of perfect gas, 20

of water substance, 40, 41, 56

Joule, 6

Joule's experiment, 22

Joule-Thomson effect, 24

Kelvin, 11

circulation theorem of, 313

Kilojoule, 6

Kinematic boundary condition, 225, 340

Kinematics, 145

Kinetic energy, 132

Kinetic theory of gases, 236

Lapse rate, 104, 129

critical, 138

dry-adiabatic, 107, 129
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Lapse rate, individual, 128, 139

saturation-adiabatic, 129, 139, 141

unsaturated adiabatic, 129, 139

Latent heat, of evaporation, 47

of melting, 47

of sublimation, 47

of transformation, 46

variation of, 47

Latent instability, 134

Latitude, 183, 184

apparent, 229

corresponding, 190

degree of, 5, 192

Length, dimension of, 2

units of, 5, 7

Level, anemometer, 241, 244

apparent, 227

base, 120

geopotential, 92

geostrophic wind, 246

lifting condensation, 134

of free convection, 134

of non-divergence, 273, 280, 285,

363

sea, 93, 94, 228

Level surface, 92

apparent, 227

Line integral, 19, 32

of a vector, 295, 296

Local circular vortex, 319

Local coordinates, 174

Local (time-) derivative, 253

Logarithmic differentiation, 26

Longitudinal divergence, 263, 268, 331

Magnus* formula, 52

Margules' formula, 232

Mass, conservation of, 250

dimension of, 2

units of, 5, 7

Mass divergence, 251

horizontal, 256

in baroclinic wave, 280, 285

in barotropic wave, 274

in closed flow pattern, 291

in tendency equation, 257

longitudinal, 263, 268, 331

transversal, 264, 271

Mass transport in surface layer, 239

Mass variables, 9

Maximum anticyclonic pressure field,

162, 201

Maximum speed (anticyclonic), 201, 204

Maxwell's theory of viscosity, 237

Mean free path, 237

Mechanical equilibrium, 88

Mechanical equivalent of heat, 22

Melting, latent heat of, 47

Melting point, normal, 53

Melting pressure, 53

Melting temperature, 53

Meridional isobars in zonal flow, 159, 161

Meridional plane, 157

circulation in, 309

Meter, 4

dynamic, 95

Metric ton, 5

Millibar, 7

Mixing length, 248

Mixing ratio, 57

saturation, 58

Mixture of perfect gases, 15

Moist air, 9, 15, 57

equation of state of, 63

saturated, 62

specific gas constant of, 63

specific heats of, 64

thermal properties of, 57, 62

Moisture variables, 57

Molar volume, 14

Mole, ton, 14

Molecular viscosity, 237

Molecular weight, 14

of dry air, \ 7

of mixture of perfect gases, 17

of water vapor, 44

Momentum, 3, 6

shear of geostrophic, 231

Momentum transport, vertical, 237, 248

in surface layer, 240

Motion, component equations of relative,

186

equation of absolute, 154

equation of relative, 172, 174, 337

horizontal, 173

irrotational, 334

projected equations of relative, 175

turbulent, 248

vertical, 131, 132, 136, 142, 257, 283

zonal, 158, 170, 306
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Mts units, 4, 6

Natural component equations of motion,

186

Natural components, of acceleration,

151, 175

of vector, 174

Natural coordinates, 151, 173

Natural unit vectors, 151, 173

Newton's formula for viscous stress, 236

Newton's law of universal gravitation,

88, 153

Newton's second law of motion, 152, 155,

172, 174

Normal, horizontal unit, 173

unit, 148

Normal atmosphere, 8

Normal boiling point, 50, 51

Normal equation, 187, 190, 203

Normal melting point, 53

Normal pressure force, 190, 200

Number of solenoids, 306

Oscillation, stable vertical, 131

Osculating plane, 150

of spherical path, 175, 177, 178

Parcel method, 125

Partial pressure, 15, 59, 64

Path, 147

amplitude of, 330, 343

and streamline, 189, 207, 266, 329, 342

curvature of, 149

horizontal, 178

horizontal curvature of, 178, 266, 331,

348

inertial, 198, 200

mean free, 237

of process, 18

vertical, 182

wave length of, 329, 343

Pendulum day, 198

Perfect gases, 13, 15, 24, 25

equation of state of, 13

laws of, 12

mixture of, 15

specific heats of, 25

Period, inertial, 198

of stable oscillation, 132

Permanent gases, 11, 43

Perturbation equations, 339

Phase, change of, 46, 49

Phase equilibrium, 42, 48, 50

Phases of water substance, 42, 50, 56

Piezotropy, 338, 340

Poisson's constants, 28

for dry air, 28, 31

for moist air, 65, 67

Poisson's equation, 28

Position vector, 145

Potential, 96, 333

centrifugal, 157

geo-, 93, 157

gravitational, 153

of gravity (geopotential), 93, 157

thermodynamic, 48

velocity, 334

Potential energy, 91

Potential flow, 334

Potential temperature, 31, 66

equivalent, 76

virtual, 66

wet bulb, 76

Precipitation, 68, 141

Bergeron's theory of, 55

Precipitation lines on emagram, 143

Pressure, 10

dimension of, 3

melting, 53

partial, 15, 59, 64

saturation vapor, 40, 48, 57

sea level, 122

standard, 8

units of, 3, 6, 7

vapor, 40, 58, 61

Pressure dynamic height curve, 114, 116.

118

Pressure force, per unit mass, 88, 97, 154

components of, 186

horizontal, 186

normal, 190, 200

per unit volume, 99

Pressure gradient, 99

components of, 100

horizontal, 100

Pressure tendency, 255

advective, 258

Primitive circulation theorem, 298

Process, adiabatic, 27, 64, 67

atmospheric, 27, 337
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Process, cyclic, 19

dry-adiabatic, 31

isobaric, 20, 72

isosteric, 20

isothermal, 19

path of, 18

physical, 18

piezotropic, 338, 340

pseudo-adiabatic, 68, 69

reversible saturation-adiabatic, 68, 70

saturation-adiabatic, 72

unsaturated adiabatic, 64

Process curve, 108

Process differential (d), 92, 125

Procession, 296

Product, scalar, 87

scalar triple, 166

vector, 164

Projection of a vector, 1 74

Propagation, speed of, 255

Pseudo-adiabatic process, 68, 69

Psychrometric formula, 79

Radiation, effect on atmospheric process,

27

Radius, of curvature, 150

angular, 177, 183, 289

horizontal, 180

vector, 151

of earth, 153

Rain stage, 68

Rectangular components, of vector, 85,

174

of vector product, 165

Rectangular (Cartesian) coordinates, 83

Rectangular unit vectors, 86

Reference frame, absolute, 152

relative, 151

Regelation, 54

Relative acceleration, 170

natural components of, 175

Relative change in moving pressure field,

254

Relative circulation, 314, 317

Relative circulation theorem, 317

Relative equilibrium, 101, 102, 156

equation of, 101,*156

pressure in, 97

Relative frame, 151

Relative humidity, 58

Relative motion, component equations

of, 186

equation of, 171, 174, 337

Relative streamline, 277

Relative velocity, 169

Relative vorticity, 322

theorem of, 324

Relative zonal wind, 268

Resultant of vectors, 84, 86

Reversible saturation-adiabatic process,

68, 70

Right-handed screw rule, 83

Rossby, 67

vorticity theorem of, 324

Rotation, 83, 151, 163, 175

Saturated moist air, 62

Saturated stage, 62

Saturation, super-, 55

Saturation-adiabatic lapse rate, 129, 139,

141

Saturation-adiabatic process, 72

reversible, 68, 70

Saturation adiabats, 72

on diagram, 74

Saturation mixing ratio, 58

Saturation specific humidity, 58

Saturation vapor pressure, 40, 48, 57

over ice, 52

over water, 50

Scalar, 83

Scalar field, 83

Scalar product, 87

Scalar triple product, 166

Screw rule, right-handed, 83

Sea level, 93, 94, 228

Sea level altitude, 121

Sea level pressure, 122

Second (solar), 5

Sense, anticyclonic, 191, 317, 323

cyclic, 176

of circulation, 317

of curvature, 176, 190

of earth's rotation, 177

of vorticity, 323

cyclonic, 191, 317, 323

Shear, frontal, 228, 231

horizontal, 322

of geostrophic wind, 212, 216, 231

Shear hodograph, 212, 718
'
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Shear instability, 277, 286

Sidereal day, 155

Sinusoidal flow pattern, 269, 341

Slice method, 135

Slope, frontal, 223, 229, 231

isobaric, 211

isothermal, 214

Small circle, 175

Snow stage, 68

Solar day, 155

Solar second, 5

Solenoids, 300, 303

in zonal motion, 307, 361

number of, 306

pressure-temperature, 303

pressure-volume, 300

temperature-entropy, 303

theorem of, 301

Bounding curve, 103, 108, 130

Specific, 3

Specific energy, 3, 94

units of, 6, 94

Specific entropy, 33, 46

Specific gas constant, 13, 15

for dry air, 14, 16

for mixtures, 16

for moist air, 63, 67

for water vapor, 44

Specific heat, 21

at constant pressure, 23

at constant volume, 23

of dry air, 25

of ice, 43

of moist air, 64, 67, 139

of water, 44

of water vapor, 45

Specific humidity, 57

saturation, 58

Specific volume, 3, 6, 9

Speed, 146

angular, 151

of earth, 155

critical, 268, 271, 344

cyclostrophic, 199, 203

geostrophic, 192, 203

inertial, 196, 203

maximum anticyclonic, 201, 204

of barotropic wave, 276, 356

of propagation, 255

of wave, 269

Speed, rate of change of, 150, 189

subcritical, 268

subgeostrophic, 207

supercritical, 268

supergeostrophic, 207

Spiral, Ekman, 244

Stability, see also Instability

absolute, 130

convectional, 138

criteria in hydrostatic equilibrium,

127, 130, 138

region of, 219

tendency of, 220

Stable equilibrium, 127, 130, 138

Stable vertical oscillation, 131

Stable wave, 277

baroclinic, 279

Stage, dry, 62

hail, 68

rain, 68

saturated, 62

snow, 68

unsaturated, 62

Standard altitude, 119

Standard atmosphere (U. S.), 119

Standard component equations of rela-

tive motion, 186

Standard components of vector, 85, 174

Standard coordinates, 83

Standard gravity, 8, 120

Standard isobaric layers, 111

Standard isobaric surface, 111

Standard temperature, 119

State, 9

critical, 42

equation of, 12, 337

of dry air, 14

of mixture of perfect gases, 15

of moist air, 63

of perfect gas, 13

of water vapor, 44

triple, 41, 42

Steady flow, 189, 208, 352

Stokes's theorem, 320

Stream function, 335

Streamline, 189

amplitude of, 269, 330, 345

and path, 189, 207, 266, 329, 342

horizontal curvature of, 207, 267, 289,

322, 330
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Streamline, relative, 277

sinusoidal, 269, 329, 342, 348

Streamlines and isobars, 189, 200, 270,

272, 289, 348, 356, 362

Stress, eddy, 248

viscous, 235

Stuve diagram, 30, 35

Subcritical speed, 268

Subgeostrophic speed, 207

Sublimation, latent heat of, 47

Sublimation curve, 49, 50, 53

Sublimation temperature, 52

Supercooling, 55

Supercritical speed, 268

Supergeostrophic speed, 207

Supersaturation, 55

Surface, equiscalar, 83, 96

frontal, 220

isobaric, 82, 102, 111,211

isosteric, 82, 102

isothermal, 82, 215, 283

level (gcopotential), 92

thermodynamic, 56

Surface layer, 233

mass transport in, 240

(7-diagram, 49, 50

Tangent, unit, 146, 173

Tangential acceleration, 150, 175, 189

Tangential equation, 187, 188, 351

Temperature, 10, 34

absolute, 11, 34

dew point, 77

dimension of, 2, 12

equivalent, 77

equivalent potential, 76

evaporation, 50

melting, 53

potential, 31, 66

sublimation, 52

thermodynamic definition of, 34

virtual, 63, 67

virtual potential, 66

wet bulb, 77, 78

wet bulb potential, 76

Temperature gradient, 216

Temperature scales, 12

Tendency, advective pressure, 258

of vertical stability, 220

pressure, 255

Tendency equation, 256

Tephigram, 38, 74

Terminal curve (of vector), 147

Thermal equilibrium, 10

Thermal wind equation, 212, 214, 216,

311

Thermal wind in zonal flow, 309

Thermodynamic definition of tempera-

ture, 34

Thermodynamic diagrams, 34

(,-/>)-, 18, 29, 300

emagram, 35

height evaluation on, 115

important criteria of, 35

precipitation lines on, 143

saturation adiabats on, 74

Stuve, 30, 35

(7-, 49

tephigram, 38, 74

vapor lines on, 61, 74

Thermodynamic potential, 48

Thermodynamic surface of water sub-

stance, 56

Thermodynamics, first law, of 21

Time, dimension of, 2

units of, 5, 155

Ton (metric), 5

Ton mole, 14

Transformation, latent heat of, 46

Transformation temperature, 48

Transport, of mass in surface layer, 239

vertical heat, 139

vertical momentum, 237, 248

Transport capacity of isobaric channels,

263

Transversal divergence, 264, 271

Triple point, 50, 51, 53

Triple product, scalar, 166

Triple state, 41, 42

Turbulence, 248

Unit channel, isobaric, 100

Unit layer, equiscalar, 97

geopotential, 94

isobaric, 82, 102

Unit normal, 148

horizontal, 173

Unit tangent, 146

Unit vectors, 85

natural, 151, 173
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Unit vectors, rectangular, 86

Units, cgs, 5, 6

English, 7

mts, 4, 6

Universal gas constant, 15

Unsaturated adiabat, 65, 139

Unsaturated-adiabatic lapse rate, 129,

139

Unsaturated-adiabatic process, 64

Unsaturated air, 62

adiabatic process of, 65

Unsaturated stage, 62

Unstable equilibrium, 127, 130, 138

U. S. standard atmosphere, 119

U. S. Weather Bureau hydrostatic

tables, 114

Vaisala scales on emagram, 115

Vapor, water, equation of state of, 44

specific gas constant of, 44

specific heats of, 45

Vapor lines on diagram, 61, 74

Vapor pressure, 40, 58, 61

saturation, 40, 48, 57

over ice, 52

over water, 50

Variables, moisture, 57

physical, 9, 32

fields of, 82

Vector(s), 85

components of, 85

differentiation of, 146, 165, 251, 312

irrotational, 333

line integral of, 295, 296

natural components of, 174

position, 145

potential, 96, 333

projections of, 174

rectangular components of, 85, 174

resultant of, 84, 86

scalar product of, 87

scalar triple product of, 166

unit, 85

vector product of, 164

Vector area, 260, 315, 316

Vector curvature, 151

Vector product, 164

components of, 165

Vector radius of curvature, 151

Velocity, 3, 145; see also Speed

Velocity, absolute, 168

angular, 3, 163

of the earth, 163, 183

dimensions of, 3

geostrophic, 210, 233-4

geostrophic deviation, 234, 244

hodograph of, 148

of a point of the earth, 167

of propagation, 255

relative, 168

units of, 6

Velocity potential, 334

Vertical curvature, 182

Vertical equation, 187

Vertical heat transport, 139

Vertical momentum transport, 237, 248

Vertical motion, in cumulus convection,

136

in long waves, 283

in stable oscillation, 131

kinetic energy of, 132

Vertical path, 182

Vertical plane, 182

Virtual gravity, 187

Virtual potential temperature, 66

Virtual temperature, 63, 67

Viscosity, eddy, 247

molecular, 236, 237

Viscous stress, 235

Volume, 2, 9

molar, 14

specific, 3, 6, 9

Volume ascendent, 301

isobaric, 213

Vortex, circular, 308

local, 319

Vorticity, 320

absolute, 322

anticyclonic, 323

cyclonic, 323

in natural coordinates, 321

in rectangular coordinates, 321

relative, 322

sense of, 323

theorem of absolute, 323

theorem of relative, 324

Vorticity theorem, of Helmholtz, 324

of Rossby, 324

Water, density of, 5, 44
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Water, thermal properties of, 44

Water substance, critical constants for,

42

isotherms of, 40, 41, 56

phases of, 42, 50, 56

thermodynamic surface of, 56

Water vapor, equation of state of, 44

molecular weight of, 44

specific heats of, 45

Wave, baroclinic, 279, 360

dynamic instability of, 286

formation of, 281

speed of, 274

barotropic, 274, 341

pressure field in, 347

speed of, 276, 356

pressure changes in, 274, 276, 281, 357

speed of, 269

Wave length, 269

of streamline and path, 329, 343

Wave number, 269

angular, 269

Wave-shaped flow pattern, 264, 328,

341

Weight, molecular, 14

of dry air, 17

of mixture of perfect gases, 17

of water vapor, 44

of atmospheric col""1" 1^3,286

Wet bulb potential temperature, 76

Wet bulb temperature, 77, 78

Wind, cyclostrophic, 199

geostrophic, 192, 210

gradient, 189, 200

relative zonal, 268

shear of, 212, 218,322

thermal, 212, 309

zonal, 160

Wind distribution in the surface layer,

241

Wind shear in the surface layer, 244

Work, 3, 5, 6, 7

in thermodynamics, 17

of gravity, 91

Zonal circle, 156

Zonal flow, 158, 170, 306

absolute and relative, 158, 170

acceleration in, 159, 171

angular speed in, 160

circulation in, 314

equilibrium of, 308

pressure field in, 161

solenoids in, 307, 361

thermal wind in, 309

Zonal front, 227

Zonal plane, 156

Zonal wind, relative, 268


