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PREFACE

The aim of aerofoil theory is to explain and to prediot the
force experienced by an aerofoil, and a satisfactory theory
has been developed in recent years for the lift force in the
ordinary working range below the critical angle and for that
part of the drag force which is independent of the viscosity
of the air. Considerable insight has also been obtained into
the nature of the viscous drag and into the behaviour of
an aerofoil ot and above the eritical angle, but the theory
remains at present in an incomplete state. The problem of
the airscrew is essentially a part of aerofoil theory, since the
blades of an airscrew are aerofoils which describo helical
paths, and a satisfactory theory of the propulsive airscrew
has been developed by extending the fundamental principles
of aerofoil theory.

The object of this book is to give an account of aerofoil and
airscrew theory in a form suitable for students who do not
possess a previous knowledge of hydrodynamics. The first
five chapters give a brief introduction to those aspects of
hydrodynamics which are required for the development of
aerofoil theory. The following chapters deal successively with
the lift of an aerofoil in two dimensional motion, with the
effect of viscosity and its bearing on aerofoil theory, and with
the theory of aerofoils of finite span. The last three chapters
are devoted to the development of airscrew theory.

In accordance with the object of the book, complex mathe-
matical analysis has been avoided as far as possible and in
& few cases results have been quoted without proof, the reader
being referred for further details to standard text-books or to
original papers on the subject.

My thanks are due to my wife for her assistance in pre-
paring a number of the figures and in reading the proof sheets,
and to the Cambridge University Press for their care and
vigilance in passing the book through the proof stage.

Farnborough, April 1926.
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REFERENOCES

The following abbreviations are used:

RM  =Reports and Memoranda of the Aeronaufical Research Commiilee.

NACA =Reporis of the National Advisory Committee for Aeronaulics
[Ulﬂ#ﬁl]l

EZFM = Zeitachrift filr Flugtechnik und Motorluftschiffahn,
ZAMM = Zeitachrift fiir angewandte Mathematik und Mechanil,



CHAPTER I
INTRODUCTION

I'l. It is a fact of common experience that a body in
motion through a fluid experiences a resultant force which,
in most cases, is mainly a resistance to the motion. A class
of body exists, however, for which the component of the
resultant force normal to the direction of motion is many
times groater than the component resisting the motion, and
the posaibility of the flight of an aeroplane depends on the
use of a body of this class for the wing structure.

A wing or aerofoil has a plane of symmetry passing
through the mid-point of its span, and the direction of motion
and the line of action of the resultant force usually lie in this
plane. The section of an aerofoil by a plane parallel to the
plane of symmetry is of an elongated shape with a rounded
leading edge and a fairly sharp trailing edge. It is usually
possible to draw uniquely a double tangent to the lower
surface of an aerofoil section and the projection of the serofoil
section on this tangent is defined as the chord. In cases when
this unique double tangent does not exist, the chord requires
special definition and it is frequently taken to be the line
Joining the centres of curvature of the leading and trailing

Direction of Motion

Fig. 1.

edges of the aerofoil section. The angle of incidence a of an
aerofoil is defined as the angle between the ohord and the
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direction of motion relative to the fluid, and the centre of
pressure (' of an aerofcil is defined aa the point in which the
line of action of the resultant force R intersects the chord
ABRB (fig. 1). The resultant force is resolved into two com-
ponents, the lift L at right angles to the direction of motion
and the drag D parallel to that direction but opposing the
motion. It is customary to use the leading edge A of the
chord as a point of reference and the resultant force has a
moment M about this point, whose sense is such that a
positive moment tends to increase the angle of incidence,
The magnitude of this moment is
M = — AC (L cosa + D sin a),

where AC is the distance of the centre of pressure behind the
leading edge of the chord.

The resultant force on an aerofoil of a given shape at a
definite angle of incidence depends mainly on the density
p of the fluid, the relative velocity V of the aerofoil and the
fluid, and some typical length ! of the acrofoil. These three
quantities can be combined in the unique form [% V'* to give
the dimensions of a force, and non-dimensional coefficients
of lift and drag may be defined by dividing the force com-
ponents by this product. The standard lift and drag coefficients
of an aerofoil are defined by the equations

L = krSpV?,
D = kpSpV?,
where § is the maximum projected area of the aerofoil which,

in the case of a rectangular aerofoil, is the product of the

chord and the span. The corresponding definition for the
moment coefficient is

M = E.nﬂ'pli".

where ¢ is the chord of the aerofoil. These definitions are not
unique and continental writers in particular use the dynamic
preasure §pV? instead of p¥3, obtaining coefficients whose
values are double those of the standard British system.

The lift and drag coefficients of an aerofoil are functions
of the angle of incidence and fig. 2 shows the curves for a
typical aerofoil, the drag being drawn to five times the scale
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of the lift. The lift coefficient varies linearly with the angle
of incidence for a certain range and then attains a maximum

-0-2

Fig. 2.

value at the critical angle of incidence. The important work-
ing range of an aerofoil is represented by the linear part of
the lift curve and in this range the drag is small compared
with the lift, but on approaching the critical angle the drag
increases rapidly.

Fig. 3 shows the variation of the position of the centre of
pressure, the distance of the centre of pressure behind the
leading edge of the aerofoil being expressed ns a fraction of
the chord. Analytically this centre of pressure coeflicient is

AC ko k. ) |

AB" " kicosa + kpsma kg (approximately),
and theory and experiment agree in showing that the moment
coefficient varies in a linear manner with the lift coefficient
below the critical angle. The centre of pressure of an serofoil
section normally moves backwards as the angle of incidence
decrcases and tends to infinity at the negative angle of in-
cidence for which (kp cose + kpsine) vanishes, i.e. when

i-a
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the resultant force on the aerofoil is parallel to the chord.
This angle of incidence is approximately equal to the angle
at which the lift vanishes.

K /
02
i} T A"ﬁl‘:f-rﬂﬂ-&ﬂ;ﬂ —
: "\ o 5° 10° 15° 20°
--0-2
- 04
Fig. 3.

The main object of aerofoil theory is to explain and to
predict the lift and drag experienced by an aerofoil, and a
satisfactory theory has been developed in recent years for
the ordinary working range below the critical angle. The
determination of the maximum lift of an aerofoil and of the
critical angle at which it occurs is not yet possible, although
some insight has been obtained into the cause of the
phenomenon.

1:2. The development of aerofoil theory.

The explanation of the lift force of an aerofoil depends
essentially on the nature of the fluid, and the difficulty of
obtaining a satisfactory theory is associated with the difficulty
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of defining the essential characteristics of the fluid in a simple
and reliable manner.

An early attempt to develop a theory of the force on an
inclined fiat plate is due to Newton, who assumed that the
fluid consisted of a large number of solid corpuscles. These
corpuscles were assumed to be inelastic and, on striking the
plate, the component of their velocity normal to the plate
would be destroyed. The mass of fluid meeting a plate of
area 3 at an angle of incidence « in unit time is Sp V sin « and
the velocity normal to the plate is ¥ sin a. Hence the plate
would experience a force normal to its surface of magnitude

R = 8p¥Vsinta,

If the corpuscles are assumed to be perfectly elastic, this
force is doubled, but in either case the force given by this
theory at small angles of incidence is too small. The estimate
of the drag of a flat plate set normal to the direction of
motion is more satisfactory and is of the correct order of
magnitude.

A better definition of the characteristics of a fluid was
obtained by regarding the fluid as a continuous homogeneous
medium, An essential characteristic of a fAuid is that it
cannot support tangential stresses in o state of equilibrium,
but when adjacent layers of the fluid are in relative motion
tangential stresses exist and oppose the motion, This charac-
teristic is due to the internal friction or viscosity of the fluid.
The viscosity of the air is small and may be neglected in a
large number of problems, but at times the viscosity is of
fundamental importance and in all cases it appears to exert
& determining influence on the type of motion which ocours,
even when the motion proceeds exactly as in & non-viscous
finid. Another characteristic of a fluid is its compressibility,
which is negligible for a liquid but important for a gas. The
density of the air must be regarded in general as a function
of the pressure and temperature, but the variations of the
pressure in the flow past a body are sufficiently small to
justify the assumption that the density of the air is constant.
This assumption, however, ceases to be walid when the
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velocity of the flow becomes comparable in magnitude with
the velocity of sound and allowance must then be made for
the compressibility of the air.

These considerations led to the conception of the air as &
perfect fluid, i.e. as a continuous incompressible non-viscous
medium. The development of the theory of fluid motion has
been based on this conception and the results deduced from
the theory are of great value in many cases. Unfortunately
the theory led to the astonishing conclusion that a body in
motion through a perfect fluid does not experience any
resultant force,

An attempt to surmount this disorepancy between theory

and fact was made by Helmholtz and Kirchhoff by assuming
that the flow past a body, instead of passing round the whale
surface, leaves a wake or dead-water region behind the body.
This method of discontinnous flow* has been applied to an
inclined flat plate in two dimensional motion, which is
equivalent to an aerofoil of infinite span, and gives a resultant
force normal to the surface of magnitude
P A HET R
R_i-l-wninuﬂpl '
This force is of the correct order of magnitude for small
angles of incidence and also for a flat plate set normal to
the direction of motion, but the actual numerical values are
not in good agreement with experimental resulta,

A lift force can also be obtained in a perfect fluid if the
flow is assumed to have a tendency to circulate round the
body, and modern aerofoil and airscrew theory is based on
this conception. The development of the theory for an aerofoil
of infinite span, which corresponds to motion in two dimen-
sions, is due in the first place to Kuttat and Joukowskit, and

* For the development of the theory see Lamb, Hydrodymamies,

73 of seyq.
: 1 ";:%uibhhﬂw in stromonden Flissigkeiten,” [llus. seronaut.
Milteilungen, 1902. *Uber cine mit den Grundlagen des Flugproblems in
Bezichung stehende zwei dimensionale Strémung," Sitsh. d. k. Bayr.
Abad. d. Wiss. 1010

{ “Uber die Konturen der Tragflichen der Drachenflieger,” ZPM,
1910,



1] INTEODUCTION 7

the extension to the general case in three dimensions, which
follows the general lines suggested by Lanchester®, is due to
Prandtlt. The theory gives results in close agreement with
experiment but there remains the difficulty of explaining the
origin of the circulation. In a perfeet fluid this cireulation
could not develop and it must be ascribed to the action of
the viscosity in the initial stages of the motion.

The general aerofoil theory indicates that there is a drag
force (induced drag) associated with the lift of an aerofoil,
but for motion in two dimensions this induoed drag becomes
zero and it is again necessary to turn to the viscosity of the
finid for the explanation of the small drag force (profile
drag) which actually exists. The development of the theory
of an aerofoil is therefore based in the first place on the
assumption that the air is a perfect fluid, and the viscosity
is introduced at a later stage to explain the origin of the
circulation and the existence of the profile drag.

1-3. Atmospheric relationships.

Although the compressibility of the air can be neglected
in most problems of the flow past a body, the density of the
air cannot be regarded as an absolute constant but must be
determined as a function of the pressure and temperature of
the undisturbed air according to the physical law

T
o polhy’
where p is the pressure, p the density and @ the absolute

temperature.
In the atmosphere the pressure and density are connected
with the height above the ground by the equation

d
ah =~ 9P

but to determine the conditions at any height it is necessary
to know also the relationship between the temperature and

* Aerodynamica, 1907. An account of his theory in a Joss developed
form was given by Lanchester to the Birmingham Natural History and
Philosophical Soclety in 1804,

t " Trogfligeltheorie,” Gottingen Nachrichien, 1018 and 18189,
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the height. This relationship will vary at different places
and at different times, but a standard atmosphere has been
adopted by many countries as a basis of comparison. The
standard atmosphere is defined by a pressure of 760 mm. of
mercury (14-7 Ib. per sq. in.) at ground level and by the
temperature law T = 15 — 0-0005z,

where T' is the temperature in degrees centigrade and z is the
height in metres. This law represents the average conditions
in western Europe and is valid up to the height where the
temperature ceases to fall on approaching the isothermal
layer. The variation of pressure and density with height for
the standard atmosphere is given in table 1,

When a change of pressure occurs so rapidly that there is
no exchange of heat between adjacent fluid elements, the
pressure and density are related by the adiabatic law

P_(rY.

()
where y is the ratio of the two specific heats of the gas and
has the numerical value 1-4 for air. The adiabatic law would
be satisfied in the atmosphere if the temperature gradient
were 3°C. per 1000 ft., and whenever the temperature
gradient rises above this value the atmosphere is in an
unstable condition which gives rise to convection currents,

Table 1.
Standard Atmosphere,
Height Preasure Density Tﬂnrnrﬂurt i
It /Pa #ire C.

0 1-00:0 1-00) 15-0
5, D 0-832 0-862 61
10,000 0-08% 0-738 - 4B
15,000 0-565 0-630 - 147
20,000 0-480 0-534 -240
25,000 0-372 -449 - -0
30,000 0-208 0-376 - 444
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1-4. Units.

It is customary in aeronautics to express numerical values
in British Engineering units and to take the second as the
unit of time, the foot as the unit of length and the pound as
the unit of force. A new unit of mass becomes necessary,
defined by the condition that unit force acting upon unit
mass produces unit acceleration. This unit of mass is called
the slug and is such that a body which weighs W Ib. has a
masa of W /g slugs (7 = 322, approx.).

Continental writers use a similar engineering system in
which the second is the unit of time, the metre is the unit of
length and the kilogram is the unit of force. The name
newlon has been proposed for the corresponding unit of mass,

The principal relationships between the two systems of
unita are as follows:

Length Im. = 3-281 ft.,

Force I kg. = 2:204 Ib,,
and the standard density of the air at ground level is 0-00237
slug per cubic foot or 0-125 newton per cubic metre.



CHAPTER 11
BERNOULLI’'S EQUATION

2:1. Stream lines and sieady motion.

When a body moves through a fluid with uniform velocity
V in a definite direction, the conditions of the flow are
exactly the same as if the body were at rest in a uniform
stream of velocity V, and it is usually more convenient to
consider the problem in the second form. In general therefore
the body will be regarded as fixed and the motion of the fluid
will be determined relative to the body. A representation of
the flow past a body at any instant can be obtained by
drawing the stream lines, which are defined by the condition
that the direction of a stream line at any point is the direction
of motion of the fluid element at that point. In general, the
form of the stream lines will vary with the time and so the
stream lines are not identical with the paths of the fluid
elements. Frequently, however, the flow pattern does not
vary with the time and the velocity is constant in magnitude
and direction at every point of the fluid. The fluid is then in
steady motion past the body and the stream lines coincide
with the paths of the fluid elements, The stream lines which
pass through the circumference of a small closed curve form
a cylindrical surface which is called a stream tube, and since
the stream lines represent the direction of motion of the fluid
there is no flow across the surface of a stream tube. The
theory of the flow past an aerofoil or airscrew is developed
almost entirely as a problem of steady motion and, except
where otherwise specified, the fluid is regarded as incom-
pressible and non-viscous.

2:2. Bernoulli’s equation.
In steady motion it is possible to obtain a simple relation-

ship connecting the pressure and velocity at any point of a
stream line. The dynamical equation for the motion of a
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small element of fluid forming part of a stream tube is

dv dp
PSHE!;- —Ed’,

where 8 is the cross sectional area of the stream tube at the
point under consider-

ation and & is a co- o
ordinate measured a- P> 3y p+dp
long the stream tube. —— "
On integrating along ds
the stream tube Fig. 4.
v + I@- constant
P

in general, and for an incompressible fluid

p+ipr*=H.

This result is known as Bernoulli's equation and the
quantity i, which is constant along a stream line, is called
Bernoulli's constant or the total pressure head of the fluid.
In general, # may have different values for different stream
lines, but if the stream lines originate in a region of constant
preasure and velocity, it is evident that H will have the same
value throughout the fluid. The variation of the value of H
for different stream lines, when it occurs, is associated with
the presence of vorticity in the fluid (see 4-32), and changes
in the value of &/ may be produced in a real fluid by the
action of viscosity.

Bernoulli's equation shows that the pressure of the fluid
is greatest where the velocity is least and that H is the
maximum pressure which can be attained at any point. This
maximum pressure always occurs at some point on the nose
of a body where the fluid is brought to rest and the stream
divides to pass along the surface of the body. The measure-
ment of the epeed of an aircraft depends on this result, since
the standard pressure head instrument measures the differ-
ence betwoen the total pressure head H and the fluid pressure
p. The instrument must be placed with its axis parallel to
the direction of the local stream lines and it will then deter-
mine the local relative velocity. This velocity may, however,
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differ from that of the aircraft owing to the disturbance of
the general stream caused by the aircraft.

The cross sectional area 8 of a stream tube is related to
the velocity by the condition that pvS must be constant,
gince there is no flow across the surface of the stream tube.
Hence for an incompressible fluid S is inversely proportional
to v, and the stream tube contracts as the velocity increases.
The velocity cannot, however, increase indefinitely since the
preasure will become negative when the velocity exceeda the
value v/2Hp and a fluid cannot sustain a negative pressure,
To obtain a numerical estimate of this limiting velocity in
the air under normal conditions, the value of H may be taken
as that of the standard atmospheric pressure (14:7 |b. per
8q. in.) and the limiting velocity is then 1340 ft. per sec. This
velocity is greater than the welocity of sound and the as-
sumption that the air can be regarded as an incompressible
fluid breaks down at a considerably lower velocity.

2:3. The velocity of sound,

If a disturbance, such as a sudden increase of pressure,
occurs at some point of an incompressible fluid, the disturb-
anece j8 transmitted instantaneounsly to all parts of the fluid,
but in a compressible fluid the disturbance travels through
the fluid in the form of a pressure wave at a definite velocity,
which ia in fact the velocity of sound in the fluid,

Consider the motion in one dimension along a straight
tube of uniform crose sectional area 8. If £ denote the dis-
placement at time { of the particles whose undisturbed
position is determined by the coordinate z, then the flnid
originally between the limits z and z + dr will at time ¢ lie
between the limits a

z+¢ and =+E+(l+a£
The equation of continuity, which expresses the condition
that the mass of an element of fAuid remains constant, is

therefore
p(1+%)-n

)d.m
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where p, is the density of the fluid in the undisturbed state.
Now let p = p, (1 + ) and then for small disturbances the
equation of continuity becomes
'=_E|E
El

The dynamical equation for the motion of the fluid along
the tube is % 3
pSdz 8L da,

ol =
a4 0
or Pﬂﬁ;-—ﬁ.

Now the pressure is a function of the density and so for small
disturbances dp
P=n+ (g;)ulp—ml

-

B 20 gdpy 3% (dp
Hence s =— 3 E;)."ﬁ""(ﬂﬁ),*
which may be written as
o 0%
ar =
- 2 (4P
if ¢ (iﬁ?)n-

The solution of the differential equation for £ is
f=f(z—c)+ F(zx + ct),

which representa two waves travelling in opposite directions
with the velocity ¢. This velocity ¢ is independent of the type
or periodicity of the disturbance and is the velocity of sound
in the fluid.

If the temperature of a gas remains constant, the pressure
and density are related by Boyle's law

e Po

The velocity of sound is then v'p,/p, and for standard atmo-
gpheric conditions the numerical value is 945 ft. per sec.
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This is considerably below the value determined experi-
mentally and the discrepancy is due to the fact that the
temperature does not remain constant during the disturb-
ance. The changes in pressure occur so rapidly that there is
no exchange of heat between adjacent fluid elements, and in
consequence the pressure and density are related by the

adiabatie law
=)

where y = 1-4 for air. The velocity of sound is therefore

V'yo/po and the corresponding numerical value is 1120 ft. per
sec,, which agrees well with the experimental determinations.
In general p,/p, is proportional to the absolute temperature
@ and the numerical value of ¢ corresponda to the standard
ground temperature of 15° C. For any other temperature
c = 664/0 ft. per sec.,

where 8 is the absolute temperature on the centigrade scale.

2-4. Bernoulli’s equation in a compressible fluid.
The general form of Bernoulli's equation is

de? + f‘% = constant,

and in a compressible gas the pressure and density are re-
lated by the adiabatic law

P _ (e
P (Po) '
On integrating, Bernoulli's equation becomes therefore

TR A N e AR E

v Lgpy dv s
Consider first the pressure which occurs at a stagnation
point, where the fluid is brought to rest at the nose of a body.
Puttiog v, = 0, the stagnation pressure p, is determined by
the equation

Bp gy ly=1p
PP 2y p
-l+f—1ﬂ

B L
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where ¢ is the velocity of sound corresponding to the pressure
p and density p of the undisturbed stream, and

dp _p
‘ﬂ F=- ] -_—
M A
-1
M P Pe\ r
&hﬂ e e s ]
P Po ('P) :
and henoe finall = 1o, -1
. H“F(l'l'r_g 'E:')T :

This equation takes the place of the simpler form
Po= P + {p*
which waa obtained for an incompressible fluid.
When the velocity v is small compared with the velocity

of sound ¢, the expression for the stagnation pressure g, can
be expanded in the series

p.,np(l +£g+§5+ )
-p+§pﬂ(l+ig—:+ ),

showing that the stagnation pressure is greater than in an
incompressible fluid. Now the velocity of an aircraft ia de-
termined by o standard pressure head instrument in the form

Ve, Zﬂ;m_:.ﬂf'_

and so the velocity will be over-estimated slightly if the
compressibility of the air is neglected. The extent of this
error is shown by table 2 and it appears that the error is less
than 1%, for ordinary aeroplane speeds and is only 29, for
a speed of 300 m.p.h.

Table 2.
vfe -1 0-2 0-5 1-0
PP 1007 1-028 1-187 1-803
v 1-001 1005 1-032 1-129

The variation of the cross sectional area of a stream tube
is determined by the equation of continuity,
pol = constant,
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: ldp
which gives Edﬂ+pﬁ+_-u
Also by differentiating Bernoulli's equation
W N
v+ L (Ca-R)%=
|
or v+ 5% 0,
if ¢ is the local veloeity of sound. Hence
dS S 1
E:':-_'( ci)’

This equation shows that the stream tube contracts as the
velocity increases if the velocity is leas than the local velocity
of sound, and expands if the welocity is greater than this
value, It follows that the flow pattern past a body must
change very considerably as the welocity approaches and
exoceeds the velocity of sound.

The cross sectional area of the stream tube has a minimum
value when the velocity is equal to the local velocity of sound.
The characteristics at any point of the stream tube can be
expressed conveniently in terms of their values at the minimum
section, which will be denoted by the suffix m, The pressure,
density and velocity of sound are connected by the equations

P\ _ (Y (e
5= =)
and the relationship between the velocity and the local
velocity of sound, obtained from Bernoulli's equation, is
fy —1)v2 + 2 = (y + 1) X
Finally, thmmﬁmﬂmnﬂhﬂmmhh

1-I (PFF)‘I'I
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These equations lead to the interesting conclusion that there
is an upper limit to the velocity

v(max) \/?_.‘-_‘. ! 245
O y—1

corresponding to the condition when the pressure, density

and local velocity of sound have all fallen to zero. At the

other extreme, when the velocity is zero, the equations give

the valoes .

E - '*";—1 = 1005,

2-(4) -1,

1
f.'; - (L'!i'i)"’ = 1571

In aeronautical problems the velocity is in general suf-
ficiently low to justify the assumption that the air may be
regarded as an incompressible fluid, but in the case of an
airscrew rotating with high angular velocity, and possibly in
certain other special cases, it is necessary to take account of
the compressibility of the air. The compressibility may also
modify the flow past a body moving with low velocity
relative to the fluid, if the local velocity in any region rises
to a high value,



CHAPTER IO
THE STREAM FUNCTION

3:1. The determination of the flow past any body depends
on the determination of the magnitude and direction of the
velocity at all points of the fluid, and this velocity vector
may be conveniently expressed by its three components
(#, v, w) parallel to a set of orthogonal coordinate axes
(*, ¥, 2). The problem assumes a simpler form when the body
is an infinite cylinder whose generators are normal to the
direction of the undisturbed stream, and the flow has no
component parallel to the generators. Choose the axis of z
parallel to the generators of the cylinder, so that w = 0 at
all points, and the flow will then be identical in all planes
parallel to the plane z = 0. It is sufficient therefare to con-
sider the flow in any plane normal to the generators of the
cylinder and the problem is simplified to a motion in two
dimensions only. In order to retain physical reality, this
plane is assumed to have unit thickness parallel to the axis
of = and curves drawn on the plane represent cylindrical
surfaces of unit length in that direction.

The steady motion
of a perfect fluid in ¥
two dimensions can
be dotermined con-
veniently by drawing
the stream lines of
the motion and by
the introduction of
Take any origin O
and let  be the flow
in unit time across o =
the curve OAP (fig. 5) Fig. 5.
joining the origin to
any point P of the fluid. The flow is taken to be positive in

p’
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the clockwise sense about O, i.e. from left to right across the
curve from the point of view of an observer at O looking along
the curve towards P. The value of ¢ does not depend in general
on the curve which is drawn between O and P, for if OBP be
another such curve, the flow across OBP must be equal to the
flow across OAP unless fluid is appearing or disappearing in
the region enclosed by the two curves. Hence  is a function
of the coordinates of P, and its value will vary with the
position of P, The choice of a different origin 0’ would merely
increase the value of ¢ at all points by a constant amount
equal to the flow across any curve 0’0,

Now let P’ be any other point on the stream line which
passes through P, and take OAPP' as the curve joining P’
to the origin. There is no flow across the stream line PP’ and
hence the flow across the curve OAPF is equal to the flow
across the curve OAP, and the value of ¢ at P’ is the same
as its value at P. It follows that the value of ¢ is constant
along & stream line and ¢ is therefore called the stream
Junction. The motion of the fluid is completely determined
when the value of ¢ is known as a function of the coordinates
for all points of the fluid. The equation of any stream line
is b = ' and the stream lines can be drawn by giving different
values to the constant C. For this purpose it is best to give
¢ or ' values which rise by uniform increments, so that the
same quantity of fAuid
flows between each ad- ¥
jacent pair of stream
lines. The normal dis-
tance between adjacent
stream lines is then in-
versely proportional to
the velocity and the close
approach of the stream
lines in any region indi-
cates high velocity.

3-11. The velocity of © o+
the fluid at any point is e
determined simply by means of the stream function. If P and
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P’ are two adjacent pointz on different stream lines (fig. 8),
the flow across the element PP’ is equal to the flow across
PN and NP’ and can be expressed as

d = udy — vdz
in accordance with the definition of the stream function. But
dip = gdx+gdy,
_ o
and henoe u 3y’
oy
Vo — EII-‘

In general the component of the velocity in any direction is
obtained by differentiating the stream function ¢ in the
direction at right angles to the left. In polar coordinates,
therefore, the radial and
circumferential velocity

It is convenient to use
both the Cartesian and
the polar system of co- R Fig. 7
ordinates in many cases, "

and results will in general be given in both forms.

3:12. The simplest examples of the stream function corre-
spond to uniform flow parallel to one of the coordinate axes.
For a velocity U parallel to the axis of z and for a velocity
V parallel to the axis of y, the stream functions are respec-

tvely 4= Uy= Ursind,
and p=—Fz=— FVrcosh.

Fig. 8 shows the stream lines for the uniform flows parallel
to the axes for the case U = 1-6V, and the numbers on the
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lines are the values of ¢. The broken lines are drawn through
the points which give a constant value to the sum of the two

2 1 o -1 -2 -3

stream functions and represent a uniform flow inclined to
the coordinate axes. Two stream functions can always be
added in this manner, either analytically or graphically, and
the method is equivalent to combining the velocity vectors
at each point of the fluid. By the combination of certain
simple flow patterns in a suitable manner it is possible to
derive o number of interesting results and in particular the
flow past a circle, from which the flow past any aerofoil
section can be derived by another analytical process,

3-2. Sources and Sinka.

The development of different types of flow is facilitated by
the conception of sources and sinks. A sowrce is & point at
which fluid is appearing at a uniform rate, and a sink is a
negative source or a point at which fluid is disappearing. If
there is no disturbance to the flow the fluid will pass out-
wards from a source equally in all duections along the radial
lines, and if m is the strength of the source or the volume of
fluid which appears in unit time, the radial velocity at
distance r from the source will be

™

u
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The stream lines are the lines radiating from the source and
the stream function ¢ will have a constant value along each
of these lines. Choose

any radial line OA as i

the stream line ¢ = 0.
Then if P be a point on ;
the radial line at angle
8 to 0A, the flow across

the aroc AP will b-a%ﬂ
—i

and this is the value of A

the stream function for

the line OP. Hence

-— e — 'r
Y=ol hll‘ﬂt-l.‘l:l

Thumn!lmm Y
is an exception to the Fig. .
general rule that the
stream function at any point P has a unique value, since
by choosing a curve which completely encircles the source
several times it is possible to increase the wvalue of ¢ by
any multiple of m. The addition of a constant to the stream
function does not modify the flow pattern and the value of
y can be made unique by the convention that @ shall always
lie between the limits + .

3:3. Source in a uniform stream.
Coneider next the low which occurs when there is a source

of strength m at the origin in the presence of & uniform stream
of velocity — U parallel to the axis of 2. The stream function
for this flow is

m
$=—Uy+, 0,

which is the sum of the stream functions of the two separate
flows. Writing m = 20U, the stream function becomes

6
#=U(4-v),
involving the two parameters U and A. U is the velocity of
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the uniform stream and A is a length whose significance will
appear in the course of the analysis,

The stream lines of the two separate flows are the lines
parallel to the axis of z and the lines radiating from the origin
respectively, and the stream lines of the combined flow can
be drawn at once as the curves which pass through the pointa
where the sum of the two stream functions has a constant
value. This geometrical method is illustrated in fig. 10 for

..l ‘ E

ol o ® 1--.-_|
={ O] & o|\O(f & o
i ] 1 I

-0

Fig. 10.
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the numerical values 7 = h = 1. The stream line = 0
consists of the positive part of the axis of x and of a curve
BAR’ of parabolic type. The flow from the source lies wholly
within the curve BAB’ and the uniform stream divides at
the vertex A and flows above and below the curve. Now
any stream line may be replaced by a rigid boundary without
modifying the flow and an interesting interpretation of the
flow is obtained if the curve zAB is taken as this boundary.
The uniform stream is then passing over a level plain or sea
until it meets the cliff 4B, over which it is deflected in the
manner indicated by the stream lines of fig. 10. With this
interpretation the source no longer occurs in the region of
the fluid and may be regarded simply as a mathematical
device for representing the effect of the cliff.

The shape of the cliff is given by the equation ¢ = 0 and
henoce

rsinﬂ-yuh_‘—r.

where § varies from 0 to ». The parameter b represents the
maximum height of the cliff when r tends to infinity and #
tends to w. Thus the parameters U and h determine the
velocity of the wind and the height of the cliff respectively,
and the cliff is always of the same shape. Other forms, how-
ever, can be obtained by using a number of sources and sinks
suitably distributed in place of the single source at the origin.
The flow may also be considered by means of the velocity
components parallel to the coordinate axes. For the source
these velocity components are
m @ m I
= em T
™ m iy
A Lol -

and hence for the flow past the cliff

--v(1-22)

vhy

o= =
'
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It is now possible to determine the position of the vertex A4,
which is the stagnation point of the flow (x = v = 0). The
coordinates of 4 are therefore

h
G-, y=0.

The expressions for the velocity components can also be used
to determine the curves of constant vertical velocity, of
constant inclination of the flow or of any other similar
characteristio. The curves of constant vertical velocity v are
chosen as an example, since they represent the region in
which soaring flight is possible. These curves are the circles

1. U
iR -
which pass through the origin and have their centres on the
axis of y. A few of these circles are drawn with broken lines
in fig. 10, and these curves determine the best region for
soaring flight. The maximum vertical velocity ocours on the
surface of the cliff and may be determined as follows. The
vertical velocity at any point is

and hence on the surface of the cliff
gin® §
rnU-—r— :
which has the maximum value v = 0-7250 at the point
8 = 66°8, y = 0-37h,

This example has been discussed in some detail in order
to illustrate the method of combining two flow patterns and
of interpreting the result as the flow past a rigid boundary.
The sources and sinks then become simple analytical devices
for representing the effect of the rigid boundary, and this
t:;dunduk{ must always be chosen to enclose all the sources

ginks.

3-4, The method of images.
The flow due to two eources of equal strength illustrates
another analytical method of some importance. The stream
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lines due to two equal sources at the points 4, and A, are
derived very simply by the usual graphical method and are
shown in fig. 11. In this case the stream lines can be shown
to be hyperbolae passing through the points 4, and 4,, but

1

d

F"q.It..

the most important feature is that the line PQ which bisects
A, A, at right angles is a stream line and can be replaced by
a rigid boundary. The stream lines to the right of the line
P@Q then represent the flow due to a source in the presence
of a straight line boundary, and the interference of this
boundary on the flow due to the source 4, has been repre-
sented analytically by the introduction of the image 4, of
the pource in the line PQ.
This method of images can be used in more complex cases.
In place of the single source 4,, it is possible to take any
of sources and sinks or any closed curve representing
a body. The flow past this system in the presence of a straight
line boundary PQ can then be derived by introducing the
image of the system in the line PQ, since the resulting flow
will clearly be symmetrical about the line PQ and will have
this line as one of its stream lines. The method of images
can therefore be used to obtain the flow past a body near
the ground.
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3-5. Source and sink in a uniform stream.
The combination of a source and a uniform stream led to

a rigid boundary extending indefinitely in one direction, but
iﬂmdnmmhunhhmﬂdhju-nglmmmdnnk

of equal strength. Take as origin of coordinates the poin
mﬂilrhtmthumd mdthmnnkd.,mdtlkﬂ

¥y

P

<
=

Fig. 12,

the line A, A, as axis of z. The stream function at any point
P due to the source and sink is

where #, is the angle x4, P, 8, is the angle x4, P and ¢ is the
angle 4,PA,. The stream lines (§ = constant) are therefore
the system of co-axial circles passing through the points A,
ﬁd...ﬂmﬂhiﬁmdm between the source and

g\\\

//ﬂ,

“'HEI-

x—42

““""zi—.*
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and hence Dys
m*'mfﬂl-aﬂ“;ﬁ_’_ri_'l-
m 2ys
*- E---II‘EHH l+—.-:-".'l.

Now superimpose a uniform flow of velocity — U parallel
to the axis of r, and the stream function of the combined

flow will be

m ]
lﬁ = — El'y -+ 2—1“ arc tﬂnt—‘—.i“?:;_ l‘.
The stream lines of this low can be obtained by the usual
graphical method and are shown in fig. 12 for a typical case.
The stream line ¢ = 0 consists of the axis of z, excluding the
segment A, A,, and of an oval curve which may be regarded
as a rigid boundary. The equation of this oval curve is

=’+y‘-l‘=2ymut?-:'ﬂy.

The length b of the semi-minor axis of the oval curve is
obtained at once from this equation as the value of y when
x is zero, and hence

2l

b* — 5% = 2bs cot e B,
which can be reduced to the simpler form

8 m m s
The length a of the semi-major axis is determined by the
condition that the point (a, 0) is a stagnation point of the
flow. Now at this point the velocity is the sum of the uniform
velocity — U and of the components due to the source and
sink, and hence

m 1 1
v=-UtgGs-a)
ma
i 7 <
At the stagnation point u = 0, and henoe
a

1 m
e :
a2 +:rrﬁa
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The shape of the oval curve depends on the single para-
moter U's/m and table 3 shows the relationships between the

various quantities. The calculations are made by starting
with a suitable series of values of Ub/m, and it appears that

Table 3.

Ubjm Usfm ajs bfa afb
U4 1-231 1-122 0-3256 346
0-3 0-413 1-331 0-727 1-83
02 0-145 1-784 1-376 1:30
ol 0-032 3-285 3078 1-07

the ratio of the lengths of the axes of the oval curve tends
to the limit unity as the parameter Us/m tends to zero. This
limiting condition corresponds to the case when the source
and sink approach indefinitely close to one another.

38. Circular cylinder.

Consider the case when the source and sink approach one
another while the product of the source strength and the
distance separating source and sink retains a constant finite

value, Writing & = g

the stream function for the source and sink is
Eyl
LG ke . pay |

and as # tends to zero, the stream function tends to the limit

By B
b= iy w0l

This combination of a source and a sink, for which & tends
to zero while u remains finite, is called a doublef of strength
#, and the line joining the sink to the source is called the
axis of the doublet. The stream lines due to a doublet are
the circles which pass through the doublet and are tangential
to its axis.

Now superimpose on this flow a uniform stream of velocity
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— U parallel to the axis of z, and the stream function of the
combined flow will be
y=—Uy+i 7

2rzt 4yt

The stream line ¢ = 0 consists of the axis of z and the circle
e
=t + ot 3l
Writing p = 2matl,

the stream function becomes
b=—Oy(1-5)=-U(r-%)sin0,

and represents the flow past a circular cylinder of radius a
with centre at the origin of coordinates in a uniform stream
U parallel to the axis of z in the negative sense, The stream
lines of this flow can be obtained by the usual graphical
method and are shown in fig. 13.

e

i

M

Fig. 13,

The welocity at any point is expressed most conveniently
in polar coordinates, and the radial and ciroumferential

components are respectively
. Lo a?
u = ;Hu*h[?(l*r‘)mﬂ,

v - -gn U(l+:~—:)linﬂ.
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On the circumference of the circular oylinder the radial
component u’ is zero and the circumferential component o' is
v = 20U &in 8,

-hinhhummmmmmuazuma-;.

The pressure at any point of the fluid is given by Bernoulli's

CAUAON S p o+ 40U — dp (w4 0,
and on the circumference of the circular eylinder

p=py+ $pU* (1 — 4 &in® §).
The pressure is symmetrical with respect to the axes of  and
y, and hence there can be no resultant force on the eylinder
due to the pressure distribution over its surface. This con-
clusion is in conflict with actual experience and fig. 14 shows

-2 J | L
0 45° 90° 135° 180°
Angle from Nose of Cylinder
Fig. 14.

the theoretical pressure distribution compared with that
given by an experimental determination on a fairly large
scale®. The observed and calculated pressure distributions

* G. L Taylor, “Pressure distribution round s cylinder,” RM, 101,

1918. The results shown in the figure refer to a eylinder of 0-5 ft. diameter
at & speed of 55 f.p.s.
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agree over the front of the cylinder but are widely different
in the rear. This discrepancy is due to the flow breaking
away from the surface of the cylinder and forming a wake of
eddying motion (see chapter virr). The theoretical solution
is of importance, however, as the basis from which the flow
past an serofoil is derived by a suitable analytical trans-
formation.



CHAPTER IV
CIRCULATION AND VORTICITY

41. Circulation.

The analysis of the preceding chapter led to the determina-
tion of the theoretical flow past a circular cylinder in a uni-
form stream, but another type of flow is possible in which
the fluid circulates
round the cylinder. ¥
The simplest form
of circulating flow

+dp
is that in which
the velocity has no %
radial component
st any point while v
the circumferential x
component ¢’ is in- o
dependent of the
angular position 8
and depends solely
on the radial dis-

tance r. By con- Fig. 16.
gidering the equi-
librium of a small element of fluid, it appears that

p't
"F"‘F?dﬂ

in order that the pressure on the boundary of the element
shall balance the centrifugal force. If, in addition, the total
pressure head H in Bernoulli’s equation

p+ it = H
is to have the same value throughout the fluid, it is
that the product v'r shall have a constant value and this
condition determines the fundamental type of circulating
motion.
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To determine the stream function of this circulating motion
round a circular cylinder there are the equations

139

r o6

HH'—G,

o K

- =[|‘r=-—.

or ZnT

where K is a constant. Hence it follows that the stream

function is

= — & logr.
2o

The stream lines of this flow are the circles concentric with
thecircularcylinderand theintegral of the velocity taken round
the circumference of any of these stream lines has the constant
value K, which is
called the circulation
of the flow. More gen-

erally the circulation 1
round any closed curve
is defined as the in-
tegral of the tangential

velocity  component
taken round the curve. Pig. 10
If ¢ is the resultant h: A
velocity at any point P of the closed curve C' and if « is the
angle between the direction of the velocity ¢ and the element
ds of the curve at P, then the circulation K round the curve
C ia

K= Lguma.da.
The circulation will be regarded as positive in the counter-
clockwise sense. For the special type of circulating motion
defined by the stream function

K
= -Ei;hﬂft

the circulation has the value K for all curves enclosing the
eylinder and is zero for all other curves (cof, 4-33),
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2. Circular cylinder with circulation.
If the circulating flow is superimposed on the uniform flow
past a circular cylinder (3-6), the stream function becomes
a K
a¥y . K
=T ”(" 7 )sin0— 5 logr,

and the form of the stream lines for a comparatively small
value of K is ns shown in fig. 17. The effect of the circulation
is to increase the velocity above the cylinder and to decrease
the velocity below it. In consequence there is a reduction of

Fig. 17.

pressure above the cylinder and an increass of pressure below
it, and the cylinder experiences an upward force or lift
parallel to the axis of y.
The radial and circumferential components of the velocity
at any point are respectively
L a
o a K
vm—Fm U(145)un0r g,
and at a point on the surface of the cylinder w' = 0 and
K

u’-EUﬁnF+!—;,

The circulation causes the stagnation points to move down-
wards from 4 and A’ towards B’, and the two stagnation
points coalesoe at the point B’ when the ciroulation K has
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the value 4maU. If the circulation rises above this value the
ﬂsﬂruufthtj']ulhwnmﬁg 18 and there is a stagnation

i

point in the fluid at C. In this case a certain part of the fAuid
continues to circulate round the cylinder and does not pass
down stream with the general mass of the fluid,
The pressure at any point of the fluid is determined from
Bernoulli's equation as
p=H—jp W+,
and henoce at a point on the surface of the cylinder

1 K \®
puﬂ-—p(ﬂﬂdnﬂ+m)
= - P UK g U sinse.

Now the components of the ___....—-r
resultant force experienced
by the cylinder due to the
pressure distribution over r
its circumference are a

<0 o } r

Y= —f:-puuinﬂdﬂ‘,
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and on integration X=0,
Y =pUK.

Thus by combining the circulation K with the uniform flow
U w lift foroe pUUK has been obtained, and this resuolt is of
fundamental importance in the development of aerofoil
theory.

4-21. Further insight into the mechanism of the lift force
is obtained by exam-
ining the conditions at
a great distance from
the cylinder, Consider
the equilibrium of the
fluid contained be-
tween the surface of
the cylinder and a
large circle of radius r
concentric with it. If
g is the wvelocity at
any point of the il.rgu
circle, the
be given by the uqul-
tion

p= H - ing'l
and the pressure over this outer boundary will exert on the
enclosed fluid a force whose components are

A I pr 008 06 = i;pj. g cos b,

A -L pr&in 0d0 = ;pL g% sin 8.6,

Fig. 20.

Now

3 ah\? ' a? K\*
¢ = w4 v = Uoont 0 (1- %) +{Uua(1+;)+i_—f}.
but if r is large and tends to infinity, it is sufficient to retain

nﬂythuhrmindopendnntufrmdth&tpmpurﬂnnﬂtu;
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in order to determine the force components X, and ¥,. To
this order
q_._ﬂ,_l_UE:nﬂl
and hence X, =0,
¥, = {pUK.

To these components must be added the components of the
force exerted on the fluid by the pressure distribution over
the surface of the cylinder, and hence the resultant force on
the fluid contained between the cylinder and the large circle
has the components

X,=X,-X=0,

I'I—f.—f— —"i‘PHE

This resultant force on the fluid is normal to the direction

of the undisturbed stream U and must be equal to the rate
of change of momentum of the fluid. The rate at which fluid
is crossing the boundary of the large circle outwards at the
point P is pu'rdd and the components of the momentum
carried across the boundary in unit time are therefore

M, = I:F"‘“fﬂr

e ]
.Ii’,.-J'11 pu'vrdf,
To the order g-, the expressions for the velocity components
are u = — 0 oosd,
v'= Ugind+ é,
uut'mﬂ—-#inﬂ'--ﬂ'-—%ﬂnﬂ,

v=wu'ginf 4 v oosl = EEFMH'
Hence on integration
M, =0,
M,= - }pUK,

which are identical with the expressions for the components
of the resultant force acting on the fluid.
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Thinlnﬂgmufthﬁmndmnnlltlwdm&um
the cylinder shows that the lift force plUUK experienced by
thucyhndunpmmthaﬂmdltlgmum&um
the cylinder half as a change of momentum and half as the
pressure distribution round the large circle,

43. Vorticily.
The ciroulation round any b ou
closed curve has been defined % _g—@
as the integral of the tangential 8
component of the velocity round dypv v+ E_::dx
the curve, If the curve is chosen W
to be & small rectangle with sides P dx
parallel to the coordinate axes, Fig. 21,
the value of the circulation is

i (-t

Now put w--(g;: ﬁ)

and if d§ is the area of the element the ciroulation becomes
dK = 2wdS.

In this form the equation is valid for an element of any shape
and on applying it to a small circle of radius r

dK = 2w.mr? = 2ar.wr,

from which it follows that w is the angular velocity of the
element about its centre. Thus the value of w at any point
P of the fluid is the angular velocity of a small element
surrounding the point P. The vorticily at any point of the
fluid is defined as the value of 2w, and the circulation round
any small element is then the product of the vorticity and
the area of the element. A fluid element which has vorticity
is called a voriex element and the strength of a vortex element
is defined as the circulation round it.
In terms of the stream function
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and hence the vorticity 2 is

In polar coordinates the
ciroulation round a small
element is

[ o'
1(ﬂ‘+EFdr){r+#]
—u'r}dﬂw%%dﬁ‘dr,
or (i:+f lh,) rdfdr,
= 1
ot Ty
F 12
or F“EF': 31!' r‘g

The surface enclosed by any closed curve can be divided
into a large number of small elements by a double series of

intersecting lines which form

a network over the surface. 154

The sum of the circulations I
X

round all these elements,
taken in the positive sense,
is equal to the circulation / / I
round the boundary of the

surface, since the low along

any line which is common

to two elements comes in

twice with opposite signs .-

and disappears from the re- e

sult. There remains only the flow along the boundary of the
surface which is the circulation round the closed curve. Now
for any small element the circulation is equal to the product

7
1
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of the vorticity and the area of the element, and hence for
any simple closed curve the circulation is

- [[ouis (3 - 33) .

where the double integral is taken over the surface enclosed
by the ourve, This result shows that the circulation round
any closed curve is equal to the sum of the strengths of the
vortices enclosed by the curve,

431, Constancy of circulation and vorticity.

The vorticity of any small element of a perfect fluid re-
mains constant throughout the motion. The vorticity at any
point P of the fluid is twice the mean angular velocity of a
small element surrounding the point, and if this element is
chosen as a small circle with centre at P it is evident that the
pressure on the boundary of the element cannot exert any
moment about the point P tending to change the angular
velocity of the element. Hence, as the fluid element surround-
ing the point P moves with the fluid, its vorticity remains
unaltered. Changes of vorticity can be produced only by
tangential forces at the boundary of a fluid element and these
do not oceur in a perfect fluid. In a real viscous fluid tan-
gential forces ocour, particularly where the fluid is in close
proximity to a rigid body, and so vorticity may arise,

Since the vorticity of the fluid elements in a perfect fluid
is constant, it follows that the cireulation round any closed
eurve moving with the fluid is also constant. As the curve
moves with the fluid it remains continuous and unbroken
and must always enclose the same fluid elements, for no fluid
element can cross the curve without making a breach in its
continuity. Now the circulation round the curve at any time
is the sum of the strengths of the vortices enclosed within
its circuit and the vorticity of all the fluid elements remains
constant throughout the motion. Hence the circulation
round any closed curve moving with the fluid remains con-
stant throughout the motion.

If a closed curve moves through the fluid its circulation
will not be constant but will be equal to the sum of the
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strengths of the vortices enclosed within its circuit at any
moment, and the increase of circulation in any interval will
be equal to the sum of the strengths of the vortices which
have crossed the boundary of the curve in that interval.

4-32. Bernoulli's equation,

The wariation of Bernoulli's constant or the total pressure
head H between different stream lines is closely associated
with the vorticity of the fluid. Con-
sider a fluid element PQQ'P’ whose
pides PQ and P'Q’ are elements of
adjacent stream lines while PP’
and Q@' are normal to them. Let
PQ = ds, PP' = dn and let R be
the radius of curvature of the
stream line.

Bernoulli's equation is obtained
by considering the motion along the
stream line, and if V is the velocity

of the fluid element
vV op
ép oV
and hence P+ }FF'— H,

where H is constant along the stream line,
Resolving also normally to the stream line to obtain the
balance between pressure and centrifugal force

pdsdn 3; -— gfd-m.

op oV
or E-{--—ﬂ——ﬂ.
Now the circulation round the element is
¥ ,
!udadn-qu—(F+h-dn]d¢.
ds' R —dn
where =

ﬂ FE L]
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from which it follows that

20=7 -3
Hence, on eliminating the radius of curvature
3{+FF(2m+'-;D-u,
or 2 (p+ 1oV = — 2up¥,
i.e. o e — 2upV.

This equation determines the variation of the total pressure
head H, and it appears that a constant value of H implies
zero vorticity and conversely.

4-33. Irrotational motion.

When the vorticity is zero at all points of the fluid, the
motion is said to be irrofational, since the angular velocity
of any small fluid element is zero. This type of motion is of
special importance, since it has been shown that vorticity
cannot arise in a perfect fluid and that if the motion is
irrotational at any time it will remain so always.

In irrotational motion the total pressure head H has a
constant value throughout the fluid and the stream function
y satisfies the equation V% = 0 at all points of the fluid. The
types of motion considered in chapter 11 are all irrotational
gince the stream functions satisfy this condition.

When the vorticity is zero at all points of the fluid the
circulation round any closed curve or circuit, enclosing fluid
only, must be zero also, but the case of a circuit enclosing
& body requires some special attention. In developing the
theory of the circulating motion round a cylinder the con-
dition was imposed that the total pressure head H had a
constant value throughout the fluid and it follows therefore
that the motion is irrotational. The circulation round any
circuit enclosing fluid only is zero, but the circulation round
any circuit enclosing the cylinder has the value K. Now
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suppose that the circular cylinder is replaced by fluid
rotating with the uniform angular velocity
K

o -

2mat’
where a is the radius of the cylinder. The fluid velocity will
be continuous at the boundary of the cylinder and the motion
outside the cylinder will be unaltered. The solid body, how-
ever, has been replaced by rotating fluid which has the
vorticity 2w at all points. Thus any cirouit enclosing the
oylinder will have the circulation
K = 2w.ma®,

which is the total vortex strength, while any circuit which
does not enclose the cylinder will have zero circulation.
From this discussion it appears that it is possible to have
irrotational flow past a body involving circulation of the
flow round the body and that this flow will possess the
following characteristics. The total pressure head H has a
constant value and the vorticity is zero at all points of the
fluid, the circulation is zero for all circuits enclosing fluid
only and has a constant value for all circuits enclosing the
body, and the stream function satisfies the equation Vi = 0.

4:34. Point vortices.
The circulation round a small fluid element has been
expressod in the form K = 208

where 8 is the area of the element and w is its mean angular
velocity. The conception of a point vorter is obtained by
imagining the area S to decrease to zero while the angular
velocity w increases and the circulation K remains constant,
The strength of the point vortex is defined simply as the
circulation K round it.

The stream function of a point vortex is derived at once
from the circulating flow round a circular cylinder

K
o= Elog r.
This expression does not involve the radius of the eylinder
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and therefore remains valid when the whole vorticity repre-
sented by the cylinder is concentrated at the centre. The
stream lines of a point vortex are the concentrio circles with
the vortex as centre and the motion is irrotational at all
points of the fluid except the vortex itself.

The velocity at any point is normal to the line joining the

vortex to the point and has the magnitude % Although

the vortex and the velocity are intimately related, neither
can be strictly described as caused by the other. The general
distribution of velocity associated with a vortex will be
called the velocity field of the vortex and the velocity at any
point will be called the induced velocity at the point due to
the vortex.

Point vortices may be used to build up more complex
flow patterns in the same manner as sources and sinks, and
any suitable stream line may then be replaced by a rigid

y

7/

Fig. 25.
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boundary. This boundary should enclose all the point vortices
and the external flow will then be irrotational throughout the
fluid. As an example, consider two equal vortices of opposite
sign (a vortex pair) situated on the axis of y at the points
y = + #. The stream function of the flow is

K. AP
¥ == 218 4,p

and the stream lines are the co-axial circles whose limiting
points are 4, and 4,. Now proceed to a doublet, as in the
case of a source and sink, by making # tend to zero while
2Ks retains a constant value u. The limiting value of the
stream function is

¢ = T '

Znxt + y*

which is identical with the walue obtained from a source
and sink (3-6). By imposing a uniform stream on & vortex
pair, a series of oval bodies can be obtained, similar to those
discussed in 3-5 but with their major axes normal to the
stream, and on passing to the case of a doublet the flow past
a circle is derived. The circulation round the circle (4-2) is
obtained by adding a point vortex at the origin.

4-35. Surface of discontinuily.

The conception of a surface of discontinuity of velocity
was introduced by Helmholtz and Kirchhoff (of. 1:2) to
explain the resultant force experienced by a body. The shape
and position of the surface of discontinuity remain fixed
relative to the body and the flow is tangential to the surface
but the velocity has different values on the two sides of the
surface. In two dimensional motion
the surface of discontinuity becomes
s curve of discontinuity PQ.

Consider a small rectangle with two
sides A B and A'B’ of length ds parallel
to an element of the curve of discon- *
tinuity and on opposite sides of it. If

Fig. 28.
g and ¢’ are the velocities on the two sides of the curve of
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discontinuity, the circulation round the elementary rectangle
will be

dK = (g — q') ds,

since there is no flow along the sides 44’ and BB’. The sides
AA’ and BB may be made indefinitely small and it follows
that the curve of discontinuity PQ must consist of a distribu-
tion of point vortices of strength (g — ¢') per unit length.
These point vortices will move with the general mass of the
fluid and will have the velocity 4 (¢ + ¢') along the stream
line PQ. The velocity due to the vortices at a point adjacent
to the ourve of discontinuity will have equal and opposite
values + § (g — ¢') on opposite sides of the curve,

It follows from this discussion that a surface of discon-
tinuity of welocity is equivalent to a vortex sheet and the
distribution of point wortices which form this vortex sheet
acts in the manner of roller bearings between the two fHuid
streams of different velocity. The type of discontinuous flow
suggested by Helmholtz and Kirchhoff involves the as-
sumption that vortex sheets spring from the sides of the
body and enclose a dead-water region.



CHAPTER V

THE VELOCITY POTENTIAL AND
THE POTENTIAL FUNCTION

6:1. The Velocity Potential.

Congider any curve OAP joining the origin O to a point
P of the fluid and let ¢ be the
integral of the tangential component
of the velocity taken along the curve
from O to P. If q is the resultant
velocity at a point of the curve and
if & is the angle between the direction
of the velocity ¢ and the element ds
of the curve, then

= da.
¢ Ot

In general the value of ¢ will depend on the curve con-
necting the points O and P, for if OBP be another such curve,
the ciroulation round the closed curve OAPBO is

K = ¢oar — donr,

and this circulation, in turn, is equal to the sum of the
vortex strengths enclosed by the curve. In irrotational
motion, however, when the vorticity is zero at all points of
the fluid, ¢ has & unique value at the point P and is then
called the velocity potential. A change of origin O will merely
increase the value of ¢ by a constant amount at all points,
The integral for ¢ can be expressed in the alternative form

! ol
é=[_ (udz+vdy)

where u and v are the components of the velocity ¢ measured
parallel to orthogonal coordinate axes, and it follows that
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But in terms of the stream function

l-?y: '“-gr
and hence the velocity potential ¢ must satisfy the equation
cu &utﬂ
" oy
a4 2% _

This equation is a direct consequence of the continuity of
the flow and is known as the equation of continuily,

The case of irrotational cirenlating motion round a body
forms an exception to the rule
that the velocity potential has : A
A unique value at every point
of the fluid. The circulation is
zero for any circuit enclosing
fluid only, but has a constant
value K for all circuits which o 4
enclose the body once. Hence °
on passing round the circuit 28
PABP (fig. 28) the value of ¢ Fig.
will increase by K and ¢ will be a cyclic function. This
special case may be compared with the similar behaviour of
the stream function ¢ in the case of a source (see 3-2).

6:-11. The various types of flow disoussed in chapter 1
can be analysed in terms of the velocity potential instead of
the stream function and any such flow is completely deter-
mined if either of these functions is known. The expressions
for the velocity potential and stream function for the funda-
mental types of flow are summarised below,

Uniform flow parallel to the axis of x:

¢ = Uz, ¢ =Uy.
Uniform flow parallel to the axis of y:
ﬁ = F!’- * = — Fz.
Source at the origin:

m m
ﬁ-ﬁ;lugr, *-ﬁﬂ.
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Doublet at the origin with axis along the axis of z:

*"%E! *-;;5.

Point vortex at the origin:
K K
¢=E--E, i-—é-_lugr.

Flow parallel to the negative branch of the axis of > with
circulation past a circle of radius a with centre at the origin:

a K
nﬁ-—[?n:(1+r—:)+—£;ﬂ.
a K, r
b=—Uy(1-55) - g log .
These expressions for the stream function have been
developed at an earlier stage, and it can easily be verified
that the corresponding expressions for the velocity potential
lead to the same values of the velocity components u and v
at all points and satisfy the equation of continuity.

5-12. Equipotential lines can be drawn for constant values
of the velocity potential and these lines will intersect the
stream lines atright angles.
If dn is an element of the ¢,
normal to the stream line 2
at any point P and if d¢
is the corresponding in- "J"E
crement of the wvelocity
potential, then the velocity
of the fluid along the

normal line will be g{
But there is no component
of the velocity normal to a stream line by definition. Hence
there can be no increment of welocity potential along the
normal line and the element dn is an element of an equi-
potential line.

If ds is an element of the stream line and dn is an element

Fig. 20.
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of the equipotential line at the point P, the velocity ¢ of the
fiuid is along the stream line and of magnitude
3 _ o
iy - al " Eu
and if the stream lines and equipotential lines are drawn for
equal incrementa of  and ¢, the intercepts ds and dn between
consecutive lines will be of equal length. It follows therefore
that the stream lines and equipotential lines of any flow,
drawn for equal small increments of ¢ and ¢, will divide the
whole fluid region into a network of small squares. When
the increments are finite, these elementary squares will be
distorted and their sides will be curved but the angles of the
elementary areas will remain right angles.
Fig. 30 shows the system of orthogonal lines for a source
and sink at the points A, and A,, the equipotential lines being

|
Fig. 30,

represented by broken curves. The figure may also be inter-
preted as the flow due to a vortex pair at the points 4,
and A4, by interchanging the stream lines and equipotential
lines. This example illustrates the general principle that any
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system of orthogonal lines represents two possible flows,
sinoe either set of lines may be taken to be the stream lines
of the flow. It is necessary, however, to adjust the boundary
conditions to fit in with the flow. Fig. 31 shows the system
of orthogonal lines for a circle in a uniform stream, and, if

Fig. 1.

the broken lines are taken to be the stream lines, it is neccssary
to assume & distribution of sources and sinks over the upper
and lower halves of the circumference in order to satisfy the
boundary condition, since the fluid has a definite velocity
normal to the circumference of the circle.

Fig. 31 also illustrates another important point. In general
the stream lines and equipotential lines intersect at right
angles, but this condition breaks down at the points 4 and
B, which are the stagnation points of the flow. The proof that
stream lines and equipotential lines intersect at right angles
is no longer valid, thnrﬂnnuf%fiuminnﬂdirmﬁmmd

the stream line may turn through a sharp angle at a stagna-
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tion point. It will be shown at a later stage that the equi-
potential line makes an equal angle with the two branches
of the stream line in this special case.
6-2. The complex variable.
Thnmrdimmﬂfnpuintf'hlwhmnﬂrprmddthﬂ
in Cartesian or in polar co-
ordinates, but it is possible to
combine the two coordinates »
required in either of these
systems into a single complex r
coordinate z defined by the y
equation
gt=z+iy=r(cosd +iginf), O & A
where i represents v'—1 and e 2.
obeys the ordinary algebraic rules. Now
é{mﬂ'+in’nﬂ}ﬂun‘nﬂ+imﬂ
= 1 (cos & + 1 sin §),
;E[uuﬂ'+iainﬂ}
or =
coa ¥ 4+ 181N

and on integrating again
log (cos @ + i sin §) = 8,
or 008 6 + & gin § = e*,
The complex coordinate of the point P can therefore be
expressed in the form e

The coordinates (z, y) or (r, 8) define the position of the
point P relative to the origin O and the axis 04 (fig. 32), but
the complex coordinate z may be interpreted more suitably
as representing the vector OP. The length of this vector is
equal to r, which is called the modulus of = and is written in
the alternative forms

r=modz=|z].

The angle #, which defines the direction of the wector, is
called the argument of =.
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When 2 is expreased in the form (z + iy), = and y are called
the real and imaginary parts of = respectively, and the
modulus of z is equal to v'z® + yi. If the modulus is zero, it
is evident that x and y must both be zero. Now any function
f (z) of the complex variable z can be separated into its real
and imaginary parts, and can be expressed in the form
(X +4Y), where X and ¥ are real. It follows that any
complex equation f(z) = 0 is equivalent to the two equa-
tions obtained by equating to zero separately the real and
imaginary parts of f (z).

The multiplication of two complex numbers gives

2y = ryry el A,
which representa a vector whose modulus is the product of
the moduli and whose argument is the sum of the arguments
of z, and z,. Hence if any complex number or vector is
multiplied by z, the length of the vector is increased by the
factor |z| or r and the direction of the wector is rotated
through the angle 8. The factor ¢* rotates a vector through

t.hemghﬁ'lndput:tingﬂ'=gitfdlmthuthufmmri

rotates a vector through a right angle.

5-3. The potential function.
Consider any function of the complex variable z which has
a aingle-valued differential coefficient at every point. Let

f(2) = £+ in,
and %=p+iq.
The differential coefficient may be expressed in the alterna-

tive forms p+l'q=£— g- §+ig

and henoe
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Also from these last equations it follows that
V=V =0,

Comparing these results with the equations which connect
the velocity potential ¢, the stream function ¢, and the
velocity components u and v in any irrotational motion (5-1),
it appears that £ and 5 may be replaced by ¢ and ¢, and that
p and ¢ may be replaced by w and — v respectively, Hence
if ¢ and ¢ are the real and imaginary parts of any complex
function f (z) they will represent possible forms of the velocity
potential and stream function of an irrotational motion. It is

customary to write
W= ¢ +ip = f(2)

and then gsu—h.

The complex function w is called the polentsal function of the
flow and any irrotational motion is represented completely
by this function.

5-31. The fundamental types of flow summarised in 5-11
can be expressed at once in terms of the potential function,
which assumes the following simple forms:

Uniform flow parallel to the axis of z:
w= Uz
Uniform flow parallel to the axis of y:
w= —ilz.
Source at the origin:
u-i’%lug:.
Doublet at the origin with axis along the axis of z:

w=—

wz’
Point vortex at the origin:

. K
'HI-—*I'E—;_I‘EEI+
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Flow parallel to the negative branch of the axis of x with
circulation past a circle of radius a with centre at the origin:

a LK. 8
w——U(=+-=:)—|-ﬁ_lnga.
These types of flow are expressed in terms of the three

simple functions z, ;md log = of the complex variable, and

other types of flow can be obtained by suitable expressions
for the potential function w. Consider, as an example, the
flow represented by the potential function

W= — Uz = — U {(2* — y?) + Zizy).

The stream lines are the series of rectangular hyperbolae

whose asymptotes are the
axes of z and y, and by ¥
regarding these asymp-
totes as rigid boundaries
the flow in the angle be-
tween two perpendicular
walls is obtained.

More generally, assume
that the potential function

+ 1 8in nd), T s e

and the irrotational low © o
is obtained between two Fig. 33.

straight walls which meet at the angle a = : Fig. 34 illus-

trates the flow for n = 4 and n = §, which represent the
flow in a sharp angle and round the outside of a right angle
respectively.

Any complex function can be interpreted as the potential
function of an irrotational motion, but the cases of practical
importance are those in which the flow at a great distance
from the origin approximates to a uniform stream. The
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potential function will then be such that, for large values of
| 2], it can be expressed as the series

w=Az+ Blogz + Iffw:.
where the coefficients 4, B, A, may be complex numbers.

¥




CHAFPTER V1

THE TRANSFORMATION OF A CIRCLE
INTO AN AEROFOIL

6-1. Conformal transformation.

Consider a function f (z) of the complex variable 2 which
has a unique value and a unique finite differential coefficient
at every point of the z plane, and let § and » be the real and

imaginary parta of this
function :
{=£+in=/(z)

The curves of constant
values of £ and n re-
gpectively can be drawn
on the z plane and will
form a double series
of linea intersecting at
right angles, since it has
been shown previously
(see 5-3) that £ and 5
may represent the ve-

El Et

&
yE

o

Fig. 35.

locity potential and stream function of an irrotational motion.

Alternatively £ and
n may be rugardod,}
ns the abscissa and
ordinate of a new
of coordin-
ates, for which [ is
the complex wari-
able, and any curve
C of the z plane may
be transferred to this

new { plane. In this

& & &

(X

i

_/‘ Tir

the network O

process
of curved lines of the

Fig. 36,
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z plane is transformed into a network of orthogonal straight
lines and the curve C of the z plane will therefore appear in

a distorted form C* on the { plane.
= plans ¢ plane
R
/4
y "
A Q
AQ
P p!
O & o' E
Fig. 37.

Let PQR be an elementary triangle of the z plane and let

P'Q'R’ be the corresponding triangle of the { plane obtained
by a transformation of this type. Also let

%nf{:}nu";

Then the elementary vectors PQ (dz) and P'Q’ (d{) will be
dl = ae*dz,
and hence |dl| = a|dz],
arg d{ = a + arg ds,
The effect of the transformation is therefore to increase the

lmyhdthemtmmhgmmm:um]jf} and to
|

mtﬂath&mtnrth:ﬁnghthamgleuurug;f. The impor-
tant point, however, is that the transformation experienced
by the elementary vector PQ does not depend on its direction
but only on the position of the point P. It follows that the
elementary triangle POQR will be transformed into a similar
triangle, increased in size by the factor a and rotated through
the angle a. A transformation of this type, which does not
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alter the shape of elementary figures, is called & conformal
transformation.

6-11. The condition has been imposed on the function f (z)
that it shall have a unique value at every point of the z plane,
and in consequence every point will be represented uniquely
on the { plane. It is possible, however, that two or more
points of the z plane may be represented by the same point
of the { plane. Consider, for example, the transformation

f-*‘-

which will give the same point of the { plane corresponding
to the two points + z of the z plane. In this case it is con-
venient to consider only the top half of the z plane, which
will be transformed into the whole of the { plane. The
transformation is illustrated in fig. 38, where the same letters
denote corresponding points, and it will be seen that the
real axis A0A’ of the z plane has bent back on itself to form

8 z plane { plane

Fig. 38.

only the positive branch of the real axis of the { plane. It
can easily be shown also that the straight lines parallel to
the coordinate axes of the z plane are transformed into
parabolae whose axes coincide with the real axis of the
{ plane.

The transformation function f (z) may now be generalised
by removing the restriction that it must have a unique value
at all points of the z plane, for it is possible to consider the
transformation of a limited region of the z plane into a
limited region of the { plane, and the condition to be satisfied
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by the function f (z) is that it shall give a unique relationship
between z and { in these limited regions.

6-12, Singular points.

The simple example of conformal transformation repre-
sented in fig. 38 illustrates another important point. In a
conformal transformation the angle between two intersecting
lines remains unaltered after transformation, but in this

particular transformation the angle E between the lines OA

and OB of the z plane has increased to = on the { plane. Thus
the transformation has ceased to be conformal at the point O,

The ratio of elementary lengths on the t‘ruplmislsél,

which has in general a finite value. H[%Ihm.nm-ﬂ
but finite length of the z plane contracts to zero on the [
plane, and conversely when l%ltﬂdltninﬂnitj, A point

lt#hiuhl%lhmuminﬁnit&iamﬂndldmhpﬁuuf

the transformation and at such a point the transformation
ceases to be conformal.

Conﬂduthamrhanl%‘iumntthu point z,. If [,

is the corresponding value of [, the transformation may be
written in the form

{—L=E—z)"F),
where F (z) does not vanish or become infinite at the point

z, and where n is greater than unity in order that ‘:.ﬂ may

£ plane 4 plane
{ \ﬂ'://
Zo co
Fig. 30.
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be zero at this point. Now let the characteristic point of the
z plane move on the small circle

z =z, + re”,
and then the corresponding variation of { will be given by
the squation [ =L+ remP(z,).

Thus the characteristic point of the { plane also describes
a ciroular arc of small radius, but an angle # of the z plane
corresponds to a larger angle n@ of the { plane.

The case when [%‘bmnmﬂ infinite can be treated in a

gimilar manner, and in this case an angle @ of the z plane
transforms to a smaller angle of the { plane.

A singular point which occurs on the boundary of the
region under consideration may be excluded by an arc of a
small circle as indicated in fig. 38, and the transformation
then becomes conformal at all points of the region. More-
over, the circular arc may be made indefinitely small and
hence in effect a singular point on the boundary of the region
will not necessarily destroy the validity of the transformation.
It is important, however, that no singular point shall ocour
in the region to be transformed, and any singular point on
the boundary must satisfy certain conditions.

Consider the special case of the transformation of a circle
into an nerofoil section and assume that a singular point

£ plane

:ﬂw
>
' nt
Fig.

T
40,
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ocours on the circumference of the circle at z,. If the trans-
formation near this point is of the form

{=0L+(=—2)F),
the exterior angle = of the circle at z, will be transformed into
the exterior angle n= of the aerofoil at {,. It is evident at
once that the value of n must not exceed 2 and that to obtain
a typical aerofoil shape n should be only slightly less than
this value. If = is the angle at which the upper and lower
surfaces of the aerofoil meet at the trailing edge, the valus
of n is determined by the equation

rm (2 -n)m

In the particular case n = 2, the aerofoil section will have a
cusp at the trailing edge.

6-13. Transformation of the flow patiern.
The flow past any body or simple closed curve € of the
z plane is determined by the potential function w = ¢ + i
and is represented by the equipotential and stream lines,
These characteristic lines form an orthogonal system and
after any conformal transformation of the z plane they will
form an orthogonal system on the [ plane associated with
n simple closed curve (. Hence the conformal transformation
which transforms the curve C into the curve €, also trans-
forms the flow past € into the flow past (",
The velocity components w’ and ¢ at any point of the
{ plane are given by the equation
T dw dwds . . d2
u —w"'-udf-ﬁaf—{umw]tﬂ,
and the resultant velocities ¢’ and g at corresponding points
of the two planes are related by the equation

qr'Eﬁtli«h*
In general Ig‘ has a finite value differing from zero, but at

a singular point a finite velocity in one plane may correspond
to an infinite velocity in the other plane. Thus in fig. 40 a
finite value of the velocity ¢ at the point z, will lead to an
infinite velocity ¢’ at the point [, of the aerofoil,
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The irrotational flow past a circle is known and it is
possible to transform a circle into any given shape of aerofoil.
Hence the flow past any aerofoil section can be determined
by the method of conformal transformation, and the problem
of determining this flow directly may be replaced by the
problem of determining the conformal transformation from
the aerofoil section to a circle.

6-2. Straight line and circle,

An interesting and important example of the conformal
transformation of a flow pattern is the application of the
transformation a8
£-=+--

to the circle | 2| = a. The general point z = re¥ transforms
to the point whose coordinates are

£=(r+3) no,

1= - ane

and it follows at once that the circle r = a of the z plane is
transformed into the part of the real axis extending between
the points § = & 2a.

The transformation has a simple geometrical interpretation.
The complex vari- i
nble z represents | P
the wveotor OFP of p
lmgthrl.tuu.glaﬂ :
to the real axis. |

|
Elmnluijr“?nr B ] A

a? gy

F[nmﬂ‘-umﬂ
represents the vee- '
tor OP, of length & .

at angle — 0 to the e 41
real axis, and the position of P, may be obtained from that
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of P by the double process of inversion with respect to the
circle r = a and reflection in the real axis. Finally, the vector
OPF’ representing the complex variable { is obtained by the
addition of the vectors OP and OP,, or by completing the

parallelogram POP, P’
By this geometrical method or by direct use of the trans-

formation equations, the stream linea of the flow past the
circle can be transformed to those of the corresponding flow
past the straight line.

6-21, The potential function for uniform flow in the {
plane parallel to the negative branch of the real axis is

W= — Ui.

and this represents the flow along the line AB. On trans-
forming to the z plane, the line AB opens out to a cirele and
the uniform stream past this circle has the potential function

we —Ul=— U(: +2.)*

Thus the method of conformal transformation gives at once
a result which was obtained previously by a more tedious

process,

6-22. The vertical flow past the circle can be obtained
from the horizontal flow by the transformation

= iz,

y

(N -
/"

4

Fig. 42.
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which is equivalent to rotating the axes backwards through
a right angle. The potential function becomes

w—iU(:'—E:).

and hence the potential function for a uniform stream V
parallel to the negative branch of the imaginary axis of the

original system will be
m-iF( -%’).

6-23. By transforming the circle back to a straight line
the potential function for a uniform stream normal to the
line is obtained in the form

W = iF ‘t"’{‘ — H-..
This result can be expressed more conveniently by means
of the substitution . .

{=gssin (A +ip),

rl:wuni:aqullt-uﬂnmdisthnnmj-upmdthnﬁm. With
this substitution P I i Ly

n = & coa Asinh u,
and the periphery of the line is represented by u = 0 and
A = 0 to 2». The potential function becomes

w=— Vs oos (A + iu),
and the stream function is

W = Fgsin A sinh p.

The stream lines of this flow are shown in fig. 43 and
represent the flow relative to the straight line. The flow
relative to the general mass of the fluid can be derived simply
by adding the vertical velocity V at every point, and the
resulting flow pattern is shown in fig. 44. These stream lines
represent the motion which is caused in the fluid when the
line moves normal to itself with the velocity V.

6-3. Aerafoil and circle.
In order to obtain the flow pattern past an serofoil it is
to determine the conformal transformation which
converts the aerofoil section into a circle in such a manner
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that the region at infinity is unaltered®. For a given aerofoil
section in the { plane there is a unique conformal transforma-

N
VNS

* The general theory has been developed by R. v. Mises, * Zur Theorie
des Tragfiichenauftriebes,” ZF M, 1917 and 1920,
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tion which transforms the region external to the aerofoil into
the region external to a circle in the z plane, and this circle
is uniquely determined in magnitude and position. The con-
formal transformation is of the type

A, A,
I+

where the coefficients 4,, 4,, ... are complex numbers in
general,

Conversely a circle of the z plane can be transformed into
an aerofoil section in the { plane by a conformal transforma-
tion of the type

z=1_+ P

=2 +349
and by suitable choice of the mﬁﬂ&'mantu @y, Gy, ... and of the
circle it is possible to obtain any given aserofoil shape. No
limitations exist on the choice of the coefficients, but the circle
must enclose within its circumference all the singular points

dtlwmndumaﬁunntwhiehﬂumminﬁmtu The

+ BEE

general transformation gives
d_,_%_2a,
dz " B

which can become infinite only at the origin, but may be
zgero at & number of points v, v, ete,

68:81. Joukowski's hypothesis.

The general flow past a circle contains one arbitrary
parameter, the circulation K of the flow round the circle,
and this arbitrary parameter will remain when the flow is
transformed to the flow past an aerofoil. Now an aerofoil
usually has a very small radius of curvature at the trailing
edge and in developing the theory of an aerofoil it is con-
venient to make the assumption that the upper and lower
surfaces of the aerofoil meet at a sharp mgluntthatnﬂing
edge. The point B of the circle which transforms into the

uﬁﬁngadguufthaumfnﬂwﬂlthmhannmufi{mddthn
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velocity g at the point B of the circle has a finite value, the

corresponding velocity ¢" at the trailing edge of the aerofoil
will become infinite, since

¢ ~e|g|

In order to avoid this infinite velocity at the trailing edge
Joukowski suggests that the circulation K should be chosen
8o that the point B is a stagnation point of the flow past the
circle and the velocity g is zero. The flow past the aerofoil ia
then such that it leaves the trailing edge tangentially and
the velocity remains finite at all pointa.

Joukowski’s hypothesis determines the circulation K
uniquely when the aerofoil has a sharp trailing edge, and the
aerofoil section will be assumed always to possess this
characteristic. The critical discussion of Joukowski’s hypo-
thesis is reserved to a later chapter (sec 9-3).

6-32. If the transformation formula is the finite series

G-t
l.I-lll. r

the singular points are determined from the equation

. BN
{ 2ttt

ﬁ_]_ﬁ_ﬂ_m_fﬂ-“ ”'ﬂn-l
dz 2 =
(122 (-3
where Zn, =0,
v vy = —a,, eto

The equation Ev = 0 shows that the origin O of the system
of coordinates has been chosen at the centroid of the singular
pointa, but the direction of the axes is still undetermined.
Now the circle which is to be transformed into an aerofoil
must enclose all the singular points within its ciroumference
in order that the transformation shall be conformal. On the
other hand the trailing edge of an aerofoil approximates to
& sharp edge and to obtain this feature of the aecrofoil it is
neceasary that one of the singular points B shall lie on the
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circumference of the circle. The real axis may be chosen
conveniently as the
line BO. &

section may now be
laid down in general
terms. Choosen points X
in the z plane which x
are to be the zeros %

of the transformation i " X
and take the origin O x
at the centroid of

these points. Draw
any circle which
passes through one of
tham..ﬂu.ihluduna g .

closes the remainder within its circumference. Then if BO
is taken as the axis of r and if v, n,, ... are the complex
coordinates of the n zeros, the transformation will be

£-(-2)(-3)-0-3)

By choosing different circles and different sets of zeros of
the transformation, an infinity of different aerofoil
can be derived. In each case the point B of the circle will
transform into the trailing edge of the aerofoil and by
reference to 6:12 it will be seen that the upper and lower
surfaces of the aerofoil will meet in a cusp at the trailing edge.

6-33. In the most general case the transformation formula
is the infinite series

o o
I-=+;+=|+"u

ar &-l ----- e W

The circle to be transformed into an aerofoil must be sach
thlt%duumtuninhnrbammﬁinﬁniuntmjpdntnm-
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side the circle, and if the aerofoil is to have a sharp trailing
udgnmmnni%mmﬁuunthuuimumhmmul the
circle at the point B (z = v). The transformation may then be
written in the form

£ (-9

where f(z) has a finite value other than zero at all points
on and outside the circumference of the circle. In the neigh-
bourhood of the zero B the transformation will be of the

form [= b+ 0P ),
and from 6-12 it follows that the upper and lower surfaces
of the aerofoil will meet at the trailing edge at the angle
T=(2—n)n

To obtain aerofoils of conventional shape it is necessary
therefore to choose n to be slightly less than 2, while if n
rises to this limiting value the aerofoil has a cusp at its
trailing edge.

O6-4. The Joukowski transformation.

The simplest type of transformation formula involves two

7
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zeros A and B, and in accordance with the general theory
the line joining these two points is taken as the real axis and
the origin O is taken at the mid-point of AB. The coordinates
of the zeroa are then z = + ¢ and the transformation formula is

-(-909-1-5

cl

Some special applications of thu transformation have been
congidered previously in 6-2, where it was shown that the
circle on AR as diameter transforms into the part of the real
axis extending between the points £ = + 2¢c. More generally
the transformation may be applied to any circle which en-
closes the points 4 and B within its cireumference, but in
order to obtain an serofoil section with a sharp trailing edge
the circle € must be chosen to pasa through the point B. If
the circle is slightly larger, so that the point B falls just inside
the cireumference, an aerofoil section is obtained with a
rounded trailing edge but it is no longer possible to determine
the circulation uniquely by means of Joukowski's hypothesis.

The circle €' will be defined by its radius @ and by the
angle 8 between the real axis and the line joining the point
B to the centre M of the circle. In order to obtain an aerofoil
section of conventional shape the angle f must be small and
the radius a only slightly greater than ¢ soc . The position
of the centre of the circle may also be specified by the length
m of the line OM and by the angle § which this line makes
with the real axis. The complex coordinate of the centre M
may then be expressed in the alternative forms

2 = me¥ = ge¥ — ¢,
G-41. Circular arcs®.

Consider first the case when the centre M lies on the axis
of y so that the circle ' passes through both the zeros 4 and
B and the radius of the circle is a = ¢ sec j.

* Ciroular are aerofoils have been discussed by W, M. Kuitta, ** Aaftriebs-
kﬂlﬁlﬂl‘hﬁmﬂm Flissigheiten,” Iliustr. aeronawt. Mitieilungen, 1902

" Uber eine mit den Grundlagen des Flugproblems in Beziohung stehende
ewel dimensionale Stromung,” Ber. d. Bayer. Akad. 4. Wiss, 1010,
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The general point P of the circle has the complex coordinate
z = re” and after transformation this point becomes

f-(r+";')ma.

7 =(r—%)sino.

Fig. 47.

Eliminating r from these equations,
£ ain® § — n® coa? § = 4c? ain® § cos® 0.
But from the triangle OPM
ctsec? B = a? = r? 4 c?tan® § — 2rc tan B sin 6,
or r! — ¢ = 2rc tan B sin #,
and bence 7 =" sin§ = 2 tan Bsint 4.

r
Finally, on eliminating the angle #, the equation of the
transformed curve ¢’ becomes

£ + (p + 2¢c cot 28)* = (2¢ cosec 258)%.

This is the equation of a circle, but since n has been shown
to be proportional to sin®#, it follows that the curve C'
consists only of the circular are which lies above the real
axis. The upper and lower parts of the ciroumference of the
circle 7 form respectively the upper and lower surfaces of this
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circular arc, The end points A’ and B’ of the circular are are
the points £ = 4 2¢ and the maximum ondinate is y = 2¢ tan g,
which is exactly double OM. The camber of the circular arc,
defined as the maximum ordinate divided by the chord A'B’,
is therefore § tan B.

6-42. Symmetrical aerofoils.

If the centre M of the circle C is chosen on the axis of x
and if the radius a is slightly greater than the fundamental

Fig. 48.
length ¢, the circle transforms into a symmetrical aerofoil
section,
Writing @ = ¢ (1 + ¢), where « is a small quantity, the
coordinate of the leading edge of the acrofoil is

f—c{l+h}+ﬁh—-ﬁc{l+h‘+..-l.

and as the trailing edge of the aerofoil is the point £ = — 2¢,
the chord of the aerofoil is 4¢ (1 + «*) to a close approxima-

tion and for most purposes it is sufficiently accurate to neglect
the square of « and to take the chord to be 4e.
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At the general point P of the circle
A*=r+(a—-c)!—2r(a—c)cosd,
and retaining only the first power of «,
r=c{l 4+ (1 + cos §)}.

Hence f-(r+:'_—.)mnﬂ-!cnmﬂ,
q-(r—c;.}uinﬂ-h{l+mﬂ}ﬁnﬂ.

The form of the symmetrical aerofoil may be constructed by
means of these equations. The thickness of the aerofoil at

thnmnmiuoqudtntwimthﬂvduﬂﬂquhmﬂ-gmd
hence {,=4dc.c.

Also the maximum thickness occurs where cos # = }, i.e. at
the point which is one-quarter of the chord from the leading
edge, and has the value

34/3

bmax = 4¢. 3

The straight line of length 4¢ considered in 6-2 may be
regarded as the centre line or skeleton of the symmetrical
aerofoils. The thickness of the aerofoils is proportional to «
and a value ¢ = 0-1 gives a maximum thickness of 0-13 times
the chord. This value is not often exceeded in practice and
hence the neglect of ¢ in the expression for the chord will
in general give an error of less than 19%,.

6-43. Jowkowski aerofoils®.

In general the centre M of the circle € must be taken as
in fig. 40 or fig. 49. Now if BM cuts the axis of y at M,, the
circle O, with centre M, and radius M, B will transform into
a circular arc while the circle C transforms into an aerofoil.
The circular arc will be the centre line or skeleton of the
aerofoil, and the acrofoil may be regarded as one of the
symmetrical type whose skeleton has been bent into a ciroular

* This type of aerofoil was introduced by Joukowski, “Uber die
Konturen der Tragflichen der Drachenflieger," ZFM, 1910,
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arc of camber § tan B. The thickness of the aerofoil will be

proportional to the
length M, M, and
the shape of a
Joukowaki aerofoil
will therefore de-
pend on the two
parameters 8 and
%, which deter-
mine respectively
the camber of the
centre line and the
thickness of the
aerofoil.

The shape of a
Joukowski aerofoil
can be obtained by

Fig. 49.

a simple geometrical construction®. The method of deriving
the point P’ corresponding to any point P has been developed

Fig. 50.

* E. Trefftz, ' Graphische Konstruktion Joukowskischer Tragflachen,”

ZFM, 1913.
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in 6-2. A subsidiary point P, is first obtained by inversion
with respect to the circle on A B as diameter and by reflection
in AB, and P’ is then obtained by completing the parallelo-
gram POP,P’. Now the inverse of the circle C' is another
circle with centre on the line MO produced, and after reflection
the centre of the auxiliary circle C; will lie on the line which
is the reflection of OM in AB or in the axis of y. By con-
sidering the conditions near the point B it also follows that
the auxiliary circle €, must touch the original circle C' at
B, and hence the centre M, of the auxiliary circle is the point
of the linoe BM such that OM and OM,; make equal angles
with the axis of y.

Corresponding points P and P, on the circles C and O, are
now obtained by drawing lines from the origin O at equal
angles on opposite sides of the axis of z, and tht point P’ of
the aerofoil is obtained by completing the parallelogram
POP,F'. The form of the aerofoil can be obtained by this
method by taking a suitable number of points on the circum-
ference of the circle C.

6:5. The general transformation.

The Joukowski transformation involves two zeros and
leads to a doubly infinite series of aerofoils. A more general
transformation formula, involving three or more zeros, leads

to o greater variety of aerofoils and the types which ean be
derived in this manner have been discussed by R, v, Misea®
and W, Miillert. This type of transformation, however, leads
essentially to aerofoils which have a cusp at the trailing edge,
and a more important generalisation of the Joukowski trans-
formation is that which leads to an aerofoil section whose
upper and lower surfaces meet at a finite angle at the trailing

Tl;anuknnhhnndnrmnﬁnn
c?
E'-:.I-f-';

* *Zar Theorie des Tragflichensuftriebes,” ZFM, 1920,
t *Zur Konstruktion von Tragfilchenprofilen,” ZAMM, 1024,
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may be written in the form

{+2 _ :+c)‘

{—2 =g/’
and near the zero B this transformation becomes approxi-
mately

[+%=— {'_': ¢y

In order to obtain a finite angle r at the trailing edge of the

aerofoil the transformation must be of the form
—La=(z—2)"F(2)

in that region (cf. 6-12) and n must have the value

:
nn_!-—--n‘
m

This form is obtained by generalising the Joukowski trans-
formation in the form

{+me_ (z+4c\"
{—mne —c)'

This transformation has the two zeros z = &+ ¢, but the

Fig. 51.

skeleton of the aerofoils is now formed by two circular arcs®
which meet at the angle = and the chord of the aerofoils is

* The double circular arc as the skeleton of an serofoll was suggested
by W. M. Kutta, “Uber ebene Zirkulationstrémungen," Ber. d. Bayer.
Albad. d. Wiss. 1911. The transformation has been investigated by T. v.
Karman and E. Trefftz, * Potentialstromung um gegebene Tragfiichen.
querschnitte,” ZFM, 1018, and by W. Maller, “Zur Konstruktion von
Tragfischenprofilen,” ZA MM, 1024
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2ne. The transformation may also be written as an infinite
series of which the first terms are

nt—1e2
:--:+ = ;+i-l--r

There is no simple geometrical construction for aerofoils
of this type and the calculation of the shape of even a sym-
metrical aerofoil is rather complex®. The aerofoils of thia

Jowkowski Aerofoils

——‘E——_—__‘-_—_ >—
——— s
Extended Joukowsks Aerofoils

a——

Fig. 5.

generalised Joukowski type involve three arbitrary para-
meters, determining respectively the camber, thickness and
trailing edge angle, and a wide range of aerofoil sections can
be designed by this method, which are suitable for use as
aeroplane wings. Some typical aerofoil sections of the
Joukowski and extended types are shown in fig, 52,

* For details of the method of caleulation see H. Glauert, ** A generalisod
type of Joukowski serofoil,”™ RM, 011, 1024,

—
[hb
\____




CHAPTER VII
THE AEROFOIL IN TWO DIMENSIONS

7:1. General formulae for lift and moment,

When the potential function w of the flow past any
body is known in terms of the complex variable z, it is
possible to obtain simple analytical expressions for the force
and moment acting on the body. Consider the motion of the
fluid contained between the surface of the body and any
simple closed curve C surrounding the body. If X and ¥

v

Fig. 53.
are the components of the resultant force acting on the body,
the fluid will experience an equal and opposite reaction from
the surface of the body in addition to the pressure which
acts normally to the bounding curve C. These force com-
ponents balance the rate of increase of momentum of the
fluid passing out of the region under consideration, and hence

= s Lpa.y= Lpu (xdy — vdz),

- ¥+ Lpdx - Lpu (udy — vdz),
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where the integrals are taken round the perimeter of the
curve C'.

If the motion is irrotational, the total pressure head will
have a constant value H at all points of the fluid and the
pressure at any point will be

p=H — }p (u* + V).
Then also

T aiTe —fup (dy + idz) -Lp (% = i) (udy — vdx)
- b_[nuu- + v)(dy + idz) — 2 (¥ — iv)(udy — vdz))

= i".[e{"' — o — 2iup) (idz — dy).

But %: uw— i,

and so finally X —i¥ = pi [ (57) ds.

The moment about the origin of the resultant foree acting
on the body can be determined in & similar manner by con-
gidering the rate at which angular momentum is passing out
of the region. If M, is the moment on the body, the equation
for the motion of the fluid is

- M, +L_‘F (xdzx + ydy) =-||P¢.n (ve — uy) (udy — vdz),
and henoce
My = — o (u*+ v") @dz + ydy) — p[ (vx = uy) (udy — vdz)

= = i {(u* — o) (xdz — ydy) + 2uv (ydx + xdy)).

But
L Ein)‘ =% vl L{,- — v* — 2iu) (z + iy) (dz + idy),

and the real part of this integral is identical with the integral
which occurs in the expression for M,. Hence

M, = — R | (57) 2de
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These integral expressions for the force and moment about
the origin are valid for any number of bodies enclosed within
the curve € and may be evaluated for any simple curve
surrounding the bodies. Expressing the square of the
differential of the potential function as the series

2
;E - A, + ;-‘+":.'+“.

for large values of z, the values of the integrals become at once

X — Y = §pi (2mid,) = — mpd,
and M, = — §pR (2midy) = — mpR (idy),
as may be verified by choosing as the curve € a circle of
large radius with centre at the origin of coordinates. In
these final expressions, the coofficients A, and A, will be
complex quantities in general and so X, ¥ and M, will all
have finite values.

7-2. Lift and moment of an aerofoil.

In order to apply this method of caloulation to an aero-
foil which has been derived from a circle by the conformal
transformation { = f(z), it is necessary in the first place to
determine the potential function of the flow past the circle.
In the general case the origin of coordinates O is chosen at

the centroid of the zeros of % and the circle enolosss all the

v s

Fig. 54.
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zeros except obe within its circumference. The remaining
zero B lies on the circumference of the circle and is trans-
formed into the trailing edge of the aerofoil. The real axis is
chosen to pass through the point B, whose complex coordinate
is then taken to be z = — ¢. The circle will be assumed to be
of radius a and to have its centre at the point

2= —¢ + ae'’ = me®,

as indicated in the figure.

Now suppose that the undisturbed flow is of velocity V
inclined at angle « to the negative direction of the real axis,
and that the circulation K is chosen in sccordance with
Joukowski's hypothesis (see 6-31) to be such that the rear
stagnation point of the flow occurs at the point B of the
circle. In terms of the complex coordinate z*, with origin at
the centre of the circle and real axis opposed to the direction
of the stream V, the potential function of the flow past the
cirele is (from 5-31) "

] z

, 4 O
m-—F[:.-. +?J 2, 108 5

and the coordinate of B is 2" = — gelle+M,
For this flow X
diwo / at i
Ej--Fl.l “;‘_-;)"'_'”r

and the circulation K must be determined so that this ex-
pression vanishes at the stagnation point B, Henoe

PP | ST

V{l—e 8} o M)
which leads to the value of the circulation
K = 4=aV sin (¢ + B).

7-21. The aerofoil is derived from the cirele by the general
conformal transformation

{-d:+ﬂ]+u'

"E' z_l+llI.

where the coefficients are complex in general. To determine
the foree on the aerofoil, it is necessary to obtain the value
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u:‘:.‘ffmmnm Now the variables s and 2’ are related by

the equation = (2 — me®) ¢s,
and so dw _ dw dz’ dz
dg “dzdf
=,

Substituting for z" in terms of z and expanding in descending
powers of z, this expression becomes
i‘;- - Fu"—g : + (r:*?:“h—diﬁ“ —;gm"}:.+ sees

from which it follows that
(d’m) .d.+"‘!'+"l'+

where A, = Viete,

Aj.ﬂ,.-

ﬂ"'Em

Ay = 2,V — 2070 4 TR ey B

7-22. The general expression for the foroe on a body now
gives for the aerofoil

x-or -] ()
-Mlu(gi‘f)t%ﬁ
- 4si| (4,+"‘+"’"+ )(l-gu...)d.
-lpﬂﬂml ),
whenoe X —i¥ = —ipVKe",

X =pVKsine,
- {F-FFEmuu,
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which are the components of a force p VK at right angles to

the stream V. Thus the aerofoil experiences simply a lift force
L = pVK = 4zapV*sin (a + f).

7-23. The moment of the lift force about the origin of
coordinates is determined as

o - b (4 1
- [ (8 e+ 2+ )18 )

=~ 1oR [ (40+ + 2.4 )(1 -9 - . de
= = {pR (2mid,),
so that M, is the imaginary part of mpd,. Now put
a, = bty
in the expression for 4,, and the value of M, becomes
M, = 2zb%V*6in 2 (a + ¥) + pVEKm cos (a + 8).
This expression represents the moment about the origin

of coordinates, and the moment about the centre of the circle
can be derived at once as

M, = M, — Lmcos (a + 8)
= 2ab% V1 gin 2 (z + y).

The value of this moment depends on the value of the
complex coefficient a, in the transformation formula which
defines { in terms of z. The lift force vanishes at the angle
of incidence — B and the moment then has the value

M, = 2xb%V*sin 2 (y — B).

If the serofoil is to have a constant position of the centre of
preasure, i.e. if the line of action of the lift force always
passes through a definite point, it is necessary that this
moment should be zero. Hence the necessary and sufficient
condition for a constant position of the centre of pressure
of an aerofoil is that 8 = v, or that the coefficient a, of the
conformal transformation should be of the form a, = btet®,
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7-24. The general expressions for the lift and moment
assume simple forms for the Joukowski aerofoils which are
derived by means of the conformal transformation

E=:+E=-'*

For aerofoils of small camber and thickness, the chord is
approximately equal to 4a and the lift coefficient may there-
fore be taken as

kp == (a+f)

This form is also valid for the majority of aerofoils which are
not of the Joukowski type (see also 7-3) and is confirmed by
the experimental evidence available, The theoretical slope of
the curve of lift coefficient against angle of incidence is = per
radian or 0-055 per degree, but the average glope determined
experimentally is slightly less than this value, due to de-
parture of the flow from the ideal form, and & slope of 3 per
radian can be regarded as the normal value for a good aerofoil.

In the Joukowski transformation the coefficient a, has the
value ¢* and the moment about the centre of the circle is

M, = 2ac% V*® pin 2a.
The moment round the leading edge of the aerofoil is to a
very close approximation
M=M,- 2L,
and to derive the corresponding coefficient it is sufficiently
aoourate to neglect the small difference in magnitude between
a and ¢. Hence v w
i--id—ﬁl:ﬂ{'ﬁ]
o 1
= — iﬁ — i' k,Ll

This formula also has been fully confirmed by experimental
results and in general the moment coefficient of an aerofoil
can be expressed with good accuracy as

ky = ko, — {ke,
where L is the moment coefficient at zero lift. The position
of the centre of pressure, as a fraction of the chord measured
from the leading edge of the aerofoil, is obtained by dividing
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the moment coefficient by the lift coefficient, and it follows
that a large value of k., implies a rapid movement of the
centre of pressure. Also if k_, is zero, the acrofoil has a
constant centre of pressure at a distance of one-quarter of
the chord from the leading edge.

7-3. Thin aerofoils,

The preceding analysis determines the lift and moment
on any aerofoil when the conformal transformation, by means
of which the aerofoil is derived from a cirele, is known. More
generally, however, the shape of the aerofoil is known but
the determination of the appropriate conformal transforma-
tion is of considerable difficulty. A method of solving this
problem in the case of a thin aerofoil has been proposed by
Munk®. The aerofoil is replaced by the curved line which is
the mean of the upper and lower surfaces, and this curve is
regarded as a small deviation from a straight line, A more
convenient method, however, is that introduced by Bim-
baumt and the following analysis is the result of applying
the method of Fourier series to Birmbaum's conception of the
aerofoil problem.

Choose the origin of coordinates at the leading edge of the

y

Py
.
/—_ _\N\' :
ol

/;7
¥
Fig. 55

* “(enoral theory of thin wing sections,” NACA, 142, 1622, Bee also
H. Glavert, ** A theory of thin serofoils,” RM, 910, 1924.

t " Die tragende Wirbelfiiche als Hilfsmittel zur Behandlung des ebenen
Problems der Tragfiiigeltheorie,” ZAM M, 1923,
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serofoil, with the axis of z backwards along the chord and
the axis of y upwards, and consider the flow when the aerofoil
is in a stream of velocity V inclined at a small angle « to the
chord. There will be a circulation K round the aerofoil,
corresponding to a distribution of vorticity along the surface
of the acrofoil. Let kdz be the vorticity at the element dz of
the aerofoil, so that a
E-—Ll—d.r.

In estimating the velocity field of this system of vorticity,
the approximation will be made that the vorticity is situated
on the chord of the aerofoil, and then the induced velocity at
the point 2* of the aerofoil is determined as

I

02w (x—2)
This induced velocity is calculated for a point on the chord
but may be taken to be the same as the induced velocity at
the corresponding point of the aerofoil itself. The direction
of the resultant velocity adjacent to the aerofoil must be
parallel to the surface and so at each point of the aerofoil

v dy

a+ g - J=*

These equations are sufficient to provide a complete
solution of the problem in terms of the shape of the curved
line which represents the serofoil. The analysis in the general
case depends on the introduction of a new coordinate # for
points of the aerofoil, defined by the relationship

z=4e (1l — cos ),
80 that # varies from 0 to = along the chord of the aerofoil.
It is then assumed that the vorticity k may be expressed as
the series
k=27 {4500t 40 + £ 4, sinnd],

o hi -cF’{ﬁ.{l + 008 8) + Ea_ﬁnna-ina}.ﬂ.
|

where the first term represents the vorticity which occurs
with a straight line aerofoil and the coefficients of the sine
series depend on the shape of the aerofoil.
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The lift force and the moment about the leading edge of
the aerofoil can be expressed simply in terms of the coefficients
of this series. The lift force is

L= I:p Flkdx

= [(eo¥ {do (1 + con ) + :.":A..un.una}da

= wep V1 (4, + §4,),
giving a lift coefficient
ky = m (4y + §4,).
Similarly the moment about the leading edge is

M= -.f:p Flxdx
= -J:M.F-{A_u ~cos8) + £ 4, sinn6 (sin - }dnﬂ]l-ﬂ'

-3V (4, + 4, — }4,),
giving a moment coefficient
ky = "E(Jn‘[' 4, —{4,)
= § (s = 4)) = Hkr.

These expressions contain only the first three coefficients of
the series for the vorticity, and the remaining coefficienta
therefore to changes in the shape of the aerofoil
which have no effect on the lift force or moment,
With the assumed value of the vorticity, the induced
velocity at the point z’ or & of the aerofoil is

"A,(1 + cosf) + i::‘.d.{mfu— 1)8—cos(n + 1)6)
3 cos 8’ — coa B

gin(n+ 1) —sin(n—1)#
et

dé

ﬂ{#’]-%l

- F{- A, + iI::A-
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. * cosnf sin né
o Lm&u—m-ﬁdﬂ_'nini
and the induced velocity at the point  of the aerofoil is finally
.E_ ~ Ay + I A, cosnd.
|

The condition that the flow is tangential to the surface of
the aerofoil gives the relationship

dy 2
- - -‘! EA- “‘ﬂ|
d'.r T g+ " 08

and then the coefficients 4, are determined from the shape
of the aerofoil by evaluating the integrals

u—.g,--['d?da

A, =—[ 9 con nds.

The determination of the value of each coefficient is not
necessary in general, since it is possible to obtain simple
expressions for the lift force and moment about the leading
edge directly in terms of the shape of the aerofoil by means

dthnlo]lwingmintagrnh:
(1) -! dé
= alec 1 +cost

[ '\/Eﬁ:} l%dﬁW 1+m#

nndthuﬂmtﬂmrmmhmlfytandutnmrn“thatrmhng
edge of the aerofoil more rapidly than vie — z. Then

o rd!{l-—ﬂmﬂjdﬂ—d.+id.—n.

@) o= [ ¥ contds = [Yuino]" — [*25¥ 5 sin bap
-_rld"{l—m!ﬂdﬂ

=~ (@—4,—}4,).
*® Bee note at end of chapter.
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Thus in terms of the two integrals ¢, and pq
ky = n (a + ),

- 1
|=-==(Fn—;¢-)-ik:..
and the determination of the lift and moment coefficients of
any thin aerofoil has been reduced to the evaluation of the

two simple integrals ¢, and g, and the coefficients are of the
same form as for a Joukowski aerofoil (ef. 7-24).

7-31, When the form of an aerofoil is a simple analytical
expression, the values of ¢ and u, can be obtained by direct
integration. An example of some interest is the aerofoil
whose form is defined by the equation

{421 (1-23),
i
which represents an aerofoil with reflex curvature towards

the trailing edge when the value of A lies between 1 and 2,
On integration the values of ¢, and j, are found to be

w=gh(4—3N),
Fy _ﬂrilm'

and hence ky, = E:H'ﬂ — 8).

Thus an nerofoil with constant centre of pressure is obtained
when A has the value §.

The evaluation of the integrals in the general case is best
performed by graphical methods. For this purpose the
integrals are expressed in Cartesian coordinates with the
aerofoil chord as unit length, and then

1 1
"-Lﬂ.{:}d’ and H'].!f:{ﬂd-"r
1 = =
7(l —z)vz(l-2)

1—-2»

fl{z} ;—x {1 — I-J"

where fi(z)=
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The numerical values of these functions at suitable points
of the aerofoil chord are given in table 4 below.

The determination of y, in this maoner presents no difficulty
since yf, (x) tends to zero at both ends of the aerofoil in
general although f, (z) tends to infinity. In the case of ¢,
however, the value of yf; (x) generally tends to infinity at
the trailing edge of the aerofoil, but this difficulty can be
avoided by performing the graphical integration from the
leading edge to the point z = 095 and by estimating the
additional part analytically on the assumption that this last
section of the aerofoil is a straight line. The additional con-
tribution to the value of ¢, can easily be shown to be 2:9y,
where i’ is the ordinate at the point z = 0-05.

This theoretical method of determining the angle of in-
cidence and moment coefficient at zero lift leads to results
which are in close agreement with experimental determina-
tions of these quantities. A slight correction is required in
making this comparison to allow for the fact that the theory
measures the angle of incidence from the line joining the
leading and trailing edges of the aerofoil, while experimental
values are usually given relative to the tangent to the lower
surface of the aerofoil.

Table 4.

= Lz} | fil=) T fit=) fulz)

0025 | 200 | &10 || o080 127 0

005 154 | 413 || 060 162 | -041
0:10 118 | 267 || 070 | 231 | -087
0-20 100 | 1-30 |r 080 308 | =150
030 | o000 | o087 ! o000 | 108 -267

0-40 108 | 041 | 005 | 292 - 413

Note. The value of the iniegral
ol cosnfl

The evaluation of this integral requires some special care,
#ince the denominator of the integrand vanishes at the point



vii] THE AEROFOIL IN TWO DIMENSIONS 03

# = ¢ of the range of integration. It is necessary therefore
to obtain the value of I, by integrating from 0 to (¢ — ¢)
and from (¢ + ¢) to = and by taking the limit as ¢ tends to
zero.

Considering first the value of I,

l""“ df [ 1, !ni{ﬁ+ﬂ}]*"
o mn!—uui I.Ilﬁ sin § (¢ - 0)

- Eﬁ{!mm (¢ — §e) — log sin §«},

R B TR T e e

-,i,:—*{lnsliﬂl'—lﬂ:dn[ﬁ+it}}.

. (¢ —#<)
it -t e 1o

- coa 8
AN I'-Lmlﬂ—m-iﬂ

-;’:(I +ml:un¢)im
= o 4+ I, co8 ¢

and more generally if n > 1
. 1)8 -]
it Lo [ 0010
*2 cos 0 cos nf
'J.ma';'m.ﬁ‘”

2 cos ¢ cos

cos f — cos ¢ -

-r(imuﬂ+
0
=2c08 ¢ I,.
The solution of this recurrence formula
IHI_EM*I."FII—I-”I
with the initial conditions I, = 0 and I, = =, leads to the
final result
*  cosnd

I'-,.nunﬂm—umqﬁda-' ﬂ?#




CHAPTER VIO
VISCOSITY AND DRAG

8-1. The drag of a bluff body.

The theory of the two dimensional motion of a perfect
fluid has led to the determination of the lift of an aerofoil
by means of the assumption of a circulation of the flow, but
the solution is incomplete in several respects. The conditions
which cause the circulation to develop at the commencement
of the motion have not been investigated and the magnitude
of the circulation is indeterminate except in the case of an
serofoil with a sharp trailing edge. Joukowski's hypothesis
that the circulation must be such that the flow leaves the
trailing edge smoothly also requires critical examination.
Finally, the theory has not indicated the existence of any
drag force on the aerofoil.

To examine these problems fully it is necessary to depart
from the simple assumption of a perfect fluid and to deter-
mine the effects of the viscosity or internal friction, but some
insight into the drag of a body can be obtained without
introducing this complication. In developing the theory of
the lift force it was convenient to consider the class of bodies
which give a large lift force associated with a relatively small
drag force, so that the latter might be neglected without
modifying the essential conditions of the problem. Similarly
in examining the drag force it is convenient to consider in
the first place bodies of bluff form, symmetrical about the
direction of motion, so that the lift force is zero and the
drag force is large. The motion will be assumed to proceed
in two dimensions as before,

The simplest form of bluff body is s flat plate at right
angles to the general stream, which is represented in two
dimensions as a line AB of breadth b. The irrotational flow
of a perfect fluid past this line is shown in fig. 43, but this
type of flow gives zero drag and is unsatisfactory also because
the fluid velocity becomes infinite at the edges of the plate.
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An alternative type of flow was suggested by Kirohhoff and
Helmholtz to overcome these difficulties and is represented
in fig. 56. Curves

of discontinuity K
of velocity are as- A

sumed to spring v

from the points — b

A and B and to

pass down stream B

enclosing a dead- g
water region. In

consequence the i
plate experiences greater pressure on the front than on the
rear face, and there is a drag foroe®

m
el L

corresponding to a drag coefficient
o

This value of the drag coefficient is approximately half that
obtained from experimental determinations of the drag of a
flat plate, but the conception that the flow breaks away from
the surface at the edges of the plate is in accordance with
En;tgmd can be used as the basis for developing a theory of

8:11. Vortex streets.

The ourves of discontinuity of velocity A4’ and BB’ which
spring from the edges of the plate are essentially vortex
sheets (cf. 4-35) and may be conceived as a succession of
point vortices which act as roller bearings between the dead-
water region and the geperal stream. Now a single row of
equal point vortices evenly spaced along a straight line can
be shown to be unstable. In the equilibrium position all the
vortices will be at rest, since the induced velocity compo-
nents at any vortex due to two vortices at equal distances on

* See Lamb, Hydrodynamics, § 76.
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opposite sides are equal and opposite, If, however, one vortex

A~ f?“?=%=¢-

Fig. 57.

receives a small displacement (z, y) it will experience the
induced velocity components

K 3 -

2n “w (na — )" + y*'

K "E“' na — x

2 *x (na —2) + yV’

where K is the strength of each vortex, a is the distance
between sucoessive vortices and the summations extend over

all integral values of n other than zero. For a small disturh-
ance these expressions may be replaced by the approxima-
I-iﬂll E’n

ﬂ:—

S e s -—y-.--!
" ﬂril‘ﬂ‘ Exf"

K= 1 z " . 2
R ER+D) =155

Hence the equations of motion of the point vortex under
consideration are 2

4 Tw=0,

W x o,

n K
where A-En_l’

and on eliminating y %-—A'ﬂ;-u.

The solution of this differential equation is

z=Aed + Be-¥,
which represents an unstable motion, since the first term
increases indefinitely with the time and the vortex departs

more and more from its equilibrium position,
The conditions behind a bluff body are more complex since
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there are two vortex rows, and in order to disouss the stability
fully it is necessary to give a small disturbance to each of the

vortices. Far be-
hind the body the —h = " % o

vortices must lie _ . :;,
on two straight |
lines parallel to S——9 —
the general direc- & Be

tion of motion, e 5.

and it can easily be shown that there are only two poesible
configurations. In order that the vortices may retain their
positions on the two parallel lines, the induced velocity at
any vortex must be parallel to the lines. This condition is
satisfied if any vortex B, of one row is exactly opposite a
vortex A, of the other row, or if it is opposite the mid-point
between two vortices 4, and A4, of the other row; each
vortex will then experience the same induced velocity u in
the sense shown in fig. 58. This velocity u is the velocity of
the vortices relative to the general mass of the fluid. For
any other configuration the induced velocity has a component
normal to the vortex rows and the configuration will not be
maintained.

The stability of these two systems has been examined by
Karman and Rubach®, and it appears that the first con-
figuration with the vortices in pairs is essentially unstable,
but that the second configuration with alternate vortices is
stable provided the distance i between the rows and the
distance a between successive vortices of each row are re-
lated by the equation

. » h
Hﬂh 'E = l,
or h = 0-28la.

A double vortex row of this stable type will be called a

* Karman, " Uber den Mechanismus des Widersiandes den ein bewegter
Korper in Flussigkeit erfahrt,” Gattingen Nochrichten, 1911, Karman and
Rubach, ** Uber den Mechanismus des Flissigkeits und Luftwiderstandes,”
Phys. Zeitschrift, 1912. The analysis is given by Lamb, Hydrodynamics,
§ 156,
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Karman vortex street. The strength K of cach point vortex
will be called the strength of the street and the distance A
between the rows will be called the breadth of the street.
The distance a separating successive vortices of each row is
a constant multiple of the breadth A, and the induced velocity
u of each of the vortices is given by the equation
K = 2v/2au.

8:12. The form drag.

A fully developed Karman vortex street exists far behind
a bluff body but there must be an intermediate stage, shown

A~ |
|
- ! A
|
e |
B ---g-...____ & s,
Fig. 50.

by the broken lines of fig. 59, connecting the body and the
vortex street. As the flow proceeds, the vortices pass down
stream with the velocity (¥ — u) relative to the body and
new vortices must be formed alternately at the two sides of
the body, which is in accordance with the observed flow

past a bluff body. The frequency with which the vortices are
formed at one edge of the body will be

V—u
1=

The formation of these vortices, combined with the general
pressure distribution of the flow pattern, causes a drag force®

h K*
D-.FEfF—h]E"E‘Fi‘;Er
and on inserting the values of a and K in terms of A and w,
this equation becomes

D =hoV? {2-33 Gf.-,) — 112 G‘,)'} ,

* Karman, [oe, cif.

L
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or i.,-g {:-33 (;) - 1-12(;)'}.

The drag force due to the shedding of vortices from the
sides of the body and the formation of a Karman vortex
street will be called the form drag, to distinguish it from the
drag due to tangential forces and skin friction on the surface
of the body. Karman's theory appears to be in accordance
with the actual conditions of flow, and if the values of « and
h are determined experimentally the equation for the drag
leads to a value in good agreement with the observed drag®.
The theory is, however, incomplete and further investigation
of the flow between the body and the vortex street is re-
quired to determine the values of » and h theoretically.

The form drag depends on the shape of the body. As a
first rongh approximation the drag coefficient may be taken
to be

kg = 2-332;,- 0-281 5.

lndtﬂthinmﬂurnf:ppmﬁmﬁmthﬁdngilllmﬂypm-
portional to the strength of the vortices which are shed at
the sides of the body. A body of bluff form, particularly if
it has sharp edges like a flat plate, will shed strong vortices
and will have a large form drag, but for a body of “good™
shape, such as & symmetrical aerofoil section, the form drag
appears to be negligibly small and the drag experienced is
due mainly to the tangential forces or skin friction.

8:2. Viscosily.

All real fluids possess the property of internal friction or
viscosity by virtue of which tangential stresses may occur
at the surface of separation of two adjacent fluid elements.
These tangential stresses are zero when the fluid is at rest,
and in general they depend on the relative velocity of the
adjacent fluid elements. The viscosity of a fluid may be
defined conveniently by considering the steady motion in
layers normal to the axis of y. The layer of fluid between the
planes y and (y + dy) will have a velocity « at all points and

* Karman, loc. cil.
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u will be a function of y only. When the fluid moves
in layers in this
manner, it is said

to be in laminar ¥
motion. The re- du
lative  velocity g ""'i}dy
of two adjacent S—

I . Ou
ayers is ﬁd'y
and the tangen- X
tial force at the

surface of separa-

ﬂﬂnhpg;pﬂr Fig. 60,

unit area, where u is the coefficient of viscosity of the fluid.
This definition of the tangential force due to viscosity is based
on the conception that the frictional force depends on the
relative velocity of the adjacent fluid elements and is justified
by the accuracy of the results which can be deduced from it.

When two parallel layers of fluid are moving in the same
direction with different velocities, the surface of separation
is & vortex sheet and the elementary vortices of this sheet
act as roller bearings between the two layers of the fluid,
The tangential stress at the surface of separation is intimately
related to this vortex sheet and the work which must be
done against the tangential stress is represented by the
dissipation of energy which occurs in the vortices,

To complete the definition of the nature of a viscous fuid
it is necessary to consider the conditions at a solid boundary.
The motion of the fluid over the surface of a body will cause
a finite tangential force on the surface and it follows that the
layer of fluid immediately in contact with the surface must
be at rest relative to the surface, for if this condition were

not satisfied g would tend to infinity at the surface and the
tangential force would also tend to infinity unless the co-
efficient of friction between solid and fluid were indefinitely
small compared with that between two fluid layers. This
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nmdiﬁunn!muﬁpltlmlidhaund-ryhmuﬂmodhj'
experiment and by the accuracy of the results deduced from it.
Thuhintiunﬂfnrmntthemdmnfnpluumultwu

ﬂuidhyminhminumuﬁnnhubundaﬁmdupgpu

> (G +dy )
) I@ dy dy”
ou
oy
Fig. 61.

unit area, and hence the force on a fluid element of thickness
dy and of area § normal to the axis of y will be

#(g+?$ﬂr)3-#%ﬂ-#$3ﬂr.
'l'hiﬁhilpg:-;par“ﬂtdﬂl. It is customary, however, to

work in terms of the force per wnit mass of the fluid, and
hence for the laminar flow under consideration
I_EE'H_FH‘E
poyt oyt
where v is the coefficient of viscosity divided by the density
ufthuﬂuidmdhmﬂedthuﬁnmdﬁmﬁcﬁuafﬁmﬁy.

8:21. Laminar flow between flat plates.
It is now possible to determine the laminar flow between
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two parallel flat plates, which is the same as the two dimen-
sional flow in a channel between two parallel straight lines
AB and A'F’. The equation of motion of the fluid is

0w _dp
FE‘ dx"
which expresses the fact that the wviscous force must be

balanced by the pressure difference on any fluid element.
The velocity u is a function of the coordinate y and the

pressure p of the coordinate z,
On integrating the equation of motion

H-ﬂ+'ﬁ‘jl'+!1;:—:3".

and if the origin O is chosen midway between the two
boundaries which are at distance 2A apart

o= — %g{i‘-y'}.

The pressure decreases uniformly along the stream and the
velocity distribution is parabolic across the channel. The
mean velocity ¥ of the stream is determined by the equation

and henoe u—iF(l—EI).

The frictional drag on length [ and breadth & of the two
walls of the channel may be estimated from the pressure
gradient as
D=m(—1§{)-aprf,
where § is the “wetted’” surface 2bl. Alternatively the drag
may be estimated directly from the tangential force on the
surface as S

D=u(5),5

where the suffix indicates thntthardmdgmuﬂb&hkm
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at the boundary with dy measured into the fluid. Now
fu Vy

ou av
and hence (a)'n e
which leads to the same value of the drag as that which was
obtained from the pressure gradient.

8:22, Numerical values,

By inspection of the formulae for the viscous foree on a
fluid element it can be seen that the dimensions of the two
coefficients of viscosity are tespectively

p ML,

v L’T'l.
and in partioular the kinematic coefficient of viscosity v has
the dimensions of a length multiplied by a velocity. In the
following tables the values of p and v are given in the c.0.s.
and in the British Engineering systems of units.

The coefficient of viscosity u of a gas is independent of the
pressure and increases with the temperature somewhat less
rapidly than the increase of the absolute temperature.

Table 5.
Values of p for air®.
Tempernturo gm./om. seo. slug/it. seo.
0" C, 1-71 = 104 0-358 = 104
15 1-81 0-378
100 221 0461

When the density p is known, the value of the kinematic
coefficient of viscosity » can be deduced at once from this
table, since » = u/p. The values of » for air at the standard
pressure of 760 mm. of mercury are given in table 6, and in
general the value of » is inversely propaortional to the pressure
at a given temperature.

* Kaye and Laby, Physical and Chemical Constands,
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Table 6.
Values of v for air at standard pressure.
Temperaiure em. 3/moc. 1. Y woe.
0 C 133 143 = 10~
15 148 1-50
100 0244 2-52

Finally, the values of the kinematic coefficient of viscosity »
for water are given in table 7 for comparison with the corre-
sponding values for air.

Table 7.
Values of v for water,
Tempersture em.Yaec, fr./moc.
0°C. 0-0170 1-92 = 10-*
4] 0-0152 1-83
10 00131 ! 1-41
15 0-0115 - 1-23
20 00101 1-08
25 0-0000 007

8:23. Dimensional theory.
In a perfect fluid the force acting on a body has been
expressod in the form F = kpVi,

whero p is the density of the fluid, V the velocity of the body
relative to the fluid and I some typical length of the body.
The coefficient k is non-dimensional and depends only on the
shape and attitude of the body. This form of expression is
the only possible combination of the three fundamental
parameters p, ¥ and | which will give the dimensions of a
force and it can therefore be established without any reference
to the flow pattern past the body.

In the case of a viscous fluid there is an additional para-
meter, the kinematic coefficient of viscosity », which has the
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dimensions of a length multiplied by a velocity. It is now
possible to form the non-dimensional function
IV
Re=—,

w

and the general expression for the force on a body must be
taken to be v
r-rprm;(-r).

This general expression for the force retains the correct
dimensions whatever form is given to the function f. In a
perfect fluid the viscosity is zero and the function assumes

the value _fI-E)-1

(r -
Also in the special case of laminar flow considered in 8-21,
the drag force was shown to be proportional to x V1 and
hence the function f is of the form

15) =

The usual procedure is to retain the original expression
for the force
F = koW,

and to regard the non-dimensional coefficient k as a function
of the non-dimensional parameter 1_:’ or R, which is called
the Reynolds' number of the flow. If the forces are deter-
mined on similar bodies of different size, as for example on
an aeroplane and its model in & wind tunnel, the correspond-
ing walues of the coefficient k will not have the same values
unless the tests are made at the same Reynolds’ number.
This course is usually impossible, since » has the same value
in both cases while I and ¥ are both smaller in a wind
tunnel than in free flight of an acroplane. It is necessary
therefore to investigate the variation of the coefficient k
with the Reynolds’ number and to establish, if possible, a
sound method of extrapolating from the model to the full
scale. Variation of the coeflicient k& with the Reynolds’
number is frequently called *“scale effect."”
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Fig. 63 shows the drag coefficient of a long circular
cylinder as a function of the Reynolds' number. The drag
coefficient is defined by the equation

D = kpSpV?,

where 8 is the normal projected area, the product of the
length and diameter of the cylinder, and the Reynolds’
number is taken to be Vd

R="%,
¥

where d is the diameter of the cylinder. This example shows

Drag of a Circular Cylinder

i\
NAN

08 s N

\

3 lagyo R 4
Fig. 63.

that sudden and important changes in the drag coefficient
of a body may occur as the Reynolds’ number increases. On
the other hand, variations of this magnitude are not universal
and for many types of body, including aerofoil sections, the
drag coefficient is found to tend to a limiting value at an
early stage. The variation of the drag coefficient with in-
creasing Reynolds’ number is associated with a variation in
the flow pattern, and an abrupt change in the drag coefficient
implies an abrupt change in the type of flow past the body.
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8-24. Flow in circular pipes.

The flow along a straight pipe of uniform circular section
provides another example of the importance of the Reynolds’
number. If r is the radial distance of a cylindrical layer of
fluid from the axis of the pipe and if z is the coordinate
measured along the axis, the equation of motion for laminar

R T 2
. HE Nt

Integrating this equation and inserting the boundary con-
dition of no slip, the velocity is found to be

1 dp
t=-~i;d—:fﬁ‘-—r'},
where a is the radius of the pipe. The mean velocity ¥ of the
flow is 3. ha ﬂﬂP

and henoce u-ﬂ"(l—z—:).
Finally, the drag of length I of the pipe is
ﬂ-m‘(-lg)-iﬂ’g.
where § ia the wetted surface 2mal,
The pressure gradient down the pipe in laminar flow is
. L ASRRT 2 | Ll
dz at (FF')
and this result is used to determine the coefficient of viscosity

of a fluid from the observed pressure drop along a pipe. It is
found by experiment that the laminar flow always establishes

itself in a pipe provided the Reynolds’ number -;Ellllﬂt-hlﬂ
the critical value 1160, but by suitable precautions to avoid
turbulence of the fluid entering the pipe the laminar flow
may be continued to far greater walues of the Reynolds’
number,
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For large values of the Reynolds' number the flow is
turbulent and the pressure gradient, deduced from a large
number of experiments, then obeys the empirical law*

- ""‘“‘“(ﬂ’)l 4

The frictional drag of the surface in turbulent flow is pro-
portional to F'®, contrasting with the case of laminar flow
when it is simply proportional to V,

This empirical law for the turbulent flow in a circular pipe
has been used by Karmant to deduce the law of variation of
velocity with distance from the wall of a pipe. In general
the surface traction 7, i.e. the force per unit area of the surface,
must be of the form -FF'I[R'.'

where R is the Reynolds’ number % fm*thuﬂuwmdtho

velocity Itdmt-muy-nqmthar-ﬂqtthn pipe must
be of the form
u = VF (g, R).

Near the wall, however, the velocity u can be expressed also
in terms of p, v, y and r independently of a and ¥, and by
considering the dimensions of these parameters, the form of

the velocity must be . ¥
w5(V5)

Finally, by equating the two expressions for the velocity
and by eliminating the surface traction r, an equation is
obtained connecting the parameters R and 5:

¢ (nR V) = nRF (n, R).

In order to obtain a solution of this general equation
Karman assumes that the velocity distribution across the
pipe is independent of the value of the Reynolds’ number R
for the range in which Blasius' empirical law is valid. Then

¢ (nB +/f) = nRF (n),
* Blasios, Zeitschrijt fir Math. v. Phys. 1908,
t “Ober laminare und tarbulente Reibung,” ZAMM, 1921. For a

more general troatment, see also Prandtl, " Berieht Gber Untersuchungen
gur ausgebildeten Turbulens,” ZA4MM, 1925,
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and near the wall it is sufficient to retain only the lowest
power of 5 in the expansions of the functions ¢ and F. Hence

(R f)**= = pRy",
in
or Jx B i+n,
But the empirical law is of the form
fx R-*,
k

The velocity near the wall varies as y* and the value of
n varies with the empirical value of k as follows:
k=1,4,%1,0,
n=114.,3,0
In laminar flow k = 1 and the velocity varies linearly with
the distance from the wall. In the turbulent state Blasius
gives k = } and the velocity varies as the one-seventh
of the distance from the wall. If the value of k decreases
further at higher values of the Reynolds' number, then the
velocity will rise more rapidly near the wall, and in the limit
when the surface traction r is proportional to p¥? simply
(k = 0), the velocity is uniform across the whole pipe.
The law of variation of velocity with distance from the
wall breaks down in the immediate proximity of the wall,

gince it suggests an infinite value of %E instead of the true

finite value ;: This discrepancy is due to the fact that the

fluid layer in immediate contact with the wall is always in
laminar motion and that the empirical law for the turbulent
flow applies only as far as the outer boundary of this laminar
layer. Thus the curve u = y* should be accepted down to

thnpdntrhuu;-imdnhunldthmbumnunmdmtha
origin by the tangent to the curve.

8-3. The general equations of motion,
Hitherto the simple laminar motion of a viscous fluid has
been considered, and to discuss the more general types of
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motion it is necessary to develop the equations of motion of
the fluid. In two dimensional motion the velocity of the
fluid at any point is defined by its components u and v
parallel to orthogonal axes, and these velocity components
must satisfy the equation of continuity (5-1)
du ov

The velocity components « and v define the velocity of
the fluid element at the point (z, y). After a small interval
of time d¢, the fluid element will be at the point (z 4 udt,
y + vdi), and the components of the velocity of the fluid
element will then be respectively

u+gﬂ+guﬂ+g—:ud¢,

oo dv dv

F+ﬁfﬂ+ﬁlﬂ +a;'l?tﬂ.
In a perfect fluid the only force acting on the fluid element
is the pressure on its boundary which has the componenta

ap p

per unit volume, and hence the equations of motion of the
fluid element are

du _ouw  _Ou 1 2p

a "ty T " pax

dv  _ov o 1dp

Ut T P

In a viscous fluid the element also experiences tangential
forces on its boundary, depending on its motion relative to
the adjacent fluid elements, and additional terms »Viu and
¥V respectively occur on the right-hand side of the equations
of motion. The development of these expressions from first
principles will be found in a standard text-book on hydro-
dynamics* and the following discussion is intended only to
indicate the physical meaning of the expressions.
If w is the velocity component parallel to the axis of x at
* E.g. Lamb, Hydrodynamica, chapter x1.
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the point (z, y), then the corresponding velocity component
at an adjacent point (z + £, y + 1) may be written as

H'—u+(E§:+qg)+é(F;+ifqaa;1+q‘$)

if higher powers of £ and 7 than the second are ignored. The
mean value of this velocity component at the four points
u -H+E(FE+FIE')'

and for a cireular ring of points surrounding the point (z, y)
the mean values of £* and »? are equal. Thus
: s TR LT
i —uex ﬁ: + 3#_'
oc Viu,
Buat in the laminar flow considered in 8:2 in defining the
viscous force between adjacent fluid elements the velocity

component 4 was a function of y only and the force on unit
mass of the Aluid was found to be

Inu?.-—-“.

Ey‘

This force depends on the relative motion of the adjacent
fluid elements and hence in the general case the viscous foree

per unit mass of the fluid may be expected to be
X = vWiy,
with a corresponding expression for the component parallel
to the axis of y.
The complete equations of viscous motion in two dimen-

gions are

%+u%+v$= —%2+r’?‘u,

ov dv _dv 1dp

5 +uﬁ+ﬂﬁ=—-;ﬁ + vV,

and in steady motion the terms ¢ and - aro zero. The

solution of these equations for the flow past a body, at whose
surface the boundary condition of no slip (4 = v = 0) must
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be satisfied, presents almost insuperable difficulties except
in a few special cases, and it is necessary to adopt some method
of approximation. The conception of a perfect fluid is based
on the fact that the viscosity of a fluid is small and that the
viscous terms involving » are negligible in comparison with
the dynamio terms invalving the square of the velocity. At
the other extreme it is possible to consider a slow steady
motion of a viscons fluid in which the dynamic terms are
negligible in comparison with the viscous terms. The left-
hand sides of the equations of motion then disappear, and
on eliminating the pressure and expressing the velocity com-
ponents in terms of the stream function ¢, a single equation is
obtained :
g* oy o
?%E(EI_FEI)(E!'F E‘T‘)ﬁ-ﬂ'.

Solutions of some problems have been obtained on this basis
but they apply only to extremely low velocities. More
generally an approximation is required which includes both
the dynamic and the viscous terms but reduces the equations
to a simpler form.

8:4. The boundary layer theory.

Prandtl’s approximation to the general equations of viscous
motion® is based on the fact that the viscosity of a fluid is
small and that it exerts a noticeable effect only where the
velocity is changing rapidly from point to point, Now rapid
ohanges of velocity ocour only in close proximity to the
surface of a body where the velocity rises from zero at the
surface to its value in the general stream, and in consequence
Prandtl's conception of the problem is that the effect of the
viscosity is important only in a narrow boundary layer
surrounding the surface of the body and that the viscosity
may be ignored in the free fluid outside this layer. In the
boundary layer the velocity of the fluid rises rapidly from zero
to its value in the free stream, and however emall the vis-
cosity may be the viscous force retains its importance in this
layer,

* Verhandl, d. I1I intern. maih. Kongress (Heidelberg, 1004).



vim| VISCOSITY AND DRAG 113

Turning now to the general equations of motion as applied
to the boundary layer, the coordinate r will be assumed to
be measured along a flat surface and the quantities z, u and
p will be finite while y and v will be small of the order .

Inthnﬁmtuqulﬁmdmuﬁmghmnﬂmmpuﬂﬁth

g:: and the equation becomes

ou ou  ou 1dp %
aT T T Tt

where the last term is of the order ;, If v is small compared

with «*, the lnst term disappears and the equation becomes
that of a perfect fluid. If » is large compared with ¢!, the
dynamic terms involving the square of the velocity are
negligible and the equation is appropriate to very slow motion.
More generally v must be of the same order as «* and the

ordinates of the boundary layer are then proportional to

V.
The second equation of motion leads to the very simple
result 13p

ﬂ B e

poy
since all the other terms are small in comparison with this
pressure term. This equation shows that the pressure is
transmitted normally through the boundary layer without
change and hence that the pressure in the boundary layer is

a function of the coordinate x only.
The equations governing the flow in the boundary layer

are
¥+ig+u%=—£§£+vg;.
ou cv
E+ 33}"0‘

These equations have been developed for the flow along a
flat surface, but the identical form can be obtained more
generally for a curved surface if the coordinate x is measured
along the surface and the coordinate y normal to it.
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8-41. Drag of a flat plale.
The boundary layer theory has been applied by H. Blasius*
to the determination of the laminar flow along a flat plate and
of the resulting
frictional drag, ¥
Measuring the i
coordinate z a-

I
long the plate Y, P
from the lead- ":'*'::——
ing edge, the Fig. 4.

thickness of the s
boundary layer is shown to be proportional to J I and the

frictional drag of both surfaces of a plate of length ¢ to be

D = 1-327 \/E'i;ri:p Ve
per unit breadth. Thus the drag is proportional to V' and
the drag coefficient of the flat plate, regarded as an aerofoil, is

—
kp = 1-327 \/&F,

The thickness of the boundary layer cannot be determined
exaclly, as the velocity u in the boundary layer tends
asymptotically to the velocity ¥ of the free stream, but if
the outer surface of the layer is defined by the condition
that « has risen to a value differing from ¥V by some arbitrary
small percentage, the thickness of the boundary layer may
be taken to be -

wr

The value ¢V = 10° » marks the division between the model
and “full scale™ range for an aerofoil and with this value the
maximum thickness of the boundary layer is 0-0045¢c.
Blasius' solution corresponds to laminar flow along the
plate and will represent the actual flow at low values of the
Reynolds' number only. Karmant has obtained a solution

* “Crenzachichten in Flissigkeiten mit kleiner Reibung,” Eeitschrift f.
Math, u. Phys. 1908,
t * Uber laminare und turbulente Reibung,” ZA MM, 1021.
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for the turbulent flow along a flat plate by analysing Blasius’
empirical law for the turbulent flow in a pipe (8:24) and has

obtained the drag coefficient
p 02
kp = 0-072 (E F) :

Thus the drag is proportional to F** and the thickness of
the boundary layer to z**. Karman's result may be compared
with the experimental determination®

kp = 0-0375 (ﬂ-‘;,)m,

and for the range of the experiments (R = 3 x 10* to 7 x 10%)
the numerical values given in table 8 show good agreement.
The numerical values given by Blasius' formula are added
for comparison and show that the change from laminar to
turbulent flow causes an increase of drag.

Table 8.
Frictional drag coefficient of a flat plate.

B= 3x 108 1o TulO®
Experimental 0-0057 0-0047 0-0035
Karman 0-0058 O-0045 0-00c31
Blasins 0-0024 0-0013 0-0005

8:42. The boundary layer theory can also be used to
explain the phenomenon of
the flow breaking away from —~—____ o —
the surface of a body to s
form an eddying wake. In a
perfect fluid the streams pass- s
ing above and below a body
unite behind the body and
there is & stagnation point 8 8
on the surface. While passing
from A to § the velocity of o e
the fluid decreases and the pressure increases, and the fluid

* Ergebnisse der aerodynamischen Versuchsanslall zu Gittingen, 1, 1921,
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elementa lose kinetic energy in forcing their way along the
surface against the increasing pressure. When viscous forces
also occur in the boundary layer adjacent to the surface, the
fluid clements will lose

energy more rapidly and £ - P
will be brought to rest
before reaching the point
8, and a reverse flow will
pet in from S towards 4
ns indicated in fig. 68,
The same process will
occur on the lower sur-
face of the body and
thus two surfaces of dis- ..

continuity will arise, as assumed in the Helmholtz-Kirchhoff
theory. These surfaces of discontinuity are unstable and lead
to the development of a Karman vortex street behind the
body.

The condition for the flow to break away from the surface
is associated with an increase of pressure along the surface,
and for a given pressure distribution along the surface it is
possible to calculate the point at which the flow breaks away
by means of the equations of the boundary layer. Unfortu-
nately it is not sufficiently acourate to assume the pressure
distribution given by the perfect fluid solution, and even
when the points of origin of the surfaces of discontinuity
have been determined, a further advance of the theory is
required to determine the strength and breadth of the
resulting vortex street. The problem of the form drag of a
body therefore remains to be solved, although the theory
indicates the formation of the surfaces of discontinuity and
the nature of the final vortex street.




CHAPTER IX
THE BASIS OF AEROFOIL THEORY

0-1. The theory of the lift force given by an aerofoil in
two dimensional motion has been developed by considering
the flow of a perfect fluid governed by Joukowski's hypo-
thesis that the flow leaves the trailing edge of the aerofoil
smoothly, It is necessary now to examine the fundamental
basis of this theory and the extent to which the assumed
motion represents the actual conditions which ocour with a
viscous fluid,

All real fluids possess the property of viscosity and the
conception of a perfect fluid should be such that it represents
the limiting condition of a fluid whose viscosity has become
indefinitely small. Now it is well known that the limit of a
function f (xr) as z tends to zero is not necessarily equal to
the value of the function when z is equal to zero, and hence,
to obtain the true conception of a perfect fluid, it is not
sufficient to assume simply that the coefficient of viscosity
is zero. The viscosity must be retained in the equations of
motion and the flow for a perfect fluid must be obtained by
making the viscosity indefinitely small,

0:2. Ship on the boundary.

The first point to be considered is the motion of the fluid
at the surface of A body. In a viscous fluid the relative
velocity at the surface of a body is zero and the body is
sarrounded by a narrow boundary layer in which the velocity
rises rapidly from zero to a finite value. The thickness of this
boundary layer, which is essentially a region of vorticity, is
proportional to +/» and tends to zero with the viscosity. Thus
in the limit the boundary layer becomes a vortex sheet
surrounding the surface of the body and the vortices of this
sheet act as the roller bearings between the surface of the
body and the general mass of the fluid. The assumption of a
perfect fluid with a vortex sheet surrounding the surface of
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the body therefore represents the limiting condition of a
viscous fluid when the viscosity tends to zero, and the
existence of the vortex sheet implies that the perfect fluid
solution need not satisfy the condition of zero slip at the
boundary. If ¢ is the velocity at the surface in the perfect

q

v S —
—— ‘,,..--"'3"'_"‘

Fig. 67.

fluid solution, then the strength of the vorticity of the vortex
sheet will be ¢ per unit length. If this vortex sheet is assumed
to surround the surface of the body, the condition of zero
slip at the boundary is satisfied, but the velocity rises from
zero to the value g in passing through the indefinitely thin
vortex sheet, and the conditions external to the boundary
layer are identically the same as if the vortex sheet were
ignored and the condition of zero slip at the boundary were
abandoned. The sum of the strengths of the vortices com-
posing the vortex sheet is equal to the magnitude of the
circulation round the body in the perfect fluid solution,

The boundary layer transmits the pressure through itself
normally without alteration and hence the actual pressure
distribution on the surface of the body will be identical with
that obtained from the perfect fluid solution by means of
Bernoulli's equation,

In proceeding to the limit of zero viscosity it is necessary
to retain the actual type of flow which occurs with a viscous
fluid. Thus in the case of a circular cylinder the flow breaks
away from the surface in two vortex sheets which develop
into a Karman vortex street and this type of flow must be
retained in the limiting case. The type of flow considered in
3-6, where the flow passes smoothly to the rear of the
cylinder, is clearly inadmissible and does not represent even
an approximation to the actual flow except possibly near the
nose of the cylinder (cof. fig. 14). The position on the cylinder
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at which the flow breaks away from the surface and the
nature of the resulting vortex street will depend on the
magnitude of the viscosity, but it can easily be seen that
this characteristic of the flow cannot disappear as the vis-
cosity tends to zero. Referring to fig. 67, where the surface
of the body is supposed to be surrounded by a vortex sheet,
the vortex element at P has the velocity }q along the surface
(cf. 4-35) and hence fluid elements in vortex motion are
continually passing along the surface of the body from front
to rear. These vortex elements must leave the body eventually
and pass down stream in a vortex wake which is the Karman
vortex street of the body. The breadth and strength of this
vortex street will depend on the shape of the body, but in
all cases it is necessary to presume the existence of a vortex
wake of this type,

8-3. Jowkowski's hypothesis.

The motion of a perfect fluid past an aerofoil can be
determined with any arbitrary circulation of the flow round
the aerofoil, but in the development of the theory the circu-
lation round an aerofoil with a sharp trailing edge was
determined by means of Joukowski's hypothesis that the
flow must leave the trailing edge smoothly. With any other
value of the circulation the velocity of the fluid would become
infinite at the trailing edge and the viscous force at this point
could not be neglected even when the viscosity became
indefinitely small, for however small a value were assigned
to v it would always be possible to find a region close to the
trailing edge of the aerofoil where the product of » and the

rate of change of velocity o7 was large. Hence it follows that

the only perfect fluid solution which can be regarded as the
limit of the true viscous fluid solution is that which avoids
an infinite velocity at the trailing edge, and this solution is
defined by Joukowski's hypothesis.

The conception that the fluid velocity must be finite at
all points can be applied more generally as a criterion of the
validity of any perfect fluid solution. Thus the flow past a
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line shown in fig. 43 is clearly impossible as the limit of a
real visoous fluid solution as the viscosity tends to zero, and
the actual motion must be of the type where the flow breaks
away from the surface at the ends of the line (fig. 56).

The magnitude of the circulation round an aerofoil deter-
mined by Joukowski's hypothesis is not quite accurate, since
it ignores the influence of the vortex wake which is formed
behind the aerofeil. The flow on the under surface of the
aerofoil, along which the pressure decreases towards the
trailing edge, will pass continnously to the trailing edge and
leave it smoothly, but the flow on the upper surface, along
which the pressure increases towards the trailing edge, will
break away from the surface before reaching the trailing
edge to form the upper boundary of the vortex wake. In
consequence the true circulation will be slightly less than
that determined by Joukowski's hypothesis. It appears,
however, that aerofoils of good shape st small angles of
incidence have an extremely small form drag (see 0-5) and
the vortex wake must be too weak and too narrow to exert
a noticeable effect on the circulation. At large angles of
incidence the vortex wake is more important since the flow
breaks away from the upper surface of the aerofoil at an
earlier stage. Joukowski's hypothesis then breaks down
completely, the lift ceases to rise with the angle of incidence
and the aerofoil reaches its critical angle. In this region the
nerofoil theory of chapter vir is no longer valid, the aerofoil
must be regarded as a bluff body and the most important
feature of the flow is the vortex wake rather than the
circulation.

In the ordinary working range of an aerofoil Joukowski’s
hypothesis can be used to determine the magnitude of the
circulation with good accuracy, and this determination is
independent of the exact value of the viscosity, which has
merely been assumed to be very small. Hence no appreciable
scale effect on the lift of an aerofoil is to be anticipated in
this range. On approaching the critical angle, however, the
flow breaks away from the upper surface of the aerofoil to
form a broad vortex wake, and there may be an important
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scale effect on the lift of the aerofoil since the nature of the
vortex wake will depend on the Reynolds' number of the
flow

9-4. Origin of the circulation.

The process by which the circulation round an aerofoil
develops as the aerofoil starts from rest presents certain
theoretical difficulties, since this process would be impossible
in & perfect fluid, and it is again necessary to consider the
limiting condition as the viscosity tends to zero. At extremely
low speeds when the aerofoil is starting from rest the

S T

(a) (®)
Fig. 68.

flow near the trailing edge will be of the type shown in
fig. 68 (a), with a stagnation point 8 on the upper surface at
some small distance from the trailing edge. As the forward
velocity of the aerofoil increases, the stream lines along the
under surface are no longer able to turn round the trailing
edge owing to the large viscous forces brought into action
by the high velocity gradient, the flow breaks away from the
trailing edge, and a vortex is formed between the

edge and the old stagnation point § as shown in fig. 68 (b).
When this vortex has developed to a certain stage, it breaks
away from the aerofoil and passes down stream in the vortex
wake. Now the circulation round any large contour ABCD
(fig. 69) which surrounded the aerofoil initially was and

A 'Cl":__-"'_-a.l dE ¢

Fig. 60.



122 THE BASIS OF AEROFOIL THEORY [cH.

must remain zero, and as this contour includes the vortex
E there must be a circulation K round the aerofoil which is
exactly equal and opposite to the circulation round the
vortex E. In the course of time the vortex E passes far
down stream where it can no longer influence the flow round
the aerofoil, and the aerofoil is then in steady motion with
a ciroulation of the flow round it.

The existence of the vortex E in the early stages of the
motion can be verified experimentally in a very simple
manner by dipping a flat plate into water and moving it
brriskly in a direction inclined at a small angle to its surface.
If the motion develops gradually instead of impulsively, a
succession of vortices will be shed from the trailing edge of
the nerofoil, but the previous argument remains valid and
the resulting circulation round the aerofoil is equal in mag-
nitude to the sum of the strengths of the vortices which have
left the aerofoil.

The general magnitude of the circulation round an aerofoil
is determined by the strength of the vortices which were
shed in the initial stages of the motion or at any time when
the speed or attitude was changed, but in addition the
magnitude of the circulation is subject to a emall fluctuation.
The vorticity of the boundary layer passes down stream in a
vortex wike which develops into a Karman vortex street and
to maintain this system vortices of opposite sign are shed
alternately from the upper and lower surfaces of the nerofoil,
Since the sum of the circulation round the aerofoil and of the
strengths of all the vortices of the wake must be zero, it
follows that the circulation round the aerofoil will oscillate
between the limits K + }E, where K is the mean circulation
and k is the strength of the vortex street. For a good aerofoil
section at a small angle of incidence the vortex wake is
narrow and weak, and the circulation round the aerofoil is
sensibly constant, but as the attitude of the aerofoil ap-
proaches and passes its critical angle the oscillation in the
magnitude of the circulation may become an important
fraction of the mean circulation.
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8-5. The drag of an aerofoil.

In developing the theory of the lift of an aerofoil, the drag
was neglected completely, and this method is justified solely
by the fact that the drag is so small a fraction of the lift
that the modification of the flow necessary to explain the
drag does not exert a noticeable influence on the charncter-
istics of the flow which determine the lift. The method will
clearly break down near the critical angle where the drag
increases rapidly owing to the development of a strong
vortex wake, and also near the angle of no lift where the lift
and drag are of the same order of magnitude. Since the drag
depends on the viscosity and varies with the Reynolds’
number of the flow, scale effect on the lift may be anticipated
in the neighbourhood both of no lift and of the critical angle.

The drag of an aerofoil in two dimensional motion is called
the profile drag, since it depends essentially on the shape of
the aerofoil section or profile. The profile drag may be con-
sidered in two parts, the form drag associated with the vortex
street behind the aerofoil and the frictional drag on the surface
of the aerofoil. A measurement of the pressure distribution
over the surface of an aerofoil can be used to determine the
lift and the form drag, but the frictional drag cannot be
determined by this method.

The profile drag coefficient of a good aerofoil section is
extremely low, and the following table gives the values of
the minimum profile drag coefficients of a few aecrofail
sections for the value of the Reynolds' number B = 2:5 » 108,
at which the frictional drag coefficient of a flat plate is 0-0058,
In the case of a thin symmetrical section, Gittingen 443, a

drag coefficient as low as 0-0028 has been obtained
at B = 4 x 10% and this value is only half the frictional drag

Table 9.
Minimum profile drag coefficients,
RAF 16 0-0058

RAF 25 -0
RAF 30 000540
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coefficient of a flat plate at the same value of the Reynolds’
number.,

These experimental values justify the assumption, made in
developing the theory of an aerofoil, that the dragis negligibly
small compared with the lift over the ordinary working range
of incidence. It also appears that the profile drag of an aero-
foil section may be less than the frictional drag of a flat
plate of the same chord. The form drag of the aerofoil must
therefore be extremely small and the existence of the vortex
wake can be ignored with safety in determining the mag-
nitude of the circulation by Joukowski's hypotheais,



CHAPTER X
THE AEROFOIL IN THREE DIMENSIONS

10:1. Circulation and vorticity.

The definition of the circulation round a closed eurve in
two dimensions (seo 4-1) as the integral of the tangential
component of the velocity round the circumference of the
curve can be extended at once to the more general case of
motion in three dimensions by removing the restriction that
the curve must lie in a single plane. Also by dividing any
surface bounded by this curve into a network by a series of
intersecting lines it can be shown that the cireulation round
the curve is equal to the sum of the circulations round the
elementary areas formed by the network.

The vorticity of a fluid element in two dimensional motion
was defined (see 4-3) as twice the angular velocity of the
element. This definition is retained in the more general case
of three dimensional motion but the axis of rotation of the
fluid element may now point in any direction. By following
the direction of the nxis of rotation of successive fluid elements
it is possible to construct a curved line whose direction
coincides at every point of its length with the axis of rotation
of the corresponding fluid element. Such a line is called a
voriexr line. ——

The vortex lines which pass through B
the points of the circumference of a
small closed curve C will form the
surface of a vorfexr tube, of which the
curve ' is a cross section. If 2 is
the vorticity at this section of the
vortex tube and if the section is taken
at right angles to the axis of the tube,
the circulation K round the curve C e
will be equal to 2wS, the product of the vorticity and the
area of the cross section. If the section is taken so that its
normal is inclined at angle @ to the axis of the tube, the
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area of the section will be increased to &§sec §, but the
component of the apgular veloecity about the normal to the
section will be reduced to @ cos 8, and the circulation which
is equal to twice the product of these two quantities is un-
altered. Also the circulation round any small curve which
lies on the surface of the vortex tube will be zero, since the
component of the angular velocity normal to the surface of
the tube is essentially zero.

If o curve of the type shown in
fig. 71 is drawn on the surface of a
vortex tube, the circulation round the
ourve will be zero. Now if F (AR)
denotes the flow along the curve AB,
this result can be expressed in the
form

F (PQR) + F (RR') + F (R'Q'P’)
+ F(P'P) =0,
and when PP’ coincides with RR’ this equation becomes
F (PQR) = F (P'Q'R’),
showing that the circulation has the same value for all
curves embracing the vortex tube. The value of this circula-
tion K is called the strength of the vortex tube,

10:11. The conception of a line vortex is derived from that
of a vortex tube by making the area of cross section of the
tube tend to zero while the strength K remains unaltered.
The line vortex in three dimensional motion eorresponds to
the point vortex in two dimensional motion, but whereas the
latter represents a straight line of infinite length normal to
the plane in which the two dimensional motion ocours, a line
vortex may in general be a curve of any shape. The circulation
round any closed curve C is equal to the sum of the strengths
of the line vortices which cut any surface bounded by this
curve, and from this fact it follows that a line vortex cannot
come to an end in the fluid. It must form a closed curve or
have its ends on a solid boundary. A line vortex is exactly
analogous to a wire carrying an electric current, the strength
of the line vortex corresponds to the strength of the electrie

Fig. 71
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current, and the induced welocity at any point of the fluid
corresponds to the magnetic force due to the electric current.

10-12. The induced P
velocity of an ele-
ment of a line vortex

at a point P is deter- — “:}d

mined by the equa- 'L

tion* Fig- 72.
dg = g ind,

where K is the strength and ds is an element of length of the
line vortex, r is the distance of the point P from the element,
and @ is the angle between the direction of the element and
the line joining the element to the point P, The velocity dg
is normal to the plane containing r and ds, and its sense is
the same as that of the circulation K about the line vortex.

An element ds of a line vortex cannot exist independently
and the formula should be used only for integrating the
effect of a complete line vortex. Frequently, however, a line
vortex may be built up of a number of straight lines and it
is useful therefore to determine the induced velocity of a
straight line vortex of finite length AB. If PN, the normal

Fig. 73.

from any point P to the line AB, is of length &, and if Q is
any point of the line vortex, the induced velocity at the
point P due to the clement ds at Q is

Kds . . Khds
o= artin =T

* Cf. Lamb, Hydrodynamaics, § 149,
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and this velocity is normal to the plane PAB, Now if 4 is
thumglnNPﬂ,t.hudemantnihngth:hmnyhuuptmdu
ds = d (h tan ¢) = h sec $d4,

and hence dg = = con $d4.

The total induced velocity of the line vortex AF is obtained
by integration from ﬁ-—(g—u) to &-(;—ﬂ), where
a and B are the angles PAB and PBA respectively. Thus

finally K
g-m{mn+mﬁ].

If the line AR is of infinite length, this result reduces to

which agrees with the formula for the induced velocity of a
point vortex in two dimensional motion.

It is also important to note that the induced velocity of
a line, which starts at the o
point N and extends to
infinity in one direction
only, is K

1= &b’ =

a8 this result is used re- N rd"

peatedly in the develop- Fig. 74.
ment of aerofoil theory,

10:2. The vortex system of an aerofoil,

In dealing with the problem of an aerofoil of finite span
in three dimensional motion the assumptions will be made
that the chord of the aerofoil is small compared with the
span, that the span may be regarded as a straight line at
right angles to the direction of motion, and that the aerofoil
is symmetrical laterally about the mid-point of its span.
Apart from these restrictions the chord, angle of incidence
and shape of the aerofoil section may vary in any manner
across the span of the aerofoil.

h
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If the aerofoil experiences a lift force there must be a
circulation of the flow round the aerofoil sections and there-
fore in effect there is a line vortex or a set of line vortices

gl -
e

serofoil. These / 1_ %

line vortioces, {;

which move —— 3 F o |

with the aero- oo pe

foil, are called N .

the bound vor- ’

tices of the f_’

aerofoil, and Fig. 75

are formed by

the boundary layer or vortex sheet which surrounds the
surface of the aerofoil. In accordance with the general theory
of vortex motion, these line vortices cannot end at the tips
of the aerofoil but must continue in the fluid as free line
vortices. Also any element of the fluid, which is set in vortex
motion by coming into contact with the bound vortex system
of the aerofoil, will pass down stream with the general mass
of the fluid, and free line vortices will therefore start at
the surface of the aerofoil and pass down stream along the
stream lines of the flow as indicated in fig. 75. These line
vortices are called the trailing vortices of the aerofoil,

The vortex system is completed far behind the aerofoil by
a transverse vortex parallel to the span of the aerofoil, which
is the vortex shed from the trailing edge at the commence-
ment of the motion (cf. 9-4). For all practical purposes,
however, the trailing vortices may be assumed to extend
down stream indefinitely.

10-21. The simplest type of vortex system occurs when the
circulation round the aerofoil sections has a constant value
K ncroes the span of the aerofoil. The bound vortex system
can then be conceived as a single line vortex of strength K,
and the trailing vortices will be two line vortices of the same
strength which spring from the tips of the aerofoil and pass
down stream in the direction of the stream lines, These line
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vortices will be curved owing to the variation in the downward

component of the velocity at ~
different distances behind the >
aerofoil, but for most purposes Ty K

it is sufficiently accurate to

assume that they are straight >
lines parallel to the direction e
of motion. In this way the L

gimple conception of a “horseshoe™ vortex system, shown
in fig. 76, is obtained.

The actual vortex system of an aerofoil is more com-
plicated than this simple system owing to the fact that the
circulation is not constant across the span of an serofoil but
generally has a maximum value at the centre and decreases
to zero at the tips. Any distribution of cireulation acroas the
span can be built

up by superimpos- 14
ing & number of [ S
the simple *‘ horse- ¢
shoe "’ systems, and =
hence it appears

that the free vortex ¢
system of an aero- | P
foil will in general E

consist of a sheet
of trailing vortices, Fig. 77.
springing from the trailing edge of the aerofoil.

10:22. The origin of the trailing vortex system may be
considered also from a slightly different point of view. If

the distribution of lift across the
span of an aerofoil has a maximum -_
value at the centre, there will be a s
large increase of pressure below the

centre of the aerofoil and a large Fig. 78.

reduction of pressure above it, and these pressure differences
will decrease towards the tips of the aerofoil (fig, 78). As a
consequence of this pressure distribution, the stream lines
passing above the aerofoil tend to flow inwards towards the
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centre and those passing below the aerofoil tend to flow out-
leave the trailing edge of y :

the aerofoil they form a \ f
surface of discontinuity . )

(fig. 70) and the trailing R’ /N
vortices of the aerofoil

represent the vorticity of —  » . —g—
this surface of discon- O & OO
tinuity. Fig. 70.

10-23. The surface of discontinuity represented by the
sheet of trailing vortices is unstable and will roll up into a
pair of vortex tubes which extend down stream at a distance
apart rather less than —~
the span of the aero- > S
foil (see 12-4). The
trailing vortex system ¥
is therefore of the
type*® shown in fig. 80, } ~
The influence of the ot
trailing vortex system Fig- 80.
near the aerofoil is represented with sufficient accuracy by
assuming that the individual line vortices, which spring from
the trailing edge of the aerofoil, extend down stream as
straight lines. For points of the wake it is more acourate to
assume a vortex system of the “horseshoe" type with span
rather less than that of the aerofoil, and for points distant
from the aerofoil and its wake either representation may be
used with equal accuracy.,

10-3. The induced velocity.

The flow at any section of the aerofoil differs from the flow
which would occur round the section in two dimensional
motion owing to the influence of the trailing vortex system.
The induced velocity of this vortex systemis normal tothespan
of the aerofoil and to the direction of motion, and is directed

* This type of vortex system was predicted by Lanchester, Aero-
dymamics, 1908,
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downwards in general. The normal induced velocity at a
point of the aerofoil will be denoted by w and will be assumed
to be small in comparison with the velocity V of the general
stream of the fluid. The effect of the induced velocity is then

ky

wy = ""Du

Fig. Bl,
equivalent to a reduction of the angle of incidence of the
mmmﬁunhymamﬂlmgiu;mg. 81), and if a is the

geometrical angle of incidence of the aerofoil section, the
effective angle of incidence will be

n.-u—;.

More accurately the induced velocity should be regarded
as variable along the chord of the aerofoil section, resulting
in a change of effective camber of the aerofoil section, but
the theory of an aerofoil of finite span can be developed with
gufficient accuracy by assuming the chord of the aerofoil
section to be small and by assuming a constant value of the
induced velocity along the chord. The component of the
velocity parallel to the span of the aerofoil is also neglected
in developing the theory, since this component is small and
unimpaortant, except possibly at the tips of the aerofoil.

The aerofoil section behaves exactly the same as if it
formed part of an aerofoil of infinite span at an angle of
incidence a,, and gives the lift coefficient ky and the profile
drag cocfficient kp, corresponding to two dimensional motion
st this angle of incidence. The lift force is, however, inclined

hmhuﬂ..uham.nugh;mg. 81) and therefore gives

a component in the direction of the drag force. This com-
ponent is called the induced drag, since it is caused by the
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induced velocity of the trailing vortices. The induced drag
coefficient of the serofoil section is

kp, = ki,

and the total drag coefficient of the aerofoil section as part
of the monoplane aerofoil is

tﬂ -'ED."I"'F'EL'

The work done on the fluid by the induced drag of the aerofoil
appears as the kinetic energy of the trailing vortex system,
which increases in length as the motion prooeeds.

Sinoe the aerofoil section behaves exactly ma in two
dimensional motion there is no change in the moment
coefficient or in the position of the centre of pressure at any
definite value of the lift coefficient.

The characteristics of a monoplane aerofoil are determined
by finding the normal induced welocity w and the effective
angle of incidence a, at each point of the span, by caleulating
the corresponding elementary lift and drag forces, and by
integrating across the span of the aerofoil. The first stage of
the caloulation of the characteristics of a finite monoplane
aerofoil is therefore the determination of the normal induced
velocity at a point of the aerofoil in terms of the strength of
the trailing vortices.

10-31, The simplest "/
type of trailing vortex
system oocurs when
the circulation has a —= K
constant value K a-
cross the span of the P
aerofoil. This oase of
uniform loading and
the simple *horse- 1
shoe' vortex system Fig. B2.
do not represent the
true conditions for any actual serofoil, and the system is

3
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considered here only as a simple example of the calculation
utthnn-urm:limlunulﬁlﬂmtjr
The lift of the aerofoil of area S and semi-span & can be
expressed in the alterative forms
L=k 8pV*=28pVK,
)

and hence E=EI:LF-EL::F,

where ¢ is the mean chord of the aerofoil. The trailing vortex
system consists simply of two trailing vortices of strength K
springing from the tips of the aerofoil, and using the standard
system of coordinate axes as shown in fig. 82 with origin at
the centre of the aerofoil, the normal induced velocity at a
point of the aerofoil is

K K K o
R ) e I = O R =
= w ko
Vo ads — ¢~

where 4 is the aspect ratio = of the aerofoil. The induced

velocity w in this case has a minimum value at the centre

and rises to infinity at the tips of the aerofoil, and it is on

account of this excessive velocity that the simple ** horseshoe "’

::t;: system cannot represent the true conditions for any
oil,

10-32. In general the circulation K round an aerofoil will
vary across the span, being symmetrical about the centre
and falling to zero

at the tips. Between .ﬂ =
the points y and , . I T8
(y + dy) of the span 0 dy

of the aerofoil the
circulation falls by

vortex of this strength springs from the element dy of the
span as shown in fig. 83. There is therefore a sheet of trailing
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vortices extending across the span of the aerofoil and the
normal induced velocity at any point of the span must be
obtained as the sum of the effects of all the trailing vortices
of this sheet. The normal induced velocity at the point y, of

the aerofoil is ik
=
i) = (¥ —m
r dEdy
1] dy
dn ~-l“| y*

An alternative formula for the normal induced velocity
can be derived in a K
different manner. The T — -
element dy of the
serofoil at the point _ o
y may be regarded as *
an elementary aero-
foil with the constant
circulation K and a |
corresponding pair of

ili vortices of g 84
strength K. The normal induced velocity at the point y, of
the aerofoil is ¥ %

W = - y—w Ty +dy -
_ Kdy
4w (y — w)*’
and on integrating across the span of the aerofoil
1+ Kd
“ul}- _E.['- :,.]|

This formula can be shown to be equivalent to the previous
result, for on integrating by parts

|
1 K
0 (1) = 'i?r["#-f y—m]--'
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and the first term vanishes since K is zero at the tips of the
aerofoil.
For most purposes the best formula for the normal induced

velocity is . dK
1| ™
wih) = _.y_;t-_y'

but the evaluation of the integral needs some special care
gince the integrand becomes infinite at the point y = y,.
The value of the integral must be determined by integrating
from — & to y, ~ « and from y, + « to s, and by proceeding
to the limit as ¢ tends to zero,



CHAPTER XI
THE MONOPLANE AEROFOIL

11-1. The fundamental equations.

If K is the circulation round any section of an aerofoil,
the normal induced velocity at a point y, of the span is
determined by the equation

dml_oh—y'

and the typical aerofoil section experiences the lift force
ing to two dimensional motion at the effective

angle of incidence "

'ﬂ.-ﬂ—'p.
The direction of the line of action of this force component
is rotated backwards through the small angle Y, (cf. fig. 81)
and hence the drag of the aerofoil section is the profile drag
increased by the induced drag, the product ul']'} and the lift

of the aerofoil section.

Now if the angles of incidence a and a, are measured from

the attitude of no lift, the lift coefficient of the aerofoil
section under these conditions will be

kLﬂ'ﬂlﬂll
where a, is the slope of the curve of lift coefficient against
angle of incidence for the aerofoil section in two dimensional
motion. Also the circulation K round the aerofoil section
et K=kpeV =ayc(Va —w),
and this is a second equation connecting the circulation K
and the normal induced velocity w. By means of these two

equations it is possible to determine the circulation and the
normal induced velocity for any aerofoil in terms of the chord
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and angle of incidence of the aerofoil sections, which may of
course vary across the span of the aerofoil.

Strictly the quantity a, should be regarded as a variable
depending on the shape of the aerofoil section, but the theory
of an aerofoil in two dimensional motion has shown that a,
is approximately equal to = for all practical aerofoil sections,
and hence the variability of a, may be neglected without
any apprecinble loss of accuracy. Nevertheless, since an
aerofoil section may fail to realise the theoretical value
@y = w, the theory of the aerofoil of finite span will be de-
veloped in terms of a, as the slope of the curve of lift coefficient
againset angle of incidence in two dimensional motion, and
the theoretical value g, = = will be used only in numerical
illustrations of the general formulae.

When the circulation K and the normal induced velocity
w of any monoplane aerofoil have been determined, the lift
and induced drag are obtained by evaluating the integrals

L=|" pVKay,

B J poKdy.
-8

11-2, Method of solution.

A convenient method of attacking the problem of any
monoplane aerofoil is to replace the coordinate y, measured
to starboard along the span of the aerofoil from its centre,
by the angle # defined by the equation

y = — scoad,
so that f varies from 0 to = across the span of the aerofoil
from port to starboard. The circulation K, which is a function
of y, may then be expressed as the Fourier series

K = 4aV T A_sin nb,

m=1
and the values of the coefficients A, must be determined in
accordance with the two fundamental equations connecting
K and w. The series chosen for the circulation K satisfies the
condition that the circulation falls to zero at the tips of the
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aerofoil, and since the aerofoil is symmetrical about its mid-
point odd integral values only of n will occur in the series.

The normal induced velocity at the point y, or 8, of the
aerofoil now becomes

Fi~Znd,coend
”{Bﬂ -;_Lﬂﬂﬂ—-madﬂ
- VEng, S008
sin 8,
; " cosnfdf gin ne
o .tﬂﬂﬂﬂ-—-ﬁﬁﬁ-ﬂ-ﬂ-i-ﬁd'

Thus at the general point @ of the aerofoil
wainf = VEnd, sin nf.
The second equation connecting the circulation and the
normal induced velocity becomes

hm.ﬁnnﬂ-n.cFIu—M“—'at,
l enf
or LA, sinnf (np + sin ) = pa sin 6,
dyC
where p=2.

This is the fundamental equation for determining the values
of the coefficients A, for any monoplane aerofoil. The
equation must be satisfied at all points of the aerofoil, but
since the aerofoil is symmetrical about its mid-point it is
sufficient to consider values of # between 0 and E. The
parameter u, which is proportional to the chord ¢, and the
angle of incidence @ must be regarded as functions of § in
the most general case,

11-21. Lift and induced drag.

The lift and induced drag of a monoplane aerofoil are
determined very simply in terms of the coefficients A, of
the series for the circulation. The lift of the aerofoil is

L=[" pVKdy
& =
~ |} 45V (4. 50 ) sin 00
= E#IIFF'J!I,
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or, in terms of the lift coefficient,
8

d' - E_':.ﬂ_"kl'l

It appears that the lift of the aerofoil is determined by the
value of the coefficient 4, and that the other coefficients of
the series for the circulation modify the shape of the load

grading curve across the span of the aerofoil without altering
the total lift,

The expression Egj* which occurs in the equation con-

necting A, and kz can be expressed in an alternative form.

The mean chord of an aerofoil is defined as the area divided

by the span, and the aspect ratio A is defined as the span

divided by the mean chord. Hence for a monoplane aerofoil
451 8 2

The theoretical formulae, which involve this parameter, will
normally be expressed in tarmndﬂ-f?,hutthadtamnﬁm
form :dilunfnlinlf“uponillnmlndfﬂnumﬂiﬂl

computation.
The induced drag of the serofoil is

D, -r pwkK dy
-

= [ 4s% V2 (En4, sin n) (E4, sin n6) db
« 0
= MPF‘E“-.'!
It is convenient to write
Ind?

l+a--3-|i-l

where 3 is & positive quantity whose value is usually small,
and then = (143) L3
1= Dastplr

8
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The total drag of the aerofoil is obtained by adding the in-
duced drag and the profile drag. If the aerofoil has a constant
aerofoil section across its span and if the effective angle of
incidence is also constant, then the profile drag coefficient of
each section will have the same value kp, and the total drag
coefficient of the aerofoil will be

kp = kn,+§-i,tl + 8) k..

More generally the nerofoil section and the effective angle of
incidence will vary across the span of the aerofoil and the
profile drag coefficient of the aerofoil must be obtained as
the value of the integral

1

¥
3 ] " Encdy.

This refinement, however, is necessary only when the shape
of the aerofoil section varies considerably across the span of
the aerofoil.

11-22. Angle of incidence.

Owing to the normal induced welocity the effective angle
of incidence a, of any section of an aerofoil is less than the
geometrical angle of incidence , and the aerofoil section gives
less lift than it would in two dimensional motion at the same
angle of incidence a, The values of the coefficients 4, and in
particular that of 4,, are determined from the fundamental

oquetion o, in w8 (nu + 8in ) = pasin @

as functions of the angle of incidence of the aerofoil, and
since A, is also proportional to the lift coefficient k., a re-
lationship is obtained between the lift coefficient and the
angle of incidence of the aerofoil. The slope a of the curve of
lift coefficient against angle of incidence determined from this
relationship is less than the value a, which occurs in the two
dimensional motion of an aerofoil section.

The relationship between the lift coefficient and angle of
incidence has a simple form when the aerofoil has a constant
angle of incidence across its span. The coeflicients 4, are
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then simply proportional to the angle of incidence e, and the

| L B

15 gggt L= o4 L
a wd "dl
.'tl == EE "o g e—
gives at onoe ke

T’huttngtaufimidenmanfthamnhila:mednthemglenf
incidence a in two dimensional motion, which would give the
same lift coefficient, by the angle
1 1
)

and it is convenient to write this result in a form similar to
the equation for the drag coefficient of the nerofoil. Thus

8
u—a‘+m[l+ﬂi‘5.
2asty]l 1 a wd
where l+1-——3—(5—_- -.-I;"""

In the more general case of a twisted aerofoil the angle of
incidence a varies across the span of the aerofoil and may be
expressed in the form

a=a+ f(8),

where & is the angle of incidence at the centre of the aerofoil.
The values of the coefficients 4, are then obtained from the
fundamental equation in two parts, the first being pro-
portional to and the second independent of & The lift
coeficient of the aerofoil is therefore of the form

kr =az + k.
11-3. Elliptic loading.
The lift and induced drag of an aerofoil have been obtained
in the forms L = 2% P4,
BI = EI‘IPF‘EM-‘;

If an aerofoil of a definite span gives the lift L at the speed
¥, the coefficient 4, has a definite value which is independent
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of the shape of the aerofoil, and the induced drag will be a
minimum when all the other coefficients A, in the series for
the circulation are zero. The distribution of circulation across
the span of the serofoil is then simply

E—hl’dlﬁnﬂ--lai’.dl\/l—f:.

The magnitude of the circulation at any point of the span is
proportional to the ordinate of an ellipse with the span as
major axis, and this type of load distribution is therefore
called elliptic loading.

The elliptic distribution of circulation or lift across the
span of an aerofoil is important, firstly because it leads to
the minimum possible induced drag for a given total lift,
and secondly because the load grading curves of most aero-
foils of conventional shape do not differ greatly from the
elliptic form. The results deduced from the hypothesis of
elliptic loading are therefore the best which can possibly
occur and are also a good first approximation to those actually
obtained.

With elliptic loading the normal induced velocity has the
constant value 8
W= F.d.l = —2'—'* ij,

across the span of the aerofoil, and the induced drag coefficient

of the serofoil has the value

kp, = 5omy kb,

If @ is the geometrical angle of incidence at any point of
the span, the effective angle of incidence will be (n-'«;,),

and a constant geometrical angle of incidence will imply a
constant effective angle of incidence. Hence the lift coefficient
also will have the same value for all sections of the aerofoil.
But the circulation K round any section is equal to krcV,
and as the circulation varies elliptically across the span, so
also will the chord. Thus the elliptic loading will be obtained
from a monoplane aerofoil of elliptic plan form and constant
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angle of incidence. In this case the geometrical and effective
angles of incidence are connected by the equation

ﬂ-.ﬂ.-’-%tl_

Elliptie loading across the span can also be obtained from
aerofoils of other plan form by suitable variation of the angle
of incidence across the span, but any such twisted aerofoil
will give the elliptic loading for one attitode only, since
the necessary angle of twist depends on the mean angle of
incidence of the aerofoil.

11:31. Effect of aspect ratio.

The formulae which have been developed for the angle of
incidence and drag coefficient of an elliptio aerofoil can be
used to calculate the effect of a change of aspect ratio. If
the aspect ratio is reduced from A to 4’ the changes in the
angle of incidence and drag coefficient at a given value of
the lift coefficient are respectively

© -ﬂ-!(zl' _H)h"
-to=3h- e

For the standard aspect ratio (4 = 8) of model experiments
the factor ;?.I has the value 0-106, and if the angle of in-

cidence is measured in degreea this factor becomes 0°:1,

The transformation formula for the drag coefficient applies
only to aerofoils with elliptic loading, but the lift distribution
curves for rectangular aerofoils and for the majority of
aeroplane wings do not differ greatly from the elliptic form,
and the transformation formula may therefore be used more
generally to caleulate the effect of a small change of aspect
ratio. The accurate formulae for rectangular and tapered
acrofoils are developed in 11-4 and 11-5 respectively.

The transformation formula for the angle of incidence
applies only to aerofoils of elliptic plan form with constant
angle of incidence across the span and cannot be used for
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aerofoils of other plan form except as a rough approximation.
The formula for the angle of incidence also leads to a simple
determination of the slope of the lift curve. If a, is the slope
in two dimensional motion and a is the slope for an elliptic
aerofoil of aspect ratio A, then the formula

2
ﬂ-ﬂ.+akg
gives by differentiation
1.1,3
a a, =d’
or Y
™
2+—A
g

Now the theory of an aerofoil in two dimensions gives the

value a, = = approximately and the corresponding values of
@ are given in the following table. The values of a, when « is

measured in degrees, are added for comparison with experi-
mental results which are usually quoted in this form.

Table 10.
Slope of lift curve for elliptic aerofoils.

A o 10 8 a 4

a (per radian) 314 2-62 2:61 2:35 2:00
a (per dogree) 0-065 0-046 0-044 0041 0-037

11-4. Rectangular aerofoils.

When the circulation round an aerofoil is expressed in the
foee K = 4sVEA, sin nd
the coefficients 4, must be chosen to satisfy the fundamental

OqUAtion g 4. ainnf (s + 8 0) = pasin g,

where pn‘i‘:

The successive coefficients 4,, A,, A, ... decrease rapidly in
magnitude and it is sufficient to retain only the first three or
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four coefficients in order to obtain a good determination of
the lift and drag of the aerofoil. The method of solution,
when p coefficients are retained, is to determine the coefficients
to satisfy the fundamental equation at the p points

., m=123..p

' PPcond
2p'’
The numerical values given in the subsequent tables are
found by retaining the first four coefficients (4,, 4,, 4,, 4,)
and by satisfying the fundamental equation at the four points
0 = 22§, 45, 67§, 90 degrees,

E-Mn, 0-707, 0-383, 0.

When these four values of £ are inserted in turn in the funda-
mental equation, four linear equations are obtained to
determine the four coefficients. The correct values of u and
a depending on the value of # must be inserted in these four
equations.

The simplest case to consider is that of a rectangular
aerofoil® with constant chord ¢ and angle of incidence « across
the span. The parameter u has the constant value

_ 9

E‘E (]
and the coefficients 4,, 4, ... can be determined conveniently
ms multiples of pa. The slupu of the curve of lift coefficient
against angle of incidence for the nerofoil is then

L4 ] r'dl-

Gy 4 pa’
and the angle of incidence and drag coefficient corresponding
to the lift coefficient kg are

u-q.+;§{| )i,

kp = kp, + — (1 + 8) k3,

* The solution for a rectangular serofoil was obtained first by A. Betz
by a different and far more laborious process: Beitrdge sur Tragfigeliheorie
mit besonderer Bericksichiigung des einfachen rechleckigen Fligels, Got-
tingen dissertation, 1919,
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The numerical values obtained by this method are given
in table 11 and the values of the monoplane coefficients r
and & are also shown in fig. 85. The values of § are small

Hml:mau.lu Aerofoils

0-3

ot ——=

el

0 1 2 3 4

Ao

Fig. 85,

and a good first approximation to the induced drag coefficient
can be obtained by ignoring & and by using the elliptic

/"’

Table 11.
Rectangular aerofoils.

Ajay | Ayua | Afua | Ana | Ajun | atay | aa | + | o

I
10 | 748 | 060 | 009 | 0014 || -587 | 170 | <10 | -019
15 | -850 | 000 | -016 | 0027 || 675 | 222 | ‘14 | 034
20 | 928 | -115 | 023 | 0041 || 720 | 274 | 17 | 040
25| 976 | -136 | 030 | 0055 || -767 | 326 | -20 | -063
30 | 1010 | <154 | 036 | 0070 || 794 | 378 | 22 | 076
35 | 14038 | -l60 | 042 | -0O084 ‘8i56 | 429 | 34 | -0B8
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loading formula. The values of = are not so small and it is
necessary always to retain this coefficient in determining the
angle of incidence of a rectangular aerofoil.

11-41, Accwracy of resulls.

In order to illustrate the accuracy of the results obtained
when ﬂulj four coefficients {‘!11 .d:l .4-‘. d,} are retained in
the series for the circulation, the calculations have been made
in one case (4 = 2a,) retaining in turn one, two, three and
four terms of the series. The results are given in table 12 and
show that the values of » and & have almost reached their
limiting values when four terms are retained. For rapid
ealculations three terms should be sufficient to give a fair

approximation to the true values.
Table 12,
Successive approximalions.

Noof | yua | Agua | dysa | dua || + :
I 800 — - = 4 | 0
2 17 084 —_ — 22 025
3 020 -110 016 —_ 18 BT
i ‘028 115 023 004 17 (49

11-42. Effect of aspect ratio.
The conversion formulae for a change of aspect ratio from
Jtud'[urmunguhrnudnihm
P 2/1+ 1 +
4 —ﬂ-—( Arl_ ' EL-

i
ky' —l-‘n-- 1+5‘_l+6)h

Table 11 or fig. 85 gives the values of r and 5 in terms of
A/ay. The relationship between A /a and A /a, can be obtained
from the same table or from fig. 86, and approximates closely
to the linear law 4 A

E—ﬂ'ﬂﬂirl'ma;-
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The experimental determination of the characteristics of a
rectangular aerofoil of aspect ratio A gives the value of 4 /a and

5 H-Eﬂl:lnﬂuil.r Al‘l’ﬂfl‘hl‘l

a /
3 /

Al | A

2
Ao
Fig. 86.

the corresponding values of 4 /a,, and r and 8 can be obtained
from the figures. The value of a, is then known and the values
of " and 3’ for any other aspect ratio A" can be found at once
from fig. 86.

If ay = =, the values of r and 8 for the standard aspect

relio 6.ame r=0163, &= 0-046,
and then, if the angle of incidence is expressed in degrees,
a=a,+ 71k,
kp = kp, + 0-111kg%
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These numerical values should be compared with the corre-
sponding values 6°1 and 0-106 for an elliptic aerofoil of the
same aspect ratio.

Finally, the slope of the lift curve for rectangular aerofoils
of different aspect ratio, on the assumption that a, = =, is
given in table 13. These values are all slightly less than the
corresponding values for elliptic aerofoils given in table 10.

Table 13.
Slope of lift curve for reclangular aerofoils.
A = 10 # a « |
a (per radian) | 3-14 2-53 2-42 2-27 208
a (per degree) | 0055 | 0-044 0042 | 040 | 0-036
11-43. Pitching moment.

The relationship between the moment coeflicient and the
lift coefficient of a uniform rectangular aerofoil is the same
as for the aerofoil section in two dimensional motion and is

f
o the form k--ﬂ";“mli'f_,

where my and m, are both negative in general. For, if this
equation represents the moment coefficient of the aerofoil
section in two dimensional motion, the pitching moment of
the rectangular aerofoil about its leading edge will be

» K
kncSpV? = [* (mq -+ m ) ctpViay,
where K/cV has been written for the lift coefficient of the
nerofoil section. Putting
y= —scosé,
S = 2ac,
K = 4sVZIA, sinnd,
the equation gives
T o . o
ke EL‘I.H'-'- = Ed.nnnﬂl»mnﬂﬂ
4
-y +my 4,
=y + my kg,
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. 8
Eince .d,-h,.h,=—-h_

11:5. Tapered aerofoils.
Another important type of aerofoil is that in which the
chord decreases uniformly from a maximum value ¢, at the

I (=)

Fig. 87.

centre of the aerofoil to ¢ (1 — A) at the tips. In general this
change of chord is associated with a change of the aerofoil
section, but it will be assumed in the first place that the
acrofoil has no aerodynamic twist, i.e. that the angle of
incidence measured from the no lift line of the sections is
constant across the span of the aerofoil.

Solutions are obtained as before from the fundamental

OqUAHOD w4 sin #f (wg -+ sin 8) = px sin f,

and the solution follows the same lines except that u now
has different values at the four typical points
0 =22}, 45, 67}, 90 degrees.
For this range 6=¢ (1l —Acos @),
jo= g {1 — Acos @),

where p.-n;?.
The area of the aerofoil is

and the aspect ratio is
A 4 o
(2= (2-A)u
Numerical results illustrating the effect of taper are given
in table 14 for the aspect ratio 4 = Eu,,lndthuunnupundmg
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values of the monoplane coefficients r and 3 are shown in
fig. 88. It appears that the best results are obtained when

ob Tapered Aerofoils
01 k
T
0-25 0-50 075 1
Tip chord [Central chord
Fig. 88.

the tip chord is from one-third to one-half of the central

chord, for it is desirable that + and 5 should both be as small
as possible,

Table 14.
Tapered aerofoils (4 = 2a,).
N | dge | Age | Age | Aga | ofm | ¥ 3
0 932 | 020 006 | 001 720 | 17 | 40
o25 | 236 | 020| 008 | o | 742 | 10 | 02
050 | 240 | 007 | 010 | --001 || 754 | 03 | om
0 | 241 |-o12| 010 | -002 | 857 | 01 | 018
100 | 232 | -000 | -0o2 | —004 | 729 | 7 | -4
11:6. Twisted aerofoils.

When the shape of the aerofoil section varies across the
span of the aerofoil while the chords of the sections lie in
one plane, the aerofoil must be regarded as twisted aero-
dynamically. Owing to the variation of the angle of incidence
for no lift of the aerofoil sections, the thick section at the



x1] THE MONOPLAXE AEROFOIL 153

centre of the aerofoil is set effectively at a greater angle of
incidence than the thin sections near the tips of the aerofoil,
and the aerofoil is analogous to one of constant section with
“wash out" towards the tips.

As an illustration of the method of caleulating the charac-
teristics of a twisted aerofoil, consider a rectangular acrofoil
of constant section whose geometrical angle of incidence
decreases uniformly from the centre to the tips. Let & be
the angle of incidence at the centre of the aerofoil and « the
decrease from the centre to either tip. Then for the port half
of the aerofoil the angle of incidence is

-I]'.:-I-—l“ﬂ.

and the fundamental equation for the coefficients 4,, 4, ...
of the series for the circulation becomes

EA, sin nd (np + sin 6) = u sin @ (& — « cos 6).

The solution for the first four coefficients of the series
proceeds as before, but each coefficient is now determined

in two parta, the first being proportional to ué and the second
to pe. Numerical values for the case A = 2a, are

A, = 0-928ua — 0-408pe,
Ay = 0-115ua — 0-242pe,
Ay = 0-023ud + 0-010ue,
Ay = 0-004pud — 0023 e,
The lift coefficient of the twisted aerofoil is
2mra?

ky = =5 4, = 2283 — 1-0l¢,

whose slope is the same as for the corresponding untwisted

rectangular aerofoil.
The induced drag coefficient of the aerofoil may still be
written in the form

kp, = %u + &) k8,

but the coefficient & now varies with the angle of incidence
of the aerofoil. Thus if « is equal to 0-1 radian (5°7), the
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characteristics of the aerofoil at different angles of incidence
are as follows:

& [ 73 é
0-10 0-128 02058
0-15 0-242 0027
0-20 0-354 DL
0-25 =470 0-003

These values of 8 should be compared with the value (-040
for the corresponding untwisted rectangular aerofoil, and it
appears that the twisted aerofoil with “wash out” towards
the tips has the lower induced drag except at very low lift
coefficients.

The more general case of a twisted tapered aerofoil can
be solved along similar lines, the only modification being
that the parameter x must now be regarded as a function
of the coordinate 8 as in 11-5.

11'7. Load grading curves,

The solution of the problem of a monoplane aerofoil in
the form of a Fourier series for the circulation can also be
used to determine the shape of the load grading curve across
the span of the aerofoil, since the lift on any element of the
span of an aerofoil is proportional to the ciroulation round
that element. In general the first four terms only of the
Fourier series have been determined and the corresponding
load grading curve is of a sinuous nature. The solution,
however, is exact only at the four points of the semi-span
(0 = 224, 45, 67}, 90 degrees) which are used in determining
the coefficients of the Fourier series, and the load grading
curve should therefore be drawn as a smooth eurve through
the values determined at these pointa.

Fig. 80 shows the load grading curves for various aerofoil
shapes determined in this manner, the scale of the ordinates
being chosen so that each aerofoil carries the same total load.
A wing of elliptic plan form gives a load grading curve of the
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same form, and an aerofoil of any other form gives a load
grading curve whose form is intermediate between that of

Load grading curves(A=2a,)
I I I

2.0 T

0 . | | 1 1
0 0-2 0-4 0 0-8 1-0
Distance along span J aerofoil

Fig. 89.

the aerofoil and that of the ellipse. Aerodynamically the
merit of an aerofoil is measured by the closeness with whick
the load grading curve approximates to the elliptic form.



OHAPTER XII
THE FLOW ROUND AN AEROFOIL

12:1. The flow patiern.

The deviation of the velocity at any point of the fluid from
the undisturbed velocity ¥ is due to the vortex system created
by the aerofoil and can be calculated as the velocity field of
this vortex system. The general nature of the vortex system,
comprising the circulation round the acrofoil and the trailing
vortices which spring from its trailing edge, has been dis-
oussed in 10-2, and the analysis of chapter x1 provides a
method of determining the strength of the vortex system
associated with any monoplane aerofoil. The analysis is based
on the assumption that the serofoil can be replaced by a
lifting line, and calculations based on this assumption will
clearly be inadequate to determine the flow in the immediate
neighbourhood of the aerofoil where the shape of the aerofoil
sections will modify the form of the flow pattern. Also in
the neighbourhood of the vortex wake it is necessary to
consider the tendency of the trailing vortex sheet to roll up
into a pair of finite vortices, Apart from these two limitations
it is possible to obtain a satisfactory account of the flow
pattern round an aerofoil from the simple assumption of a
lifting line and of straight line vortices extending indefinitely
down stream. Finally, at large distances from the aerofoil
and ite wake, the velocity field will depend only on the lift
carried by the aerofoil and will be independent of the span
of the aerofoil and of the shape of the load grading curve.

In determining the flow pattern round an serofoil the
standard system of axes will be used with origin at the mid-
point of the aerofcil. The axis of z extends forwards in the
direction of motion of the aerofoil relative to the air, the
axis of y is along the span of the aerofoil to starboard, and
the axis of z is normal to the first two axes as in fig. 90. The
velocity field of the vortex system, which represents the
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disturbance created by the aerofail in the uniform stream V,
will be expressed by the velocity components (u, v, w)
parallel to these axes.

y
F v

Fig. 90.

It follows at once from the simple form assumed for the
vortex system that the longitudinal velocity component u
depends only on the circulation round the aerofoil, and that
the lateral velocity component v depends only on the system
of trailing vortices, whereas the normal velocity component
w depends on the complete vortex gystem.

The flow pattern will be examined first on the assumption
of uniform loading across the span of the aerofoil and
attention will be directed mainly to the normal velocity
component w, The effect of other forms of load grading
curve will be considered only in a few regions of special
importance,

122, Uniform loading.

The vortex system of an aerofoil with uniform loading
across the span consists of the aerofoil 44’ and the two
straight trailing vortices AB and A'E’, the strength of the
circulation being K for the whole system. The typical point
P at which the induced velocity is to be determined will
be chosen for convenience as in fig. 91 with negative values
of the coordinates z and z. Let PL, PM and PN be the
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perpendiculars from P to the plane Oxy and to the lines Oy
and AB respectively. Then

ML= —I-I".

OM =y,

PLH-—I-I‘l

OA=04"'=3s.

Fig. 9l.

The induced velocity at P due to the circulation K round
the aerofoil A4’ is normal to the plane PMO and has the
value

- “ﬁﬂ (cos PA’A + cos PAA’)
e (SNeS. IEY, .. BEmE. ﬁ}
VI LWL (y+a) VETESTE =

and the components of this velocity are
D N R ORI L }
2t + 2 Wrrp 2 (y et Vi 4 (y—a)Y

"y ~-—

©=0,
-..E_,._"" { y+a L y—= }
B L Ve s (Y= e g g &
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The induced velocity at P due to the circulation K round
the trailing vortex AR is normal to the plane PAR and has
the value

K

R K -{1+_.—=r._._}
V' ¢ (y —a)? VIV (y—ah)’
and the components of this velocity are
U =0,

K s x'
"'-"ﬁ:‘*+w—a}’{l+m"i:|-_'{r:'_ﬁ}'
“...._.E - e {1 {1+__.__£__._I

2 = VAT -

Similarly the velocity components at P due to the circula-
tion K round the trailing vortex 4B’ are
Uy =0,
Uy = ‘E .]_._.f__ {1 + e ¥ -'.
WL y+ar| Vs rir gy
K y+a {l - 4 }
AL

m.-'l‘l;:t.'bw*"}l .‘}éﬁ‘t_‘_:,.-‘-{y;‘-'_j_

The componenta of the induced velocity at P, due to the
aserofoil and its trailing vortices, are obtained as the sums of
the expressions given above:

=1,

ﬂ“tbﬁ'ﬂ.,
The detailed examination of these expressions will be con-
fined to the regions of special interest, i.e. to points lying in
the lateral plane (x = 0) and to points on the axis of z.

The induced velocity is proportional to the circulation K,
which is related to the lift of the aerofoil by the equation

2pVEK = L = k;Sp V3,
K 8

me ™ Saat | L
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This last expression is equal to the normal induced wvelocity
w, at an aerofoil with elliptic loading (cf. 11-3) and it is
convenient to express the induced welocity components at
the general point P as multiples of this velocity .

12:21. The lateral plane.

The longitudinal component of the induced wvelocity at a
point of the lateral plane (z = 0) is

| yts _.._uﬁ}

dme Wzl (y+8)' Va4 (y —a)2)’
and for points on the axis of z the expression reduces further

v K&
rzvt 4 a0
1 &t SV,

T2:vii g Bmet
The longitudinal component of the velocity of the air relative
to the aerofoil is (F — u) and is therefore increased above the
aerofoil, where z and » are negative, and is decreased below
it. The variation of the correction to the longitudinal velocity
is shown by the following numerical values:

- 4
Y142 o062 035 011,
10,

For an aerofoil of aspect ratio 6 the velocity w, has the value
0:106Vky. Thus the correction to the longitudinal velocity
is only of the order of 2 %, at a depth below the aerofoil
equal to the semi-span when the lift coefficient has the large

value 0-5,

12:22. The lateral and normal components of the induced
velocity at a point of the lateral plane (z = 0) are respec-
tively K sy

U By + 2 + 8% — dys?’
K s(y—2'-2"
WS = o (g + 27 + 0% =y’
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The denominator of these two expressions is essentially
positive and hence the lateral component of the velocity is
directed inwards above the serofoil and outwards below it,
while the sign of the normal component depends on that of
(y? — 22 - #9).
At large distances from the aerofoil the expressions tend
to the values
X 2oy 2z SV
D tFi-"l" 22 [y 4 2% 4m !
Kai=z)  _ y—2 SVh,

B0 E T v
Also on the axis of z the normal component of the induced

velocity is oK 8 1 & SV
2nzii s 2204 4 s’

and has the following numerical values:
z

H—":-ﬂ-lﬁ 035 025 010,

i} =

For an aerofoil of aspect ratio 6 the velocity w, has the value
0-106Vky, and at a depth below the aerofoil equal to the
semi-span the downward velocity is 0-02656 Viy,, representing
an angle of downwash of 155k,

12:28. The longitudinal axis.

At a point on the axis of z (y = z = 0), the longitudinal
and lateral components of the induced velocity are zero and
the normal component has the value

mavrirse 2me| Vi
_K {]_'l_.r’z'+a1;
2na = )

In front of the aerofoil the normal velocity is negative and
the air is flowing upwards to meet the aerofoil. Behind the
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serofoil the normal welocity is positive, and at a distance [
behind the aerofoil the angle of downwash ¢ is

w K VI g
‘“r'ﬂm‘*—r }

VBt 8
jl+ —r—-—-} o kL.
Wilking == g

for the angle of downwash corresponding to the standard
induced velocity w,, the expression for the angle of down-
wash behind the aerofoil becomes

and has the following numerical values:

{
;." i § 1 2,

;‘:-z-us 1-40  1-21 1-06.

12:3. Elliptic loading.

The flow pattern has been considered hitherto on the
assumption that the circulation has a constant value across
the span of the aerofoil. This condition is not satisfied by
any serofoil, but the actnal distribution of circulation across
the span can always be built up by superimposing a number
of simple “horseshoe™ systems (cf. 10-21 and fig. 77). In
order to derive the corresponding values of the induced
velocity at any point it is neceasary to replace the length
s in the formulae of 12-2 by a coordinate » measured along
the span of the aerofoil, to replace the circulation K by
-iﬁdﬂ. and to integrate the expressions from 5 =0 to
n = &, This integration is however extremely complex in

general.
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In the case of elliptic loading (cf. 11-8), the circulation at
any point of the aerofoil is

P‘I 1

and the normal induced velocity at the aerofoil is
w, = V4,.
Hence K = 4wy Vst — gt
_on _ _fwy
dp Vst — gt
12:31. The normal axis.

The normal induced velocity at a point on the axis of 2
in the case of uniform loading has been obtained in 12:22 in
the form i

il = =L
and hence for elliptic loading
1 4wy 9

- |

v gy
which can be integrated simply by means of the substitution
n = agin @ and gives
u = Iﬂl(] = e ]..
The numerical values given by this formula are:

LN S S S

Ye088 045 020 011
Wy

and a comparison with the valoes given in 12:22 for uniform
loading shows that at a depth below the aerofoil equal to
the semi-span the difference in the induced velocity is
0-04w,. This difference is negligible, for it corresponds to a
difference of only 0°-24k; in the angle of downwash for an
aerofoil of nspect ratio 6.
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When the distance from the aerofoil is large, the normal

induced velocity tends to the value

wall e e S
= [ ;l“" — o Ly

both for uniform and for elliptic loading, illustrating the
general theorem that at large distances from an aerofoil and
its wake the induced velocity depends only on the total lift
and is independent both of the span and of the form of the
load grading curve,

12:32, The lateral plane,

In the case of elliptic loading the flow in the lateral plane
(z = 0) can be obtained from the fact that the normal in-
duced velocity has a constant value w, across the span of
the acrofoil. The flow is therefore identical with the two
dimensional motion caused by a line of length 2s moving
normally to itself with the velocity wy. The stream function
of this flow is given in 6-23 and the flow is illustrated in
fig. 44. Writing y = 5in A oosh i,

z = acos Asinh g,
the normal velocity w can be shown to be
ginh u cosh p
cosh?® u — gin i-a} '

w—w,{l—
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The numerical values of w deduced from this formula for
points in the neighbourhood of the aerofoil are given in
table 15 below and are shown in fig. 92,

Far from the aerofoil the following limiting values are

obtained : y=jorand,
z=4ae"cos A,
= = 2¢-™ (cos® A — sin® A)
ﬂ. Fl__:‘
A
yi—z* SV
o m-_'{-yl_-j_zl}I_i?'

which is the same as the limiting value obtained in 1222
from the assumption of uniform loading.
Table 15.
Falues of w/w,.

]
we ={| o |02 n-mlfws 080 | 110 | v | 1m0

sfe= 0 100 | 100 | 100 | 100 | 100 | -1-40 | -067 | -034
01 || 000 | 089 | 084 | 068 | 017 | -0-89 | -0-68 | -0-32
02 | 080 | 079 | 0-T2 | 046 | 00D | <048 | =044 | -0-29
0-3 || 071 [ 069 | 0-60 | 0-35 | 0-07 | -0:26 | -0-32 | -020
04 || 063 | 000 | 0-51 | 020 | 0-00 | -0-13 | -022 | -0-21
05 || 0656 | 0-53 | 044 | 025 | 011 | =006 | ~0-15 | -0-18

12:33. The longitudinal azis.
The angle of downwash at a point on the axis of z in the
case¢ of uniform loading has been obtained in 12:23 in the

form K jl*ﬂ‘“‘_‘""'}
v !t T

and hence for elliptic loading
L | 41, Vit +
'“..znr.;f;.-.::]i{“"—)Jj"’*
2 | ff‘+q’ dy
~soh S g
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Bubstituting 7 =4&cosf,

-k
oy =

this integral becomes

€ : ~ F*sin® @
SHRIEIVALL LT
E

where K is the complete elliptic integral

E-Fv‘l ~ Fsin’ 646,
L]

Numerical values of the angle of downwash deduced from
this formula are:

i
= !
IR B B

::-3-23 2.43 222  2.08

These values are consistently larger than those deduced from
the assumption of uniform loading and tabulated in 12-23,
Moreover, they tend to the limit 2¢, instead of ¢, 88 [ tends
to infinity. Neither of these sets of values can be regarded
as satisfactory. They are based on the assumption that the
trailing vortices extend backwards indefinitely as straight
lines, and to obtain a reliable estimate of the angle of down-
wash behind an aerofoil it is necessary to take account of the
fact that the sheet of trailing vortices is unstable and rolls
up into a pair of vortices,

12-4. Angle of downwash.

The formulae for the normal induced velocity w on the
longitudinal axis, which have been developed in the pre-
ceding paragraphs 12:23 and 12-33, are based on the assump-
tion that the trailing vortices extend backwards indefinitely
as straight lines. Actually the trailing vortex sheet is un-
stable and rolls up into a pair of vortices whose distance
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apart (2+') is rather less than the span (2s) of the aerofoil.
The strength of each of the resulting vortices will clearly be
equal to the magnitude of
the circulation K round s

the centre of the aerofoil. > e _':'
At points distant from the

aerofoil and its wake this 2° X :ﬂ"Jr
modified vortex system will i +
be equivalent to that of an .~

aerofoil of span 2¢' with Fig. 93,

uniform circulation X and
hence the distance s' can be determined from the equation

L =24pVK.
Now any form of load distribution across the span of an
aserofoil can be represented as in 11-2 by the series
.K = “m.ﬁﬂ ‘EI

and then L = 2zs%V24,,
H - "IF{J‘!. _-ud."i" "‘l —_— q-u-}q
Hence = & s 4,

TR 7 SEEY” R R RN ¥

The normal induced velocity w at a point on the longi-
tudinal axis at some distance behind the aerofoil will be
estimated more accurately by the use of this modified vortex
system than by the assumption which ignores the rolling up
of the sheet of trailing vortices. Thus the vortex system is
assumed to be that of an aerofoil of span 2s° with constant
circulation K, and the normal induced velocity, according to
12-23, becomes K : Vi

= ( L f)
L Vit 4 &
- {,;!ﬁ;]?(] + _-_l ').

The angle of downwash is therefore

Ia'( Vit 4

=zpl\lt—7 )%
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where "-Eleh"

and the limiting value of the angle of downwash as the
distance | tends to infinity is
..l
{-!T;"l*
The values of > for rectangular aerofoils can be calculated

from the results given in table 11 of chapter x1 and are
recorded in table 16 below together with the corresponding

vn]uun!int the point [ = s and the limiting values as [

tends to infinity.
Finally, the rate of change of the angle of downwash with
angle of incidence is
de 18 1 vie+en 8§ diy
Pt ol i e F =
¢ 2a

gwd’
and the value of this expression at the point [ = s is also
given in table 186,
The definition of the length I is somewhat uncertain since
the caleulations are based on the assumption that the aerofail
can be replaced by a lifting line and the position of this line

Table 16.
Angle of downwash,
| ]

Arrulodl Ylo | elegilimit) | /e, (| =a4) defdal=4a)
Elipse .. .| 0785 | 162 | 184 0-44 (4 =2a,)
Rectangle: 4/a, =10 | 0-841 1-40 162 | 061

15| 0862 | 135 1-57 | 045

20 | o875 | 191 162 | 035

5| 0887 | 12 148 | 029

30 | 08% | 125 146 | 025

35| 0003 123 144 | o2
' I
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in the aerofoil has not been defined. Clearly, however, the
lifting line should pass through the centre of pressure of the
aerofoil and the length [ is therefore the distance behind the
centre of pressure of the aerofoil.

The variation of the angle of downwash with the distance
behind the aerofoil is shown in fig. 94, where the curves are
drawn for an elliptic aerofoil and for a rectangular aerofoil
of aspect ratio 4 = 2a,. The broken curves represent the
corresponding values for uniform and elliptic loadings when
the rolling up of the sheet of trailing vortices is ignored.

Angle of Downwash

o 0.5 1.0 1-5 2:0

Fig. 94.

The results given in this chapter refer in all cases to a
monoplane aerofoil, but the flow pattern for a biplane system
can be derived by adding the effects due to the two separate
nerofoils. In particular the angle of downwash behind a
biplane system consisting of two rectangular aerofoils of
aspect ratio A will be nearly dounble that behind a monoplane
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aerofoil of the same aspect ratio at the same lift coefficient.
Unthﬂharh:nﬂ,thevﬂueufzwﬂlmtbuduuhhdnﬁng

to the decrease in the value of % for & biplane. Using the

numerical values given in 11-42 and 13-24 for rectangular
aerofoils of aspect ratio ﬂ,thu*ulunnfihfuundtuba
roughly 0-35 for the monoplane and 0-55 for the biplane.



CHAPTER XIII
BIPLANE AEROFOILS

13-1. Two dimensional motion.

The problem of the two dimensional flow past a pair of
aerofoils forming a biplane system is very complex and
complete solutions have been obtained only for the case when
the aerofoil sections are straight lines. A brief outline only
is given here to indicate the method of analysis and the general
nature of the results obtained.

13:11. Tandem aerofoils.
Consider first a tandem system formed by two equal

and A'B' of ‘
the real axis ‘
with their ex- ;
tromities at & A lo 8 A z

: - -
the points —-_p -9 1 9 P
T=x P £4q. :
The most gen-
eral type of ir- N
rotational flow past this system can be expressed in the form

. dw zt — mt
U= - e . A
A = Ty
C z c n

TRV E ) TV - @ - g
where the four terms represent respectively the flow due to
a uniform velocity U parallel to the axis of x, a uniform
velocity U’ parallel to the axis of y, equal circulation C
round each aerofoil, and positive circulation ¢’ round the
first acrofoil and negative circulation ¢ round the second
aerofoil. The quantities m and n are constants whose values
are determined later as functions of p and gq.

The general expression represents a possible irrotational
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motion since the potential function w is a function of the
complex variable z, it has the correct limiting value as z
tends to infinity, and it gives zero normal velocity at the
surface of the aerofoils and finite velocity at all points except
the ends of the aerofoils. The sign of the radical

Vip* - 2% (=" - ¢)
must be chosen in accordance with the vectorial interpreta-
tion of the expression. The sign is positive on the lower surface
of AB and on the upper surface of A'B’, and is negative on
the opposite surfaces,

The value of the constant m is determined from the con-
dition that there is no circulation round either aerofoil for
the simple vertical flow [/, and the wvalue of the constant
n from the condition that the circulation round the aerofoil
AR is equal to €' for the fourth type of flow. These values are

]

n - =
Er
where E and K are the complete elliptic integrals for the
modulus k&, defined by the equations

wk g
i
1_4‘0:1
E- [ S da,
1 dzx

T leviT=29(1 - k)’
The poiuts x = i+ m are the stagnation points of the simple
vertical flow on the surface of the aerofoils,

"'""‘-...__B’ ¥ B A

Sy

Fig. 96,
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To obtain the flow for angle of incidence « which leaves
the trailing edges B and B’ smoothly, it is necessary to write
U= —Veoaa, U’ = ¥V sin a,
and to choose the values of € and €’ so that the numerator
over the radical in the general expression for (u — iv) is zero

at the points B and B°. Hence
C==n(p—q)Vsna,
C' = 2 (pE — gK) V sin «.
The resultant force on the tandem system is the lift
L= 20VC = 20 (p — ¢) pV?sin a,
corresponding to the total circulation 2C', and the tandem
system therefore gives the same total lift as a single aerofoil
of the same total chord 2 (p — g).
The forees on the individual aerofoils can be determined
by evaluating the integral
. ip [ fdw\?
Xx—iv=2[(5) &

round the surface of each aerofoil in turn. By applying this
method it is found that the front aerofoil A8 experiences a
greater lift force than the rear aerofoil A'B’, and that the
rear aerofoil experiences a drag force which is balanced by
an equal forward force on the front aerofoil.

13-12, The unstaggered biplane,

An unstaggered biplane system, formed by two equal
parallel lines, can be derived from the tandem system by the
conformal transformation

G
d= +/(p*— 2% (z* —¢°)’
z plane : £ plane
: w—E
N ' N i
e e e e
- Me—tB
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and the position of the corresponding points in the two planes
is shown in fig. 7. In particular the extremities of the bi-
plane aerofoils correspond to the stagnation points z = + m
of the tandem system, and the mid-points of the biplane
aerofoils to the extremities z = + p, + ¢ of the tandem
aerofoils. The gap A of the biplane system is obtained as the

mugulufgfmmﬂm.d'.mdthnuhmdcntﬁmthe

integral of i from M to A. The respective values are ex-
pressed in elliptic integrals in the form

] Pl-m. ]
h=2p{E - = K},

c-ﬂp{ﬂu.ﬂ—‘g—."ﬂk.ﬂ}.

where =4/ ﬂ—;;:‘:: F-g.

—
1-:1
; dx

o Vi =z =iy’
1
E{ET]-]'JI*JEI J

Fipaa) I ﬂl'—" ) (1 — kizt)’

Far from the aerofoils the transformation is { = — iz and
hence to obtain the flow inclined at angle « to the chord of

S— W N

K&

~— &

Fig. 08,

E -_[ -dz,

K'=
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the biplane the limiting value of the potential function must

be 0= — ¥ (cosa+isina)l

= — F{ﬂiﬂﬂ"‘—imﬂ']‘:u

The general flow in the z plane which will convert into the
desired flow in the { plane is now

dw zt! — mi
- e Vsina — Vmumi}_hr_ o
1 Cz+C'n

TV (p -2 (2 — )’

where m and » have the values determined previously. In
order to obtain finite velocity at the trailing edges M and M’
of the biplane aerofoils, the numerator over the radical must
be zero at the points M and M’ of the tandem system.
Allowing for the change of sign of the radical from M to M’,
this condition gives

G'-u. c:-

w¥Vsina
m

vr{PI o H-‘_] {“i = ﬂ"'i-

and the circulation has the same value round both aerofoils.
The resultant force on the biplane system is the lift force

L=2VC = hrlmu‘i{ff:i‘.‘?—[mll_:ﬂ‘}_

and the lift coefficient of the biplane may therefore be written

in the form ke B it %,
where B =Y F —m?)(m*—gf)
mé

The factor B represents the reduction of the lift coefficient
of an unstaggered biplane compared with that of & mono-
plane at the same angle of incidence, and values of B are
given in table 17 below. For small angles of incidence the
result may be expressed in the alternative form of the increase
of the angle of incidence required with a biplane to obtain
the same lift coefficient as that of a monoplane. If « is the
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angle of incidence of the biplane and a, that of the mono-

plane, it can easily be shown that
a = ay + Bk,
1-8B
where B= —g -
1-0 0-15
00 \R /'u-m
B ) B
0-8 \ 0-05
-\_‘.‘-
0-7 0
0-50 0-75 1-00 1-25 1-50
hfe
Fig. 99

The forces on the individual aerofoils of the biplane system
can be determined by the same method as in the case of the
tandem nerofoils, and it appears that the upper aerofoil
experiences a greater lift force than the lower aerofoil.

Table 17.
Correction factors for a biplane,
hje B 8
0-50 -7 30 118
0-75 iS00 0-070
[ ELL (-855 =054
125 -804 0-038
150 0-920 028




x1) BIFPLANE AEROFOILS 177

13-13. The general biplane,

A staggered biplane system, formed by two equal parallel
lines, can be derived from the tandem system by the con-
formal transformation

d{ i 2! —m?
N T )
where 8 is the angle of stagger of the biplane. More generally
also a biplane system with two unequal parallel aerofoils can
be obtained by starting with a tandem system with aerofoils
of unequal length and by applying a suitable conformal
transformation,

The analysis in these more general cases becomes highly
complex and in all cases the results obtained apply only to
straight line aerofoils. It is useful therefore to develop an
approximate method of solving the problem of a biplane
system which will give a clearer insight into the mechanism
of the interference between the two aerofoils and will provide
a method of estimating the effect of the shape of the aerofoil
section.

The interference experienced by one aerofoil is due to the
distortion of the flow caused by the other aerofoil, and an
approximate method of attacking the problem may be based
on the conception of replacing the disturbing aerofoil by o
point vortex of the correct strength at the centre of pressure
of the aerofoil. This method should be satisfactory for large
values of the gap-chord ratio and its accuracy in general can
be tested by comparing the results which it gives for struight
line acrofoils with the ac-
curate results of table 17. o =

13-14, Approrimate solu- — T fl ~
tion. |
The circulation K round L
the lower aerofoil of the 1
biplane system is assumed
to be concentrated at the | NK
centre of pressure O, The ‘C
flow in the neighbourhood Fig. 100,
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of the upper aerofoil due to this circulation K and to the
uniform stream ¥ will be curved downwards. At the point
P of the upper aerofcil, at distance x behind the point C”
which is vertically above the point ', the normal induced
velocity due to the circulation X is
e
T Ip ks
and the radius of curvature R of the stream lines due to the
ciroulation K and the uniform stream V can be obtained in

the form V dw K A*—at
R™ dz ™ 2n (A4 x%)

by oquating the alternative forms 7 and V9 of the
normal acceleration. There is also an increase of the longi-
tudinal velocity in the neighbourhood of the upper aerofoil,
but the effect of this increase on the characteristics of the
biplane is exactly balanced by an equal decrease for the
lower aerofoil, and hence the variation of the longitudinal
velocity may be ignored.

The interference experienced by the upper aerofoil will
now be represented by the normal induced welocity at the
centre of the aerofoil and by the curvature of the stream
lines in its neighbourhood, and in developing approximate
expressions for this interference the gap-chord ratio of the
biplane will be assumed to be large, If # denotes the centre
of pressure coefficient of the lower nerofoil, the normal in-
duced velocity at the centre of the upper aerofoil may be
taken to be Ke

and the radius of curvature to be

¥V K

R ™ 2ap%
The lower aerofoil experiences the same interference effects
due to the circulation round the upper aerofoil and these
expressions may therefore be applied to the biplane as a
whaole.
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The circulation round an aerofoil section is equal to kgeV
and the centre of pressure coefficient can be replaced by the
moment coefficient, b, = — k. Hence the normal induced

velocity becomes
o= o (F) (ke + 280,

and to obtain the same lift as a monoplane, the angle of
incidence of the biplane must be increased by the small

angle ';:..'
A further correction is required on account of the curvature

of the stream lines. A circular arc aerofoil of radius R,

chord ¢ and camber y, = % would behave in the curved

flow exactly ns a straight line aerofoil in a uniform flow, and
henoe the curvature of the flow is equivalent to a reduction
e of the effective camber of the aerofoils. But for a circular
arc aerofoil of camber v,

'tl:. ==r11'[ﬂ+ 3}-}.
I'.llnn- "'*'kl-_g?'

and hence to maintain the same lift coefficient the angle of
incidence must be increased by 2y, and there will be a corre-
sponding increase ufg ¥ in the moment coefficient, Also the

value of ¥, is

¢ Ke 1 /e ti:
“'ﬁﬁ'lh&l?“lh(ﬁ) L
Adding these two corrections, the angle of incidence of the
biplane must exceed that of the monoplane by
@ — m—l—(:.{ﬂ' + 4k.)
Oy B L -
2
-_1 E) ':'EI-""H-.L

where k,, is the value of the moment coefficient at zero
lift. Also the slope of the corve of moment coefficient against
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lift coefficient for the individual aerofoils of the biplane
will be dik: 1(, 1/fe\?
w__ 14, 1fey\¥
a; =33 () }-
These expressions are only approximations to the true values
and have been obtained on the assumption that the gap-
chord ratio is large. A comparison with the accurate values

for straight line aerofoils, for which &, is zero, is obtained
by comparing the values of 8 from table 17 with the approxi-

mate expression 2 ('-: )‘.

4 \A
Table 18,

hje a ;’; G
0-50 o118 0-318
075 0079 0142
1-00 0054 0-080
125 0-038 0051
1-50 (-028 0-035

The approximate formula gives values which are too large
for the ordinary type of biplane system, but it may possibly
be used to indicate the effect of a change of aerofoil section.
On this basis the angle of incidence of a biplane will be taken

fo.be @ =ay+ B (ks + 2k,,)
=g+ B (ks + 2k,).

This correction from monoplane to biplane is quite im-
portant. For a gap-chord ratio of unity the slope of the
curve of lift coefficient against angle of incidence is reduced
from 3-14 to 2-68, and that of the moment coefficient against
lift coefficient from 0-250 to 0-219,

13-2. Biplane of finite span.

When the biplane system consists of two aerofoils of finite
span, each nerofoil behaves in a manner similar to a mono-
plane acrofoil and gives rise to a sheet of trailing vortices.
The disturbance at any point is then the induced velocity
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due to the circulation round the aerofoils and to the two
sheets of trailing vortices, and the normal induced velocity
at any section of one aerofoil
exceeds that which would occur
for a monoplane aerofoil by the 77
induced velocity of the vortex /i
system of the second aerofoil. = ==
In calculating this additional G

fad

3

induced wvelocity, the trailing
vortices may be assumed to
extend down stream ns straight =

lines in the same manner as Fig. 101,

for a monoplane aerofoil.

The determination of the induced drag of a biplane system
is simplified by Munk’s equivalence theorem for stagger®,
which states that the total induced drag of any multiplane
system is unaltered if any of the lifting elements are moved
in the direction of motion, provided that the attitude of the
elements is adjusted to maintain the same distribution of lift
among them, The truth of this theorem follows at once from
the fact that the work done by the induced drag is equal to
the rate of increase of kinetic energy in the trailing vortex
gystem (see 10-3), and this kinetic energy is unaffected by
a geometrical transformation of the type considered in the
theorem. By virtue of this theorem any staggered system
can be replaced by a corresponding system of zero stagger
which will have the same relationship between total lift and
drag. The distribution of drag between the acrofoils will be
different in the two cases. In a biplane system with forward
stagger the upper aerofoil will have less drag and the lower
nerofoil will have more drag than in the corresponding
biplane system with zero stagger and with the same dis-
tribution of lift between the two aerofoils.

In an unstaggered biplane system the induced drag of one
aerofoil due to the influence of the trailing vortices of the
second aerofoil is equal to the induced drag of the second

* [wperimeirische Auvagaben aus der Theorie des Fluges, Gittingen dis-
sertation, 1918: tranalated as NACA, 121, 1021,
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aerofoil due to the trailing vortices of the first aerofoil. For
each aerofoil can be divided into a large number of small
elements, each of which carries the same small lift force 3L,
lﬂdﬂP.lndP.lmtwnmh Pl
elements on the two aerofoils
the normal induced velocity
at P, due to the trailing
vortices of P, will be equal to
the normal induced velocity B
at Py due to the trailing Hﬂz
vortices of P,. Sinoe the lift e 108

forces on the elements are equal, so also will be the induced
drag forces due to the element of the other aserofoil. This
relationship is true for every pair of elements and by adding
the effects of all the elements of the first aerofoil on the
element P,, it appears that the induced drag of the element
P due to the trailing vortex system of the first aerofoil is
equal to the induced drag of the first aerofoil due to the
trailing vortices of the element P,, Finally by adding the
effects of all the elements of the second nerofoil the truth of
the theorem is established.

13:21. The induced drag.

By virtue of Munk’s equivalence theorem for stagger it is
sufficient to consider the case of a biplane of zero stagger.
Also the lift of each aerofoil will be assumed to be distributed
elliptically across the span of each aerofoil, since the load
grading curves of most aerofoils approximate closely to this
form and the mutual interference of the two aerofoils will
be determined with sufficient accuracy by this method.

Let h be the gap of the biplane, s, and s, the semi-spans of
the two aerofoils, L, and L, the lift forces on the two aerofoils.
Then the induced drag forces on the two serofoils due to
their own trailing vortices are respectively

L.li
O = TtV

Lt
Dn-mpi-
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and the induced drag of each aerofoil due to the trailing
vortices of the other aerofoil will be of the form

where ¢ is a function of the lengths A, & and &,.

The values of the coefficient o can be determined by a
simple graphical method. Fig. 92 shows the normal velocity
at any point above or below a wing with elliptic loading, and
therefore determines the normal induced velocity w,; which
occurs at any point of the first aerofoil due to the trailing
vortices of the second aerofeil. The mutual induced drag D,,
can then be determined by evaluating the integral

-Du = ll'l'ui’p‘l dLl

across the span of the first aerofoil. Without any loss of
generality the length &, may be assumed to be less than or
equal to the length s;. The values of the coefficient o are then

1-00
0:79 NJZ-
Iz
o 10
050
NS
0-25
0 0-1 0-2 0-3 0-4

Hersd
Fig. 103.
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dﬂamhadulfmcﬁmﬂthetwumzmd" :":'

which are the ratio of the spans of the two aerofoils and the
ratio of the gap to the mean span. Numerical values® of o
are given in table 19 and fig. 103,

Table 19,

Values of a.

Mu+ay=| 0 crm‘n-m 016 | 020 | 030 | 040

#yfog =10 | 1000 mm'm 0-561 | 0-485 | 0-370 | 0-200
08 | 0-800 | 0-690 | 0-623 | 0-450 | 0:-355 | 0-282
-6 | O-Gde) B*Hﬂlﬂ'-l-ﬂﬂ 0-437 | O34 | 0315 | 0-255

The induced drag forces of the two aerofoils of the un-
staggered biplane are respectively

D, = Dy + D,y = i'i;l-" (f::+ ui-':f:),

ﬂ.“ﬂ‘+ﬂu=ﬂw—:lpi[%‘:+ﬂ'%"—i.],

and the total induced drag of the biplane is
1 L? L,
D= goas (35 + 203+ 3F)
For a given total lift (L, + L;) the induced drag is a
minimum when
L, (8 — o8)

—

8y (8 — o8y)’

and this equation defines the best distribution of lift between
the two aerofoils. The corresponding minimum induced drag
is
. 1-of
SrpV2a® — 2os,8, + 8"

*® L. Prandtl, “ Tragfliigeltheorie,” Gottingen Nachrichien, 1019,
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13-22, Aerofoils of equal span.

For a biplane with aerofoils of equal span the minimum
induced drag ocours when each aerofoil carries the same lift
and is given by the equation

D= I* l+e
2naipl? 2

or kn--zi_h,‘lza.

Now for a biplane the aspect ratio A is defined as the value
1
of %— in order to agree with the definition for a monoplane

when the two aerofoils have the same dimensions. The formula
for the induced drag coefficient may therefore be written in
the alternative form

kp = — (1+ o) k2,

The induced drag coefficient is increased by the factor
(1 + o) above its value for a monoplane aerofoil of the same
aspect ratio.

This formula for the induced drag coefficient can be used
with good mccuracy over a wider range than that to which
it striotly applies, The effect of a small change in the distribu-
tion of the lift force between the two aerofoils is quite un-
important, for if L, = xL, the general formula for the induced
drag of a biplane with aerofoils of equal span may be ex-
pressed in the form

I* (14a l—gfx—1\
Dmgemmi + 1 (531) I
Even with the rather extreme values z = 1-25 and o = 0-4
the additional term represents an increase of only 0-5 9,
in the induced drag over its minimum value, and it is suf-
ficiently mccurate therefore to use the expression for the
minimum induced drag in most practical cases.

The formulae have been developed on the basis of elliptic
loading across the span of each aerofoil, which should be
sufficiently ncourate for estimating the mutual interference,
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but it may be desirable to retain the correcting factor (1 + 8)
for the induced drag of the aerofoils due to their own trailing
vortices, which occurs in the theory of monoplane aerofoils
(see 11-21). The induced drag coefficient of a biplane with
aerofoils of equal span will then be expressed in the form

2
= |
k‘ﬂ I[l+5+ﬂ'}k£_.

The total drag coefficient of a biplane exceeds the induced
drag coefficient by the profile drag coefficient of the aerofoil
section, and hence the total drag coeflicient of a biplane with
aerofoils of equal span is finally

2
.l'n-l!,n_+;j{1+5+u]lu.'-

and exceeds that of a monoplane aerofoil of the same aspect
ratio by the amount
2
'.:l:_.::l #EL'+

1323, Angle of incidence.

In order to obtain the same lift coefficient from a biplane
system as from a monoplane of the same aspect ratio, it is
necessary to use a larger angle of incidence, partly on account
of the extra induced veloeity and partly on account of the
direct interference between the aerofoils which occurs in two
dimensional motion. For a biplane with aerofoils of equal
span the increase in the drag coefficient over the monoplane

aerofoil of the same aspect ratio is -, oky!, and the corre-

-
sponding increase in the angle of incidence will be simply
2

-:_.dﬂh" Also the correction for the direct interference

between the aerofoils has been obtained previously (13-14) in
the form B (§k. + 2k.), and hence the total increase in the
angle of incidence is

2 kst B ik + 2ka).
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Finally, the angle of incidence of the biplane may be
expressed in the form

u-u.+${l +r+o)k+ (R + 2k,),

where «, is the angle of incidence of the aerofoil section in
two dimensional motion which gives the lift coefficient kg,
and r is the factor which occurs for a monoplane aerofoil in
the general case (see 11-22),

13-24. Summary.

The characteristics of an unstaggered biplane with aerofoils
of equal span are given by the equations

ﬂ-ﬂ.+£r‘i{l+T+ﬂ’jkL+ﬂ{'kﬁ+2k-}r

2
kn-i'g.+;j (1 +8+ o) k2,

where a, and kp, are the characteristicsa of the aerofoil
section in two dimensional motion corresponding to the lift
coefficient k;, A is the aspect ratio, § and o are the biplane
coefficients given in tables 17 and 19, and r and & are the
monoplane coefficients of chapter x1 depending on the plan
form of the aerofoils.

In rough calculations + and 5 may be ignored and k,, may
be taken to be equal to — }kz, so that the expressions for
the angle of incidence and drag coefficient of the biplane
become approximately

2
@ = ay+ —g (1+ o) bz, + Bz,

2

These formulae for the characteristics of an unstaggered
biplane with aerofoils of equal span are valid only over the
normal working range of incidence, since the biplane attains
a lower maximum value of the lift coefficient than the corre-
sponding monoplane. The reduction of lift at a given angle
of incidence in two dimensional motion is represented by the
factor B of table 17, and this factor gives a rough estimate
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of the reduction which may also be expected in the maximum
lift coefficient.

For a biplane formed by two rectangular aerofoils of aspect
ratio 6 and with gap-chord ratio unity, the values of the
various coefficients are

r = 0-163, 3 = 0-046,

B = 0-054, = 0-535,
and hence, if k,, is taken to be equal to — }k;, the formulae
P kp = kp, + 0108k,

o= a, -+ 0234k,
or, if the angle of incidence is measured in degrees,

a = gy + 13"&5.
The slope of the curve of lift coefficient against angle of
incidence is 1-81 per radian instead of 3-14 for the aerofoil
section in two dimensional motion and 2-27 for & monoplane
rectangular aerofoil of the same aspect ratio.



CHAPTER XIV

WIND TUNNEL INTERFERENCE
ON AEROFOILS

14-1. The limited extent of the stream of air in a wind
tunnel, whether of open or of closed working section, imposes
certain restrictions on the flow past an aerofoil or other body
under test, and the determination of the magnitude of this
interference is of considerable importance, since it is found
that certain corrections must be applied to the aerodynamic
characteristics of an aerofoil tested in a wind tunnel before
they are applicable to free air conditions, This interference
correction is independent of and additional to any correction
which may be necessary to allow for the change of scale from
a model acrofoil to an actual aeroplane wing.

The theory of the interference has been developed by
Prandt]l in his second aerofoil paper* by considering the
conditions which must be satisfied at the boundary of the
stream. The continental wind tunnels usnally have an open
working section and the condition of constant pressure must
be satisfied at the boundary of the stream, British wind
tunnels, on the other hand, have a closed working section
of square or rectangular cross section, and the boundary
condition takes the form that the component of the velocity
normal to the tunnel walls must be zero. This boundary
condition can be satisfied analytically by the introduction
of a suitable series of images of the model, and the inter-
ference experienced by the model is the induced velocity
corresponding to the vortex systems of these images. The
problem of wind tunnel interference is therefore the choice
of the appropriate system of images and the determination
of the corresponding induced velocity experienced by the
model. The analysis is simplified by the fact that, when the
span of the model aerofoil does not exceed three-quarters of

* “Tragfiugeltheorie,” Gattingen Nachrichten, 1019,
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the breadth of the wind tunnel, it is sufficiently accurate to
assume that the lift is distributed uniformly across the span
of the aerofoil and that the whole acrofoil experiences the
ml:luu;d velocity which occurs at the centre of the wind
tunnel.

14-2. Tunnel of circular section,

Consider an aerofoil of semi-span & and of area § in a wind
tunnel with closed circular section of radius R. On the
assumption of uniform lift distribution across the span of the
nerofoil, there will be two trailing vortices only, each of
strength K, the circulation round the wing. In the cross
sectional plan (fig. 104) these vortioes will be situated at A4
and B on a diameter of the circle representing the boundary
of the tunnel and will be at distance s from the centre of the

B o A

B’
£ U
Fig. 104,
circle, The images A’ and B° will lie outaide the circle on the

same diameter at distance '-f—t from the contro. The strength

of the images will be the same as that of the original vortices
but the sense of the circulation will be reversed. This image
system depends on the fact that the circle is a stream line
for the vortex pairs 4, 4" and B, B’.

The induced velocity experienced by the aerofoil is the
sum of the effects due to the vortices A" and B’, and is readily
calculated as K Ks

W==2 .00 " " W
The negative sign occurs because the normal velocity w is
reckoned positive downwards and the effect of the images

LR
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is to cause an upward induced velocity at 0. By virtue also
of the equation for the lLift of the asrofoil

krSpV? = 28 VK,
the result takes the form
kE SV

Iﬂﬂ—w.

Denote by € the cross sectional area of the tunnel and by
¢ the upward inclination of the stream due to the interference
of the boundary or of the images, and then

w 18
$=—pmia

The interference effect is equivalent to an upward inclina-
tion of the stream through the angle ¢, and in consequence
the lift force is inclined forwards by the same angle, causing
a reduction of the drag compared with free air conditions.
At the same time the true angle of incidence of the aerofoil
will be greater than the inclination of the aerofoil chord to
the axis of the tunnel by this same angle ¢,. It follows that
the corrections which must be applied to the wind tunnel
observations on the aerofoil to allow for the constraint of the
tunnel walls are of the form

S

S
c
and, for a tunnel of circular cross section, & has the numerical
value 0-250. The angle of incidence in this formula is, of
course, to be taken in circular measure. It will be noticed
that the correction is proportional to the lift of the aerofoil
and does not depend on the plan form or aspect ratio. The
correction can therefore be applied to any wing system,
whether monoplane or biplane.

A more detailed analysis of the problem has been given
by Prandtl*, in which he assumes elliptic distribution of lift

-hl:l.i,

EL,

Akp = & 5 ki®,
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across the span of the aerofoil and obtains the value of the
coefficient 8 in the form
1 3 ra\!

&= i '!l + 16 {ﬁ) + ."}i
Evenwhunthaﬂpmufthaumfnﬂiuulugnuthm&
quarters of the diameter of the tunnel, the second term
represents a correction to the value of 3 of only 6 9} and is
quite negligible in practice.

Prandtl also considers the case of a tunnel of open working
section and finds exactly the same form for the correction
but with the opposite sign. It appears therefore that the
angle of incidence and the drag coefficient, at any definite
value of the lift coefficient, are measured too high in a tunnel
with open working section and too low in a tunnel with closed
working section,

14-3. Vertical and horizontal boundaries.

In considering the case of a tunnel of rectangular cross
section® it will be assumed that the aerofoil is placed in the
centre of the tunnel with its span horizontal. The origin of
coordinates will be taken at the centre of the aerofoil with
the y axis horizontal to starboard and with the = axis down-
wards. Before considering the rectangular tunnel, however,
it is instructive to consider the effect of the vertical and
horizontal boundaries separately,

The system of images for vertical boundaries at distance
b apart is illustrated in fig. 105. The images are all identical
with the original aerofoil and form an infinite series, uni-
formly spaced along the y axis at the points y = + mb, where

= :

4 |

X

X

Fig. 103.

* H. Glauert, “The interference of wind channel walls on the aero-
dynamic characteristics of an aerafoil,” RM, 867, 1023,
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m assumes all positive integral values. This system will
clearly give zero velocity component normal to the vertical
boundaries and so satisfies the conditions of the problem.

Now from 12-22 it appears that the induced velocity far
out along thu:pmdmumfﬁlmhuukanmh

W= — H‘ F
and to obtain the effect of the system of images, y must be
replaced by mb and the summation made for all positive
and negative integral values of m. The upward inclination
of the stream due to the constraint of the boundary walls is

therefore w0 SELE o S

b T T B 13 ke

The case of horizontal boundary walls above and below
the aerofoil is treated on similar lines. An infinite series of
images is again required, situated on the z axis at the points
z = + nh, but these images are of alternate sign, being
positive like the original aerofoil when n is even, and negative
when n is odd. The induced velocity far out along the z axis
of an aerofoil is (from 12-22)

mﬁ_..'E._kLF

and hence the effect of the whole system of images is
w Sy, E{

QOETPT T At T
A comparison of this result with the previous one shows that
the lateral vertical boundaries exert a greater interference
on the aerofoil than the horizontal boundaries parallel to the
span. In each case the effect of the interference is to reduce
the angle of incidence and drag coefficient in & wind tunnel
compared with free air conditions.

14-4, Tunnel of reclangular section.

For a rectangular tunnel of breadth & and height A, a
doubly infinite series of images is required, situated at the
points (y = mb, z = nh), where m and n assume all positive
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and negative integral values except the pair (0, 0). The lift
of the image is positive when n is even, and negative when n
is odd.

i | [ i

e e e e S
| | ' :
N R
__I..____ _._..._.:.._
: <+ ';'ﬁ =+ |
_T__ | l___""'l"'
i | o e |
: | |
_..I.._ .-....-!_..4.......—.5._..-.....]_
[ |
: + r + ; + i
—-r————r-—-—--t----‘-u-
Fig. 104,
The induced velocity at the point (y, z) far from an aerofoil
is (from 12-22) T
h{]'.'l' .F LY,

and hence the effect of the whole system of images is to
cause an upward inclination of the stream

w 8k = miH? — nipe
a=-p="g ZE(- 1 gur oy
- Sky, EE{ m? — Atp?

gt 2 " G ey

where A = Ab. The double summation extends over all the
images, i.e. over all integral values of m and n except the
pair (0, 0). No simple form has been found for the sum of
this series, but the following method of reduction can be
employed. Starting from the expansion®

1 1

cobz =_+&i,::'—m'n-l

* Hobson, Plane Trigonometry, p. 334
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put z = finx

. 1 == 1
and obtain coth Azx = — + = ?n'q—;\':"

Then directly and by differentiation with respect to x
— 1 1
s m e S

g -t 1
y (m? 4 Aaga)r T jag

and by addition

- E—Emmh—’gmh'lﬂ.

® mi-Agt 1 g
T (w5 Yoy g — g Sowech? ez,
Thilruullhldntuﬂlﬂmmmﬁnn
- - J‘In lI '.I-
EE(-1y [TTW g _?.-—1:{ 1)* cosecht Amn
ot
- — e ir'IE{—lj"pu""'
wt
- -t Ik,
and then finally
- = ~ At ~ At
EEenpiimn s EE e 0
1 ('-*1]"
+ei - g2l
w? P
-_a-“+3":|:l+ l“'i

from which numerical results can be rapidly obtained, since
it is sufficiently accurate to retain only the first term of the
last exponential series.

Expressing the angle of deviation ¢, of the stream in the
form S
ll-a‘ﬁil.l
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where C is the cross sectional area of the wind tunnel, the
following numerical values are obtained :

Rectangular Tunnels

1/v2 1
0238 | 0274

2
0-524

4

A 14 1/2
f ‘r : 1-048

0-524 0-274

These numerical values show the curious result that, for the
range of values conaidered, the interference is unaltered if a
tunnel of breadth b and height A is replaced by one of breadth

V2h and height 5—2. The best ratio of breadth to height,

for a given cross sectional area, is 4/2 and the interference is
then slightly less than that in a tunnel of circular section for
which & has the value 0-250.

14-5. Downwash and lalselling.

The preceding analysis relates to the interference ex-
perienced by an aerofoil or system of wings due to the con-
straint of the tunnel walls, and leads to corrections which
must be applied to the angle of incidence and drag coefficient
measured in a wind tunnel. The interference was found to be
of the form of an upwash angle ¢, and this interference will
be increased® by an additional angle ¢, in the neighbourhood
of the tailplane of a model aeroplane, In consequence the
downwash angle € and the tailsetting ay to trim the aeroplane
will be measured smaller in & wind tunnel than in free air
and will require the corrections

Ae=q +q,
Ay = .

To calculate the angle ¢, it is necessary to determine the
induced velocity due to the system of images in the neigh-
bourhood of the tailplane of the model. Consider first the
effect of a single aerofoil with uniform lift distribution across

* Glauvert and Hartshorn, **The interference of wind channel walls on
the downwash angle and tailsetting," RM, 947, 1024,
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the span at the general point (z, y, z), where z is measured
downstream, y to starboard and z downwards. The complete
expression for the normal induced velocity is (from 12-2)
4w x { y+s y—2a }
K "f a8 Wyreartasa WW

+

y+s “ x
(v + &) +2* | V’{y+l}'+:' =1f
___y—s IO
(y —8)* +2* {l +ﬂy—a}- 4z ='}
but this expression can be simplified by the assumption that
z is of the same order as s and that vy* + z* is large compared

with s. To the first order of approximation, as used in the
preceding analysis, the value of w then becomes

w 1 g2 1 z(y* — 2:%)
V H[y‘-é*:'}'sh' 4 {!r'+l']" Sk,

whumﬂ'huhunmphmdhjz—'h, .

The first of these terms is independent of z and is the
expression which has been used previously to calculate the
value of ¢. The second term represents the additional inter-
ference ¢, experienced by the tailplane of a model acroplane,
and hence the value of ¢, for a tunnel of rectangular section
must be calculated as

_Sky 2 omi— 2\

i H'EE( ]{m'+?¢h']"

where h = Ab as before, This result can be written in the form

, 28
€ =0 ﬁf-'h"

and the following numerical values have been calculated for
the coefficient 5°: A=}, & =04885,

A= ], & = 0-480,

14-6. Summary.
The aerodynamic characteristics of a model aeroplane
obtained from tests in a wind tunnel with closed working
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section require the following corrections to allow for the
interference of the tunnel walls:

Angle of incidence Ar = ¢,

Tailsetting Aar = g,

Downwash angle Be = ¢ + 1ty

Dﬂ.g coefficient Akp = ¢ kg,
where ¢, and ¢, are defined by the equations

a=8p ks,

qmﬁ*%ﬁb,
and 8§ = total wing area of the model,
x = distance of tailplane from centre of gravity,
C = cross sectional area of the tunnel,
h = height of the tunnel, normal to the wing span.
All angles are to be taken in circular measure and the

coefficients 5 and 5’ have the following values in typical
cases :

Wiad Tunnel L ¥
m i saE '}m —_—
Bquare ... 0274 O-480
Reotangular (b =2k) 0274 0-585




CHAPTER XV
THE AIRSCREW: MOMENTUM THEORY

15-1. An airscrew normally consists of a number of equally
spaced identical radial arms, and the section of a blade at any
radial distance r has the form of an aerofoil section whose
chord is set at an angle 8 to the plane of rotation. The
blade angle 6 and the camber of the aerofoil section decrease
outwards along the blade, If the airscrew moved through the
air as through a solid medium, the advance per revolution
would be 2mr tan # and this quantity would define the pitch
of the screw, Actually this quantity will not have the same
value for all radial elements of the blade and so it is customary
to define as the geometrical pitch of the airscrew the value of
2ar tan 0 at a radial distance of two-thirds of the tip radius.
An airscrew rotates in a yielding fluid and in consequence the
advance per revolution is not the same as the geometrical
pitch and may in fact assume any value. The value of the
advance per revolution for which the thrust of the airscrew
vanishes is called the experimental mean pitch, and in many
respects the characteristics of an airscrew are defined by the
ratio of the experimental mean pitch to the diameter,

An ordinary propulsive airscrew experiences a torque or
couple resisting its rotation and gives a thrust along its axis.
The thrust 7" and the torque @ are expressed as functions of
the axial velocity V, the number of revolutions in unit time
n (or the angular velocity £2) and the diameter D. The state
of operation of the airscrew is defined by the advance per
revolution, but it is preferable to express this parameter in
the non-dimensional form v

Jﬂiﬂ.

The standard British non-dimensional coefficients for the
thrust and torque of an airscrew are

T “
tr'ﬁn'ﬁ and kq-;"'ibr
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but it is convenient at times to use the alternative coefficients
T Q
To=yips 204 Qo= yips-
Other forms of these coefficients are used by continental
writers and a variety of forms can be obtained by using the

mgnhrwlmityﬂinstmﬂnln,hhadimmgﬂ'm

of D%, and the dynamic pressure }p¥? instead of pV?. These
coefficients are all simple numerical multiples of those defined
above and each form has its own merita in partioular cases,

Airscrews are used for a variety of purposes, of which the
following may be mentioned :

(1) Propeller., An airscrew used for propulsion, as on an
aireraft, and designed to give a high thrust power TV for
a given torque power £2Q.

(2) Windmill. An airscrew used to obtain torque power
from its axial motion relative to the air. A distinction must
be drawn between a windmill mounted on an seroplane,
where the drag is of importance and the axial velocity is
high, and one fixed on the ground, where the drag is unim-
portant and the axial velocity is low.

(3) Fan. An airscrew used to obtain a current of air.

(4) Anemometer. An airscrew used to determine the rela-
tive axial velocity by means of the rate of rotation,

The theory of the behaviour of an airscrew follows the same
lines, whatever the purpose for which it is intended. The
design will vary, however, and apart from aerodynamic con-
siderations, limitations are also imposed by considerations of
strength and size. Other types of instrument may serve the
same purpose as an airscrew and, in particular, hemispherical
cups mounted at the end of radial arms are used both as
windmills and as anemometers, but these instruments form
a separate class distinet from airserews.

When an airscrew has a large diameter or high rate of
rotation, the tip welocity may rise to the same order of
magnitude as the velocity of sound and the compressibility
of the air will then modify the forces experienced by the blade
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elements, This effect does not become of importance until
the tip velocity (smD) exceeds 800 f.p.s. and in developing
the theory of an airscrew it will be assumed that the effect
of the compressibility of the air may be neglected. No theory
has been developed, as yet, which takes account of the com-
pressibility effect and the modification to the characteristica
of an airsorew due to high tip speed must be estimated from
special experimental investigations.

15:2. Simple momentum theory.

A simple method of considering the operation of an air-
screw, based on the work of Rankine and Froude, depends
on a consideration of the momentum and kinetic energy of
the system. The airscrew is assumed to have a large number
of blades, so that it becomes effectively a circular dise, and
it is further assumed that the thrust is uniformly distributed
over this disc. The rotation of the slipstream due to the
action of the torque is ignored® and the axial velocity of the
fluid must be continuous in passing through the airscrew
disc in order to maintain continuity of the flow. On the
other hand, the pressure of the fluid receives a sudden in-
crement p’, equal to the thrust on unit area of the disc, and
a slipstream of increased axial velocity is formed behind the
nirscrew, The term ““actuator disc'’ has been given to this
simplified conception of an airscrew and a number of interest-
ing results can be derived by considering the momentum and
energy of the slipstream.

il ¥
actualor dise ——>Y
Y W+ p pVtu,
r
PPy A
P,

Fig. 107.

® An extension of the momentum theory of an airscrew ineluding the
rotation has been given by A. Betz, “ Eine Erweiterung dor Schrauben-
strahl-Theorie,"” ZFAM, 1920,
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Consider an actuator disc in a stream of velocity V, for
which the general type of flow will be as shown in fig. 107.
On approaching the disc the axial velocity rises to (V + v)
and the pressure falls from p, to p. The axial velocity is
constant in passing through the dise but rises to (V + v,) in
the final slipstream, and the pressure rises to (p + p’) im-
mediately behind the disc and then falls to its original value
Po- The whole flow is regarded as irrotational except for the
discontinuity of pressure in passing through the airscrew
dise, and hence it is legitimate to apply Bernoulli's equation
to the motion before and behind the diso separately. The
total pressure head in these two regions has the values

Hympy+ 4pV2 =+ dp (V + o),
Hy=p+ip(V+o)=p+p +ip(V+0)p

N Nmoe p=H,—Hy=p(V + iv)n.
Also by considering the rate of increase of axial momentum
it appears that the thrust is

T=Ap(V + v)n,,
where A is the area of the actuator dise, and since p’ is the
thrust on unit area of the dise

pP=p(V+ovn.
By comparing the two expressions for p’, it follows that

v = {u,

Thus half the added wvelocity in the slipstream occurs
before the airserew and half behind it, and the thrust of the

airscrew becomes T = 24p (V + v) 0.

The increase of kinetic energy of the fluid in unit time is
E=44p(V+o){(V+ o) -V

= 24p(F +v)*v

=T(V + 1),
which is the work done on the fluid by the thrust of the
airscrew. Also if (2 is the angular velocity and @ is the torque
of the airscrew, the total work done on the airscrew is Q,
and it follows that QQ = T (V + v).
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Consider next the case when the general mass of the fluid
is at rest and the airscrew is advancing with velocity V. The
relationship between the thrust and the velocity is unaltered
but the work done by the thrust is now T'V on the airscrew
and 7'v on the fluid, and this second term is equal to the rate
of increase of kinetic energy of the fluid

E = }4p(V + v)n;?
= 24p (V + v)v*
= Tv.

15-21. [Ideal efficiency.

The efficiency of propulsion of the airscrew, defined as the
ratio of the useful work to the total work, is

Tv V
=g~ V+e
and it is customary to write v = aV, so that the efficiency
becomes 1
™1+a

This expression represents the ideal efficiency of an air-
screw which is nmever fully realised in practice. The ideal
efficiency has been obtained on the assumption that the only
loss of energy is represented by the kinetic energy of the
axial velocity in the slipstream, but the following additional
sources of loss of energy exist:

(1) frictional drag of the airscrew blades,

(2) kinetic energy of the rotation of the slipstream,

(3) periodicity of flow and loss of thrust towards the blade
tips, so that the thrust is not uniformly distributed over the

The most important of these additional effects is usually
the frictional drag of the airscrew blades, and under ordinary
working conditions of an airscrew the actual efficiency is
about 85 %, of the ideal efficiency. An examination of the
ideal efficiency is thercfore a useful guide to the actual
effidiency which may be anticipated from an airscrew.
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Since T=24pV2(1 +a)a,
T
T{:ﬂ;ﬁ-@';ﬂ‘l‘ﬂlm
and 14+ 2a= l+§ﬂ"e
B by
E\/I*F;Jip

where that root of the quadratic equation has been taken
which makes a vanish with the thrust, When V is zero, a
becomes infinite but the veloeity of flow through the airscrew

has the finite value o
v alV _ JEE
aD " nD o

Now suppose that power P is put into an airscrew of diameter
D. Equating nP to the work done by the thrust
qP-TF=§ﬂ'pF‘{I +a)a,

l1-n 2 P
o e sViDs
which is an equation to determine the ideal efficiency in
terms of the power, airscrew diameter and speed. The power
must be expressed in units which are consistent with those
of the other quantities, and in British Engineering units the
power is to be expressed in ft. Ib. per sec. The relationship
between the efficiency and the power coefficient is given in
table 20 and fig. 108. The efficiency falls rapidly as the power
coefficient increases and this fall represents the loss entailed
by putting a large power through an airscrew of small
diameter. Tabl

e 20.

Power and Ideal Efficiency.
L] FjpD* I’ w | PlpDe

v | PlriPD?

100 0 | 90 | o6 | s | o6
o7f | oouz || 873 | o204 | 774 | 0780
95 | 0002 [ 85 | 0884 || 75 | oo
02 | Ol49 | 83} | 0400 | 72§ | 1133
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The power given by an engine is a simple function of
the rate of revolution for given conditions of pressure and

1-00 | | T ]
0-95} :
E'u-m- 4

[

-

Toss| /
080} -
075 l 1 1 §

(1] 02 -4 08 o-8 1-0
PpvD"
Fig. 108.

temperature, and so it is convenient for some purposes to
write the expression for the ideal efficiency in the modified

form 1-n 21 P

AT

where n is the number of the airscrew revolutions per sec.,
which differ from those of the engine when gearing is em-
ployed. It is now possible to draw the curve of 5 against J
for any definite vnluaufpn—f-ﬂ,, and this curve will represent
the ideal efficiency of an airscrew which is adjusted to run
at a constant rate of revolution by altering the pitch of the
blades. Typical curves are given in fig. 109 which show the
variation of the ideal efficiency with the rate of advance of

the airscrew. The ideal efficiency increases with J, rapidly
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at first and then more slowly, and approaches unity as a

l'i'mitl

1-0
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3
-
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o 0-4 0-8 1-2 1-8 -0
"fx"fnﬂ
Fig. 109,

15:22. Windmalls.

The simple momentum theory can also be applied to the
problem of & windmill designed to take power from its motion
relative to the fluid, The windmill experiences a negative
thrust or drag and the fluid in the slipstream is retarded, so
that it is convenient to write v = — v. The equation con-
necting this velocity with the drag R is

R=2A4p(V -1V,

Consider first the case of a windmill on an aeroplane. The
energy put into the air by the windmill in unit time is
E = 24p (V — v') v,

while the work done by the aeroplane on the windmill is RV.
It follows that the power which can be taken from the wind-

mill is P=QQ=RV —E=24p(V -v)v,
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and the efficiency of the windmill can be defined as
09 V- u’
TERVT TV
This is exactly the inverse of the efficiency of propulsion of
An Airscrew,
The relationship between the efficiency and power output
of the windmill is
Pr-m)=2 L
wp yapr
For a given speed and diameter, the power is a maximum

when 5" = § and " = }V, and the maximum power has the
value

P[mu]— pF‘ﬂ’ = 0-232 D,

The case of a mndm.i]] on the ground exhibits different
features since the drag is now unimportant. The power given
by the windmill has the same value as in the previous case,
but the efficiency requires a new definition. If the windmill
created no disturbance of the flow, the energy of the air
passing through the windmill dise in unit time would be

E = }4pV?,
and the efficiency may suitably be defined as the ratio of the
power given by the windmill to this quantity. The efficiency
then s i 4V - ﬂ".i'

which has the maximum valoe
7"’ (max) = 1§ = 0-5903,



CHAFPTER XVI

THE AIRSCREW: BLADE ELEMENT
THEORY

16-1. In order to obtain a more detailed knowledge of the
behaviour of an airscrew than is given by the simple mo-
mentum theory, it is necessary to investigate the forces
experienced by the airscrew blades and to regard each element
of & blade as an aerofoil element moving in its appropriate
manner, It is convenient, in developing the theory, to con-
gider an ordinary propulsive airscrew under ordinary working
conditions. The conditions for other types of airscrew and
for other working conditions can then be examined as
modifications of the main theory.

The airscrew will be assumed to have an angular velocity
{2 about its axis and to be placed in a uniform stream of
velocity V parallel to the axis of rotation. The sections of the
blades of the airscrew have the form of aerofoil sections and
the lift force experienced by a blade element in its motion
relative to the fluid must be associated with circulation of the
flow round the blade. Owing to the variation of this circula-
tion along the blade from root to tip, trailing vortices will
gpring from the blade and pass downstream with the fuid
in approximately helical paths. These vortices are con-
centrated mainly at the root and tips of the blades and so
the slipstream of the airscrew consists of a region of fluid in
rotation with a strong concentration of vorticity on the axis
and on the boundary of the slipstream. From the analogy
of the general aerofoil theory it follows that the blade element
should be regarded as an aerofoil in two dimensional motion,
subject to the interference flow represented by the velocity
field of the system of trailing vortices. The exact evaluation
of the interference flow is of great complexity owing to the
periodicity of the flow, but for most purposes it is sufficiently
accurate to replace the actual periodical flow by its mean
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value. This step is equivalent to assuming that, for the
purpose of estimating the interference flow due to the system
of trailing vortices, the thrust and torque carried on the
finite number of blade elements at any radial distance from
the axis may be replaced by a uniform distribution of thrust
and torque over the whole circumference of the circle of the
same radius,

In developing the theory it will also be assumed that the
angular velocity of the airscrew does not become so great
that the rotational velocity of the blade tips approaches too
closely to the velocity of sound. Little is known of the effect
of the compressibility of the air on the characteristics of an
aerofoil moving with high velocity and further progress, both
in theory and in experiment, is necessary before the theory
of the airscrew can be modified to take account of this effect.

18-11. In discussing the nature of the flow past an air-
screw it is convenient to use the following terms:

Inflow. The flow immediately in front of the airscrew.

Outflow. The flow immediately behind the airscrew.

Wake. The flow in the slipstream far behind the airscrew,

Interference flow. The velocity field of the system of trailing
vortices which acta as an interference on the blade elements.

Considering first the rotational motion, it is evident that
the torque of the airscrew will cause a rotation about the
axis of the flow in the slipstream and that no rotation of this
nature can occur in front of the airsorew® or outside the
boundary of the slipstream. This rotational motion is to be
ascribed partly to the system of trailing vortices and partly
to the circulation round the blades. Due to the trailing
vortices the flow in the plane of the airscrew will have an
angular velocity w in the same sense as the rotation of the
airscrew, and the circulation round the airscrew blades will
cause equal and opposite angular velocities of the inflow and
outflow. The sum of these two components must be zero in

* This resalt follows st once from the general thearem of 4-31. Bee also
G. L. Taylore, " The rotational inflow factor in propeller theory,” RM, 785,
1921.
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the inflow, since no rotation is possible until the flow has
reached the vortex system generated by the airscrew., Hence
it follows that the angular velocity of the outflow is 2w and
that the interference flow, which is due solely to the system
of trailing vortices, will have the angular velocity w.

The angular momentum of the outflow is closely related
to the torque of the airscrew. Consider the blade elements
dr at radial distance r from the axis, let dQ be the torque of
these elements and let u be the axial velocity through the
airsorew annulus. Then, by equating the torque to the rate
of increase of angular momentum, it appears that

dQ = 2mrdr.pu, 2wrl,

or %-Mp?ﬂ{l+n}n’,
where %= V(1 + a),
w = Qa’,

The quantities a and a’ represent the interference flow and
are called the interference factors for the axial and rotational
motion respectively.

16:12. The axial velocity must be continuous in passing
through the airscrew disc and will have the same value % in
the inflow and outflow. The increment of u above the un-
disturbed stream velocity ¥ is due wholly to the system of
trailing vortices and the axial interference velocity is (4 — V)
oraV, In estimating the magnitude of this axial interference
flow, it is assumed that the trailing vortices pass downstream
in regular helices. This assumption is equivalent to neglecting
the contraction of the slipstream diameter which actually
occurs, and may require modification when the interference
factor @ ceases to be small. The induced velocity of this ideal
vortex cylinder at a point of the wake will be double the
induced velocity at the airscrew dise which is the end of
the cylinder, and hence the axial velocity in the wake is
F (1 + 2a). This result is in agreement with the conclusion
drawn from the simple momentum theory.



XVI] THE AIRSCREW: BLADE ELEMENT THEORY 211

The axial momentum equation for the blade elements can
now be written down directly as

g#{ﬂpp'{l + a)a.

This equation is not exact. It is based on the assumption
of no contraction of the slipstream in estimating the inter-
ference velocity and it also neglects the fact that reduced
pressure occurs in the wake owing to the rotational motion.
The error introdnced by these simplifications appears to be
negligible for a propulsive airscrew under ordinary working
conditions, but it may be necessary to replace this momentum
equation by a more accurate relationship in certain special
cases, as for example when an airscrew is rotating at zero
rate of advance,

16-13. A consideration of the system of trailing vortices
leads to the interesting conclusion that the interference flow
experienced by the blade elements at radial distance r from
the axis depends solely on the forces experienced by these
elements, and is not influenced by the blade elements at
greater or less radial distance. Consider the action of the
blade elements dr at radial distance r when the remainder of
each airscrew blade is inoperative. The trailing vortices which
gpring from the ends of the element lie on the surfaces of
two ciroular cylinders of radius r and r + dr respectively,
and the vorticity may be resolved into two components, one
having its axis parallel to the airscrew axis and the other
being cireumferential and similar to a succession of vortex
rings. The first component of the vorticity acts as the roller
bearings between the rotating shell of air bounded by the
cylindrical surfaces and the general mass of air. Now the
general mass of air cannot acquire any circulation about the
axis and hence the rotation due to the torque of the blade
elements is confined to the region between the two eylindrical
surfaces. Hence also the rotational interference due to the
vortex system is experienced only by those blade elements
which gave rise to the vorticity.

A similar argument can be applied to the second component
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of the vorticity and thus the independence of the blade
elements at different radial distances from the axis of the
airscrew is established. This theoretical result is of great
importance and has been confirmed for the principal working
sections of an airscrew blade by certain special experiments*.
Towards the tips of the airscrew blades the conditions may
be modified by the radial flow of the air which is neglected
in developing the theory.

16-2. Consider next the aerodynamic forces experienced
by the blade element at radial distance r. The blade element

ril (I -a’)
Fig. 110,

is subject to an axial velocity F (1 + a) and a rotational
velocity ril (1 —a’), so that the resultant velocity W is
inclined at angle ¢ to the plane of rotation, where

If @ is the blade angle, the element will work at an angle of
incidence @ = # — ¢ and will give the corresponding lift and
drag coeflicients, &, and kp, appropriate to the aerofoil
section in two dimensional motion. The componenta of these
force coefficients, resolved in the direction of the thrust and

torque, are respectively
M =kgcos ¢ — kpysin ¢,
Ay = kpsin ¢ + kpoos @,

and the elements of thrust and torque given by the blade
element of area cdr are
dT = A pWiedr,
dQ = ApWierdr,
* Lock, Bateman and Townend, ** Experiments to verify the independ.
ence of the elements of an ajrscrew blade,” RM, 853, 1924.
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These expressions are multiplied by B, the number of
blades, to obtain the elements of thrust and torque for the
whole airsorew, and in place of the chord a non-dimensional
quantity o is introduced, defined by the equation
This quantity o represents the ratio of the area of the blade
elements to the area of the annulus at the radial distance r,
and may be termed the solidity of the blade element.

The elements of thrust and torque of the airscrew can now
be expressed in the following formas:
f.-;'T = 2morp V2 (1 + a)? A, cosec® ¢
= 2mor®pd? (1 — a’)? ), sec? &,
O — 2morp V2 (1 + a)* A, coseo® ¢
- (1 —a’)? A sect .
Expressions for the elements of thrust and torque have been
obtained earlier in the chapter by considering the axial and
rotational momenta, and by equating the alternative forms
the following equations are obtained for the axial and
rotational interference factors:

a - “';"t__.
l+a 1-—cos2d’
a’ o

1—a' " gin2g’
Finally, the rate of advance of the airscrew is given by the

equation V r ¥V rl-
=D~ "R " "E :+.““"‘-

and the elements of thrust and torque can be expressed in
the non-dimensional forms

RGT = 3w () o1 —a'p A seot 4,
ﬂ%ﬂ - %ﬂ(ﬁ) 2 (1 —a’)? A, se0t .
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16-21. The method of ealeulating the characteristics of an
airscrew is to choose a number of elements along the blade,

fwmhufwﬁnhthﬂfﬂmdi.f.ﬂmdthumfnﬂ

characteristies (a, kz, kp) are known. Starting with a series

of values of « for each element, it is possible to calculate

in turn the corresponding values of a, a', J, dky and dig.

Thrust and torque coefficients
| T T

0-3

1 J | L
0 0-2 0-4 0-0 0-8
Fig. 111.

Details of the caloulation for a typical blade element are
given in table 21. Curves of dky and dkg against J are then

Table 21,
Caleulations for a blade element
r/R = 0-70, o= 0-10, 0 = 24°

a @ A Ay a a’ J R (dk/dr) | R (dkgjdr)
4° | 20° | -008 | 018 | --D03 | D03 80 | - -00d -0038
g |18 102 | D44 056 | 007 07 050 -0080
8 |14 -208 | 066 -158 | -012 <ol 115 0130
10 | 4 206 | 082 353 | 017 ~40 164 0158
12 | 12 300 | 080 820 | -021 25 207 | 0168
4 |10 482 | 003 | 400 | -026 08 <250 0168
14 8 668 | 000 | -3-13 | 032 | --14 288 0160
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drawn for each element, and finally the values of dks and
dky for the various blade elements at any chosen value of
J are plotted against the radial distance to obtain the thrust
and torque grading curves along the blade. The integration
of these curves gives the total thrust and torque of the air-
screw, but a slight empirical correction is necessary to the
thrust to allow for the drag of the airscrew boss,

16:22, Owing to the variation of the blade angle, chord
and aerofoil section along the blade, it is not possible to
obtain any simple analytical expressions for the thrust and
torque of an airscrew, but the general nature of the airscrew
characteristics can be examined by considering a typical
blade element.

At zero rate of advance (J = 0) the axial interference factor
a tends to infinity, since the axial velocity through the air-
screw disc remains finite while the velocity V tends to zero.
This occurs when g

oA, = 2sin* ¢,

and as ¢ is a small angle, this equation is approximately
'ﬂ'h‘.'. - 2*'!

where kg is to be taken at an angle of incidence (f — ).

This state corresponds to a positive value of ¢ for an ordinary

propulsive airscrew.

The other end of the working range of an airscrew ocours
where the thrust vanishes at the point given by the equation
i‘-'I. = ED tan *l
so that the blade element is still carrying a small positive
lift force. The torque is positive at this point, but vanishes
at a slightly higher rate of advance, corresponding to the

condition E 1
. = — Kp oot ﬁ.

Between these two points the airscrew is acting as a brake,
nndhuyundthnpmntwhﬂuthnturthmmunaglhn
the airscrew acts as a
Thnuﬂmmyufthahludnnhmtu
V.dT_ ¥V A 1—-a" tang
T=0.d0~mM A" T+atan(d+y)
where kp = kg tan y,
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This expression may be compared with the ideal efficiency

rl;—& deduced from the simple momentum theory of an
airscrew and it appears that there are additional sources of
loss of energy represented by

(1) a’, the effect of the rotation of the elipstream,

(2) v, the effect of the profile drag of the blades.
The first of these effects is small over the principal working
range of an airscrew but the profile drag becomes of great

1-0 T 1 | =

umdrua_#";

0-8

J?
[=2]

Efficienc
o
-

0-2

0 [ 1 J | L
0 0-2 0-4 0-8 0-8
Fig. 112,

importance, particularly as the blade element approaches the
attitude of no lift. Fig. 112 shows the efficiency of the blade

element whose characteristics are given in table 21 and the
broken curve represents the efficiency which would occur if
the profile drag were zero.
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The loss of efficiency can also be illustrated by considering
the balance of energy for the blade element. The work done
on the blade element in unit time is 2dQ and this energy is
distributed in the following parts:

V.dT, the useful work of the thrust,

aV.dT, the kinetic energy of the axial motion,

a’fl. d@, the kinetic energy of the rotational motion,
dE, the loss of energy due to the drag of the blades,

The value of dE is obtained as
dE = (1 - a') 0.dQ — (1 + a) V.dT
= pW*Bedr {(1 — a’) Qrd, — (1 + a) VA
= pW*Bedr. W (A, cos ¢ — A, sin ¢)
- l!'gp“'..ﬂ-ti'l"- FF.
which is clearly the work done against the drag of the blade
elements moving with the velocity W relative to the fluid.
The relationship between the circulation round the blade
elements and the rotation of the slipstream is also of interest.
The circulation round a blade element must be equal to
kreW and the corresponding circulation of the slipstream is
K= EGW.EL = E‘IHITHIE'L.
while the total circulation of the slipstream is
K' = 2nr.200a’
= 4dnr¥1 (1 — a') oy cosec 2¢
= 2mar W (kz + kp cot ¢),
K' kpsing + kpcos
Hence = ey )
The circulation of the slipstream is due partly to the circula-
tion round the blade elements which is associated with the
lift force, and partly to the drag of the blade elements which
tends to drag the air in the direction of motion of the blade.
These two effects will be in the same ratio as the elements of
torque contributed by the lift and by the drag respectively,
i.e. in the ratio of &/, sin ¢ to kp cos ¢, and this action of the
drag of the blade elements accounts for the difference between
the circulations K and K'. The vorticity of the airscrew dise
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is therefore of a complex nature, consisting partly of the
circulation round the blades and partly of free vortex lines
associated with the drag of the blades.

16-23. Caloulations for a typical blade element can also
be used to illustrate the variation of the characteristics of an
airscrew with the experimental mean pitch. Fig. 113 gives

10 T T ] T

0 1 1 J 1 11
o 0-2 0-4 0-6 08 1-0
Fig. 113,

the efficiency curves for a blade element when the blade angle
is increased or decreased 4° from its original value, and shows
that an increase of pitch is accompanied by an increase of
maximum efficiency. Aerodynamic considerations therefore
indicate the advantage of using airscrews of large diameter
and high pitch, but structural considerations limit the
possibility of improvement in these directions. An airscrew
ia designed to absorb a definite torque at a definite rotational
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speed, and so an increase of diameter or blade angle must be
accompanied by a corresponding decrease of the blade width.
This process is clearly limited by the necessity for the air-
screw blade to possess sufficient strength to resist the centri-
fugal and torsional stresses imposed on it, and the airscrew
diameter is also limited by the fact that it is desirable to
keep the tip velocity considerably below the welocity of
sound, These difficulties can be avoided in part by the intro-
duction of gearing between the engine and airscrew, so that
the airscrew runs at a slower rate of revolution than the
engine, The problem is, however, complicated by the weight
and efficiency of the gearing, and a full disoussion of the
choice of the best airscrew in any given case is beyond the
scope of the present treatise.

16:-3. The aerodynamic theory has been developed for the
case of a propulsive airscrew which gives a thrust in the
direction of ite axial motion, and it is necessary to examine
whether the theory is also applicable to other working con-
ditions of an airscrew. Fig. 114 shows diagrammatically the
different types of flow which may occur with an ordinary
propulsive airscrew at different positive and negative rates of
advance, Type (2) represents the normal working condition,
and as the axial velocity V increases the nirscrew passes to
the condition of type (1), where it acts first as a brake and
then as a windmill. A different type of motion occurs when
the airserew has o negative rate of advance. Type (8) repre-
sents the flow for zero rate of advance which is a limiting
case of the normal type (2), but as soon as the axial velocity
V becomes negative a vortex ring will be formed round the
airscrew as indicated by type (4) in the figure. For greater
negative velocities the flow may correspond to type (5) or
(6). The former represents the case when the airscrew gives
rise to an eddy motion such as oceurs behind a bluff body,
and the latter represents a return to the initial type (1), but
in the opposite direction.

The theory assumes the existence of a slipstream of con-
ventional type and will be applicable to the types of motion
(1) and (2). In the vortex ring state the momentum equations
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will break down both for the axial and for the rotational
motion, and the thrust and torque of the airscrew will depend
mainly on the rate of
dissipation of energy - Typs of flow
in the vortex ring

motion. The theory :
diobreakadownfor | | |V —
the motion repre-

sented by type (5)
and will probably be

only a rough ap- | ,
proximation to the S —

truth for type (3),
which is the tran-

sition from the vor-

tex ring state to | a

Ahe ol wiaeking V=0 ?—*
condition. The final
state (8) is similar
to type (1) and the
theory should be ap- | 4 - C:D -—y
plicable to this case, A

but certain modifi- =
cations are required
to the momentum | | —=-=—_
equations to allow | 8
for the fact that | | -=-=-~-
the direction of flow
through the airscrew
disc is reversed, In T =
developing  these o b £ =V
equations the velo-
city w or V (1 + a)
represents the ve- - 114,

locity of flow through the airscrew disc and must be re-
garded as essentially positive. Hence for negative rates
of advance the sign of the momentum expressions for the
thrust and torque must be changed and this is equivalent
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L

to changing the sign of the expressions fﬂl‘l :nmﬂ l-n—'&‘
in 16-2. With this simple modification the theory may be
applied to an airscrew with a negative rate of advance,
provided that the conditions are such that a slipstream of
conventional type is formed behind the airscrew. The con-
dition for the validity of the theory is therefore that the value
of the axial interference factor a shall satisfy the inequality
a > — §. With this limitation the theory may be applied to
any type of airscrew, irrespective of the purpose (propeller,
windmill, fan, ete.) for which it is designed,




CHAPTER XVII

THE AIRSCREW: WIND TUNNEL
INTERFERENCE

A model airscrew rotating in a wind tunnel disturbs the
uniform flow produced by the tunnel fan and causes variations
of velocity which extend to a considerable distance from the
airscrew. This flow is constrained by the presence of the
tunnel walls and the uniform axial velocity ¥ which ocours
at a sufficient distance in front of the airscrew in the tunnel
differs from that which would oecur in free air. It is necessary
therefore to determine an équivalent free airspeed V', corre-
sponding to the tunnel datum velocity ¥, at which the air-
screw, rotating with the same angular wvelocity as in the
tunnel, would produce the same thrust and torque®. A
theoretical solution of this problem can be obtained by ex-
tending the simple momentum theory to the case of an air-
screw rotating in a wind tunnel. The equivalent free airspeed
is defined as that which gives the same axial velocity through
the airscrew disc as occurs in the tunnel, gsince this condition
will maintain the same working conditions for the airserew
blades, provided the interference effects of the rotational
velocity are negligible. The equivalent free airspeed, under
ordinary working conditions of an airscrew, is less than the
tunnel datum velocity.

The assumption that there is no interference effect on the
rotational velocity appears to be sound, but the representation
of the interference effect by a change from the tunnel datum
velocity to the equivalent free airspeed depends on the
existence of the same axial velocity over the whole airscrew
disc. This condition is satisfied approximately over the
principal working part of the airscrew blades but fails to-
wards the blade tips. In consequence the shape of the thrust

* Wood and Harris, *Some notes on the theory of an airscrew working
in o wind channel,” RM, 662, 1920,
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and torque grading curves along the airscrew blade may be
elightly different near the tip in free air and in & wind tunnel,
although the method of correction is sufficiently accurate for
the total thrust and torque of the airscrew. The method of
correction would also appear to be unreliable near zero rate
of advance of the airscrew, since the conventional type of
slipstream assumed in the theory no longer occurs,

—> U,

— Y
u -,

p P,

Fig. 115,

The type of flow assumed in the analysis is shown in fig.
115. V is the tunnel datum velocity, u the velocity through
the airscrew disc, w, the slipstream velocity and wu, the
velocity in the tunnel outside the slipstream. The pressure
rises from the original value p to the value p, in the region
of the slipstream.

Let A be the airscrew disc area, S the cross sectional area
of the slipstream and € that of the tunnel. Then by con-
tinuity

Suy = Au,
(C — 8)ug=CV — Au,
and by use of Bernoulli’s equation

=@+ dpw) = (P + 4oV

= (py + {pw) — (y + dpwe®)
= §p (1" — 7).
Finally, the equation of axial momentum gives
T = Spuy (wy — V) + (C — 8) priy (g — V) + C (py — p)
= Spuy (uy = V) + (C — 8) ptig (g ~ F) -+ §Cp (V* = u,1).
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o &
ApV? =

and on eliminating w, and », by means of the equations of

continuity, the two expressions for the thrust become

280 (0 - 8PVt = (C — S A% — 85 (CF — Au)"

= 20 (C — 8) Au (Au - 8V)~0* [Adu-8V)?,

Now put Te,

and
2rAS(C =8PV =2(C - 8 Au(du - SV)
—28(C - 8)(CV = Au) (Au - 8V)
+ C8{(C -8V — (CV - Au)y)
=20(C—8S)Au(Au—8V)-C8(Au-8V),
from which it follows at once that
2:8(A-8)(C—-8) V= C (Au - SV,
*8 (CA — 8%) V2 = CAu (Au — 8V).
The equivalent free airspeed I is such that it gives the
same values to uw and T. But in free air
T = 24pu (u - V'),
or (26 — I"}'-::-2T+ ye

=27V 4 V8,
Put V= AV,
28 = 1 4+ 27A8,
obtaining for the free air condition
oY, - AL
e
Also put A = aC,
8 =egd,
where a is generally small and o lies between unity and 0-5,
and the two wind tunnel equations become
4(z* = 1) ol —o)(l —ag) = (z+ 1 — 2A),
2(z—1)o(l —ae?) = (x + 1 — 2a)),
from which A can be eliminated at once to give an equation

for  in terms of « and o, while the second equation then
determines the value of A.
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The problem of determining the equivalent free airspeed
has now been reduced to that of determining the value of
A for given values of @ and » by means of the subsidiary
quantities  and o. For this purpose the three equations are
written in the form

-1 (1-=0a)(l —ao)
z+1  o(l—ag?) '
A=1+(x—1)ac®—

L@ E-1)
2\ '
and & method of successive approximation may be used,
trying different values of o until the correct value of r is
obtained. As a guide to the value of o, it may be noted that
in free air o would be determined by the equations
=1 + 21“,
x4+ 1

e —

2r
In these equations « is the ratio of the airscrew disc area

Tunnel speed V and free airspeed V'
I | I

(30~ 1)z )
EE ]

1-20 T




220 THE AIRSCREW [cH. xvIT

A to the cross sectional area C of the tunnel, and = is the
observed quantity T/pd V2. The equivalent free airspeed is
obtained finally by dividing the tunnel datum velocity ¥ by
the quantity A. Curves of V|V’ against T/od V*® for a range
of values of 4/C are given in fig. 116, The usual size of model
mirscrew tested in a wind tunnel corresponds to a value of
A/C of 015 approximately,

The theoretical correction can be used for tests of model
airscrews in a wind tunnel, but it is not possible to extend
the theory to the case of an airscrew mounted in front of
n body of any considerable size. Experimental work* has
shown, however, that if the axial velocity is explored along
radlial lines just before and just behind the plane of rotation
of the airscrew, the velocity tends to a limiting value which
is equal to the equivalent free airspeed given by the theory
when no body is present. This experimental method has
therefore been adopted for the case of an airscrew-body
combination and has been checkedt by special tests in 4 ft.
and 7 ft. tunnels,

* Fage, Lock, Bateman and Williams, * Experiments with a family of

airscrews,” part 2, R M, 830, 1922,
t Lock and Bateman, “The effect of wind tunne] interference on a

combination of airscrew and tractor body,” RM, 919, 1924,
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