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CHAPTER 1
EINSTEIN’S DEDUCTION OF FUNDAMENTAL RELATIONS

The subject of Relative Motion is one which must have
presented itself at a very early stage to investigators in Applied
Mathematics, but we may regard it as being placed on a definite
dynamical basis by Newton. In fact, his first Law of Motion
defines the absence of force in a manner which is independent of
any uniform velocity of the frame of reference. When the wave
theory of light became firmly established, and when a luminiferous
aether was postulated as the medium, universal in extent, which
carried such waves, attention was again directed to relative motion.
The questions at once arose : Are we to regard the aether as being
fixed? Does matter, e.g. the Earth, disturb the aether in its
passage through it? The attempts to answer such questions gave
rise to numerous investigations, experimental and theoretical, on
the one hand to determine the relative motion of matter and
aether, and on the other to give an adequate explanation in
mathematical terms of the results of such experiments.  As an
introduction I shall briefly describe two such experimental
researches which will bring us at once to the root of the difficulty.
For those who wish to pursue the historical introduction to this
subject, I can refer to Professor Whittaker’s ‘“History of the
Aether,” a book the value of which can be appreciated by anyone
who has ever wished to trace the somewhat
tangled line of thought in these matters during
the last century. I shall first refer to Bradley’s 4
observation of the aberration of light. Let
S (Fig. 1) be a source of light and O an
observer moving with a ‘velocity represented
by 0 0'=v». A spherical wave of light diverges »
from S in all directions. Relative to O __ g
each point P of the sphere has two velocities,
one equal to the velocity of light ¢ and in the direction
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SP, and the other equal and opposite to O 0. The wave surface
relative to the observer is thus a sphere, the radius of which
is expanding at the rate ¢ and the centre is
moving at the rate ». Or again, the wave
surfaces are spheres, the point S being a centre
of similitude. The ray direction, or direction

in which the radiant energy travels, is along '
the line joining S to P (¥ig. 2), whilst the ,
wave velocity is along S'P where 8§'/SP =v/c.

The position of a fixed star as seen by an &

observer in a telescope moving with the earth
will be the centre of the sphere of the system which passes
through O, and the real position of the star can be calculated from
the triangle S8 0 (Fig. 3) where S§/08=v/c
and the angle 08'S is known. We thus get s s
on the wave theory the same construction
for § as on the corpuscular theory. Under-
lying this explanation, however, we have
assumed that the aether in the neighbourhood
of the earth is at rest and is undisturbed by
the motion of the earth, and we are thus
driven to the hypothesis of a stagnant aether,
matter passing through without changing its properties. We now
come to the classical researches of Michelson and Morley, which
were designed to test this hypothesis.

A ray of light coming from a source A
falls on plate of glass B (Fig. 4) at an angle &
of 45°, and is partly transmitted to a mirror M,
whence it is reflected back along M,B, and
finally to the observing telescope at C by,
reflexion at B ; the other part goes over BYM,
twice in opposite directions and traverses the
glass at B and reaches €. Thus the two parts b
of the beam are united and are in a position to
produce interference bands if BM, is not equal to BM,. This,
however, is on the supposition that the apparatus is at rest.
Suppose, however, that it has a velocity v along 4B ; the time
taken for a light wave to travel from B to M, is then /(c-v),
where [ is the length of BJ/, and it takes a time [/(c+wv) to

Fig 2

Fig3
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travel back along B, Thus the whole time taken is

(o =)+ (o4 2) = 2o (- o8) =2 (145

approximately if v is small compared with c.
For the reflexion from JM,, M, will have moved to M," whilst the
light travelled from B to M, (Fig. 5). Thus
if ¢ is the time taken from B to M., B M, =ct, M M
MM =vt, and if M\ B =1, we have I* + % = %,
and therefore t=1/,/(c*—+*), and the time {
taken to come back to B is

) oA/ o
2t=2[/~/(0“—v2)=7(1+765>. / 7

Comparing this with the expression above, we Fig s

have a difference of time equal to [v?/c’,

the time over B, being less than B, by that amount. By
rotating the whole apparatus through 90°, the conditions are
reversed, and the time difference of path will be of the opposite
sense. In the actual experiment BYM, was about 11 metres, and
on taking v to be the velocity of the earth in its orbit, a displace-
ment of 04 of an interference fringe width might be expected.

The unexpected, however, happened, and the observed dis-
placement was certainly less than one-twentieth of this amount,
and probably less than the one-fortieth.

Here we have at once a result at variance with our hypothesis
that the aether is at rest. An explanation was put forward
independently by Fitzgerald and Lorentz, and developed in detail
by the latter. If the force of attraction between two molecules in
motion is less when they are in motion at right angles to the line
joining them than when they are in motion along that line, then a
line such as BM, will measure less when it takes up the position
BM, and we can easily see that this contraction (called the
Fitzgerald-Lorentz contraction) could compensate for the difference
of path in such a way that the null effect of the Michelson-Morley
experiment would be adequately explained. The mathematical
treatment of this theory in the hands of Lorentz and Larmor
shows that all experiments on the relative motion of matter and
aether must give approximately a null result.

The interpretation of these experiments received a different
treatment from FEinstein, whose paper in the * Annalen der
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Physik,” 4te Folge. 17, 1905, gave rise to most of the recent
theoretical investigations which are included under the head of
“Relativity.” I shall now proceed to the deduction of the
fundamental equations of this theory, following the above-named
paper.

Let us consider a set of axes or frame of reference, which we
shall term (merely for the sake of distinguishing) the fired axes,
and let there be another system of axes moving with reference to
the former, which we shall call the moving axes. We shall
suppose that the directions of these axes are parallel, and that the
origin of the latter system moves along the a-axis of the former
with a uniform velocity ». Fixing our attention for a while on
the fixed system, let us suppbse that at various points of space we
are provided with clocks, the position of each clock being sup-
posed fixed with reference to the axes, i.e. they are not in motion.
We will further suppose that these clocks are synchronized, and
that the synchronization is affected by the following process, which
is in effect our definition of synchronization. Suppose that two
points 4 and B are provided with clocks, and that a beam of light
is flashed from 4 to B and reflected immediately back from 5 to 4.
The time of departure of the beam from 4 being ¢, and of arrival
at B being ¢, whilst the final arrival at 4 is at the time ¢, the
times ¢, and ¢, are indicated on the clock at 4, and ¢, is indicated
on the clock at 5. Then the condition of synchronization is
ty—t,=t;—t, or ¢ +¢;=2¢  This of course agrees with our
ordinary definition of synchronization; in fact, it states merely
that the time taken for light to travel from A4 to B is the same es
that taken to go from B to 4. This definition, obvious as it
appears, is the very foundation of this method of deducing the
relations of Relativity.

We now lay down two fundamental assumptions.

1. The equations by which we express the sequence of natural
phenomena remain unchanged when we refer them to a set of axes
moving without rotation with a uniform velocity.

This is the ““ Principle of Relativity.” We see at once that it
forbids us to hope ever to be able to determine the absolute motion
of our reference system. It is obviously true for the ordinary
scheme of dynamics, although it should be borne in mind that a
physical quantity measured in one system may not be equal to the



EINSTEIN’S DEDUCTION OF FUNDAMENTAL RELATIONS 5

corresponding quantity measured in the other. Thus while it is
true that the change of Kinetic Energy in each system is equal to
the work done by the forces, yet the number expressing the
Kinetic Energy itself is different in each; in fact, the Kinetic
Energy of a particle m moving with velocity w along the x-axis is
Imw?® when referred to the fixed system, and is equal to m(w — v)?
referred to the other system. This, as I stated, refers only to
ordinary or Newtonian dynamics, which as we shall see, constitute
a particular case of the more general theory which we shall
develop later. This principle of Relativity is in accordance with
the null effect of the Michelson-Morley and other experiments on
the motion of the aether, and being thus in accordance with all
known physical facts, is a valid basis for a scientific hypothesis.
It will be noticed that the null effect is approximate after the
theory of Lorentz and Larmor, and that conceivably by a very
great increase in the accuracy of our instruments an effect other
than null might be observed, but that this principle makes the null
effect absolute and incapable of ever being observed. The former
theory starts from certain principles and deduces the Relativity
Principle as a final (and approximate result) ; the latter starts at
this null effect and works backwards. Both theories traverse the
same ground, but in opposite directions, and experimental science
is at present incapable of deciding between them. The newer
theory, however, appears to its admirers to be more elegant (or
according to others, more artificial) in its formal presentation.

2. The second principle we make use of is that the velocity of
of light which is reflected from a mirroris the same as that of light
coming from a fixed source. This principle, which follows from the
ordinary equations of electrodynamics, has received definite experi-
mental proof recently in an ingenious experiment by Michelson
(Astrophysical Journal, July 1913.)

We now proceed, having thus laid down our two principles.
Supposing that in the moving system we have a system of clocks
at rest relative to their axes, and that these clocks have been
synchronized by observers in this system unconscious of their own
motion. Suppose that there are two clocks in the system 4 and B
at rest relative to the axes, and that a ray of light goes from 4 to B
and is reflected back to 4, the times being 7, 7, 7, as above. ‘Then
by the Principle of Relativity the relation 7,-t=71,—7 or
74 7,= 27, must hold.
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To each point of this system (coordinates &, 7, {) there will be a
time 7, the time indicated by a synchronized clock situated there.
This point has for coordinates a, v, #, referred to the fixed system,
and the clock of this system denotes a time . We have thus to
discover relations between & n, {, 7 and @, v, 2, . We can see at
once that the relations must be linear, otherwise the connections
between infinitesimal increments of space and time would depend
on the coordinates. For instance, the relation between a small
triangle as observed in one system and as observed in the other
must be the same wherever this triangle is situated, provided that
its orientation is unaltered. In other words, we ascribe no
particular properties to the origin, which may be any point of
space. This property is referred to as the homogeneity of space.

We have then as the most general form of the relations the
four equations

E=dx2+DBy+Ciz+ Dt
n=d,x+ Byy+Cyz+ D,t
(=dsx+ By + Cyz+ Dt
Tr=Ax+By+Cz+Dt.

We could add an arbitrary constant to each equation, but without
loss of generality we can suppose the values of x,y,2,¢ & 1,7 to
be simultaneously zero, or more precisely, suppose that all the clocks
in the fixed system are synchronized from a clock at the origin, and
the same is done for clocks in the moving system, then at the
instant that the “moving” origin O and the “fixed” origin O
coincide, the two clocks show the time zero. Suppose now
that in the moving system a ray of light starts from the
origin O' at the observed time 7, and proceeds towards a mirror
placed at a fixed distance along the -axis. It is there reflected at
the time 7, and arrives back at the origin O at the time 7, Let
us see how all this appears to observers in the fixed system. They
will see an origin 0" moving along the axis of #, and at an invariable
distance (which they find on measurement to be ') in front is
situated a mirror. The coordinates of O to them are (v¢, 0 0),
and the coordinates of the mirror are (x'+w¢t, 0,0). A ray of
light is observed to start from O’ at a time ¢, and to overtake the
mirror. It is thence reflected back to the origin which is moving
forward to meet it. The reflexion thus takes place at the time
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t+a'/ (V —v), and the reappearance of the light at 0’ will be at the
time t+4a'/(V-v)+«'/(V+v). We have thus three events—the
departure, the reflexion, and the arrival of the light. We know
the coordinates and the times of each of them in both systems,
and on inserting in the last of the above linear equations, we get

T=Avt+ D¢ )

n=A{x +o[t+2/(c - v)]} + D{t+2/(c—v)}

To=Av{t+a[(c —v) +&'/(c+v)} + D{t +2'/(c - v) + &' [(c +v)}.
The relation of synchronism 27,=7+7, gives then

Ac4+Dv=0.
Let the mirror now be placed on the 7n-axis, and let similar

observations be made. We have, as before, the following simul-
taneous values for the coordinates and the times :—

Fixed System. i Is\ly(;‘t'grlf
Departure of Light vt, 0, 0, ¢ 000 =

Reflexion vt +vy'/ J(¢2=2), ¥/, 0, ¢ + ¥/ J(EF-2*) | 0,7,0 =
Arrival vt 4 2oy’ J(* =), 0, 0, t+2y/ /&= 000 T

Making use, as before, of the equation
T+ T=27,
we get B=0.

In a similar manner we get C'=0, and we thus have the
relation

T=D{t-va/c}.

Referring again to the equations from which 7 and 7, were
determined in the moving system, the beam of light takes a time
7, — 7 to go from the origin O to the mirror. Thus the coordinate
¢ of the mirror must be equal to ¢ (7, — 7).

On substituting the values of 7, and 7, we get

E=Dx' =D (x—vt).
Comparing this with our assumed linear relation § V= o s g
f=4,2+B,y+C2+Dyt, dnen x-vT

we see that A,=B,=C,=0 and D,=D. x = f(/«r v_)
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Before discussing these equations, it ought to be observed that
they have been obtained by the consideration of light rays which
passed along one of the coordinate axes, and as a verification we
ought to consider the case of a ray which passes obliquely. Let a
source of licht be at the moving origin O, and suppose that a
beam of light starts from O at the time ¢, and goes to a mirror
which is rigidly attached to the moving axes, and whose ¢ fixed”
coordinates at the time ¢ are x, ¥ and z, and that the beam arrives
back again at O at the time ¢, Now if the times observed in the
moving system for these events are respectively 7, 7, 7, we have,

since 00 =uvt,
,U‘?.
=L <to“? to)
T=8(¢t - va/c)
=0 (t;, =04 /).
We have then to verify the equation
T—Ty=T,—T,
or, to put it in a convenient form,

c(tl—t)—c(t—td:%{(utl—Jc)—(ac—'vto)}.

In the diagram (Fig. 6) let 0" and 4 be the position of the origin
and mirror at the time 7, 0" and 4’ their positions at the time ¢, and
0" the origin at the time ¢, all as seen
by an observer in the fixed system. Then a__4a
Od' =c(t-1); 0"d' =c(t,-1): 00" =v (¢t -t,);

0"0" =v(t,-t). So that
00":0"0"=04:0"4,
) O o 7
00" -0v"0" 00U v’
a relation which is easily seen to be identical Fig 6
with that given above. GRRGE

Returning to our fundamental equations, suppose the co-
ordinates of any number of points P, P, etc., in the moving
system, and rigidly attached to it are (& 7, &), (& 7. (o), ete., and
that the corresponding coordinates in the fixed system are
(191 21), (%2%.2,), we have then equations of the type

&=B @ -ve)
=B (x-v?)
=, ete,
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so that -

(=& =B (m—m=)

= = YW

G-6G = w-m, ete
Thus any geometrical figure in the moving system appears
deformed to the observers in the fixed system. The lengths
parallel to the x-axis appear to be decreased in the ratio of 1:f,
whilst transverse lengths are unaltered.

Thus the ellipse £+ [(°79*=[%a" the eccentricity of which is
v/e, becomes the circle (v —vt)*+ y* = a*

A line A¢+Bn+ C =0 transforms into dx+ BBn+ CB=Advt,
so that parallel lines transform into parallel lines, but the angle
between two lines is usually changed. If, situated in the fixed
system, we caught a passing glimpse of a teacher in the moving
system proving to a class that the sum of the three angles of a
triangle was equal to two right angles, we should get the impression
that he was demonstrating a rather involved question in non-
Euclidean geometry, and that both teacher and class were either all
stouter or all thinner than similar individuals in these countries,
according as the axis of « or of y is the vertical.

As regards the time, it is clear from the equation

=Bt -vx/c?)

that the clock at O will be behind the local time at the correspond-
ing point of the moving system. To take a numerical example,
suppose that v/e =4/5, so that 8=25/3, and that at noon the clocks
at 0 and 0" mark the same time, O at that time coinciding with 0.
If a person in the moving system starts a certain task at noon
and works until his clock shows 1 p.m., and if at that instant he
catches sight of the clock at O, which is passing by, he will find
that it registers only 12.36 p.m. So that if he regulated his work
according to the latter, he might ecasily achieve the result of
getting more than twenty-four hours into the day.

Again, if we suppose an observer situated at O’ looks at various
clocks in the fixed system as they come opposite to him, we have,
on putting in 0 O'=z=w{, t=L7, or in our example ¢=>57/3.

We shall now consider some kinematical results. The com-
ponent velocities of a point in the moving system W, wy are

d¢ dn
equal to T and I and thus
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and for @
W, = J1-wc. v
W, =w.

Thus, though the resultant velocity has the same magnitude in
each case, the directions as referred to the fixed axes are different.

As a final example, let us consider a problem of a very familiar
type. Two points 4 and 7 are moving along two rectangular lines
40 and BO, with velocities v and e, the distance 40 being equal
to @ and BO equal to b, What will be their shortest distance
apart, and when will this occur? We find by ordinary methods
that the shortest distance is (bv~aw) /. /(v*+w?), and that the
time of reaching the shortest distance is (av+bw)/ (v*+w?).
These are the distance and time as observed by a fixed observer,
but if we seek for the measurement that would be made by an
observer moving with 4 we get different results. Thus w becomes
w/f and 40 =a becomes Ba, so that the quantities given above are
to be replaced by (bv ~ aw) / /(v* +w* %) and

av 3+ bw B!
v?. s w'l ﬁAQ N
The expressions for the transformation of the acceleration are

more complicated, thus

d* ¢ dw}E (leE

dr dr  B(dt-vdz)c)

@
I

d’n dwn Y vyx

— = = + a
dv dr  E{l-vi/}* [ {l-vifc}
Supposing a wave of light diverges from a point x,v,%, at a
time £,, the equation of the spherical wave is at the time ¢

(@ = a0)" + (Y — Yo)* + (2 = 20)" = " (£ = &o)"
If we transform this by our fundamental equations, we get

Blé-&—-v(r— T+ (=10 + (7 —7)°
— =m0 (E~8) /T,
or (- 607+ (1 =10+ (7 = =
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where X=X L'=1L

vy r v T ’ ,D’\
) =;8<)—71\> JI=,8<M+7/)

Z’=,8<Z+z J[> N’=,8(N—Tv1’>.

We have thus the remarkable fact that the equations which
express the interconnection of electric and magnetic forces remain
of the same form when transferred to moving axes. This, granting
the Principle of Relativity, may be looked on as a proof of these
equations.

If we in the fixed system observe any point charge to have unit
strength, then in the moving system the charge must be observed
to have the same strength, and so we have the following state-
ment :—Let a unit charge be situated at O’ and move with it. It
will experience a mechanical force of (X', ¥', 7’) dynes. In the
fixed system we will observe a mechanical force

X, (Y- —N), B(Z+-—M),

so that we have an electric force X, 8 ¥, 87, and an electromotive
force which is B times the vector product of velocity and the
magnetic force. When the ratio v/c is small, 8 is nearly equal to 1,
and these expressions agree with those of Maxwell for the above
forces.

We now pass on to the case in which, instead of free aether, we
have present electric currents of strengths in electrostatic units
given by the components U, 7, and W. The electrodynamical
equations are then modified by the introduction of certain terms.

Thus,
X oN oM
1 Y= _
¢ ( s > 5y 0%

(L gy )2
c (at+47rl 7 5w

oz oM oL
—1 — = e— = —_—
¢ (Bt +4‘n'W> % 9y

C. 2
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and similar equations, so that
FoB(F-vs/c)
G=@G
H=H
b =B(¢-v1),

so that the four quantities c¢#, ¢G, c/l, ¢c', are cogredient with
x, Y, %, L.

We have next to consider the question of dynamics. The
system of Newton is known, by the accuracy of astronomical
predictions and otherwise, to be true, at any rate, to a very high
degree of approximation; but, on the other hand, the velocities
relative to our axes of reference which we consider in ordinary
dynamics, are very small compared with the speed of light. The
inquiry then arises, What are the laws of dynamics when we are no
longer restricted to such small velocities? We have such velocities
in the famous experiments of Kaufmann. In these experiments the
B-particles of radium moving with velocities almost as great as
three-fourths the speed of light were subjected to transverse
electric and magnetic forces, the direction of these forces being
the same. The displacement due to the electric force was in the
plane containing this force and the direction of the velocity ; the
displacement due to the magnetic force was at right angles to this
plane and was proportional to the velocity. I'rom the observations
recorded, it was found that the “mass” increased as the specd
increased.  Various theoretical formule were deduced by Abraham
and others which agreed well with these results. The formula of
Lorentz, m/ /(1 -*/¢*), or mf3, where m is the mass for slow
speeds, t.e., the Newtonian mass, gives, however, probably the best
agreements with the observed numbers.

We shall now see what account the Relativity Principle gives
of this. To begin with, the velocity changed very little in actual
magnitude during the experiment, so that the motion is what is
termed ““quasi-stationary.” In other words, suppose the particle
starts with a velocity », then if we take axes moving with velocity
v, the motion of the particle relative to those axes will be slow,
and therefore the laws of Newton can be applied to such a motion.
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in the cases x=wut; x=uf+} g% Yet the representation of such
a curve helps us very much to visualize the different relations, and
in fact we are accustomed to such a procedure in geometry, as, for
instance, when we draw the circules and tangents through them
to conices, ete.

Let the curve PQ (Fig. 7) be then sup-
posed to represent the motion of the particle .
as defined by x, and x,, If the motion be
referred to the origin moving with velocity
v, the equations

E=x cos 0+ x,cos6;
&= sin 0 -x,sin 0

show that this transformation is geometrically equivalent to
referring the system to new axes Of,, Of,, making an angle § with
the former axes respectively. This throws also a new lighﬁ on the
transformation of velocity

dx
d¢ di °
dr =1__7i dz’
¢’ dt

In fact, noticing that dw, /dx, is the tangent of the angle «,
which A7 (the tangent at ) makes with Ox,, and that d§, /d§, is
the tangent of the angle 8 which 4P makes with Og, the above
relation is easily seen to be equivalent to

tan o — tan 6

tanﬁ=1+tanmmn0

or B=o-6.
The relation between the accelerations is more complicated, but it
is easily put in the form

e (T 0 ()T
Az dg, dx dx,

We see at once that this merely asserts that the ordinary
expression for curvature gives the same result no matter what
rectangular axes are used.

Coming now to the motion of a point in a plane defined by the
three coordinates z,, x,, «,, we see that the motion can be repre-

sented by a curve in the three dimensional space of x;, «,, ,, the
projection of this curve on the plane of (x,, x,) being the actual path
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of the particle. If, now, the motion is referred to an origin
moving with velocity ¢ along the w-axis, we see that this is
equivalent to turning the system x,, x,, «, about the axis of «,, and
if the motion is referred to system moving with velocity ¢ along
the y-axis of this latter system, this is equivalent to a subsequent
rotation about the x-axis of this latter system. The two operations
thus described are not commutative. In fact, being fintte rotations,
if performed in the reverse order they would give a different result.
If, however, the velocities v and ¢’ are small compared with ¢, these
operations are commutative. This fact throws a light on the
conception of relative velocities in the Newtonian system. What
is fixed then about the path of the particle is the curve in the
(zy, x5 x,) space, which remains invariable, whilst we can choose
any axes to describe its properties.

Before dealing with the general motion of a particle, we shall
recall some results in the transformation of rectangular axes; if we
consider the scheme

b=l + Lo, + Lo
&y =my ) +my , + my 5
Es= M T+ My Tyt N33
Then the quantities [, &, etc., satisfy various relations, such as

WP+li+li=1; Lm+lmy+l,my=0; [, =m,n; — myn, ete.

A vector, that is, a directed quantity obeying the parallelogram
law, can have its three components represented by distances taken
along the three axes, and will thus obey the same transformation
as above. We may notice that in all such cases

G282+ &2= o + .2 + x,2

Certain operators obey the same laws, and may thus be called

vector operators. Thus we easily see that

i = { 2 + 1 2 + 1 o

0 ' o, ? 0y S fa,

0 0 0 2

8—5.;=m1§5] +m25§,+m36—_x3

G, 0 0 0

55;=n,é——xl+n28—%+nga—%
o o o & o 0*

s Yogr Yagy Taay Tay Ta



38 RELATIVITY

This latter result expresses the ‘‘invariance” of Laplace’s
operator. Conversely, the above transformations may be regarded
as tests by means of which we can recognise whether three quan-
tities define a vector or mot.

In the case of two vectors there are two quantities, one scalar,
and the other vector, which express invariant properties inde-
pendent of the axes. Thus, if (x, a, 2;) and (2 @’ z;) are two
vectors, which become (¢, & &) and (£ &' &) when referred to new
axes, we have at once

$1 51' + 52 Ez' + ?53 Ss' =m,2 2wy + wpy

Each side is called the inner product of the corresponding vectors,
and is equal to the product of the magnitudes of the vectors
J@E+al+a?) and /(2 + 2%+ x,%) into the cosine of the angle
between them.

Also the three quantities

’ ’ ’ e ! S a0 ’
Loy — Lykyy Lzky — X5, L&y — Loy

will be found to satisfy the test given above for vectors. They
constitute what is termed the wector product of the two quantities.
They represent a vector the magnitude of which is the product of
the magnitudes of the two vectors into the sine of the angle
between their directions, and the direction is at right angles to
the two vectors. It may be noticed that one of the vectors
employed as above may be a vector operator, thus, if (u, u, u;) is a
vector, the scalar quantity

ou;, Ou, Ouy

ox, Ox, Ox
and the vector

dug Cuy, Ou, cuy 00U, Ou

-~ A - ) A -~
)iy NGRS GER Glah N @ag wGlay

are related to the vector (u, u, u;) in a manner independent of the
axes.

The above remarks will prepare us for a consideration of four-
dimensional space, in which we have no geometrical intuitions to
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guide us, but have to rely on analytical transformations. In a
general orthogonal transformation in four dimensions

G=lno+lpa+l 2+ g2y
S: =ln @yl g+ Loy 2y + by,
ete.,

where I, =1,, etc., we have
b +0+ 07+ L7 =1
ln lm + Z]-) Z-w + Z13 123 + l“ l24 = O, ete.

and each quantity, such as /,;, is equal to the minor of that quantity
with proper sign in the determinant formed by the ’s.

We may define a “four-vector,” or set of four quantities
forming a vector, as a set satisfying the above transformation.
We may notice that the four quantities may be vector operators,

0 0 0

)

such as i, , and that

ow, Ox, ox, Ox
o + o* . o* . & @ . 0* N &* N &
o0& T Of 0L T 0fr  ox?  Ow?  om? | ow

in the same way as
R A A R i ik
‘When we come to two vectors we meet as before the inner
product @, @, + @, 2, + wywy +ww/, which we can easily verify to be
a quantity independent of the axes of reference. If, however, we
try to form the vector product, we get not four but six quantities
’ ’ ’ ’ f ’
Lo Xy — Tzdg 5 LyXy — Xy Ly 5 X1y — Ly Ty,
Ly — Xy Xyy Xply — Xy Xyy Xy — Ly Xy,
which we may write for shortness

Yas Y1 Y12 Y You Yu -
We can see at once that these quantities are transformed by the

transformation
Nas = A1 Yoz + Az Y + etic.y

where the \’s are the second minors of the / determinant.

Conversely, any six quantities transformed by what we may
call the A transformation may be called a six-vector.
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A four-vector and a six-vector can be combined in two ways to
form a four-vector. Thus, if (2, 2, 2, #,) is a four-vector, we have

RoYst 2 Yt 2Y,
RaYn+ 2 Y+ 2 Yass
ByYot 2 Yt 2 Ya,
21 Yt Ynt Y,
and
RaYhet %3 Yz + 2 Y1e s
2y Yo+ 2 Yo+ 21 Y
ZyYsut 2 Yn+ 2 Y,
fHYntReYetYs-

We can verify by actual substitution that these two sets of
four quantities each are actually four-vectors after the definition
given above. Also it may be remarked that the above statement
holds true when we take, instead of (z,, 2,, #; 2,), the vector operator
(0/0;, 0/om,, /0, 0fox,).

After this preliminary survey of four- and six-vectors, let us
return to the Relativity Transformation

& =z cos -z, sin 0

bo=2,
3= X3

&=, sin 0+, cos 0.

It is seen at once that the substitution is an orthogonal one,
and that thus a point (z, y, z) and an associated time ¢ correspond
to a point in space of four dimensions. A new meaning of certain
invariants as given above will now be at once evident. For
instance, the invariance of the expression @+ y*+ 2% - ¢’ becomes
in our new variables £+ &7+&7+ &7 =2 +a’+a’ +a which
can be interpreted as meaning that the distance of the point
(xy, Xy x5 ;) from the origin remains unaltered by the orthogonal
transformation. As other invariants we might mention the
element of arc /(dx,” + dx,’ + dx,’ + dx’) and the differential operator
for wave propagation ©°/0x®+ 0°/0x,® + ¢*/0n +¢* [0z,  When we
apply these ideas to the electromagnetic relations, a surprising
symmetry becomes evident. If we denote the electric current
components U, V, and W by U, U, and U, respectively, and the
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