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PREFACE

""THE four chapters which follow are four lectures delivered

before the Edinburgh Mathematical Colloquium on the

subject of Relativity. As many of the audience had their chief

interests in other branches of mathematical science, it was

necessary to start ab initio. The best method appeared to be

to treat the subject in the historical order ;
I have brought it

down to the stage in which it was left by Minkowski.

If I have stimulated any of my audience to pursue the matter

further, I shall be amply repaid for any trouble that I have

taken. I wish to express my thanks to the Edinburgh Mathe-

matical Society for the honour that they have conferred on me

in inviting me to give these lectures.

ARTHUR W. CONWAY.

325366
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CHAPTER I

EINSTEIN'S DEDUCTION OF FUNDAMENTAL RELATIONS

The subject of Relative Motion is one which must have

presented itself at a very early stage to investigators in Applied

Mathematics, but we may regard it as being placed on a definite

dynamical basis by Newton. In fact, his first Law of Motion

defines the absence of force in a manner which is independent of

any uniform velocity of the frame of reference. When the wave

theory of light became firmly established, and when a luminiferous

aether was postulated as the medium, universal in extent, which

carried such waves, attention was again directed to relative motion.

The questions at once arose : Are we to regard the aether as being

fixed
1

? Does matter, e.g. the Earth, disturb the aether in its

passage through it ] The attempts to answer such questions gave
rise to numerous investigations, experimental and theoretical, on

the one hand to determine the relative motion of matter and

aether, and on the other to give an adequate explanation in

mathematical terms of the results of such experiments. As an

introduction I shall briefly describe two such experimental
researches which will bring us at once to the root of the difficulty.

For those who wish to pursue the historical introduction to this

subject, I can refer to Professor Whittaker's "History of the

Aether," a book the value of which can be appreciated by anyone
who has ever wished to trace the somewhat

tangled line of thought in these matters during

the last century. I shall first refer to Bradley's

observation of the aberration of light. Let

S (Fig. 1) be a source of light and an

observer moving with a velocity represented

by 0' v. A spherical wave of light diverges
from S in all directions. Relative to

each point P of the sphere has two velocities,

one equal to the velocity of light c and in the direction

c. i



,2 . RELATIVITY

SP, and the other equal and opposite to 0'. The wave surface

relative to the observer is thus a sphere, the radius of which

is expanding at the rate c and the centre is

moving at the rate v. Or again, the wave

surfaces are spheres, the point S being a centre

of similitude. The ray direction, or direction

in which the radiant energy travels, is along

the line joining S to P (Fig. 2), whilst the

wave velocity is along S'P where SS'/SP v/c.

The position of a fixed star as seen by an

observer in a telescope moving with the earth Fi$ 2

will be the centre of the sphere of the system which passes

through 0, and the real position of the star can be calculated from

the triangle SS'O (Fig. 3) where SS'/OS = v/c

and the angle OS'S is known. We thus get

on the wave theory the same construction

for S as on the corpuscular theory. Under-

lying this explanation, however, we have

assumed that the aether in the neighbourhood
of the earth is at rest and is undisturbed by
the motion of the earth, and we are thus

driven to the hypothesis of a stagnant aether,

matter passing through without changing its properties. We now

come to the classical researches of Michelson and Morley, which

were designed to test this hypothesis.

A ray of light coming from a source A
falls on plate of glass B (Fig. 4) at an angle

of 45, and is partly transmitted to a mirror J/2,

whence it is reflected back along MZB, and

finally to the observing telescope at C by
reflexion at B

; the other part goes over BMl

twice in opposite directions and traverses the

glass at B and reaches C. Thus the two parts

of the beam are united and are in a position to

produce interference bands if BM2 is not equal to BM^ This,

however, is on the supposition that the apparatus is at rest.

Suppose, however, that it has a velocity v along AB
;
the time

taken for a light wave to travel from B to J/2 is then I / (c
-

v),

where I is the length of BM^ and it takes a time l/(c + v) to

Fig 3

Fly*
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travel back along BM{
. Thus the whole time taken is

21
(

v
*\

C \ C'J

approximately if v is small compared with c.

For the reflexion from J/
1}
M

1
will have moved to MJ whilst the

light travelled from B to M,' (Fig. 5). Thus

if t is the time taken from B to J//, B J// = ct,

J/!./ =
vt, and if M^B = I, we have I* -f vH* = c

2
t
2

,

and therefore t = l/ J(c
2 - v

2

),
and the time

taken to come back to B is

Comparing this with the expression above, we

have a difference of time equal to lv~/c
s

,

the time over J5M
l being less than M2 by that amount. By

rotating the whole apparatus through 90, the conditions are

reversed, and the time difference of path will be of the opposite

sense. In the actual experiment BMl was about 11 metres, and

on taking v to be the velocity of the earth in its orbit, a displace-

ment of 0-4 of an interference fringe width might be expected.

The unexpected, however, happened, and the observed dis-

placement was certainly less than one-twentieth of this amount,
and probably less than the one-fortieth.

Here we have at once a result at variance with our hypothesis
that the aether is at rest. An explanation was put forward

independently by Fitzgerald and Lorentz, and developed in detail

by the latter. If the force of attraction between two molecules in

motion is less when they are in motion at right angles to the line

joining them than when they are in motion along that line, then a

line such as BM^ will measure less when it takes up the position

BMZ ,
and we can easily see that this contraction (called the

Fitzgerald-Lorentz contraction) could compensate for the difference

of path in such a way that the null effect of the Michelson-Morley

experiment would be adequately explained. The mathematical

treatment of this theory in the hands of Lorentz and Larmor

shows that all experiments on the relative motion of matter and

aether must give approximately a null result.

The interpretation of these experiments received a different

treatment from Einstein, whose paper in the " Annalen der
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Physik," 4te Folge. 17, 1905, gave rise to most of the recent

theoretical investigations which are included under the head of

"Relativity." I shall now proceed to the deduction of the

fundamental equations of this theory, following the above-named

paper.

Let us consider a set of axes or frame of reference, which we

shall term (merely for the sake of distinguishing) the fixed axes,

and let there be another system of axes moving with reference to

the former, which we shall call the moving axes. We shall

suppose that the directions of these axes are parallel, and that the

origin of the latter system moves along the #-axis of the former

with a uniform velocity v. Fixing our attention for a while on

the fixed system, let us suppose that at various points of space we

are provided with clocks, the position of each clock being sup-

posed fixed with reference to the axes, i.e. they are not in motion.

We will further suppose that these clocks are synchronized, and

that the synchronization is affected by the following process, which

is in effect our definition of synchronization. Suppose that two

points A and B are provided with clocks, and that a beam of light

is flashed from A to B and reflected immediately back from B to A.

The time of departure of the beam from A being <
]5
and of arrival

at B being tz ,
whilst the final arrival at A is at the time 3,

the

times
j
and ts are indicated on the clock at A, .and t2 is indicated

on the clock at B. Then the condition of synchronization is

tz -tl
= ts

-
1.2 or t

l + t3
= 2t.2 . This of course agrees with our

ordinary definition of synchronization ;
in fact, it states merely

that the time taken for light to travel from A to B is the same as

that taken to go from B to A. This definition, obvious as it

appears, is the very foundation of this method of deducing the

relations of Relativity.

We now lay down two fundamental assumptions.
1. The equations by which we express the sequence of natural

phenomena remain unchanged when we refer them to a set of axes

moving without rotation with a uniform velocity.

This is the "
Principle of Relativity." We see at once that it

forbids us to hope ever to be able to determine the absolute motion

of our reference system. It is obviously true for the ordinary
scheme of dynamics, although it should be borne in mind that a

physical quantity measured in one system may not be equal to the
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corresponding quantity measured in the other. Thus while it is

true that the change of Kinetic Energy in each system is equal to

the work done by the forces, yet the number expressing the

Kinetic Energy itself is different in each
;

in fact, the Kinetic

Energy of a particle ra moving with velocity w along the #-axis is

\rrawr
2 when referred to the fixed system, and is equal to ^m(w -

1?)

2

referred to the other system. This, as I stated, refers only to

ordinary or Newtonian dynamics, which as we shall see, constitute

a particular case of the more general theory which we shall

develop later. This principle of Relativity is in accordance with

the null effect of the Michelson-Morley and other experiments on

the motion of the aether, and being thus in accordance with all

known physical facts, is a valid basis for a scientific hypothesis.

It will be noticed that the null effect is approximate after the

theory of Lorentz and Larmor, and that conceivably by a very

great increase in the accuracy of our instruments an effect other

than null might be observed, but that this principle makes the null

effect absolute and incapable of ever being observed. The former

theory starts from certain principles and deduces the Relativity

Principle as a final (and approximate result) ; the latter starts at

this null effect and works backwards. Both theories traverse the

same ground, but in opposite directions, and experimental science

is at present incapable of deciding between them. The newer

theory, however, appears to its admirers to be more elegant (or

according to others, more artificial) in its formal presentation.

2. The second principle we make use of is that the velocity of

of light which is reflected from a mirror is the same as that of light

coming from a fixed source. This principle, which follows from the

ordinary equations of electrodynamics, has received definite experi-

mental proof recently in an ingenious experiment by Michelson

(Astrophysical Journal, July 1913.)

We now proceed, having thus laid down our two principles.

Supposing that in the moving system we have a system of clocks

at rest relative to their axes, and that these clocks have been

synchronized by observers in this system unconscious of their own

motion. Suppose that there are two clocks in the system A and B
at rest relative to the axes, and that a ray of light goes from A to B
and is reflected back to A, the times being T, r

lt
r2 as above. Then

by the Principle of Relativity the relation r
l
- T = r2

- ^ or

r + rz =2rl must hold.
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To each point of this system (coordinates , ?/, )
there will be a

time r, the time indicated by a synchronized clock situated there.

This point has for coordinates x, y, z, referred to the fixed system,

and the clock of this system denotes a time t. We have thus to

discover relations between
, rj, , r and x, y, z, t. We can see at

once that the relations must be linear, otherwise the connections

between infinitesimal increments of space and time would depend
on the coordinates. For instance, the relation between a small

triangle as observed in one system and as observed in the other

must be the same wherever this triangle is situated, provided that

its orientation is unaltered. In other words, we ascribe no

particular properties to the origin, which may be any point of

space. This property is referred to as the homogeneity of space.

We have then as the most general form of the relations the

four equations

,y + Cz z

We could add an arbitrary constant to each equation, but without

loss of generality we can suppose the values of x, y, z, t, , ?;, f, r to

be simultaneously zero, or more precisely, suppose that all the clocks

in the fixed system are synchronized from a clock at the origin, and

the same is done for clocks in the moving system, then at the

instant that the "moving" origin 0' and the "fixed" origin

coincide, the two clocks show the time zero. Suppose now
that in the moving system a ray of light starts from the

origin 0' at the observed time r, and proceeds towards a mirror

placed at a fixed distance along the -axis. It is there reflected at

the time T
I} and arrives back at the origin 0' at the time r.2 . Let

us see how all this appears to observers in the fixed system. They
will see an origin 0' moving along the axis of x, and at an invariable

distance (which they find 011 measurement to be x') in front is

situated a mirror. The coordinates of 0' to them are (v t, 0),

and the coordinates of the mirror are (x +vt, 0, 0). A ray of

light is observed to start from 0' at a time t, and to overtake the

mirror. It is thence reflected back to the origin which is moving
forward to meet it. The reflexion thus takes place at the time
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t + x'j ( V - v), and the reappearance of the light at 0' will be at the

time t + x'j (V-v) + x'l (V+ v). We have thus three events the

departure, the reflexion, and the arrival of the light. We know

the coordinates and the times of each of them in both systems,

and on inserting in the last of the above linear equations, we get

The relation of synchronism 2r
1
= r-hT2 gives then

Let the mirror now be placed on the rj-axis, and let similar

observations be made. We have, as before, the following simul-

taneous values for the coordinates and the times :

Making use, as before, of the equation

we get B 0.

In a similar manner we get C = X and we thus have the

relation

T = D{t-VX/C
Z

}.

Referring again to the equations from which T and r
l
were

determined in the moving system, the beam of light takes a time

TJ
- T to go from the origin 0' to the mirror. Thus the coordinate

of the mirror must be equal to c (TJ
-

T),

On substituting the values of TJ and r, we get

Comparing this with our assumed linear relation V ^ - o ^-**v~ Dt

^ = A l
x + l y + Cl

we see that ^ =^ = C^ = and
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Let us next consider the relation between y and
77.

Let A be a

point on the Tj-axis, and let the distance AO' be found on measure-

ment according to the fixed axis system to be y, and according to

the moving axis to be
??.

The time t taken for light to go from 0' to

A is yj J(c~- v
2

).
The time T

I

- T in the moving system is

D (t
- vx I c'

J

),
and on substituting x lit and t = y / ^/(c

2 - v2

),
we

get

In a similar manner we find =Z>/\/l . z.

We have thus got so far with our linear relations

77
=

r = D(t-vx/c-).

The constant D, which can be a function only of v, is so far

undetermined. In the first place, we may notice that if D 9 (v),

then <j>(-v) = <j> (v), for the relation between
77

and y from

symmetry must be the same for v and - v. Now we might have

considered the moving axes to be fixed and the fixed axes to be

moving, and have repeated all the above transformations which

would have the same form, with, however, - v in place of r,

y = D X/I--IT/C- ?/

On substituting these values in the equations above, we get

so that if we denote 1 -
v~/c~

=

we have D =
l//3,

and we arrive at, finally, the fundamental equations of Relativity

= y
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Before discussing these equations, it ought to be observed that

they have been obtained by the consideration of light rays which

passed along one of the coordinate axes, and as a verification we

ought to consider the case of a ray which passes obliquely. Let a

source of light be at the moving origin 0', and suppose that a

beam of light starts from 0' at the time t and goes to a mirror

which is rigidly attached to the moving axes, and whose " fixed
"

coordinates at the time t are x, y and
,
and that the beam arrives

back again at 0' at the time tr Now if the times observed in the

moving system for these events are respectively T
O , T, ru we have,

since 00' vt,

T =$
(

t -
VX/C

2

)

We have then to verify the equation

or, to put it in a convenient form,

c(ti-t)-c(t- tQ )
=

{ (v t,
-

x) -(x-v to)},c \ J

In the diagram (Fig. 6) let 0' and A be the position of the origin

and mirror at the time
,
0" and A' their positions at the time t, and

0'" the origin at the time t
lt

all as seen

by an observer in the fixed system. Then
O'A' = c(t-tQ)-f 0"A' --= c

(t,
-

t)
: O'O" = v(t- t

) ;

0"0'" = v(t l -t). So that

O'O" : 0"0'" = O'A : 0"'A,

O'A' - 0"'A' O'A' c
and W-o-'&'-OW^
a relation which is easily seen to be identical

with that given above.

Returning to our fundamental equations, suppose the co-

ordinates of any number of points P
15

/*2 , etc., in the moving

system, and rigidly attached to it are
( r/j ), (, >;2 Q, etc., and

that the corresponding coordinates in the fixed system are

(xl yl z^, (x2 2/0
z.2 ) t

we have then equations of the type

1} etc.,
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SO that

fa-fi = *2-i, etc.

Thus any geometrical figure in the moving system appears

deformed to the observers in the fixed system. The lengths

parallel to the #-axis appear to be decreased in the ratio of 1 : /3,

whilst transverse lengths are unaltered.

Thus the ellipse
2 + fP -rf

= fP a?, the eccentricity of which is

v/ct
becomes the circle (x -vt)- + y~

= o?"

A line Ag + J}rj+C = Q transforms into Ax + /3rj + C/3 = Avt,

so that parallel lines transform into parallel lines, but the angle

between two lines is usually changed. If, situated in the fixed

system, we caught a passing glimpse of a teacher in the moving

system proving to a class that the sum of the three angles of a

triangle was equal to two right angles, we should get the impression
that he was demonstrating a rather involved question in non-

Euclidean geometry, and that both teacher and class were either all

stouter or all thinner than similar individuals in these countries,

according as the axis of x or of y is the vertical.

As regards the time, it is clear from the equation

T = (3(t-VX/C*)

that the clock at will be behind the local time at the correspond-

ing point of the moving system. To take a numerical example,

suppose that v/c
=

4/5, so that ft
=

5/3, and that at noon the clocks

at and 0' mark the same time, at that time coinciding with 0'.

If a person in the moving system starts a certain task at noon

and works until his clock shows 1 p.m., and if at that instant he

catches sight of the clock at 0, which is passing by, he will find

that it registers only 12.36 p.m. So that if he regulated his work

according to the latter, he might easily achieve the result of

getting more than twenty-four hours into the day.

Again, if we suppose an observer situated at 0' looks at various

clocks in the fixed system as they come opposite to him, we have,

on putting in 0' = x = v t, t = fir, or in our example t = 5r/3.

We shall now consider some kinematical results. The com-

ponent velocities of a point in the moving system w^ w^ are

equal to and
,
and thus

dr dr
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dg dx-vdt
% dr dt-vdx/c'

l-vWx/c
2

where Wx and Wy
are the components of the velocity as observed

in the fixed system. From the above we get the reciprocal

relation

w
t + v

w- _ __1__
*

l+vw^/c*'

another form of which is

Any one of these formulae gives us a solution of the problem of

the composition of velocities having the same direction, or of

finding the relative velocity of one moving point with respect to

another. Some remarks may be made with respect to these

equations. In the first place, if c = GO
, or, what is the same thing,

if the velocities W and w are very small compared with the

velocity of light, these formulae become

Wj.
= Wx v

Wx
= v + W$

which reproduce the ordinary equations of relative motion.

Again, if there is a second moving system, moving with respect to

the first moving system with a velocity v in the same direction,

and if wJ w '

are the components of velocity, we have

f

But

c-

wJ + (v + v') I (1 + v v'/c"
2

)

I + w' (v + v') /
c
2

(1 + vv' /c
2

)

'
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More generally, if we consider any number of moving axes, and if

the relative velocities of the origins are v, v,' v", ..., we get

+ u

*
1 + W U/C

2

where u =
{
s

l + s3/c
2 + s5/c

4

+...}/{!+ s.2/c
2 + s4/c

4

+...},

sn meaning the sum of the products of the quantities v, v', etc.,

taken n at a time. It is to be noticed that the expression for u is

symmetrical in the velocities v, v', v".... The various operations

are in fact commutative, that is, we might have taken these

velocities in any other order v", v, v', ....

For the velocity Wrj
= d^/dr we get the expression

w.

w
or W=

The resultant velocity W is given by

W*-W*+W?
iv

2 + T~ + 2 w v cos 6 - v- w~ sin
2

1 c~

~~~F^l+wvcosB/c
2

}~

where 9 is the angle between the velocity w( = Jw? + w -)
and v.

We can draw conclusions similar to those above for different axes

all moving with the same velocity v and in the same direction.

We find, however, that if the velocities are not all in the same

direction, the final result is not independent of the order in which

the velocities v, v\ ... are taken. To illustrate, let us consider a point

P, which moves with a velocity w parallel to the ^-axis of a moving

system, the origin moving with a velocity v along the -axis, and

let us compare the resultant with the velocity of a point Q, which

moves with a velocity v along the f-axis of a moving system which

moves parallel to the ^-axis with a velocity w.

We have then for P

Wv
=
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and for Q
Wx

' = >/l - ^2

/c
2

. v

Wy

' = w.

Thus, though the resultant velocity has the same magnitude in

each case, the directions as referred to the fixed axes are different.

As a final example, let us consider a problem of a very familiar

type. Two points A and B are moving along two rectangular lines

AO and 0, with velocities v and iv, the distance AO being equal
to a and BO equal to b. What will be their shortest distance

apart, and when will this occur? We find by ordinary methods

that the shortest distance is (bv~aw) / ^/(v
2 + w;

2

),
and that the

time of reaching the shortest distance is (av + bw) / (v
2
4- w).

These are the distance and time as observed by a fixed observer,

but if we seek for the measurement that would be made by an

observer moving with A we get different results. Thus w becomes

w//3 and A0 = a becomes /3a, so that the quantities given above are

to be replaced by (bv aw) / J(v
2 + w2

fi~~) and

av /3 + bw /3~
l

v2 + w- /3~
2

The expressions for the transformation of the acceleration are

more complicated, thus

d- d
w^ dw*

dr- dr /3(dt-v dx/c
2

)

d~
i)

dw y vy x

dr" dr /3
2
{1

- v x/z
2

}'

2

j3
2

{
1 - v x/c

2

}
3

Supposing a wave of light diverges from a point ocQ y zQ at a

time
,
the equation of the spherical wave is at the time t

(x
-

x,)
2 + (y- y,Y + (*- *tf

= c
8

(t
- *

)

8
.

If we transform this by our fundamental equations, we get

& - v (r
- T

)]

2 + (n
- t

/0 )

2 + (r
- T

)

2

- r
)

2
,
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so that a spherical wave of light transforms into a spherical wave

as it ought to do, after the Principle of Relativity. This identity

(x
-
x,Y + (y

-
2/ )

2 + (*
-

zo)
2 - c

2

(t
-

)

a

=
(
-

>)

2 + (n
-

*ioY + (t
- Q* - c

2

(T
- r

)

2

has been employed conversely to deduce the equations of Rela-

tivity.

We can make some interesting deductions from this identity.

If we suppose that the quantities x, ?/, z, t differ infinitesimally

from xQ, */o, z
,

tm and if we put x - XQ
= dx, etc., then we have the

following relation between infinitesimals :

If we call dx~ + dy- + dz~ - c
2 dt2 ds2

,

and d^
2 + dvf + dt?

- <r dr- = da3
,

then we have at once the relations

d n /dx dt\

~r = P(^~~ v~r }
da- \ds ds/

d^ = dy
da- ds

dj; _ dz

da- ds

dr n (dt dx

so that the differential coefficients

dx dy dz dt

ds ds ds ds

are transformed by the same transformation as x, y, z, t, or, to use

the algebraic term, they are cogredient. Obviously this is true, if

in place of x, y, z, t we had any set of four cogredient quantities.

Hence we have as examples of cogredient quantities



CHAPTER II

TRANSFORMATION OF ELECTROMAGNETIC EQUATIONS

WE pass on now to the most remarkable application of these

equations.

In free aether the electric force (X, Y, Z] and the magnetic
force (a., ft 7) are related to one another by the Hertz-Heaviside

form of Maxwell's equations as follows :

_ i a^__8^_8^- ^ dL JbZ 87
dt dy dz

'

dt dy dz

_ ] |ar_^zL _8^ _^M _dx cz

8T
~

dz 8 a.
1

'

ct dz ox'

These equations involve two others.

If we differentiate the first of each of those triads by x, the

second by y, the third by z, and add each triad together, the right-

hand sides vanish and the left-hand sides become respectively

8 1 \ 8 x c y

8 ( cL cM
d t \. c x d y

from which we deduce

SJT
cY_

ex cy

cL dM oF
-^

+ ^4--^ = 0.
ox c y d z

Here (X, Y, Z) denote the force in dynes on an electrostic

unit, and (L, J/, J\T) the force in dynes on unit-magnet pole in the

electromagnetic system.

Let us transform the second of these equations
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we have = 8-- vfti
dt ^8r ^8

8 9 v (3 9

8^
=
^8~~~7~ 8

so that the equation becomes

9F

where

In the same way we can deduce the complete set of transformed

equations in the form

cX' cN' 9J/'
rt .__ __

8r 8
rj

_j
9 }

r/

9Z/' 9A"
" =""

_1
8^' 8 M' cL'

dr 8 8
r;

^8^ _?2T 8F
8r 8 8

8r 8 8
77

a-\T
t o T77 o f7tA 91 d^

8 87; 8 ^
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where X' =X L' = L

-
c

We have thus the remarkable fact that the equations which

express the interconnection of electric and magnetic forces remain

of the same form when transferred to moving axes. This, granting
the Principle of Relativity, may be looked on as a proof of these

equations.

If we in the fixed system observe any point charge to have unit

strength, then in the moving system the charge must be observed

to have the same strength, and so we have the following state-

ment : Let a unit charge be situated at 0' and move with it. It

will experience a mechanical force of (X', Y', Z') dynes. In the

fixed system we will observe a mechanical force

so that we have an electric force X, /3 Y, /3 Z, and an electromotive

force which is /2 times the vector product of velocity and the

magnetic force. When the ratio v/c is small, /3 is nearly equal to 1,

and these expressions agree with those of Maxwell for the above

forces.

We now pass on to the case in which, instead of free aether, we

have present electric currents of strengths in electrostatic units

given by the components U, V, and W. The electrodynamical

equations are then modified by the introduction of certain terms.

Thus,

^A' \_cA
T cM

,dt Joy dz

_dM
^~87

+ 47rH/
)~^~x

C.
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. az; t

Cy cz

_ 1
cM cX cZ

Ct d z ex

_l dtf_dY cX
c t dx dy

'

If p is the volume density, we have also the equation of con-

tinuity

cV_ cV^
cW cp

ex cy cz ct

and finally

cX cY cZ
^- + T + ^r = 47rpox cy cz

3L dM cX- +- +- = 0.
ex cy cz

On transforming as before we get equations of the type

cX' \ cN 1

cM'
,C-1

47T
9 T / a

?;

etc., etc.,

where X', F', Z', L', Jf ,
JT" have the same meaning as before, and

V'= V

W'= W

We notice that U V W p is cogredient with xy zt. We may
also notice that the velocity of a convection current at any point

is given by the vector U/p, V/p, W/p, and from the above expres-

sions these satisfy as they ought the laws for the composition of

velocities.

If there is a distribution of electricity p' at relative rest in the

moving system, we have U' = V = W and U=vp and

p'
= fip(l -vz

/c-)
= p/3~

l

;
an element of volume d^ drj d trans-

forms into p dx dy dz
;
so that the element of charge transforms

into an equal element of charge, for

p' d d-r] d = p dx dy dz,
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If the charge were spread on a surface, the element of which is d*2

and direction cosines (A, yu,, v), and if the measurements in the fixed

system are d S and
(I, m, n) respectively, we have then from the

equations
d=/3dx', d-r\

= dy\ d=dz
z= IdS
= /3mdS

and so the surface density a-' and cr, on account of the equation

a-'d2 = <rdS,

which expresses the invariance of a charge, give

We have now materials for a complete transformation of any
electrical problem from one set of axes to another. We proceed
to some examples.

A unit charge fixed at 0' produces in the moving system

components of electric force as follows :

whilst L' = M' = N' = 0.

In the transformation we have

? + rf + ? = P*(x-vt)* + y' + zi

,

and we have for the electric force due to a unit charge moving
with a uniform velocity along the #-axis with a velocity v

and therefore M= - Z
c
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so that finally

P(x-vt)

Y=

y

Knowing the distribution of electricity on a conductor at rest,

we can by the above methods obtain the distribution of electricity

on a certain moving conductor. In fact, if V = V = W' = 0,

p is independent of r, and we get U=vp, F=0, W=0 and p = /3 p;
and if the equation of the conductor is /(, 77, f )

=
0, the equation

of the transformed conductor is f(fi(x
-

vt), y, z)
= 0.

Thus the surface density a-' on a conductor which has the form

of an ellipsoid of revolution is given by

where the equation of the ellipsoid is

a2
62

From previous equations we find that

where 6 is the angle which the normal to the ellipsoid in the fixed

system makes with the #-axis, is the surface density on the

conductor

which is moving with the velocity v along the x-axis. We find,

on reduction, if we put a' = a/ ft,

e

'

6
2 J (x

2

/ a'
4 + (y- + z2

) / 6
4

)

'
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The forces can easily in any case be obtained by making use of

the potential. Thus, in the electrostatic system,

X'-
dVx -

-fl

r-'fSi)
Z>

*V

"8?

where F, the potential, is a function only of f, 77, ; we get then

easily

X--/. L=0.
dx

-rc 3 z

So that in the case of electricity at rest on a moving conductor the

various forces may be obtained by differentiating a certain

potential function.

As an example, the electrostatic potential of a line of length

'21 and of charge e per unit length is given by

r + r' + l

V= e log&
+ r'-l

where the origin 0' is the middle point of the line, and

By means of the equations above we get the forces due to a moving

charged line where V has now the transformed value in terms of

x
t y, z, and t, i.e., if we put I - (31' and e = /3e (for the total charge

2el must be equal to 2eT), we have

and
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This then gives us the potential of a moving charged line, but

it also gives the potential of a charged moving conductor, the

electricity being in relative equilibrium, and the form of the

conductor being a surface of the family

V const.

This family is

= constant = 2/3 a (say).

On rationalisation we get

a-
+
p*(a*-f*)

= l '

This gives a family of spheroids, and by properly choosing I' we

get a spheroid of any required eccentricity moving with a velocity

v. An important case is when we take fi
2

(a
-

I"-)
= a2

,
or I' = va/c.

We have then the case of a moving sphere. Or, again, by taking
I' = 0, we reproduce a case given above in which we get a prolate

spheroid which gives the same forces as a moving point charge.

We shall now consider a case of the propagation of plane light

waves. If we take

X = XQ sin ^
(Ix + my + nz + ct)A

27T
Y = Y sill (Ix + my + nz + ct)

27T
Z = Z sin (Ix + my + nz + ct)A

L = L sin ^
(Ix + my + nz + ct)A

M= MQ sin (Ix + my + nz + ct)A

27T
J\ = J\\ sin (lx + my + nz + ct),

A

we have the electric and magnetic vectors for a plane-polarised

beam of light coming from the direction (/, ra, n\ the wave length

being A, and the amplitude of the component electric and magnetic
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vibrations being X Y Z0t LQ J/ JV
,

etc. On insertion of these

values in the electromagnetic equations we find that

X =m JV - nMQ

Y=nL,- IN,

ZQ
= IM - mL

equations which express the facts that the electric and magnetic
vectors are in the wave front and are at right angles to one

another.

Let us see how this train of waves would be measured by the

moving system. We find that the argument of the circular

function

2-jr

(lx + my + nz + ct)
A.

becomes

or, writing this in the form

we get
l + v I c

1+lv/c

This last equation gives the equation for the Doppler effect, and

the first three give the effect of aberration. These latter show

that since m / m = n / n, the aberration displacement is in a plane

through the o>axis.

If I' = cos (6 + e) and I = cos 0, we have

COS0 + V/C
cos (6 + e)

= 7- .

1 + v cos 6
/
c
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If v I c is small we get

cos (6 + e)
= cos + (v I c) sin2

0, or e = - v / c sin 0,

which agrees with the observations on aberration.

The relations between the values of the electric vector are

X' = X,

Y -mp(v/c)X

from which we could determine the change in the position of the

plane of polarisation with reference to the axes.



CHAPTER III

APPLICATIONS TO RADIATION AND ELECTRON THEORY

In dealing with radiation generally we start with the electro-

dynamic equations. If we differentiate the third of these equations
with respect to y, and the second with respect to z, and subtract

the latter result from the former, we obtain

from which, on making use of the fourth equation and of the

do. 8/2 8y
equation -

I

---
1

- = 0, we find
dx dy dz

In the same way we find that every one of the six quantities

JT, T, Z, L, J/, ^V is annihilated by the operator

This operator plays a part in the theory of radiation similar

to that of Laplace's operator ^ + ^ TT + ^~ir in the theory of
8 #2

8y dz2

attractions and electrostatics. In passing, we may notice that8880 8888
since , , ,

are cogredient with
, , ,

dx oy oz ot 8 1 drj 8f 8r

we have

8
2

8
2

8
2

8
2

8
2

8
2

8'
2

,

8
2

8 x2
8 y- 8 z2 8 tr 8 ? 8

rj'

2
c

~
or

2
'

I may also remark here that we owe to Prof. Whittaker a

general solution of the equation 8
2

F/8or + 8
2

Vfiy
1 + 8

2

Vjcz-
= c~2

8
2

in the form

V= I /(<& sin ^ cos $ ~^~ y sin ^ sin
(fa -{ z cos $ c, $, ^!>)

d d
<f>

Jo Jo

where / is an arbitrary function.
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If x and ^ are two general solutions of the above form, Prof.

Whittaker has also shown that any solution of the electromagnetic

equations can be put in the form

dx dy dz dt

~

dx dz dy ct

o
2

$ 3
2

\j/

cy ct

If we make use of our Relativity transformation, we find the

very interesting fact that these remarkable functions \ and
\//

transform into themselves, and are in fact " absolute invariants
"

for our transformation. It will be noticed that these functions \
and

\f/
are symmetrical about the a;-axis. We can get a more

symmetrical but not more general form by introducing six

functions, <
1}

<
2 ,

<
3 ,

i^
1? ^2 > ^v where <j and ^ are symmetrical

about the .x--axis, <j>z and ^.2 symmetrical about the y-axis, <f>3 and

\[ts about the 0-axis. These get transformed into functions

</, ^o', ^>3 ', ^/, $.'5 V^s according to the following scheme :

so that we have the curious result that these functions

</>!> ^-25 ^3? ^Ai> V'a? '/'s
are cogredient with JT, l

r

, ^, Z/, Jl/, ^V.

When we wish to treat generally the solutions of the electro-

magnetic equations we begin by introducing, after the manner of

Maxwell, a vector F, G, II called the vector potential. It is



APPLICATIONS TO RADIATION AND ELECTRON THEORY 27

defined as follows if (L M N) denote the magnetic force, we
have

M=c(-

This representation is possible on account of the fact that

If we introduce these values in the equations

1
dX dN dM

c -^
=

-^
--

~ i etc.,
dt dy dz'

we find first that

are differential coefficients of a function -
< (say), so that we have

8 < 8 F

~v j -
'.

/"o <p o^7"

8 t/ 8

^_ ecft 8//

8 z d t

3 "F" 3 V 3 ^
C/^rl. JL CiZj

From the equation h h =
8 x dy dz

and the equation + 55- + -r-^-
= c~2

^-^-
oas- oy* 8s- or

87^ dG 8/7 8 c/>

we find -r + - + -5 + c -r = 0.
8ic 8^/ 9^ o

The quantity < is usually called the scalar potential, and we

have, in terms of < and the vector (F, G, 77), a means of represent-

ing the field, convenient for many purposes. If we seek now for

the transformed quantities <', F', G', 77', we have
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and similar equations, so that

so that the four quantities cF, cG, c//, ^c"
1

,
are cogredient with

x, y, z, L

We have next to consider the question of dynamics. The

system of Newton is known, by the accuracy of astronomical

predictions and otherwise, to be true, at any rate, to a very high

degree of approximation ; but, on the other hand, the velocities

relative to our axes of reference which we consider in ordinary

dynamics, are very small compared with the speed of light. The

inquiry then arises, What are the laws of dynamics when we are no

longer restricted to such small velocities 1 We have such velocities

in the famous experiments of Kaufmarm. In these experiments the

/^-particles of radium moving with velocities almost as great as

three-fourths the speed of light were subjected to transverse

electric and magnetic forces, the direction of these forces being

the same. The displacement due to the electric force was in the

plane containing this force and the direction of the velocity ;
the

displacement due to the magnetic force was at right angles to this

plane arid was proportional to the velocity. From the observations

recorded, it was found that the " mass "
increased as the speed

increased. Various theoretical formulae were deduced by Abraham

and others which agreed well with these results. The formula of

Lorent/, m / J(l -?r/c
2

),
or m ft, where m is the mass for slow

speeds, i.e., the Newtonian mass, gives, however, probably the best

agreements with the observed numbers.

We shall now see what account the Relativity Principle gives

of this. To begin with, the velocity changed very little in actual

magnitude during the experiment, so that the motion is what is

termed "quasi-stationary." In other words, suppose the particle

starts with a velocity v, then if we take axes moving with velocity

v, the motion of the particle relative to those axes will be slow,

and therefore the laws of Newton can be applied to such a motion.
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Suppose, then, that e is the charge and that the electric force is F,
and the magnetic force is M, we have then, in the moving system,

We have thus, in the moving system, the equations of motion

where m is the Newtonian mass. If we recall the formulae

which we deduced earlier for c
2

77 / c -r and c
2

/ ? r2
,
on putting

x = and x = v, we find

i.e. m /3 y = Y

so that the mass is m /3, which agrees with Lorentz's formula

and with experiment.

To carry this theory further, we must consider the electrical

theory of inertia as applied to an electron. Suppose that we have

a distribution of electricity throughout a certain volume and

contained inside a certain surface, and let us term this system an

electron. The volume density is p, and the current vector is

(U, F, JF). This current may be simply the convection of the

electrical volume density, or it may consist partly of this and

partly of a relative motion of portions of the electron. The forces

acting will be assumed to be of two kinds (1) non-electrical,

(2) electrical. Of the first kind we will assume that they form a

system in equilibrium amongst themselves, or, in other words, that

they obey Newton's Law of equality of action and reaction or its

more general expression, D'Alerubert's Principle, as used in

deducing the equations of motion of a rigid body.* As to (2)

we assume that the expressions for them are those given by the

* An example of such a force would be a uniform hydrostatic pressure

over the boundary.
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theory of Maxwell, i.e. the mechanical forces of electrical origin

per unit volume are given by

(VN- WM)
c

c

(UM- VL).

We may also add the expression for the rate of working or

activity of these forces

A=XU+YV+ZW.
If we express the fact that these forces are also in equilibrium

amongst themselves, we get

iff

I
HI

P dx dy dz =

Q dx dydz =

R dx dy dz = 0.

If we also assume that the total electrical activity is zero, we have

I A dx dy dz = 0.

We have also the equations of the couples

(yft-zQ)dxdydz =1
ii!

I
(z P-xR)dxdydz =

(xQ-yP)dxdydz = 0.

These equations form the basis of the electrical theory of inertia

and of the motion of electrons in the same way that D'Alembert's

Principle enters into Dynamics.

To enter into this more fully would lead us too far into the

Dynamics of Electrons, but a simple example may make the matter

clearer. Suppose that an electron of charge e of any symmetrical



APPLICATIONS TO RADIATION AND ELECTRON THEORY 31

shape is moving with a slow motion along the axis of x under the

influence of an electric force Xm then the total electric force is

XQ + Xi, where X
t
arises from the motion of the electron, and so

the equation

becomes M^ P^x dy dz + I I X
i pdxdydz =

or XQ e + X
t p dx dy dz = 0.

Now, on calculating Xt
and finding the value of the integral, we

find that the equation becomes

XQ e
- mf= 0,

where m is a constant the electromagnetic mass and f is the

acceleration.

The particular shape of the formula will depend on our

assumptions as to the structure of the electron
; but for motion,

where the loss from radiation can be neglected, a convenient form

which has many arguments in favour of it is the Lorentz mass-

formula. This gives as the equations of motion of a particle

d mx

d my
j-,

dt
x/ { 1 -

(x
2 + y~ + z

2

)c~
2l
f

d mz

where F& Fy,
F

z
is the mechanical force. We may notice that if

this mechanical force is of electrical origin we have from the

assumption of Lorentz and Larmor

where e is the charge.
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If we introduce a vector Px,
P

y,
P

z ,
such that

P,

p -* y~

p.

the equations can be put into a more symmetrical shape.

Writing

d cr
2 = dt~ - c~- (dx

2 + dy~ + dz")

we get

m^ = P
z

.

We also have

m - = A
d<r-

, dx _ dv ^ dz . dt
where Px

-- + P,, -f- + P.- - c- A =
- - - -

on account of the fact that

M
and that therefore

dx d? x dy d2

y dz dz z
2
dt dz

t
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The quantity A is c~2 -

and the quantities Px ,
P

y,
P

z
and A are cogredient with a?, y, z

and t.

We shall only give one example of these equations of motion.*

Suppose that a particle of mass m describes an orbit in the plane
of (x, y), about a centre of force which varies inversely as the

square of the distance, say m
p. / r2

,
where /x is a constant ;

we have then

d y

where v2 = x* + y
2
,

or on putting *J 1 - v2

/c"
=

/3 and performing the differentiations

P'x 4- /3
9

xvv/c
2 = -

Py + /3
3yw/CZ = -

On multiplying by 02, y and adding we get

VV UL',

or =
r

Hence we have the Energy Integral

1 _2
f

where A is a constant. From which

v2 r .A uu- 2

* For many other problems see Schott, Electromagnetic Radiation.

C.
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In the same way, by multiplying by - y and a?, we get the angular
momentum integral

/3 r
1 6 = h (a constant)

which leads to-
[l+

c-2

(A
+
-)]~

2

If we put & = (1
-

/r
2

/ c
2 A2

),
we get an integral of the type

L u = 1 + e cos 0', where L is a constant.

The general effect is the same as that of a force varying inversely
as the cube of the distance.



CHAPTER IV

MINKOWSKPS TRANSFORMATION

We now come to the concluding portion of our subject, namely,
the form in which the preceding results have been stated by
Minkowski. In the fundamental Relativity transformation let us

put xz ,
a?s , , >, ,

instead of x, y, z, , r/, f respectively, and

let us further put x4 and 4 instead of i ct and i cr respectively,

i being the "imaginary" of algebra. We then get

Introducing the imaginary angle 6 given by the equations

cos 6 = /3 }
- sin O^iv /3 / c, the transformation becomes

f!
= x

l
cos ^ - x4 sin ^

S2
= X2

4
=

Cj sn + x cos .

In order to study and interpret these equations, we shall consider

first the motion of a point along a straight line ; secondly, the

motion of a point in a plane ;
and lastly, the motion of a point in

space.

The rectilinear motion of a point along the re-axis is defined by
two variables, x and t. It can be geometrically represented by a

curve, the familiar space-time graph. In attempting to represent

in the same way the relation between x
l
and x4 considered as

rectangular coordinates, we are met by the difficulty that the

corresponding graph may be wholly or partially imaginary, e.g. as
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in the cases x = ut x = ut + J gt
z

. Yet the representation of such

a curve helps us very much to visualize the different relations, and

in fact we are accustomed to such a procedure in geometry, as, for

instance, when we draw the circules and tangents through them
to conies, etc.

Let the curve PQ (Fig. 7) be then sup-

posed to represent the motion of the particle

as denned by a^ and x4 . If the motion be

referred to the origin moving with velocity

v, the equations
= x

l
cos + #4 cos ;

4
== x

l
sin 6 - x4 sin 6

show that this transformation is geometrically equivalent to

referring the system to new axes 0^, 4 , making an angle with

the former axes respectively. This throws also a new light on the

transformation of velocity

dx_
d dt

V

dr v dx

c
2 dt

In fact, noticing that dxl /dx4 is the tangent of the angle a.,

which AP (the tangent at P) makes with Ox^ and that c?i/c? 4 is

the tangent of the angle /3 which AP makes with 15 the above

relation is easily seen to be equivalent to

tan a. - tan 6
tan p z or p = a. - 6.

1 + tan . tan v

The relation between the accelerations is more complicated, but it

is easily put in the form

#6 r, , (*& Yl"
1 - **

WA *WJ\ -d^
We see at once that this merely asserts that the ordinary

expression for curvature gives the same result no matter what

rectangular axes are used.

Coming now to the motion of a point in a plane denned by the

three coordinates x
ly
x2 ,

#4 ,
we see that the motion can be repre-

sented by a curve in the three dimensional space of x
lt
xz ,

x4 ,
the

projection of this curve on the plane of (a,, x9) being the actual path
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of the particle. If, now, the motion is referred to an origin

moving with velocity v along the ce-axis, we see that this is

equivalent to turning the system x
lt

x.2 ,
x4 about the axis of a5a ,

and

if the motion is referred to system moving with velocity v along

the y-axis of this latter system, this is equivalent to a subsequent

rotation about the #-axis of this latter system. The two operations

thus described are not commutative. In fact, being finite rotations,

if performed in the reverse order they would give a different result.

If, however, the velocities v and v' are small compared with c, these

operations are commutative. This fact throws a light on the

conception of relative velocities in the Newtonian system. What
is fixed then about the path of the particle is the curve in the

(a?!, #25 #4) space, which remains invariable, whilst we can choose

any axes to describe its properties.

Before dealing with the general motion of a particle, we shall

recall some results in the transformation of rectangular axes
;

if we

consider the scheme
= l

l
x

l + I.2 x2 + I3 xs

2
=

>\
x

1 4- m.2 x2 + m3 x3

Then the quantities 119 l
zt etc., satisfy various relations, such as

l\ + 1? + If = 1
; l-> m-i + k -2. + k ms

=
', li

= m2 n3
- m3 n2 ,

etc.

A vector, that is, a directed quantity obeying the parallelogram

law, can have its three components represented by distances taken

along the three axes, and will thus obey the same transformation

as above. We may notice that in all such cases

i

2 +& + (s

2 = *i + x* + x3\

Certain operators obey the same laws, and may thus be called

vector operators. Thus we easily see that

3 3,8 3

rr- =
li r- + k + 13 ^~

3f!
dx

1
3#2 3#33333

- = m
l

- + ra2
- +m3

3.2 oxl
cx.2 ox33333

^r = n
l ; + n^

- + ns

8^3 dxl
dx2 dxs

3
2

3
2

3
2

3
2 3

2
3
2
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This latter result expresses the "invariance" of Laplace's

operator. Conversely, the above transformations may be regarded
as tests by means of which we can recognise whether three quan-
tities define a vector or not.

In the case of two vectors there are two quantities, one scalar,

and the other vector, which express invariant properties inde-

pendent of the axes. Thus, if (x1
x.z xs)

and (a;/ x x3 )
are two

vectors, which become (^ 2 3)
and (/ >' /) when referred to new

axes, we have at once

Each side is called the inner product of the corresponding vectors,

and is equal to the product of the magnitudes of the vectors

J(x* + x.? + x.
A')

and ,J(x^- + x 2 + #3

' 2

)
into the cosine of the angle

between them.

Also the three quantities

will be found to satisfy the test given above for vectors. They
constitute what is termed the vector product of the two quantities.

They represent a vector the magnitude of which is the product of

the magnitudes of the two vectors into the sine of the angle

between their directions, and the direction is at right angles to

the two vectors. It may be noticed that one of the vectors

employed as above may be a vector operator, thus, if
(u-^

u.2 us)
is a

vector, the scalar quantity

8 MI 8 u<, 8 u.>

+^ + ^-?-
ox

l ox* ox2

and the vector

8 us 8 u2 c ul
8 u3 8 u2 8 u

l

8 x2
8 xs

'

8 x3 8 X-L

'

8 x
1

8 x
}

are related to the vector (u-^ u2 u3] in a manner independent of the

axes.

The above remarks will prepare us for a consideration of four-

dimensional space, in which we have no geometrical intuitions to
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guide us, but have to rely on analytical transformations. In a

general orthogonal transformation in four dimensions

l
=

^11 Xl + ^12 X1 + ^13 ^3 + 'l4 X4

b2
=

21 X1 ' 22 X2 T ^23 ^3 ' ^24 *^4>

etc.,

where i 2
=

>ji etc., we have

*11 *21 + ^12 ^22 + Aa >3 + lu 124
=

0, etC.

and each quantity, such as Zu ,
is equal to the minor of that quantity

with proper sign in the determinant formed by the I's.

We may define a " four-vector," or set of four quantities

forming a vector, as a set satisfying the above transformation.

We may notice that the four quantities may be vector operators,8888
such as

, , , ,
and that

ox
l

cxz oxs dx4

J?!_ JL J!l _?_ J!_ _?!_
82 8

"

8|f 8f2
2

.8f3
2

8J4

2
~

dx? dx2
~ dx3

2
dx?

in the same way as

When we come to two vectors we meet as before the inner

product x
l a;/ + x2 x2

' + xs x.J + x+x^, which we can easily verify to be

a quantity independent of the axes of reference. If, however, we

try to form the vector product, we get not four but six quantities

3i>.->

which we may write for shortness

2fo ytl 'l/l'2 2/U 2/24 2/34
'

We can see at once that these quantities are transformed by the

transformation

*?23
= An ^o3 + A12 y31 + etc.,

where the A's are the second minors of the I determinant.

Conversely, any six quantities transformed by what we may
call the A, transformation may be called a six-vector.
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A four-vector and a six-vector can be combined in two ways to

form a four-vector. Thus, if (zlt 2 ,
z3, 4 )

is a four-vector, we have

*2 2/34 + % 2/42 + *4 2/23 5

Z3 2/41 + ^4 2/13 + 1 2/34 ,

*4 2/12 + 3j 2/24 + 3o 2/41 ,

1 2/23 + 2 2/31 + 3 2/12 ,

and

*2 2/12 + ^3 2/13 + 242/14,

Z3 2/23 + *4 2/24 + *1 2/21,

Z4 2/34 + 1 2/31 + *2 2/32 5

*1 2/41 + *2 2/42 + *3 2/43

We can verify by actual substitution that these two sets of

four quantities each are actually four-vectors after the definition

given above. Also it may be remarked that the above statement

holds true when we take, instead of (zlt
zz ,

z3 , 4), the vector operator

(8/a^, 8/e*2 , 9/8*3, dpxj.
After this preliminary survey of four- and six-vectors, let us

return to the Relativity Transformation

j
= x

l
cos - x4 sin 9

^4
= x

l
sin 6 + #4 cos 0.

It is seen at once that the substitution is an orthogonal one,

and that thus a point (x, y t z) and an associated time t correspond
to a point in space of four dimensions. A new meaning of certain

invariants as given above will now be at once evident. For

instance, the invariance of the expression or + y~ + - cH~ becomes

in our new variables
a

'

J + 2
3 + 3

2 + 4

2 = X* + x.? + x.? + o;4
2

,
which

can be interpreted as meaning that the distance of the point

(ajj,
#2j #35 a?4 ) from the origin remains unaltered by the orthogonal

transformation. As other invariants we might mention the

element of arc J(dx^ + dx + dxs

2 + dx?) and the differential operator

for wave propagation ff/dx? + 9
2

/8a:2
2 + d

2

/dx./ + o-/dx*. When we

apply these ideas to the electromagnetic relations, a surprising

symmetry becomes evident. If we denote the electric current

components U, V, and W by U^ U.^ and U3 respectively, and the
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volume density of electricity p by (i c)~
] U4 ,

we have then, since it

was proved that 7, F, W and p are cogredient with x, y, z, and
,

the fact that Ult
U

2 ,
US1 U4 is a four-vector. In a similar manner,

if we use the vector potential (F, G, H] and the scalar potential </>,

and if we take quantities (Fu F^ F3 ,
F4)

defined by the equations

then (Flt F, F^ F4 ) is a four-vector. We may notice in passing
that the equation of continuity

becomes

From the vector operator d/dxlt d/dxz , d/dx3, d/dx4 and the

generalized potential (Fl
F2 F2 F4 )

we can form a six-vector

dF3 _8F2 dF, dF3 dF2 dF
1

dF4 dF
1

dx.2 8a:3

'

dxs dx
l

'

dx
l

dx2

'

dx
}

dx4
'

a^__8^_ dFj. dFs

dx.2 dx4

'

dx3 dx4

'

These become respectively

dy cz/ \dz dx / \dx dy /'

or A Jf, ^, -iX, -iY, -iZ,

which we may symmetrically write

^235 ^31) ^125 ^14) ^24) ^34'

Thus the magnetic and electric forces form a six-vector.

Using the operator (d/dxlt d/dx2 , d/dx3 , d/dx4 )
and this six-vector,

we can form two four-vectors. The first is

87/34 CL4Z 87/og

8Z12 37^24
- -p -p

87/23 8Z31
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If we equate these four components to zero, we get in the

earlier notation

3 T "'7 3 VLi (jZj

dt

~
cy dz

_ c
i

dt dz dy

_1 8^
r

_8T_8X
dt dx dy

a" + r" -^ =
-

ex dy dz

In the same way, from the other four-vector which can be formed,
we can derive the other four fundamental electrodynamical

equations.

As a last example, consider the four-vector

these become on substitution

(WL-UN)
-
VL)

The first three of these represent the mechanical force on an

electric charge, and the fourth is i c~ l

multiplied by the activity.

For further examples, reference must be made to the work of

Minkowski above referred to. What we have said is, however,

sufficient to indicate the point of view of this theory. A point in

ordinary space and a definite time is represented as a point in

four-dimensional space. A moving particle is represented by a

fixed curve in this space. The question of absolute rest in ordinary
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space ceases now to have any meaning. For, in the four-

dimensional isotropic space, one set of axes is as good as another

for describing its properties. The various electrodynamical rela-

tions take their position in a manner which reveals a symmetry
which was by no means apparent in the unsymmetrical equations

founded on our experimental knowledge. The whole scheme, in

one aspect, is merely an analytical development of the Einstein

Relativity. Both would fall together if any experimental fact

appeared which would upset one, and can it not be said that the

probability of both being true is increased by this elegant

symmetry *?
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