












ELEMENTS OF THE

ELECTROMAGNETIC THEORY OF LIGHT





ELEMENTS OF THE

ELECTROMAGNETIC THEORY
OF LIGHT

BY

LUDWIK SILBERSTEIN, PH.D.
LECTURER IN NATURAL PHILOSOPHY AT THE UNIVERSITY OF ROME

LONGMANS, GREEN AND CO.

39 PATERNOSTER ROW, LONDON
FOURTH AVENUE & 30TH STREET, NEW YORK

BOMBAY, CALCUTTA, AND MADRAS

1918





PREFACE.

THIS little volume, whose object is to present the

essentials of the electromagnetic theory of light, was

rewritten, at the instance of Messrs. Adam Hilger,

Limited, from my Polish treatise on Electricity and

Magnetism (3 vols., Warsaw, 1908-1913, published by

the kind help of the Mianowski Institution) . It con-

sists principally of an English version of chapter viii.,

vol. ii., of that work with some slight omissions and

modifications. In order to make the subject accessible

to a larger circle of readers Section 3 was added. The

language adopted is mainly vectorial. This is the chief

reason of the compactness of the book which, it is

hoped, notwithstanding its small number of pages, will

be found to contain an easy and complete presentation

of the fundamental part of Maxwell's theory of light.

I gladly take the opportunity of expressing my best

thanks to Messrs. Hilger for enabling me to submit a

portion of my treatise to the English reader.

L. S.

LONDON, May, 1918.

39R12K
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1. The Origin of the Electromagnetic Theory.

The electromagnetic theory of light, now for many years
in universal acceptance, was proposed and developed by James
Clerk Maxwell about the year 1865.* By elimination, from

his classical differential equations, of the electric current

Maxwell has obtained, for the "vector potential" 51,t a

differential equation of the second order which in the case of

a non-conducting isotropic medium has assumed the form

tf^=V2
?l . - [M]

where v2 is the Laplacian (Maxwell's
- v 2

>
borrowed from

Hamilton's calculus of quaternions). Maxwell's coefficients,

the "
specific inductive capacity

"
K, and the magnetic

"
per-

meability" //,,
are not pure numbers. Let c be the ratio of

the electromagnetic unit of electric charge to the electrostatic

unit of charge. Then Maxwell's coefficients are such that,

for air (or vacuum),

K =
1, fjL

=
,
in the electrostatic system,

K = -, fjt.

= 1, in the electromagnetic system,
c

*
Phil. Trans., 1865, p. 459 et seq. t reprinted in Scientific Papers.

See also Treatise on Electricity and Magnetism, vol. ii., chap. xx.

t Which, in absence of a purely electrostatic potential, gives the

electric force by its negative time derivative, i.e. in the notation to be

adopted throughout this volume, E = -

1
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Thus, in either sysierij, Kfi -= 1/c
2

,
for air. Now, from his

above equation which in the case of plane waves, for instance,

reduces to

Maxwell concluded at once that the velocity of propagatio
of electromagnetic disturbances should be

in any medium, and therefore, in air, v = c.

Thus Maxwell has arrived at the capital conclusion that
'"

the velocity ofpropagation in air [or in vacuo] is numerically

equal to the number of electrostatic units contained in an

electromagnetic unit of electric charge ". .The dimensions

of this " number
"

c, or ratio of units, are obviously those of

a velocity. For, by what has just been said, we have the

dimensional equation

[c
2
*
2
]
=

[a;
2
]

where # is a length and t a time.

Now, the experimental measurements of Kohlrausch and

Weber,* famous in those times, have given for the ratio of

the two units of charge the value

c = 310740 km. sec." 1 = 3-107 . 1010 cm. sec." 1
,

or rather, after account has been taken of W. Voigt's correc-

tions (Ann. d. Phys., vol. ii.), 3'Hl . 10 10 cm. sec." 1
. Max-

well quotes also the value obtained from a comparison of the

units of electromotive force t by William Thomson (1860),

* Kohlrausch and Weber, Elcktrodyn. Maassbestimmungen, etc ;

W. Weber, Elektrodyn. Maassbestimmungen, insbesondere Widerstand-

messungen.
f An electromagnetic unit of electromotive force contains 1/c electro-

static units.
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c = 2-82 . 1010 cm. sec.' 1
,

and the value which he has later (1868) obtained himself from

a comparison of the same units,

c = 2-88 . 1010 cm. sec." 1
.

These figures Maxwell has compared with those obtained

for the velocity of light in air and in interstellar space :

3-14 . 1010 cm. sec." 1
. (Fizeau).

3'08 ,,
. (astronom. observations).

2-98 . (Foucault).

The agreement of the light velocity with that ratio of units

c has thus turned out to be satisfactory. And, although
Maxwell himself states it very cautiously by saying only that

his theory is not contradicted by these results, there can be

but little doubt that the said agreement has had a decisive

influence upon the birth of the electromagnetic theory of light.

And later measurements of both the velocity of light and
the ratio of units have by no means shattered the belief in

the agreement and even the identity of these two magnitudes
which, to judge from their original physical meaning, would
seem to have hardly anything in common with one another.*

For a transparent isotropic medium differing from air

through its dielectric
" constant

"
K, and showing but a

negligible difference in p, Maxwell's theory gave the velocity
of light c/ >JK, where K is taken in the electrostatic system
and is thus a pure number. The refractive index of the

dielectric medium with respect to air should therefore be

given by

*
Many numerical data, together with the bibliography of the subject

up to 1907, will be found in Encyklop. d. mathem., Wiss., vol. v., part 3,

p. 186 et seq. ; Leipzig, 1909. Interesting details will be found in Prof.

Whittaker's precious History of the Theories of Aether and Electricity,

chapter viii., Longmans, Green & Co., 1910.

1
*
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In order to test this predicted relation, Maxwell quotes the

only example of paraffin. For solid paraffin Gibson and

Barclay have found

K = 1-975.

On the other hand Maxwell takes the values of the refractive

index n found by Gladstone for liquid paraffin (at 54 and

57 C.) for the spectrum lines A, D, and H, from which he

finds, by extrapolation, for infinitely long waves

n = 1-422.

He takes infinitely long waves in order to approach as well

as possible the conditions of the slow processes (static or

quasi-static) upon which the measurements of the dielectric

coefficient K were based. Putting together the values thus

obtained,

n = 1-422
~

= 1-405.

Maxwell confesses that their difference is too great to be

thrown on the experimental errors ;
he does not doubt, how-

ever, that if JK is not simply equal to the refractive index,

yet it makes up its essential part. He expects a better agree-

ment only when the grain structure of the medium in question

will be taken into account.

It is universally known that Maxwell's predictions have

found a splendid corroboration a quarter of a century later,*

in the famous experiments of Hertz who has not only con-

firmed the existence of electromagnetic waves, but also verified

the approximate equality of their velocity of propagation with

* In 1889. Hertz's papers are reprinted in vol. ii. of his Gesammelte

Werke, under the title, Untersuchungen iiber die Ausbreitung der elek-

trischen Kraft ; Leipzig, 1892. English version in Miscellaneous Papers,

translated by Jones and Schott.



ELECTEOMAGNETIC THEORY OF LIGHT 5

that of light by measuring the length of stationary waves and

by calculating, on the other hand, the period of his electric os-

cillator by the well-known approximate formula T JLG.c

The agreement was satisfactory ;
a better one could, at any

rate, not be expected, seeing that the self-induction and the

capacity of the oscillator (L, C) entering into the above

formula corresponded to quasi-stationary conditions while

Hertz's oscillations were of a rather high frequency. More-

over, it is well known that Hertz and his numerous followers

have imitated, with short electromagnetic waves, almost all

the fundamental optical experiments.

2. Advantages of the Electromagnetic over the

Elastic Theory of Light.

It will be well to acquaint the reader with certain conspic-

uous advantages offered by the electromagnetic as compared
with the "elastic

"
theory of light, i.e. the theory based upon

the assumption of an elastically deformable aether. In

doing so we shall by no means attempt to give here the com-

plete history of the luminiferous aether, but shall content

ourselves with sketching a certain fragment of that compli-
cated and interesting history, viz. that concerning the question
of longitudinal waves (which had at any cost to be got rid of)

and of the so-called boundary conditions. With this aim in

view it will be enough to start from Green's work leaving

aside the earlier investigations of Fresnel, F. Neumann, and

others.

Green's * aether is a continuous elastic medium endowed

* G. Green, On the Laivs of Reflexion and Refraction of Light at the

Common Surface of two Non-crystallized Media, Cambridge Phil. Trans.,

1838, reprinted in Mathematical Papers, pp. 245-69. (In this paper

Green denotes our following n by B and U + ~wby A.) On the Propaga-
8
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with a certain resistance against compression k, i.e. with a

compressibility I/k, with an elasticity of shape or "
rigidity

"

n, and, finally, with a density, or inertia for unit volume, p.

In isotropic bodies or media k, p, n are ordinary scalars, while

in crystals n has in different directions different values or is,

in modern terminology, a linear vector operator ; k, p retain

their scalar character. In such an aether, two kinds of waves

can exist and propagate themselves independently of one

another, viz. longitudinal or dilatational waves, with the

velocity

and transversal or distortional ones, with the. velocity

in the case of isotropy. Owing, however, to the discovery
of the phenomena of polarization by Malus, Arago, and

Fresnel, the physicists have convinced themselves that the

luminous oscillations must be purely transversal. In order,

therefore, to harmonize the theory with experience it has been

necessary to get rid of the longitudinal waves. At first sight

it would seem that it is enough to simply assume that only
the transversal oscillations of the aether, and not the longi-

tudinal ones, affect the retina. This, however, \vould not

solve the difficulty. In fact, it can easily be shown that in

the process of refraction at the boundary of two optically

different media, purely transversal vibrations of the aether

in the first medium,'* penetrating into the second, would split

into two wave trains : a transversal and a longitudinal one.

tion of Light in Crystallized Media, Cambridge Phil. Trans., 1839, re-

printed in Math. Pap., pp. 293-311.

*To wit, those contained in the plane of incidence.
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The velocities of propagation of these refracted waves being

different, the corresponding two rays would make with one

another, in general, a non-evanescent angle ;
each of these

rays on emerging from the second into the first medium,

through any other boundary, would again be split into two :

one consisting of transversal and another of longitudinal vibra-

tions, and the two rays of transversal vibrations thus origin-

ated would then certainly be accessible to our senses. In

short, we should have a peculiar phenomenon of double re-

fraction of light in an isotropic body. No traces, however;
of such a phenomenon have ever been found experimentally,.

The longitudinal waves, therefore, had to be got rid of in a

more radical way.

Now, the mathematical investigation of the subject has

shown that the superfluous dilatational wave in the second

medium dies away almost completely within a few wave-

lengths from the boundary surface if it is assumed either that

(1) The velocity of propagation v' of the longitudinal vibra-

tions is very large as compared with the velocity v of the

transversal ones, or

(2) That this ratio, v' : v, of the velocities is very small.

As will be seen later on, William Thomson has established

(1888) the physical admissibility of the second assumption.

Green, however, was convinced that the first was the only

possible assumption, since he did not see his way to admit a

negative k, i.e. a negative compressibility : a body endowed

with a negative k would, at the slightest difference between

its own pressure and that of its surrounding medium, expand
or shrink indefinitely. For Green, therefore, the lower limit

of k has been k = 0, and consequently, the lower limit of the

ratio of the two velocities, by [1] and [2],

He has thus been compelled to adopt the first of the two
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assumptions, viz. that the dilatational waves are propagated
with a velocity which is enormously greater than that of the

transversal ones, in other words, that the ratio of the coefficients

k/n is very large. In this manner Green's aether has become
similar to an almost incompressible jelly.

Next, in order to obtain from the differential equations of

motion of his aether and from the boundary conditions, the

laws of reflection and refraction at the interface of two iso-

tropic media 1 and 2, Green introduces the supplementary

assumption that the rigidity of the aether in the two media

is the same, while its density has different values,

This gives for the intensities of the reflected and the refracted

ray, in the case of incident vibrations normal to the plane of

incidence, two formulae identical with Fresnel's formulae for

light polarized in the plane of incidence which are notoriously
in good agreement with the experimental facts. Thus far,

however, Green makes no use of his assumption k/n equal to

a large number
;
for in the case in question the longitudinal

waves do not enter into play. They reassert themselves only
when the incident light oscillates in the plane of incidence.

Now, the formulae which in the latter case follow from

Green's theory, do not agree with the corresponding Fresnel-

ian formulae and deviate very sensibly from experiment ;
in

fact, they give for light reflected under the "angle of polari-

zation
"

an intensity which differs too much from zero.*

This is a serious objection against Green's theory.
The substitution, for Green's n

1
= n.2 , pl =j= p2 ,

of the opposite

assumption of Neumann or of MacCullagh :

* Fresnel's formula gives zero for that intensity, while actually but

a certain minimum is observed under the "angle of polarization";
this minimum, however, although still observable, is very weak as

compared with the intensity of the incident light, and is most likely

due to a heterogeneous transition layer at the interface of the two

media.
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Pi
=

P2> U
l 4= W2

with the retention of all the remaining points of Green's

theory, does not help the matter. In fact, the investigations

of W. Lorenz (1861) and of Lord Eayleigh (1871), based

upon the last assumption, lead to a result which emphatically
contradicts experience, viz. to a formula for the ratio of

amplitudes of reflected and incident light which, in the case

of but slightly differing refractive indices of the two media,

can be written

A r : Ai = const, sec2
i . cos &i*

where i is the angle of incidence. This ratio vanishes for

i == 7T/8 and for i = 3ir/8 ;
thus we should have two different

angles of polarization a phenomenon which nobody has

ever observed.

It has been necessary, therefore, to return once more to

Green's assumption ^ = w
2 , p1 =|= p2 ,

and to meet the reflection

and refraction difficulties by modifying Green's theory in some

other direction. This has been done by Sir William Thomson
who has replaced Green's jelly by a kind of. foam aether which

will be described presently.

Thus far we have been concerned with isotropic media. In

anisotropic media, viz. in optically biaxial crystals, Green's

aether t had three principal rigidities, n
lf

w
2 ,

n
s , a single

scalar coefficient k (as in isotropic media), and a constant

density p, the coefficient k being again very large as com-

pared with each of the three rigidities. We know already that

under such circumstances the velocity (v') of longitudinal
waves is very great as compared with the velocity (v) of trans-

versal ones. For the latter, Green's theory gives at once the

universally known Fresnelian equation

* W. Lorenz, Pogg. Ann., vol. cxiv., 1861, pp. 238-50; Lord Rayleigh,
Phil. Mag. for August, 1871, see especially p. 93.

t On the Propagation of Light in Crystallized Media, already quoted,

p. 200.
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7 -2 72 7 'I

___!! , .__*_.. . _ *
[3]

v1 - njp v'
1 - n

2/p v 2 - n
s/p

a result which is in excellent agreement with experimental

facts. (In this formula, Z
lf

Z
2 ,

Z
3 ,

are the direction cosines of

the wave normal with respect to the principal rigidity axes.)

Thus far the propagation of light in a crystalline medium.

Difficulties, however, arise in connexion with the treatment

of reflection and refraction at the surface of a crystal, in con-

tact with, say, an isotropic medium. For optically uniaxial

crystals (n.2
= n

3 , n^ =j=w2 ) one could, after all, accept Green's

assumption according to which the principal rigidity of the

crystal (n^ corresponding to its unique rigidity axis should

be equal to the rigidity of the aether in the adjacent isotropic

medium. In the case, however, of optically biaxial crystals,

having three different rigidities nv n.
2 , n^ one could hardly

privilege any one of them, i.e. put it equal to the aether rigid-

ity in the adjacent medium. And if we wished to meet this

difficulty by assuming that the densities of the aether in the

crystal and the adjacent medium are equal to one another,

the previous, undesirable result would reappear, viz. two

different angles of polarization (as in the case of ordinary,

non-crystalline reflection).

Lord Rayleigh* attempts to improve this weak point of

Green's theory by assuming that the aether within biaxial

crystals moves so as if it had in three orthogonal directions

three different principal densities, p lt p2 , pa ,
and ordinary

scalar elastic coefficients fc, n, independent of direction and

equal for all media. In passing from one medium to another

it is the aethereal density only which is changed. This theory,

involving a peculiar dependence of the aether's inertia upon
the direction of motion, is based upon reasonings concerning

the mutual action of the aether and the molecules of ponder-

able matter. And it is precisely that interaction which is

supposed to be the source of those directional properties of

* Phil. Mag. for June, 1871.
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the aether's mass. Now, Rayleigh's differential equations

give for the square of the velocity of propagation of all possible

waves (without, thus far, the exclusion of the longitudinal

ones) the cubic equation
*

2 2 72 J
, ^3 __ __ rj.1

"*"
* -

-
- *

__
F* - B/Pl V* -

B/p.2

""

V* - B/p3

-
(A

- B)V*

where B = n, A k + 4%/3. Introducing here again, after

Rayleigh, Green's original assumption A/B = oo
,
we have

that is to say, for one of the three waves, viz. the longitudinal t

V = v' = QO
,
as in Green's theory, and for the remaining

two, transversal ones, the cubic equation

Vlfi V/f* V/P>
t?s -

B/p,

But this equation does not agree with Fresnel's equation

[3] which is notoriously a faithful representation of the ex-

perimental facts. Thus, Rayleigh's theory, in its turn, had

to undergo further radical modifications.

Let us return for another moment to the more general

equation [4], We see at a glance that it will yield, with any

degree of approximation, the required Fresnelian equation,

(k
4\

or + -
),
instead

n 3/

of being very great is, on the contrary, very small, that is to

say, if we decide in favour of the second of the above alterna-

tives which was rejected by Green a priori.

It is precisely this assumption (2), page 7, i.e.

k 4
A : jB = - + 5

= a very small number,
n o

*
Glazebrook, Phil. Mag. (5), vol. xxvi., p. 521.
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which is the starting-point of Thomson's aether theory (1888).*

It is true that previous authors have already used that

assumption. Fresnel has ascribed to his aether now an evan-

escent and now an infinite compressibility. Thomson, how-

ever, was the first to prove the physical possibility of that

4
assumption. In fact (2) requires at any rate A/B<^, and

therefore &<0, that is to say, a negative compressibility, and

that was the reason why Green thought that the aether's

4.

stability calls for A/B > .5.
Thomson proves, however, that

o

this is by no means a necessary condition of the stability of

the aether.

To see this, let us assume, after Thomson, that the aether

either occupies a limited region of space and is fixed at its

boundary, or extends indefinitely in all directions but that the

displacements, , etc., of its particles decrease in such a manner
that the products dfix, etc., become infinitesimals at least of

the third order. Then the expression for the work to be

done upon the aether in deforming it infinitesimally from its

natural (or neutral) state can, by partial integration, be reduced

to the form

W =
fftAo*

+ ZB^\dr . . . [5J

where o- is the dilatation, or the div of the displacement, and

<o the elementary rotation, or the ^ curl of the displacement,
the integral being extended over the whole volume (T) of the

aether. Now, this work will be positive, and therefore the

neutral state of the aether a state of stable equilibrium, pro-
vided that A and B are positive. The lower limit of each of

these coefficients is thus zero, so that the ratio A : B, i.e. the

ratio of the velocities of longitudinal and of transversal waves

* Sir William Thomson, On tlie Reflexion and Refraction of Light,

Phil. Mag., vol. xxvi. (November, 1888), pp. 411-25.
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can be made as small as we like. It' the free aether is attri-

buted a certain density p, its rigidity must be made so great

as to give, in round figures, *JB/p = 3'1010 cm. sec.' 1
,
and

(in Thomson's theory) A very small as compared with that

rigidity, so that k, the inverse of compressibility, is negative
4.

and its absolute value but insensibly smaller than ^ B. With
o

regard to stability, an aether thus conceived would resemble a

mass of foam filling out the interior of a rigid shell or closed

vessel and once and for ever attached to its surface. Owing
to this analogy, pointed out by Thomson himself, his aether is

known as the foam-cether. In application to the reflection

and refraction of light at the boundary of two isotropic media

it gave at once the two groups of Fresnelian formula, for

vibrations contained in and perpendicular to the plane of in-

cidence. In deriving these formulae Thomson assumes that

the rigidity B has in both media the same value which, owing
to the structure of the said aether, is also a direct consequence
of the continuity of the tangential component of the pressure

across the interface.

The conception of the foam-aether, combined with Ray-

leigh's theory, mentioned a moment ago, i.e. with formula [4]

for small A : B, leads to a system of crystalline optics agree-

ing with experiment, viz. giving not only Fresnel's equation
for the velocity of propagation within crystals but also re-

flection and refraction formulae identical with the correspond-

ing formulae of the electromagnetic theory.

Of all the mechanical or "
elastic

"
theories of light hitherto

invented, Thomson-Rayleigh's theory can, at any rate, claim

to be the best.

The purpose, however, of bringing before the reader this

brief historical sketch has been of another kind, viz. to help
the reader to perceive the superiority of the electromagnetic

theory over the elastic theories of light. We have seen, in

fact, what desperate struggles the elastic theory had to sus-

tain against the intrusive and obstinate longitudinal waves,
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and how many difficulties it had to overcome in connexion

with the boundary conditions and with crystalline optics.

Various hypotheses as to the particular properties of the

aether in homogeneous media and as to its behaviour in op-

tically different bodies had to be tried and rejected. And
that variety of concepts would be even more striking if our

historical sketch were fuller. Against this the electro-

magnetic theory of light, based upon Maxwell's differential

equations, has the great methodological advantage that it

requires, neither for the abolition of the longitudinal waves

nor for the establishment of the boundary conditions, any

supplementary hypotheses. In fact, the waves deduced from

Maxwell's equations are purely transversal, that is to say,

both the oscillating vectors, E and M, are, in an isotropic

medium, normal to the direction of propagation.* And the

boundary conditions for each of these vectors follow directly

from these equations in a perfectly definite way, provided
that the ratios of the coefficients K and /z for the two adjacent

media, 1 and 2, are known. The elastic theory looked for

the origin of the optical difference of the two bodies either

in the difference of the densities, pl =^p%. or in that of the

rigidities, n-^ =|= n, of the aether contained within these bodies.

The electromagnetic theory needs in this respect no hypo-
theses. It is known from experience that at least all the

transparent bodies have very nearly equal magnetic permea-
bilities (/A

=
1), namely, the same as the vacuum, while they

differ greatly with regard to their dielectric coefficients or

permittivities K. It is therefore perfectly natural that the

electromagnetic theory throws the optical difference of bodies

upon the permittivity K, and not upon the permeability /*.

It is true that the values of K, in its primary meaning, are

known experimentally only from quasi-static processes or

such as imply electromagnetic waves considerably longer

than the proper light waves. But, at any rate, the funda-

* Vide infra, p. 20,
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mental, qualitative choice of K, and not of
ft,-

as the co-

efficient decisive for the optical behaviour of different bodies,

is not built upon a hypothesis but is based upon experience.

It is well known that for a small number of bodies the

permeability /x,
derived from quasi-static or slow processes,

acquires considerable, and sometimes even enormous values.

Experience has taught us, however, that in considering

optical phenomena, i.e. very short electromagnetic waves, we
have to put

for all bodies, without the exception even of cobalt, nickel,

and iron. In other words, in presence of rapid luminous

vibrations, all bodies behave with respect to their magnetic

permeability as empty space itself.

While the elastic theory has ascribed the optical anisotropy
of crystals at one time to the aether's rigidity, and at another

to its density, the electromagnetic theory attributes it entirely

to the dielectric coefficient, putting again /x
= 1 for all direc-

tions, and treating K, in full harmony with experience, as

a linear vector operator. In optically uniaxial crystals this

operator is axially symmetric, and in optically biaxial crystals

it has three mutually perpendicular principal axes to which

correspond three different principal permittivities Klt
K

z ,
J5"

3
.

Fresnel's equation for crystals, as was shown by Maxwell

himself, follows rigorously from the electromagnetic theory
without any auxiliary hypotheses. And with the help of the

vectorial method Maxwell's simple proof can be still further

abbreviated.

For ordinary reflection and refraction of light the electro-

magnetic theory gives at once both groups of Fresnel's

formulae. Also the results deduced from the electromagnetic

theory for crystalline refraction are in harmony with experi-

mental facts.

Maxwell's monumental work, his original electromagnetic
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theory of light, calls for certain modifications or additions

only when one comes to face the problems of the optics of

moving bodies, of dispersion and absorption and of magneto-
and electro-optics. The process of light emission itself lies, of

course, outside the frame of Maxwell's original theory. These

more refined, and at the same time less solidly built parts of

optics will not be treated in the present little volume, its

purpose being to acquaint the reader only with the chief points
of the subject.

3. Maxwell's Equations. Plane Waves.

The reader is supposed to have a certain knowledge of the

elements of the theory of electricity and magnetism. Here,

therefore, it will be enough to recall the fundamental differen-

tial equations upon which the whole of our subject is based.

Maxwell's equations, in Hertz-Heaviside's form, for a trans-

parent (isolating) homogeneous medium, are, in vector lan-

guage,

K = c. curl M ; -^-7 c. curl E
;

I

vt ut f \1)

div (ZB) = div M =
, J

where the vectors E, M, stand for the electric and the

magnetic forces, and c 3*1010 cm. sec." 1 is the light velocity

in empty space. For isotropic media, K is an ordinary scalar,

the permittivity, and in the most general case of a crystalline

medium, K is a (self-conjugate) linear vector operator which

can be called the permittivity operator. As to the magnetic

permeability, we have, in accordance with what has been

said in the preceding section, assumed it to be equal to unity,

as for empty space. In Cartesians, Elt etc., Mlt etc., being
the components of the vectors along the axes of x, y, z* coin-

ciding with the principal axes of K, the above equations are

*
Right-handed system.
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*l
c Si

s

W

(I
1

)

= 0.

In the case of isotropy K^ = K>
2
=

K.^
= an ordinary scalar

7T. The last two equations will be shortly referred to as the

solenoidal conditions. A glance upon (!') suffices to show
the waste of paper (and of time) involved in the Cartesian

expansion of formulae, (1) in the present case, which are, by
their intrinsic nature, vectorial.*

As to the immediate general consequences of (1), it will be

enough to mention those concerning the electromagnetic energy
and its flux. The density of energy is, in the general case of

a crystalline medium, given by

-W) . . . (2)

Now multiplying (scalarly) the first of (1) by E, the second

by M, and adding both, we have

1 du

cdf
= E curl M - M . curl E = - div VEM.

Thus the flux of energy, per unit time and unit area, is seen

to be

F = c VEM . (3)

* The Cartesian splitting will be avoided as much as possible. Those

readers who are not familiar with vectors can acquire whatever is

necessary to follow the present deductions by reading chapter i. of

the author's Vectorial Mechanics, Macmillan, 1913.

2
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<

This vector, c times the vector product of E and M, is uni-

versally known as the Poynting vector. It is this vector

which, by its direction, defines the optical ray, in an isotropic

medium as well as in a crystal. If E points upward and M
to the right, the flux, and, therefore, the ray is directed forward.

The intensity of light at a given point is measured by the time

average of the density u of electromagnetic energy.

As a preparation for the following sections we need only

those integrals of the equations (1) which correspond to plane
waves. Let the unit vector n be the wave-normal, and let the

scalar distance s be measured along n. Then, by the very
definition of plane waves, the vectors E, M, depend only on s

and the time t. Under these circumstances the Hamiltoniari

V becomes

and, therefore, for any vector R,

curl R = VVR = Vn
OS

and div R = vR = n -.
OS

Thus, for any plane waves, equations (1) become

: = V = - Vn
7 ^i

'' W c It ^s
J

or, since n is constant in space,
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1 VnM ;
1 >* = VEn, '. (4a)

<)S C <> <)S

In what follows we shall be concerned with monochromatic

light, i.e. with simple periodic waves. Then E, M are pro-

portional to eim(s
- vt)

,
where i = ,J

-
1, m = const. (

= 2?r

divided Jby the wave-length in the given medium), and v the

velocity of propagation, so that is the refractive index of

the medium. Thus

3 3= - imv, = im,M ds

and the equations (4a) become, independently of m,

?#E = VMn;
v
- M = VnE.

c c

The solenoidal conditions (46), which now require A'En
= Mn = 0, are already satisfied,* since nVMn = nVnE = 0,

identically.

Let D be the dielectric displacement, i.e.

D = KE.

Then the last pair of equations will become

-D = VMn; ~M = VnE (5)c c

These will be our fundamental equations, valid for plane
waves of wave-normal n, in any homogeneous medium, be it

* The trivial case v = being, of course, disregarded.

2 *



20 LIGHT-VECTOES AND RAY

isotropic or crystalline. They contain, as a consequence, the

solenoidal conditions

Dn = 0, Mn =
0,

whose plain meaning is : the magnetic force and the dielectric

displacement are perpendicular to the wave-normal, i.e. are

contained in the plane of the wave. In other words, M
and D (not E, in general) are purely transversal.

Again, multiplying the first of (5) by M, and the second by
E, we have

MD = EM = 0,

i.e. M j_ E, D. But, in general, En ^ 0.

We shall return to the general relations (5) when we come
to treat, in detail, the optical properties of crystals.

For the present let us confine ourselves to isotropic media.

Then D coincides with E in direction, being simply K times

E. Thus, in isotropic media, we have not only E j_ M and

M _L n, but also E _L M. In short, E, M, n, are all mutually

perpendicular. Again, multiplying, say, the second of (5)

by M, we have

V
-M* = MVnE = nVEM . (6)c

or also, by (3),

vM'2 = nF (6a)

From (6) we see that nVEM is always positive, i.e. that

E, M, n

is a right-handed system of orthogonal vectors.

And since F is concurrent with n,

E, M, ray

is also a right-handed system.
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Further, multiplying the first of (5) by E, and remembering
that D = KE, we have

-KE* = nVEM = -M*.
c c

Thus KE* = M*, . , .. , . . (7)

i.e. half of the energy is electric, and half magnetic.
Waves satisfying the latter condition together with E j_ M

are called pure waves. The density of electromagnetic energy,

^KE2 + M'2
,
now becomes

u = KE* = M* . .

'

, . (8)

In order to obtain the velocity of propagation v, elimin-

ate from (5) either M or E. Thus, remembering that n2 = 1,

= VnVEn = E -
(En)n,

and since En = 0,

the well-known result.

Finally, the flux of energy can be written, again by the

second of equations (5),

r2 r2 BJ2

F = C
-VEVnE = n,V V

i.e. by (8) and (9),

F = u:vn = tiv, -.' . ,
v

(10)

where Y is the velocity of propagation in magnitude and
direction.

This simple formula can be read : the electromagnetic
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energy is carried forward with the vector velocity Y, as if it

were a fluid of density u.

4. Reflection and Refraction at the Boundary of

Isotropic Media; E in Plane of Incidence.

Since any vibrations of the electric vector E (and of its

magnetic companion) can always be split into two rectilinear

vibrations in two mutually perpendicular directions, it is

possible, and convenient, to treat separately the two cases of

monochromatic plane waves of rectilinearly polarized incident

light : 1st, E parallel, and 2nd, E perpendicular to the plane
of incidence. As concerns M we know already that it is en-

tirely determined by E and by the direction of the ray, its

intensity being given by M'2 = KE'2
,
and its direction by the

circumstance that, in each of the adjacent media, E, M, ray
is a right-handed orthogonal system of vectors.

Let us begin with the first case, E in plane of incidence.

Let the interface of the two isotropic media, whose permit-
tivities (corresponding to the given frequency) are K and K',

be a plane. Take this as the y, z plane, and let the normal

to the interface drawn towards the first medium (K) be the

axis of positive x. Let the plane waves arrive from the first

medium (K) towards the second (K'). It will be convenient

to take the 2-axis along the intersection of one of the wave

planes with the boundary. Then x, y will be the plane of

incidence. Denoting the angle of incidence by a, the angle
of reflection by Oj, and the angle of refraction by ft (Fig. 1),

use the abbreviations

a = - cos a, a
l
= cos a

1?
a' = - cos ft

1) = sin a, 6
X
= sin a

l5
b' sin

ft,

Then the distances measured along the incident, the reflected,

and the refracted rays will be
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ax -f by, a^x + b^, a'x + b'y,

23

respectively. If, therefore, v and v' be the velocities of pro-

pagation in the first and the second medium, i.e. by (9),

then E, M will be simple periodic functions of the arguments
ax + by

- vt for the incident, a-^x + b-$
- vt for the reflected,

and a'x + b'y vt for the refracted wave. Thus, g and g'

being constant factors, the vectors E and M will be propor-
tional to the exponential functions

exp. ig(<

exp. ig(al
x + b^y

-

exp. ig'(a'x

+ by -
vt) in

b^y
-

vt)

b'y
-

v't)

the incident rayl

,, reflected ray
refracted rayj

. (11)

K

FIG. 1.

The electric force being in the plane of incidence (plane of

Fig. 1), the magnetic force will be parallel to the axis of z.

Let its intensity, taken positive along the positive z-axis, be

denoted by M for the incident, by Ml
for the reflected, and by

M' for the refracted wave. Let E, Ev E' be the correspond-

ing symbols for the electric forces, taken positive in the direc-

tion of the arrows. Then, by the second of equations (5),
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E = V
M, E, = -Mlt

E' =
V
M' (12)

c c c

The differential equations (1) being now all satisfied, for

each wave separately, it remains only to take account of the

boundary conditions. These are, in virtue of the equations

(1) themselves, as is well known :

1st, the continuity of the whole magnetic force M,*

2nd, the continuity of the tangential component of the

electric force E, and

3rd, the continuity of the normal component of the dielectric

displacement D = KE.

Thus we have, for x = 0,

M+M1
= M'

t ....... (a)

E cos a - E
1
cos a

x
= E' cos ft . . . (b)

K(E sin a + E
l
sin 04)

= K'E' sin ft . . (c)

Since these conditions are to be satisfied for every y and for

all times t, we have in the first place, by (11), prior to any
considerations concerning the amplitudes,

(jb
= gb l

=
g'b',

gv = g'v',

or, remembering the meaning of b, etc.,

.

a
i
= a

' \ . (13)
sin a : sin p = v : v = n)

i.e. the two fundamental laws of geometrical optics : equality

of angles and identity of planes of incidence and of reflection,

and Snellius law of refraction. At the same time we have,

by (9), for the ratio n, independent of a, i.e. for what is called

the refractive index of the second medium relatively to the

first,

* Since /i
= p = 1.
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In virtue of (12), the third boundary condition (c) now
becomes identical with (a). Thus but two conditions are

left which, by (12), can be written entirely in terms of the

electric forces,

E + El
= -, E' . . . . (a)v

COS a

Eliminate E'. Then

''sin ft cos a\ cos a sin ft

cos 8 sin a
E^ /sn ft cos a\ _
E \sin a cos ft)

"~

Add (a) to
(ft)

and use the above refraction law, (13).

Then the result will be

E' /sin a cos ft\

E \sin ft cos a/
=2.

After an easy trigonometrical transformation we have

. (15)

E
l
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according to Neumann the aether vibrated in the plane of

polarization. We thus see that

Fresnel's light-vector* corresponds to E (or D),

Neumann's light-vector corresponds to M.

The distinction between E and D remains immaterial until

we come to treat anisotropic media.

The electromagnetic theory of light has thus united in

itself, as far at least as reflection and refraction are con-

cerned, both theories, Fresnel's and Neumann's, and the

famous quarrel about the direction of sethereal vibrations

with respect to the plane of polarization has, in its original

sense, become an idle controversy. The problem has now

acquired a different meaning, viz. : is the action of light to

be ascribed to the electrical or to the (inseparable) magnetic
oscillations ? The experiments of O. Wiener t on stationary

light waves are supposed to speak in favour of the electric

vector, as far at least as the action upon photographic plates

or the excitation of fluorescence are concerned.

The ratio of El to E has, by (15), a positive value. Since,

however, the positive senses of E, E1 have been taken along
the arrows of Fig. 1, the positive sign of the ratio signifies

that the tangential component of the electric force under-

goes a change of phase by 180 on being reflected. The

phase of the normal component is not changed. Also the

refracted ray proceeds without change of phase.
The intensity of light being measured by the time-average

of u or of KE2 = M2
,
and the oscillations being periodic, the

intensities I, I
lt

I' will be given by the squared amplitudes of

E, JBJj,
E' multiplied by K, Kv K' respectively, i.e.

'

In the case of normal incidence, i.e. for a = ft
= 0, we have

* That is, the vibrating or periodically variable directed magnitude.
t Started in 1890. See Ann. der Physik, vol. xl., p. 203.
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from (15), or simpler, returning to the original equations (a),

(b) which now become

E + El
= nE'

;
E - El

= E',

E n - 1 E' 2

Notice that in this case EI + E' = E, an obvious property.

Returning to the first of the general formulae (15) we see

that for

a + ft
= 7T/2

E
l
= 0, i.e. light polarized normally to the plane of incidence

is not reflected at all. A glance upon Fig. 1 suffices to see

that this happens when the reflected ray would be perpendi-
cular to the refracted one. This is Brewster's law. The

corresponding angle of incidence a
,

called the angle of

polarization, is determined by

sin a
ft

sin a
rt

Yl = " =
sin # . /TT

sin U - a

Thus tan a = n .. . . (17)

It can be easily verified that the light incident at the angle
of polarization penetrates entirely into the second medium,
i.e. that I' = I. In fact, for a = a

,
the second of (15) be-

comes

&
=

2 cos2 a
. cot a _ 1,E COS (2a

-
-TT) n

and therefore, by (16),

I'll =

in agreement with the principle of conservation of energy.



28 EEFLECTION AND EEFKACTION

It may be well to mention that Fresnel's formula E
t

: E
= tan (a

-
ft)

: tan (a + /3), showing in general a very good

agreement with observation, deviates somewhat from reality

in the neighbourhood of the angle of polarization. It was

found that these slight deviations are influenced by external

circumstances * which produce at the reflecting face a thin

optically heterogeneous sheet. In fact, it has been possible

to account for these deviations theoretically by assuming
such a transitional layer.

5. Reflection and Refraction ;
E _L Plane of Incidence.

Note on the Transition Layer.

In this case the electric vector is parallel to the boundary
of the two media, i.e. to the axis of z, while the magnetic
vector is contained in the plane of incidence. In the habitual

terminology, the incident light is polarized in the plane of

polarization.

Proceeding as before, i.e. writing down the boundary con-

ditions which now require the continuity of the whole electric

force and of the whole magnetic force, we get again a
x
= a,

sin a : sin p = n, and for the ratios of the electric amplitudes,

EI sin (a
-

E
~

sin (a + ft)

K 2 cos a sin p
E '

sin (a + P

These formulae are again identical with those known as

Fresnel's formulae for incident light polarised in the plane of

incidence. The electric force again corresponds to Fresnel's

light-vector.

*Thus, for instance, according to Drude, the deviations from

Fresnel's formula for a freshly broken face of a crystal of rock-salt

were very small, but, the reflecting face being exposed to the action of

-air, the deviations began to increase rapidly.
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For normal incidence formulae (18) become, in appearance

only, indeterminate. Keturning to the original form of the

boundary conditions, the reader will obtain for a = 0, with-

out trouble,

-1 - n ~- EI 2

From the first of (18) we see that EJE never vanishes, i.e.

that light polarized in the plane of incidence is not extin-

guished at any angle of reflection. In the preceding section

we saw that light polarized perpendicularly to the plane of

incidence is not reflected at all when a becomes equal to

the polarization angle a = arc tan n. Thus, common or

natural light (which can be considered as consisting of both

the above kinds), when reflected under the angle a
,
would be

polarized in the plane of incidence, i.e. so that only the electric

oscillations, normal to the plane of incidence, would remain.

According to the above Fresnelian formulas this polarization
would be complete, while experiments give a slight residue of

electric vibrations contained in the plane of incidence. These

small deviations of theory from observation can, however, as

was already remarked, be accounted for by assuming a hetero-

geneous layer of transition, i.e. having a permittivity K which
in the narrow limits

X = tO iC =

depends upon x, and assumes for x < - e and x > e the

constant values K' and K respectively.

Drude * has shown that an approximate treatment, in

which the integral values

*
Cf. Drude's Lehrbuch der Optik, second edition, Leipzig, 1906, pp.

272-80, or English translation by Mann and Millikan, 1913, Longmans,
Green & Co.
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dx
,

\'J

are the only relevant ones, is practically sufficient. If the

ray, incident under the angle a = arc tan n, is rectilinearly

polarized in a plane oblique to the plane of incidence, say
under the azimuth of 45, then the reflected light, instead of

being polarized rectilinearly contains also traces of elliptic
*

polarization, in agreement with observation. The ellipse re-

sulting from Drude's theoretical investigation is very long,

the ratio p of the minor to the major axis being (for
= 45)

* JK + K p~
x TT-~r J _

(K
- K) (K

-
K') ^

where X is the wave-length (in vacuo). The absolute value

of the integral does not exceed that which would correspond

to K = ,JKK' = const. Thus we have from (19), for the

upper limit of the thickness I = 2e of the transition layer,

I 1

(20)..

A. TT Vl + n* n - 1

Now, the observed value of p for heavy flint glass in con-

tact with air (n
= T75 for sodium light) is

P = 0-03,

this being the highest ratio of axes yet observed. In this case

formula (20) would give Z/X = 0-0174, i.e. I = 1-023 . 10~ 5 mlm.

In other cases we would have obtained thicknesses even a

hundred times smaller. In fact, for other kinds of glass, of

smaller refractive index, values of p have been found scarcely

exceeding 0'007, and Lord Rayleigh's value for water, whose

* The ellipticity being due to the difference of phase of the component
oscillations.
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surface has been carefully cleaned, was as small as 0-00035.

The corresponding thickness of the layer of transition would

be nearly as small as 10~7 mlm., that is, of the order of mole-

cular dimensions.

6. Total Reflection.

Let the "
first

"
medium, from which the light arrives, be

optically denser than the "
second," i.e. in the above symbols,

Then, for a = a> = arc sin n,

sn 0=

andfora>w si

That is, ft will cease to be a real angle. Thus for a> <o we
shall have the well-known phenomenon of total reflection.

Theoretically there will exist, for a > a>, a refracted wave,

whose amplitude, however, in penetrating the second, thinner

medium, will die away exponentially, the more rapidly the

greater the difference a o>. In fact, returning to (11), and

remembering that a = cos {3,
b' = - sin /?, notice that

the forces in the refracted ray are proportional to

e
-

ig'(x cos /3 + y sin /3 + v't)
^

where cos ft
= 11 - sm* a

\ n2

is imaginary (since sin a>w). Write, therefore,

cos ft
=

*y>
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where y /
S1I

V 1 is real. Thus the part of the above

exponential depending on x will become eve' x
. The minus

sign is, by physical reasons, to be rejected, since it would

give an indefinitely increasing amplitude of waves pene-

trating into the thinner medium (x negative). What re-

mains, therefore, is

where x' = - x. If T be the period of oscillations and A/

the wave-length in the thinner medium, g'v'
= STT/T, g'

=
27T/A',

so that the above damping factor becomes

Thus, if a - o> is sensibly positive, the amplitude of the re-

fracted vibrations will become evanescent in a depth of a few

wave-lengths.

Notice that besides this factor we have only

e -ig'(y sin/3 +
v't)^

so that these rapidly damped oscillations are propagated in

the second medium along the interface, viz. in the direction

of the negative 7/-axis.

Let us now see what the properties of the reflected waves

are, after the "limiting angle"

a = w = arc sin n

has been exceeded.

Take, for example, the case in which the incident light is

rectilinearly polarized under the angle = 45 relatively to

the plane of incidence. Let P be the component of E in the

plane of incidence, and Z its component along the -axis.

Let Pj, Zl
have similar meanings for the reflected wave.

Thus Pl
and Z

l
will be what has been denoted by El

in (15)
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and in (18) respectively, and since (for
= 45) P = Z, we

shall have

PI _ _ tan (a
-

ft) sin (a + ft) = _ cos (a + P)

^ tan (a + 0)
'

sin (a
-

ft)

~
cos (a

-
ft)'

Since sin ft> 1, this ratio will have a complex value, say pe
iA

where p and A are real. The former will be the ratio of the

absolute values [PJ, \Z^\ or the ratio of the amplitudes,

and the latter the phase difference of the component con-

tained in the plane of incidence and the component normal

to this plane. Developing trigonometrically the last expres-

sion, remembering that sin ft
= - sin a, and that

1
cos ft

=
iy, y = Jsin2 a - ri1

,
. . (21)

VI

the reader will find

,_i 06~
(sin

2 a - i . ny cos a)
2

sin4 a + W2
y
2 COS2 a

'

whence

p = 1, i.e. |Pj|
=

\Z, ,
. . (22)

and using (21),

A oos^/sin^^^
2 sin2 a

Thus the amplitudes of the reflected components P
lf ^

will be equal to one another,* while their phases will differ

*The reader will easily show that these reflected amplitudes are

equal to the incident ones, i.e. (whether is 45 or not)

ampl. Pl
= ampl. P, ampl. Z x

= ampl. Z.

This result could be expected, without returning to (15) and (18). In
3
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from one another, the more so the more the limit angle <u is

exceeded. The reflected light, for any a > a>, will be ellipti-

cally polarized. This is a general property of total reflection

which in its essence has already been mastered by Fresnel. If

4=45, then, instead of p = 1,

while the phase difference continues to obey the formula (23).

The azimuth 45 is of particular interest because it gives

for A = 90 a circularly polarized reflected ray.

In order to obtain A = 45 we have to make, by (23),

COS a

sin2 a
- ri* = tan 22-5,

that is, for glass of refractive index - = 1*51, say, in contact

with air, either a = 48 37' or a = 54 37'. By two reflections

under any of these angles
* the phase difference A =

,
i.e.

circularly polarized light is obtained. This is the principle of

the universally known glass rhomboe'der of Fresnel (a
== 54).

7T

Notice that by a single reflection the phase difference of ^

could not be obtained since, for - = 1*51, the maximum of A
n

amounts, by (23), only to 45 36'.

fact, it is enough, to remember that in the thinner medium (x <CO) the

-electromagnetic energy flows only along the interface and not normally
to it.

* Both are greater than the limit angle &>, as is necessary for total

reflection ; in fact, o> = arc sin -- - = 41 26'.
1*51
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7. Optics of Crystalline Media : General Formulae and
Theorems.

The propagation of plane waves of monochromatic light

in a crystalline medium obeys the formulae (5) deduced in

Section 3,

?D = VMn; ^M^VnE . > . (5)
c c

Here n is the wave-normal, a unit vector, and v the velocity

of propagation of the waves. The dielectric displacement

D = KB

is a linear vector function of the electric force E.

The whole optics of a homogeneous crystal is contained in

the two simple equations (5), the properties of the crystal

being denned by the vector operator K.

As was already mentioned, formulae (5) contain the funda-

mental relations

Mn = 0, Dn = 0,

i.e. the magnetic force and the dielectric displacement lie in

the wave-plane, or are purely transversal. Notice that what

corresponds to Fresnel's light-vector is the dielectric displace-

ment D, and not the electric force E.

The latter is in general not contained in the wave-plane, i.e.

En =1=0.

Formulas (5) give also the fundamental relations

MD = 0, ME = 0.

Thus the magnetic force is always normal to both the electric

force and the displacement.
The ray, denned by the direction of the energy flux

P =
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is always normal to E, M, but in general oblique relatively to

the wave-plane.

Multiplying the first of (5) by E, and remembering that

EVMn = MVnE, we have

ED = M* . . . . (24)

of which equation (7) is but a special case. Thus the lumin-

ous energy, in a crystal as well as in an isotropic medium,
consists in equal parts of electric and of magnetic energy.

In order to obtain an equation for the velocity of propaga-
tion v as dependent upon the direction of the wave-normal

n, eliminate from (5) the magnetic force. Then, remember-

ing that VAVBC = B(CA) -
C(AB), and that n2 = 1,

^ D = VnVEn = E -
(En)n,

c

and since D = KB,

where the bracketed expression, as well as K itself, is a linear

vector operator. The last equation will conveniently be

written

D = KE = (En) n, . . (25)

where the bracketed expression is again a linear vector

operator, having the same principal axes as K and the cor-

responding principal values

Z ac2 c2 c2

K
2,
K

6 being the principal values of K.
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Now, Dn = 0. Thus multiplying (25) scalarly by n and

remembering that the scalar product (En) is in general different

from zero, we have, for the velocity of propagation v, the

equation

=
' ' '

'

: (26)

which is but the vectorial form of the famous Fresnelian

equation. In fact, denote by nv w
2 ,
n
s
the components of the

wave-normal n, or its direction cosines, with respect to the

principal electrical axes of the crystal, and use the abbrevia-

tions

Then the Cartesian expansion of (26) will be

= (26a)
v%- -i'-

1/3-

which is Fresnel's equation.
For any given direction of the normal n we have, from (26)

or (26a), in general two different absolute values of v, say v'

and v". Let the vectors E, D corresponding to v' and to v"

be E', D' and E", D", respectively. Then, by (25),

If, therefore, the waves are to be propagated with the same

velocity (either v' or v"), i.e. if they are not to split into two
trains of waves, then the vector D must have one of the two

directions

or 8
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where the + signs, being, of course, irrelevant, have been

omitted. These two privileged directions s' and s" of light

oscillations, belonging to a given normal n, are perpendicular
to one another.

In fact, denoting the vector operator in (26) by w, we can

write Fresnel's equation

no>n = 0, . . . . (266)

and, instead of (27),

s' = a/n, s" = to"n,

and since <o, and therefore a/, <o", are self-conjugate operators,*

and have the same principal axes, we have

s's" == s'. <u"n = n . u/'s' = n . o/'a/n.

But

11 " '

/ f/o n i in (0 CD

,

- - = v 2 - v 2
,

i.e. o>V = CD <o

0> CD V*

and, therefore,

s's" =
V* - V

By (266) both terms in the numerator vanish.

Thus, if only v' =j= v",

s's" = 0, .... (28)

that is, s' _L S". Q.E.D.
The case v' = v", which occurs only for certain directions

of the normal n, will be considered a little later on.

If the vector D has neither of these two privileged direc-

* For so is also the permittiyity-operator K.



DOUBLE EEFEACTION 3$

tions, then the waves are split into two separate trains. In

this case, D being purely transversal, it can always be split

into two components, D' along s' and D" along s". One
train of waves will carry away with the velocity v' the com-

ponent Z)' of the dielectric displacement, and another, with

velocity v", the component D". It is this which constitutes

what is called double refraction in crystals.

The usual form of the equation for the direction cosines of

Fresnel's light-vector can easily be obtained from (27). In

fact, writing summarily s for s' or s" and denoting by sv s
2 > %

the components of s along the principal electrical axes of the

crystal, we have

l 2 3

whence the required relation

4 K* -
'V) + v

2W - ^ + - ^ -
"o

2
)
"

; <29)
s
l

S
2

6
3

Si, etc., are proportional to the direction cosines of the vector

D which corresponds to Fresnel's light-vector.

In order to determine the direction of the ray, i.e. that of

the energy flux F = oVEM, return once more to the equations

(5). The second of these gives

F = - VEVnE = -
[jEJ'n

-
(En)E] ;

'V V

now, by (25), writing again o> = [v
2 - C2JK]

- 1
,

E= - c2(En)-n; . 'V-

"

. (30)
j\

thus,
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If, therefore, p is a unit vector along the luminous ray, and

cr a scalar to be determined presently.

In order to obtain the value of <r, square the last equation

remembering that p
2 = 1, n2 = 1, and that, by (30),

Then the result will be

Ultimately, therefore, the ray will be given by

W
-

where

According as D vibrates along s' = u/n or along s" = w"n,
we have to substitute in (32) v = v' or v =

-*/', and therefore

W = W or W". In general, therefore, for any wave-normal
n we shall have two different rays, p' and p".

Remembering that pn = cos (p, n) and that, by (31),

Wn = we have, for the angle contained between the
c

ray and the wave-normal,

cos (p, n) = ^1
- -^ . . . (33)
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Thus the angle (p, n), i.e. each of the angles (p', n), (p", n), is

in general different from zero, or the two rays p', p" gener-

ally deviate from the wave-normal.

8. The Properties of the Electrical Axes of a Crystal.

The principal electrical axes of the crystal, i.e. the principal

axes of the operator K, being mutually perpendicular, let us

take along them the three normal unit vectors i, j, k. Let,

for instance, i coincide with that axis to which corresponds

the smallest, and k with that to which corresponds the

greatest principal value of K. In short, let

or, writing again c*/Kf
= V?,

v9 . . . - (34)

This order of arrangement which, for the moment, is irrele-

vant will be referred to in the next section.

If the wave-normal coincides with one of the principal

electrical axes, i.e. if n = i or j or k, we have from Fresnel's

equation (26a), remembering that for n =
i, nz

= n
s
= 0,

n^ = 1, etc., the following velocities of propagation

for n =
i, j, k \

v = Va, v>), ^if t -4 <
'

-t (35)
v" = v., vlt vJ

Thus, v
1 c/ JK^ v2

= c/ V-^2 vz
= cl \/^3 are tne 80"

called principal velocities of propagation. If the normal is

along the first electrical axis, the waves are propagated with

the second or the third principal velocity (according to the

direction of D), and so on, by cyclic permutation.
In order to determine the directions s', s" in which D must
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vibrate in each of the above three cases if the wave is not to

split, return * to the equation

I
D = E -

(En)n,
c

already obtained from (5), p. 36. This gives, for n = i.

c2

and, therefore, by (35),

But D' = JE" = K^ii + K2
E

2'j + #3
#

3'k. Thus EJ = 0,

and since K2 =!= J
3 ,

D' ~tr 77 '\A
2
^

2 J*

Similarly we shall find D" = K3Es"Vi. Analogous relations

will take place for n =
j, k. Thus, denoting by ||

the paral-

lelism of vectors, we have

for n =
(35a)

n =
i, j, k^

D'
II j, k, i .

D' II k, i, j J

These relations, together with (35), can easily be expressed in

words. In passing we have also seen that the electric force

E, being in general oblique, becomes for n =
i, j, k, purely

transversal, i.e. falls into the wave-plane. And since M is

always in the wave-plane, the ray p coincides with the

normal n when this coincides with any of the principal

electrical axes of the crystal.

* Since (27) or (25) becomes in the present case indeterminate owing
to the fact that En will now vanish.
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9. Optical Axes.

Beturning to Fresnel's equation (26a) for the velocity of

propagation, use the abbreviations

(36)

7 =

Then

V> (37)

Let our previous v correspond to the upper, and v" to the

lower sign of the square root.

Let us find those particular directions of the wave-normal

n for which the two velocities of propagation become equal,

v' = v".

The necessary and sufficient condition for this equality is

(a -f J3
-

y)
2 -

aj3
= 0.

But, by (34), a is positive, ft negative, and 7 positive. Thus,
we must have, separately,

a + ft
-

y = 0, aft
= 0.

Now a = is inadmissible
;
for then /? would be equal 7

while these magnitudes have opposite signs. The only

possibility is, therefore,

/?
= 0, a =

7,

i.e. n.2
= 0, V(V ~ V) = 'w

s
2K2 - V)-
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But n2 =
1, so that n./

= 1 -
n^. Ultimately, therefore,

the required directions of the normal are

= Ml^
\ ^ 2 - V

(38)

These particular directions are called the optical axes of

the crystal. One axis is obtained by taking in (38) the signs

-f + (or
- -

),
the other axis by taking + (or + ).

Thus, in the most general case, for different Kv K2,
Ks ,

and therefore for different vv v
2 ,

v
3 ,

the crystal has two

optical axes contained in the plane i, k, that is to say, in the

plane of those two electrical axes to which correspond the

FIG. 2.

smallest and the greatest principal values of the permittivity-

operator K. The orientation of the optical axes is sym-
metrical with respect to the electrical axes i and k.

Substituting (38) in (37), we have

v' = v" = f
2

- * - . (39)

This then is the common value of the two velocities when the

wave-normal n coincides with one of the optical axes. It is

easy to show that in this case the light-vector D can have any
direction in the wave-plane. Independently of the orientation
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of D the velocity of the wave is, in these circumstances, always

equal v%.

If yp y2 be the angles which any wave-normal n makes

with the two optical axes A
x ,
A

2 (as in Fig. 2), formulaB (37)

for the corresponding velocities of propagation can be written

^7s *fvi

2
"^" V3

2
"*~ (

v
i

2 "~ v
a
2
)

* cos ^1 + Ya) (^^)
v2

10. Uniaxial Crystals.

If the electrical properties of the crystal are axially sym-
metric, say, with respect to the axis k, in other words, if

K = K and therefore

then (38) becomes

HJ
= 0, n2

= 0, w
3
= 1.

That is to say, the two optical axes coincide with the axis of

electrical symmetry to which corresponds the principal per-

mittivity Ks , i.e. the velocity v
s

. The crystal is then uniaxial.

Since, in the present case, yl
= y2

=
y, say, so that

cos y = n
s ,

the two velocities of propagation corresponding
to any given direction of wave-normal n, making with the

optical axis the angle y, are, by (40),

y =. vt'i COS
. (41)

y + v./ sm
j
y )

The velocity i/, which is constant, corresponds to what is

called the ordinary, and v" depending upon the angle y

corresponds to the extraordinary wave. To these waves in

which the light-vector D has one of the orthogonal directions
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S', 8" correspond, in general, two different rays, the ordinary

ray p', and the extraordinary ray p".

A discussion of further details would not answer the pur-

poses of this little volume. The reader will find them in

every work on optics, whether based upon the electro-

magnetic or upon the older theory.
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