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Prefioce

THIS TEXT offers an elementary study of the science of logic

and the philosophy of formal science. It has seemed clearer

to keep these two subjects separated, since they deal with differ-

ent problems; formal science, of course, makes use of logical

principles in its method, but it is not the science of logic. This
scheme also avoids the usual bad procedure of making "induc-
tive reasoning" or the methods of nonformal science a part of

logic. The procedure is bad since it necessitates formulating
some definition of logic which is totally lacking in precision.

Thus, the definition of logic as the science of correct infer-

ence involves the danger of including practically every science

under logic, since every science states some of its laws in the
form of inferences. In particular, probability-theory is not a
branch of logic.

A very exact definition of logic, due to Professor E. A. Singer,

Jr., is employed throughout this book. Questions of nonformal
science could not be handled adequately without adding an-

other volume; but a chapter discussing the general problems of

this branch of philosophy has been included to show the con-
trast between the formal and nonformal aspects of science. Also,

from the point of view of logic, considerable space is devoted to

showing the applications of logic in other sciences, the conflicts

which logic faces within itself and without itself, and the man-
ner in which logical principles are sometimes altered to solve

these difficulties. Such a discussion, of course, deals with the

nonformal aspects of the science. Logic cannot be refuted by
direct experimentation, needless to say; but it is indicated here
how it may come to be altered in other ways.

There is usually either an overemphasis or an underemphasis
on terminology in logic texts. The method chosen here consists

in introducing new terms when the necessity arises, rather than
including all terms in a list in the first chapter. Thus the distinc-
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tion between "inference" and "implication" comes rather late

in the book, since it is not required at an earlier stage.

While the text develops the elements o£ symbolic logic, a

great part of the traditional logic is also included. The two are

not incompatible; the best introduction to symbolic method is

the symbolic Aristotelian logic, since this is simple in treatment

but contains the fundamental laws of the class calculus. Further,

in the deductive form, this logic provides a very fine application

of the laws of the propositional logic, not to be found in the de-

duction of theorems in Boolean algebra. The method of making
the "Rules for Invalidity" a set of postulates is not used here

since the procedure is formally bad.

Parts of the work are for more or less mature students; e.g.,

parts of chapters XI, XV, XVII, and XVIII. Some of the exer-

cises are also of a somewhat advanced nature. This material

might be used for a second-term course. The remainder of the

book requires little or no mathematical training, other than ele-

mentary (first-year) geometry and algebra, and requires no pre-

vious study of logic.

In general, the text attempts to avoid verbal generalizations

and descriptions; the best way for a student to learn the science

of logic, which is essentially a science of method, is to follow

through the methods himself. He learns nothing if he is merely

"told about it." Hence the best way of learning the logic of

propositions is to apply its principles in deducing theorems, and
the Aristotelian logic affords an excellent opportunity to do
just this.

Reading suggestions are, of course, selective, being chosen be-

cause they are either historically important or are good elemen-

tary expositions of the subject.

I am indebted to my teachers, the late Professor H. B. Smith

and Professor E. A. Singer, Jr.; chapter VIII is a resum6 of ma-

terial in Professor Singer's lectures on the philosophy of science;

he has very kindly read part of the manuscript and made many
valuable suggestions. My indebtedness to Professor Smith will

be obvious to anyone acquainted with his First Book in Logic.

To all my colleagues I owe much thanks. They have all of-

fered suggestions and have supplied me with many illustrations.

Very special mention must be made of Dr. Elizabeth F.

Flower. Dr. Flower has written a section of chapter XI, on the
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solution of the vitalist paradox, has contributed many illustra-

tions, but, most of all, has been an indispensable aid in helping
to formulate the plan of the work and bring it to completion.

Mr. P. C. Rosenbloom has gone over the symbolic part and
corrected many errors. Mr. John Taylor has read the manuscript
and has been an invaluable aid in the preparation of the proofs

for printing.

Permission to publish selections from the Loeb translations

of Lucretius and Sextus Empiricus has been granted by the

Harvard University Press.

C. West Churchman
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Formal Science and Logic





Deductive Science 1

ALL SCIENCE may be divided into two parts, the "formal"

and the "nonformal." Formal or deductive science has the

following general structure: a set of statements are made, the

so-called assumptions or postulates, and by means of these and
certain definitions a new set of statements, the theorems, are

"deduced." Formal science has a hypothetical character: if all

the statements made are true, then all the theorems will be.

Nonformal science, on the other hand, is interested in determin-

ing whether certain statements are actually true; the usual

method employed in such determination is experience.

The distinction between the two sciences may be seen in many
ways. When we say: "Suppose, for the sake of argument, that

these statements are true, and let us see what follows," we are

arguing formally; if we afterwards proceed to establish our sup-

positions as actual facts, we argue nonformally. The child who
prefaces his game with "let's pretend" is, in a sense, a formalist;

he assumes (in his imagination) that he is a cowboy or a great

warrior. His less imaginative playmate who points out that these

assumptions are not really true is a nonformalist.

It is important to note that every recognized branch of science

has a formal and a nonformal aspect. The science of physics, for

example, may be formalized; to do this we merely construct cer-

tain statements making use of physical terms, and, by assuming

these, deduce theorems. In its nonformal aspect, physics tries to

determine certain facts and laws by experiment in the labora-

tory. The science of logic likewise has its formal and nonformal

parts; the former will be developed first in chapters IV and V,

and the latter in chapters IX-XI.
We call a set of assumptions and definitions of a formal science

a formal system or a deductive system. It is evident that while a

given branch of science may have many formal systems, depend-

ing on the various assumptions which can be made, it can have
3
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only one nonformal system^ which will represent the one true

set of statements about the science.

Can one assume what one pleases in a formal or deductive

system? The answer to this question is "no," and the study of

what constitutes a formally correct set of assumptions constitutes

the philosophy of formal science. Corresponding to this there is

a philosophy of nonformal science, which endeavours to find the

correct method for determining the actual truth or falsity of a

given statement.

For the present, our interest lies in the philosophy of formal

science. The following problem is to be investigated: "What
criteria must be kept in mind in order that a given set of prop-

ositions form a correct deductive system?"

Historically, the father of deductive science is Euclid {ca. 300

B. c.) , who, in his Elements, constructed a formal science of

geometry. Euclid affords the best model to follow in that, with

true Greek genius, he set down practically all the criteria for a

correct formal system.

Since every deductive system begins with certain declarative

sentences, we must examine first the general character of state-

ments or judgments. According to grammar, every proposition

contains nouns, adjectives, verbs, or adverbs. We shall do bet-

ter if we reduce this number to two: "terms" and "relations."

Every proposition, then, contains certain terms which are re-

lated to other terms. Thus in the proposition "This green table

is larger than that brown table," the term "this green table" is

related, by the relation "is larger than," to another term, "that

brown table." Terms, then, include nouns or substantives, and

modifiers, or adjectives, while relations are verbs, which may be

modified by adverbs or, in the case of the verb "to be," may con-

tain adjectives.

The so-called "traditional" logic, which was first developed by

Aristotle and was more or less perfected during medieval times,

classified terms in a number of ways. Thus all terms are either

abstract or concrete, either universal or singular. Abstract terms

are terms whose meaning is abstracted from any specific content,

while concrete terms refer to some specific object or group of ob-

jects. Thus "beauty" is abstract, while "beautiful thing" is con-

crete; "humanity" is abstract, "human being" is concrete.

"Beauty" does not refer to any object or any group of objects.
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while "beautiful thing" does refer to some definite, concrete

thing. A good test for abstract terms is the following: suppose x

is the term; then if we can say, "This is an x" (or "These are

a;'s") , X is concrete; otherwise it is abstract. Thus, we cannot say,

"This is a Beauty" or, "This is a Humanity," and these terms

are consequently abstract; but we can say, "This is a beautiful

thing" or, "This is a human being," and hence these terms are

concrete. Sometimes a single word will have both an abstract

and a concrete connotation; for example, "truth" is abstract in

one sense, concrete in another. In the sentence "Beauty is

Truth" it is abstract, while in the sentence "He just told a

truth," it is concrete. In English, many abstract nouns end in

"-ness" ("goodness")'.

Singular or particular terms are nouns representing one indi-

vidual; e.g., "John Smith," "The Empire State Building," "The
University of Paris," etc. Universal terms refer to a group of

things; e.g., "man," "building," "university," etc. A term is sin-

gular if we can place a "the" before it, since this article indicates

that the term following it is individual. Universal terms are

terms which can be attributed to more than one individual.

Terms are also designated as positive and negative. Negative
terms imply the negation of some quality; in English their first

syllable is usually "un-," or "in-," or "non-." Thus "unhappy,"
"impractical," "nonaggressive" are negative terms; positive

terms have no negative prefixes. One is apt to be deceived by
this distinction, which is in part only arbitrary. Many negative

terms may be stated as positives and vice versa. For example,
"odd" is a positive term but means the same thing as "unusual,"

which is negative. Nevertheless, the study of negative terms

forms a very important part of the science of logic (cf. pages

99 ff.)

.

The general properties of relations will be developed in chap-

ter II. For the present we merely note that a relation is that

which joins two or more terms together so that the result is a

proposition or judgment.

(See Exercises, Group A, at end of chapter.)

In studying the nature of formal or deductive systems we
must note first of all that the terms and relations are always
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restricted to a certain group. The best known deductive system,

that of the geometry of Euclid, deals with the terms and rela-

tions of geometry. Examples of the terms would be: "line,"

"figure," "curve," "angle," and of relations: "is parallel to,"

"intersects," "lies between." A formal science of arithmetic

would contain such terms as "number," "fraction," "minus,"

and such relations as "is equal to," "is greater than."

The first task of a deductive system, then, consists in making
precise what terms it introduces and in defining these terms.

After that, it must construct the assumptions which contain

these terms (the axioms and postulates) , and finally must de-

duce its theorems.

Definitions

Etymologically, the word "definition" signifies a process by

which we limit the meaning of the word. Two methods have

been suggested:

1. The method of dichotomy: this was proposed by Plato and
examples of it are found in his Sophist. The famous "Tree of

Porphyry" affords the best example. Suppose that we wish to

define the singular term "Socrates" or the universal term "Athe-

nian." We start first with the broadest class of all, the universe

of things, and divide it into two parts, the corporeal and the in-

corporeal; we then designate into which class the object to be

defined falls. In the case of the terms "Socrates" and "Athe-

nian," the former class would contain the object. Proceeding to

a further dichotomy, we divide the class of corporeal beings into

two parts, the animate and the inanimate, the two examples we
have chosen falling in the first class. Again, we divide the ani-

mate into the rational and the irrational, placing our terms in

the first class again. If we proceed to dichotomize in this way
indefinitely, it seems that we ought to be able to define any

term; the more universal a term, the fewer dichotomies neces-

sary to reach it. In the case of singular terms, the dichotomizing

would presumably be quite lengthy; some philosophers, indeed,

have felt that no amount of dichotomies would ever give us the

individual as distinct from everything else. In other words, this

method is only adequate for defining universal terms.



DEDUCTIVE SCIENCE 7

2. The method of genus and species, formulated by Aristotle,

is a generalization of Plato's method. This starts with a broad,

general class called the genus, and then "specifies" the parts of

it, these parts being called the species. The method is essentially

the same as Plato's, except that there may be more than two

divisions. In the case of biological things, for example, the genus

is "living things," and the various kinds of living things make
up the species. If "minerals" were our genus, then the kinds of

minerals would constitute the species: iron, copper, silver, etc.

Often the species itself is a genus with respect to the forms within

it, so that we have not necessarily defined a word completely

when we have placed it in a genus and species. For example, "red

rose" belongs first of all to the species "living" of the genus

"things," then to the species "plant" of the genus "living," then

to the species "rose" of the genus "plant," then to the species

"red rose" of the genus "rose."

Those qualities which designate the divisions of a genus are

called differentia. Thus, in the genus "line," the differentia

would be "straight" and "curved," and these would designate

the two species "straight lines" and "curved lines."

The same remarks concerning the definition of individuals

made in the case of the method of dichotomy would also apply

here.

One feature of definitions which is highly important with re-

spect to deductive systems lies in the fact that all definitions pre-

suppose that the meanings of certain terms are already known.
Thus, it would do us little good to look up the meaning of

"labor" in the dictionary if we did not know already the mean-

ing of "toil" or "work." This is an assumption which all diction-

aries make, namely, that the reader is already aware of the mean-

ing of certain words. A foreigner who knew no English could

hardly expect to learn vocabulary purely from the dictionary.

For example, if, after looking up the meaning of "labor" and
finding it to be "physical or mental toil," should he then go on
to search for the meaning of "toil," he would find that the latter

meant "labor with pain and fatigue," and now clearly his defini-

tion has become circular: "labor is physical or mental labor."

The dictionary presupposes that we know either what "toil" or

what "labor" means. No dictionary bothers to make a list of the
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words whose meanings it presupposes. Such a task would be far

too laborious and hardly fruitful for the average reader. But the

fundamental property of all deductive systems is that they shall

make explicit all presuppositions; that is, everything which is

assumed shall be set down, no matter how obvious. Hence, it is

a part of the task of every deductive system to make a list of the

terms or words the meanings of which it assumes or does not
define. These terms or words are called indefinahles, and by
means of them are defined all other terms or words with which
the deductive system deals.

There is, however, one important qualification of this point.

As we go higher in the sciences, each science, without definition,

may make use of terms of sciences which it "presupposes." The
most basic science is logic, for every science presupposes logic,

i.e., every science must be "logical." Hence, all sciences may
make use of logical concepts without attempting to define them;

only in the case of logic itself must they be defined or be con-

sidered as indefinables. Thus the word "is" appears in most
definitions: "A dog is a canine," "A ton is two thousand

pounds," etc. Again, the words "if . . . then" are frequently

employed: "If a number has no factors other than itself and one,

then the number is a 'prime' number"; "// a body of land is

completely surrounded by water, then it is an island," etc. The
term "not" (or "what is not") also appears in many definitions:

"What is not living is 'inanimate,' " or "If x is not or plus, then

X is a 'minus' number," etc. As we shall see, all these terms be-

long to the science of logic.

But the science of geometry also makes use of arithmetical

terms such as addition and subtraction without defining them,

and rightly so, since geometry presupposes arithmetic, while the

latter does not presuppose the former (arithmetic does not

make use of geometrical terms such as "lines," "angles," etc.)

.

It becomes necessary, then, to classify the sciences by way of

priority so that when we formalize a given science we shall know
exactly what terms of other sciences may be presupposed. Such a

classification will be given in chapter VII.

To sum up, then, the following is a necessary criterion for

good definitions in any formal system: All terms and relations

of a deductive system (other than the indefinables) must be
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defined by means of a certain set of indefinable terms which, by

their very nature, cannot themselves be defined.

(See Exercises, Group B, at end of chapter.)

This discussion of indefinables is essentially a modern contri-

bution to the philosophy of deductive systems. Euclid does not

seem to have been aware of the necessity of making explicit the

words whose meanings are assumed. Examples of Euclid's defini-

tions are:

1. A point is that which has no part.

2. A line is a breadthless length.

5. A surface is that which has length and breadth only.

23. Parallel straight lines are straight lines which, being in the

same plane and being produced indefinitely in both directions,

do not meet one another in either direction.

Definitions 1, 2, and 5, which define the three fundamental

concepts of geometry, presuppose as indefinables "part,"

"breadth," and "length." Ordinarily, "point," "line," and "sur-

face" are taken as indefinables. But the presuppositions of 23,

Euclid's famous definition of parallels, are much more extensive.

Primarily, the definition assumes the fundamental concept of

intersecting lines (lines that meet)

.

Axioms

Postulates and axioms comprise all the assumed statements of

a given formal system. These statements must contain only the

indefinables and the defined terms of the system. Just as each

deductive system makes use of the terms of other sciences which

it presupposes, so it also makes use of the assumptions and theo-

rems of these sciences. If these assumptions are made explicit,

they are called axioms; the assumptions which the given science

introduces itself are called postulates. The test determining

whether a certain assumption is an axiom or a postulate will be

as follows: if the statement contains no indefinables or defined

terms of the science itself, but only the terms of presupposed

sciences, then it is an axiom; but if it contains a term which is
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an indefinable of the system or is defined by the indefinables of

the system, then it is a postulate.

Thus every science after logic takes for granted the statements

of logic. Arithmetic, for example, does not bother to assume or

prove the statement that everything is either A or not A . Again,

we find Euclid assuming under the name of "common notions"

certain propositions of arithmetic, such as "If equals be added to

equals, the results are equal." ("If a^h and c =: d, then

a -\- c := b -\- d.") It can readily be seen that a science like phys-

ics would have a great many axioms, while a certain part of logic

would have none. Thus again arises the importance of classi-

fying the sciences into some hierarchy. It is noteworthy that a

change in the laws of logic would be tantamount to a change in

all sciences, since all sciences assume the laws of logic as axioms.

Postulates

The word "postulate" comes from the Latin "postulare,"

which means, literally, "to demand." Thus the significant prop-

erty of a postulate consists in this: it is a demand that we accept

the given statement as true. No proof of this statement is to be

given; the argument that it is "self-evident" or "obvious" is

really no proof, but an appeal to the individual's intuition, and

the question as to whether or not a postulate is valid is not left

to individual opinion. It might be thought that the validity of

the postulate is left to experience, so that if it contradicts some

past experience which we or others have had, we call it false. But,

though it may be exceedingly impractical to construct a deduc-

tive system many of whose theorems contradict experience, it is

not impossible to do so. Experimental validity is not a criterion

for the postulates of a deductive system.

But what shall we say are the requirements for a set of

postulates? It seems evident enough that the choice of assump-

tions is not a haphazard matter. In the first place, we do not want

any two of the postulates to contradict one another. Thus an

arithmetic which postulates "2 + 2 = 4" and "2 -f 2 = 5" has

contradictory postulates (provided 4 and 5 and "=" are defined

as usual) . If we assume that a contradiction can exist, then we
break down the principles of logic, and anything will follow

from our postulates: every statement will be a theorem. We
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say, then, that the postulates of the deductive system must be
"consistent" among each other.

Next, it is necessary that the postulates really be assumptions

and not provable, for otherwise they are not postulates at all but

theorems. That is, no postulate may follow from any of the

others, no postulate may be a theorem. This property of the

postulates we call their "independence"; each postulate is inde-

pendent of all the others in the sense that it does not follow

from them; it cannot be proved by means of them.

Last, there is the requirement of postulates, not so much
logical as practical, that they shall be "sufficient" to prove all the

theorems required, or, possibly, that they shall be sufficient to

prove all statements containing the terms of the system. Thus
the postulates of geometry are sufficient if they enable us to

prove all the properties of points, lines, surfaces, and solids in

space.

Traditionally, many other requirements have been offered.

Thus, postulates should be "self-evident" according to some
writers; but no one has ever been able to determine exactly what
statements fall in this category. If the history of philosophy

teaches us anything it is that there are no self-evident proposi-

tions; what has been considered "obvious" in one age is often

considered to be false in the next. H. Sidgwick, in his Methods

of EthicsJ suggests that the postulates must meet with the ap-

proval of the experts in the field. Fortunately for the history of

science, this criterion has frequently been neglected. It cannot

be overemphasized that, from the point of view of formal

science, the actual truth of the postulates, whether determined

intuitively, experimentally, or dogmatically, is of no interest.

The objection suggested here, that it seems very impractical to

assume propositions which everyone knows to be false, besides

introducing questions of value which have no place in the phi-

losophy of formal science, also overlooks the fact only too

frequently illustrated in the history of science that what everyone

knows to be false in one generation everyone knows to be true in

the next. A formal scientist, working as he does behind closed

doors, may still be modeling the science of a future age, and if

that age verifies his assumptions the work is done, for he has al-

ready completed by his theorems the remainder. The German
mathematician. Gauss, for example, developed many mathe-



12 ELEMENTS OF LOGIC

matical theories which in his day (early nineteenth century)

seemed to have no practical value, but today are extremely im-

portant for the physicist. The mathematician is continually

developing instruments for future generations even though his

labors today seem utterly useless. Indeed, these instruments are

often the means for discovering new truths.

Euclid's postulates (as distinct from his "common notions"

or axioms) are:

1. It is possible to draw a straight line from any point to any point.

2. Any finite straight line may be produced continuously in a
straight line.

'

3. A circle may be constructed with any point as a center and any
distance as a radius.

4. All right angles are equal.

5. If a straight line intersects two straight lines in such a manner
that the interior angles on the same side are less than two right an-

gles, the two straight lines, produced indefinitely, meet on this side

on which the interior angles are less than two right angles.

6. Two straight lines intersect in only one point.

These postulates are generally recognized as being consistent,

inasmuch as no one of them contradicts any other. Their inde-

pendence, however, has not always been so readily granted. For

centuries geometers believed that postulate 5, the so-called

Euclidean Parallel Postulate, could be proved and hence was a

theorem. Various methods were tried to accomplish this proof,

among the most interesting of them being that of the Italian

mathematician, Saccheri (1667-1733) , who attempted to prove

Postulate 5 by means of the "indirect proof." This method con-

sists in assuming that the theorem to be proved is false and from
this assumption deriving a contradiction. Hence Saccheri as-

sumed the invalidity of Postulate 5 and attempted to show that

a contradiction arose. As a matter of fact, though Saccheri,

through an error, thought that he had arrived at such a con-

tradiction, no such thing occurs, and it turns out that the

contradictory of 5 is also consistent with the remaining pos-

tulates. This suggests, as it did to Lobatschewsky (1793-1856)

and Bolyai (1802-1860), that it is possible to construct a ge-

ometry which assumes Postulates 1-4 but the contradictory of

Postulate 5. Such a geometry, so-called non-Euclidean, has

many theorems identical with the Euclidean geometry, but
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some quite important ones which are not. For example, "The
sum of the angles of a triangle is less than 180 degrees," and

"Through a point outside a line more than one line (actually

an indefinite number) can be drawn in the plane parallel to

the given line." Thus another geometry, as consistent as Euclid's

and following the same deductive method, was constructed.

It is also possible to construct a consistent deductive system

of geometry in which Postulate 6 is false. When this is the case.

Postulate 5 becomes a theorem. This geometry was discovered

by Riemann (1826-1866) and forms another non-Euclidean

geometry. Here there are no parallel lines in a plane; that is, all

lines in a plane intersect, or, through a point outside a line, no

line in the plane can be drawn parallel to the given line.^ The
sum of the angles of a triangle is greater than 180 degrees. The
best aid to the imagination in picturing these two non-Euclidean

geometries ^ is to think of a plane in the first case (Loba-

tschewsky) as the surface of a napkin ring which curves inward.

In Riemann's case, the plane is similar to the surface of a sphere,

where the "straight lines" are "great circles," i.e., lines on the

sphere which describe the circumference. All great circles meet

in more than one point, there are no parallel great circles, etc.

This analogy, however, breaks down when we try to conceive

solid Lobatschewskian or Riemannian geometry, i.e., geometry

of three dimensions.

The importance of this discussion from our point of view

lies in the fact that it points a way to a method of demonstrating

that a given postulate is independent of the other postulates of a

deductive system.^ For if we can show, as was shown in the case

of Postulate 5 above, that the contradictory of the given postulate

is consistent with the remaining postulates, then we can infer

that it is not a theorem. For all theorems have the property of

being true whenever the postulates are true and we have shown

that this is not a property of the given postulate.

These three types of geometry also show that there are many
possible deductive systems even in one field, and that the validity

of a deductive system, as such, does not depend on the experi-

mental truth of the postulates.

1 Hence the truth of Postulate 5.

2 There are, of course, other non-Euclidean geometries.

3 For such a method, see chap. XV.
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Theorems

By means of the definitions and assumptions made by a deduc-

tive system, certain other statements are "deduced." The theo-

rems have the character of being true if the postulates are true.

The criterion for theorems in a deductive system is the follow-

ing: All theorems must be proved by the definitions and the as-

sumptions of the system only; that is, we cannot take for granted

implicitly any assumptions in the proving of a theorem, no mat-

ter how obvious this assumption may be. This criterion is one
of the most difficult of all to follow. It is usually almost impos-

sible to be certain whether one has not unconsciously assumed
some proposition in proving a theorem. But once a formal

system has established a theorem on the basis of its assumptions,

it may make use of this theorem in future proofs.

An example of Euclid's method of proof is the following, the

first Proposition of the First Book:

Theorem: Given any (finite) straight line AB, it is possible to

construct an equilateral triangle on AB.

Proof: 1. With A as the center and AB the radius, describe a

circle. (This is possible by Postulate 3 above.)

2. Again, describe a circle with B as center and BA as

radius.

Let C be one of the points where these circles meet; then

3. since AC and AB are radii of the same circle, AC = AB
(by the definition of a circle)

.

4. Also, BC and AB are radii of the same circle: BC = AB.
5. Hence, AC = BC (since 'Things equal to the same

thing are equal to each other," an assumption of arith-

metic.)

6. Hence AC = BC = AB, and the triangle ABC is equi-

lateral by definition.

It will be noted that Euclid's proof, despite the fact that ge-

ometry has been held as a model for exact reasoning, makes
many tacit (geometrical) assumptions. These assumptions are

perhaps obvious enough, and many of them can readily be
proved as theorems. But an exact deductive system would always

make these assumptions explicit, and if they were theorems, it
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would prove them beforehand. The following are possible ob-

jections to this proof:

1

.

How can we be sure that the circles meet in order to make
the point C? Of course it is impossible to imagine pictorially

how they might not; but, as we must repeatedly emphasize, a

deductive system should not appeal to imagination or experi-

ence; its only appeal must be to the postulates or axioms (i.e.,

the assumptions) it sets down, to the definitions it makes, or to

the theorems it has proved.

2. How can we be sure that the lines AC and BC do not meet
at some point D, before C? That is, how do we know that AC
and BC do not have a segment DC in common, so that the real

triangle under consideration will be ABD, which is not equi-

lateral, since AD and BD are less than AB? This objection was
pointed out (by Zeno of Sidon) at an early stage in the history

of geometry. Again, pictorially, this possibility seems absurd.

But it can only become absurd when some assumption or the-

orem of the system makes it so. Actually, the impossibility of the

segment DC seems to be included in Postulate 6: "Two straight

lines meet in only one point," which was itself, presumably, a

tacit assumption of Euclid's in a later theorem. For this being

the case, the straights AC and BC cannot meet at a point D dis-

tinct from C.

3. How do we know that ABC is really a triangle? Euclid's

definition of a triangle is: "A rectilineal figure is one contained

by straight lines, and a triangle is a rectilineal figure contained

by three straight lines." Some further explanation, at least, is

necessary to demonstrate that the given ABC actually conforms
to this definition.

Other tacit assumptions may perhaps appear to the reader.

The purpose of introducing this criticism is to show in what
way even those proofs which appear most exact lack rigor.

In most detective stories of the "scientific" sort we are sup-

posed to be able to "deduce" the identity of the villain from the

facts given. In most cases, if one were to set down all the as-

sumptions necessary to pin the guilt, they would far exceed the

facts. The detective slides gracefully over these, and we, in no
mood to be logical, follow.

In the deductive system for logic given in chapter IV an at-
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tempt will be made to avoid this looseness and to make every

assumption explicit.

EXERCISES

GROUP A

1. Determine whether the following terms are abstract or concrete,

universal or singular, positive or negative: boy, Abraham Lin-

coln, unhappiness, ability, good things, goodness, unknown, New
York, animal, animality, uninteresting, disinterested, music, Bee-

thoven's Fifth Symphony, term, godliness, dishonesty, house, street.

2. Name a term, other than those listed in (1) , which is abstract and
negative; concrete and universal; universal and negative.

3. Is there such a thing as an abstract, universal term? a negative,

singular term?

GROUP B

1. Define by dichotomy the following terms: furniture, house, flower,

goat.

2. Designate the genus, species, and differentia in the following defi-

nitions:

a) A farce is a light dramatic composition of a satirical nature.

b) Geography is the science of the earth and its life.

c) A sculpin is a fish of the group Loricati of the family Cottidae.

d) A maxim is a statement embodying a general truth.

e) A bonfire is a large fire made in the open air.

/) Two is a number obtained by adding one and one.

g) Gravity is that force which attracts all bodies towards the cen-

ter of the earth.

3. Place in their genera and species the following: man, logic, pleas-

ure, triangle.

4. What are the principal species of the following genera: number,
element, literature, trade.

5. What are the indefinables in the following set of definitions:

a) X is an immediate cause of y, if x is the cause of y and there is

nothing which is caused by x and causes y.

b) X is a mediate cause of y, if x is the cause of y and there is some-

thing caused by x which causes y.

c) x and y are independent if x does not cause y and y does not

cause x.



The Logic of Propositions

A LL DEDUCTIVE systems draw some o£ their axioms from the

-^A. material under consideration in this chapter. Here we are

concerned with a branch of science known as the "logic of prop-

ositions." That is, we are interested here in the relations between
propositions in general, in what sense one statement implies

another, and the general rules for passing from the truth of one
sentence to the truth of another by means of "reasoning."

As an example of the kind of statement which will form the

subject matter of this discussion, take the following: "This
proposition is either true or false." Now the truth of this state-

ment does not depend on what proposition I have in mind, as

it would if the statement were simply "This proposition is true."

The truth of the former statement is a universal truth; it holds

for all propositions. We say that its truth is independent of the

content of the proposition, while the truth of such a statement
as "If this (proposition) be so, then all men are created equal"
does depend on the content. We may say, then, that our aim is

to discover statements about propositions which are true no mat-
ter what propositions we may be talking about, or, to say the

same thing more precisely, which are true independent of the

meaning (content) of the propositions. Hence it can be seen in

what sense this science is basic. For all sciences, in that they

state their truths as propositions, must necessarily make use of

the logic of propositions.

Before investigating the laws of this science, a few prelimi-

nary definitions and remarks are necessary. In the first place, it

will be best to make somewhat definite the concept of "propo-
sition." This term is really fundamental and no precise defini-

tion can be given. But we may distinguish the term "proposi-

tion" from other allied expressions by recalling the distinction

made in elementary grammar between declarative sentences and
17
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Other types of sentences, for a proposition is essentially the

former. Hence, such expressions as "Shut upl" "What a nice

day!" and "Isn't it raining?" are not propositions in our sense

of the word.

But the logician makes a distinction between two different

types of propositions. For example, compare these declarative

sentences:

Jones is not honest.

Mr. A is not honest.

Two plus three is five.

X + y = 5.

Not all men are white.

Not all a is b.

12 is less than 7.

X is less than 7.

The first of each pair of propositions is a simple sentence

which is either true or false. But the second in each case is more
complex. None of these is either definitely true or false until we
know what A, or x, or }>, etc., are. Propositions of this latter type

we call "propositional functions" (analogous to mathematical

functions like the second and last examples given above; in

fact, the latter are to be considered a special case of the former)

.

Our interest will center particularly on the latter type, for we
shall consider in the next chapter such propositional functions

as "all a is b," "some a is b," etc. It is to be borne in mind that

when we talk of propositions in this chapter we mean either

type, i.e., simple propositions or propositional functions.

(See Exercises, Group A, at end of chapter.)

Important for the sequel are the relations which exist between

a pair of propositions. We say that every pair of propositions

may be classified under one (and only one) of the following:

"contradictories," "contraries," "subcontraries," and "subal-

terns."

Contradictories

By far the most commonly recognized relation between two

propositions is that of contradiction. The contradictory, of a

given proposition, p, is usually expressed "p is false." Thus,
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were we to contradict the expression, "This is a nice day," we
would say, "It is false that this is a nice day," or, more rhetori-

cally, "This is not a nice day." But we require some exact method
for determining when two propositions may be said to be con-

tradictories. We say, then, that two propositions are contradic-

tory when it is impossible for them both to be true and when it

is impossible for them both to be false (one of them at least

must be true)

,

Thus the two contradictories "All men are equal" and "Some
men are not equal" cannot both be true at once, but one or the

other of them must be true. This property of contradictories is

sometimes rather neatly expressed as follows: "Contradictories

are mutually exclusive and together exhaust the possibilities."

The Greek philosopher Aristotle (384-322, b. c.) , who devoted

an important part of his work to the foundations of logic, set

down these properties of contradictories in two fundamental

principles:

1, "No proposition can be both true and false" (the Principle or

Law of Contradiction)

,

which can be seen to be equivalent to the property of contra-

dictories that they cannot both be true.

2. "Every proposition is either true or false" (the Principle or

Law of Excluded Middle)

,

which is equivalent to the statement that one or the other of two
contradictory propositions must be true.

One other property of contradictories is important. This con-

cerns the well-known method of "reductio ad absurdum," so

often employed in the proof of geometrical theorems. We as-

sume the contradictory of the theorem to be proved, and dis-

cover that this assumption leads to a contradiction. That is, we
find that the contradictory of the given theorem is false, and
hence infer that the theorem must be true. The assumption

implicit in this argument may be phrased in a number of ways,

perhaps the best of which is:

"The statement that it is false that a given proposition is false is

equivalent to the statement that the given proposition is true."

But any of the following express the same fact:
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"The contradictory of the contradictory oipis p itself."

"Two negatives make an affirmative."

The contradictory of a given proposition p may be symbolized

by p' (often by r--^ p or p) . Hence the above three rules may be
partially symbolized as follows:

1. It is impossible that p and p^ both be true.

2. Either p or p' is true.

3. (p') ' is equivalent to p.

Contraries

Contrary propositions have the sense of "opposites" or "ex-

tremities." They are analogous to the end points of a line. Thus
a contrary of "This is white" would be "This is black." With
this hint we can define contrary propositions as two proposi-

tions which cannot both be true (are mutually exclusive) but

may both be false (are not together all-inclusive) . Note that

while a proposition may have but one contradictory, it may have

in general any number of contraries. Thus the proposition

"There are exactly twenty people in this room" has as many
contraries as there are whole positive numbers, for all such ex-

pressions as "There are exactly ten (or two, or eight) people in

this room" will be contraries. There cannot be exactly twenty

and exactly ten people in the room (both statements cannot be

true) , but there may be neither twenty nor ten, e.g., when there

are exactly eight.

Subcontraries

Two propositions are said to be suhcontrary when they may
both be true (are not mutually exclusive) but cannot both be

false (together exhaust the possibilities) . For example, the

propositions "Some books lare good to read" and "Some books

are not good to read" both may be (in fact, are) true, but they

cannot both be false, for whether all books are good or all books

are bad, one or the other of them will still be true.

Subalterns

Finally, we have subalterns, pairs of propositions which are

such that they may both be false (are not mutually inclusive)
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and may both be true (are not mutually exclusive) . These are

of a class opposite to contradictories: For example, "All pigs

have wings" and "Some pigs have wings" are subalterns.

(See Exercises, Group B, at end of chapter.)

Implication

By far the most important relation between propositions as

far as logic is concerned is that of implication. The frequency

of the use in implication is apparent from the observation of

the number of synonyms for the word "implies." Thus, "All

whales are mammals implies some whales are mammals" may be

rendered '7/ all whales are mammals, then some are," or "From
the hypothesis that all whales are mammals, it follows that some
are."

Implication is the principal relation of logic or the science of

the laws of reasoning. When we say that a certain statement p
"implies" another statement q, we mean that there is a relation

between the former and the latter, a relation which is such that

whenever the former is true, the latter is true also. We might
phrase this as follows: "The statement p implies the statement
q" means the same thing as "q must be true when p is true,"

or "It is impossible that q be false when p is true." The word
"implies," or one of its synonyms, is used constantly, but usually

subconsciously. Here are some examples of everyday usage:

"If this administration stays in power, then the stock market will

not go up." (" 'This administration is in power' implies 'The stock
market is not going up.' ")

"It follows from all that has been said that war is imminent."
("All these statements imply 'War is imminent.' ")

"If all men were as honest as he is, the world would be a better
place to live in." (" 'All men are as honest as he' implies 'The world
is a better place to live in.' ")

Since "p implies q" or ''lip is true, then q is true" means the

same thing as "p cannot be true while q is false," the contra-

dictory of "p implies q" must be "p may be true while q is false."

That is, one method of denying that "p implies ^" is true con-
sists in showing that there are cases where p is true and q is not
true. Thus to show that the implication

"If it is Sunday, it is raining"
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is false, we find a case of a rainless Sunday, i.e., a case where "It

is Sunday" is true, but "It is raining" is false. We do not contra-

dict the statement "p implies q" if we merely assert that p may
be false while q is true, for contradictories cannot both be true,

and there are cases where "p implies q" and "p is false while q
is true" are both true statements. For example, "If all men are

bald, then some men are bald" is a true implication; but it is

also the case that "All men are bald" is false, while "Some men
are bald" is true.

The importance of the relation of implication will become
clear when we note that the theorems of a deductive science are

all implied by the postulates; hence it is essential from the point

of view of formal science to examine the properties of this re-

lation.

A convenient method for examining the properties of any

relation is to determine whether it is reflexive, symmetrical, or

transitive.

Let us designate by aRb the fact that a is related to b by the

relation R. Thus in the sentence "a is larger than b," R is the

relation "is larger than," in the sentence "John is the brother of

Bill," R is the relation "is the brother of," etc.

A relation is called reflexive if aRa is always true, i.e., if we
can always relate an object to itself in the given way. Thus
"equals" in mathematics is a reflexive relation, for the statement

"a = a" is true for every quantity. Again, "looks exactly like"

is a reflexive relationship in the realm of visible objects. For

every such object looks exactly like itself. But "is greater than"

is not reflexive, since it is not true that "a is greater than a."

However, it is peculiar of reflexive relations as defined above

that they can be said to hold only in a restricted field. Thus,

though "=:" is reflexive in mathematics as was indicated, this

relation is not reflexive if we extend our field to all things what-

soever, for if a is the term "triangularity," for instance, we have

"triangularity = triangularity," and this cannot be said to be

either true or false, since it is meaningless. Similarly, "implies"

is reflexive for all propositions, since the statement "if p is true,

then p is true" is itself universally true. But if p is the term

"stones," then the statement "p implies p" is meaningless.

Hence, it becomes more convenient to define a reflexive rela-
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tionship in a slightly different manner so that its condition shall

hold in certain cases universally: "A relation is said to be re-

flexive if when a given object holds this relation to some other
object, it is so related to itself." For example, in the case of "looks
like" we have: "If a 'looks like' some object b, then a can be said
to look like a." This holds for all a's whatsoever. For if a is "a
minor chord," then "a looks like a" is nonsense, but the state-

ment "// a minor chord looks like something, it looks like itself"

is true; if we were to apply the relation "looks like" to such ob-
jects as minor chords, then we would have to say that they looked
like themselves. In terms of the symbolism suggested above, this

more precise definition becomes: "i? is reflexive if aRb implies
aRa."

Since "implies" is a reflexive relation, we have:

Principle 1. lip implies some other proposition q, then {p is a
proposition and hence) p implies p (where the parenthetical
part is for rhetorical purposes only)

.

That "implies" is reflexive may be shown to depend on the
Law of Contradiction already explained. For the statement "p
implies q" means "p cannot be true while q is false." Hence "p
implies p" means "p cannot be true while p is false," and the
latter is a form of the Law of Contradiction.

Next, a relation is said to be symmetrical if, when it holds be-
tween a and b, it also holds between b and a, that is, if aRb im-
plies bRa. "Equals," for example, is symmetrical as well as
reflexive, for ii a=b, then b — a. Again "some—is

—
" is sym-

metrical, for if some a is b, then some b is a. But "all—is
—" is

not symmetrical, for we cannot infer from the fact that all ahb
that all b is a.

If the relation of implication were symmetrical, we could as-

sert that whenever the statement p implies the statement q, then

q also implies p. But the reader will easily find instances where
this is not the case. Suppose, for example, that p were the state-

ment "The present temperature is 75" and q were the statement
"The present temperature is over 70." Then if p is true, q must
also be true, but the converse is hardly the case: if the tempera-
ture is over 70, we cannot necessarily infer that it is exactly 75.
As we shall see later, this bad reasoning is called the Fallacy of
Asserting the Consequent.
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But there is a property of implication which, though not the

symmetrical one, is very similar to it. Suppose we represent "p is

false" or the contradictory of p by the symbol p' as above. Then
we can assert:

Principle 2a. "If p implies q, then q' implies p\"

That is, if p and q are two statements such that q is true when-
ever p is true {p implies q) , then if q is false p must also be

false. The above illustration will serve here as well. The state-

ment that the temperature is now 75 implies the statement that

the temperature is over 70; hence, by Principle 2a, we may assert

that if the temperature is not over 70, then it cannot now be

75. Or, again, "If all men are rational, then some men are;"

hence, we can logically deduce that "If it is false that (even)

some men are rational, i.e., if none are rational, then it's false

that all men are rational."

Principle 2a may be applied to the special case where p and q
are "equivalent." When we say that two statements are equiva-

lent we mean that they mutually imply each other. This

property of equivalence appears frequently in mathematics,

where many theorems have the form: "The necessary and suf-

ficient condition for the statement q (e.g., 'This triangle has

equal sides') is the statement p (e.g., 'This triangle has equal

angles') ." For the assertion that p is the necessary condition of

q means that p must be true in order that q be true, that is,

whenever q is true, p is true, or, as we put it, q implies p. And
the assertion that p is the sufficient condition of q means that the

truth of p is sufficient to guarantee the truth of q, or, p implies

q. The statement, then, that p is the necessary and sufficient con-

dition of q is precisely the same as the statement that p is equiva-

lent to q [p implies q and q implies p) . The equivalence of two

statements p and q is also often expressed: "p is true if and only

if q is true." In this special case, Principle 2a becomes:

Principle 2a\ If p and q are equivalent, then if p is false, q is also

false, and vice versa;

that is, if p and q are equivalent, then their contradictories are

equivalent. Thus, since a necessary and sufficient condition

that fl + 2=^+2 is that a =. h, wg can say the statements

"a -I- 2 =7^ & + 2" (a + 2 "does not equal" h -\- 2) and "« ^ b"

are equivalent.
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Principle 2 may also be applied in the case where the impli-

cation is not valid. Thus, "If a man is honest sometimes it does

not follow (necessarily) that he will be honest all the time."

We may infer from this, by Principle 2, as follows: "If a man is

not honest all the time it does not follow that he is not honest

some of the time." In general, then:

Principle 2b. If the statement p does not imply the statement q,

then q^ ("q is false") does not imply p' ("p is false")

.

Logic, like all sciences, often "generalizes" its principles. That
is, it finds new principles which express what the old principles

expressed and more as well. The generalization of Principle 2

can best be seen by means of an illustration: Suppose you were

presenting a debate in which you had four points admittedly

substantiating your argument. That is, numbers 1, 2, 3, and 4

imply number 5, the conclusion you wish to assert. If your op-

ponent agrees that this implication is valid, how will he go

about showing that number 5 is not the case? Simply by showing

that you were wrong in one of your arguments. That is, granted

that the above implication is correct, then if numbers 1,2, and 3

are correct, but number 5 is false, then it must follow that num-
ber 4 is false.

In general then, if the statements p, q,r . . . imply the state-

ment w, then a q, r, . . . are true, but w is false, then p must
be false. If we shorten (p and q and r . . . but if') to (pqr . . .

w') (note that the word "but" has the same logical significance

as "and," and means, really, "and, however," where the word
"however" has only a rhetorical significance) then we can write

Principle 2 in this general form:

Principle 2c. lip q r . . . imply w, then, q, r . . . w' imply p\

Or, obviously, we could just as well write:

if pqr . . . imply w,

then p, r . . . w' imply q'.

Or, Up q r . . . imply w, then p, q, . . . w' imply /, etc.

Note that Principle 2c becomes Principle 2,a when there is but

one premise implying w. Similarly, lip qr . . . do not imply w,

then w' q r . . . do not imply p\
As an example of the application of Principle 2c to arguments,

suppose we grant that if



26 ELEMENTS OF LOGIC

1. we are being attacked,

2. it is disgraceful to submit to an attack without resistance,

3. one ought not do anything disgraceful,

then,

4. we should go to war.

Hence if we grant

I. we are being attacked.

4'. we should not go to war.

3. one ought not do anything disgraceful.

then we must assert that it is not disgraceful to submit without

resistance, 2'. That is, if 1, 2 and 3 imply 4, then 1,4' (4 is false)

,

and 3 imply that 2 is false, or 2'.

Or again, suppose the hypothesis that there is life on Mars
can be established if

1. The temperature there is comparable to that on the earth;

2. There is an atmosphere containing a specific amount of oxygen,

comparable to the amount on the earth;

3. The geology of Mars' crust is comparable to that of the Earth;

4. Any planet comparable to the earth in temperature, atmosphere,

and geology must contain life.

Then if later explorers should find no life on Mars, but 2, 3,

and 4 are all found to be true, it must follow that the tem-

perature on Mars is not like that of the Earth.

Again, suppose that the following premises do not establish

the conclusion "There are more than one hundred elements":

1. The elements may be arranged in a series according to their

atomic number.

2. Between any two supposedly adjacent atomic numbers, chemists

have repeatedly found a third.

Then if there are less than one hundred elements and 2 is true,

we cannot necessarily infer the falsity of 1.

Principle 2a and its generalizations are very important, as the

sequel will show, and for the sake of convenience we give them
a name, the Law of Contradiction and Interchange. This name
arises from the fact that the principle is best stated verbally as

follows: "Given any valid or invalid implication between any

number of premises (p, q, r, etc.) and a conclusion w, we may
take any premise and contradict and interchange it with the
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conclusion and the validity of the resulting implication is un-

changed."

This principle, under a different form, plays a very important

role, especially in mathematics. The proofs of many theorems

are possible only through an "indirect method." This consists

simply in assuming that the theorem to be proven is false, and
then demonstrating that an inconsistency with certain assump-

tions occurs. Thus, suppose we grant these theorems in geome-
try:

1. The sum of the angles around a point on a straight line is equal

to two right angles.

2. Unequals added to equals give unequals.

3. All right angles are equal.

Then we prove by the indirect method that

4. If two lines intersect, the vertical angles are equal.

For suppose that 4 were not so; then in the accompanying
figure, 1 and 2 are unequals, and hence 1 + 3 and 2 + 3 are un-

equals by our second premise. But this contradicts our first and
third premises, which state that 1 + 3 = 2 right angles = 2 + 3.

In effect, what we have done is to show that if 2 and 3 are true

and 4 is false, then 1 is false, i.e., 2, 3, and 4' imply V; hence, by

the Principle of Contradiction and Interchange, if 2 is true, and
1 is true, and 3 is true, then 4 is true, i.e., 1, 2, and 3 imply 4.

Further illustrations of this principle under the Indirect Method
are given in chapter VI.

Third, a relation is said to be transitive if when it holds be-

tween a and b and between b and c, it holds between a and c.

Or, symbolically, R is transitive if aRb and bRc imply aRc.

Thus, "equals" is also transitive, as is the mathematical relation

< ("is less than") ("If a is less than b and b is less than c, then

a is less than c") The relation "is the cause of" is usually thought

to be transitive; that is, "If a is the cause of b, and b is the cause

of c, then a is the cause of c." Similarly, "is the effect of" is also

generally recognized as transitive. But "is one-half of" is not a
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transitive relation: If a is half of b and h is half of c, then a is

not in general half (but a quarter) of c.

There are a great many relations, however, which at first

glance appear transitive and are not actually so for a very special

case. Thus, "is parallel to" is a relation commonly recognized as

transitive, for if a is parallel to h, and b to c, then a must be par-

allel to c. However, the conclusion will be false in the particular

case where a and c are the same lines, for according to the usual

definition of parallel lines (lines in the same plane which never

intersect) , no line is parallel to itself. Thus, we might have a

parallel to b and b parallel to a, but it would not follow that a

is parallel to a. Mathematicians and scientists in general are

prone to call relations "transitive" which fail to be so in this

special case only, and because of their frequency, it will be con-

venient to designate such relations as "transitive in the restricted

sense." In other words, a relation is transitive in the restricted

sense when a is related to b and ^ to c in the given way, a will

be related to c in the same way provided a and care not the same.

Note that such relations as "is greater than," "is equal to" do not

require this proviso.

The reader perhaps already will have satisfied himself that

implication is a transitive relation (in the general sense) . In

geometry, for instance, we often make use of a theorem already

proved in order to prove another, and in so doing we really

'assume the transitivity of implication in a sense: we assume that

if a given postulate implies a theorem which, in turn, implies

another theorem, then the truth of the last can be said to de-

pend directly on the first; i.e., the postulate implies the last

theorem:

Principle 3a. If when p is true, q is true, and when q is true, r is

true, then when p is true, r is true.

Note that in Principle 3a there are two premises ("If p, then

^" and "If q, then r") which imply a conclusion ("If p, then

r") . But Principle 2& states that when two premises validly im-

ply a conclusion we may contradict and interchange one of

them with the conclusion and the resulting implication is still

valid. That is, we may assert Principle 36 as follows:

Principle 3&. If (p implies q) but {q does not imply r) , then

ip does not imply r)

.
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Principle 3c. If (p does not imply r) but (q does imply r) , then

{p does not imply q)

.

Thus, since "a is a factor of 6" does not imply that "b is a

factor of <2," but "^ is evenly divisible into a" does imply that

"b is a factor of a," we can infer that "a is a factor of &" does not

(necessarily) imply that "b is evenly divisible into «."

Principles 3a, 3&, and 3c and their related principles are easier

to grasp if we introduce the terms "strengthen" and "weaken."

Let us call the statement p a "strengthened" form of the state-

ment q iip implies q, and let us call q a "weakened" form of p
in this case. These terms agree to some extent with common
usage, for the stronger a statement is, the more fraught it is

with implications. Thus the proposition "All men are liars" is

considerably stronger than the proposition "Some men are liars."

But note that even though two statements are equivalent, i.e.,

even though they mutually imply each other, we can still say,

by our definition of the term, that the one is "stronger" (or

"weaker") than the other.

Principle 3fl, which expresses the truth of the transitivity of

implication, may now be expressed as follows: "Given any valid

implication 'p implies q,' we may replace the conclusion (j by a

weakened form (in this case r) without altering the validity of

the implication," or "Given any valid implication 'q implies r,'

we may replace the premise ^ by a strengthened form (in this

case p) without altering the validity of the implication." Again,

3c and 3fc would become: "Given any invalid implication 'p

does not imply r,' we may weaken the premise or strengthen the

conclusion and the resulting implication is still invalid."

The foregoing statements illustrate the close analogy which
the relation of implication bears to the relation "is (physically)

stronger than or has the same strength as." Thus, if one thing

is not stronger than another (p doesn't imply r) , then something

of equal strength or weaker than the former (something p im-

plies) is not stronger than the latter (does not imply r) . Or, if

one thing is not weaker than another, then something of equal

strength or stronger than the former is not weaker than the

latter.

The results may be generalized in a manner analogous to the

generalization of Principle 2. For suppose we have two premises.
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p and q, which imply r; then we may replace p or q (or both)

by stronger forms, or we may replace r by a weaker form, and
the resulting implication is still valid. That is, in every-day

language, we "strengthen" our argument by finding stronger

premises upon which it rests; and we "weaken" our conclusion

by not inferring so much from our premises.

Principle Sd. If the premises p, q, r, . . . validly imply w, and
some statement x implies p (or q, or r, etc.) , then we can assert

that X, q, r, , . , validly imply w.

If the premises p, q, r, . . . validly imply w, and w implies

X, then p, q, r, . . . validly imply x.

Similarly,

Principle 3e. If the premises p, q, r do not imply w, and p (or

q, or r, etc.) implies x, then x, q, r, do not imply w.

If the premises p, q,r, . . . do not imply w, and some state-

ment X does imply w, then p, q, r, do not imply x.

^Thus from the premises "Harvard beat Yale," "Yale beat

Princeton," "Princeton beat Penn," we cannot infer that "Har-

vard will beat Penn." But the statement "Harvard beat Yale"

implies that "Harvard at one time was better than Yale," and

the statement that "Yale beat Princeton" implies that "Yale was

at one time better than Princeton," etc. Thus, from the premises

"Harvard was at one time better than Yale," "Yale was at one

time better than Princeton," "Princeton was at one time better

than Penn," we cannot infer that "Harvard will beat Penn."

(See Exercises, Group C, at end of chapter.)

Constructive Hypothetical Syllogism (Modus
Ponens)

A syllogism is an argument in which two premises are used

to establish a certain conclusion. The fundamental law of im-

plication, the principle which expresses the right to pass from

the truth of one statement (/?) to the truth of another {q) is

called the Constructive Hypothetical Syllogism (or modus
ponens)

:
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Principle 4. "I£ p is true, then q is true (i.e., p implies q) ; but p
(as a matter of fact) is true; hence, we may assert: 'q is true.'

"

The foregoing syllogism is called "hypothetical" because of

the first premise, the implication, which contains the conditional

clause "If p is true." It is called "constructive" because the sec-

ond premise "constructs" or asserts the truth of p.

The significance of the Constructive Hypothetical Syllogism,

which perhaps seems overly trite, lies in the fact that it allows

us to consider the statement q as true quite apart from p, i.e., to

think of q as an independently true proposition. Thus, the fol-

lowing implication is true: "If there are ten people here, then

there are at least six." But we cannot, on the basis of this, con-

sider "There are at least six people here" as an independently

true proposition. It is true provided the foregoing hypothesis

("There are ten people here") , or one like it, is true. It is

pinned, as it were, to this condition. If the condition is verified,

then the Constructive Hypothetical Syllogism allows us to unpin
the foregoing phrase and consider "There are six people here"

as an independently true proposition.

This syllogism may be generalized as follows:

"If (the premises) p, q, r, etc., are trae, then the statement w is

true; but p, q, r, etc., are all true; hence w is true."

The Constructive Hypothetical Syllogism plays a very im-

portant role in mathematics, since it is the logical principle be-

hind the method of "mathematical induction." Inductive rea-

soning in general consists in establishing general principles from
particular cases. In mathematics, we proceed as follows. Sup-

pose that we have a certain proposition of algebra, e.g., "The
expression x" — y" is always (evenly) divisible by x — y, where
n is any whole, positive number." We note first of all that this

proposition is true when n has the value 1 . We now proceed to

show that if the proposition is true for a certain value of n, then

it will be true for the value n-\- \, that is, for the next number.
Let us suppose then that x" — })" is divisible by x — y, where n
has a certain specific value, say 26, or 49, or 567. We may rep-

resent this specific value by the letter a; i.e., x" — y" is divisible

hy X — y. Now x"
''

^ — y" ''

'^ is equal to

x"
+

' _ y» +
1 + x"); — x'y



32 ELEMENTS OF LOGIC

since we have merely added and subtracted the same quantity,

xy. The latter may be written

x"*^ — xy -{- xy — y" + s or

x''(x — y) + y (x" — y").

But this last expression is divisible by x — y, since the first part

obviously is, and the latter part is by hypothesis. Hence, since

the last expression is equal to x"''^ — y"''^, we may say that this

also is divisible by x — y. Hence we have: "// x" — y" is divisible

lyyx — y, then x^*^ — y^*^ is also." Suppose a is the number 1 : "I£

x^ — y^ is divisible by x — y, then x^ — y^ is also." But, as a mat-

ter of fact, x^ — y, or X — y, is divisible by x — y. Hence, by the

logical principle of the Constructive Hypothetical Syllogism, we
have established the truth of the statement that x^ — y^ is di-

visible by X — y. Now suppose a = 2: "If x^ — y^ is divisible by
X — y, then x^ — y^ is also." Since the premise is true, the con-

clusion is also. By carrying out this process far enough, we can

show that x^^ — y^\ x"^^ — y^^^, x^°^^ — );'°*^ etc. are all divisible

by a; — y. That is, we may assert that whatever whole positive

number n may be, x" — );" is divisible by x — y. (Cf. chapter

XVIII for the role this principle plays in the postulates of arith-

metic.)

It should be noted that mathematical induction comprises

three distinct parts: (1) the verification of the proposition for

some particular number, (2) the demonstration that if the

proposition is true for some number, it must be true for the

next, and (3) the logical principle of the Constructive Hypo-
thetical Syllogism. There are many statements for which (1) is

true, but (2) fails—e.g., the proposition "6* — a is divisible by

d" is true for all whole numbers from 1 to 4, but (2) fails for

this proposition, since even though it is true for a = 4, it is false

for a=: b. Similarly, there are many propositions for which (2)

holds, but which can never be verified for any number. Thus, if

the statement "x" + })" is divisible by x — y" is true for n, it will

be true for n -{- 1, as may be demonstrated in a manner similar

to that given. But this statement is not true for any values of

X or y (greater than 0)

.

Closely connected with the Constructive Hypothetical Syl-

logism is a fallacious syllogism: "If p is true, then q is true; but
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q is (admittedly) true; hence p is true." This is the argument

known as the Fallacy of Asserting the Consequent. For example:

"Bacon was a great writer if he wrote Shakespeare's plays; but as a

matter of fact. Bacon was one of the greatest writers of all times;

hence Bacon must have written Shakespeare's plays."

A more complicated form of the Fallacy of Asserting the Con-

sequent occurs in a paradox of Lewis Carroll. Suppose that

three men, Allen, Brown, and Carr, are the three barbers in a

certain shop. Allen, the conscientious proprietor of the shop, has

a hard and fast rule that at least one man must always be there.

But Allen, who suffers from the gout, insists that Brown accom-

pany him whenever he goes out. From these two facts we can

apparently deduce the conclusion that Carr must be in (despite

the fact that there seems to be no contradiction in Allen's and

Brown's being there while Carr is out) . Suppose, for the sake

of argument, that Carr is out. Then we know that under this

hypothesis if Allen is out. Brown must be in (since at least one

man must be there) :

1. If Carr is out, then, if Allen is out Brown is in.

But by the second fact we know that

2. If Allen is out. Brown is out.

Hence on the hypothesis that Carr is out we have the proposi-

tion: "If Allen is out, Brown is in," and this contradicts the

fact: "If Allen is out. Brown is out." Hence the hypothesis that

Carr is out leads to a contradiction, and thus Carr must be in.

What is the fallacy here?

The Destructive Hypothetical Syllogism (Modus
Tollens)

Here the argument makes use of the Principle of Contradic-

tion and Interchange:

Principle 5. "If p is true, then q is true;

but as a matter of fact q is false;

hence p is (actually) false."
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This argument allows us to assert the independent falsity of a

given statement. For example: .

"If the Cretans had visited the British Isles, we would have found
some trace of their civilization; but as a matter of fact, no sign of it

has been found; hence we may assert that the Cretans did not visit

the British Isles."

Analogous to the Fallacy of Asserting the Consequent is the

Fallacy of Denying the Antecedent: "If p is true, then q is true;

but p is, as a matter of fact, false; hence q is false." For example:

"If we had good housing conditions, the poorer people of our

country would be happy; but as a matter of fact we have the

poorest housing conditions; hence the poorer people cannot

possibly be happy."

So far we have considered three of the relations of the logic

of propositions: negation, implication, and equivalence. Tradi-

tionally, logicians have recognized two more. The first is called

"conjunction," and is expressed by the statement "p and q are

both true." The second, "disjunction," is expressed by the state-

ment "Either p or q is true." The latter is ambiguous, since

"either, or" may mean "either one or the other but not both,"

or "either one or the other and possibly both." The latter mean-
ing is chosen here.

The properties of conjunction and disjunction have already

been mentioned in part, e.g., in Principles 2c, 3d, Se, etc. We
mention a few more here, but the fuller explanation may be

found in chapter XII. The most important law connecting these

two relations is the following: "If we deny the conjunction 'p

and q are both true,' then we assert the disjunction 'Either p
is false or q is false.' " Thus if we deny that today is Monday and
there will be no Sunday paper, we assert that either today is not

Monday or there will be a Sunday paper. That is, if it is false

that both propositions are true, then one or the other must be

false. A similar principle is the following: "If we deny the dis-

junction 'p or q is true,' we assert the conjunction 'p is false and

q is false.' " That is, if it is false that either one or the other is

true, then both must be false. For example, if it is false that

either all men are happy or that no men are happy, then some
men are not happy and some men are happy. These laws may
be stated as follows:
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Principle 6. The denial of a conjunction (pq) is a disjunction

with the elements separately denied (p' or q')

,

and

The denial of a disjunction is a conjunction with the elements

separately denied.

From the foregoing relations of the calculus of propositions

we may construct several forms of argument which are often

used. These are known under the common name of dilemmas.

The Complex Constructive Dilemma

This argument runs:

Principle la. "If the statement p is true, then the statement q is

true, and if r is true, then s is true; but either p is true or r is

true; hence, either q is true or s is true."

For example:

"If you learn a great deal {p) , then you forget a great deal {q)

,

and if you don't learn much (r) , then you never know much {s) ; but

either you learn a great deal or you don't learn much (either p is true

or r is true) ; hence, either you forget a great deal or you never know
much (either ^ or j is true) ." Or,

"If we sell to foreigners, we send valuables from our country; if we
buy from foreigners, we send money from the country; hence,

whether we buy or sell to foreigners we will either lose goods or else

money."

The latter illustration may be "retorted"; i.e., a dilemma may
be constructed which will argue on the other side in an analo-

gous manner:

"If we sell to foreigners, we bring money to the country, and if we
buy from foreigners we bring goods to the country; whether we buy
or sell to foreigners, then, we either bring in money or goods."

A common form of the dilemma occurs when q and s are

identical:

"If we surrender, they will hang us, and if we do not surrender,

they will capture us and hang us. But we must either surrender or

not. Hence, we must necessarily hang (we either hang or we hang)
,"
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The third premise of the dilemma, the one containing the

words "either, or" is in the form of a disjunction. The two al-

ternatives of this disjunction in the first example above are "You
learn a great deal" and "You do not learn much." Often the

disjunction in question is not "complete," that is, the two al-

ternatives do not exhaust the possibilities:

"If you tell the truth, men will hate you (for being candid) , and
if you tell lies, the gods will hate you (for lacking virtue) . But either

you tell the truth or you tell lies; hence either men or gods will hate

you."

But we are not forced to accept the alternative in the third

premise; a man may lie at times and be truthful at times and
hence at least men will not hate him for this. When a third (or

perhaps a fourth or fifth) alternative is possible, the dilemma is

said to be refuted by "escaping through the horns."

The Complex Destructive Dilemma

Here the argument is the same as the above, but makes use of

the Principle of Contradiction and Interchange:

Principle lb. "If p is true, then q is true, and if r is true, then ^

is true; but either q is false or s is false; hence, either p is false

or r is false."

For example:

"If the weather report is right, it will rain; if Jones is right, the

game will be played; but either it won't rain or the game won't be

played; hence either the weather report or Jones is wrong."

Obviously the following two mixed forms are also possible.

Principle 7c. "If p (is true) , then q (is true) , and if r, then s; but

either p is true or s is false; hence either q is true or r is false."

Principle Id. "lip, then q, and if r, then s; but either q is false or

r is true; hence either p is false or s is true."

Fallacious dilemmas arise by use of the Fallacies of Asserting

the Consequent and Denying the Antecedent. For example:

"If he has an inventive mind, he will do well as an engineer; but

if he likes poetry, he will not make a good engineer; however, he
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will either make a good engineer or not; hence I conclude that he

is either inventive or poetic."

(See Exercises, Group D, at end of chapter.)

The following offers a brief resume of the material in this

chapter and at the same time introduces certain symbols which
have proved useful in the development of modern logic.

The logic of propositions is that science whose aim is to find

all universal statements about propositions, i.e., to find all state-

ments about propositions which hold regardless of the meaning
or form of the propositions involved.

The fundamental relations of this science are four:

1. "p implies q," which we may symbolize by "p / ^." ^

2. "p is false," symbolized by p'.^

3. "p and q are both true," symbolized by pq, and called the "con-

junction" of p and q.

4. "Either p is true or q is true (or both) ," symbolized by p + q,^

and called the "disjunction" of p and q.

5. By these four * fundamental relations we can define a fifth, "p

and q are equivalent," which is symbolized p = q and means simply
"p implies q and q implies p," i.e., in symbols, (p /_ q) {q /_ p)

.

With these symbols we can express the principles given in this

chapter in this symbolic form:

1. (p iq) l(p IP)
2. a) (p iq) I {q' L f)

(P=q) I (P'= q^)

b) {p Lq)'L{q'lp')'
c) (pqr . . . Iw) l(qr . . . w' /_ p')

(pqr ... Iw) l(pr . . . w'l q') , etc.

1 In the history of symbolic logic, many symbols for this relation have been
suggested; the following are some: p^q,p^q,p~<:^q,p -i q, p <. q; the present

symbol is a shortened form of the mathematical symbol — , "less than or equal

to;" there is some analogy between the two relations, for "p implies q" is some-
times thought of as "The cases where p is true are less than or equal to the cases

where q is true," the former being included in the latter.

2 Sometimes symbolized -^ p.
^ Sometimes symbolized py q.

* Ordinarily, logicians add a fifth relation: "p and q mean the same thing."

When this is distinguished from "p and q are equivalent," the former is sym-
bolized p=^q and the latter p = q; but from the point of view of the elementary
treatment here, it is not necessary to distinguish these relations, so that p = q
may mean either "p and q are equivalent" or "p and q mean the same thing."
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3. fl) (p iq) {q ir) lip IT)
b) (p iq) (p Z. r)V (q ir)'
c) (p lr)'{q ir) lip Iq)'
d) ipqr . . . Iw) (x /_ p) I (xqr . . . /_w)

(pqr ... A w) (w I x) I (pqr ... /_ x)

e) (pqr ... /. w) ' (p /_ x) /_ (xqr ... /_ w)'
(pqr ... /_w)' (x /_w) I (pqr ... Z x)

'

4. Constructive Hypothetical Syllogism: If (p /_ q) p is true, then

q is true,

5. Destructive Hypothetical Syllogism: li (p /_ q) q' is true, then

p is false, i.e., p' is true.

6. (pq)' = (p' + q^)

(P + q)' = P'q'
7. Constructive Dilemma:

(p iq) (r l s) (p + r) l(q + s)

Destructive Dilemma:

(p I q) (r I s) (q' + s') /_ (p' + /)

Mixed Dilemmas:

(p iq) (r Z.S) (p + O Z (g + O
(p iq) (r l s) (q' + r) I (p' + s)

8. Aristotle's laws may be stated thus:

a) Law of Contradiction: (pp')

b) Law of Excluded Middle: p + p'

These three laws are also important:

9. p" = p
10. pq = qp
n. (p + q) = (q + p)

The following give the symbolic definitions o£ the three classes

of relations:

1. Reflexive: (aRb) Z (aRa)

2. Symmetrical: (aRb) /_ (bRa)

3. Transitive: (aRb) (bRc) /_ (aRc)

EXERCISES

GROUP A

1. Which of the following statements belong to the logic of proposi-

tions, i.e., which are true for all propositions whatsoever?
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a) If this proposition is true, then this same proposition is true.

b) This proposition is false.

c) If the wave-theory of light is correct, then this proposition is

true.

d) If, when the proposition p is true, the proposition q is also

true, then when q is false, p must also be false.

e) This proposition is either always true or always false. (Hint:
Is this true for propositional functions?)

/) If the proposition p is true and the proposition q is true, then
the proposition p is true.

g) This proposition implies that x — z = 4.

h) If it is false that this proposition is false, then this proposition
is true.

i) This (proposition) does not imply that any felony has been
committed.

;) This proposition implies (it follows from this proposition)
that every proposition is true.

GROUP B
1. Tell whether these pairs of propositions are contradictories, con-

traries, subcontraries, or subalterns.

a) It is raining.

It is snowing.

b) Greater love hath no man.
Some man hath greater love.

c) There are at least 20 people in fhis country.
There are at least 30 people in this country.

d) The tide is flowing out.

The tide is flowing in.

e) X is greater than ten.

X is less than ten.

f) All men are liars.

All liars are men.

g) Life's but a walking shadow.
Life's a poor player who struts and frets his hour upon the
stage.

h) Some are bom great.

Some are not born great.

i) If the proposition p is true, then q is true.

If the proposition q is false, then p is false.

j) Through a point outside a line, one and only one parallel in
the plane can be drawn to the line.

Through a point outside a line more than one parallel in
the plane can be drawn to the line.



40 ELEMENTS OF LOGIC

k) Motorists must drive under 40 miles an hour.

Motorists may drive as fast as they please.

/) x + 2 = 6.

a; < 4 or X > 4 (where x <Cy means "x is less than y" and
X > )' means "x is greater than y") .

m) These two propositions are contraries.

These two propositions are subalterns.

n) No one knows the truth about anything.

Everyone knows the truth about everything,

o) He is happy.

He is unhappy.

Given that p and q are contradictories, p and r are contraries, p
and s are subcontraries, and p and t are subalterns, what are the

relations subsisting between q, r, s, and tf

If p and q are contraries, q and r are contradictories, and r and s

are contraries, what are p and s7

GROUP C

1. Classify the following relations by determining whether they are

reflexive, symmetrical, or transitive.

"is higher than"

"is the cousin of"

"is parallel to"

"works for"

"has a greater velocity than"

"is the king of"

"Some—is
—

"

"is a part of"

"is a factor of" (in mathematics)

"belongs underneath"

"All—is—

"

"loves"

"No—is—

"

"is an analogue of"

"Some—is not
—

"

Give a relation which is reflexive, symmetrical, and transitive;

one (other than "implies") which is reflexive and transitive, but

not symmetrical; one which is neither reflexive, symmetrical, nor

transitive; one which is only symmetrical; one which is only re-

flexive; one which is only transitive; one which is reflexive and
symmetrical, but not transitive.
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3. Prove that no relation can be transitive and symmetrical but not
reflexive.

4. Determine whether the following relations are transitive in the

restricted or in the general sense: "lies above," "is the brother

of," "precedes," "is included in," "equals," "is a factor of," "is

not the same object as." Find a relation which is transitive in

the restricted sense and symmetrical, but not reflexive.

5. Let aRb denote that an object a has a given relation R to an
object b (cf. page 22)

.

R is irreflexive if aRa is never true.

R is non-reflexive if aRa is sometimes true and sometimes false.

R is asymmetric if aRb implies that bRa is false (no matter what
a and b may be)

.

R is non-symmetric if, when aRb, bRa is sometimes true and
sometimes false.

R is intransitive if aRb and bRc imply that aRc is false (no mat-
ter what a, b, and c may be)

.

R is non-transitive if when aRb and bRc, aRc is sometimes true

and sometimes false.

Classify the following relations under the above six categories:

a) "is parallel to," b) "equals," c) "has a point in common
with," d) "is one-half of," e) "is less than."

Prove that if a relation is symmetrical and intransitive, it is

irreflexive; if a relation is transitive and irreflexive, it is asym-
metrical; a relation cannot be asymmetrical and reflexive.

6. By applying Principle 2, the Law of Contradiction and Inter-

change, to the following statements, derive new statements:

Example: If a = 0, then ab = 0. If p represents "a = 0," and

q "ab = 0," then we have an implication of the form
"p implies q;" hence " 'q is false' implies 'p is false;'

"

that is, "ab^ implies a ^ 0."

a) If we lower the tariff we lower our standard of living.

b) Water is formed if hydrogen and oxygen are mixed in the

proper quantities.

c) If a body is falling free, its acceleration is 16 feet per second

per second.

d) From the fact that A and B are vertical angles, it follows that

they are equal.

e) If no man is honest, then no honest being is a man.

f) If a = 1, then ab = b.

g) A relation's being symmetrical and transitive implies that it

is reflexive.
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If you take a teaspoon of arsenic tonight, you will be dead
tomorrow.

If two bodies having equal weight are hung at equal dis-

tances from the fulcrum, they will balance.

;) It does not follow that if a man performs a morally good act

he is therefore virtuous.

"Some thinking is good" does not imply "Some thinking is

not good."

l) If some of this is clear, it does not follow that all of it is.

m) Even though all rich men go to heaven, it does not follow

that all people that go to heaven are rich.

If a = 0, then it is not necessarily the case that a + b = 0.

If you are bitten by a rattlesnake, it does not follow that you
will die.

From the fact that some men are not Chinese, we cannot in-

fer that some Chinese are not men.

q) 11 a = b, but b =7^c, then a^c. (Apply the principle to both

premises.)

r) If two angles in the triangle A are equal respectively to two
angles in the triangle B and the included sides are equal,

then A and B are congruent.

If fl is a factor of b and 6 is a factor of c, then a is a factor

of c.

If « is greater than b and b is greater than c, then a is greater

than c.

If two bodies are moving along a line towards each other, and
their masses are equal and their accelerations are equal, they

will come to a dead stop when they meet.

If all men are living, and no living thing is a stone, then no
man is a stone.

w) If all cats are sly and some animals are not sly, then some ani-

mals are not cats.

If all tadpoles are secretive, and no secretive things are nice,

and some fish are nice, then some fish are not tadpoles.

If some people are stupid and some donkeys are stupid, it

does not follow that some people are donkeys.

If this is government of the people and this is government
by the people, it does not follow that this is government for

the people.

ad) From the fact that John is the father of Bill, and Bill is the

father of Sam, we cannot infer that John is the father of Sam.

bh) li tty^b and b=^c, it does not follow that a = c.
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cc) Even though it is true that all men are living and all cats are

living, we cannot say that some men are cats.

dd) The statements "No men are trees" and "No trees live under-

ground" do not imply that all men live underground.

ee) The premises that many people have seen ghosts and some
of the people who have seen ghosts are reliable and all re-

liable people tell the truth most of the time are not sufficient

to establish the fact that ghosts exist,

7. Apply Principle 3 to the following and form new statements;

then apply Principle 2 to tiie result.

Example: li a = b and b > c ("b is greater than c") , then

a > c. Now a -\- 5 = b + S implies that a = b, and
b = c -\- 2 implies that b > c, and a > c implies that

tty^c. If we let p be the statement a = b, q the state-

ment b > c, r the statement a > c, s the statement

a -\- 3 = b + 3, t the statement b = c -\- 2, and u the

statement a^c, then we have the following: 1) p
and q imply r, 2) s implies p (that is, 5 is a strength-

ened form of p) , S) t implies q, and 4) r implies u
(i.e., M is a weakened form of r) . Then it follows that,

since we can strengthen either premise or weaken the

conclusion, the following are true: s and q imply r,

p and t imply r, s and t imply r, p and q imply u, s

and q imply u, p and t imply u, s and t imply u;

stating the last, which is the case where both premises

are strengthened and the conclusion weakened, we
have: Iia + ^=b + ^ and b = c + 2, then a 7^ c.

a) If Clay had been president, the West would have benefited;

but if the West had benefited, expansion would have taken

place much more quickly.

b) If all of us are tried and true, then some of us are; but if some
of us are tried and true, and no tried and true person ever

surrenders, then some of us will not surrender.

c) If all statements are meaningful and nothing you say makes
sense, then nothing you say is a statement. But if nothing

you say is a statement, then some things you say are nonsense.

d) All men have reason and all angels have reason does not im-

ply that some men are angels. But all angels have reason im-

plies that devils have reason (the devils being fallen angels)

.

Again, all men are angels implies that some men are angels.

e) No circles are squares and no circles are rectangles does not

imply that some squares are not rectangles. But no circles are
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squares does imply that no squares are circles, and no circles

are rectangles implies that some rectangles are not circles, and
no squares are rectangles implies that some squares are not

rectangles.

f) From the fact that a + 2 = S implies a= I, what new state-

ment can be inferred from /) in Example 6?

g) From the fact that if a man is a saint he is virtuous, what
new statement can be inferred from ;) in Example 6?

h) If "no stone is a living thing" implies that "no living thing

is a stone," what can be inferred from v) in Example 6?

i) John is the father of Bill implies that Bill is the son of John;
what follows from aa) in Example 6? What follows if we
grant that Sam is the son of John implies that John is the

father of Sam?

8. Restate Principles Sd) and Se) by using the terms "strengthen"

and "weaken" instead of "implies."

9. What is the strongest statement possible; what is the weakest

statement possible?

10. Determine whether the following pairs of statements are con-

traries, contradictories, subcontraries, or subalterns:

a) p implies q.

p does not imply q.

b) p implies q.

q implies p.

c) p is a weakened form of ^.

p is a strengthened form of q' ("q is false")

d) p and q are both weakened forms of r.

p is a weakened form of q.

GROUP D

1. Identify and criticize the following arguments (i.e., determine

whether they are fallacious or not) ; in the case of the dilemma,

determine the horns and if possible retort the dilemma or escape

through the horns:

a) If there are a great many people unemployed in a country,

there is something radically wrong with the economic struc-

ture there; but there are a great number of unemployed here;

hence our economic structure leaves something to be desired.

b) If a man could count forever, he would never count all the

numbers; but it is true that no one can count all the num-
bers; hence no one could count forever.
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c) "If you can infer anything from what I have just said, it is

certainly this, that I am as innocent as a newborn babe." "But
it has been shown that what you have said is all lies; your
innocence, therefore, is just as much a fiction."

d) "Believe me, sir, if you persist in this policy, we shall never
speak again." "But I must speak to you often." "Then you
must give up this policy."

e) Had Romeo known that Juliet was alive, he would not have
killed himself; but he did not know this; hence his death was
as inevitable as a law of mathematics.

/) Human freedom is without meaning if God is omniscient,
for he is then aware of what our decision in any case will be
before we decide. But man is a free agent. Therefore, it can-
not be that God is altogether omniscient.

g) The world cannot have existed always, if it had a beginning
in time. But it can have existed always. Therefore it had no
beginning in time.

h) If logic were useful, it would teach us how to reason well; but
it does not teach us to reason well; therefore it is useless.

i) If anything more is meant by the conclusion of an argument
than was contained in the premises, then the argument must
have been fallacious, since it made use of some unwarranted
assumption; but if the meaning of the conclusion is contained
in the premises, then there was no use in stating it; but either
the conclusion asserts more than the premises, or its meaning
is contained in them; hence the conclusion is drawn falla-

ciously or it is redundant.

;) If you obey the doctor's orders you will get well; if you do
what you want to do, you won't get well; hence, either you
won't obey the doctor or you won't do what you want to do.
(Which premise of this dilemma is missing?)

k) As I was driving down the street the other day a little girl ran
out in front of my car; I was in a bad situation, for if I put on
the brakes, the car would slide into a nearby tree, and if I

didn't put on the brakes I would hit the child.

/) A had a bet with B that he could prove that B was not there.

A argued as follows: "You are not in Palm Beach; but if you
are not in Palm Beach, you must be somewhere else; but if

you are somewhere else, then you are not here." B then took
the stakes; when A accused him of doing so unfairly, B ar-

gued: "If your argument was sound, then I was not here and
hence had an alibi; if your argument is not sound, then I had
a right to take the money."
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m) Lady: Madam, we'll tell tales.

Queen: Of joy, or grief?

Lady: Of either, madam.
Queen: Of neither, girl:

For if of joy, being altogether wanting.

It doth remember me the more of sorrow;

Or if of grief, being altogether had.

It adds more sorrow to my want of joy.^

n) If a = b, then a is neither greater than nor less than b, if a is

greater than b, then a=^b; but either a = b or a^b; hence

a is neither greater than nor less than b, or else a is greater

than b.

o) If you agree to the statement "All abbergesnarks are woo-

woos" you are crazy, since the sentence is meaningless; but if

you disagree with it, then you are not only crazy but also dog-

matic; hence you are crazy, certainly, and may be dogmatic,

too.

p) After the negotiations with France concerning the Louisiana

purchase, Jefferson was in a dilemma. If he accepted these

negotiations, he would go against the Constitution and hence

violate his principles. But if he did not accept them, the pur-

chase would be lost and his dream of United States expansion

would be shattered; thus he was forced to violate his princi-

ples or his ambitions.

q) If the army advanced, it would meet destruction at the hands

of the Hessians, and if it retreated, the British would annihi-

late it; it was obvious to all, then, that a terrible defeat was

inevitable,

r) If a and b are whole numbers, then their sum, a -f 6, is a

whole number; but if a is a whole number and b is not, then

fl -f 6 is not; now a + b h either whole or not whole; hence,

either a and b are both whole numbers, or a is whole but b is

not.

5) If Black obeys orders, we will win the contract; but if you are

there, Black will obey orders; hence we will either win the

contract or you will fail to be there.

t) Those of us who are virtuous receive no praise, while those of

us who are not are severely criticized; truly, it's the way of life

to be ignored or blamed.

u) "But the Dogmatists are accustomed to retort by inquiring

'However does the Sceptic show that there is no criterion [of

truth]? For he asserts this either without judging or with the

' Richard II.
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help of a criterion; but if it is without judging, he will not be
trusted, while if it is with a criterion, he will be self-re-

futed.' " ^

2. By mathematical induction, prove the following principles:

a) If we add all the odd numbers up to 2n-l together, the result

is n^. (E.g., in the case of the number 5, we add 1, 3, 5, 7, and
9, and this gives 25, which is 5^)

6) 2-1 -f 2-2 + 2-3+ . . . +2-n = n(n-f 1).

c) l-f2 + 3+...+n = n(n + l)

d) x^" — ))2° is evenly divisible hy x + y, where n is any whole,
positive number.

3. By means of Principle 6 (De Morgan's Law) deny the following
conjunctions and disjunctions:

a) Either he is rich or I am a fool.

b) We lose money and they gain it.

c) We shall lose our money but (and) we shall not lose our
reputation.

d) In Revolutionary times, either you were not a Tory or you
were not a rebel.

e) They'll fight on and not lose their courage.

f) Either p is true, or q is true, or r is true.

g) p is true, and q is true, and r is true.

h) Either a man is rich or he is wise or he is happy or he is an
idiot.

i) I came, I saw, I conquered.
k) Either p and q are both true, or r is true.

Z) Either p and q are both true, or r and s are both true.

m) Either p or ^ is true, and either r or ^ is true.

n) The day is fair and we shall go sailing or we shall go swim-
ming. (Does it matter how this sentence is punctuated?)

o) Augustus is blind and Maecenas is dishonest, or Augustus is

dishonest and Maecenas is a fool.

p) He must either go on living this life or give it up, and he must
either marry the girl or look like a fool.

4. Apply the Principle of Contradiction and Interchange to the fol-

lowing implications:

Example: lia^h, then either « > & or & > a.

Let p represent "a y^ b," and q "Either a > & or 6 > a."

^Sextus Empiricus, Against the Logicians.
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Then we have "p implies q," and hence "q' implies
pf ". <<j£ £j^jjgj. a > b or b > ais false, then a = b," or,

by De Morgan's Law, "If a > & is false and b > a is

false, then a = b."

a) If two lines lie in the same plane, they either intersect or are

parallel.

b) p implies "q and r are both true."

c) If the Stoics were right, some men are wise and some men are

not wise.

d) p implies that either q is true or r and s are both true.

e) If the earth should suddenly stop, then either it would ex-

plode or else it would rush to the sun and there perish.

/) If all men are animals and all animals think, then all men
think. (Take the two premises as one sentence, the conjunc-

tion "p and q," and hence deduce 'V implies either p is false

or q is false.")

g) If no cats like dogs and Timmy does like dogs, then Timmy
is not a cat.

5. What theorems can be deduced from the following assumptions

by means of the principles of the logic of propositions set down
in this chapter?

a) If a is the cause of b, and b is the cause of c, then a is the

cause of c.

b) If a is the cause of b, then a and b are not the same.

c) If a is the cause of b, then either a is the immediate cause of

b, or there is some event coming between a and c.

d) If a is the cause of b, then a comes before b.

e) If a comes before b, then b is not the cause of a.

f) li a and b are not the same, it does not follow that a is the

cause of b.

g) If a is not the cause of b and b is not the cause of c, it does

not follow that a is not the cause of c.

(Note: these propositions hold for all a's, b's, and c's, so that

if a given statement holds for a and b, it will hold for a and c,

or b and c, or any other letters.)



General Exposition of the ^
Traditional Logic of Classes

A RisTOTLE OFTEN is Called the founder of logic. So remarkable

jLA. was his work that in the course of a single lifetime he laid

down the necessary principles for a complete deductive system

of classes. For centuries logicians considered Aristotle's work the

final word, and, beyond a few simple changes for the sake of

simplicity, left it unaltered. This great monument of the genius

of one man is the subject of our present study.

Our immediate interest lies in the concept "class." We will

not attempt to define the term accurately until later, but the

following will offer an aid to the imagination: "A class is a

group of objects having a common property." Thus, the class

men is a group having the property of being rational animals;

the class triangle is a group of objects having the property of

three-sidedness.

But it is important to note that the above definition can be
taken in two ways, depending on whether we emphasize the

word "group" or "property." For example, the members of a

club form a class which we may define in two ways; we may
merely enumerate the members of the club, or we may describe

its by-laws, its position, and other points. Similarly, any class

may be defined in these two ways: (1) by exhibiting the mem-
bers of the class, or (2) by describing the characteristics or prop-

erties of the members. A class defined in the first manner is

called a class considered in extension (often called "denota-

tion") , while a class taken in the second manner is called a class

considered in intension (often called "connotation") . Certain

important differences are noticeable. Two classes considered in

extension (i.e., defined by denotation) may be exactly the same,

but quite different in intension (defined by connotation) : the
49
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two classes intensionally described as "rational animal" and
"biped that can laugh" are extensionally equal since they both

comprise only the human race. Again, two clubs may have ex-

actly the same members and hence be equal extensionally, but

they will not be equal intensionally (since they will have differ-

ent by-laws and positions, for instance) . Note that if we "in-

crease" the intension, i.e., if we add more qualifiers or adjec-

tives, or "connote" more, we decrease the extension, i.e., the

resulting class has fewer members and hence we "denote" less.

For example, the class "animal" is quite large extensionally; if,

now, we increase the intension by connoting the adjective

"white," we decrease the number of members considerably:

there are fewer white animals than there are animals. Similarly,

if we decrease the intension we generally increase the extension.

In this system we shall consider classes taken extensionally, so

that the expression "All the class a is the class b" ("All vege-

tables are plants") means that all the members of a are also

members of b, and a=: b means that the class a and the class b

have exactly the same membership.

If these points are borne in mind, the objects under consid-

eration may be thought of as "nouns," or "objects," and just as

in the last chapter we were interested in statements about prop-

ositions which were true no matter what the propositions were,

so here our interest lies in statements about nouns which are

true no matter what the nouns may be. For example, the state-

ment "All a is a" is true for every noun whatsoever: "All cats

are cats," "All triangles are triangles." But such a statement as

"Some a is 6" is not true for every noun. If a is the noun
"squares" and b the noun "circles," the statement is obviously

false. It is for propositions of the first type that we are searching.

Examples of arguments which concern themselves with nouns

are plentiful enough:

"Jones says to Smith: 'I lent Brown, my ward leader, one thousand

dollars'; whereupon Smith replies: 'That was foolish; don't you

know that all politicians are dishonest?'
"

There is an inference latent here, and the validity of this

inference rests on reasonings about nouns. More precisely put.

Smith's argument would run: "All politicians are dishonest;

Brown is a politician; therefore (it is inferred that) Brown is
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dishonest." Here the nouns are "politician," "dishonest peo-

ple," and "Brown" and the validity of the argument, i.e., the

validity of the clause preceded by "therefore," rests on certain

laws of reasoning which are concerned with nouns in general.

That is, "All b is a and (all) c is b; therefore (all) c is a," and
the above argument is only a special case of this reasoning

which holds for all as, b's, and cs, i.e., for all nouns whatsoever.

But there are obviously innumerable statements about nouns
which are true no matter what the nouns are, and the actual

tabulating of them would be tedious beyond measure. Hence
some means of classification is necessary. Aristotle cleverly rec-

ognized that all sentences which make statements about two
nouns can be transformed into one type of proposition or sen-

tence. This sentence has a subject (a noun, of course) , a "cop-

ula" (the word "is" or "are," or "was" or "were") , and a predi-

cate (which is again a noun) . For instance, the sentence "The
Greeks fight bravely" may easily be transformed into a proposi-

tion of the above type: "The (class of) Greeks are (in the class

of) brave fighters."

The general type of proposition had, for Aristotle, four spe-

cial cases, the so-called "categorical forms." For (1) it may as-

sert that all of a certain class (noun) a belongs to another class

bj and this we abbreviate by A (ab) , "all a is b," or (2) it may
assert that some a belongs to b, symbolized by I (ab) , or (3)

,

from a negative point of view, it may assert that some a does not

belong to b, O {ab) , or, finally, (4) it may assert that no a is b,

E {ab) :

1. A{ab) ="Allais&"
2. I {ab) — "Some a is b"

3. O {ab) = "Some a is not b"

4. E {ab) = "No a is b"

The small letters, a and b, stand for any noun or class whatso-

ever.

Examples of the manner in which various statements about
nouns can be translated into one of the above four categorical

forms are:

"In French some adjectives do not follow the noun.\' This is an
example of O {ab) : "Some French adjectives are not words which
follow the noun."
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one knows his secret." This is a case of E (ab) : "No one (perr

son) is a knoT^r of (person who knows) his secret."

"Everyone sins frequently." This is transformed into a case of

A (ab) : "All men are frequent sinners."

"Some of us will admeve greatness"; I (ab) : "Some men are future

achievers of greatness."

Note that the A- and E-forms apply to sentences in which
the subject is singular. Thus, "Jones is a good man" is an

A-proposition: " (all) Jones is good"; and "Smith is not a

banker" is an E-form: " (none of) Smith is a banker."

(See Exercises, Group A, at end of chapter.)

We now examine certain of the properties of the four categor-

ical forms, our main purpose being to lead up to a deductive

system of classes. For just as geometry sets down certain postu-

lates and axioms and from these deduces all its theorems, so we
can find a deductive system of classes which will enable us to

prove from postulates all the statements which hold true of

classes in general. Our first step in this direction must be to dis-

cover just what propositions are true in general. Thus, for ex-

ample, the sentence "A (ab) ," "All a is b," is not such a proposi-

tion, for we can find many nouns which make it false; e.g., let

a be replaced by the noun "men" and b by "stones." But as an

example of a proposition about nouns (or classes) which does

hold true no matter what the nouns may be, take the following

case of "Immediate Inference," i.e., of an inference drawn from

one premise:

A (ab) implies 1 (ab)

.

"If all a is b, then some a is b."

No matter what nouns we may substitute for a and b, this

statement remains true. It is obviously true in the case where

the premise is verified: e.g., where a is "cats" and b "animals."

Suppose, now, the premise is not true, e.g., if a = "circles" and

b = "squares"; here, too, the implication is still valid: "// all

circles are squares, then some circles are squares." We italicize

the word "if," for the emphasis is there. // we lived in a world

where all circles were squares, then in that topsy-turvy universe

some circles would be squares. We do not grant the premise: we
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merely assert it as an hypothesis, much in the same manner in

which we would start our childhood games with "Let's pre-

tend." Hence, the inference is true even though the premise is

false. Put otherwise, a formal system postulating "All circles are

squares" must have as one of its theorems "Some circles are

squares." There remains one other case to examine: namely, the

case where a or b (or both) are meaningless. For example, sup-

pose a were "toves" and b were "wabes." By arguments similar

to those given, the inference is likewise valid in this case.

It is to be emphasized that this discussion constitutes no proof

of the validity of the inference, for the arguments are based

purely on intuition or else on very involved assumptions. Our
clearest course will be to assume the validity of the above (or

one like it) , and these verbal arguments are to be thought of as

little more than elucidations.

Suppose now we form all the cases in which one categorical

form immediately implies another, i.e., all cases of "Immediate

Inference" between any two of the four categorical forms given

above. We shall keep the order of the "terms," i.e., the small

letters a and b, the same in the premise and conclusion. That is,

starting with A (ab) , "All a is b," we are to inquire which of the

forms this premise implies, and then continue this process with

I (ab) , O (ab) , and E {ab)

.

In the first place, it must become apparent immediately that

each form implies itself. E.g., it seems obvious enough that the

statement "If 'All a is b,' then 'All a is b' " is true no matter what

nouns a and b represent.

Next, "A {ab) implies I {ab) " is also true universally, but the

two following forms of Immediate Inference, "A {ab) implies

O {ab) " ("If all a is b, then some a is not b") and "A {ab) im-

plies E {ab) " ("If all a is b, then no a is b") are obviously not

true. Now, starting with I {ab) we are to discover whether it im-

plies A{ab) , whether it implies itself, etc.

The table below may be used in determining the valid cases.

The implication sign and the small letters have been omitted,

so that AE, for instance, is to be read "A {ab) implies E {ab) ":

AA lA OA EA
AI II OI EI

AO lO OO EO
AE IE OE EE
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One case of Immediate Inference will be found to contain

some difficulties: If I (ab) (some ais b) , then does it follow that

(ab) (some a is not b) ? There is an ambiguity here in the

words we employ to interpret the symbols, specifically, an am-

biguity in the word "some." If I say "Some men will die," I

mean "some, and possibly all" men. But if I say "Some numbers

are prime numbers," I may quite well mean "some, but not all"

numbers. It thus appears that in our everyday speech we use

the word "some" with two quite distinct meanings. If we mean
by "some," "some and possibly all," then the Immediate Infer-

ence "I (ab) implies O (ab) " will be false, since it will not be

true for those values of a and b for which all a is b, e.g., if a =
"centaurs" and b = "mythical monsters." On the other hand, if

"some" means "some, but not all," then this inference will be

valid: "If some (but not all) a is b, then some a is not b." It is

to be noted that once we decide whether the inference is valid

or not, we decide at the same time which meaning of the word

"some" we shall choose. In other words, the system itself will

make clear our precise meaning.

But, as a matter of fact, the meaning of "some" has already

been decided, since we have taken as true the inference "A (ab)

implies I (ab) ," and this could not be true if "some" meant

"some, but not all." Hence, when the accurate interpretation of

1 (ab) is given it reads "Some (and possibly all) a is b," and

O (ab) reads "Some a is not b (and possibly no a is b) ." There-

fore "I (ab) implies O (ab) " is not true in general, i.e., not true

for all nouns whatsoever. For example, let a = "salts" and b =
"compounds." Then "Some salts are compounds" is true (for, as

a matter of fact, all salts are compounds) , but O (ab) , "Some
salts are not compounds," is false; hence the former cannot im-

ply the latter, since such an implication would mean that when-

ever I (ab) is true, O (ab) is true, and we have shown that this is

not the case.

There are six valid forms of Immediate Inference when the

order of the terms is the same in the premise and the conclu-

sion: namely, the four arising from the cases where a given form

implies itself and "A (ab) implies I (ab) " and "E (ab) implies

O (ab) ."

We now examine the cases where the order of the terms is

reversed in the conclusion, as, for example.
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A {ah) implies I {ba) , "If all a is b, then some b is a."

For the sake of convenience, we shall call the form of Immediate

Inference in which the order of the terms is the same in premise

and conclusion the first figure, and the form in which the order

of the terms is reversed the second figure:

Example of first figure: A {ah) implies I {ah)

.

Example of second figure: A {ah) implies I {ba) .

These two figures exhaust the possible arrangements in Im-

mediate Inference, for the only possible ways in which we can

arrange two pairs of the same objects is to give them the same

order or the reverse order. Hence, the Immediate Inference

"A {ba) implies I {ah) " is also a case of the second figure, since

the actual letters we use are not important but rather the ar-

rangement of the letters (e.g., instead of a and h we could write

numbers, or Greek letters, or meaningless symbols) . Similarly,

"A {ba) implies I {ha) " is in the first figure.

(See Exercises, Group B, at end of chapter.)

Each separate case of Immediate Inference will be called a

"mood." Thus "A {ah) implies I {ah) " is a mood. There are,

then, thirty-two moods of Immediate Inference. As a shorthand,

we may write any mood by omitting the small letters and the

word "implies" and merely indicating the figure. Thus, "AE in

the first figure" means "A {ah) implies E {ah) ," "lA in the sec-

ond figure" means "I {ah) implies A {ha) ." An examination of

the table under the second figure will show that here are four

more valid cases or "moods" of Immediate Inference. For,

though A {ah) does not necessarily imply A {ha) (e.g., when
a = "houses" and h = "buildings") nor does O {ah) imply

O {ha) (e.g., when a = "buildings" and b = "houses") , it is

true that I {ah) implies I {ba) , and E {ah) implies E {ha) , for all

values of a and h. In effect this means that the order of the terms

in the I- and E-forms is indifferent as far as their truth goes

(though rhetorically, for the sake of emphasis, the order may be

important)

.

But these two additional moods give us two more. For we al-

ready have as a valid mood "A {ah) implies I {ah) "; but since

the order of the terms in an I-form may be reversed without al-
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tering its validity, we may likewise write "A {ah) implies

I (ha) ," or, viewed in another way, since if A {ah) is true, I {ah)

is true, and if I {ah) is true, I {ha) is true, we can infer that if

A {ah) is true, I {ha) is also true. Similarly, we can assert that

"E {ah) implies O {ha) " is a valid mood.
There are, then, ten valid moods of Immediate Inference (six

in the first figure and four in the second) and hence twenty-

two "invalid" moods.

This result may be summed up by three convenient rules of

thumb, the so-called "Rules for Invalidity of Immediate Infer-

ence." Suppose we call a categorical form "affirmative" if it con-

tains an even number of "negations," i.e., words such as "no"

or "not," and call it "negative" if it contains an odd number.

Thus A {ah) and I {ah) are affirmative since they contain zero

negations, and E {ah) and O {ah) are negative since they each

contain one negation. Another and far more precise manner of

defining an affirmative form would be: "A categorical form is

affirmative if it becomes true when the terms are identified;

otherwise it is negative." Thus A {ah) is affirmative, since when
a and h are identified, i.e., when we have A {aa) , a true proposi-

tion results, "All a is a' being true for all nouns whatsoever.

That I {ah) is likewise affirmative and E {ah) and O {ah) nega-

tive by this definition is plain enough.

By means of these definitions of affirmative and negative

forms we can formulate two rules:

Rule 1. An affirmative form does not imply a negative form.

Rule 2. A negative form does not imply an affirmative form.

For example, A {ah) , which is affirmative, does not imply

{ah) , which is negative (Rule 1) , and E {ah) does not imply

1 {ah) (Rule 2).

But these rules are not sufficient for the detection of all

invalid cases. For, though I {ah) ("Some a is h") does not im-

ply A {ah) ("All a is b") , this mood is not declared invalid by

either rule. Hence at least one (and actually only one) more
rule is needed if we are to determine by means of the rules all

invalid cases (i.e., if the rules are to be "sufficient")

.

In order to formulate this third rule we must introduce the

concept of a "distributed" term. Let us call a term of a cate-

gorical form distributed if it is modified by the words "all" or
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"no." Thus, in the form A (ab) , the subject, a, is distributed

since it is modified by the word "all." Is the predicate? It is, if

A(ab) really reads "All a is (all) b"; but this is not the case.

If a is "dogs" and b "animals," then we have "All dogs are

(some) animals"; that is, in the form A(ab) we are talking

about all of the subject but not necessarily all of the predicate.

Hence the predicate in A (ab) is not distributed. In the form

I (ab) the subject is obviously not distributed, for it is modified

by the word "some." The predicate likewise is so modified;

I (ab) really reads "some a is (some) b," i.e., in the I-form we
are not talking about all of either the subject or predicate; e.g.,

if <2 =: "animals" and 6 = "white things": "Some animals are

(some) white things." In E (ab) the subject is obviously distrib-

uted, since it is modified by the word "no." That the predicate

is likewise distributed can be seen in a number of ways; perhaps

the easiest is to point out the fact that E (ab) means that a is

excluded from all of b, and hence b is implicitly modified by

"all." In O (ab) the subject is not distributed, being modified

by the word "some." To see that the predicate is distributed, we
can rephrase O (ab) to read "All b is excluded from some of a"

or, "all b is non- (some a) ," where the fact that b is distributed

becomes plain enough. Note that it is the position (subject or

predicate) of the letter which determines whether it is distrib-

uted or not, and not the letter itself. Thus in A (ba) , b is dis-

tributed but a is not.

The following scheme summarizes the foregoing, the under-

lined letters being the distributed terms: ^

A (ab) E (ab)

I (ab) O (ab)

We are now in a position to state our third rule, which is:

Rule 3. A premise in which a given term appears undistributed

does not imply a conclusion in which that term is distributed; or, if

a term is distributed in the conclusion but not in the premise, the

mood is invalid.

Thus "I (ab) implies A (ab) " is invalid since a is distributed

1 Note that by means of the concept of distributed terms we might now define

an affirmative form as one which does not distribute its predicate, a negative

form as one which does. This definition, however, turns out to be inadequate
later on. Cf. p. 110.
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in the conclusion but not in the premise, "A(ab) implies

A (ba) " is invalid since b is distributed in the conclusion but

not in the premise. Note that the rule does not assert that a

mood is invalid if a term is distributed in the premise but not

in the conclusion. E.g., "E (ab) implies O (ab) " is valid.

These three rules are necessary and sufficient. They are neces-

sary, i.e., indispensable, since if one were omitted we could not

determine all the invalid moods of Immediate Inference. Thus,

if Rule 2 were omitted the invalid mood "E (ab) implies I (ab)
"

could not be determined. The necessity of the other rules is

similarly established by finding one mood which is made in-

valid by that rule and no other. The rules are sufficient since

together they take care of all invalid cases. We might add that

they are also "consistent" in that no valid mood is declared

invalid by them.

(See Exercises, Group C, at end of chapter.)

In conformity with the principles of the logic of propositions

set down in the previous chapter, a mood of Immediate Infer-

ence can only be shown false by exhibiting a case where the

premise is true and the conclusion false. For any mood of Im-

mediate Inference is an implication of the form "p implies q,"

and the contradictory of this is "p is true while q is false." (Cf.

page 21.) Thus there are valid cases of Immediate Inference in

which a false premise implies a true conclusion and valid cases

in which a false premise implies a false conclusion; for example:

"All animals are men implies that some animals are men"

is a valid mood ["A (ab) implies I (ab) "] in which the premise

is false but the conclusion true.

Again:

"If some squares are circles, then some circles are squares"

is a valid mood ["I (ab) implies I (ba) "], in which both premise

and conclusion are false. But we cannot find a valid mood of

Immediate Inference in which the premise is true but the con-

clusion false, for such an example would involve a contradiction

in that by definition, if p validly implies q, p cannot be true

when q is false.
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We now proceed to a more general form than the last,

namely, one in which twa premises (instead of one) imply a

conclusion. This form is commonly called the "syllogism," being

a combination of two arguments (from the Greek auv and

XoYO?) . The following offers an example of a syllogism:

"If no balloons are safe,

and all dirigibles are balloons,

then no dirigibles are safe."

Essentially, the syllogism is a form of argument which contains

three terms; in the above argument these terms are "balloons,"

"safe (things) ," and "dirigibles."

There is always one term ("balloons" in this case) which ap-

pears in both premises, but not in the conclusion. This is called

the "middle" term. Other examples of syllogisms are plentiful

enough:

"All numbers divisible by two are even;

the number 12 is divisible by two;

ergo 12 is an even number."

(Here "numbers divisible by two" is the middle term; note that

both premises are in the A-form.)

Very often, especially in everyday speech, one of the premises

of a syllogism is omitted, being tacitly understood. When this is

the case, the syllogism is called an enthymeme. For example:

"He is a senator and therefore lives in Washington."

Here the premise "All senators live in Washington," which is

necessary for the validity of the argument, is tacitly assumed.

Our next task, then, will be an examination of all forms of

the syllogism, i.e., all possible "moods" constructible out of the

four categorical forms.

First we must arrange all possible forms of the syllogism in

some convenient array. That there will be more than two "fig-

ures" or possible arrangements of the terms here is perhaps

obvious enough. The most convenient method of determining

the exact number of figures will be to discover all the possible

positions of the "middle" term, or term which does not appear

in the conclusion. Let us call a, b, and c the three terms under
discussion and let b represent the middle term. Then if a re-

mains in the first premise and c in the second, there will be four
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possible ways of placing b. For example, take the syllogism

which has A in each premise and conclusion. Then the middle

term can appear

1. first in the first premise (the so-called "major" premise) and
last in the second ("minor" premise) :

A (ba) A (cb) implies A (ca) ^

2. last in both premises:

A(ab) A (cb) implies A (ca)

,

S. first in both premises:

A (ba) A (be) implies A (ca)

,

4. (converse of 1) last in the major premise and first in the minor
premise:

A(ab) A (be) implies A (ca)

.

It is a fact that the order of the premises of an argument may
be reversed without altering the truth or falsity (cf. page 38)

;

hence, these four cases represent all possible figures of the syl-

logism. The actual order of the premises is, then, arbitrary, and

we fix on this arrangement: the predicate of the conclusion (the

"major" term: in the above it is a) is to appear in the major or

first premise and the subject of the conclusion (the "minor"

term: here, c) is to appear in the second or minor premise.

These four possible arrangements constitute the four figures of

the syllogism, in the order given.

The explanation of this scheme of figures lies in the history

of the syllogism. The most important figure for Aristotle and his

medieval followers was the first. The typical syllogism was

"A (ba) A (cb) implies A (ca) ." The major premise of this form

was always taken as a universal proposition, while the minor
was a singular proposition (though still in the A-form) . For ex-

ample, the universal proposition might be "All men are mor-

tal," a judgment arrived at through experience or definition or

2 Note that the word "and" between the two premises is regularly omitted. If

the symbolism suggested at the end of chap. II is used, this can be written: A (ba)

A{cb) Z A (ca) . Either the word "implies" or the word "imply" may be used in

the case of the syllogism, depending on whether the two premises are taken as

one sentence or as two sentences.



TRADITIONAL LOGIC OF CLASSES 61

intuition. The singular proposition, usually determined by ex-

perience, might be "Socrates is a man," and hence, from these

two judgments we infer a new fact: "Socrates is mortal." It is not

going too far to say that a great part of Aristotle's philosophy of

science was built around this syllogism.

The remaining figures were shown to be modifications of the

first. This explains the arrangement of the terms in the first

figure (the arrangement in the third being perhaps the most

logical as the first figure) as well as the fact that the term in the

minor premise becomes the subject of the conclusion. Even in

the nineteenth century (and perhaps today) , logicians such as

J. S. Mill in his Logic were inclined to share Aristotle's opinion

as to the importance of AAA in the first figure; though it is true

that all valid moods of the syllogism can be reduced to this form,

they ignored the facts: (1) such reduction requires other as-

sumptions, and (2) many other moods in other figures share

this distinction.

The following method of determining figures may prove

helpful. After arranging the premises in the correct order (sub-

ject of conclusion in minor premise) , write down their terms

one over the other as follows: If "I (ba) A (cb) implies A {ca)
"

is the given syllogism, write

(i.e., write the terms of the major premise on top) . Now join

the middle term by a line and draw a line joining the two letters

on.top:

b

The resulting geometrical form



62 ELEMENTS OF LOGIC

is characteristic of the first figure. In the second figure, as, for

example, "I {ab) I (cb) implies O {ca) ," we have

and the resulting form is

In the third figure we have

or

and in the fourth

or

The four geometrical forms, then, each characterize a certain

figure, and we have only to associate the proper figure with the

proper form to complete the determination. Note that b does

not have to be the middle term, but whatever the letter repre-

senting this term may be (i.e., the letter appearing twice in the

scheme) , we draw a line joining its two positions.
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The following cases illustrate the method of reducing any

given syllogism to its proper figure.

1. Determine the figure of the following syllogism:

A {be) I [ah) implies I {ca)

.

Here the minor term, the subject of the conclusion, is c, and the

major term is a. But c appears in the first premise, and our rule

is that the minor term should appear in the second before we
determine the figure. Hence, since we may reverse the order of

the premises at pleasure, we may write this syllogism in the cor-

rect manner:

I (ab) A (be) implies I (ca)

.

We are now in a position to determine the figure, and, since b

is the middle term and comes last in the major premise and first

in the minor, the figure is the fourth; or, by the second method,

we write

and this form is characteristic of the fourth figure.

2. Determine the figure of

E (xy) I (zy) implies O (zx)

Here the premises are in the proper order (z, the minor term,

is in the second premise) . The middle term is y (it does not ap-

pear in the conclusion) and this comes second in both premises.

Hence the figure is the second. By the second method we have:

z y

and this is characteristic of the second figure.

The general method of determining the figure of any syllo-

gism is outlined thus:

1. Make certain that the premises are in the correct syllogistic

order: the minor term, i.e., the subject of the conclusion, should lie



64 ELEMENTS OF LOGIC

in the second or minor premise. If the order given is not correct,

reverse the premises.

2. Determine the middle term, i.e., the term which does not appear

in the conclusion; or, by the second method, write down the terms

of the premises, with the terms of the major on top, and join the two

positions of the middle term and draw the top horizontal.

3. Determine the figure by the position of the middle term, or else,

in the second method, by the resulting geometrical form.

(See Exercises, Group D, at end of chapter.)

There are, as may be verified by a table, sixty-four moods of

the syllogism in each figure, or a total of two hundred and fifty-

six altogether.

In order to determine which of these two hundred and fifty-

six moods of the syllogism are valid, it will be found convenient

to make use of the diagrams of the German mathematician,

Euler. Euler's purpose was to set down in diagrammatic form

the various properties of the categorical forms. Thus A (ab) may
be represented by either of the following two diagrams:

Of course, as we pointed out in the beginning, the a's and fc's

in the categorical forms are not necessarily areas in a plane; they

may represent any noun or class whatsoever. But these two dia-

grams help the mind to picture what is meant when we assert

"all a is b." For there are really two possibilities: a and b may be

identical, i.e., they may have exactly the same members (e.g., in

the assertion "Hunters are people who pursue game," where the

subject and predicate are really identical in their membership) ;

or, the predicate may be wider in extension (e.g., in the asser-

tion "All ball-games are games")

.

For I (ab) , "some a is b," the two foregoing diagrams would

be possible as well as the two following, which would also be
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applicable to the case of O {ab) , "some a is not b," but not to

A [ab) or E {ab) :

Finally, E {ab) has one possible diagram, which again is also

possible for O {ab) but not for A {ab) or I {ab) :

To illustrate the application of these diagrams, we will ex-

amine the four categorical forms in order to determine their

properties with respect to the four relations, "contradictories,"

"contraries," "subcontraries," and "subalterns" (pages 18-

Two propositions are contradictory if they cannot be true to-

gether and cannot be false together. With respect to the dia-

grams, this definition would read: "Two categorical forms are

contradictory when they have no diagram in common (cannot

both be true) but together exhaust all the diagrams (cannot

both be false) ." Hence A {ab) and O {ab) are contradictories,

for they have no diagrams in common, but since A {ab) covers

diagrams 1 and 2, and O {ab) covers diagrams 3, 4, and 5, they

together cover all the diagrams. Similarly, E {ab) and I {ab)

are contradictories. (Note that E {ab) and I {ba) are also con-

tradictories, but that A {ab) and O {ba) are not.)

Contraries have been defined as those pairs of propositions

which cannot both be true but may both be false. With respect
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to the diagrams this means that they have no diagram in com-

mon but they do not exhaust all the diagrams. A (ab) and

E{ab) , then, are contraries (they do not cover diagrams 3

and 4)

.

Subcontrary categorical forms exhaust all possible diagrams

(cannot both be false) but have some diagrams in common
(may both be true) . I (ah) and O (ab) have this property.

Finally, subalterns will be those categorical forms which have

diagrams in common (may both be true) and do not cover all

the diagrams (may both be false) . A (ab) and I (ab) are subal-

terns since they have diagrams 1 and 2 in common but do not

cover diagram 5. Similarly, E and O are subalterns.

The foregoing may be represented by the following diagram,

the so-called "Square of Opposition":

A{ab)

l{ab)'

Contraries

Subcontraries

E{ab)

0{ab)

We return now to the syllogism and by the aid of Euler's dia-

grams we shall determine which of the two hundred and fifty-

six moods are valid.
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As an example of the method here, suppose we wished to de-

termine the truth or falsity of the following syllogism:

A{ab) A (cb) implies I (ca) (AAI in the second figure, AAL.)

If we can construct Euler diagrams which verify these premises,

but not the conclusion, then we can say that this syllogism is not

true in general. The method, then, will consist in finding dia-

grams which make the conclusion false and then determining

whether the premises may not be true under this case. Now
there is only one diagram which covers the case where I (ca) is

false, namely the diagram for E (ca) :

We wish to find, if possible, an area, b, such that both A (ab)

and A (cb) are true. This can be done as follows:

and this diagram illustrates the falsity of the syllogism. (Note

that this method makes it a comparatively simple matter to find

a concrete case of the invalidity of the syllogism; thus, let

a = "dogs," b = "animals," and c = "cats": "All dogs are ani-

mals and all cats are animals; but it does not follow that some

cats are dogs.")

Again, consider the syllogism

E (ba) E (be) implies A (ca) (EEA in the third)

.
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If the conclusion is false, then O {ca) is true, and here we have
more than one choice. Let us take the following: ^

We ask whether there is not an area, h, such that b has noth-

ing in common with either c or a. This is easily found:

and this a diagram for the invalidity of EEA in the third.

The general method, then, is:

1. Draw a diagram which will make the conclusion false, i.e., draw
a diagram representing the contradictory of the conclusion.

2. Determine an area for the middle term which will make both
the premises true. If this is found, the mood is shown invalid. If not,

then another diagram for the falsity of the conclusion must be tried

and the same process repeated. If no case of invalidity can be found,

s In general, it will be better to take diagrams satisfying the contradictory of
the conclusion, rather than just its contrary if it has one. Why?
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the syllogism may be considered valid (i.e., true for all a's, b's, and c's

whatsoever)

.

Aristotle's method of determining the invalid moods of the

syllogism differed from this. Suppose we wish to show that

"E (ba) E (cb) implies I (ca) " is invalid. The method just ex-

plained consists in showing that there are cases in which the

premises are both true and the conclusion false: "No squares

are cats; no dogs are squares" are both true sentences, but "Some
dogs are cats" is false. Aristotle shows that the premises E (ba)

E (cb) are consistent with two contrary propositions, A (ca) and

E (ca) . For the statements "No squares are cats; no felines are

squares" are consistent with "All felines are cats," and, as al-

ready shown, they are consistent with "No dogs are cats."

Hence, since E (ba) E (cb) may yield either A (ca) or £ (ca) ,

they cannot universally imply any conclusion. Why? Thus, this

method would immediately show the invalidity of four moods,

rather than just one: EEA-^, EEI^, EEO^, EEE^. Aristotle's

method cannot always be applied. For, though A (ba) A (cb)

do not imply O (ca) , we cannot say that they are consistent with

either of two contraries, since they are never consistent with

E (ca)

.

(See Exercises, Group E, at end of chapter.)

The task of discovering the valid moods of the syllogism will

be made simpler by making a table comparable to the table for

Immediate Inference given above (page 53) . That is, start with

AAA in every figure, then AAI, AAO, AAE, AIA, All, etc. The
exercise of discovering the valid moods will not be so laborious

as might be supposed, for one diagram will often suffice to show
the invalidity of a score or more of moods. For example, the

diagram for the invalidity of EEA in the third given here will

also show the invalidity of EEA in all other figures, of EOA,
OEA, OOA, EEE, OEE, EOF, OOF in every figure.

When the array of the moods of the syllogism has been ex-

amined by Euler's diagrams, it will be found that there are

twenty-four valid moods, six in each figure. It must be under-

stood that Euler's diagrams do not constitute any "proof" of the

valid moods, since they make use of experience, and the assump-

tions upon which they are based are far too complex. Even
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though we can find no diagram which will make a certain mood
invalid, we cannot say with certainty that there is not one, or,

more important, we cannot say that this is any proof that the

mood is always valid, for diagrams are only a special interpreta-

tion of the letters a, b, c, etc. As a matter of fact, Euler's dia-

grams are reliable, but we shall "prove" later on what they

show, by means of certain definite assumptions and certain prin-

ciples of logic, rather than by means of our eyes.

The twenty-four valid moods are arranged under their figures

below:

1. 2. 3. 4.

AAA AEE AAI AAI
AAI AEO lAI AEE
EAE EAE All AEO
EAO EAO EAO EAO
EIO EIO EIO EIO
All AOO OAO lAI

The following lines * offer a convenient method of memorizing

these valid moods. The vowels in the words with capital letters

represent the four categorical forms and the words "prioris,"

"secundae," "tertia," and "quarta" give the figures. Thus Bar-

bara is AAA in the first figure, Cesare is EAE in the second, etc.

Barbara, Celarent, Darii, Ferioque prioris;

Cesare, Camestres, Festino, Baroko, secundae;

Tertia, Darapti, Disamis, Datisi, Felapton,

Bokardo, Ferison, habet; quarta insuper addit

Bramantip, Camenes, Dimaris, Fesapo, Fresison.

Note that valid moods ending in I or O are omitted if there are

already moods ending in A or E. Thus AAI in the first (called

"Barbari") is omitted, since AAA in the first (Barbara) is a

valid mood: AAI in the first is, of course, an immediate conse-

quence of AAA in the first, for if we can infer "All c is a" from
the premises A {ba) A [cb) , then certainly we can infer "Some
c is a." Similarly, EAO in the first ("Celaront") , EAO in the

second ("Cesaro") , AEO in the second ("Camestros") , and
AEO in the fourth ("Camenos") are omitted. These lines are

important since they offer convenient names or tags for the

* Reported by Petrus Hispanus (Pope John XXI)

.
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valid moods of the syllogism, which actually form the heart of

the Aristotlian system.^

These results can be summarized by five rules for Invalidity of

the Syllogism, comparable to rules given in the case of Immedi-
ate Inference:

1. Two affirmative premises do not imply a negative conclu-

sion (e.g., AIE in any figure is an invalid mood) .

2. Two negative premises do not imply any conclusion (e.g.,

EOI in any figure is invalid, EOO is invalid.)

3. An affirmative and a negative premise do not imply an af-

firmative conclusion (e.g., lOI in any figure is invalid)

.

^ Two premises in which the middle term is not distributed

at least once do not imply any conclusion; or, the middle term

of a syllogism must be distributed at least once, or the mood
is invalid (e.g.. Ill in any figure is a false syllogism)

.

5. Two premises in which a given term is not distributed do
not imply a conclusion in which that same term is distributed;

or, if a term in a syllogism is distributed in the conclusion but

not in its premise, the syllogism is invalid (e.g., lOE is false in

any figure; note that, as in the case of the analogous rule for

Immediate Inference, a term may be distributed in its premise

and not in the conclusion; e.g., AAI in the first is valid)

.

These rules may be summarized as follows:

A valid syllogism must have (1) either two affirmative pre-

mises and an affirmative conclusion, or an affirmative and a nega-

tive premise with a negative conclusion; (2) a distributed

middle term, and (3) ^ terms distributed in the conclusion

distributed in the premises also.

As in the case of Immediate Inference, these rules are neces-

sary and sufficient; they are necessary because if we omit one,

then we cannot determine all the invalid moods. That is, for

each rule there is at least one invalid mood which comes
uniquely under this rule; the rules are sufficient because to-

gether they take care of all invalid moods. The determination

of the unique cases is left as an exercise. In this respect. Rule 1

^ The consonants in these words have a special significance. They refer to the
manner in which a given mood may be "reduced" to Barbara or Celarent, such
reduction being analogous to the deduction given in chap. IV.
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has had a rather interesting history, since it has been maintained

more than once that it is unnecessary on the ground that no
invalid mood comes uniquely under it, and that the other four

rules are consequently sufficient. As a matter of fact, there is but

one mood which makes the rule necessary.

(See Exercises, Group F, at end of chapter.)

A syllogism is not necessarily false if either or both of the

premises are false. (Cf. analogous statement for Immediate

Reference, page 58.) The invalidity of a syllogism is only estab-

lished when we can show a case where both premises are true

and the conclusion is false. The following examples are all valid

syllogisms in that the logical law allowing us to draw the con-

clusion from the premises is true, but the premises and conclu-

sion exhibit every combination of true and false except the case

where two true premises imply a false conclusion:

1. Two false premises may validly imply a true conclusion:

"All circles are squares;

all squares are loci of points equidistant from a given point;

hence, all circles are loci of points equidistant from a given

point."

2. Two false premises may validly imply a false conclusion:

"Nothing which has four legs is an animal;

all four-legged things are horses;

therefore, some horses are not animals."

3. A false premise and a true premise may validly imply a true con-

clusion:

"Lions are carnivorous;

No dog is carnivorous;

hence, no dog is a lion."

4. A false premise and a true premise may validly imply a false

conclusion:

"No Italian was ever wealthy,

but some wealthy people were natives of Rome;
hence, some Romans were not Italians."

5. Two true premises can validly imply only a true conclusion:

"Some statements are true;

all statements are meaningful;

hence, some meaningful things are true."
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It might be asked whether these five rules (along with the

rules for Invalidity in Immediate Inference) do not constitute

a set of postulates from which we can derive all the valid moods
of Immediate Inference and the syllogism. As a matter of fact,

there are several serious objections to considering them as such.

First, they have no "necessary" validity and have been con-

structed purely from an examination of the moods which were

already taken as valid. Second, they are verbal, and strict defini-

tions of their terms would be difficult to formulate. For ex-

ample, the word "distributed" is a very difficult one to define

unambiguously. But an even more serious objection will appear

in the following discussion (pages 109 ff.), where it will be

shown that these rules are not universally true.

In the next section we shall present a deductive system for

the foregoing class "calculus" whose postulates are not open to

these objections.

EXERCISES

GROUP A

1. Identify the categorical forms in the following sentences:

a) No compound is an element.

b) Some beings live forever.

c) Not all books make good reading.

d) Adams was an honest president.

e) The Carthaginians fought courageously.

/) Not all Shakespeare's plays were written by Shakespeare,

g) The whole army climbed the ramparts.

2. Identify under the heads of "reflexive," "symmetrical," and
"transitive" (of. chapter II) the four categorical forms.

3. Identify the four categorical forms under the heads "irreflexive,"

"nonreflexive," "asymmetric," "nonsymmetric," "intransitive,"

"nontransitive." (cf. page 41, exercise 5.)

GROUP B

1. Identify the figure of the following moods of Immediate Infer-

ence:

a) O (ba) implies E (ab) .

b) A (21) implies O (21)

.
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c) A (xy) implies I (yx)

.

d) I (a^) implies E (a/S)

.

e) E(56) implies O (65) . •

f) I {cd) implies I {dc)

.

GROUP C

1. Determine in the case of each of the Rules for Invalidity of Im-

mediate Inference all the moods which make the rule necessary,

i.e., all invalid moods which come uniquely under this rule.

2. In the following, if the mood is invalid name the rules which
make it so, and if valid so indicate:

a) AO in the second figure (i.e., "A {ab) implies O {ba) "; cf.

page 55)

h) AE in the second

c) lA in the first

d) OE in the first

e) EO in the second

f) lO in the first and second

g) OO in the first and second

h) OI in the second

3. A "particular" categorical form is defined as one which does not

distribute its subject; thus I and O are particular; and a "uni-

versal" categorical form is one which does distribute its subject;

A and E are universal. Show that a particular premise never im-

plies a universal conclusion.

GROUP D

1. Write out the following syllogisms:

a) AEO in the first figure.

b) IIL (III in the fourth figure)

c) AIO3
d) ElOa
e) EEO3

f) AIL

g) EAO.

2. Determine the figure of the following syllogisms:

a) E (be) O {ca) implies I {ab)

b) A {ca) A {be) implies A {ab)

c) l{ab) A {cb) implies I {ca)
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d) O (ca) A (cb) implies O (ba)

e) E (ba) I {cd) implies O {cb)

f) I (xy) O (yz) implies I (xz)

g) A (32) E (13) implies O (21)

h) I (^y) E (/3a) implies O (ay)

3. Identify the syllogisms in the following arguments:

Example: "All Cretans are liars;

Epimenides is a Cretan;

Therefore, Epimenides is a liar."

Let a = Cretans, b = liars, and c = Epimenides. Then, since

both premises and the conclusion are in the A-form, the argu-

ment becomes "A (ab) A (ca) implies A (cb) ," which is AAA in

the first figure.

a) No man is too rich, but some men are honest; hence some
honest beings are not too rich.

b) All honest people are unhappy, and yet some honest people

are clever; hence some clever people at least are not unhappy,

c) No sailboat is safe, but all safe things are expensive; hence no
sailboat is expensive.

d) Some men achieve greatness, and of those beings who do,

some are not saints; hence, some saints are not men.

e) All numbers have factors, and this thing also has factors and
hence must be a number.

f) All triangles have angles which sum to 180 degrees. The
angles of this figure sum to over 180 degrees, and hence this

is not a triangle.

g) Some logical statements are trite, and all trite statements are

best omitted; ergo, some logical statements are best omitted.

GROUP E

1. If the following syllogisms are false, give Euler diagrams to indi-

cate their invalidity; also, wherever possible, apply Aristotle's

method:

a) AAA*
b) OAOx
c) EEI,

d) OAO.
e) III in any figure.

f) EOE,

g) AEE.
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h) EAO.
i) EAE,

;) EEE in any figure.

GROUP F

1. In the following syllogisms indicate all the rules which make the

given mood invalid.

a) EEEj g) IIE2

b) EAEs h) AEEi
c) EIAi i) Ells

d) IAI3 f) IEE3

e) OIO3 k) AOOi
f) 000.

2. Show that the total number of terms distributed in the premises

of a valid syllogism must always be greater than the total number
of terms distributed in the conclusion. (This result will be valu-

able in proving the theorems of the following exercises.)

3. Show by means of the rules for Invalidity of the Syllogism that

two particular premises (see Exercise 3, Group C) do not imply

any conclusion. (Hint: Show this in four parts: show (1) that

00 does not imply any conclusion, (2) that II does not imply

any conclusion, (3) that I and O do not imply an affirmative

conclusion, and (4) that I and O do not imply a negative con-

clusion.)

4. Show (by means of the rules) that a mood in the third figure

which has a universal conclusion is invalid.

5. Show that there can be an A-form in the conclusion in the first

figure only.

6. If one of the premises of a valid mood is particular, then the

conclusion must be particular.

7. In the first figure the middle term must be distributed in the

major premise and must not be distributed in the minor premise

if the mood is to be valid.

8. In a valid mood the major term must be distributed in the sec-

ond figure.

9. In a valid mood of the third figure the minor term must not be
distributed.

10. If the major premise of a mood in the first or second figure is not

universal, then the mood is invalid.

11. If the minor premise is not affirmative in the third figure the

mood is invalid.
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12. A valid mood with the minor premise in the 0-£orm can occur

only in the second figure.

13. Determine the unique case which makes Rule 1 necessary; show
that there can only be one such case. Determine unique cases for

the remaining rules.

14. Show that if an I-form is in the premise of a valid mood, this may
be replaced by an A-form (with the same terms, though the order
is indifferent) and the mood is still valid; similarly, if the prem-
ise is an O-form, this may be replaced by an E-form without alter-

ing the validity. (This process is called "strengthening the prem-
ise"; cf., page 29) . E.g.,

"A (ba) I (cb) implies I (ca) " may be changed to

"A (ba) A (cb) implies I (ca) " or to "A (ba) A (be) implies I (ca)
."

15. Show that if the conclusion of a valid mood is an A-form, this

may be replaced by an I-form (with the same terms, but the or-

der is indifferent) and the mood is still valid; similarly, if the

conclusion is an E-form, this may be replaced by an O-form, and
the mood is still valid. (This process is called "weakening the

conclusion"; cf., ibid.) E.g., "E (ab) A (cb) implies E (ca) " may
be changed to "E (ab) A (cb) implies O (ca)

."

16. Show, by means of examination of the valid moods in the table

above, that if the conclusion and either premise of a valid mood
be interchanged and each replaced by its contradictory (for

definition of contradictories, see page 65) another valid mood
results. Thus from "A (ba) A (cb) implies A (ca) " we can infer

"A (ba) O (ca) implies O (cb) " or AOO in the second.

17. By transferring the syllogisms in the exercise on page 75 into

formal arguments, determine their validity or invalidity. E.g.,

"All honest people are unhappy,
and some honest people are clever;

hence, some clever people are not unhappy."

Let a = "honest people," b = "unhappy (people) ," c = clever

(people) ." Then the syllogism becomes:

"A (ab) I (ac) implies O (cb) ,"

which is an invalid syllogism by Rules 1 and 5.

18. Determine the validity or the invalidity of the following argu-
ments:

a) All those who are aggressive are morally wrong; Hitler is ag-

gressive, and hence he must be morally wrong.
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b) Some bricklayers make money; Jones makes no money; hence

Jones is not a bricklayer. (Does it affect the validity or in-

validity of this argument to strengthen the first premise to

"All bricklayers make money"?)

c) I love cats; hence I must be intelligent, since anyone who
loves cats is intelligent.

d) No cats are amphibians, and this goes for dogs; hence some
cats are dogs.

e) Some animals eat grass; no one who eats grass is very sensible;

hence some animals are not sensible. (Can one infer that

some sensible things are not animals?)

/) Jones is a liar and hence is not a good man. (What premise is

missing?)

g) You are not an Athenian; all Athenians were humans; hence

you are not a human.
h) Everyone is having a nice time, and some are playing bridge;

hence some people who play bridge must enjoy it.

i) I am no musician; hence I don't like Bach.

f) All men are substances, and all animals are substances; hence,

all men are animals.

k) All men are geometrical figures; some geometrical figures are

liars; hence some men are liars.

/) Achilles was defeated for president in the 1916 election; every-

one defeated in this election was fleet of foot; hence Achilles

was fleet of foot.

m) Penguins fly very fast; nothing that flies very fast is without

wings; hence no penguin lacks wings.

n) Any argument worthy of logical recognition must be such as

would occur in ordinary discourse. It will be found that no
argument in ordinary discourse is in the fourth figure. Hence,
no argument in the fourth figure is worthy of logical recog-

nition. (This syllogism is due to W. E. Johnson; it is a hu-
morous answer to those logicians who, apparently following

Aristotle, believe that the fourth figure is an "unnatural"

method of argument.)

o) The French do not drink tea since only the English drink tea.

p) All sailors can read a compass; hence they must be physicists,

for all physicists can read a compass.

19. What conclusions, if any, may be drawn from the following

premises? E.g.,

"All pigs are greedy;

No pigs can fly."
*

^ Lewis Carroll.
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Let a — "pigs," h = "greedy things," c = "things which can fly."

Then the premises become:

A (ab) E (ac)

.

From these premises we may validly infer 0(bc) (EAOs is

valid)

:

"Some greedy things cannot fly."

a) Some numbers are prime numbers.

No prime number is evenly divisible by anything other than

itself and one.

b) Some triangles are equilateral;

no triangle has four sides.

c) Some prime-ministers are not monkeys;

all monkeys live in trees.

d) Hydrogen always combines with oxygen;

hydrogen never combines with helium.

e) Chickens are bipeds;

horses are quadrupeds.

(Hint: Construct two syllogisms; what premise is missing?)

f) All totalitarian states must necessarily fail;

our state, however, is democratic.

g) To the victors belong the spoils;

We are the vanquished.

h) Tadpoles are not frogs;

but some tadpoles become frogs.

z) All Republicans wear beards at least three feet long;

No Democrat sports a beard of over two feet.



The Deductive System of the

Aristotelian Class Calculus

WE NOW recall the characteristics o£ a deductive system as

described in chapter I. In the first place, every deductive

system must start with certain "undefined concepts" in terms

of which it defines all other concepts under consideration.

Here we think of A (ab) (which can be read "all a is b") and

E (ab) ("no <2 is b") , as undefined. We then define the other

two categorical forms as follows:

Definition: O (ab) means "A (ab) is false" ( = "some a is not

b") ; i.e., O (ab) = [A (ab) J.

Definition: I (ab) means "E (ab) is false" ( = "some a is b") .

I (ab) = [E (ab) ]'.

It will be noted that we make use of the logic of propositions

in these definitions in assuming that the meaning of "false" is

known. This will not be the only occasion in which we shall

draw assumptions from this branch of logic (cf., the Axioms of

the system)

.

The postulates necessary to prove the valid moods of Immedi-

ate Inference are:

Postulate 1. A(ab) implies I(ab). "If all a is b, then some a

is b."

Postulate 2. I (ab) implies I (ba) . "If some a is b, then some b

is a."

The axioms which we shall assume here are borrowed from

the logic of propositions. They are:

Axiom 1. If p is definitionally equivalent to q, then p implies q
and q implies p.

80
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Thus, since O {ah) is definitionally equivalent to "A {ah)

is false," we can say, by virtue of this axiom, that O {ah) implies

[A {ah) ]' and [A {ah) ]' implies O {ah)

.

Axiom 2. If p is the contradictory of q, i.e., if p means "q is

false," then q is the contradictory of p, i.e., q means "p is

false."

Axiom 3. If p implies q, then the contradictory of q, q', implies

the contradictory of p, p\

That is, given any valid implication "p implies qT we may
contradict and interchange the premise and the conclusion and

the resulting implication is still valid {q' implies p') . (Cf. page

24.)

Axiom 4. If p implies q and q implies r, then p implies r.

That is, given any valid (immediate) inference, we may
weaken the conclusion (by replacing it by a form which it im-

plies) or strengthen the premise (by replacing it by a form

which implies it) and the resulting implication is still valid.

(Cf. page 28.) Note that any two (or three) of the statements

p, q, and r may be the same. We shall make use of this fact later.

It might be asked whether we can be sure that A {ah) is a

proposition and hence whether we can consider it as one of the

p's, or ^'s, or r's of our axioms. But it is not necessary to show
this (though it may seem evident enough) , for each of the

axioms is based on an hypothesis: // p implies q (or if p means

q) , then we can say, etc. Hence our postulates are enough, for

they satisfy this hypothesis, and the conclusions or theorems

drawn must be valid.

From the above two postulates and four axioms follow the

remaining eight valid moods of Immediate Inference. But be-

fore proceeding to these, we must prove two preliminary theo-

rems:

Theorem 1. A {ah) means "O {ah) is false"; A {ab) = [O {ah) ]'.

Proof: This follows immediately from the definition of O {ab)

and Axiom 2. For, since O {ab) means "A {ab) is false," i.e.,

since O {ab) is the contradictory of A {ab) , then, by Axiom 2,

A {ab) is the contradictory of O {ab) , i.e., A {ab) means
"O {ab) is false."

Similarly,
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Theorem 2. E (ab) means "I (ab) is false"; E (ab) - [I (ab) ]'.

Theorem 3. E (ab) implies O (ab) . "If no a is b, then some a

is not b."

Proof: Since, by Postulate 1, we know that

A (ab) implies I (ab) (1)

then, by Axiom 3, we may infer that

"I (ab) is false" implies "A (ab) is false,"

or [I (ab) Y implies [A (ab) ]\ (2)

But [I (ab) Y is E (ab) by Theorem 2, and
[A (ab) Y is O (ab) by the first definition. (3)

Hence, by replacing [I (ab) Y and [A (ab) Y in (2) by their

equivalents in (3) ,^ we have

E (ab) implies O (ab) . Q.E.D.

Theorem 4. E (ab) implies E (ba). "If no a is b^ then no b

is a."

Proof: Postulate 2 asserts:

I (ab) implies I (ba) .

Hence, again making use of Axiom 3, we can say that

[I (ba) Y implies [I (ab) ]'.

Hence, since [I (ba) Y or "I (ba) is false" is E (ba) and [I (ab) ]'

is E(ab) , we can assert

E (ba) implies E (ab) ,

and this is the same implication as that which was to be

proved, since both are EE in the second figure (cf. page 55)

.

Theorem 5. A (ab) implies I (ba) . "If all a is b, then some b

is a."

Proof: The following are true by Postulates 1 and 2 respectively:

A (ab) implies I (ab)

I (ab) implies I (ba)

.

1 Strictly, we should assert also an axiom which gives us the right to replace

any given expression by its equivalent without altering the validity of the whole.
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But Axiom 4 asserts that if one proposition [here A [ah)
]

implies another [I {ab) ], which in turn implies a third

[I {ba) ], then the first implies the third; i.e.,

A {ab) implies I {ba)

.

Or, we might phrase our proof as follows: Postulate 1 tells us

that A {ab) is a strengthened form of I {ab) and hence (Axiom

4) we may replace the latter by the former in the valid implica-

tion "I {ab) implies I {ba) " (Postulate 2) , and the resulting

implication will still be valid. Obviously, we could also think of

I {ba) as a weakened form of I {ab) and proceed in an analogous

manner.

The following theorem is proved from Theorem 5 by a

method similar to that used in Theorems 3 and 4:

Theorem 6, E {ab) implies O {ba) . "If no a is b, then some b

is not a."

There remain, now, the four valid moods in which a given cate-

gorical form implies itself:

Theorem 7. O {ab) implies O {ab)

.

Proof: Since O {ab) is definitionally equivalent to [A {ab) ]', or

"A {ab) is false," we may infer, by Axiom 1, the following

two statements:

0{ab) implies [A{ab)Y
[A {ab) Y impHes O {ab)

.

But this allows us to apply Axiom 4 under the special case

where p and r are the same. That is, if p implies q and q
implies p, then we can say that p implies p:

O {ab) implies O {ab) . Q.E.D.

Note that there are serious objections to simply asserting as an

axiom: "p implies p." In the first place, such an axiom would
not be true for every p, since if p is an object, such as "stone,"

the statement is nonsense. Hence, we would have to say "If p is

a proposition, then p implies p." But then arises the second ob-

jection, namely, the difficulty of showing that O {ab) is a propo-

sition. For, though this may be "obvious," the concept of a de-

ductive system requires that even the most obvious statements

be proved from the assumptions. The above method, which fol-
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lows directly from the definition of O (ab) , neatly avoids these

difficulties.

But another method could have been employed here. For if

^ve had asserted as an axiom the principle which expresses the

reflexivity of implication (cf. page 23) : li p implies q, then

p implies p," then we could have shown that A (ab) implies

A (ab) (and hence that O (ab) implies O (ab) by Axiom 3)

.

For by Postulate 1, A (ab) implies another proposition (I (ab) )

,

and hence by this additional axiom it implies itself. Either

method is adequate.

In like manner we can prove:

Theorem 8. I(ab) implies l(ab) .

Theorem 9. A (ab) implies A(ab)

.

(To prove this use Theorem 7 and Axiom 3.)

Theorem 10. E (ab) implies E(ab)

.

It is to be noted that we could have used other postulates than

the ones chosen and that we could have proved our theorems

is a different order. The other methods will prove valuable ex-

ercises (the proofs of Theorems 7-10 will remain the same in

every case if the first method is chosen)

.

(See Exercises, Group A, at end of chapter.)

So far we have only proved that the valid moods of Immediate

Inference are valid. It remains, of course, to prove that the other

twenty-two invalid moods are actually invalid. We shall post-

pone this proof, however, until after we have proved the valid

moods of the syllogism.

Here two additional postulates are necessary:

Postulate 3. A (ba) A (cb) implies A (ca) .

This is the syllogism "Barbara" or AAA in the first figure:

"If all b ha and all c is b, then all c is a."

Postulate 4. E (ba) A (cb) implies E (ca) .

This is "Celarent," EAE in the first: "If nob ha and all c is b,

then no c is a."

We shall require three additional axioms:
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Axiom 5. If p and q (pq) implies r, then p/ implies q'; also,

iipq implies r, then r^q implies p'.

That is, if two premises (p and q) validly imply a conclusion,

r, then we may contradict and interchange either premise and
conclusion and the implication is still valid (cf. p. 25)

.

Axiom 6. If pq implies r, and s implies p, then sq implies r;

or, if pq implies r, and s implies q, then ps implies r;

or, if pq implies r, and r implies s, then pq implies s.

That is, if two premises validly imply a conclusion, then we
may strengthen either premise (or both) or weaken the con-

clusion (or do all three at once) and the implication is still

valid (cf. p. 30)

.

Axiom 7. The statement "p and q (are true) " is equivalent to

the statement "q and p (are true) ": pq = qp.

We shall make use of this axiom in assuming that the order of

the premises in an argument may be changed at will. It will

often become necessary to change the order of the premises in

the proofs of the syllogisms.

The Valid Moods of the Second Figure

We shall now prove all the six valid moods of the second

figure:

Theorem 11. K{ab) O (cb) implies O (ca) . (Baroko) "If all

a is & and some c is not b, then some c is not a."

Proof: Postulate 3 asserts that

A (ba) A (cb) implies A (ca) .

But Axiom 5 allows us to contradict and interchange either

premise and the conclusion of a valid syllogism without alter-

ing its validity. If we choose the second or minor premise in

Postulate 3 we have the following valid implication:

A (ba) [A (ca) ]' implies [A (cb) J.

But [A (ca) Y, or "It is false that all c is a," is O (ca) , and
[A (cb) Y is O (cb) . Hence the above becomes

A (ba) O (ca) implies O (cb)

.
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This is the required syllogism, since a has now become the

middle term and occurs second in both premises (the latter be-

ing in the correct order: c, the subject of the conclusion, is in

the minor premise) . Hence, we have AOO in the second, which
was to be proved. (To return to the exact lettering of the origi-

nal theorem, replace a hy b and b by a throughout in "A (ba)

O (ca) implies O (cb) .")

Theorem 12. E (ab) I (cb) implies O (ca) (Festino) "If no a

is b and some c is b, then some c is not a."

Proof: The theorem is proved in exactly the same manner as

Theorem 11, namely, by contradicting and interchanging the

conclusion and minor premise of Postulate 4, and using the

fact that [E (ab) J, "It is false that no a is 6," is equivalent to

I (ab) . It will turn out to be a general rule that if we con-

tradict and interchange the minor and conclusion of a first

figure syllogism we will derive a syllogism in the second figure.

The brief proof is as follows:

Postulate 4: E (ba) A (cb) implies E (ca) . Hence (Axiom

5) : E (ba) [E (ca) ]' implies [A (cb) ]', or E (ba) I (ca) implies

O (cb) , which is EIO in the second. Q.E.D.

Theorem 13. E (a&) A(cb) implies E (c<2) (Cesare) "If no a

is b and all c is b, then no c is a."

Proof: Postulate 4 asserts that:

E (ba) A (cb) implies E (ca) .

But (Theorem 4) E (ab) implies E (ba) ,

that is, E (ab) is a strengthened form of E (ba) , and hence,

by Axiom 6, we may strengthen the first or major premise of

Postulate 4 and immediately derive the required syllogism.

The proof of this theorem suggests weakening the conclusion

of Theorem 13 in the same manner, i.e., making use of the fact

that E (ca) implies E (ac) . If we do this, we derive

Theorem 14. A (ab) E (cb) implies E (ca) (Camestres) "If all

a and no c is b, then no c is a."

Proof: Since E (a&) A (cb) implies E (ca) (Theorem 13) , and
E (ca) implies E (ac) , we can say (Axiom 6) that

E (ab) A (cb) implies E (ac) .
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But now the premises are not in the proper syllogistic order,

for a, which is the subject of the conclusion, is not in the

second premise; hence, by virtue of Axiom 7, we change the

premises around and derive

A {cb) E (ah) implies E {ac)

,

which is the required AEE in the second.

The remaining two moods of this figure, EAO and AEO,
follow immediately from Theorems 13 and 14 by weakening

the E-forms in the conclusion to O-forms:

Theorem 15. E {ah) A (c&) implies O (ca) (Celaront)

Proof: Theorem 13: E {ah) A {ch) implies E (ca)

.

But by Immediate Inference (Theorem 3) E {ca) implies

O (cfl) , and hence, by Axiom 6, we derive the required mood.
Note that this theorem also follows from Theorem 12 by
strengthening the minor premise, I {ch) , to A {ch) .

Theorem 16. A (a6) E {ch) implies O (ca)

.

The manner of proving the remaining valid moods of the

syllogism is closely analogous to those already given. The gen-

eral procedure is outlined below.

The Valid Moods of the Third Figure

These may all be derived directly from the first figure with

the exception of EIO. The initial method consists in using

Axiom 5 on AAA and EAE in the first by contradicting and
interchanging the major premise and conclusion. For example:

Theorem 17. O {ha) A {be) implies O {ca) (Bokardo)

Proof: Postulate 3 asserts as valid the following implication:

A (ba) A {ch) implies A {ca)

.

Hence, by Axiom 5, contradicting and interchanging the ma-
jor premise, A {ha) , with the conclusion, A {ca) , we have

[A {ca) ]' A {ch) implies [A {ha) ]'. Hence:

O {ca) A {ch) implies O {ha)

,

which is the required OAO in the third.

Similarly, we derive:
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Theorem 18. I (ba) A (be) implies I (ca) (Disamis) by contra-

dicting and interchanging the major and conclusion in EAE
in the first (Postulate 4)

.

We may now prove the following two theorems by strengthen-

ing the major premises in Theorems 17 and 18.

Theorem 19. E (ba) A (be) implies O (ea) (Felapton)

Theorem 20. A (ba) A (be) implies I (ca) (Darapti)

It is peculiar to both the second and third figures that if we
change the order of the premises by weakening an I- or E-con-

clusioh by reversing the order of its terms, the resulting syllo-

gism is still in the same figure. For example, take Theorem 18:

I (ba) A (be) implies I (ca) . Now weaken I (ca) to I (ac) :

I (ba) A (be) implies I (ae)

.

This change requires a change in the order of the premises,

since now the subject of the conclusion is a and not c, and hence

a must appear in the minor premise. Hence, by Axiom 7, we can

write:

Theorem 21. A (be) l(ba) implies I (ca) ,
(Datisi)

and this is another mood of the third figure.

The process of changing the terms in E or I by weakening if

they appear in the conclusion, or strengthening if they appear

in the premise, is called "conversion." Thus, we "converted"

I (ca) to I (ac) . The right to convert I and E depends on Postu-

late 2 and Theorem 4 respectively (plus, of course. Axiom 6)

,

but for the sake of brevity we may omit to mention these refer-

ences. (Note that if we convert I (ca) in Theorem 20 we derive

Theorem 20 over again, so that this process does not help here.)

As already mentioned, EIO in this figure cannot be derived

directly from the first figure. But since we have proved EIO in

the second figure, it is a comparatively simple matter to prove

it in the third by converting both major and minor premises:

Theorem 22. E (ba) 1 (be) implies O (ea) (Fresison)

Proof: E (ab) I (eb) implies O (ca) (Theorem 12)

.

Hence, by strengthening (converting) both premises, we de-

rive:

E(ba) I (be) implies O (ca) Q.E.D.
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Once we have EIO in any figure, we can prove it in all figures

by converting one or both of the premises. Thus EIO in the first

follows from EIO in the second by converting the major prem-

ise; EIO in the fourth, by converting the minor. Bear in mind
that only E and I may be converted, for it is not true that A (ab)

implies A {ha) or that O {ah) implies O {ha)

.

The Valid Moods of the Fourth Figure

The moods of the fourth figure cannot be derived by contra-

diction and interchange in the first. Instead, we must use the

method of conversion in the conclusion, since when this is ap-

plied to the first figure, the fourth figure results:

Theorem 23. A {ab) E {be) implies E {ca) (Camenes)

Proof: E {ba) A {cb) implies E {ca) (Postulate 4)

But E {ca) implies E {ac) (Theorem 4)

.

Hence E {ba) A {cb) implies E {ac) (Axiom 6)

.

(The premises now are in the wrong order:)

Hence A {cb) E {ba) implies E {ac) (Axiom 7) and this is

the required AEE in the fourth.

We cannot convert the conclusion of AAA in the first, since

A {ca) does not imply A {ac) . But we can convert the conclusion

indirectly by passing to the I-form first (called "conversion per

accidens") :

c

Theorem 24. A {ab) A {be) implies I {ca) (Bramantip)

Proof: A {ba) A {cb) implies A {ca) (Postulate 3)

.

But A {ca) implies I {ac) (Theorem 5)

Hence A {ba) A {cb) implies I {ac) (Axiom 6)

Hence A (cb) A (ba) implies I {ac) (Axiom 7) Q.E.D.

It is peculiar to the fourth figure that if we contradict and

interchange either premise and the conclusion, the fourth fig-

ure again results. Hence, all that is now required is to take The-

orems 23 and 24 and apply Axiom 5 four times, first on the

major and minor of 23, and then on the major and minor of 24.

For example:

Theorem 25. E {ab) I {be) implies O {ca) (Fresison)
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Proof: A (ab) E (be) implies E (ca) (Theorem 23)

Hence I (ca) E (be) implies O (ab) (Axiom 5, contradicting

and interchanging major and conclusion)

.

(The premises are not in the syllogistic order:)

Hence E (be) I (ea) implies O (ab) . Q.E.D.

It will be noted that whenever Axiom 5 is applied to a mood
in the fourth figure in which the premises are in the correct

order, the resulting mood will always have its premises in the

wrong order as above. The proofs of the remaining three theo-

rems follow by applying Axiom 5 to the minor of Theorem 23

and to the major and minor of Theorem 24:

Theorem 26. I (ab) A (be) implies I (ea) . (Dimaris)

Theorem 27. A (ab) E (be) implies O (ea) (Camenos)
Theorem 28. E (ab) A (be) implies O (ea) (Fresapo) .

The Valid Moods of the First Figure

These have been left to the last since two of them must be
derived indirectly. But AAI and EAO in the first provide no
difficulty since they follow immediately from Postulate 3 and
4 respectively by weakening the conclusion:

Theorem 29. A (ba) A (eb) implies I (ca) (Barbari)

Theorem 30. E (ba) A (eb) implies O (ea) (Celaront)

EIO in the first follows from EIO in the second in the man-
ner indicated above, namely, by strengthening the major by con-

version: •

Theorem 31. E(ba) I(cb) implies O (ca) (Ferio)

Finally, we require a proof of

Theorem 32. A (ba) I (eb) implies I (ea) (Darii)

This follows from a good many of the theorems already

proved. Perhaps the easiest method is to convert the minor in

Theorem 21, All in the third. Or, we could convert the con-

clusion of lAI in the fourth. Or, we could contradict and inter-

change the minor and conclusion of AEE in the second, or the

major and conclusion of EIO in the third.

The discussion of the last proof suggests that there may be

many ways of proving the valid moods of the syllogism and this

is, of course, the case. The following exercises suggest some of

these methods. Helpful in this respect will be the accompanying
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diagram which gives the method for passing from one figure to

another. The Roman numerals refer to the figures; those on
the top line are the ones operated on and those in the middle

are the result. Thus, if we contradict and interchange (here ab-

breviated C. and I.) minor and conclusion in the third figure

(III) , we derive the second (II) , or, if we convert the major in

IV we obtain III.

I II III IV

C. and I. major and concl. III III I IV
C. and I. minor and concl. II I II IV
Convert major II I IV III

Convert minor III IV I II

Convert concl. IV II III I

Some abbreviation in the proofs will also be helpful. Thus the

proof of Theorem 1 1 above may be stated thus:

A (ba) O (ca) implies O (cb)

(Postulate I, Axiom 5 on the minor)

,

and the proof of Theorem 13 may be stated:

E (ab) A (cb) implies E (ca)

(Postulate 2, Axiom 6 on the major, EE2)

,

where EEg indicates what mood of Immediate Inference was
used in applying Axiom 6.

(See Exercises, Group B, at end of chapter.)

It is an interesting historical fact that Aristotle actually estab-

lished the valid moods of the syllogism in a very similar manner.
His method consisted simply in "reducing" all the valid moods
(excepting the fourth figure, which Aristotle omits) to Barbara
and Celarent. The "reduction" consists in either converting the

terms in E and I, or else in showing that to deny the given mood
is to deny Barbara or Celarent. The latter method is an example
of the Indirect Proof (page 27) and this is another form of the

Principle of Contradiction and Interchange. Thus, to show
AOO in the second, Aristotle argues as follows: Suppose that the

conclusion O (ca) cannot always be inferred from A(ab) O (cb) ,

i.e., suppose that we can infer the contradictory of O (ca) , or
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A {ca) from these premises; but if A (ah) is granted and A {ca)

follows, then by Barbara we can infer Aicb) ; but this conclu-

sion contradicts the second premise, O {cb) , and hence an ab-

surdity has been reached; that is, granting A iab) O {ch) , we
cannot have O {ca) false, or A{ab) O {cb) implies O {ca) .

The Invalid Moods of Immediate Inference

Our deductive system would not be complete if we did not in-

clude postulates which will allow us to prove that the remain-

ing moods of Immediate Inference and the syllogism are false.

We require for the former four additional postulates:

Postulate 5. A {ah) does not imply A {ha)

.

Postulate 6. A {ab) does not imply O {ah)

.

Postulate 7. A {ah) does not imply O {ha)

.

Postulate 8. E {ah) does not imply I {ah)

.

Two additional axioms are needed as well:

Axiom 8. Given any invalid (immediate) implication {"p does

not imply q") , we may contradict and interchange the prem-

ise and conclusion and the resulting implication is still in-

valid.

That is, if p does not imply q, then q' does not imply p' (cf.

page 25) . (Note that Axioms 3 and 8 together give: "The con-

tradiction and interchange of the premise and conclusion of an
[immediate] inference does not alter the truth or falsity of the

inference.")

Axiom 9. Given any invalid implication, we may weaken the

premise or strengthen the conclusion and the resulting impli-

cation is still invalid.

That is, "Up does not imply q but p does imply r, then r does

not imply q," or "If p does not imply q, but r does imply q, then

p does not imply r." (Cf. pages 28, 29.)

Rather than prove all the eighteen theorems we present

examples of the method:

Theorem 33. O {ah) does not imply O {ha) .

Proof: A {ab) does not imply A {ha) (Postulate 5)

Hence, [A {ha) ]' does not imply [A {ah) ]' (Axiom 8)
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But [A (ba) Y or "It is false that all b is a" is O (ba) and
[A (ab) Y is O (ab) :

Hence, O (ba) does not imply O (ab) , and this expresses the

same fact as the theorem, both being OO in the second.

Theorem 34. A (ab) does not imply E(ab)

.

Proof: A (ab) does not imply O (ab) (Postulate 6)

But E (ab) does imply O (ab) (Theorem 3)

Hence A (ab) does not imply E (ab) (Axiom 9)

Theorem 35. I (ab) does not imply A (ab)

.

Proof: A (ab) does not imply A (ba) (Postulate 5)

But A (ab) does imply I (ba) (Theorem 5)

Hence I (ba) does not imply A (ba) (Axiom 9) Q.E.D.

Theorem 36. E (ab) does not imply A (ab)

Proof: E (ab) does not imply I (ab) (Postulate 8)

But A (ab) implies I (ab) (Postulate 1)

Hence E (ab) does not imply A (ab) (Axiom 9) Q.E.D.

The remaining theorems are left to be proved by the student.

Note that Axiom 9 is used far more frequently than Axiom 8.

In fact, with the exception of OO in the second, we could prove

all the theorems by means of Axiom 9 and the postulates. Note
also that if Axiom 8 is applied to Postulates 6-8, the resulting

form is the given postulate over again; but Axiom 8 may be ap-

plied conveniently to such a form as lA above to obtain the in-

valid mood OE. Again, note that Postulate 5 (or theorems de-

rived from it) must be used in all cases where the premise and
conclusion are both affirmative or where they are both negative.

Postulates 6 and 7 where an affirmative implies a negative, and
Postulate 8 in all cases where a negative implies an affirmative.

The Invalid Moods of the Syllogism

Here there are seven postulates:

Postulate 9. A (ba) A (cb) does not imply O (ca)

AAOi is an invalid mood.
Postulate 10. A (ba) E (cb) does not imply I (ca)

AEIi is an invalid mood.
Postulate 11. A (ba) E (cb) does not imply O (ca)

AEOi is an invalid mood.
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Postulate 12. E (ba) E (cb) does not imply I (ca)

EEIi is an invalid mood.
Postulate 13. O (ba) A(cb) does not imply O (ca)

OAOi is an invalid mood.
Postulate 14. A (ab) A (be) does not imply A (ca)

AAA4 is an invalid mood.
Postulate 15. A (ab) A (be) does not imply O (ca)

AAO4 is an invalid mood.

The following axioms are necessary:

Axiom 10. If two premises do not imply a conclusion, then if

either one of the premises is contradicted and interchanged

with the conclusion the resulting implication is also invalid.

That is: "If p^ does not imply r, then r^q does not imply p',"

or, "If pq does not imply r, then pr' does not imply q\" (Page

25.)

Axiom 11. If two premises do not imply a conclusion, we may
weaken either premise or strengthen the conclusion and the

resulting implication is also invalid.

That is, "If pq does not imply r, but p implies s (or q im-

plies s) , then sq does not imply r (or ps does not imply r.) "; or,

"If pq does not imply r, but s implies r, then pq does not im-

ply s."
2

(Axiom 7 will also be applied here; that is, if pq does not imply

r, then qp does not imply r.)

The theorems are proved in a manner analogous to that given

above for Immediate Inference. Here the rules for passing from

one figure to another will again be useful (cf. page 91) . Thus
if we contradict major and conclusion in Postulates 9-13, we de-

rive invalid moods of the third figure.

The following hints may prove helpful:

1. When the mood to be proved invalid has all affirmative

premises and an affirmative conclusion, or one affirmative and

one negative premise with a negative conclusion, use Postulate

11, 13, or 14. (Note that there are also valid moods of this form;

in fact, all valid moods must be one or the other of these two

forms: cf., Rules 1-3 of the Rules of Invalidity of the Syllogism,

page 71. These two forms are, of course, closely allied, since if

we contradict and interchange premise and conclusion in a mood

2Cf. p. 30.
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in which both premises and the conclusion are affirmative, we
derive the second form, and, conversely, if we contradict and

interchange the negative premise with the conclusion in a mood
of the second form, the first form results.)

Example: A {ah) A {ch) does not imply I {ca) .

Proof: A (ba) E (cb) does not imply O (ca) . (Postulate 11)

Hence, A (ba) A (ca) does not imply I (cb) (Axiom 10)

.

Q.E.D.

2. I£ the invalid mood has two affirmative premises and a

negative conclusion use Postulate 9 or 15. (Note that A may be

weakened to I in either figure and O may be strengthened to E,

so that we can readily prove all invalid moods of this type from

these two postulates.^)

Example: I (ba) I (be) does not imply O (ca)

.

Proof: A (ba) A (cb) does not imply O (ca) (Postulate 9)

.

But A (ba) implies I (ba) (Postulate 1)

and A (cb) implies I (be) (Theorem 5)

.

Hence, I (ba) I (be) does not imply O (ca) (Axiom 1 1)

.

Q.E.D.

(Note that this theorem follows from Postulate 15 as well.)

3. If the invalid mood has two negative premises implying

an affirmative conclusion, use Postulate 12. (This postulate is

sufficient for this type, since E may be weakened to E or O in

either figure, and I may be strengthened to I or A in either

figure.)

Example: O (ab) O (cb) does not imply A (ca) .

Proof: E (ba) E (cb) does not imply I (ca) (Postulate 12)

.

Now, weakening E (ba) to O (ab) , E (cb) to O (ch) , and

strengthening I (ca) to A (ca) , we derive the invalid mood re-

quired by virtue of Axiom 11.

4. If the invalid mood has a negative and an affirmative im-

plying an affirmative, or two negatives implying a negative (for

the connection between these two types, cf. 1 above) use Postu-

late 10.

3 AAO2, AAO3 follow from Postulate 1 by Axiom 10.
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Example: E (ba) E (cb) does not imply E (ca)

Proof: A (ba) E (cb) does not imply I (ca) (Postulate 10)

Hence, E (ca) E (cb) does not imply O (ba) (Axiom 10)

If now we weaken E (cb) to E (be) and strengthen O (ba) to

E (ba) , we derive (Axiom 1 1)

:

E (ca) E (be) does not imply E (ba) Q.E.D.

(See Exercises, Group C, at end o£ chapter.)

EXERCISES

GROUP A

1. Start with "E (ab) implies O (ab) " and "E (ab) implies E (ba)
"

as postulates, and, using the same axioms, deduce the remaining

valid moods.

2. Start with "A (ab) implies I (ba) " and "E (ab) implies E (ba)
"

and prove the remaining moods.

3. Start with EO in the first and II in the second and prove the

theorems in the following order: EEj, EO2, AI2, AIi.

4. Can all the theorems be deduced from AIi and EOa?

GROUP B

1. Prove the moods of the second figure by assuming OAO and All

in the third as postulates.

2. Prove all the moods of the fourth figure by assuming only EAE
in the first.

3. Prove all the moods possible from AAA in the first alone; from

EAEi alone.

4. Prove the following from lAI in the fourth: lAI, All, lAI, and
AAI in the third. All, AAI, in the first, EIO in all figures, EAO in

all figures.

5. Prove the following in the order given from AAA and EAE in the

first: IAI3, IAI„ AEE„ OAO3, EAO„ AAL, AAI3.

6. Prove all the valid moods from EIO in the fourth and OAO in

the third; from AOO in the second and AEE in the fourth.

7. Can all the valid moods be derived from AOO in the second and
EAO in the second? from AAA in the first and EIO in the third?

from AAI in the fourth and AEE in the second? (If not, in each

case determine the moods which cannot be proved.)

GROUP c

1. Prove that AE2, OEi, OA2, EAi, IA2, OO2 are invalid moods.

2. Prove that AAA2 and AAAa are invalid moods.
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3. Show that the first three rules for Invalidity of the Syllogism are
true by giving, in each case, a method for proving moods of the

given type invalid, (i.e., in the case of two negatives implying an
affirmative, show how all moods of this type are shown invalid by
Postulate 12.)

4. Prove that AAAa, lAL, AIL, III in all figures, are invalid moods;
that AEEi, EAE3, EAE„ AOO3 are invalid.

5. Prove that lAd, Ild, AAO3, AAO2 are invalid moods.
6. Prove that OOIi, EOI3, OEL, OOA3, EOA^ are invalid moods.
7. Prove that EOE., OOE3, EIL, AOA3, 000„ lOL, AEA,, EAA^ are

invalid moods.

8. Demonstrate the invalidity of the following moods:

AIE., EEE„ AEE,, AAE„ OOL, IIA3, AEAi, OEL, AOO*, OII3,

AII2, IAO3, EEA3, OAO4, AAA2, AAA,, EAE„ AEA..

9. Making use of the principles of the logic of propositions that the

denial of a conjunction is disjunction of the elements separately

denied and the denial of a disjunction is a conjunction of the

elements separately denied, give the contradictories of the follow-

ing. What may be inferred if the contradictory is an absurdity,

i.e., is self-inconsistent? What may be inferred if it is necessarily

true?

a) A (ab) O (ba) (For the symbols used here, see page 37)

b) l{ab) 0{ab)
c) E(ba) I(ab)

d) A (ab) + I (ba)

e) E{ab) + l(ba)

f) A \ab) + O {ba)

g) A(ab) + E(ab)
h) l(ab) 0(ba) 0(ab)
i) A (ab) + I (ab) O (ba)

f)
A (ab) O (ba) + I (ab) + E (ab)

k) A(ab) + 0(cb) + 0(ca)

I) A (ab) A (ba) + O (cb) O (ca) O (cb)

m) E (ab) + I (cb) + A (ca)

n) O (ab) + O (be) + E (ca)
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Development of the

Traditionol Logic

IN
THE following section we shall consider certain further as-

pects of the Aristotelian system. Among other things, it will

be shown how the deductive system can be simplified (i.e., how
the number of postulates can be reduced) and that the Rules

for Invalidity of Immediate Inference and the Syllogism given

on page 56 and page 71 cannot be considered as postulates for

this Aristotelian system since they are not universally valid. Be-

fore entering on these discussions it will be necessary to define

certain important concepts.

The Universe of Discourse

There is one important class we have not yet considered and
this is the class commonly designated by the term "universe,"

i.e., the class that includes everything. In our everyday discourse

we use the term "everything" in a somewhat ambiguous sense.

If I answer a question regarding the whereabouts of some per-

son: "He is nowhere around," I do not mean that he is nowhere
at all (nowhere conceivable) but merely that he is nowhere in

the building or nowhere in the neighborhood, or city. That is,

my "universe" or "everywhere" may vary considerably, from a

room to a country or the world.

In the same manner, when we say that a person is "not alive,"

we do not mean that he is possibly anything whatsoever except

a living being. We do not mean that he may be a stone or a glass

of water. We mean that he is something not living in that "uni-

verse" composed of beings who have lived sometime or other.

Our "universe of discourse," the "everything" about which we
are talking, is not "everything whatsoever," then. Again when

98
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we say "What is not less than or equal to zero is plus," we are

talking only about numbers; we do not mean by "what" any-

thing whatsoever (anything conceivable) , but rather "any num-
ber"; i.e., our "universe of discourse" is made up solely of quan-

tities or numbers.

(See Exercises, Group A, at end of chapter.)

Throughout this discussion and in the exercises we have made
use of the expression "What is not something or other." This

concept is very important in the "algebra" of classes, and we
may symbolize the expression "what is not a" or "non-a" by a'.

Then it is apparent that the classes a and a' are such that though

they have no members in common, together they make up the

universe. For example, what is white and what is not white to-

gether make up the universe of shades. Thus «' can be conceived

as "what remains in the universe when a is removed." There is

an analogy here between the class non-a and the expression "p

is false," or p^ in the logic of propositions, for "p is true" and "p

is false" (i.e., the contradictory of p) were those expressions

which were such that, though they could not both be true at

once, together they exhausted all possibilities.

The class non-a also bears another analogy to the proposition

"p is false." It is to be remembered that the expression "It is

false that p is false" was equivalent to "p is true." Similarly, a"

or non- (non-a) , "What is left in the universe when non-a is re-

moved," is the class a. That is a m a'\ The complete analogy

breaks down, of course, since non-a is a class and "p is false" is a

proposition. For example, though we can assert as valid "Either

p is true or p is false," we cannot say "Either a or non-a," since

the latter is not a statement at all but merely a class (the uni-

verse) , and it is absurd to say that a class is true or false.

Non-a or a' also bears some analogy to the negative of a num-
ber in arithmetical algebra. On account of this, a' is often writ-

ten — a or a, the "negation" sign being written on top in the

latter; the notation a' is merely the result of placing the nega-

tion sign vertically. The analogy appears in a number of ways;

for example, the expression a z= —a {a = a'') is true in both

the algebra of numbers and the "algebra" of classes.

Given the concept non-a or a' we can define the categorical
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form E (ab) in terms of A (ab) . For obviously if "No a is b"
then "All a lies in what isn't b," i.e., "All the members of a be-

long to non-b," and, conversely, if "All a lies in non-6," then

"No a is b." Hence:

A (ab') is equivalent to E(ab)

.

"If all kings are unhappy, then no king is happy, and, conversely,

if no king is happy, then all kings are unhappy (where 'unhappy'

means 'non-happy')
."

This principle is known as "obversion." It may also be given:

A (ab) is equivalent to E (ab^) .

"If all men are fools, then no man is sensible (non-foolish) , and,

conversely, if no man is sensible, then all men are fools."

Similarly, we may also assert that

(ab^) is equivalent to l{ab) .

E.g., "Some men are not liars (non-truthtellers) " is equivalent to

saying "Some men are truthtellers."

Or, we can assert that

1 (ab^) is equivalent to O (ab)

.

"Some books are hard to read" is equivalent to "Some books are

not not-hard," or, "Some books are not easy."

Other relations which arise are:

A (ab) is equivalent to A (feV)

.

This is called the principle of "contraposition": "All Romans were

brave" is equivalent to "Anyone who is not brave is not a Roman."

Similarly (and consequently) :

O (ab) is equivalent to O (b'a')

:

"Some thieves are not honest" is equivalent to "Some non-honest

(dishonest) people are (not non-) thieves."

Note that the principle of contraposition does not hold for the

E- and I-forms, just as the principle of conversion (simple re-

versal of terms) does not hold for the A- and O-forms.^ E.g., the

1 Indeed, as the diagrams show, the fact that E and I are not contraposable
depends on the fact that A and O are not convertible.
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sentence "No squares are circles" is not equivalent to "No non-

circle is a non-square," for the former is true, but the latter is

false. The principles of contraposition can also be expressed:

A {a'b') is equivalent to A {ba)

O {a'b') is equivalent to O {ba) ,

and also (since a'^ = a) :

A (a'b) is equivalent to A (b'a)

A (ab') is equivalent to A (&a')

O (a'b) is equivalent to O (b'a)

O (ab') is equivalent to O (ba') .

Interesting with respect to the above is the extension of

Euler's diagrams. Let us represent by a rectangle the universe of

discourse. Then the relation between a and a' will be seen from
this diagram:

a a

A (ab) now can be represented by one of the following two
diagrams:

b

o b'

A(ab)

where the equivalence of A (ab) and E (ab') is obvious. (Note

that a' in the first diagram is everything in the square except the

circle enclosing a.) The new diagrams for I (ab) and O (ab)

may be constructed in a like manner.

(See Exercises, Group B, at end of chapter.)
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It is a fact that the introduction of the "universe class" and

the concept of "non-a" into the algebra simplifies this deductive

system considerably. For example, we can reduce the postulates

for the valid moods of the syllogism to one by use of obversion.

Let us see how this is possible.

We take as undefined in the system the terms a, b, c, etc.

(classes) , the concept "non-a," or a', and A{ab) . We then de-

fine the expression E (ab) by the principle of obversion:

E (ab) means A {ab')

.

I (ab) and O (ab) are defined already, the former being the

contradictory of E(ab) , the latter the contradictory of A{ab) .

We postulate the original two postulates for Immediate In-

ference and the same axioms are assumed as above. But in the

case of the syllogism we merely postulate Barbara:

Postulate 3. A (ba) A (cb) implies A (ca)

.

Since this is a postulate of the system, it must hold for all a's, b's,

and c's, that is, it must hold no matter what a, b, or c may be.

Suppose now a is the "negative" of some class, i.e., suppose a

represents "what isn't something else," say d\ Then in this case

we can assert as true

A {bd') A (cb) implies A (cd')

.

But by definition A (bd^) or "all b is non-d" is E (bd) and

A (cd') is E (cd) :

E (bd) A (cb) implies E (cd)

and this is EAE in the first figure, or Celarent.

The great simplification which occurs when "non-a" is in-'

troduced lies in the postulates for the invalid moods. For instead

of the eleven postulates required above for the invalid moods
of Immediate Inference and the Syllogism, here we require but

one. This simplification, known as postulational economy, oc-

curs quite frequently when new concepts are introduced into

the system.

Simplification of the Aristotelian Class Calculus

Indefinables:^ 1. The "terms" ("classes") a, b, c, etc.^

2. A (ab) ("all a is b")

3. a' ("non-a")

2 Cf. p. 7.

3 More precisely, the indefinable is a class of elements K (which may be inter-

preted as the class of all classes)

.
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Definitions: 1. E(ab) means A (a&')

2. O (ab) means [A (ab) Y ("A (ah) is false")

3. I (ab) means [E (ab) ]' ("E (ab) is false")

Postulates: 1. A(aa) ("all a is a")

2. A (ab) implies I (ab)

3. I (ab) implies I (ba)

4. A (ba) A (cb) implies A (ca) (Barbara)

5. a = a" "The class a is equivalent to non-

(non-a) ," (Here the symbol "= " has the signifi-

cance that whenever a" occurs in an expression

we may replace it by a and vice versa.)

6. A (ab) A (cb) does not imply I (cd) . (I.e., AAI
in the second is an invalid mood.) *

The axioms mentioned for the valid moods are likewise

assumed here and hence we can easily derive all the valid moods
of Immediate Inference and the syllogism, since Celarent can

be proved in the manner indicated above, and this plus Postu-

lates 2, 3, and 4 is sufficient.

But the invalid moods require some additional axioms if

they are all to follow from Postulate 6:

Axiom 12. If a certain premise in an argument is an established

truth, this premise may be "suppressed."

That is, if pqr . . . imply w, and p is actually true, then we
may say the qr . . . imply w. The meaning of this axiom is best

seen in the case of two premises. Suppose we have: "If ^ and q
are true, then r is true." Suppose that p is granted; then the

truth of r depends solely on q. That is, "If q is true, then r is

true," and we have suppressed the first premise. Obviously, if all

the premises are true, we suppress them all and merely assert r

by itself (cf. page 31, the discussion of the Constructive Hy-
pothetical Syllogism) .

Axiom 13. If a true statement implies or is equivalent to another

statement, the latter is true. (This is the Constructive Hypo-
thetical Syllogism.)

Axiom 14. A true statement never implies a false statement; or,

if a statement leads to (implies) a false statement, then the

former cannot be universally true. (This axiom is the back-

*We might add, for the sake of "completeness":
7. If A (ab) and A (ba) , then a = b.
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bone of the method of reductio ad ahsurdum used later in

the book.)

Axiom 15. In any expression containing such variables as a, b,

c, etc., these variables may be replaced by any other letters

throughout, or the "primes" of any other letters (a', h', c')

without altering the validity or the invalidity of the expres-

sion.

Thus Postulate 4 can be written "A [dc) A (hd) implies

K{hc) ," where c has been written for a throughout, d for h, and
h for c, this could also be written "A {b'a) A {c'h^) implies

A (c'a) ," or "A {fa') A (c/) implies A [ca') ," etc. This axiom as-

serts the universal quality of the postulates and will be used im-

plicitly.

Theorems: (We require several preliminary "lemmas")

:

Theorem 1. I {aa) ("some a is a.")

Proof: A {ab) implies I {ab) . (Postulate 2) .

Hence, if we let b have the value of a, we have

A (aa) implies I (aa) .

But A (aa) is true (Postulate 1) . Hence
I{aa) is true (Axiom 13). Q.E.D.

Theorem 2. A (ab) = E {ab')

Proof: A {ab') = E{ab) . (Definition 1)

Hence, replacing b hy b':

A {ab") = E {ab')

,

or, by Postulate 5, since b" — b,

A {ab) = E {ab') Q.E.D.

Theorem 3. E {aa') ("No a is non-a.")

Proof: A {ab) = E {ab') (Theorem 2.)

Hence, letting b = a,

A {aa) = E {aa')

.

Hence, by Postulate 1 and Axiom 13, E {aa') is true. Q.E.D.

Theorem 4. O {aa')

Theorem 5. E {a'a) ("No non-a is a")

(Here we make use of Theorem 3 and the fact that E {ab)

implies E {ba) , the valid moods of Immediate Inference and

the syllogism being proved already.)
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Theorem 6. O (a'a)

Theorem 7. A (aa') is false, or [A (aa') ]'.

Proof: O (ab) = [A (ab) ]'

Hence, replacing b by a\ we have

O (aa') = [A (aa') ]'.

But O (aa') is true (Theorem 4) and therefore (Axiom 13)

[A (aa') ]', or "All a is non-a is false."

Theorem 8. I (aa') is false, or [I (aa') ]'. (This follows from the

definition of I (ab) and Theorem 3.)

Theorem 9. A (a'a) is false, or [A (a'a) ]'.

Theorem 10. I (a'a) is false, or [I (a'a) ]'.

Theorem 11. E (aa) is false, or [E (aa) ]'.

Proof: [E (ab) ]' = I (ab) , and if b = a, then the theorem fol-

lows immediately by Theorem 1 and Axiom 13.

Theorem 12. O (aa) is false, or [O (aa) ]'.

We are now in a position to prove the invalid moods of Im-

mediate Inference. For example:

Theorem 13. A (ab) does not imply O (ba) .

Proof: We prove the theorem by showing that there is (at least)

one case where the implication "A (ab) implies O (ba) " is

false. For suppose that b = a in this implication: "A (aa) im-

plies O (aa) ." But this latter is a false proposition, since the

premise is true (Postulate 1) and the conclusion false (The-

orem 12) . Hence, by Axiom 14, AO3 reduces to a false propo-

sition and- hence is not true in general.

In a similar fashion, we can prove invalid all forms of Im-

mediate Inference in which we have an affirmative form imply-

ing a negative form. The converses can also be shown false. E.g.:

Theorem 14. E (ab) does not imply l(ab)

.

Here we cannot let b =^ a, for this reduces E (ab) to a false prop-

osition and we cannot infer anything.^ But iib := a', then E (ab)

or E (aa') is true (Theorem 3) , but I (ab) or I (aa') is false

s That is, even though we reduce the expression to the case of a false premise
implying a true conclusion, the resulting form is not necessarily false; indeed,
it is usually considered true. (Cf. Chap. XII.)
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(Theorem 8) , and hence EI reduces to a form in which a true

proposition implies a false one, and hence EIj is false.

The general procedure here is to give b the value a or a', ac-

cording as this makes the premise true (and the conclusion

false) . We must have the premise true, for otherwise no falsity

results.

There still remain those invalid moods of Immediate Infer-

ence which follow from "AA2 is false." Hence, if we prove this,

we have proved all the invalid moods of Immediate Inference

by merely making use of the axioms in the original system. Ob-
viously we cannot use the same method as above in proving this

theorem, since if 6 = a, both premise and conclusion are true,

and lib =z a', both premise and conclusion are false, and nothing

follows. We must make use of Postulate 6:

Theorem 15. A {ah) does not imply A {ha)

.

Proof: Suppose A {ah) implies A {ha) . Then in Postulate 6,

"A {ah) A {ch) does not imply I {ca) ," we can weaken A {ah)

to A {ha) , since by Axiom 1 1 (page 94) , in any invalid mood
either premise may be weakened, without altering the in-

validity, and hence deduce:

"A {ha) A {ch) does not imply I {ca) ."

But this is absurd, since this is AAI in the first, which is a

valid mood of the syllogism. Hence the assumption that

A {ah) implies A {ha) leads to a contradiction (Postulate 6

contradicts Postulate 2 and 4) , and hence A {ah) does not

imply A {ha)

.

The invalid moods of the syllogism may be derived either by
reducing the syllogism as above in the case of Immediate Infer-

ence to a form in which a true proposition implies a false prop-

osition or to an invalid form of Immediate Inference, or else by

employing Postulate 6. As an example of the first method, we
take a syllogism in which two affirmative premises imply a nega-

tive conclusion:

Theorem 16. A {ha) I {he) does not imply E {ca)

.

Proof: In the given syllogism, let a = h = c:

A {aa) I {aa) implies E {aa)

.
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But now both the premises are true (Postulate 1 and The-

orem 1), but the conclusion is false (Theorem 11). Hence
AIE3 is false in this case and hence

A (ba) I (be) does not imply E (ca) Q.E.D.

Again, take

Theorem 17. A (ab) A (be) does not imply A (ea)

.

Proof: Suppose A(ab) A (be) does imply A (ea) . Now let a = b:

A (aa) A (ac) implies A (ea)

.

But A (aa) is a true premise, and by Axiom 12 may be sup-

pressed:

A (ac) implies A (ea)

,

which is false by the theorem already proved in Immediate
Inference. Hence AAA4 implies a false proposition and by

Axiom 14 must itself be false.

In order to show that these postulates are sufficient to prove

all the invalid moods we shall prove that the seven postulates

for the invalid moods of the syllogism given above are theorems

of this system. With these as theorems we can prove the remain-

ing moods by Axioms 10 and 11 above (page 94) , though it will

often be simpler to apply the present method, especially in cases

where two affirmative premises imply a negative. (Not all the

invalid moods follow by the method of reduction described

above. Some of the moods must be proved from Postulate 6.

Thus Numbers 11 and 12 below must be proved by the latter

method.)

Postulate 9. A (ba) A (cb) does not imply O (ca)

.

Proof: The proof follows simply by letting a = b = c, and ap-

plying Postulate 1, Theorem 12, and Axiom 14.

Postulate 10. A (ba) E (eb) does not imply I (ca)

.

Proof: The proof follows by suppressing the major premise by
letting b = a:

A (aa) E (ea) implies I (ea)

,

which, by Axiom 12, reduces to

E (ea) implies I (ca)

,
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a false mood of Immediate Inference. Hence by Axiom 14 we
infer the invalidity of AEIi.

Postulate 11. A{ba) E(cb) does not imply O (ca)

.

Proof: A{ab) A(cb) does not imply I (ca) (Postulate 6) . Hence,
contradicting minor and conclusion, we infer

A (ab) E (ca) does not imply O (cb)

,

which is the required AEO in the first.

Postulate 12. E {ba) E {cb) does not imply I (ca)

.

Proof: A {ab) A {cb) does not imply I {ca) (Postulate 6) . Hence,

by definition:

E {ab') E {cb') does not imply I {ca) , or
""

E {b'a) E {cb') does not imply I {ca)

(weakening E {ab') to E {b'a) by Axiom 11) ; that is, we have

shown that EEIi is not a valid mood in general.

Postulate 13. O {ba) A{cb) does not imply O {ca)

.

Proof: We prove first that AAAs is an invalid mood; suppose

A {ba) A {be) implies A {ca)

.

Now let b = a:

A {aa) A {ac) implies A {ca)

,

or, by Axiom 12 and Postulate 1:

A {ac) implies A {ca)

,

which is invalid by a theorem of Immediate Inference. Hence,

A {ba) A {be) does not imply A {ca) . Now contradict and
interchange major and conclusion of this, and by Axiom 10

we infer that

O {ca) A {be) does not imply O {ba)

,

or that OAOi is an invalid mood. Q.E.D.

Postulate 14. A {ab) A {be) does not imply A {ca) .

Proof: The proof follows simply by letting b = a.

Postulate 15. A {ab) A {be) does not imply O {ca) .

Proof: Let a = b = e.

(See Exercises, Group C, at end of chapter.)
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We might now ask whether any categorical form which con-

tains a "primed" term, i.e., a term such as a' or b\ can be

changed into a categorical form in which this is not the case.

For example, E (ab^) can be changed to A (ah) , which has no

primed terms, A (a^b') to A (ba) , and so forth. If this were the

case, our categorical forms would be "complete," but it is not,

for A (a^b) (or E (a'b^)

)

, "All non-fl is b" cannot be reduced

further. Hence more categorical forms are required for the sake

of this completeness. If we let U (ab) represent "All non-a is b"

and let V (ab) be its contradictory: "some non-a is not b"

([U (ab) Y) , then the categorical forms will be complete. The
verification of this appears below.

The new categorical form U {ab) may be represented by

Euler's diagrams as follows:

b

a' a

V(ab)

where the shaded portion in the first diagram is the area for a.

V (ab) may be represented by the diagrams for I (ab) , where the

a and b in the latter are replaced by a' and b^; for V (ab) =
I (a'b^) , as may readily be gathered from the above reading of

V (ab) .

A peculiar fact arises with respect to U (ab) and V (ab) ; for

when these categorical forms are added to the other four, and
we determine the new valid moods of Immediate Inference and
the syllogism, the old Rules for Invalidity in both cases are no
longer entirely consistent.

In order to show this, let us first discover what terms in U (ab)

and V (ab) are distributed. In U (ab) or "all non-a is (some)
&" the predicate is not distributed. That the subject is not will

appear when we note that U (ab) implies U (ba) , as may be seen

from the diagrams above. That is, we may reverse the order of

the terms in U. Hence we may read for U (ab) "all non-6 is

(some) a" (note that the form of U is "all non- is ,"

the "non" belonging to the form and not to the term) ; this
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clearly shows that the subject also is not distributed in U. In

V {ab) both terms are distributed; for V (ah) , "Some non-a is not

fo" is equivalent to O {a^b) , where the predicate, b, is distributed.

But since V (ab) is equivalent to V (ba) ,^ we can assert that a is

also distributed. The following is a valid mood of Immediate
Inference:

"U (ab) implies O (ah)
"

"If all non-fl is b, then some a is not b."

Here b is distributed in the conclusion, but not in the premise,

and hence Rule 3 of the Rules for Invalidity of Immediate Infer-

ence is inconsistent.

Again, in the case of the syllogism, the following valid moods
demonstrate the invalidity of Rule 2, "Two negative premises

do not imply any conclusion":

U (ba) E (cb) implies A (ca)

"If all non-& is a and no c is b, then all c is a."

Here U and E are both "negative," i.e., contain the word "not"

(or "non-") an odd number of times (or, more precisely, when
the terms are identified, they become false) , and by the rule in

question they should not imply any conclusion. Hence this rule

is inconsistent. There are actually many such cases of valid

syllogisms in which both premises are negative when the U- and
V-forms are added: for example, EEV in all figures; EOV in

what figures?

Again, Rule 4, "The middle term of a valid mood of the

syllogism must be distributed at least once," is shown incon-

sistent by the following mood:

A(ab) U (cb) implies O (ca) ,

"If all a is & and all non-c is b, then some c is not a."

Rule 5, "A term distributed in the conclusion must be dis-

tributed in its premise" is shown inconsistent by the following

valid mood:

A (ba) U (cb) implies O (ca) ,

"If all & is a and all non-c is b, then some c is not a."

Here a is distributed in the conclusion, but is not distributed in

the major premise.

^"Some non-a is non-&" is equivalent to "Some non-& is non-a."
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It might be thought that with the introduction o£ the U- and

V- forms additional postulates were necessary. This is not the

case. For example, the valid mood:

U (ab) implies U (ba)

follows by the definition of U (ab) , and the postulates. For

U {ab) = E {a'b') .

This may be shown in the following way:

E {ab') = A {ab) .

Hence, if we write a' instead of a, we have

E {a'b') = A {a'b) = U {ab) .

Now E {ab) implies E {ba) , and if we write for a and b, a' and

b' respectively, we derive

E {a'b') implies E (&V) , or, by the above,

U {ab) implies U {ba) .

In a similar manner we can prove the valid mood

U {ab) implies O {ba)

.

For A {ab) implies l{ba) . If, now, in place of a we write a', we
have

A {a'b) implies I {ba')

.

But A {a'b) is U {ab) and I {ba') is O {ba) ; hence it follows

that U {ab) implies O {ba)

.

From UU2 and UO2 we can prove the remaining valid moods

of Immediate Inference (the moods UUi and VV^ being proved

in the same manner as AA^ above) . The required additional

moods are, besides the original ten, AV^, AVg, VV2, UO^, VVj,

and UUi.
In the case of the syllogism, AAA^, Barbara, is sufficient for

the proof of all the valid moods. From Barbara,

A {ba) A {cb) implies A {ca) ,

we derive Celarent by writing a' for a as described above. If

now, we write b' for b in Barbara, we have:
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A {h'a) A {ch') implies A (ca) ,

or, since A (b'a) is U (ba) , and A {ch') is E {cb) :

U (ba) E {cb) implies A {ca)

.

Again, writing c' for c in Barbara, we have:

A {ba) A {db) implies A {c'a) , or

A {ba) U {cb) implies U {ca)

.

From these four derived moods follow all the valid moods of the

syllogism.

The invalid moods of Immediate Inference and the Syllogism

are proved by a similar extension or else by the method of sup-

pressing a premise already discussed.

(See Exercises, Group D, at end of chapter.)

Rules 1 and 3 of the syllogism are true even when the U- and
V-forms are introduced. In fact, they are special cases of far more
general rules which apply to forms which have any number of

premises. This discussion aims at making clear the meaning of

"generalization" or "generality" in a deductive system. The
process of generalizing a formal science is quite common. For

example, the plane geometry studied in most high-schools is a

"special" case of the solid geometry studied afterwards. In other

words, in the latter case we have extended the scope of our

knowledge beyond the mere plane to solids such as spheres and

cones.

The theorems of plane geometry still hold in solid geometry,

provided they are prefixed with the clause: "If the following

conditions take place on a plane." But many of the theorems of

solid geometry are meaningless in plane geometry, because the

concepts which the latter considers are so restricted. Thus, for

example, we could not define a cube in plane geometry, for this

requires the concept of planes cutting each other, a concept

which does not appear here. This suggests the possibility that

the three dimensions of solid geometry may also be restricted,

and that there are geometries which consider four, five, six, n

dimensions. This is actually the case: there are geometries which

consider space (not picturable by us) of any number of dimen-

sions.
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As an example in another field, consider the law of gravita-

tion. For centuries people had known that certain bodies (the

"heavy" ones) fall, and certain bodies do not. But no one had

been able to "generalize" his experience satisfactorily by giving

the rule which would tell which bodies would fall and which

would not. The attempt to discover such a law was the attempt

to make the science of physics more general. Those acquainted

with the theory of relativity will be aware that this theory aims

specifically at generalizing the old laws of "classical" physics,

which the scientists of the nineteenth century had considered the

most general laws possible. Again, algebra might be thought of

as a generalization of certain branches of arithmetic. For ex-

ample, we discover in arithmetic that 4 X 3 is the same as

4x4 — 4, and that 8 X 9 is the same as 9 X 9 — 9. But in

algebra we generalize these results by asserting that no matter

what the number x may be, {x — I) x =z x'^ — x.

In an exactly analogous fashion, we can generalize the deduc-

tive system of classes which we have been considering. For ob-

viously we are not restricted to one or two premises only, but

we may have any number of premises implying a conclusion.

Forms which involve more than two premises are called "so-

rites," and the extension of the system to sorites is a generaliza-

tion of the logic. As an example of the manner in which we
might "build up" a chain of premises which validly imply a con-

clusion, take first the valid syllogism:

E (ba) I (cb) implies O (ca) .

We have the right to strengthen either premise of a valid syllo-

gism and the resulting implication is still valid. But the premises

A{db) I (cd) validly imply I (cb) , and hence in place of I (cb)

we may write these:

E (ba) A (db) I (cd) implies O (ca) .

This is a (valid) sorites of three premises. Again, E (ba) may be

strengthened to the premises E (ea) A (be) (EAE in the first

figure)

:

E (ea) A (be) A (db) I (cd) implies O (ca) .

This last sorites may be tested by Euler's diagrams. This process

may be continued indefinitely, and a valid sorites of any num-
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ber o£ premises may be constructed. Note that in the sorites no

term appears more than twice and that if a term appears twice in

the premises it does not appear in the conclusion. In the special

case of the syllogism there is but one case of the latter, the

"middle" term.

But our principal interest lies in determining whether a given

sorites is valid or not. The following rules indicate the method

of discovering which are the valid moods of the sorites:

1. If all the premises of a valid sorites are affirmative (A, I,

or V) then the conclusion is affirmative (i.e., if a sorites has all

affirmative premises and a negative conclusion, then the sorites

is invalid.) For suppose the conclusion of the sorites were nega-

tive, as in the case of the sorites,

A {ha) A {ch) V {dc) I {ed) implies E {ea) .

The method of proving this false is simple enough, for we
merely identify the terms in all the premises:

{a= h = c = d=: e):

A {aa) A {aa) V (aa) I {aa) implies E {aa) .

Here the premises are true but the conclusion is false; hence the

sorites is invalid. Note that this rule generalizes the first rule of

Immediate Inference: "An affirmative premise does not imply

a negative conclusion," and the rule of the syllogism: "Two
affirmative premises do not imply a negative conclusion."

2. If the conclusion of a valfd sorites is universal (A, E, or

U) , then all the premises must be universal. This can best be

seen in the case of affirmative premises. Suppose the sorites were

A {ha) V {ch) A {cd) implies A {da) .

This is easily shown invalid by identifying terms in all the

premises except the particular one [V(c&)]: (let b ==: a and

d = c):

A {aa) V {ca) A {cc) implies A {ca)

,

and the sorites reduces to ^

V {ca) implies A {cd) ,

an invalid mood of Immediate Inference.
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3. If only one premise is negative, then the conclusion of the

sorites must be negative. For suppose it were ajfi&rmative: e.g.,

A (6a) V(cb) E(cd) I{de) implies I (ea)

.

Then, by identifying the terms in all the affirmative premises

(let a ^ b =: c and e = d) , we derive:

A (aa) V (aa) E (ad) I (dd) implies I (da) , or

E (ad) implies I (da) ,

an invalid mood of Immediate Inference. Note that this rule

generalizes the Rule of Immediate Inference. "A negative prem-

ise does not imply affirmative conclusion," and the rule of the

syllogism: "An affirmative and a negative premise do not imply
an affirmative conclusion."

"^

(See Exercises, Group E, at end of chapter.)

Significance of the Aristotelian Class Calculus

This class calculus is usually and properly considered a branch

of logic. The justification for this will be apparent when we re-

call that logic is defined as that branch of human science whose
problem is to construct all propositions the truth of which is

independent of the meaning of the terms. Thus the (true) propo-

sition (of the science of biology) "No stones are animate" is not

a proposition of logic, since its truth does depend on the mean-

ing of its terms ("stones" and "animate") . In general, the truth

of such an expression as A (ah) , "all a is b" depends on what a

and b are. But we have found statements about nouns or classes

that are true no matter what the nouns may be, i.e., whose truth

does not depend on (is independent of) the meanings of the

terms. Thus "A (ab) implies I (ab) " is true and its truth does

not depend on what we mean by a and b. The determination of

all such propositions, then, is the central problem of logic.

Hence, the separation of the moods of Immediate mference, the

syllogism, and the sorites into true and false may be properly

thought of as answering a central problem of logic.

It can also be seen in what sense logic is the basic sciejice. For

7 These rules are by no means complete. For the most extended (and actually

complete) study of the sorites, cf. H. B. Smith, "Abstract Logic" in A First Book
in Logic, F. S. Crofts and Co., 1938,
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all sciences must make use of terms or nouns, and hence the

most general laws concerning terms must be the basic part of

any science. Indeed, if we ask what an "object" or a noun is, the

best answer that can be given is that it is anything satisfying

this logic.

EXERCISES

GROUP A

1. Name the universe of discourse in the following statements:

a) Zero is less than anything,

b) Anything that goes up must come down.

c) What is not mortal is immortal.

d) What is not black or white has color.

e) What is not hopeless can be attained.

/) What is not right is wrong.

g) Wine, women, and song make up the universe.

h) "There is nothing but meeting and parting in this world."

GROUP B

1. Obvert and contrapose the following propositions:

a) All men are mortal = No men are immortal = All immortals

are non-men.

b) Some men are not unhappy.

c) No man is honest.

d) Some theories are impractical.

e) All unusual things are interesting.

/) Some uncouth people are dishonorable,

g) What is not a color is not a shade.

h) No good soap is impure.

i) Unfriendly people are unsocial.

2. Determine the truth or falsity of the following syllogisms:

Example: I (ab) A {cb') implies O {c'a') ; Now A {cb') - E {cb) ,

'\ ,^nd O {c'a') = O \ac) , and hence the given syllogism

becomes: l{ab) E {cb) implies O {ac) ; or, rearranging

premises: E (cb) I {ab) implies O {ac) , which is valid.

a) A {ab') A {cb) implies E {ca)

b) A {a'b') I {be) implies O {ca')

c) 0{ba') Y.{bd) implies O (ca)

d) A {ba') A {cb') implies O {ca')
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e) A (a'b') A {b'c') implies A (cV)

/) E (ab') A {db') implies I {ca')

g) A(b'a) E(c6') implies O (c'a)

(Hint: Replace a by a' throughout)

h) E(bW) 0{cb') implies I (c'a')

i) E(a'6') I(&V) implies O (c'a')

3. By methods similar to those described, we may often reduce con-

crete syllogisms which would appear to have four terms to those

having the required three terms. E.g.,

"All cows are contented;

all men are discontented;

therefore, no men are cows."

Here let a = "cows," b = "contented (things) ," c = "men"; but

the term "discontented," or "non-contented," is 6':

A (ab) A (cb') implies E {ca) ,

or, since A {cb') is E {cb) :

A(ab) E (cb) implies E (ca)

,

which is a valid syllogism.

Determine the validity or invalidity of the following:

a) The Mongolians living in the United States are few in num-
ber, but the Japanese living there are plentiful; therefore, no

Japanese in the United States is a United States Mongolian.

h) All acids are compounds; hydrogen is an element, and hence is

no acid.

c) No man is omniscient, but some things which are not men are

divine; hence all omniscient beings are divine.

d) Some climates are unhealthy, but no climate is worse than that

at the North Pole; hence, there are some places other than the

North Pole which are healthy.

^ e) All besides his band of unvirtuous friends were enemies of

Cataline. Cajus was not unfriendly; is it not logical to suppose,

then, that Cajus was in this band?

/) Dictionaries are useful; useless things are valueless; therefore,

dictionaries are valuable.

g) No misers are unselfish; some selfish beings are unhappy;

hence some misers are not happy.

h) Some healthy people are fat; no unhealthy people are strong;

hence, some fat people are not strong. (Carroll)

f) All uneducated people are shallow, but students are all edu-

cated, and hence the latter cannot be shallow.
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;) Improbable stories are incredible; none o£ his stories are prob-

able; hence none of his stories are credible.

k) All dishonorable people are dishonest. Some impractical peo-

ple are honorable. Hence some honest people are not practical.

I) Only meaningful propositions are true; everything he says is

meaningless; hence, nothing he says is true.

4. What conclusions (if any) may be drawn from the following

premises?

a) The things in Plato's World of Ideas are perfect; the things in

the world of sense are imperfect.

b) Only the poor are happy; Brown is rich.

c) All planets revolve around the sun in ellipses; comets follow a

path other than an ellipse.

d) Some unvirtuous men are unhappy; all saints are happy.

e) All rational numbers are expressible in the form of a fraction;

no irrational number is evenly divisible into 2.

f) All pairs of lines which are such that, if they are cut by a trans-

versal, the sum of the interior angles is less than two right

angles, meet. All parallel (non-intersecting) lines meet at in-

finity.

g) Umbrellas are useful on a journey; what is useless on a journey

should be left behind. (Carroll)

h) Sandwiches are satisfying. Nothing in this dish is unsatisfying.

(Carroll)

i) AH wise men walk on their feet; all unwise men walk on their

hands.

5. We call a relation R "contra-reflexive" if, when aR.h, aRa'; for ex-

ample, E {ab) is contra-reflexive, since E {aa') holds. Which of the

following relations have this, property: A{ab), I (ab) , O {ab)

,

"lies inside of," "lies outside of," "is less than," "is either greater

or less than," "is not the same as"?

GROUP C

1. Prove by the postulates given above that the following moods of

Immediate Inference are invalid: OAi, EI2, AE2, OIi, IE2, OEi.

2. Show by the postulates that the following moods of the syllogism

are invalid: IIOi, III3, AIA^, EIL, AIO^, AEE„ OIA3, OOO2,
EOA,, 10A3, IOO2, EOI3, EEE3, EAA„ AAO3, AEA2, lAIa, OEE3,

IEO2.

3. Prove the principle of contraposition:

A {a'b') - A (ba)

.
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(Hint: Prove (1) A (a'b') = E (a'b) ; (2) making use of the fact

that E (a'b) = E (ba') , i.e., simple conversion of the terms in E,

show that A (a'fe') = E (ba^) . The proof then follows by changing

E (ba^) back into an A-form.)

4. Prove O (a'b') = O (ba)

.

5. Prove I (ab') = O (ab)

.

6. Prove O (ab') = I (ab)

.

GROUP D

1. From the postulates given here (page 103) , prove all the valid

moods of Immediate Inference, including those involving the U-
and V-forms.

2. Given AVi and W3 as postulates in place of AIi and IL, prove all

the valid moods of Immediate Inference (keeping all the axioms

intact) ; repeat the exercise for EO2 and UU2.

3. Prove by means of the above postulates the following valid moods
of the syllogism: UEA, UEI, and UEV in all figures; UOL, UOIj,

UOL; OEV3, OEVi, OEV,; EEV in all figures; AVV„ AWi, AW,;
AAVi, AAV2, AAV,; VUO in all figures; AUO in all figures.

4. By means of the definitions of U (ab) and V (ab) , and by the

above postulates and theorems, prove the following:

a) V (aa) ."Some non-a is not a."

b) U (a'a) "All non- (non-a) is a."

c) U (aa') "All non-a is non-a."

d) [V (aa') ]' "It is false that some non-a is not non-a."

e) [V (a'a) ]' "It is false that some non- (non-a) is not a."

/) [U (aa) ]' "It is false that all non-a is a." Thus V is an affirma-

tive form and U a negative (cf. page 56)

.

5. Show that the following moods of Immediate Inference are in-

valid: UAi, VE2, IU2, AU2, UIi; UEa (hint: replace a by a' in the

invalid mood AA.) ; OU^, OU„ IVi, IV., VL, VI„ VA„ VA^.

6. Show that the following moods of the syllogism are invalid: VAd,
VIA., OAV3, UIV„ UAE., WV„ IAU3; UAO. (Hint: replace a by
a' in Postulate 6, the invalid mood AAL) ; AUV., UUU3, lUVi,

UIO.; OOUs, IIV„ EEU„ lUAx.

7. Reduce the following to forms which have no primes. (This ex-

ercise establishes the completeness of the system.)

Example: I (a'b')

Now I (a'b') = [E (a'b') ]'. But since E (ab') = A (ab)

,

we have: E (a'b') = A (a'b) = U (ab) . Hence, substitut-

ing, I (a'b') = [U (ab) ]' = V (ab) , we have reduced the

given form to one without primes.
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a) A {a'h') f) O {a'b') k) U (a'b)

b) I (a'b) g) E (ab') I) U (a'6')

c) I (fl&O h) E (a'&) m) V (a'b)

d) O (a'&) E {a'b') n) V (a&')

e) O (a&O ;) U {ab') o) V (a'fc')

8. By suitably "priming" the proper terms in the valid moods of

Immediate Inference and the Syllogism already proved, establish

the validity of the following: (e.g., "E (ba) E {be) implies V {ca) ";

replace a by a' and c by c' in the valid mood "A {ba) A {be) im-

plies I (cfl) ," thus deriving A {ba') A {be') /_ I {e'a') , which, by

definition, gives the required mood) : UUi, AVz, UAU*, VUOi,
UOIi, EUL, UOL.

9. Certain nineteenth century logicians became interested in the

problem of the "quantification of the predicate," That is, while

Aristotle's K{ab) talks about all of the subject, it is not clear

whether it refers to all of the predicate or merely some. Thus "All

men are (all) rational animals" and "All men are (some) ani-

mals" are both examples of the categorical form A {ab) . Thus, in

"quantifying" the predicate we ought to have two categorical

forms in place of this one; these can be defined a {ab) = A {ab)

A {ba) , and ^ {ab) = A (ab) O {ba) . To make a complete set of

categorical forms in which both subject and predicate are quanti-

fied, we require twelve forms, all of which are definable in terms

of the six already given:

a {ab) = A{ab) A{ba)
^{ab) = A{ab) 0{ba)
y{ab) = l{ab) V{ab)

S {ab) = I {ab) O {ab) O {ba) V {ab)

e {ab) = E {ab) U {ab)

e (ab) = E {ab) V {ab)

The remaining forms are derived by taking the negatives of these

six; thus [^ {ab) ]' is [A {ab) O {ba) ]', or, by De Morgan's Law,
"Either O {ab) or A {ba) ." These forms completely quantify sub-

ject and predicate, since if any other forms are added, these are

either redundant or make the whole expression an absurdity, and
there are no other forms of this type. Thus if we try to further

quantify the predicate of s {ab) by adding O {ba) , we have E {ab)

U {ab) O {ba) , which is equivalent to E {ab) U (ab) , since O {ba)

is already contained in both E {ab) and U {ab) ; if we try to quan-

tify the subject of 8 {ab) by adding A {ab) , the whole expression

becomes false since it contains two contradictory elements, O {ab)

and A {ab)

.
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a) Show that the set of fonns a (ab)
, ^ (ab) , . . . 6 (ab) is "com-

plete" in the sense used above by showing that "priming" one
or both elements in any form always gives another form of the

set; thus a (ab') = A (ab') A (b'a) = E (ab) U (ba) = e (ab) ;

P (a'b') = A (a'b') O (b'a') = A (ba.) O (ab) = ^ (ba)

.

b) Find all true cases of Immediate Inference between any two of

the six forms a (ab)
,
^(ab) , etc., in both figures, and prove

these from Postulates 1-7 above.

c) What conclusions, if any, may be drawn from the following

premises? Prove the resulting syllogisms:

(1) a(ab) e(bc)

(2) Hab) ^(cb)

(3) ^(ab) ^(bc)

(4) y (ab) 6 (be)

(5) e (ab) (be)

(6) a (ba) S (be)

(7) e (ab) 8 (eb)

GROUP E

1. Prove the validity of the following sorites by constructing them
from valid moods of the syllogism (by strengthening the premises

of the latter in the manner just indicated)

:

a) A (ce) A (eb) E (ad) A (bd) implies E (ca) .

b) A (ba) I (db) A (de) implies I (ea) .

e) A (ab) A (be) E (ed) I (ed) implies O (ea) .

d) E (ba) U (eb) E (dc) implies E (da) .

2. Determine whether the following sorites are valid or not either

by diagram or the above rules:

a) A(ab) E (eb) I (de) implies I (da)

.

b) E (ba) 1 (eb) A (ed) O (de) implies O (ea)

.

c) A (ab) I (be) A (ed) implies I (da)

.

d) A (ba) I (be) A (ed) implies I (da) .

e) O (ab) A (be) I (ed) implies U (da)

.

f) A (ba) A (eb) A (de) implies V (da)

.

g) E (ba) A (eb) I (de) A (de) implies O (ea)

.

3. Prove (by the method of reduction) that the following sorites

are invalid:

Example: U (ba) O (eb) E (dc) implies O (da) .

Here we suppress the U-premise by letting a = b':
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V(bb') 0{cb) E(dc) implies O (d&') ; or, since U (&&')

is a true premise, this reduces to:

O (cb) E (dc) implies O (db')

.

ButO{db') is I (db):

O (cb) E (dc) implies I (db) ,

which is an invalid mood of the syllogism; hence the

original sorites, since it implies this invalid mood in a

special case, is not true in general.

a) I (ba) E (cb) V (cd) implies V (da)

.

b) A (ba) I (cb) V (cd) implies O (da)

.

c) E (ba) E (cb) E (dc) implies E (da)

.

d) A (ba) U (cb) U (cd) I (de) implies O (ea) .

•

e) I (fl&) V (cb) E (dc) U (ed) A (ef) implies O (fa)

.

f) U (6a) U (cb) U (erf) implies U (da)

.

g) V (ba) O (cb) I (erf) implies O (da)

.

4. Criticize the following arguments by determining whether the

sorites is valid or not in each case (where necessary, supply the

missing premises)

:

a) (1) The purpose of life is happiness.

(2) Happiness has as its condition prudence.

(3) Prudence consists in doing one's duty.

(4) Duty is an action which is eminently reasonable.

Therefore, the purpose of life is to do that which is eminently
reasonable.^

b) The purpose of everyone in life is the acquirement of that

which he most desires. Everyone desires pleasure, and what
everyone desires most of all is his own pleasure. Hence the

purpose of each and every one is his own pleasure (The Sorites

of the Egoistic Hedonist)

.

c) The only absolutely good thing is a good will.

The good will is a will which legislates for itself (autonomous
will)

.

The self-legislating will obeys the categorical imperative.

Therefore, the only absolutely good thing is a will which obeys

the categorical imperative (The Sorites of Kantian Ethics)

.

d) That which everyone desires is power. The measure of power
is the measure of one's chances of gaining a certain end. The
increase in power is proportional to the increase in morals, art,

8 The Stoic Sorites.
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and science. Therefore, that which everyone desires is good-

ness, beauty, and truth.

e) No houses are fireproof; no boots are waterproof; but some
fireproof things are not waterproof; hence, some houses are not

boots.

/) No system of government is perfect, but all systems, no matter

how bad, have some good qualities; now anything which is

good at least in part should not be wholly condemned; hence
some imperfect things are not to be wholly condemned.

g) No examinations are conclusive. But, as a matter of fact, all

things in life are inconclusive; it seems plain, though, that ex-

aminations are less conclusive than most things; hence, exami-
nations are not worth while.



Applications of Logic to

Proofs of Theorems

IN
THE previous chapters we have developed the fundamental

laws of the logic of classes and the logic of propositions. We
have also indicated the manner in which the laws of the latter

may be applied to the postulates of the former to derive new
theorems concerning classes. Thus, assuming as a postulate of

the logic of classes the law that "All a is b implies some a is b,"

we may apply the law from the logic of propositions to the effect

that if one proposition implies another, the contradictory of the

second implies the contradictory of the first, and deduce a new
law of the logic of classes: "No a is b implies some a is not b."

In this chapter we show how both branches of logic may be

applied to another science, plane geometry, in the proof of

theorems. This will substantiate what we shall say later regard-

ing the relation between logic and the remaining sciences.

We take Euclid's postulates, previously enumerated (page

12) , and show what theorems may be deduced from these by

logical principles alone. To the five postulates listed, we add

three more, required as assumptions for a strictly formal system

of geometry, though usually omitted in most elementary treat-

ments of the subject. Two of these, the "congruence postulates,"

are usually taken to be theorems in geometry textbooks, but their

proof involves concepts and assumptions not mentioned in the

postulates. For example, take the side-angle-side theorem, to the

effect that if two sides and the included angle of one triangle are

equal respectively to two sides and the included angle of an-

other, then the triangles will be equal in every respect. This is

usually proved by "placing one triangle on another" so that

the equal angles coincide. It is then inferred that the remaining

vertices will coincide and hence the remaining side. Aside from
124
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the fact that the geometrical operation of placing one figure on

another has not been defined or assumed as an indefinable, the

proof assumes that equal angles and equal segments will coin-

cide when placed on one another. It may be noted that Euclid

was doubtful about the congruence theorems, since he avoided

them whenever possible, e.g., in the demonstration that two

angles and a side determine a triangle. To avoid the introduc-

tion of new concepts, we merely postulate the theorems proved

by this method in most treatises on plane geometry: ^

1. Between any two points a straight line can always be drawn.

2. A straight line may be produced in a straight line indefinitely.

3. With any point as center, a circle of any radius may be con-

structed.

4. All right angles are equal.

5. If a straight line cuts two straight lines in such a manner that

the interior angles on the same side are less than two right angles,

the lines will ultimately meet on this side if produced.

6. Two non-coincident straight lines meet in only one point.

7. A triangle is uniquely determined by two sides and the included

angle; or, if two sides and the included angle of one triangle are

equal respectively to two sides and the included angle of another, the

triangles are equal in every respect.

8. A triangle is uniquely determined by its three sides; or, if three

sides of one triangle are equal respectively to three sides of another,

the triangles are equal in every respect.

9. If a straight line cuts one side of a given (bounded) figure com-

posed of straight lines, it either has but one point in common with

the figure, or else cuts another side of the figure (where one line

"cutting another" excludes the possibility of coincidence of the two

lines)

.

In addition to the laws of logic, geometry also assumes arith-

metical laws; that is, the science of geometry applies the concept

of numbers to its elements. Thus we speak of the measure of a

line or angle, meaning that certain numbers are associated with

certain (fixed) angles and line-segments. The properties of num-
bers in general are developed by the science of arithmetic, and

geometry assumes the right to apply these properties in its own
field. Examples of laws commonly assumed are: "If equals be

1 Only the postulates necessary for this discussion are given and these are in-

sufficient for Euclidean plane geometry. For a fuller treatment see D. Hilbert,

Foundations of Geometry.
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added to or subtracted from equals, the results are equal," "If

a is less than h, and c := d, then a — c is less than b — d."

In addition to employing logical and arithmetical laws in prov-

ing its theorems, geometry develops its own "proof-methods."

The constructions that one can make in geometry are examples

of a new method of proof. For example, the proof that the ex-

terior angle (page 177) is greater than either opposite interior

angle requires not only logical and arithmetical notions, but also

the ability to bisect certain lines and produce others. Without

the right to perform such constructions it would not be possible

to deduce this proposition from the postulates alone. The basis

of the construction-method of proof is provided in Postulates

1-3. Our interest here lies in theorems proved by logic alone or

by logic and arithmetic, but significant applications of these two

sciences can be made on theorems proved by the geometrical

method.

Since four of these postulates are in the form of implications,

the logical principle of contradiction and interchange can be

applied to each one. For example, we may deduce

Theorem 1. If two parallel lines are cut by a transversal, then

the sum of the two interior angles on the same side will not be

less than two right angles.

Proof: If p is the proposition "A straight line cuts two straight

lines in such a manner that the interior angles on the same

side are less than two right angles" and q the proposition

"The two lines described by p will meet," then, by Postulate

5, "p implies q" is true. In general, however, if p implies q,

then the contradictory of q implies the contradictory of p, this

being a logical law, valid for all propositions whatsoever.

Hence, from Postulate 5:

"If the two lines do not meet, i.e., (by definition) if they are

parallel, a straight line will not cut these lines so as to make
the interior angles on the same side less than two right an-

gles."

Theorems 2, 3, and 4 will be derived by applying the same logical

principle to Postulates 7-9.

Another logical principle, drawn from the class logic, can be

applied to Postulate 6. This postulate may be rephrased to be-

come a categorical form in A: "All pairs of straight lines are
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lines meeting in only one point at most." The logical Principle

of Contraposition, if A (ah) , then A (fo'a') (page 100) , gives

Theorem 5: Two lines which meet in more than one point can-

. not both be straight.

Direct applications of logical and arithmetical principles are

made in the "indirect proofs" of the theorems in geometry. The
method of indirect proof consists simply in denying the theorem
to be proved and observing the consequences; since the conse-

quences result in a contradiction, the denial of the theorem is

untenable, and hence the truth of the theorem may be asserted.

As has already been pointed out (page 91) , Aristotle used the

indirect method in proving the valid moods of the syllogism,

and his method was substantially the same as that which uses the

Principle of Contradiction and Interchange. There is a peculiar

application of this method in geometry. Suppose that the follow-

ing theorems have been proved:

a) If two angles of a triangle are equal, then the opposite sides,

will be equal. (I.e., if in the triangle ABC, <^ A = -^ B, then AC =
BC).

b) If one angle of a triangle is larger than another, then the side

opposite the former will be larger than the side opposite the latter.

(I.e., if <^ A > <^ B, then AC < BC, or if ^ A < < B, then AC >
BC).

The converse of both a) and b) may now be demonstrated by
the indirect method:

c) If AC > BC, then A > B (converse of b) . For suppose that,

given AC > BC, A > B were false. [Note that in order to deny the

proposition "lip, then q," that is to derive its contradictory, we must
assert the proposition: "p may be true while q is false." (Cf. p. 21)

.]

Now, apply an arithmetical principle: if A > B is false, then either

A = B or A < B. But if A = B, then AC = BC, and this is inconsist-

ent with the hypothesis that AC > BC. Again, if A < B, then AC >
BC, and this is again inconsistent with the hypothesis. Hence, to as-

sume that A > B is false when AC > BC leads to a contradiction,

and A > B must be true under this condition.

d) If AC = BC, then A = B. Employing the arithmetical principle

that if A v^ B, then A < B or B < A, by the indirect method applied
to b) we deduce d)

.
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This method is generalized in order to discover the logical

principles upon which it rests. Suppose that we have three mu-
tually exclusive and all-inclusive propositions p, q, and r, i.e.,

three propositions such that at least one must be true while no
two of them can be true together: the three propositions of

arithmetic a <C b, a = b, and a ";> b, form such a set. Suppose

also that we have another set of the same kind, x, y, and z, and
that we know that p implies x, q implies y, and r implies z. By
means of these suppositions, it is possible to prove the converses

of all these implications. For example, we can show that x im-

plies p by showing that "p is false" implies "x is false." For if p
is false, then either ^ or r is true. But if either 13^ or r is true, then

either y or z will be true; but if either y or zis true, then x can-

not be true. Hence, if p is false, x is false, or, by the Principle of

Contradiction and Interchange, if x is true, p is true. Or, by the

direct method, if x is true, then y and z are both false. But if y
is false, then q is false (since q implies y) and if z is false, then

r is false. Hence, if x is true, both q and r will be false, and hence

p will be true.

The whole procedure here is really a generalization of the

Principle of Contradiction and Interchange. The set of three

mutually exclusive and inclusive propositions is a generalization

of the concept of contradictory propositions which form a set of

two mutually exclusive and inclusive propositions. Also, this

procedure has its counterpart for contradictories. Suppose p and

q are contradictory, i.e., a pair of propositions such that the de-

nial of one implies the assertion of the other. If x and y are also

contradictories, and we know that p implies x and q implies y, we
may easily prove the converses, that x implies p and y implies q,

by means of the Principle of Contradiction and Interchange. For

if p is false, then q is true, and hence y is true, and hence x is

false. Therefore, since p is false implies x is false, x is true will

imply p is true.

Exposition of this method indicates that the mathematician's

dislike of the indirect method is groundless; the value of the

direct method as compared to the indirect seems to rest at best

on a point of elegance.

In many proofs of theorems in a deductive system, there is a

choice in application between a law of the logic of classes of a
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law of the logic of propositions. For example, Euclid's Proposi-

tion 27, "If a straight line falling on two straight lines makes

the alternate angles equal to one another, the straight lines will

be parallel to one another" is a direct logical consequence of

Proposition 16, "In any triangle, the exterior angle is greater

than either of the interior and opposite angles."

This can be shown in two ways. First, the Principle of Con-

tradictions and Interchange may be applied to 16 if we restate

this in a weaker form as an implication: "If two intersecting

lines are cut by a transversal the alternate angles cannot be equal

(i.e., the exterior angle cannot equal and interior and opposite

angle) ." The accompanying figure will clarify this proposition.

The exterior angle DAC cannot

equal its alternate angle BCA.
If we restate 16 thus, then it fol-

lows logically that if two lines

are cut by a transversal so that

the alternate angles are equal,

the two lines do not intersect,

i.e., are parallel, which is Propo-

sition 27.

We may also state our proof as

follows. Let a represent the class of straight lines forming a tri-

angle with a transversal, and b the class of straight lines making

with a transversal unequal alternate angles. Then Proposition 16

states the categorical form "All a is b." By the logical Principle

of Contraposition, we can deduce that all non- b is non- a. "All

lines not making with a transversal unequal alternate angles, i.e.,

all such lines making equal angles, are lines which do not form a

triangle, i.e., are non-intersecting or parallel lines," and this

Proposition 27.

In general, the statement p implies q can be rewritten "All

things which make p true are things which make q true," ^ hence

we may apply either the Principle of Contradiction and Inter-

change or the Principle of Contraposition to deduce a new
theorem. Again, the syllogism Barbara, "If all a is b and all b is

c, then all a is c," is closely allied with the principle of strength-

2 Some logicians do not believe that this transformation can always be made.
Cf. chap. XVII.
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ening and weakening. "I£ p implies q, and q implies r, then p
implies r." (Further analogies between the two branches of logic

are examined in chapter XII.)

EXERCISES

GROUP A

1. Give examples of three mutually inclusive and exclusive proposi-

tions; of four.

2. What may one deduce by means of the method described above

from the following sets of propositions:

a) (1) If we win this game, I'll lose some money.

(2) If we tie the game, I won't win or lose money.

(3) If we lose the game, I'll win some money.

b) If in the triangles ABC and A'B'C, AB = A'B' and BC = B'C,

then:

(1) If ^ B = ^ B', AC = K'a.

(2) If <^ B < ^ B^ AC < A'C.

(3) If -^ B > <^ B', AC > A'C.

c) Let 1, 2, 3, represent the angles of a triangle, and a,b,c be the

respective opposite sides, then:

(1) If 1 = 2 and 2 = 3, then a = & and h = c.

(2) If 1 ^ 2 and 2 = 3, then a^^h 2ind b = c.

(3) If 1 = 2 and 2 v^ 3, then a = 6 and & =5^ c.

(4) If 1 v^ 2 and 2 =7^ 3, then a =7^ 6 and & ^^ c.

3. Suppose p,q, and r are three mutually inclusive and exclusive

propositions, and that x and y are contradictories. Suppose, also,

that p implies x, and q implies x, while r implies y. What theo-

rems can be deduced? Apply the results to the following set:

a) (1) If a>0, thenav^O.

(2) If a < 0, then a =7^ 0.

(3) If a = 0, then a = 0.

b) (1) If two lines are cut by a transversal so that the interior an-

gles on the same side are equal to two right angles, the lines

will not meet on this side.

(2) Similarly, if the interior angles are greater than two rights,

the lines will not meet on this side.
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(3) If the interior angles are less than two rights, the lines will

meet on this side.

4. What theorems may be proved from the following:

If this medicine contains both vitamins A and B, it will cure this

disease, and if it contains A alone, it will cure the disease, but if it

contains B alone or neither A or B it will not cure the disease.



Logic and the Philosophy

of Formol Science

WE ARE now in a position to define the science o£ logic in

a more accurate manner than heretofore and also to show

its relation to the study of formal or deductive systems, i.e., to

the philosophy of formal science.

The science of logic has already been defined by means of its

central problem, that of finding all universal laws about objects

and propositions. This definition is in a sense vague, however,

since it might designate as logical many propositions which cer-

tainly do not belong to the science of logic. For example, the

statement "If a is a cousin of b, then 6 is a cousin of a," really

holds for all objects whatsoever, for even though our a's and b's

may be nouns which, when related by "is the cousin of" yield

nonsense, nevertheless, the entire statement remains true: "//

beauty is the cousin of triangularity, then triangularity is the

cousin of beauty"; that is, one willing to grant the premise, or

a formal system asserting the premise, must also grant the con-

clusion.

To avoid this ambiguity, we must stipulate further what

property the relations of logic must have. Logic is not restricted

to any given set of objects (as arithmetic, for example, is re-

stricted to numbers) but has universal application; hence it is

reasonable to demand that logical relations have universal ap-

plication as well. We may state this requirement more precisely

thus: a relation is said to be a relation of the science of logic if,

when it is applied to any objects whatsoever, the resulting ex-

pression is meaningful. That Aristotle's relation "all is

" has this property seems clear enough. No matter what

nouns we may substitute for the blank spaces in "all is

(are) ," we derive a meaningful statement: "All men are

132
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animals," "All humanity is beauty," "All triangularity is green."

The resulting expression is not always true, of course, and is

sometimes so obviously false as to seem nonsensical, but it is al-

ways possible to assert that the expression is true or is false, such

possibility being a criterion of meaningfulness. When the object

in question is singular, the "all" becomes redundant but not

meaningless: " (all) John is a man." Aristotle's other three re-

lations as well as the two additional ones mentioned [U (ab) and
V (ab) ] have the required property for logical relations as well.

But the arithmetical relation "=", which means "is quantita-

tively identical with," yields a meaningless expression when ap-

plied to objects to which the attribute of quantity cannot be

referred: "triangularity = beauty," "heaven i= heaven." When
"=" means "is identical with in all respects," then "=" is a

logical relationship and is equivalent to the relation "All a is

b and all b is a." We are apt to overlook the equivocal nature of

the symbol "=:".

Thus Euclid's axiom, "Things equal to the same thing are

equal to each other," may be a law of logic or a law of arithmetic,

depending on whether we use the latter or the former meaning
of the relation "=". Again, the geometrical relation "is parallel

to" can only be applied meaningfully to certain geometrical

terms. It is meaningful to say that this line is parallel to that line,

but it is nonsense to say that the number two is parallel to six-

teen.^

This quality of generality required of the relations of the logic

of objects may also be applied to the logic of propositions; thus,

the relations of the latter science must be such that when applied

to any proposition whatsoever the resulting expression is mean-
ingful. For example, "implies" is a logical relationship, since

"p implies q" is always meaningful (though not always true, of

course) no matter what propositions p and q may be. But "de-

clares" is not a logical relationship, for "p declares ^" is mean-

1 Logicians have often criticized Aristotle's logic for its restrictions, arguing,
probably justly, that not all propositions can be expressed in one of the four (or

six) categorical forms; if it was Aristotle's aim to construct universal forms of

propositions, then we might justly say that he failed. But the traditional logic

is not restricted if we employ the definition of logic here suggested, for Aristotle's

categorical forms were relations of logic and his laws of Immediate Inference and
the syllogism, holding as they do for all objects, are perfectly general laws of

logic. (For the justification of this statement in the face of arguments purporting
to show the "breakdown" of traditional logic, cf. chap. XVI.) '\

\
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ingless if p is a proposition. The remaining relations of the logic

of propositions, given in chapter II: "is false," "both and
," "either or ," "is equivalent to," will all be

found to share with "implies" the universal quality required of

logical relations.

The philosophy of formal science attempts to solve the cor-

rect structure of a deductive system; it sets down certain criteria

which all deductive sciences must follow. Every deductive sys-

tem must fulfill five obligations. Each one must:

1. Set down a list of indefinable terms and relations.

2. Define all other terms and relations by means of the indefin-

ables only.

3. Construct a set of propositions which are to be assumed, the

so-called postulates, which contain only the indefinables and the

terms and relations defined.

4. See to it that these postulates are consistent and independent,

i.e., that no postulate contradicts any other, and no postulate follows

from any other as a theorem.

5. Deduce theorems, making use only of the definitions and pos-

tulates explicitly set down.

In the case of rather advanced sciences, such as physics, astron-

omy, or psychology, the necessary indefinables and postulates are

very many in number. Most of these are terms, relations, and

assumptions of other sciences which the given science presup-

poses. For the sake of convenience, the formal sciences may as-

sume implicitly these presuppositions, or make them explicit

under the name of "axioms," so long as the form of the pre-

supposed science is clear. Thus, if a given science presupposes the

laws and terms of geometry, it must make clear whether it as-

sumes Euclidean or non-Euclidean geometry.

If this simplification is to be effective, some scheme or classi-

fication of the sciences is necessary in order to determine just

what sciences a given science may presuppose. Evidently, logic

will be a science which all other sciences will have to presuppose,

since a formal criterion for a science is that it be consistent, i.e.,

logical. In this sense, the logic of propositions seems more funda-

mental than the logic of classes, since the formal system of the

latter makes use of principles of the former. Thus to deduce

"E (ab) implies O (ab) " from "A (ab) implies I (ab) " we as-
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sumed the law of the logic o£ propositions that "If p implies q,

then 'q is false' implies 'p is false.'
"

The science of number apparently comes next,^ i.e., arithme-

tic, for all sciences other than logic seem to presuppose the con-

cept of number and arithmetical laws. Geometry is science pre-

supposing the terms> relations, and assumptions of logic and

arithmetic, as has been shown in chapter VI, but which is pre-

supposed by all the more advanced sciences whose terms are al-

ways related to space in some way. After geometry comes the

science which introduces the concept of "motion" or "time,"

generally known as kinematics. The simplest physical science is

the one which describes the motion of a single particle (or of

groups of particles taken distributively) ,^ and this is called me-

chanics; its fundamental concept seems to be "mass." Physics

may be defined as the science which studies the properties of

groups of particles taken collectively.^ It introduces many new
terms such as "electricity," "magnetism." Astronomy, geology,

and many other sciences are apparently special branches of me-

chanics or physics, since presumably they do not introduce any

terms or make any assumptions other than physical ones. The
unique concept which chemistry introduces is that of "valence";

whether this is a term belonging to physics has not yet been de-

termined. If it is, then chemistry is a part of physics, otherwise

it is not.

There are some, the "mechanists," who claim that the science

of biology must be taken only as a part of physics. The fallacy in

the usual argument purporting to establish this point of view is

discussed in chapter XI. In the light of this discussion, we can

say that it is perfectly consistent for the biologist to insist that

the concept of "life" is not a physical one and that biology intro-

duces nonphysical assumptions, though it does, of course, assume

the' terms and postulates of physics. The science of psychology

clearly presupposes biology and introduces the concept of

"mind." Sociology presupposes the concept of mind, but con-

siders groups of individuals.

2 It is realized, of course, that this classification is not complete; not only are

many of the more advanced sciences missing, but also there may be sciences in-

termediate to two mentioned here; thus the logic of propositional functions (Chap.

XVII) would probably come between the logic of propositions and arithmetic.

3 For precise definitions of these terms, cf. p. 169.
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The following table outlines the suggestions made here:

Science Terms and Relations Introduced

1. Logic of proposi- "implies," "and," "or," "not," "false"

tions

2. Logic of classes "thing," "all—is—," "non-" (all other terms

of the Aristotelian class logic can be defined

in terms of these; cf. p. 103)

3. Arithmetic "number," "is less than," "is equal to quan-

titatively," "is greater than"

4. Geometry "point," "line," "plane," "intersects," etc.

5. Kinematics "time," "motion"

6. Mechanics "mass," or "particles of matter"

7. Physics "groups of particles (taken collectively)
,"

"electricity," "atom"
8. Biology "life," "animal," "plant"

9. Psychology "mind," "intelligence"

10. Sociology "groups of biological individuals" or

"groups of men"

The close relation between the philosophy of formal science

and the science of logic can readily be seen; some have been so

impressed by this relationship that they have identified both

under the name of "deductive logic." The philosophy of formal

science requires logic in the investigation of the formal validity

of any deductive system, since tests for the consistency and inde-

pendence of postulates are purely logical problems. Further, all

formal systems make use of logic in the deduction of their theo-

rems. There naturally arises the problem, which has become one

of the most important as well as the most difficult of modern
logic, as to whether or not the criteria set down by the philosophy

of formal science can be applied to the science of logic itself.

We have already shown that they can in part, since we have for-

malized the traditional logic of classes, but in our formal system

we have presupposed the other branch of logic in proving theo-

rems. In other words, we have assumed such statements as "If

p implies q, then p implies p" and have applied them to our

assumptions. But the problem still remains concerning the whole

of logic. How shall we demand that the postulates of logic be con-

sistent if the concept of consistency depends on our postulates?

Further discussion of this problem, especially with respect to

modern symbolic logic, will be found in chapter XVII.
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Formal sciences, i.e., deductive systems, are essentially hypo-

thetical in character; that is, they are all of the form "If one

grants these propositions we have taken as postulates, then so-

and-so must also be granted." Opposed to every hypothetical

statement is a categorical one: "These propositions are true and
therefore so-and-so follows." Now the problem of the actual

truth and falsity of the postulates does not fall in the scope of

formal science. A given system is "formally true" if its postulates

are consistent and independent, even though no scientist would
recognize them as actually valid. We are thus faced with the

problem: "When can we say that the postulates of a formal

science are actually true (not merely consistent) ?" This prob-

lem, which does not belong to the philosophy of formal science,

forms the fundamental problem of the philosophy of non-formal

science. The problem is discussed in the next chapter, where the

value of formal science for the nonformal scientist is also ex-

plained.





Part II •

Nonformal Science and Logic





Philosophy of Nonformoi Sciences:

Logic and the Problems O
of Scientific Method

IN
THE preceding chapters we have considered the problems of

the philosophy of formal science. Deductive systems, we have

said, set down certain postulates or "demands," and from these

demands, by the aid of logic and the laws of certain other

sciences which the given deductive system presupposes, the

system deduces another set of propositions, the theorems. Just

what sciences a given system may draw upon is determined by

classifying the sciences in such a way that the most basic science

comes first, that is, logic, then arithmetic, geometry, and the

others follow. This scheme has been developed in some detail

already (cf . page 1 36) . Every science may be formalized; for ex-

ample, using the terms of physics we can construct a set of postu-

lates and prove certain theorems from these.^

As far as the philosophy of formal science is concerned, there

is no restriction on our choice of postulates for any science so

long as these are consistent and independent (cf. page 10) . For

example, we might formulate postulates for logic which differ

from those previously given. Any such set of postulates would

constitute a formal science of logic so long as the assumptions

were consistent and independent; that is, the set of propositions

must not deny the Law of Contradiction, for such a set is for-

mally bad. The criteria of formal science comprise the philoso-

phy of formal science.

Since the choice of postulates in a formal system is determined

solely by the criteria of consistency and independence (plus,

1 Cf. chap. XVIII.

141
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perhaps, sufficiency) , a number o£ formal systems for any given

science may occur. For example, in the case of geometry (cf.

page 12) , Euclid's formal science assumed, explicitly or im-

plicitly, a certain set of propositions concerning geometrical

entities. Later history showed that one or more consistent sets

of propositions in geometry could be constructed which con-

tradicted Euclid's assumptions. Similarly, a non-Euclidean arith-

metic, denying certain arithmetical laws, might be constructed.

At this point, the question might be raised as to whether two

formal systems really can contradict one another. For example,

in Euclid's system of plane geometry, it follows that through a

point outside a line, one and only one line can be drawn par-

allel ^ to the given line, while in the formal system of Lobat-

schewsky we apparently have a contrary of this, to the effect that

more than one line can be drawn parallel to the given line (and

hence, because of the continuity of space, an indefinitely large

number can be drawn) ; finally, according to Riemann's ge-

ometry, no parallel lines can be drawn. It might be argued that

these three propositions are not inconsistent with one another,

despite the fact that verbally they sound so, for there may be an

ambiguity in the terms used. Thus, if someone were to assert

that all chairs must have four legs and four legs only, while a

second insisted that some chairs can have less than four legs but

not more, and a third declared that some chairs can have more

than four legs but none can have less, we would merely say that

the argument was futile in that by the term "chair" each means

something different from the other. Hence their statements are

not inconsistent with one another, for they now become "Chairs

as A defined them have four legs and only four legs," "Chairs

as B defined them have at most four legs," etc.

In the same manner, in the three systems of geometry in ques-

tion we might suppose that each means something different

from the rest by the concept "straight line." In fact we can find

certain (curved) lines on surfaces in Euclidean three-dimen-

sional space, called "geodesies," representing the shortest dis-

tance between two points along the surface, which obey all the

properties of lines in Lobatschewskian geometry (in bounded

areas) . Conversely, we can find certain lines on surfaces ' in

Lobatschewskian geometry that have all the properties of Eu-

2 "Parallel" lines are defined as non-intersecting, coplanar, straight lines.
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clid's straight lines. A similar transformation can be found in

Riemann's geometry (e.g., Riemann's geometry of the plane

holds on the surface of a sphere in Euclidean geometry) . We
might feel inclined to say, then, that all three geometries can be

true, since they are all in agreement. Similar transformations

can be made in the case of other sciences; a great many so-called

non-Aristotelian logics can be made consistent with Aristotle's

logic by properly defining the terms. When the given deductive

system is expressed in symbols rather than words, transforma-

tions follow even more readily.

In general, it might be said that if the postulates of a given

formal system are merely definitions, then two contradictory

systems are impossible. Examples of such sets of postulates are

given in chapter XVIII; they are very plentiful in mathematics.

But there is a sense in which formal systems are inconsistent

with one another. If we no longer leave the concept "line" inde-

finable but identify it with some physical object in the world

of experience or experiment, then we cannot employ transforma-

tions from one system to another. So long as our indefinable

words are left undefined, we can show, by suitable definitions

in another system, that two apparently contradictory formal

systems are really not contradictory. But if the indefinable con-

cepts are "tied down" to the physical world, then our various

formal systems become contraries of one another. To just what

physical concept a line corresponds is an extremely difficult

problem to answer, though the answer is not necessarily unique.

Rather than delve into a matter well beyond the scope of this

book, let us suppose that by "straight line" we mean the path of

light in vacuo.^ Then Euclid's proposition states that through a

point outside a beam of light, one and only one coplanar beam
can be passed which will fail to meet the first if produced indef-

initely; Lobatschewsky's geometry asserts that more than one

beam can be passed, Riemann's that none can be. Assuming the

consistency of nature, at most only one of these assertions can be

correct.

3 We cannot define a straight line as a line which "looks straight," since such
intuitive definitions are either too vague or else meaningless for the scientist.

There are difficulties in defining a straight line as the shortest distance between
two (physical) points, since the process of measurement of distances presupposes,

apparently, that we have straight lines; presumably, a physicist cannot measure
the "shortest distance" unless he presupposes a straight measuring rod or the

means of passing from the rulings on a curved measuring rod to a straight one.
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Again, we might take "straight lines" to mean lines of force.

If this is done, significant changes occur in the formulas of

mechanics when the geometries are changed. For example, if

(as in the accompanying figure) a weight of two pounds is hung
from point A of the (weightless) isosceles triangle ABC, and one

pound weights are hung from B and C, then the entire system

will balance in Euclidean geometry if the fulcrum is placed at

the point E, the midpoint of AM, AM being the perpendicular

bisector of CB. But in the geometry of Lobatschewsky, the sys-

tem will not balance if the fulcrum is placed at this point, but

will balance only if the fulcrum is placed at a point E' on AM
which is closer to M than to A. In Riemannian geometry, the

balancing fulcrum will lie nearer to A than to M. Again assum-

ing the consistency of nature, only one of these results may be

true. These remarks may be generalized by stating that if we

have two forces acting on a line, in Euclidean geometry the

magnitude of the resultant will be independent of the distance

apart of the points of application of these forces (in the figure

on the opposite page, the distance b) , while in the other two ge-

ometries the magnitude of the resultant will depend on this dis-

tance.

Similarly, in the case of other sciences, if the indefinables are

identified with physical objects and relations between physical
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objects (objects of experience) , then we may have many formal

systems for a given branch of science only one of which may be

correct.

^

p. p,

Y
R

For example, in ordinary arithmetic addition is assumed to be

"commutative," i.e., "a -\- b = b -^ a" is a true law. But there

are important arithmetics which deny this law in general. So

long as the a and b and "+" of this expression are not identi-

fied with physical objects and operations, a -{- b =z b -]- a can be

made consistent with a-\-by^b-{-a by taking the "+" in the

latter to mean something different from the "+" ^^ the former.

But if fl, b, and "-f " are identified with physical concepts, then

the two laws are inconsistent. Thus if a and b refer to numerical

readings on a yardstick, then a-{-b = b-{-a is 3. true law: if a

table is 3 feet plus 2 feet long, it is also 2 feet plus 3 feet long.

But if a and b represent chemical quantities, and a -]- b repre-

sents the operation of adding a to b, then a -\- b = b -{- a will

not be true in general; for example, adding water to sulphuric

acid does not yield the same result as the operation of adding

sulphuric acid to water (since temperature differences occur) .

But whatever concrete operations we choose for a, b, and "+,"

the laws a + 6 = 6 + a and a -{- b y^ b -{- a are incompatible.

Further examples of "non-Euclidean" arithmetics are given in

chapter XVIII.

In the case of the science of logic, it has not been possible,

apparently, to find contradictory systems. The problem of "al-

ternative" logics is an extremely difficult one. Further mention

of this is made later on. When the systems are expressed sym-

bolically, other problems also arise because of the abstract na-

ture of the symbols (cf. Chapter XVII)

.

It is noteworthy that two formal systems of geometry which
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are not consistent with each other will produce two different

systems of kinematics, mechanics, and physics, etc., since these

sciences all presuppose the science of geometry. That is, the physi-

cist, in stating his laws and proving his theorems, makes use of the

propositions of some geometry, and if one physicist assumes

Euclid's geometry and another the geometry of Riemann, then

despite the fact that they may start with the same postulates for

physics, they will arrive at different theorems.

Hence we come to the concept of many descriptions of nature

as a whole. These descriptions will all be in the form of de-

ductive systems, but the deductive systems are all contradictory

to one another at least in part. A "complete" description of na-

ture would be a deductive system which set down the postulates

for all sciences from logic to sociology (assuming this to be the

last) . Each deductive system would be formally correct in that

its postulates were independent and consistent. But which de-

scription gives a true account of nature itself: which description

is not merely consistent but actually true? An analogy with a

particular instance will illustrate our question. Suppose ten per-

sons are witnesses to an accident. Each gives an account of the

happening, and each one's story is consistent in itself, yet dis-

agrees in some point with all the rest. We may sensibly ask

which account (if any) is the true one? This is no longer a

problem of the philosophy of formal science, for each system is

formally correct; we call the problem one of the philosophy of

nonformal science.

This discussion can be treated in another manner by distin-

guishing between two meanings of the word "true." A given

proposition is "formally" true if it follows as a theorem or is

itself an assumption of a formally correct deductive system.

Thus, the proposition 2 + 5 = 5 + 2 is formally true in one

formal system of arithmetic. In another deductive system of the

same science, i.e., in another system assuming the contraries or

contradictories of the assumptions in the first system, a given

proposition may not be formally true. For example, the propo-

sition "The sum of the angles of a triangle equals two right

angles" is formally true in Euclid's geometry but is not formally

true either in that of Riemann or that of Lobatschewsky. The
determination as to whether a given proposition is formally true

depends on showing that it follows from a given set of consistent
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assumptions. Formal truth is always hypothetical and is relative

to the assumptions made: if these assumptions be true, then so

and so is true.

On the other hand, a certain proposition is said to be "non-

formally true" if it is "actually" true, i.e., true, not relative to

other assumptions, but independently so. The proposition "All

living men will sometime die" is true, not because it follows

from certain assumptions arbitrarily made, but because it has

been verified (by experience)

.

In a similar manner, a proposition is "formally false" if it is

inconsistent with the assumptions of a deductive system, while

it is "nonformally false" if its falsity has been actually estab-

lished. Thus "The earth is round" is formally false in a formal

system of astronomy which assumes the earth to be flat, but it

is not nonformally or "materially" false.

Just as the philosophy of formal science attempts to answer

the problem: "When can we say that a given proposition is for-

mally true?" so the philosophy of nonformal science has as its

problem: "When can we say that a given proposition is non-

formally (actually) true?"

It may be seen readily that the nature of the problem at hand
implies that it is one of method. What we are really asking is

"How shall we go about determining which description of Na-
ture is the actually true one, or how shall we go about determin-

ing whether this proposition is nonformally true?"

Historically, the answer to this problem has not been uniform.

Four well-known solutions have been offered under the names
of dogmatism^ intuitionism, rationalism, empiricism. The dog-

matist asserts that the correct method of determining the

truth (at least in some cases) is to appeal to some external au-

thority, written or verbal; the intuitionist asserts that some
truths, at least, may be discovered through an inner intuition of

their validity; the rationalist asserts that some truths (the abso-

lutely certain ones) may be found simply by employing correctly

the laws of reasoning (presumably, the laws of logic) ; the

empiricist asserts that all truths are to be determined by the

method of experience, i.e., by the use of the senses.

The method of dogmatism is not uniform. Appeals to au-

thority beyond the investigator may take the form of ( 1
) appeals

to statements believed to be divinely inspired; (2) appeals to



148 ELEMENTS OF LOGIC

ancient or established authority, or (3) appeals to authority

recognized by all or the majority of people. Illustrations of dog-

matism of the first sort can be found in most religions; the va-

lidity of the Ten Commandments, which set down a code of

morals, is sometimes made to rest on the fact that they were

revealed to Moses on the mount. The famous Mohammedan
dilemma, reported to have been the motive for the destruction

by fire of the books in the library at Alexandria, is another ex-

ample: "If a given book states the truth, it is superfluous, since

the truth is already contained in the Koran; if it states a false-

hood, it is perditions; therefore, all books other than the Koran

are either superfluous or pernicious."

It may seem that examples of appeals to ancient or modern
authorities generally recognized are much rarer today than in

the darker period of medieval times, but such is hardly the case.

Our belief in the validity of most social customs and manners,

our credulity regarding newspaper and magazine articles and

editorials, are all appeals to authority of some sort.

The weaknesses of the dogmatic method rest on the lack of

criterion concerning the correct authority. If we are to appeal

to authority, we must have some method of choosing the correct

one. However, this method cannot itself be dogmatic; that is,

we do not accept someone as an authority simply because he says

so. But if some other method is employed, then this is more

basic than dogmatism, which has consequently lost its claim to

being the basic criterion of truth. In the case of many religions,

dogmatism is sustained by another method: for example, it is

argued that miracles have been observed to be performed by

the authority in question, and here the method of experience is

employed.

The school of intuitionism has had so many adherents in so

many different fields that it is impossible to give it any historical

date. There were certain English moralists of the seventeenth

and eighteenth centuries * who insisted that the laws of ethics

are intuitively known to us, so that we need only ask ourselves

whether this act is morally correct and we receive the answer di-

rectly from within. Another form of intuitionism was prevalent

among certain philosophers and scientists of the nineteenth cen-

tury (Spencer and Whewell in particular) . These men asserted

^ Clarke, Cudworth and others.
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that certain propositions are true if they are "obvious," or, per-

haps more precisely, if we cannot conceive them to be false. For

most of these thinkers, 2 + 2 = 4 was such a proposition; the

laws of Euclidean geometry and, in some cases, the laws of

Newtonian mechanics, are other examples.

The principal difficulty of intuitionism lies in the ambiguity

of its method of determining truth. We are asked to determine

whether we can conceive the contradictory of the given proposi-

tion to be true. This seems to be a test of our imaginations. A
child living in the tropics probably can't conceive of such a thing

as frozen water, but we should hardly infer from this that no
water is ever frozen. What has seemed inconceivable in one gen-

eration is very often an accepted fact in the next. Thus, for

most nineteenth century physicists, it was inconceivable that

Newton's mechanics should break down, but most physicists of

today recognize that it is not universally valid.

The school of rationalism in modern times began with Ren^
Descartes (1596-1650) . Descartes set out to find propositions

which lay beyond the realm of any doubt. He thought that he
had discovered two such propositions, and that these were true

solely on the grounds of logical laws, so that anyone denying

them necessarily contradicted himself. This was so, despite the

fact that the propositions themselves were not laws of logic. The
two statements were: "I exist" and "God exists." I cannot doubt
that I exist without affirming the fact that I doubt and therefore

that I exist; that is, the proposition "I exist" is necessarily true

since its denial implies its affirmation. Again, God must exist,

for by definition God contains all the attributes, and existence

is an attribute.^ Thus Descartes offered a method for determin-

ing some truths but, of course, not all, since he recognized that

we distinguish a great deal by our senses. But these truths which
we do derive from our reason are indubitable, a quality not be-

longing to any other propositions.

A critique of Descartes' arguments shows that they fail to ac-

complish their purpose. It is by no logical law that we pass di-

rectly from "I doubt" to "I exist"; that is, granting that "I

doubt" is true, we cannot immediately infer that "I exist." Here

s Both of these proofs are medieval in origin; the former is due to St. Augus-
tine, the latter to St. Anselm. These men were not pure rationalists, however,
since they did find other criteria for indubitable truth.
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there are three terms: "I," "doubting thing," and "existent

thing," and no vaHd mood of Immediate Inference can be con-

structed from three terms. The argument is really a syllogism

with one premise missing. The missing premise might be "All

doubting things are existent things." But this proposition cannot

be proved by logical laws; hence, the conclusion "I exist," does

not follow from purely logical propositions.^ Even the proposi-

tion "I doubt" is not a logical necessity, for the word "I" is am-

biguous. How can I be sure that this "I" which doubts is the

same as the one doubting the doubt, unless it be assumed that

the ego is an indivisible unit?

Concerning the proof for the existence of God, we need only

point out that the proposition that existence is an attribute,

however true it may be, is not a law of logic, and hence the re-

sult, "God exists" is not proved by the principles of logic alone.

With the failure of intuitionism and rationalism in supply-

ing us with adequate answers to the problem of nonformal

science, we turn to the last alternative mentioned, empiricism.

Empiricism has had the widest acceptance among philosophers,

but principally because of the vagueness of its fundamental

tenet. The statement that all knowledge is derived from ex-

perience has been interpreted in many ways, depending on how
one felt inclined to take the terms "derived" and "experience."

The medieval philosopher, Roger Bacon, for example, is often

heralded as being far ahead of his times in his insistence on the

truth of the empirical postulate. But one of the meanings which

Bacon gives to experience is "an inner reading of the soul,"

something quite close to intuition.

To make the empirical position more exact, we define it as

that answer to the nonformal problem which states that the only

method of arriving at truth is a method employing sensory ex-

perience.

This was the position taken by the English philosopher, John

Locke (1632-1704) , who declared that all knowledge arises from

certain "immediate experiences"; by compounding and relating

the impressions made on us by our senses, and later by "abstract-

6 To defend Descartes, many have argued that this minor premise must be true

since it is "clear and self-evident"; but such giounds for accepting this proposi-

tion would return us to the intuitionist method, explained above. On the grounds

of rationalism alone, the minor premise ought to be a logical law, which it is not.
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ing," we arrive at all our ideas, even the least concrete of them,

as, for example, the idea of beauty or the idea of the soul. All

facts and laws go back to these immediate gifts of our senses.

Philosophers following Locke found several objections to his

theory:

(1) "If all we know is the impressions of our senses," said

Bishop Berkeley (1685-1753) , "then in answer to the question

whether there exists an objective world ('reality') outside the

mind we must reply in the negative, since a world apart from
perception is absolutely meaningless for us."

(2) "If all universal propositions about nature are dependent
for their verification on particular experiences," said David
Hume (1711-1776) , "then we must say that we can never be
absolutely certain whether any universal law of nature is alto-

gether true. For example, the law that every event must have

a cause is a law that cannot be certain for us since even in the

entire history of the human race it has only been shown to hold
a finite number of times."

(3) "To say that we begin with certain immediate experi-

ences and with these alone," said Immanuel Kant (1724-1804)

,

"is to say that we have never experienced anything; for in order

that an experience mean anything to us, it must first be indi-

viduated, then come under certain 'logical' relations which give

it meaning. Hence, the mind has a certain equipment which
allows it to experience and this equipment is necessarily prior

to experience."

(4) "Not only is it erroneous to say that we can have certain

knowledge of the universal laws of nature, but also our knowl-
edge of the facts from which we build these laws is likewise un-
certain," says the experimental scientist.

Solutions to these objections, all but the first of which are

generally recognized as valid, are best made in the reverse order.

Regarding the fourth, we observe that its claims are especially

true of our everyday, "uncontrolled" experience. Our senses

continually play tricks on us, and we often do not (and fre-

quently cannot) bother to be sure that the experience we are

having is reliable. The weaknesses of our usual observations are

best seen in the illustration given of the various accounts which
a group of persons will present regarding an auto accident, each
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apparently convinced that his story is the true one. They can-

not all be true, yet each statement is presumably based on the

experiences of the speaker; hence some experiences do not form

a basis for determining truth.

If this point of view be true, and there can be little doubt that

it is, then we must rephrase the empirical answer as follows:

"Only those experiences which are somehow controlled in order

to keep at a minimum the individual idiosyncracies and preju-

dices of the observer are of any value in determining scientific

truth." Since the term "experiment" is used to designate con-

trolled laboratory experience as opposed to uncontrolled, every-

day experience, the empirical postulate becomes: "Experiment

supplies the method of determining what descriptions of nature

are closest to the truth." Our problem now becomes one of

analyzing the method of experiment.

Even though we exclude vague experiences in our method,

we are still forced to acknowledge that the facts of experiment

are not fixed and certain. He who is measuring the length of a

certain object in the laboratory does not expect to arrive at one

answer, even though he recognizes that to a question concerning

a given length at a given time there can be but one answer.

Rather, the experimenter makes a number of tries at measuring,

and each try gives him a certain "reading." Not all these readings

agree; indeed, if they do, the experimenter is bound to regard

them as worthless, realizing that he has not made his readings

fine enough.

The problem which then arises is one of determining the most

accurate reading. The experimenter might be inclined to take

the average (or "arithmetical mean") of his readings and to re-

gard that as his final answer. But this would be unsatisfactory

since another set of readings would probably yield another av-

erage, and the experimenter would be at a loss as to which to

choose. The Theory of Least Squares has as its object the answer

to this question; a reading suggestion is appended at the end of

the chapter. For the present, we merely note that the experi-

menter takes as the measurement of a given object some quan-

tity lying within a certain range of values. For example, he may
say that the length of this rod is to be taken as six centimeters,

plus or minus a "probable error" of five millimeters. Hence

every experimental fact has a range of error.
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Stated more precisely, the experimenter is faced with some
such problem as the following: "What is the distance from the

point marking the center of gravity of the Earth to the center of

gravity of Mars on the first of January, 1940?" He recognizes

that in reality the answer to this question must be "single-

valued," i.e., he cannot say that at one and the same moment
the two points were at more than one distance apart. The as-

sumptions upon which the experimental method proceeds, how-
ever, make it impossible for the experimenter to arrive at a

single-valued answer in any finite number of readings. If, after

measuring the required distance ten times, he finds that all his

readings agree up to the third decimal place, then he has merely
failed to carry out his readings to enough places, and he must
make readings to the fourth, fifth, or sixth places. Since, in a

given set of readings, certain ones will be different from others,

these differences must be taken into account if the readings all

have the same value. This is done in the Theory of Least

Squares; as a result, there is a certain "range" within which the

distance measured is to be taken. In the case of the rod men-
tioned, the range is from 5.5 to 6.5 centimeters; the length of the

object measured is to be taken as falling somewhere within this

range. The range, according to the theory, must be reduced as

the number of readings increases, so that if the range is 5.5 to

6.5 centimeters after the first twenty readings, it must be re-

duced to approximately one half (say) at the end of the next
eighty,^ i.e., it must be reduced to 5.75 to 6.25. If this fails to

happen, some "systematic" error in measurement has occurred;

e.g., the measurer has failed to take into account changes due
to temperature, atmospheric pressure, and other important fac-

tors.*

It might appear that, though such facts as the actual length of

the table can never be determined without some error, there are

nevertheless, certain facts which do enjoy unqualified certainty.

An example of such a fact would be the proposition "I am now
seeing brown" or "I am now having a pain." Apparently, no one
can question the truth or falsity of this judgment; I cannot my-

'^If - represents the approximate reduction in the probable error, then this

should take place when the readings have been increased n2-fold.
* This account relates only one type of measurement; in its essentials it applies

to all types of measurement, though these may differ in detail quite widely.
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self be deceived on the matter, and no one else can ever de-

termine its truth or falsity: I cannot be deceived on this ques-

tion, for, though the object itself may not actually be brown, if

brown is the color I think I perceive, there cannot be any ques-

tion as to whether I do or do not see brown: if I think I see

brown, I must be perceiving it; further, no one else but myself

can determine anything regarding the matter, since this fact is

strictly a private one. But the history of philosophy has shown

the weakness of this point of view. The following are some of

the objections which have been raised.^ (1) The meaning usu-

ally given to an "immediate experience" is very vague; indeed,

by the very nature of the case, no definition can be given, since

such a defining makes the "immediacy" mediate; but if no defi-

nition of the concept can be given, then for the experimenter it

can have no meaning, since no method can be devised for test-

ing the truth or error of anything said about it. (2) It is not

true that everyone is the best judge of his own mind; the lover

who denies his love may be convinced that he does not really

love, but we who observe him know that in his "heart of hearts"

he really does. Hence not even these "private facts" about the

impressions of our own mind are free from error.

The experimental method must also recognize the validity

of Kant's objection. It is true that no experimenter would think

of starting his laboratory work without certain instruments; the

principles by which these instruments work are therefore pre-

supposed by the experimenter as valid. Not all these "instru-

ments" are physical; in any laboratory experiment the principles

of arithmetic or mathematics in general are always presupposed.

For example, in any reading of the measurement of an object,

we assume a definite arithmetical law. If the rule reads 58.7

centimeters at one extremity of the object and 63.9 centimeters

at the other, we assume that the required reading is 5.2 centi-

meters, since the arithmetical law 63.9 — 58.7 = 5.2 is presup-

posed. Further, the experimenter must assume certain geometri-

cal laws; at the very least, he must assume enough geometry to

allow him to give a position (relative to the chosen coordinate

system) to the object measured. Otherwise he would be without

means of assuring himself that the measurements which yield

8 For fuller explanation, see E. A. Singer, Jr., Mind as Behavior,



PHILOSOPHY OF NONFORMAL SCIENCE 155

him his probable error had all been made of the same individual

object.

The fact that all experimentation makes certain presupposi-

tions is especially important from our point of view, since it is

also the case that the experimenter assumes the laws of logic in

any experiment. Thus he assumes that if one of his readings is

5.2 centimeters, it cannot also be 5.4 centimeters ("A proposi-

tion and one of its contraries cannot both be true.") . Again, he

assumes that if all his readings in measuring a certain object on

one day fall in a certain range (say from 5.8 to 6.3) and all his

readings on the next day fall in an entirely different range (say

6.5 to 6.9) , either he cannot be measuring the same object, or

else the given object must have changed somehow. (If the true

length of A belongs in the range 5.8 to 6.3 and the true length

of B to the range 6.5 to 6.9 and the two ranges have nothing in

common, then the true length of A and the true length of B are

different, i.e., A and B are not the same in all respects: this is

the logical law, in the form of a sorites: A (ab) A (cd) E (db)

implies E (ac) .)

The question which now seems inevitable is: granted that the

experimenter must assume the laws of logic, arithmetic, and ge-

ometry, before he can perform his experiment, then must it not

follow that these laws, since they cannot be experimentally veri-

fied, are unconditionally true? Such a result would be unsatis-

factory, since this would leave the question of certain truths for-

ever undetermined; for if someone should assume another logic,

or another arithmetic, or another geometry, we could not prove

that he was in error, since our proofs would depend on a set of

presuppositions which he would not recognize as valid. But this

inference is bad. It does not follow that if we assume certain

laws before experimenting, this experiment may not show the

laws to be wrong.

Suppose an astronomer wishes to discover the laws governing

the motion of the earth about the sun; to discover this, he meas-

ures the distance from the earth to the sun at certain points of

time; but we have said that he must make a number of measure-

ments in determining any given distance. These measurements
cannot all be made at the same time, and since the given distance

does not remain constant, he must have some law which will

tell him how the distance varies, in order that he may have a
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certain number of readings for any given distance. But this law

is exactly the one he is searching for. Actually, what the experi-

menter may do is to discover whether, on the presupposition of

a certain law, as the number of readings increases, the range

within which the distance measured is to be taken decreases. If

the range does not decrease, then some new law must be tried.

That is, even though he may presuppose a given law in his ex-

periment, the experimenter may be led to reject the law because

the range does not decrease with the increase in the number of

readings.

Some of the laws of Euclidean geometry and the laws of classi-

cal kinematics have been rejected in recent years because, when
they are presupposed in experimental procedure, they lead to

certain contradictions. The manner in which this occurs in the

case of kinematics is described in chapter XL
The procedure in general is analogous to the "indirect proof"

used in formal systems; a given theorem is often proved by as-

suming its contradictory to be true and then proceeding on the

basis of this to show that a contradiction results.

From the point of view of this text, we are chiefly interested

in the question whether logical laws may change or whether all

logic must be immutable. The argument purporting to prove

the latter view runs somewhat like this: "All logic depends on
the Law of Contradiction, which states (in one of its forms) that

no proposition can be both true and false at the same time; it is

impossible to deny this law, for in effect it constitutes the defini-

tion of the word 'false'; that is, if one asserts that a certain propo-

sition is both true and false, he does not mean the same thing by
the term 'false' as most scientists and logicians do." The so-called

"non-Aristotelian" logics are Aristotelian logics wearing a false

mustache.

Whatever may be the other merits of this argument, it is

erroneous in one point, namely, that all logic depends on the

Law of Contradiction. No one so far has been able to deduce the

whole of logic from this principle, and, indeed, it has been estab-

lished within a fair degree of certainty that the task is an im-

possible one. For example, the law of the logic of propositions

which allows us to convert the premises of an argument ("If

p and q imply r, then q and p imply r") is independent of the

Law of Contradiction. Further, there are many disputes among
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present day logicians which are independent of the validity or

invalidity of the Law. The theory of types explained below

(page 200) is not recognized as valid by all logicians, and those

who do accept it are not in total agreement regarding all its

principles; but this theory is essentially a logical one and sets

down certain logical laws. Another point of dispute is concerned

with the statements "A false proposition implies any proposi-

tion" and "A true proposition is implied by any proposition."

These are recognized as valid laws by some logicians and by

others are rejected as false. One may accept or reject them, how-

ever, without denying the Law of Contradiction.

One important modification of the science of logic which has

occurred during the past century was caused by a conflict or dif-

ficulty in logical theory. This modification took the form of the

introduction of the concept of the "universe of discourse" (cf.

page 98) . One way in which this new concept solves an ancient

difficulty is explained on page 230.

The foregoing discussion leads us to the second question,

asked by David Hume: on the basis of the experimental method,

can we ever say that we have obtained a law of science about

which there can be no doubt? Hume's contention that we can

never arrive at absolute certainty regarding any law might be

called the kernel of modern experimental philosophy. The con-

tention is certainly a sound one, for if it is true that scientific

"fact" cannot be given without some degree of error, then cer-

tainly scientific law has no claim to unquestionableness.

The history of the sciences has borne out this contention;

probably nothing has ever seemed so certain to the scientist as

did Newton's mechanics to the physicist of the nineteenth cen-

tury. For him future experimentation could only bring more

confirmation of the basic Newtonian principles. Yet the turn of

the century brought a revolution from which emerged the more
or less generally recognized fact that the older, classical mechan-

ics is only true in a restricted sense. Similar revolutions in other

sciences are well known: the doubt and for the most part the

rejection of the ancient principles of biology during Darwin's

time; the complete rejection in chemistry of the theory of com-

bustion on the principle of phlogiston, i.e., the explanation of

combustion by means of a separate, material element; the con-
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stant revision of theories concerning the nature o£ the atom;

the rejection of the Ptolemaic theory of the solar system; and a

great many other such principles.

Must we say, then, that the scientist's hopes are futile ones,

that we can never answer those riddles which nature continually

poses?

The answer which saves science from such a tragic end was
long ago given by the Greek sceptic, Carneades (214-129, b. c.) .

The Sceptic School, flourishing as it did during an age of ex-

tremely contrary doctrines, urged the thesis that man can never

attain to the truth about anything. The absolute sceptic, believ-

ing that there was no criterion of truth at all, asserted that as far

as man was concerned, the true and the false were absolutely in-

distinguishable. Carneades, however, was a more conservative

sceptic and asserted that while it is true that we can never say

with certainty that a given proposition is true, we can say that

one proposition is more likely to be true than another, or that

one proposition has a greater degree of probability than another.

Thus science's end is not a futile one; the object of the scientist's

labors is to increase the probability of his laws. His goal is an
ideal one, since science never reaches absolute certainty, but his

goal is meaningful, nevertheless, since science can always ap-

proach it. By successive experiments we increase the probability

of a given law's being true, even though the possibility of its

being false always remains. Unattainable ends are not necessarily

futile ones if they are approachable; indeed, it is characteristic

of humanity that it soon wearies of attainable goals. The scien-

tist's task, although too gigantic for completion in any finite

time, is for all this and perhaps on account of this, a task no
scientist would dream of relinquishing.

Carneades' answer, however, is hardly precise. What shall we
mean when we say that one proposition has a greater degree of

probability than another? The statement "This proposition is

more probable than not" is usually meant quite ambiguously.

There is a branch of mathematics called the "Theory of Prob-

ability" which considers the term "probable" in a quantitative

sense. An example of the type of problem solved by this theory

would be: "What is the probability that in ten throws of a coin

heads will appear each time, where it is equally likely that heads

or tails will appear on any throw?" If we have an "ideal" coin
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(i.e., a coin as likely to fall one way as another) a definite frac-

tion can be assigned to the proposition "Heads will appear in

each throw." (The fraction here is 1/(2)^**, or there is one chance

in 1024.)

But it follows from the previous discussion that the mathe-

matical theory of probability cannot be applied to scientific

propositions, for this theory presupposes that we are given a

series of events all of which are equally likely to occur. In the

coin-tossing example, the chances that the coin will fall heads

on any throw were equal to the chances that it would fall tails,

and it is certain that it will fall either heads or tails; i.e., the

probability that heads will appear in the first throw is i/^. In two
throws there are four things that can happen, any one of which
is equally likely to occur: we could have two heads, or heads

then tails, or tails then heads, or two tails; hence the chances of

heads appearing twice is l^. In ten throws, 1024 permutations

are possible.

But it would be impossible to find such an ideal coin by the

very nature of the experimental method, for the construction

of such a coin would depend (among other things) on certain

measurements, and such measurements would be open to the

inevitable error attached to all experimental procedure. It is

true that in most games of chance the gambler makes use of

the mathematical theory, since the possible "deviations from
the ideal" are not sufficiently apparent or significant to worry
him. In many games, for example in cards, there operates a

"Principle of Sufficient Ignorance"; since the laws governing
the distribution of the cards in a shuffle are completely un-
known, we can consider that any permutation is as likely to

occur as any other. But though this procedure is adequate for

the gamester, it hardly suffices for the scientist whose aim is

above all things precision.

There are other, and perhaps more practical, cases where a

given fraction is attached to a certain proposition, which pur-

ports to represent its probability. One may ask "What are the

chances that a man of thirty today will live to be sixty?" and
the answer is an important one for insurance companies. The
manner in which this fraction is determined depends on sta-

tistics; by comparing figures of survivals and nonsurvivals in the
past, a table is constructed for future use. That this method has
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little in common with the theory of mathematical probability

is clear enough. That it lacks precision perhaps also is clear. The
probability assigned is not one which is established beyond any

error; indeed, actuarial tables are constantly being changed.

Further, the actual data which go to make up the tables are open

to error.

Whatever may be the difficulties involved in assigning a defi-

nite fraction to represent the probability of certain scientific

laws, it seems that in many cases such an assignment is impos-

sible. Suppose, for example, that we are endeavoring to discover

the acceleration of a body as it falls freely. According to the old

"inductive logic," the scientist discovers that one second from

the start the velocity is 32 feet per second, two seconds from the

start the velocity is 64 feet per second, after three seconds it

is 96 feet per second, and so on. He then tries another body and

discovers that the same "facts" hold; after a sufficient number of

experiments, he "induces" the proposition that the acceleration

is 32 feet per second per second.

But this description is inaccurate. The experimenter does not

arrive at the "fact" that the body's velocity is 32 feet per second

after the first second; rather, he obtains a reading which involves

a certain probable error; that is, his readings "range" from, say,

31.7 to 32.2 feet. Similarly, each of his remaining readings in-

volve a certain probable error. Since there is always a "range"

for any given point of time, the scientist has a choice of laws, all

of which will conform to his discoveries. The proposition that

the acceleration is 32.001 feet per second might also fit the facts,

or he might "induce" that the acceleration was not constant but

was increasing or decreasing. We cannot say that there is more
probability that the one law is correct than the other unless we
introduce certain other, non-quantitative criteria.

This result applies even more forcibly to those laws of science

which are presupposed by the experimenter. It is difficult to see

how one might assign a certain degree of probability to the laws

of logic, say. The laws of presupposed science become "less

probably true" for the scientist when they lead to certain con-

flicts with other laws or with experimental procedure; but it

does not seem possible to make some such statement as "The
chances that Euclid's Fifth Postulate will lead to difficulties is
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But one may say, that the proposition "The earth goes around

the sun" has a greater degree o£ probability than its contradic-

tory, even though a definite fraction cannot be assigned to rep-

resent this probability. The basis for this assertion would depend

on certain criteria. In the history of the philosophy of science

several such criteria have been mentioned: (1) If the supposi-

tion of a certain law leads to a "simplification" of a given science,

then this law has a greater degree of probability than another

which makes the science more complex (e.g., the supposition

that the earth goes around the sun leads to much simpler laws

than the supposition that the sun goes around the earth) ; such

a criterion demands a more exact definition of the term "sim-

plification"; (2) If the supposition of a certain law explains

more phenomena than another law, the former is more prob-

able.^** The terms in this proposition, again, are in need of a

more precise definition.

In general, present solutions of the problems relating to prob-

ability as applied to scientific method are at best tentative. There

is an obvious need for more thorough research in this field, a

research that cannot be carried on by the philosopher or the

scientist alone, but requires the cooperation of both; the former

has behind him the history of attempts to answer the epistemo-

logical problem and the resulting failures. Hence the philoso-

pher is aware of the difficulties involved, while the scientist is

conscious of the obstacles which must be met in the application

of any theory of experimental method. Books on the philosophy

of science written by "pure" philosophers show an ignorance of

laboratory practice, while books written by the scientist display

an ignorance of the history of the failures of the theories they

propose. It is not too much to say that a better solution of the

problem of probability as applied to scientific method is fun-

damental to every line of research, be it in logic, or physics, or

morals, or sociology.

We have finally to consider Berkeley's argument, which really

is concerned with the value of scientific research. If it is true,

and it seems to be so by the very nature of the case, that science

is concerned only with the relation between experimental ob-

jects, i.e., sensory objects of a certain type, then what guarantee

10 This was Newton's criterion in his Principia.
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have we that these experiences correspond at all with reality as

it exists apart from the mind? As Berkeley claimed, not only

must we fail (on the basis of the empirical method) in showing

a correspondence between sensory data and reality, since such

a demonstration for the empiricist can only take place through

the senses and the nature of the problem excludes this method,

but also the very concept of a reality unrelated to experience is

meaningless.

If we leave problems of "ultimate reality" to the imaginations

of the metaphysicians, we can adequately define scientific reality

in such a manner that the method of science, i.e., the experi-

mental method, becomes valuable, for we may say that the

"scientifically real" length of this table at a certain moment of

time is that reading whose probable error is zero. By the very

nature of the method, probable error cannot be eliminated com-

pletely in any finite number of readings; hence, the real length

of the table will be reached only after an infinite number of

experiments; it is, therefore, a "limiting concept," ever ap-

proachable by the scientist but never attainable. Reality in gen-

eral represents the answers to all scientific problems, answers

which at any finite stage are never certainties. Hence reality "lies

beyond" experiment, but depends on experiment. Thus we
would answer Berkeley's argument by asserting that my experi-

ence or my experiment at this moment is not the "real." The
true answer to the question, "What are the real properties of

the world at this moment?" can be answered only by an infinite

number of experiments. Such an answer, then, is never attain-

able, so that no "finite" experiment gives the real, but each

finite (significant) experiment allows us to approach it.
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Falloaes

THE STUDY o£ fallacious reasoning has been regarded tradi-

tionally as a part of the science of logic. Aristotle, founder

of the science, classified ^ the many ways in which the mind falls

into error. These classifications have remained practically un-

changed for more than two thousand years, despite the fact that

they are probably not the best that could have been devised, for

they overlap, are often vague, and do not exhaust all possibilities.

For purposes of clarity, we have arbitrarily divided these slips

of the mind into two classes; one, which, following tradition, we
label "fallacies," comprises errors in reasoning that are more or

less easily detected and placed under some given classification;

the other, called "paradoxes," is a class of arguments that have

caused serious difficulty for scientists and philosophers through-

out the ages. Paradoxes are, of course, errors in reasoning as well

as fallacies, but the difficulty has been to show wherein their

error lies.

It might appear that the only fallacies which the science of

logic considers are those fallacious arguments that assume a cer-

tain proposition of logic to be true when in reality it is false.

Thus, were I to argue that since some men are reasonable, all

men must be, I would argue fallaciously in the logical sense, for

I would assume implicitly the validity of the proposition: "If

some a's are b's, then all as are b's."

Most of the traditional fallacies do not arise because of errors

in the laws of reasoning, but rather because of extra-logical mis-

takes. Those fallacies which are purely logical we already have

considered in their context, e.g., the Fallacies of Asserting the

Consequent and Denying the Antecedent (pages 32-34) . The
following argument, however, would be classed as a fallacy also:

"Lincoln was right; right is opposed to left; therefore, Lincoln

1 Principally in his De Sophisticis Elenchis.
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was opposed to left." No law of logic has been directly violated

here; provided the term "right" means the same thing in both

premises, the syllogism is valid. The argument is fallacious be-

cause it assumes that "right" has the same meaning in both

sentences; yet the fact that it does not is no logical truth, but de-

pends on the assumptions of some other science. Consequently,

the error is extra-logical. The older logicians, indeed, reduced

the fallacy to a logical one by insisting that the argument made
use of a "four-term" syllogism: "If all a's are b's, and all c's are

d's, then all a's are d's," which is clearly an invalid proposition

of logic. But that the argument in question actually contains four

terms, and not just three, can only be shown by showing that

there exist two meanings of the word "right," and hence basically

the fallacy is extra-logical.

However, there is some justification for including the study of

fallacies in the study of logic, for they illustrate the extreme diffi-

culty in the application of general laws. The knowledge of the

laws of reasoning does not necessarily make us good reasoners;

the correct application of the syllogism requires a great deal

more than the formulation of the formal laws of syllogistic rea-

soning, as the examples later in this chapter will show.

Before we classify the fallacies, it is worth noticing the close

relation between the types of fallacies and the types of humor.
This relationship is rather natural, since the basis of humor is

incongruity and the most obvious slips of the mind are in-

congruous to the observer. It will be convenient to illustrate

some of the fallacies by means of jokes, though the jokes are

not, of course, fallacies.

Equivocation

The Fallacy of Equivocation,^ probably the most common
type of fallacious argument, occurs when a single term is used

in an ambiguous manner. The validity of the logical law to

which the one arguing presumably appeals rests on the fact that

a certain term used in two or more premises is the same,

whereas in reality it is not. For example, an ancient case of

verbal quibbling, mentioned so disparagingly by Seneca, runs:

"Mouse is a syllable, and a mouse eats cheese; therefore some

2 From the Latin "aequivocari" meaning "to have the same sound."
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syllables eat cheese." ^ The law of logic here involved is the

valid mood of the syllogism Darapti, "If all & is a and all b is c,

then some c is a," which has been incorrectly applied: the term

"mouse" is not the same in the two premises, however identical

the two uses may appear to the ear or eye.

Terms which have more than one meaning are called equivo-

cal; the correlative of equivocal is univocal, which indicates

that the given term is used in only one sense.

The term "nothing" in English is equivocal, and fallacies of

this sort frequently are committed as a result. Thus (ap-

parently) an apple is better than heaven, since an apple is

better than nothing, and nothing is better than heaven ("is

better than" being a transitive relation) . Another and more
ingenious equivocation on the same term is involved in the solu-

tion of Lewis Carroll's problem: "It is required to distribute

twenty-four pigs in four pens placed in a circle, so that as one

goes around, each pen he comes to will have the number of

its pigs nearer ten than the preceding." This problem would

be easy if the traveler was supposed to stop at the end of one

round, but the stipulation is that he may begin where he

pleases and keep going around forever.

Plato, in his dialogues, enjoyed making fun of those Sophists

who delighted in word-quibbling. The follov/ing anecdote from

the Euthydemus illustrates the manner in which these travel-

ing teachers made use of the fallacy of equivocation. Cleinias,

an unsuspecting youth of Athens, is about to be ensnared in the

traps of two bloodthirsty sophists, Euthydemus and Diony-

sodorous. Euthydemus begins by proposing a question:

" 'Tell me, Cleinias, are those who learn the wise or the ignorant?'

Cleinias answers that those who learn are the wise.

"Euthydemus proceeds: There are those whom you call teachers,

are there not?' The boy assents.

" And they are the teachers of those who learn, and their pupils

are the learners?'

" 'Yes.'

" 'And when you were learners you did not as yet know the things

which you were learning?'
" 'No,' he says.

3 In the original: "Mus syllaba est; mus autem caseum rodit; syllaba ergo

caseum rodit."
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" 'And were you wise then?'

" 'No, indeed,' he said.

" 'But if you were not wise, you were unlearned?'
" 'Certainly.'

" 'You, then, learning what you did not know, were unlearned

when you were learning?'

"The youth nods assent.

" 'Then the unlearned learn, and not the wise, Cleinias, as you
imagine.'

"At these words the followers of Euthydemus like a chorus at the

bidding of their director, laugh and cheer. Then, before the youth
has time to recover, Dionysodorus takes him in hand and says: 'Yes,

Cleinias; and when your grammar teacher dictated to you, were they

the wise or the unlearned who learned the dictation?'
" 'The wise,' says Cleinias.

" 'Then after all the wise are the learners and not the unlearned;

and your last answer to Euthydemus was wrong.'

"Then follows another peal of laughter and shouting, which comes
from the admirers of the two heroes, who are ravished with their wis-

dom ..." *

Equivocation gives rise to the most common type of joke,

the pun. Punning was a favorite pastime of the Elizabethan

theater, and the solemn context in which puns often appear

would lead us to conclude that they were regarded as a form of

wit rather than ribald humor. Thus Richard II, in one of the

most tragic parts of the play, exclaims,

"Swell'st thou, proud heart? I'll give thee scope to beat, since foes

have scope to beat both thee and me."

But puns, as a type of humor, go back much further than

the sixteenth century. In the Iliad, Odysseus takes good ad-

vantage of equivocation to outwit the giant one-eyed Cyclops,

Polyphemus, who keeps the hero and his followers imprisoned

in a cave. Odysseus tells the giant that his name is "Noman,"
and then in the dark of night he and his band drive a stake

through the evil giant's eye. The bellowing that ensues causes

all the neighboring Cyclopes to rush to Polyphemus's cave, but

when they ask him who has done this horrible deed, he can only

answer, "Noman has done it"; in disgust the others return

home, and Odysseus and his band escape.

* Condensed from Jowett's translation.
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While many puns depend upon the fact that two distinct

words have the same pronunciation, though different spellings,

as, for example, in the famous German saying: "Man ist was er

isst," ^ other puns occur when two words have the same spelling

but different pronunciations, an example of which is the Latin

"Mater tua est sus."
^

Unintentional puns seem to be the most delightful. Thus
Wordsworth is reported to have said that, had he a mind to, he

could write like Shakespeare.

Not only the humorous, but the serious, and even the tragic,

often have their source in the ambiguities of terms. The Athe-

nians were placed in serious predicament when the oracle at

Delphi informed them that their only salvation against the

Persians lay in their wooden walls. One party insisted that

"wooden walls" meant a fortification, another that the term

must mean ships. And there is a story to the effect that one of

the captains of the guard in the palace of Louis Phillippe, dur-

ing the time of the mob uprisings, having a bad cold, exclaimed

"Ma sacre toux!" This the guard took to mean "Massacrez

tous!" and they fired on the mob, killing many, with disastrous

results.

Because of an ambiguity in the term "person" in the Con-

stitution of the United States, the Bill of Rights did not have to

be changed after the freeing of the slaves; indeed, in the history

of the country, many terms and phrases of the Constitution

have acquired new meanings, such flexibility probably being

more of an advantage than a disadvantage.

Equivocation is frequently used to give rhetorical effect to

what might otherwise seem a very trite phrase. For example, the

proposition "Business is business" means more than the simple

tautology "a is a." Lincoln is said to have made the following

remark during the inspection of some trenches after a hard

battle:

"Anyone who likes this sort of thing must enjoy it very much."

Lewis Carroll shows the implied ambiguity in such phrases in

The Three Voices. An epicure, in defence of his philosophy,

urges that

"Dinner is dinner and tea is tea."

^"Man is what he eats."

8 "est" = "is," but "est" = "eats."
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But the lady of the poem, in reply, overturns his position by

taking his statement literally:

. . . "Yet wherefore cease.

Let thy scant knowledge find increase;

Say men are men, and geese are geese."

Composition and Division

The Fallacies of Composition and Division are really special

cases of equivocation in which the term "all" is used ambigu-

ously. In English this term has two distinct meanings: used

collectively, "all" refers to the total collection in question, as,

for example, in the phrase "all the house" ("the whole house")

;

used distributively, "all" means "each and every one," as in

the expression "all the numbers" (of which there is no collec-

tion) . The two fallacies are defined as follows: the Fallacy of

Composition consists in taking collectively what should be
taken distributively (separately) , while the Fallacy of Division

consists in taking distributively what should be taken collec-

tively. Since most illustrations of these fallacies are cases in

which one premise uses "all" in the collective sense, the other

in the distributive sense, these may be classified under either

head depending on which premise is taken to be true. Thus
the following propositions appear to be contradictories, de-

spite the fact that they are both valid in Euclidean geometry:

"All the angles of a triangle are less than two right angles."

"All the angles of a triangle are equal to two right angles."

The "all" in the first proposition is the distributive "all," the

"all" in the second, the collective.

In many cases, the word "all" is implicit, as in the following

syllogism, which might appear to be formally true:

Peter was an apostle;

The apostles were twelve men;
Therefore, Peter was twelve men.

We cannot say that the argument is bad because the term
"apostle" is used in the singular in one premise and in the

plural in the other, since such an argument as "This is a table

and all tables are furniture, and therefore this is furniture" is
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perfectly valid. But the syllogism does contain four terms, for

"apostle" is used in the one case as a class taken distributively,

in the second as a class taken collectively, i.e., as a singular

term. All finite classes may be taken in either of these two ways:

our interest may be centered on the members or on the entire

group taken as a unit. Thus, all the people over twenty-one in

the United States (taken as a unit) form the voting public, but

we cannot infer that John Smith forms the voting public

because he is a member of the class of people over twenty-

one (taken distributively)

.

Fallacies are frequently committed in discussions of the con-

cept of probability. One might argue as follows: Given an
"ideal" coin, i.e., one as likely to fall heads as tails, the prob-

ability that in five throws heads will appear each time is quite

small (actually the chances are I in 2^) , yet the chances that

in any particular throw heads will appear is exactly one-half.

Suppose that in four throws heads appeared each time; then on
the fifth throw (apparently) the chances that heads will appear

will be 1 in 2^ and also 1 in 2. This argument confuses the

collective and distributive; distributively, i.e., one by one, on
each throw the chances of head's appearing is exactly one-half,

and this is as true of the fifth, or the fiftieth throw as it is of the

first. But we may take a certain number of cases and consider

them as a collection, asking ourselves how the distribution of

heads and tails will occur throughout this collection; the

chances that we will have a collection of five heads in a collec-

tion of five throws is 1 in 2^, though the chance that any par-

ticular element will be heads is one-half.

The Fallacy of Composition is most frequently committed in

discussions regarding the concept of the infinite. Most beginners

feel inclined to treat the symbol oo as though it were another

number, obeying the usual properties of numbers. That it can-

not be so treated is demonstrated in many ways. If oo were a

number the equation 12-oo = 3'oo would be true, since to

multiply an infinite quantity by any finite quantity yields an

infinite quantity. In general, if ab = ch, then az=ic, and hence

12 = 3, which is absurd. But oo cannot be considered as another

number because it does not represent any complete quantity.

A variable x is said to become infinite (x -^ oo) if for any finite

number we may choose, we can find larger values of x.
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"Infinity," then, must be taken in the distributive sense.

When we speak of such infinite quantities as the set of "all"

numbers, we cannot mean this "all" in the collective sense,

since there is no collection of all the numbers.

The Italian mathematician, Saccheri (ca. 1700) , forfeited the

distinction of being the founder of non-Euclidean geometry

because he confused the properties of the finite and the infinite.

He argued (correctly) that if we deny Euclid's postulate con-

cerning parallel lines (page 1 2) , then two straight lines can

become asymtotic, i.e., can approach each other indefinitely

but never meet at any finite distance. Hence, argued Saccheri,

these lines must meet at infinity and there become one line;

but since two straight lines cannot have a segment in common,
a contradiction (he thought) was reached.

It should not be assumed from this, however, that in cases

where an infinite number of objects is under consideration, we
cannot assert general laws concerning them. Thus, when I say

"All propositions are either true or false," I might seem to be

asserting something absurd, since there is no such thing as a

collection of all propositions, there being an infinity of mean-

ingful statements. But "all" is used here in the distributive

sense, to mean "Each and every proposition which might arise

is true or false." Or, as we have put it earlier, the expression

"All propositions are either true or false" is equivalent to the

statement " 'This proposition is either true or false' is true no

matter to what proposition 'this' refers."

In a later chapter more difficult cases of these fallacies will

appear.

Amphibology

Ambiguities in language frequently occur, not from the

equivocation in a single term, but from the ambiguous con-

struction of the sentence as a whole, and fallacies resulting from

such ambiguities we call Fallacies of Amphibology.^ The am-

biguities involved in the syntax of indirect discourse in Greek

is said to have been the chief cause of the success of the Oracle

at Delphi. In Greek, as in Latin, the subject and direct object

'^ From the Greek dficpi^aWeiv, "to doubt": d/^i^i = "on both sides," piWeiv =
"to throw."
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in the dependent clause in indirect discourse ("he says that
—

")

are both in the same case (accusative) , and since word-order

does not signify which noun is to be taken as subject, an am-
biguity often results. Thus, were the anxious general to ask the

Oracle whether the Greeks would win the battle he proposed

to fight, the oracle might reply: "Apollo says that the Persians

the Greeks will defeat." If perchance the Greeks lost, one

argued that the Oracle must have intended "Persians" to be

the subject, "Greeks" the object; if the Greeks won, the op-

posite was intended.

One of the greatest difficulties for a writer in English is the

problem of avoiding ambiguities in sentence structure caused

by the paucity of relative and demonstrative pronouns. The fol-

lowing sentences exhibit such ambiguities:

"No one is allowed to see the patient who is very ill."

"He carried the dog across the room and tenderly placed it on the

sofa; it was an overstuffed specimen."

"Dangling participles" frequently yield humorous cases of

amphibology:

"Sailing gracefully along under her own power, Jane was fasci-

nated at the spectacle of the ship before her."

"Sitting in a comfortable Pullman seat, the scenery flashed by."

One of the rare pieces of humor which occurs in Kant is a

case of amphibology: "In this manner, then, results a harmony
like that which a certain satirical poem depicts as existing be-

tween a married couple bent on going to ruin, 'O, marvellous

harmony, what he wishes, she wishes also' "; or like what is

said of the pledge of Francis I to the Emperor Charles V, 'What

my brother Charles wishes that I wish also. (viz. Milan) ' " ®

This type of fallacy often occurs in misapplications of rules.

The now-classic example took place when a young Chinese

student at an American university, having carefully memorized
the proper phrases in his English-conversation book, replied to

the dean as he accepted his cup of tea: "Thank you, Sir, or

Madam, as the case may be."

Lewis Carroll made frequent use of amphibology.

8 Fundamental Principles of the Metaphysic of Morals, Abbott's translation.
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Alice, slightly overcome by all the running she has had to do, asks
the king: "Would you be good enough to stop a minute to get one's

breath?" To which his majesty replies: "I'm good enough, only I'm
not strong enough. You see, a minute goes by so fearfully quick. You
might as well try to stop a Bandersnatch."

Accent

The fallacy of accent really falls under amphibology in the

general sense. Practically every sentence changes its meaning
when different words are accented, as one may easily verify for

himself by emphasizing the various words in so every-day an
expression as "I hope you will come tonight." To accent the

initial word is to give the impression that others do not share in

the wish, while to accent the third implies that the one invited

might well leave others at home. Often proper accent will give

meaning to an apparently meaningless sentence. The most
astonishing example of this, which also illustrates the peculiar-

ities of the English language, is the following, which, if properly
punctuated, is meaningful: "John, where Jim had had had had
had had had had had had had the teacher's approval." ^ The phi-

losopher's dogma, when unpunctuated, also appears to be non-
sense: "That that is is that that is not is not."

Apparent contradictions are often resolved by correct punctu-
ation or a shift of accent. One might truthfully assert both the
following propositions: "Three times two plus four is eighteen"
and "Three times two plus four is ten."

Serious predicaments may arise over the ambiguity of accent.

The warden of a Russian prison, having demanded instructions

regarding a prisoner, is reported to have received this telegram
from the Czar: "Pardon impossible jail him."

Amusing situations and remarks resulting from the am-
biguity of accent are plentiful enough. Perhaps the most
ancient example is to be found in I Kings, 13:27: "He spake to

his sons, saying. Saddle me an ass, and they saddled him."
There is also the story of an amateur of the stage, whose
dramatic moment consisted in the cry "My Heavens, I'm shot!"

To add a little realism to the moment, his colleagues secretly

smeared red on his shirt. The unfortunate actor, having given

9 ".
. . had had 'had,' had had 'had had'; 'had had' had had . .

."
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his all to the rendition of his line, happened to look down,

and with more realism than drama, repeated his line: "My
Heavens, I am shot!"

The Fallacy of Accent is a favorite tool of the rhetorician in

persuading his audience. By omitting or passing lightly over

the weaknesses in his position, he emphasizes and enlarges upon
the errors of his opponents. That is, he emphasizes one point of

view, so that we become convinced by an argument that in it-

self is hardly sufficient grounds for the validity of his entire posi-

tion. Thus, in attempting to discover the nation guilty of the

First World War, one might accent the murder in Austria and
show how this led to the conflict. Such an argument, however,

would neglect entirely the militarism and imperialism that had
engulfed all the great European powers and that were certainly

responsible in part for the tragedy. Again, in attempting to show
the values of democracy, one might accent the freedom of

speech which this form of government allows and underem-

phasize the difficulties which arise when a legislative body is

forced to shift its policy continuously as public opinion changes.

But the defender of totalitarianism accents the orderliness of

governmental procedure and ignores the pain and suffering

that are the lot of the dissenter.

In general, most of our strong prejudices and dislikes are

based on the Fallacy of Accent. We think little of a particular

man because he smokes evil-smelling cigars; a certain book is

bad because it has a weak ending; Jones cannot be a good

Senator since a certain dishonest politician is a close friend of

his.

If one issue is much more important than any other in de-

ciding a question, then no fallacy is committed, since this kind

of error rests on improper accent.

Accident

The Fallacy of Accident consists in assuming that what is

accidental in a certain application of a law must be true in

general also {a dicto secundum quid ad dictum simpliciter) .

For example, we agree to the general law that all Athenians are

Greeks. Plato, being an Athenian, must have been a Greek. It is

an accidental property of Plato that he is a philosopher. Hence
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all philosophers are Greeks. Again, one might argue as follows:

"You are not what I am; I am a man; therefore, you are not a

man." Or, "He who calls you a man speaks truly; he who calls

you a fool calls you a man; therefore, he who calls you a fool

speaks truly."

Another form of this fallacy is committed when one assumes

that a statement made about an object when considered simply

will hold for this object when accidental attributes have been

added [a dicto simpliciter ad dictum secundum quid) . Thus,

"Man is a rational animal" is a statement made about the term

"man" taken "simply," i.e., the term is considered only with

regard to its essential attributes; one might then try to argue

that a dead man, or a drunken man, is rational, i.e., that the

former statement will be true when the term is no longer con-

sidered simply, but under accidental conditions. Again, the

statement that one should not thrust a knife into another seems

to be a sound moral axiom; but it would be fallacious to argue

that a surgeon is immoral, since his whole business consists in

this activity.

Petitio Principii

A fallacy that has played a peculiar role in the history of

logic is that of Petitio Principii, or Begging the Question. This

fallacy is often supposed to occur when one assumes in his argu-

ment the proposition to be proved. Thus a moralist might

argue: "I ought not to do this act, because it is wrong," but if

asked how he knows the act to be wrong, he replies, "Because

I know that I ought not to do it."

But the error in thus defining the fallacy is that, far from

violating a logical law, it would actually be an application of the

most fundamental of all logical laws, the law of tautology. This

law in its most general form may be expressed: "If the proposi-

tion p be true, then p is true," or, more generally, "If the propo-

sitions p, q, r, etc., are all true, then p is true." That is, we do not

contradict any logical law in assuming a given proposition in

our argument and then "proving" it later.

The fallacy really arises in the following manner: let us sup-

pose a certain set of propositions to be granted. Someone wishes

to show that when these propositions are true, another proposi-
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tion follows. However, in his demonstration he assumes (usually

tacitly) some other proposition, as a rule the one to be proved.

Hence, while pretending to show that the statements p, q, r, etc.,

imply w, he has merely shown that p, q, r, , and x imply w.

As originally intended, the Fallacy of Begging the Question was

committed when this x was the same as the conclusion, w, but

it is easy to see that the fallacy in this form is really a restricted

case of a more general one.

The fallacy in question as often as not deceives the arguer as

well as others, as it often is committed unintentionally. A sig-

nificant example of this occurs in geometry. Some of the fol-

lowers of Euclid took Postulate 6, "Two straight lines meet in

only one point" to be a theorem of his system, since, they

claimed, this follows from Proposition 16: "The exterior angle

of a triangle is always greater than either opposite interior

angle." For suppose that two lines, a and h, did meet in two

points, as in the accompanying figure. Let these points be A and

B. Bisect the length AB on the line a, calling the midpoint M,
and bisect AB on h, calling this midpoint N. Join MN. Then
triangle AMN is congruent with triangle MNB, since the three

sides of one are equal respectively to the three sides of the other.

Hence the angles at M are right angles, as are the angles at N.

Therefore the exterior angle NMB of the triangle ANM is

equal to one of the interior and opposite angles, ANM, and

this contradicts Proposition 16 and hence the assumption that

two lines meet in two points, since it leads to this contradiction,

must be false.

But this argument is fallacious in that the proof of Proposi-

tion 16 assumes that two straight lines meet in but one point.

This proof proceeds as follows: Suppose triangle ABC is any

given triangle with the exterior angle BCD, as in the accom-

panying figure. Bisect BC at M, draw AM, and extend it to E, so
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that AM — ME. Draw EC. Then triangles ABM and ECM are

congruent (side, angle, side) , and hence angle ABC is equal to

MCE, i.e., the interior angle of ABC is equal to only a part

of the exterior angle BCD. But this proof assumes that the two
lines AE and AD meet in only one point. What happens if

they do not?

Karl Pearson in his Grammar of Science commits the fallacy

of Begging the Question. Comparing the human mind to a

clerk in a telephone exchange who receives his messages at the

brain terminals of the sensory nerves, he says: "Messages in the

form of sense impressions come flowing in . . . But of the

nature of things-in-themselves, of what may exist at the other

end of our system of telephone wires, we know nothing at all."

If this analogy has any meaning, it is clear that we know a

great deal about the external world. We have assumed, for

example, that the external world exists and does make impres-

sions on the sensory nerves, that the nerves are like telephone

wires, that they do "convey" messages, etc.

John Locke commits the same fallacy in his argument that we
derive the idea of the succession of events in time from our

senses and reflection alone: "It is evident to anyone who will but

observe what passes in his own mind, that there is a train of

ideas which constantly succeed one another in his understand-

ing as long as he is awake. Reflection on these appearances of

several ideas one after another in our minds, is that which

furnishes us with the idea of succession . .
." " If we interpret

this argument correctly, it seems to say that we gain the idea

10 Essay concerning Human Understanding, Book II, chap. XIV, 3.
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of succession by observing succession, i.e., it assumes that we
do recognize the meaning of the train of ideas succeeding one

another in order to show that we have the idea of succession.

A modified form of this fallacy occurs in certain definitions.

An old maxim with regard to proper defining was to the effect

that the defiJiens must not contain any part of the definendum;

that is to say, any definition which assumes for its complete

meaning the meaning of the thing to be defined is an unsatis-

factory definition. Thus the Italian mathematician, Veronese,

defined equality between two numbers thus: "Numbers whose
units correspond to one another uniquely and in the same
order and of which the one is neither a part of the other nor

equal to a part of the other are equal."

Igfioratio Elenchi

This fallacy is a common one in everyday discussions; it con-

sists, literally, in an ignorance of the point at issue, and he who
commits it attempts to refute the argument of his opponent by
proving something quite irrelevant. There are many sub-

divisions of the fallacy, depending on what course the irrelevant

response may take. A common form is to be found in arguments

employed during a trial. The real point at issue is to determine

the prisoner's guilt or innocence, but counsel for the defence

will very often devote the majority of its time showing the

high type of character the accused has, while the prosecution,

on the other hand, attempts to establish his perfidy, dishonesty,

and other negative qualities. Neither lawyer argues to the point,

but rather argues concerning the individual in question; this

form of ignoratio elenchi is called argumentum ad hominem.
Thus De Morgan reports the case of a lawyer who handed his

brief to the pleading attorney with the comment: "No case

—

abuse the plaintiff's attorney."

The Fallacy of Ipse Dixit is really a special case of argumen-

tum ad hominem. A argues that a certain proposition must be

true because B says it's so. Appeals to authority are so common
that illustrations are hardly necessary. But this type of argument
is often offered as a way of determining truth, in which case

its proponents would hardly consider it to be a fallacy (cf . page

147).
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If one speaks to arouse the emotions of his hearers, rather

than their reason, he commits this fallacy under the form of

argumentum ad misericordiam. A beautiful example of this

occurs in Socrates' speech at his trial before the Athenian As-

sembly; note that the speaker, though insisting that he will not

commit the fallacy, really does so in a subtle fashion:

"Well, Athenians, this and the like of this is all the defense which

I have to offer. Yet a word more. Perhaps there may be some one

who is offended at me, when he calls to mind how he himself on a

similar, or even a less serious occasion, prayed and entreated the

judges with many tears, and how he produced his children in court,

which was a moving spectacle, together with a host of relations and

friends; whereas I, who am probably in danger of my life, will do

none of these things. The contrast may occur to his mind, and he

may be set against me, and vote in anger because he is displeased

at me on this account. Now if there be such a person among you,

—

mind I do not say that there is,—to him I may fairly reply: My
friend, I am a man, and like other men, a creature of flesh and blood,

and not 'of wood or stone,' as Homer says; and I have a family, yes,

and sons, O Athenians, three in number, one almost a man, and two

others who are still young; and yet I will not bring them hither in

order to petition you for an acquittal. And why not? Not from any
self-assertion or want of respect for you . . . There seems to be

something wrong in asking a favor of a judge, and thus procuring an
acquittal, instead of informing and convincing him. For his duty is

not to make a present of justice, but to give judgment; and he has

sworn that he will judge according to the laws, and not according

to his own good pleasure; and we ought not to encourage you, nor

should you allow yourselves to be encouraged, in this habit of perjury

—there can be no piety in that. Do not then require me to do what
I consider dishonorable and impious and wrong, especially now,

when I am being tried for impiety. . . . For if, O men of Athens,

by force of persuasion and entreaty I could overpower your oaths,

then I should be teaching you to believe that there are no gods, and
in defending should simply convict myself of the charge of not be-

lieving in them. But that is not so—far otherwise. For I do believe

that there are gods, and in a sense higher than that in which any

of my accusers believe in them. And to you and to God I commit
my cause, to be determined by you as is best for you and me." "

A vicious form of the Fallacy of Ignoratio Elenchi occurs

11 Plato, Apology, Jowett translation.
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when one attempts to discard the arguments o£ another by giv-

ing them a label. "Such feelings are decidedly un-American,"

he declares. "This is sheer communism," "Opinions like this

are heretical," or even the trite "These thoughts are dangerous

for a young man of your age," are all common enough. That is,

we pretend to refute the argument by declaring it to be some-

thing reputedly unsound, though we fail to define what we
mean by "communism," "heretical," and other such terms, or

to show what is wrong with these beliefs.

Many Questions

A fallacy of the humorous sort is that of Many Questions.

In its strict form, this fallacy consists in assuming that every

question of the direct sort may be answered by "yes" or "no."

Unfortunately, to answer some questions in either the affirma-

tive or negative presents awkward difficulties. One would hardly

feel inclined to answer "yes" to the question "Have you stopped

beating your mother?" but to answer "no" would be even

worse! There are a multitude of questions of a similar sort:

"Has your town another horse yet?" "Have you given up your

drinking habit?"

Despite its ludicrous aspect which has caused many to disre-

gard its importance, this fallacy does present a logical problem.

It has been asserted that the Law of Excluded Middle, "All

propositions are either true or false," is a fundamental law of

logic. But apparently some such statement as "I have stopped

doing thus-and-so" in many cases is neither true nor false.

The solution of the difficulty can be found by properly defin-

ing the word "stop." The equivalent of "I have stopped beating

my mother" is "I have been beating my mother and I am not

beating her now." The latter is in the form of a conjunction and
asserts that "p is true and (but) q is true." A conjunction is

false if one of the elements is false; hence, ii p is actually

false, as it would be if I had never indulged in the habit of beat-

ing my mother, then the entire statement "p is true and q is

true" will be false. There are two ways, then, of denying the

statement "I have stopped doing so-and-so"; one may deny that

one has ever done the action or one may deny that he is doing
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it now. The fallacy lies in assuming that when one says he has

not stopped doing so-and-so, this must imply that he is continu-

ing to do it.

False Cause

Most superstitions are grounded in the Fallacy of False Cause,

which consists merely in attributing the wrong cause to a certain

event. The most common error, called by the schoolmen post

hoc ergo propter hoc, lies in inferring that a certain event must
be the cause of another because it precedes the other. Thus,

after a black cat crosses my path, I leave my pocketbook some-

where and deduce that the cat caused me to lose it, henceforth

considering black cats as augurs of certain ill luck. Many people

consider the number thirteen so unlucky that they refuse to

work or sleep on the thirteenth floor, believing dire disaster

will result. Many hotels and other large buildings commit a

fallacy of another sort by simply having the floor above floor

number twelve numbered fourteen.

The instinct associated with this fallacy is demonstrated in

certain psychological experiments on animals. A bell precedes

the intermittent feeding of a dog, and after a certain length of

time, the animal's natural processes of salivary excretion and
digestion can be initiated solely by the ringing of the bell, re-

gardless of whether the meal follows.

One must not be too critical of the fallacy, however. If I

walk under a ladder and a paint can falls on my head, I would

not be arguing falsely if I ascribed my ill luck to walking under

a ladder. Indeed, scientific procedure takes very much the same

path (though greatly refined, of course, by other considera-

tions) in determining whether A is the cause of B. Those eager

but inexact scientists of old, who declared that a change in

weather is due to a change in the moon, that a plague is caused

by an eclipse of the sun, and other like prophecies, were com-

mitting the fallacy, though many were trying to apply good

scientific procedure. A more accurate definition of the fallacy

would be the inference that A is the cause of B, since A has been

found in one case (or in an indefinite number of cases not

experimentally controlled) to precede B.
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False Analogy

The argument from analogy is not usually classified as a

fallacy, principally because it has proved to be a very useful

tool for the scientist. But many serious errors in science have

occurred because of this method of reasoning. The fallacy con-

sists in assuming that if two phenomena are closely alike in cer-

tain respects, they will be alike in most if not all respects, since

they are "analogous."

Thus, when scientists began to learn more about the struc-

ture of the atom, they were amazed to discover the close simi-

larity between this minute piece of the universe and the solar

system, for the atom contained a nucleus about which revolved

a certain number of electrons, much in the same manner as the

planets revolve above the sun. Nor was there such a great dis-

crepancy in relative distances; the distance of an electron from

its nucleus, relative to the size of the electron, was comparable

to the distance of the earth from the sun, relative to the size of

the earth. But the argument that the path of an electron about

the nucleus is a special case of the same law as that governing

the motions of the planets seems to have been false, and the

attempts to construct atomic theories on this basis have failed.

An interesting example of the Fallacy of False Analogy oc-

curred in antiquity, when the same type of argument was used

by Plato to prove the immortality of the soul and by Lucretius

to prove its mortality. Plato's argument runs thus:

"Let us consider this question, not in relation to man only, but

in relation to animals generally, and to plants, and to everything of

which there is a generation, and the proof [of the soul's immortal-

ity] will be easier. Are not all things which have opposites generated

out of their opposites? ... I mean to say, for example, that any-

thing which becomes greater must become greater after being less,

. . . and the weaker is generated from the stronger, and the swifter

from the slower. . . . This holds of all opposites, even though not

expressed in words—they are generated out of one another, and
there is a passing or process from the one to the other of them.

Since life and death are opposites, these are generated the one from

the other and have their intermediate processes, too; hence, just as

the waking are generated from the sleeping, so are the living from
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the dead. Hence we arrive at the inference that the living come from
the dead, just as the dead come from the Hving; and if this be true,
then the souls of the dead must be in some place out of which they
come again." (Plato, Phaedo, Jowett translation, condensed)

But analogy is also used by Lucretius to show that the soul
is mortal:

"We feel that the mind is begotten along with the body, and grows
up with it, and with it grows old. For as children running about have
a body infirm and tender, so a weak intelligence goes with it. Next
when their age has grown up into robust strength, the understanding
and the power of the mind is enlarged. Afterwards, when the body
is wrecked with the mighty strength of time, and the frame has suc-
cumbed with blunted strength, the intellect limps, the tongue bab-
bles, the intelligence totters, all is a-wanting and fails at the same
time. It follows, therefore, that the whole nature of spirit is dissolved
abroad like the smoke into the high winds of the air, since we see it

begotten along with the body, and growing up along with it, and,
as I have shown, falling to pieces at the same time, wearied with age.
Add to this that just as the body itself is liable to awful disease and
harsh pain, so we see the mind liable to carking care and grief and
fear; wherefore it follows that the mind also partakes of death." ^^

The philosophical school of empiricism is based on the postu-
late that we can only know those things that we perceive
through our senses (cf. page 150) . Several consequences seem
to result: if we can only know the things of our perceptions,
then we cannot know anything of the world apart from our
minds, since such knowledge would have to be free of our per-
ceptions. The manner in which an empiricist, Karl Pearson,
tried to explain this difficulty by means of analogy is given
under the Fallacy of Begging the Question: the example cited
there may be considered as an illustration of false analogy
as well. Another difficulty which faces the empiricist, a difficulty

that many have tried to overcome by the analogy argument, is

the problem of the existence of other minds; if perception is the
basis of all knowledge, then how shall we prove that minds
other than our own exist, since we never perceive another's
mind, but only his body and its actions. The "analogy argu-
ment" here runs as follows:

12 Lucretius, De Rerum Natura, III, pp. 445-462, Loeb translation.
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"I am aware, and I alone am aware, that certain of my bodily acts

are accompanied by mental states. When I observe similar acts in

other bodies I infer that they too are accompanied by like states of

mind. No experience can be brought to confirm this inference, but

then nothing can transpire to refute it. Meanwhile, my feelings are

spared a severe strain by risking it—the loneliness of not risking it is

too tragic to be faced."

The objectionable points of this line of argument are just all the

points of its make-up. To begin with, it is so far from self-evident

that each man's mental state is his own indisputable possession, no
one hesitates to confess at times that his neighbor has read him better

than he has read himself . . . No one finds fault with Thackeray for

intimating that the old Major is a better judge of Pendennis's feeling

for the Fotheringay than is Pendennis himself . . . Next, the anal-

ogy argument calls its procedure an inference. Now, everyone knows
an inference from a thousand cases to be more valuable than one

drawn from a hundred, an anticipation based on a hundred observa-

tions to be safer than one with only ten to support it. But there are

those who, knowing all this, would conclude that an inference from

one instance has some value. If in my case mental states accompany
my body's behavior, there is at least some ground for supposing like

acts of another's body to be in a manner paralleled. This illusion,

for it is one, springs I think from a failure to catch the meaning of

inference. An inference from a single case, if it be really an inference

from a single case, has exactly no value at all. No one would be

tempted to attribute eight planets to every sun because our sun has

eight such satellites. The reason a single observation is sometimes

correctly assumed to have weight is that the method of observing

has been previously tested in a variety of cases. The shopkeeper meas-

ures his bit of fabric but once; he has however measured other fabrics

numberless times, and has a fairly clear idea of the probable error of

his result. But the principle holds absolutely of all results: no series

of observations, no probable error; no ground for inference; no
meaning as a datum.^^

The method of analogy, it should be noted, is not to be con-

demned simply because when applied without restrictions it

leads to a fallacy. Science has found that analogies are an indis-

pensable aid in suggesting and formulating theories; but how-

ever much of an aid the argument may be, it does not establish

any conclusion on its own right, and inferences which are based

on analogy alone are fallacious.

^3 E. A. Singer, Jr., Mind as Behavior, chap. I.
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Non Sequitur

The preceding classification of the fallacies is evidently not

complete. For the most part, Aristotle did not seem to have a

very definite scheme of classification, but rather chose the

common types of error. The result was that many fallacies are

either identical with a special case of others, or else do not fall

under any of the prescribed classes.

To obviate the latter difficulty, logicians commonly include

the class of fallacies called Non Sequitur; such a fallacy is com-
mitted if one infers the truth of p from the truth of q when the

inference is false. Thus, many have been inclined to assert that

God does not exist because they have been convinced that his

existence cannot be proved.

This fallacy, needless to say, is so general as to include all

others as special cases. All fallacies fundamentally consist in in-

valid inferences. But in general, only those fallacies which can-

not be classified otherwise are called cases of Non Sequitur.

Often, however, Non Sequitur is supposed to occur when cer-

tain necessary premises have been omitted in an argument,

and in this case the fallacy is closely allied to Petitio Principii.

Sherlock Holmes constantly committed the Non Sequitur fal-

lacy. Thus he astonished Watson on their first meeting by "de-

ducing" that he must have come from Afghanistan. His deduc-

tion ran: "Here is a gentleman of a medical type, but with the

air of a military man. Clearly an army doctor, then. He has just

come from the tropics, for his face is dark, and that is not the

natural tint of his skin, for his wrists are fair. He has undergone
hardship and sickness, as his haggard face says clearly. His left

arm has been injured. He holds it in a stiff and unnatural man-
ner. Where in the tropics could an English army doctor have

seen much hardship and got his arm wounded? Clearly in Af-

ghanistan." But one can think of many other conclusions which

would be consistent with these premises; for example, Watson
might have been a retired army doctor of private means, who
spent his time hunting. As far as "deduction" goes. Holmes com-
mitted a Non Sequitur, though his reasoning does involve a

certain degree of probability. But questions of probability and
questions of deduction are entirely different.
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Non Sequitur is committed in those examples of syllogistic

arguments given (page 77) which make use of invalid moods
of the syllogism.

EXERCISES

GROUP A

Where possible, classify the passages below under one of the falla-

cies. In the case of arguments, criticize the reasoning involved:

1. No news is good news; war in Europe is no news; therefore, war
in Europe is good news.

2. Wanted: woman to sew buttons on third floor.

3. Lightning is caused by the terrible intonation which clouds make
when they collide.

4. Socrates was an Athenian. The Athenians were a nation. There-

fore, Socrates was a nation.

5. There cannot be any vacuum in the world. For suppose there

were a vacuum, i.e., a space containing nothing. Then if we had
a vacuum, say, within a box, this would mean that the opposite

sides of the box would touch, since there is nothing between

them."

6. "You shall do marvelous wisely, good Reynaldo, before you visit

him to make inquiry of his behavior." ^^

7. Vaine Andum, the famous movie actor, smokes Hayo cigarettes.

8. Prosecution: "How long had you been in the murdered man's

room before you murdered him?"

9. Oxygen supports combustion. Hence, since water contains oxy-

gen, water must support combustion.

10. You should not lie. Therefore, all doctors should tell their pa-

tients the exact truth about their illnesses.

11. What you have not lost, you still have; you have not lost your

horns; therefore, you still have them.

12. What is true of the whole must be true of its parts. It is true

of the whole jury that it contains twelve members; hence, this

must be true of each member.
13. What is true of the parts must be true of the whole; the income

of no one in the United States exceeds one billion dollars; hence,

the income of all must not exceed one billion dollars.

14. What is true of the parts must be true of the whole; it is true

that every particle of matter in the world is completely deter-

1* Descartes.
1'' Hamlet.
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mined as to its motion and position by inexorable law; hence,

a human being, who is made up of particles of matter, must be

completely determined with respect to his motion and position,

15. "I do think I'd like another helping of pork."

"Well, cut a piece off yourself."

16. If A {ah) is true, then I {ab) is true; but if I {ab) is true, then

O {ab) may be true; therefore, if A {ab) is true, O {ah) may be

true.

17. The worst conceivable thing in the world must exist. For suppose

X is the worst thing one can imagine. If a thing is bad, it is

worse if it exists than if it is merely imaginary, as a real murder
is worse than one which is just contemplated. Therefore, if X
is the worst thing possible, it must exist.

18. Are we going to keep on submitting ourselves to the influence

of foreign powers?

19. "EuTHYDEMUs: Do those who learn, learn what they know or

what they do not know?
Cleinias: Those who learn, learn what they do not know.

EuTH.: Don't you know your letters?

Cl.: Yes.

EuTH.: All letters?

Cl.: Yes.

EuTH.: But when the teacher dictates to you, does he not dictate

letters?

Cl.: Yes.

EuTH.: Then if you know all letters, he dictates that which you

know.
Cl.: Granted.

EuTH.: Then you do not learn that which he dictates; but he

who does not know his letters learns?

Cl.: Nay, but I do learn.

EuTH.: Then you learn what you know, if you know all your

letters."
^^

20. The world could not have had a beginning in time, since this

would imply that there was a time when there was nothing, and

this result is absurd for two reasons: (1) the notion of time is

dependent on motion, but if nothing exists there can be no
motion and hence no time; (2) if there were nothing at one

time and something at a later time, then something must have

come out of nothing, and this is absurd. On the other hand, the

world cannot have existed forever, for then there would have

been an infinite series of events up to this moment; i.e., this

16 Plato, Euthydemus, Jowett translation.



188 ELEMENTS 'OF LOGIC

moment would mark the end of an infinite series, which is ab-

surd, since an infinite series has no end. (Attributed to the

Sophist, Gorgias.)

21. Is a stone a body? Yes. Is not an animal a body? Yes. And you

an animal? Yes. Then you are a stone.

22. The White King: Just look down the road and tell me if you

see either of my messengers.

Alice: I see nobody on the road.

King: I only wish I had such eyes. To be able to see Nobody!
and at this distance, too! Why, it's as much as I can do to see

real people in this light. (The messenger arrives; the King ad-

dresses him:) Whom did you pass on the road?

Messenger: Nobody.
King: Quite right—this young lady saw him too. So of course

Nobody walks slower than you.

Messenger: I do my best. I'm sure nobody walks much faster

than I do.

King: He can't do that, or else he'd have been here lirst.^^

23. Patrick was accused of stealing a neighbor's pig.

"Well, now, Patrick," said the judge, "when you are brought

face to face with Widow Maloney and her pig on Judgment Day,

what account will you be able to give of yourself when she ac-

cuses you of stealing?"

"You said the pig would be there, sir?" said Pat. "Well, then,

I'll just say: 'Mrs. Maloney, there's your pig!'
"

24. "The only proof capable of being given that an object is visible,

is that people actually see it. The only proof that a sound is

audible, is that people hear it: and so of the other sources of our

experience. In like manner, I apprehend, the sole evidence it is

possible to produce that anything is desirable, is that people de-

sire it."
^^

25. "No reason can be given why the general happiness is desirable,

except that each person, so far as he believes it to be attainable,

desires his own happiness. This, however, being a fact, we have

not only all the proof which the case admits of, but all which it

is possible to require, that happiness is a good; that each person's

happiness is a good to that person, and the general happiness,

therefore, a good to the aggregate of persons." ^^

26. "Mr. Owen, again, affirms that it is unjust to punish at all; for

the criminal did not make his own character; his education, and

^"^ Through the Looking Glass, Lewis Carroll.
18 Utilitarianism, J. S. Mill.
19 Ibid.



FALLACIES 189

the circumstances which surround him have made him a crimi-

nal, and for these he is not responsible." ^°

27. Improbable events happen almost every day; but whatever hap-

pens almost every day is probable. Therefore, improbable events

are probable.

28. Our minds are much like wax tablets upon which our various

senses write; he who has a retentive mind will remember well

what he has learned just as good wax retains its impressions, but
the forgetful mind is like a tablet made up of soft wax, since the

marks readily disappear. But just as a tablet is blank before any-

one writes upon it, so must our minds have been empty at birth

before we had any sensations, so that everything we ever come
to know we must learn through our senses, just as every mark
a wax tablet contains must have been put there by some stylus.

29. The following argument, which appears in De Morgan's Budget

of Paradoxes, purports to show that the world cannot be round:

"How is't that sailors, bound to the sea, with a 'globe' would
never start,

But in its place will always take Mercator's LEVEL chart?"

30. De Morgan delights in exposing pseudo mathematicians ^^ who
attempt to prove the quadrature of the circle, i.e., that the cir-

cumference of a circle (or its area) can be expressed as some
rational multiple of the radius; in other words, they want to

prove that the value of tc is a fraction whose numerator and
denominator may be expressed as whole numbers. A certain Mr.
James Smith demonstrated the required quadrature in the fol-

lowing manner: he supposes (ex hypothesi) that there is a circle

whose circumference is 2% of the radius; he then finds that cer-

tain consequences which follow are not inconsistent with the

supposition upon which they were made.
31. De Morgan has an account of an itinerant lecturer in physics

whose speech went something as follows: "You have heard what
I have said of the wonderful centripetal force, by which Divine
Wisdom has retained the planets in their orbits around the sun.

But, ladies and gentlemen, it must be clear to you that if there

were no other force in action, this centripetal force would draw
our earth and other planets into the Sun, and universal ruin

would ensue. To prevent such a catastrophe, the same wisdom
has implanted a centrifugal force of the same amount and di-

rectly opposite." De Morgan remarks that if Divine Wisdom
had just let the planets alone, it would have come out to the

same thing "with equal and opposite troubles saved."
20 Ibid.
21 De Morgan, op. cit.
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32. "Diderot paid a visit to Russia at the invitation of Catherine

the Second. At that time he was an atheist, or at least talked

atheism . . , His lively sallies on this subject much amused the

Empress, and all the younger part of the Court. But some of the

older courtiers suggested that it was hardly prudent to allow such

unreserved exhibitions. The Empress thought so, too, but did

not like to muzzle her guest by an express prohibition: so a plot

was contrived. The scorner was informed that an eminent mathe-

matician had an algebraical proof of the existence of God, which

he would communicate before the whole Court, if agreeable.

Diderot gladly consented. The mathematician, who was not

named, was Euler. He came to Diderot with the gravest air, and

in the tone of perfect conviction said, 'Monsieur!

a + &"
= X,

n

done Dieu existe; repondez!' Diderot, to whom algebra was so

much Hebrew and whom we may suppose to have expected some

verbal argument of alleged algebraical closeness, was discon-

certed; while peals of laughter sounded on all sides. Next day,

he asked permission to return to Paris, which was granted. An
algebraist would have turned the tables completely by saying

'Monsieur! vous savez hien que voire raisonnement demande le

developpement de x suivant les puissances entieres de n.' " ^^

33. Lucretius, as a proof of the mortality of the soul, argues: "More-

over, when the piercing power of wine has penetrated into a

man, and its fire has been dispersed abroad, spreading through

the veins, why does heaviness come upon the limbs, why are his

legs impeded, why does he stagger, his tongue grow tardy, his

mind bemused, his eyes swim, noise and hiccups and brawls arise,

and all the rest of this kind of thing follow, why is this, I say, un-

less it be that the vehement fury of wine is wont to confuse the

spirit while yet in the body? But if anything can be confused and

impeded, this indicates that if some cause a little more compel-

ling should penetrate, the thing would perish and be robbed of

its future life."
^^

34. "Again, do any seeds of spirit remain or not in the lifeless body?

Now if any are left and are in it, it will be impossible rightly to

consider the spirit immortal, since it has gone away diminished

by the loss of some parts. But if it has departed and fled forth

from its component parts so intact that it has left in the body no

22 De Morgan, op. cit.

23 De Rerum Natura, III, Loeb translation.
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particles of itself, how do corpses exhale worms from flesh al-

ready grown putrid, whence comes all the great mass of living

creatures boneless and bloodless that surge through the swelling

limbs?" 2*

35. "The nature of mind and spirit is bodily; for when it is seen to

drive forward the limbs, to arouse the body from sleep, to change

the countenance, to rule and sway the whole man, and we see

that none of these things can be done without touch, and further,

that there is no touch without body,—must we not confess that

mind and spirit have a bodily nature? Besides, you perceive the

mind to suffer along with the body, and to share our feeling in

the body. If the grim force of a weapon driven deep to the di-

viding of bones and sinews fails to hit the life, yet a languor

follows and a backward fall to the ground, and upon the ground

a turmoil that comes about in the mind, and sometimes a kind

of hesitating desire to rise. Therefore the nature of the mind
must be bodily, since it suffers by bodily weapons and blows." -°

36. What has always been true in the past will probably occur again.

What probably occurs may not occur. 2 + 2 = 4 has always been

true, and hence may possibly fail to be true.

37. An hour of study doesn't do us much good. Why bother?

38. Cutting down trees is wicked; for how would you like it if some-

one came along with an axe and cut you down?
39. This table is white; white is a color; therefore, this table is a

color,

40. It is a tale told by an idiot full of sound and fury signifying

nothing.

41. Lucretius attempts to prove that space must be infinite as fol-

lows: "If space were finite and if anyone should run to the very

end of it and there throw a spear, this would fly beyond the

place where it was thrown or something would stop it; in either

case there would be some space beyond the 'end of space,'
"

42. There is something immaterial in the world. For in the case of

some people, it does not matter what food they eat, so long as

it is nourishing; that is, the food they eat is immaterial.

43. I still have the car I bought last year; the car I bought last year

was brand new. Therefore, the car I have now is brand new.

44. "I beg pardon?" said Alice.

"It isn't polite to beg," said the king.^^

45. I oppose this bill advocating naval rearmament because its spon-

sor knows nothing about the navy.

24 Ibid.
25 Ibid.
26 Carroll, op. cit.
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46. "Do you know languages?" asked the Red Queen. "What's the

French for fiddle-de-dee?"

"Fiddle-de-dee's not English," Alice replied gravely. -

"Whoever said it was?" said the Red Queen.^'''

47. "Experiment has shown that the heat or force necessary to de-

compose water would raise it to the height of 5,314,200 ft. This

is only 210 feet less than 10 times the square of 729, which is the

cube of 9. This shows that the foot as a measure of length is very

nearly exact and that the yard is more appropriate than the

meter." ^*

48. Night is the cause of the extinction of the sun; for as evening

comes on, the shadows arise from the valleys and blot out the

sunlight (early Greek physics)

.

49. "All smug people are bad; I'm glad I'm not like them," This

man's statement must be wrong, for he shows himself to be smug
when he criticizes smug people.

50. "Try another subtraction sum," said the Red Queen. "Take a

bone from a dog and what remains?"

Alice considered: "The bone wouldn't remain, of course, if I

* took it—and the dog wouldn't remain; it would come to bite

me—and I'm sure / shouldn't remain!"

"Then you think nothing would remain," said the Red Queen,

"I think that's the answer,"

"Wrong as usual," said the Red Queen. "The dog's temper would
remain."

"But I don't see how ?"

"Why look here," the Red Queen cried. "The dog would lose its

temper, wouldn't it?"

"Perhaps it would," Alice replied cautiously,

"Then, if the dog went away, its temper would remain!" the

Queen exclaimed triumphantly.

Alice said, as gravely as she could, "They might go different

ways." ^*

51. "I've been telling you for the last five minutes his name's John
Smith."

"Nonsense, he must have been John Smith longer than five min-

utes."

52. The assassination of the Archduke in Austria-Hungary was un-

doubtedly the cause of the First World War, since up to that

point Europe had been at peace.

27 Carroll, op. cit.

28 W. M. Malisoff, New Budget of Paradoxes.
28 Carroll, op. cit.
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53. A thing cannot be lost if we know where it is; hence the Lusi-

tania is not lost, since we can point to its exact location.

54. You cannot name one thing which this man has done which
would prove that he is capable of the position of President; I

cannot see, therefore, any grounds for voting for him.

55. We may assume as a fundamental law of evolution that the

fittest survive. For if a given living being is not fit, then, lacking

some power necessary for life, it will die.

56. "I exist" is a proposition which is necessarily true; for if I doubt
or deny this proposition, then I reaffirm it, since I must exist to

do the doubting or denying.

57. "I think" is a proposition which is necessarily true; for if I

doubt or deny this proposition, then I reaffirm it, since the act

of doubting (or the act of denying) is an act of thinking.

58. We start with the following true statement:

4 - 28 + 49 = 64 - 48 + 9.

Now since each side is in the form of a perfect square

(a^ — 2ab + b^) , we may extract the square root of both sides

and derive:

(2-7) = (8-3);

that is,

- 5 = + 5.

59. The Stoics attempted to prove that the world must be endowed
with reason as follows: "What has reason is better than that

which has not. Nothing is better than the world. Therefore, the

world must have reason." The sceptic, Carneades, attempted to

refute this argument by pointing out that the same reasoning

might be used to prove that the world is musical.

60. Cardan Swan offered the following argument to show that life

can arise spontaneously: "Scoop out a hole in a brick, put into

it some sweet basil, crushed. Lay a second brick upon the first

so that the hole may be perfectly covered. Expose the two bricks

to the sun, and at the end of a few days, the smell of sweet basil,

acting as a ferment, will change the earth into real scorpions."

61. Man's soul is immortal, for when a man dies his soul goes to

heaven and there is no death in heaven.

62. She: Don't you dare kiss me again!

He (relenting) : All right, I'll stop.

She: Don't you dare! Kiss me again!
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63. Thibaut, a German mathematician, argued as follows to prove

that the sum of the angles of a triangle must be equal to two
right angles: "Let ABC be any triangle whose sides are traversed

in order from A along AB, BC, CA. While going from A to B
we always gaze in the direction AB& (AB being produced to b)

,

but do not turn around. On arriving at B we turn from the

direction Bb by a rotation through the angle bBC, until we gaze

in the direction BCc. Then we proceed in the direction BCc as

far as C, where again we turn from Cc to CAa through the angle

cCA; and at last arriving at A, we turn from the direction Aa
to the first direction AB through the external angle aAB. This
done, we have made a complete revolution,—^just as if, standing

at some point, we had turned completely round; and the meas-

ure of this rotation is 360 degrees. Hence the external angles of

the triangle add up to 360 degrees, and the internal angles

A + B + C = 180 degrees." Q.E.D.^*^

64. "General: Tell me, have you ever known what it is to be an
orphan?

King: Often I

General: Yes, orphan. Have you ever known what it is to be
one?

King: I say, often.

Gen.: I don't think we understand one another. I ask you, have

you ever known what it is to be an orphan, and you say "or-

phan." As I understand you, you are merely repeating the word
"orphan" to show that you understand me.

King: I didn't repeat the word often.

Gen.: Pardon me, you did indeed.

King: I only repeated it once.

Gen.: True, but you repeated it.

King: But not often.

Gen.: Stop: I think I see Avhere we are getting confused. When
you said "orphan" did you mean "orphan"—a person who has

lost his parents, or "often"—frequently?

King: Ah! I beg your pardon—I see what you mean—frequently.

Gen.: Ah! You said often—frequently.

King: No, only once.

Gen.: (Irritated) Exactly—you said often, frequently, only

once!" ^^

65. There is an anecdote about Gilbert which tells of a man who
rushed up to him at the door of a theatre and, mistaking him

30 Bonola, Non-Euclidean Geometry, p. 63.
31 Gilbert, Pirates of Penzance.
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for a porter, shouted to him: "Call me a two-wheeler!" "All

right," replied Gilbert. "You're hansom."

66. "It is absolutely and undeniably certain that something has

existed from all eternity . . . For, since something now is, 'tis

manifest that something always was: otherwise the things that

now are must have been produced out of nothing, absolutely and

without cause: which is a plain contradiction in terms. For, to

say a thing is produced, and yet to say there is no cause at all of

that production, is to say that something is effected when it is

effected by nothing; that is, at the same time when it is not ef-

fected at all. Whatever exists, has a cause, a reason, a ground

of its existence either in the necessity of its own nature, and then

it must have been of itself eternal: or in the Will of some other

Being; and then that other Being must, at least in the order of

Nature and causality, have existed before it. That something,

therefore, has really existed from eternity, is one of the certaintest

and most evident truths in the world." ^^

67. Samuel Clarke offers the following proof to show that there

cannot have been an infinite series of changeable and dependent

beings produced from one another in endless progression, with-

out any original cause at all: "But if we consider such an endless

progression as one endless series of dependent beings; 'tis plain

this whole series can have no cause from without, of its existence;

because in it are supposed to be included all things that ever

were in the universe: and 'tis plain that it can have no cause

within itself, of its existence; because no one being in this infinite

succession is supposed to be self-existent or necessary, but every

one dependent on the foregoing: and where no part is necessary,

'tis manifest that the whole cannot be necessary, etc." ^^

68. Nothing is too good for you.

69. Sam is a sheep. Sheep circulate among themselves. Therefore,

Sam circulates among himself.

70. Plato, in order to define justice, first defines it in the case of the

state, and then applies his definition to the individual man with

the following argument: "When two things, a greater and a less,

are called by a common name, they are like in so far as the com-

mon name applies, so that a just man will not differ from a just

state so far as the idea of justice is involved. But we resolved that

a state was just when the three classes of characters present in

it were severally occupied in doing their proper work: that it

was temperate, and brave, and wise in consequence of certain

S2 Samuel Clarke. A Demonstration of the Being and Attributes of God.
33 Ibid.
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affections and conditions of these same classes. Hence we shall

also adjudge, in the case of the individual man, that, supposing

him to possess in his soul the same generic parts, he is rightly

entitled to the same names as the state, in virtue of affections

and conditions of these same classes."
^*

71. Is three many or few? A few. Then if three is a few, four is a

few? Yes. And hence five is a few? Yes. And hence six? Yes. Etc.,

etc.

72. Club Bore: On one side of me, a lion was creeping up; on the

other, a tiger approached stealthily. When they were about a

yard from me, what do you think I did?

New Member: Woke up?

Club Bore (indignantly) : No, sirl

New Member (in admiration) : Gee I I couldn't have slept on
after that.

73. In the papal bull of Boniface VIII (1294-1303) the following is

given as the reason why we cannot say that there are two distinct

principles (the spiritual and the temporal) governing the

church: ".
. . quia, testante Moyse, non in principiis, sed in

principio caelum Deus creavit et terram (cf. Gen. 1:1) ."

^^ Republic, Davies and Vaughn translation.
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The Logical Paradoxes 1

A LL SCIENCES must facc the serious problems that threaten

jC\. their foundations. That logic is no exception to this rule

was recognized early in the history of the science. Those argu-

ments which pretend to show the invalidity of certain principles

of logic were called "insolubilia" in the medieval or scholastic

period, but in modern times these arguments are generally

known as paradoxes. The same description might be applied to

the fallacies as well; the distinction is purely one of degree. The
weakness of the argument in the case of the fallacies is more
readily detected than in the case of the paradoxes.

Medieval logicians recognized the importance of the "insolu-

bilia," but because of their apparently trivial nature, the early

modern writers classed them with the insignificant verbal quib-

bles of the scholastics. Much as modern philosophy is to be ad-

mired for clearing away the deadwood in medieval thought,

there can be no doubt that in some instances it went to the

other extreme and ignored much that was valuable, especially

in the case of the science of logic. Practically no important con-

tributions were made in this science between the fifteenth and
the eighteenth centuries, and it was with the birth of modern
symbolic logic a hundred years ago that a reawakening of inter-

est in the subject took place. Indeed, only the last forty years

have seen the construction of more or less firm foundations.

With the increasing interest in logic came a return to the ancient

problems which had beset the science.

The "Epimenides" or "Liar" paradox presents one of the

fundamental problems of logic. In its less exact but more pic-

turesque formulation it tells of a certain Cretan, Epimenides,

who is reported to have said that all Cretans are liars. Besides

the obviously unpatriotic tone of this utterance, there is in-

volved an apparent denial of the Law of Contradiction, which
states that no proposition can be both true and false at the

197
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same time. For Epimenides' statement certainly has meaning
and is thus a proposition; but it must be true and it must be

false. Assuming that "liar" means "one who never tells the

truth," then if Epimenides is right, no Cretan ever tells the

truth, including the said Epimenides, whose statement, there-

fore, cannot be right. There is no contradiction yet, of course.

We deny no logical law when we show the existence of state-

ments such that to assume them true is to infer their falsity;

for example, the proposition "No proposition is true" has this

property. Such propositions are, of course, necessarily false, and
hence so must be the statement of Epimenides. But now, sup-

pose Epimenides' statement is false. Then Cretans become truth-

tellers, of which Epimenides is one, and what he has said must
be true. Hence, from the denial of his statement we have in-

ferred its truth; but statements which are such that to deny
them is to assert them, are necessarily true (cf. discussion of

indirect method of proof, page 27) . Hence Epimenides is both

right and wrong, and the Law of Contradiction no longer holds.

There is no difficulty discovering an obvious fallacy in this

argument. It is true that Epimenides cannot be right; but if we
assume him wrong, i.e., if we deny "All Cretans are liars," we
merely assert "Some Cretans are not liars," the denial of a form
in A being the assertion of a form in O. The argument, how-
ever, assumes that this denial means that "No Cretans are liars"

and further assumes that if a man is not a liar (i.e., is not one
who always tells a falsity) , he must always tell the truth, all

these unwarranted assumptions being necessary for concluding

that Epimenides always tells the truth.

A more exact formulation of the paradox, and one which
avoids these difficulties, is: Suppose one were to assert, "This

proposition is false." No difficulty occurs if "this proposition"

means "3 + 5 = 7," or "Green is a color." In these cases the

speaker is either right or wrong, and that is the end of the mat-

ter. But if "this proposition" means "this one I am now stating,"

then the given statement is apparently both true and false (or,

if you will, neither true nor false) . For if the proposition is true,

then its assertion that it is false is true, or it is false; if it is false,

then its assertion that it is false is itself false, or it is true. An-
other, and perhaps clearer, formulation of the paradox may be

made by considering the three propositions:
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1. Number 2 is false.

2. Number 3 is false.

3. Number 1 is false.

To assume 1 is false is to prove it true, and to assume I is true,

is to prove it false. For if number 1 is false, then the statement

"Number 2 is false" must be false, i.e., number 2 must be true.

But number 2 says that number 3 is false, i.e., that the state-

ment "Number 1 is false" is a false statement; hence number 1

is true. That is, assuming number 1 false, we are led to the con-

clusion that it must be true; but if we assume that number 1 is

true, then number 2 really is false, hence number 3 is true,

hence number 1 is false. Number 1, then, is a proposition which

is such that, if we assume it false, we infer it to be true, and if

we assume it true, we infer it to be false; hence, it is both true

and false at the same time.

A similar scheme may be constructed for any odd number of

propositions. An even number yields no contradiction, but a

paradox will result if we vary the form slightly. Thus, the fol-

lowing dialogue (a medieval illustration) displays the paradoxi-

cal character:

Socrates: What Plato is about to say is false.

Plato: Socrates has just spoken the truth.

In the face of these difficulties, several courses are open. We
may regard the arguments as trivial and discard them. But
despite their simplicity of form, these paradoxes should not be

passed over lightly. If we allow them to remain we admit defeat;

we admit that logic contains contradictions. To assert that these

contradictions will appear only in trivial cases and will not ap-

pear in the important ones, would be comparable to a salesman

who would try to sell us a car with the remark that so far the

machine has exploded only when insignificant people have been
riding in it. Either logic is a coherent science or it is not. To
assert that it is not is to assert the inconsistency of all sciences,

since all sciences are necessarily logical.

One possible solution would be to accept the argument at its

face value and admit that the Law of Contradiction is not uni-

versally true; this explanation was offered by the ancient scep-

tics. The opponents of Carneades (214-129 b. c.) had argued
that we cannot be sceptical concerning the principles of logic.
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and the latter answered by displaying the above paradox (or

one like it) . This escape from the difficulty, however, should

only be a last resort, for if we deny that the Law of Contradic-

tion is universally true, we must proceed to try to show in what

cases it fails and in what cases it does not. Such restrictions would
demand a re-examination of all science, for science has so far

proceeded on the assumption of the universal validity of the law,

that is, an inconsistent law is assumed to be false.

Another solution, and one which medieval and modern logi-

cians share, is to deny that the expression "This proposition is

false" is really a proposition, that it has any meaning, when "this

proposition" refers to the whole expression. Hence no denial of

the Law of Contradiction follows, since this holds only for

meaningful statements. This solution requires a definition of

"meaningful," or at least certain criteria for meaningfulness.

A statement is said to be meaningless if one of its terms is or

includes the entire statement itself. Such statements are called

"self-referring" propositions. Thus if I say "All propositions are

false," I am asserting something meaningless if by "all proposi-

tions" I mean all propositions including the one I have just

stated. Proponents of this solution sometimes argue that such

a self-referring statement must be meaningless, in that "all prop-

ositions" refers to some definite, "closed" set which cannot be

definite and must be incomplete if statements made about such

a collection are a part of the collection. I cannot say this is the

set of all propositions if I can then proceed to construct mean-
ingful statements about this set. E.g., I cannot say, "These are

all the true propositions of physics" and refer to some definite

list, for the statement I have just made or its contradictory must
be contained in the list and hence my claim that I have included

all true statements is invalid. Hence, "all propositions" cannot

mean "all, and this one too." But this argument is apparently

fallacious, for it seems to commit a fallacy of composition. If

"all" is used in the collective sense, then it is true that "all prop-

ositions" means a definite collection; but in this sense there is

no such thing as "all propositions" since supposedly the set of

all propositions is infinite. Rather, when I say "all propositions

are false" I mean "all" in the distributive sense: "Each and
every proposition (anyone may think of) is false," and this

may be meaningful, without contradiction even though I in-
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elude the statement in question as one of the propositions I

may meet.

But however incorrect this reasoning may be, it may be as-

sumed arbitrarily that self-referring propositions are meaning-

less; this is perfectly sound scientific procedure. If a certain

assumption leads to the destruction of a fundamental principle

of a science, the scientist is perfectly justified in rejecting this

assumption, provided such rejection does not also destroy fun-

damental principles. When both the assertion and the denial

of a statement lead to difficulties, then the given science must
change its fundamental principles. In the next chapter we shall

consider examples from the history of science in which such

changes have been forced.

The assumption that self-referring propositions are meaning-

ful apparently leads to difficulties. For if "This proposition is

false" is meaningful when "this" refers to this proposition I am
in the act of stating, we presumably have a meaningful state-

ment which is both true and false, and we have denied a fun-

damental law of logic.

Does the assumption that self-referring propositions are

meaningless likewise lead to insurmountable difficulties? If so,

then there seems to be no alternative but to change our logic.

At first sight a contradiction apparently does occur, for under
this assumption the entire logic of propositions appears to be-

come false. For example, among the fundamental laws of this

logic there is the Law of Excluded Middle: "Every proposition

is either true or false." If our assumption that self-referring prop-

ositions are meaningless is true, this law cannot refer to itself;

that is, every proposition is either true or false except the Law
of Excluded Middle, which is therefore meaningless.

To save logic from the chaos which would result from such

an assumption, proponents of the solution have divided all

propositions into "types." Propositions which talk about indi-

vidual objects are placed in the first type. Examples of such

statements are "Jones is a Senator," "The Cardinals won the

World Series," or "I hate potatoes." Propositions which talk

about propositions of the first type belong to the second type.

For example, "Jones says that Greene is dishonest," or "All state-

ments about your honesty are false." Propositions which have
propositions of the second type as terms are of the third type.
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We assume that propositions of the nth. type must talk about

propositions of the (n — 1) th type or less; if a statement in-

cludes as one of its elements a proposition of its own type or

higher, it is meaningless. The "Theory of Types," as thus formu-

lated, requires a separate Law of Excluded Middle for every

type, but the Law of Excluded Middle is saved from oblivion.

Certain difficulties still remain, such as, to what type belongs

the proposition which forms the principle assumption of the

theory itself? The account given here includes only a sketch of

this solution. For more complete expositions, see the reading

list at the end of this chapter.

Another solution of the difficulties of the Epimenides paradox

consists in defining accurately the concepts in question in a

search for an ambiguity in terms. A possibly successful solution

of this type is that of H. B. Smith.^ Such a solution, if sound,

avoids all the complexities of the theory of types.

The Epimenides paradox does not by any means exhaust the

number of logical paradoxes. Some arguments which modern
logicians classify as paradoxes are not purely logical but result

from an apparent conflict between the principles of logic and
the principles of another science. These are undoubtedly im-

portant, both from the point of view of logic and the other

science involved. A discussion of these will be found in the next

chapter.

There are, however, other paradoxes of the purely logical

order. Many of these are merely different forms of the Epimeni-

des paradox, and such solutions as have been offered for the

latter are usually taken in their most general form to apply to

the former as well. Hence, in the exposition of these given be-

low, no further suggestions regarding solutions will be made.

One such paradox is that of Russell.^ This, like the Epimeni-

des paradox, has many forms. One relates the predicament of

the librarian at Alexandria whose task it was to make a catalogue

of just those books which did not mention themselves in their

contents. The question arose whether the catalogue, which was
to stay in the library, should include itself in the list of works.

If not, then, since it fails to mention itself, it fulfills the rule of

1 Cf . Chap. XVII.
2 Named for Bertrand Russell, modern founder of the theory of types; an ex-

position of the fallacy appears in his Principles of Mathematics, though the fallacy

was known in a special form by medieval logicians.
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belonging in the catalogue and should be included; if so, then
it does mention itself and fails to fulfill the requirements for

being included.

Another form of the paradox divides the class of adjectives

into "homonyms" and "heteronyms." A homonym is any ad-

jective which describes itself. Thus "small" is a small word,
"tremendous" is a tremendous word, "old" is an old word. We
ask whether the adjective "heteronym," which asserts that a

given adjective is not a homonym, is itself a homonym or not.

If so, then it must describe itself, in which case it would be a

heteronym. If not, it would be heteronymous hence self-descrip-

tive, hence a homonym.
Russell's paradox may be generalized to include all these and

similar examples. Among the set of classes, we recognize that

some include themselves, some do not. Thus, the class of all

classes is itself a class, but the class of men is not a man. We
define a class M as: to M belong all those and only those classes

which do not include themselves as members. Does M include

itself or not?

Another type of argument which seems to yield a contradic-

tion is that perhaps best designated as the "dilemma paradox." ^

One form of this paradox is the tale of the beautiful maiden and
the conscientious alligator. This maiden, the fairest in all Africa,

overstepped the bounds of safety and propriety, and fell into- the

hands of the king of the alligators. It is a part of the moral code
of all alligators never to take complete advantage of another. So
to the plea of the maiden's mother for the return of her daughter,

the alligator replied that he would free her, provided the mother
would tell him one true proposition (possibly realizing the ter-

rible feminine propensity for exaggeration) . The mother was
about to say "Grass is green" or "2 + 2 = 4," but thought, at the

last moment, that the situation might become embarrassing were
the alligator to ask "Why?" So, with true feminine intuition, she

said, "You are going to keep my daughter." The alligator is

caught (3n the horns of an awful and inescapable dilemma. If

he keeps the maiden, then her mother told the truth, and he has

broken the sacred word of the alligators. If, however, he re-

linquishes her, the mother has told a lie, and by rights he ought

3 So-called because the argument always takes the form of a dilemma (cf. p.
35)

.
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to keep her. Here the interest o£ logic ends, but the tragedy of

the alligator begins.

There is a similar tale about a king who chose as husbands

for his daughters all suitors who could answer truthfully the

question he asked them and complete successfully the task he

proposed. This left the choice of sons-in-law entirely in the

hands of the wise monarch, for to those who did not please him
he proposed the following question: "What will you be doing

tomorrow at high noon?" and followed this by offering the fol-

lowing task: "Tomorrow at high noon you are to do the opposite

of your answer to my question."

In the case of the dilemma paradox, a solution may be of-

fered different from the theory of types or allied solutions. One
may simply ask, concerning either of these stories, "What conse-

quence is this to logic?" A paradox should try to show the falsity

of some fundamental law of logic. What law is violated here?

The alligator, we say, must either release the maiden or keep

her, and this much is logically true. The argument goes on to

point out that in either case he breaks his promise. But no logi-

cal law is involved. I may promise someone that I will be at this

spot tomorrow at three o'clock and also that I will be somewhere
else at three o'clock. Now, no matter what I do I must break my
promise. Similarly, the alligator has proposed an impossible task

for himself provided the mother answers as she does. What he

really promises in this case is both to return and to keep the

maiden, a promise that cannot be fulfilled. Likewise, the story

of the king and the suitors clearly displays the impossibility of

the task required.

There is another form of argument which appears to involve

a logical paradox, but in reality does not. This is generally

known as the argument leading to an "infinite regress." An ex-

ample of a regress occurred several years ago (it is said) when
the government proposed to transform Pecos County, Texas,

into a huge map of the United States. Every single object in the

Union, houses, trees, roads, rivers, etc., was to be reproduced

in scale on the map. The engineers were faced with the problem

of Pecos County itself; in representing Pecos County accurately

on the large map, a miniature map of the United States was

required, which included Pecos County, necessarily requiring
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another, even smaller map, etc., etc. A similar situation would
occur if a manufacturer were to print on the box containing his

merchandise a picture of someone carrying the box.

Another tale, with a like moral, is told of a certain emperor

who resolved that no suitor should ever win the hand of his

beloved daughter. To each one who came seeking marriage he

assigned the following task: to copy into one volume all the

words of the books in the emperor's library, including any du-

plications caused by two books being the same or having sec-

tions in common. Since this volume, when finished, became a

part of the emperor's library, the hapless suitor found himself

involved in an endless task, for he had to copy out the words of

the volume he had just completed, and when he had finished

this, he had to start all over again, this process being repeated

endlessly.

Often the infinite regress brings us around to the starting

point again, so that the process is infinite but circular. Thus,

two snakes in the act of consuming each other would involve

themselves in an infinite task, provided each could transform

what he had just eaten to a new body. Again, a certain four

brave soldiers were contemplating a daring feat. A declared that

he would go if B went, while B made his going dependent on
C's going also, while C would go only if D went, and D, finally,

agreed to go if A would. Here the procedure of determining on
these grounds whether the party went or not is an infinite and
also a recurrent one, since we keep repeating the given propo-

sitions.

The misanthropists of a cettain country, we are told, dis-

gusted with man's delight in the companionship of others, de-

cided to form a club whose by-laws read as follows:

1. Anyone who belongs to no other club automatically is elected

a member of the Misanthropist Club.

2. If any member of the Misanthropist Club is a member of some
club, he is automatically expelled from membership in this club.

Mr. A, who belonged to no club at the time the misanthropists

organized, found himself involved in an infinite series of elec-

tions to and expulsions from the new club. By-law number 1

elected him to membership but By-law 2 immediately expelled
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him, when, since he again belonged to no club, he automati-

cally regained his membership, whereupon he was again ex-

pelled, etc.

Many cases which appear to involve an infinite regress do not

actually do so, some because a contradiction results in a finite

number of steps, others because the process may stop (without

contradiction) at some finite place. Thus it might appear that

the proposition "I am now lying" or "The statement I am now
making is false" involves an infinite regress; for if it is true that

I am now lying, then I am now saying something false, i.e., it is

false that I am lying, or I am telling the truth. What I say, how-

ever, is tliat I am lying, hence I must actually be doing so, in

which case I am saying something false, and so it goes on. But,

though the series described is infinite, a contradiction has been

reached on the second step as has been shown above. If the

statement "I am now lying" is true, then it must be false; but

any statement which implies its own negation is a false state-

ment and this proposition must be false also. But if "I am now
lying" is false, it must be true; hence the statement is both true

and false. Here the interest of logic stops, even though the argu-

ment may proceed indefinitely, for the series has involved us in

a contradiction. Thus, in general, all cases of the Epimenides

paradox are not treated as cases of infinite regress.

An example of a series apparently infinite, but not actually so,

occurs in the story of Euthalus and Protagoras. Euthalus, a law

pupil of Protagoras, made an agreement with his teacher: he was

to pay half his tuition at the end of his course and the other half

when he won his first case, this being some sort of a guarantee

on the teacher's part for the practical value of his instruction.

However, Euthalus fell heir to a considerable fortune, forsook

the practice of law, and turned to more pleasant if less lucrative

activities, whereupon Protagoras, wearying of waiting for the re-

mainder of his fee, took the matter to court. Euthalus now de-

cided to argue his own case. The judge at the trial appeared to

be involved either in an infinite regress of decisions or a contra-

diction. If he. grants the verdict to Euthalus, then the lad has

won his first case and according to the stipulation of the con-

tract must pay Protagoras. But if he does have to pay, he really

did not win the trial, and having won no other case, he need not

pay, in which case, having after all won the trial, he must pay,
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etc. A similar regress appears to occur if the verdict is given to

Protagoras.

Actually the series must stop at the second step. The only

question before the judge is "Must Euthalus pay Protagoras his

fee?" and this question, according to the terms of the contract,

depends solely on the answer to another question "Has Euthalus

won any cases as yet?" Since, at the time of the trial, the answer

to the latter question is in the negative, then the judge must
answer the first question in the negative as well, and, grant the

verdict to Euthalus. The trial completed and won by the pupil,

he must then pay his master, for if the master took the matter to

court again he could establish the fact that Euthalus had won a

case. Thus Euthalus wins the first trial, but since he had elected

to plead his own case, he must lose the second. The loss of the

second trial does not erase the victory of the first, though it does

make this victory one of small value for the victor.

It is important to note that the process of infinite regress in-

volves no logical difficulties and hence is not a logical paradox as

we have defined the term. However impractical an infinite series

of steps may be in deciding the truth or falsity of some proposi-

tion or in completing some task, no contradiction is involved.

The absolute sceptic declares that nothing is certain, not even
this declaration he has just made; and that the entire statement

that nothing is certain, not even this, is itself uncertain, and the

declaration that this is uncertain is also uncertain and so on.

Such a philosopher involves himself in no contradiction even
though he requires an infinite series to state his whole position.

Absolute scepticism is bad, since in practice we require some
hypothesis upon which to proceed, and for the sceptic such an
hypothesis is usually taken to be the statement that nothing is

certain. If he were faithful to his position, apparently he would
be forced to spend his days defining his philosophy. Rather than
do this, he forsakes his theory and acknowledges one certainty,

namely, the certainty that nothing other than this is certain.

But questions of practice are not questions of logic; it may be
inconvenient to be involved in an infinite regress, but it is not
inconsistent.

A paradox which seems to fall within the scope of logic,

though it draws on certain propositions from other sciences, is

that which concerns itself with the "nameability" of the in-
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tegers. We note that as we go higher in naming the series o£

whole numbers we require more and more syllables, so that

"one thousand three hundred and forty" requires more syllables

than "one thousand and ten." It seems evident enough that

among the integers there will be a least integer not nameable in

fewer than nineteen syllables. In the usual scheme of naming
integers, this number is 111,777. Hence "the least integer not

nameable in fewer than nineteen syllables" is a name for 111,-

777. But this name contains but eighteen syllables. Hence 111,-

777 both is and is not nameable in fewer than nineteen syllables.

Proponents of the theory of types mentioned here attempt to

solve this paradox by pointing out that "the least integer not

nameable in fewer than nineteen syllables" cannot be included

among the names implied in the word "nameable," otherwise

we would have the case of a self-referring proposition. Thus
there appears to be an equivocation in the word "name." Op-

ponents of this theory might urge a similar equivocation with-

out accepting the theory in its other applications.

Not all the difficulties of the science of logic center around

the Principle of Contradiction. One such paradox which appar-

ently destroys the validity of another important logical law was

given by C. L. Dodgson (Lewis Carroll) . We cannot do better

than to let him tell the story in his own incomparable way:

Achilles had overtaken the Tortoise, and had seated himself com-

fortably on its back,

"So you've got to the end of our racecourse?" said the Tortoise.

"Even though it does consist of an infinite series of distances? I

thought some wiseacre or other proved that the thing couldn't be

done?"

"It can be done," said Achilles. "It has been done! Solvitur ambu-
lando. You see, the distances were constantly diminishing: and
so

"

"But if they had been constantly increasing!" the Tortoise inter-

rupted. "How then?"

"Then I shouldn't be here," Achilles modestly replied; "and you

would have got several times around the world, by this timel"

"You flatter me

—

flatten, I mean," said the Tortoise; "for you are

a heavyweight, and no mistake! Well now, would you like to hear

of a racecourse, that most people fancy they can get to the end of

in two or three steps, while it really consists of an infinite number
of distances, each one longer than the previous one?"
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"Very much indeed!" said the Grecian warrior, as he drew from
his helmet (few Grecian warriors possessed pockets in those days) an
enormous notebook and a pencil. "Proceedl And speak slowly,

please! Shorthand isn't invented yet!"

"That beautiful First Proposition of Euclid!" the Tortoise mur-
mured dreamily. "You admire Euclid?"

"Passionately! So far, at least, as one can admire a treatise that

won't be published for some centuries to come!"
"Well, now, let's take a little of the argument of that First Proposi-

tion—^just two steps, and the conclusion drawn from them. Kindly
enter them in your notebook. And, in order to refer to them con-

veniently, let's call them A, B, and Z:

(A) Things that are equal to the same are equal to each other.

(B) The two sides of this Triangle are things that are equal to

the same.

(Z) The two sides of this Triangle are equal to each other.

"Readers of Euclid will grant, I suppose, that Z follows logically

from A and B, so that any one who accepts A and B as true, must
accept Z as true?"

"Undoubtedly! The youngest child in a high school—as soon as

high schools are invented, which will not be till some two thousand
years later—^will grant that."

"And if some reader had not yet accepted A and B as true, he
might still accept the Sequence as a valid one, I suppose?"

"No doubt such a reader might exist. He might say 'I accept as

true the Hypothetical Proposition that, if A and B be true, Z must
be true; but I don't accept A and B as true.' Such a reader would do
wisely in abandoning Euclid, and taking to football."

"And might there not also be some reader who would say 'I ac-

cept A and B as true, but I don't accept the hypothetical'?"

"Certainly there might. He, also, had better take to football."

"And neither of these readers," the Tortoise continued, "is as yet

under any logical necessity to accept Z as true?"

"Quite so," Achilles assented.

"Well, now, I want you to consider me as a reader of the second

kind, and to force me, logically, to accept Z as true."

"A tortoise playing football would be
—

" Achilles was beginning.
"—an anomaly, of course," the Tortoise hastily interrupted.

"Don't wander from the point. Let's have Z first, and football after-

wards!"

"I'm to force you to accept Z, am I?" Achilles said musingly. "And
your present position is that you accept A and B, but you don't

accept the Hypothetical -"
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"Let's call it C," said the Tortoise.
"—but you don't accept:

(C) If A and B are true, Z must be true."

"That is my present position," said the Tortoise.

"Then I must ask you to accept C."

"I'll do so," said the Tortoise, "as soon as you've entered it in

that notebook of yours. What else have you got in it?"

"Only a few memoranda," said Achilles, nervously fluttering the

leaves: "a. few memoranda of—of the battles in which I have dis-

tinguished myself1"

"Plenty of blank leaves, I see!" the Tortoise cheerily remarked.

"We shall need them all!" (Achilles shuddered.) "Now write as I

dictate:

(A) Things that are equal to the same are equal to each other.

(B) The two sides of this Triangle are things that are equal to

the same.

(C) If A and B are true, Z must be true.

(Z) The two sides of this Triangle are equal to each other."

"You should call it D, not Z," said Achilles. "It comes next to the

other three. If you accept A and B and C, you must accept Z."

"And why must I?"

"Because it follows logically from them. IfA and B and C are true,

Z must be true. You don't dispute that, I imagine?"

"If A and B and C are true, Z must be true," the Tortoise thought-

fully repeated. "That's another Hypothetical, isn't it? And, if I

failed to see its truth, I might accept A and B and C, and still not ac-

cept Z, mightn't I?"

"You might," the candid hero admitted; "though such obtuseness

would certainly be phenomenal. Still, the event is possible. So I

must ask you to grant one more Hypothetical."

"Very good. I'm quite willing to grant it, as soon as you've written

it down. We will call it

(D) If A and B and C are true, Z must be true.

"Have you entered that in your notebook?"

"I have!" Achilles joyfully exclaimed, as he ran the pencil into its

sheath. "And at last we've got to the end of this ideal racecourse!

Now that you accept A and B and C and D, of course you accept Z."

"Do I?" said the Tortoise innocently. "Let's make that quite clear.

I accept A and B and C and D. Suppose I still refuse to accept Z?"

"Then Logic would take you by the throat, and force you to do
it!" Achilles triumphantly replied. "Logic would tell you 'You can't

help yourself. Now that you've accepted A and B and C and D, you
must accept Z.' So you've no choice, you see."
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"Whatever Logic is good enough to tell me is worth writing

down," said the Tortoise. "So enter it in your book, please. We will

call it

(E) If A and B and C and D are true, Z must be true.

"Until I've granted that, of course, I needn't grant Z. So it's quite

a necessary step, you see?"

"I see," said Achilles; and there was a touch of sadness in his tone.

Here the narrator, having pressing business at the Bank, was

obliged to leave the happy pair, and did not again pass the spot

until some months afterwards. When he did so, Achilles was still

seated on the back of the much-enduring Tortoise, and was writing

in his notebook, which appeared to be nearly full. The Tortoise was

saying "Have you got that last step written down? Unless I've lost

count, that makes a thousand and one. There are several millions

more to come. And would you mind, as a personal favor—consider-

ing what a lot of instruction this colloquy of ours will provide for

the Logicians of the Nineteenth Century

—

would you mind adopt-

ing a pun that my cousin the Mock-Turtle will then make, and
allowing yourself to be renamed Taught-Us?"

"As you please!" replied the weary warrior, in the hollow tones of

despair, as he buried his face in his hands. "Provided that you, for

your part, will adopt a pun the Mock-Turtle never made, and allow

yourself to be re-named A Kill-Ease!"^

Carroll's paradox deals with the problem as to how a theorem
in a deductive system may be asserted apart from the proposi-

tions which are used in its proof. That is, suppose in our deduc-

tive system that p and q imply r, and also that p and q are true.

How may he claim that r is true without adding to our system

the proposition "li p and q imply r, and p and q are both true,

then r is true"? And after this has been added, we require an-

other like it, and so forth, ad infinitum.

The problem is really one belonging to the philosophy of

formal science. One might answer the paradox simply by stating

that in a formal system we never do disassociate the assumptions

necessary to prove a given proposition from the assertion of that

proposition. When we say "p is a theorem in this system" we
mean "p is true if the postulates of this system are true." Such
an answer may be adequate in the realm of formal science, but

if we have actually established the truth of the postulates, say by
some experiment, we would like to assert the theorems as inde-

* Lewis Carroll, "What the Tortoise Said to Achilles," Mind, Dec, 1894.
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pendent truths; i.e., we would like to "suppress" the hypotheses

necessary to establish a given theorem if these hypotheses are

verified.

One solution of the problem lies in making a distinction be-

tween "implication" and "inference." The statement "If A,

then B" expresses an implication between two propositions,

while the statement "A is true, and therefore B" is an inference,

the truth of B having been inferred from that of A. We then as-

sert that the truth of B may be inferred from the statement "A
is true and A implies B." This assertion is not an implication

and must be distinguished from a similar law of logic which is in

an implicative form: "If A is true and A implies B, then B is

true." We cannot say that the validity of the former, the infer-

ence, rests solely on the validity of the latter, the implication,

without involving ourselves in some such paradox as the above.

Rather, the two statements are independent laws.

The paradoxes enumerated here are not exhaustive, of course,

nor is there any apparent method of showing that logic is for-

ever safe from contradiction or that someone may not invent an

insoluble paradox sometime. Further, some paradoxes that

many logicians believe to be purely logical, have been placed

under the heading of "Conflicts between Logic and Some Other

Science." Such conflicts arise when one science sets down as true

a proposition which is false for another science. When this is

the case, one of the sciences must change its laws in some respect.

Hence, in the paradoxes enumerated in the next chapter, all of

which show cases of conflicts between the science of logic and

some other science, there is always the question as to whether or

not we should change logic.

EXERCISES

GROUP A

Determine, if possible, what type of logical paradox is exhib-

ited by each of the following; can you suggest solutions?

1. Jones bets Smith that Smith will win all his bets during the next

month, the agreement being that whenever Smith wins, he must

pay Jones the amount won plus fifty dollars, while if Smith loses,

Jones must pay him his loss plus fifty dollars. At the end of the
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month the question arises as to who won the given bet. If Jones

won, then Smith lost and must pay Jones fifty dollar; but then

Jones must pay Smith his loss plus fifty dollars, etc. If Smith

won, then he must pay Jones fifty dollars, etc.

2. There was a barber in a certain town who shaved all those and
only those who shaved themselves. Did he shave himself?

3. "I said in my heart, all men are liars."

4. A man invented a machine to detect whether any bells were ring-

ing in a nearby city; if none were ringing, a bell was automati-

cally started in his machine to register this fact, while if any
started to ring, the bell in the machine instantly stopped. One
day the inventor decided to carry his invention within the city

limits, thus placing it in an inextricable dilemma when all the

bells of the city were at rest.

5. Some ancient scientists, raising the question as to what held the

earth in position, declared that it was Atlas. Now Atlas, to be
successful, must stand on something; this something must stand

on something else, etc., etc.

6. A certain philosopher asserts that every proposition is true. Is

this assertion self-defeating?

7. The number of words in the English language is finite, and
hence the number of meaningful statements made out of these

words must be finite, since no meaningful statement contains an
infinite number of words. Hence, the number of true proposi-

tions must be finite. But this is not possible, for if I gather to-

gether all the true propositions I may assert "This is the list of

true statements" adding another true statement to the list al-

ready made. Hence for any given number of true propositions

there is always another true proposition and so the number
must be infinite; therefore, so must be the total number of mean-
ingful statements in English.

8. It is impossible to know anything beyond any question of doubt.

For suppose that you know that the proposition p is unques-
tionably true. In order to know this, you must know that you
know that p is true. But to know this last statement completely,

you must know that you know that you know p is true, etc. In
other words, to know something completely and beyond ques-

tion, one must know an infinite number of things, and this is

impossible.

9. "So natural, indeed, to the morbid activity of man are these re-

volving forms of alternate repulsion, where flight turns suddenly
into pursuit, and pursuit into flight, that I myself, when a
schoolboy, invented several. This, for instance, which once puz-
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zled a man in a wig, and I believe he bore me malice to his dying

day, because he gave up the ghost by reason of fever, before he

was able to find out satisfactorily what screw was loose in my log-

ical conundrum; and thus, in fact, 'all along of me' (as he ex-

pressed it) the poor man was forced to walk out of life re infecta,

his business unfinished, the sole problem that had tortured him
unsolved. It was this. Somebody had told me of a dealer in gin,

who, having had his attention roused to the enormous waste of

liquor caused by the unsteady hands of drunkards, invented a

counter which, through a simple set of contrivances, gathered

into a common reservoir all the spillings that previously had run

to waste. Saint Monday, as it was then called in English manu-
facturing towns, formed the jubilee day in each week for the

drunkards; and it was now ascertained (i.e. subsequently to the

epoch of the artificial counter) that oftentimes the mere 'spilth'

of Saint Monday supplied the entire demand of Tuesday. It

struck me, therefore, on reviewing the case, that the more the

people drank the more they would titubate, by which word it

was that I expressed the reeling and stumbling of intoxication.

If they drank abominably, then of course they would titubate

abominably; and titubating abominably, inevitably they would
spill in the same ratio. The more they drank, the more they

would titubate; the more they titubated, the more they would
spill; and the more they spilt, the more, it is clear, they did not

drink. You can't tax a man with drinking what he spills. It is

evident, from Euclid, that the more they spilt, the less they could

have to drink. So that, if their titubation was excessive, then

their spilling must have been excessive, and in that case they

must have practiced almost total abstinence. Spilling nearly all,

how could they have left themselves anything worth speaking

of to drink? Yet, again, if they drank nothing worth speaking of,

how could they titubate? Clearly they could not; and, not titu-

bating, they could have had no reason for spilling, in which case

they must have drunk the whole—that is, they must have drunk
the whole excess imputed, which doing, they were dead drunk,

and must have titubated to extremity, which doing, they must
have spilt nearly the whole. Spilling the whole, they could not

have been drunk. Ergo, could not have titubated. Ergo, could

not have spilt. Ergo, must have drunk the whole. Ergo, were

dead drunk. Ergo, must have titubated. And so round again,

as my Lord the bishop pleasantly expresses it, in secula secu-

lorum." °

5 De Quincey, Sir William Hamilton.



THE LOGICAL PARADOXES 215

10. The great philosopher, Leibnitz, constructed a theory of reality

in which all substance is made up of perceiving minds, called

"monads." Each monad mirrors the entire universe of monads,

though most monads are not conscious of all that they perceive.

Now, since every monad perceives the universe, it must also per-

ceive itself, since it is a member of the universe; but since it is

perceiving everything, it must perceive itself perceiving every-

thing, and since that "everything" includes itself, it must per-

ceive itself perceiving itself perceiving everything, etc., etc. Fur-

ther, since each monad perceives every other monad, and the

other monad is perceiving everything, and this "everything" is

every other monad, each monad perceives an infinite number
of monads which are perceiving itself, etc., etc.

11. Dear Sir:

I am a customer of yours and I say that you are wrong in

saying that the customer is always right. Now if I am right in

saying that, then I am wrong, and if I am wrong then you are

liars. Therefore, I am withdrawing my account.

Yours truly,

12. "It's true, isn't it, John, that a man is always a tyrant in his own
home?"
"Well, my dear, I hardly think

"

"It's true, isn't it?"

"Yes, my dear."

13. "A more pleasant example of the same logical see-saw (as the

Epimenides paradox) occurs in the sermons of Jeremy Taylor.

That man, says the inimitable bishop, was prettily and fantasti-

cally troubled, who, having used to put his trust in dreams, one

night dreamed that all dreams were vain. He considered if so,

then this dream was vain, and the dreams might be true for all

this. (For who pronounced them not true except a vain dream?)

But if they might be true, then this dream might be so upon
equal reason. And dreams were vain, because this dream, which

told him so, was true; and so round again. In the same circle

runs the heart of man. All his cogitations are vain, and yet he

makes especial use of this—that that thought which thinks so,

that is vain. And if that be vain, then his other thoughts, which

are vainly declared so, may be real and relied upon. You see,

reader, the horrid American fix into which a man is betrayed, if

he obeys the command of a dream to distrust dreams univer-

sally, for then he has no right to trust this particular dream,

which authorizes his general distrust. No; let us have fair play.
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What is sauce for the goose is sauce for the gander. And this

ugly gander of a dream, that notes and protests all dreams col-

lectively, silently, and by inevitable consequence notes and pro-

tests itself."
^

14. "Let T be the relation which subsists between two relations R
and 5 whenever R does not have the relation R to 5. Then, what-

ever relations R and S may be, 'R has the relation T to S' is

equivalent to 'R does not have the relation RtoS.' Hence, giving

the value T to both R and S, 'T has the relation T to T' is

equivalent to 'T does not have the relation T to T.' " ^
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Conflicts Between Logic
^ ^

and Other Sciences

IN
THIS chapter we consider cases in which the accepted laws

of a given science and those of logic somehow come in con-

flict. By "accepted" we mean that the laws have been established

by some such method as that described in chapter VIII.

To solve these difficulties, three paths, at least, are open. We
may (1) change one or more of the laws of the science in ques-

tion, (2) change the laws of logic, or (3) search for an equivo-

cation or some other fallacy in the argument purporting to show

a conflict.

I. It would be a mistake to follow our classification of the

sciences in enumerating these conflicts, since some of the para-

doxes of arithmetic are far more difficult than those of sciences

higher in the scale. It will be best to begin with one of the earli-

est examples of scientific paradox, that which appears to con-

tradict the basic assumption of kinematics. Kinematics is the

first science to introduce the concept of time and consequently

the concept of velocity or, in general, the concept of the motion

of a particle. Very early in history of the occidental philosophy

it occurred to certain Greek philosophers that the assumption

that there exists any such thing as motion at all was false. That

is, our senses, to which we appeal for the validity of the proposi-

tion that certain bodies move, are deceiving us.

Parmenides {ca. 502 b. c.) was the first thinker who arrived at

this conclusion, and he came to it after he had set out to answer

a problem as old as Greek philosophy: "Of what is the world

made?" The problem of the correct recipe for the matter of the

world had been answered in various ways by the predecessors of

Parmenides: one said that the world was made of water, which
217
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underwent far more changes than one realized, to form every

material object. Another, with more caution but less simplicity,

insisted that the world was made of four irreducible elements:

air, earth, water, and fire. But Parmenides thought he saw the

solution to the problem in the answer to another question:

"What does everything in the world have in common?" Surely,

considering all the diverse objects of the world, there can be but

one reply, namely, that all the objects in the world have in com-

mon only one thing, their existence. Being is common to every-

thing that is, this much is certainly tautological. The primary

element in the world, then, must be Being.

Are there any other elements? At first sight we are inclined to

reply "yes," for though this table and that man are both exist-

ent, they are different nevertheless, hence there must be some-

thing which makes man a man and not a table, and something

else that makes a table a table and not a man. In the case of

this illustration, there must be an element other than being to

explain wood and another element to explain flesh. But, says

Parmenides, in this we are deceived: there cannot be anything

in the world other than Being. For suppose there were another

element, say x, which is not the same as Being. Then x is non-

Being, since it differs from Being. But to say that x is non-Being

is to say that x is nonexistent; hence x does not exist and our

supposition that there exists in the world another element be-

sides Being is absurd.

A similar argument allows us to prove that nothing ever

moves in the world. For the only thing in the world is Being, as

we have already shown. If something moves, it must move from

the place where it is to the place where it is not, for otherwise

there is no motion. Hence, if Being moves, it must move to a
place where it is not. But the place where Being is not, is, by

definition, a nonexistent place. By similar arguments Par-

menides supposedly proved that change is impossible.

In the face of these paradoxes, most of us are apt to insist

that the whole argument is a verbal quibble, though exactly

where the equivocation lies we are not so certain. It is doubtful

whether the contemporaries of Parmenides took him very seri-

ously; indeed, certain commentators would have us believe that

Parmenides himself was not convinced that the world was such

a static and homogenous place as he had pictured it, and he felt
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that he was obliged to give another account of the world in

which motion and change do take place.^ But however ill-

disposed we may feel towards the reasoning of Parmenides, the

arguments of his pupil, Zeno, certainly seem to settle the matter.

Zeno, like Parmenides, attempts to show that motion is im-

possible, though his arguments are altogether of a different na-

ture. There are four proofs which have been handed down
through Aristotle:

1. The first is also the most general. If there were such a

thing as the motion of a particle, it would take place with re-

spect to two points, the beginning and the terrainus of some
line, straight or curved, connecting these points. If the given

points are A and B, then the path of motion may be represented

by AB. Now for the particle to move from A to B, e.g., for a

book to fall from the table to the floor, it must first go half the

distance, i.e., it must pass through the middle point of the path

AB, say C^. Here the argument may take one of two courses. We
may point out that if the particle arrives at C^, it must still pass

through the midpoint of C^B, i.e., the three-quarter point of

AB, say C2. However, even though it arrives at Cg, it still has

to pass through C3, the midpoint of CgB, or the seven-eighths

point of the whole path; and similarly it must pass through

C4, the midpoint of C3B, and through C5, and through Cg,

ad infinitum. Since it is impossible that it pass through all

these midpoints, there being an infinite number of them, and
since it must do so to reach B, the particle never can arrive

at B. Or, we may point out that before coming to C^, the

particle must already have passed through C'g, the midpoint of

ACj, and that, before arriving at C'2, it must have passed

through C'3, the midpoint of AC'g. That is, before arriving at

any point we like, the particle must already have passed through
an infinity of points, an absurdity, and hence the particle can-

not even start. Either argument is adequate, since in the first

case AB may be taken as small as we please, so that the particle

cannot move any distance.

A diagram is given illustrating both arguments:

A . . . C'. G, C. C2 C3 • • • B

1 However, the best authorities seem to take Parmenides' Way of Opinion as

representing the belief of the naive scientist who is unaware of the Way of Truth.
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Some have insisted that only the second form of Zeno's argu-

ment has any force, on the grounds that the first assumes that

there is such a think as motion. But such procedure is perfectly

adequate and is used constantly in mathematics under the name
of the "Indirect Proof." We assume the validity of a certain

proposition throughout an argument with the ultimate inten-

tion of showing that such an assumption leads to a contradic-

tion, and hence must be false.

2. The second of Zeno's arguments is identical with the first

for all practical purposes but has more romantic appeal since it

is a case of the weak overcoming the strong. The story is told so

admirably by De Quincey that it is quoted verbatim:

Achilles, most of us know, is celebrated in the Iliad as the swift-

footed; and the tortoise, perhaps all of us know, is equally celebrated

among naturalists as the slow-footed. In any race, therefore, between
such parties, according to the equities of Newmarket and Doncaster,

where artificial compensations as to the weight of riders are used to

redress those natural advantages that would else be unfair, Achilles

must grant to the tortoise the benefit of starting first. But if he does

that, says the Greek sophist, then I, the sophist, back the tortoise to

any amount, engaging that the goddess-born hero shall never come
up with the poor reptile. Let us see. It matters little what exact

amount of precedency is conceded to the tortoise; but say that he is

allowed a start of one-tenth part of the whole course. Quite as little

does it matter by what ratio of speed Achilles surpasses the tortoise;

but suppose this ratio be that of ten to one, then, if the race course

be ten miles long, our friend the slow-coach, being by the conditions

entitled to one-tenth of the course for his starting allowance, will

have finished one mile as a solo performer before Achilles is entitled

to move. When the duet begins, the tortoise will be entering on the

second mile precisely as Achilles enters on the first. But, because the

Nob runs ten times as fast as the Snob, whilst Achilles is running his

first mile, the tortoise accomplishes only the tenth part of the second

mile. Not much, you say. Certainly not very much, but quite enough
to keep the reptile in advance of the hero. This hero, being very

little addicted to think small beer of himself, begins to fancy that it

will cost him too trivial an effort to run ahead of his opponent. But
don't let him shout before he is out of the wood. For, though he soon

runs over that tenth of a mile which the tortoise has already finished,

even this costs him a certain time, however brief. And during that

time the tortoise will have finished a corresponding subsection of
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the course—viz., a tenth part of a tenth part. This fraction is a

hundredth part of the total distance. Trifle as that is, it constitutes

a debt against Achilles, which debt must be paid. And whilst he is

paying it, behold our dull friend in the shell has run the tenth part

of a hundredth part, which amounts to a thousandth part. To the

goddess-born what a fleabite is that! True it is so, but still it lasts

long enough to give the tortoise time for keeping his distance and

for drawing another little bill upon Achilles for a ten-thousandth

part. Always, in fact, alight upon what stage you will of the race,

there is a little arrear to be settled between the parties and always

against the hero. "Vermin, in account with the divine and long-

legged Pelides, Cr. by one billionth or one decillionth of course,"

much or little, what matters it, so long as the divine man cannot pay

it off before another installment becomes due? And pay it off he

never will, though the race should last for a thousand centuries.^

3. Zeno's third argument is quite different from the first two,

the philosopher apparently feeling obliged to establish his point

in as many ways as possible. The arrow in flight, says Zeno, must
either be in motion at a point A on its path or else not.® But an

object cannot be moving at a point, for motion involves the

concept of distance or length, and a point has no length. Put

otherwise, if we say that the object is moving at the point A,

then since its velocity is a function of length and the length here

is zero, it must have no velocity at A and hence is not in motion.

But if the body does not move at any point A of its path, the

body is in motion nowhere, and hence it is absurd to suppose

that it moves along its path at all.

4. The fourth argument is concerned with the relativity of

niotion. A modern example will be better than Zeno's. Imagine

three trains of an equal number of cars at rest side by side in a

station. Train A and train B start off, one north, the other south,

at the same time and at the same speed, while C remains sta-

tionary. A person on the observation car of A will pass all the

cars of train B in the same time in which he has passed but half

of the cars of C. Hence if the time it takes him to pass the cars

of B is one minute and the trains have ten cars, his velocity will

be ten cars a minute and also five cars a minute, an obvious con-

tradiction.

2De Quincey, op. cit.

3 The argument is usually given in the form: "The arrow is either moving
where it is or where it is not," but the form above seems clearer and more cogent.
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With the exception of Zeno's first and second arguments, the

Eleatic * paradoxes must be solved by different means; this is an

illustration of the ingenuity of the Greek mind, that it could

devise so many different kinds of arguments to establish one

point. No one has felt inclined to agree with the Eleatic thesis

that motion is impossible, chiefly because such a thesis destroys

all science from kinematics on; indeed, Parmenides' arguments

concerning the homogeneity of the world would lead us to deny

any applications of arithmetic or geometry as well, so that all

that remains is logic, if even that. Hence, if the foundations of

kinematics are not at fault, we must find solutions to the par-

adoxes. As in the case of the logical paradoxes, despite the sim-

plicity of their form, the Eleatic arguments are not trivial; we
can fairly say that there is no unanimity of opinion regarding

their correct solution. We will suggest possible solutions of the

difficulties involved, but such suggestions are by no means to be

considered as final answers.

In general, most paradoxes may be solved by properly defin-

ing the terms used and setting forth the principles involved.

Parmenides' argument asserts the following principles to show

that only the attribute of existence is meaningful:

1. If something has an attribute other than existence, the attri-

bute must differ from existence somehow.

2. By "differing from existence" we must mean "nonexistence."

3. Hence, something having an attribute differing from existence

does not exist.

It is clear that if ambiguities are to be found, they must be

found in number 2. If I say that this table is brown and "brown"

means something other than existence, it does not follow that

"brown" means "nonexistence"; when I describe something by

one quality and then by another, if the second differs from the

first I do not mean that the first is lacking if the second is there.

The difficulty is solved by showing that there are many uni-

verses of discourse (cf. page 98) . The universe of discourse of

brown is color, and "not brown" means some color other than

brown. The universe of discourse of "existent" is all things and

"nonexistent" means something which does not exist. When we

*Zeno and Parmenides were called Eleatics after the name of their country,

Elea.



CONFLICTS WITH OTHER SCIENCES 223

say that something is brown and exists, we mean by "brown"
something "other than 'existent,' " but we do not mean by

brown "nonexistent." Rather we mean that the terms "brown"
and "exists" belong to different universes of discourse.

In effect, what is done here is to change a law of logic, to

modify its range of application. The Aristotelian law "Nothing
is both A and non-A" cannot be applied without certain restric-

tions: a table may be white at one time and nonwhite at an-

other; a man may be having both pleasure and pain at the same
time. The present solution indicates the manner in which the

term "non-A" is to be considered.

Many solutions to Zeno's paradoxes have been offered in the

history of science. Some mathematicians have been prone to re-

ject the paradoxes as either trivial or else lying beyond the scope

of mathematics. That this is hardly the case can be seen from
an application of the paradox to geometry made by an ancient

geometer sometime after Euclid; Euclid had asserted as his fifth

postulate (cf. page 12) that if two lines are cut by a transversal

so that the interior angles on the same side sum to less than two
rights, the lines will nieet. This geometer set out to prove that,

granted the hypothesis, the lines will not meet, and this despite

the fact that we can apparently construct such lines which do
meet, as, for example, in the case of any triangle. For suppose

AB and CD are two lines cut by the transversal EF so that the

sum of angle BEF and angle DEE is less than two right angles.

Now take the midpoint of EF, M. Draw EG = EM on AB and
EH = FM on CD. Then AB and CD do not meet in the rec-

tangle EGHF, as the reader may easily verify for himself from
the construction of the figure. We now take M' the midpoint of
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GH and construct GI = GM' and HJ = M'H, and show that

AB and CD do not meet in the rectangle GIJH; since we may go

on constructing indefinitely such rectangles where AB and CD
fail to meet, these lines never do intersect.

We cannot refute Zeno's argument by the method chosen by

one ancient philosopher, who "without attempting to meet and

dissolve the argument, rose up from his seat, and walked;

redarguebat amhulando; according to his own conceit, he re-

futed the Sophist by moving his spindle shanks, saying, thus I

refute the argument. I move, as a fact, and if motion is a fact of

the experience, then motion, as an idea, is conformable to the

reason. But to me it is plain that this philosopher little compre-

hended the true incidence and pressure of the difficulty. . . .

"The case was briefly this: Reason, as then interpreted, said,

This thing cannot be. Nature said. But though impossible, it is

a fact. Metaphysics (or logic) denied it as conceivable. Experi-

ence affirmed it as actual. There was, therefore, war in the hu-

man mind, and the scandal of an irreconcilable schism. Two
oracles within the human mind fought with each other. But in

such circumstances, to reaffirm or to exalt either oracle, is simply

to reinforce and strengthen the feud. . . . The man who simply

parades the strength and plausibility investing one of the argu-

ments, without attempting in the smallest degree to invalidate

the other, does in fact, only publish and repeat the very ground

of your perplexity. That argument, strong as the centrifugal

force which so tauntingly and so partially he causes to coruscate

before your eyes, you know but too well. Knowing that, however,

does not enable you to hide from yourself the antagonist argu-

ment, or to deny that in power it corresponds to a centripetal

force. How needless to show that motion exists as a fact! Too
sensible you are of that, for what else is it than this fact which

arms with the power of perplexing and confounding the meta-

physical scruples affecting the idea of motion?" ^

Some philosophers have been willing to accept the logic of

Zeno's argument and to modify the fundamentals of kinematics,

insisting the Zeno has not destroyed the hypothesis that motion

exists but rather that motion is continuous. Roughly, the state-

ment that a body moves continuously between two points A
and B means that there exists a line between A and B, called

6 De Quincey, op. cit.
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the "path" of the moving object, such that a point in the object

can be said to have passed through any point on this line. This

assumption is certainly required by Zeno's first and second argu-

ments. Hence Zeno's paradoxes are avoided if we assert that mo-
tion is not continuous so that bodies move by "spurts." More
precisely, there is no path between A and B which is such that

the body can be said to pass through every one of its points; if

the body is at point D at a certain time, then it passes to another

point E in no time, or else, if a time does elapse, we can say

that there is a time when the body is nowhere. This solution

seems a happy one to the philosophical school called "sensation-

alism," whose proponents believe that the only meaningful con-

cepts are ones which are based on actual sensations. Since no
one has ever seen a body moving at every point on its path, the

conception is a false one. As far as our senses go, motion is dis-

continuous; since our eyes are merely taking rapid snapshots of

the moving body, such snapshots necessarily leave out parts of

the path of motion.

But, besides the weaknesses of sensationalism as a philosophy,

one may object to denying the hypothesis of continuity of mo-
tion on the grounds that all this is too expensive a price to pay

for a solution of the difficulty, especially if something simpler

lies at hand. The "expense" involved lies in finding a new
method for determining the identity of a point in a body as it

moves in space; in "classical" physics the identity of a moving
point is determined by the continuous path which it traverses.

This point is said to be the same point as one occurring at an
earlier time if there is a continuous path between the two loca-

tions at which the points appear; but if no continuous path ex-

ists, i.e., if motion is discontinuous, then we are obliged to find

some other criterion by which we may be allowed to call a point

A in a body the "same" as point B.

This solution follows the first of the courses we suggested

above by proposing a change in the science in question. But,

instead, we may look to the third avenue and seek to find an
equivocation. Such a solution seems to have been offered by

Aristotle.® Zeno's argument, in brief, insists that an object mov-

^ The' formulation of Aristotle's solution given here is not the philosopher's
own, but is due to Professor E. A. Singer, Jr. References in Aristotle are: Physics,

233a, 13f., and Metaphysics, 1048b, 9f. What Aristotle calls the "potential" infinite

we interpret as the infinite taken distributively, and the "actual infinite" (which
does not exist for Aristotle) means the infinite taken collectively.
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ing along a path must go through all the points of the path; but

of these there are an infinite number, and hence the object

must pass over an infinity of objects, an impossibility. Essen-

tially, what Aristotle finds here is a case of the fallacy of compo-

sition. When we say the object must pass over all the points of

the line, we mean "all" in the distributive sense, not the collec-

tive. There is no such thing as the collection of "all" the points

on a line; a line is not made up of points, as certain Greek

philosophers insisted, and hence we are under no obligation to

consider it as an infinite collection. When we say that a body

passes through "all" the points, we mean that it passes through

each and every point, or, there exists no point on the line

which one might name through which the given body does

not pass. Thus, the traveler to the door must pass through all

the halfway points in the sense that we can name no halfway

point through which he does not pass, but we do not say that he

passes through them "all" in the sense that he passes through an

infinite collection. The fallacy is reduced to a case of taking col-

lectively what should be taken distributively (Fallacy of Com-
position) .

Those who believe Aristotle's argument to be sound are still

faced with the problem of answering Zeno's third argument.''

This necessity does not exist in the case of those who favor deny-

ing the law of continuity, since the latter would agree that the

arrow is at rest at every point of its path. But other answers may
be found. Actually, the velocity of a moving object at a point

is not necessarily zero, even though the distance moved may
be so. For, velocity being defined as the ratio of distance to time,

the velocity at a point must be the indeterminate fraction -g-,

since time as well as distance has a numerical value of zero.

Mathematicians recognize that this fraction is "indeterminate,"

for were a fixed value assigned to it, certain contradictions,

would follow. Thus, one might be inclined to say that -§=!.
but this would cause difficulties; for it is true that 12-0 = 1-0,

and hence, dividing both sides by and using the assumption

that ^ =r I, we would have the absurdity 12 — 1. The problem

of assigning values to such indeterminate quantities as ^

and ^ ("infinity divided by infinity") is solved by differential

7 The second argument is a special case of the first.



CONFLICTS WITH OTHER SCIENCES 227

calculus, where is recognized as the limit of an infinite series

of values of a variable which becomes as small as we please.^

This calculus enables us to assign a velocity to a moving object

at every point, such velocity depending on the nature of the

path.

Zeno's fourth argument, concerning the relativity of motion,

is far more important than a great many scientists and philoso-

phers have been willing to believe.® It leads to a change from
absolute kinematics to relative kinematics. Those who, like

Newton, believe in an absolute kinematics, assert that though
it is true that the velocities of bodies may vary, depending on
what "point of reference" we may take, so that the velocity of a

man walking down the car of a moving train may be four miles

an hour with respect to the car, but sixty miles an hour with

respect to the ground, nevertheless there is an "absolute" ve-

locity and this is taken with respect to "absolute" space, which
remains fixed. Hence, the true velocity of the earth as it moves
on its path is not to be measured with respect to the sun, which
may, and probably is, moving itself, but with respect to "space."

Though it would be inaccurate to say that Zeno was the founder

of the theory of relativity, nevertheless, since the discovery of

this theory, physicists have come to regard absolute kinematics

as a false picture of the world. In a sense accepting the import
of Zeno's argument, they have insisted on a relative kinematics,

where velocities may be taken with any point of reference, there

being no "absolute" set of co-ordinates. More cogent argumentis

for accepting a relativistic kinematics are given in the next sec-

tion.

II. We begin by stating a fundamental law of Newtonian me-
chanics, the law of inertia: "All bodies remain in a state of rest

or uniform motion in a straight line (if sufficiently far removed
from other bodies) ." Now in order to determine what kind of

motion a body is undergoing, we must have some "co-ordinate"

or "reference" system relative to which we make our measure-

ments. Thus a man walking along a sidewalk of a straight road
would be traveling in a straight line relative to a stationary tree,

8 More accurately: x is said to approach zero (from the positive side) if, given
any number e > 0, there exists another quantity 5 > 0, such that (e — x) > 5.

9 Whether Zeno actually realized the full import of his argument is very doubt-
ful, but this hardly detracts from its importance.
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but would be traveling in a curved line relative to an object

which is itself moving in a curve. We shall call a reference sys-

tem "permissible" if the motions of bodies relative to it obey the

law of inertia. The earth is not a permissible system of refer-

ence, since relative to the earth the visible fixed stars, which

ought to obey the law of inertia to a high degree of approxima-

tion, do not move in straight lines, but in immense curves.

Suppose that K is a permissible co-ordinate system. Imagine

someone on a body which is traveling with uniform (nonaccel-

erated) motion relative to K. Then if an airplane moves in a

straight line relative to K, it will also travel in a straight line

for someone on the moving body, though the airplane's velocity

and direction may be different. Hence, if K is a permissible sys-

tem, i.e., if the law of inertia holds relative to K, then K', K",

etc., will all be permissible systems if they are all moving uni-

formly relative to K.

This result may be generalized, its generalization being the

(special) principle of relativity. Suppose, again, that K is a per-

missible reference system. Suppose, also, an immense box travel-

ing with uniform motion relative to K. The inhabitants of this

box include a group of scientists, who begin experimenting, and

finally arrive at a set of laws for physics. As we have remarked

above, they will come to the conclusion that the law of inertia

holds. They will also derive many other laws. We say that these

laws will not differ fundamentally from the laws of an experi-

menter who is fixed relative to K. More precisely, the principle

of relativity (in the restricted sense) states that if K' is in uni-

form motion relative to a permissible K, then phenomena will

obey the same general laws with respect to both K and K'.

Now there occurs another fact, experimentally verified, which

seems to conflict with this principle. Suppose that the box we
have pictured is moving along at the rate of 60 miles per hour

relative to K. Then if one of the inhabitants walks in the direc-

tion of the line of motion with a speed of 4 miles an hour, he

will travel at the rate of 64 miles an hour relative to K, by the

simple law of addition of velocities. In general, if v is the ve-

locity of a body moving in the direction of motion for an ob-

server in the box, 60 + v will be the velocity for an observer

stationary relative to K.

The velocity of light is approximately 186,000 miles per sec-
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ond. There is a principle of physics called the law of constancy

of the velocity of light which states that the velocity of light does

not depend on the velocity of motion of the source of the light.

But this principle comes in conflict with the principle of rela-

tivity. For, by the law of addition of velocities, if the velocity of

light is 186,000 miles per second for a scientist who is fixed rela-

tive to K, it ought to be 186,000 + 1/360 for an observer in the

box. For systems traveling at higher speeds, the difference would
be even more pronounced. Hence, we seem to have the result

that if the principle of relativity is correct, the principle of con-

stancy of velocity of light must be wrong, and conversely. In

other words, logic seems to force us to abandon one of these two

principles.

That we cannot deny the law of constancy of velocity of light

has been established with a fair degree of certainty by the physi-

cists. Must we abandon the principle of relativity?

The special theory of relativity consists in analyzing the con-

cepts of kinematics and succeeds in retaining both the principle

of relativity and constancy of velocity of light by rejecting what
had been regarded previously as a necessarily true proposition

of kinematics: "If a and b are simultaneous events with refer-

ence to one system, they will be simultaneous with reference to

all systems." This was the Newtonian conception of "Absolute

Time"; events simultaneous for an observer on the earth would
be simultaneous for an observer on Mars. Some definition of

simultaneity is required, but the following seems to meet this

requirement: Suppose one event happens at A and another at

B; an observer is situated at the mid-point M of the distance AB.
This observer has an apparatus (e.g., two mirrors inclined at

90°) by which he may observe both places A and B at the same
time. If he sees the two events at the same time, then they are

simultaneous.

Supposing again the traveling box, we ask: Are two events

which are simultaneous relative to K also simultaneous with

reference to this box? The answer must be in the negative, for

suppose the events at A and B are simultaneous for an observer

stationary relative to K; this means that the rays of light from
A and B strike his mirror at the same time. But for a scientist

observing these events from his box, the events might not be
simultaneous. If the box is traveling along the line AB, the
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events will not be simultaneous, for since the observer is travel-

ing towards the beam from A, say, this "will strike his mirror first,

and the events will not be judged simultaneous by him.

It follows that the concept of time must be taken in a relative

sense (relative to the reference system chosen) . In general, the

units of time (second, minute, hour) will vary depending on
the reference system chosen. Hence these two principles are not

really in conflict. The velocity of light is constant relative to all

uniformly moving systems, i.e., the velocity is always k miles

per second, where k is constant, but the duration of a second is

not the same in all these systems, and hence there is no conflict

with the law of addition of velocities or the principle of rela-

tivity.

The special theory of relativity also developed the notion of

"relative distances," so that measuring rods may vary depending

on the reference system chosen.^**

III. At the beginning of this chapter a second remedy was

suggested for the resolution of conflicts between the laws of a

given science and those of logic: the expedient of changing the

laws of logic. Singer's article ^^ is an example of the contribution

of logic (although the difficulty was one of logic's own making)

to the long standing controversy in biology between the Mech-
anism and Vitalism. On one hand, Democritus proposed that a

sufficient explanation for all phenomena might be made com-

pletely in mechanical terms. Aristotle, on the contrary, held

that things must have in addition to non-living matter an active

principle, a form, function, or entelechy, to complete them.

Both of these positions bear the weight of tradition and quite

as traditionally have been taken to be simultaneously untenable.

As may well be imagined the contest was acute when relating

specifically to the nature of living organisms. Supporting the

Democritean hypothesis were, among others, Epicurus, Booer-

haave, probably Freidrich Hoffman, and Jacques Loeb. Follow-

ing the tradition of Aristotle there are the spiritus vitae of

^° For fuller exposition, see Einstein's Relativity; The Special and General
Theory. Translated by Robert W. Lawson, Henry Holt and Co., 1920; P. Smith,

1931. A great part of this discussion is taken from this book.
11 E. A. Singer, Jr., Beyond Mechanism and Vitalism, Philosophy of Science,

July 1934; vol. 1, no. 3, pp. 273-295. This discussion is largely a summary of the

article.
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Paracelsus, the archai of Van Helmont, G. E. Stahl's theory of

phlogiston, Leibnitz' monads, and the entelechies of Dreisch.

It is not, however, the history of these schools that is of inter-

est but rather the delineation of some third and synthetic view-

point. Although Robert Boyle apparently employed both me-
chanical and tekological explanation with no concern for their

consistency, Immanuel Kant first rigorously stated that while

the universe was inconceivable without purpose or function,

still there must and can be no instance of the violation of me-
chanical law. The Kantian solution is not altogether satisfactory

since it is dependent upon the nonexpdrimental concept, the

noumenon. We turn now to an exposition of the problem which
is consistent with experimental science.

Following Singer's demonstration, though without its ele-

gance, we may set down three propositions:

D. The Democritean Postulate. Everything in Nature is structural

(independent of environment) in nature.

A. The Aristotelian Postulate. Some things in Nature are non-

structural (dependent upon environment) in nature.

C. The Classic Logician's Postulate. Nothing nonstructural in

Nature is structural in nature.

An examination of these will show that if any two of the

propositions are taken to be premises of a formally valid syllo-

gism the conclusion will be the contradictory of the third. The
Mechanist holds that the existence of living beings may be ac-

counted for by the same kind of laws which determine non-

living objects, i.e., everything must find its place in a mechanical

image. He would affirm the Democritean postulate (D) and
deny the Aristotelian postulate (A) . The Vitalist proposes that

there is a unique factor present in living organisms differen-

tiating them from phenomena comprehended in terms of physi-

cal laws, and therefore inexpressible in a mechanical image, but

implying a function. He would affirm A and deny D. Believing

it to be evident that a thing could not at one time be expressed

structurally and nonstructurally, both positions affirm the

Classic Logician's postulate (C) . There is but one other course ^^

open and that alone will enable us to affirm the Democritean

12 This omits the possibility of a sceptical, "mystical," or "transcendental" al-

ternative.
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and the Aristotelian postulates and perforce to deny the Classic

Logician's—this may be called the Naturalist's position. In sum-

mary: " '

The Mechanist: D A' C
The Vitahst: D' A C
The Naturahst: D A C

We shall now inquire into the conditions, if there be such,

under which the Democritean and the Aristotelian are com-

patible. It is obvious that the problem is contingent upon the

relation which exists between the terms structural and non-

structural. If it is true that they are contradictories, that D and

A are contradictory propositions, then nothing can be accom-

plished. If, however, the historical formulation is lacking in

rigor and some equivocation has been committed, if it should

turn out that the Democritean and Aristotelian postulates are

not formal contradictories, then the Naturalist's position be-

comes at least a possibility. This alternative was not available to

the eighteenth century, for it depends upon De Morgan's inven-

tion of the term universe of discourse.^*

The first step in Singer's demonstration is the establishment

of a universe of discourse in which structural and nonstructural

are contradictories. It is proposed that this universe be com-

posed solely of classes within which the structural and nonstruc-

tural are to be contradictory Classes or classes such that every-

thing in nature shall belong to one and only one of th6 contra-

dictories so defined.

The second step establishes the universe of discourse within

which the things of the Democritean "everything" and of the

Aristotelian something lie. It is proposed that " individual" be

substituted for "thing" (for if "class" be used the cause is al-

ready lost) ; not any individual, of course, but one belonging to

a universe, u. Utilizing the discussion of these two steps and con-

veniently replacing "individual of the w-class" by body, we may
restate the postulates: D. Every body in Nature is a body in-

cluded in a structural class. A. Some bodies in Nature are bodies

included in a nonstructural class. It is now necessary to show
that these are not incompatible.

"Where, for example, DA'C means "D is true, A is false, and C is true."
14 Cf . p. 98.
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At first sight it would seem that body so defined belongs to a

null class, that is to say it is no body at all. In other words:

If C and C are contradictory Classes of classes

p is a class included in C
q is a. class included in C, and
6 is a body

then if b is included in p, and p is included in C, then b is in-

cluded in C; also, if b is included in q, and q in C (non-C)

,

then b is included in C. Hence, b is included in both C and C,
i.e., b does not exist. This reasoning is in error; for if it were

not we should be obliged to hold: "If a given individual is one
of a certain class, and that class is one of a Class of classes, then

the individual is one of a Class of classes." This is manifestly ab-

surd.

Stated more generally, it is not a question of the nature of

inclusion but simply that the relation of inclusion established

in one universe of discourse cannot be assumed to hold in an-

other. Thus if b is included in both p and p^, or if b is in-

cluded in both q and q^, then b does not exist; or if p is in-

cluded in both C and C, then p does not exist, and if q is

included in both C and C, then q does not exist. But it does

not follow that if b belongs to p and p to C, and b belongs to q
and q to C, that b does not exist. Hence a body may belong to

a class, which class is called structural, i.e., belongs to the struc-

tural side of the class of classes. The same body may belong to

another class, which class is nonstructural. Without logical in-

consistency we may say that such a body exists. That is, we con-

tradict no law of logic when we say that there exist organisms

which belong to both a class of things defined mechanically

(structurally) and a class of things defined nonmechanically

(nonstructurally) . The existence of the mechanical and the

biological does not conflict with logic, provided the traditional

laws of logic are modified in the light of the concept of the uni-

verse of discourse. It should be noted, as a final word of caution,

that this discussion only shows the consistency of the naturalist's

position; it is not the logician's task to verify this school in any
other manner.

IV. Probably no science has been so productive of paradoxical

results as that branch of mathematics known as the "Theory of
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Sets" (Mengenlehre) . The theory o£ sets in its most general

form is merely the theory of classes, and as such is a part of

logic. We have examined certain paradoxes which arise in the

case of the general theory (cf. page 203) . Here, however, we
restrict our attention to one property of sets, namely, the num-
ber of elements in the set. For every set or class of objects there

corresponds a definite (cardinal) number. As an example of the

manner in which this theory confines itself to numerical con-

siderations, take the following definition of the equivalence of

two sets:

"We say that two sets A and B are 'equivalent' if it is possible to

put them, by some law, in such a relation to one another that to

every element of each one of them there corresponds one and only

one element of the other."

Thus the set of jurors on a jury and the set of a dozen eggs

are equivalent, since it is not difficult to find a law defining the

correspondence of an element in one set to a unique element

in the other. In general, in the case of sets which contain a finite

number of objects, two sets will be equivalent if they have the

same number of objects, no matter how they may differ in other

respects.

Paradoxical results arise in this theory when a given set con-

tains an infinite number of objects. Examples of such sets are

plentiful enough: the set of points on a line one inch long, the

set of all proper fractions, the set of all whole numbers, the set

of all real numbers, the set of all atoms in the universe (matter

being infinite) , etc.

A result of this theory surprising to the beginner is the follow-

ing: the set of all points on a line one inch long is equivalent to

the set of all points on a line two inches long, and, in general,

the set of points on any finite segment of length greater than

zero is equivalent to the set of points on any other such segment.

This may readily be proved as follows: Let CD and AB be given

segments (AB > CD) ; form the triangle ABE, with AB as base,

so that C falls on AE and D on EB, a construction always pos-

sible when CD < AB.
We can easily find a law by which every point on CD corre-

sponds to just one point on AB and vice versa. Suppose Pj is any

point on CD. Then draw EPj, and extend this line till it meets
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AB in, say, P/. Then P^' is the only point corresponding to P^

according to this scheme, for if there were another point P^''

distinct from P^', then the line from E through P^ would cut

AB in two distinct points, i.e., two straight lines would have a

segment in common. Again, for every point Pg on AB there cor-

responds just one point on CD, the point determined by the

intersection of PgE and CD, for if there were two such points

P/ and P/' we would have two straight lines enclosing a space.

This demonstration makes use of geometrical principles (in

particular, of Euclidean geometry, since it assumes a law, not

true in Riemannian geometry, that two lines do not enclose a

space) but the theorem may be proved analytically as well.

Another theorem of the same sort shows that the set of all

positive whole numbers is equivalent to the set of all whole

numbers, positive or negative (excluding for convenience

sake) . This result seems to lead to an obvious contradiction of

an arithmetical law, for it would seem that the set of positive

numbers is only one-half the set of all numbers, so that we have

the half equal to the whole. In order to prove the required

equivalence we must find a rule by which we can make the ele-

ments correspond uniquely. There is a wide choice, but the fol-

lowing seems simplest: Suppose A is the set of all positive whole

numbers and B the set of all whole numbers; then let the num-
ber 1 in A correspond to — 1 in B, the number 2 in A corre-
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spond to + 1 ill B, the number 3 in A to — 2 in B, the number
4 in A to + 2 in B, etc. In general, if n is the number in A, then

its corresponding element in B will be + n/2, if n is even and
— n + 1 if n is odd. Thus 84 in A corresponds to 42 in B and
~2~^

127 in A corresponds to — 64 in B.

With this rule, if we are given any element of A, i.e., any posi-

tive number, we can determine a unique element of B, either

positive or negative. The reverse is also true, for given any ele-

ment of B, we can readily pass to a unique element of A. If the

given element of B is negative, then the required element of A is

odd and is equal to — {2n — 1) , while if the given element, n,

of B is positive, the required element of A is even and is equal

to 2nj and these again are unique. Hence the correspondence

(called "one to one" correspondence) is established. This theo-

rem may be generalized as follows: Suppose A is a set equivalent

to the set of all positive whole numbers; then 2A (i.e., doubling

the elements of A) , 3A, . . . , nA, are all equivalent to A,

where n is any (finite) integer; stronger still, A.A = A^ A^
. . . , A" are all equivalent to A, so long as n is a (finite) integer.

A paradoxical result of the same kind appears in Sterne's

Tristram Shandy. The narrator discovers that it has taken him
two years to write the first two days of his history and ponders

whether, if providence spared him forever, he would complete

his story at that rate. He would, indeed, in the sense that no day

would be left untold, if he should live forever. For in order to

discover during what years he will write about a certain day,

we need only apply a simple mathematical formula; he will

write of the nth day n years from the time he began; in infinite

time, the set of all days and the set of all years are equivalent.

These results, surprising as they may seem, yield no conflict

between the theory of sets and logic or arithmetic. It would, in-

deed, be contradictory to say that the set of all soldiers in a line

one mile long was equivalent to the set of all soldiers (similarly

placed) in a line ten miles long, for both of these are finite sets.

But when the above definition of equivalence is applied to in-

finite sets of objects, extraordinary but not contradictory re-

sults may follow. To assume that there is a contradiction here

is to commit the fallacy of composition. Thus, in the case of

finite sets, when we say "all of the elements of the set" we mean
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the total collection of these elements, but when we say "all the

points on a line," we cannot mean the total collection of such

points, since there is no such thing as an infinite collection. An
infinite collection would be a collection or completion of things

which cannot by definition be collected or completed. When
I refer to "all the points on a line," I must mean "all" in the

distributive sense: "each and every point taken on a line." This

distinction is often overlooked by the mathematician himself.

The definition of equivalence between two infinite sets thus

becomes:

"Two infinite sets are equivalent if all elements (i.e., each and
every element taken) of one can be made to correspond uniquely

with all elements (each and every element) of the other; or, what-

ever element is taken from one, there is but one element of the

other to which it corresponds."

Here "all" is not taken in the collective sense, and the defini-

tion is perfectly consistent, as are the results proved above, which

are not so paradoxical if the distributive sense is borne in mind.

Thus, it is not true that a whole is equal to a half if a "whole"

refers to some collection (necessarily finite) ; but for infinite sets

there is no such thing as the "whole of the set" since such a set is

never completed. Those who use such terms as "all the integers,"

the "whole class of integers" must be careful to bear in mind that

they are using these terms in a sense quite different from ordi-

nary usage, and should expect to obtain startling results. If one

defines an elephant as a three-sided figure, he might deduce that

"All elephants have angles summing to two right angles," a re-

sult paradoxical enough if we forget his idiosyncrasies in de-

fining things, but perfectly consistent if we adhere to his con-

vention. Similarly we might be startled to learn that "The whole

class is equal to the half" if we were not aware that the speaker

was taking "the whole class" to mean all the class in the distribu-

tive sense. In sum, then, a one-to-one correspondence can be set

up between the elements of A, the set of all positive integers,

and the elements of B, the set of all integers, positive and nega-

tive, but we cannot say that the entire set A is equivalent to the

entire set B, since "entirety" is not applicable to infinite aggre-

gates.

There are results of the theory of sets, however, which are
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not merely odd, but also seem to involve a contradiction. The
exposition of some of these would require a long explanation

concerning the assumptions of the theory, but there are a few

which can be stated fairly simply. A good example of the latter

type is the paradox arising from the concept of the set of all

cardinal numbers. The set of all cardinal numbers includes not

only the usual numbers of ordinary arithmetic, 1, 2, 3, but also

certain "transfinite" numbers. We have already seen example
of a number of the latter type, for the set of all whole numbers
is infinite, and hence the number representing its elements must
be infinite. This number is usually symbolized by S„ ("aleph

null") . Thus the cardinal number of the set of all the days in

eternity, the set of all minus numbers, the set of all whole num-
bers, is aleph null. Is there a cardinal number larger than aleph

null? It can apparently be proved that for any given cardinal

number there is another cardinal larger than the first. Hence,

there are transfinite numbers larger than X„, and ones larger

than these, and so on, ad infinitum.

We now introduce the concept of the sum of two or more
cardinal numbers; if m is the cardinal number of the set M and
n the cardinal number of the set N, the m -\- n will be the cardi-

nal number of the set composed of all the elements of both M
and N. If M and N happen to be finite, m -}-n will be merely

the ordinary arithmetical addition of two whole numbers. But
if either M or N is infinite, then m -\- n may be equal to m or

n, for example, if M is the set of whole positive numbers, whose
cardinal number is X„, and N the set of whole minus numbers,

whose cardinal number is N^, then m -\- n would be the cardinal

number of the set of all whole numbers (excluding 0) and this

again, as we have shown, is H^. But one thing seems plain, and
that is the fact that the cardinal number of the sets which are

parts of another set can never exceed the cardinal numbe-r of

the whole set. We consider the set K of all cardinal numbers.

The sum of all elements is a cardinal number which cannot

be smaller than any cardinal number, for this would make the

sum smaller than one of the elements, and this is impossible;

but this is a contradiction of the statement made above that

for any cardinal number there exists a larger.

Detailed solutions of this paradox are impossible because of

the complex nature of the science. But, as a suggestion, one
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might point out that the argument seems to commit the Fallacy

of Composition, in that infinite sets of objects are taken as col-

lections. The proofs usually offered that there exist cardinal

numbers greater than K„ seem to assume that infinite sets have

some definite form.

V. No science is completely free of such conflicts as have been

described; logical difficulties arise even in sciences which, on

account of their complexity, seem far removed from the prob-

lems of logic. The science of Law is a case in point. One such

conflict which occurs between law and logic is the problem of

renvoi.

Suppose ^^ that Smith, an American citizen, dies in France,

leaving movable property in New York. At the time of his death,

Smith was domiciled in France according to the law of New
York but not according to the law of France. The law of New
York directs the distribution of movables in accordance with

the law of the domicile of the deceased. French law directs such

distribution according to the law of the nationality of the de-

ceased. The New York court is seised of the case.

Difficulties would arise if the New York court should refer the

matter to the French courts, and the latter should refer the

matter back to New York. In this situation, we either have an

infinite regress analogous to that arising from a circular defini-

tion or we have a contradiction analogous to that of the Epimen-

ides paradox. The contradiction would appear if the matter

were considered in this way: assuming that the New York

court's decision is final, we are led to the conclusion that it can-

not be, since by its own decision, it refers the matter elsewhere.

Assuming the French court is final, we are led to the same result;

since in this case either the New York or the French court must

be final (analogous, in the case of the Epimenides paradox, to

the statement that either p is true or p is false) , we are led to a

contradiction.

An infinite regress would occur if the New York court should

refer the matter to the French court without any reference to a

final decision, so that the latter might consistently refer the ques-

ts This illustration was taken from an article in the Univ. of Penna. Law Re-
view, vol. 87, pp. 341-49, by T. A. Cowan, entitled Renvoi Does Not Involve a

Logical Fallacy; my thanks are due Prof. Cowan for the privilege of using this

material.
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tion back to New York. The case of an infinite regress involves

no logical paradox (cf. page 207) . Hence, to avoid a conflict

with logic, the principle of renvoi need only be stated in this

way, in which case the question of final decision is always left

open. Nevertheless, however satisfied the logician might be with

this solution, the result would be bad because, as is usual in cases

of infinite regress, it would be totally impractical. That is, there

would still remain a conflict between law and sociology. Criteria

other than consistency are required in determining the value of

any law, and one fundamental stipulation is that the courts

arrive at a decision on a given matter in a finite time. There are

many ways of restating renvoi so as to make it more practical,

but such solutions, in that they are not solving a conflict be-

tween law and logic, are beyond the interests of this book.

Renvoi by no means represents the only logical conflict to be

found in legal theory. Most countries solve conflicts of law by

establishing a Supreme Court of Appeal which shall make con-

sistent, if necessary, any inconsistencies arising between the

laws of different communities. However, there is no Supreme
International Court, so that legal theory is more or less helpless

in the face of such cases as those in which an individual is de-

clared to be a citizen of one country because he was born there

and the citizen of another because his parents were its citizens,

despite the fact that both countries insist that allegiance be paid

to their flag only.

EXERCISES

GROUP A

In the following examples, determine what sciences are involved

in the conflict. Where possible, suggest solutions of the difficulties.

1. "Something, A, changes, and therefore it cannot be permanent.

On the other hand, if A is not permanent, what is it that changes?

It will no longer be A, but something else. In other words, let A
be free from change in time, and it does not change. But let it

contain change, and at once it becomes A^, A^ A^. Then what

becomes of A, and of its change, for we are left with something

else? Again, we may put the problem thus. The diverse states of



CONFLICTS WITH OTHER SCIENCES 241

A must exist within one time; and yet they cannot, because they

are successive." ^®

2. "The dilemma, I think, can now be made plain, (a) Causation

must be continuous. For suppose that it is not so. You would then

be able to take a solid section from the flow of events, solid in

the sense of containing no change. I do not merely mean that you

could draw a line without breadth across the flow, and could find

that this abstraction cut no alteration. I mean that you could take

a slice off, and that this slice would have no change in it. But

any such slice, being divisible, must have duration. If so, how-

ever, you would have your cause, enduring unchanged through

a certain number of moments, and then suddenly changing. And
this is clearly impossible, for what could have altered it? Not any

other thing, for you have taken the whole course of events. And,

again, not itself, for you have got itself already without any

change. In short, if the cause can endure unchanged for even the

very smallest piece of duration, then it must endure forever. It

cannot pass into the effect, and it therefore is not a cause at all.

On the other hand, (b) Causation cannot be continuous. This

would mean that the cause was entirely without duration. It

would never be itself except in the time occupied by a line drawn
across the succession. And since this time is not a time, but a

mere abstraction, the cause itself will be no better. It is unreal, a

nonentity, and the whole succession of the world will consist of

these nonentities. But this is much the same as to suppose that

solid things are made of points and lines and surfaces. These may
be fictions useful for some purposes, but still fictions they remain.

The cause must be a real event, and yet there is no fragment of

time in which it can be real. Causation is therefore not continu-

ous; and so, unfortunately, it is not causation, but mere appear-

ance." "

3. "Every composite substance in the world consists of simple parts;

and there exists nothing that is not either itself simple or com-

posed of simple parts, for the term 'composite' means a composi-

tion of something, so that if there were no simple parts we would

have a composition of nothings, i.e., we would have nothing at

all, and the world would not exist. On the other hand, no com-

posite thing in the world consists of simple parts, and there does

not exist in the world any simple substance. For suppose there

were simple substances; then, like all reality, these must occupy

18 F. H. Bradley, Appearance and Reality, chap. V.
" Ibid.
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a certain space, i.e., they must have a certain extension. If this

is the case, they may be divided by planes cutting them, i.e., they

are not simple, but made up of extended parts; hence, there can

be no simple elements in the world." ^^

4. "If Socrates was born, Socrates became either when Socrates

existed not or when Socrates already existed; but if he shall be

said to have become when he already existed, he will have be-

come twice; and if when he did not exist, Socrates was both exist-

ent and non-existent at the same time—existent through having

become, non-existent by hypothesis. And if Socrates died, he died

either when he lived or when he died. Now he did not die when
he lived, since he would have been at once both dead and alive;

nor yet when he died, since he would have been dead twice.

Therefore Socrates did not die. And by applying this argument
to each of the things said to become or perish it is possible to

abolish becoming and perishing." ^*

1^ Kant's Second Antimony, restated.
19 Sextus Empiricus, Outlines of Phyrronism.
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Exposition of the

Boolean Algebra

IT
HAS been scarcely a century since the science of logic has

taken an enormous step forward through the discovery of

what has since become known as Symbolic Logic. The great

strides which have been made in this field, especially in the last

three decades, make it impossible to present an all-inclusive sur-

vey; the succeeding chapters aim merely at an introduction.

The German philosopher Leibnitz (1646-1716), one of the

discoverers of the differential and integral calculus, impressed

as he was by the rigor of symbols in mathematics, had suggested

that the mathematical method might well be carried over to

other sciences. His aim was to establish a "universal language,"

not a verbal language such as Esperanto, but a symbolic one.

Note the advantages of the symbols in mathematics. In the first

place, these symbols are universally recognizable. Thus, the

equation a -\- b = b -\- a is as intelligible to a Frenchman, a

German, a Swede, as it is to an Englishman. There is no need of

translating the sentence into another language as there would

be had the equation been written "a plus b equals b plus a."

Everyone acquainted with the subject understands the meaning

of mathematical symbols. Second, and by far the more impor-

tant point, symbols avoid the ambiguity which is so often found

in words. Thus, verbally, both of the following sentences are

correct: "Nothing is greater than infinity" and "Nothing is less

than every positive number." But if we symbolize these two

sentences, we must write (using oo for "infinity") "oo > x"

and "0 < x" (where x is any positive finite number) , and here

no contradiction is apparent. We shall see later in the chapter

what an important role the exactness of symbols plays. Third,

symbols are much more concise than words. Try, for example,

245
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translating some complicated fractional equation of algebra into

words. Another important advantage of symbols, their abstract-

ness, will appear later.

The application of symbols to logic has already been studied

in part in this book, for the deductive system of the Aristotelian

class logic in chapters IV and V owes much of its exactness and
conciseness to the symbolic method.

The dream of Leibnitz was realized in part by George Boole

about a century ago. Boole attempted to construct what he
called an "algebra" of classes. That is, instead of considering the

fl's, b's, c's, of ordinary algebra as quantities, he considered them
classes. The resulting system has become known as Boolean al-

gebra, though its original form has been considerably devel-

oped and simplified through the work of such men as De
Morgan, Peirce, Venn, Schroeder, and others.^

We note first that the addition of two integral numbers is

primarily the process of increasing one quantity by so many
units. We shall define the addition of two classes, symbolized in

the usual manner hy a -{ b, as the class composed of all objects

which belong to either a or b. That is, a-\- b in this algebra

represents another class, just as a -{- b in ordinary algebra rep-

resents another number. This class is always definite if a and b

are given, and represents all the members of both a and b.

"a 4- b" may then be read "what is either a or b." Note that the

words "either, or" are ambiguous, sometimes meaning "either,

or (but not both) ": "either white or black," and sometimes
"either, or (or both) ": "either Americans or Pennsylvanians";

the distinction is recognized in the Latin language, the former
meaning being translated by "aut," the latter by "vel." That the

latter interpretation is what is meant here will be obvious from
the diagrams below and from the system itself. As a concrete

illustration, the addition of the two classes "white things" and
"animals" is the class whose membership comprises all white
things and all animals. The addition of the classes "triangles"

and "geometric figures" is the class which comprises all triangles

and all geometric figures, or, since all triangles are geometric
figures, the addition of these two classes is merely the class of

geometric figures. Pictorially, addition may be shown in the

^ For an excellent historical summary, see C. I. Lewis', Survey of Symbolic
Logic, chap. I.
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following manner by Euler's diagrams, the shaded portion rep-

resenting a -\- b:

The addition of three classes, a, h, c, will then be composed of

all objects which belong to either a, b, or c:

a-{- b -{- c

From this, it is apparent that addition in this algebra has

many of the properties of addition in ordinary algebra. For in-

stance, addition is "commutative" in both; i.e.,

a + b — b { a.

(Note that subtraction and division in ordinary algebra are not

commutative; i.e., a — b y^ b — a, and a/b ^ b/a in general.)

Addition is also "associative" in both:

a-\-{b^c) = {a + b)-{-c.

"What is either a or else {b or c) is the same as what is either

{a or b) or else c." (Again, subtraction and division are not as-

sociative:

{a — {b — c)=^{a — b) — c, and a/ (b/c) y^ (a/b) /c in general.)

But addition in this algebra has a property which definitely

distinguishes it from addition in ordinary algebra, in that, if

a and b happen to be the same, we do not have 2a as the result

of our addition, but rather a:

a + a = a
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"What is either a or a is a itself." This property simplifies the

algebra considerably.

Before defining the analogue of subtraction, we must intro-

duce the definition of multiplication. The multiplication of

two classes a and h (symbolized ah as in ordinary algebra) is

defined as that class composed of objects which belong to both

a and h, i.e., the members which a and b have in common. For

example, the multiplication of the two classes "white things"

and "animals" is the class whose members are both white and
animals, i.e., the class of white animals. In general, a noun
modified by one or more adjectives represents a Boolean multi-

plication; thus "large, green books" represents the multiplica-

tion of the classes "large things," "green things," and "books."

The multiplication of the classes "triangles" and "geometric

figures" will be the class whose members are both triangles and
geometric figures, or the class whose members are triangles.

Again, the class constructed from the multiplication of the

classes "circles" and "squares" will have as members objects

which are both circles and squares ("square-circles") , i.e., it

will have no members at all.

Multiplication is shown in the following Euler's diagrams,

the shaded portion being ah (where no portion is shaded, the

class ah has no members) :

The multiplication of three classes a, b, c, will be the class com-

posed of the members which a, h, and c have in common:

080
ahc
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Multiplication here (like multiplication in ordinary algebra)

also has the property of commutativity and associativity:

ab = ba

a (be) = (ab) c

But again multiplication has a peculiar property analogous
to that given above in the case of addition:

"What is both a and a, i.e., what is common to a and a, is a it-

self." Hence there are no "powers" (such as a^) in this algebra.

Multiplication here, as in ordinary algebra, is "distributive"

with respect to addition; that is,

a(b -\- c) = ab + ac

as may easily be verified by Euler's diagrams. Thus the multi-

plication of two binomials is the same in form in both algebras:

(a + b) (c + d) = ac + ad + be -{ bd.

Similarly, the same rules apply for the multiplication of trino-

mials, and, in general, for any polynomials.

It is a peculiarity of this algebra, however, that addition is

distributive with respect to multiplication. We say that an
operation "o" between two elements is distributive with respect

to another operation "O" when the following law holds:

ao(b O e) = (ao b)0 (ao e)

.

If "o" is the Boolean "plus" and "O" the Boolean "times," we
have:

a + be = (a + b) (a + e)

,

which is a true law of the algebra, as the diagram on page 250
indicates, the shaded portion being both a -\- be and (a + b)

(a + c).

In order to define "subtraction" in the algebra we must
introduce the concept of "non-a" or "what isn't a certain class,"

"what remains in the universe when a certain class is taken out."

For a full discussion of this concept, see chapter IV on the
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Aristotelian class calculus. If we let a' (or — a) symbolize non-a,

we can define the subtraction of the class h from the class a as

ah\ That is, the subtraction of one class from another is the

class composed of all objects which the latter has in common
with the negative of the former: ^

a — 6 or ah'

Here ah' is the shaded portion. But note that subtraction cannot

be written (as in ordinary algebra) a + {h') or h' -\- a, for these

are not equivalent to ah'. Note also the following peculiar prop-

erty of subtraction:

fl&' + & = a + 6

(not just a as in mathematical algebra)

.

2 That is, a — 6 represents all the members of a which are not 6's. The dass of
animals minus the class of things with backbones is the class of invertebrates.
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The concept of the "negative" of a class plays a very impor-

tant role in this algebra. For example, by means of this concept,

we can define the operation of multiplication in terms of addi-

tion, and vice versa. That is:

ab = (a' + h')

'

"What is common to a and h is equivalent to what does not be-

long to either non-a or non-t>." E.g., "white houses" might be

defined as those things which are not either nonwhite or non-

houses. Similarly,

a -f 6 = {a'h')

'

"What is either a or 6 is equivalent to what is not both non-a

and non-^." Thus what is either black or white is what is not in

the class of colored objects (objects which are both not-black

and not-white) .

These propositions may be illustrated by Euler's diagrams:

The lined portion represents a' + ^'' Thus what is not a' -\- h',

that is, {of Ar h') ' is exactly that portion which is not lined, i.e.,

ah. Similarly,

here the lined portion is the product of fl' and h', and hence the

negative of this, {afh') ', is a + &.
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The above two propositions are known as De Morgan's Law.^

Note that De Morgan's Law may be extended:

(a' +b')' = ab

(a' + b' + c') = abc

{a' -\-b' + c' + d' + . . . ) = abed . . .

{a'b') ' = a + b

{a'b'c') ' - a-\-b -^ c

{a'b'c'd' . . .)' = a-^b-\-c+d+ . . .

De Morgan's Law is often expressed in the following two for-

mulas, which follow directly from the above:

(a + 6) ' = a'b'

"What is not either a or 6 is what is common to non-a and

non-b."

{ab) ' = a'+b'

"What is not an object which a and b have in common belongs

to either non-a or non-fe."

Essentially, De Morgan's Law means that in denying a cer-

tain expression we change all plus-operations into times-opera-

tions and all times- into plus-, and prime all the terms. Thus the

negation of

a+b(/ + a'cd 4- b'e

is

a'{b' + c) (a-f-c'-f dO {b+e'),

and the negation of

(a -1- b') {c + de) {a'b + c'd)

is

a'h + c {d' + e') \- {a + b') (c + d')

The symbol a' (or — a) has properties closely analogous to

the symbol — a ("minus a") in mathematical algebra. For ex-

ample a" ("what is not non-a") is equivalent to a, just as

a=z a in ordinary algebra. Also, if we subtract a from a

we derive the first "constant" of our algebra, which, keeping the

analogy with ordinary algebra, we symbolize as 0:

" Cf. p. 34, for De Morgan's law in the logic of propositions.
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aa' = 0.

is then a class (for the operation of multiplication on two
classes always yields a new class) , but it is a class that has no
members (hence often called the "null class") .* The negative of

the class is symbolized by 1 , and this is the universe, for if we
take nothing or from the universe, we have the universe re-

maining:

0' = 1.

But, since = aa', we might define 1 in terms of a by deriving

the negative of aa' by De Morgan's Law (plus the fact that

a'' = a) :

1=0' = (aa') ' = a' + a'' = a' + a = a + a'.

That is, the universe may be defined as that class composed of

what belongs to a or to non-a (i.e., everything) . It is to be noted

here, as in the case of the Aristotelian class "calculus" or algebra,

that the term "universe" is considered as the "universe of dis-

course" (cf. page 98)

.

The following properties of and 1 show their close analogy

to the corresponding symbols in mathematical algebra:

flO =

"What any given class and the null class have in common is

nothing, i.e., is the null class."

a + = a

"The class constructed from the addition of any given class and
the null class is merely the given class."

al = a

"What any given class and the universe have in common is the

given class."

But peculiar to this algebra is:

fl-f- 1 = 1

4 What a and non-a have in common is the null class. For example, square
circles, talking mutes, bilateral triangles are all null classes.
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"The addition of any class to the universe always yields the uni-

verse over again."

The most important relation of the Boolean algebra, how-

ever, is that of "inclusion," and the closest analogue in ordinary

algebra to this is Z, "less than or equal to." We shall symbolize

the relation which expresses the inclusion of one class {a) in an-

other {b) by

aOb

"a is included in b."

(It is very important to note that a D 6 is not identical in all its

properties with the Aristotelian A [ab) , despite the similarity in

the words by which the two are interpreted; cf. below.)

The analogies between D and Z are apparent when Euler's

diagrams are used, since a is either "less than" b or identical

with b when a D b. The following properties of inclusion are

important:

1. With respect to addition, the following relation is always

true:

aO (a + b)

"a is included in the addition of itself and any other class."

(This is analogous to the mathematical a Z. {a -\- b) , where b is

greater than or equal to 0.)

2. With respect to multiplication, we have

ab a

"What is common to a and any other class is included in a."

(Here no apparent analogue exists in ordinary algebra.)

3. Again, the following relation exists between inclusion and
addition:

li aO b, then a + b = b.

"If a is included in b, then the addition of a and b is the class

b." And conversely,

li a + b = b, then aO b.

These two properties may be partially verified by an examina-

tion of Euler's diagrams. Thus inclusion has the property of
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making addition "absorptive"; this is also true in the case of

multiplication, where we have

4. If fl D b, then ab = a. "If a is included in b, then what is

common to a and b is the same class as a," and conversely.

If ab = a, then a b.

It is noteworthy that properties 3 and 4 generalize the proposi-

tions a -{- a := a and aa = a, since a =: b is a. special case of the

more general relation a b.

5. From this follows an important property of multiplication

and addition:

ab + a = a (since ab a)

.

That is, if a term in a sum of products appears by itself, then all

other products containing this term may be "cancelled out": e.g.,

abc + bd -i- a + bfc + c + ghb + b = a+b+c.

This result may also be expressed:

a (a }- b) = a;

the multiplication of a single term by any sum of products in

which the term appears at least once "alone" is equal to that

term itself. For example:

a (be + d + afg + a -\- gh) = a.

Similarly:

(a + b) (a -{- c) = a (a }- c) + b (a + c) = a + ba + be = a + be.^

6. lia b and b c, then a D c. "If a is included in b, and b

in c, then a. is included in c." This principle is analogous to the

Aristotelian syllogism "Barbara" (page 70) , to the transitivity

of implication in the calculus of propositions (page 28) , and to

the transitivity of Z in ordinary algebra. It may be generalized

in a manner similar to the generalization of the analogous prin-

ciple of implication:

If & D a and ac D d, then be D d;

it b D e and ae d, then ab d;

ii dD b and ae D d, then aeD b.

^Cf. p. 249; this is the formal reason for the validity of the distributive law
a + be = {a + b) {a + c)

,
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7. We can now apply property 6 to 1 and 2. For ab a and

a a -{- b; hence

abO {a + b)

.

"What is both a and b is included in what is either a or b (or

both)
."

8. If a D b, then 6' D a'. "If a is included in b, then what isn't

b (non-b) is included in what isn't a {non-a) ." Again, this is

analogous to contraposition in the Aristotelian algebra ("A (ab)

is equivalent to A {b^a^) ") (page 100) , the Law of Contradiction

and Interchange in the calculus of propositions (page 24) , and

to the principle "If a /.b, then — b Z. — a (where a and b are

real numbers) ." This principle may also be generalized:

If ab D c, then ac' b',

and if ab D c, then c'b D a'. '

9. If aO b, then {a -\- c) {b -\- c) , and if aO b, then

ac D be, where c in each case may be any class whatsoever. That
is, we may add the same class to or multiply the same class by

both sides of an inclusion-relation without altering the validity.

Hence also:

10. \i a b, then aO {b -{- c) , and ac D b.

But note that we do not have: "If a b, then (a -\- c) be," nor

are the converses of the propositions in 9 true; for from the fact

that (a -{- e) (b -\- e) we cannot necessarily infer that a b,

as the reader may verify for himself by use of Euler's diagrams.

Similarly it does not follow that a D b iiac be.

11. From property 2, ab D <2, we derive an important proposi-

tion of the algebra by letting b have the value fl' or non-a:

aa' D a.

But aa' is 0, and hence we have

00a

no matter what a may be. That is, the null class is included in

every class. Of course, we must establish the fact that the null

class is always the same, that it is really a constant. We might

suspect that this is the case, since classes here are taken in ex-
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tension, i.e., are defined by their membership, and every null

class has exactly the same members, namely, none at all. But

formally we can show the same thing by proving that aa' = hh'-,

that is, no matter what class is used to define the null class, the

resulting class is always the same: square circles, veracious liars,

opaque transparencies, are all equivalent classes. Thus we can

say not only that the class of square circles is included in the

class squares and the class circles, but also in the class men, the

class houses. More significant still, the null class has the unique

property of being included in its own negative: 3 0' or D 1.

Hence whenever a given class is such that it satisfies (makes true)

the proposition a a', we can say that the class is 0.

Common usage recognizes the truth of the proposition D a

in some cases; for instance, if we have "Everyone robbing money
from this bank will be sent to jail," and no one actually robs,

then the given statement is still considered to be true: "Everyone

who has robbed the bank (no one has—i.e., this is a null class)

has been sent to jail." Such confirmations are by no means proofs

of the validity of the proposition. In fact, common usage is so

ambiguous that it often denies the validity of the statement (cf.,

page 299)

.

By property 1 , a D (a + 6) , we derive the following by letting

h — a''.

aO a + a\

But a-{- a' is 1, the universe:

a 1.

"Every class is included in the universe." Note that, analogous

to the case of 0, 1 has the unique property of including its own
negative; i.e., if a' D a, then a is I.

The fundamental laws of the Boolean algebra given above dis-

play a property which for the early algebraists was the most as-

tonishing of the calculus. If we write a "plus" for every "times"

and a "times" for every "plus" and interchange and 1 in these

laws, the resulting expressions will also be laws of the calculus.

For example, the distributive law in one form was a{b -\- c)=z

ah -\- ac, and in the other was a -\- he =^ {a -\- h) {a -\- c) , and

these two expressions may be changed into one another in the

manner suggested. This principle is known as the Law of Du-
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ality, and one law is said to be the "dual" of another (the second

is, of course, the dual of the first as well) . The dual of a + a' = 1

is aa' = 0, the dual oi a -\- ab — a is a {a -\- b) = a, the dual of

a\ = a is a -\- =z a, etc. The truth of the Law of Duality is de-

pendent principally on De Morgan's Law, though it also depends

on other principles.

Before going on to the formation of the deductive system of

the Boolean algebra, it is important to point out a significant

aspect of this system. For we must now note that the interpreta-

tion which we have suggested is by no means forced on us. In

fact, we may regard the symbols in a purely abstract manner,

without any interpretation whatsoever. Or, we may give them

some other interpretation for which they express a perfectly

coherent and consistent system. To illustrate this point, we shall

show how the Boolean algebra may be consistently interpreted

as a logic of propositions.

We now think of the terms of the system as propositions, not

as classes. In this case it is customary (but of course not obliga-

tory) to write p, q,r, . . . instead of a,b, c, . . . We now seek

new interpretations for each of the relations of the system: ^

Addition: p + q '- "Either p is true or q is true (or both are

true) ." Addition is usually referred to as "disjunction" under

this interpretation. Thus the statement "Either today is Mon-
day or it is raining" is a disjunction.

Multiplication: pq : "Both p and q are true." Multiplication

here is usually termed "conjunction." Thus the conjunction

of the above two propositions is the statement "Today is

Monday and it is raining,"

Negation: p^ or -^ p : "p is false." Here we shall use the symbol p'

for negation to keep the analogy with the class calculus,

though '-' p is slightly more common.

Implication: pO q :"p implies q" or "If p is true, then q is true."
'^

Thus, translating these properties of the Boolean algebra

under this new interpretation, we have

p + p = p,

6Cf. p. 37.
'' Symbolized "p / q" above, but p 3 q is used here to keep the analogy with

the Boolean class algebra.
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"To say that either p is true or p is true is to say (merely) that

p is true." Similarly,

pp = p,

"To say that p is true and p is true is to say (merely) that p is

true." Also

p + q = q+p,
" 'Either p or q is true' is equivalent to 'Either q or p is true.'

"

And

pq = qp,

" 'p and q are both true' is equivalent to 'q and p are both
true.' " Again,

p(q + r) = pq + pr,

" 'p is true and either ^ or r is true' is equivalent to 'Either (p
and q) or (p and r) are true.'

"

De Morgan's Law, p -\- q = {p'q') ', now becomes "To say

that either p or q is true is equivalent to saying that it is false

that both p and q are false," and pq = {p' -\- q') ' becomes "To
say that p and q are both true is to say that it is false that either

p or q is false." These laws are usually phrased:

(p + q)' = pr
(pq) '= P' + q' (cf. page 35.)

If now we examine the characteristics of the symbol D given

above under this new interpretation (where it means "implies"

instead of "is included in") , we derive the following properties

of the calculus of propositions: ^

1. pOp + q,

"If p is true, then the statement 'Either p is true or some other

given statement is true' is a true statement."

2. pqOp,
"If p and q are both true, then p is true."

S. pO q.=z.p + q=q,
"If p implies q, then to say that either p or q is true is to say that

q is true, and conversely;" or, "A necessary and sufficient condi-

s Not all these properties are true of the most general calculus of propositions
(cf. p. 310)

.
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tion that p imply q is that the expression 'Either p or q is true'

be equivalent to 'q is true.' " The truth of this proposition will

appear from the following considerations: when p implies q, p
is false if q is false; hence the truth or falsity oi p -\- q depends

solely on q alone. If q is true, then "Either p or q" is true, re-

gardless of what p is; but if q is false, p must also be false, and

hence p -\- q is false. Conversely, if the truth oi p -\- q depends

on q, then p q. Similarly:

4. p q . = . pq = p.

"p implies q if and only if the conjunction 'Both p and q are

true' is equivalent to 'p is true.' " That is, when p implies q, the

truth or falsity of pq depends solely on p. If p is true, then q is

also true, and hence pq is true; but if p is false, then pq ("Both

p and q are true") is false. Also, if pq = p, then p q.

Properties 1-4 show clearly the close relation between the

term "class" and the term "proposition" as we have used the

words. For we considered a class extensionally, i.e., from the

point of view of membership, and not from the point of view of

its definition (cf. page 49) . Similarly, we consider a proposi-

tion extensionally; we are not interested in its meaning but in

the number of times it is true, in its "truth-membership." Thus,

we call two propositions "equivalent" (symbolized here by

p = q) when they are true in exactly the same cases and (hence)

false in exactly the same cases. Hence, two propositions having

quite distinct meanings are equivalent, e.g., "This triangle has

three equal sides" and "This triangle has three equal angles."

Thus p -\- q niay be considered as the class of cases where either

one or the other, p or q, (or both) is true; pq becomes the class

of the cases where both p and q are true; p' is the class of cases

where p is not true; p q means that the class of cases where p
is true is included in the class of cases where q is true. The re-

maining properties of the Boolean algebra under this interpreta-

tion will substantiate the foregoing; e.g.,

5. pq + p = p.

"To say that p and q are both true or else p is true is to say that p
is true." The two sides of 5 may readily be seen to be equivalent

under the above conception of equivalence, for they are both

true in exactly the same cases. Whenever p is true, pq -\- p will
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be true, no matter what q may be, for the second part of the

alternative will be verified, and when p is false, pq -\- p will be

false, since both alternatives, pq and p, will be false.

6. (pOq) {qOr)0{pOr).
Note that the expression "if . . . then" may be replaced by an

implication sign here. This is the Principle of strengthening and
weakening (cf. page 29)

.

7. pq Op-{-q,
"If p and q are both true, then either p or q is true."

8. {pDq)0{q^Op^).^
This (and its generalization) is the Principle of Contradiction

and Interchange (page 24)

.

9. {pOq)0[(p + r)Oiq + r)l
"If p implies q, then 'p or r' implies 'q or r.' " Similarly,

10. ipOq)0(prO qr) .

11. (pD^)D(/7D^+r).

But perhaps the most interesting results of this interpretation

of the Boolean algebra occur with respect to the "constants"

and 1. If we retain the definition of 0, we have:

= pp\

"The null proposition is that proposition which asserts that p
is both true and false at the same time"; i.e., the null proposi-

tion is a contradiction. Similarly,

\=p + f,

"The universal proposition is that proposition which asserts

that either p is true or p is false"; i.e., 1 is a necessarily true

proposition.

The rules governing and 1 with respect to multiplication

and addition are obvious enough:

p + = ^,

"To say that either a given proposition p is true or a contradic-

tion is true is no more than to say that p is true" (since the

second half of the disjunction is immediately excluded)

.

p+l = l.
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"To say that either p is true or a true proposition is true is to

assert a true proposition (no matter what p may be)
."

"The expression 'Both p and a contradiction are true' is itself

a contradiction."

P'l=p
" 'Both p and a true proposition are true' is equivalent to 'p is

true.' " Note that both sides have the same truth-value. This

proposition expresses (among other things) the right to sup-

press a true premise (c£. page 103)

.

More significant still are the following:

OOp

pOl.

"If a contradiction is true, then anything follows," and "A
necessarily true proposition is implied by any proposition." The
former is not so strange, perhaps, for we might argue that if a

contradiction were true, then all logic would collapse and impli-

cation has no meaning: anything both follows and does not

follow from anything else. (Note that the second of these propo-

sitions follows from the first by Contradiction and Interchange.)

These two propositions may be expressed: "A contradiction is

the strongest proposition possible," and "A necessary proposi-

tion is the weakest proposition possible," (cf. exercise 9, page

44) , statements which seem to substantiate the use of the words

"strong" and "weak," since the strongest statements are usually

the ones we consider false (at first) , while the weakest are the

trite, everyday truths.

EXERCISES

GROUP A

1. Multiply the following:

Example: (a + b) (a + be) .

We first multiply as in ordinary algebra. That is, we multiply the

first term of the first sum (a) by each of the terms of the second

sum, and then repeat the process for the second term:

(a -\- b) (a + be) = aa { abe + ba -\- bbc.
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But aa = a and {bb)c = be;

also a + abc = a, and a + ab = a.

Hence (a + b) (a + be) = a + be.

Note that certain expressions are reducible further, even though

they do not appear so at first sight. Thus ax + ax' is a (x + x') or

fl'l, and this is a.

a) (a + ed + b') (a + e)

b) (a + a'b' + b) (a' + b')

e) (ab + flc + be) (a' + b' + c')

d) {a + fc) (a + c) (b + e)

e) (a -\-b) {a + b') (a' + b) {a' + b')

/) (ab' + b'a) {ab + a'b')

2. Give the equivalent of the following expressions by means of De
Morgan's Law and the principle a" — a:

Example: {a' + b) '.

Now (fl + 6) ' = a'b'\ hence if we replace a by a' we have

{a' + 6) ' = a" b'. But a" = a. Hence {a' -{-b)' -ab'.
a) (ab')'

b) (a'b)

'

c) (a + b')

'

d) {a' +b + c')

'

e) (abe)'

f) (a + b' + e)'

g)(ab'e')'

3. Reduce the following expressions by De Morgan's Law: ^

Example: (ab' + e'd) '.

First we consider ab' and e'd as two single terms, and reduce the

expression by the principle (a + b)' = a'b':

(ab' + e'd) ' = (ab') ' (e'd)

'

Now (ab') ' = a' +b, and (e'd) ' = e + d'. Hence

(ab') ' (e'd) ' = (a'+ b) (e + d')

.

We now multiply the expression on the right as in ordinary al-

gebra:

(a' +b) (e+ d') = a'c + a'd' + be + bd'

a) (ab + e)

'

b) (a + be)

'

1 Cf. p. 252.
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c) (a + bc+d)'
d)

[
{ab' + a'b) ' {a'b' + ab) ']'

e)
[
\ab + a'b') (ab) J

f) [(ab + ca' + b'c') {a + be) (c + ab) ]'

g) [
(a + ca' + c'a') (a' + c) ]'

/i) Given that a^ c and b d, reduce the following:

(a+ b + cd)'

(Note that if a D 6, then ab = a and, since &' D a', &'«' = &'.)

i) Given that aO c, b d, e b, and f a, reduce the following:

(ab + a'b'cd + ce \- fd)

'

f) Reduce the following expressions of the calculus of proposi-

tions:

(1) (P + P'^ + ^)'

(2) [(pOq) (pOq') + (p'Oq')Y
(3) [(a Ob) (bOa) + (aD b) (a b')'(b' D a) J

4. a) The class A is defined as the set of all white cats plus the set of

all white dogs. What is its negative? Let a = "white (things)
,"

b = "cats," c = "dogs." Then A = ab + ac. Hence A' =
(a' -f- b') (a' + d') = a' + b'd', i.e., A' is the class of things

which are not white plus the class of things which are neither

cats nor dogs.

b) Give the negatives of the following classes:

(1) A = the class of all unhappy people plus the class of all

happy angels.

(2) A = the class of all impractical theories plus the class of all

practical problems.

(3) A = what the class of featherless bipeds and hairless ani-

mals have in common.

(4) A = all pigs that are either fat or lazy.

(5) A = class of dissatisfied Republicans plus the class of satis-

fied but ignorant Democrats plus the class of wise Social-

ists. (Assume that everyone is either a Republican, a

Democrat, or a Socialist.)

(6) A = what the class of people who are either happy, poor,

or lonely have in common with the class of people who are

either happy or rich or not lonely.

5. Are there any operations, other than plus and times, in ordinary

algebra which are such that the first is distributive with respect to

the second?
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6. Determine whether multiplication is distributive with respect to

subtraction in Boolean algebra. Is subtraction distributive with

respect to either addition or multiplication? Is addition distribu-

tive with respect to subtraction?

7. Given that a Ab = ab + a'b' and aob = a'b + ab';

a) What is the relation between a ^ b and aob?
b) (1) a /\a = } aoa = 7 a /\a' =7 aoa' =7

(2) If a D 6, a /\b = 7, aob-7
(3) If a = 0, a A ^ = ?. fl o & = ?; is the converse true?

(4) If a = 1, a ^b = 7 aob = 7 is the converse of this also

true?

(5) Are "A" and "o" commutative?

(6) Are "A" and "o" associative?

(7) Is "A" distributive with respect to "o"; is "o" distributive

with respect to "A"? Are either of these operations dis-

tributive with respect to "plus," "times," or "minus"? Are
the latter three distributive with respect to "A" or "o"?

8. Which of the following pairs of propositions are equivalent (i.e.,

which are true in exactly the same cases) ?

a) a = 2b + c

3a-6b = Sc

b) The Romans conquer the Carthaginians.

The Carthaginians are conquered by the Romans.
c) The speed of light is greater than the speed of any other mov-

ing object.

If the speed of light is greater than that of any other moving
object, then Einstein is right.

d) The triangle A has a side and an angle equal respectively to a

side and an angle of the triangle B.

The triangle A has two sides which are equal respectively to

two sides of the triangle B.

e) aO be

b'c' D a'

f) ab + c = c

abc = ab (in Boolean algebra)

g) aO c and c b and b D a',

a = and be = c.

h) a = b

ab' + a'b =
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a = and 6 =

j) a — b = b — a

a = b

k) ab = a + b

a = b

t) a + b = a — b

b =

m) ab — a — b

fl =



Deductive System of the

Boolean Algebra

WE PROCEED now to "formalize" the Boolean algebra, by
way of constructing a set of definitions and assumptions

which will be sufficient to allow us to deduce all the properties

mentioned in the preceding chapter. The general characteristics

of a deductive science were dealt with in chapter I, and chapter

IV presented an example of the methods employed. The de-

ductive system here differs from that of chapter IV in its em-
phasis on the axiom of Substitution (axioms 4 and 5 below)

.

Concerning this deductive system of the Boolean algebra, the

following points are noteworthy:

1. It is not necessary to assume as indefinables all the rela-

tions and operations of the system. For example, in De Morgan's

Law we can define the operation a -{- b (addition) in terms of

multiplication and negation, or multiplication in terms of addi-

tion and negation. It is, then, more or less arbitrary whether we
take multiplication or addition as indefinable. We define addi-

tion in terms of multiplication and negation.

2. The null class (0) is defined by aa\ that is, by means of

multiplication and negation. To define this concept, however,

we must assume that it is unique or "constant." This we do in

Postulate 4 by assuming the proposition aa^ = b b\ That is, no
matter what class we take for a in the definition =: aa\ we al-

ways have the same result: =^ aa' ^ bb^ = cc\ etc.

3. We may define the relation of inclusion in terms of 0,

negation and multiplication; or, since may be defined by
multiplication and negation, we may define the relation of in-

clusion in terms of the last two only; a D fo is to mean the same
thing as the statement that a and non-6 have no members in

267
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common. That is, aO b means ab' — 0. Hence, by an axiom

which asserts that when two statements are definitionally equiva-

lent, they imply each other, ii a b, then ab' = 0, and if

ab' = 0, then a b. However, on account of the considerations

mentioned concerning the uniqueness of 0, the definition of in-

clusion will first read: "a b means ab^ = aa\ We shall postu-

late that aa^ is unique, and as a theorem deduce "a b means

ab^ = 0." In the case of the calculus of propositions, implication,

p q,is then equivalent to the expression "p is true and q false

is a contradiction." That is, if whenever p is true, q is also true,

then it is a contradiction to say that p is true and q is false, and,

vice versa, if it is impossible that p be true and q be false at the

same time, then p implies q.

4. The symbol "=" will be taken as indefinable in a certain

sense only, for we shall assume an axiom which will describe its

essential property, namely, that two equal terms, a and b, may
be substituted for each other in any expression.

Deductive System of the Boolean Algebra^

Indefinables

1. A class K of elements a, b, c . . .

2. ab ("multiplication")

3. a' ("negation")

4. a = b ("equality")

Definitions

1. (a + b) = (a'b')

'

("addition")

2. a 3 & means ab' — aa' ("inclusion")

Postulates ^

1. ab = ba.

2. a (be) = (ab) c.

3. If fl D b, then ab = a.

4. aa' = bb\

iCf. chap. V, p. 102.
2 Most sets of postulates for Boolean algebra assume also the following or their

equivalent:

0.1 K has at least 2 elements.

0.2 If a and b belong to K, then ab belongs to K.
0.3 If a is in K. a' is in K.
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The following definitions may now be added:

3. = kk', where k is some fixed element of K.

4. 1=0'

Axioms '

1. If ^ and q are definitionally equivalent (i.e., if p and q
"mean the same thing") , then p implies q and q implies p.

2. If p is implied by a postulate or theorem, then p is true

(i.e., p is a theorem)

.

3. The terms of the postulates, definitions, and theorems {a,

b, c, etc.) may be replaced throughout by any other terms

or expressions involving multiplication [ab) , addition

{a -\- b) , or negation {a') (i.e., any other element of K)

,

without altering the validity of the given expression. (In

the case of the calculus of propositions, this may be ex-

tended to the sign "=" and to D. Note that the substitution

must take place throughout the given expression; i.e., if

we replace the term a in a certain place by another term,

we must replace it wherever it appears by the same term.)

4. If a = b, then a may replace b in any expression without
altering its truth or falsity and b may similarly replace a;
"—" is also taken to be reflexive; i.e., a — a. We can thus

deduce the following properties of equivalence, which will

be important in the sequel (some of these statements de-

pend on theorems to be proved)

:

ci) a — a ("=" is reflexive; cf. page 22)

.

b) If a = b, then b = a {"= " is symmetrical)

.

c) Iia = b, and b = c, then a = c ("= " is transitive)

.

d) If a = b, then ac = be and a + c = b + c.

e) Ua = b, then a' = b'.

f) lia = b, then aO b and b a.

5. If p implies q and q implies r, then p implies r (The Prin-

ciple of Strengthening and Weakening)

.

6. The statement "p is true and a given theorem or postulate
is true" is equivalent to the statement "p is true." (Cf.

Axiom 12, page 103; axioms 5 and 6 will be used tacitly.)

3 These axioms, with the exception of 4, are all drawn from the logic of propo-
sitions. Axiom 4, according to the principles for a formally correct deductive sys-
tem set down in chap. VII, should really be a postulate, since it includes an
indefinable of the system. However, this method of assuming it as an axiom (often
implicitly) , though formally incorrect, is almost invariably followed in postulate
sets for Boolean algebra.
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The following theorems lay no claim to a thorough survey

of all the Boolean algebra. The principal purpose here is to

indicate the method of proof and to demonstrate some of the

important properties named above. We first prove that a b

may be defined as ab^ = 0:

Theorem 0,1 = aa' = bb' = cc', etc.

This theorem follows from postulate 4, where k is written

for a, and a for b, and definition 3. This theorem will be used

implicitly in the proofs of the remaining theorems.

Theorem 1. a D & means ab' — 0.

For a D 6 means ab' — aa' (Definition 2)

But aa' —
Hence a D 6 means ab' — ^ (Axiom 4)

Theorem 2. a D a

fl D & means a&' = (Theorem 1)

Now replace & by a:

a D fl means aa' = 0.

But aa' — 0; hence

a 3 a is true (Axioms 1 and 2)

Theorem 3. aa = a

In Postulate 3 replace fc by «:

If fl D a, then aa = a.

But fl D a is true (Theorem 2) . Hence (Axiom 2)

aa = a is true.

Theorem 4. aO =
Now = aa'

Hence aO = a {aa') (Axiom 4)

.

But a (aa') = (aa) a' (Postulate 2) .

But aa = a (Theorem 3)

.

Hence (aa) a' = aa' (Axiom 4)

.

But aa' =
Hence aO = (Axiom 4) . Q.E.D.

Theorem 5. li ab = a, then aO b. (This is the converse of Pos-

tulate 3)

.

If ab = a, then ab' = (ab) b' (Axiom 4)

.

But (ab) b' = a (bb') (Postulate 2)

But bb' =
Hence a (bb') — aO (Axiom 4) . -

But aO = (Theorem 4)

.

Hence a&' = (Axiom 4)

.

Hence aO b (Theorem 1, and Axioms 1 and 5) . Q.E.D.
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Theorem 6. D a

Now aO = (Theorem 4)

.

But flO = Oa (Postulate 1, where is written for b) .

Hence Oa = (Axiom 4)

.

Now in Theorem 5 put for a and a for b:

If Oa = 0, then a.

But Oa = 0; hence (Axiom 2)

D a is true. Q.E.D.

Theorem 7. If (a D b) and (b a) , then a= b. (This is the

converse of / under Axiom 4.)

li aO b, then ab = a (Postulate 3)

,

and a b D a, then ba = b (Postulate 3)

.

But ab = ba (Postulate 1)

.

Hence a = ab z= ba = b, and a = b (Axiom 4) . Q.E.D.

Theorem 8. If a D b, then ac D be (or ca D cb) .

We show that ac be by showing that (ae) (be) = (ae) . For
if the latter is the case, then by Theorem 5 (where a is re-

placed by ae and b by be) , the former must also be the case.

This method of proof is very common in the proofs of the

theorems of the Boolean algebra and consists in showing that

the multiplication of what precedes the inclusion sign by what
comes after reduces simply to the former.

Now (ae) (be) = (ab) (ee)

.

This is a consequence of Postulates I and 2. The actual proof
is left as an exercise.

But ab = a (Postulate 3, since aO b by hypothesis)

,

and ee — e (Theorem 3, where a is replaced by e)

.

Hence (ab) (ee) = ae (Axiom 4)

.

Hence (ac) (be) = (ae) , and ae D be. Q.E.D.

Theorem 9. If a D 0, then a = 0.

For D a (Theorem 6)

Hence, if a D 0, we have fl = by Theorem 7 and Axiom 6.

Theorem 10. a" = a

aa' — a'a — (Postulate 1 and Definition 3)

Now replace a by a'.

(a") a' = 0.

In Theorem 1 replace a by a'' and 6 by a

a" a means
[
(a") a'] = 0.

Hence (Axioms 1 and 2)

a'' D a.
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Now replace a by a':

fl"' D a'

Hence, by Theorem 8, where a is written for c:

aa'" D aa',

or a {a") ' D 0, or (Theorem 9)

a {a") ' = 0, and hence (Theorem 1)

a D fl".

Thus fl'' D a and a D a'\ and hence (Theorem 7)

a = a'' Q.E.D.

(Note that in the proof of this theorem we seem to assume the

fact that (a') ' = a"'. But actually there is no assumption here

at all. a'' is merely shorthand for (a') ', a convenient method for

writing the longer expression.)

Theorem 11. aD b means b' D a\

aO b means ab' = (Theorem 1)

But ab' = b'a (Postulate 1)

Hence, a D b means b'a = 0.

But b'a = b'a" = b' (a') ' (Theorem 10)

Hence, a D 6 means b' (a') ' = 0.

But (&') {a') ' - means b' a' (Theorem 1)

Hence, aO b means b' D a\

Hence aO b implies b' D a', and conversely. (Axiom 1)

.

Theorem 12. li aO b, and b c, then a c.

We show that, under the hypothesis, ac — a and hence that

aO c. (By Theorem 5)

.

Since a D &, we have ab = a (Postulate 3) . Hence
ac = (ab) c = a (be) (Postulate 2)

But since b D c, be = b. (Postulate 3)

Hence a (be) = ab = a.

Thus ac = a, and a D c. Q.E.D.

The proofs of the following theorems are greatly abridged, all

references being omitted:

Theorem 13. ab a.

We show that (ab) a' = 0, and hence, by Definition 2 and
Axioms 1 and 2, that ab D a. The formal proof is left to be

done by the student.

Theorem 14. a + b = b + a.

a'b' = b'a\

Hence (a'b') ' = (b'a') '.

Hence a + b = b + a.
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Theorem 15. a + a = a.

In Definition 1 put a for b:

{a'a') ' = a + a.

But a'a' = a'; hence

(a') ' = a + a, or

a + a = a. Q.E.D.

Theorem 16. a + (& + c) = (a + 6) + c

Theorem 17. 1 = a + a'

For = a'a; hence
0' = (a'a) ') but
0' = 1, and {a'a) ' = a" + a' = a + a'.

Hence 1 = a + a' Q.E.D.

Theorem 18. aO (a + b)

.

Hint: use Theorems 13 and 11.

Theorem 19. ab a + b.

Theorem 20. li aO b, then a + b = b, and conversely.

liaDb, then b' D a' or b'a' = b'.

Hence {b'a') ' = {a'b') ' = b" = b.

But {a'b') ' = a + b.

Hence, ii aD b, then a + b = b.

The converse follows similarly.

(Proofs of the following theorems are to be worked out by
the student.)

21. ab + a = a.

22. If a D & and a D b', then a = 0.

23. If a D a', then a = 0.

24. libD a and b' a, then a = 1.

25. If a' a, then a = 1.

26. {a'b'c') ' = a + b + c.

Hint: take a'b'c" as a' {b'c/)

.

27. {a' +b')' = ab.

28. ab c means ac' b', or ab D c means c'b a'.

29. Ii aO b, then a' + b = I, and conversely,

30. If a' + 6 = 1, then a Ob.
31. If a D b', then b a'.

32. If a' D 6, then b' D a.

33. fll = a.

34. a D 1.

35. a + 1 = 1.

36. a + = a.
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37. If a + & = 0, then a-O and & = 0.

38. If ab = 1, then a = 1 and b = 1.

39. liaO b. and cO d, then

a) ac D bd,

b) acDb + d
c) {a + c)0{b + d)

40. a) If a D b, and cO b, then ac b and (a + c) D 6.

6) If a D 6, and aD c, then aO be and a D 6 + c.

41. a (& + c) = a6 + ac (Distributive Law)

This must be shown in two parts:

a) (ab + ac)Oa{b + c)

To prove this, show that ab a{b -\- c) and ac a{b -\- c)

(Theorem 39) and apply Theorem 40.

b) a(b + c)D (ab + ac)

Now a (ab) ' b - (ab) (ab) ' = 0.

Hence a (ab) ' D b'

Similarly a (ac) ' D d
Hence (39) « (a&) ' (ac) ' D (6V)
Hence a (b'c') ' D

[
(ab) ' (ac) ']' (Theorem 28)

,

which, by definition, gives:

a(b + c):y (ab + ac) .*

42. (b -\- c) a = ba { ca := ab -\- ac

43. a + be = (a + b) (a + c)

44. a(b + c + d) = ab + ac -\- ad

45. (a + b) (c + d) = ac -\- ad + be + bd

46. (ab + cd)' = a'd + a'd' + b'd + b'd'

47. ab' +b = a + b

48. a = ax + ax' (i.e., any element may be "expanded" by any

other element)

49. I = a + a' = a& + ab' + a'b + a'b' (These last four terms

are called the "quadrants" of Boolean algebra.)

In general, 1 may be expanded by any set of elements a^, ai,

tta, . . ., On, by adding the products of all the terms with the

primes permuted in all possible ways:

1 = aitta . . . fln + ciiaa . . . a'n + ^i^z • • • d'n-ia^ + . . .

+ a^aa . . . a'n-iOfn + . . . + a'la'a . . . a'„.

This can be shown by mathematical induction (cf. page 31)

.

4 This simple proof of the theorem, which has often been thought extremely

complex for postulate sets like the above, is due to Mr. S. I. Askovitz. Sub-

stantially the same proof appears in Peano's Formulaire de mathematique.
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50. = aa' = (a + b) (a' + b) (a + b') {a' + b')

= (ai + • . . + «n) (a\ + fl2 . . . + an) . . .

(a'l + a\+ . . . + a'n)

51. If ac = be and a + c = b + c, then a = b.

52. (Cf. Exercise 7, page 265)

a) (aob) = (a' o b') ; (aAb) = (a' A b') ; (a Ab) = (aob')

;

(aob) = (aA b')

b) ao(b Ac) = b o(a Ac) = co(b Ao)
c) a A{boc) z= b Aidoc) = c A{(iob)
d) ao(b Ac) = a A(b oc)

e) li a Ac — b Ac, then a = b; ii aoc = boc, then a = b

As we have pointed out already, the Boolean algebra may be

considered as a calculus of propositions. We will now prove

certain well-known laws of this calculus. For example:

1. If (p = 1) (i.e., if p is true) and (p^ q) , then q = I (q is

true)

.

We can show this if we can show that 1 D ^ is the same thing

as q = I. But if 1 D ^, then, since ^31 always (34) , we have

I = q (Theorem 7) . Hence, ii p = 1, then p q is I q, and
hence q = I.

2. If ^ D q, then pr qr.

"If when p is true, q is true, then when p and any other propo-

sition r are true, q and r are true." (Cf. Theorem 8)

.

3. We can now prove the dilemmas given on page 35. To
complete their proof from the above postulates, we must add

the additional assumption:

Ii pO q, then p' + q ("either p is false or q is true") , and, con-

versely, if p' + q, then p q.

Constructive Dilemma:

li (pOq) (rO s) (p + r), then (q + s) .

Now if (pO q). then (q' p') (Theorem 11)

But, according to 2 above, we may multiply both sides of

this implication by any expression whatsoever and the resulting

form will still be true; let this expression be p' D r:

If {p Oq) (p'Or), then (q' D p') (p' r)

.
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But the conclusion of this proposition may be weakened by
virtue of Theorem 12 to {q' D r) :

If ip^q) (p'Or), then (q' D r)

.

Again, multiply both sides of this expression by r D 5:

If (pOq) (rO s) (p'Or), then (q' Or) (rOs).

Again, the conclusion may be weakened to q' D s:

If (pO q) (rO s) ip'Or), then {q' D s) .

But, by the additional postulate, [p' 3 r) may be strengthened

to p^' -{- r or p -{- r, and (q^ D s) may be weakened to q^^ + s

or q -{- s. Hence, substituting these values in the last expression

above, we derive the constructive dilemma.

Destructive Dilemma:

li (pO q) (rO s) (q' + s') , then (p' + r')

.

In this case we start with Theorem 12:

li (pOq) (qD /) , then (p s')

.

Now multiply both sides by (.s' D r') :

If (pOq) (qO s') (s' r") , then (p s') (s' r^ .

But the premise (5' D r') may be strengthened to (r s) , since

if (r D s) is true, {s' r') is true. Also the conclusion may be

weakened to (p D r') :

If (pOq) (rO s) (q D s') , then {p Or').

But {q D 5') may be strengthened to {q' + 5') , and (p 3 r')

may be weakened to {p' + ^0 '•

If (pO q) (rO s) (q' + s') , then {p' + f)

.

The remaining "mixed" forms are to be done by the student:

If ipO q) (rO s) (q' + r) , then (p' + s) , and

li (pO q) (rOs) (p + s') , then {q + r')

.

The following theorems are also left to be proved by the

student:

a) If p, q, r, and s are four propositions such that p (^ + r) =
and sO p, then

sO q' and sO r'.
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b) If p, q, r, and s are four mutually exclusive and mutually in-

clusive propositions (cf. page 128) , and t, u, v, and w are also

four mutually exclusive and inclusive propositions, and pO t,

q u, rO V, sD w, then t D p, uO q, v r, and w D s.

c) (pOq) (rOs) (tOu) (p + r+t)0(q+s + u),

d) (pOq) (rOs) (tOu) (vDw) (p + r+t + v)0(q+s + u + w).



Elementary Mofhemotics -^ x

of the Boo/eon Algebra

THE Boolean algebra may be extended in much the same
manner as arithmetical algebra to considerations of func-

tions, equations, and solutions of equations.

Expansions of Boolean Elements

Any element of the Boolean algebra may be "expanded" to

as many terms as we please in the following manner:

a = a(b + b') = ab + ab' = ab (c + c') + ab' {d + d') =
abc + ab(f + ab'd + ab'd', etc., etc. (Theorem 48, page 274)

Such expansions are often valuable in determining the values

of certain expressions. Thus if the complex expression

a + a'b + b'

is expanded in its two extreme terms, we have

a{b + b') + a'b -\- b' {a \- a') = ab + ab' + a'b + b'a + b'a\

the last expression being 1 (cf. page 274)

.

If / (x) signifies some expression containing x and the usual

Boolean operations oi -\-, X, and ', then f (x) may always be

expressed in the "normal form":

Ax + Bx',

where A and B are expressions not containing x. For example

a6' -\- ax -\- c may be written

ab'x + ab'x' + ax + ex + ex',

by expanding the terms not containing x by means of x. Col-

lecting and factoring, we have

{ab' -\-a + c)x-\- {ab' + c) x'.

Here A is {ab' -f a + c) and B is {ab' -f c) .

278
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The normal form of a function containing two variables is

/ (x, y) = {Ay + By')x + (Cy + Bf) x', or

/ {x, y) = Axy + Bxy' + Cx'y + Tixy,

An expression containing any number of variables, x, y, z, etc.,

may be written in a normal form in a similar manner.

(See Exercises, Group A, at end of chapter.)

Theory of Boolean Equations

The normal form of any Boolean equation containing one
unknown is

Ax + Bx' = 0.

We require some method for transferring terms from one
side to another in order to reduce equations to this normal
form. In ordinary algebra, if a = h, then we transpose by sub-

tracting h from both sides and deriving the equivalent expres-

sion a — 6 = 0. This cannot be done in Boolean algebra, since

ah' = is not equivalent to, but is weaker than, a =: b. Rather,

our method here is to multiply each side of the equation by
the negation of the other, add results and equate to 0. For
example, a^ x is equivalent to ax' -j- a'x = 0. For when
a.-\- b = 0, fl=0 and b = in this algebra. Hence ax' =
and a'x = 0, or a D x and x a, which gives a = x.

(See Exercises, Group B, at end of chapter.)

Solution of Boolean Equations

By the solution of the equation Ax -f- Bx' = 0, we mean de-

termining the "value" of x in terms of A and B. More specifi-

cally, we mean determining the range of x. Now the solution

of this equation may be given as

B D X D A'.

For if Ax 4- Bx' = 0, then Bx' = and Ax = 0, which give

B D X and x D A' respectively. This solution is unique, on the

one hand, when B and A' are the same, and, on the other hand,
it is completely indeterminate, when B is and A' is 1, for in

the latter case any element whatsoever would satisfy the con-

ditions. Again, if AB 7^ 0, there is no solution (cf. Exercise 2,
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Group C) . If the equation gives an ambiguous answer, we may
have another (simultaneous) equation Cx + D^' = 0. The so-

lution of two simultaneous equations

Ax + Bx' =
Cx + Dx' =

is given by the expression B + D ^ ^ ^ A'C. (Why?) This

result may be extended for any number of equations.

A peculiarity of the Boolean algebra is that if we have two

unknowns we do not necessarily need two equations (as we do
in ordinary algebra) for a complete solution. In general, in

this algebra there is no necessary relation between the number
of unknowns and the number of equations required for a

unique solution. If the given equation has two unknowns, we
may always eliminate one of them. For if Ax -j- Bx' = 0, then

AB = 0, for if Ax + Bx' = 0, then B D x D A', or B D A', and
hence AB = 0. This provides a method for eliminating x. Sup-

pose the given equation is ay -\- hx' -\- c =:0. Writing this in

the normal form with respect to x, we have

{ay -\- c) X + {ay -\- b -\- c) x' = 0.

Since the product of the coefficients of x is equal to 0, we have

the following equation, with x eliminated:

{ay + c) {ay + b + c) — 0,

or

{a + c)y + cy' — 0.

Hence c D 3; D (a + ^) '» oi" c ^ y ^ c'a'. Since this gives c 3 c'

or c = 0, )? is indeterminate as regards its lower limit. Its upper

limit is a'. (Note that we could have eliminated c in the begin-

ning, by virtue of the original equation. Why?)
The normal form of an equation in two unknowns is

\ (x, y) — Kxy + ^xy' + Cx'y + Vix'y' = 0.

Any equation with two unknowns may be reduced to this nor-

mal form, where A, B, C, and D do not contain x and y. A, B,

C, and D are called the "discriminants" of the equation, just

as A and B are the discriminants of the equation

Ax + Bx' = 0.
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For equations with three unknowns there will also be a nor-

mal form with eight discriminants:

/ (Xt y, z) = Axyz + Bxyz' + Cxy'z + Dx'yz + Exy'z' + Fx'yz'

+ Gx'y'z + Uxyz'.

In general, the normal form for equations of n variables will

contain a sum of products, the products representing all pos-

sible combinations of primed and unprimed elements. The
general solution of an equation / (x, y) in two unknowns will

be

CD D X D A' + B', and
BDOyOA' + a,

as verified by the elimination method suggested here.

(See Exercises, Group C, at end of chapter.)

The Boolean algebra, like ordinary algebra, may be used in

the solution of "word" problems:

Example: x is a certain class of animals. There are no members
of X which are not white and there are no members of x

which are neither cats nor dogs; on the other hand, every

animal is either not white, or an x, or neither a cat nor a

dog; determine the membership of x.

Solution: If x is the class, then the problem may be put in the

following symbolic form, where a = "white things," b =
"cats," d =z "dogs," the equations becoming:

(fl' + b'd') x =
a' + b'd' + X = 1

(where "animals" represents the universe of discourse)

The solution of these two equations is x =: afo + ad, i.e., x is

the class of white cats plus the class of white dogs.

(See Exercises, Group D, at end of chapter.)

EXERCISES

GROUP A

1. Express in the normal form the following:

a) ax' + 6 + cdx (As in ordinary algebra, take x, y, z, etc., as

"unknowns" and a, b, c, etc. as "knowns.")
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h) a'b -\- ex + d'b + e

c) ax + a'x' + a'x

d) a •\- b (How may we introduce x?)

e) ax' + b + cy' (2 variables)

/) a'x + b'y -\- c -\- ay + x'

g) ax + by + cz (What is the normal form for three variables?)

h) abx' + ddy + ez' + fx + a'

2. If / (x) = Ax + Bx', determine the values of / (1) , of / (0) , of / (A)

,

of / (B) , of / (AB) , of / (A + B) , where, for example, / (1) means
the result of substituting 1 for x throughout the expression. Hence
show that

/(x) = /(l)x + /(0)x'^

3. Given the normal form for / (x, y) as above, determine the values

of / (0, 0) , / (0, 1) , / (1, 0) , / (1, 1) . Rewrite the normal form using

these results.

4. Prove that AB D Ax + Bx' D A + B.

5. Prove that [/ (x) ]' = A'x + B'x\

6. a) Prove that if / (x) = Ax + Bx' and
<f>

(x) = Cx + Dx', then

/ (x) -\-
<f>

(x) = (A + B) X + (C + D) x'. Prove a corresponding

theorem for functions with two variables.

b) Prove that / (x) •
«^ (x) = ACx + BDx', and prove a correspond-

ing theorem for two variables.

GROUP B

1. Reduce the following to normal form equations:

a) ax = bx'

b) a -\- cx — d
c) a'x — (c + d)x + x'

d) ay \- bx = ax -\- by

e) axy = bx'y'

f) ax + by' — cx' + dy

g) ax + bxy = cx' + dy' + ex'y'

GROUP C

1. Solve the following equations:

Example 1) abx + a'b' =

In the normal form this is

(ab + a'b') x + a'b'x' = 0.

1 This proposition can be said to "characterize" the Boolean algebra, since with

this as the only formal assumption, the entire algebra follows.
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Hence the solution is

a'6' xO(ab + a'h') ' or

a'h' X D «'& + h'a.

But, as generally happens, we may determine more
concerning these "limits." For if Ax + Bx' = 0, then

AB = 0. Hence {ab + a'h') {a'b') - 0, or a'b' = 0.

Hence, the lower limit of x is undetermined. The
upper limit becomes a' + h', since a' b and b' D a.

Example 2) x + b'x' + 6=0

As in ordinary algebra, an equation or a set of equa-

tions may be inconsistent, in which case, of course,

there is no solution. Thus in ordinary algebra, the

equation x + 3 = x + 5 and the simultaneous set

Sx + 9y = S and x + 3)) = 2 are inconsistent. Ex-

ample 2 is inconsistent in Boolean algebra, for its

normal form is x -f x' = 0, which is a contradiction.^

In general, if the product of the coefficients or dis-

criminants, AB, is not 0, then the equation is incon-

sistent. When the coefficients are undetermined, i.e.,

are a, b, c, etc., then this restriction places values

upon them, as in Example 1. What conditions must
be satisfied in order that the equation Axy + Bx))' +
Cx'y + Dx'y' = be consistent? Generalize this for

equations with any number of unknowns.

a) ax + 6' =
b) a'x + flx' =
c) ax •\- x' — a'

d) ax + b = I

e) a'x + ax' = 1

f) xy -{ x'y + x'y' =
g) xy -\- ax -^ ay + x'y' =
h) ax + by' = ex + dy'

i) a'x'y -I- X + ax'y' —
;) xy \- ax' + by' -f x'y' —
K) xy -I- xb' + «)» + b'y + a'x \- bx'y' =
I) xy + x'y' + a'x + aby -\- b'x =
m)

[ (a + 6 + x' -t- y') {a'b' + x + y)]' +[ (ab'c + x' + y) (a'bc' +
x + y')Y+[{a + c+x' + y') {b + c'-{-x' + y') ]' =

n) a'x'y' + x'y + ad + bx'y' + a'y + b'xy' + &)» =

2 Le., a contradiction in a Boolean algebra having more than one element.
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o) xz + x'z + ayz' + a'xz' + x'y'z' —
p) ax + bx' =

ax -\- ex' =
q) a'xy + axy' + h'xy' + bx'y' =

a'h'xy + a'xy' + ^x)'' + cix'y' —
r) xy + fl'x + x')* + cLx'y' —

fl'x)' + xy' + a'x' + x'y' —
5) ax + h'y' \-hx •\- xy' —

ahx'y + a'b'xy + fe'x')'' + a' =

2. Prove that if A = in an equation of two unknowns then the

upper limit of x and ); is 1; if B = 0, the upper limit of x is 1, the

lower limit of )) is 0; if C = 0, the lower limit of x is 0, the upper

limit of }) is 1; if D = 0, the lower limit of x and y is 0. What fol-

lows when A = 1, or B = 1, or C = 1, or D = 1?

3. Solve the general equation: Ax + Bx' = Cx + Dx' for x in terms

of A, B, C, and D, and the general equation: Axy + J^xy' + Cx'y

+ Jix'y' = Exy + Yxy' + Gx'y + Hx'y' for x and y in terms of A,

B, C, etc. With the results obtained solve the following equations:

a) ax + bx' = a'x + dx'

b) a'b'x + ax' = a'b'x'

c) ax + bx' = flx + b'x'

d) a'y + x'y + ay' + x'y' + by' = a'xy' + ab'xy

e) xy + xy' + x'y + ax'y' + bcx'y' = (a'b' + a'c' + x + y)'

4. Show that a necessary and sufficient condition that the general

equation Axyz . . . st + Bxyz . . . st' + Cxyz . . . s't + . . . +
'Lx'y'z' . . . s't' = have a unique solution: x = a, y = b, z = c,

. . . , s = k, t = m, is that 1) The product of the discriminants

"vanish," i.e., ABC . . . L = (the Condition of Consistency)

,

and 2) A'B' = 0, A'C = 0, . . . , K'L' = 0, i.e., the products of

the negatives of the discriminants taken two at a time vanish (the

Condition of Uniqueness)

.

(Hint: Show: a) That an equation having the unique solution men-
tioned will be <j)(x,y,z, . . . ,t) = a'x + ax' -f b'y

+ by' + c'z + cz' + . . . + m't + mt' = 0.

b) Two equations are equivalent if and only if their

discriminants are the same.

c) The discriminants of any equation of n unknowns
are given by the equation

/(I, 1,1, . . . ,1) = A
/(I, 1, . . . , 1,0)=:B
/(O, 0.0, . . . ,0) = L
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Hence d) In order that the original equation and <^ (x, y, z,

. . . t) = Ohe equivalent we must have:

A = fl' + 6' + c' + . . . + m'
B = a' + 6' + c' + . . . +m

which gives the required theorem.)

GROUP D

1. Solve the following problems:

a) The "Liberserfs" is a club. The members of this club that be-

long to either the Elks or the Kiwanis plus those that belong
to neither are none. Determine the club's membership.

b) From a certain class of objects A picks out the small round
things and the large white things and B picks out from the re-

mainder the small white things and round things that are

not white. All that is left comprises the class of small things

that are not round. What can be determined about the class

originally?

c) X and y are two classes which have the following properties:

Their product vanishes, their sum is the universe; the class

composed of things that are neither white nor y is empty as are

the classes of things that are x but not men and things that are

y and are white men. Determine the values of x and y.

d) "Three persons A, B, C are assigned to sort a heap of books in

a library. A is told to collect all the English historical works,

and the bound foreign novels: B is to take bound historical

works and the English novels, provided they are not historical:

to C is assigned the bound English works and the unbound
historical novels. What works will be claimed by two of them?
Will any be claimed by all three?" ^

e) "It is found that when all the books in a library except philoso-

phy and divinity are rejected they are reduced to philosophy
and protestant divinity, but include all the works on those sub-

jects. What is the widest and narrowest extent, so far as ex-

pressible in these class terms, which the library could have
possessed under the given conditions?" (Venn)

/) "At a certain town where an examination is held, it is known
that,

(1) Every candidate is either a junior who does not take Latin,

or a senior who takes composition.

3 Venn, Symbolic Logic.
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(2) Every junior candidate takes either Latin or composition.

(3) All candidates who take composition also take Latin, and

are juniors.

Determine the membership of the class of candidates."

(Venn)

g) Determine all relations in the Boolean algebra which are transi-

tive (cf. page 27) by giving oKb the general form Aab + Ba6'

+ Ca'b + Tia'b' = 0, and determining the values of the dis-

criminants A, B, C, and D which will make true the implica-

tion " (aR&) (&Rc) implies (aRc) ." Determine all relations

which are reflexive; all which are symmetrical.^ Determine all

relations which are "contra-symmetrical": if oKb, then &'Ra';

all which are "contra-reflexive": oKa'.

* B. A. Bernstein, A Generalization of the Syllogism, Bulletin Am. Math. Soc,

vol. 30, pp. 125-127.
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WE HAVE shown that the symbols o£ the Boolean algebra

are not confined to one interpretation, for we may read

a + & as "What belongs to either a or b," or "Either a or fe is

true"; that is, the Boolean algebra may be considered as an

algebra of classes or as an algebra of propositions. But it must

seem evident enough that these two interpretations do not ex-

haust the possibilities. That is, there is nothing to prevent our

considering the symbols of the algebra in an entirely different

manner. The following are some of the interpretations which

have been suggested:

I. Let us consider two "things," which we shall call A and

B. We define the "multiplication" of A and B (AB or BA) as

equal to A, while AA = A, and BB = B. We say that the "ne-

gation" of A, A', is B, and B' == A. The following tables repre-

sent these conventions:

X A B

A A A

B A B

r

A B

B A
2.

(Here, to determine the result of the operation in the upper

left-hand column in table 1 , start with the element in the verti-

cal column on the left, pass to the element in the horizontal

column and complete the rectangle. Thus to determine BA,
start with the B in the bottom of the vertical column on the

left, draw a line through the X -relationship at the top to the

A on the horizontal line. If we complete this partial rectangle,

the remaining vertex will give the required value. A.)

287
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Then it will appear that, when +, X, 0, and 1 have been de-

fined for this system according to the definitions given above,

the resulting system is perfectly consistent with the Boolean

algebra. Thus A + B will be equal to (A'B') '. But A' is B and

B' is A. Hence (A'B') ' is (BA) '. But BA is A. Hence, A + B =
(A) ' = B. In a similar manner, we can find the value of B + A,

A -j- A, and B + B. The elements of the Boolean algebra, a, h,

c, etc., are thought of as having one of the two values A or B.

This being the case, the four postulates will be verified for "all"

values of a, h, and c, i.e., no matter which of the two values A
and B these terms may have. It will be evident that A is iden-

tical with the 0-element and B with the 1 -element. Hence,

aO b will be true except when a is B and 6 is A (1 D is false)

.

When this restriction is placed on the terms of the Boolean

algebra, the latter is usually called the "two-valued" algebra,

and has had a special application to the calculus of propositions.

Let represent a logically false proposition, and 1 a logically

true proposition. Then this interpretation expresses the rela-

tions between these two types of expression. There are certain

laws which are peculiar to this two-valued algebra. Thus we
can here assert that p = is the same thing as p' {"p is false")

,

and p =z \ is the same thing as p ("p is true") . Hence, we
could define implication, p q, a.s p^ -{- q ("Either p is false

or q is true") . For, by Definition 4, p D q means pq^ = 0. But

here pq^ — is (pq^) ^ = p^ -}- q by De Morgan's Law. The
two-valued algebra represents a very simple system. For ex-

ample, the truth or falsity of any expression may be tested

simply by changing all implication signs into disjunctions

iP + ^) ^^^ multiplying out. Thus p (q pq) would be-

come p {q' -{- pq) or p' -{- q' -\- pq- Since this result is 1, we
can infer that p (q pq) is true.

With respect to the two-valued logic, the proofs of the fol-

lowing propositions will be helpful. These more or less charac-

terize the system:

1. pO(qDp)
"If p is true, then p is implied by any proposition."

ZfOipOq)
"If p is false, then p implies any proposition."

S.(pOq)'D(p = 0)^

"If p does not imply a given proposition q, then p is not false (or,

p is true)
."
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4. (p = 0)^ = p
6. (pOq)'Oq'

"If q is not implied by a given proposition p, then q is false (i.e., q
is not true)

."

6. (pDq) + (pOq')
"Any proposition implies another or the contradictory of another."

7. (pqDr)D[(pDr) + {qOr)]
"If the propositions p and q together imply r, then either p implies

r or q implies r."

II. An even simpler (but far less significant) interpretation

of the Boolean algebra is a system which has but one element,

A, where AA = A, and A' = A. Thus A = 1 and A = 0. The
four postulates will then be true for "all" values (actually only

one value) of a, b, and c. a = b will be true always, and hence

also a D b. (This system denies Postulate 0.1, footnote, page

268.)

III. This interpretation is drawn from arithmetic. Let the

objects under consideration (i.e., the objects which a, b, c, etc.,

are to represent) be the number 30 and its factors, namely, 1,

2, 3, 5, 6, 10, and 15. Then let ab represent the highest common
factor of the numbers a and b, and a -\- b the lowest common
multiple of a and b. Thus 2 • 3 is 1 and 2 + 3 is 6, 10 • 6 is 2

and 10 -f- 6 is 30. The following table represents "negation":

1 30

2 15

3 10

5 6

6 5

10 3

15 2

30 1

De Morgan's Law can then be seen to be true by testing. (Note

that a -\- b and ab always represent some one of the elements

of the system; that is, if a and b are one of the numbers given.
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then ab and a -{• b are.) The 0-element will be the number 1,

and the 1-element 30. "D" will have the meaning "is a factor

of," ior a b is the same as ab =: a, i.e., in this case, it states

that the highest common factor of the two numbers a and b

is a, and hence a must be a factor of b. Also, if a is a factor of b,

then the highest common factor of a and b will be a. Thus 0a
means that the 0-element is a factor of every number, and this

is a property of the number 1. Also a I will mean that the

1-element has as a factor every number of the system, and this

is true here of the number 30. The four postulates will all be

seen to be verified.

These interpretations, which do not by any means exhaust

the possibilities, point to the abstract nature of the symbols of

the Boolean algebra. These symbols may be considered as pure

abstract relations apart from any of the concrete interpretations

whatsoever. They express undefined relations between objects.

Now these relations do have a certain "meaning" since we can-

not interpret them as we please. Thus a -\- b oi the Boolean

algebra cannot be the a -{- b oi ordinary algebra, since certain

properties of the former are not true in the latter; e.g., a-\- a = a

is not true in ordinary algebra. They are thus pure abstract

concepts.

The Boolean algebra is not the only abstract system. Indeed,

any branch of theoretical mathematics may be so considered.

Geometry, for instance, is generally taken as an abstract de-

ductive system; the term "point" does not necessarily refer to

some position in the physical universe; "dimension" does not

refer necessarily to some world. In Cartesian three-dimensional

geometry, a "point" is merely an array of three numbers, as,

for example, (1, 3, — 2) . A "line" is a mathematical equation,

a "circle" is another equation. A "triangle" is defined by three

mathematical equations or "lines" and the "vertices" of the

triangle are again arrays of numbers, the solutions of two of

the equations. Thus, in a sense, the terms of geometry, which

originally referred to certain concepts and objects of our visual

experience, may be considered in a purely abstract manner and

the propositions of geometry may be open to a number of pos-

sible interpretations; in the case of the Boolean algebra these
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interpretations did not seem so strange, but here they do, per-

haps, since we are so accustomed to associate such geometrical

terms as "line," "circle," "sphere," etc., with visible objects.

When geometry is considered thus abstractly, it can readily

be seen that it is nonsense to ask whether Euclid's Fifth Postu-

late is "true" or not (c£. page 12) . In Euclid's abstract system,

"parallel lines" have the property he assigns them; but the ab-

stract concept of parallel lines may have different properties, as

non-Euclidean geometry has shown. Both Euclidean and non-

Euclidean geometries are "consistent"; they merely represent

different abstract systems. Of course, once the terms of geom-

etry are interpreted to refer to physical objects and positions,

then the question arises whether a given geometry is "true"

when so interpreted, and here we are out of the field of deduc-

tive sciences and logic and in the field of experimental science.^

The abstract nature of the algebra we have been considering

is important since it has pointed the way to the solution of a

problem that has puzzled the ages, namely, that of the consist-

ency and independence of the postulates of a system. A set of

postulates is said to be consistent if the postulates do not con-

tradict each other, and independent if no postulate can be

proved as a theorem from any other (cf. page 11) . Now the

question arises: how can we determine when a set of expres-

sions is consistent and independent? That this problem has

not been an easy one to solve, especially with respect to inde-

pendence, the history of geometry has plainly shown .^

The answer to this problem can be phrased in the following

manner. We say that an abstract (or "symbolic") set of postu-

lates is "consistent" if an interpretation can be found for the

symbols of the system (in the case of the Boolean algebra, -}-,

X, 3, '; in the case of geometry, "point," "line," etc.) such that

all the postulates thus interpreted become true. Thus, any of

the three interpretations given above would show the postulates

of the Boolean algebra consistent. It is assumed, of course, that

the interpretation chosen is a consistent system; thus, in the

case of the third interpretation above (the factors of 30) it is

assumed that arithmetic is a consistent science. Hence this

1 Cf. chap. VII.
2 P. 12.
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method could not be applied to all systems, for we must assume

at least one consistent system to exist at the beginning, just as

in a deductive system we assume certain postulates.

More significant still is the answer to the second question:

when can we say that a set of expressions is independent? The
answer to this depends on the concept of implication. For if a

given postulate were actually a theorem, and could actually be

proved from the rest of the consistent set of postulates, then it

would always be true when the other postulates were true, no

matter what the interpretation. Hence, if an interpretation of

the postulates can be found such that one postulate is false while

the remainder are true, then we say that this postulate is inde-

pendent of the rest, since it does not have the necessary qualifi-

cations for a theorem. That is, we show that the set of assump-

tions comprising the assertions of all the postulates but one

together with the denial of this one is consistent. Hence, the

problem of independence is reduced to one of consistency. To
illustrate this, we will show that Postulate 3 for the Boolean

algebra is independent of Postulates 1, 2, and 4, i.e., that we
cannot prove

"a D h implies ab = a" from ab = ba, a (be) = (ab) c, and aa' = bb\

To do this, we must interpret the undefined ideas, X, ', and a,

b, c, etc., in such a manner that the latter three propositions are

true but Postulate 3 is false. We now consider a, b, c, etc., as the

integral numbers of ordinary arithmetic. The Boolean addition

of two terms a and b will merely be the arithmetical addition of

these numbers. Thus 2 + 5 will be 7, 3 + (— 5) will be — 2,

etc. The "negation" of a term, a', will be the same number with

the sign changed. Thus 3' is — 3, (— 5) ' is 5, etc. Then the fol-

lowing properties will follow from this interpretation: the Boo-

lean multiplication of two elements will again be the arithmeti-

cal sum. For ab -^zia' -\- b^) '. But since a' h, — a and « + 6 is the

same as the arithmetical a -\-b, the right side becomes

-{-a-\--b),

which is a + ^ by a well-known law of algebra. Hence the

Boolean 0-element and 1 -element are the same, both being

the arithmetical 0. (0 in this case is included among the in-

tegers.) a^ b means that a — fe = 0, i.e., that a = b. Now it
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will be plain that Postulate 1 and Postulate 2 are true; for

a -}- b = b -}- a and a -\- (b -\- c) = (a -{- b) -\- c are both true

in ordinary arithmetic. Also, Postulate 4, aa^ = bb\ will be-

come a — a = b — b and will be true in general. But from the

fact that a b (here a =z b) we cannot infer that the Boolean

multiplication of a and b (here the arithmetical sum) will be

equal to a. In fact, in most cases this will not be so (it will only

be true when a and b are 0) . Thus if a = 3 and 6 = 3, then

a = b is true, and hence a b is true, but ab = a is not, for

a& is 3 + 3 or 6.

Note that when Postulate 3 fails, certain characteristics of

the Boolean algebra drop out. Thus, a, under the interpre-

tation given, is not true for every value of a (it is only true

when (2 = 0); the sum of any element and the 1-element (here

arithmetical 0) is not the 1 -element in general; there is a case

where a = a', etc.

The independence of Postulate 1 can be established in a

similar manner. The system is to have four elements, where
multiplication and negation are defined by the following tables:

X 1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

r

3

1

2

3

As an example of the manner in which Postulate 1 fails, let

a = 1 and 6 = 2. Then 1 • 2 7^ 2 • 1, for the former is 1

while the latter is 2. That Postulate 2 is always true may be

verified by inspection. In the case of Postulate 3, it is to be

noted that a b is true in every case except where 6 = and

dy^O. But ab =.a is also true in every case except where 6 =
and a 7^ 0. Hence Postulate 3 will be verified in every case.

Postulate 4 will be true always, since aa' = for every element.

The following matrix ^ shows that Postulate 2 is independent

of the rest. Let the system have four elements, multiplication

and negation being defined as follows:

8 A matrix is simply a set of tables showing independence or consistency.
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X 1 2 3

2 1

I 2 1 1

2 1 2 2

3 1 2 3

f

3

1 2

2 1

3

As a consequence, the following table will represent the proper-

ties of implication, T signifying that the given element in the

vertical column is- included in one in the horizontal, F that it

is not. Thus D 3 is true, but 2 3 1 is false (the null element

being 0) :

1 2 3

T F F T

1 F T F F

2 F F T F

3 F F F T

Postulates 1, 3, and 4 can be seen to be true by inspection;

Postulate 2 will be false, for example, when a =: 0, b z= 2, and

c — 1, for (21) v^ (02) 1 in this system.

The independence matrix of Postulate 4 may be given in the

following simple manner: the system has two elements, and 1:

X 1

1 1

It will then appear that aa' is not unique, for 00' is 00 and this

is 0, while 11' is 11 = 1. Now a D b being defined, as above, as

ab' = aa', it follows that D 1, 1 D 1, D are true relations.

But it also follows that 01 = 0, 11 = 1, 00 = 0, and hence

Postulate 3 will be true always. The truth of Postulates 1 and 2

will appear from inspection.

Further examples of independence and consistency proofs

are given in chapter XVIII.
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EXERCISES

GROUP A

1. The following examples demonstrate the consistency and inde-

pendence of the postulates for the Aristotelian class algebra given

on page 103, including Postulate 7 mentioned in the footnote, but

are not necessarily in the correct order. Determine in each ex-

ample which postulate is shown independent, or whether the en-

tire set is shown consistent:

a) There are eight elements, 0-7. A (ab) is true only for the cases

A (14) , A (15) , A (24) , A (26) , A (35) , A (36) . a' is determined

by the following table:

;

7

1 6

2 5

3 4

4 3

5 2

6 1

7

b) A (ab) is the same as the Boolean inclusion-relation, aO b.

(a' is the Boolean a')

.

c) a, b, c, . . . represent integral numbers {y^ 0) . a' is —a
("minus a") . A (ab) means a — b.

d) a, b, c, . . . represent positive numbers, a' means a/2. A {ab)

means a^b ("a is less than or equal to &")

.

e) a, b, c, . . . represent any of eight elements, 0-7. lia = b, then

A (ab) is true. li. a^^ b, then A (ab) is only true in the cases

enumerated in example a) . a' is defined as in example a)

.

f) a, b, c, . . . represent any of eight elements, 0-7; A{ab) and
a' are defined as in example e) , except that A (03) and A (47)

are also true.

g) a, b, c, . . . represent any of the eight elements 0-7. a' is de-

fined as in example e) . A(ab) is true in all the cases enumer-
ated in e) , and A (01) , A (04) , A (05) , A (10) , A (27) , A (37)

,

A (67) , and A (76) are also true.
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h) a, b, c, , . . represent any of eight elements 0-7. A (ab) is true

in all the cases enumerated in example e) , and also A (04)

,

A (05) , A (10) , A (27) , A (37) , A (76) are true, a' is defined as

follows: 0' = 7, 1' = 7, 2' = 5, 3' = 4, 4' = 3, 5' = 2, 6' = 0,

7' = 0.

2. Construct a consistency matrix for the Aristotelian algebra analo-

gous to the "factors-of-thirty" example given above for the

Boolean algebra. Here there is no element such that A (Oa) al-

ways holds (cf. next chapter)

.



The Aristoteiion and the ^ f
Boolean Algebras

A CERTAIN PECULIARITY which aiiscs from the comparison

of the Aristotelian and the Boolean system already may
have made itself apparent. For suppose that in the former we
define the "null class" in a manner similar to that of the latter.

It will then appear that A (ab) and a D 6 do not have the same

properties. For suppose that A (ab) and a b were the same.

Now for the relation of inclusion we always have

bj "The null class is included in every class."

Hence, if A (ab) and a b were identical, we should also have

A (Ob) .

Put otherwise, if the two relations are identical, then A (ab, a) ,

"All of what is common to a and any other class, belongs to

a," must be true even when a and b have nothing in common.
Thus, "All square-circles are squares" and "All square-circles

are circles," etc. But now let us see whether I (06) , "Some of the

null class belongs to every class," is true or not. Since E (ab) is

definitionally equivalent to A (ab^) , or "all a is non-&," it must

be the case that E {Ob) , "all the null class belongs to non-b," is

true, since non-b is a class and the null class supposedly belongs

to any class whatsoever. I (ab) is the contradictory of E {ab) ,

and hence if E (Ob) is true, I {Ob) must be false, since two con-

tradictory statements cannot both be true. That is, on the sup-

position that A (06) is always true, we derive the fact that

I {Ob) is false. But this result is contradictory to the Aristotelian

class calculus, for there it was postulated that A {ab) implies

I {ab) , that I {ab) is always true when A {ab) is true. Hence,
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if A (Ob) were true, then one of the postulates of the Aristote-

lian system would be false. Hence A (Ob) is not true in this de-

ductive system, and it follows that A (ab) and a b are not the

same, no matter how closely we may interpret them in words.

This result may be seen in other ways. For A (ab) and E (ab)

were called contraries. That is, they could not be true at the

same time. But if A (06) were true, then A (ab) and E (ab)

would both be true together, in the case where a was 0. Again,

we deduced as a theorem: [A {aa') ]' ('Tor no values of a is it

true that all a is non-a.") But if A (Oa) were true, then this

theorem would be false for one value of a, namely, 0. Similarly,

E (aa) would be true for one value, and not always false as it

is in the Aristotelian calculus.

Again, take the syllogism Darapti:

A (ba) A (be) implies A (ca) .

Here, if b is the null class, and if A (Oa) were always true, we
would have both premises verified independently of the values

of a and c. But A (ca) is not true independently of what a and

c are, and hence the syllogism must become false. As an ex-

ample, let b = square-circles, a = circles, and c = squares.

Many of the other syllogisms will prove false by similar argu-

ments.

This discussion might seem to indicate an inherent inconsist-

ency in the Aristotelian system. But the necessity of asserting

A (Ob) is not obvious; we are under no logical obligation to as-

sume that A (ab) and a D b are the same relations. Appeals to

"common sense" are in the wrong direction from logical rigor

and in the end usually depend on personal feeling. There are,

indeed, many cases where it would appear that common sense

sanctions the proposition "All the null class is in any class."

Thus (the illustration is Professor C. I. Lewis') suppose a man
hires a watchman and agrees to double his salary if all tres-

passers on his property are successfully prosecuted. At the end

of a year it so happens that there have been no trespassers.

Should the man pay the double salary or not? I.e., is it true that

all trespassers were prosecuted when there were none? Probably,

if a census were taken on the question, a majority would vote

"yes" to this latter question and hence substantiate in this in-

stance the claim that A (Ob) was true.
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On the other hand, consider the following proposition (due

to Professor H. B. Smith) : "Every aged Achilles who is men-
tioned in the Iliad is there celebrated as the fleet of foot."

Though the class of "aged Achilles" is null, the consensus of

opinion would probably be in favor of the falsity of the above.

All this merely illustrates the futility of appealing to "common
sense" in the postulates of a deductive system.^

As the foregoing remarks show, both the Boolean algebra

and the Aristotelian algebra are abstract systems, the validity of

whose postulates does not depend on some particular concrete

interpretation. This discussion has meaning only when we are

determining which algebra can best be applied to a class calcu-

lus, i.e., which algebra best expresses the relations between

classes. In sum, then, the only result that such a discussion can

claim to have is a criticism of the words by which we interpret

the symbol A{ah) . Perhaps "All a is b" is not the most accurate

rendering of the symbol. But the words, after all, are merely an

aid to the imagination. The true definition of A [ah) lies in its

properties as expressed by the Aristotelian system, and these

properties are perfectly consistent.^

The fact that the Aristotelian and the Boolean algebra are

both consistent suggests the possibility of "translating" the rela-

tion a ^ h in terms of A {ab) and vice versa. This translation,

as we have seen, must be very much more complicated than the

simple A {ab) =: (a b) . Professor H. B. Smith found one such

translation. He let

A {ab) = {aOb) {bOa) + {aO b) {a b') ' (&' D a) ',

where p -{- q means "either, or." Thus, if a = dogs and b = ani-

mals, then the Aristotelian "All dogs are animals" is equivalent

to the Boolean:

"The class dogs is included in the class animals, and vice

versa, or dogs are included in animals but (and) dogs are not

included in what are not animals, and non-animals are not in-

cluded in dogs," the latter part of the disjunction being true.

1 Even though it were "common sense" to say that the null class is included in
every class, it is certainly not common sense to assert that when all a is 6 it does
not follow that some a is b, an assertion the Boolean algebra must make if

{aOb) = A (ab) .

2 The proof that the Aristotelian algebra is consistent will be found in the
exercises at the end of the last chapter.
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Now, since

E(ab) =A{ab'),

we can derive the translation of E (ab) in the Boolean algebra

by replacing b by b' in the formula for A (ab) :

E (ab) ={aO b') (b' :>a) + {a:i b') {aDb)'{bO a) '.

We can then derive the formulas for O and I by contradicting

the right side of the formulas for A and E:

[A (ab) Y = (ab) =[(aDb) {bOa) + (aOb) (a D b') ' (b'Oa) J
By successive applications of De Morgan's Law (page 259) , it

follows that

(ab) = (aO b)' + (b a)' (aO b') + (b a)' (b' a)

.

Similarly,

1 (ab) = (aOb')' + (b' :> a) ' (a :i b) -^^ (b' Da)'(bOa).

By means of these formulas we can prove on the basis of the

validity of Boolean algebra all the postulates of the Aristotelian

calculus. Thus we can prove A (ad) ; for

. A (aa) = (aO a) (aO a) + (aO a) (a a') ' (a' D a) ',

and since the first part of the disjunction, a D a, is true, the

whole disjunction is true. To prove A (ab) implies I (ab) we
prove first that the conjunction of A (ab) and E (ab) is an im-

possibility; i.e., we show that A (ab) • E (ab) — 0; we do this by

multiplying the formulas for A (ab) and E (ab) together term

by term and showing that the result "vanishes." Then, since if

xy = 0, we can infer that x implies y, we can deduce from

A (ab) E (ab) = that A (ah) implies I (ab) . Similarly, we can

prove the syllogism Barbara, A(ba) A(cb) implies A(ca), by

proving first that A (ba) A (cb) O (ca) = 0.

As an example of the manner in which this last product van-

ishes take the following term which is one of the results of the

multiplication:

(bOa) (b a')' (a' b)' (c b) (c b")' (b c^' (aO c)' (c a')

.

Two of the factors of this product, (b a) and (c b) , imply

that (c a) , and this result, together with (c D a') give c = 0;
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but this result contradicts the assertion of another factor of the

product, namely (c D b^) ', which asserts that c ^^ 0, since

(0 D h') ' is a false statement. Hence the whole product implies

a contradiction and hence "vanishes"; there will be a sum of

such products which will all vanish in a similar manner.

Note how A (Oa) fails. For A (Oa) translated becomes:

(0 Da) (a D 0) + (0 D a) (0 D a') ' {a' D 0) '.

But {a DO) (0 D a) is a = 0, and since (0 D a") ' is a false state-

ment (0 is included in every class) , the second part of the dis-

junction is false ( = 0) , and hence A (Oa) reduces to a =: 0.

That is, A {Oa) is true if and only if a is 0. Hence E (aO) is true if

and only if a is 1. And I (Oa) is true if and only if a is not 1

(some of the null class belongs to every class but the universe)

.

O (Oa) is true if and only if a is not 0.

EXERCISES

GROUP A

1. Given the properties of the Boolean algebra, by means of the

above transformation formulas, prove the following propositions

of the Aristotelian algebra:

a) E (ab) implies O (ba) . (Hint: show that E (ab) A (ba) = 0.)

b) A (ab) = A (6V)

.

c) I (ab) = I (ba) .

d) A (ba) A (be) implies I (ca)

.

e) A(ab) A (cb) does not necessarily imply I (ca)

.

f) Derive the formulas for U (ab) and Y (ab) (page 109)

.

2. Given the properties of the Aristotelian class calculus, prove the

following propositions of the Boolean algebra by means of the

transformation formula:

(aOb) = [A (ab) + A (aO) + A (b'O) ],

where is aa'. (Hint: remember that I + p = 1, i.e., that the dis-

junction of a true proposition and any other proposition always

yields a true proposition.)

a) If (a Ob), then (b' D a')

b) (a D a)

c) (0 a) .

d) (a D 1) . »
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e) I£ {a b) and {a D b') , then a D (make use of the fact that

if A (flO) , then a = 0.)

/) If (a D a') , then a = 0.

g) If (fl b) and (6 3 c), then (a D c) (Remember that if /? + ^

is true, and (p implies r) and (^ impHes ^) are true, then r -\- s

is true (constructive dilemma) , and that this may be gener-

alized for a disjunction of any number of variables, p + q +
r + . . .)

h) If (a D b) and (6 D a) , then a = &.

i) {a0b)' = O (ab) O (aO) O (b'O)

j) {a b') = E (ab) + E (al) + E (bl)

k) {a' D 6) = U iab) + U (aO) + U (60)



Problems of -^fj

Symbolic Logic

THE FOLLOWING are seven problems with which the science of

Symbolic Logic is concerned:

I. A certain difficulty arises with respect to the deductive

system of the Boolean algebra when this algebra is interpreted

as a calculus of propositions. Among our axioms we assumed

certain verbal statements which later we pretended to prove.

Thus, it was presupposed that if p implies q and q implies r,

then p implies r; but this fact is also stated by Theorem 12. We
seem indeed to have committed the fallacy of petitio principi

in the proof of the latter if we interpret the algebra as a calculus

of propositions. No such fallacious reasoning results when the

algebra is not so interpreted. Another objection to this pro-

cedure with respect to this interpretation lies in the fact that

we have not completely symbolized the expressions under con-

sideration. Theorem 11, for instance, reads "If (p q) , then

{q^ D p') ." But the words "if . . . then" of this expression

themselves represent an implication. Hence the whole expres-

sion should be symbolized:

(pOq)D(q^Dp^);

similarly. Theorem 1 2 should be symbolized

(pOq) (qOr)0(pOr)

and this would be a postulate or theorem (not an axiom) of

the system. A satisfactory algebra of propositions, then, would
be one in which the presuppositions or axioms of the Boolean
algebra were a part of the system, that is, were theorems or

postulates, and all theorems and postulates were completely

symbolized. Can these requirements be carried out? The answer

to -this question, which has puzzled logicians ever since the

303
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founding of Symbolic Logic a century ago, is "no." In other

words, there must be certain nonsymbolic or "verbal" state-

ments for any deductive system of the propositional calculus.

For suppose we are given a completely symbolic set of postu-

lates; how can we deduce anything from them unless we have

some rule of procedure, some law which will describe the

process of passing from one form to another? And this law must

be expressed verbally, at least in part. E.g., suppose we are given

1. pD p
2. pqOp

Without some method of changing these, we can but sit and

look at them. No theorems will follow without the necessary

"gasoline." The need for verbal rules is but an illustration of

the abstract nature of symbolic expressions. These two postu-

lates given have no specific meaning, and we must make some
sort of presupposition in assuming that "D" means "implies"

and "p" means "a proposition." The verbal rules, on the other

hand, avoid this abstractness, and supposedly have unique

meaning.

Two of these verbal rules or Rules of Procedure may be evi-

dent at once, for (1) we wish to express the right to substitute

for the terms of a given expression any other terms of the system,

and (2) we wish to express the right to assert a proved theorem
independently of its hypothesis, i.e., to assert that q can be in-

ferred from the proposition that "p is true and 'p implies q' is

true." The first presupposition is the core of logic; for logic

is that science whose expressions are true independently of the

meaning of the terms, and hence true no matter what we substi-

tute for the terms. It might seem, indeed, that the second Rule
of Procedure could be symbolized: [p (p ^ q)] q. But such a

symbolic proposition would not express the right to assert q in-

dependently of p. Suppose, as an example, that we know that

p D p is true and we have also proved the proposition

(pOp)D(p-\-p').

Can we assert that p -\- p^ is an independently true theorem? If

the symbolic expression [p (p D q)] D q is all that is given, then

we can only assert the following:

(pO p)[(pD p)0 (p + p')]0 (p + p')

,
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where we have substituted p ^ p for p and p -{- p' for q in the

expression \p {p ^ q)'\ 3 q- But actually what is required is a

verbal statement which will assert the right to consider {p + p')

as true by itself/

This is one problem, then, which confronts the logician: to

construct a symbolic set of postulates adequate for the calculus

of propositions.
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II. Propositional functions: Suppose that we have a sentence

such as "Jones is a man" and substitute for the subject the vari-

able "x," deriving the expression "x is a man." Is this latter true

or is it false? If we take "true" to mean "always true" and false

to mean "always false," then we can say that the statement is

neither true nor false, but is true some times and false other

times. The expression "x is a man" is called a propositional

function. The reader is probably familiar in part with a certain

group of propositional functions, namely, the mathematical

2

ones such as x -\- 2y = 5, or 3' = 6, or C x dx = 0. But these

do not by any means exhaust the possibilities, as our first ex-

ample here plainly shows. Certain assertions can be made about

the truth of a given propositional function. Let us represent

any given propositional function by
<f>

(x) , where ^ represents

the form of the given expression and may be " is a man,"
" + 2 = 4," etc. Then we can assert one of four things: (1)

^ (x) is true for all values of x, and this is symbolized

(x) .
(f}

(x) ; (2) </> (x) is true for at least one value of x, i.e., there

is a value of x such that cf> (x) is true, and this is symbolized

(3 x) . ^ (x) (the symbol 3 being used to denote existence)

;

(3) cf) (x) is sometimes false, i.e., there is at least one value of

X such that
(f>

(x) is false, (3 x) . ^ ^ (x) (where /^ ^ (x) means

1 Cf. p. 208 (discussion of Carroll's paradox)

.
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"cf> (x) is false") ^; (4) (f>
(x) is never true, i.e., ^ (x) is false for

every value of x: (x) . ^^ cji (x)

.

It is clear that the form of certain functions cannot be ap-

plied to all possible objects. Thus if 4> is "exceeds -\- S" we de-

rive a meaningless expression if the x in (ft (x) is some such

object as "triangle" or "beauty." The set of objects to which a

given function may be applied meaningfully is called the do-

main of the function. In the case of the propositional function

A {ab) the domain consists of all objects whatsoever, but the

domain of the function "x > y" would be the set of all num-
bers. The set of propositions which result from substituting for

the variable or variables the objects of the domain is called the

range of the function. The above assertions about the truth or

falsity of a given propositional function must be thought of as

applying only to the domain: "^ (x) is always true" means that

<f)
(x) is true for every element of the domain, i.e., the entire

range is true.

Within the domain of a propositional function there may be

some objects which make the function true, some which make
it false. We symbolize the expression "all the objects of the

domain which make </> (x) true" by <j) (x) or a <^ (x) . Thus, if

cf> is the function "x is a rational featherless biped," then ^ (x)

will be the class of human beings in the domain of physical

objects. If
<f>

(x) is "is included in itself" then ^ (x) is the uni-

verse of classes, while if 4> (x) reads "x is a square-circle," then

(^ (x) is the null class.

The Theory of Types, explained in part previously (page

202) , imposes certain conditions on the domain of a function,

one of these being that the function itself cannot be a member
of its own domain. Hence

(f>[(f>
(x) ] is a meaningless symbol, so

that if
<l>

(x) reads "x is false," the expression " 'x is false' is

false" is meaningless.

For the sake of convenience, we introduce a convention which

avoids the awkwardness of parenthesis signs, that of using dots

as brackets. This use of dots is as follows: the number of dots

indicates the range of application of one part of an expression

over the rest; thus, if in the calculus of propositions we wish to

symbolize p (q D r) ^, we write p. D : q D r, where the two

2 The symbol ~ p for "p is false" is more frequently used here than p'.

3 As is usual, the symbol "3" is used here for "implies" and the symbol 'W"
for equivalence, i.e., for mutual implication.
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dots indicate that the implication sign applies to everything

thereafter; if we wish to have (p q) D r we write ^ q. : r.

Again, in the case of propositional functions, if we wish to say

that (3.x) .(f> (x) and ^^ (x) .(f> (x) are equivalent, we write

(3. x) .
<f>

(x) : ^ : '^ (x) .(f> (x) , where the double dot indicates

that the equivalence sign is the principal relation. On the other

hand, the expression (3. x) : <fi (x) . ^ . ip (x) would read "For

some values of x, the functions
(f>

(x) and ij/ (x) are equivalent."

The following laws may now be stated:

1. (x) .<f,(x):0 :(3x).<ji (x)

"If
<f>

(x) is true for every value of x, then ^ (x) is true for at

least one value."

2. (x).^<f,(x):0:(3x).^(f> (x)

"If <j> (x) is false for all values, then it is false for at least one
value."

3. (x) . /^ <^ (x) : = : '^ (3 x) . (^ (x)

"A necessary and sufficient condition that
<f>

(x) be false for all

values is that it be false that any x exists for which <j> (x) is true."

4. (x) .
(f>

(x) : = : r^ (3 x) . '^
<f}

(x)

"^ (x) is true for every x if and only if there is no value of x

such that
(f>

(x) is false."

For more or less obvious reasons, the symbols (x) and (3 x)

are called "quantifiers."

It is evident that we are not restricted to functions having

but one variable. Indeed, the propositional functions in most

sciences contain many more than one. Examples of such are:

"a travels at the speed v during the time t," "x -\- y = 3,"

"Line a is parallel to b and perpendicular to c." We may sym-

bolize the propositional function containing two variables by

<p (x, y) . Then if <^ is a fixed function, there are a number of

ways of asserting the truth of (/> (x, )?) : (1) (x) (y) . <^ (x, y) ,

"For every x, <^ (x, y) is true for every y," which is equivalent to

(y) (x) .
<f)

(x, y) ; (2) (3 x) (y) . ^ (x, y) , "There exists an x

such that (^ (x, y) is true for every y"; (3) (x) {3y) .^{x, y)

,

"For every x there exists a value of y such that ^ (x, y) is true":
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(4) (3 x) {3.y) .<f> {x, y) , "There exists a value of x such that

<f)
(x, y) is true for some value of y," which, again, is equivalent

to (3 y) {3.x) . (l){x, y) . There will be similar ways of denying

<^ (x, y) . Note that (2) and (3) are not equivalent, as may be

shown by pointing out an example which can be asserted in the

manner of (3) but not of (2) . Thus the mathematical function

a; + )) = 3 is such that for every value of x there is a value of y
which makes the equation true. But we cannot say oi x -\- y = S

that there exists an x such that the equation will be satisfied for

every value of y.

As in the case of one variable, there is also a domain of a

function of two variables, the set of pairs of terms which yield

a meaningful proposition when substituted for the variables.

It should be noted that the domain of x may be entirely dif-

ferent from the domain of y; in the propositional function "x

was in China at time y" the domain of x is the set, say, of physi-

cal objects, while y is some number expressing a measure of

time. The class of couples satisfying (f>{x, y) may be symbolized

(j> (x, ;y) . If <^ (x, y) reads "x is the husband of y," then
(f>

{x, y) is

the class of all married couples in the domain of humans; these

pairs are more often than not "ordered," i.e., we cannot reverse

them; if <j> (x, y) is "all x is y," then
(f> (^, y) will be the class of all

pairs of classes such that the first is included in the second; the

pair "horses, animals," then, would be a member of the class, but

we could not say that the pair "animals, horses" is a member. If

^ is a function containing three variables,
<f>

{x, y, z) will repre-

sent a class of ordered triads; the concept may be extended to

functions of any number of variables and has played an impor-

tant role in attempts to generalize the calculus of propositional

functions.

The reader will be able to discover for himself laws of func-

tions of two variables analogous to those given above for the

case of one variable (see the exercise at end of chapter)

.

Closely related to the theory of propositional functions is the

concept of "formal implication." We say that a given proposi-

tional function </> (x) "formally implies" another function ij/ (x)

if for every value of x, </> (x) D ^ (x) is a true implication, i.e., if

(x) : <j> (x) . . ij/ (x) . This is sometimes symbolized
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The concept may evidently be generalized to propositional func-

tions of any number of variables.

So far we have treated the symbols <}) (x) and (f>(x, y) as

though the form of the function were fixed while the terms

involved varied. Thus <^ might represent "is a man" and
<f>

{x)

read "x is a man." But it also possible to regard ^ as a variable

as well. For example, suppose we wish to state that the objects

a and b were identical in all respects; this would mean that

whatever was said of a could be said of b as well, and vice versa,

that is, that any function containing a would be true if and only

if the same function were true when a was replaced by b. This

can be symbolized:

(</,): «/>(fl)^<^(&)

"For every value of (^, <j) (a) is equivalent to ^ (b) (where a

and b are not variables) ," In general, <^ (x) is an expression

containing two variables, ^ and x; <j>{x, y) is one containing

three variables.

The calculus of propositional functions may be considered

as a general calculus of classes and relations. Its central problem
may be phrased thus: "To find all universal properties of classes

and relations, or to find all statements about classes and relations

which hold, regardless of what these may be, i.e., independent

of any specific meaning one may assign to the classes or rela-

tions." Such a calculus considers not only relations holding be-

tween two objects ("a is less than b") but relations holding

between any number of objects ("a is larger than b by x units,

where x is larger than y") . The propositional function

(ji (x, y, z, . . .)

represents this general relation.

(See Exercises, Group A, at end of chapter.)
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III. That the words "true" and "false" do not exhaust the

possible ways or "modes" of asserting a given expression is evi-

dent. For example, one may assert that a given proposition is

"necessarily" true, or perhaps merely "possibly" true. It might

be thought, indeed, that the discussion in II covers these modes,

for "sometimes true" and "possibly true" seem to assert the

same things. But the history of the case has shown that this is

not so, and there do appear to be obvious examples which sub-

stantiate this; e.g., suppose the given expression has no variable

(i.e., is a proposition) : to use a classic example, "The moon is

made of green cheese." It seems nonsense to talk of this proposi-

tion's being "sometimes true," but one can say that it is "pos-

sible" (i.e., it is not self-contradictory) . If the modes "possible"

and "sometimes true" are distinct, then there arises the problem

of constructing a logic which takes care of the relations between

the modes such as "possible," "necessary," "possibly false." This

has become known as "intensional" logic, since here apparently

the meaning of a given statement is considered and not merely

its truth-value (cf. page 288)

.

REFERENCES

H. MacColl, Symbolic Logic and its Applications.

C. I. Lewis and C. H. Langford, Symbolic Logic. (For the problem of

the relation of intensional logic to "language," and the relation of

logic in general to grammar, see R. Carnap, Logical Syntax of

Language.)

IV. Closely related to III, though in many respects quite a

different problem, is the question of a "complete" calculus of

propositions. It is to be remembered that in discussing the two-

valued logic it was pointed out that this logic assumed as equiv-

alent the statements {p = 0) and p\ This equivalence seems to
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hold only among a rather restricted group of propositions

(those which are actually true or actually false) . Suppose, then,

we do not restrict ourselves in this manner, but allow p to

represent any proposition (or propositional expression, such as

a propositional function) . That is, we are to allow our logic to

be applied to any case whatsoever. Indeed, logic is sometimes

defined as that science whose propositions hold no matter what

the terms in them may be. Thus, under this definition, such an

expression as (p = I) = p would not be a law of logic, since it

does not hold for every p (e.g., let p be "all a is b") . The general

relations of logic turn out to be the simple ones first enumerated

in the case of the Boolean algebra ("D," inclusion, "+," dis-

junction, "X>" conjunction, and ', negation) . Thus, the symbol

a is not a general relation, since it cannot be applied to all

propositional expressions but merely to propositional functions.

A general theory of propositions will consider all the expres-

sions which arise from these general relations. This problem
has had its difficulties; for, though it is true that (p =z 0) and
p^ are not the same, we can say that (/? = 0) implies p\ Simi-

larly, (p =: I) implies p, and p implies (p = 0) '. But suppose

we take some more complicated form, such as (p = 0) z= 0.

What is the relation of this to the other forms? There arises,

then, the problem of constructing a "table" of relations. The
problem becomes much more complex when we consider two

variables and attempt to simplify such expressions as (pq = 0) '.

It is to be noted that this problem really deals with the gener-

alized theory of implication, since every implication is ex-

pressible in the form (p =. 0) (cf. Definition 2 in the Boolean

algebra)

.

The generalized logic has practical value in that it seems to

offer a very simple solution of the Epimenides paradox (cf.

page 197) . The solution may be given in an abbreviated form

in the following manner. The more restricted two-valued calcu-

lus of propositions considers all its elements as having either the

value 1 (the true) or (the false) , and any law holds univer-

sally in this logic if its value is always 1 when its elements take

on either the value 1 or 0. Thus the proposition "p {q p)
"

is "universally" true, since it is true when p = and q ^= 1 or 0,

and when p = \ and g- = 1 or 0. But the general logic does not

consider its propositions in this "truth-table" sense. Propositions
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are not universally true even though they hold for all "truth-

values" (0 and 1) of the elements.

In this logic, elements may be considered as "ambiguously

true or false." Thus in the assertion "p {p q) ," where no
restrictions are placed on p and q, p and q are not necessarily

either or 1. A similar remark applies to the statement "p is

false," which is the troublesome proposition in the Epimenides

paradox. Here again p is ambiguously true or false: it is both

true and false in the distributive sense; it cannot be both true

and false in the collective sense (cf. page 169) , since this would
involve a contradiction; but if no meaning or value is attached

to the proposition p, then it may be thought of as containing

both the true and the false, much as the symbol V4 contains both

the values — 2 and + 2; but V4 is not both -\- 2 and — 2 collec-

tively, since this is a contradiction, but rather distributively.

This being the case, the assertion "p is false" is also both false

and true, but again in the distributive sense, just as the symbol

— \/4ls both — 2 and -j- 2. The paradox turns out to be a case

of the Fallacy of Composition.
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V. One of the chief problems of what has become known as

"metalogic" is concerned with the question of consistency. We
have set down as criteria of the postulates of a formal science the

stipulations that they must be consistent and independent; the

latter criterion is really dependent on the first, since a given

postulate is shown to be independent of the rest by showing that

the set of propositions composed of the denial of this one and

the assertions of the rest is consistent. We have also indicated a

method whereby a given set can be proved consistent simply by

showing that there is an interpretation of the undefined terms

of the system which makes all the propositions true. The follow-

ing questions now arise:

1. Can every set be proved consistent? We have said that the in-

terpretation of the symbols gives us a set of "true" propositions; if
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the term "true" involves the term "consistent," as it surely must,

then we still have the problem of showing that this new set is con-

sistent, and such a demonstration would require another consistent

set, etc.

2. Since the science of logic sets down the criteria for consistency,

how can we ever show that a set of postulates for logic is consistent

without involving ourselves in a piece of circular reasoning?

3. How can we say that any postulate is independent of the rest,

if it is a law of logic that a true proposition is implied by any other?

The postulates are certainly all true, and hence each one must be

implied by all the rest and no one can be independent of any other.

Adequate answers of these problems would probably require

another volume. The following remarks suggest possible replies:

1. Some set or sets of propositions must be assumed consist-

ent, but the consistency of a set of propositions involving an in-

finite range of application often can be shown to depend on the

consistency of a set involving only a finite range,^ and in the case

of the latter the assumptions necessary to establish consistency

are rather simple. Thus the postulates for Boolean algebra may
have an infinite range of application, but their consistency may
be shown to depend on a set of propositions (the two-valued

algebra) whose range of application is restricted to two objects.

2. Presumably the science of logic cannot be proved consist-

ent without a petitio principi; but a set of symbolic expressions

which are supposed to represent laws of logic may be shown
consistent by the usual methods, for here our interest lies in

whether we have chosen a proper set for our science.

3. It is important to notice that when we attempt to discover

whether a given postulate is independent of the rest of the set or

not, we are interested in knowing whether it can be deduced

from the remaining members of the set by a proper manipula-

tion of the symbols in the given expression. For this purpose,

the question of the actual validity of the propositions which we
are considering is ignored and these propositions are treated as

propositional functions, whose truth-values remain undeter-

mined. Thus, when we ask whether aa' = bb^ is independent of

* No finite consistency matrix for tiie postulates of arithmetic exists.
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ab =^ ba and a(bc) = (ab) c, we merely ask whether the implica-

tion

\ab = bo] \a (be) = (ab) c] implies [aa' = bb']

is true or not. If we can show that the proposition

[ab = ba][a (be) = (ab) c][aa' = bbj

is not an absurdity, then we have demonstrated the required in-

dependence and this independence-proof does not involve the

actual truth or falsity of the constituents.
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VI. Another criterion of a set of postulates was that they be

"sufficient." Sufficiency is a relative term and consequently in-

volves a certain amount of vagueness. This vagueness may be

overcome by substituting the criterion of "absolute" sufficiency

in place of the relative. A set of postulates is said to be absolutely

sufficient if, given any meaningful expression involving only the

indefinables assumed by the system, we can demonstrate by

means of the assumptions either that this expression is a truth

of the system or that it is not a truth of the system.

The problem of showing absolute sufficiency ^ is in general

quite difficult. Certain simple systems, as, for example, the two-

valued algebra, have been shown to be absolutely sufficient,®

while apparently in the case of certain other systems it has been

shown that they cannot be made so.'^

VII. The Law of Substitution (page 269) as given in almost

all systems of logic is much more complicated than any of the

axioms. It involves such unanalyzed ideas as "replacing through-

out," "expression," etc., which do not appear in any of the other

laws of logic. Since this law is so fundamental in all our proofs,

it would be desirable to analyze it into one or more simpler

propositions. This problem of the analysis of logical substitution

*• The so-called Entscheidungsproblem.
6 See Hilbert and Bernays, Grundziige der theoretischen Logik.

''See B. Rosser, "An Informal Exposition of Godel's Theorems and Church's

Theorems," Journal of Symbolic Logic, vol. 4, pp. 53-60.
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has been studied by several authors and has been solved in a

certain sense by H. B. Curry.

Curry found it necessary to reformulate symbolic logic in

terms of operations alone, and to eliminate, as far as possible,

the use of variable symbols. For example, the result of substitut-

ing g(x) iorxinf(x) is symbolized by

Bfgx,

and the new function of x by

B/g,

i.e., B operates on / and g to produce a new function. Other

types of substitution are similarly treated.®

EXERCISES

GROUP A

1. Symbolize the following expressions:

Example: " (For every value of x and y) if x and y are not the

same, then either x precedes yory precedes x (cf. page

317) ." Let P (Xj y) represent the propositional func-

tion "x precedes y" and x = y represent "x equals y."

Then the given sentence becomes:

(x) (y):{x^y).0.-p {x, y) + 'P(y,x).

a) If X precedes y and y precedes z, then x precedes z.

b) If X precedes y, then x and y are not the same.

c) There are numbers which are not equal.

d) For every value of x, x + y = can be made a true state-

ment if we choose the correct value for y.

e) There is no largest number.

/) If X and y are not parallel, then there is a point at which they

meet,

g) Every man has a father.

h) Not every man has a son.

i) a and b are the same in some respects.

8 For detailed development see H. B. Curry, "An Analysis of Logical Substitu-

tion," American Journal of Mathematics, vol. 51, pp. 363-384, and Grundlagen
der kombinatorischen Logik, ibid. vol. 52, pp. 509-536, and 789-834.

Note: the reading suggestions made in this chapter are not complete, of course.

A complete bibliography of symbolic logic is given in the Journal of Symbolic
Logic, vol. 1, No. 4. This bibliography is indexed according to subjects in vol. 3,

No. 4.
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;) If a and b are not the same in all respects, then they are not

identical.

k) Two distinct points determine one and only one straight line.

l) Principle of Mathematical Induction, page 321.

m) The postulates for "betweenness," page 318.

2. In what ways can the following functions be asserted:

Example: "x is better than y." If we let <j) (x, y) represent this

function, then we can make the following assertions:

a) There are values of x and y which make the func-

tion true: (3 x) (3 )>) . </> (x, y)

.

b) There is no value of x such that </> (x, y) is true for

all values oiy. -^ (3 x) {y) . </> (x, y)

.

c) There is a value of y such that for every value of

X, ({) (x, y) is false (if a perfect being exists)

:

(^y) (x).^cj>{x,y).

(1) X is an animal with one horn.

(2) X is a square-circle.

(3) 4x = y.

(4) A is similar but not equal to B (the domain is

the set of geometrical figures)

.

(5) X loves y.

(6) X is toy as y is to z.

(7) X is married to y.

(8) X and y have a son z.

3. Determine whether the following are true or false: (if false, give

examples which show them to be so)

:

a) '^ (x) (3 >») . <^ (x, y):0 :{x) {^y).^(f> (x, y)

.

h) (x) (3 );) . ^ <^ (x, ))) : 3 : -- (x) (3 )>) . <^ (x, y)

.

c) (x) -- (3 j) . <^ (x, );) : D : (x) ()»).- <^ (x, y)

.

d) '^ {3.x) ^ {^.y) .^ (x, y) : = : (3 x) {3.y) .^ (x, y)

.

e) ^ (x) (y) . ^
cf> (x, y) : ^ : (3 x) (3 );) . <^ (x, y)

.

f) -'W (y) (z).-(/,(x,)),z):^:(3x) (3y) (3 z) . <^ (x, >>, z)

.

g) (y) (3 x) . «/, (x, y):^:{3x) (y) . <^ (x, y)

.
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Examples of

Deductive Systems

POSTULATES FOR a deductivc system are of two sorts: some act

merely as definitions, some do not. Often a set of postulates

may be considered in either way; thus, Euclid's set of postulates

for plane geometry might be taken as definitions of a straight

line, a poinf, etc. That is, we might state the whole Euclidean

geometry as follows: "The concepts 'point,' 'line,' 'straight line,'

and the like, are all things which satisfy these postulates." On
the other hand, if the Euclidean indefinables are taken as definite

physical concepts, e.g., if "straight line" means "ray of light,"

then the postulates do not define, but assert statements about

physical concepts (cf. page 143)

.

The following are examples of deductive systems which are

merely definitions.

1. The first presents the definition of a "series" of objects:
^

Definition: A set of objects K, with elements a, b, c, etc., is said

to form a series with respect to a relation which can be ap-

plied meaningfully to any two of the elements (the relation

symbolized "<" and read "precedes") if the following postu-

lates are satisfied: (for all elements of K) :

a) li tty^b (i.e., if a and b are distinct) , then either a < b

or b < a.

b) If fl < b, then a^b. ("<" is not reflexive)

c) lia <b and b< c, then a < c. ("<" is transitive.)

Examples of series are plentiful enough. The group of Kings

of England forms a series, where the relation "<" means "comes

before in time," for with this meaning all the postulates become

1 This set is due to E. V. Huntington, in his Continuum.
317
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true. Again, the set of all whole numbers is a series, the rela-

tion "<" being "is less than." (Can you find another meaning
of "<" which will make the set of all whole numbers a series?)

These two examples show that "<" may be interpreted in many
ways so as to make the given group a series.

The set of three postulates for a series is independent, i.e., no
one postulate follows as a theorem from the other two (cf. page

292) ; we show this by exhibiting groups of objects for which a

relation may be found which satisfies two of the postulates but

not the third. This could not be done were one of the postu-

lates a theorem; for example, any relation which satisfies postu-

lates 1-3 would also satisfy the proposition "If a <. b, then b < a

is false" since the latter is a theorem of the system.

Postulate 1 is shown independent if K is taken as the class of

all human beings and a <. b means "a is the ancestor of b."

Postulate 2 is independent since K may be any class, where

"a < b" means "a and b are both in the class K."

For a demonstration of the independence of Postulate 3 let

K be the class of all whole numbers, where "a < 6" means "«

and b are distinct."

2. The following set of postulates, similar to those defining a

series, defines the concept of "betweenness," which is important

in the development of geometry.^

Definition: Given any set of objects K, if a triadic relation (i.e.,

a relation between three elements X, Y, Z) , symbolized XYZ,
can be found which will satisfy the following postulates for all

elements of K, then this relation is called "betweenness," and
XYZ means "Y lies between X and Z":

a) If AXB, then BXA.
b) If A, B, and C are distinct (A =5^ B, B v^ C, C ^^ A) , then

either BAG, or CAB, or ABC, or CBA, or AGB or BCA
is true. (If Postulate 1 holds, the conclusion of the pos-

tulate may be reduced to BAG, or ABC, or ACB.)
c) If A, X, Y are distinct, then AXY and AYX cannot be

true together (i.e., AXY implies "AYX is false")

.

d) If ABC, then A ^^ B, B ^^ C, and C ^^ A.

2 The set is due to E. V. Huntington and J. R. Kline, Postulates for Betweenness,
Transactions American Mathematical Society, vol. 18, pp. 301-325.
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e) If XAB and ABY, then XAY, where A, B, X, and Y are

all distinct.

/) I£ XAB and AYB, then XAY, where A; B, X, and Y are

all distinct.

3. A very important concept o£ higher algebra is that of a

group. A set of objects K is called a "group" with respect to a

certain operation between two elements, symbolized a o b, when
the following propositions hold:

a) If a and b belong to the set of objects, then a o b belongs to the

set.^ For example, if the set of objects were the whole numbers
and 0, and addition were the rule of combination, then this

condition would be satisfied, since the addition of two whole

numbers is a whole number.
b) If a, b, and c are members of the set, then a o (b o c) = (a o b) o c.

(I.e., the associative law holds.) This condition is again true of

the set of whole numbers, for a + (b + c) = (a -{- b) + c.

c) There is at least one element, i, of the set (often called the

"unit element") such that when i is combined with any ele-

ment, the result is merely the latter element:

i o a = a

In the case of the set of whole numbers, is the unit element,

since + a = a. But if multiplication were the rule of combina-
tion, 1 would be the unit element.

d) For every element a of the set there is at least one element a',

such that

a o a' = i

Thus, in the case of the whole numbers and "+," to find the

required element we merely change the sign; for a + {—a) = 0.

(a' is called the "inverse" of a.)

Thus the set of whole numbers is a "group" with respect to

addition, and this shows that the four conditions are consistent.

But the elements of the Boolean algebra do not form a group
with respect to either multiplication or addition. For if multi-

plication is the rule of combination, then 4 is not true. For i

must be the 1 -element in order that 3 be true, and aa'y^l.

Similarly, addition cannot be the rule of combination, for then

8 The "closure" postulate.
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i would be the 0-element, and a-{- a' y>^0, and hence 4 would
again fail.

(See Exercises, Group A, at end of chapter.)

In the case of many deductive systems, it is very difficult to

determine whether the postulates are merely definitions of the

indefinables or not. Thus, the postulates of the algebra of

classes might be taken as definitions of classes, so that, for ex-

ample, if (a b) does not imply (b' a') , then either a or b

is not a class. Similarly, the logic of propositions might seem to

define what is meant by the term "proposition," so that anything

not fulfilling the law of excluded middle, p + p\ is not a proposi-

tion. (This is often the position taken by the proponents of the

Theory of Types (page 202) . Since the expression, "I am now
lying," is apparently neither true or false, or is both, it cannot

be a proposition, i.e., a meaningful statement.)

Leibnitz thought of mathematics as a science built solely on

definition. According to him, such a science was the most per-

fect possible, for it depends only on the Law of Contradiction

for the validity of its postulates; that is, were one to attempt to

deny one of the postulates, he would contradict himself, since

the postulates are merely the definitions of the concepts in-

volved. Just as it is contradictory to assert that a triangle does

not have three sides, since the definition of triangle implies

three-sidedness, so it is contradictory to assert that 2 + 2 7^ 4,

for the definitions of 2, 4, and "-|-" imply 2 + 2 = 4.

There is no unanimity of opinion today as to whether Leibnitz

was right about mathematics or whether anyone is right in as-

serting that logic is altogether a science of "tautologies." From
our point of view here, it is only important to point out that

not all deductive systems have this character, and such systems

are not dependent solely on the criterion of consistency alone

for their verification (cf. chapter VIII) . Postulate sets are given

here for parts of arithmetic, geometry, and mechanics; the lat-

ter two are certainly nondefinitional in character. This order

follows the scheme of the science suggested in chapter VII, but

omits certain sciences. The calculus of propositional functions

would presumably fall between logic, as we have defined it, and

arithmetic.
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The following set of postulates for arithmetic is derived from
the set of Peano.* They are a set of postulates for whole, positive

numbers. Actually, Peano, by suitable definitions, developed an

arithmetic for all rational numbers.

Here the only presupposed science is logic. As indefinables,

the following concepts are taken:

1. A class of objects, symbolized No, one interpretation of which is

the set of positive, integral numbers and 0.

2. The element (or "number") 0.

3. The element (or "number") 1.

4. The operation of "adding" two elements, symbolized a + b.

5. The operation of "multiplying" two elements, symbolized a-b,

or ab.

6. The sign "=," which obeys the usual formal properties of the

equality relation; cf. Axiom 4, page 269.

Some definitions may now be made:

1. 2= 1 + 1

2. 3 = 2 + 1

3. 4 = 3+1, etc., etc.

Our postulates are:

1. belongs to No.

2. If a belongs to No, then a + 1 belongs to No.

3. a + = a (for all elements of No)

4. a + (b + l) = {a + b)+L
5. If a + 1 = & + 1, then a = b (for all elements of No)

6. If a belongs to No, then a + 1 =7^ 0.

7. a-0 = (for all elements of No)

8. a- (b + I) = (a-b) + a (for all elements of No)

9. Suppose a certain proposition containing a (e.g., a + b =
b + a) holds in general if a is 0; suppose also that if when
the proposition is true for a certain element x of No, it must
also be true for the next element x + 1. Then we say that

the proposition is true in general. (This is the Principle of

Mathematical Induction; cf, page 31. Despite its logical

character, the assumption as here stated is an arithmetical

one, since, as is shown in the exercises at the end of the

chapter, there are perfectly consistent, i.e., logically correct,

systems for which this postulate does not hold. Mathemati-

^ Formulaire de mathematique, 1894.
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cal induction is an example of a "nonlogical" method of

proof which a given science can use because of the peculiar

structure of the system; geometry also introduces a new
method through its constructions; cf. page 126.)

Several illustrations of the method of proving theorems by
means of this set will suffice:

Theorem 1. If a and b belong to No, then their addition, a + b,

belongs to No.

This statement may be considered as a statement about the

element b, and is true when b is 0, for then a-\-b^a-{-0 = a

and the result belongs by hypothesis to Nq. Suppose that the

statement is true for a certain element of Nq, x; that is, suppose

that if a and x belong to N^, then a -{- x belongs. We now show
that on this assumption a + (x + 1) must belong to N^. For if

fl + X belongs to Nq, then {a-\- x) -\- I belongs by Postulate 2.

But (a -\- x) -}- I = a -\- {x 4- ^) (Postulate 4) , and hence the

latter belongs to N^, The premises of Postulate 9 are now satis-

fied, and we can infer that the statement is true for all elements

of Nq. This theorem, when N^ is interpreted as suggested above,

becomes: "If a and b are whole positive numbers, or 0, then

a -\- b isa. whole positive number, or 0."

Theorem 2. a + {b + c) = (a + b) +c. (The "associative law"

for addition.)

This is true if c =: (Postulate 3) , Suppose, now, that for a

certain x, a -\- {b -}- x) =: {a -{- b) -\- x. Then the statement will

be true for x + 1: a + [fo + (x + 1) ] = (a + fo) + (x + 1) . For

(a^b) + {xi-l)=[{a+b)Jrx] + l = [a + {b+x)]-\-l =
a + [ (& + x) + 1) ] = « + [6 + (x + 1) ] .

Theorem S. + a = a.

The verification of this for a = follows from Postulate 3. If

+ X = X, then + (x + 1) = (0+ x) + 1 =::= (x + 1)

.

(See Exercises, Group B, at end of chapter.)

The deductive system of geometry has already been given. An
excellent set of postulates for Euclidean Geometry is found in

D. Hubert's Foundations of Geometry; this set avoids the

ambiguities and omissions which are to be found in Euclid's
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set, and is of historical interest in that it is one of the first sets

of postulates for which independence proofs were devised.

Between the sciences of geometry and physics should come
kinematics, which introduces the concept of motion (or the

concept of time) . Among the important problems of this science

is the question as to whether motion is continuous or not; two

distinct formal systems arise depending on whether continuity

of path is postulated or lack of continuity is postulated. As in the

case of different formal systems of geometry, and arithmetic, the

fact that there are at least two formal systems of kinematics will

have its effects on all later sciences such as physics, chemistry,

astronomy, so that two systems of physics may have the same

postulates for physics but differ in that the one chooses the

postulate of continuity, the other does not.

Few are inclined to consider the science of physics as a formal

science, for physicists seem to spend the greater part of their

time in experimentation. This is not strictly the case. Among
those working in the field are the "theoretical physicists"; these

scientists are interested in developing certain hypotheses, sug-

gested by experiments, in order to see what consequences may
be drawn from them. But this is exactly the procedure of the

formal scientist. Granting these assumptions, which are taken to

be consistent and independent, the formal scientist asks what

must follow.

It is true that the physicist does not give way to the mathe-

matician's temptation to investigate systems which appear to

have no application. If experiment apparently refutes his theory,

his interest in the formal science he has developed ceases; that

is, he does feel obliged to restrain his theory within the domain
prescribed by experiment. But these restrictions, though they

may prevent his investigating all possible formal systems of

physics, do not prevent his becoming a formal scientist, since his

primary interest still lies in formulating postulates and deducing

theorems. Further, since experiment by its very nature can

never be conclusive, there is always open more than one possible

formal science of physics which conforms with experimental

data.

Historically, physicists have developed many formal systems

of physics, the most famous of which, perhaps, are those of

Democritus, Aristotle, Newton, and Einstein.
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The science of physics embraces so much that it would re-

quire volumes to develop any complete formal system, if there

be any such. The discussion here is confined to the science of

mechanics, and in particular, to the mechanics of a single parti-

cle; though this science is usually classified as a part of physics,

it might be better in a general classification to make the former

a presupposition, and not a part of the latter (cf. page 136)

.

As usual, we must indicate what sciences are presupposed, i.e.,

what laws and terms we may use. The science of logic, arithmetic

(number) , and geometry (distance) are all presupposed; in the

case of geometry, we assume the Euclidean laws in this treat-

ment. Fiirther, we assume the additional concept, time, intro-

duced by kinematics, and also the formal science of kinematics

which asserts that motion is continuous. (The concepts of

velocity, acceleration, etc., are all kinematical terms.)

The mechanics of a single particle considers the problem of

the laws governing the motion of a particle or point in space.

Just as geometry introduces the concept of a line and attributes

to every line a certain number (its measure, or distance) , so we
apply here to the geometrical concept of a point either a num-
ber or a quality. The latter method leads to a non-quantitative

mechanics, the best known example of which is Aristotle's phys-

ics. If we call these new points introduced by mechanics "parti-

cles of matter," then Aristotle may be said to have added four

"indefinables." To every particle of matter we can attribute two

of the following four qualities: "hot," "cold," "wet," and "dry."

We can define what is meant by a "particle of fire" in terms of

these indefinables: "A particle of matter is said to be 'fire' if it is

hot and dry." The particle is water if it is cold and wet; earth if

cold and dry; air if hot and wet; the remaining possibilities are

self-contradictory: no particle can be both hot and cold, or both

wet and dry. Aristotle takes the earth to be the ordinate of his

(spherical) system of coordinates. Then, excluding the study of

celestial motion which for Aristotle forms a separate science, we
have the following postulate:

1. Every particle of matter tends to a certain location (its

"proper place") , depending on its kind, unless otherwise im-

peded by an external force.
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2. The proper place o£ dry and cold particles (earth) is the

center of the system.

3. The proper place o£ water is a position adjacent to earth.

4. The proper place o£ air is a position adjacent to water.

5. The proper place of fire is a position adjacent to air (i.e.,

the "outer edge" of the world)

.

(Note: These assumptions introduce other physical terms

not mentioned among the indefinables, namely, "tends," "im-

peded," "force.")

The Newtonian system of mechanics is a quantitative one. It

adds to every particle, not a quality, but a certain quantity, and

calls this quantity "mass." The fundamental concepts of me-

chanics can now be defined in terms of three numbers: length

(/) , a concept of geometry, time {t) , a concept of kinematics,

and mass (m) , the new concept of Newtonian mechanics. The
following scheme gives the required definitions:

^

1. Velocity (v) = l/t

2. Acceleration (a) = l/t^ = v/t

3. Force (F) = ml/t^ = ma
4. Momentum (u) = ml/t = mv
5. Work (W) = m/y^^ ^ pi

6. Kinetic Energy (K) = mP/2t^ = mv^/2

One of the postulates of Newton's original system is included

among these definitions, for (3) is Newton's second law; it is

always arbitrary in a formal system whether or not we choose to

make a certain concept an indefinable and call its definition a

postulate. If the physicist finds that force and mass may be con-

sidered as independent of one another in some sense, then he

may find it more convenient to take F as indefinable and assert

(3) , or something like it, as a postulate.

The fundamental postulates of Newtonian mechanics follow:

1. (Newton's First Law) Every body tends to remain in a

state of rest or of uniform motion in a straight line, unless acted

upon by external force to change that state.

2. (Universal Law of Gravitation) The force acting between
any two particles of matter is proportional to the product of

5 Cf. E. Mach, The Science of Mechanics. Mach, following Fourier, takes these
indefinables as "dimensions."
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their masses^ divided by the square o£ the distance between
them:

F = G mi Wa

Newton's Second and Third Laws follow from these postu-

lates and the above definitions:

Theorem 1. The force acting on any particle is equal to the

change of momentum per second:

F = M/i

Theorem 2. The force acting between particle A and particle B
is equal to the force acting between particle B and particle A.

This follows from Postulate 2, since

mirria mtnii
G^-— = G—

—

Among the most remarkable theorems in Newtonian me-
chanics were Kepler's laws of planetary motion. The deduction

of these illustrates the powerful instrument mathematics be-

comes in the hands of the physicist. Sciences not presupposing

mathematics are necessarily somewhat simple in their method
of deducing theorems, but if the whole of mathematics can be

presupposed, the method of deduction becomes much more
complicated and at the same time many more theorems follow

from a given number of assumptions. Kepler's Law that the

paths of the planets traveling about the sun are ellipses follows

from Newton's second postulate.

Newton's laws actually correct Kepler's, in that the planets do
not really travel in ellipses since the forces of attraction of other

planets cause perturbations from this path. The Newtonian

postulate allows one to calculate these perturbations, given the

planets, and, conversely, given the perturbations, to calculate

the position and mass of the planets causing them. The latter

fact has been an invaluable aid in discovering new planets.

6 W^hether these "masses" are to be identified with the mass taken above as an
indefinable and used to define "force," is undetermined in Newtonian mechanics;
the assumption that the two are the same is a fundamental postulate of Rela-

tivistic mechanics.
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The formal system of Newton is not regarded as universally

valid by most physicists today; new postulates have been devised,

new formal systems constructed. But the general method of

constructing formal or deductive systems necessarily follows the

scheme outlined in this text.

EXERCISES

GROUP A

1. The following sets of objects are all series; determine a relation

which makes them so:

a) the class of all points on a finite line segment

b) the class of all points in a square, or the class of all points in

space

c) the class of all proper fractions; find a relation "<" other

than "is less than"

d) the class of all living men

2. Prove that every series must have the following properties (i.e.,

prove the following theorems from Postulates 1-3 for a series) :

a) If a < b, then b > a is false.

b) Either a = b or a < b or b < a.

3. What is the definition of the "first" element of a series in terms

of "<"; of the "last"; define "x lies between a and b"; "a imme-
diately precedes b."

4. Not every series has a first element. Give examples to show that

this is true. What postulate must be added to the postulates for

series which will define "first element" series. Why will this pos-

tulate be "independent" of the rest?

5. In some series no element has an "immediate predecessor." Give

examples. Such series are called "dense" series. Give the addi-

tional postulate necessary to define dense series.

6. Are the following examples series or not?

a) K is the class of the Presidents of the U. S.; "<" means "pre-

cedes in time of taking office."

b) K is the class of all points (x, y) in a given square. (Xi, yi) <
(Xs, ya) if and only if Xi is less than Xa, and yi is less than y2.

c) K is a family of brothers; a < b means "a is the brother of b."

d) K is a Boolean algebra, "a < b" is any relation of the form
Aab + Ba6' + Ca'b + T^a'b' - 0. (Cf. Exercise 1 g) , page

286.)
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7. a) Prove that for every series there exists a relation of between-

ness; i.e., given the three postulates for series, we can define

the relation of betweenness in terms of "precedes" so that all

the postulates for betweenness can be deduced. (When K has

less than three members, the postulates for betweenness be-

come true "vacuously," i.e., the premises in each case are false

and hence imply anything.)

b) Prove that every set of objects for which the relation of be-

tweenness can be defined is a series.

8. Demonstrate the consistency and independence of the postulates

for betweenness given above by means of the following examples:

a) K is the set of rational numbers; AXY means "A is less than

X and X is less than Y."

b) K contains three elements, the numbers 1, 2, 3. ABC holds

only in the following three cases: 111, 123, 321.

c) K contains 4 elements, 1, 2, 3, 4. ABC is true for 124, 134, 213,

243,312,342,421,431.

d) K is the class of real numbers. ABC means A < B, B < C,

and C < A. (Remember that a false proposition implies any

proposition.)

e) K consists of four elements, 1, 2, 3, 4. ABC is true for 123, 142,

241, 243, 321, 341, 342.

/) K is a class having but one member. ABC means that A, B,

and C are all distinct.

g) K is a class containing one member. ABC means A = B = C.

h) K is a class containing three members. ABC means that A, B,

and C are all distinct.

9. Give three other examples which demonstrate the consistency of

the postulates for betweenness.

10. Prove the following theorems from the postulates for between-

ness (A, X, Y, B are all distinct) :

a) If AXB and AYB, then either AXY or YXB.
*

b) If XAB and AYB, then XYB.

11. Show the independence and consistency of the postulates for a

group.

12. Prove that the following set of postulates for a group are equiva-

lent to those given above:

a) If a and b are in K, then aob is in K.

b) ao (boc) = (aob) oc.

c) The equations aox = b and yoa = b have solutions in K.
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13. Prove that the commutative law, aob = boa, is not a necessary

property of a group by showing that it is independent of the

above postulates. A group for which the commutative law holds

is called an "abelian" group,

14. Is the Boolean algebra a group with respect to "A"? (Cf. page

265.) With respect to "o"?

15. Give a set of postulates defining the relation "is the cause of";

one defining the relation "is a proper part of," i.e., is a part not

equal to the whole.

GROUP B

1. Prove the following theorems from Peano's set:

a) I + a = a + 1

b) a + b = b + a ("commutative law" for addition)

c) If a + c = 6 + c, then a = b.

d) If a and b belong to No, then ab belongs to No.

(Note that we cannot prove a corresponding theorem for

a — b, ii this concept is introduced, or for a/b, for if a = 4

and b = 5, then neither a — b or a/b belong to No.)

e) Qa =
f) al = a

g) a(b + c) = ab + ac

(a + b) c = ac + be (The "distributive laws" for multiplica-

tion with respect to addition.)

h) ab = ba ("commutative law" for multiplication)

2. Determine which of the above postulates for arithmetic are

proved independent by the following examples:

a) No is the class of rational positive numbers and 0; 0, 1, a + b,

ab are defined as in ordinary algebra.

b) No represents a class of two elements, and 1. + = 0,

0+1 = 1+0=1, but 1 + 1 = 2, where 2 is an element not

in No. 00 = 10 = 01 = 0, and 1 • 1 = 1.

c) No is the class of all whole numbers less than or equal to 0.

a + b now means a — b. 0, I, ab defined as usual,

d) No is the class containing only the two numbers, 1 and 0, ab

defined as usual; + = 0; 0+1 = 1+0=1+0=1 + 1

= 1. (That is, No is a two-valued Boolean algebra.)

e) This example is called a "periodic arithmetic"; we use this

arithmetic in calculating dates on a calendar. No is a "peri-
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odic" system, that is, a class of elements, 0,1 ... ,n, where

7z + I = 0. (The days of the month, the hours of the day,

form such systems, for in counting dates we return to 1 again

after reaching 30 or 31.) 0,1,ab,a + b (except for the prop-

erty named) have their usual properties. Thus, if the periodic

system has 30 elements, 23 + 10 = 3, and 5-8 = 10, etc.

f) No is the class of positive, whole numbers plus 0. a + & is

defined as usual; ab = b.

g) No is the class of all whole numbers greater than 0. Here the

symbols and 1 are equal and both represent the number 1.

ab represents the addition of 1 and the quantity (b — 1)

times a, where "times" means the usual multiplication.

h) No is a null class, i.e., a class with no members. The symbols

0,1, represent existent things; the definition of ab and a + b

is arbitrary. Or, No is the class of all whole numbers greater

than 0; 0,1,a&, a + b defined as usual.

i) No is the class of all whole, positive numbers and 0; a + b,

0,1, are defined as usual. aO = 1 (and hence al = I + a, a2 =
I + a + a, etc.; that is, ab represents the sum of 1 and b

times a.)
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Theorems, 14

criterion for, 14

See Classes, Aristotelian logic; Bool-

ean algebra, etc.

Time,
in Newtonian and Relativistic kine-

matics, 227

Truth, formal and nonformal, 146

Truth-membership, 260

Types, theory of, 200, 208, 306

Universal proposition, 261

Universe class, 253

Universe of discourse, 98, 232, 253

"Univocal," 166

Van Helmont, J. B., 231

Venn, J., 246, 285

Veronese, 178

Vitalism, 232

Whewell, W., 148

Whitehead, A. N., 215, 305, 310

Zeno of Elea,

arguments about motion, 219
solution of paradox of, 225

Zeno of Sidon, 15
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