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PKEFACB BY PROFESSOR GIBBS

SINCE the printing of a short pamphlet on the Elements of

Vector Analysis in the years 1881-84, never published, but

somewhat widely circulated among those who were known to

be interested in the subject, the desire has been expressed

in more than one quarter, that the substance of that trea

tise, perhaps in fuller form, should be made accessible to

the public.

As, however, the years passed without my finding the

leisure to meet this want, which seemed a real one, I was

very glad to have one of the hearers of my course on Vector

Analysis in the year 1899-1900 undertake the preparation of

a text-book on the subject.

I have not desired that Dr. Wilson should aim simply
at the reproduction of my lectures, but rather that he should

use his own judgment in all respects for the production of a

text-book in which the subject should be so illustrated by an

adequate number of examples as to meet the wants of stu

dents of geometry and physics.

J. WILLARD GIBBS.

YALE UNIVERSITY, September, 1901.





GENERAL PREFACE

WHEN I undertook to adapt the lectures of Professor Gibbs

on VECTOR ANALYSIS for publication in the Yale Bicenten

nial Series, Professor Gibbs himself was already so fully

engaged upon his work to appear in the same series, Elementary

Principles in Statistical Mechanics, that it was understood no

material assistance in the composition of this book could be

expected from him. For this reason he wished me to feel

entirely free to use my own discretion alike in the selection

of the topics to be treated and in the mode of treatment.

It has been my endeavor to use the freedom thus granted

only in so far as was necessary for presenting his method in

text-book form.

By far the greater part of the material used in the follow

ing pages has been taken from the course of lectures on

Vector Analysis delivered annually at the University by
Professor Gibbs. Some use, however, has been made of the

chapters on Vector Analysis in Mr. Oliver Heaviside s Elec

tromagnetic Theory (Electrician Series, 1893) and in Professor

Foppl s lectures on Die Maxwell sche Theorie der Electricitdt

(Teubner, 1894). My previous study of Quaternions has

also been of great assistance.

The material thus obtained has been arranged in the way
which seems best suited to easy mastery of the subject.

Those Arts, which it seemed best to incorporate in the

text but which for various reasons may well be omitted at

the first reading have been marked with an asterisk (*). Nu
merous illustrative examples have been drawn from geometry,

mechanics, and physics. Indeed, a large part of the text has

to do with applications of the method. These applications
have not been set apart in chapters by themselves, but have
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been distributed throughout the body of the book as fast as

the analysis has been developed sufficiently for their adequate

treatment. It is hoped that by this means the reader may be

better enabled to make practical use of the book. Great care

has been taken in avoiding the introduction of unnecessary

ideas, and in so illustrating each idea that is introduced as

to make its necessity evident and its meaning easy to grasp.

Thus the book is not intended as a complete exposition of

the theory of Vector Analysis, but as a text-book from which

so much of the subject as may be required for practical appli

cations may be learned. Hence a summary, including a list

of the more important formulae, and a number of exercises,

have been placed at the end of each chapter, and many less

essential points in the text have been indicated rather than

fully worked out, in the hope that the reader will supply the

details. The summary may be found useful in reviews and

for reference.

The subject of Vector Analysis naturally divides itself into

three distinct parts. First, that which concerns addition and

the scalar and vector products of vectors. Second, that which

concerns the differential and integral calculus in its relations

to scalar and vector functions. Third, that which contains

the theory of the linear vector function. The first part is

a necessary introduction to both other parts. The second

and third are mutually independent. Either may be taken

up first. For practical purposes in mathematical physics the

second must be regarded as more elementary than the third.

But a student not primarily interested in physics would nat

urally pass from the first part to the third, which he would

probably find more attractive and easy than the second.

Following this division of the subject, the main body of

the book is divided into six chapters of which two deal with
each of the three parts in the order named. Chapters I. and
II. treat of addition, subtraction, scalar multiplication, and
the scalar and vector products of vectors. The exposition
has been made quite elementary. It can readily be under
stood by and is especially suited for such readers as have a

knowledge of only the elements of Trigonometry and Ana-
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lytic Geometry. Those who are well versed in Quaternions

or allied subjects may perhaps need to read only the sum

maries. Chapters III. and IV. contain the treatment of

those topics in Vector Analysis which, though of less value

to the students of pure mathematics, are of the utmost impor
tance to students of physics. Chapters V. and VI. deal with

the linear vector function. To students of physics the linear

vector function is of particular importance in the mathemati

cal treatment of phenomena connected with non-isotropic

media ; and to the student of pure mathematics this part of

the book will probably be the most interesting of all, owing
to the fact that it leads to Multiple Algebra or the Theory
of Matrices. A concluding chapter, VII., which contains the

development of certain higher parts of the theory, a number

of applications, and a short sketch of imaginary or complex
vectors, has been added.

In the treatment of the integral calculus, Chapter IV.,

questions of mathematical rigor arise. Although modern
theorists are devoting much time and thought to rigor, and

although they will doubtless criticise this portion of the book

adversely, it has been deemed best to give but little attention

to the discussion of this subject. And the more so for the

reason that whatever system of notation be employed ques
tions of rigor are indissolubly associated with the calculus

and occasion no new difficulty to the student of Vector

Analysis, who must first learn what the facts are and may
postpone until later the detailed consideration of the restric

tions that are put upon those facts.

Notwithstanding the efforts which have been made during
more than half a century to introduce Quaternions into

physics the fact remains that they have not found wide favor.

On the other hand there has been a growing tendency espe

cially in the last decade toward the adoption of some form of

Vector Analysis. The works of Heaviside and Foppl re

ferred to before may be cited in evidence. As yet however
no system of Vector Analysis which makes any claim to

completeness has been published. In fact Heaviside says :

"I am in hopes that the chapter which I now finish may
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serve as a stopgap till regular vectorial treatises come to be

written suitable for physicists, based upon the vectorial treat

ment of vectors" (Electromagnetic Theory, Vol. I., p. 305).

Elsewhere in the same chapter Heaviside has set forth the

claims of vector analysis as against Quaternions, and others

have expressed similar views.

The keynote, then, to any system of vector analysis must

be its practical utility. This, I feel confident, was Professor

Gibbs s point of view in building up his system. He uses it

entirely in his courses on Electricity and Magnetism and on

Electromagnetic Theory of Light. In writing this book I

have tried to present the subject from this practical stand

point, and keep clearly before the reader s mind the ques
tions: What combinations or functions of vectors occur in

physics and geometry ? And how may these be represented

symbolically in the way best suited to facile analytic manip
ulation ? The treatment of these questions in modern books

on physics has been too much confined to the addition and
subtraction of vectors. This is scarcely enough. It has

been the aim here to give also an exposition of scalar and
vector products, of the operator y, of divergence and curl

which have gained such universal recognition since the ap
pearance of Maxwell s Treatise on Electricity and Magnetism,
of slope, potential, linear vector function, etc., such as shall

be adequate for the needs of students of physics at the

present day and adapted to them.

It has been asserted by some that Quaternions, Vector

Analysis, and all such algebras are of little value for investi

gating questions in mathematical physics. Whether this

assertion shall prove true or not, one may still maintain that
vectors are to mathematical physics what invariants are to

geometry. As every geometer must be thoroughly conver
sant with the ideas of invariants, so every student of physics
should be able to think in terms of vectors. And there is

no way in which he, especially at the beginning of his sci

entific studies, can come to so true an appreciation of the

importance of vectors and of the ideas connected with them
as by working in Vector Analysis and dealing directly with
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the vectors themselves. To those that hold these views the

success of Professor Foppl s Vorlesungen uber Technische

Mechanik (four volumes, Teubner, 1897-1900, already in a

second edition), in which the theory of mechanics is devel

oped by means of a vector analysis, can be but an encour

aging sign.

I take pleasure in thanking my colleagues, Dr. M. B. Porter

and Prof. H. A. Bumstead, for assisting me with the manu

script. The good services of the latter have been particularly

valuable in arranging Chapters III. and IV* in their present

form and in suggesting many of the illustrations used in the

work. I am also under obligations to my father, Mr. Edwin

H. Wilson, for help in connection both with the proofs and

the manuscript. Finally, I wish to express my deep indebt

edness to Professor Gibbs. For although he has been so

preoccupied as to be unable to read either manuscript or

proof, he has always been ready to talk matters over with

me, and it is he who has furnished me with inspiration suf

ficient to carry through the work.

EDWIN BIDWELL WILSON.

YALE UNIVERSITY, October, 1901.

PREFACE TO THE SECOND EDITION

THE only changes which have been made in this edition are

a few corrections which my readers have been kind enough to

point out to me.

E. B. W.
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VECTOR ANALYSIS

CHAPTER I

ADDITION AND SCALAR MULTIPLICATION

1.]
IN mathematics and especially in physics two very

different kinds of quantity present themselves. Consider, for

example, mass, time, density, temperature, force, displacement

of a point, velocity, and acceleration. Of these quantities

some can be represented adequately by a single number

temperature, by degrees on a thermometric scale ; time, by

years, days, or seconds ; mass and density, by numerical val- .

ues which are wholly determined when the unit of the scale

is fixed. On the other hand the remaining quantities are not

capable of such representation. Force to be sure is said to be

of so many pounds or grams weight; velocity, of so many
feet or centimeters per second. But in addition to this each

of them must be considered as having direction as well as

magnitude. A force points North, South, East, West, up,

down, or in some intermediate direction. The same is true

of displacement, velocity, and acceleration. No scale of num
bers can represent them adequately. It can represent only
their magnitude, not their direction.

2.] Definition : A vector is a quantity which is considered

as possessing direction as well as magnitude.

Definition : A scalar is a quantity which is considered as pos

sessing magnitude but no direction.
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The positive and negative numbers of ordinary algebra are the

typical scalars. For this reason the ordinary algebra is called

scalar algebra when necessary to distinguish it from the vector

algebra or analysis which is the subject of this book.

The typical vector is the displacement of translation in space.

Consider first a point P (Fig. 1). Let P be displaced in a

straight line and take a new position P f
.

This change of position is represented by the

line PP. The magnitude of the displace

ment is the length of PP1

; the direction of

it is the direction of the line PP1

from P to

P1
. Next consider a displacement not of one,

but of all the points in space. Let all the

points move in straight lines in the same direction and for the

same distance D. This is equivalent to shifting space as a

rigid body in that direction through the distance D without

rotation. Such a displacement is called a translation. It

possesses direction and magnitude. When space undergoes
a translation T, each point of space undergoes a displacement

equal to T in magnitude and direction; and conversely if

the displacement PP which any one particular point P suf

fers in the translation T is known, then that of any other

point Q is also known : for Q Q must be equal and parallel

to PP.
The translation T is represented geometrically or graphically

by an arrow T (Fig. 1) of which the magnitude and direction

are equal to those of the translation. The absolute position
of this arrow in space is entirely immaterial. Technically the

arrow is called a stroke. Its tail or initial point is its origin;
and its head or final point, its terminus. In the figure the

origin is designated by and the terminus by T. This geo
metric quantity, a stroke, is used as the mathematical symbol
for all vectors, just as the ordinary positive and negative num
bers are used as the symbols for all scalars.
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*
3.] As examples of scalar quantities mass, time, den

sity, and temperature have been mentioned. Others are dis

tance, volume, moment of inertia, work, etc. Magnitude,

however, is by no means the sole property of these quantities.

Each implies something besides magnitude. Each has its

own distinguishing characteristics, as an example of which

its dimensions in the sense well known to physicists may
be cited. A distance 3, a time 3, a work 3, etc., are very

different. The magnitude 3 is, however, a property common

to them all perhaps the only one. Of all scalar quanti-

tities pure number is the simplest. It implies nothing but

magnitude. It is the scalar par excellence and consequently

it is used as the mathematical symbol for all scalars.

As examples of vector quantities force, displacement, velo

city, and acceleration have been given. Each of these has

other characteristics than those which belong to a vector pure

and simple. The concept of vector involves two ideas and

two alone magnitude of the vector and direction of the

vector. But force is more complicated. When it is applied

to a rigid body the line in which it acts must be taken into

consideration; magnitude and direction alone do not suf

fice. And in case it is applied to a non-rigid body the point

of application of the force is as important as the magnitude or

direction. Such is frequently true for vector quantities other

than force. Moreover the question of dimensions is present

as in the case of scalar quantities. The mathematical vector,

the stroke, which is the primary object of consideration in

this book, abstracts from all directed quantities their magni
tude and direction and nothing but these ; just as the mathe

matical scalar, pure number, abstracts the magnitude and

that alone. Hence one must be on his guard lest from

analogy he attribute some properties to the mathematical

vector which do not belong to it ; and he must be even more

careful lest he obtain erroneous results by considering the
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vector quantities of physics as possessing no properties other

than those of the mathematical vector. For example it would

never do to consider force and its effects as unaltered by

shifting it parallel to itself. This warning may not be

necessary, yet it may possibly save some confusion.

4.] Inasmuch as, taken in its entirety, a vector or stroke

is but a single concept, it may appropriately be designated by
one letter. Owing however to the fundamental difference

between scalars and vectors, it is necessary to distinguish

carefully the one from the other. Sometimes, as in mathe

matical physics, the distinction is furnished by the physical

interpretation. Thus if n be the index of refraction it

must be scalar ; m, the mass, and , the time, are also

scalars
;

but /, the force, and a, the acceleration, are

vectors. When, however, the letters are regarded merely
as symbols with no particular physical significance some

typographical difference must be relied upon to distinguish

vectors from scalars. Hence in this book Clarendon type is

used for setting up vectors and ordinary type for scalars.

This permits the use of the same letter differently printed
to represent the vector and its scalar magnitude.

1 Thus if

C be the electric current in magnitude and direction, C may
be used to represent the magnitude of that current

;
if g be

the vector acceleration due to gravity, g may be the scalar

value of that acceleration ; if v be the velocity of a moving
mass, v may be the magnitude of that velocity. The use of

Clarendons to denote vectors makes it possible to pass from

directed quantities to their scalar magnitudes by a mere

change in the appearance of a letter without any confusing

change in the letter itself.

Definition : Two vectors are said to be equal when they have
the same magnitude and the same direction.

1 This convention, however, is by no means invariably followed. In some
instances it would prove just as undesirable as it is convenient in others. It is

chiefly valuable in the application of vectors to physics.



ADDITION AND SCALAR MULTIPLICATION 5

The equality of two vectors A and B is denoted by the

usual sign =. Thus A = B

Evidently a vector or stroke is not altered by shifting it

about parallel to itself in space. Hence any vector A = PP r

(Fig. 1) may be drawn from any assigned point as origin ;

for the segment PP f

may be moved parallel to itself until

the point P falls upon the point and P upon some point T.

In this way all vectors in space may be replaced by directed

segments radiating from one fixed point 0. Equal vectors

in space will of course coincide, when placed with their ter

mini at the same point 0. Thus (Fig. 1) A = PP\ and B= Q~Q
f

,

both fall upon T = ~OT.

For the numerical determination of a vector three scalars

are necessary. These may be chosen in a variety of ways.

If r, </>,
be polar coordinates in space any vector r drawn

with its origin at the origin of coordinates may be represented

by the three scalars r, </>,
6 which determine the terminus of

the vector.
r~(r,*,0).

Or if #, y9 z be Cartesian coordinates in space a vector r may
be considered as given by the differences of the coordinates a/,

y i z
f

of its terminus and those #, y, z of its origin.

r~ (x
r

x,y
r

y,z
r

z).

If in particular the origin of the vector coincide with the

origin of coordinates, the vector will be represented by the

three coordinates of its terminus

r -(* ,*, ,
*

)

When two vectors are equal the three scalars which repre

sent them must be equal respectively each to each. Hence

one vector equality implies three scalar equalities.
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Definition : A vector A is said to be equal to zero when its

magnitude A is zero.

Such a vector A is called a null or zero vector and is written

equal to naught in the usual manner. Thus

A = if A = 0.

All null vectors are regarded as equal to each other without

any considerations of direction.

In fact a null vector from a geometrical standpoint would

be represented by a linear segment of length zero that is to

say, by a point. It consequently would have a wholly inde

terminate direction or, what amounts to the same thing, none at

all. If, however, it be regarded as the limit approached by a

vector of finite length, it might be considered to have that

direction which is the limit approached by the direction of the

finite vector, when the length decreases indefinitely and ap

proaches zero as a limit. The justification for disregarding

this direction and looking upon all null vectors as equal is

that when they are added (Art. 8) to other vectors no change
occurs and when multiplied (Arts. 27, 31) by other vectors

the product is zero.

5.] In extending to vectors the fundamental operations

of algebra and arithmetic, namely, addition, subtraction, and

multiplication, care must be exercised riot only to avoid self-

contradictory definitions but also to lay down useful ones.

Both these ends may be accomplished most naturally and

easily by looking to physics (for in that science vectors con

tinually present themselves) and by observing how such

quantities are treated there. If then A be a given displace

ment, force, or velocity, what is two, three, or in general x

times A? What, the negative of A? And if B be another,

what is the sum of A and B ? That is to say, what is the

equivalent of A and B taken together ? The obvious answers

to these questions suggest immediately the desired definitions.
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Scalar Multiplication

6.] Definition: A vector is said to be multiplied by a

positive scalar when its magnitude is multiplied by that scalar

and its direction is left unaltered

Thus if v be a velocity of nine knots East by North, 2 times

v is a velocity of twenty-one knots with the direction still

East by North. Or if f be the force exerted upon the scale-

pan by a gram weight, 1000 times f is the force exerted by a

kilogram. The direction in both cases is vertically down

ward.

If A be the vector and x the scalar the product of x and A is

denoted as usual by
x A or A x.

It is, however, more customary to place the scalar multiplier

before the multiplicand A. This multiplication by a scalar

is called scalar multiplication, and it follows the associative law

x (y A) = (x y) A = y (x A)

as in ordinary algebra and arithmetic. This statement is im

mediately obvious when the fact is taken into consideration

that scalar multiplication does not alter direction but merely

multiplies the length.

Definition : A unit vector is one whose magnitude is unity.

Any vector A may be looked upon as the product of a unit

vector a in its direction by the positive scalar A, its magni
tude.

A = A a = a A.

The unit vector a may similarly be written as the product of

A by I/A or as the quotient of A and A.

1 A
a = ^ A =

-IA A
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7.] Definition : The negative sign, prefixed to a vector

reverses its direction but leaves its magnitude unchanged.

For example if A be a displacement for two feet to the right,

A is a displacement for two feet to the left. Again if the

stroke A~B be A, the stroke B A, which is of the same length

as A but which is in the direction from B to A instead of

from A to 5, will be A. Another illustration of the use

of the negative sign may be taken from Newton s third law

of motion. If A denote an "action," A will denote the

" reaction." The positive sign, + , may be prefixed to a vec

tor to call particular attention to the fact that the direction

has not been reversed. The two signs + and when used

in connection with scalar multiplication of vectors follow the

same laws of operation as in ordinary algebra. These are

symbolically

+ + = + ; +- = -; - + = -; = +;

(ra A) = m
( A).

The interpretation is obvious.

Addition and Subtraction

8.] The addition of two vectors or strokes may be treated

most simply by regarding them as defining translations in

space (Art. 2), Let S be one vector and T the other. Let P
be a point of space (Fig. 2). The trans

lation S carries P into P1 such that the

line PP1
is equal to S in magnitude and

direction. The transformation T will then

carry P 1
into P11 the line P P" being

parallel to T and equal to it in magnitude.

FIG. 2. Consequently the result of S followed by
T is to carry the point P into the point

P". If now Q be any other point in space, S will carry Q
into Q such that Q~Q

r = S and T will then carry Q
f

into Q"
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such that Q Q" = T. Thus S followed by T carries Q into Q".

Moreover, the triangle Q Q
f

Q" is equal to PP P". For

the two sides Q Q
f and Q Q", being equal and parallel to S

and T respectively, must be likewise parallel to P P 1 and

P P" respectively which are also parallel to S and T. Hence

the third sides of the triangles must be equal and parallel

That is

Q Q" is equal and parallel to PP".

As Q is any point in space this is equivalent to saying that

by means of S followed by T all points of space are displaced

the same amount and in the same direction. This displace

ment is therefore a translation. Consequently the two

translations S and T are equivalent to a single translation R.

Moreover

if S = PP and T = P P", then R = PP".

The stroke R is called the resultant or sum of the two

strokes S and T to which it is equivalent. This sum is de

noted in the usual manner by

R = S + T.

From analogy with the sum or resultant of two translations

the following definition for the addition of any two vectors is

laid down.

Definition : The sum or resultant of two vectors is found

by placing the origin of the second upon the terminus of the

first and drawing the vector from the origin of the first to the

terminus of the second.

9.] Theorem. The order in which two vectors S and T are

added does not affect the sum.

S followed by T gives precisely the same result as T followed

by S. For let S carry P into P (Fig. 3) ; and T, P into P".

S + T then carries P into P". Suppose now that T carries P
into P ". The line PP "

is equal and parallel to PP". Con-
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sequently the points P, P 9
P ff

,
and Pm lie at the vertices of

a parallelogram. Hence

pm pn js equal an(J par-

allel to PP. Hence S

carries P" f

into P". T fol

lowed by S therefore car

ries P into P" through P\
whereas S followed by T

carries P into P" through

Pm . The final result is in

either case the same. This may be designated symbolically

by writing
R = S + T = T + S.

It is to be noticed that S=PP 1 and T =PPm are the two sides

of the parallelogram pprpp" which 1 have the point P as

common origin ; and that JL=PP" is the diagonal drawn

through P. This leads to another very common way of

stating the definition of the sum of two vectors.

If two vectors be drawn from the same origin and a parallelo

gram be constructed upon them as sides, their sum will be that

diagonal which passes through their common origin.

This is the well-known "
parallelogram law "

according to

which the physical vector quantities force, acceleration, veloc

ity, and angular velocity are compounded. It is important to

note that in case the vectors lie along the same line vector

addition becomes equivalent to algebraic scalar addition. The

lengths of the two vectors to be added are added if the vectors

have the same direction ; but subtracted if they have oppo
site directions. In either case the sum has the same direction

as that of the greater vector.

10.] After the definition of the sum of two vectors has

been laid down, the sum of several may be found by adding

together the first two, to this sum the third, to this the fourth,

and so on until all the vectors have been combined into a sin-
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gle one. The final result is the same as that obtained by placing

the origin of each succeeding vector upon the terminus of the

preceding one and then drawing at once the vector from

the origin of the first to the terminus of the last. In case

these two points coincide the vectors form a closed polygon
and their sum is zero. Interpreted geometrically this states

that if a number of displacements R, S, T are such that the

strokes R, S, T form the sides of a closed polygon taken in

order, then the effect of carrying out the displacements is nil.

Each point of space is brought back to its starting point. In

terpreted in mechanics it states that if any number of forces

act at a point and if they form the sides of a closed polygon
taken in order, then the resultant force is zero and the point

is in equilibrium under the action of the forces.

The order of sequence of the vectors in a sum is of no con

sequence. This may be shown by proving that any two adja

cent vectors may be interchanged without affecting the result.

To show

Let A = A, B = A B, C = B C, D = D, E = D E.

Then _
Let now B C1 = D. Then C! B C D is a parallelogram and

consequently Cf D = C. Hence

OJ = A + B + D + C + E,

which proves the statement. Since any two adjacent vectors

may be interchanged, and since the sum may be arranged in

any order by successive interchanges of adjacent vectors, the

order in which the vectors occur in the sum is immaterial.

11.] Definition : A vector is said to be subtracted when it

is added after reversal of direction. Symbolically,

A - B = A + (- B).

By this means subtraction is reduced to addition and needs
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no special consideration. There is however an interesting and

important way of representing the difference of two vectors

geometrically. Let A = OA, B = 0IT(Fig. 4). Complete

the parallelogram of which A and B

are the sides. Then the diagonal

~OG = C is the sum A + B of the

two vectors. Next complete the

parallelogram of which A and B

= OB are the sides. Then the di

agonal 02) = !) will be the sum of

A and the negative of B. But the

segment OD is parallel and equal

to BA. Hence BA may be taken as the difference to the two

vectors A and B. This leads to the following rule : The differ

ence of two vectors which are drawn from the same origin is

the vector drawn from the terminus of the vector to be sub

tracted to the terminus of the vector from which it is sub

tracted. Thus the two diagonals of the parallelogram, which

is constructed upon A and B as sides, give the sum and dif

ference of A and B.

12.] In the foregoing paragraphs addition, subtraction, and

scalar multiplication of vectors have been defined and inter

preted. To make the development of vector algebra mathe

matically exact and systematic it would now become necessary
to demonstrate that these three fundamental operations follow

the same formal laws as in the ordinary scalar algebra, al

though from the standpoint of the physical and geometrical

interpretation _of vectors this may seem superfluous. These

laws are

m (n A) = n (m A) = (m n} A,

(A + B) + C = A+ (B + C),

II A + B r, B + A,

III a (m + n) A = m A + n A,

m (A + B) = m A + m B,

III,
-

(A + B) = - A - B.
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1 is the so-called law of association and commutation of

the scalar factors in scalar multiplication.

I6 is the law of association for vectors in vector addition. It

states that in adding vectors parentheses may be inserted at

any points without altering the result.

11 is the commutative law of vector addition.

IIIa is the distributive law for scalars in scalar multipli

cation.

III 6 is the distributive law for vectors in scalar multipli

cation.

Ill, is the distributive law for the negative sign.

The proofs of these laws of operation depend upon those

propositions in elementary geometry which have to deal with

the first properties of the parallelogram and similar triangles.

They will not be given here; but it is suggested that the

reader work them out for the sake of fixing the fundamental

ideas of addition, subtraction, and scalar multiplication more

clearly in mind. The result of the laws may be summed up
in the statement :

The laws which govern addition, subtraction, and scalar

multiplication of vectors are identical with those governing these

operations in ordinary scalar algebra.

It is precisely this identity of formal laws which justifies

the extension of the use of the familiar signs =, +, and

of arithmetic to the algebra of vectors and it is also this

which ensures the correctness of results obtained by operat

ing with those signs in the usual manner. One caution only

need be mentioned. Scalars and vectors are entirely different

sorts of quantity. For this reason they can never be equated
to each other except perhaps in the trivial case where each is

zero. For the same reason they are not to be added together.

So long as this is borne in mind no difficulty need be antici

pated from dealing with vectors much as if they were scalars.

Thus from equations in which the vectors enter linearly with
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scalar coefficients unknown vectors may be eliminated or

found by solution in the same way and with the same limita

tions as in ordinary algebra; for the eliminations and solu

tions depend solely on the scalar coefficients of the equations

and not at all on what the variables represent. If for

instance
aA + &B + cC + dD = 0,

then A, B, C, or D may be expressed in terms of the other

three

as D = --:OA + &B + cC).
a

And two vector equations such as

3 A+ 4B=E
and 2 A + 3 B = F

yield by the usual processes the solutions

A=3E-4F
and B = 3 F - 2 E.

Components of Vectors

13.] Definition : Vectors are said to be collinear when

they are parallel to the same line; coplanar, when parallel

to the same plane. Two or more vectors to which no line

can be drawn parallel are said to be non-collinear. Three or

more vectors to which no plane can be drawn parallel are

said to be non-coplanar. Obviously any two vectors are

coplanar.

Any vector b collinear with a may be expressed as the

product of a and a positive or negative scalar which is the

ratio of the magnitude of b to that of a. The sign is positive

when b and a have the same direction ; negative, when they

have opposite directions. If then OA = a, the vector r drawn
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from the origin to any point of the line A produced in

either direction is

r = x a. (1)

If x be a variable scalar parameter this equation may there

fore be regarded as the (vector) equation of all points in the

line OA. Let now B be any point not

upon the line OA or that line produced
in either direction (Fig. 5).

Let OB = b. The vector b is surely

not of the form x a. Draw through B Flo 5

"

a line parallel to OA and Let R be any

point upon it. The vector BE is collinear with a and is

consequently expressible as #a. Hence the vector drawn

from to R is

0~E=0~B + ITR

or r = b + #a. (2)

This equation may be regarded as the (vector) equation of

all the points in the line which is parallel to a and of which

B is one point.

14.] Any vector r coplanar with two non-collinear vectors

a and b may be resolved into two components parallel to a

and b respectively. This resolution may
be accomplished by constructing the par

allelogram (Fig. 6) of which the sides are

parallel to a and b and of which the di

agonal is r. Of these components one is

x a ; the other, y b. x and y are respec

tively the scalar ratios (taken with the

proper sign) of the lengths of these components to the lengths

of a and b, Hence
r = x a + y b (2)

is a typical form for any vector coplanar with a and b. If

several vectors r
x, r

2 , r
3 may be expressed in this form as



16 VECTOR ANALYSIS

their sum r is then

r
l
= x

l
a + yl b,

r2
= #

2
a + 2/2 b,

r
3
= x

z
a + 2/3

b.

+ (ft + ft + ft + )

This is the well-known theorem that the components of a

sum of vectors are the sums of the components of those

vectors. If the vector r is zero each of its components must

be zero. Consequently the one vector equation r = is

equivalent to the two scalar equations

y\ + ft + ft + = (3)

15.] Any vector r in space may be resolved into three

components parallel to any three given non-coplanar vectors.

Let the vectors be a, b,

and c. The resolution

may then be accom

plished by constructing

the parallelepiped (Fig.

7) of which the edges

are parallel to a, b, and

c and of which the di

agonal is r. This par-

allelopiped may be

drawn easily by passing

three planes parallel re

spectively to a and b, b and c, c and a through the origin

of the vector r ; and a similar set of three planes through its

terminus It. These six planes will then be parallel in pairs

FIG. 7.
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and hence form a parallelepiped. That the intersections of

the planes are lines which are parallel to a, or b, or c is

obvious. The three components of r are x a, y b, and zc;

where x, y, and z are respectively the scalar ratios (taken with

the proper sign) of the lengths of these components to the

length of a, b, and c. Hence

r = # a + 7/b + zc (4)

is a typical form for any vector whatsoever in space. Several

vectors r
lf

r
2 , r

3
. . . may be expressed in this form as

r
x
= x

l
a + yl

b + z
l c,

r
2
= #

2
a + y2

b + *2 c

1*3
= X

Z
a + 2/3

b

Their sum r is then

1 = r
l + r

2 + F
3 + * = 0*1 + *2 + X

Z + a

+ (2/i + 2/2+ 3/3 + )!>

+ Ol +^2 + ^3+ "O -

If the vector r is zero each of its three components is zero.

Consequently the one vector equation r = is equivalent to

the three scalar equations

x
l + #

2 + #
3 + - = v

2/i + 2/2 + 2/3 + = y r = 0. (5)

*i + *
2 + % + = /

Should the vectors all be coplanar with a and b, all the com

ponents parallel to c vanish. In this case therefore the above

equations reduce to those given before.

16.] If two equal vectors are expressed in terms of the

same three non-coplanar vectors, the corresponding scalar co

efficients are equal.
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Let r = r ,

r = x 9 a + y
1 b + z c,

Then x = x , y = y

For r - r = = (x
- x f

) a + (y
- y ) b + (*

- z
1

) c.

Hence x - * = 0, y
- y = 0, z - * = 0.

But this would not be true if a, b, and c were coplanar. In

that case one of the three vectors could be expressed in terms

of the other two as

c = m a + n b.

Then r = #a + y b + s c = (a + m z) a + (y + TI z) b,

r = x ! a + y
1 b + z

;
c = (x

1 + m z ) a + (y + n z ) b,

r r = [(x + m z ) (x + m z )] a,

Hence the individual components of r r in the directions

a and b (supposed different) are zero.

Hence x + mz = x r + mz r

y -f n z = y
f + n z 1

.

But this by no means necessitates x, y, z to be equal respec

tively to x\ y\ z
1

. In a similar manner if a and b were col-

linear it is impossible to infer that their coefficients vanish

individually. The theorem may perhaps be stated as follows :

. In case two equal vectors are expressed in terms of one vector,

or two non-collinear vectors, or three non-coplanar vectors, the

corresponding scalar coefficients are equal. But this is not ne

cessarily true if the two vectors be collinear ; or the three vectors,

coplanar. This principle will be used in the applications

(Arts. 18 et seq.).

The Three Unit Vectors i, j, k.

17.] In the foregoing paragraphs the method of express

ing vectors in terms of three given non-coplanar ones has been

explained. The simplest set of three such vectors is the rect-
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angular system familiar in Solid Cartesian Geometry. This

rectangular system may however be either of two very distinct

types. In one case (Fig. 8, first part) the Z-axis l lies upon

that side of the X Y- plane on which rotation through a right

angle from the X-axis to the F-axis appears counterclockwise

or positive according to the convention adopted in Trigonome

try. This relation may be stated in another form. If theX
axis be directed to the right and the F-axis vertically, the

^-axis will be directed toward the observer. Or if the X-

axis point toward the observer and the F-axis to the right,

the ^-axis will point upward. Still another method of state-

Z

,,k

Right-handed
FIG. 8.

Left-handed

ment is common in mathematical physics and engineering. If

a right-handed screw be turned from the Xaxis to the F-

axis it will advance along the (positive) Z-axis. Such a sys

tem of axes is called right-handed, positive, or counterclock

wise.2 It is easy to see that the F-axis lies upon that side of

the ^X-plane on which rotation from the ^-axis to the X-

axis is counterclockwise ; and the X-axis, upon that side of

1 By the X-, Y-, or Z-axis the positive half of that axis is meant. The X Y-

plane means the plane which contains the X- and Y-axis, i. e., the plane z = 0.

2 A convenient right-handed system and one which is always available consists

of the thumb, first finger, and second finger of the right hand. If the thumb and

first finger be stretched out from the palm perpendicular to each other, and if the

second finger be bent over toward the palm at right angles to first finger, a right-

handed system is formed by the fingers taken in the order thumb, first finger,

second
finger.
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the F^-plane on which rotation from the F-axis to the Z-

axis is counterclockwise. Thus it appears that the relation

between the three axes is perfectly symmetrical so long as the

same cyclic order XYZXY is observed. If a right-handed

screw is turned from one axis toward the next it advances

along the third.

In the other case (Fig. 8, second part) the ^-axis lies upon
that side of the X F-plane on which rotation through a right

angle from the JT-axis to the F-axis appears clockwise or neg

ative. The F-axis then lies upon that side of the ^X-plane
on which rotation from the ^-axis to the X-axis appears

clockwise and a similar statement may be made concerning
the X-axis in its relation to the F^-plane. In this case, too,

the relation between the three axes is S3
rmmetrical so long

as the same cyclic order XYZX Y is preserved but it is just
the opposite of that in the former case. If a fe/Mianded screw

is turned from one axis toward the next it advances along
the third. Hence this system is called left-handed, negative,
or clockwise.1

The two systems are not superposable. They are sym
metric. One is the image of the other as seen in a

mirror. If the JT- and F-axes of the two different systems be

superimposed, the ^-axes will point in opposite directions.

Thus one system may be obtained from the other by reversing
the direction of one of the axes. A little thought will show
that if two of the axes be reversed in direction the system will

not be altered, but if all three be so reversed it will be.

Which of the two systems be used, matters little. But in

asmuch as the formulae of geometry and mechanics differ

slightly in the matter of sign, it is advisable to settle once for
all which shall be adopted. In this book the right-handed or

counterclockwise system will be invariably employed.

1 A left-handed system may be formed by the left hand just as a right-handed
one was formed by the right.
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Definition : The three letters i, j, k will be reserved to de

note three vectors of unit length drawn respectively in the

directions of the JT-, T-, and Z- axes of a right-handed rectan

gular system.

In terms of these vectors, any vector may be expressed as

r = xi + y] + zk. (6)

The coefficients x
y y, z are the ordinary Cartesian coordinates

of the terminus of r if its origin be situated at the origin of

coordinates. The components of r parallel to the X-, F-, and

^f-axes are respectively

x i, y j, z k.

The rotations about i from j to k, about j from k to i, and

about k from i to j are all positive.

By means of these vectors i, j, k such a correspondence is

established between vector analysis and the analysis in Car

tesian coordinates that it becomes possible to pass at will

from either one to the other. There is nothing contradic

tory between them. On the contrary it is often desirable

or even necessary to translate the formulae obtained by
vector methods into Cartesian coordinates for the sake of

comparing them with results already known and it is

still more frequently convenient to pass from Cartesian

analysis to vectors both on account of the brevity thereby

obtained and because the vector expressions show forth the

intrinsic meaning of the formulae.

Applications

*18.J Problems in plane geometry may frequently be solved

easily by vector methods. Any two non-collinear vectors in

the plane may be taken as the fundamental ones in terms of

which all others in that plane may be expressed. The origin

may also be selected at pleasure. Often it is possible to
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make such an advantageous choice of the origin and funda

mental vectors that the analytic work of solution is materially

simplified. The adaptability of the vector method is about

the same as that of oblique Cartesian coordinates with differ

ent scales upon the two axes.

Example 1 : The line which joins one vertex of a parallelo

gram to the middle point of an opposite side trisects the diag
onal (Fig. 9).

Let ABCD be the parallelogram, BE the line joining the

vertex B to the middle point E of the side

AD, R the point in which this line cuts the

diagonal A C. To show A R is one third of

FlG 9
AC. Choose A as origin, AB and AD as the

two fundamental vectors S and T. Then
A C is the sum of S and T. Let AR = R. To show

R = 1
(S + T).

-

where x is the ratio of ER to EB an unknown scalar.

And R = y (S + T),

where y is the scalar ratio of AR to A C to be shown equal
to.

Hence
\ T + x (S

-i T) = y (S + T)

or * S + 1
(1
- X

) T = y S + y T.

Hence, equating corresponding coefficients (Art. 16),

2 (1
-

x) = y.
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From which y = .

Inasmuch as x is also - the line j&2? must be trisected as
o

well as the diagonal A C.

Example 2 : If through any point within a triangle lines

be drawn parallel to the sides the sum of the ratios of these

lines to their corresponding sides is 2.

Let ABC be the triangle, R the point within it. Choose

A as origin, A B and A C as the two fundamental vectors S

and T. Let

AR = R = w S + 7i T. (a)

m S is the fraction of A B which is cut off by the line through
R parallel to A C. The remainder of A B must be the frac

tion (1 m) S. Consequently by similar triangles the ratio of

the line parallel to A C to the line A C itself is (1 ra).

Similarly the ratio of the line parallel to AB to the line A B
itself is (1 n

).
Next express R in terms of S and T S the

third side of the triangle. Evidently from (a)

R = (m + ri) S + n (T
-

S).

Hence (m + ri)
S is the fraction of A B which is cut off by the

line through R parallel to B C. Consequently by similar tri

angles the ratio of this line to BC itself is (m + n). Adding
the three ratios

(1
- m) + (1

-
n) + (m + ri)

= 2,

and the theorem is proved.

Example 3 : If from any point within a parallelogram lines

be drawn parallel to the sides, the diagonals of the parallelo

grams thus formed intersect upon the diagonal of the given

parallelogram.

Let AB CD be a parallelogram, R a point within it, KM
and LN two lines through R parallel respectively to AB and
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AD, the points K, Z, M, N lying upon the sides DA, AS,
B C, CD respectively. To show that the diagonals KN and

LM of the two parallelograms KRND and LBME meet

on A C. Choose A as origin, A B and A D as the two funda

mental vectors S and T. Let

R = AB = m S 4- ft T,

and let P be the point of intersection of KN with LM.

Then KN=KR + BN = m S + (1
-

rc) T,

=(1 -m) S + 7i T,

Hence P = n T + x [m S + (1 n) T],

and P = m S + y [(1
- m) S + n T].

Equating coefficients,

x m = m + y (1 m)

By solution, ;

m + n 1

m
~
m + n 1

Substituting either of these solutions in the expression for P,

the result is

P^-^-^S + T),

which shows that P is collinear with A C.
*

19.] Problems in three dimensional geometry may be
solved in essentially the same manner as those in two dimen
sions. In this case there are three fundamental vectors in
terms of which all others can be expressed. The method of
solution is analogous to that in the simpler case. Two
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expressions for the same vector are usually found. The co

efficients of the corresponding terms are equated. In this way
the equations between three unknown scalars are obtained

from which those scalars may be determined by solution and

then substituted in either of the expressions for the required

vector. The vector method has the same degree of adapta

bility as the Cartesian method in which oblique axes with

different scales are employed. The following examples like

those in the foregoing section are worked out not so much for

their intrinsic value as for gaining a familiarity with vectors.

Example 1 : Let A B CD be a tetrahedron and P any

point within it. Join the vertices to P and produce the lines

until they intersect the opposite faces in A\ B , C
1

,
D f

. To
show

PA PB PC1 PD
A~A f TTB ~C~O

f
"

Choose A as origin, and the edges A J?, A C, AD as the

three fundamental vectors B, C, D. Let the vector AP be

P = A P=IE + raC + 7i D,

Also A = A A = A B + BA .

The vector BA 1

is coplanar with WC = C B and BD
D B. Hence it may be expressed in terms of them.

A = B + ^
1 (C-B)+y1 (D~B).

Equating coefficients Jc
l
m = xv

Hence &., =

PA _V
ZZ7 ~~&

1
I + m + n

PA* JL-1
and

" ^ 7
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In like manner A B = #
2 C + y2

D

and A B = ^t + B B = B + & 2 (P - B).

Hence o;
2
C + y2

D = B + A:
2 (ZB + mC + ^D-B

and = 1 + *, (J
-

1),

Hence 2 -i __

-
and

In the same way it may be shown that

PC .PL 1

CC* 3D

Adding the four ratios the result is

i d JL vn -4- <w ^ _L 7 J_ w -I- 77 1

Example % : To find a line which passes through a given

point and cuts two given lines in space.

Let the two lines be fixed respectively by two points A
and B, C and D on each. Let be the given point. Choose

it as origin and let

C = ~OC, D=d~D.

Any point P of AB may be expressed as

P= OP= 0~A + xA = A + x (B- A).

Any point Q of CD may likewise be written

If the points P and Q lie in the same line through 0, P and

are collinear That is
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Before it is possible to equate coefficients one of the four

vectors must be expressed in terms of the other three.

Then P = A + x (B - A)
& Tf _1_ ( 1 A _J_ m Tl _1_ >w P I^^T

Hence 1 x = z y /,

x = zy m,
= z [1 + y (n - 1)J.

Hence
m

x =

y =

2 =

i

i-
_________

I + m
Substituting in P and ft

I A+ m B

+ m

ft =

Either of these may be taken as defining a line drawn from

and cutting A B and CD.

Vector Relations independent of the Origin

20.] Example 1 : To divide a line A B in a given ratio

m : n (Fig. 10).

Choose any arbitrary point as

origin. Let OA = A and OB = B.

To find the vector P = ~OP of which

the terminus P divides AB in the

ratio m : n.

m

B

FIG. 10.

That is, P =

B = A
-f- 7i

n A + m B

n

(B - A).

(7)
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The components of P parallel to A and B are in inverse ratio

to the segments A P and PB into which the line A B is

divided by the point P. If it should so happen that P divided

the line AB externally, the ratio A P / PE would be nega

tive, and the signs of m and n would be opposite, but the

formula would hold without change if this difference of sign
in m and n be taken into account.

Example 2 : To find the point of intersection of the medians

of a triangle.

Choose the origin at random. Let A BC be the given

triangle. Let 0~A = A, ()B = B, and "00 = C. Let A f

, ,C
be respectively the middle points of the sides opposite the

vertices A, B, (7. Let M be the point of intersection of the

medians and M = M the vector drawn to it. Then

and

~< = B

Assuming that has been chosen outside of the plane of the

triangle so that A, B, C are non-coplanar, corresponding coeffi

cients may be equated.

Hence x = y -
9 3

Hence M =4 (A + B + C).
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The vector drawn to the median point of a triangle is equal

to one third of the sum of the vectors drawn to the vertices.

In the problems of which the solution has just been given

the origin could be chosen arbitrarily and the result is in

dependent of that choice. Hence it is even possible to disre

gard the origin entirely and replace the vectors A, B, C, etc.,

by their termini A, B, C, etc. Thus the points themselves

become the subjects of analysis and the formulae read

n A + m B
m + n

and M=~(A + B + C).

This is typical of a whole class of problems soluble by vector

methods. In fact any purely geometric relation between the

different parts of a figure must necessarily be independent

of the origin assumed for the analytic demonstration. In

some cases, such as those in Arts. 18, 19, the position of the

origin may be specialized with regard to some crucial point

of the figure so as to facilitate the computation ; but in many
other cases the generality obtained by leaving the origin un-

specialized and undetermined leads to a symmetry which

renders the results just as easy to compute and more easy

to remember.

Theorem : The necessary and sufficient condition that a

vector equation represent a relation independent of the origin

is that the sum of the scalar coefficients of the vectors on

one side of the sign of equality is equal to the sum of the

coefficients of the vectors upon the other side. Or if all the

terms of a vector equation be transposed to one side leaving

zero on the other, the sum of the scalar coefficients must

be zero.

Let the equation written in the latter form be
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Change the origin from to by adding a constant vector

B = OO 1

to each of the vectors A, B, C, D---- The equation

then becomes

a (A 4- B) + 6 (B + B) + c (C + B) + d (D + R) + - =

If this is to be independent of the origin the coefficient of B
must vanish. Hence

That this condition is fulfilled in the two examples cited

is obvious.

if m + n

If M =
\ (A f B + C),

m + n m + n

l

3

*
21.] The necessary and sufficient condition that two

vectors satisfy an equation, in which the sum of the scalar

coefficients is zero, is that the vectors be equal in magnitude
and in direction.

First let a A + 6 B =
and a + 6 = 0.

It is of course assumed that not both the coefficients a and b

vanish. If they did the equation would mean nothing. Sub

stitute the value of a obtained from the second equation into

the first.

-&A + 6B = 0.

Hence A = B.
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Secondly if A and B are equal in magnitude and direction

the equation
A-B =

subsists between them. The sum of the coefficients is zero.

The necessaiy and sufficient condition that three vectors

satisfy an equation, in which the sum of the scalar coefficients

is zero, is that when drawn from a common origin they termi

nate in the same straight line.1

First let aA + 6B + cC =
and a + b + c = 0.

Not all the coefficients a, J, c, vanish or the equations

would be meaningless. Let c be a non-vanishing coefficient.

Substitute the value of a obtained from the second equation

into the first.

or

Hence the vector which joins the extremities of C and A is

collinear with that which joins the extremities of A and B.

Hence those three points -4, -B, C lie on a line. Secondly

suppose three vectors A= OA, B = OB,G= 00 drawn from

the same origin terminate in a straight line. Then the

vectors

AB = B - A and A~C = C - A

are collinear. Hence the equation

subsists. The sum of the coefficients on the two sides is

the same.

The necessary and sufficient condition that an equation,
in which the sum of the scalar coefficients is zero, subsist

1 Vectors which have a common origin and terminate in one line are called by
Hamilton "

termino-collinear:
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between four vectors, is that if drawn from a common origin

they terminate in one plane.
1

First let a A + 6B + cC + dV =
and a + b + c + d = Q.

Let d be a non-vanishing coefficient. Substitute the value

of a obtained from the last equation into the first.

or d (D - A) = 6 (A - B) + c (A - C).

The line AD is coplanar with AB and A C. Hence all four

termini A, B, (7, D of A, B, C, D lie in one plane. Secondly

suppose that the termini of A, B, C, D do lie in one plane.

Then AZ) = D - A, ~AC = C - A, and ~AB = B - A are co

planar vectors. One of them may be expressed in terms of

the other two. This leads to the equation

/ (B
-
A) + m (C

- A) + n (D - A) = 0,

where /, m, and n are certain scalars. The sum of the coeffi

cients in this equation is zero.

Between any five vectors there exists one equation the sum
of whose coefficients is zero.

Let A, B, C,D,E be the five given vectors. Form the

differences

E-A, E--B, E-C, E-D.

One of these may be expressed in terms of the other three
- or what amounts to the same thing there must exist an

equation between them.

ft (E
- A) + / (E - B) + m (E - C) + n (E

-
D) = 0.

The sum of the coefficients of this equation is zero.

1 Vectors which have a common origin and terminate in one plane are called

by Hamilton "
termino-complanar."
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*22.] The results of the foregoing section afford simple

solutions of many problems connected solely with the geo

metric properties of figures. Special theorems, the vector

equations of lines and planes, and geometric nets in two and

three dimensions are taken up in order.

Example 1: If a line be drawn parallel to the base of a

triangle, the line which joins the opposite vertex to the inter

section of the diagonals of the

trapezoid thus formed bisects the

base (Fig. 11).

Let ABC be the triangle, ED
the line parallel to the base CB,
G the point of intersection of the

diagonals EB and DC of the tra

pezoid CBDE, and Fthe intersec

tion of A G with CB. To show
FI(J n

that F bisects CB. Choose the

origin at random. Let the vectors drawn from it to the

various points of the figure be denoted by the corresponding

Clarendons as usual. Then since ED is by hypothesis paral

lel to CB, the equation

E - D = n (C
- B)

holds true. The sum of the coefficients is evidently zero as

it should be. Rearrange the terms so that the equation

takes on the form
E nC = "D 7i B.

The vector E n C is coplanar with E and C. It must cut

the line EC. The equal vector D 7&B is coplanar with D
and B. It must cut the line DB. Consequently the vector

represented by either side of this equation must pass through
the point A. Hence

E 7iC = D ?iB = #A.
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However the points E, 0, and A lie upon the same straight

line. Hence the equation which connects the vectors E,C,

and A must be such that the sum of its coefficients is zero.

This determines x as 1 n.

Hence B - C = D - B = (1
- w) A.

By another rearrangement and similar reasoning

E + 7i B =D + 7iC= (1 + n)Qt.

Subtract the first equation from the second :

n (B + C) = (1 + n) G - (1
- n) A.

This vector cuts EC and AQ. It must therefore be a

multiple of F and such a multiple that the sum of the coeffi

cients of the equations which connect B, C, and F or 0, A,

and F shall be zero.

Hence n (B + C) = (1 + )G - (1
-

) A = 2 nf.

Hence F =

and the theorem has been proved. The proof has covered

considerable space because each detail of the reasoning has

been given. In reality, however, the actual analysis has con

sisted of just four equations obtained simply from the first.

Example % : To determine the equations of the line and

plane.

Let the line be fixed by two points A and B upon it. Let

P be any point of the line. Choose an arbitrary origin.

The vectors A, B, and P terminate in the same line. Hence

aA + 6B
and a + I + p = 0.

,
Therefore P =

a + b
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For different points P the scalars a and b have different

values. They may be replaced by x and y, which are used

more generally to represent variables. Then

x + y

Let a plane be determined by three points -4, B, and C.

Let P be any point of the plane. Choose an arbitrary origin.

The vectors A, B, C, and P terminate in one plane. Hence

6B + cC

and a + b + c+p = Q.

aA + 6B + cC
Therefore P =

-f c

As a, 6, c, vary for different points of the plane, it is more

customary to write in their stead x, y t z.

+ y + z

Example 3 ; The line which joins one vertex of a com

plete quadrilateral to the intersection of two diagonals

divides the opposite sides har

monically (Fig. 12).

Let A, B, C, D be four vertices

of a quadrilateral. Let A B meet

CD in a fifth vertex E, and AD
meet BC in the sixth vertex F.

Let the two diagonals AC and p 12

BD intersect in G. To show

that FG intersects A B in a point i" and CD in a point E 1

such that the lines AB and (7I> are divided internally at

E 1 and 2?" in the same ratio as they are divided externally

by E. That is to show that the cross ratios
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Choose the origin at random. The four vectors A, B, C, D

drawn from it to the points A, B, C, D terminate in one

plane. Hence

and a + b + e + d = 0.

Separate the equations by transposing two terms :

Divide : =

a + c = (b + d).

cC 6B +
a + c b + d

aA + d D
__
6B + cC

a + d b + c

(a + C)G (a + d)F cC di

In like manner F =

Form:
(a + c)

-
(a + d)

"

(a + c) (a + d)

(a + c)Q (a + rf)F cC
or

c a c a

Separate the equations again and divide :

aA + EB _ cC +
a -f b c + d

(6)

Hence 2? divides A B in the ratio a : b and CD in the ratio

c / d. But equation (a) shows that JE
ff divides CD in the

ratio c:d. Hence E and E" divide CD internally and

externally in the same ratio. Which of the two divisions is

internal and which external depends upon the relative signs

of c and d. If they have the same sign the internal point

of division is E; if opposite signs, it is E 1
. In a similar way

E 1 and E may be shown to divide AB harmonically.

Example 4 - To discuss geometric nets.

By a geometric net in a plane is meant a figure composed
of points and straight lines obtained in the following manner.

Start with a certain number of points all of which lie in one
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plane. Draw all the lines joining these points in pairs.

These lines will intersect each other in a number of points.

Next draw all the lines which connect these points in pairs.

This second set of lines will determine a still greater number

of points which may in turn be joined in pairs and so on.

The construction may be kept up indefinitely. At each step

the number of points and lines in the figure increases.

Probably the most interesting case of a plane geometric net is

that in which four points are given to commence with.

Joining these there are six lines which intersect in three

points different from the given four. Three new lines may
now be drawn in the figure. These cut out six new points.

From these more lines may be obtained and so on.

To treat this net analytically write down the equations

=
(c)

and a + b + c + d = Q

which subsist between the four vectors drawn from an unde

termined origin to the four given points. From these it is

possible to obtain

a A + 6B cC + dD

Tjl

a + b c + d

A + cC Z>B + dD
a + c b + d

A + dJ) &B + cC

a + d b + c

by splitting the equations into two parts and dividing. Next

four vectors such as A, D, E, F may be chosen and the equa
tion the sum of whose coefficients is zero may be determined.

This would be

aA + dV + (a + b) E-f (a + c) P = 0.

By treating this equation as (c) was treated new points may
be obtained*
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a A + dD (a + 6)E + (a + c)FH =

1 =

a + d 2a + b + c

aA + (a + ft)E __ <?D+ (a + c)F
a 4- c + d

(a + 6) E

c a + b + d

Equations between other sets of four vectors selected from

A, B, C, D, E, F, may be found ; and from these more points

obtained. The process of finding more points goes forward

indefinitely. A fuller account of geometric nets may be

found in Hamilton s " Elements of Quaternions," Book I.

As regards geometric nets in space just a word may be

said. Five points are given. From these new points may be

obtained by finding the intersections of planes passed through
sets of three of the given points with lines connecting the

remaining pairs. The construction may then be carried for

ward with the points thus obtained. The analytic treatment

is similar to that in the case of plane nets. There are

five vectors drawn from an undetermined origin to the given
five points. Between these vectors there exists an equation
the sum of whose coefficients is zero. This equation may be

separated into parts as before and the new points may thus

be obtained.

+ 6B cC + dD +then F =
a + b c + d + e

A + cC 6B + dV + e

a + b b + d + c

are two of the points and others may be found in the same

way. Nets in space are also discussed by Hamilton, loc. cit.
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Centers of Gravity

*
23.] The center of gravity of a system of particles may

be found very easily by vector methods. The two laws of

physics which will be assumed are the following:

1. The center of gravity of two masses (considered as

situated at points) lies on the line connecting the two masses

and divides it into two segments which are inversely pro

portional to the masses at the extremities.

2. In finding the center of gravity of two systems of

masses each system may be replaced by a single mass equal

in magnitude to the sum of the masses in the system and

situated at the center of gravity of the system.

Given two masses a and b situated at two points A and B.

Their center of gravity G is given by

where the vectors are referred to any origin whatsoever.

This follows immediately from law 1 and the formula (7)

for division of a line in a given ratio.

The center of gravity of three masses a, J, c situated at the

three points -4, B, C may be found by means of law 2. The

masses a and b may be considered as equivalent to a single

mass a + b situated at the point

a A + &B

a + b

Then G = (a + 6)

" A + 6B
+ c C

a -f- b

TT aA-h&B-f-cC
Hence G =

a -f b + c
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Evidently the center of gravity of any number of masses

a, &, c, d, ... situated at the points A, B, C, D, ... may
be found in a similar manner. The result is

aA + ftB + cO + rfD + ...
^

a + b + c + d + ...

Theorem 1 : The lines which join the center of gravity of a

triangle to the vertices divide it into three triangles which

are proportional to the masses at the op

posite vertices (Fig. 13). Let A, B, C
be the vertices of a triangle weighted

with masses a, &, c. Let G be the cen

ter of gravity. Join A, B, C to G and

produce the lines until they intersect

the opposite sides in A f

, B\ C 1

respectively. To show that

the areas

G B C : G CA : G A B : A B C = a : b : c : a + b + c .

The last proportion between ABC and a + b + c comes

from compounding the first three. It is, however, useful in

the demonstration.

ABC AA A G
.

GA b + c

+ 1.

Hence

GBC~ GA! CTA G~A f

ABC a + b + c

In a similar manner

and

GBC a

BCA a + I + c

GCA~ b

CAB _ a + b + c

GAB ~
~~c

Hence the proportion is proved.

Theorem 2 : The lines which join the center of gravity of

a tetrahedron to the vertices divide the tetrahedron into four
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tetrahedra which are proportional to the masses at the oppo

site vertices.

Let -4, B, C, D be the vertices of the tetrahedron weighted

respectively with weights a, &, c, d. Let be the center of

gravity. Join A, B, C, D to G and produce the lines until

they meet the opposite faces in A , B\ G\ D . To show that

the volumes

BCDG:CDAG:DABG:ABCG:ABCD

BCDA
BCDG

In like manner

and

and ABCD d

which proves the proportion.
*

24.] By a suitable choice of the three masses, a, J, c lo

cated at the vertices A, B, (7, the center of gravity G may
be made to coincide with any given point P of the triangle.

If this be not obvious from physical considerations it cer

tainly becomes so in the light of the foregoing theorems.

For in order that the center of gravity fall at P, it is only

necessary to choose the masses a, 6, c proportional to the

areas of the triangles PEG, PCA^ and PAB respectively.

Thus not merely one set of masses a, &, c may be found, but

an infinite number of sets which differ from each other only

by a common factor of proportionality. These quantities
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a, 6, c may therefore be looked upon as coordinates of the

points P inside of the triangle ABC. To each set there

corresponds a definite point P, and to each point P there

corresponds an infinite number of sets of quantities, which

however do not differ from one another except for a factor

of proportionality.

To obtain the points P of the plane ABC which lie outside

of the triangle ABC one may resort to the conception of

negative weights or masses. The center of gravity of the

masses 2 and 1 situated at the points A and B respectively

would be a point G dividing the line AB externally in the

ratio 1 : 2. That is

Any point of the line AB produced may be represented by
a suitable set of masses a, b which differ in sign. Similarly

any point P of the plane ABC may be represented by a

suitable set of masses a, 6, c of which one will differ in sign

from the other two if the point P lies outside of the triangle

ABC. Inasmuch as only the ratios of a, 6, and c are im

portant two of the quantities may always be taken positive.

The idea of employing the masses situated at the vertices

as coordinates of the center of gravity is due to Mobius and

was published by him in his book entitled " Der barycentrische

Calcul" in 1827. This may be fairly regarded as the starting

point of modern analytic geometry.

The conception of negative masses which have no existence

in nature may be avoided by replacing the masses at the

vertices by the areas of the triangles GBC, GOA, and

GAB to which they are proportional. The coordinates of

a point P would then be three numbers proportional to the

areas of the three triangles of which P is the common vertex ;

and the sides of a given triangle ABC, the bases. The sign
of these areas is determined by the following definition.
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Definition: The area ABC of a triangle is said to be

positive when the vertices A, B, C follow each other in the

positive or counterclockwise direction upon the circle de

scribed through them. The area is said to be negative when

the points follow in the negative or clockwise direction.

Cyclic permutation of the letters therefore does not alter

the sign of the area.

Interchange of two letters which amounts to a reversal of

the cyclic order changes the sign.

A CB = BA = CBA = -A B C.

If P be any point within the triangle the equation

PAB+PBC+PCA=ABC
must hold. The same will also hold if P be outside of the

triangle provided the signs of the areas be taken into con

sideration. The areas or three quantities proportional to

them may be regarded as coordinates of the point P.

The extension of the idea of "
barycentric

"
coordinates to

space is immediate. The four points A, B, C, D situated at

the vertices of a tetrahedron are weighted with mass a, J, c, d

respectively. The center of gravity G is represented by
these quantities or four others proportional to them. To
obtain points outside of the tetrahedron negative masses

may be employed. Or in the light of theorem 2, page 40,

the masses may be replaced by the four tetrahedra which

are proportional to them. Then the idea of negative vol

umes takes the place of that of negative weights. As this

idea is of considerable importance later, a brief treatment of

it here may not be out of place.

Definition : The volume A B CD of a tetrahedron is said

to be positive when the triangle ABC appears positive to
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the eye situated at the point D. The volume is negative

if the area of the triangle appear negative.

To make the discussion of the signs of the various

tetrahedra perfectly clear it is almost necessary to have a

solid modeL A plane drawing is scarcely sufficient. It is

difficult to see from it which triangles appear positive and

which negative. The following relations will be seen to

hold if a model be examined.

The interchange of two letters in the tetrahedron ABCD
changes the sign.

ACBD = CBAD=BACD=DBCA

The sign of the tetrahedron for any given one of the pos

sible twenty-four arrangements of the letters may be obtained

by reducing that arrangement to the order A B C D by

means of a number of successive interchanges of two letters.

If the number of interchanges is even the sign is the same

as that of ABCD ; if odd, opposite. Thus

If P is any point inside of the tetrahedron AB CD the

equation

ABCP-BCDP+ CDAP-DABP=ABCD
holds good. It still is true if P be without the tetrahedron

provided the signs of the volumes be taken into considera

tion. The equation may be put into a form more symmetri
cal and more easily remembered by transposing all the terms

to one number. Then

The proportion in theorem 2, page 40, does not hold true

if the signs of the tetrahedra be regarded. It should read

BCDG:CDGA:DGAB:GABC:ABCD
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If the point G- lies inside the tetrahedron a, J, c, d repre

sent quantities proportional to the masses which must be

located at the vertices A,B,C,D respectively if G is to be the

center of gravity. If G lies outside of the tetrahedron they may
still be regarded as masses some of which are negative or

perhaps better merely as four numbers whose ratios determine

the position of the point Gr. In this manner a set of "bary-

centric
"
coordinates is established for space.

The vector P drawn from an indeterminate origin to any

point of the plane AB C is (page 35)

aA + yB + zC

x + y + z

Comparing this with the expression

aA + &B + cC

a + b + c

it will be seen that the quantities x, y, z are in reality nothing

more nor less than the barycentric coordinates of the point P
with respect to the triangle ABO. In like manner from

equation

__#A + yB + 2C + wD
x + y + z + w

which expresses any vector P drawn from an indeterminate

origin in terms of four given vectors A, B, C, D drawn from

the same origin, it may be seen by comparison with

+ &B + c C + rfD=
a + b + c + d

that the four quantities x, y, 2, w are precisely the bary
centric coordinates of P, the terminus of P, with respect to

the tetrahedron A B CD. Thus the vector methods in which

the origin is undetermined and the methods of the "
Bary

centric Calculus
"
are practically co-extensive.

It was mentioned before and it may be well to repeat here
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that the origin may be left wholly out of consideration and

the vectors replaced by their termini. The vector equations

then become point equations

x A + y B 4- z

and

x + y + z

xA + yB + zC + wD
w.

At

x + y + z

This step brings in the points themselves as the objects of

analysis and leads still nearer to the "
Barycentrische Calcul

"

of Mobius and the "Ausdehnungslehre
"

of Grassmann.

The Use of Vectors to denote Areas

25.] Definition: An area lying in one plane MN and

bounded by a continuous curve PQR which nowhere cuts

itself is said to appear positive from the point when the

letters PQR follow each

other in the counterclockwise

or positive order; negative,

when they follow in the

negative or clockwise order

(Fig. 14).

It is evident that an area

can have no determined sign

per se, but only in reference

to that direction in which its

boundary is supposed to be traced and to some point out

side of its plane. For the area P R Q is negative relative to

PQR; and an area viewed from is negative relative to the

same area viewed from a point O f

upon the side of the plane

opposite to 0. A circle lying in the X F-plane and described

in the positive trigonometric order appears positive from every

point on that side of the plane on which the positive axis

lies, but negative from all points on the side upon which
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the negative ^-axis lies. For this reason the point of view

and the direction of description of the boundary must be kept

clearly in mind.

Another method of stating the definition is as follows : If

a person walking upon a plane traces out a closed curve, the

area enclosed is said to be positive if it lies upon his left-

hand side, negative if upon his right. It is clear that if two

persons be considered to trace out together the same curve by

walking upon opposite sides of the plane the area enclosed

will lie upon the right hand of one and the left hand of the

other. To one it will consequently appear positive ; to the

other, negative. That side of the plane upon which the area

seems positive is called the positive side ; the side upon
which it appears negative, the negative side. This idea is

familiar to students of electricity and magnetism. If an

electric current flow around a closed plane curve the lines of

magnetic force through the circuit pass from the negative to

the positive side of the plane. A positive magnetic pole

placed upon the positive side of the plane will be repelled by
the circuit.

A plane area may be looked upon as possessing more than

positive or negative magnitude. It may be considered to

possess direction, namely, the direction of the normal to the

positive side of the plane in which it lies. Hence a plane

area is a vector quantity. The following theorems concerning
areas when looked upon as vectors are important.

Theorem 1 : If a plane area be denoted by a vector whose

magnitude is the numerical value of that area and whose

direction is the normal upon the positive side of the plane,

then the orthogonal projection of that area upon a plane

will be represented by the component of that vector in the

direction normal to the plane of projection (Fig. 15).

Let the area A lie in the plane MN. Let it be projected

orthogonally upon the plane M N . LetMN&nd M*Nr
inter-
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sect in the line I and let the diedral angle between these

two planes be x. Consider first a rectangle PQJRS in MN
whose sides, PQ, RS and QR, SP are respectively parallel

and perpendicular to the line /. This will project into a

rectangle P Q R S 1 in M N . The sides P Q
f and JR S

will be equal to PQ and US; but the sides Q
1R and S P

will be equal to QR and SP multiplied by the cosine of #,

the angle between the planes. Consequently the rectangle

At

FIG. 15.

Hence rectangles, of which the sides are respectively

parallel and perpendicular to I, the line of intersection of the

two planes, project into rectangles whose sides are likewise

respectively parallel and perpendicular to I and whose area is

equal to the area of the original rectangles multiplied by the

cosine of the angle between the planes.

From this it follows that any area A is projected into an

area which is equal to the given area multiplied by the cosine

of the angle between the planes. For any area A may be di

vided up into a large number of small rectangles by drawing a

series of lines in MN parallel and perpendicular to the line I.
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Each of these rectangles when projected is multiplied by the

cosine of the angle between the planes and hence the total

area is also multiplied by the cosine of that angle. On the

other hand the component A of the vector A, which repre

sents the given area, in the direction normal to the plane

M fNf of projection is equal to the total vector A multiplied

by the cosine of the angle between its direction which is

the normal to the plane M^and the normal to M N r

. This

angle is x ; for the angle between the normals to two planes

is the same as the angle between the planes. The relation

between the magnitudes of A and A is therefore

A 1 = A cos x,

which proves the theorem.

26.] Definition : Two plane areas regarded as vectors are

said to be added when the vectors which represent them are

added.

A vector area is consequently the sum of its three com

ponents obtainable by orthogonal projection upon three

mutually perpendicular planes. Moreover in adding two

areas each may be resolved into its three components, the

corresponding components added as scalar quantities, and

these sums compounded as vectors into the resultant area.

A generalization of this statement to the case where the three

planes are not mutually orthogonal and where the projection

is oblique exists.

A surface made up of several plane areas may be repre

sented by the vector which is the sum of all the vectors

representing those areas. In case the surface be looked upon
as forming the boundary or a portion of the boundary of a

solid, those sides of the bounding planes which lie outside of

the body are conventionally taken to be positive. The vec

tors which represent the faces of solids are always directed

out from the solid, not into it

4
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Theorem 2 : The vector which represents a closed polyhedral

surface is zero.

This may be proved by means of certain considerations of

hydrostatics. Suppose the polyhedron drawn in a body of

fluid assumed to be free from all external forces, gravity in

cluded.1 The fluid is in equilibrium under its own internal

pressures. The portion of the fluid bounded by the closed

surface moves neither one way nor the other. Upon each face

of the surface the fluid exerts a definite force proportional

to the area of the face and normal to it. The resultant of all

these forces must be zero, as the fluid is in equilibrium. Hence

the sum of all the vector areas in the closed surface is zero.

The proof may be given in a purely geometric manner.

Consider the orthogonal projection of the closed surface upon

any plane. This consists of a double area. The part of the

surface farthest from the plane projects into positive area ;

the part nearest the plane, into negative area. Thus the

surface projects into a certain portion of the plane which is

covered twice, once with positive area and once with negative.

These cancel each other. Hence the total projection of a

closed surface upon a plane (if taken with regard to sign) is

zero. But by theorem 1 the projection of an area upon a

plane is equal to the component of the vector representing
that area in the direction perpendicular to that plane. Hence

the vector which represents a closed surface has no component

along the line perpendicular to the plane of projection. This,

however, was any plane whatsoever. Hence the vector is

zero.

The theorem has been proved for the case in which the

closed surface consists of planes. In case that surface be

1 Such a state of affairs is realized to all practical purposes in the case of a

polyhedron suspended in the atmosphere and consequently subjected to atmos

pheric pressure. The force of gravity acts but is counterbalanced by the tension

in the suspending string.
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curved it may be regarded as the limit of a polyhedral surface

whose number of faces increases without limit. Hence the

vector which represents any closed surface polyhedral or

curved is zero. If the surface be not closed but be curved it

may be represented by a vector just as if it were polyhedral.

That vector is the limit l
approached by the vector which

represents that polyhedral surface of which the curved surface

is the limit when the number of faces becomes indefinitely

great.

SUMMARY OF CHAPTER I

A vector is a quantity considered as possessing magnitude
and direction. Equal vectors possess the same magnitude
and the same direction. A vector is not altered by shifting it

parallel to itself. A null or zero vector is one whose mag
nitude is zero. To multiply a vector by a positive scalar

multiply its length by that scalar and leave its direction

unchanged. To multiply a vector by a negative scalar mul

tiply its length by that scalar and reverse its direction.

Vectors add according to the parallelogram law. To subtract

a vector reverse its direction and add. Addition, subtrac

tion, and multiplication of vectors by a scalar follow the same

laws as addition, subtraction, and multiplication in ordinary

algebra. A vector may be resolved into three components

parallel to any three non-coplanar vectors. This resolution

can be accomplished in only one way.

r = x* + yb + zc. (4)

The components of equal vectors, parallel to three given

non-coplanar vectors, are equal, and conversely if the com

ponents are equal the vectors are equal. The three unit

vectors i, j, k form a right-handed rectangular system. In

1 This limit exists and is unique. It is independent of the method in which

the polyhedral surface approaches the curved surface.
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terms of them any vector may be expressed by means of the

Cartesian coordinates #, y, z.

r = xi + yj+zk. (6)

Applications. The point which divides a line in a given

ratio m : n is given by the formula

(7)m + n

The necessary and sufficient condition that a vector equation

represent a relation independent of the origin is that the sum

of the scalar coefficients in the equation be zero. Between

any four vectors there exists an equation with scalar coeffi

cients. If the sum of the coefficients is zero the vectors are

termino-coplanar. If an equation the sum of whose scalar

coefficients is zero exists between three vectors they are

termino-collinear. The center of gravity of a number of

masses a, &, c situated at the termini of the vectors

A, B, C supposed to be drawn from a common origin is

given by the formula

A vector may be used to denote an area. If the area is

plane the magnitude of the vector is equal to the magnitude
of the area, and the direction of the vector is the direction of

the normal upon the positive side of the plane. The vector

representing a closed surface is zero.

EXERCISES ON CHAPTER I

1. Demonstrate the laws stated in Art. 12.

2. A triangle may be constructed whose sides are parallel
and equal to the medians of any given triangle.
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3. The six points in which the three diagonals of a com*

plete quadrangle
l meet the pairs of opposite sides lie three

by three upon four straight lines.

4. If two triangles are so situated in space that the three

points of intersection of corresponding sides lie on a line, then

the lines joining the corresponding vertices pass through a

common point and conversely.

5. Given a quadrilateral in space. Find the middle point

of the line which joins the middle points of the diagonals.

Find the middle point of the line which joins the middle

points of two opposite sides. Show that these two points are

the same and coincide with the center of gravity of a system
of equal masses placed at the vertices of the quadrilateral.

6. If two opposite sides of a quadrilateral in space be

divided proportionally and if two quadrilaterals be formed by

joining the two points of division, then the centers of gravity

of these two quadrilaterals lie on a line with the center of

gravity of the original quadrilateral. By the center of gravity

is meant the center of gravity of four equal masses placed at

the vertices. Can this theorem be generalized to the case

where the masses are not equal ?

7. The bisectors of the angles of a triangle meet in a

point.

8. If the edges of a hexahedron meet four by four in three

points, the four diagonals of the hexahedron meet in a point.

In the special case in which the hexahedron is a parallelepiped

the three points are at an infinite distance

9. Prove that the three straight lines through the middle

points of the sides of any face of a tetrahedron, each parallel

to the straight line connecting a fixed point P with the mid

dle point of the opposite edge of the tetrahedron, meet in a

1 A complete quadrangle consists of the six straight lines which may he passed

through four points no three of which are collinear. The diagonals are the lines

which join the points of intersection of pairs of sides
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point E and that this point is such that PE passes through

and is bisected by the center of gravity of the tetrahedron.

10. Show that without exception there exists one vector

equation with scalar coefficients between any four given

vectors A, B, C, D.

11. Discuss the conditions imposed upon three, four, or

five vectors if they satisfy two equations the sum of the co

efficients in each of which is zero.



CHAPTER II

DIRECT AND SKEW PRODUCTS OF VECTORS

Products of Two Vectors

27.] THE operations of addition, subtraction, and scalar

multiplication have been defined for vectors in the way

suggested by physics and have been employed in a few

applications. It now becomes necessary to introduce two

new combinations of vectors. These will be called products

because they obey the fundamental law of products ; i. e., the

distributive law which states that the product of A into the

sum of B and C is equal to the sum of the products of A into

B and A into C.

Definition : The direct product of two vectors A and B is

the scalar quantity obtained by multiplying the product of

the magnitudes of the vectors by the cosine of the angle be

tween them.

The direct product is denoted by writing the two vectors

with a dot between them as

A-B.

This is read A dot B and therefore may often be called the

dot product instead of the direct product. It is also called

the scalar product owing to the fact that its value is sca

lar. If A be the magnitude of A and B that of B, then by
definition

A-B = ^cos (A,B). (1)

Obviously the direct product follows the commutative law

A-B = B A. (2)
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If either vector be multiplied by a scalar the product is

multiplied by that scalar. That is

(x A) B = A (x B) = x (A B).

In case the two vectors A and B are collinear the angle be

tween them becomes zero or one hundred and eighty degrees

and its cosine is therefore equal to unity with the positive or

negative sign. Hence the scalar product of two parallel

vectors is numerically equal to the product of their lengths.

The sign of the product is positive when the directions of the

vectors are the same, negative when they are opposite. The

product of a vector by itself is therefore equal to the square

of its length
A.A=^4 2

. (3)

Consequently if the product of a vector by itself vanish the

vector is a null vector.

In case the two vectors A and B are perpendicular the

angle between them becomes plus or minus ninety degrees

and the cosine vanishes. Hence the product A B vanishes.

Conversely if the scalar product A B vanishes, then

A B cos (A, B) = 0.

Hence either A or B or cos (A, B) is zero, and either the

vectors are perpendicular or one of them is null. Thus the

condition for the perpendicularity of two vectors, neither of

which vanishes, is A B = 0.

28.] The scalar products of the three fundamental unit

vectors i, j, k are evidently

ii = jj = kk = l, (4)

i .
j
=

j
. k = k . i = 0.

If more generally a and b are any two unit vectors the

product
a b = cos (a, b).
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Thus the scalar product determines the cosine of the angle

between two vectors and is in a certain sense equivalent to

it. For this reason it might be better to give a purely

geometric definition of the product rather than one which

depends upon trigonometry. This is easily accomplished as

follows : If a and b are two unit vectors, a b is the length
of the projection of either upon the other. If more generally

A and B are any two vectors A B is the product of the length

of either by the length of projection of the other upon it.

From these definitions the facts that the product of a vector

by itself is the square of its length and the product of two

perpendicular vectors is zero follow immediately. The trigo

nometric definition can also readily be deduced.

The scalar product of two vectors will appear whenever the

cosine of the included angle is of importance. The following

examples may be cited. The projection of a vector B upon a

vector A is

AB AB
A = A a cos (A, B) = B cos (A, B) a, (5)A A

where a is a unit vector in the direction of A. If A is itself a

unit vector the formula reduces to

(A-B) A = cos (A,B) A.

If A be a constant force and B a displacement the work done

by the force A during the displacement is A B. If A repre

sent a plane area (Art. 25), and if B be a

vector inclined to that plane, the scalar prod
uct A B will be the volume of the cylinder

of which the area A is the base and of

which B is the directed slant height. For

the volume (Fig. 16) is equal to the base FlG
A multiplied by the altitude h. This is

the projection of B upon A or B cos (A, B). Hence

v = A h = A B cos (A, B) = A B.
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29.] The scalar or direct product follows the distributive

law of multiplication. That is

(A + B) .C = A-C + B.C. (6)

This may be proved by means of projections. Let C be equal

to its magnitude C multiplied by a unit vector c in its direc

tion. To show

(A + B) (<7c)
= A (0o) + B. (0o)

or (A + B) c = A c + B c.

A c is the projection of A upon c ; B c, that of B upon c ;

(A + B) c, that of A + B upon c. But the projection of the

sum A + B is equal to the sum of the projections. Hence

the relation (6) is proved. By an immediate generalization

(A + B + ...) (P + a+-") = A-P + A.Q+...
+ B.P + B.Q + ... <ey

The scalar product may be used just as the product in ordi

nary algebra. It has no peculiar difficulties.

If two vectors A and B are expressed in terms of the

three unit vectors i, j, k as

A = ^[
1
i + ^2 j + ^8 k,

and B = ^ i + JB
2 j + B k,

then A- B = (A l
i + A z j + A B k) . (^i + 2 j + ^k)

= A
l
B

l
i . i + A l 2

i j + A l B% i k

By means of (4) this reduces to

A-* = A
1 l + A2 E, + A B JB,. (7)

If in particular A and B are unit vectors, their components
A

l,A^,A3 and B
19 S29 SB are the direction cosines of the

lines A and B referred to X, Y, Z.
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A
l
= cos (A, JT), A<i

= cos (A, F), A
z
= cos (A, ^f),

^! = cos (B, JT), .#
2
= cos (B, T), 3

= cos (B, ).

Moreover A B is the cosine of the included angle. Hence

the equation becomes

cos (A, B) = cos (A, X) cos (B, X) + cos (A, T) cos (B, T)

+ cos (A,) cos (B,Z).

In case A and B are perpendicular this reduces to the well-

known relation

= cos (A, JT) cos (B, X) + cos (A, Y) cos (B, F)

+ cos (A,^) cos (B,)

between the direction cosines of the

line A and the line B.

30.] If A and B are two sides A
and OB of a triangle OAB, the third o

side AisG = -B-JL (Fig. 17).
PlG 17 *

C*C = (B-A). (B-A)=B-B
or (7 2 = A 2 + J5 2-2 A^cos(AB).

That is, the square of one side of a triangle is equal to the

sum of the squares of the other two sides diminished by twice

their product times the cosine of the angle between them.

Or, the square of one side of a triangle is equal to the sum of

the squares of the other two sides diminished by twice the

product of either of those sides by the projection of the other

upon it the generalized Pythagorean theorem.

If A and B are two sides of a parallelogram, C = A + B
and D = A B are the diagonals. Then

C.C = (A + B).(A + B)=A.A + 2A.B + B.B,

D.D=(A-B).(A-B)=A-A-2A.B + B.B,

C-C + D.D = 2(A-A + BB),
or a2 + 7) 2 = 2 (A*
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That is, the sum of the squares of the diagonals of a parallelo

gram is equal to twice the sum of the squares of two sides.

In like manner also

or C*-D 2 = 4A cos (A, B).

That is, the difference of the squares of the diagonals of a

parallelogram is equal to four times the product of one of the

sides by the projection of the other upon it.

If A is any vector expressed in terms of i, j, k as

A = A
l
i + A 2 j + AB k,

then A A = A* = A* + A* + A*. (8)

But if A be expressed in terms of any three non-coplanar unit

vectors a, b, c as

+ 2 J c bc + 2 c a e a

A2 = a? + 62 + c2 + 2 a b cos (a, b) + 2 b c cos (b, c)

+ 2 ca cos (c, a).

This formula is analogous to the one in Cartesian geometry
which gives the distance between two points referred to

oblique axes. If the points be xv yv zv and #
2 , yv z% the

distance squared is

D 2 = (* 2
- x^ + (y a

-
yi)

2 + (z 2
- zj*

+ 2 (a,
- xj (y a

-
2/0 cos (X, Y)

+ 2 (yt
-

ft) (,-*!> cos (F.S)

+ 2 (z 2 -24) (x 2
- xj cos (^,-T).

31.] Definition: The skew product of the vector A into

the vector B is the vector quantity C whose direction is the

normal upon that side of the plane of A and B on which
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rotation from A to B through an angle of less than one

hundred and eighty degrees appears positive or counter

clockwise ; and whose magnitude is obtained by multiplying

the product of the magnitudes of A and B by the sine of the

angle from A to B.

The direction of A x B may also be defined as that in

which an ordinary right-handed

screw advances as it turns so as c= AXB
to carry A toward B (Fig. 18).

The skew product is denoted by
a cross as the direct product was ^

by a dot. It is written FIG. 18.

C = A x B

and read A cross B. For this reason it is often called the cross

product. More frequently, however, it is called the vector prod

uct, owing to the fact that it is a vector quantity and in con

trast with the direct or scalar product whose value is scalar.

The vector product is by definition

C = A x B = ^J5sin (A,B)c, (9)

when A and B are the magnitudes of A and B respectively and

where c is a unit vector in the direction of C. In case A and

B are unit vectors the skew product A X B reduces to the

unit vector c multiplied by the sine of the angle from A to B.

Obviously also if either vector A or B is multiplied by a scalar

x their product is multiplied by that scalar.

A) X B = A X (zB) = xC.

If A and B are parallel the angle between them is either zero

or one hundred and eighty degrees. In either case the sine

vanishes and consequently the vector product A X B is a null

vector. And conyersely if A X B is zero

A B sin (A, B) = 0.
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Hence A or B or sin (A, B) is zero. Thus the condition for

parallelism of two vectors neither of which vanishes is A X B

= 0. As a corollary the vector product of any vector into

itself vanishes.

32.] The vector product of two vectors will appear wher

ever the sine of the included angle is of importance, just as

the scalar product did in the case of the cosine. The two prod

ucts are in a certain sense complementary. They have been

denoted by the two common signs of multiplication, the dot

and the cross. In vector analysis they occupy the place held

by the trigonometric functions of scalar analysis. They are

at the same time amenable to algebraic treatment, as will be

seen later. At present a few uses of the vector product may
be cited.

If A and B (Fig. 18) are the two adjacent sides of a parallel

ogram the vector product

C = A x B = A B sin (A, B) c

represents the area of that parallelogram in magnitude and

direction (Art. 25). This geometric representation of A X B
is of such common occurrence and importance that it might
well be taken as the definition of the product. From it the

trigonometric definition follows at once. The vector product

appears in mechanics in connection with couples. If A and

A are two forces forming a couple, the moment of the

couple is A X B provided only that B is a vector drawn from

any point of A to any point of A. The product makes its

appearance again in considering the velocities of the individ

ual particles of a body which is rotating with an angular ve

locity given in magnitude and direction by A. If R be the

radius vector drawn from any point of the axis of rotation A
the product A X & will give the velocity of the extremity of

B (Art. 51). This velocity is perpendicular alike to the axis

of rotation and to the radius vector B.
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33.] The vector products A X B and B x A are not the

same. They are in fact the negatives of each other. For if

rotation from A to B appear positive on one side of the plane

of A and B, rotation from B to A will appear positive on the

other. Hence A X B is the normal to the plane of A and B

upon that side opposite to the one upon which B x A is the

normal. The magnitudes of A X B and B X A are the same.

Hence
AxB = -BxA. (10)

The factors in a vector product can be interchanged if and only

if the sign of the product be reversed.

This is the first instance in which the laws of operation in

vector analysis differ essentially from those of scalar analy

sis. It may be that at first this change of sign which must

accompany the interchange of factors in a vector product will

give rise to some difficulty and confusion. Changes similar to

this are, however, very familiar. No one would think of inter

changing the order of x and y in the expression sin (x y)

without prefixing the negative sign to the result. Thus

sin (y x) = sin (x y),

although the sign is not required for the case of the cosine,

cos (y x) = cos ( x y).

Again if the cyclic order of the letters ABC in the area of a

triangle be changed, the area will be changed in sign (Art.

25).
AB C = -ACB.

In the same manner this reversal of sign, which occurs

when the order of the factors in a vector product is reversed,

will appear after a little practice and acquaintance just as

natural and convenient as it is necessary.

34.] The distributive law of multiplication holds in the

case of vector products just as in ordinary algebra except
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that the order of the factors must be carefully maintained

when expanding.

A very simple proof may be given by making use of the ideas

developed in Art. 26. Suppose that C

is not coplanar with A and B. Let A
and B be two sides of a triangle taken

in order. Then (A + B) will be the

third side (Fig. 19). Form the prism

of which this triangle is the base and

of which C is the slant height or edge.

The areas of the lateral faces of this

prism are

A x C, B x C, (A -f B) x C.

The areas of the bases are

5 (A x B) and - -
(A x B).

But the sum of all the faces of the prism is zero; for the

prism is a closed surface. Hence

4

FIG. 19.

AxC + BxC-(A + B)xC = 0,

or A X C + B X C = (A + B) X C. (11)

The relation is therefore proved in case C is non-coplanar
with A and B. Should C be coplanar with A and B, choose D,

any vector out of that plane. Then C + D also will lie out of

that plane. Hence by (11)

A X (C + D) + B X (C + D) = (A + B) x (C + D).

Since the three vectors in each set A, C, D, and B, C, D, and
A + B, C, D will be non-coplanar if D is properly chosen, the

products may be expanded.
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AxC + AxD-fBxC + BxD
= (A + B) x C + (A + B) x D.

But by (11) AxD + BxD = (A + B)xD.
Hence AxC + BxC = (A + B)xC.

This completes the demonstration. The distributive law holds

for a vector product. The generalization is immediate.

(A + B+---)x(P + a + ---)
= AxP + Axa + ---

(11)

+ B x P + B x <J +

35.] The vector products of the three unit vectors i, j, k are

easily seen by means of Art. 17 to be

ixi = jxj = kxk = 0,

ixj=-j xi = k, (12)

jxk = k x j
=

i,

kxi = ixk=j.
The skew product of two equal

l vectors of the system i, j, k

is zero. The product of two unequal vectors is the third taken

with the positive sign if the vectors follow in the cyclic order

i j k but with the negative sign if they do not.

If two vectors A and B are expressed in terms of i, j, k,

their vector product may be found by expanding according

to the distributive law and substituting.

A x B = (A l
i + -4

2 j + ^ 3 k) x (^i + 2 j + 3*)
= A

l l
ixi + A l

B
2 ixj + A l BzixTt

+ A2 l j x i + AI 2 j x j + AZ BB j x k,

+ A z
S

1
k x i + A B BZ k x j + A z

B
z k x k.

Hence A x B = (A^B^
- A

B 2)
i + (AZ

B
1 -A,BB )j

4- (A, z
- A

2 BJ k.

1 This follows also from the fact that the sign is changed when the order of

factors is reversed. Hence j X j
=

j Xj=0.
5
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This may be written in the form of a determinant as

Ax B =

The formulae for the sine and cosine of the sum or dif

ference of two angles follow immediately from the dot and

cross products. Let a and b be two unit vectors lying in the

i j-plane. If x be the angle that a makes with i, and y the

angle b makes with i, then

a =

Hence

If

Hence

Hence

Hence

a b :

a b :

cos (y x) :

V
a.V:

cos (y + x) :

a x b :

a x b =

sin (y x) -

axb =

ax b =

sin (y + x) -

cos x i + sin x j,

cos y i -f sin y j,

cos (a, b) = cos (y x),

cos x cos y + sin x sin y.

cos y cos x + sin y sin x.

cos y i sin y j,

cos (a, b )
= cos (y + x).

cos y cos x sin y sin x.

k sin (a, b) = k sin (y x),

k (sin y cos x sin x cos y).

sin y cos x sin x cos y.

k sin (a, b ) = k sin (y + x)9

k (sin y cos x + sin x cos y).

sin y cos x + sin # cos y.

If /, m, 7i and Z
,
w , TI are the direction cosines of two

unit vectors a and a referred to JT, F, , then

a = li + m j + 7i k,

m j

a a = cos (a, a ) = IV + m m r + n nf

,

as has already been shown in Art. 29. The familiar formula

for the square of the sine of the angle between a and a may
be found.
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a x a = sin (a, a ) e = (mn f m ri) i + (n V n?

I) j

+ (Jm -f m) k,

where e is a unit vector perpendicular to a and a .

(a x a ) (a x a ) = sin 2
(a, a f

) e e = sin 2
(a, a ).

sin 2
(a, a ) = (mn m r

n)*+ (nl n f

/)
2 +(lm I m)*.

This leads to an easy way of establishing the useful identity

= (72 + w 2 + 7i
2
) (V* + m 2 + n *) (ll + mm + n n )

2
.

Products of More than Two Vectors

36.] Up to this point nothing has been said concerning

products in which the number of vectors is greater than

two. If three vectors are combined into a product the result

is called a triple product. Next to the simple products

A-B and AxB the triple products are the most important.

All higher products may be reduced to them.

The simplest triple product is formed by multiplying the

scalar product of two vectors A and B into a third C as

(A-B) C.

This in reality does not differ essentially from scalar multi

plication (Art. 6). The scalar in this case merely happens to

be the scalar product of the two vectors A and B. Moreover

inasmuch as two vectors cannot stand side by side in the

form of a product as BC without either a dot or a cross to

unite them, the parenthesis in (AB) C is superfluous. The

expression ^ n

cannot be interpreted in any other way
* than as the product

of the vector C by the scalar AB.

i Later (Chap. V.) the product BC, where no sign either dot or cross occurs,

will be defined. But it will be seen there that (A.B) C and A-(B C) are identical

and consequently no ambiguity can arise from the omission of the parenthesis.
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37.] The second triple product is the scalar product of

two vectors, of which one is itself a vector product, as

A-(BxC) or (AxB>C.

This sort of product has a scalar value and consequently is

often called the scalar triple prod

uct. Its properties are perhaps most

easily deduced from its commonest

geometrical interpretation. Let A, B,

and C be any three vectors drawn

from the same origin (Fig. 20).

Then BxC is the area of the par

allelogram of which B and C are two adjacent sides. The

scalar
. * (14)

will therefore be the volume of the parallelepiped of which

BxC is the base and A the slant height or edge. See Art. 28.

This volume v is positive if A and BxC lie upon the same

side of the B C-plane ; but negative if they lie on opposite

sides. In other words if A, B, C form a right-handed or

positive system of three vectors the scalar A*(BxC) is posi

tive; but if they form a left-handed or negative system, it

is negative.

In case A, B, and C are coplanar this volume will be

neither positive nor negative but zero. And conversely if

the volume is zero^the three edges A, B, C of the parallelo-

piped must lie in one plane. Hence the necessary and suffi

cient condition for the coplanarity of three vectors A, B, C none

of which vanishes is A-(BxC) = 0. As a corollary the scalar

triple product of three vectors of which two are equal or

collinear must vanish ; for any two vectors are coplanar.

The two products A(BxC) and (AxB)-C are equal to the

same volume v of the parallelepiped whose concurrent edges
are A, B, C. The sign of the volume is the same in both

cases. Hence
(AxB) .c = A.(BxC) = ,. (14)



DIRECT AND SKEW PRODUCTS OF VECTORS 69

This equality may be stated as a rule of operation. The dot

and the cross in a scalar triple product may be interchanged

without altering the value of the product.

It may also be seen that the vectors A, B, C may be per
muted cyclicly without altering the product

A-(BxC) = B-(CxA) = C-(AxB). (15)

For each of the expressions gives the volume of the same

parallelepiped and that volume will have in each case the

same sign, because if A is upon the positive side of the B C-

plane, B will be on the positive side of the C A-plane and C

upon the positive side of the A B-plane. The triple product

may therefore have any one of six equivalent forms

A<BxC) = B-(CxA) =: C.(AxB) (35)

= (AxB)-C = (BxC)-A = (CxA)-B

If however the cyclic order of the letters is changed the

product will change sign.

A-(BxC) = - A<CxBV (16)

This may be seen from the figure or from the fact that

BxC = CxB.

Hence : A scalar triple product is not altered by interchanging

the dot or the cross or by permuting cyclicly the order of the

vectors, but it is reversed in sign if the cyclic order be changed.

38.] A word is necessary upon the subject of parentheses

in this triple product. Can they be omitted without am

biguity ? They can. The expression

A-BxC

can have only the one interpretation

A<BxC).

For the expression (A-B)xC is meaningless. It is impos
sible to form the skew product of a scalar AB and a vector
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C. Hence as there is only one way in which ABxC may
be interpreted, no confusion can arise from omitting the

parentheses. Furthermore owing to the fact that there are

six scalar triple products of A, B, and C which have the same

value and are consequently generally not worth distinguish

ing the one from another, it is often convenient to use the

symbol
[ABC]

to denote any one of the six equal products.

[A B C] = A.BxC = B*CxA = C AxB
= AxB.C = BxC-A = CxA-B

then [A B C] = - [A B]. (16)

The scalar triple products of the three unit vectors i, j, k
all vanish except the two which contain the three different

vectors.

[ijk] = _[ikj] = l. (17)

Hence if three vectors A, B, C be expressed in terms of i, j, k
as

B = ^ i + A, j + 8 k,

C = C
1 i+C2 j + C3 k,

then [ABC] =A 1 Z C3 + ,
C

2 A.+

This may be obtained by actually performing the multiplica
tions which are indicated in the triple product. The result

may be written in the form of a determinant.1

[A B C] =
-4i\

B

1 This is the formula given in solid analytic geometry for the volume of a
tetrahedron one of whose vertices is at the origin. For a more general formula
see exercises.
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If more generally A, B, C are expressed in terms of any three

non-coplanar vectors a, b, c which are not necessarily unit

vectors,
A = a

x
a + a

2
b + 8 c

B = &! a + &2 b + J 8 c

C = c
l
a c 2 b

where a^ #
2, #3," ftp &2 ,

stants, then

[A B 0] = (a l
&2 C

B +

are certain con

[a b c].

or [A B C] = [a be] (19)

39.] The third type of triple product is the vector product

of two vectors of which one is itself a vector product. Such

are

Ax(BxC) and (AxB)xC.

The vector Ax(BxC) is perpendicular to A and to (BxC).

But (BxC) is perpendicular to the plane of B and C. Hence

Ax (BxC), being perpendicular to (BxC) must lie in the

plane of B and C and thus take the form

Ax(BxC) = x B + y C,

where x and y are two scalars. In like manner also the

vector (AxB)xC, being perpendicular to (AxB) must lie

in the plane of A and B. Hence it will be of the form

(AxB)xC = ra.A + n B

where m and n are two scalars. From this it is evident that

in general

(AxB)xC is not equal to Ax(BxC).

The parentheses therefore cannot be removed or inter

changed. It is essential to know which cross product is
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formed first and which second. This product is termed the

vector triple product in contrast to the scalar triple product.

The vector triple product may be used to express that com

ponent of a vector B which is perpendicular to a given vector

A. This geometric use of the product is valuable not only in

itself but for the light it sheds

AXB
AXB*

B
upon the properties of the product.

Let A (Fig. 21) be a given vector

and B another vector whose com

ponents parallel and perpendicular

to A are to be found. Let the

components of B parallel and per-

A X (AXB) pendicular to A be B and B" re-

2i spectively. Draw A and B from a

common origin. The product AxB
is perpendicular to the plane of A and B. The product

Ax (AxB) lies in the plane of A and B. It is furthermore

perpendicular to A. Hence it is collinear with B". An
examination of the figure will show that the direction of

Ax (AxB) is opposite to that of B". Hence

Ax(AxB) = cB",

where c is some scalar constant.

Now Ax (AxB) = - A* B sin (A, B) V
but - c B"-^= - c B sin (A, B) b",

if b" be a unit vector in the direction of B".

Hence c A2 A*A.

Hence B" = - Ax(AxB)
.

(20)

The component of B perpendicular to A has been expressed
in terms of the vector triple product of A, A, and B. The

component B parallel to A was found in Art 28 to be
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B =?A (21)

B = B + B = ?A-^>. (22)AA AA

40.] The vector triple product Ax (BxC) may be expressed

as the sum of two terms as

Ax(BxC)=A-C B-A-B C

In the first place consider the product when two of the

vectors are the same. By equation (22)

A-A B = A-B A - Ax(AxB) (22)
or Ax(AxB) = A*B A - A-A B (23)

This proves the formula in case two vectors are the same.

To prove it in general express A in terms of the three

non-coplanar vectors B, C, and BxC.

A = bE + cC + a (BxC), (I)

where #, &, c are scalar constants. Then

Ax(BxC) = SBx(BxC) + cCx(BxC) (II)

+ a (BxC)x(BxC).

The vector product of any vector by itself is zero. Hence

(BxC)x(BxC) =

Ax(BxC) = 6Bx(BxC) + c Cx(BxC). (II)

By (23) Bx(BxC) = B-C B - B-B C

Cx(BxC) = - Cx(CxB) = - C-B C + C-C B.

Hence Ax(BxC) = [(&B-C + cC-C)B- (6B-B + cCB)C]. (II)"
But from (I) A-B = JBB + cC-B + a (BxC>B
and A-C = b B-C + c C*C + a (BxC)-O.

By Art. 37 (BxC)-B = and (BxC)-C = 0.

Hence A-B = JB-B + cC-B,

A-C = 5B-C + cC-C.
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Substituting these values in (II)",

Ax(BxC) = A.C B - A.B C. (24)

The relation is therefore proved for any three vectors A, B, C.

Another method of giving the demonstration is as follows.

It was shown that the vector triple product Ax(BxC) was

of the form

Ax(BxC) = #B + yC.

Since Ax(AxC) is perpendicular to A, the direct product of

it by A is zero. Hence

A-[Ax(BxC)] = a;A*B + yAC =
and x : y = A*C : AB.

Hence Ax(BxC) = n (A-0 B - A-B C),

where n is a scalar constant. It remains to show n = 1.

Multiply by B.

Ax(BxC>B = n (A-C B.B-A-B C-B).

The scalar triple product allows an interchange of dot and

cross. Hence

Ax(BxC>B = A<BxC)xB = - A-[Bx(BxC)],

if the order of the factors (BxC) and B be inverted.

-A-[Bx(BxC)] = -A-[B.C B-B.BC]
= B-C AB + B-B AC.

Hence n = 1 and Ax(BxC) = A.C B A-B C. (24)

From the three letters A, B, C by different arrangements,
four allied products in each of which B and C are included in

parentheses may be formed. These are

Ax(BxC), Ax(CxB), (CxB)xA, (BxC)xA.

As a vector product changes its sign whenever the order of

two factors is interchanged, the above products evidently

satisfy the equations

Ax (BxC) = - Ax(CxB) = (CxB)xA = - (BxC)xA.
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The expansion for a vector triple product in which the

parenthesis comes first may therefore be obtained directly

from that already found when the parenthesis comes last.

(AxB)xC = - Cx(AxB) = - C-B A + CA B.

The formulae then become

Ax(BxC) = A-C B - A.B C (24)

and (AxB)xC = A*C B - C-B A. (24)

These reduction formulae are of such constant occurrence and

great importance that they should be committed, to memory.
Their content may be stated in the following rule. To expand
a vector triple product first multiply the exterior factor into the

remoter term in the parenthesis to form a scalar coefficient for

the nearer one, then multiply the exterior factor into the nearer

term in the parenthesis to form a scalar coefficient for the

remoter one, and subtract this result from the first.

41.] As far as the practical applications of vector analysis

are concerned, one can generally get along without any
formulae more complicated than that for the vector triple

product. But it is frequently more convenient to have at

hand other reduction formulae of which all may be derived

simply by making use of the expansion for the triple product

Ax(BxC) and of the rules of operation with the triple pro
duct ABxC.
To reduce a scalar product of two vectors each of which

is itself a vector product of two vectors, as

(AxB>(CxD).

Let this be regarded as a scalar triple product of the three

vectors A, B, and CxD thus

AxB-(CxD).

Interchange the dot and the cross.
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AxB.(CxD) = A-Bx(CxD)

Bx(CxD) = B-D C - B-C D.

Hence (AxB>(CxD) = A-C B-D - A-D B.C. (25)

This may be written in determinantal form.

(25)

If A and D be called the extremes ; B and C the means ; A
and C the antecedents: B and D the consequents in this

product according to the familiar usage in proportions, then

the expansion may be stated in words. The scalar product

of two vector products is equal to the (scalar) product of the

antecedents times the (scalar) product of the consequents

diminished by the (scalar) product of the means times the

(scalar) product of the extremes.

To reduce a vector product of two vectors each of which

is itself a vector product of two vectors, as

(AxB)x(CxD).

Let CxD = E. The product becomes

(AxB)xE = A-E B - B-E A.

Substituting the value of E back into the equation :

(AxB)x(CxD) = (A-CxD)B - (B-CxD) A. (26)

Let F = AxB. The product then becomes

Fx(CxD) = FD C F-C D

(AxB)x(CxD) = (AxB-D)C - (AxB-C) D. (26)

By equating these two equivalent results and transposing
all the terms to one side of the equation,

[B C D] A - [C D A] B + [D A B] C - [A B C] D - 0. (27)

This is an equation with scalar coefficients between the four

vectors A, B, C, D. There is in general only one such equa-
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tion, because any one of the vectors can be expressed in only

one way in terms of the other three : thus the scalar coeffi

cients of that equation which exists between four vectors are

found to be nothing but the four scalar triple products of

those vectors taken three at a time. The equation may also

be written in the form

[A B C] D = [B C D] A + [C A D] B + [A B D] C. (27)

More examples of reduction formulae, of which some are

important, are given among the exercises at the end of the

chapter. In view of these it becomes fairly obvious that

the combination of any number of vectors connected in

any legitimate way by dots and crosses or the product of any
number of such combinations can be ultimately reduced to

a sum of terms each of which contains only one cross at most.

The proof of this theorem depends solely upon analyzing the

possible combinations of vectors and showing that they all

fall under the reduction formulae in such a way that the

crosses may be removed two at a time until not more than

one remains.
*
42.] The formulae developed in the foregoing article have

interesting geometric interpretations. They also afford a

simple means of deducing the formulae of Spherical Trigo

nometry. These do not occur in the vector analysis proper.

Their place is taken by the two quadruple products,

(AxB>(CxD) = A-C B-D - B-C A-D (25)

and (AxB)x(CxD) = [ACD] B - [BCD] A

= [ABD] C - [ABC] D, (26)

which are now to be interpreted.

Let a unit sphere (Fig. 22) be given. Let the vectors

A, B, C, D be unit vectors drawn from a common origin, the

centre of the sphere, and terminating in the surface of the

sphere at the points A,B, (7, D. The great circular arcs
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FIG. 22.

AB, A C) etc., give the angles between the vectors A and B,

A and C, etc. The points A, B, C, D determine a quadrilateral

upon the sphere. A C and BD are one

pair of opposite sides ; AD and B C> the

other. A B and CD are the diagonals.

(AxB).(CxD) = A-C B-D - A-D B-C

AxB = sin (A, B), CxD = sin (C, D).

The angle between AxB and CxD is the

angle between the normals to the AB-

and CD-planes. This is the same as

the angle between the planes themselves. Let it be denoted

by x. Then

(AxB).(CxD) = sin (A,B) sin (C,D) cos a:.

The angles (A, B), (C, D) may be replaced by the great

circular arcs AB, CD which measure them. Then

(AxB).(CxD) = sin A B sin CD cos#,

A-C B-D- A.D B*C = cos AC cosBD - cos AD cos BC.

Hence

sin A B sin CD cos x = cos A C cos B D cos AD cos B C.

In words : The product of the cosines of two opposite sides

of a spherical quadrilateral less the product of the cosines of

the other two opposite sides is equal to the product of the

sines of the diagonals multiplied by the

cosine of the angle between them. This

theorem is credited to Gauss.

Let A, B, C (Fig. 23) be a spherical tri

angle, the sides of which are arcs of great

circles. Let the sides be denoted by a, 6, c

respectively. Let A, B, C be the unit vectors

drawn from the center of the sphere to the points -A, B, C.

Furthermore let pa, pb, pe be the great circular arcs dropped

FIG. 23.
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perpendicularly from the vertices -4, J9, C to the sides a, 6, .

Interpret the formula

(AxB)-(CxA) = A-C B-A - B.C A-A.

(AxB) = sin (A, B) = sin c, (CxA) = sin (C, A) = sin 6.

Then (AxB) (CxA) = sin c sin b cos #,

where x is the angle between AxB and CxA. This

angle is equal to the angle between the plane of A, B and the

plane of C, A. It is, however, not the interior angle A which

is one of the angles of the triangle : but it is the exterior

angle 180 A, as an examination of the figure will show.

Hence

(AxB). (CxA) = sin c sin b cos (180 A)
= sin c sin 6 cos A

AC BA BC A-A = cos & cos c cos a 1.

By equating the results and transposing,

cos a = cos 6 cos c sin 6 sin c cos A
cos 6 = cos c cos a sin c sin a cos B
cos c = cos a cos 6 sin a sin 6 cos C.

The last two may be obtained by cyclic permutation of the

letters or from the identities

(BxC).(AxB) = B-A C B - C-A,

(CxAHBxC) = C-B A.C - B-C.

Next interpret the identity (AxB)x(CxD) in the special

cases in which one of the vectors is repeated.

(AxB)x(AxC) = [A B C] A.

Let the three vectors a, b, c be unit vectors in the direction of

BxC, CxA, AxB respectively. Then

AxB = c sin c, AxC = b sin 6

(AxB)x(AxC) = cxb sin c sin & = A sin c sin 6 sin A
[A B C] = (AxB)-C = cC sin c = cos (90 pc) sin c

[ABC] A = sin c sin pc A.
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By equating the results and cancelling the common factor,

sin^ c
= sin b sin A

sin^? a = sin c sin B
sin p b

= sin a sin C.

The last two may be obtained by cyclic permutation of the

letters. The formulae give the sines of the altitudes of the

triangle in terms of the sines of the angle and sides. Again
write

(AxB)x(AxC) = [ABC]A
(BxC)x(BxA) = [BCA]B
(CxA)x(CxB) = [CAB]C.

Hence sin c sin b sin A = [A B C]

sin a sin c sin B = [B C A]

sin b sin a sin C = [C A B].

The expressions [ABC], [BCA], [CAB] are equal. Equate
the results in pairs and the formulae

sin b sin A = sin a sin B
sin c sin B = sin b sin C
sin a sin C = sin c sin A

are obtained. These may be written in a single line.

sin A sin B sin C
sin a sin b sin c

The formulae of Plane Trigonometry are even more easy to

obtain. If A B C be a triangle, the sum of the sides taken
as vectors is zero for the triangle is a closed polygon.
From this equation

a + b-f c =

almost all the elementary formulae follow immediately. It

is to be noticed that the angles from a to b, from b to c, from
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o to a are not the interior angles A, B, (7, but the exterior

angles 180 -A, 180 - B, 180 - C.

a = b + c

aa = (b + c)*(b + c)
= b-b + c-c + 2 bc.

If a, J, c be the length of the sides a, b, c, this becomes

c
2 = a 2 + 6 2 - 2 a 6 cos C.

The last two are obtained in a manner similar to the first

one or by cyclic permutation of the letters.

The area of the triangle is

^axb = ^bxc = 2
cxa =

2
a b sin C =

%
b c sin A =

^
c a sin B.

If each of the last three equalities be divided by the product

a b c, the fundamental relation

sin A sin B sin

is obtained. Another formula for the area may be found from

the product
(bxc)(bxc) = (cxa)-(axb)

2 Area (6 c sin A} = (c a sin B) (a b sin (7)

a 2 sin -Z?sin C
2 Area =

sin A

Reciprocal Systems of Three Vectors. Solution of Equations

43.] The problem of expressing any vector r in terms of

three non-coplanar vectors a, b, c may be solved as follows.

Let
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where a, J, c are three scalar constants to be determined

Multiply by b x c.

r.bxc = a abxc + 6 bbxc + cc-bxo

or [rbc] = a [a be].

In like manner by multiplying the equation by c x a and

. a X b the coefficients b and c may be found.

[r c a]
= I [b c a]

[r a b] = c [c a b]

Hence r = a+ b + , (28)
[be a] [c a b]

The denominators are all equal. Hence this gives the

equation

[a b c] r [b c r] a + [c r a] b - [r a b] c =

which must exist between the four vectors r, a, b, c.

The equation may also be written

rb x c ro x a, ra x b
r = -

r .
- a + r v .. b + e

[abe] [abc] [a be]

bxc cxa, axb
or r = r

r
_ a + r r

b + r o.

[abc] [abc] [abc]

The three vectors which appear here multiplied by !, namely

bxc cxa axb_ * _-

> _
[a be] [a b c] [a b c]

are very important. They are perpendicular respectively to

the planes of b and c, c and a, a and b. They occur over and

over again in a large number of important relations. For

this reason they merit a distinctive name and notation.

Definition : The system of three vectors

b x c
^
cxa axb

[abc] [abc] [abc]
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which are found by dividing the three vector products bxc,
c x a, a x b of three non-coplanar vectors a, b, c by the scalar

product [abc] is called the reciprocal system to a, b, c.

The word non-coplanar is important. If a, b, c were co

planar the scalar triple product [a b c] would vanish and

consequently the fractions

bxc cxa axb
j j ________

[a be] [a b c] [a b c]

would all become meaningless. Three coplanar vectors have

no reciprocal system. This must be carefully remembered.

Hereafter when the term reciprocal system is used, it will be

understood that the three vectors a, b, c are not coplanar.

The system of three vectors reciprocal to system a, b, c

will be denoted by primes as a
,
b , c ,

,_bxc ? h , _ c x a
,

, __
a x b (29)

""[abc] [abc] ~[ac]
The expression for r reduces then to the very simple form

r = r-a a + r-b b + r.c c. (30)

The vector r may be expressed in terms of the reciprocal

system a
, b , c instead of in terms of a, b, c. In the first

place it is necessary to note that if a, b, c are non-coplanar,
a , b , c which are the normals to the planes of b and c,

c and a, a and b must also be non-coplanar. Hence r may
be expressed in terms of them by means of proper scalar

coefficients #, y, z.

r x a + ?/b + z c

Multiply successively by -a, -b, -c. This gives

[a b c] r-a = x [b c a], x = r-a

[abc]r-b = y [cab], y = r-b

[a b c] r-c = z [a b c], z = r-c

Hence r = r-a a + r-b b + r-c c . (31)
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44.] If a , V, c be the system reciprocal to a, b, c the

scalar product of any vector of the reciprocal system into the

corresponding vector of the given system is unity ; but

the product of two non-corresponding vectors is zero. That is

a .a = bM>=:c .c = l (32)

a .b = a .c = b -a = b *c = c -a = c -b = 0.

This may be seen most easily by expressing a , V, c in

terms of themselves according to the formula (31)

r = raa + r*bb + rcc .

Hence a = a -aa + a b V + a cc

b = b .aa + b -bb +bW
c = c aa + c -bb + c .cc .

Since a , b , c are non-coplanar the corresponding coeffi

cients on the two sides of each of these three equations must

be equal. Hence from the first

1 = a *a = a -b = a c.

From the second = b a l=b b = b e.

From the third = c a = c b l = c o.

This proves the relations. They may also be proved

directly from the definitions of a , b , c .

bxc bxca [be a]
a a = a = = = 1

[abc] [abc] [abc]

bxc bxc-b
a . b = b = = =0

[abc] [abc] [abc]
and so forth.

Conversely if two sets of three vectors each, say A, B, C,

and a, b, c, satisfy the relations

Aa = Bb = Cc = 1

A-b =Ac = Ba = B-c = Ca = Cb =
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then the set A, B, C is the system reciprocal to a, b, c.

By reasoning similar to that before

A = A-a a + Ab b + A-c c

B = B-a a + B-b b + B-c c

C = Caa + C-bb + C-c c .

Substituting in these equations the given relations the re

sult is

A = a , B = b , C = c .

Hence

Theorem : The necessary and sufficient conditions that the

set of vectors a , b , c be the reciprocals of a, b, c is that

they satisfy the equations

a .a = b .b = c .c = l (32)

a -b = a -c = b a = b .c = c -a = c .b = 0.

As these equations are perfectly symmetrical with respect

to a , b , c and a, b, c it is evident that the system a, b, c may
be looked upon as the reciprocal of the system a , b , c just

as the system a
,
b

,
c may be regarded as the reciprocal of

a, b, c. That is to say,

Theorem: If a
,
b , c be the reciprocal system of a, b, c,

then a, b, c will be the reciprocal system of a , V, c .

V x c c x a a x b (29V- b=- -
-

. v /

[a b e ] [a b c
] [a b c ]

These relations may be demonstrated directly from the

definitions of a , b , c . The demonstration is straightfor

ward, but rather long and tedious as it depends on compli
cated reduction formulae. The proof given above is as short

as could be desired. The relations between a , b ,c and

a, b, c are symmetrical and hence if a , b , c is the reciprocal

system of a, b, c, then a, b, c must be the reciprocal system of
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45.] Theorem : If a , V, c and a, b, c be reciprocal systems

the scalar triple products [a b c ] and [a b c] are numerical

reciprocals. That is

t. b .

]=[i

[a bV] [abc]=l
xc cxa axb"|

[a"be] [abc] [abc] J

[bxc cxa axb].

(33)

But

Hence

Hence

~[abc]
3

[bxc cxa axb] = (bxc)x(cxa>(axb).

(bxc) x (cxa) = [abc]c.

[bxc cxa axb] = [abc] c-axb = [abc]
2

.

1 1

[a bV] =
[abc]

:
[abc]

2 =
[abc]

(33)

By means of this relation between [a b c ] and [a b c] it

is possible to prove an important reduction formula,

(P.axE)(ABxC) =
P-A P.B p.c

Q.A Q.B a-c

B*A *B *C

(34)

which replaces the two scalar triple products by a sum of

nine terms each of which is the product of three direct pro
ducts. Thus the two crosses which occur in the two scalar

products are removed. To give the proof let P, ft, B be

expressed as

P = P-A A + P.B B + P.C C

Then

But

B = B-A A + B.B B + BC C .

P.A P.B P.C

[POB] = a-A Q.B a-c

R-A R.B R.C

1

[ABC]

[A B C
].

[A B C J
=
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Hence [PQE] [ABC] =
P.A P-B P-C

Q.A a-B Q.C

R.A R.B B*C

The system of three unit vectors i, j, k is its own reciprocal

system.

jxki kxi ,, i x j

J k==k- (35)

For this reason the primes i , j , k are not needed to denote

a system of vectors reciprocal to i, j, k. The primes will

therefore be used in the future to denote another set of rect

angular axes i, j, k , just as X* , F , Z* are used to denote a

set of axes different from X, F, Z.

The only systems ofthree vectors which are their own reciprocals

are the right-handed and left-handed systems of three unit

vectors. That is the system i, j, k and the system i, j, k.

Let A, B, C be a set of vectors which is its own reciprocal.

Then by (32)
AA = B-B = CNC = 1.

Hence the vectors are all unit vectors.

A-B = A-C = 0.

Hence A is perpendicular to B and C.

B-A = B-C = 0.

Hence B is perpendicular to A and C.

C-A =C.B = O.

Hence C is perpendicular to A and B.

Hence A, B, C must be a system like i, j, k or like i, j, k.

*
46.] A scalar equation of the first degree in a vector r is

an equation in each term of which r occurs not more than

once. The value of each term must be scalar. As an exam

ple of such an equation the following may be given.

a a-bxr + 6(oxd)(exr) + c fr + d = 0,
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where a, b, c, d, e, f are known vectors ; and a, &, c, d, known

scalars. Obviously any scalar equation of the first degree in

an unknown vector r may be reduced to the form

r-A = a

where A is a known vector ; and a, a known scalar. To ac

complish this result in the case of the given equation proceed

as follows.

a axbor + "b (cxd)xe-r + c fr + d =

{a axb + b (cxd)xe + c f}r = d.

In more complicated forms it may be necessary to make use

of various reduction formulae before the equation can be made

to take the desired form,
]>A = a.

As a vector has three degrees of freedom it is clear that one

scalar equation is insufficient to determine a vector. Three

scalar equations are necessary.

The geometric interpretation of the equa
tion

r.A => a (36)

is interesting. Let r be a variable vector

(Fig. 24) drawn from a fixed origin. Let

A be a fixed vector drawn from the same

origin. The equation then becomes

r A cos (r,A) = a,

a
or T cos (r,A) = ,

if r be the magnitude of r ; and A that of A. The expression

r cos (r, A)

is the projection of r upon A. The equation therefore states

that the projection of r upon a certain fixed vector A must
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always be constant and equal to a/A. Consequently the ter

minus of r must trace out a plane perpendicular to the vector

A at a distance equal to a/A from the origin. The projec

tion upon A of any radius vector drawn from the origin to a

point of this plane is constant and equal to a/A. This gives

the following theorem.

Theorem : A scalar equation in an unknown vector may be

regarded as the equation of a plane, which is the locus of the

terminus of the unknown vector if its origin be fixed.

It is easy to see why three scalar equations in an unknown

vector determine the vector completely. Each equation de

termines a plane in which the terminus of r must lie. The

three planes intersect in one common point. Hence one vec

tor r is determined. The analytic solution of three scalar

equations is extremely easy. If the equations are

rA = a

r-B = b (37)

r-C = c9

it is only necessary to call to mind the formula

r = r.A A + r-BB + r-C C .

Hence r = a A + 6 B + c C . (38)

The solution is therefore accomplished. It is expressed in

terms A , B , C which is the reciprocal system to A, B, C. One

caution must however be observed. The vectors A, B, C will

have no reciprocal system if they are coplanar. Hence the

solution will fail. In this case, however, the three planes de

termined by the three equations will be parallel to a line.

They will therefore either not intersect (as in the case of the

lateral faces of a triangular prism) or they will intersect in a

common line. Hence there will be either no solution for r or

there will be an infinite number.
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From four scalar equations

r-A = a

r.B = 6 (39)

rC = c

rD =d

the vector r may be entirely eliminated. To accomplish this

solve three of the equations and substitute the value in the

fourth.

r = aA + 6B + cC

a A D + &B .D + cC -D = d

or a [BCD] + b [CAD] + c [ABD] = d [ABC]. (40)

*
47.] A vector equation of the first degree in an unknown

vector is an equation each term of which is a vector quantity

containing the unknown vector not more than once. Such

an equation is

(AxB)x(Cxr) + D ET + n r + F =0,

where A, B, C, D, E, F are known vectors, n a known scalar,

and r the unknown vector. One such equation may in gen
eral be solved for r. That is to say, one vector equation is in

general sufficient to determine the unknown vector which is

contained in it to the first degree.

The method of solving a vector equation is to multiply it

with a dot successively by three arbitrary known non-coplanar

vectors. Thus three scalar equations are obtained. These

may be solved by the methods of the foregoing article. In the

first place let the equation be

A ar + B br + C c-r = D,

where A, B, C, D, a, b, c are known vectors. No scalar coeffi

cients are written in the terms, for they may be incorporated in

the vectors. Multiply the equation successively by A , B ,
C .

It is understood of course that A, B, C are non-coplanar.
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a-r = D-A r

b-r = D-B

c-r = D-C .

But r = a a-r + b b-r + c c-r.

Hence r = D-A a + D-B b + D-C c .

The solution is therefore accomplished in case A, B, C are non-

coplanar and a, b, c also non-coplanar. The special cases in

which either of these sets of three vectors is coplanar will not

be discussed here.

The most general vector equation of the first degree in an

unknown vector r contains terms of the types

A a-r, n r, Exr, D.

That is it will contain terms which consist of a known

vector multiplied by the scalar product of another known vec

tor and the unknown vector ; terms which are scalar multi

ples of the unknown vector; terms which are the vector

product of a known and the unknown vector ; and constant

terms. The terms of the type A a-r may always be reduced

to three in number. For the vectors a, b, c, which are

multiplied into r may all be expressed in terms of three non-

coplanar vectors. Hence all the products a-r, b-r, or,

may be expressed in terms of three. The sum of all terms of

the type A a-r therefore reduces to an expression of three

terms, as

A a-r + B b-r + C c-r.

The terms of the types n r and Exr may also be expressed
in this form.

n r = 7i a a-r + n b b-r + n c c-r

Exr = Exa a-r + Exb b-r+Exc c-r.

Adding all these terms together the whole equation reduces

to the form
L a-r + M b-r + N c-r = K.
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This has already been solved as

r = K.L a + K-M b + XJT c .

The solution is in terms of three non-coplanar vectors a
, V, c

f
.

These form the system reciprocal to a, b, c in terms of which

the products containing the unknown vector r were expressed.

* SUNDRY APPLICATIONS OF PKODUCTS

Applications to Mechanics

48.] In the mechanics of a rigid body a force is not a

vector in the sense understood in this book. See Art. 3.

A force has magnitude and direction ; but it has also a line

of application. Two forces which are alike in magnitude
and direction, but which lie upon different lines in the body
do not produce the same effect. Nevertheless vectors are

sufficiently like forces to be useful in treating them.

If a number of forces f
x , f

2 , f
3 , ---act on a body at the

same point 0, the sum of the forces added as vectors is called

the resultant R.

E = f
1 + f2 + f8 + ...

In the same way if f
x ,

f
2 , f 8 do not act at the same point

the term resultant is still applied to the sum of these forces

added just as if they were vectors.

B = f
1 + fa + f

8 + ...
(41)

The idea of the resultant therefore does not introduce the

line of action of a force. As far as the resultant is concerned

a force does not differ from a vector.

Definition: The moment of a force f about the point is

equal to the product of the force by the perpendicular dis

tance from to the line of action of the force. The moment
however is best looked upon as a vector quantity. Its mag
nitude is as defined above. Its direction is usually taken to
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be the normal on that side of the plane passed through the

point and the line f upon which the force appears to pro

duce a tendency to rotation about the point in the positive

trigonometric direction. Another method of defining the

moment of a force t = PQ about the point is as follows :

The moment of the force f = PQ about the point is equal

to twice the area of the triangle PQ. This includes at once

both the magnitude and direction of the moment (Art. 25).

The point P is supposed to be the origin ; and the point Q,

the terminus of the arrow which represents the force f. The

letter M will be used to denote the moment. A subscript will

be attached to designate the point about which the moment is

taken.

The moment of a number of forces f
x , f

2, is the (vector)

sum of the moments of the individual forces.

If

This is known as the total or resultant moment of the forces

* v *&

49.] If f be a force acting on a body and if d be the vector

drawn from the point to any point in the line of action of

the force, the moment of the force about the point is the

vector product of d into f .

Mo W = dxf (42)

For dxf = df sin (d, f) e,

if e be a unit vector in the direction of dxf.

dxf = dsm (d, f)/e.

Now d sin (d, f) is the perpendicular distance from to f.

The magnitude of dxf is accordingly equal to this perpen
dicular distance multiplied by/, the magnitude of the force.
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This is the magnitude of the moment MO {f} . The direction

of dxf is the same as the direction of the moment. Hence

the relation is proved.
Mo {f}

= dxf.

The sum of the moments about of a number of forces

fp f
2 , acting at the same point P is equal to the moment

of the resultant B of the forces acting at that point. For let

d be the vector from to P. Then

Mo {f x>
= dxf

l

Mo {fa |
= dxfa

+ ...
(43)

= dx( 1 + f
a + -..)=dxB

The total moment about f of any number of forces f
x , f 2,

acting on a rigid body is equal to the total moment of those

forces about increased by the moment about of the

resultant BO considered as acting at 0.

M<x {f i> f
2>} = Mo {fr f

2, } + Mo< {Bo \. (44)

Let dj, d
2 , be vectors drawn from to any point in

fr f
2 , respectively. Let d/, d

2 , be the vectors drawn

from O f
to the same points in f

x , f
2 , respectively. Let o

be the vector from to_0 . Then

d^d/H-c, d
2
= d

2 + c,

Mo {f i, f
2 , }

= d
x
xf

j + d
2xf2 +

Mo {f!,f 2 , J=d 1
xf

1 + d
a xf a + ...

^

= (d x
-

c)xf ! + (d 2
- c)xf a + - .

= d
x
xf

x+d2xf 2 + ---- cx(f j + f
a+ . .

.)

But c is the vector drawn from to 0. Hence c x f,

is the moment about of a force equal in magnitude and

parallel in direction to f
1
but situated at 0. Hence
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fa + ...) = - cxBo = Mo {Bo}.

Hence MO/ {f x ,
f
2 , }

= M {fr f
a;,} + MCX {Bo |. (44)

The theorem is therefore proved.

The resultant is of course the same at all points. The

subscript is attached merely to show at what point it is

supposed to act when the moment about O f

is taken. For

the point of application of E affects the value of that moment.

The scalar product of the total moment and the resultant

is the same no matter about what point the moment be taken.

In other words the product of the total moment, the result

ant, and the cosine of the angle between them is invariant

for all points of space.

E MO {f i,
f
2 }= B MO {f ! , f

2 9 }

where O f and are any two points in space. This -important

relation follows immediately from the equation

Mo {*i, f
a , }

= Mo {fj ,
f
2 , } + Mo {Eo}.

For E.Mo if!,f 2 , }=* M {f^, } + E- M {B }.

But the moment of E is perpendicular to E no matter what

the point of application be. Hence

E-MO* IE O } = o

and the relation is proved. The variation in the total

moment due to a variation of the point about which the

moment is taken is always perpendicular to the resultant.

50.] A point O r

may be found such that the total moment
about it is parallel to the resultant. The condition for

parallelism is

{f x , f
a , -}=<)

=0
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where is any point chosen at random. Replace Mo {Eo}

by its value and for brevity omit to write the fv f
2 , in the

braces { }.
Then

RxMcy = ExMo - Ex(cxE) = 0.

The problem is to solve this equation for c.

ExMo EE c + R.c E = 0.

Now R is a known quantity. Mo is also supposed to be

known. Let c be chosen in the plane through perpen

dicular to E. Then Ec = and the equation reduces to

ExM = EE c

ExMo
E-E

If c be chosen equal to this vector the total moment about

the point O r

,
which is at a vector distance from equal to c,

will be parallel to E. Moreover, since the scalar product of

the total moment and the resultant is constant and since the

resultant itself is constant it is clear that in the case where

they are parallel the numerical value of the total moment

will be a minimum.

The total moment is unchanged by displacing the point

about which it is taken in the direction of the resultant.

For Mo jf !, f
2 , }

= Mo {f ! ,
f
2 , }

- cxE.

If c = Of

is parallel to E, cxE vanishes and the moment
about O f

is equal to that about 0. Hence it is possible to

find not merely one point O r about which the total moment
is parallel to the resultant ; but the total moment about any

point in the line drawn through parallel to E is parallel

to E. Furthermore the solution found in equation for c is

the only one which exists in the plane perpendicular to E
unless the resultant E vanishes. The results that have been

obtained may be summed up as follows :
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If any system of forces f
19

f
2 , whose resultant is not

zero act upon a rigid body, then there exists in space one

and only one line such that the total moment about any

point of it is parallel to the resultant. This line is itself

parallel to the resultant. The total moment about all points

of it is the same and is numerically less than that about any
other point in space.

This theorem is equivalent to the one which states that

any system of forces acting upon a rigid body is equivalent

to a single force (the resultant) acting in a definite line and

a couple of which the plane is perpendicular to the resultant

and of which the moment is a minimum. A system of forces

may be reduced to a single force (the resultant) acting at any
desired point of space and a couple the moment of which

(regarded as a vector quantity) is equal to the total moment
about of the forces acting on the body. But in general the

plane of this couple will not be perpendicular to the result

ant, nor will its moment be a minimum.

Those who would pursue the study of systems of forces

acting on a rigid body further and more thoroughly may
consult the Traite de Mecanique Rationnelle l

by P. APPELL.

The first chapter of the first volume is entirely devoted to

the discussion of systems of forces. Appell defines a vector

as a quantity possessing magnitude, direction, and point of

application. His vectors are consequently not the same as

those used in this book. The treatment of his vectors is

carried through in the Cartesian coordinates. Each step

however may be easily converted into the notation of vector

analysis. A number of exercises is given at the close of

the chapter.

51.] Suppose a body be rotating about an axis with a con

stant angular velocity a. The points in the body describe

circles concentric with the axis in planes perpendicular to

1
Paris, Gauthier-Villars et Fils, 1893.

7
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FIG. 25.

the axis. The velocity of any point in its circle is equal

to the product of the angular velocity and the radius of the

circle. It is therefore equal to the product of the angular

velocity and the perpendicular dis

tance from the point to the axis.

The direction of the velocity is

perpendicular to the axis and to

the radius of the circle described

by the point.

Let a (Fig. 25) be a vector drawn

along the axis of rotation in that

direction in which a right-handed

screw would advance if turned in

the direction in which the body is

rotating. Let the magnitude of a

be a, the angular velocity. The vector a may be taken to

represent the rotation of the body. Let r be a radius vector

drawn from any point of the axis of rotation to a point in the

body. The vector product

axr = a rsin(a,r)

is equal in magnitude and direction to the velocity v of the

terminus of r. For its direction is perpendicular to a and r

and its magnitude is the product of a and the perpendicular

distance r sin (a, r) from the point to the line a. That is

v = axr. (45)

If the body be rotating simultaneously about several axes

a
i*
a
2>

a
a which pass through the same point as in the

case of the gyroscope, the velocities due to the various

rotations are v
i
-=a

1
xr

1

v8
= a 8xr 8
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where r
x , r

2 , r
3 , are the radii vectores drawn from points

on the axis a
19

a
2 , a

3, to the same point of the body. Let

the vectors r
x , r

2 , r
8, be drawn from the common point of

intersection of the axes. Then

TJ
= r

a
= r 8

= = r

and

v = v t + v 2 + v 3 + == a
x
xr + a 2xr + a 8xr +

This shows that the body moves as if rotating with the

angular velocity which is the vector sum of the angular
velocities a

19
a
2, a

8, This theorem is sometimes known
as the parallelogram law of angular velocities.

It will be shown later (Art.) 60 that the motion of any

rigid body one point of which is fixed is at each instant of

time a rotation about some axis drawn through that point.

This axis is called the instantaneous axis of rotation. The

axis is not the same for all time, but constantly changes its

position. The motion of a rigid body one point of which is

fixed is therefore represented by

v = axr (45)

where a is the instantaneous angular velocity; and r, the

radius vector drawn from the fixed point to any point of the

body.

The most general motion of a rigid body no point of which

is fixed may be treated as follows. Choose an arbitrary

point 0. At any instant this point will have a velocity v .

Relative to the point the body will have a motion of rotation

about some axis drawn through 0. Hence the velocity v of

any point of the body may be represented by the sum of

V the velocity of and axr the velocity of that point

relative to 0.

v = v + axr. (46)



100 VECTOR ANALYSIS

In case v is parallel to a, the body moves around a and

along a simultaneously. This is precisely the motion of a

screw advancing along a. In case v is perpendicular to a, it

is possible to find a point, given by the vector r, such that

its velocity is zero. That is

This may be done as follows. Multiply by xa.

(axr)xa = v xa

or aa r a-r a = v xa.

Let r be chosen perpendicular to a. Then ar is zero and

aa r = v x a

f =
- v x a

aa

The point r, thus determined, has the property that its veloc

ity is zero. If a line be drawn through this point parallel to

a, the motion of the body is one of instantaneous rotation

about this new axis.

In case v is neither parallel nor perpendicular to a it may
be resolved into two components

v v 4- v "
n v n r n

which are respectively parallel and perpendicular to a.

v = v + v " + axr

A point may now be found such that

v " = axr.

Let the different points of the body referred to this point be

denoted by r . Then the equation becomes

v = v + axr . (46)

The motion here expressed consists of rotation about an axis

a and translation along that axis. It is therefore seen that

the most general motion of a rigid body is at any instant
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the motion of a screw advancing at a certain rate along a

definite axis a in space. The axis of the screw and its rate

of advancing per unit of rotation (i. e. its pitch) change from

instant to instant.

52.] The conditions for equilibrium as obtained by the

principle of virtual velocities may be treated by vector

methods. Suppose any system of forces f
x ,

f
2, act on a

rigid body. If the body be displaced through a vector dis

tance D whether this distance be finite or infinitesimal the

work done by the forces is

The total work done is therefore

W^^i
l + D.f2 + ...

If the body be in equilibrium under the action of the forces

the work done must be zero.

W= D-fj + D-f
2 + = D-Cfj + f

2 + = D.E = 0.

The work done by the forces is equal to the work done by
their resultant. This must be zero for every displacement

D. The equation
D-E =

holds for all vectors D. Hence

E = 0.

The total resultant must be zero if the body be in equilibrium.

The work done by a force f when the rigid body is dis

placed by a rotation of angular velocity a for an infinitesimal

time t is approximately
a-dxf t,

where d is a vector drawn from any point of the axis of rota

tion a to any point of f. To prove this break up f into two

components f , f
"
parallel and perpendicular respectively to a.

a-dxf = a-dxf + a-dxf ".
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As f is parallel to a the scalar product [a d f
] vanishes.

a-dxf = a-dxf ".

On the other hand the work done by t" is equal to the work

done by f during the displacement. For f being parallel to

a is perpendicular to its line of action. If h be the common

vector perpendicular from the line a to the force f ", the work

done by f
"
during a rotation of angular velocity a for time

t is approximately

The vector d drawn from any point of a to any point of f may
be broken up into three components of which one is h, another

is parallel to a, and the third is parallel to f ". In the scalar

triple product [adf] only that component of d which is

perpendicular alike to a and f
" has any effect. Hence

W= a-hxf "
t = a-dxf t

f = a-dxf t.

If a rigid body upon which the forces fv f
2 , act be dis

placed by an angular velocity a for an infinitesimal time t

and if d
x , d 2, be the vectors drawn from any point of

a to any points of fv f
2 ,

-

respectively, then the work done

by the forces f v f
2,

- will be approximately

W= (a-djXfj + ad
2xf 2 + ) t

= a.(d 1
xf

1 + d
2xf 2 + .-.)*

= a.M {f 1 ,f 2 ,...} t.

If the body be in equilibrium this work must be zero.

Hence a*M \tl9 f
2, } t = 0.

The scalar product of the angular velocity a and the total

moment of the forces tv f
2, about any point must be

zero. As a may be any vector whatsoever the moment itself

must vanish.

Mo {fr fr -

} = 0.
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The necessary conditions that a rigid body be in equilib

rium under the action of a system of forces is that the result

ant of those forces and the total moment about any point in

space shall vanish.

Conversely if the resultant of a system of forces and the

moment of those forces about any one particular point in space

vanish simultaneously, the body will be in equilibrium.

If E = 0, then for any displacement of translation D

DE = o.

JF=D-f
1 + D.f 2 + ... =

and the total work done is zero, when the body suffers any

displacement of translation.

Let Mo {fp f2 > }
be zero for a given point 0. Then for

any other point O 1

Mo< {fx ,
f
2 , -\

= Mo 1
f
lf

f
2 ,

-

} + M {Bo}-

But by hypothesis E is also zero. Hence

Hence

where a is any vector whatsoever. But this expression is

equal to the work done by the forces when the body is rotated

for a time t with an angular velocity a about the line a

passing through the point O 1
. This work is zero.

Any displacement of a rigid body may be regarded as a

translation through a distance D combined with a rotation

for a time t with angular velocity a about a suitable line a in

space. It has been proved that the total work done by the

forces during this displacement is zero. Hence the forces

must be in equilibrium. The theorem is proved.
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Applications to Geometry

53.] Relations between two right-handed systems of three

mutually perpendicular unit vectors. Let i, j, k and i , j , k

be two such systems. They form their own reciprocal systems.

Hence
r =

/ I

+r
*^,t

r

^*v, (47)and r = ri i + rj j + rk k .

From this

/ i = i -i i + i
.j j + i -k k = a

1
i + a

2 j + a
3 k

I k = k -i i + k
-j j + k -k k = c

l
i + c

2 j + c
3 k.

The scalarsflj, a
2 , a3 ; b

lt
Z>
2 ,

b 3 ; cv 2 , c
3 are respectively the

direction cosines of i ; j ; k with respect to i, j, k.

That is

<&]_
cos (i , i)

a
2
= cos (i , j) a

3
= cos (i , k)

0j
"==- COS (j ) l) Ot^

==- COS
(j i j) t>

3
- COS (J , Kj (4o)

c
x
= cos (k , i) c

2
= cos (k , j) c

3
= cos (k , k).

In the same manner

^
i = i-i i + i-j j

7 + i-k k = ^ i + \ y + GI
k

j
j
-

j-i i + j-j j + j-k k = a
a

i + 6
2 j + c

2
k (47)"

( k = k.i i + k.j j + k-k k = a
a

i
f + J

8 J + C
3
k/

!/!_/ "1 9i 9i 9t fcf !? I /t ^ I n &
j

/ 4

and ) j.j
= 1 =

2
2 + J2

2 + c2
2

(49)
( k-k = 1 = a

s
2 + 63

2 + c
3
2

and
]

j .k = = \ cj + &2 c2 + bB cs (50)
I i_^ ! f\\ K ! = U =

Cj ttj -f- C< dy -f- C
3 a%
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and \ j-k = = a* a9 + K I* + c c, (50)j.k = = #
2
a
3 + 6

2
6
3 +

and

But

Hence

k = i xj = (a2 5
3
- a

3 6
2) i

y
l "2

= (a2 &
3
- a

3
6
2),

(51)

(52)

Or Co =

and similar relations may be found for the other six quantities

av a
2,
a
3 ; bv &2, &3. All these scalar relations between the

coefficients of a transformation which expresses one set of

orthogonal axes X1

, F , Z* in terms of another set JT, F, Z are

important and well known to students of Cartesian methods.

The ease with which they are obtained here may be note

worthy.

A number of vector relations, which are perhaps not so well

known, but nevertheless important, may be found by multi

plying the equations

i = a
l

i + a
2 j + a

3
k

in vector multiplication.

&! k Cj j
= a

3 j a
2
k. (53)

The quantity on either side of this equality is a vector. From
its form upon the right it is seen to possess no component in
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the i direction but to lie wholly in the jk-plane ;
and from

its form upon the left it is seen to lie in the j k -plane.

Hence it must be the line of intersection of those two planes.

Its magnitude is V af + a or V b^ + c^. This gives the

scalar relations

af + a* = V + *!
2 = 1 - a*.

The magnitude 1 a^ is the square*of the sine of the angle

between the vectors i and i . Hence the vector

^k -cj ^sj-aak (53)

is the line of intersection of the j k - and jk-planes, and

its magnitude is the sine of the angle between the planes.

Eight other similar vectors may be found, each of which gives

one of the nine lines of intersection of the two sets of mu

tually orthogonal planes. The magnitude of the vector is in

each case the sine of the angle between the planes.

54.] Various examples in Plane and Solid Geometry may
be solved by means of products.

Example 1 : The perpendiculars from the vertices of a trian

gle to the opposite sides meet in a point. Let A B be the

triangle. Let the perpendiculars from A to BC and from B
to CA meet in the point 0. To show is perpendicular
to A B. Choose as origin and let OA = A, OB = B, and

=C. Then

= C-B,

By hypothesis

A.(C - B) =
and B<A - C) = 0.

Add; C<B - A) = 0,

which proves the theorem.

Example 2 : To find the vector equation of a line drawn

through the point B parallel to a given vector A.



DIRECT AND SKEW PRODUCTS OF VECTORS 107

Let be the origin and B the vector OS. Let be the ra

dius vector from to any point of the required line. Then

E B is parallel to A. Hence the vector product vanishes.

Ax(B-B) = 0.

This is the desired equation. It is a vector equation in the

unknown vector B. The equation of a plane was seen (page

88) to be a scalar equation such as

BC = c

in the unknown vector B.

The point of intersection of a line and a plane may be

found at once. The equations are

( Ax(B - B) =
i B-C = e

AxB = AxB

A-C B - C-B A = (AxB)xC

A-C B - c A = (AxB)xC

Hence (AxB)xC + c A
.

A-C

The solution evidently fails when AC = 0. In this case how

ever the line is parallel to the plane and there is no solution ;

or, if it lies in the plane, there are an infinite number of solu

tions.

Example 3: The introduction of vectors to represent planes.

Heretofore vectors have been used to denote plane areas of

definite extent. The direction of the vector was normal to

the plane and the magnitude was equal to the area to be re

presented. But it is possible to use vectors to denote not a

plane area but the entire plane itself, just as a vector represents

a point. The result is analogous to the plane coordinates of

analytic geometry. Let be an assumed origin. Let MN be

a plane in space. The plane MN is to be denoted b^ a vector
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whose direction is the direction of the perpendicular dropped

upon the plane from the origin and whose magnitude is the

reciprocal of the length of that perpendicular. Thus the nearer

a plane is to the origin the longer will be the vector which

represents it.

If r be any radius vector drawn from the origin to a point

in the plane and if p be the vector which denotes the plane,

then

r-p = 1

is the equation of the plane. For

rp = r cos (r, p) p.

Now p, the length of p is the reciprocal of the perpendicular

distance from to the plane. On the other hand r cos (r, p)
is that perpendicular distance. Hence rp must be unity.

If r and p be expressed in terms of i, j, k

r = #i + yj + zk

p = ui + vj + wit

Hence rp = xu + yv + zw = L.

The quantities u, v, w are the reciprocals of the intercepts of

the plane p upon the axes.

The relation between r and p is symmetrical. It is a rela

tion of duality. If in the equation

r-p = 1

r be regarded as variable, the equation represents a plane p
which is the locus of all points given by r. If however p be

regarded as variable and r as constant, the equation repre

sents a point r through which all the planes p pass. The

development of the idea of duality will not be carried out.

It is familiar to all students of geometry. The use of vec

tors to denote planes will scarcely be alluded to again until

Chapter VII.
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SUMMARY OF CHAPTER II

The scalar product of two vectors is equal to the product

of their lengths multiplied by the cosine of the angle between

them.
A-B = A B cos (A, B) (1)

A-B = B.A (2)

A.A = ^. (3)

The necessary and sufficient condition for the perpendicularity

of two vectors neither of which vanishes is that their scalar

product vanishes. The scalar products of the vectors i, j, k

are

^=J!Uk!=o (4)

A.B = A 1
B

1 + A,, B2 + AS B
z (7)H = A* = A* + A* + A*. (8)

If the projection of a vector B upon a vector A is B f

,

-R
A B

A (*\
XA

The vector product of two vectors is equal in magnitude to

the product of their lengths multiplied by the sine of the an

gle between them. The direction of the vector product is the

normal to the plane of the two vectors on that side on which

a rotation of less than 180 from the first vector to the second

appears positive.
AxB = A B sin (A, B) c. (9)

The vector product is equal in magnitude and direction to the

vector which represents the parallelogram of which A and B

are the two adjafcent sides. The necessary and sufficient con

dition for the parallelism of two vectors neither of which
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vanishes is that their vector product vanishes. The com

mutative laws do not hold.

AxB =

AxB= -BxA
ixi =jxj = kxk =

ixj = jxi = k

jxk = kxj =i

kxi = ixk = j

2) i + (Aa Bl
- A

1

(10)

(12)

AxB =
Bn Bo

(13)

(13)

The scalar triple product of three vectors [A B C] is equal

to the volume of the parallelepiped of which A, B, C are three

edges which meet in a point.

[AB C] = A-BxC = B.CxA = C-AxB

= AxB-C = BxCA = CxA-B

[ABC] =- [A OB].

(15)

(16)

The dot and the cross in a scalar triple product may be inter

changed and the order of the letters may be permuted cyclicly

without altering the value of the product ; but a change of

cyclic order changes the sign.

[ABC] = (18)

[ABC] = [a be] (19)
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If the component of B perpendicular to A be B",

B ,, = _AX(AXB)
A*A

Ax(BxC) = A-C B - A-B C (24)

(AxB)xC = A-C B - C-B A (24)

(AxB>(CxD) = A.C B-D - A-D B-C (25)

(AxB)x(CxD) = [A CD] B- [BCD] A
= [ABD] C-[ABC] D. (26)

The equation which subsists between four vectors A, B, C, D
is

[BCD] A-[CDA]B + [DAB] C- [ABC] D = 0. (27)

Application of formulae of vector analysis to obtain the for

mulae of Plane and Spherical Trigonometry.

The system of vectors a , V, c is said to be reciprocal to the

system of three non-coplanar vectors a, b, c

bxc cxa axb
when a = _ . ., b = = -=> * = (29)

[a be] [abc] [abc]

A vector r may be expressed in terms of a set of vectors and

its reciprocal in two similar ways

r = r.a a + r.V b + r-c c (30)

r = r-aa + r.bb + r.cc . (31)

The necessary and sufficient conditions that the two systems of

non-coplanar vectors a, b, c and a , b , c be reciprocals is that

a .a = Vb = c c = 1

a .b = a -c = b .c = b .a = c -a = e -b = 0.

If a ,
b

, c form a system reciprocal to a, b, c ; then a, b, c will

form a system reciprocal to a ,
b

,
c .
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P.A P.B P.C

a-A ft-B a-c

R.A B-B R-C
[PaK][ABC] = (34)

The system i, j, k is its own reciprocal and if conversely a

system be its own reciprocal it must be a right or left handed

system of three mutually perpendicular unit vectors. Appli

cation of the theory of reciprocal systems to the solution of

scalar and vector equations of the first degree in an unknown

vector. The vector equation of a plane is

r-A = a. (36)

Applications of the methods developed in Chapter II., to the

treatment of a system of forces acting on a rigid body and in

particular to the reduction of any system of forces to a single

force and a couple of which the plane is perpendicular to that

force. Application of the methods to the treatment of

instantaneous motion of a rigid body obtaining

v = v + a x r (46)

where v is the velocity of any point, v a translational veloc

ity in the direction a, and a the vector angular velocity of ro

tation. Further application of the methods to obtain the

conditions for equilibrium by making use of the principle of

virtual velocities. Applications of the method to obtain

the relations which exist between the nine direction cosines

of the angles between two systems of mutually orthogonal
axes. Application to special problems in geometry including
the form under which plane coordinates make their appear
ance in vector analysis and the method by which planes (as

distinguished from finite plane areas) may be represented

by vectors.
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EXERCISES ON CHAPTER II

Prove the following reduction formulae

1. Ax{Bx(CxD)} = [ACD]B-A-BCxD
= BD AxC B-C AxD.

2. [AxB CxD ExF] = [ABD] [CEF]- [ABC] [DBF]
= [ABE] [FCD] - [ABF] [BCD]
= [CD A] [BEF] - [CDB] [AEF].

3. [AxB BxC CxA] = [ABC]
2
.

P.A P.B P

4 [PQE] (AxB) = Q.B Q
RA RB R

5. Ax(BxC) + Bx(CxA) + Cx(AxB) = 0.

6. [AxP Bxtt CxR] + [Axtt BxR CxP]

+ [AxR BxP Cxtt] = 0.

7. Obtain formula (34) in the text by expanding

[(AxB)xP].[Cx(ttxR)]

in two different ways and equating the results.

8. Demonstrate directly by the above formulae that if

a , V, c form a reciprocal system to a, b, c; then a, b, c form

a system reciprocal to a , b , c .

9. Show the connection between reciprocal systems of vec

tors and polar triangles upon a sphere* Obtain some of the

geometrical formulae connected with polar triangles by inter

preting vector formulae such as (3) in the above list.

10. The perpendicular bisectors of the sides of a triangle

meet in a point.

11. Find an expression for the common perpendicular to

two lines not lying in the same plane.
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12. Show by vector methods that the formulae for the vol

ume of a tetrahedron whose four vertices are

IS

13. Making use of formula (34) of the text show that

[abo] = a be

N

1

n

m

n

1

I

m
I

1

where a, &, c are the lengths of a, b, c respectively and where

I = cos (b, c), m = cos (c, a), n = cos (a, b).

14. Determine the perpendicular (as a vector quantity)

which is dropped from the origin upon a plane determined by
the termini of the vectors a, b, c. Use the method of solution

given in Art. 46.

15. Show that the volume of a tetrahedron is equal to one

sixth of the product of two opposite edges by the perpendicu
lar distance between them and the sine of the included angle.

16. If a line is drawn in each face plane of any triedral angle

through the vertex and perpendicular to the third edge, the

three lines thus obtained lie in a plane.



CHAPTER III

THE DIFFERENTIAL CALCULUS OF VECTORS

Differentiation of Functions of One Scalar Variable

55.] IF a vector varies and changes from r to r the incre

ment of r will be the difference between r and r and will be

denoted as usual by A r.

Ar = r -r, (1)

where A r must be a vector quantity. If the variable r be

unrestricted the increment A r is of course also unrestricted :

it may have any magnitude and any direction. If, however,

the vector r be regarded as a function (a vector function) of

a single scalar variable t the value of A r will be completely

determined when the two values t and t
f of , which give the

two values r and r
, are known.

To obtain a clearer conception of the quantities involved

it will be advantageous to think of the vector r as drawn

from a fixed origin (Fig. 26). When
the independent variable t changes its

value the vector r will change, and as t

possesses one degree of freedom r will

vary in such a way that its terminus

describes a curve in space, r will be

the radius vector of one point P of

the curve ; r , of a neighboring point P f
. A r will be the

chord PP 1 of the curve. The ratio

Ar
A*

FIG. 26.
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will be a vector collinear with the chord PPf but magnified

in the ratio 1 : A t. When A t approaches zero Pf will ap

proach P, the chord PP 1 will approach the tangent at P, and

the vector

Ar ... rfr
will approach

i\ t (t t

which is a vector tangent to the curve at P directed in that

sense in which the variable t increases along the curve.

If r be expressed in terms of i, j, k as

r = r
x
i + r

2 j + r
z
k

the components rv r
2,

r3 will be functions of the scalar t.

r = (r1 + Arj)i+ (^2 + Ar
2)j + (r3 + Ar

3)k

Ar = r r = Ar
x

i + Ar
2 j + Ar3 k

A r _ A
?*! . A r

2 .
A r

8^ 1
" J+ k

and

Hence the components of the first derivative of r with re

spect to t are the first derivatives with respect to t of the

components of r. The same is true for the second and higher
derivatives.

. . ~
i j__ _f , _3

*
_ __ _ _

dt*~ dt* dt* dt*

(2)
d n r d n

r, . d n r
fl

d n
r*- -l

i j__?
i _i__? v

dt n dt dt n J
dt*

In a similar manner if r be expressed in terms of any three

non-coplanar vectors a, b, c as

r = aa + &b + cc

d n r d n a d n b d n
c
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Example : Let r = a cos t + b sin t.

The vector r will then describe an ellipse of which a and b

are two conjugate diameters. This may be seen by assum

ing a set of oblique Cartesian axes X, Y coincident with a

and b. Then
X= a cos t, Y= 6 sin t,

which is the equation of an ellipse referred to a pair of con

jugate diameters of lengths a and b respectively.

dr
-3
= a sin t + b cos t.

a t

Hence = a cos (t + 90) + b sin (t + 90).

The tangent to the curve is parallel to the radius vector

for + 90). 2r = (a cos t + b sin t).

The second derivative is the negative of r. Hence

is evidently a differential equation satisfied by the ellipse.

Example : Let r = a cosh t + b sinh t.

The vector r will then describe an hyperbola of which a and

b are two conjugate diameters.

dr = a sinh t + b cosh t,

dt

and - - = a cosh t + b sinh t.

Hence = r
d t*

is a differential equation satisfied by the hyperbola.
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56.] A combination of vectors all of which depend on the

same scalar variable t may be differentiated very much as in

ordinary calculus.

d

For

(a + Aa) . (b

A(a-b) = (a + Aa) (b + Ab) - a-b

Ab Aa Aa-Ab= a H-- b + -1
---

A* A* A*

Hence in the limit when A t = 0,

d_

dt

_(a.bxc) = a-b
dt

v \d t

X [b X

The last three of these formulae may be demonstrated exactly

as the first was.

The formal process of differentiation in vector analysis

differs in no way from that in scalar analysis except in this

one point in which vector analysis always differs from scalar

analysis, namely : The order of the factors in a vector product
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cannot be changed without changing the sign of the product.

Hence of the two formulae

d
and

the first is evidently incorrect, but the second correct. In

other words, scalar differentiation must take place without

altering the order of the factors of a vector product. The

factors must be differentiated in situ. This of course was to

be expected.

In case the vectors depend upon more than one variable

the results are practically the same. In place of total deriva

tives with respect to the scalar variables, partial derivatives

occur. Suppose a and b are two vectors which depend on

three scalar variables #, y, z. The scalar product ab will

depend upon these three variables, and it will have three

partial derivatives of the first order.

The second partial derivatives are formed in the same way.

52

-
9y \3x5y
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Often it is more convenient to use not the derivatives but

the differentials. This is particularly true when dealing with

first differentials. The formulas (3), (4) become

d (a b) = da, b + a db, (3)

d (a X b) = ds, x b + a x db, (4)

and so forth. As an illustration consider the following

example. If r be a unit vector

rr = 1.

The locus of the terminus of r is a spherical surface of unit

radius described about the origin, r depends upon two vari

ables. Differentiate the equation.

Hence r d r = 0.

Hence the increment di of a unit vector is perpendicular to

the vector. This can be seen geometrically. If r traces a

sphere the variation d r must be at each point in the tangent

plane and hence perpendicular to r.

*57.j Vector methods may be employed advantageously
in the discussion of curvature and torsion of curves. Let r

denote the radius vector of a curve

where f is some vector function of the scalar t. In most appli

cations in physics and mechanics t represents the time. Let

s be the length of arc measured from some definite point of

the curve as origin. The increment A r is the chord of the

curve. Hence A r / A s is approximately equal in magnitude
to unity and approaches unity as its limit when A s becomes

infinitesimal. Hence d r / d s will be a unit vector tangent to

the curve and will be directed toward that portion of the
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curve along which s is increasing (Fig. 27). Let t be the

unit tangent UAt

The curvature of the curve is the

limit of the ratio of the angle through

which the tangent turns to the length

of the arc. The tangent changes by the increment At. As t

is of unit length, the length of A t is approximately the angle

through which the tangent has turned measured in circular

measure. Hence the directed curvature C is

LIM = t =
As=0 As ds ds*

The vector C is collinear with A t and hence perpendicular to

t; for inasmuch as t is a unit vector At is perpendicular

to t.

The tortuosity of a curve is the limit of the ratio of the

angle through which the osculating plane turns to the length

of the arc. The osculating plane is the plane of the tangent

vector t and the curvature vector C. The normal to this

planei8 N = txC.

If c be a unit vector collinear with C

n = t x c

will be a unit normal (Fig. 28) to the osculating plane and

the three vectors t, c, n form an i, j, k system,

that is, a right-handed rectangular system.

Then the angle through which the osculating

plane turns will be given approximately by
A n and hence the tortuosity is by definition _

d n / d s.

From the fact that t, c, n form an i, j, k system of unit

vectors
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t t = c c = nn = 1

and tc = cn = nt = 0.

Differentiating the first set

t-dt = cdc = ndn = 0,

and the second

t* do + rft c =cdn + dcn = ndt + dnt==0.

But d t is parallel to c and consequently perpendicular to n.

n- dt = 0.

Hence d n t = 0.

The increment of n is perpendicular to t. But the increment

of n is also perpendicular to n. It is therefore parallel to c.

As the tortuosity is T = dn/ds, it is parallel to dn and hence

to c.

The tortuosity T is

~ds^

d*r d*rT v* j O *

d s*

i \
VCC/

The first term of this expression vanishes. T moreover has

been seen to be parallel to C = d2
r/ds

2
. Consequently the

magnitude of T is the scalar product of T by the unit vec

tor c in the direction of C. It is desirable however to have

the tortuosity positive when the normal n appears to turn in

the positive or counterclockwise direction if viewed from

that side of the n c-plane upon which t or the positive part

of the curve lies. With this convention d n appears to move
in the direction c when the tortuosity is positive, that is, n

turns away from c. The scalar value of the tortuosity will

therefore be given by c T.
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1 dr d 2 r d 1
c T = c x

But c is parallel to the vector d2
i/d s 2. Hence

dr

ds ds 2
~~

And c is a unit vector in the direction C. Hence

C
~

Hence T. -c-T = - . x (12)

Or r = . (13)

The tortuosity may be obtained by another method which

is somewhat shorter if not quite so straightforward.

tc = cn = nt = 0.

Hence dtc = dct
dc n = dn c

dn*t = dtn.

Now d t is parallel to c ; hence perpendicular to n. Hence

d t n = 0. Hence dnt = 0. Butdnis perpendicular to n.

Hence d n must be parallel to c. The tortuosity is the mag
nitude of dn/ds taken however with the negative sign

because d n appears clockwise from the positive direction of

the curve. Hence the scalar tortuosity T may be given by

dn dcr=- .c = n.
, (14)ds ds

r = txc-^-
C

, (14)as
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C
c =

dc

ds

V cc
dC

,

d
/

!;
C ---VC.Cds ds

C-C

But t x c C = 0.

t x c A/C C

C-C

m
1 =

_ dC
T~

ITTc

(13)

ds*

In Cartesian coordinates this becomes

T=

(13)

Those who would pursue the study of twisted curves and

surfaces in space further from the standpoint of vectoi-s will

find the book "
Application de la Methode Vectorielle de Grass-

maun d la Greometrie Infinitesimale"
1
by FEHB extremely

1
Paris, Carre et Naud, 1899.
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helpful. He works with vectors constantly. The treatment

is elegant. The notation used is however slightly different

from that used by the present writer. The fundamental

points of difference are exhibited in this table

HI X a2
~ Oi 2]

a
x

a
2 x a

3
= [a x

a
2
a
3]
~

[ax
a
2 aj.

One used to either method need have no difficulty with the

other. All the important elementary properties of curves

and surfaces are there treated. They will not be taken

up here.

* Kinematics

58.] Let r be a radius vector drawn from a fixed origin to

a moving point or particle. Let t be the time. The equation

of the path is then

The velocity of the particle is its rate of change of position.

This is the limit of the increment A r to the increment A t.

LIM fA r"| d r
V = A * .

This velocity is a vector quantity. Its direction is the

direction of the tangent of the curve described by the par

ticle. The term speed is used frequently to denote merely

the scalar value of the velocity. This convention will be

followed here. Then

.-, (16)

if s be the length of the arc measured from some fixed point

of the curve. It is found convenient in mechanics to denote

differentiations with respect to the time by dots placed over

the quantity differentiated. This is the oldfliixional notation
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introduced by Newton. It will also be convenient to denote

the unit tangent to the curve by t. The equations become

--T. <">

v = v t. (17)

The acceleration is the rate of change of velocity. It

is a vector quantity. Let it be denoted by A. Then by
definition

LIM A v d v_ _
-At=OA7-rf7

=

dv d
and

Differentiate the expression v = v t.

dv d(vt) dv dt
A - __ - v

. _ * I

nj __. -

dt
~

dt dt dt

dv dzs~

dt dt d s_ __ _ = C t?

d t ds d t

where C is the (vector) curvature of the curve and v is the

speed in the curve. Substituting these values in the equation

the result is

A = s t + v* C.

The acceleration of a particle moving in a curve has there

fore been broken up into two components of which one is paral
lei to the tangent t and of which the other is parallel to the

curvature C, that is, perpendicular to the tangent. That this

resolution has been accomplished would be unimportant were
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it not for the remarkable fact which it brings to light. The

component of the acceleration parallel to the tangent is equal

in magnitude to the rate of change of speed. It is entirely

independent of what sort of curve the particle is describing.

It would be the same if the particle described a right line

with the same speed as it describes the curve. On the other

hand the component of the acceleration normal to the tangent

is equal in magnitude to the product of the square of the

speed of the particle and the curvature of the curve. The

sharper the curve, the greater this component. The greater

the speed of the particle, the greater the component. But the

rate of change of speed in path has no effect at all on this

normal component of the acceleration.

If r be expressed in terms of i, j, k as

r = # i + y} + z k,

v = V ** + y* + * 2
, (16)

A = v = r = ii + yj + * k, (18)

x x + i/ i/ + z %A = v=s = y *

V x 2 + y* + z 2

From these formulae the difference between st the rate of

change of speed, and A = r, the rate of change of velocity,

is apparent. Just when this difference first became clearly

recognized would be hard to say. But certain it is that

Newton must have had it in mind when he stated his second

law of motion. The rate of change of velocity is proportional

to the impressed force ; but rate of change of speed is not.

59.] The hodograph was introduced by Hamilton as an

aid to the study of the curvilinear motion of a particle.

With any assumed origin the vector velocity r is laid off.

The locus of its terminus is the hodograph. In other words,

the radius vector in the hodograph gives the velocity of the
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particle in magnitude and direction at any instant. It is

possible to proceed one step further and construct the hodo

graph of the hodograph. This is done by laying off the

vector acceleration A = r from an assumed origin. The

radius vector in the hodograph of the hodograph therefore

gives the acceleration at each instant.

Example 1 : Let a particle revolve in a circle (Fig. 29)

of radius r with a uniform
fV * ^-r^

angular velocity a. The

speed of the particle will then

be equal to

v = a r.

Let r be the radius vector

drawn to the particle. The

velocity v is perpendicular to r and to a. It is

f = v = a x r.

The vector v is always perpendicular and of constant magni
tude. The hodograph is therefore a circle of radius v = a r.

The radius vector r in this circle is just ninety degrees in

advance of the radius vector r in its circle, and it conse

quently describes the circle with the same angular velocity

a. The acceleration A which is the rate of change of y is

always perpendicular to v and equal in magnitude to

A = a v = a 2
r.

The acceleration A may be given by the formula

r = A = axv = ax(axr) = ar a a-a r.

But as a is perpendicular to the plane in which r lies, a r= 0.

Hence 9
r = A = aa r = a 2

r.

The acceleration due to the uniform motion of a particle in

a circle is directed toward the centre and is equal in magni
tude to the square of the angular velocity multiplied by the

radius of the circle.
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Example 2: Consider the motion of a projectile. The

acceleration in this case is the acceleration g due to gravity.

r = A = g.

The hodograph of the hodograph reduces to a constant

vector. The curve is merely a point. It is easy to find

the hodograph. Let v be the velocity of the projectile

in path at any given instant. At a later instant the velocity

will be
v = v + t g.

Thus the hodograph is a straight line parallel to g and pass

ing through the extremity of v . The hodograph of a

particle moving under the influence of gravity is hence a

straight line. The path is well known to be a parabola.

Example 3 : In case a particle move under any central

acceleration

r = A = f(r).

The tangents to the hodograph of r are the accelerations r!

But these tangents are approximately collinear with the

chords between two successive values r and f of the radius

vector in the hodograph. That is approximately

A*

Multiply by rx. r x r = r x .

Since r and r are parallel

r x (r
- r )

= 0.

Hence r x r = r x r .

But J r x f is the rate of description of area. Hence the

equation states that when a particle moves under an ac

celeration directed towards the centre, equal areas are swept

over in equal times by the radius vector.

9
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Perhaps it would be well to go a little more carefully into

this question. If r be the radius vector of the particle in

its path at one instant, the radius vector at the next instant

is r + A r. The area of the vector of which r and r + A r are

the bounding radii is approximately equal to the area of the

triangle enclosed by r, r + A r, and the chord A r. This

area is

The rate of description of area by the radius vector is

consequently

LIM irx(r+ Ar) Lm 1 AT 1

A* = 02 A* ~A*-=02 A*~2 r

Let r and r be two values of the velocity at two points
P and P which are near together. The acceleration r at P
is the limit of

r r _ A r

A*
"
A *

*

A * * "

Break up the vector ^- = ?^IlI? into two components oneA t A t

parallel and the other perpendicular to the acceleration r .

Ar.

if n be a normal to the vector if . The quantity x ap
proaches unity when A t approaches zero. The quantity y
approaches zero when A t approaches zero.

Ar = r-r = #A*r + yA*n.

Hence r x (r
- r )

= x A* r x r + y A* r x n.

r x (f
- r )

= r x r - (r +^ A M x f .
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Hence

Ar
rxr-r xf = xr A* + zA*rxr + yA* rxn.

/A 6

But each of the three terms upon the right-hand side is an

infinitesimal of the second order. Hence the rates of descrip

tion of area at P and Pd differ by an infinitesimal of the

second order with respect to the time. This is true for any

point of the curve. Hence the rates must be exactly equal

at all points. This proves the theorem.

60.] The motion of a rigid body one point of which is

fixed is at any instant a rotation about an instantaneous axis

passing through the fixed point.

Let i, j, k be three axes fixed in the body but moving in

space. Let the radius vector r be drawn from the fixed point

to any point of the body. Then

But d r = (d r i) i + (d r j) j 4- (d r k) k.

Substituting the values of d r i, d r j, d r k obtained from

the second equation

dr = (xi di+ yi d j + 2 i d k) i

j di + yj *dj + zj

But i j =j k = k i = 0.

Hence i dj +j di = Q or j-c?i = i dj

j.dk + k.dj = or k.dj = j-dk
k.di + i.rfk = or idk = k di.

Moreover i.i=j .j=kk = l.

Hence i d i = j d j
= k d k = 0.
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Substituting these values in the expression for d r.

dr = (zi dk yjdi)i+(jdi s k

+ (y k . d j
- x i d k) k.

This is a vector product.

dr = (Wj i + idkj + jdik)x(>i + yj + 2; k).

Let d j . d k . d i

k -r l+| -i J+J ii
k -

Then . d r
r =

;n
=axr-

This shows that the instantaneous motion of the body is one

of rotation with the angular velocity a about the line a.

This angular velocity changes from instant to instant. The

proof of this theorem fills the lacuna in the work in Art. 51.

Two infinitesimal rotations may be added like vectors.

Let a
x
and a 2 be two angular velocities. The displacements

due to them are

d
l
r = a

x
x r d t,

d
2
r = a

2 x r d t.

If r be displaced by a, it becomes

T + d
1
T = T + a,

1
xrdt.

If it then be displaced by a
2 , it becomes

r 4- d r = r + d
l
r + % x [r + (a x

x r) d t] d t.

Hence d r = aj x r d t + a
2
x r d t + a

2 x (a x
x r) (d )

2
.

If the infinitesimals (d t)
2 of order higher than the first be

neglected,

d r = a
x
x r d t + a

2 x r d t = (a x + a 2) x r d t,

which proves the theorem. If both sides be divided by d t

. dr
r = = (a 1 + a 2) x r.
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This is the parallelogram law for angular velocities. It

was obtained before (Art. 51) in a different way.

In case the direction of a, the instantaneous axis, is con

stant, the motion reduces to one of steady rotation about a.

r = a x r.

The acceleration r = axr + axr = axr + ax (axr).

As a does not change its direction a must be collinear with

a and hence a x r is parallel to a x r. That is, it is perpen

dicular to r. On the other hand ax (a x r) is parallel to r.

Inasmuch as all points of the rotating body move in con

centric circles about a in planes perpendicular to a, it is

unnecessary to consider more than one such plane.

The part of the acceleration of a particle toward the centre

of the circle in which it moves is

a x (a x r).

This is equal in magnitude to the square of the angular

velocity multiplied by the radius of the circle. It does not

depend upon the angular acceleration a at all. It corresponds

to what is known as centrifugal force. On the other hand

the acceleration normal to the radius of the circle is

axr.

This is equal in magnitude to the rate of change of angular

velocity multiplied by the radius of the circle. It does not

depend in any way upon the angular velocity itself but only

upon its rate of change.

61.] The subject of integration of vector equations in which

the differentials depend upon scalar variables needs but a

word. It is precisely like integration in ordinary calculus.

If then d r = d s,

r = s + C,



134 VECTOR ANALYSIS

where C is some constant vector. To accomplish the integra

tion in any particular case may be a matter of some difficulty

just as it is in the case of ordinary integration of scalars.

Example 1 : Integrate the equation of motion of a

projectile.

The equation of motion is simply

which expresses the fact that the acceleration is always ver

tically downward and due to gravity.

r = g t + b,

where b is a constant of integration. It is evidently the

velocity at the time t= 0.

r = ig*2 + b* + c.

c is another constant of integration. It is the position vector

of the point at time t= 0. The path which is given by this

last equation is a parabola. That this is so may be seen by

expressing it in terms of x and y and eliminating t.

Example % : The rate of description of areas when a par
ticle moves under a central acceleration is constant.

r = f(r).

Since the acceleration is parallel to the radius,

r x r = 0.

But r x r = (r x r).a L>

For (r x f
)
= r x f + r x r.

u/ t

Hence (r x r) =
CL t

and r x f = C,

which proves the statement.
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Example 3 : Integrate the equation of motion for a particle

moving with an acceleration toward the centre and equal to

a constant multiple of the inverse square of the distance

from the centre.

^2

Given

Then r x r = 0.

Hence r x r = C.

Multiply the equations together with x.

r xC -1 -1
(

^- = rx (rxr)=
-jjj-

{r.r r - r-r r}.

r r = r2.

Differentiate. Then r r = r r.

Hence *2L = _ L ro o *

Each side of this equality is a perfect differential.

Integrate. Then
r x C = + e I,

c* r

where e I is the vector constant of integration, e is its magni
tude and I a unit vector in its direction. Multiply the equa
tion by r .

r r x C r r
+ e r I.

But

c* r *

r r x C r x r C C C
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T f C C
p = s" and cos u = cos (r, I).

c

Then p = r + e r cos u.

Or p
r =

1 + e cos w

This is the equation of the ellipse of which e is the eccentri

city. The vector I is drawn in the direction of the major
axis. The length of this axis is

It is possible to cany the integration further and obtain

the time. So far merely the path has been found.

Scalar Functions of Position in Space. The Operator V
62.] A function V (x, y, z) which takes on a definite scalar

value for each set of coordinates #, y, z in space is called a

scalar function of position in space. Such a function, for ex

ample, is

V O, y, z) == x 2 + y* + z 2 = r\

This function gives the square of the distance of the point

(x, y, z) from the origin. The function V will be supposed to

be in general continuous and single-valued. In physics scalar

functions of position are of constant occurrence. In the

theory of heat the temperature T at any point of a body is a

scalar function of the position of that point. In mechanics

and theories of attraction the potential is the all-important

function. This, too, is a scalar function of position.

If a scalar function V be set equal to a constant, the equa
tion

V(x,y,z)=c. (20)

defines a surface in space such that at every point of it the

function V has the same value c. In case V be the tempera-



THE DIFFERENTIAL CALCULUS OF VECTORS 137

ture, this is a surface of constant temperature. It is called an

isothermal surface. In case V be the potential, this surface of

constant potential is known as an equipotential surface. As
the potential is a typical scalar function of position in space,

and as it is perhaps the most important of all such functions

owing to its manifold applications, the surface

V O, y,z)=c

obtained by setting V equal to a constant is frequently spoken
of as an equipotential surface even in the case where V has

no connection with the potential, but is any scalar function

of positions in space.

The rate at which the function V increases in the X direc

tion that is, when x changes to x + A x and y and z remain

constant is

LIM
["

F" (a? + A a, y, g)
- T (x, y, z) "1

Aa = L A x J*

This is the partial derivative of Fwith respect to x. Hence

the rates at which V increases in the directions of the three

axes X, Y) Z are respectively

3V 3V 3V
~Wx Ty* Tz

Inasmuch as these are rates in a certain direction, they may
be written appropriately as vectors. Let i, j, k be a system

of unit vectors coincident with the rectangular system of

axes X, Y) Z. The rates of increase of V are

3V 3V 3V
1

JZ* J 5? ~3~z

The sum of these three vectors would therefore appear to be

a vector which represents both in magnitude and direction

the resultant or most rapid rate of increase of V. That this

is actually the case will be shown later (Art. 64).
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63.] The vector sum which is the resultant rate of increase

of Fis denoted by VF

V V represents a directed rate of change of V a directed

or vector derivative of F^ so to speak. For this reason VF
will be called the derivative of V; and F, the primitive of

VF. The terms gradient and slope of F are also used for

V F. It is customary to regardV as an operator which obtains

a vector VF from a scalar function F of position in space.

This symbolic operator V was introduced by Sir W. R.

Hamilton and is now in universal employment. There

seems, however, to be no universally recognized name
l for it,

although owing to the frequent occurrence of the symbol
some name is a practical necessity. It has been found by

experience that the monosyllable del is so short and easy to

pronounce that even in complicated formulae in which V occurs

a number of times no inconvenience to the speaker or hearer

arises from the repetition. VF is read simply as " del F."

Although this operator V has been defined as

v=i* + ji- +k *
dx dy 9z

1 Some use the term Nabla owing to its fancied resemblance to an Assyrian

harp. Others have noted its likeness to an inverted A and have consequently
coined the none too euphonious name Ailed by inverting the order of the letters in

the word Delta. Foppl in his Einfuhrung in die Maxwell 1
sche Theorie der Elec-

tricitdt avoids any special designation and refers to the symbol as "die Operation

V.
v How this is to be read is not divulged. Indeed, for printing no particular

name is necessary, but for lecturing and purposes of instruction something is re

quiredsomething too that does not confuse the speaker or hearer even when
often repeated.
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so that it appears to depend upon the choice of the axes, it

is in reality independent of them. This would be surmised

from the interpretation of V as the magnitude and direction

of the most rapid increase of V. To demonstrate the inde

pendence take another set of axes, i
, j , k and a new set of

variables # , y ^ z
f referred to them. Then V referred to this

system is

v/ = i ?T7 + J o^7 + k ^T7 (22)a x a y d z

By making use of the formulae (47) and (47)", Art. 53, page

104, for transformation of axes from i, j, k to i , j , k and by

actually carrying out the differentiations and finally by

taking into account the identities (49) and (50), V may
actually be transformed into V.

The details of the proof are omitted here, because another

shorter method of demonstration is to be given.

64] Consider two surfaces (Fig. 30)

and

y,z)=c
V (x, y, z)

= c + d c,

upon which V is constant and which are moreover infinitely

near together. Let #, y, z be a given point upon the surface

V=c. Let r denote the ra

dius vector drawn to this

point from any fixed origin.

Then any point near by in

the neighboring surface V
c + d c may be represented

by the radius vector r + d r.

The actual increase of Ffrom

the first surface to the second

is a fixed quantity dc. The rate of increase is a variable

FIG. 30.
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quantity and depends upon the direction dr which is fol

lowed when passing from one surface to the other. The rate

of increase will be the quotient of the actual increase d c and

the distance V d r d r between the surfaces at the point

x, y, z in the direction d r. Let n be a unit normal to the

surfaces and d n the segment of that normal intercepted

between the surfaces, n d n will then be the least value for

d r. The quotient .

\/d r d r

will therefore be a maximum when d r is parallel to n and

equal in magnitude of d n. The expression

is therefore a vector of which the direction is the direction of

most rapid increase of Fand of which the magnitude is the

rate of that increase. This vector is entirely independent of

the axes JT, Y, Z. Let d c be replaced by its equal d V which

is the increment of F^in passing from the first surface to the

second. Then let V V be defined again as

Vr=4^n. (24)d n

From this definition, V V is certainly the vector which

gives the direction of most rapid increase of V and the rate

in that direction. Moreover VFis independent of the axes.

It remains to show that this definition is equivalent to the one

first given. To do this multiply by d r.

dV
VF.dr = -n.dr. (25)

d n

n is a unit normal. Hence n d r is the projection of d r on

n and must be equal to the perpendicular distance d n between

the surfaces.
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dV
dT = -dn = dV (25)dn

5V 5V 5V
But =7r- -= -z

dx dy 5z

where (d x? + (d y)
2 + (d *)

2 = d r d r.

If dr takes on successively the values i dx, j dy, kdz the

equation (25) takes on the values

5V
ids= ~dx

d x

sv
d y = d y (26)

9V

If the factors rf a;, rf y, rf be cancelled these equations state

that the components VF i, VF* j, VF- k of VF in the

i, j, k directions respectively are equal to

3V 5V
5_V

5x 5y* 5z

VF=(VF. i)i + (Vr-j)j + (VT. k)k.

Henceby(26) VF= i

|^ + j |T+ k
|

The second definition (24) has been reduced to the first

and consequently is equivalent to it.

*65.] The equation (25) found above is often taken as a

definition of V V. According to ordinary calculus the deriv

ed y
ative - satisfies the equation

d x

, dydx = dydx
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Moreover this equation defines dy / dx. In a similar manner

it is possible to lay down the following definition.

Definition: The derivative V^ of a scalar function of

position in space shall satisfy the equation

for all values of d r.

This definition is certainly the most natural and important

from theoretical considerations. But for practical purposes

either of the definitions before given seems to be better.

They are more tangible. The real significance of this last

definition cannot be appreciated until the subject of linear

vector functions has been treated. See Chapter VII.

The computation of the derivative V of a function is most

frequently carried on by means of the ordinary partial

differentiation.

Example 1 :

(ix + jy + kz)

The derivative of r is a unit vector in the direction of r.

This is evidently the direction of most rapid increase of r

and the rate of that increase.
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Example % : Let

T V1F

1 X

Hence

T (x
z + y

z + 2
)* (x

z + y
z + 2 2)*

-k
2 + g 2)t

_1 1

1 -r -r
and V ~ ==

7
-

^i
= ~Tr (r r) r 3

The derivative of 1/r is a vector whose direction is that

of r, and whose magnitude is equal to the reciprocal of the

square of the length r.

Example 3: V rn n rn
~2 r = n r*

i>r
The proof is left to the reader.

Example 4 Let F(#, y, z) = log y#2 + y*.

V log V^Tp = i TT 5 + j 2 f 2 + k22 22

If r denote the vector drawn from the origin to the point

, y, z) of space, the function V may be written as

2/1 *) = log Vr.r-(k.r)
2

and ix + )y = T k kr.

Hence V log V^ + y
""

r r

T - k kr

(r-kk.r).(r-kk.r)
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There is another method of computing V which is based

upon the identity

Example 1 : Let V = Vrr = r.

d V = =^ =

Hence

v r r

-
V i>r r

Example 2 : Let V= r a, where a is a constant vector.

d F=dr.a = dr Vr.

Hence V V= a.

Example 3: Let F= (rxa) (rxb), where a and b are

constant vectors.

V= rr ab r-a rb.

dV = 2cZr*r a-b dr-a r-b drb r-a = di V Fl

Hence VF == 2 r a-b a r.b b r^a

Vr= (ra-b-ar-b) + (ra-b -br.a)

= bx(rxa) -fax (rxb).

Which of these two methods for computing V shall be

applied in a particular case depends entirely upon their

relative ease of execution in that case. The latter method is

independent of the coordinate axes and may therefore be

preferred. It is also shorter in case the function Fcan be

expressed easily in terms of r. But when V cannot be so

expressed the former method has to be resorted to.

*66.] The great importance of the operator V in mathe

matical physics may be seen from a few illustrations. Sup

pose T (#, y, z) be the temperature at the point #, y, z of a
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heated body. That direction in which the temperature de

creases most rapidly gives the direction of the flow of heat.

V T, as has been seen, gives the direction of most rapid

increase of temperature. Hence the flow of heat f is

f = _& vr,

where k is a constant depending upon the material of the

body. Suppose again that V be the gravitational potential

due to a fixed body. The force acting upon a unit mass at

the point (#, y, z) is in the direction of most rapid increase of

potential and is in magnitude equal to the rate of increase

per unit length in that direction. Let F be the force per unit

mass. Then
F = VF.

As different writers use different conventions as regards the

sign of the gravitational potential, it might be well to state

that the potential Preferred to here has the opposite sign to

the potential energy. If W denoted the potential energy of

a mass m situated at #, y, z, the force acting upon that mass

would be
F = - VfF.

In case V represent the electric or magnetic potential due

to a definite electric charge or to a definite magnetic pole re

spectively the force F acting upon a unit charge or unit pole

as the case might be is

F = - VF.

The force is in the direction of most rapid decrease of

potential. In dealing with electricity and magnetism poten
tial and potential energy have the same sign ; whereas in

attraction problems they are generally considered to have

opposite signs. The direction of the force in either case is in

the direction of most rapid decrease of potential energy. The

difference between potential and potential energy is this.

10
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Potential in electricity or magnetism is the potential energy

per unit charge or pole ; and potential in attraction problems

is potential energy per unit mass taken, however, with the

negative sign.

*67.] It is often convenient to treat an operator as a

quantity provided it obeys the same formal laws as that

quantity. Consider for example the partial differentiators

!_ A !..
9x 3y 3z

As far as combinations of these are concerned, the formal laws

are precisely what they would be if instead of differentiators

three true scalars

a, 6, c

were given. For instance

the commutative law

99 d 9= - *, a = a,
Sx3y 3ySx

the associative law

5 9 3\ 3 3 3

and the distributive law

3 f 3 3\ 33 33
( -+_-)=_--_ + ._ -- a(b + c)

= a
3x\3y 3zJ 3x3y dxdz

hold for the differentiators just as for scalars. Of course such

formulae as

3 3

where u is a function of x cannot hold on account of the

properties of differentiators. A scalar function u cannot be

placed under the influence of the sign of differentiators.

Such a patent error may be avoided by remembering that an

operand must be understood upon which 3/3 # is to operate.
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In the same way a great advantage may be obtained by

looking upon

V-if +jf + kf3x dy dz

as a vector. It is not a true vector, for the coefficients

.., JL, A
P# dy dz

are not true scalars. It is a vector differentiator and of

course an operand is always implied with it. As far as formal

operations are concerned it behaves like a vector. For

instance

V (u + v) = V u + V v,

V(ttfl) = (Vtt) v + ^(Vtf),

c V u = V (c u),

if w and v are any two scalar functions of the scalar variables

#, y, 2 and if c be a scalar independent of the variables with

regard to which the differentiations are performed.

68.] If A represent any vector the formal combination

A. Vis

A.V = A
l /-x+

A
2 /-

+ A s
j-,

(27)

provided A = A
l
i + A^ j + A% k.

This operator A V is a scalar differentiator. When applied

to a scalar function V (x, y, z) it gives a scalar.

<^ r-A+^+^- (28)

Suppose for convenience that A is a unit vector a.

(a.V)F=a1
I + a

2
r +a8 r

(29)
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where a v a^a B
are the direction cosines of the line a referred

to the axes Jf, F, Z. Consequently (a V) V appears as the

well-known directional derivative of V in the direction a.

This is often written

3V 3V
, 3F, 3V

T^^+^-^sT- (29)

It expresses the magnitude of the rate of increase of V in

the direction a. In the particular case where this direction is

the normal n to a surface of constant value of F, this relation

becomes the normal derivative.

if n
x , n 2 , n 3 be the direction cosines of the normal.

The operator a V applied to a scalar function of position

V yields the same result as the direct product of a and the

vector V V.

(a.V)F=a.(VF). (30)

For this reason either operation may be denoted simply by

a- VF
without parentheses and no ambiguity can result from the

omission. The two different forms (a V) Fand a- (V F)

may however be interpreted in an important theorem.

(a V) F is the directional derivative of F in the direction

a. On the other hand a (V V) is the component of VF in

the direction a. Hence : The directional derivative of F in

any direction is equal to the component of the derivative

VFin that direction. If Fdenote gravitational potential the

theorem becomes : The directional derivative of the potential

in any direction gives the component of the force per unit

mass in that direction. In case Fbe electric or magnetic

potential a difference of sign must be observed.
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Vector Functions of Position in Space

69.] A vector function of position in space is a function

V (x, y, z)

which associates with each point x, y, z in space a definite

vector. The function may be broken up into its three com

ponents

V (x, y, z)
= F! (x, y,z)i+ F

2 (x, y, z) j + F
3 (a?, y, z) k.

Examples of vector functions are very numerous in physics.

Already the function VF has occurred. At each point of

space V F has in general a definite vector value. In mechan

ics of rigid bodies the velocity of each point of the body is a

vector function of the position of the point. Fluxes of heat,

electricity, magnetic force, fluids, etc., are all vector functions

of position in space.

The scalar operator a V may be applied to a vector func

tion V to yield another vector function.

Let V = Fi (x, y,z) i + F2 (as, y, z) j + F
3 (x, y, z) k

and a = a
1

i + a
2 j + a

3 k.

Then a - V =
i^ + a

3^+-af3

(a.V)V = (a.V) F! i + (a.V) F2 j + (a.V)F, k

9V 3V 9V\
-

(
a

9V, 9V2 3V2



150 VECTOR ANALYSIS

This may be written in the form

Hence (a V) V is the directional derivative of the vector

function V in the direction a. It is possible to write

(a V) V = a - V V
without parentheses. For the meaning of the vector symbol
V when applied to a vector function V has not yet been

defined. Hence from the present standpoint the expression

a V V can have but the one interpretation given to it by

(a V) V.

70.] Although the operation V V has not been defined and

cannot be at present,
1 two formal combinations of the vector

operator V and a vector function V may be treated. These

are the (formal) scalar product and the (formal) vector prod
uct of V into V. They are

T <82>

and VxV = i +]- +kxV. (88)

V V is read del dot V; and V x V, del cross V.

The differentiators , , , being scalar operators, pass

by the dot and the cross. That is

(32)Qy 3z

(88)

These may be expressed in terms of the components F", PI. V,
ofV.

i A definition of V V will be given in Chapter VII.
,



THE DIFFERENTIAL CALCULUS OF VECTORS 151

Now

Then

dx 9x Sx

3y dy 9y ~5y

8V_9V} 5V, 3F
3* 3*

h
3

Jl
~3

i.fl-

3V

(34)

Hence V V =

Moreover i >

rf + ^7 + 3T- (32)"

This may be written in the form of a determinant

VxV=
i j k333

(33)"
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It is to be understood that the operators^are to be applied to

the functions Vv F"
2 , F3

when expanding the determinant.

From some standpoints objections may be brought forward

against treating V as a symbolic vector and introducing V V
and V x V respectively as the symbolic scalar and vector

products of V into V. These objections may be avoided by

simply laying down the definition that the symbols V and

V x, which may be looked upon as entirely new operators

quite distinct from V, shall be

and V xV = ix + jx-4-kx-. (33)

But for practical purposes and for remembering formulae it

seems by all means advisable to regard

3 5 3

as a symbolic vector differentiator. This symbol obeys the

same laws as a vector just in so far as the differentiators333
^ T~~ T~ ^)ey^e same *aws ^ or(^nary scalar quantities.

71.] That the two functions V V and V x V have very

important physical meanings in connection with the vector

function V may be easily recognized. By the straight

forward proof indicated in Art. 63 it was seen that the

operator V is independent of the choice of axes. From this

fact the inference is immediate thatV V and V x V represent

intrinsic properties of V invariant of choice of axes. In order

to perceive these properties it is convenient to attribute to the

function V some definite physical meaning such as flux or

flow of a fluid substance. Let therefore the vector V denote
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at each point of space the direction and the magnitude of the

flow of some fluid. This may be a material fluid as water

or gas, or a fictitious one as heat or electricity. To obtain as

great clearness as possible let the fluid be material but not

necessarily restricted to incompressibility like water.

Then = i~+j. + k *I
dx 3y dz

is called the divergence of V and is often written

V V= div V.

The reason for this term is that VV gives at each point the

rate per unit volume per unit time at which fluid is leaving

that point the rate of diminution of density. To prove

this consider a small cube of matter (Fig. 31). Let the edges

of the cube be dx, dy, and dz respectively. Let

V (x, y, z) = V
l (x9 y,z)i+ V^ (xy y, z) j + F

3 (x, y, z) k.

Consider the amount of fluid which passes through those

faces of the cube which are parallel to the F^-plane, i. e.

perpendicular to the X
axis. The normal to the

face whose x coordinate is

the lesser, that is, the nor

mal to the left-hand face

of the cube is i. The flux

of substance through this

face is

xy2

FIG. 31.

-i.V (x,y,z) dy dz.

The normal to the oppo-
z

site face, the face whose

x coordinate is greater by the amount dx, is + i and the flux

through it is therefore
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r 3v i
i V (x + dx, y, z) dy dz = i V(#, y, z) + dx dy dz

3V= i V (xy y, z) dy dz + i - dx dy dz.
c) x

The total flux outward from the cube through these two

faces is therefore the algebraic sum of these quantities. This

is simply
3V , , . 3^

i -= dx dy dz = -^
- dx dy dz.

9 x 9 x

In like manner the fluxes through the other pairs of faces of

the cube are

3V,,, j,,c)V
i ^ dx dy dz and k - dx dy dz.

9 y 9 z

The total flux out from the cube is therefore

/. 3V
t

3V
t

, 3V\
(

i + j + k .
)
dx dy dz.

\ 9x dy 9zJ

This is the net quantity of fluid which leaves the cube per

unit time. The quotient of this by the volume dx dy dz of

the cube gives the rate of diminution of density. This is

V.T.I. + , .

9x dy 9z 9x dy 9z

Because V V thus represents the diminution of density

or the rate at which matter is leaving a point per unit volume

per unit time, it is called the divergence. Maxwell employed
the term convergence to denote the rate at which fluid ap

proaches a point per unit volume per unit time. This is the

negative of the divergence. In case the fluid is incompressible,

as much matter must leave the cube as enters it. The total

change of contents must therefore be zero. For this reason

the characteristic differential equation which any incompres

sible fluid must satisfy is
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where V is the flux of the fluid. This equation is often

known as the hydrodynamic equation. It is satisfied by any
flow of water, since water is practically incompressible. The

great importance of the equation for work in electricity is due

to the fact that according to Maxwell s hypothesis electric dis

placement obeys the same laws as an incompressible fluid. If

then D be the electric displacement,

div D = V D = 0.

72.] To the operator V X Maxwell gave the name curl.

This nomenclature has become widely accepted.

V x V = curl V.

The curl of a vector function V is itself a vector function

of position in space. As the name indicates, it is closely

connected with the angular velocity or spin of the flux at

each point. But the interpretation of the curl is neither so

easily obtained nor so simple as that of the divergence.

Consider as before that V represents the flux of a fluid.

Take at a definite instant an infinitesimal sphere about any

point (#, y, z). At the next instant what has become of the

sphere ? In the first place it may have moved off as a whole

in a certain direction by an amount d r. In other words it

may have a translational velocity of dr/dt. In addition to

this it may have undergone such a deformation that it is no

longer a sphere. It may have been subjected to a strain by
virtue of which it becomes slightly ellipsoidal in shape.

Finally it may have been rotated as a whole about some

axis through an angle dw. That is to say, it may have an

angular velocity the magnitude of which is dw/dt. An
infinitesimal sphere therefore may have any one of three

distinct types of motion or all of them combined. First, a

translation with definite velocity. Second, a strain with three

definite rates of elongation along the axes of an ellipsoid.
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Third, an angular velocity about a definite axis. It is this

third type of motion which is given by the curl. In fact,

the curl of the flux V is a vector which has at each point of

space the direction of the instantaneous axis of rotation at

that point and a magnitude equal to twice the instantaneous

angular velocity about that axis.

The analytic discussion of the motion of a fluid presents

more difficulties than it is necessary to introduce in treating

the curl. The motion of a rigid body is sufficiently complex
to give an adequate idea of the operation. It was seen (Art.

51) that the velocity of the particles of a rigid body at any
instant is given by the formula

v = v + a x r.

curl v = Vxv = Vxv + Vx(axr).
Let a = a

l
i + a% j + a

3
k

r = r
1

i + r
2 j + r

3
k=:;ri + 2/j-fzk

expand V X (a x r) formally as if it were the vector triple

product of V, a, and r. Then

V x v = V x v + (V - r) a - (V a) r.

v is a constant vector. Hence the term V x v vanishes.

V . r = + ^ + = 3.
3 x 3 y 3 z

As a is a constant vector it may be placed upon the other side

of the differential operator, V a = a V.

/ 3 3 3\
a - Vr=( ai^ + a2j-+ as^ Jr

= a
1
i

Hence Vxv = 3a a = 2a.

Therefore in the case of the motion of a rigid body the curl

of the linear velocity at any point is equal to twice the

angular velocity in magnitude and in direction.
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V x v = curl v = 2 a,

a = ^Vxv=| curl v.

v = v +
^ (V x v) x r = v + \ (curl v) x r. (34)

The expansion of V x (a x r) formally may be avoided by

multiplying a x r out and then applying the operator V X to

the result.

73.] It frequently happens, as in the case of the applica

tion just cited, that the operators V>V% V X, have to be

applied to combinations of scalar functions, vector functions,

or both. The following rules of operation will be found

useful. Let u, v be scalar functions and u, v vector func

tions of position in space. Then

V(t6 + t?)
= Vw + Vfl (35)

V.(u + v) = V.u + V-v (36)

Vx(u + v) = Vxu + Vxv (37)

V (u v) = v V u + u V v (38)

V (w v) = V M v + M V v (39)

v (40)

(41)

+ v x (V x u) + u x (V x v)
1

V.(uxv)=v.Vxu u-Vxv (42)

Vx (uxv) = v.Vu~vV-u-u.Vv + uV.v. 1
(43)

A word is necessary upon the matter of the interpretation

of such expressions as

V u v, V u v, V u x v.

The rule followed in this book is that the operator V applies

to the nearest term only. That is,

1 By Art. 69 the expressions v V n and n V v me to be interpreted as

(V V) uand (
u * V) v-
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V uv = (V u) v

V u v = (V u) v

V u x v = (V u) x v.

If V is to be applied to more than the one term which follows

it, the terms to which it is applied are enclosed in a paren

thesis as upon the left-hand side of the above equations.

The proofs of the formulae may be given most naturally

by expanding the expressions in terms of three assumed unit

vectors i, j, k. The sign 2 of summation will be found con

venient. By means of it the operators V> V* A x take the

form

The summation extends over #, y, z.

To demonstrate Vx (wv)

^ 9 x

Hence Vx (wv) = Vwxv + ^Vxv.

To demonstrate

V (u v) = v V u + u V v + v x (V x u) + n x (V x v).



THE DIFFERENTIAL CALCULUS OF VECTORS 159

^ . 3 u ^ . 3 v
V(u.v) = 2^-v+^^.-

Now
,3u

^ 3 u . ^ . 9 u

2 v._ 1 = vx(V xu) + 2v.i-

or IE v i = v x (V x u) + v V u.
** 9 x

3 v
In like manner T u ;r- * = u x (V x v) + u V v.

d x

Hence V(uv)=vVu +

+ v x (V x n) + u x (V x v).

The other formulae are demonstrated in a similar manner.

71] The notation l

V(u-v) u (44)

will be used to denote that in applying the operatorV to the

product (u v), the quantity u is to be regarded as constant.

That is, the operation V is carried out only partially upon
the product (u v). In general if V is to be carried out

partially upon any number of functions which occur after

it in a parenthesis, those functions which are constant for the

differentiations are written after the parenthesis as subscripts.

Let M = U i

1 This idea and notation of a partial V so to speak may be avoided by means

of the formula 41. But a certain amount of compactness and simplicity is

lost thereby. The idea of V (u v)u is surely no more complicated than u V v or

v X (V X n).
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then n-v = M
1 1 + u^v 2 + u

z

and V (u V)

3^0
But

and V(u.v) T =

Hence V(u-v) rrr^j Vw x +

But V(u-v) n = w
1
Vi?

1 + ^
a
Vi? a + w

8
V? 8 (44)

and V(uv) v = ^j V^ x + i;
2
V^

2 + ^
3
V^

3
.

Hence V (u- v) = V (u- v) u + V (u- v) v . (45)

This formula corresponds to the following one in the nota

tion of differentials

d (u v) = d (u v)u + d (u v)T

or d (u v) = u d v + d n v.

The formulae (35)-(43) given above (Art. 73) may be

written in the following manner, as is obvious from analogy

with the corresponding formulae in differentials :

V (u + v*)
= V (u + v\ + V (u + v)9 (35)

V. (u + v) = V- (u + v) u + V- (u + v)v (36)

V x (u + v) = V x (u + v) u + V x (u + v)y (37)
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V (u v) = V (u v\ + V (u v\ (38)

V- (u v) = V- (u v). + V- O v)r (39)

V x (u v) = V x (i* v) a + V x (u v)v (40)

V (u- v) = V (u. v)u + V (u. v)v (41)

V (u x v) = V (u x v)a + V (u x v)y (42)

V x (u x v) = V x (u x v)a + V x (u x v)v. (43)

This notation is particularly useful in the case of the

scalar product u^v and for this reason it was introduced.

In almost all other cases it can be done away without loss of

simplicity. Take for instance (43) . Expand V x (u x v)u

formally.
V x (u x v)u = (V v) u (V u) v,

where it must be understood that u is constant for the differ

entiations which occur in V. Then in the last term the

factor u may be placed before the sign V. Hence

V X (uX v) u = u V * v u- Vv.

In like manner V x (u x v) v
= v V u vV u.

Hence Vx(uxv)=vVu v V u u V v + u V v.

75.] There are a number of important relations in which

the partial operation V (u v) u figures.

u x (V x v) = V (u v) a
- u V v, (46)

or V(u-v) u
= u. Vv + u x (V x v), (46)

or u V v = V (u v)u + (V x v) x u. (46)"

The proof of this relation may be given by expanding in

terms of i, j, k. A method of remembering the result easily

is as follows. Expand the product

u x (V x v)
ll
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formally as if V, u, v were all real vectors. Then

ux(Vxv)=u.vV u V v.

The second term is capable of interpretation as it stands.

The first term, however, is not. The operator V has nothing

upon which to operate. It therefore must be transposed so

that it shall have u v as an operand. But u being outside

of the parenthesis in u x (V x v) is constant for the differen

tiations. Hence
u v V = V (u v)u

and u x (V x v) = V (u v)u u V v. (46)

If u be a unit vector, say a, the formula

a-Vv = V(av)a + (V x v) x a (47)

expresses the fact that the directional derivative a V v of a

vector function v in the direction a is equal to the derivative

of the projection of the vector v in that direction plus the

vector product of the curl of v into the direction a.

Consider the values of v at two neighboring points.

v (x, y, z)

and v (x + dx, y + dy> z + dz)

d v = v (x + dx, y + dy, z + dz) v (#, y, z).

Let v = v{i + v
2 j + v 8

k

dv = dv
l
i + dv%j + dv

3 k.

But by (25) dv
1
= dr*

d v% = dr

dv% = dr

Hence d v s= d r (V v
l
i + V v

2 j + V v
z k).

Hence d v = d r V v

By (46)" d v = V (rfr v)dr + (V x v) x dr. (48)
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Or if V denote the value of v at the point (#, y, z) and v the

value at a neighboring point

v = v + V (d r v)dr + (V x v) x dr. (49)

This expression of v in terms of its value v at a given point,

the dels, and the displacement d r is analogous to the expan
sion of a scalar functor of one variable by Taylor s theorem,

/<*>=/(*>+.TOO **

The derivative of (r v) when v is constant is equal to v.

That is V (r v)v = v.

For V (r v)v
= v V r - (V x r> x v,

9

v Vr = v
l
i + v%j + 8 k = v,

V x r = 0.

Hence V (r v)v = v.

In like manner if instead of the finite vector r, an infinitesimal

vector d r be substituted, the result still is

V (d r v)v = v.

V/fllO*^

By (49) v = V + V (d r v)dr + (V x v) x d r

V (d r v) = V (d r v)d ; + V (d r vV
Hence V (d r v)dr = V (d r v) v.

Substituting :

v =
^
vo + ^V(dr.v) + ^(Vxv)xdr. (50)

This gives another form of (49) which is sometimes more

convenient It is also slightly more symmetrical.
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*
76.] Consider a moving fluid. Let v (#, T/, 3, t) be the

velocity of the fluid at the point (#, y, z) at the time t. Sur

round a point (a; , y , z ) with a small sphere.

dr dr = c 2.

At each point of this sphere the velocity is

v = v + d r V v.

In the increment of time B t the points of this sphere will have

moved the distance

The point at the center will have moved the distance

The distance between the center and the points that were

upon the sphere of radius d r at the commencement of the

interval $ t has become at the end of that interval S t

To find the locus of the extremity of dr r
it is necessary to

eliminate d r from the equations

c 2 = d r d r.

The first equation may be solved for d r by the method of

Art. 47, page 90, and the solution substituted into the second.

The result will show that the infinitesimal sphere

has been transformed into an ellipsoid by the motion of the

fluid during the time 8 1.

A more definite account of the change that has taken place

may be obtained by making use of equation (50)
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v = iv + |v(rfr.v) + 2-(Vx v) xdr,

v = v +i[V(dr.v)-v ] + |(Vxv)xdr;
S

or of the equation (49)

v = v + V(dr-v)dr +(Vx v)xrfr,

v = v + [V (dr v) dr + I (V x v) x d
r]+ ^ (V x v) x d r.

The first term v in these equations expresses the fact that

the infinitesimal sphere is moving as a whole with an instan

taneous velocity equal to V . This is the translational element

of the motion. The last term

^(Vxv)xdr = curl v x d r

shows that the sphere is undergoing a rotation about an

instantaneous axis in the direction of curl v and with an angu
lar velocity equal in magnitude to one half the magnitude of

curl v. The middle term

or v(dr.v)dr
- (Vx v) x dr

expresses the fact that the sphere is undergoing a defor

mation known as homogeneous strain by virtue of which it

becomes ellipsoidal. For this term is equal to

dx V^j + dy V# 2 + dz

if Vj, v
2 , v

s be respectively the components of v in the direc

tions i, j, k. It is fairly obvious that at any given point

(#o> 2A zo) ^ set of three mutually perpendicular axes i, j, k

may be chosen such that at that point V^, V#
2 ,
V#

3 are re-
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spectively parallel to them. Then the expression above

becomes simply

dx *i i+dy^i + dz
s^.dx

y

9y 9^

The point whose coordinates referred to the center of the

infinitesimal sphere are

dx, dy, dz

is therefore endowed with this velocity. In the time S t it

will have moved to a new position

The totality of the points upon the sphere

goes over into the totality of points upon the ellipsoid of

which the equation is

dx2 dy
2

dz*

y

The statements made before (Art. 72) concerning the three

types of motion which an infinitesimal sphere of fluid may

possess have therefore now been demonstrated.

77.] The symbolic operator V may be applied several times

in succession. This will correspond in a general way to

forming derivatives of an order higher than the first. The

expressions found by thus repeating V will all be independ

ent of the axes because V itself is. There are six of these

dels of the second order.

Let V (#, y, z) be a scalar function of position in space.

The derivative VF is a vector function and hence has a curl

and a divergence. Therefore

V-VF, VxVF
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are the two derivatives of the second order which may be

obtained from V.

V-VF=div VF (51)

V x VF=curl VF. (52)

The second expression V xV Vvanishes identically. That is,

the derivative of any scalar function V possesses no curl. This

may be seen by expanding V x VV in terms of i, j, k. All

the terms cancel out. Later (Art. 83) it will be shown con

versely that if a vector function W possesses no curl, i. e. if

V x W = curl W = 0, then W = VF,

W is the derivative of some scalar function F.

The first expression V V F when expanded in terms of

i, j, k becomes

Symbolically, V V = ^ + -5 + -r
y2 O <i/2 O /v 2

The operator V V is therefore the well-known operator of

Laplace. Laplace s Equation

becomes in the notation here employed

V-VF=0. (53)

When applied to a scalar function F the operator V V yields

a scalar function which is, moreover, the divergence of the

derivative.

Let T be the temperature in a body. Let c be the con

ductivity, p the density, and k the specific heat. The

flow f is



168 VECTOR ANALYSIS

The rate at which heat is leaving a point per unit volume per

unit time is V f. The increment of temperature is

rfr=-^-V.f dt.
p K

d
- =-^.VT.at p K

This is Fourier s equation for the rate of change of tempera
ture.

Let V be a vector function, and Vv Vv Vz its three com

ponents. The operator V V of Laplace may be applied to V.

v.vv = v-vr
1

i + v-vr2 j + v.vr3 k (54)

If a vector function V satisfies Laplace s Equation, each of

its three scalar components does. Other dels of the second

order may be obtained by considering the divergence and curl

of V. The divergence V V has a derivative

VV-V = VdivV. (55)

The curl V X V has in turn a divergence and a curl,

and V V x V, VxVxV.
V - V x V = div curl V (56)

and V x V x V = curl curl V. (57)

Of these expressions V V x V vanishes identically. That is,

the divergence of the curl of any vector is zero. This may be

seen by expanding V V x V in terms of i, j, k. Later (Art.

83) it will be shown conversely that if the divergence of a

vector function W vanishes identically, i. e. if

V W = div W = 0, then W = V x V = curl V,

W is the curl of some vector function V.
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If the expression V x (V x V) were expanded formally

according to the law of the triple vector product,

Vx(VxV) = V-VV-V.VV.

The term V V V is meaningless until V be transposed to

the beginning so that it operates upon V.

VxVxV = VV.V-V-VV, (58)

or curl curl V = V div V - V VV. (58)

This formula is very important. It expresses the curl of the

curl of a vector in terms of the derivative of the divergence

and the operator of Laplace. Should the vector function V

satisfy Laplace s Equation,

V VV = and

curl curl V = V div V.

Should the divergence of V be zero,

curl curl V= V VV.

Should the curl of the curl of V vanish,

V div V = V VV.

To sum up. There are six of the dels of the second order.

V-VT, VxVF,
V-VV, V V V, V V x V, V x V x V.

Of these, two vanish identically.

VxVr=0, V-VxV = 0.

A third may be expressed in terms of two others.

VxVxV = VV.V-V.VV. (58)

The operator V V is equivalent to the operator of Laplace.
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*
78.] The geometric interpretation of V Vw is interesting.

It depends upon a geometric interpretation of the second

derivative of a scalar function u of the one scalar variable x.

Let u
i
be the value of u at the point x

t . Let it be required

to find the second derivative of u with respect to x at the

point x . Let x
l
and x

2 be two points equidistant from # .

That is, let

Xn *"" XQ XQ ~~~
*/ &t

* a ^^ ni

o
Then -^

is the ratio of the difference between the average of u at the

points x
l
and #

2
and the value of u at x to the square of the

distance of the points xv #
3 from x . That

d*u
. LIM.

is easily proved by Taylor s theorem.

Let u be a scalar function of position in space. Choose

three mutually orthogonal lines i, j, k and evaluate the

expressions

Let o?
2 and a?! be two points on the line i at a distance a from

x ; #4 and #
3, two points on j at the same distance a from

s > #e and #
6, two points on k at the same distance a from x .

= u~

?^_. LIM ._2 :
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Add:

-LIM r

~a=OL

As V and V- are independent of the particular axes chosen,

this expression may be evaluated for a different set of axes,

then for still a different one, etc. By adding together all

these results

u
\ + u

% + * 6 n terms-

a== a

Let n become infinite and at the same time let the different

sets of axes point in every direction issuing from # . The

fraction

u
\ + U

2 + * ^ n terms

6 n

then approaches the average value of u upon the surface of a

sphere of radius a surrounding the point x . Denote this

by ua .

= a

V V u is equal to six times the limit approached by the ratio

of the excess of u on the surface of a sphere above the value

at the center to the square of the radius of the sphere. The
same reasoning holds in case u is a vector function.

If u be the temperature of a body V-V u (except for a

constant factor which depends upon the material of the
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body) is equal to the rate of increase of temperature (Art.

77). If VV^is positive the average temperature upon a

small sphere is greater than the temperature at the center.

The center of the sphere is growing warmer. In the case

of a steady flow the temperature at the center must remain

constant. Evidently therefore the condition for a steady

flow is

V V u = 0.

That is, the temperature is a solution of Laplace s Equation.

Maxwell gave the name concentration to V V u whether

u be a scalar or vector function. Consequently V V u may
be called the dispersion of the function u whether it be scalar

or vector. The dispersion is proportional to the excess of

the average value of the function on an infinitesimal surface

above the value at the center. In case u is a vector function

the average is a vector average. The additions in it are

vector additions.

SUMMARY OF CHAPTER III

If a vector r is a function of a scalar t the derivative of

r with respect to t is a vector quantity whose direction is

that of the tangent to the curve described by the terminus

of r and whose magnitude is equal to the rate of advance of

that terminus along the curve per unit change of t. The

derivatives of the components of a vector are the components
of the derivatives.

dn
r d n r,. d r . d* r~= i H j H k (2V

dt* dt n dt*
J

dt*

A combination of vectors or of vectors and scalars may be

differentiated just as in ordinary scalar analysis except that

the differentiations must be performed in situ.
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(3)

(4)

or d (a b) = d a b + a d b, (3)

d(axb) = daxb + axdb, (4)

and so forth. The differential of a unit vector is perpendicu

lar to that vector.

The derivative of a vector r with respect to the arc s of

the curve which the terminus of the vector describes is

the unit tangent to the curves directed toward that part of the

curve along which $ is supposed to increase.

r."- <"

The derivative of t with respect to the arc * is a vector whose

direction is normal to the curve on the concave side and

whose magnitude is equal to the curvature of the curve.

The tortuosity of a curve in space is the derivative of the

unit normal n to the osculating plane with respect to the

arc s.

^n_^_/rfr <?
2 r _1_ \

~
ds~ ds\ds

X
ds* VCTC/

The magnitude of the tortuosity is

r=

rdr d*r cZ
3

r"|

L^s ^T2 rf^J
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If r denote the position of a moving particle, t the time,

v the velocity, A the acceleration,

*-*---*
The acceleration may be broken up into two components of

which one is parallel to the tangent and depends upon the

rate of change of the scalar velocity v of the particle in its

path, and of which the other is perpendicular to the tangent

and depends upon the velocity of the particle and the curva

ture of the path.
A = s t + 2

C. (19)

Applications to the hodograph, in particular motion in a

circle, parabola, or under a central acceleration. Application

to the proof of the theorem that the motion of a rigid body
one point of which is fixed is an instantaneous rotation about

an axis through the fixed point.

Integration with respect to a scalar is merely the inverse

of differentiation. Application to finding the paths due to

given accelerations.

The operator V applied to a scalar function of position in

space gives a vector whose direction is that of most rapid

increase of that function and whose magnitude is equal to

the rate of that increase per unit change of position in that

direction
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The operator V is invariant of the axes i, j, k. It may be

denned by the equation

n, (24)

or W-dT = dV. (25)

Computation of the derivative VV by two methods depend

ing upon equations (21) and (25) . Illustration of the oc

currence of V in mathematical physics.

V may be looked upon as a fictitious vector, a vector

differentiator. It obeys the formal laws of vectors just in

so far as the scalar differentiators of 51 5 x> "9 / d y, 9 1 3 z obey
the formal laws of scalar quantities

A - VF=^ +^i^ l7 <28>

If a be a unit vector a VV is the directional derivative of V
in the direction a.

a.VF = (a-V) F=a(VF). (30)

If V is a vector function a VV is the directional derivative

of that vector function in the direction a.

- _ ,-J~ + k.^-, (32)
3 x 9 y 3 z

VxV=ix|^ + jx + kx , (33)3x 3y 3 z

V.V= ^
J +^ + ^

8
, (32)

3 x 3 y 3 z
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Proof that V V is the divergence of V and V x V, the curl

of V.
V V = div V,

V X V = curl V.

VO + t;)
= V u + Vtf, (35)

V (u + v) = V u + V v, (36)

Vx(u + v)=Vxn + Vxv, (37)

V (u v) = v V u + u V v, (38)

V (u v) = V u v + u V v, (39)

V x (u v) = V u x v + u V x v, (40)

V(nv)=vVu + U Vv + vx (V x n)

+ n x (V x v), (41)

V (n x v) = v Vxu-u-Vxv, (42)

Vx (u x v) =v .Vu v V u u Vv + uV* v. (43)

Introduction of the partial del, V (u v)u ,
in which the dif

ferentiations are performed upon the hypothesis that u is

constant.

u x (V x v) = V (u v)u n V v. (46)

If a be a unit vector the directional derivative

a V v = V (a v)a + (V x v) x a. (47)

The expansion of any vector function v in the neighborhood

of a point (x# y# z ) at which it takes on the value of v is

v = v + V (d r v)dr + (V x v) x dr, (49)

or v =
\
v + V (d r . v) + \ (V x v) x d r. (50)

Application to hydrodynamics.

The dels of the second order are six in number.
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V x VF= curl VF= 0, (52)

x) 2 F" wv &v
V-VJ^vV^f^+^ +Vp (51)

d x2 d y
2 9 z2

V V is Laplace s operator. If VVF=0, V satisfies La

place s Equation. The operator may be applied to a vector.

VV. V = VdivV, (55)

V V x V = div curl V = 0, (56)

Vx VxV=curlcurlV = VV.V- V. VV. (58)

The geometric interpretation of V V as giving the disper

sion of a function.

EXERCISES ON CHAPTER III

1. Given a particle moving in a plane curve. Let the

plane be the ij-plane. Obtain the formulae for the compo
nents of the velocity parallel and perpendicular to the radius

vector r. These are

rp kxr,

where is the angle the radius vector r makes with i, and k

is the normal to the plane.

2. Obtain the accelerations of the particle parallel and

perpendicular to the radius vector. These are

Express these formulae in the usual manner in terms of x

and y.

12
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3. Obtain the accelerations of a moving particle parallel

and perpendicular to the tangent to the path and reduce the

results to the usual form.

4. If r, </>,
be a system of polar coordinates in space,

where r is the distance of a point from the origin, </>
the

meridianal angle, and 6 the polar angle ; obtain the expressions

for the components of the velocity and acceleration along the

radius vector, a meridian, and a parallel of latitude. Reduce

these expressions to the ordinary form in terms of #, y, z.

5. Show by the direct method suggested in Art. 63 that

the operator V is independent of the axes.

6. By the second method given for computing V find

the derivative V of a triple product [a be] each term of which

is a function of #, y, z in case

a = (r r) r, b = (r a) e, c = r x t,

where d, e, f are constant vectors.

7. Compute V V F when Fis r2
, r, -, or -r

, r r*

8. Compute V V V, VV V, and V x V x V when V is

equal to r and when V is equal to
-j>

and show that in these

cases the formula (58) holds.

9. Expand V x VV and V V x V in terms of i, j, k and

show that they vanish (Art. 77).

10. Show by expanding in terms of i, j, k that

Vx VxV=VV. V-V VV.

11. Prove A.V(7-W) = VA.VW+ WA- VV,
and

(VxV) x W=Vx (Vx



CHAPTER IV

THE INTEGRAL CALCULUS OF VECTORS

79.] Let W (#, y, z) be a vector function of position in

space. Let C be any curve in space, and r the radius vector

drawn from some fixed origin to the points of the curve.

Divide the curve into infinitesimal elements dr. From the

sum of the scalar product of these elements d r and the value

of the function W at some point of the element

thus 2 W d r.

The limit of this sum when the elements dr become infinite

in number, each approaching zero, is called the line integral of

W along the curve C and is written

.dr.

and dT = i dx + j dy + k dz,

r r
I W dr = i [W+dx -\-W*dy +W%dz\. (1)

t/ (7 t/ C7

The definition of the line integral therefore coincides with

the definition usually given. It is however necessary to

specify in which direction the radius vector r is supposed to

describe the curve during the integration. For the elements

d r have opposite signs when the curve is described in oppo-
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site directions. If one method of description be denoted by
C and the other by (7,

/W d r = --
I W d r.

-G J c

In case the curve C is a closed curve bounding a portion of

surface the curve will always be regarded as described in

such a direction that the enclosed area appears positive

(Art. 25).

If f denote the force which may be supposed to vary from

point to point along the curve (7, the work done by the force

when its point of application is moved from the initial point

r of the curve C to its final point r is the line integral

ff . dr= f f dr.
J c J r

Theorem : The line integral of the derivative V F of a

scalar function V(x,y, z) along any curve from the point

r to the point r is equal to the difference between the values

of the function F (#, y, z) at the point r and at the point r .

That is,

Vr.dr = F(r) - F(r ) = V(x,y,z) - V(xy*d.
o

By definition d r V F"= d V

fdV= F(r) - F(r ) = Ffey,^) - V(xyz.). (2)

Theorem : The line integral of the derivative V F" of a

single valued scalar function of position V taken around a

closed curve vanishes.

The fact that the integral is taken around a closed curve

is denoted by writing a circle at the foot of the integral sign.

To show

(3)
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The initial point r and the final point r coincide. Hence

Hence by (2) fvF.dr = 0.

Jo

Theorem : Conversely if the line integral of W about every
closed curve vanishes, W is the derivative of some scalar

function V (x, y, z) of position in space.

Given
J o

To show W = V V.

Let r be any fixed point in space and r a variable point.

The line integral

J
di

is independent of the path of integration C. For let any two

paths C and C f be drawn between r and r. The curve which

consists of the path C from r to r and the path C f from r

to r is a closed curve. Hence by hypothesis

/W*cZr+
fw.dr = 0,

j / c

/Wdr =
/ W*dr.

-c J c

Hence / W d r = / W dr.
J c J c

Hence the value of the integral is independent of the path
of integration and depends only upon the final point r.
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The value of the integral is therefore a scalar function of

the position of the point r whose coordinates are x, y, z.

Let the integral be taken between two points infinitely near

together.
y,z).

But by definition V V d r = d V.

Hence W
The theorem is therefore demonstrated.

80.] Let f be the force which acts upon a unit mass near

the surface of the earth under the influence of gravity. Let

a system of axes i, j, k be chosen so that k is vertical. Then

The work done by the force when its point of application

moves from the position r to the position r is

w = I f*dT = I # k d r = I gdz.J r J r J r

Hence w = g (z z ) = g (z z).

The force f is said to be derivable from a force-function V
when there exists a scalar function of position V such that

the force is equal at each point of the derivative VF.

Evidently if V is one force-function, another may be obtained

by adding to V any arbitrary constant. In the above ex

ample the force-function is

V=w = g(zQ -z).

Or more simply V= g z.

The force is f = VF=-0k.
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The necessary and sufficient condition that a force-function

V (z, y, z) exist, is that the work done by the force when its

point of application moves around a closed circuit be zero.

The work done by the force is

w = I f d r.

If this integral vanishes when taken around every closed

contour

And conversely if f = V V

the integral vanishes. The force-function and the work done

differ only by a constant.

V= w + const

In case there is friction no force-function can exist. For the

work done by friction when a particle is moved around in a

closed circuit is never zero.

The force of attraction exerted by a fixed mass M upon
a unit mass is directed toward the fixed mass and is propor

tional to the inverse square of the distance between the

masses.

M
f = -c-r.

r 6

This is the law of universal gravitation as stated by Newton.

It is easy to see that this force is derivable from a force-

function V. Choose the origin of coordinates at the center

of the attracting mass M. Then the work done is

M
? r d r.

But r d r = r d r,

r
drr

r
dr M 1)= -c$r I =-cM

j
--- }

J r r2 I r r 3
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By a proper choice of units the constant c may be made

equal to unity. The force-function V may therefore be

chosen as

If there had been several attracting bodies

the force-function would have been

M<

where rr r
2, r 8, are the distances of the attracted unit

mass from the attracting masses Mv M% y
M

B

The law of the conservation of mechanical energy requires

that the work done by the forces when a point is moved

around a closed curve shall be zero. This is on the assump
tion that none of the mechanical energy has been converted

into other forms of energy during the motion. The law of

conservation of energy therefore requires the forces to be

derivable from a force-function. Conversely if a force-

function exists the work done by the forces when a point is

carried around a closed curve is zero and consequently there

is no loss of energy. A mechanical system for which a force-

function exists is called a conservative system. From the

example just cited above it is clear that bodies moving under

the law of universal gravitation form a conservative system
at least so long as they do not collide.

81.] Let W (x, y, z) be any vector function of position in

space. Let S be any surface. Divide this surface into in

finitesimal elements. These elements may be regarded as

plane and may be represented by infinitesimal vectors of

which the direction is at each point the direction of the

normal to the surface at that point and of which the magni
tude is equal to the magnitude of the area of the infinitesimal
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element. Let this infinitesimal vector which represents the

element of surface in magnitude and direction be denoted by
d a. Form the sum

which is the sum of the scalar products of the value of W
at each element of surface and the (vector) element of

surface. The limit of this sum when the elements of sur

face approach zero is called the surface integral of W over

the surface $, and is written

(4)

The value of the integral is scalar. If W and da be ex

pressed in terms of their three components parallel to i, j, k

or d a = dy dz i -f dz dx j + dx dy k,

(5)

The surface integral therefore has been defined as is cus

tomary in ordinary analysis. It is however necessary to

determine with the greatest care which normal to the surface

d a is. That is, which side of the surface (so to speak) the

integral is taken over. For the normals upon the two sides

are the negatives of each other. Hence the surface integrals

taken over the two sides will differ in sign. In case the

surface be looked upon as bounding a portion of space d a

is always considered to be the exterior normal.

If f denote the flux of any substance the surface integral

f.rfa
s
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gives the amount of that substance which is passing through
the surface per unit time. It was seen before (Art. 71) that

the rate at which matter was leaving a point per unit

volume per unit time was V f. The total amount of mat

ter which leaves a closed space bounded by a surface S per
unit time is the ordinary triple integral

(6)

Hence the very important relation connecting a surface in

tegral of a flux taken over a closed surface and the volume

integral of the divergence of the flux taken over the space
enclosed by the surface

///
CO

Written out in the notation of the ordinary calculus this

becomes

I I \Xdy dz + Ydzdx + Zdxdy~\

3Y,

where X, F, Z are the three components of the flux f. The

theorem is perhaps still more familiar when each of the three

components is treated separately.

(8)

This is known as Gauss s Theorem. It states that the surface

integral (taken over a closed surface) of the product of a

function X and the cosine of the angle which the exterior

normal to that surface makes with the X-axis is equal to

the volume integral of the partial derivative of that function
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with respect to x taken throughout the volume enclosed by
that surface.

If the surface S be the surface bounding an infinitesimal

sphere or cube

ff f-da = V-f dv

where d v is the volume of that sphere or cube. Hence

V.f = ^ fff-da. (9)dv J J a

This equation may be taken as a definition of the divergence

V f. The divergence of a vector function f is equal to the

limit approached by the surface integral of f taken over a sur

face bounding an infinitesimal body divided by that volume

when the volume approaches zero as its limit. That is

V.f= , A
-- f-da. (10)dvQ dvJJs

From this definition which is evidently independent of the

axes all the properties of the divergence may be deduced. In

order to make use of this definition it is necessary to develop

at least the elements of the integral calculus of vectors before

the differentiating operators can be treated. This definition

of V f consequently is interesting more from a theoretical

than from a practical standpoint.

82.] Theorem : The surface integral of the curl of a vector

function is equal to the line integral of that vector function

taken around the closed curve bounding that surface.

ff
J J

V x W-da= w-dr. (11)
8 J O

This is the celebrated theorem of Stokes. On account of its

great importance in all branches of mathematical physics a

number of different proofs will be given.
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First Proof : Consider a small triangle 123 upon the surface

S (Fig. 32). Let the value of W at the vertex 1 be W .

Then by (50), Chap. III., the value at any neighboring point is

W =
~{
W + V (W* 8 r) + (V x W) x 8 r

j
,

where the symbol 8 r has been introduced for the sake of dis

tinguishing it from d r which is to be used as the element of

integration. The integral of W taken around the triangle

FIG. 32.

Cw-dr=l fwo -dr + g fv(W-Sr).<Zr

+ 5 f (V x W) x Sr-dr.
/ A

The first term I fwo .dr = iwo
. Cdr

2 JA JA

vanishes because the integral of d r around a closed figure, in

this case a small triangle, is zero. The second term

g fv(W-Sr).drJ A

vanishes by virtue of (3) page 180. Hence
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Cw*di = l fvxWxSr-dr.
JA J A

Interchange the dot and the cross in this triple product.

V xW-Sr x dr.=| J
When dr is equal to the side 12 of the triangle, Sr is also

equal to this side. Hence the product

Sr x di

vanishes because 8 r and d r are collinear. In like manner

when dr is the side 31, 8r is the same side 13, but taken

in the opposite direction. Hence the vector product vanishes.

When dr is the side #5, Sr is a line drawn from the vertex

1 at whichW=W to this side S3. Hence the product 8 r x d r

is twice the area of the triangle. This area, moreover, is the

positive area 1 % 3. Hence

|r x dr =

where d a denotes the positive area of the triangular element

of surface. For the infinitesimal triangle therefore the

relation
= V x W

holds.

Let the surface 8 be divided into elementary triangles.

For convenience let the curve which bounds the surface

be made up of the sides of these triangles. Perform the

integration

fw-dr
J A

around each of these triangles and add the results together.

2/1

a JA
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The second member ] V x W d a
3

is the surface integral of the curl of W.

2 V x
W-rfa=JJv

x W

In adding together the line integrals which occur in the first

member it is necessary to notice that all the sides of the ele

mentary triangles except those which lie along the bounding
curve of the surface are traced twice in opposite directions.

Hence all the terms in the sum

which arise from those sides of the triangles lying within the

surface S cancel out, leaving in the sum only the terms

which arise from those sides which make up the bounding
curve of the surface. Hence the sum reduces to the line in

tegral of W along the curve which bounds the surface S.

= fw
Jo

Hence V x W d a = W d r.= f
Jo

FIG. 33.

Second Proof : Let C be any closed

contour drawn upon the surface S

(Fig. 33). It will be assumed that C
is continuous and does not cut itself.

Let Cr be another such contour near

to C. Consider the variation S which

takes place in the line integral of W
in passing from the contour C to the

contour C".
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/V.dr = f
t/ t/

S fwdr = f

But d(W-

and

Hence
J*W

&dT= Cw*dST=fd(W*Sr) -- CdW *ST.

The expression d (W 8 r) is by its form a perfect differential.

The value of the integral of that expression will therefore be

the difference between the values of W d r at the end and at

the beginning of the path of integration. In this case the

integral is taken around the closed contour C. Hence

/^Jc

Hence

and S fw-rfr= fsw.dr- f

9W J JBut dW = -K d a? + -7T d y +

PW 3W 3W
or dW =

-^ i d! r + ^ j d r + -^ k d r,
& x d y d z

and
v x & y
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Substituting these values

dT i.Br-~ -8r i-dr
x ox

+ similar terms in y and z.
[

But by (25) page 111

Hence sfwdr=/
j

i x ^ Srxdr

+ similar terms in y and z
|

.

or 8 fW d r = fV x W 8 r x d r.

In Fig. 33 it will be seen that d r is the element of arc

along the curve C and 8 r is the distance from the curve C to

the curve C r
. Hence 8 r X d r is equal to the area of an ele

mentary parallelogram included between C and C f

upon the

surface S. That is

S fw-dr= fv x W da.

Let the curve C starting at a point in expand until it

coincides with the contour bounding S. The line integral

will vary from the value at the point to the value

/t/O
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taken around the contour which bounds the surface S. This

total variation of the integral will be equal to the sum of the

variations 8

Or f Wdr= ff Vx W-da. (11)

83.] Stokes s theorem that the surface integral of the curl

of a vector function is equal to the line integral of the func

tion taken along the closed curve which bounds the surface

has been proved. The converse is also true. If the surface

integral of a vector function U is equal to the line integral of the

function W taken around the curve bounding the surface and if

this relation holds for all surfaces in space, then TT is the curl of

W. That is

if f fll. da = f Wdr, thenU=Vx W. (12)

Form the surface integral df the difference between IT and

V x W.

// (tf~ Vx W)*da=f W*dr - f W-dr = 0,

or f f (TI- V x W)-da = 0.

Let the surface S over which the integration is performed be

infinitesimal. The integral reduces to merely a single term

(U_V x

As this equation holds for any element of surface d a, the

first factor vanishes. Hence

IT- V x W = 0.

Hence IT = V x W.

The converse is therefore demonstrated.
13
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A definition of V x W which is independent of the axes

i, j, k may be obtained by applying Stokes s theorem to an in

finitesimal plane area. Consider a point P. Pass a plane

through P and draw in it, concentric with P, a small circle of

area d a.

Vx W.da=f W*dT. (13)

When d a has the same direction as V X W the value of the

line integral will be a maximum, for the cosine of the angle

between V x W and d a will be equal to unity. For this

value of da,

=rfa
IM F/V f W-rfrl (13)rfa=:0 Lda.dajo J

Hence the curl V x W of a vector function W has at each

point of space the direction of the normal to that plane in

which the line integral of W taken about a small circle con

centric with the point in question is a maximum. The mag
nitude of the curl at the point is equal to the magnitude of

that line integral of maximum value divided by the area of

the circle about which it is taken. This definition like the

one given in Art. 81 for the divergence is interesting more

from theoretical than from practical considerations.

Stokes s theorem or rather its converse may be used to de

duce Maxwell s equations of the electro-magnetic field in a

simple manner. Let E be the electric force, B the magnetic

induction, H the magnetic force, and C the flux of electricity

per unit area per unit time (i. e. the current density).

It is a fact learned from experiment that the total electro

motive force around a closed circuit is equal to the negative

of the rate of change of total magnetic induction through

the circuit. The total electromotive force is the line integral

of the electric force taken around the circuit. That is

Edr.
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The total magnetic induction through the circuit is the sur

face integral of the magnetic induction B taken over a surface

bounded by the circuit. That is

B d*.
i

Experiment therefore shows that

or /E-dr=/l B d a.

J o J J a

Hence by the converse of Stokes s theorem

V x E = - B, curl E = - B.

It is also a fact of experiment that the work done in carry

ing a unit positive magnetic pole around a closed circuit is

equal to 4?r times the total electric flux through the circuit.

The work done in carrying a unit pole around a circuit is

the line integral of H around the circuit. That is

The total flux of electricity through the circuit is the

surface integral of C taken over a surface bounded by the

circuit. That is

///*

Experiment therefore teaches that

= 47r Cf
J J s
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By the converse of Stokes s theorem

V x H = 4 TT C.

With a proper interpretation of the current C, as the dis

placement current in addition to the conduction current,

an interpretation depending upon one of Maxwell s primary

hypotheses, this relation and the preceding one are the funda

mental equations of Maxwell s theory, in the form used by
Heaviside and Hertz.

The theorems of Stokes and Gauss may be used to demon

strate the identities.

V V x W = 0, div curl W = 0.

Vx VF=0, curl VF=0.

According to Gauss s theorem

VX Wdv=

According to Stokes s theorem

f fvxW-da = CW dr.

Hence fffv-VxWdtf= Cw*dr.

Apply this to an infinitesimal sphere. The surface bounding
the sphere is closed. Hence its bounding curve reduces to a

point ; and the integral around it, to zero.

V-VxWdv = fw-dr = 0,J o

V V x W = 0.
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Again according to Stokes s theorem

ffvxvr.<2a = fvr-dr.

Apply this to any infinitesimal portion of surface. The curve

bounding this surface is closed. Hence the line integral of

the derivative VF" vanishes.

V x

As this equation holds for any d a, it follows that

Vx VF=0.

In a similar manner the converse theorems may be

demonstrated. If the divergence V TT of a vector function

TJ is everywhere zero, then TT is the curl of some vector

function W.
TJ = V x W*

If the curl V x II of a vector function TT is everywhere zero,

then U is the derivative of some scalar function F",

84.] By making use of the three fundamental relations

between the line, surface, and volume integrals, and the

dels/ viz. :

, (2)

JYv x W-rfa= f W.rfr, (11)

(7)

it is possible to obtain a large number of formulae for the

transformation of integrals. These formulae correspond to
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those connected with u
integration by parts

"
in ordinary

calculus. They are obtained by integrating both sides of the

formulae, page 161, for differentiating.

First V (u v) = u V v + v V u.

C C C
Jc ~Jc

V ( T
J G

V

Hence I % V v di = [uv] \ vV u* dx. (14)

r

The expression [u v]

represents the difference between the value of (u v) at r, the

end of the path, and the value at r
, the beginning of the path.

If the path be closed

f^Vvdr = - C V u*dr. (14)Jo Jo

Second V x (u v) = u V x v + V u x v.

f* f* f* (* (* f*

I I V x (wv)*^ a= / /
^Vxvrfa+/ I Vwxv-da.

J J S J J S J J 8

Hence

f* f* f* f* f*
I I V^xvda=l uv dr I I wVxvda, (15)
J J a Jo J J a

&Vxvda= / uv dr I I V?txvrfa, (15)Jo J J a

Third Vx (wV /y)^^VxV^ + V^xV 2;

But V x V v =

Hence V x (u V v) = V u x V v,

or
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f* f* f* f*

J J S J J 8

Hence

f* f* f* ,-y , P ^-J 7 S-4 />VIIVO AVt/ It I 1 \ /

J J s Jo Jo

Fourth V (u v) = u V v + V w v.

/// r r r C C C *

JJJV.(T)^=JJJVT^ +JJJ V-vd

Hence

^ v a

or

C C C ^7uv dv=
I I

Mvda rrr^V V^i;, (17)
;

Fifth v(V^xv) = VXV^*v v^-VXv.

V (V M x v) = V ^ V x v,

Hence rfv^xvrfa = fffv^vxvdi;. (18)

In all these formulae which contain a triple integral the

surface $ is the closed surface bounding the body throughout
which the integration is performed.

Examples of integration by parts like those above can be

multiplied almost without limit. Only one more will be

given here. It is known as Greens Theorem and is perhaps

the most important of all. If u and v are any two scalar

functions of position,
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V (^ V fl)
= V ^ V tf + 24 V V ^

V O V u) = V u V v + v V V u>

J J J ^u^ vclv==J J J V- (uvv)dv C f Cu^

Hence

/ / /V^-Vtfdfl=/ /^VvcU / r/^V-Vvdi?,

=
/ /

^ V ^ d a f
j

I v^*V udv. (19)

By subtracting these equalities the formula (20)

/ / / (^ V V ^ v V V w) ^ ^=
/

/ (^ V t> v V ^) ^ a.

is obtained. By expanding the expression in terms of i, j, k

the ordinary form of Green s theorem may be obtained. A
further generalization due to Thomson (Lord Kelvin) is the

following :

/ / lw^/u*Vvdv=l I uwVv*d& I I I u\

= / I vwVU"d* I I I v\? [w^ u^ dv, (21)

where w is a third scalar function of position.

The element of volume dv has nothing to do with the scalar

function v in these equations or in those that go before. The

use of v in these two different senses can hardly give rise to

any misunderstanding.
*
85.] In the preceding articles the scalar and vector func

tions which have been subject to treatment have been sup-
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posed to be continuous, single-valued, possessing derivatives

of the first two orders at every point of space under consider

ation. When the functions are discontinuous or multiple-

valued, or fail to possess derivatives of the first two orders

in certain regions of space, some caution must be exercised in

applying the results obtained.

Suppose for instance

VF-
The line integral

y dx

Introducing polar coordinates

x = r cos 6,

y = r sin 0,

7 V d r = I d 0.

Form the line integral from the point ( + 1,0) to the point

(1, 0) along two different paths. Let one path be a semi

circle lying above the JT-axis ; and the other, a semicircle

lying below that axis. The value of the integral along the

first path is

/-*

along the second path, I d 6 TT.

From this it appears that the integral does not depend merely

upon the limits of integration, but upon the path chosen,
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the value along one path being the negative of the value

along the other. The integral around the circle which is a

closed curve does not vanish, but is equal to 2 TT.

It might seem therefore the results of Art. 79 were false

and that consequently the entire bottom of the work which

follows fell out. This however is not so. The difficulty is

that the function
1 V

F=tan ^-

x

is not single-valued. At the point (1,1), for instance, the

function V takes on not only the value

-i TTF= tan l = -r>

4

but a whole series of values

7T

-+&7T,

where k is any positive or negative integer. Furthermore at

the origin, which was included between the two semicircular

paths of integration, the function V becomes wholly inde

terminate and fails to possess a derivative. It will be seen

therefore that the origin is a peculiar or singular point of the

function V. If the two paths of integration from (+ 1, 0) to

(1,0) had not included the origin the values of the integral

would not have differed. In other words the value of the

integral around a closed curve which does not include the

origin vanishes as it should.

Inasmuch as the origin appears to be the point which

vitiates the results obtained, let it be considered as marked

by an impassable barrier. Any closed curve which does

not contain the origin may be shrunk up or expanded at will ;

but a closed curve which surrounds the origin cannot be

so distorted as no longer to enclose that point without break

ing its continuity. The curve C not surrounding the origin
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may shrink up to nothing without a break in its continuity ;

but C can only shrink down and fit closer and closer about

the origin. It cannot be shrunk down to nothing. It must

always remain encircling the origin. The curve C is said to

be reducible ; (7, irreducible. In case of the function F, then,

it is true that the integral taken around any reducible circuit

C vanishes; but the integral around any irreducible circuit C
does not vanish.

Suppose next that V is any function whatsoever. Let all

the points at which V fails to be continuous or to have con

tinuous first partial derivatives be marked as impassable

barriers. Then any circuit which contains within it no

such point may be shrunk up to nothing and is said to be

reducible; but a circuit which contains one or more such

points cannot be so shrunk up without breaking its continuity

and it is said to be irreducible. The theorem may then be

stated: The line integral of the derivative VF" of anyfunction
V vanishes around any reducible circuit C. It may or may not

vanish around an irreducible circuit In case one irreducible

circuit C may be distorted so as to coincide with another

irreducible circuit C without passing through any of the

singular points of V and without breaking its continuity,

the two circuits are said to be reconcilable and the values of

the line integral of V F about them are the same.

A region such that any closed curve C within it may be

shrunk up to nothing without passing through any singular

point of V and without breaking its continuity, that is, a

region every closed curve in which is reducible*, is said to be

acyclic. All other regions are cyclic.

By means of a simple device any cyclic region may be ren

dered acyclic. Consider, for instance, the region (Fig. 34) en

closed between the surface of a cylinder and the surface of a

cube which contains the cylinder and whose bases coincide

with those of the cylinder. Such a region is realized in a room
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in which a column reaches from the floor to the ceiling. It

is evident that this region is cyclic. A circuit which passes

around the column is irreducible. It cannot be contracted to

nothing without breaking its continuity. If

~^x / now a diaphragm be inserted reaching from

the surface of the cylinder or column to the

surface of the cube the region thus formed

bounded by the surface of the cylinder, the

surface of the cube, and the two sides of the

diaphragm is acyclic. Owing to the inser

tion of the diaphragm it is no longer possible

to draw a circuit which shall pass completely around the cyl

inder the diaphragm prevents it. Hence every closed cir

cuit which may be drawn in the region is reducible and the

region is acyclic.

In like manner any region may be rendered acyclic by

inserting a sufficient number of diaphragms. The bounding
surfaces of the new region consist of the bounding surfaces of

the given cyclic region and the two faces of each diaphragm.
In acyclic regions or regions rendered acyclic by the fore

going device all the results contained in Arts. 79 et seq.

hold true. For cyclic regions they may or may not hold

true. To enter further into these questions at this point is

unnecessary. Indeed, even as much discussion as has been

given them already may be superfluous. For they are ques

tions which do not concern vector methods any more than the

corresponding Cartesian ones. They belong properly to the

subject of integration itself, rather than to the particular

notation which may be employed in connection with it and

which is the primary object of exposition here. In this

respect these questions are similar to questions of rigor.
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The Integrating Operators. The Potential

86.] Hitherto there have been considered line, surface,

and volume integrals of functions both scalar and vector.

There exist, however, certain special volume integrals which,

owing to their intimate connection with the differentiating

operators V, V, Vx, and owing to their especially frequent

occurrence and great importance in physics, merit especial

consideration. Suppose that

^0** Vv *a)

is a scalar function of the position in space of the point

For the sake of definiteness V may be regarded as the

density of matter at the point (# 2 , yv 2
2 ).

In a homogeneous

body V is constant. In those portions of space in which no

matter exists V is identically zero. In non-homogeneous dis

tributions of matter V varies from point to point; but at

each point it has a definite value.

The vector
r 2
= z

2 i + y 2 j + *
2 k,

drawn from any assumed origin, may be used to designate

the point (# 2 , y2,
z
2 ). Let

On yi. *i)

be any other fixed point of space, represented by the vector

drawn from the same origin. Then

r 2
- r

x
= O 2

-
!>! + (y2

-
yi) j + (z2

-
*j) k

is the vector drawn from the point (xv yv Zj) to the point

(#2> IJy 2 2)- AS ^s vec^or occurs a large number of times

in the sections immediately following, it will be denoted by

r i2
= r 2

~~ r
i-
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The length of r 12 is then r
12 and will be assumed to be

positive.

-i2
= V r

12
r
12
= V (* 2

- x^ + (y2
- ^)

2 + 2
- ^)

2
.

Consider the triple integral

The integration is performed with respect to the variables

^2> ^2> ^
2

that is, with respect to the body of which V

represents the density (Fig. 35). During
the integration the point (xv yv z^ re

mains fixed. The integral / has a definite

value at each definite point (xv yv zj.

It is a function of that point. The in-
FIG. 3o.

.

terpretation of this integral / is easy, if

the function V be regarded as the density of matter in space.

The element of mass dm at (# 2 , y2,
z
2)

is

dm V (# 2 , y2 , 2!
2) dx^ dyz dz% = Vdv.

The integral / is therefore the sum of the elements of mass

in a body, each divided by its distance from a fixed point

r

J
dm

This is what is termed the potential at the point (x v yv
due to the body whose density is

The limits of integration in the integral / may be looked at

in either of two ways. In the first place they may be

regarded as coincident with the limits of the body of which

V is the density. This indeed might seem the most natural

set of limits. On the other hand the integral / may be
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regarded as taken over all space. The value of the integral

is the same in both cases. For when the limits are infinite

the function V vanishes identically at every point (# 2, y2 , 2
2)

situated outside of the body and hence does not augment
the value of the integral at all. It is found most convenient

to consider the limits as infinite and the integral as extended

over all space. This saves the trouble of writing in special

limits for each particular case. The function Vot itself then

practically determines the limits owing to its vanishing iden

tically at all points unoccupied by matter.

87.] The operation of finding the potential is of such

frequent occurrence that a special symbol, Pot, is used for it.

Pot r=fff
V^ y" *2>

rf*2 dy^ dzy (22)

The symbol is read "the potential of V." The potential,

Pot V, is a function not of the variables #.
2, yv z

2 with

regard to which the integration is performed but of the point

(xv y^ Zj) which is fixed during the integration. These

variables enter in the expression for r
12 . The function V

and Pot V therefore have different sets of variables.

It may be necessary to note that although V has hitherto

been regarded as the density of matter in space, such an

interpretation for V is entirely too restricted for convenience.

Whenever it becomes necessary to form the integral

i" <22>

of any scalar function V, no matter what V represents, that

integral is called the potential of V. The reason for calling

such an integral the potential even in cases in which it has

np connection with physical potential is that it is formed

according to the same formal law as the true potential and
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by virtue of that formation has certain simple rules of opera

tion which other types of integrals do not possess.

Pursuant to this idea the potential of a vector function

W O 2, y2, z
2)

may be written down.

PotW = W (* 2 y* *2)
dx, rfy. rf,r (23)

In this case the integral is the sum of vector quantities

and is consequently itself a vector. Thus the potential of a

vector function W is a vector function, just as the potential

of a scalar function V was seen to be a scalar function of posi

tion in space. If W be resolved into its three components

W O 2 , 2/2, z
2)
= iX O 2 , yv z

2) + j T <>2 , yv z
2)

+ kZ <> 2 , yv z
2)

Pot W = i PotX + j Pot Y+ k Pot Z. (24)

The potential of a vector function W is equal to the vector

sum of the potentials of its three components X, Y, Z.

The potential of a scalar function V exists at a point

(xv yv zp ) when and only when the integral

taken over all space converges to a definite value. If,

for instance, V were everywhere constant in space the in

tegral would become greater and greater without limit as

the limits of integration were extended farther and farther

out into space. Evidently therefore ifJhe potential is to exist

F must approach zero as its limit as the point (#2 , yv 32)

recedes indefinitely. A few important sufficient conditions

for the convergence of the potential may be obtained by

transforming to polar coordinates. Let
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x = r sin 6 cos fa

yr sin 6 sin fa

z = r cos 0,

dv = r 2 sm0 dr dO d<f>.

Let the point (xv yv ^) which is fixed for the integration

be chosen at the origin. Then

r
i2
= r

and the integral becomes

or simply PotF= CCCVrsmff dr d0 dfa

If the function V decrease so rapidly that the product

Vr*

remains finite as r increases indefinitely, then the integral con

verges as far as the distant regions of space are concerned.

For let

r = 00

dr d0d<f>

r = 00

dr d0 d<f>

= QO

Hence the triple integral taken over all space outside of a

sphere of radius R (where R is supposed to be a large quan

tity) is less than %TT*K jR, and consequently converges as far

as regions distant from the origin are concerned.

14
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If the function V remain finite or if it become infinite so

weakly that the product
Vr

remains finite when r approaches zero, then the integral converges

as far as regions near to the origin are concerned. For let

Vr<K

f CCrrsmddr d0 d<f> < C C fadr d0 d<f>.

r =

C C C dO d<t>
=

Hence the triple integral taken over all space inside a sphere

of radius R (where R is now supposed to be a small quantity)

is less than 2 Tr
2 K R and consequently converges as far as

regions near to the origin which is the point (xv yv Zj)
are

concerned.

If at any point (x 2, y2, z
2) not coincident with the origin,

i. e. the point (x x, yv z
x), the function V becomes infinite so

weakly that the product of the value 0/V at a point near to

(X 2> J2> Z 2) ty the square of the distance of that point from

(x 2, y2 , z 2) remains finite as that distance approaches zero, then

the integral converges asfar as regions near to the point (x2 , y2 , z2)

are concerned. The proof of this statement is like those given

before. These three conditions for the convergence of the

integral Pot V are sufficient. They are by no means neces

sary. The integral may converge when they do not hold.

It is however indispensable to know whether or not an integral

under discussion converges. Unless the tests given above

show the convergence, more stringent ones must be resorted

to. Such, however, will not be discussed here. They belong

to the theory of integration in general rather than to the
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theory of the integrating operator Pot. The discussion of

the convergence of the potential of a vector function W re

duces at once to that of its three components which are scalar

functions and may be treated as above.

88.] The potential is a function of the variables xv yv z
l

which are constant with respect to the integration. Let the

value of the potential at the point (xv yv z^ be denoted by

The first partial derivative of the potential with respect to x
l

is therefore

LIM ^[

The value of this limit may be determined by a simple

device (Fig. 36). Consider

the potential at the point

due to a certain body T. This

is the same as the potential at

the point

FlG - 36 -

due to the same body T displaced in the negative direction by
the amount A xr For in finding the potential at a point P
due to a body T the absolute positions in space of the body
T and the point P are immaterial. It is only their positions

relative to each other which determines the value of the poten
tial. If both body and point be translated by the same

amount in the same direction the value of the potential is un

changed. But now if T be displaced in the negative direction

by the amount A#, the value of Fat each point of space is

changed from

v C*2> y* **) to v 0*2

where A#
2
= A xr
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Hence

[Pot V(xvyvz^ + AX,, yt, *,
= [Pot F<> 2 + A a;2,y2,

Hence LlM
j
[Pot HX. + A ..,,, .t

-
[Pot

A #! = /

It will be found convenient to introduce the limits of

integration. Let the portion of space originally filled by the

body T be denoted by M ; and let the portion filled by the

body after its translation in the negative direction through
the distance A x

l
be denoted by M . The regions M and M1

overlap. Let the region common to both be M; and let the

remainder of M be m; the remainder of M 1

, m 1
. Then

Pot V (a, + A * yr * 2) f ^

d
rrr
J J J m

^

Pot

/// "\F(W (II * *\ /*/*/* 1^ fV tl 9 ^
I I I r I O/ft t/n ^O/, ill *V*/ O1 V91 "

<) J 1=
/ / / I

*y
rft>,+ / / /

^_Mrf r2 .

J J J M ^j2 J J Jm T
YL

Hence (25) becomes, when A ^j is replaced *by its equal Aic
2 ,

t As all the following potentials are for the point arlf yi, i
the bracket and

indices have been dropped.
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+

Or,

my(*
C
f
r

J J J
A 2

,
"

A a;
2 ==0

LIM

^,

r
12

v yy g
2

= rrr
jJJ j

LIM (

r
12

^

9 X

when A ^! approaches zero as its limit the regions mand m ;

,

which are at no point thicker than A #, approach zero ; M
and Jf both approach -Jf as a limit.

t There are cases in which this reversal of the order in which the two limits

are taken gives incorrect results. This is a question of double limits and leads to

the mazes of modern mathematical rigor.

J If the derivative of Fis to exist at the surface bounding T the values of the

function V must diminish continuously to zero upon the surface. If Fchanged
suddenly from a finite value within the surface to a zero value outside the de

rivative QVlS^i would not exist and the triple integral would be meaningless.
For the same reason V is supposed to be finite and continuous at every point
within the region T.
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Then if it be assumed that the region T is finite and that V
vanishes upon the surface bounding T

T/nvr rrr V(Y <>/ z \i <t\ jvi I I
. I V \ ^o* fo ^9y 7 /\

A^ojjj OT riaAa;2
Ji =

Consequently the expression for the derivative of the poten

tial reduces to merely

3 Pot F r r r i 3F 3F= 1/1 dv* = Pot
d x

l
J J J M r 12 3# 2 3^2

^%^ partial derivative of the potential of a scalar function V
is equal to the potential of the partial derivative of V.

The derivative V of the potential ofVis equal to the potential

of the derivative V V.

VPotF=PotVF (27)

This statement follows immediately from the former. As

the V upon the left-hand side applies to the set of vari

ables xv y^ Zj, it may be written Vr In like manner the

V upon the right-hand side may be written V2 to call atten

tion to the fact that it applies to the variables #
2 , y2, z

2
of F.

Then V
a
PotF= Pot V2 F (27)

To demonstrate this identity V may be expanded in terms of

.3 PotF .3 PotF . 3 PotF
I i I lr

* ^ J * T- * ^

SV
+jPot -l-

3
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As i, j, k are constant vectors they may be placed under

the sign of integration and the terms may be collected. Then

by means of (26)

The curl V X and divergence V of the potential of a vector

function W are equal respectively to the potential of the curl and

divergence of that function.

V, x Pot W = Pot V2 x W,
(28)

or curl Pot W= Pot curlW
and Vj Pot W= Pot V2 W,

or div Pot W = Pot div W.

These relations may be proved in a manner analogous to the

above. It is even possible to go further and form the dels

of higher order

v v Pot r= Pot v VF; (30)
Uf>iac<3*

V- V Pot W = Pot V V W, (31)

V V Pot W = Pot VV W, (32)

V x V x Pot W= Pot V x V x W. (33)

The dels upon the left might have a subscript 1 attached to

show that the differentiations are performed with respect to

the variables xv yv zv and for a similar reason the dels upon
the right might have been written with a subscript 2. The

results of this article may be summed up as follows:

Theorem: The differentiating operator V and the integrating

operator Pot are commutative.

*89.] In the foregoing work it has been assumed that the

region T was finite and that the function Fwas everywhere
finite and continuous inside of the region T and moreover

decreased so as to approach zero continuously at the surface

bounding that region. These restrictions are inconvenient
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and may be removed by making use of a surface integral.

The derivative of the potential was obtained (page 213) in

essentially the form

otr_ r r r I SV
x

l J J J ,f r122x 2

-LJ-LJjl J. * \^o i
*V
2 ^2 ** 2^ 7a V

2
12

LIM 1 rrr Tr(g a> y ff
g
a)

fgr
r
i2

Let d a be a directed element of the surface $ bounding the

region J!f. The element of volume dv z
in the region m r

is

therefore equal to

dt? 2
=A#

2
i da.

Hence
-

I I I ,^2^-^2^2112)L f f f
2J J Jm-

= T f
V

J J r
!2

The element of volume d v
2

^n *^e regi n m ^s equal to

di, 2
= -Aa; 2

i.da.

Hence
*

/TfJ\X^J J Jm
>

Consequently

i-da. (34)
^ r !2
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The volume integral is taken throughout the regionMwith

the understanding that the value of the derivative of V at

the surface S shall be equal to the limit of the value of that

derivative when the surface is approached from the interior

of M. This convention avoids the difficulty that arises in

connection with the existence of the derivative at the surface

S where V becomes discontinuous. The surface integral is

taken over the surface S which bounds the region.

Suppose that the region M becomes infinite. By virtue of

the conditions imposed upon V to insure the convergence of

the potential
Vr* < K.

Let the bounding surface S be a sphere of radius , a quan

tity which is large.

i d a < R 2 d 6 d<f>.

<//*-.
s

The surface integral becomes smaller and smaller and ap

proaches zero as its limit when the region M becomes infinite.

Moreover the volume integral

JLJT^
remains finite asM becomes infinite. Consequently provided

V is such a function that Pot V exists as far as the infinite

regions of space are concerned, then the equation

=

holds as far as those regions of space are concerned.

Suppose that V ceases to be continuous or becomes infinite

at a single point (x^ yv z^) within the region T. Surround



218 VECTOR ANALYSIS

this point with a small sphere of radius R. Let S denote the

surface of this sphere and M all the region T not included

within the sphere. Then

r r r i 9V r r v
=JJj^^ dv

* + JJ*-^
1

By the conditions imposed upon V

Vr<K
V .

//>" <//.*
d6 d^

Consequently when the sphere of radius R becomes smaller

and smaller the surface integral may or may not become zero.

Moreover the volume integral

1 3V .

may or may not approach a limit when E becomes smaller

and smaller. Hence the equation

SPotF SV

has not always a definite meaning at a point of the region

T at which V becomes infinite in such a manner that the

product Vr remains finite.

If, however, V remains finite at the point in question so

that the product Vr approaches zero, the constant K is zero

and the surface integral becomes smaller and smaller as R
approaches zero. Moreover the volume integral
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approaches a definite limit as R becomes infinitesimal. Con

sequently the equation

5 Pot V _ p dV
7\ A Ob

holds in the neighborhood of all isolated pointe at which V
remains finite even though it be discontinuous.

Suppose that V becomes infinite at some single point

(iC2, y2,
2
2) not coincident with (x^ yv z^). According to the

conditions laid upon V
VI* < K,

where I is the distance of the point (z2 , y2 , z
2) from a point

near to it. Then the surface integral

V .

r
!2

need not become zero and consequently the equation

5PotF SV= Pot TT

need not hold for any point (a?r yv z^) of the region. But

if V becomes infinite at #
2, y2 ,

z
2
in such a manner that

VI <K,

then the surface integral will approach zero as its limit and

the equation will hold.

Finally suppose the function V remains finite upon the

surface S bounding the region jT, but does not vanish there.

In this case there exists a surface of discontinuities of V.

Within this surface V is finite ; without, it is zero. The

surface integral

F.
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does not vanish in general. Hence the equation

SPotF 9V
=--- = Pot -^rdX

1 v%i

cannot hold.

Similar reasoning may be applied to each of the three

partial derivatives with respect to xv yv zr By combining
the results it is seen that in general

Vj PotF= PotV2F+ f f Z da. (35)

Let F be any function in space, and let it be granted that

Pot F exists. Surround each point of space at which V
ceases to be finite by a small sphere. Let the surface of the

sphere be denoted by S. Draw in space all those surfaces

which are surfaces of discontinuity of V. Let these sur

faces also be denoted by S. Then the formula (35) holds

where the surface integral is taken over all the surfaces

which have been designated by S. If the integral taken

over all these surfaces vanishes when the radii of the spheres

above mentioned become infinitesimal, then

^ (27)

This formula

V
1
PotF=PotV2 F.

will surely hold at a point (xx, yv Zj) if V remains always

finite or becomes infinite at a point (x2, y2 , z
2 ) so that the

product V 1 remains finite, and if V possesses no surfaces of

discontinuity, and iffurthermore the product V r3 remains finite

as r becomes infinite.
1 In other cases special tests must be

applied to ascertain whether the formula (27) can be used

or the more complicated one (35) must be resorted to.

1 For extensions and modifications of this theorem, see exercises.
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The relation (27) is so simple and so amenable to trans

formation that V will in general be assumed to be such a

function that (27) holds. In cases in which V possesses a

surface S of discontinuity it is frequently found convenient

to consider V as replaced by another function V which has

in general the same values as Fbut which instead of possess

ing a discontinuity at S merely changes very rapidly from

one value to another as the point (#2, y2 , 2
2) passes from one

side of S to the other. Such a device renders the potential

of V simpler to treat analytically and probably conforms to

actual physical states more closely than the more exact

conception of a surface of discontinuity. This device prac

tically amounts to including the surface integral in the

symbol Pot VF:

In fact from the standpoint of pure mathematics it is

better to state that where there exist surfaces at which the

function V becomes discontinuous, the full value of Pot V V
should always be understood as including the surface integral

//.
in addition to the volume integral

>VF
SSSr-U *J *J 10

2
12

In like manner Pot V W, Pot V X W, New V W and other

similar expressions to be met in the future must be regarded

as consisting not only of a volume integral but of a surface

integral in addition, whenever the vector functionW possesses

a surface of discontinuities.

It is precisely this convention in the interpretation of

formulae which permits such simple formulae as (27) to hold

in general, and which gives to the treatment of the integrat

ing operators an elegance of treatment otherwise unobtainable.
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The irregularities which may arise are thrown into the inter

pretation, not into the analytic appearance of the formulse.

This is the essence of Professor Gibbs s method of treatment.

90.] The first partial derivatives of the potential may also

be obtained by differentiating under the sign of integration.
1

Q2 > 3/21*2)_ , , ,CCC=
JjJ *>-

^ rrr (*,-*!> r^y,,*,)
i "^^^ V[(*a-*1)H(y2^1)

2+(v-^)T
8

(37)

In like manner for a vector function W
S PotW /* /* /* *, ~ .. ~ ~

p ^ ""I I / . /r/- \9 i /.. .. \2 i /^. ~ \2^ia 2 y !

Or

and ^!W= / / / *"-,-
" "

d,r (38)
12

But 2-! 2
-

x 2
-

!
=

12
.

1 If an attempt were made to obtain the second partial derivatives in the same

manner, it would be seen that the volume integrals no longer converged.
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Hence V PotF=/// ^f-
d vr (39)

In like manner

^,, (40)

and V PotW = ^ *= fff

These three integrals obtained from the potential by the

differentiating operators are of great importance in mathe

matical physics. Each has its own interpretation. Conse

quently although obtained so simply from the potential each

is given a separate name. Moreover inasmuch as these

integrals may exist even when the potential is divergent,

they must be considered independent of it. They are to

be looked upon as three new integrating operators defined

each upon its own merits as the potential was defined.

Let, therefore,

(42)
12

12

.3r
12

= Max W. (44)

If the potential exists, then

V Pot F= New F

VxPotW = LapW (45)

V-PotW = MaxW.

The first is written New V and read The Newtonian of V!9
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The reason for calling this integral the Newtonian is that if

V represent the density of a body the integral gives the force,

of attraction at the point (x^ yv Zj) due to the body. This

will be proved later. The second is written Lap W and

read "the Laplacian of W." This integral was used to a

considerable extent by Laplace. It is of frequent occurrence

in electricity and magnetism. If W represent the current

C in space the Laplacian of C gives the magnetic force at the

point (xv yv zj due to the current. The third is written

Max W and read " the Maxwellian of W." This integral was

used by Maxwell. It, too, occurs frequently in electricity

and magnetism. For instance if W represent the intensity

of magnetization I, the Maxwellian of I gives the magnetic

potential at the point (x^ yv z^) due to the magnetization.

To show that the Newtonian gives the force of attraction

according to the law of the inverse square of the distance.

Let dm<i be any element of mass situated at the point

f rce at (
xv Vv z

i)
due to dm is equal to

in magnitude and has the direction of the vector r
12
from the

point (xv yv zj to the point (#2 , y2, z
2).

Hence the force is

Integrating over the entire body, or over all space according

to the convention here adopted, the total force is

where V denotes the density of matter.
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The integral may be expanded in terms of i, j, k,

12

The three components may be expressed in terms of the po
tential (if it exists) as

12

(42)

It is in this form that the Newtonian is generally found in

books.

To show that the Laplacian gives the magnetic force per

unit positive pole at the point (xv yv z^) due to a distribution

W (#2, y<p z
2)

f electric flux. The magnetic force at (xv yv x )

due to an element of current d C 2
is equal in magnitude to

the magnitude d C% of that element of current divided by the

square of the distance r
12 ; that is

dC*
*2T
12

The direction of the force is perpendicular both to the vector

element of current dC 2
and to the line r

12 joining the points.

The direction of the force is therefore the direction of the

vector product of r
12 and dC 2

. The force is therefore

3
12

rT

15
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Integrating over all space, the total magnetic force acting at

the point (x^ yv z^) upon a unit positive pole is

c r r ri2 x d C2 r r r* x w
7

///
JVJ

-JJJ^ ".-

This integral may be expanded in terms of i, j, k. Let

W (xv yv *
2 )
= i X(xv yv z^ + j Y (x^ yv z^)

4- k^O2, yv z%).

ri2=(^ 2 -^i) i+(y-yi)J+ (a-*i)k-

The i, j, k components of Lap W are respectively

C.-^^
(43)

In terms of the potential (if one exists) this may be written

3 Pot Z S Pot Y
i Lap W =

g g

r=lP^_a|2t^ (43)
,,

To show that if I be the intensity of magnetization at the

point (xv %>*2)> that is, if I be a vector whose magnitude is

equal to the magnetic moment per unit volume and whose
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direction is the direction of magnetization of the element d v%

from south pole to north pole, then the Maxwellian of I is the

magnetic potential due to the distribution of magnetization.

The magnetic moment of the element of volume d t>
2

is I d
v%.

The potential at (xv yv 24) due to this element is equal to its

magnetic moment divided by the square of the distance r
12

and multiplied by the cosine of the angle between the direc

tion of magnetization I and the vector r
12 . The potential is

therefore

r
12

I dv%

Integrating, the total magnetic potential is seen to be

12

This integral may also be written out in terms of x, y, z.

Let-

*ia I = O a
- x i) A + (y a

~
Vi) B + (*2

-
*i) &

If instead of xv yv z
l
the variables x^ y, z; and instead of

xv y& z
z
^e variables %, ?;, f be used 1 the expression takes

oq the form given by Maxwell.

According to the notation employed for the Laplacian

Max w -fff
(*.-i

(44)

1 Maxwell : Electricity and Magnetism, Vol. II. p. 9.
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The Maxwellian of a vector function is a scalar quantity.

It may be written in terms of the potential (if it exists) as

SPotF
Max W = -=-- + =- + =-- (44)"dx

l 3y l 9z
l

This form of expression is much used in ordinary treatises

upon mathematical physics.

The Newtonian, Laplacian, and Maxwellian, however, should

not be associated indissolubly with the particular physical

interpretations given to them above. They should be looked

upon as integrating operators which may be applied, as the

potential is, to any functions of position in space. The New
tonian is applied to a scalar function and yields a vector

function. The Laplacian is applied to a vector function

and yields a function of the same sort. The Maxwellian

is applied to a vector function and yields a scalar function.

Moreover, these integrals should not be looked upon as the

derivatives of the potential. If the potential exists they

are its derivatives. But they frequently exist when the

potential fails to converge.

91.] Let V and W be such functions that their potentials

exist and have in general definite values. Then by (27) and

(29)
V V PotF= V Pot VF= Pot V VF.

But by (45) V PotV= New F,

and V.Pot VF=Max VF.

Hence V. V PotF= V. NewF= Max VF
= PotV.VF (46)

By (27) and (29) VV PotW =V Pot V.W= PotVV W.

But by (45) V Pot W = Max W,

and by (45) V Pot V W = New V. W.
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Hence V V Pot W = V MaxW = New V W
= Pot VV.W (47)

By (28) V x V x Pot W = V x Pot V x W
= Pot V x V x W.

But by (45) V x Pot W = Lap W,

and V x Pot V x W = Lap V x W.

Hence V x V x Pot W = V x Lap W = Lap V x W
= Pot V x V x W. (48)

By (56), Chap. III. V - V x Pot W = 0,

or V Pot V x W = 0.

Hence V Lap W = Max V x W = 0. (49)

And by (52), Chap. III. V x V PotF= 0,

or VxPotVF=0.
Hence V x New V= Lap V V= 0. (50)

And by (58), Chap. III. V x V x W =VV W - V V W,

V.VW = VV-W VxVxW.
Hence V V Pot W New V W Lap V X W, (51)

or V V PotW = V Max W V X Lap W.

These formulae may be written out in terms of curl and

div if desired. Thus

div NewV= Max V F, (46)

V Max W = New div W (47)

curl Lap W = Lap curl W (48)

div Lap W = Max curl W = (49)

curl NewV= Lap V F = (50)

V V Pot W = New div W Lap curl W. (51)
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Poisson s Equation

92.] Let V "be any function in space such that the potential

PotF

has in general a definite value. Then

V V PotF= - 4 TrF, (52)

c>
2 PotF 3 2 PotF 3 2 PotF

This equation is known as Poisson s Equation.

The integral which has been defined as the potential is a

solution of Poisson s Equation. The proof is as follows.

V
x

.V
x
Potr=Vj .NewF= Max V2

r=T f C
*

^*
V
dvv

The subscripts 1 and ^ have been attached to designate

clearly what are variables with respect to which the differen

tiations are performed.

V
1 .V1 PotF=V1 .NewF=ff TVJ--. V2 Fdv a.

But Vj = - V2
r
vt

ru

and V2 (v V2 ^ =V2 V2F+ V Va
. Va
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Hence - V2
- V

2
V= VV2 V

2
-V

2
. (V V2 \

r
!2

r
!2 \ r !2/

m v, .v.r=rv. . v2 + v..(V v V
y
13

r
!2 \ W

Integrate :

But V
2
V

2
= 0.

That is to say satisfies Laplace s Equation. And by (8)

Hence Vj V
x
PotV= f f fVx

-- V
2 Vd v

2 (53)

=rr ^ v
t

.rfa.
J J s 7*12

The surface integral is taken over the surface which bounds

the region of integration of the volume integral. This is

taken " over all space." Hence the surface integral must be

taken over a sphere of radius R, a large quantity, and R must

be allowed to increase without limit. At the point (xr y^z^)^

however, the integrand of the surface integral becomes in

finite owing to the presence of the term
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Hence the surface S must include not only the surface of the

sphere of radius J2, but also the surface of a sphere of radius

R , a small quantity, surrounding the point (x^y^z^) and B f

must be allowed to approach zero as its limit.

As it has been assumed that the potential of V exists, it is

assumed that the conditions given (Art. 87) for the existence

of the potential hold. That is

< -fiT, when r is large

Vr < K, when r is small.

Introduce polar coordinates with the origin at the point

(#i> #i i) Then r
12
becomes simply r

and V
x

= - Va
= -^

*

l

ii 12
**

Then for the large sphere of radius R

1 r
V, . da= r r 2 sm0 d0 dd>.

*3
!2

4*3

Hence the surface integral over that sphere approaches zero

as its limit. For

Hence when -R becomes infinite the surface integral over the

large sphere approaches zero as its limit.

For the small sphere

1 r
Vt

d a = --5 r
2 sin d d 6.

<r 7*vr
!2

Hence the integral over that sphere becomes
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Let V be supposed to be finite and continuous at the point

(xvl/v zi) which has been selected as origin. Then for the

surface integral V is practically constant and equal to its

value

V (*ii Vv *i)

at the point in question.

sintf df fs

- f /VsiHence - sintf d8 d< = -

when the radius R f of the sphere of integration approaches

zero as its limit. Hence

v
>

v -
ff,rv-

< =- 4 * F <68)1

and V- VPotF=-47rF. (52)

In like manner if W is a vector function which has in

general a definite potential, then that potential satisfies Pois-

son s Equation.

V V Pot W = - 4 TT W. (52)

The proof of this consists in resolving W into its three com

ponents. For each component the equation holds. Let

v-

V. VPotF=-47r F,

V V Pot Z = 4 TT Z.

Consequently

V V Pot (JTi + Fj + Zk) = - 4 TT (JTi + Fj +
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Theorem : IfV andW are suchfunctions of position in space

that their potentials exist in general, then for all points at which

V and W are finite and continuous those potentials satisfy

Poisson s Equation,

V- VPot r=-4irF; (52)

V V Pot W = - 4 TT W. (52)

The modifications in this theorem which are to be made at

points at which V and W become discontinuous will not be

taken up here.

93.] It was seen (46) Art. 91 that

V VPotF= V- NewT=Max VF1

Hence V New V= - 4 TT V (53)

or Max VF=-47rF.

In a similar manner it was seen (51) Art. 91 that

V V Pot W = V Max W V x Lap W
= New V W Lap V x W.

Hence V Max W - V x Lap W = - 4 TT W, (54)

or New V . W - Lap V x W = - 4-rr W. (54)

By virtue of this equality W is divided into two parts.

W =
-7 Lap V x W 7 New V-W. (55)
4-7T 4?T

Let W = W! + W 2 ,

where W t
= -r Lap V x W = - Lap curl W (56)

4-rr 4?r

-: NewV- W= 7
4-7T 4-7T

and W = -: NewV- W= 7 Newdiv W. (57)
- -



THE INTEGRAL CALCULUS OF VECTORS 235

Equation (55) states that any vector function W multiplied

by 4 TT is equal to the difference of the Laplacian of its curl

and the Newtonian of its divergence. Furthermore

V W, = V Lap V x W = -7 V-V x LapWr
4?r 4-7T

But the divergence of the curl of a vector function is zero.

Hence V.W
1
= divW

1
= (58)

V x W2
= -

j Vx New V W
2
= - VxV MaxW

2
.

But the curl of the derivative of a scalar function is zero.

Hence V x W
2
= curl W

2
= 0. (59)

Consequently any vector function W which has a potential

may be divided into two parts of which one has no divergence

and of which the other has no curl. This division of W into

two such parts is unique.

In case a vector function has no potential but both its curl

and divergence possess potentials, the vector function may be

divided into three parts of which the first has no divergence ;

the second, no curl; the third, neither divergence nor curl.

Let W = Lap V x W - NewV W + W. (55)
4 7T 4 7T

As before

V Lap V x W = T V V x Pot V x W =
4?r 4-7T

1 1
and - V x New V W - VxV Pot V W = 0.

4-7T 4 7T

The divergence of the first part and the curl of the second

part of W are therefore zero.
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V x Lap VxW = VxVxPotVxW
4?r 4-7T

= VV Pot V x W -~ V V Pot V X W.
4 7T 4?T

-- VV Pot V x W = -- V Pot V V x W =
,

4?r

for V V x W = 0.

Hence ^ V VPot V x W = V x W.
4-7T

Hence V x Lap VxW = VxW = VxWl .

4?r

The curl of W is equal to the curl of the first part

-r LapV x W
47T

into which W is divided. Hence as the second part has no

curl, the third part can have none. Moreover

- V New V W = V W V W2 .

T: 7T

Thus the divergence of W is equal to the divergence of

the second part

- New V W.
4?r

into which W is divided. Hence as the first part has no

divergence the third can have none. Consequently the third

part W 3 has neither curl nor divergence. This proves the

statement.

By means of Art. 96 it may be seen that any function W3

which possesses neither curl nor divergence, must either
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vanish throughout all space or must not become zero at

infinity. In physics functions generally vanish at infinity.

Hence functions which represent actual phenomena may be

divided into two parts, of which one has no divergence and

the other no curl.

94.] Definition : A vector function the divergence of which

vanishes at every point of space is said to be solenoidal. A
vector function the curl of which vanishes at every point of

space is said to be irrotational.

In general a vector function is neither solenoidal nor irrota

tional. But it has been shown that any vector function which

possesses a potential may be divided in one and only one

way into two parts W v W 2 of which one is solenoidal and

the other irrotational. The following theorems may be stated.

They have all been proved in the foregoing sections.

With respect to a solenoidal function Wv the operators

Lap and V X or curl
4?r

are inverse operators. That is

Lap V x Wi = V x
-j Lap Wi = Wr (60)

4?r 4-rr

Applied to an irrotational function W2
either of these opera

tors gives zero. That is

Lap W2
=

, V x W2
= 0.

(61)

With respect to an irrotational function W2 ,
the operators

- New and v or div
4?r

are inverse operators. That is

_ _L New V W2
= - V -i- New W2

= W2
. (62)

4 7T 4 7T
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With respect to a scalar function V the operators

V or div and - New,
4-7T

and also -= Max and V
4?r

are inverse operators. That is

-V.-i NewF= V (63)
4 7T

and ~--Max VF= V.
4?r

TFttA respect to a solenoidal function W x
the operators

- Pot and V x V x or curl curl
47T

are inverse operators. That is

Pot V x V x W
x
= V x V x Pot Wi = Wr (64)4?r 4?r

With respect to an irrotational function W2
the operators

Pot and VV
4?r

are inverse operators. That is

_ _L Pot VV . W 2
= - VV . -L PotW 2

=W 2
. (65)

With respect to any scalar or vector function V, W the

operators

Pot and V V
4-7T

are inverse operator*. That is
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_ JL Pot v v v= - v v -i- Pot F= v
4?r 4?r

and -
,

Pot V V W = - V V -^- Pot W = W. (66)
4?r 4?r

With respect to a solenoidal function W x
the differentiating

operators of the second order

V V and V X V x

are equivalent
- V V W

x
= V x V x Wr (67)

With respect to an irrotational function W 2
the differentiat

ing operators of the second order

V V and V V
are equivalent That is

V- VW 2
= V V-W2

. (68)

By integrating the equations

4^^=- V.NewF
and 4 TT W = V x Lap W - V Max W

by means of the potential integral Pot

4<7rPotF=:-Pot V New F= - Max New F (69)

4 TT Pot W = Pot V x Lap W - Pot V Max W
4 TT Pot W = Lap Lap W - New Max W. (70)

Hence for scalar functions and irrotational vector functions

- New Max
47T

is an operator which is equivalent to Pot. For solenoidal vector

functions the operator ^

- Lap Lap
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gives the potential. For any vector function the first operator

gives the potential of the irrotational part; the second^ the

potential of the solenoidal part.

*95.] There are a number of double volume integrals which

are of such frequent occurrence in mathematical physics as

to merit a passing mention, although the theory of them will

not be developed to any considerable extent. These double

integrals are all scalar quantities. They are not scalar func

tions of position in space. They have but a single value.

The integrations in the expressions may be considered for

convenience as extended over all space. The functions by

vanishing identically outside of certain finite limits deter

mine for all practical purposes the limits of integration in

case they are finite.

Given two scalar functions Z7, V of position in space.

The mutual potential or potential product, as it may be called,

of the two functions is the sextuple integral

Pot

(71)
One of the integrations may be performed

, yi,^) PotVdv,

(* 2 y* * 2> Pot Ud ** (T2)

In a similar manner the mutual potential or potential product

of two vector functions W, W" is

(71)

This is also a scalar quantity. One integration may be car

ried out
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Pot (W, W")=w (xv yv ,)
. PotW" dv

t

The mutual Laplacian or Laplacian product of two

vector functions W , W" of position in space is the sextuple

integral

Lap(W ,W")

=ffffffw (*! yi *i) ;nr
x w"

(** y* *) <*i <*" 2 -

(73)
One integration may be performed.

Lap (W, W") = f ( fW" (^ 2, ya, *
2) LapW rf v a

(T4)

v yi *i) LaP w" d r

The Newtonian product of a scalar function F, and a vector

function W of position in space is the sextuple integral

rf*
2

.

(75)
By performing one integration

New ( F, W)=///W (*2 , y2 ,
*
2) New Frf t,

a
. (76)

In like manner the Maxwellian product of a vector function

W and a scalar function F of position in space is the

integral

Max (W,F) =/////JV(*i^*i) J- W0r2,2/2,*2)rfW
(77)

16



242 VECTOR ANALYSIS

One integration yields

Max (W, F) =fff V(xv yv zj Max W d v
1
=- New ( F, W).

(78)

By (53) Art. 93.

4?r UPotr = - (V New CO PotF.

V [NewU Pot F] = (V New V) Pot F + (New IT) V Pot F.

-(V.NewOPotF=-V.[NewPTotF]+NewtT.NewF

Integrate :

47r f f
|VpotFdi>=-

f f fv. [Ne

+ C f CtfewU- NewFdv.

4-Tr Pot IT, F)= f NewT. NewFdv, F)= f f f

- T f Pot F New Z7 rf a. (79)

The surface integral is to be taken over the entire surface S

bounding the region of integration of the volume integral.

As this region of integration is
" all space," the surface S may

be looked upon as the surface of a large sphere of radius R.

If the functions U and F vanish identically for all points out

side of certain finite limits, the surface integral must vanish.

Hence

4 TT Pot ( U, F) = f f fNew U New Vd v. (79)

By (54) Art. 93,

47rW". PotW = V x Lap W" PotW
- V Max W" Pot W .
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But V . [Lap W" x Pot W ]
= Pot W V x Lap W"
- Lap W" V x Pot W ,

and V [Max W" Pot W] = PotW V Max W"

+ Max W" V Pot W.

Hence V x Lap W" PotW = V [Lap W" x Pot W]
+ Lap W" Lap W ,

and V Max W" PotW = V - [Max W" Pot W]
- Max W" Max W .

Hence substituting:

4 ?r W" PotW = Lap W Lap W + Max W Max W"

+ V [Lap W" X Pot W ]

-V [Max W" Pot W ].

Integrating .-

4 TT Pot (W, W") =ff fLapW Lap W" dv

r c r
+ / / I MaxW Max W d v (80)
J J J

I I PotW x LapW" da / / Max W"PotWWa.

If now W and W" exist only in finite space these surface

integrals taken over a large sphere of radius B must vanish

and then

4 TT Pot (W,W") = f f fLap W Lap W" d v

+ 11 fMax W Max W" d v. (80)J J J

*
96.] There are a number of useful theorems of a function-

theoretic nature which may perhaps be mentioned here owing
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to their intimate connection with the integral calculus of

vectors. The proofs of them will in some instances be given
and in some not. The theorems are often useful in practical

applications of vector analysis to physics as well as in purely

mathematical work.

Theorem : If V (#, y, z) be a scalar function of position

in space which possesses in general a definite derivative V V
and if in any portion of space, finite or infinite but necessarily

continuous, that derivative vanishes, then the function V is

constant throughout that portion of space.

Given VF=0.

To show F= const.

Choose a fixed point (#15 yv zj in the region. By (2) page
180

y> *

V F. d r = V(x, y,z)-V (xv yv zj.
u ft* *i

But fvr.dr =f<)
. dr = 0.

Hence F(#, y, z) = V (xv yv zj = const.

Theorem : If F" (#, y, 2;) be a scalar function of position

in space which possesses in general a definite derivative V V ;

if the divergence of that derivative exists and is zero through
out any region of space,

1 finite or infinite but necessarily

continuous
;
and if furthermore the derivative VV vanishes

at every point of any finite volume or of any finite portion of

surface in that region or bounding it, then the derivative

vanishes throughout all that region and the function V re

duces to a constant by the preceding theorem.

1 The term throughout any region of space must be regarded as including the

boundaries of the region as well as the region itself.
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Given V V V= for a region T,

and VF= for a finite portion of surface S.

To show J^= const.

Since V Evanishes for the portion of surface S, Vis certainly

constant in S. Suppose that, upon one side of S and in the

region T, V were not constant. The derivative V V upon
this side of S has in the main the direction of the normal to

the surface S. Consider a sphere which lies for the most

part upon the outer side of S but which projects a little

through the surface S. The surface integral of VF over

the small portion of the sphere which projects through the

surface S cannot be zero. For, as V V is in the main normal

to S9 it must be nearly parallel to the normal to the portion

of spherical surface under consideration. Hence the terms

VT- da,

in the surface integral all have the same sign and cannot

cancel each other out. The surface integral of V V over

that portion of S which is intercepted by the spherical sur

face vanishes because V V is zero. Consequently the surface

integral of V V taken over the entire surface of the spherical

segment which projects through S is not zero.

But f rvr-da= f r fv. vrd*=o.

Hence f /Vr da = 0.

It therefore appears that the supposition that V is not

constant upon one side of S leads to results which contradict

the given relation V V V 0. The supposition must there

fore have been incorrect and V must be constant not only in

S but in all portions of space near to $ in the region T. By
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an extension of the reasoning V is seen to be constant

throughout the entire region T.

Theorem : If V (x, y, z) be a scalar function of position in

space possessing in general a derivative V V and if through
out a certain region

1 T of space, finite or infinite, continuous

or discontinuous, the divergence V V V of that derivative

exists and is zero, and if furthermore the function V possesses

a constant value c in all the surfaces bounding the region

and V (x, y, z) approaches c as a limit when the point (x, y, z)

recedes to infinity, then throughout the entire region T the

function V has the same constant value c and the derivativeW vanishes.

The proof does not differ essentially from the one given

in the case of the last theorem. The theorem may be gen
eralized as follows :

Theorem: If V(x,y, z) be any scalar function of position

in space possessing in general a derivative W; if U (x, y, z)

be any other scalar function of position which is either posi

tive or negative throughout and upon the boundaries of a

region T, finite or infinite, continuous or discontinuous; if

the divergence V [ U V V~\ of the product of U and VV
exists and is zero throughout and upon the boundaries of T
and at infinity ; and if furthermore V be constant and equal

to c upon all the boundaries of T and at infinity ; then the

function V is constant throughout the entire region T and

is equal to c.

Theorem : If V (#, y, z) be any scalar function of position

in space possessing in general a derivative V V; if through
out any region T of space, finite or infinite, continuous or

discontinuous, the divergence V V V of this derivative exists

and is zero ; and if in all the bounding surfaces of the region

T the normal component of the derivative VF" vanishes and

at infinite distances in T (if such there be) the product

1 The region includes its boundaries.
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r 2 9 Vj 3 r vanishes, where r denotes the distance measured

from any fixed origin ; then throughout the entire region T
the derivative V Evanishes and in each continuous portion

of T V is constant, although for different continuous portions

this constant may not be the same.

This theorem may be generalized as the preceding one

was by the substitution of the relation V ( UV F) = for

V-VF=Oand Ur*3V/3r = for r^SV/Sr = 0.

As corollaries of the foregoing theorems the following

statements may be made. The language is not so precise

as in the theorems themselves, but will perhaps be under

stood when they are borne in mind.

If V U = V V, then U and V differ at most by a

constant.

If V-V7=V.VF and if VZ7 = VF in any finite

portion of surface S, then V U = V V at all points and V
differs from V only by a constant at most.

If V.VJ7= V- VF and if V= V in all the bounding
surfaces of the region and at infinity (if the region extend

thereto), then at all points 7 and Fare equal.

If V V 7= V V F and if in all the bounding surfaces

of the region the normal components of VZ7 and VFare
equal and if at infinite distances r 2

(3 U/Sr 9 F/5r) is

zero, then V ?7and V Fare equal at all points of the region
and U differs from F only by a constant.

Theorem : If W and W" are two vector functions of position

in space which in general possess curls and divergences ; if

for any region I7

,
finite or infinite but necessarily continuous,

the curl of W is equal to the curl of W" and the divergence
of W is equal to the divergence of W"; and if moreover

the two functions W and W" are equal to each other at

every point of any finite volume in T or of any finite surface

in Tor bounding it; then W is equal to W" at every point
of the region T.
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Since V x W = V x W", V x (W - W") = 0. A vec

tor function whose curl vanishes is equal to the derivative *

of a scalar function V (page 197). Let VF=W W".
Then V V V= owing to the equality of the divergences.

The theorem therefore becomes a corollary of a preceding one.

Theorem : If W and W" are two vector functions of posi

tion which in general possess definite curls and divergences ;

if throughout any aperiphractic* region T, finite but not

necessarily continuous, the curl of W is equal to the curl of

W" and the divergence of W is equal to the divergence of

W"; and if furthermore in all the bounding surfaces of the

region T the tangential components W7 and W" are equal;

then W;
is equal to W" throughout the aperiphractic region T.

Theorem: If W and W" are two vector functions of posi

tion in space which in general possess definite curls and

divergences ;
if throughout any acyclic region T, finite but not

necessarily continuous, the curl of W is equal to the curl

W" and the divergence of W is equal to the divergence of

W"; and if in all the bounding surfaces of the region T the

normal components of W and W" are equal ; then the func

tions W and W" are equal throughout the region acyclic T.

The proofs of these two theorems are carried out by means

of the device suggested before.

Theorem: If W and W" are two vector functions such

that V V W and V V W" have in general definite values

in a certain region T, finite or infinite, continuous or discon

tinuous ; and if in all the bounding surfaces of the region

and at infinity the functions W and W" are equal ; then W
is equal to W" throughout the entire region T.

The proof is given by treating separately the three com

ponents of W and W".

1 The region T may have to be made acyclic by the insertion of diaphragms.
2 A region which encloses within itself another region is said to be periphrac-

tic. If it encloses no region it is aperiphractic.
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SUMMARY OF CHAPTER IV

The line integral of a vector function W along a curve C is

defined as

f Wdr=f [Widx + W^dy + W.dz]. (1)J c J c

The line integral of the derivative V V of a scalar function

V along a curve C from r to r is equal to the difference

between the values of V at the points r and r and hence the

line integral taken around a closed curve is zero ; and con

versely if the line integral of a vector function W taken

around any closed curve vanishes, then W is the derivative

V V of some scalar function V.

f
ri

/ TO

f
J

(2)

(3)

and if CW dr = 0, then W = VF.
Jo

Illustration of the theorem by application to mechanics.

The surface integral of a vector function W over a surface

S is defined as

= ff

Gauss s Theorem| : The surface integral of a vector func-

tiorTtaken over a closed surface is equal to the volume

integral of the divergence of that function taken throughout
the volume enclosed by that surface
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= f f {Xdydz+ Ydz dx + Zdxdy], (8)

if X, I
7
, Z be the three components of the vector function W.

Stokes s Theorem: The surface integral of the curl of a

vector function taken over any surface is equal to the line

integral of the function taken around the line bounding the

surface. And conversely if the surface integral of a vector

function TJ taken over any surface is equal to the line integral

of a function W taken around the boundary, then U is the

curl of W.

//,VxW.*.=/oW.*r, (11)

and if ffjj da =fW rfr, then TI = V x W. (12)

Application of the theorem of Stokes to deducing the

equations of the electro-magnetic field from two experimental

facts due to Faraday. Application of the theorems of Stokes

and Gauss to the proof that the divergence of the curl of

a vector function is zero and the curl of the derivative of

a scalar function is zero.

Formulae analogous to integration by parts

I w V v di = \u v~]

T

/ v V u rf r, (14)

f f r r r
J J 8 t/O J J S

cc ^ c r
I t vwXv /yaa=i o i6v yar = I v V u a r, (16)

*/ */ 8 */ t/O
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I
C CuV *vdv =

I I
uv d&- ii fV u*vdv, (17)

/Y vu x v . da=- r r A/!* . v x * dv. (i8>

Green s Theorerii:

/ / I V u V v dv = / f ttV-y -da f T TwV -V v dv

= if v V ^ d a I I I vV *V udv, (19)

.Vi;-i;V.Vw)rfi;= f C (uVv t?Vw).rfa. (20)

__ -

Kelvin s generalization:

i I Tw^7u^vdv= I I w^Vv-rfa // /
^

= / / i? w V i^ da T T TV V [w V w] rf v. (21)

The integrating operator known as the potential is defined

by the equation

Pot r= V(xyv Z^
dxt dy2

dzy (22)

Pot w=*? yy *
^^2 ^y2 ^^- (23)

VPot T=PotVF; (27)

V x Pot W = Pot V x W, (28)

V Pot W = Pot V W, (29)

V V Pot F= Pot V VF, (30)
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V V Pot W = Pot V V W, (31)

VV Pot W = Pot VV W, (32)

V x V x Pot W = Pot V x V x W. (33)

The integrating operator Pot and the differentiating operator

V are commutative.

The three additional integrating operators known as the

Newtonian, the Laplacian, and the Maxwellian.

__ __ f f *19 \ Ay* fO? ^9 / ^ / i ***.

New T= / / / -^ ^-
^-^- rf^

2 dy2
dz

2
. (42)

f* f* f* Y ^ \XT ^7* ?y 2 ^

Lap W = I I
/ o

2 2 2 ^^
2 ^2/2 dzv (43)j J J r 12

MaxW= I I I q

2> 2 * 2
rf^2 rfy d^2.

If the potential exists these integrals are related to it as fol

lows:
V Pot F= New V,

V x Pot W = Lap W, (45)

The interpretation of the physical meaning of the Newtonian

on the assumption that V is the density of an attracting

body, of the Laplacian on the assumption that W is electric

flux, of the Maxwellian on the assumption that W is the

intensity of magnetization. The expression of these integrals

or their components in terms of a?, y, % ; formulae (42) , (43) ,

(44) and (42)", (43)", (44)".

V New F= Max V F, (46)

V Max W = New V W, (47)

V x Lap W = Lap V x W, (48)
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V Lap W = Max V x W = 0, (49)

V x New V= Lap VV= 0, (50)

V V Pot W = New V W Lap V X W
= V Max W - V x Lap W. (51)

The potential is a solution of Poisson s Equation. That is,

V. VPotF = -47rF; (52)

and V. VPotF=-47rW. (52)

F= V.NewF, (53)

W = -
A Lap V x W - New V W. (55)
4-7T 4 7T

Hence W is divided into two parts of which one is

solenoidal and the other irrotational, provided the potential

exists. In case the potential does not exist a third term W3

must be added of which both the divergence and the curl

vanish. A list of theorems which follow immediately from

equations (52), (52) , (53), (55) and which state that certain

integrating operators are inverse to certain differentiating

operators. Let V be a scalar function, W x a solenoidal vector

function, and W2
an irrotational vector function. Then

Lap V x Wj = V x Lap W l
= Wr (60)47T 4 7T

Lap W2
= 0, V x W2

= (61)4 7T

-- New V. W, = - V New W2
= W2. (62)47T 4?T
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f_V- -
A -NewF= V

l
(63)

- Max VF= V.
4 7T

- Pot V x V x W t
= V x V x Pot W

x
= W, (64)47T

--1- Pot VV W
2
= - V V - - Pot W

2
= W2

. (65)4 7T 4 7T

(66)

[--- Pot v. vr=- v-v -
4?r 4?r

1 !
L- -r- Pot V . V W = - V V Pot W = W.

4?r 4?r

-V-VWj^VxVxWj (67)

V V W2
= VV . W

2 (68)

4 TT Pot V= - Max New V (69)

4 TT Pot W = Lap Lap W - New Max W. (70)

Mutual potentials Newtonians, Laplacians, and Maxwellians

may be formed. They are sextuple integrals. The integra

tions cannot all be performed immediately ; but the first three

may be. Formulae (71) to (80) inclusive deal with these inte

grals. The chapter closes with the enunciation of a number

of theorems of a function-theoretic nature. By means of

these theorems certain facts concerning functions may be

inferred from the conditions that they satisfy Laplace s equa
tion and have certain boundary conditions.

Among the exercises number 6 is worthy of especial atten

tion. The work done in the text has for the most part assumed

that the potential exists. But many of the formulce connecting

Newtonians, Laplacians, and Maxwellians hold when the poten

tial does not exist. These are taken up in Exercise 6 referred to.
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EXERCISES ON CHAPTER IV

I.
1 If V is a scalar function of position in space the line

integral

is a vector quantity. Show that

That is ; the line integral of a scalar function around a

closed curve is equal to the skew surface integral of the deriv

ative of the function taken over any surface spanned into

the contour of the curve. Show further that if V is constant

the integral around any closed curve is zero and conversely

if the integral around any closed curve is zero the function V
is constant.

Hint : Instead of treating the integral as it stands multiply

it (with a dot) by an arbitrary constant unit vector and thus

reduce it to the line integral of a vector function.

2. If W is a vector function the line integral

=/wJ c
x dr

is a vector quantity. It may be called the skew line integral

of the function W. If c is any constant vector, show that if

the integral be taken around a closed curve

H c = / / (cVW cVW) da = c/ Wxdr,

1 The first four exercises are taken from Foppl s Einfiihrung in die Max-

well sche Theorie der Electricitat where they are worked out.
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and H-c = c. ]JJ8
V Wda- J J s

V (W d a)
j

In case the integral is taken over a plane curve and the

surface S is the portion of plane included by the curve

Show that the integral taken over a plane curve vanishes

when W is constant and conversely if the integral over any

plane curve vanishes W must be constant.

3. The surface integral of a scalar function V is

This is a vector quantity. Show that the surface integral

of V taken over any closed surface is equal to the volume

integral of W taken throughout the volume bounded by
that surface. That is

Hence conclude that the surface integral over a closed sur

face vanishes if V be constant and conversely if the surface

integral over any closed surface vanishes the function V must

be constant.

4. If W be a vector function, the surface integral

T= f C d&x W

may be called the skew surface integral. It is a vector

quantity. Show that the skew surface integral of a vector



THE INTEGRAL CALCULUS OF VECTORS 257

function taken over a closed surface is equal to the volume

integral of the vector function taken throughout the volume

bounded by the surface. That is

Hence conclude that the skew surface integral taken over

any surface in space vanishes when and only when W is an

irrotational function. That is, when and only when the line

integral of W for every closed circuit vanishes.

5. Obtain some formulae for these integrals which are

analogous to integrating by parts.

6. The work in the text assumes for the most part that the

potentials of Fand W exist. Many of the relations, however,

may be demonstrated without that assumption. Assume that

the Newtonian, the Laplacian, the Maxwellian exist. For

simplicity in writing let

Then New V= Vt Pn V(xv yy *
2) d t> 2, (81)

Lap W=i^ 12 X W (xv yv 2)
dvv (82)

Max W =fffv ipu W (z2, yv z^dvv (83)

(84)

c c r
-JJJr^rdvr
17
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By exercise (3)///V 2 (Pit v) d v*

It can be shown that if V is such a function that New V
exists, then this surface integral taken over a large sphere of

radius R and a small sphere of radius R* approaches zero

when R becomes indefinitely great; and R f

, indefinitely

small. Hence

or NewF=PotVF. (85)

Prove in a similar manner that

Lap W = Pot V x W, (86)

Max W = Pot V W. (87)

By means of (85), (86), (87) it is possible to prove that

V x Lap W = Lap V x W,

V-New F=Max VF,

V Max W = New V W.
Then prove

/*/*/* f* f* f*

VxLapW=i / I^ 12VV-W di?2 I l f^12V-VWdi
%} <J *J *J J *J

and V Max W =
f/JJPii

V V W d vv

Hence V x Lap W - V Max W = -ffffvV VW d v

Hence V x Lap W - V Max W = 4 TT W. (88)

7. An integral used by Helmholtz is
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or if W be a vector function

H (W) =/// W d "2" <9 )

Show that the integral converges if V diminishes so rapidly

that
K

when r becomes indefinitely great.

Vtf(F) = #(VF) = New(r 2
F), (91)

V # (W) = # (V W) = Max (r
2
W), (92)

V x H (W) = 5" (V x W) = Lap (r
2 W), (93)

=Jff (V. VP) = Max(r
2 VF) = 2 Pot F (94)

. (95)

H ( F) =- -L Pot Pot PI (96)
J 7T

^ (W) = - -?- Pot Pot W. (97)
2 7T

~2W = VxVx^T(W) + VV.^r (W). (98)

8. Give a proof of Gauss s Theorem which does not depend

upon the physical interpretation of a function as the flux of a

fluid. The reasoning is similar to that employed in Art. 51

and in the first proof of Stokes s Theorem.

9. Show that the division of W into two parts, page 235,

is unique.

10. Treat, in a manner analogous to that upon page 220,

the case in which V has curves of discontinuities.



CHAPTER V

LINEAR VECTOR FUNCTIONS

97.] AFTER the definitions of products had been laid down

and applied, two paths of advance were open. One was

differential and integral calculus ; the other, higher algebra

in the sense of the theory of linear homogeneous substitutions.

The treatment of the first of these topics led to new ideas

and new symbols to the derivative, divergence, curl, scalar

and vector potential, that is, to V, V, Vx, and Pot with the

auxiliaries, the Newtonian, the Laplacian, and the Maxwellian.

The treatment of the second topic will likewise introduce

novelty both in concept and in notation the linear vector

function, the dyad, and the dyadic with their appropriate

symbolization.

The simplest example of a linear vector function is the

product of a scalar constant and a vector. The vector r

T = CT (1)

is a linear function of r. A more general linear function

may be obtained by considering the components of r individ

ually. Let i, j, k be a system of axes. The components of

r are

i r, j r, k r.

Let each of these be multiplied by a scalar constant which

may be different for the different components.

c
l

i r, c
2 j r, c

3 k r.
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Take these as the components of a new vector r

r = i (Cji-^ + j (c a j-r) + k (c 8 k-r). (2)

The vector r is then a linear function of r. Its components
are always equal to the corresponding components of r each

multiplied by a definite scalar constant.

Such a linear function has numerous applications in geom

etry and physics. If, for instance, i, j, k be the axes of a

homogeneous strain and cv c
2 , c

3, the elongations along these

axes, a point
r = ix + j y + bz

becomes r = i c
l
x -f j c

2 y + k c
3 z,

or r = i c
l

i r + j <?2 j r + k c
3
k r.

This sort of linear function occurs in the theory of elasticity

and in hydrodynamics. In the theory of electricity and

magnetism, the electric force E is a linear function of the

electric displacement D in a dielectric. For isotropic bodies

the function becomes merely a constant

But in case the body be non-isotropic, the components of the

force along the different axes will be multiplied by different

constants k v &
2, & 3

. Thus

E = i%
1
i*D + j 2 j .D + k&gk-D.

The linear vector function is indispensable in dealing with

the phenomena of electricity, magnetism, and optics in non-

isotropic bodies.

98.] It is possible to define a linear vector function, as has

been done above, by means of the components of a vector.

The most general definition would be
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Definition : A vector r is said to be a linear vector func

tion of another vector r when the components of r along
three non-coplanar vectors are expressible linearly with scalar

coefficients in terms of the components of r along those same

vectors.

If r = XB, + yb + zc, where [abc] ^ 0,

and r = # a + y b + z c,

and if x f = a
l
x + b

l y + c
l
zf

y
r = a^x + 6 2 y + c

2 z, (3)

z
f = a

z
x + l

z y + c
3 z,

then r is a linear function of r. (The constants a^ lv cv

etc., have no connection with the components of a, b, c par

allel to i, j, k.) Another definition however is found to be

more convenient and from it the foregoing may be deduced.

Definition : A continuous vector function of a vector is

said to be a linear vector function when the function of the

sum of any two vectors is the sum of the functions of those

vectors. That is, the function /is linear if

/(r 1 + r2)=/(r 1)+/(ra ). (4)

Theorem : If a be any positive or negative scalar and if /
be a linear function, then the function of a times r is a times

the function of r.

/0r) = a/(r), (5)

And hence

/(a 1
r

1 + a
2
r
2 + a

3
r
3 + .-)

=
i f<Ji) + <**f (r a)+ 8/(*8) + (5)

The proof of this theorem which appears more or less

obvious is a trifle long. It depends upon making repeated

use of relation (4).
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Hence /(2r) = 2/(r).

In like manner / (n r) = nf (r)

where n is any positive integer.

Let m be any other positive integer. Then by the relation

just obtained

Hence / (.i) =/( i r )=-?./ (,).
\ w / \ m / m

That is, equation (5) has been proved in case the constant a

is a rational positive number.

To show the relation for negative numbers note that

/(0)=/(0 + 0)
= 2/(0).

Hence /(0) = 0.

But /(O) =/(r-r) =/(r +(-r)) =/(r)

Hence r=
To prove (5) for incommensurable values of the constant

a, it becomes necessary to make use of the continuity of the

function /. That is

Let x approach the incommensurable number a by passing

through a suite of commensurable values. Then

Hence *****. +
( xi} = a

x = a
J v

~
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LlM
(ar)=ar.# = a
v

Hence /(") = / 00

which proves the theorem.

Theorem: A linear vector function /(r) is entirely deter

mined when its values for three non-coplanar vectors a, b, c are

known.

Let l=/(a),

m=/(b),

n=/(c).

Since r is any vector whatsoever, it may be expressed as

r = #a + yb + 3C.

Hence / (r) = x 1 + y m + z n.

99.] In Art. 97 a particular case of a linear function was

expressed as

r = i c
l

i r + j c
2 j r + k c 3

k r.

For the sake of brevity and to save repeating the vector r

which occurs in each of these terms in the same way this

may be written in the symbolic form

In like manner if ap a
2, a 8

be any given vectors, and bp b
2,

b
3, another set equal in number, the expression

r = a! b
x

r + a
2
b

2
r + a

3
b
3

r + - (6)

is a linear vector function of r
;
for owing to the distributive

character of the scalar product this function of r satisfies

relation (4). For the sake of brevity r may be written sym

bolically in the form

r =
(ai b

x + a
a
b 2 + a

3
b
3 + .) r. (6)
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No particular physical or geometrical significance is to be

attributed at present to the expression

(a^ + a^ + agbg + .) (7)

It should be regarded as an operator or symbol which -con

verts the vector r into the vector r and which merely

affords a convenient and quick way of writing the relation

(6).

Definition : An expression a b formed by the juxtaposition

of two vectors without the intervention of a dot or a cross is

called a dyad. The symbolic sum of two dyads is called a

dyadic binomial ; of three, a dyadic trinomial ; of any num

ber, a dyadic polynomial. For the sake of brevity dyadic

binomials, trinomials, and polynomials will be called simply

dyadics. The first vector in a dyad is called the antecedent ;

and the second vector, the consequent. The antecedents of a

dyadic are the vectors which are the antecedents of the

individual dyads of which the dyadic is composed. In like

manner the consequents of a dyadic are the consequents of

the individual dyads. Thus in the dyadic (7) ap a
2 ,
a
3 are

the antecedents and br b2 , b3
- the consequents.

Dyadics will be represented symbolically by the capital

Greek letters. When only one dyadic is present the letter

will generally be used. In case several are under consid

eration other Greek capitals will be employed also. With
this notation (7) becomes

and (6) may now be written briefly in the form

r = d> r. (8)

By definition r = aj b
x

r + a 2 b 2
r + a

3
b

3
r +

The symbol <P-r is read dot r. It is called the direct

product of into r because the consequents bj, b2 , b3
- are
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multiplied into r by direct or scalar multiplication. The
order of the factors and r is important. The direct

product of r into is

r <P = r . (a a^ + a
2
b
2 + a

3
b

3 + .

)

= r . a
x bj + r a

2
b

2 + r - a
3
b

3 + . . .

(9)

Evidently the vectors r and r are in general different.

Definition : When the dyadic is multiplied into r as r,

is said to be a prefactor to r. When r is multiplied in as

r <#, is said to be a post/actor to r.

A dyadic used either as a prefactor or as a postfactor to a

vector r determines a linear vector function of r. The two linear

vector functions thus obtained are in general different from

one another. They are called conjugate linear vector func

tions. The two dyadics

^ajbj + ajbg + agbg + ...

and = b
x
a

x + b
2
a
2 + b

3
a

3 + ,

each of which may be obtained from the other by inter

changing the antecedents and consequents, are called conjitr

gate dyadics. The fact that one dyadic is the conjugate of

another is denoted by affixing a subscript C to either.

Thus = C = c.

Theorem: A dyadic used as a postfactor gives the same

result as its conjugate used as a prefactor. That is

r = C r. (9)

100.] Definition : Any two dyadics and W are said to

be equal

when r = W r for all values of r,

or when r = r W for all values of r, (10)

or when B r = B W r for all values of s and r.
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The third relation is equivalent to the first. For, if the

vectors r and W r are equal, the scalar products of any
vector s into them must be equal. And conversely if the

scalar product of any and every vector s into the vectors r

and *T are equal, then those vectors must be equal. In

like manner it may be shown that the third relation is equiva

lent to the second. Hence all three are equivalent.

Theorem : A dyadic is completely determined when the

values
0.a, 0.b, 0.c,

where a, b, c are any three non-coplanar vectors, are known.

This follows immediately from the fact that a dyadic defines

a linear vector function. If

. r = 0.(#a + 2/b + zc)==# a + ?/*b-Mc,

Consequently two dyadics and W are equal provided equa

tions (10) hold for three non-coplanar vectors r and three

non-coplanar vectors s.

Theorem : Any linear vector function / may be represented

by a dyadic to be used as a prefactor and by a dyadic ,

which is the conjugate of 0, to be used as a postfactor.

The linear vector function is completely determined when

its values for three non-coplanar vectors (say i, j, k) are

known (page 264). Let

/

Then the linear function / is equivalent to the dyadic

to be used as a postfactor; and to the dyadic

= <P
(7
= ia + jb + kc,

to be used as a prefactor.
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The study of linear vector functions therefore is identical

with the study of dyadics.

Definition : A dyad a b is said to be multiplied by a scalar

a when the antecedent or the consequent is multiplied by
that scalar, or when a is distributed in any manner between

the antecedent and the consequent. If a = a a 11

a (ab) = (a a) b = a (a b) = (a a) (a" b).

A dyadic is said to be multiplied by the scalar a when

each of its dyads is multiplied by that scalar. The product

is written
a or <Pa.

The dyadic a $ applied to a vector r either as a prefactor or

as a postfactor yields a vector equal to a times the vector

obtained by applying to r that is

(a 0) r = a (0 r).

Theorem : The combination of vectors in a dyad is distrib

utive. That is

(a + b) c = a c + b c ...

and a (b + c) = ab + ac.

This follows immediately from the definition of equality of

dyadics (10). For

[(a + b) c] r = (a + b) c r = a c r + b c r = (a c + b c) r

and

[a(b + c)] r = a (b + c) r = ab -r + ac- r = (ab + ac) r.

Hence it follows that a dyad which consists of two factors,

each of which is the sum of a number of vectors, may be

multiplied out according to the law of ordinary algebra

except that the order of the factors in the dyads must be

maintained.
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bn+ ... (11)

+ cl-f cm-f cn+

The dyad therefore appears as a product of the two vectors of

which it is composed, inasmuch as it obeys the characteris

tic law of products the distributive law. This is a justifi

cation for writing a dyad with the antecedent and conse

quent in juxtaposition as is customary in the case of products

in ordinary algebra.

The Nonion Form of a Dyadic

10L] From the three unit vectors i, j, k nine dyads may
be obtained by combining two at a time. These are

ii, ij, ik,

ji, jj, jk, (12)

ki, kj, kk.

If all the antecedents and consequents in a dyadic be ex

pressed in terms of i, j, k, and if the resulting expression be

simplified by performing the multiplications according to the

distributive law (11) and if the terms be collected, the dyadic

may be reduced to the sum of nine dyads each of which is

a scalar multiple of one of the nine fundamental dyads given
above.

= a n ii + a
12 ij + a

13 ik

+ 2iJi +a 22 jj + a23 jk (13)

+ a
31 ki + a

32 kj + a
33 kk.

This is called the nonion form of 0.

Theorem : The necessary and sufficient condition that two

dyadics 4> and W be equal is that, when expressed in nonion
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form, the scalar coefficients of the corresponding dyads be

equal.

If the coefficients be equal, then obviously

<P. r= W . r

for any value of r and the dyadics by (10) must be equal.

Conversely, if the dyadics and W are equal, then by (10)

s r = s W r

for all values of s and r. Let s and r each take on the values

i,j,k. Then (14)

i . d> . i = i -
i, i . .

j
= i . W j, i k = i iT k

j
. 0.i=j. W.i, j. </.j =j. .

j, j. <P.k = j. ?T.k

k. <P-i = k. ?F.i, k- 0- j
= k- ?F.j, k 0- k = k r.k.

But these quantities are precisely the nine coefficients in the

expansion of the dyadics and W. Hence the corresponding
coefficients are equal and the theorem is proved.

1 This

analytic statement of the equality of two dyadics can some

times be used to greater advantage than the more fundamental

definition (10) based upon the conception of the dyadic as

defining a linear vector function.

Theorem : A dyadic may be expressed as the sum of nine

dyads of which the antecedents are any three given non-

coplanar vectors, a, b, c and the consequents any three given

non-coplanar vectors 1, m, n.

Every antecedent may be expressed in terms of a, b, c ;

and every consequent, in terms of 1, m, n. The dyadic may
then be reduced to the form

= a n al + &
12
am + a

13
an

+ a
21 bl + 22 bin + a

23 bn (15)

-f- fflai c 1 + a32 c m + ^33 c n.

1 As a corollary of the theorem it is evident that the nine dyads (12) are in

dependent. None of them may be expressed linearly in terms of the others.
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This expression of <P is more general than that given in

(13). It reduces to that expression when each set of vectors

a, b, c and 1, m, n coincides with i, j, k.

Theorem : Any dyadic <# may be reduced to the sum of

three dyads of which either the antecedents or the consequents,

but not both, may be arbitrarily chosen provided they be non-

coplanar.

Let it be required to express 4> as the sum of three dyads

of which a, b, c are the antecedents. Let 1, m, n be any other

three non-coplanar vectors. may then be expressed as in

(15). Hence

= a (an 1 + 12
m + a

13 n) + b (a 21
1 + 22 m + 23 n)

+ c Osi 1 + 32
m + a

32 n),

or <P = aA + bB + cC. (16)

In like manner if it be required to express $ as the sum of

three dyads of which the three non-coplanar vectors 1, m, n are

the consequents
= Ll + Mm + Nn, (16)

where L = an a + a
2l b + a

31 c,

M = a
12

a + 22
b + a

32 c>

N = a
lB

a + a
23 b + a

ZB c.

The expressions (15), (16), (16) for are unique. Two equal

dyadics which have the same three non-coplanar ante

cedents, a, b, c, have the same consequents A, B, C - - these

however need not be non-coplanar. And two equal dyadics

which have the same three non-coplanar consequents 1, m, n,

have the same three antecedents.

102. ] Definition: The symbolic product formed by the juxta

position of two vectors a, b without the intervention of a dot

or a cross is called the indeterminate product of the two vectors

a and b.
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The reason for the term indeterminate is this. The two

products a b and a x b have definite meanings. One is a

certain scalar, the other a certain vector. On the other hand

the product ab is neither vector nor scalar it is purely

symbolic and acquires a determinate physical meaning only
when used as an operator. The product a b does not obey
the commutative law. It does however obey the distributive

law (11) and the associative law as far as scalar multiplication

is concerned (Art 100).

TJieorem : The indeterminate product a b of two vectors is

the most general product in which scalar multiplication is

associative.

The most general product conceivable ought to have the

property that when the product is known the two factors are

also known. Certainly no product could be more general.

Inasmuch as scalar multiplication is to be associative, that is

a (ab) = (a a) b = a (a b) = (a* a) (a"b),

it will be impossible to completely determine the vectors a

and b when their product a b is given. Any scalar factor

may be transferred from one vector to the other. Apart from

this possible transference of a scalar factor, the vectors com

posing the product are known when the product is known. In

other words

Theorem : If the two indeterminate products a b and a b

are equal, the vectors a and a ,
b and b must be collinear and

the product of the lengths of a and b (taking into account the

positive or negative sign according as a and b have respec

tively equal or opposite directions to a and b ) is equal to the

product of the lengths of a and b .

Let a = a
l

i + &
2 j + a

3 k,

b = l
l

i + & 2 j + 6
3 k,
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a = a
1

i + a
2 j + a

3 k,

v = Vi + yj + &, *

Then &b = a
1
b

1
ii + a^^ ij + a

1
b
3 ik

a
2
& 3 jj + a

2 6
3 jk

a,&, kj + a
3 6 3 kk.

and a V =
, &/ ii + a/V ij + aj 6 3 ik

+ <V ji + , &, jj + a
2 6 3 jk

+ o
8 6j ki + o, 6 t kj + a 3 &

3
kk.

Since ab = a b corresponding coefficients are equal. Hence

a
1
:a

2
:a s

= a
1
:a 2 :a 3 ,

which shows that the vectors a and a are collinear.

And &
1 :,:6 8

= V- /
- V.

which shows that the vectors b and V are collinear.

But a
l
b
l
= a/ &/.

This shows that the product of the lengths (including sign)

are equal and the theorem is proved.

The proof may be carried out geometrically as follows.

Since ab is equal to a V

ab r = a b r

for all values of r. Let r be perpendicular to b. Then b r

vanishes and consequently Vr also vanishes. This is true

for any vector r in the plane perpendicular to b. Hence b and

b are perpendicular to the same plane and are collinear. In

like manner by using a b as a postfactor a and a are seen

to be parallel. Also

ab-b = a b -b,

which shows that the products of the lengths are the same.

18
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The indeterminate product ab imposes Jive conditions upon
the vectors a and b. The directions of a and b are fixed and

likewise the product of their lengths. The scalar product

a b, being a scalar quantity, imposes only one condition upon
a and b. The vector product a x b, being a vector quantity,

imposes three conditions. The normal to the plane of a and

b is fixed and also the area of the parallelogram of which they

are the side. The nine indeterminate products (12) of i,j, k

into themselves are independent. The nine scalar products

are not independent. Only two of them are different.

and i.j=j.i=j.k = kj=ki =ik = 0.

The nine vector products are mot independent either; for

ixi = jxj = kxk = 0,

and ixj = jxi, jxk= kxj, kxi ixk.

The two products a b and a x b obtained respectively from

the indeterminate product by inserting a dot and a cross be

tween the factors are functions of the indeterminate product.

That is to say, when ab is given, a b and a x b are determined.

For these products depend solely upon the directions of a and b

and upon the product of the length of a and b, all of which

are known when ab is known. That is

if ab = a b
, a b = a b and a x b = a x b . (17)

It does not hold conversely that if a b and a x b are known

a b is fixed ; for taken together a b and a X b impose upon the

vectors only four conditions, whereas a b imposes five. Hence

a b appears not only as the most general product but as the

most fundamental product. The others are merely functions

of it. Their functional nature is brought out clearly by the

notation of the dot and the cross.
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Definition: A scalar known as the scalar of may be ob

tained by inserting a dot between the antecedent and conse

quent of each dyad in a dyadic. This scalar will be denoted

by a subscript S attached to 0. l

If <P = a
1
b

1 + a
2 b 2 + a

3
b

3 + ...

8
= &1 b

x + a
2

b
2 + a

3
. b 3 + . . (18)

In like manner a vector known as the vector of may be

obtained by inserting a cross between the antecedent and con

sequent of each dyad in 0. This vector will be denoted by

attaching a subscript cross to 0.

X = aj x b
x + a

2
x b

2 + a
3
x b

3 + . - (19)

If be expanded in nonion form in terms of i, j, k,

s = a n + a^ + a
BZ , (20)

#x = ( 28
- a

32 )
* + 0*31

- a
!3) J + (^12

- a
2l)

k - (21 )

Or S
= i- 0-i + j- <Pj + k. (?-k, (20)

<? x =(j . (P-k-k* ^.j) i+ (k- (P-i-i. (P.k) j

+ (i- 0-j-j.0.i)k. (21)

In equations (20) and (21) the scalar and vector of are

expressed in terms of the coefficients of when expanded
in the nonion form. Hence if and W are two equal

dyadics, the scalar of is equal to the scalar of and the

vector of is equal to the vector of .

If = W, S
=

s and X = yx . (22)

From this it appears that S and X are functions of

uniquely determined when is given. They may sometimes

be obtained more conveniently from (20) and (21) than from

(18) and (19), and sometimes not.

1 A subscript dot might be used for the scalar of * if it were sufficiently distinct

and free from liability to misinterpretation.
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Products of Dyddics

103.] In giving the definitions and proving the theorems

concerning products of dyadics, the dyad is made the under

lying principle. What is true for the dyad is true for the

dyadic in general owing to the fact that dyads and dyadics

obey the distributive law of multiplication.

Definition: The direct product of the dyad ab into the

dyad c d is written , , x , ,.

(ab) (cd)

and is by definition equal to the dyad (b c) a d,

(ab)-(cd) = a(b.c)d = b-c ad. 1
(23)

That is, the antecedent of the first and the consequent of the

second dyad are taken for the antecedent and consequent

respectively of the product and the whole is multiplied by
the scalar product of the consequent of the first and the

antecedent of the second.

Thus the two vectors which stand together in the product

(ab). (cd)

are multiplied as they stand. The other two are left to form

a new dyad. The direct product of two dyadics may be

defined as the formal expansion (according to the distributive

law) of the product into a sum of products of dyads. Thus

*=(a 1
b

1 + a 2 b2 + a
3
b

3 + ...)

and r^CCjdj + c
2
d2 + c 3

d 3 + -..)

d>. ?T=(a 1
b

1 +a 2
b
2 + a 3 b 3 + )

(c^j + c 2 d 2 + C 3
d

3 +)
= a

1
b

1
c
1
d

1 + a
1
b

1
*e 2

d a + a
x b x

C 3 d 3 +

+ a 2
b

2
-c

1
d

1 +a 2
b
2
.c

2 d 2 + a 2 b 2 C 3 d 3 + (23)

+ agbg-c^ + a
3
b
3
-c 2 d 2 + a

3
b
3 c

3
d 3 H

+
1 The parentheses may be omitted in each of these three expressions.
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x ajdj + bj c 2 a
x
d
2 -f b

x
c
3
a

x
d 3 +

l
a2 d x + b 2 -c 2 a 2 d 2 + b 2 c

3 a^j
d
3 -f-

b
3
.c 2 a

3
d
2 + b

3 -c 3
a
3
d
3

(23)"

The product of two dyadics and W is a dyadic W.

Theorem : The product W of two dyadics (P and W when

regarded as an operator to be used as a prefactor is equiva
lent to the operator W followed by the operator 0.

Let =&..
To show Q r = d> ( W r),

or ((? W)*T = 0- (^ 0- (24)

Let ab be any dyad of <? and c d any dyad of W.

(ab cd) r = b c (ad r)
=

(b c) (d r) a,

ab (c d r) = a b c (d r) = (b c) (d r) a,

Hence (a b c d) r = a b (c d r).

The theorem is true for dyads. Consequently by virtue of

the distributive law it holds true for dyadics in general.

If r denote the position vector drawn from an assumed origin

to a point P in space, r = W r will be the position vector of

another point P , and r" = (^(3r
r) will be the position

vector of a third point P n
. That is to say, W defines a trans

formation of space such that the points P go over into the

points Pf
. defines a transformation of space such that the

points P f

go over into the points P". Hence W followed by
carries P into P ff

. The single operation W also carries

PintoP".

Theorem: Direct multiplication of dyadics obeys the dis*

tributive law. That is
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( + f

)
= . W + .

and (0
f + 0) W = f

. + . W. (25)

Hence in general the product

(4>+ 4> + 4>" + ...).( W+ + ?F"+...)

may be expanded formally according to the distributive law.

Theorem : The product of three dyadics <P, W, Q is associa-

tive. Thatis
( t.r). o= t. (ma> (26)

and consequently either product may be written without

parentheses, as
. V . Q, (26)

The proof consists in the demonstration of the theorem for

three dyads ab, cd, ef taken respectively from the three

dyadics 4>, , Q.

(abcd) ef = (bc) ad ef = (bc) (d- e) af,

ab (cdef) = (d^e) ab -cf = (d e) (b c) af.

The proof may also be given by considering 0, W, and Q
as operators

Let

Let

Again {^.(f. J)} . r = *. [(f. J2).r].

Hence {(* F) Q\ -r = {(? (V T)\ r

for all values of r. Consequently
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The theorem may be extended by mathematical induction

to the case of any number of dyadics. The direct product

of any number of dyadics is associative. Parentheses may
be inserted or omitted at pleasure without altering the result.

It was shown above (24) that

(<P T) r = .
(

-
r)
= <P V r. (24)

Hence the product of two dyadics and a vector is associative.

The theorem is true in case the vector precedes the dyadics

and also when the number of dyadics is greater than two.

But the theorem is untrue when the vector occurs between

the dyadics. The product of a dyadic, a vector, and another

dyadic is not associative.

(#.r). V 0.(r- ). (27)

Let ab be a dyad of $, and c d a dyad of .

(a b r) c d = b r (a c d) = (b r) (a c) d,

ab (r c d) = ab d (r c) = b d (r c) a

Hence (ab r) c d ab (r cd).

The results of this article may be summed up as follows :

Theorem: The direct product of any number of dyadics

or of any number of dyadics with a vector factor at either

end or at both ends obeys the distributive and associative

laws of multiplication parentheses may be inserted or

omitted at pleasure. But the direct product of any number

of dyadics with a vector factor at some other position than at

either end is not associative parentheses are necessary to

give the expression a definite meaning.
Later it will be seen that by making use of the conjugate

dyadics a vector factor which occurs between other dyadics

may be placed at the end and hence the product may be

made to assume a form in which it is associative.
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104.] Definition: The skew products of a dyad ab into

a vector r and of a vector r into a dyad ab are defined

respectively by the equations

(ab) x r = a(b x r),

rx(ab) = (r x a)b.

The skew product of a dyad and a vector at either end is a

dyad. The obvious extension to dyadics is

rrrajbj x r + a
2
b 2 xr + a 3

b
3 x r + ...

r x = r x (a a
b

a + a 2
b

2 + a
3
b

3 + . .

.) (28)

= r x ajbj + r x a
2
b 2 + r x a

3
b

3 + ...

Theorem: The direct product of any number of dyadics

multiplied at either end or at both ends by a vector whether

the multiplication be performed with a cross or a dot is

associative. But in case the vector occurs at any other

position than the end the product is not associative. That is,

(rx <P) Sr = rx(0.y)=rx <P ,

(<P ?F) xr=(P.(?P xr) = <P.?r xr,

(r x #) s = r x ( s) = r x <P s, (29)

r . (0 x s)
= (r </>) x s = r <P x s,

rx($xs) = (rx $)xs = rx $xs,

but !P (rX^)^(S jr

-r) X*.

Furthermore the expressions

s r x <P and <P x r s

can have no other meaning than

s r x <P = s (r x <P),
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since the product of a dyadic with a cross into a scalar s r

is meaningless. Moreover since the dot and the cross may
be interchanged in the scalar triple product of three vectors

it appears that

s r x ^ = (s x r) 0,

<p x r s = 4> (r x s), (31)

and 0-(r x 5F)
=

(</> x r) V.

The parentheses in the following expressions cannot be

omitted without incurring ambiguity.

<p.(r x s) (0-r) x s,

(sx r). 0*sx(r-0), (31)

(0-r) x * x(r. >).

The formal skew product of two dyads a b and c d would be

(ab) x (cd) = a(b x c)d.

In this expression three vectors a, b x c, d are placed side

by side with no sign of multiplication uniting them. Such

an expression
rst (32)

is called a triad ; and a sum of such expressions, a triadic.

The theory of triadics is intimately connected with the theory

of linear dyadic functions of a vector, just as the theory of

dyadics is connected with the theory of linear vector functions

of a vector. In a similar manner by going a step higher

tetrads and tetradics may be formed, and finally polyads and

polyadics. But the theory of these higher combinations of

vectors will not be taken up in this book. The dyadic

furnishes about as great a generality as is ever called for in

practical applications of vector methods.
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Degrees of Nullity of Dyadics

105.] It was shown (Art. 101) that a dyadic could always
be reduced to a sum of three terms at most, and this reduction

can be accomplished in only one way when the antecedents

or the consequents are specified. In particular cases it may
be possible to reduce the dyadic further to a sum of two

terms or to a single term or to zero. Thus let

<P = al + bm + cn.

If 1, m, n are coplanar one of the three may be expressed

in terms of the other two as

1 = x m + y n.

Then $ = a#m + ayn + bm + cn,

= (a# + b)m + (ay + c)n.

The dyadic has been reduced to two terms. If 1, m, n were

all collinear the dyadic would reduce to a single term and if

they all vanished the dyadic would vanish.

Theorem : If a dyadic be expressed as the sum of three

terms
<p = al + bm + en

of which the antecedents a, b, c are known to be non-coplanar,

then the dyadic may be reduced to the sum of two dyads

when and only when the consequents are coplanar.

The proof of the first part of the theorem has just been

given. To prove the second part suppose that the dyadic

could be reduced to a sum of two terms

$ = dp + eq

and that the consequents 1, m, n of were non-coplanar.

This supposition leads to a contradiction. For let 1
, m ,

n

be the system reciprocal to 1, m, n. That is,

mx n n x 1 1 x m_=
[Tmn]
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The vectors 1 , m f

,
n exist and are non-coplanar because

1, m, n have been assumed to be non-coplanar. Any vector r

may be expressed in terms of them as

r = xl f + ym + zn/

<p.r = (al + bm + en) (xl
1 + ym + zn

).

But 1 1 = m m = n n = 1,

and 1 m = 1 m = m n = m n = n 1 = n 1 = 0.

Hence $ r = x a + y b + z,e.

By giving to r a suitable value the vector d> r may be made

equal to any vector in space.

But r = (dp + e q)
- r = d (p r) + e (q r).

This shows that r must be coplanar with d and e. Hence

r can take on only those vector values which lie in the

plane of d and e. Thus the assumption that 1, m, n are non-

coplanar leads to a contradiction. Hence 1, m, n must be

coplanar and the theorem is proved.

Theorem : If a dyadic be expressed as the sum of three

terms

of which the antecedents a, b, c are known to be non-coplanar,

the dyadic can be reduced to a single dyad when and only
when the consequents 1, m, n are collinear.

The proof of the first part was given above. To prove
the second part suppose <P could be expressed as

Let
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From the second equation it is evident that W used as a

postfactor for any vector

r = x a + y b + zc ,

where a , V, c is the reciprocal system to a, b, c gives

From the first expression

r = 0.

Hence #lxp+ymxp + znxp

must be zero for every value of r, that is, for every value of x,

y, z. Hence

1 x p = 0, mxp = 0, nxp = 0.

Hence 1, m, and n are all parallel to p and the theorem has

been demonstrated.

If the three consequents 1, m, n had been known to be non-

coplanar instead of the three antecedents, the statement of

the theorems would have to be altered by interchanging the

words antecedent and consequent throughout. There is a fur

ther theorem dealing with the case in which both antecedents

and consequents of are coplanar. Then is reducible to

the sum of two dyads.

106.] Definition: A dyadic which cannot be reduced to

the sum of fewer than three dyads is said to be complete. A
dyadic which may be reduced to the sum of two dyads, but

cannot be reduced to a single dyad is said to be planar. In

case the plane of the antecedents and the plane of the con

sequents coincide when the dyadic is expressed as the sum of

two dyads, the dyadic is said to be uniplanar. A dyadic

which may be reduced to a single dyad is said to be linear.

In case the antecedent and consequent of that dyad are col-
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linear, the dyadic is said to be unilinear. If a dyadic may be

so expressed that all of its terms vanish the dyadic is said to

be zero. In this case the nine coefficients of the dyadic as

expressed in nonion form must vanish.

The properties of complete, planar, uniplanar, linear, and

unilinear dyadics when regarded as operators are as follows.

Let
s = r and t = r <P.

If is complete s and t may be made to take on any desired

value by giving r a suitable value.

As is complete 1, m, n are non-coplanar and hence have a

reciprocal system l
f

,
m

,
n .

s = . (xl
f + ym f + zn

) =#a + yb + zc.

In like manner a, b, c possess a system of reciprocals a , V, c .

yb + zc )
= xl + ym + zn.

A complete dyadic applied to a vector r cannot give zero

unless the vector r itself is zero.

If is planar the vector s may take on any value in the plane

of the antecedents and t any value in the plane of the consequents

of ; but no values out of those planes. The dyadic when

used as a prefactor reduces every vector r in space to a vector

in the plane of the antecedents. In particular any vector r

perpendicular to the plane of the consequents of is reduced

to zero. The dyadic used as a postfactor reduces every

vector r in space to a vector in the plane of the consequents

of <P. In particular a vector perpendicular to the plane of

the antecedents of is reduced to zero. In case the dyadic

is uniplanar the same statements hold.

If is linear the vector s may take on any value collinear

with the antecedent of and t any value collinear with the con-
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sequent of ;
but no other values. The dyadic used as a

prefactor reduces any vector r to the line of the antecedent

of 0. In particular any vectors perpendicular to the con

sequent of are reduced to zero. The dyadic used as a

postfactor reduces any vector r to the line of the consequent

of 0. In particular any vectors perpendicular to the ante

cedent of are thus reduced to zero.

If is a zero dyadic the vectors s and t are loth zero no

matter what the value of r may be.

Definition : A planar dyadic is said to possess one degree of

nullity. A linear dyadic is said to possess two degrees of

nullity. A zero dyadic is said to possess three degrees of nul

lity or complete nullity.

107.] Theorem : The direct product of two complete dyadics

is complete; of a complete dyadic and a planar dyadic,

planar ; of a complete dyadic and a linear dyadic, linear.

Theorem: The product of two planar dyadics is planar

except when the plane of the consequent of the first dyadic

in the product is perpendicular to the plane of the antece

dent of the second dyadic. In this case the product reduces

to a linear dyadic and only in this case.

Let B,
I

\)
I + a

2 b 2 ,

Q = . W.

The vector s = W r takes on all values in the plane of Cj

and c
2

The vector s
f = s takes on the values

g = . s = x (b x
c

x)
a

x + y (b x
c
2 )

a
x

+ x (b 2 C l) a
2 + y 0>2 C) E

2>

s = \x (bj c
x) + y (bj c

2)} a
x + {x (b 2 c

x)
+ y (b 2

c2)} a2 .
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Let s = x &i + y a
2 ,

where x 1 = x (b x Cj) + y (b l
c
2 ),

and y
1 x (b 2 Cj) 4- y (b 2

c
2).

These equations may always be solved for x and y when

any desired values x 1 and y are given that is, when s has

any desired value in the plane of EJ and a
2 unless the

determinant V^ bj-c,
b
2

c
x

b
2 c

2

But by (25), Chap. II., this is merely the product

0>i x t>
2 ) ( ci

x C 2)
= -

The vector \ x b
2

is perpendicular to the plane of the con

sequents of <P; and c
l
x c

2 ,
to the plane of the antecedents of

. Their scalar product vanishes when and only when the

vectors are perpendicular that is, when the planes are per

pendicular. Consequently s may take on any value in the

plane of a
x
and a

2
and is therefore a planar dyadic

unless the planes of b
x
and b

2 , c
x
and c

2
are perpendicular.

If however b
x
and b

2, Cj and c
2 are perpendicular s

f can take

on only values in a certain line of the plane of a
x
and a^ and

hence <P W is linear. The theorem is therefore proved.

Theorem : The product of two linear dyadics is linear

except when the consequent of the first factor is perpen

dicular to the antecedent of the second. In this case the

product is zero and only in this case.

Theorem : The product of a planar dyadic into a linear is

linear except when the plane of the consequents of the

planar dyadic is perpendicular to the antecedent of the linear

dyadic. In this case the product is zero and only in this

case.

Theorem: The product of a linear dyadic into a planar

dyadic is linear except when the consequent of the linear
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dyadic is perpendicular to the plane of the antecedents of

the planar dyadic. In this case the product is zero and

only in this case.

It is immediately evident that in the cases mentioned the

products do reduce to zero. It is not quite so apparent that

they can reduce to zero in only those cases. The proofs are

similar to the one given above in the case of two planar

dyadics. They are left to the reader. The proof of the

first theorem stated, page 286, is also left to the reader.

The Idemfactor;
1
Reciprocals and Conjugates of Dyadics

108.] Definition : If a dyadic applied as a prefactor or as

a postfactor to any vector always yields that vector the

dyadic is said to be an idemfactor. That is

if r = r for all values of r,

or if r = r for all values of r,

then is an idemfactor. The capital I is used as the sym
bol for an idemfactor. The idemfactor is a complete dyadic.

For there can be no direction in which I r vanishes.

Theorem : When expressed in nonion form the idemfactor is

I = ii + jj + kk. (33)

Hence all idemfactors are equal.

To prove that the idemfactor takes the form (33) it is

merely necessary to apply the idemfactor I to the vectors

i, j, k respectively. Let

1 = a n ii+ 12 ij + a
13
ik

ki + a
32 kj + a

33 kk.

1 In the theory of dyadics the idemfactor I plays a role analogous to unity in

ordinary algebra. The notation is intended to suggest this analogy.
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I . i = an i + a
21 j 4- a

31 k.

If I-i = i,

an = 1 and a
21
= a

31
= 0.

In like manner it may be shown that all the coefficients

vanish except an ,
a
22 , a33

all of which are unity. Hence

I = ii + jj + kk. (33)

Theorem : The direct product of any dyadic and the idem-

factor is that dyadic. That is,

I = and 1-0 = 0.

For (0 I) r = (I r)
=

r,

no matter what the value of r may be. Hence, page 266,

In like manner it may be shown that I = 0.

Theorem: If a , V, c and a, b, c be two reciprocal systems

of vectors the expressions

I = aa + bb + cc , (34)

I = a a + b b + c c

are idemfactors.

For by (30) and (31) Chap. II.,

r = raa + r*bb + r cc ,

and r = ra a + r b b + r.c c.

Hence the expressions must be idemfactors by definition.

Theorem : Conversely if the expression

= al + bm + en

is an idemfactor 1, m, n must be the reciprocal system of

a, b, c.

19
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In the first place since (P is the idemfactor, it is a complete

dyadic. Hence the antecedents a, b, c are non-coplanar and

possess a set of reciprocals a ,
b , c . Let

r = #a + yV + 20 .

By hypothesis r $ = r.

Then r <P = xl + ym-\-zn = xsi + y b + zc

for all values of r, that is, for all values of x, y, z. Hence the

corresponding coefficients must be equal. That is,

Theorem : If (Pand be any two dyadics, and if the product

<? W is equal to the idemfactor ;

l then the product W 0,

when the factors are taken in the reversed order, is also

equal to the idemfactor.

Let V = L

To show W = L

r . (0 . W) - = (r 0) ( W (?)
= r 0.

This relation holds for all values of r. As is complete r

must take on all desired values. Hence by definition

W = I.

If the product of two dyadics is an idemfactor, that product

may be taken in either order.

109.] Definition: When two dyadics are so related that

their product is equal to the idemfactor, they are said to be

1 This necessitates both the dyadics * and V to be complete. For the product

of two incomplete dyadics is incomplete and hence could not be equal to the

idemfactor.
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reciprocals.
1 The notation used for reciprocals in ordinary

algebra is employed to denote reciprocal dyadics. That is,

if 0.y=I, = ?F-i = 1 and 5T= 0-i=L (35)W

Theorem: Reciprocals of the same or equal dyadics are

equal.

Let and W be two given equal dyadics, <J>~1 and JT"1

their reciprocals as defined above. By hypothesis

0= W,

and W. ~i = l.

To show 0- 1 = ~i.

0. 0-1 = 1= -1.

As 0=, 0.0~i=0.-\

0-1.0 = I,

I.0-i = 0-i = I. W~i = -1.

Hence 0-i = ~\

The reciprocal of is the dyadic whose antecedents are the

reciprocal system to the consequents of and whose conse

quents are the reciprocal system to the antecedents of 0.

If a complete dyadic be written in the form

= al + bm + en,

its reciprocal is 0"1 = 1 a + m V + n c . (36)

For (al + bm + cn) (1 a + n V + n c ) =aa + bV + ce .

Theorem : If the direct products of a complete dyadic

into two dyadics W and Q are equal as dyadics then W and Q

1 An incomplete dyadic has no (finite) reciprocal.
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are equal. If the product of a dyadic into two vectors

r and s (whether the multiplication be performed with a dot

or a cross) are equal, then the vectors r and s are equal.

That is,

if - = d> J2, then = Q,

and if r = s, then r = s, (37)

and if x r = x s, then r = s.

This may be seen by multiplying each of the equations

through by the reciprocal of 0,

0-1.0. W = = 0-i Q =
,

0-i . . r = r = 0~! s = s,

0-1. 0xr = IXr=0"1 - 0X8 = 1X8.

To reduce the last equation proceed as follows. Let t be

any vector,
tIxr = tIxs,

t I = t.

Hence t x r = t x s.

As t is any vector, r is equal to s.

Equations (37) give what is equivalent to the law of can-

celation for complete dyadics. Complete dyadics may be

canceled from either end of an expression just as if they
were scalar quantities. The cancelation of an incomplete

dyadic is not admissible. It corresponds to the cancelation

of a zero factor in ordinary algebra.

110.] Theorem: The reciprocal of the product of any
number of dyadics is equal to the product of the reciprocals

taken in the opposite order.

It will be sufficient to give the proof for the case in which

the product consists of two dyadics. To show



LINEAR VECTOR FUNCTIONS 293

. V 5F-1 0~l = ( ?F y-1
} . 0~l = 0. 0-l = I.

Hence (0 ?F) ( JF-1 0-1
) = I.

Hence ?T and W~l (P"1 must be reciprocals. That is,

The proof for any number of dyadics may be given in the

same manner or obtained by mathematical induction.

Definition : The products of a dyadic <P, taken any number

of times, by itself are called powers of and are denoted in

the customary manner.
. = 0*,

. . = . 02 0^
and so forth.

Theorem : The reciprocal of a power of <P is the power of

the reciprocal of <P.

(0)-i = (0-
1
)"
= 0- (37)

The proof follows immediately as a corollary of the preced

ing theorem. The symbol <P"n may be interpreted as the

nth power of the reciprocal of or as the reciprocal of

the nth power of 0.

If be interpreted as an operator determining a trans

formation of space, the positive powers of correspond to

repetitions of the transformation. The negative powers of

correspond to the inverse transformations. The idemfactor

corresponds to the identical transformation that is, no trans

formation at all. The fractional and irrational powers of CP

will not be defined. They are seldom used and are not

single-valued. For instance the idemfactor I has the two

square roots 1. But in addition to these it has a doubly
infinite system of square roots of the form

<P = -ii + jj + kk.
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Geometrically the transformation

is a reflection of space in the j k-plane. This transformation

replaces each figure by a symmetrical figure, symmetrically

situated upon the opposite side of the j k-plane. The trans

formation is sometimes called perversion. The idemfactor

has also a doubly infinite system of square roots of the form

Geometrically the transformation

r = V.T

is a reflection in the i-axis. This transformation replaces each

figure by its equal rotated about the i-axis through an angle

of 180. The idemfactor thus possesses not only two square

roots ; but in addition two doubly infinite systems of square

roots ; and. it will be seen (Art. 129) that these are by no

means all.

111.] The conjugate of a dyadic has been defined (Art. 99)

as the dyadic obtained by interchanging the antecedents and

consequents of a given dyadic and the notation of a subscript

C has been employed. The equation

r . = 4> r (9)

has been demonstrated. The following theorems concerning

conjugates are useful.

Theorem : The conjugate of the sum or difference of two

dyadics is equal to the sum or difference of the conjugates,

(d> T) =0C Wc.

Theorem : The conjugate of a product of dyadics is equal

to the product of the conjugates taken in the opposite order.
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It will be sufficient to demonstrate the theorem in case

the product contains two factors. To show

(d>.T)c=Wc .0 Ct (40)

(0 . W)c . r = r (0 W) = (r 4>) 5F,

r . = <PC .
r,

(r
.
<P)

. W = Vc . (r <P)
= ^ <^. r.

Hence (4> V) c = c .4>c.

Theorem : The conjugate of the power of a dyadic is the

power of the conjugate of the dyadic.

This is a corollary of the foregoing theorem. The expression
n
c may be interpreted in either of two equal ways.

Theorem : The conjugate of the reciprocal of a dyadic is

equal to the reciprocal of the conjugate of the dyadic.

=^ (42)

For (@~
l
)c c = (& 0~1

)c = Ic = I-

The idemfactor is its own conjugate as may be seen from

the nonion form.

I = ii + j j + kk

Hence (^c)"
1 *c

Hence C^) 1 = (*"%

The expression ^c
-1

may therefore be interpreted in either

of two equivalent ways as the reciprocal of the conjugate
or as the conjugate of the reciprocal.

Definition: If a dyadic is equal to its conjugate, it is said

to be self-conjugate. If it is equal to the negative of its con-
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jugate, it is said to be anti-self-conjugate. For se//-conjugate

dyadics.
r = r, = C.

For anti-self-conjugate dyadics

r = r, = 00.

Theorem : Any dyadic may be divided in one and only one

way into two parts of which one is self-conjugate and the

other anti-self-conjugate.

For 0=5(0+0,) + 2 (0-0c). (43)

But (& + c) c = c +<pcc =: 4>c + d>,

and (0 - 0<,) c = $ - <PCC = 0<,
_ 0.

Hence the part |(0 + &c) is self-conjugate; and the part

|(^~ 4>c), anti-self-conjugate. Thus the division has been

accomplished in one way. Let

and

Suppose it were possible to decompose in another way
into a self-conjugate and an anti-self-conjugate part. Let

then
= (0 + J2) + (0"-).

Where (0 + 0) = (0 + ), = + c = f + ^
Hence if (0

;

-f J2) is self-conjugate, fi is self-conjugate.

Hence if (0" J2) is anti-self-conjugate is anti-self-

conjugate.



LINEAR VECTOR FUNCTIONS 297

Any dyadic which is both self-conjugate and anti-self-conju

gate is equal to its negative and consequently vanishes.

Hence Q is zero and the division of into two parts is

unique.

Anti-self-conjugate Dyadics. The Vector Product

112.] In case is any dyadic the expression

gives the anti-self-conjugate part of 0. If should be en

tirely antinself-conjugate is equal to 0". Let therefore n

be any anti-self-conjugate dyadic,

Suppose <P = al-hbm-fcn,

$c = al la + bm mb + cn nc,

20" r = a 1 r lar-hbmr mbr + cnr n c r.

But a 1 r 1 a r = (a x 1) x r,

bm r mb r = (b x m) x r,

c n r n c r = (cxn)xr.

Hence 0" r = ~
(a x 1 + b x m 4- c x n) x r.

But by definition <Px = axl-fbxm4-cxn.

Hence 0" r = - ~
X x r,

r 0" = 0"c
. r = - 0" r = I0X x r = -

\
r x X .

The results may be stated in a theorem as follows.

Theorem : The direct product of any anti-self-conjugate

dyadic and the vector r is equal to the vector product of

minus one half the vector of that dyadic and the vector r.
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Theorem : Any anti-self-conjugate dyadic <P
!f

possesses one

degree of nullity. It is a uniplanar dyadic the plane of

whose consequents and antecedents is perpendicular to <PX ",

the vector of <P.

This theorem follows as a corollary from equations (44).

Theorem : Any dyadic may be broken up into two parts

of which one is self-conjugate and the other equivalent to

minus one half the vector of used in cross multiplication.

<p . r = <P
r r

^
<PX x r,

or symbolically $ =
\
#x X. (45)

113.] Any vector c used in vector multiplication defines a

linear vector function. For

cx(r + s)=cxr + cxs.

Hence it must be possible to represent the operator c x as a

dyadic. This dyadic will be uniplanar with plane of its

antecedents and consequents perpendicular to c, so that it

will reduce all vectors parallel to c to zero. The dyadic may
be found as follows

By (31) I- (c x !) = (! x c) - 1,

(I x c) r =
\ (I x c) I } r = {I -

(c x I)} r

= I (c x I) r = (c x I) r.

Hence c x r = (I x c) r = (e x I) r,

and r x c = r (I x c) = r (c x I). (46)

This may be stated in words.
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Theorem : The vector c used in vector multiplication with

a vector r is equal to the dyadic I x c or c X I used in direct

multiplication with r. If c precedes r the dyadics are to be

used as prefactors ; if c follows r, as postfactors. The dyadics

I X c and c X I are anti-self-conjugate.

In case the vector c is a unit vector the application of the

operator c X to any vector r in a plane perpendicular to c is

equivalent to turning r through a positive right angle about

the axis c. The dyadic c X I or I x c where c is a unit vector

therefore turns any vector r perpendicular to c through a

right angle about the line c as an axis. If r were a vector

lying out of a plane perpendicular to c the effect of the dyadic

I X c or c x I would be to annihilate that component of r which

is parallel to c and turn that component of r which is perpen

dicular to c through a right angle about c as axis.

If the dyadic be applied twice the vectors perpendicular to

r are rotated through two right angles. They are reversed in

direction. If it be applied three times they are turned through

three right angles. Applying the operator I x c or c X I four

times brings a vector perpendicular to c back to its original

position. The powers of the dyadic are therefore

(I x c)
2 = (c x I)

2 = - (I
-

cc),

(I x c)
3 = (c x I)

3 = - I x c = - c x I,

(47)
(I x c)

4 = (c x I)
4 = I - c c,

(I x c)
5 = (c x I)

6 = I x c = c x I.

It thus appears that the dyadic I x c or c x I obeys the same

law as far as its powers are concerned as the scalar imaginary

V 1 in algebra.

The dyadic Ixc orcxlisa quadrantal versor only for

vectors perpendicular to c. For vectors parallel to c it acts

as an annihilator. To avoid this effect and obtain a true
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quadrantal versor for all vectors r in space it is merely neces

sary to add the dyad c c to the dyadic I X c or c X I.

If X = Ixc + cc = cxI + cc,

X2 = I + 2cc,

X3 = iXc + cc, (48)

The dyadic X therefore appears as a fourth root of the

idemfactor. The quadrantal versor X is analogous to the

imaginary V 1 of a scalar algebra. The dyadic X is com

plete and consists of two parts of which I x c is anti-self-

conjugate ; and c c, self-conjugate.

114.] If i, j, k are three perpendicular unit vectors

Ixi = ixl = kj jk,

I xj-j x I = ik-ki, (49)

Ixk=k x I=ji ij,

as may be seen by multiplying the idemfactor

into i, j, and k successively. These expressions represent

quadrantal versors about the axis i,j, k respectively combined

with annihilators along those axes. They are equivalent,

when used in direct multiplication, to i x, jx, k X respectively,

jj,

The expression (I x k)
4

is an idemfactor for the plane of i and

j, but an annihilator for the direction k. In a similar man

ner the dyad k k is an idemfactor for the direction k, but an
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annihilate! for the plane perpendicular to k. These partial

idemfactors are frequently useful.

If a, b, c are any three vectors and a , V, c the reciprocal

system,
aa + bb

used as a prefactor is an idemfactor for all vectors in the

plane of a and b, but an annihilator for vectors in the direc

tion c. Used as a postfactor it is an idemfactor for all vectors,

in the plane of a and V, but an annihilator for vectors in the

direction c . In like manner the expression

cc

used as a prefactor is an idemfactor for vectors in the direction

c, but for vectors in the plane of a and b it is an annihilator.

Used as a postfactor it is an idemfactor for vectors in the

direction c , but an annihilator for vectors in the plane of a

and V, that is, for vectors perpendicular of c.

If a and b are any two vectors

(a x b) x I = I x (a x b) = ba - ab. (50)
For

{(a x b) x I}r = (a x b) x r = bar ab T = (ba ab>r.

The vector a x b in cross multiplication is therefore equal to

the dyadic (b a a b) in direct multiplication. If the vector

is used as a prefactor the dyadic must be so used.

(a xb) x r = (b a a b) r,

r x (a x b) = r - (ba - ab). (51)

This is a symmetrical and easy form in which to remember
the formula for expanding a triple vector product.
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Reduction of Dyadics to Normal Form

115.] Let be any complete dyadic and let r be a unit

vector. Then the vector r

is a linear function of r. When r takes on all values consis

tent with its being a unit vector that is, when the terminus

of r describes the surface of a unit sphere, the vector r

varies continuously and its terminus describes a surface. This

surface is closed. It is in fact an ellipsoid.
1

Theorem : It is always possible to reduce a complete dyadic

to a sum of three terms of which the antecedents among
themselves and the consequents among themselves are mutu

ally perpendicular. This is called the normal form of 0.

<P = ai i + bj j + ck k.

To demonstrate the theorem consider the surface described

by
r = 0-r.

As this is a closed surface there must be some direction of r

which makes r a maximum or at any rate gives r as great

a value as it is possible for r to take on. Let this direction

of r be called i, and let the corresponding direction of r

the direction in which r takes on a value at least as great as

any be called a. Consider next all the values of r which

lie in a plane perpendicular to i. The corresponding values

of r lie in a plane owing to a fact that (P r is a linear vector

1 This may be proved as follows :

r = * r, r^*-1 - r
/= r l.*c

-1
.

Hence r .r=l=: r . (* e-i.* - 1
)- r = r V r .

By expressing in nonion form, the equation r r = 1 is seen to be ofthe second

degree. Hence r describes a quadric surface. The only closed quadric surface

is the ellipsoid.
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function. Of these values of r one must be at least as great

as any other. Call this b and let the corresponding direction

of r be called j. Finally choose k perpendicular to i and j

upon the positive side of plane of i and j. Let c be the

value of r which corresponds to r = k. Since the dyadic

changes i, j, k into a, b, c it may be expressed in the form

<P = ai + bj + ck.

It remains to show that the vectors a, b, c as determined

above are mutually perpendicular.

r = (ai + bj + ck)-r,

dr f = (ai -f- bj + ck) -dr,

r dr r = r ai di + r bj di + r - ck- dr.

When r is parallel to i, r is a maximum and hence must be

perpendicular to di r
. Since r is a unit vector di is always

perpendicular to r. Hence when r is parallel to i

r b j-dr + r c kdr = 0.

If further dr is perpendicular to j, r c vanishes, and if

dr is perpendicular to k, r b vanishes. Hence when r is

parallel to i, r is perpendicular to both b and c. But when
r is parallel to i, r is parallel to a. Hence a is perpendicular

to b and c. Consider next the plane of j and k and the

plane of b and c. Let r be any vector in the plane of j and k.

r = (bj + ck)r,

dr r = (bj + ck) dr,

r -dr = r -b j dr -f r c k-dr.

When r takes the value j, r is a maximum in this plane and

hence is perpendicular to dr f
. Since r is a unit vector it is
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perpendicular to dr. Hence when r is parallel to j, dr

is perpendicular to j, and

Hence r c is zero. But when r is parallel to j, r takes the

value b. Consequently b is perpendicular to c.

It has therefore been shown that a is perpendicular to b and

c, and that b is perpendicular to c. Consequently the three

antecedents of are mutually perpendicular. They may be

denoted by i , j , k . Then the dyadic $ takes the form

4> = ai i +bj j +ck k, (52)

where a, J, c are scalar constants positive or negative.

116.] Theorem: The complete dyadic <? may always be

reduced to a sum of three dyads whose antecedents and

whose consequents form a right-handed rectangular system

of unit vectors and whose scalar coefficients are either all

positive or all negative.

& = (ai i + fcj j + ck k). (53)

The proof of the theorem depends upon the statements

made on page 20 that if one or three vectors of a right-handed

system be reversed the resulting system is left-handed, but

if two be reversed the system remains right-handed. If then

one of the coefficients in (52) is negative, the directions of the

other two axes may be reversed. Then all the coefficients

are negative. If two of the coefficients in (52) are negative,

the directions of the two vectors to which they belong may
be reversed and then the coefficients in are all positive.

Hence in any case the reduction to the form in which all

the coefficients are positive or all are negative has been

performed.

As a limiting case between that in which the coefficients

are all positive and that in which they are all negative comes
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the case in which one of them is zero. The dyadic then

takes the form
<P = ai i +&j j (54)

and is planar. The coefficients a and b may always be taken

positive. By a proof similar to the one given above it is

possible to show that any planar dyadic may be reduced to

this form. The vectors i andj are perpendicular, and the

vectors i and j are likewise perpendicular.

It might be added that in case the three coefficients a, &, c

in the reduction (53) are all different the reduction can be

performed in only one way. If two of the coefficients (say

a and 6) are equal the reduction may be accomplished in an

infinite number of ways in which the third vector k is always

the same, but the two vectors i
, j to which the equal coeffi

cients belong may be any two vectors in the plane per

pendicular to k. In all these reductions the three scalar

coefficients will have the same values as in any one of them.

If the three coefficients a, 6, c are all equal when $ is reduced

to the normal form (53), the reduction may be accomplished

in a doubly infinite number of ways. The three vectors

i , j , k may be any right-handed rectangular system in

space. In all of these reductions the three scalar coefficients

are the same as in any one of them. These statements will

not be proved. They correspond to the fact that the ellipsoid

which is the locus of the terminus of r may have three

different principal axes or it maybe an ellipsoid of revolution,

or finally a sphere.

Theorem : Any self-conjugate dyadic may be expressed in

the form = aii + &jj + ckk (55)

where a, &, and c are scalars, positive or negative.

Let <P = ai i -f Jj j +ck k, (52)

+ 6jj + ckk ,

20
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0.0c =a*i i
f + & 2

j j +c a k k

jj + c 2 kk.

Since = 0^

0* C = C
. 0= 0*.

I * *+ j j + kk n + j j

If i and i were not parallel (&
2 a2

!) would annihilate

two vectors i and i and hence every vector in their plane.

(0* a 2
I) would therefore possess two degrees of nullity

and be linear. But it is apparent that if a, 6, c are different

this dyadic is not linear. It is planar. Hence i and i must

be parallel. In like manner- it may be shown that j and j ,

k and k are parallel. The dyadic therefore takes the form

0= aii + bjj + ckk

where a, J, c are positive or negative scalar constants.

Double Multiplication
*

117.] Definition : The double dot product of two dyads is

the scalar quantity obtained by multiplying the scalar product

of the antecedents by the scalar product of the consequents.

The product is denoted by inserting two dots between the

ab:cd = a-c bd. (56)

This product evidently obeys the commutative law

ab:cd = cd:ab,

1 The researches of Professor Gibbs upon Double Multiplication are here

printed for the first time.
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and the distributive law both with regard to the dyads and

with regard to the vectors in the dyads. The double dot

product of two dyadics is obtained by multiplying the prod

uct out formally according to the distributive law into the

sum of a number of double dot products of dyads.

If <p = *
l

}>
l + a 2

b
2 + a 3

b
3 + ...

and W = G! d x + c
2
d
2 + c 8

d
3 +

= a
1
b

1
:o 1

d
1 4- a

1
b

1 :c 2
d
2 + a

1
b

1
:c

3
d 3 +

+ aab^Cjdj + a
2
b
2
:c 2

d
2 + a 2

b 2 :c 3
d
3 + (56)

+ a 3
b

3 :c 1
d

1 + a
3
b 3 :c 2

d
2 + a

3
b
3 :c 3

d
s + . .

+ a
a c

1 bg-d! -f d
2

c 2
b

2
d
2 + a 2 -c 3 b 2 d

3 +

+ a 3 -c 1 bg.djH-a3.C2 b
3
-d

2 + a
3
.c

3
b

3
.d

3 + ---

+ ............... (66)"

Definition: The double cross product of two dyads is the

dyad of which the antecedent is the vector product of the

antecedents of the two dyads and of which the consequent is

the vector product of the consequent of the two dyads. The

product is denoted by inserting two crosses between the

dyads
abcd = axc b x d. (57)

This product also evidently obeys the commutative law

ab cd = cd *
ab,
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and the distributive law both with regard to the dyads and

with regard to the vectors of which the dyads are composed.

The double cross product of two dyadics is therefore defined

as the formal expansion of the product according to the

distributive law into a sum of double cross products of

dyads.

If <P = a
1
b

1 + a
2
b 2 + a

3
b

3 + ...

and *F = c
l
&

1 + c 2
d
2 + C

3
d
3 +

* y = (a^ + a
2 b 2 + a

3
b

3 + ) x (c^ + C 2
d
2

+ c
3
a

3 + ...)

= a
1
b

1

*
Ojdj + a

x
b

x

*
c 2 d 2 + ajbj

*
c 3

d
3 +

+ a 2
b 2

*
cjdj + a

2
b

2
c
2
d
2 + a 2 b 2

*
c 3

d
3 + ...

(57)

+ a
a
b 3 x M! + a 3 b 3

*
c 2

d
2 + a

3 b 3 ^ c 3
d
3 +

c! b
2
xd

1 -fa2
xc2

b
2
xd2 + a

2 xc3 b
a

+ a3 xc3
b3 xdx +a3 xc2 bgXdj +a3 xc3 b

3

+ ............ ... (57)"

Theorem : The double dot and double cross products of

two dyadics obey the commutative and distributive laws of

multiplication. But the double products of more than two

dyadics (whenever they have any meaning) do not obey the

associative law.

d> : W :0

$>*=*$ (58)

(<P
*
T) I Q * I (^x)-

The theorem is sufficiently evident without demonstration.
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Theorem : The double dot product of two fundamental

dyads is equal to unity or to zero according as the two

dyads are equal or different.

ij:ki = i-k j i = 0.

Theorem: The double cross product of two fundamental

dyads (12) is equal to zero if either the antecedents or the

consequents are equal. But if neither antecedents nor con

sequents are equal the product is equal to one of the funda

mental dyads taken with a positive or a negative sign.

That is

ij *ik =ix i j x k =

ij *ki =i x k j x i = +jk.

There exists a scalar triple product of three dyads in

which the multiplications are double. Let <P, 5T, Q be any
three dyadics. The expression

* WiQ

is a scalar quantity. The multiplication with the double

cross must be performed first. This product is entirely in

dependent of the order in which the factors are arranged or

the position of the dot and crosses. Let ab, cd, and ef be

three dyads,

ab*cd:ef=[ace] [bdf]. (59)

That is, the product of three dyads united by a double cross

and a double dot is equal to the product of the scalar triple

product of the three antecedents by the scalar triple product

of the three consequents. From this the statement made

above follows. For if the dots and crosses be interchanged

or if the order of the factors be permuted cyclicly the two

scalar triple products are not altered. If the cyclic order of
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the factors is reversed each scalar triple product changes

sign. Their product therefore is not altered.

118.] A dyadic may be multiplied by itself with double

cross. Let
<P = al + bm + en

* = (al + bm + en)
*
(al-f bm + en)

ss= a x a 1 x 1 + a x b Ixm + axc Ixn
i

+bxa mxl+bxb m x m + b x c mxn
+ cxa nxl + cxb n x m + c x c n x n.

The products in the main diagonal vanish. The others are

equal in pairs. Hence

0<P = 2(bxc mxn+cxa nxl-faxb Ixm). (60)

If a, b, c and 1, m, n are non-coplanar this may be written

+ b/m + c n > (60)

The product fl> $ is a species of power of 0. It may be re

garded as a square of The notation $
2 will be employed

to represent this product after the scalar factor 2 has been

stricken out.

0*0
2
=

^
= (bxc mxn + cxa nxl + axb Ixm) (61).

J

The triple product of a dyadic expressed as the sum of

three dyads with itself twice repeated is

</>*$: = 2 $
2 : <P

<P
2 :0=(bxc mxn-fexa nxl + axb Ixm)

: (al + bm + en).

In expanding this product every term in which a letter is

repeated vanishes. For a scalar triple product of three vec-
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tors two of which are equal is zero. Hence the product

reduces to three terms only

2 :0=[bca] [mnl] + [cab] [nlm] + [abc] [linn]

or 2 : = 3 [a b c] [Imn]

0*0:0 = 6 [abc] pmn].

The triple product of a dyadic by itself twice repeated is

equal to six times the scalar triple product of its antecedents

multiplied by the scalar triple product of its consequents.

The product is a species of cube. It will be denoted by 8

after the scalar factor 6 has been stricken out.

0*0:0
(62)

119.] If
2 be called the second of ; and

8, the third of

0, the following theorems may be stated concerning the

seconds and thirds of conjugates, reciprocals, and products.

Theorem : The second of the conjugate of a dyadic is equal

to the conjugate of the second of that dyadic. The third of

the conjugate is equal to the third of the dyadic.

<*,).= <.),

Theorem: The second and third of the reciprocal of a

dyadic are equal respectively to the reciprocals of the second

and third.

<*- ), = (*,)-!=*,*

(f1
). = (*,)->-*.-

Let = al + bm + cn

<p- 1 = l a + m b + n c (36)

a l + b m + c n

n ]
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(*)
- 1

[a b c ] [! m n ] (1 a + m b + n c)

[a b c] [1 m n]

But [a b c ] [a be] = 1 and [1 m n ] [Imn] = 1.

Hence (0,)-* = (0-
1
).,
=

0,-*.

8 =[abc] [Imn],

[abc] [Imn]

C^-Oa = IXW] [1 m n ].

Hence (0,)-
1 = (*-), = 0,-*.

Theorem: The second and third of a product are equal

respectively to the product of the seconds and the product of

the thirds.

(f.f), = *,.*,

(0. *),= *, ^3-

Choose any three non-coplanar vectors 1, m, n as consequents

of and let 1
, m ,

n be the antecedents of W.

<P = al + b m + en,

?T = l d + m e + n f,

r = ad + be + cf,

(
. W\ =bxc exf + cxa fxd + axb dxe,

<P
2
= bxc mxn-fcxa nxl + axb Ixm,

?T
2
= m x n e x f + n x 1 f x d + 1 x m dxe.

Hence
2

5P*
2
= bxc exf + cxa fxd + axb dxe.

Hence (# 5T)2
= <?

2
?F

2
.

(^. JT) 8
= [abc] [def]
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8
= [abc] [Imn],

r
g
= P m n ] [defj.

Hence 8 z
= [a be] [def].

Hence (0.F),= 8 y,.

Theorem : The second and third of a power of a dyadic are

equal respectively to the powers of the second and third of

the dyadic.

(*"), = W=0,"
(0 )8

=W = 03
B

Theorem : The second of the idemfactor is the idemfactor.

The third of the idemfactor is unity.

I = I

1=1 (6T)
lg 1.

Theorem: The product of the second and conjugate of

a dyadic is equal to the product of the third and the

idemfactor.

a
. 0,= 8 I, (68)

<P
2
= b x c mxn + cxa nxl + axb Ixm,

C ;= la + mb + nc,

<P
2 $<, = [1 m n] (b x c a + c x a b + a x b c).

The antecedents a, b, c of the dyadic may be assumed to

be non-coplanar. Then

(b x c a + c x a b + a x b c) = [ab c] (a a + V b + c c)

= [abc] I.

Hence 2 <&c = ^> 3 1 .

120.] Let a dyadic be given. Let it be reduced to the

sum of three dyads of which the three antecedents are

non-coplanar.
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= al + b m + cn,

2
= b x c mxn + cxa nxl + axb 1 x m,

[Imn].

Theorem: The necessary and sufficient condition that a

dyadic be complete is that the third of be different from

zero.

For it was shown (Art. 106) that both the antecedents and

the consequents of a complete dyadic are non-coplanar.

Hence the two scalar triple products which occur in 8

cannot vanish.

Theorem: The necessary and sufficient condition that a

dyadic $ be planar is that the third of shall vanish but the

second of <P shall not vanish.

It was shown (Art. 106) that if a dyadic be planar its con

sequents 1, m, n must be planar and conversely if the conse

quents be coplanar the dyadic is planar. Hence for a planar

dyadic <P
8
must vanish. But $

2 cannot vanish. Since a,

b, c have been assumed non-coplanar, the vectors b x c, c x a,

a x b are non-coplanar. Hence if
2 vanishes each of the

vectors mxn, nxl, Ixm vanishes that is, 1, m, n are col-

linear. But this is impossible since the dyadic is planar

and not linear.

Theorem: The necessary and sufficient condition that a

non-vanishing dyadic be linear is that the second of 0, and

consequently the third of 0, vanishes.

For if be linear the consequents 1, m, n, are collinear.

Hence their vector products vanish and the consequents of

<P
2 vanish. If conversely <P

2 vanishes, each of its consequents
must be zero and hence these consequents of are collinear.

The vanishing of the third, unaccompanied by the vanish

ing of the second of a dyadic, implies one degree of nullity.

The vanishing of the second implies two degrees of nullity.



LINEAR VECTOR FUNCTIONS 315

The vanishing of the dyadic itself is complete nullity. The

results may be put in tabular form.

8 ^0, is complete.

<P
3
= 0, #

2 * 0, is planar. (69)

8
= 0, </>

2
= 0, <P * 0, is linear.

It follows immediately that the third of any anti-self-conjugate

dyadic vanishes; but the second does not. For any such

dyadic is planar but cannot be linear.

Nonion Form. Determinants.1 Invariants of a Dyadic

121.] If be expressed in nonion form

= au ii + a
12

i j + a
18 ik (13)

+ a81 ki + a
32 kj + a

33 kk.

The conjugate of <P has the same scalar coefficients as 0, but

they are arranged symmetrically with respect to the main

diagonal. Thus

(70)

The second of $ may be computed. Take, for instance, one

term. Let it be required to find the coefficient of ij in C?
2

.

What terms in can yield a double cross product equal to

ij? The vector product of the antecedents must be i and

the vector product of the consequents must be j. Hence the

antecedents must be j and k
; and the consequents, k and i.

These terms are

021J 1 x33 kk = - a
2l

a
33 i J

a
31
k i J a23 j k = a

31
a
23 i j.

1 The results hold only for determinants of the third order. The extension to

determinants of higher orders is through Multiple Algebra.
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Hence the term in i j in $
2

is

This is the first minor of a 19 in the determinant

a t

*12

a
i

a*

This minor is taken with the negative sign. That is, the

coefficient of i j in
2 is what is termed the cofactor of the

coefficient of i j in the determinant. The cofactor is merely
the first minor taken with the positive or negative sign

according as the sum of the subscripts of the term whose

first minor is under consideration is even or odd. The co

efficient of any dyad in
2 is easily seen to be the cofactor of

the corresponding term in $. The cofactors are denoted

generally by large letters.

is the cofactor of a*

33

n

is the cofactor of a
12

.

is the cofactor of a
32 .

With this notation the second of becomes

ik

kk (71)

The value of the third of <P may be obtained by writing

as the sum of three dyads

= (an i + a
21 j + a

sl k) i + (a12 i + a
22 j + a

32 k) j

+ (a13 i + a
23 j + a

33 k)k
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^3 = [Oil i + 21 J + "31 k) (21 * + 22 J + a
33 k)

This is easily seen to be equal to the determinant

a
1

2

a Q

ai

a
z

a*

(72)

For this reason
3

is frequently called the determinant of

and is written

<P
3
=

I I (72)

The idea of the determinant is very natural when is

regarded as expressed in nonion form. On the other hand

unless be expressed in that form the conception of $
3 ,

the third of $, is more natural.

The reciprocal of a dyadic in nonion form may be found

most easily by making use of the identity

2
.</>c =03

I (68)

or

or

Hence 0"1 =

(73)
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If the determinant be denoted by D

(73)
,

If is a second dyadic given in nonion form as

+ 631 ki + &32 kj + &33 kk,

the product W of the two dyadics may readily be found

by actually performing the multiplication

. = On 6U + a
12

6
21 + a

18
6
81) ii + (au 612 + a

la 622

+ 6 i J + a 6 + a 6 + ik

632) k J + (a31
612 + a

32 623 + a
33 &33> k k

: W = an in + a
12 612 + o

18
J
18

621

31

Since the third or determinant of a product is equal to the

product of the determinants, the law of multiplication of

determinants follows from (65) and (74).
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"11

"21

a. i

a
22

a
23

Ojrtn dinn

an 619 + io &,"12 22

a
32

622

"11

"31

23

&12 13

&22 623

&32 633

!3

"11 "13

*21 &
13

K
31 613

"21

^31^

a

*32 ( 4- a
33

12

22

32

!3

23 (76)

The rule may be stated in words. To multiply two deter

minants form the determinant of which the element in the

mth row and nth column is the sum of the products of the

elements in the rath row of the first determinant and nth

column of the second.

If = al

<?
2
= bxc mxn + cxa nxl + axb Ixm.

Then

I

2
I =(^2)3

= [bxc cxa axb] [mxn nxl Ixm]

Hence I <P
2

I
= (<P2) 3

= [a b c]
2

[1m n]
2 = <P

3
2

.

Hence n

22

33

*ia

"22 a
2

a

(77)

The determinant of the cofactors of a given determinant of

the third order is equal to the square of the given determinant.

122.] A dyadic has three scalar invariants that is

three scalar quantities which are independent of the form in

which ^ is expressed. These are

the scalar of <P, the scalar of the second of <P, and the third

or determinant of 0. If be expressed in nonion form these

quantities are
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(78)

*11

hi

32

*18

33

No matter in terms of what right-handed rectangular system
of these unit vectors may be expressed these quantities are

the same. The scalar of is the sum of the three coefficients

in the main diagonal. The scalar of the second of is the

sum of the first minors or cofactors of the terms in the

main diagonal. The third of is the determinant of the

coefficients. These three invariants are by far the most

important that a dyadic possesses.

Theorem : Any dyadic satisfies a cubic equation of which

the three invariants S, 0%& (P
3 are the coefficients.

By (68) (0-xI\*(0-xY) c = (0-xl\
#n x a12 a13

21 #22 X #23

#31 #32 #33 X

Hence (# x I)3 = Z
x 2S + x2

S x*

as may be seen by actually performing the expansion.

(<p
__ x i)2

. f<p _ x !)<;
=

Z
x 0^ + x 2

S x*.

This equation is an identity holding for all values of the

scalar x. It therefore holds, if in place of the scalar x, the

dyadic which depends upon nine scalars be substituted.

That is

But the terms upon the left are identically zero. Hence
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This equation may be called the Hamilton-Cayley equation.

Hamilton showed that a quaternion satisfied an equation

analogous to this one and Cayley gave the generalization to

matrices. A matrix of the Tith order satisfies an algebraic

equation of the nth degree. The analogy between the theory

of dyadics and the theory of matrices is very close. In fact,

a dyadic may be regarded as a matrix of the third order and

conversely a matrix of the third order may be looked upon as

a dyadic. The addition and multiplication of matrices and

dyadics are then performed according to the same laws. A

generalization of the idea of a dyadic to spaces of higher

dimensions than the third leads to Multiple Algebra and the

theory of matrices of orders higher than the third.

SUMMARY OF CHAPTER V

A vector r is said to be a linear function of a vector r

when the components of r are linear homogeneous functions

of the components of r. Or a function of r is said to be a

linear vector function of r when the function of the sum of

two vectors is the sum of the functions of those vectors.

(ri + r a)=f(r 1) + f(r a). (4)

These two ideas of a linear vector function are equivalent.

A sum of a number of symbolic products of two vectors,

which are obtained by placing the vectors in juxtaposition

without intervention of a dot or cross and which are called

dyads, is called a dyadic and is represented by a Greek

capital. A dyadic determines a linear vector function of

a vector by direct multiplication with that vector

= &1 b
x + a

2
b 2 + a

3
b

3 + - (7)

- r = a
x bj r + a 2

b
2

r + a 3
b

3
r H (8)

21
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Two dyadics are equal when they are equal as operators

upon all vectors or upon three non-coplanar vectors. That

is, when

<P i = W r for all values or for three non-

coplanar values of r, (10)

or r = r for all values or for three non-

coplanar values of r,

or s r = s W r for all values or for three non-

coplanar values of r and s.

Any linear vector function may be represented by a dyadic.

Dyads obey the distributive law of multiplication with

regard to the two vectors composing the dyad

(a + b + c+ ) (1 + m + n + ...) = al + am + an+

+ bl + bm + bn +

+ cl + cm + en +

(11)

Multiplication by a scalar is associative. In virtue of these

two laws a dyadic may be expanded into a sum of nine terms

by means of the fundamental dyads,

ii, ij, ik,

ji, Jj, Jk, (12)

ki, kj, kk,

as = an ii + a
12 i j + a

18 ik,

=
ai J * + <*22 J J + <*23 J k (13)

= a 31 k i + a
82 k j + a

33 k k.

If two dyadics are equal the corresponding coefficients in

their expansions into nonion form are equal and conversely
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Any dyadic may be expressed as the sura of three dyads of

which the antecedents or the consequents are any three

given non-coplanar vectors. This expression of the dyadic is

unique.

The symbolic product ab known as a dyad is the most

general product of two vectors in which multiplication by a

scalar is associative. It is called the indeterminate product.

The product imposes five conditions upon the vectors a and

b. Their directions and the product of their lengths are

determined by the product. The scalar and vector products

are functions of the indeterminate product. A scalar and

a vector may be obtained from any dyadic by inserting a dot

and a cross between the vectors in each dyad. This scalar

and vector are functions of the dyadic.

0* = i *! + a
a

b
a + a

8
b
8 + (18)

X = &1 x bj + a 2 x b
2 + a

3 x b
3 + (19)

0, = i-0.i + j*0-j + k 0*k (20)

= an -f a
22 + #339

X = (j
. . k - k j) i + (k i - i k) j

+ (i- 0-j -j 0i) k (21)

The direct product of two dyads is the dyad whose ante

cedent and consequent are respectively the antecedent of the

first dyad and the consequent of the second multiplied by

the scalar product of the consequent of the first dyad and

the antecedent of the second.

JL
(ab) (c d) = (b . c) a/ *T (23)

The direct product of two dyadics is the formal expansion,

according to the distributive law, of the product into the
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sum of products of dyads. Direct multiplication of dyadics

or of dyadics and a vector at either end or at both ends obeys

the distributive and associative laws of multiplication. Con

sequently such expressions as

Q.W.T, s.0-?7

*, s.^.^.r, $>.W.Q (24)-(26)

may be written without parentheses; for parentheses may
be inserted at pleasure without altering the value of the

product. In case the vector occurs at other positions than

at the end the product is no longer associative.

The skew product of a dyad and a vector may be defined

by the equation
(ab) x r = a b x r,

r x (ab) = r x a b. (28)

The skew product of a dyadic and a vector is equal to the

formal expansion of that product into a sum of products of

dyads and that vector. The statement made concerning the

associative law for direct products holds when the vector is

connected with the dyadics in skew multiplication. The

expressions

r x ?F, ^ x r, r x $ s, r $ x s, r x <P x s (29)

may be written without parentheses and parentheses may be

inserted at pleasure without altering the value of the product.

Moreover

s (r x <P)
= (s x r) -

<P, (<P x r) s = (r x s),

<p.(rx ?P)
= (0 x r) W. (31)

But the parentheses cannot be omitted.

The necessary and sufficient condition that a dyadic may
be reduced to the sum of two dyads or to a single dyad or

to zero is that, when expressed as the sum of three

dyads of which the antecedents (or consequents) are known
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to be non-coplanar, the consequents (or antecedents) shall

be respectively coplanar or collinear or zero. A complete

dyadic is one which cannot be reduced to a sum of fewer

than three dyads. A planar dyadic is one which can be

reduced to a sum of just two dyads. A linear dyadic is one

which can be reduced to a single dyad.

A complete dyadic possesses no degree of nullity. There

is no direction in space
- for which it is an annihilator. A

planar dyadic possesses one degree of nullity. There is one

direction in space for which it is an annihilator when used as

a prefactor and one when used as a postfactor. A linear

dyadic possesses two degrees of nuljity. There are two

independent directions in space for which it is an annihilator

when used as a prefactor and two directions when used as a

postfactor. A zero dyadic possesses three degrees of nullity

or complete nullity. It annihilates every vector in space.

The products of a complete dyadic and a complete, planar,

or linear dyadic are respectively complete, planar, or linear.

The products of a planar dyadic with a planar or linear dyadic

are respectively planar or linear, except in certain cases where

relations of perpendicularity between the consequents of the

first dyadic and the antecedents of the second introduce one

more degree of nullity into the product. The product of a

linear dyadic by a linear dyadic is in general linear ; but in

case the consequent of the first is perpendicular to the ante

cedent of the second the product vanishes. The product of

any dyadic by a zero dyadic is zero.

A dyadic which when applied to any vector in space re

produces that vector is called an idemfactor. All idemfactors

are equal and reducible to the form

I = ii + jj + kk. (33)

Or I = aa + bb + cc . (34)

The product of any dyadic and an idemfactor is that dyadic.
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If the product of two complete dyadics is equal to the idem-

factor the dyadics are commutative and either is called

the reciprocal of the other. A complete dyadic may be

canceled from either end of a product of dyadics and vectors

as in ordinary algebra ; for the cancelation is equivalent to

multiplication by the reciprocal of that dyadic. Incomplete

dyadics possess no reciprocals. They correspond to zero in

ordinary algebra. The reciprocal of a product is equal to the

product of the reciprocals taken in inverse order.

(0. 5F)-
1 = 5F-1 0-i. (38)

The conjugate of a dyadic is the dyadic obtained by inter

changing the order of the antecedents and consequents. The

conjugate of a product is equal to the product of the con

jugates taken in the opposite order.

(0. 9%= Wc
.

C. (40)

The conjugate of the reciprocal is equal to the reciprocal of

the conjugate. A dyadic may be divided in one and only

one way into the sum of two parts of which one is self-

conjugate and the other anti-self-conjugate.

Any anti-self-conjugate dyadic or the anti-self-conjugate

part of any dyadic, used in direct multiplication, is equivalent

to minus one-half the vector of that dyadic used in skew

multiplication.

T=-j0x xr,

(44)

A dyadic of the form c X I or I x c is anti-self-conjugate and

used in direct multiplication is equivalent to the vector o

used in skew multiplication.
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Also c x r = (I x c) r = (c x I) r, (46)

c x <P = (I x c) = (c x I) 0.

The dyadic c X I or I x c, where c is a unit vector is a quad-
rantal versor for vectors perpendicular to c and an annihilator

for vectors parallel to c. The dyadic Ixc + ccisa true

quadrantal versor for all vectors. The powers of these dyadics
behave like the powers of the imaginary unit V^l, as may
be seen from the geometric interpretation. Applied to the

unit vectors i, j,
k

I x i = i x I = kj - j k, etc. (49)

The vector a x b in skew multiplication is equivalent to

(a x b) X I in direct multiplication.

(ax b) x 1 = 1 x (ax b)=ba-ab (50)

(a x b) x r = (b a a b) r

r x (a x b) = r (b a - ab). (51)

A complete dyadic may be reduced to a sum of three

dyads of which the antecedents among themselves and the

consequents among themselves each form a right-handed

rectangular system of three unit vectors and of which the

scalar coefficients are all positive or all negative.

0= (ai i + ftj j + ck k). (53)

This is called the normal form of the dyadic. An incom

plete dyadic may be reduced to this form but one or more of

the coefficients are zero. The reduction is unique in case

the constants a, 6, c are different. In case they are not

different the reduction may be accomplished in more than

one way. Any self-conjugate dyadic may be reduced to

the normal form
4> = aii + 6jj + ckk, (55)

in which the constants a, S, c are not necessarily positive.
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The double dot and double cross multiplication of dyads
is defined by the equations

ab:cd = ac b.d, (56)

abcd = axc bxd. (57)

The double dot and double cross multiplication of dyadics

is obtained by expanding the product formally, according to

the distributive law, into a sum of products of dyads. The

double dot and double cross multiplication of dyadics is com

mutative but not associative.

One-half the double cross product of a dyadic by itself

is called the second of 0. If

<P
2
=i <Px <P= b xc mxn + cxa nxl+axb Ixm. (61)

One-third of the double dot product of the second of and

is called the third of and is equal to the product of the

scalar triple product of the antecedents of and the scalar

triple product of the consequent of 0.

0a=\0$ 0: <P=[abc] [Imn]. (62)

The second of the conjugate is the conjugate of the second.

The third of the conjugate is equal to the third of the

original dyadic. The second and third of the reciprocal are

the reciprocals of the second and third of the second and

third of a dyadic. The second and third of a product are the

products of the seconds and thirds.

(*c\ = (*.)*

(65)
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The product of the second and conjugate of a dyadic is equal
to the product of the third and the idemfactor.

^^c=^ 1 (68)

The conditions for the various degrees of nullity may be

expressed in terms of the second and third of 0.

4>
3 * 0, is complete

8
= 0, <P

2 * 0, is planar (69)

<P
3
= 0, $

2
= 0, * 0, is linear.

The closing sections of the chapter contain the expressions

(70)-(78) of a number of the results in nonion form and the

deduction therefrom of a number of theorems concerning
determinants. They also contain the cubic equation which is

satisfied by a dyadic 4>.

03 _ Qa 02 + 0^ 03 + ^ [ _ (79)

This is called the Hamilton-Cayley equation. The coeffi

cients S , <P<iS , and 3 are the three fundamental scalar in

variants of <P.

EXERCISES ON CHAPTER V

1. Show that the two definitions given in Art. 98 for

a linear vector function are equivalent

2. Show that the reduction of a dyadic as in (15) can be

accomplished in only one way if a, b, c, 1, m, n, are given.

3. Show (<P x a) c = - a x (1>C.

4. Show that if <Pxr= XT for any value of r different

from zero, then must equal ?P unless both and are

linear and the line of their consequents is parallel to r.

5. Show that if r = for any three non-coplanar values

of r, then = 0.
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6. Prove the statements made in Art. 106 and the con

verse of the statements.

7. Show that if Q is complete and if Q = W Q , then

<P and W are equal. Give the proof by means of theory

developed prior to Art. 109.

8. Definition : Two dyadics such that ?r= that

is to say, two dyadics that are commutative are said to be

homologous. Show that if any number of dyadics are homo

logous to one another, any other dyadics which may be obtained

from them by addition, subtraction, and direct multiplication

are homologous to each other and to the given dyadics. Show
also that the reciprocals of homologous dyadics are homolo

gous. Justify the statement that if
~l or

~l
(P,

which are equal, be called the quotient of by ?F, then the

rules governing addition, subtraction, multiplication and

division of homologous dyadics are identical with the rules

governing these operations in ordinary algebra it being
understood that incomplete dyadics are analogous to zero,

and the idemfactor, to unity. Hence the algebra and higher

analysis of homologous dyadics is practically identical with

that of scalar quantities.

9. Show that (I X c) c X $ and (c X I) & = c X #.

10. Show that whether or not a, b, c be coplanar

abxc+bcxa+caxb = [abc]I
and bxca+cxab+axbc=[abc]L

11. If a, b, c are coplanar use the above relation to prove

the law of sines for the triangle and to obtain the relation

with scalar coefficients which exists between three coplanar

vectors. This may be done by multiplying the equation by a

unit normal to the plane of a, b, and c.

12. What is the-condition which must subsist between the

coefficients in the expansion of a dyadic into nonion form if
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the dyadic be self-conjugate ? What, if the dyadic be anti-

self-conjugate ?

13. Prove the statements made in Art. 116 concerning the

number of ways in which a dyadic may be reduced to its

normal form.

14. The necessary and sufficient condition that an anti-

self-conjugate dyadic be zero is that the vector of the

dyadic shall be zero.

15. Show that if be any dyadic the product <PC is

self-conjugate.

16. Show how to make use of the relation $x = to

demonstrate that the antecedents and consequents of a self

conjugate dyadic are the same (Art. 116).

17. Show that 2
<P

2
= 2&3

and (0 + W\ = </>
2 + 4>*V + ^

18. Show that if the double dot product : of a dyadic

by itself vanishes, the dyadic vanishes. Hence obtain the

condition for a linear dyadic in the forin <P
2 : 2

= 0.

19. Show that (<P + ef) 3
= <P

3 + e-
2

f.

20. Show that (0 + ?T) 3
=

8 + <P
2 : V + d> : ?F

2 + V*

21. Show that the scalar of a product of dyadics is un

changed by cyclic permutation of the dyadics. That is



CHAPTER VI

ROTATIONS AND STRAINS

123.] IN the foregoing chapter the analytical theory of

dyadics has been dealt with and brought to a state of

completeness which is nearly final for practical purposes.

There are, however, a number of new questions which present

themselves and some old questions which present themselves

under a new form when the dyadic is applied to physics

or geometry. Moreover it was for the sake of the applica

tions of dyadics that the theory of them was developed. It is

then the object of the present chapter to supply an extended

application of dyadics to the theory of rotations and strains

and to develop, as far as may appear necessary, the further

analytical theory of dyadics.

That the dyadic $ may be used to deuote a transformation

of space has already been mentioned. A knowledge of the

precise nature of this transformation, however, was not needed

at the time. Consider r as drawn from a fixed origin, and r

as drawn from the same origin. Let now

r = 0-r.

This equation therefore may be regarded as defining a trans

formation of the points P of space situated at the terminus of

r into the point P , situated at the terminus of r . The origin

remains fixed. Points in the finite regions of space remain in

the finite regions of space. Any point upon a line

r = b + x a

becomes a point r f = $ b + # $ *
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Hence straight lines go over into straight lines and lines

parallel to the same line a go over by the transformation into

lines parallel to the same line a. In like manner planes

go over into planes and the quality of parallelism is invariant.

Such a transformation is known as a homogeneous strain.

Homogeneous strain is of frequent occurrence in physics. For

instance, the deformation of the infinitesimal sphere in a fluid

(Art. 76) is a homogeneous strain. In geometry the homo

geneous strain is generally known by different names. It is

called an affine collineation with the origin fixed. Or it is

known as a linear homogeneous transformation. The equa
tions of such a transformation are

x 1 = a x +n l2 13

y< =

124.] Theorem : If the dyadic gives the transformation

of the points of space which is due to a homogeneous strain,

2, the second of 0, gives the transformation of plane areas

which is due to that strain and all volumes are magnified by
that strain in the ratio of

3 , the third or determinant of

to unity.

Let <P = al + bm + cn

r = <P.r = al-r-f bm r -f cnr.

The vectors 1 , m ,
n are changed by into a, b, c. Hence

the planes determined by m and n , n and 1 ,
1 and m are

transformed into the planes determined by b and c, c and a,

a and b. The dyadic which accomplishes this result is

$
2
=r b x c mxn + cxa nxl + axb Ixm.

Hence if s denote any plane area in space, the transformation

due to replaces s by the area s such that



334 VECTOR ANALYSIS

It is important to notice that the vector s denoting a plane

area is not transformed into the same vector s as it would

be if it denoted a line. This is evident from the fact that in

the latter case acts on s whereas in the former case <P
2 acts

upon s.

To show that volumes are magnified in the ratio of <P
Z
to

unity choose any three vectors d, e, f which determine the

volume of a parallelepiped [d e f]. Express with the vec

tors which form the reciprocal system to d, e, f as consequents.

The dyadic <P changes d, e, f into a, b, c (which are different

from the a, b, c above unless d, e, f are equal to 1 , m , n ).

Hence the volume [d e f
]

is changed into the volume [a b c].

8
= [abc][dVf]

[d e fr^Cdef].
Hence [a b c]

=
[d e f] $3

.

The ratio of the volume [a b cj to [d e f] is as <P
3

is to unity.

But the vectors d, e, f were any three vectors which deter

mine a parallelepiped. Hence all volumes are changed by
the action of in the same ratio and this ratio is as 3

is to 1.

Eotations about a Fixed Point. Versors

125.] Theorem : The necessary and sufficient condition that

a dyadic represent a rotation about some axis is that it be

reducible to the form

= i i+j j + k k (1)

where i , j ,
k and i, j, k are two right-handed rectangular

systems of unit vectors.

Let r = #i-f-f-3k
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Hence if C? is reducible to the given form the vectors i, j, k

are changed into the vectors i
, j , k and any vector r is

changed from its position relative to i, j, k into the same posi

tion relative to i ,j ,k . Hence by the transformation no

change of shape is effected. The strain reduces to a rotation

which carries i, j, k into i
, j ,

k . Conversely suppose the

body suffers no change of shape that is, suppose it subjected

to a rotation. The vectors i, j, k must be carried into another

right-handed rectangular system of unit vectors. Let these

be i
, j , k . The dyadic <P may therefore be reduced to the

form
= i i + j j+k k.

Definition : A dyadic which is reducible to the form

i i + j j + k k

and which consequently represents a rotation is called a

versor.

Theorem: The conjugate and reciprocal of a versor are

equal, and conversely if the conjugate and reciprocal of a

dyadic are equal the dyadic reduces to a versor or a versor

multiplied by the negative sign.

Let = i i+j j + k k,

Hence the first part of the theorem is proved. To prove the

second part let

= ai + b j + ck,

<pc = i*+j b + kc,

If 4>-i =<PC,

Hence aa4-bb
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Hence (Art. 108) the antecedents a, b, c and the consequents

a, b, c must be reciprocal systems. Hence (page 87) they
must be either a right-handed or a left-handed rectangular

system of unit vectors. The left-handed system may be

changed to a right-handed one by prefixing the negative

sign to each vector. Then

#.*rff,tnt). (iy

The third or determinant of a versor is evidently equal to

unity ; that of the versor with a negative sign, to minus one.

Hence the criterion for a versor may be stated in the form

$ = I. 3>n = I I = 1 (%\
{/ 3 \ /

Or inasmuch as the determinant of is plus or minus one

if (P* (PC=I, it is only necessary to state that if

C 3 \. /

$ is a versor.

There are two geometric interpretations of the transforma

tion due to a dyadic such that

9 @ __. j =
| 1

= 1 (3)

(J/ 1 _j_ j j _j_ k k) .

The transformation due to is one of rotation combined with

reflection in the origin. The dyadic i i+j j + k k causes a

rotation about a definite axis it is a versor. The negative

sign then reverses the direction of every vector in space and

replaces each figure by a figure symmetrical to it with respect

to the origin. By reversing the directions of i and j the

system i , j , k still remains right-handed and rectangular,

but the dyadic takes the form

= i i+j j-k k,

or <P = (i i +j j -k k ) .(i i + j j + k k).
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Hence the transformation due to is a rotation due to

i i+j j + k k followed by a reflection in the plane of i and

j . For the dyadic i i + j j k k causes such a transfor

mation of space that each point goes over into a point sym

metrically situated to it with respect to the plane of i and j .

Each figure is therefore replaced by a symmetrical figure.

Definition : A transformation that replaces each figure by
a symmetrical figure is called a perversion and the dyadic

which gives the transformation is called a perversor.

The criterion for a perversor is that the conjugate of a

dyadic shall be equal to its reciprocal and that the determi

nant of the dyadic shall be equal to minus one.

4>.<PC = I, I0I=-1. (3)

Or inasmuch as if C?c = I, the determinant must be plus

or minus one the criterion may take the form

- C = I, I I
< 0, (3)

is a perversor.

It is evident from geometrical considerations that the prod

uct of two versors is a versor ; of two perversors, a versor ;

but of a versor and a perversor taken in either order, a

perversor.

. 126.] If the axis of rotation be the i-axis and if the angle

of rotation be the angle q measured positive in the positive

trigonometric direction, then by the rotation the vectors

i, j, k are changed into the vectors i ,j ,k such that

i = i

j = j cos q + k sin y,

k = j sin q + k cos q.

The dyadic $ = i i + j j + k k which accomplishes this rota

tion is
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= ii + cos q (jj + kk) + sin q (k j
-

jk). (4)

jj +kk = I-ii,

kj-jk = I x i.

Hence = i i + cos q (I i i) + sin q I x i.
,(5)

If more generally in place of the i-axis any axis denoted

by the unit vector a be taken as the axis of rotation and if as

before the angle of rotation about that axis be denoted by q,

the dyadic which accomplishes the rotation is

= a a + cos q (I a a) + sin q I x a. (6)

To show that this dyadic actually does accomplish the

rotation apply it to a vector r. The dyad a a is an idemfactor

for all vectors parallel to a; but an annihilator for vectors

perpendicular to a. The dyadic I a a is an idemfactor

for all vectors in the plane perpendicular to a; but an

annihilator for all vectors parallel to a. The dyadic I x a

is a quadrantal versor (Art. 113) for vectors perpendicular

to a; but an annihilator for vectors parallel to a. If then

r be parallel to a
0.r = aar = r.

Hence leaves unchanged all vectors (or components of

vectors) which are parallel to a. If r is perpendicular to a

. r = cos q r + sin q a x r.

Hence the vector r has been rotated in its plane through the

angle q. If r were any vector in space its component parallel

to a suffers no change ; but its component perpendicular to a

is rotated about a through an angle of q degrees. The whole

vector is therefore rotated about a through that angle.

Let a be given in terms of i, j, k as

a
l
a

z
ik



ROTATIONS AND STRAINS 339

-r a
2
a

x ji + a
2
2

j j + a
2
a
3 jk

+ a
z
a

l
ki + 8 2 kj + a

3
2
kk,

I = ii + jj + kk,

I X a = 0ii-a
3 ij + 2 ik,

~a
2 ki + a

x kj + Okk.
Hence

$ = {&J
2
(1 cos #) + cos #} i i

+
S
a

i
a

2 (1 cos 2)
~~ a

3
S in 2} lj

+ {a i
a

s (1 c s ?) + a
a
sin ^^ ik

+ { 2
a

1 (1 cos^) + a
3
sin q} ji

+ { 2
2
C1
- cos 2) + cos q} j j

+ (a 2
a
3 (1

"" COS 2) a
l
Sln 2l J *

+ { 3 ! (1 cos ^) a
2
sin q} ki

+ {^3^2 (1 cos q) 4- ajsin^} kj

+ {3
2
(1 cosg) + cosg} kk. (7)

127.] If be written as in equation (4) the vector of <P

and the scalar of may be found.

X = i x i + cos q (j x j + k x k) + sin q (k x j
-

j x k)

<PX
= 2 sin q i

<2>s = i
-

i + cosg (j j+k -k) +sing (k j j -k),

a = 1 + k cos q.

The axis of rotation i is seen to have the direction of <PX ,

the negative of the vector of 0. This is true in general.

The direction of the axis of rotation of any versor is the

negative of the vector of (P. The proof of this statement

depends on the invariant property of $x . Any versor

may be reduced to the form (4) by taking the direction of i
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coincident with the direction of the axis of rotation. After

this reduction has been made the direction of the axis is seen

to be the negative of <PX . But <PX is not altered by the

reduction of <P to any particular form nor is the axis of

rotation altered by such a reduction. Hence the direction of

the axis of rotation is always coincident with $ x , the direc

tion of the negative of the vector of <?.

The tangent of one-half the angle of version q is

sin q * x ,ON
(8)

1 + cos q 1 + 4>s

The tangent of one-half the angle of version is therefore

determined when the values of <#x and <PS are known. The

vector $x and the scalar (Ps, which are invariants of <P, deter

mine completely the versor <?. Let ft be a vector drawn

in the direction of the axis of rotation. Let the magnitude
of ft be equal to the tangent of one-half the angle q of

version.

The vector ft determines the versor <P completely, ft will be

called the vector semi-tangent of version.

By (6) a versor $ was expressed in terms of a unit vector

parallel to the axis of rotation.

<p = a a + cos q (I a a) + sin q I x a.

Hence if ft be the vector semi-tangent of version

There is a more compact expression for a versor in terms

of the vector semi-tangent of version. Let c be any vector in

space. The version represented by ft carries

c ft x c into c + ft X c.
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It will be sufficient to show this in case c is perpendicular to

ft. For if c (or any component of it) were parallel to ft the

result of multiplying by ft x would be zero and the statement

would be that c is carried into c. In the first place the mag
nitudes of the two vectors are equal. For

(c ft x c) (c ft x c) = c c +ftxc-ftxc 2c-ftxc

(c + ft x c) (c + ft x c)-= cc-hftxc ftxc + 2cftxc

cc + ftxcftxc = cc + ftft c c ft c ft.c.

Since ft and c are by hypothesis perpendicular

c-c + ftxc.ftxc=:c 2
(l + tan 2

\ q).

The term c ft X c vanishes. Hence the equality. In the

second place the angle between the two vectors is equal to q.

(c ftxc)(c + ftxc)_cc ft x c ft x c

c 2 (1 + tan 2 - q) c* (1 + tan 2 i j)
2 2

= cos q
c 2

(1 + tan 2 i q)

(c ft x c) x (c + ft x c) _
2 c x (ft x c)

c 2 (1 + tan 2 1
2) c

2
(1 + tan 2 I

j)
2 *

2 c
2 tan i

2
= sin j.

Hence the cosine and sine of the angle between c ft X c

and c + ft x c are equal respectively to the cosine and sine of

the angle q : and consequently the angle between the vectors

must equal the angle q. Now
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C ftXC=(I Ixft)-C

and (c + a x c) = (I + I x ft) c

(I + I x Q) (I
- I x tt)-

1 -(I-Ixft) = I + Ixft.

Multiply by c

(I + I x a) (I
- I x Q)-

1
(c
- Q x c) = c + a x c.

Hence the dyadic

= (I + I x tt) (I
- I X Q)-

1
(10)

carries the vector c ft x c into the vector c + ft X c no matter

what the value of c. Hence the dyadic determines the

version due to the vector semi-tangent of version ft.

The dyadic I + 1 x ft carries the vector c ft x c into

(I + ft.ft)c.

(I + I x ft) (c ftxc) = c + ftxc ftxc ftx(ftxc)

(I + I X Q) (c Q X c) = c + Q Q c = (1 + Q Q) C .

Hence the dyadic

1 + ftft

carries the vector c ft x c into the vector c, if c be perpen

dicular to ft as has been supposed. Consequently the dyadic

(I + Ixft)
2

1 + ft-ft

produces a rotation of all vectors in the plane perpendicular

to ft. If, however, it be applied to a vector x ft parallel to ft

the result is not equal to x ft.

+ IXQ)-(I + IXQ) (I + IXQ) . Q *Q
i + O-O *V-*

I + Q.Q v"l + Q-
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To obviate this difficulty the dyad Q, ft, which is an annihilator

for all vectors perpendicular to ft, may be added to the nu

merator. The versor (P may then be written

ftft+CI + IXft)*

1 + ft-ft

(i + 1 x ft) (i + 1 x ft) = i + 2 1 x ft + (i x ft)
. (i x ft)

(Ixft)-(I xft) = (I xft) x ft = l.ftft-ft.ftl.

Hence substituting :

^(l-ft.ft)I
+ 2ftft + 2Ixft

1 + ft ft

This may be expanded in nonion form. Let

(11)

128. ] If a is a unit vector a dyadic of the form

= 2aa-I (12)

is a liquadrantal versor. That is, the dyadic turns the

points of space about the axis a through two right angles.

This may be seen by setting q equal to TT in the general

expression for a versor

= a a 4- cos q (I a a) + sin q I x a,

or it may be seen directly from geometrical considerations.

The dyadic <P leaves a vector parallel to a unchanged but re

verses every vector perpendicular to a in direction.

Theorem: The product of two biquadrantal versors is a

versor the axis of which is perpendicular to the axes of the
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biquadrantal versors and the angle of which is twice the

angle from the axis of the second to the axis of the first

Let a and b be the axes of two biquadrantal versors. The

product
=(2bb-I).(2aa-I)

is certainly a versor; for the product of any two versors

is a versor. Consider the common perpendicular to a and b.

The biquadrantal versor 2 aa I reverses this perpendicular

in direction. (2bb I) again reverses it in direction and con

sequently brings it back to its original position. Hence the

product Q leaves the common perpendicular to a and b un

changed. Q is therefore a rotation about this line as axis.

The cosine of the angle from a to Q a is

a Q a = 2 b - a b a - a . a = 2 (b a)
2 - 1 = cos 2 (b, a).

Hence the angle of the versor Q is equal to twice the angle

from a to b.

Theorem : Conversely any given versor may be expressed

as the product of two biquadrantal versors, of which the axes

lie in the plane perpendicular to the axis of the given versor

and include between them an angle equal to one half the

angle of the given versor.

For let Q be the given versor. Let a and b be unit vectors

perpendicular to the axis J?x of this versor. Furthermore

let the angle from a to b be equal to one half the angle of

this versor. Then by the foregoing theorem

J2=(2bb-I).(2aa-I). (14)

The resolution of versors into the product of two biquad

rantal versors affords an immediate and simple method for

compounding two finite rotations about a fixed point. Let

d> and be two given versors. Let b be a unit vector per-
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pendicular to the axes of and W. Let a be a unit vector

perpendicular to the axis of <P and such that the angle from

a to b is equal to one half the angle of 0. Let c be a unit

vector perpendicular to the axis of W and such that the angle

from b to c is equal to one half the angle of . Then

</> = (2bb-I).(2aa-I)

$T=(2ec-I).(2bb-I)
V. = (2 cc - I) (2 bb - 1)2. (2 aa - I).

But (2 bb I)
2
is equal to the idemfactor, as may be seen from

the fact that it represents a rotation through four right angles

or from the expansion

(2bb-I).(2bb-I) = 4b.b bb-4bb + I = I.

Hence W <P = (2 c c - I) (2 a a - I).

The product of W into is a versor the axis of which is

perpendicular to a and c and the angle of which is equal to

one half the angle from a to c.

If and W are two versors of which the vector semi-

tangents of version are respectively QJ and ft^ the vector

semi-tangent of version Q3
of the product <P is

q 1
+ a 2 +a 2 xa 1

a ~
i-a.-a,

Let 0=(2bb-I) (2aa-I)

and = (2 c c - I)
. (2 bb - I).

. <P = (2cc-I) (2aa-I).

iff (V <?)* ~ y x

ba -2aa -2b b

x= 4a b b X a,
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5 = 4(a.b)
2 -l,

?T = 4 c b cb 2 b b - 2 c c + 1,

rx = 4 c b c x b,

?r5 = 4(c.b)
2 -l

JF <p = 4 c a ca 2 c c 2 a a + I

(?F. <p) x
= 4 ca c x a,

(ST. 0)^ = 4 (c-a)
2 -l.

axb bx c axe
Hence t =--, ^= T , 3

=-
a b b c a c

(bxc) x (axb) [abc] bJx Q =
a b b c a b b c

But [abc] r = bxc a r + c x a b r + a x b c r,

bxc axb axe
b c a b a b b c

Hence Q 2 x Qj = C^ ft 2 +
8

Q =

a b b - c

(a x b) (b x c) _ a b b c a c b b
2
"

a-bb-c abbc a*bb*c

Hence r-^r = 1 ft Qra* b b c

Q. = . . .
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This formula gives the composition of two finite rotations.

If the rotations be infinitesimal
ftj

and Q^ are both infinitesi

mal. Neglecting infinitesimals of the second order the for

mula reduces to

The infinitesimal rotations combine according to the law of

vector addition. This demonstrates the parallelogram law for

angular velocities. The subject was treated from different

standpoints in Arts. 51 and 60.

icSy Right Tensors, Tonics, and Cyclotonics

129.] If the dyadic <P be a versor it may be written in the

form (4)

= ii + cos q (jj + kk) + sin q (kj
-

jk).

The axis of rotation is i and the angle of rotation about that

axis is q. Let be another versor with the same axis and

an angle of rotation equal to q .

= ii + cos q
f

(j j + kk) + sin q
r

(kj jk).

Multiplying :

. y= = i i + cos (g + ? ) (j j + k k)

+ Bin(j+ 9 )(kj-jk). (16)

This is the result which was to be expected the product of

two versors of which the axes are coincident is a versor with

the same axis and with an angle equal to the sum of the

angles of the two given versors.

If a versor be multiplied by itself, geometric and analytic

considerations alike make it evident that

2 = i i + cos 2q (j j + kk) + sin 2 q (k j
-

j k),

and 4> = ii + cos nq (j j + kk) + sin nq (kj j k).
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On the other hand let 4>
l equal jj + kk; and <P

2 equal

kj-jk. Then

<p =
(i i + cos q l + sin q $ 2)

n
.

The product of ii into either
l
or <P

2 is zero and into itself is

ii. Hence
4>

n = ii + (cos q d>
l + sin q 2)

n

n= ii + cos n
q (PS + n cos 11 ^ 1

q sin # fl^""
1

<P
2 + .

The dyadic ^ raised to any power reproduces itself. (Pf= <Pr
The dyadic <P

2 raised to the second power gives the negative

of <#! ; raised to the third power, the negative of <P
2 ; raised

to the fourth power, l ; raised to the fifth power, <P
Z
and so

on (Art. 114). The dyadic l multiplied by 2
is equal to

<P2 . Hence

<p
n = i i + cos n

q l + n cos n ~ l
q sin q <P%

nfnl)V ; - 2

But & n = i i + cos n q l + sin n q <Py

Equating coefficients of <P
l
and $

2
in these two expressions

for n

n (n 1)
cos n q = cosn q ~~^TI

- COS>1
"

? sin
2
q +

71 (71-1) (71-2) n " 3sm 7i q = TI cos "^
j sin q
--

:
- cos n"# sm^ +

o !

Thus the ordinary expansions for cos nq and sin 715 are

obtained in a manner very similar to the manner in which

they are generally obtained.

The expression for a versor may be generalized as follows.

Let a,b, c be any three non-coplanar vectors ; and a , V, c
, the

reciprocal system. Consider the dyadic

<p = aa 4- cos q (bb + cc ) + sin q (cb be ). (17)
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This dyadic leaves vectors parallel to a unchanged. Vectors

in the plane of b and c suffer a change similar to rotation.

Let
r = cos p b + sin p c,

r = <P r = cos (p + q) b + sin (p + q) c.

This transformation may be given a definite geometrical

interpretation as follows. The vector r, when p is regarded

as a variable scalar parameter, describes an ellipse of which

b and c are two conjugate semi-diameters (page 117). Let

this ellipse be regarded as the parallel projection of the

unit circle

r = cos p i + sin q j.

That is, the ellipse and the circle are cut from the same

cylinder. The two semi-diameters i and j of the circle pro

ject into the conjugate semi-diameters a and b of the ellipse.

The radius vector r in the ellipse projects into the radius vector

f in the unit circle. The radius vector r in the ellipse which

is equal to r, projects into a radius vector r in the circle

such that

f = cos (p + q) i + sin (jp + q) j.

Thus the vector r in the ellipse is so changed by the applica

tion of as a prefactor that its projection f in the unit circle

is rotated through an angle q.

This statement may be given a neater form by making use

of the fact that in parallel projection areas are changed in a

definite constant ratio. The vector r in the unit circle may
be regarded as describing a sector of which the area is to the

area of the whole circle as q is to 2 TT. The radius vector f

then describes a sector of the ellipse. The area of this sector

is to the area of the whole ellipse as q is to 2 TT. Hence the

dyadic $ applied as a prefactor to a radius vector r in an ellipse

of which b and c are two conjugate semi-diameters advances

that vector through a sector the area of which is to the area of
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the whole ellipse as q is to 2-Tr.1 Such a displacement of the

radius vector r may be called an elliptic rotation through a

sector q from its similarity to an ordinary rotation of which

it is the projection.

Definition : A dyadic of the form

= aa + cos q (bb + cc ) + sin q (c V - be ) (17)

is called a cyclic dyadic. The versor is a special case of a

cyclic dyadic.

It is evident from geometric or analytic considerations that

the powers of a cyclic dyadic are formed, as the powers of a

versor were formed, by multiplying the scalar q by the power
to which the dyadic is to be raised.

n = a a + cos nq (b b + c c ) + sin nq (c V b c ).

If the scalar q is an integral sub-multiple of 2 TT, that is, if

27T = m,
1

it is possible to raise the dyadic to such an integral power,

namely, the power w, that it becomes the idemfactor

may then be regarded as the mth root of the idemfactor.

In like manner if q and 2 TT are commensurable it is possible

to raise to such a power that it becomes equal to the idem-

factor and even if q and 2 TT are incommensurable a power of

d> may be found which differs by as little as one pleases from

the idemfactor. Hence any cyclic dyadic may be regarded as

a root of the idemfactor.

1 It is evident that fixing the result of the application of < to all radii vectors

in an ellipse practically fixes it for all vectors in the plane of b and c. For any
vector in that plane may be regarded as a scalar multiple of a radius vector of

the ellipse.
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130.] Definition: The transformation represented by the

<Z> = ii + &jJ+ckk (18)

where a, 6, c are positive scalars is called a ^rare strain. The

dyadic itself is called a rt^Atf tensor.

A right tensor may be factored into three factors

The order in which these factors occur is immaterial. The

transformation

is such that the i and j components of a vector remain un

altered but the k-component is altered in the ratio of c to 1.

The transformation may therefore be described as a stretch or

elongation along the direction k. If the constant c is greater

than unity the elongation is a true elongation : but if c is less

than unity the elongation is really a compression, for the ratio

of elongation is less than unity. Between these two cases

comes the case in which the constant is unity. The lengths

of the k-components are then not altered.

The transformation due to the dyadic may be regarded

as the successive or simultaneous elongation of the com

ponents of r parallel to i, j, and k respectively in the ratios

a to 1, b to 1, c to 1. If one or more of the constants a, 6, c

is less than unity the elongation in that or those directions

becomes a compression. If one or more of the constants is

unity, components parallel to that direction are not altered.

The directions i, j, k are called the principal axes of the strain.

Their directions are not altered by the strain whereas, if the

constants #, &, c be different, every other direction is altered.

The scalars a, 6, c are known as the principal ratios of

elongation.

In Art. 115 it was seen that any complete dyadic was

reducible to the normal form
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where a, J, c are positive constants. This expression may be

factored into the product of two dyadics.

0= (ai i +
ftj j + ck k ) (i i + j j + k k), (19)

or 0= (i i+j j + k k) (aii + 6jj + ckk).

The factor i i + j j + k k

which is the same in either method of factoring is a versor.

It turns the vectors i, j, k into the vectors i
, j ,

k . The vector

semi-tangent of the versor

ixi +j xj + k xk
i>i + ^ + k kls

i + i.i- +j .j + k.k"

The other factor

ai i + l j j + ck k
,

or aii

is a right tensor and represents a pure strain. In the first

case the strain has the lines i , j , k for principal axes: in

the second, i, j, k. In both cases the ratios of elongation are

the same, a to 1, b to 1, c to 1. If the negative sign occurs

before the product the version and pure strain must have

associated with them a reversal of directions of all vectors in

space that is, a perversion. Hence

Theorem: Any dyadic is reducible to the product of a

versor and a right tensor taken in either order and a positive

or negative sign. Hence the most general transformation

representable by a dyadic consists of the product of a rota

tion or version about a definite axis through a definite angle

accompanied by a pure strain either with or without perver

sion. The rotation and strain may be performed in either

order. In the two cases the rotation and the ratios of elonga

tion of the strain are the same ; but the principal axes of the

strain differ according as it is performed before or after the



ROTATIONS AND STRAINS 353

rotation, either system of axes being derivable from the other

by the application of the versor as a prefactor or postfactor

respectively.

If a dyadic be given the product of and its conjugate

is a right tensor the ratios of elongation of which are the

squares of the ratios of elongation of (P and the axes of which

are respectively the antecedents or consequents of accord

ing as C follows or precedes in the product.

4> (ai i + 6 j j + ck k),

C = (aii + 6 jj + ckk ),

.
C
= a i i + 6 2

j j + c
2 k k , (20)

c
2 kk.

The general problem of finding the principal ratios of elonga

tion, the antecedents, and consequents of a dyadic in its

normal form, therefore reduces to the simpler problem of find

ing the principal ratios of elongation and the principal axes

of a pure strain.

131.] The natural and immediate generalization of the

right tensor

is the dyadic <P = aaa + &bb + ccc (21)

where a, 6, c are positive or negative scalars and where a, b, c

and a , b , c are two reciprocal systems of vectors. Neces

sarily a, b, c and a
, b , c are each three non-coplanar.

Definition : A dyadic that may be reduced to the form

(21)

is called a tonic.

The effect of a tonic is to leave unchanged three non-

coplanar directions a, b, c in space. If a vector be resolved

into its components parallel to a, b, c respectively these

23
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components are stretched in the ratios a to 1, & to 1, c to 1.

If one or more of the constants a, &, c are negative the com

ponents parallel to the corresponding vector a, b, c are re

versed in direction as well as changed in magnitude. The
tonic may be factored into three factors of which each

stretches the components parallel to one of the vectors a, b, c

but leaves unchanged the components parallel to the other

two.

cc ) (aa + &bb + ccXa

The value of a tonic is not altered if in place of a, b, c

any three vectors respectively collinear with them be sub

stituted, provided of course that the corresponding changes
which are necessary be made in the reciprocal system a , b , c .

But with the exception of this change, a dyadic which is

expressible in the form of a tonic is so expressible in only

one way if the constants a, 6, c are different. If two of the

constants say J and c are equal, any two vectors coplanar

with the corresponding vectors b and c may be substituted

in place of b and c. If all the constants are equal the tonic

reduces to a constant multiple of the idemfactor. Any three

non-coplanar vectors may be taken for a, b, c.

The product of two tonics of which the axes a, b, c are the

same is commutative and is a tonic with these axes and

with scalar coefficients equal respectively to the products of

the corresponding coefficients of the two dyadics.

= a
x
a a + \ b V + ^ c c

c
2 cc

0. y = <? = a
1
a
2 aa + ^^bV-f c^cc . (22)

The generalization of the cyclic dyadic

a a + cos q (b V + c c ) + sin q (c b b c )

is = a aa -1- 1 (b V + cc ) + c (c V - be ), (23)
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where a, b, c are three non-coplanar vectors of which a r

, V, c

is the reciprocal system and where the quantities a, 6, c, are

positive or negative scalars. This dyadic may be changed
into a more convenient form by determining the positive

scalar p and the positive or negative scalar q (which may

always be chosen between the limits TT) so that

and c=psinq. (24)

That is,

and tan 2=. (24y

Then

+ cc ) + p sin q (cV be ). (25)

This may be factored into the product of three dyadics

0= (aaa + bV + cc ) (a a + p bV + jpcc )

{aa + cos q (b b 4- o c ) + sin q (cV - be )}.

The order of these factors is immaterial. The first is a tonic

which leaves unchanged vectors parallel to b and c but

stretches those parallel to a in the ratio of a to 1. If a is

negative the stretching must be accompanied by reversal

in direction. The second factor is also a tonic. It leaves

unchanged vectors parallel to a but stretches all vectors in

the plane of b and c in the ratio p to 1. The third is a

cyclic factor. Vectors parallel to a remain unchanged ; but

radii vectors in the ellipse of which b and c are conjugate

semi-diameters are rotated through a sector such that the

area of the sector is to the area of the whole ellipse as q to

2 TT. Other vectors in the plane of b and c may be regarded

as scalar multiples of the radii vectors of the ellipse.
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Definition : A dyadic which is reducible to the form

<P = a aa + p cos q (bb + cc ) + p sin q (c V be ), (25)

owing to the fact that it combines the properties of the

cyclic dyadic and the tonic is called a cyclolonic.

The product of two cyclotonics which have the same three

vectors, a, b, c as antecedents and the reciprocal system
a , b , c for consequents is a third cyclotonic and is com

mutative.

cc ) + pl sinq l (cb
f be )

5F = a
2 aa +jp2 cos j2 (bb

f + cc )
+

jpa
sin q2 (cb be )

0. 5P*= W* <? = a
1
a
2 aa + pl p2

cos (ql
+ ja) (bb + cc )

+ Pi P* sin (2l + &) (c b
- b c ). (26)

Reduction of Dyadics to Canonical Forms

132.] Theorem : In general any dyadic may be reduced

either to a tonic or to a cyclotonic. The dyadics for which

the reduction is impossible may be regarded as limiting cases

which may be represented to any desired degree of approxi

mation by tonics or cyclotonics.

From this theorem the importance of the tonic and cyclo

tonic which have been treated as natural generalizations of

the right tensor and the cyclic dyadic may be seen. The

proof of the theorem, including a discussion of all the

special cases that may arise, is long and somewhat tedious.

The method of proving the theorem in general however is

patent. If three directions a, b, c may be found which are

left unchanged by the application of $ then <P must be a

tonic. If only one such direction can be found, there exists

a plane in which the vectors suffer a change such as that due

to the cyclotonic and the dyadic indeed proves to be such.
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The question is to find the directions which are unchanged

by the application of the dyadic 0.

If the direction a is unchanged, then

a = a a (27)

or (0 al).a = 0.

The dyadic a I is therefore planar since it reduces vectors

in the direction a to zero. In special cases, which are set

aside for the present, the dyadic may be linear or zero. In

any case if the dyadic
<P-aI

reduces vectors collinear with a to zero it possesses at least

one degree of nullity and the third or determinant of <P

vanishes.

(0-aI)8
= 0. (28)

Now (page 331) (0 + W)z
= <P

B + <P
2 : W + : W^ + z

.

Hence (4>
- a I)8

= <P
Z
- a <Z>

2 : 1 + a2 : ^ - a3 1 8

I
2
= I and I

3
= 1.

But : 1 =

Hence the equation becomes

a3 - a2 a + a 0^ -03
= 0. (29)

The value of a which satisfies the condition that

is a solution of a cubic equation. Let x replace a. The

cubic equation becomes

x* - x* d>3 + x 2S
-

8
= 0. (29)
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Any value of x which satisfies this equation will be such

that

(*-aI), = 0. (28)

That is to say, the dyadic x I is planar. A vector per

pendicular to its consequents is reduced to zero. Hence

leaves such a direction unchanged. The further discussion

of the reduction of a dyadic to the form of a tonic or a cyclo-

tonic depends merely upon whether the cubic equation in x

has one or three real roots.

133.] Theorem : If the cubic equation

x* - x* 4>s + x 2*
-

8
= (29)

has three real roots the dyadic <P may in general be reduced

to a tonic.

For let x = a, x = &, x = c

be the three roots of the equation. The dyadics

<P a I, 61, <P cl

are in general planar. Let a, b, c be respectively three

vectors drawn perpendicular to the planes of the consequents
of these dyadics.

b = 0, (30)

(0-cI).c = 0.

Then <P a = a a,

</>-b = &b, (30)

<p . c = cc.

If the roots a, &, c are distinct the vectors a, b, c are non-

coplanar. For suppose

c = ma + ?ib
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m $ a raca-ffl>0b n c b = 0.

But a = a a, b = 6 b.

Hence m (a c) a + n (b c) b = 0,

and m(a c) = 0, n(b c) = 0.

Hence m = or a = c, TI = or b = c.

Consequently if the vectors a, b, c are coplanar, the roots are

not distinct; and therefore if the roots are distinct, the

vectors a, b, c are necessarily non-coplanar. In case the roots

are not distinct it is still always possible to choose three

non-coplanar vectors a, b, c in such a manner that the equa
tions (30) hold. This being so, there exists a system a , b , c

reciprocal to a, b, c and the dyadic which carries a, b, c into

a a, b b, c c is the tonic

Theorem : If the cubic equation

x* - x* 4>a + x d>2S
-

3
= (29)

has one real root the dyadic may in general be reduced to

a cyclotonic.

The cubic equation has one real root. This must be posi

tive or negative according as <P
B

is positive or negative. Let

the root be a. Determine a perpendicular to the plane of

the consequents of 4> a I.

(<P-aI) .a = 0.

Determine a also so that

a . (0- a I) =

and let the lengths of a and a be so adjusted that a a= l.

This cannot be accomplished in the special case in which a
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and a ; are mutually perpendicular. Let b be any vector in

the plane perpendicular to a .

a (0 - a I) - b = 0.

Hence (<P al)b is perpendicular to a . Hence <Pb is

perpendicular to a . In a similar manner <P 2 b, $ 3
b, and

<P~l
b, 0~2

b, etc., will all be perpendicular to a and lie in

one plane. The vectors <P b and b cannot be parallel or

would have the direction b as well as a unchanged and

thus the cubic would have more than one real root.

The dyadic changes a, b, b into a, </>
2

b, <P b re

spectively. The volume of the parallelepiped

[<p.a </>
2 b </>.b]

= </>
3 [a <P-b b]. (31)

But $a = aa.

Hence a a (<P
2

b) x (0 b) = <P
3
a (0 b) x b. (31)

The vectors <0 2 b, $ b, b all lie in the same plane. Their

vector products are parallel to a and to each other. Hence

a (0
2 - b) x (</>.b)

=
3
><Pb xb. (31)"

Inasmuch as a and <P
3
have the same sign, let

^ = a-i*
s

. (32)

Let also b 1 =;r 1 #-b b2
= /r

2 # 2 b
? etc. (33)

and b_! p (&- 1 b b_2
= p

2 #~ 2
b, etc.

b2 X b x bx X b,

or (b 2 + b) x b
x
= 0.

The vectors b
2 + b and b

x
are parallel. Let

b
2 + b = 27ib r (34)

Then b
3
+ b

1
= 27ib 2 b 1 + b 2

= 2nb 3 etc.,

b x -f b_! = 2 n b b_! + b_ 2
= 2 n b_ x etc.
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Lay off from a common origin the vectors

b, bj, b 2, etc., b_j, b_2, etc.

Since is not a tonic, that is, since there is no direction in

the plane perpendicular to a which is left unchanged by
these vectors b OT pass round and round the origin as m takes

on all positive and negative values. The value of n must

therefore lie between plus one and minus one. Let

n = cos q. (36)

Then b-j + bj
= 2 cos q b.

Determine c from the equation

b
x
= cos q b + sin q c.

Then b_j = cos q b sin q c.

Let a , b
f

, c be the reciprocal system of a, b, c. This is pos

sible since a was so determined that a a = 1 and since

a, b, c are non-coplanar. Let

= cos q (bV + ccO + sin q (c V - be ).

Then ra = 0, ?F.b = b
1, .})_l

= b.

Hence (a *& + p ) & = a a = $ a,

(a aa + p W) b = p b x
= - b,

(a aa + p ) b_a =p b = d> . b_r

The dyadic a a a + p W changes the vectors a, b and b^ into

the vectors -

a, b, and b_ x respectively. Hence

= (a aa + p W) = a aa + ^ cos j (bb + cc7

)

4- ^? sin q (cV b o ).

The dyadic in case the cubic equation has only one real

root is reducible except in special cases to a cyclotonic.

The theorem that a dyadic in general is reducible to a tonic

or cyclotonic has therefore been demonstrated.
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134.] There remain two cases 1 in which the reduction

is impossible, as can be seen by looking over the proof. In

the first place if the constant n used in the reduction to cyclo-

tonic form be 1 the reduction falls through. In the second

place if the plane of the antecedents of

and the plane of the consequents are perpendicular the

vectors a and a used in the reduction to cyclotonic form are

perpendicular and it is impossible to determine a such that

a a shall be unity. The reduction falls through.

If n=l, b_1 + b
1
= 2b.

Let b_1 + b
1
= 2b.

Choose c = b
1

b = b b_r

Consider the dyadic W = a aa + p (bV + co ) 4- p o V

y.a = aa=<P.a,

*P b pb + pc pbi = <P b,

?p*.o=jt)c= -pb 1 JP b = c.

Hence <P = a aa + p (b V + cc ) + p cbr (37)

The transformation due to this dyadic may be seen best by

factoring it into three factors which are independent of the

order or arrangement

.(aa + bb + cc + cb7

).

1 In these cases it will be seen that the cubic equation has three real roots.

In one case two of them are equal and in the other case three of them. Thus

these dyadics may be regarded as limiting cases lying between the cyclotonic in

which two of the roots are imaginary and the tonic in which all the roots are real

and distinct. The limit may be regarded as taking place either by the pure

imaginary part of the two imaginary roots of the cyclotonic becoming zero or by
two of the roots of the tonic approaching each other.
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The first factor represents an elongation in the direction a in a

ratio a to 1. The plane of b and c is undisturbed. The
second factor represents a stretching of the plane of b and c in

the ratio
tp to 1. The last factor takes the form

I + cb .

(I + oV) a = #a,

(I + c V) x b = x b + x o,

(I + c V) x c = x c.

A dyadic of the form I + cb leaves vectors parallel to a and c

unaltered. A vector #b parallel to b is increased by the vec

tor c multiplied by the ratio of the vector # b to b. In other

words the transformation of points in space is such that the

plane of a and c remains fixed point for point but the points

in planes parallel to that plane are shifted in the direction c

by an amount proportional to the distance of the plane in

which they lie from the plane of a and c.

Definition : A dyadic reducible to the form

I + cb

is called a shearing dyadic or shearer and the geometrical

transformation which it causes is called a shear. The more

general dyadic

<P = a aa + p (bV + c c
;

) + oV (37)

will also be called a shearing dyadic or shearer. The trans

formation to which it gives rise is a shear combined with

elongations in the direction of a and is in the plane of b and c.

If n = 1 instead of n = +1, the result is much the same.

The dyadic then becomes

$ = a aa -,p (bV + c<0 - c V (37)

$ = (a aa + bbr + cc ) {aa
f -p (b D + cc )> (I + cV).
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The factors are the same except the second which now repre

sents a stretching of the plane of b and c combined with a

reversal of all the vectors in that plane. The shearing dyadic

then represents an elongation in the direction a, an elonga

tion combined with a reversal of direction in the plane of

b and c, and a shear.

Suppose that the plane of the antecedents and the plane of

the consequents of the dyadic 0al are perpendicular. Let

these planes be taken respectively as the plane of j and k and

the plane of i and j. The dyadic then takes the form

<p a I A j i + B j j + C k i + D k j.

The coefficient B must vanish. For otherwise the dyadic

j Bk)

is planar and the scalar a + B is a root of the cubic equation.

With this root the reduction to the form of a tonic may be

carried on as before. Nothing new arises. But if B vanishes

a new case occurs. Let

This may be reduced as follows to the form

ab + bc

where a V = a c = b c = and b V = 1.

Square W W 2 = A D ki = ac .

Hence a must be chosen parallel to k
;
and c , parallel to i.

The dyadic W may then be transformed into

Then =AD*, V= Ci + Di
A D

b = A j c = i.
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With this choice of a, b, V, c the dyadic reduces to the

desired form ab + be and hence the dyadic <P is reduced to

= al + ab + bc (38)

or = aaa + abb + ace + aV + be .

This may be factored into the product of two dyadics the

order of which is immaterial.

The first factor al represents a stretching of space in all

directions in the ratio a to 1. The second factor

represents what may be called a complex shear. For

r = IT + ab r+ bc -r= r-t-aV-r + bc -r.

If r is parallel to a it is left unaltered by the dyadic Q. If

r is parallel to b it is changed by the addition of a term

which is in direction equal to a and in magnitude propor

tional to the magnitude of the vector r. In like manner

if r is parallel to c it is changed by the addition of a term

which in direction is equal to b and which in magnitude is

proportional to the magnitude of the vector r.

-zb = (I + ab -f bc ).zb= zb + a a

Q *xc = (I + ab + be ) xc = xc 4- #b.

Definition : A dyadic which may be reduced to the form

<P = aI + ab + bc (38)

is called a complex shearer.

The complex shearer as well as the simple shearer men

tioned before are limiting cases of the cyclotonic and tonic

dyadics.
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135.] A more systematic treatment of the various kinds

of dyadics which may arise may be given by means of the

Hamilton-Cayley equation

03 _ a 02 + 0^ _
3
i =

and the cubic equation in x

x* - S x* + <P25 x -
8
= 0. (29)

If a, &, c are the roots of this cubic the Hamilton-Cayley

equation may be written as

(0 - al) (<P
- JI) (0 - <?I)

= 0. (40)

If, however, the cubic has only one root the Hamilton-Cayley

equation takes the form

(0_al).(0 2 - 2^0082 4> + p*I) = 0. (41)

In general the Hamilton-Cayley equation which is an equa
tion of the third degree in is the equation of lowest degree

which is satisfied by 0. In general therefore one of the above

equations and the corresponding reductions to the tonic or

cyclotonic form hold. In special cases, however, the dyadic

may satisfy an equation of lower degree. That equation

of lowest degree which may be satisfied by a dyadic is called

its characteristic equation. The following possibilities occur.

I. (<P
- a I)

- (0 - b I) (
- c I) = 0.

II. (0-aI)

III. (

IV. (<P
- a !).(</>- 61) = 0.

V. (0-aI) 3 = 0.

VI. (<P al)
2= 0.

VII. (<P-aI) = 0.
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In the first case the dyadic is a tonic and may be reduced

to the form
6bb + ccc .

In the second case the dyadic is a cyclotonic and may be

reduced to the form

d> = a a a + p cos q (bb + cc ) + p sin q (eb be ).

In the third case the dyadic is a simple shearer and may be

reduced to the form

</> = aaa + 6 (bb + cc ) + cb .

In the fourth case the dyadic is again a tonic. Two of the

ratios of elongation are the same. The following reduction

may be accomplished in an infinite number of ways.

= aaa + b (bb + cc ).

In the fifth case the dyadic is a complex shearer and may be

so expressed that

0= al + ab -f be .

In the sixth case the dyadic is again a simple shearer which

may be reduced to the form

4> = al + cb =a (aa 4- bb + cc ) + cb .

In the seventh case the dyadic is again a tonic which may be

reduced in a doubly infinite number of ways to the form

= al = a(aa
/ + bb + cc ).

These seven are the only essentially different forms which a

dyadic may take. There are then only seven really different

kinds of dyadics three tonics in which the ratios of elonga
tion are all different, two alike, or all equal, and the cyclo

tonic together with three limiting cases, the two simple and

the one complex shearer.
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Summary of Chapter VI

The transformation due to a dyadic is a linear homogeneous
strain. The dyadic itself gives the transformation of the

points in space. The second of the dyadic gives the trans

formation of plane areas. The third of the dyadic gives the

ratio in which volumes are changed.

The necessary and sufficient condition that a dyadic repre

sent a rotation about a definite axis is that it be reducible to

the form
= i i + j j + k k (1)

or that 4>c = I <P
3
= + 1 (2)

or that c = I
8 >

The necessary and sufficient condition that a dyadic repre

sent a rotation combined with a transformation of reflection

by which each figure is replaced by one symmetrical to it is

that
= -(i i + j j + k k) (iy

or that $ <PC = I* ^3 = 1

or that 0.00 = 1, 3 <0. (3)

A dyadic of the form (1) is called a versor ; one of the form

(1) ,
a perversor.

If the axis of rotation of a versor be chosen as the i-axis

the versor reduces to

= ii + cos q (j j + kk) + sin q (kj
-

j k) (4)

or = ii + cos q (I ii) + sin q I x i. (5)

If any unit vector a is directed along the axis of rotation

<p = a a + cos q (I a a) + sin q 1 x a (6)

The axis of the versor coincides in direction with X .
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If a vector be drawn along the axis and if the magnitude of

the vector be taken equal to the tangent of one-half the angle
of rotation, the vector determines the rotation completely.
This vector is called the vector semi-tangent of version.

2 (9)

In terms of Q the versor <P may be expressed in a number of

was.

adft / a a \
<P = + cos q (I

-
)
+ sin q I x

a-ft \ a-ay (10)

or <D = (I + I x ft) (I
- I x Q)-

1
(10)

J^ + axQ)
(loy

,

tf =
1 + Q-ft

If a is a unit vector a dyadic of the form

<P = 2aa-I (11)

is a biquadrantal versor. Any versor may be resolved into

the product of two biquadrantal versors and by means of

such resolutions any two versors may be combined into

another. The law of composition for the vector semi-tangents

of version is

A dyadic reducible to the form

<P = aa + cos q (bb + cc ) + sin q (cb -W) (17)

is called a cyclic dyadic. It produces a generalization of

simple rotation an elliptic rotation, so to speak. The pro-

24
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duct of two cyclic dyadics which have the same antecedents

a, b, c and consequents a b c is obtained by adding their

angles q. A cyclic dyadic may be regarded as a root of the

idemfactor. A dyadic reducible to the form

= aii +bjj + ckk (18)

where #, &, c are positive scalars is called a right tensor. It

represents a stretching along the principal axis i, j, k in the

ratio a to 1, b to 1, c to 1 which are called the principal ratios

of elongation. This transformation is a pure strain.

Any dyadic may be expressed as the product of a versor,

a right tensor, and a positive or negative sign.

= (a i i + & j j + c k k ) (i i + j j + k k)

or <P= (i i + j j + k k).(aii + Jjj + ckk). (19)

Consequently any linear homogeneous strain may be regarded

as a combination of a rotation and a pure strain accompanied
or unaccompanied by a perversion.

The immediate generalizations of the right tensor and the

cyclic dyadic is to the tonic

= aaa + &bb + ccc (21)
and cyclotonic

cc ) + c(cV-bc) (23)

or <P = aaa + p cos q (bb + cc )+^sing (cV be ) (25)

where p = + V 62 + c
2 and tan I q = - -. (24)*

2? +

Any dyadic in general may be reduced either to the form

(21), and is therefore a tonic, or to the form (25), and is

therefore a cyclotonic. The condition that a dyadic be a

tonic is that the cubic equation

+ 0^ x - <J>
3
= (29)
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shall have three real roots. Special cases in which the

reduction may be accomplished in more ways than one arise

when the equation has equal roots. The condition that a

dyadic be a cyclotonic is that this cubic equation shall have

only one real root. There occur two limiting cases in which

the dyadic cannot be reduced to cyclotonic form. In these

cases it may be written as

4> =aaa +jp (bb + cc ) + cb (37)

and is a simple shearer, or it takes the form

= al + ab + bc (38)

and is a complex shearer. Dyadics may be classified accord

ing to their characteristic equations

(<P-aI).(0-&I).(<P-cI) =0 tonic

(# a I) (<P
2 2 p cos q + jp

2
1) = cyclotonic

(0 a I) (# & I)
2 = simple shearer

(0_ <*!)($ &I) = special tonic

(0 a I)
8 = complex shearer

(0 a I)
2 = special simple shearer

(0 a I)
= special tonic.



CHAPTER VII

MISCELLANEOUS APPLICATIONS

Quadric Surfaces

136.] If be any constant dyadic the equation

r . . r = const. (1)

is quadratic in r. The constant, in case it be not zero, may
be divided into the dyadic and hence the equation takes

the form
r r = 1,

or r r = 0. (2)

The dyadic may be assumed to be self-conjugate. For if

W is an anti-self-conjugate dyadic, the product r W r is

identically zero for all values of r. The proof of this state

ment is left as an exercise. By Art. 116 any self-conjugate

dyadic is reducible to the form

- t Ll
JJ-

If

Hence the equation r r = 1

represents a quadric surface real or imaginary.

The different cases which arise are four in number. If the

signs are all positive, the quadric is a real ellipsoid. If one

sign is negative it is an hyperboloid of one sheet; if two are
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negative, a hyperboloid of two sheets. If the three signs are

all negative the quadric is imaginary. In like manner the

equation
r r =

is seen to represent a cone which may be either real or

imaginary according as the signs are different or all alike.

Thus the equation
r 0- r = const.

represents a central quadric surface. The surface reduces to

a cone in case the constant is zero. Conversely any central

quadric surface may be represented by a suitably chosen self-

conjugate dyadic in the form

r d> r = const.

This is evident from the equations of the central quadric

surfaces when reduced to the normal form. They are

# 2
7/
2 z2- = const.

a 2 6 J c
2

The corresponding dyadic <Pis $ = .

a* o* c*

The most general scalar expression which is quadratic in

the vector r and which consequently when set equal to a con

stant represents a quadric surface, contains terms like

r r, (r a) (b r) , r c, d e,

where a, b, c, d, e are constant vectors. The first two terms

are of the second order in r ; the third, of the first order ; and

the last, independent of r. Moreover, it is evident that these

four sorts of terms are the only ones which can occur in a

scalar expression which is quadratic in r.

But r r = r I r,

and (r a) (b r)
= r a b r.
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Hence the most general quadratic expression may be reduced

to

where is a constant dyadic, A a constant vector, and

a constant scalar. The dyadic may be regarded as self-

conjugate if desired.

To be rid of the linear term r A, make a change of origin

by replacing r by r t.

(r -t). 0- (r -t) + (r -t) A+ C=0

r . <P * r t $ r r <P t + t <P t

+ r -A-t- A + (7=0.

Since is self-conjugate the second and third terms are

equal. Hence

r r + 2 r
(J
A - t) + C f = 0.

If now is complete the vector t may be chosen so that

IA = 0-t or t = 5 0- 1 - A.
L L

Hence the quadric is reducible to the central form

r r = const.

In case is incomplete it is untplanar or unilinear because

is self-conjugate. If A lies in the plane of or in the line

of as the case may be the equation

is soluble for t and the reduction to central form is still pos

sible. But unless A is so situated the reduction is impossible.

The quadric surface is not a central surface.

The discussion and classification of the various non-central

quadrics is an interesting exercise. It will not be taken up
here. The present object is to develop so much of the theory
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of quadric surfaces as will be useful in applications to mathe

matical physics with especial reference to non-isotropic

media. Hereafter therefore the central quadrics and in par

ticular the ellipsoid will be discussed.

137.] The tangent plane may be found by differentiation.

r <P r = 1.

di r + r <t> di = 0.

Since <P is self-conjugate these two terms are equal and

dr.0-r = 0. (5)

The increment d r is perpendicular to <P r. Hence r is

normal to the surface at the extremity of the vector r. Let

this normal be denoted by K and let the unit normal be n.

BT = <P r (6)

r r
n =

r) (0 r) Vr #2 r*

Let p be the vector drawn from the origin perpendicular to

the tangent plane, p is parallel to n. The perpendicular

distance from the origin to the tangent plane is the square

root of p p. It is also equal to the square root of r p.

r p = r cos (r, p) p = p2
.

Hence r p = p p.

Or Ll! = , . JL = L
p.p p.p

But r0r = rH = l.

Hence inasmuch as p and IT are parallel, they are equal.

0.r = !T=-^-. (T)
p.p
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On page 108 it was seen that the vector which has the direc

tion of the normal to a plane and which is in magnitude equal

to the reciprocal of the distance from the origin to the plane

may be taken as the vector coordinate of that plane. Hence

the above equation shows that <P r is not merely normal to

the tangent plane, but is also the coordinate of the plane.

That is, the length of <P r is the reciprocal of the distance

from the origin to the plane tangent to the ellipsoid at

the extremity of the vector r.

The equation of the ellipsoid in plane coordinates may be

found by eliminating r from the two equations.

( r r = 1,

Hence r r = H 0- 1 0- 1
If = JT 0" 1 H.

Hence the desired equation is

H-0-i-H = l. (8)

*4 +y+"
c 2 kk.

Let r = #i-t-yj+3k,

and N = ui + v j + wk,

where u, v, w are the reciprocals of the intercepts of the

plane N upon the axes i, j, k. Then the ellipsoid may be

written in either of the two forms familiar in Cartesian

geometry.

or K 0- 1 .N = a 2 w a + Z>
2 v 2 + c 2 w2 = 1. (10)
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138.] The locus of the middle points of a system of

parallel chords in an ellipsoid is a plane. This plane is

called the diametral plane conjugate with the system of

chords. It is parallel to the plane drawn tangent to the

ellipsoid at the extremity of that one of the chords which

passes through the center.

Let r be any radius vector in the ellipsoid. Let n be the

vector drawn to the middle point of a chord parallel to a.

Let r = s + x a.

If r is a radius vector of the ellipsoid

r r = (B + x a) <D (s + x a) = 1.

Hence s $ s + 2 # s . a + 2? a # a = 1.

Inasmuch as the vector s bisects the chord parallel to a the

two solutions of x given by this equation are equal in mag
nitude and opposite in sign. Hence the coefficient of the

linear term x vanishes. ,.
s . . a = 0.

Consequently the vector s is perpendicular to a. The

locus of the terminus of s is therefore a plane passed through
the center of the ellipsoid, perpendicular to a, and parallel

to the tangent plane at the extremity of a.

If b is any radius vector in the diametral plane conjugate

with a, _ Ab a = 0.

The symmetry of this equation shows that a is a radius

vector in the plane conjugate with b. Let c be a third radius

vector in the ellipsoid and let it be chosen as the line of

intersection of the diametral planes conjugate respectively

with a and b. Then
a . d> . b = 0,

b . c = 0, (11)

e a = 0.
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The vectors a, b, c are changed into <P a, <D b, <P c by
the dyadic 0. Let

a = a, V = b, c - b c.

The vectors a , b ,
c form the system reciprocal to a, b, c.

For a a = a a = 1, b V = b b = 1,

c o = c o = 1,

and a V = a b = 0, b c = b c = 0,

c a = c a = 0.

The dyadic may be therefore expressed in the forms

= a a + b b + cV, (12)

and 0" 1 = aa + bb + cc.

If for convenience the three directions a, b, c, be called a

system of three conjugate radii vectors, and if in a similar

manner the three tangent planes at their extremities be called

a system of three conjugate tangent planes, a number of

geometric theorems may be obtained from interpreting the

invariants of 0. A system of three conjugate radii vectors

may be obtained in a doubly infinite number of ways.

The volume of a parallelepiped of which three concurrent

edges constitute a system of three conjugate radii vectors is

constant and equal in magnitude to the rectangular parallele

piped constructed upon the three semi-axes of the ellipsoid.

For let a, b, c be any system of three conjugate axes.

0- 1 = aa + bb + cc.

The determinant or third of 0" 1
is an invariant and inde

pendent of the form in which is expressed.

3-i=[abc] 2
.
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But if 0-!:=a 2 ii + & 2
jj + c

2
kk,

Hence [a b c]
= a 6 c.

This demonstrates the theorem. In like manner by inter

preting <P
3 , <Ps~~\ and S it is possible to show that:

The sum of the squares of the radii vectors drawn to an

ellipsoid in a system of three conjugate directions is constant

and equal to the sum of the squares of the semi-axes.

The volume of the parallelepiped, whose three concurrent

edges are in the directions of the perpendiculars upon a system

of three conjugate tangent planes and in magnitude equal to

the reciprocals of the distances of those planes from the

center of the ellipsoid, is constant and equal to the reciprocal

of the parallelepiped constructed upon the semi-axes of the

ellipsoid.

The sum of the squares of the reciprocals of the three per

pendiculars dropped from the origin upon a system of three

conjugate tangent planes is constant and equal to the sum of

the squares of the reciprocals^ the semi-axes.

If i, j, k be three mutually perpendicular unit vectors

4> s = i* </> i + j <P j + k # k,

tf^-i = i . 0-i . i + j
. 0-i .

j + k 0"1 k.

Let a, b, c be three radii vectors in the ellipsoid drawn

respectively parallel to i, j, k.

a . . a = b

i i
j

Hence <Pa =--- + *

a a

But the three terms in this expression are the squares of the

reciprocals of the radii vectors drawn respectively in the i, j,

k directions. Hence :
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The sum of the squares of the reciprocals of three mutually

perpendicular radii vectors in an ellipsoid is constant. And
in a similar manner: the sum of the squares of the perpen

diculars dropped from the origin upon three mutually perpen

dicular tangent planes is constant.

139.] The equation of the polar plane of the point deter

mined by the vector a is l

s a = 1. (13)

For let s be the vector of a point in the polar plane. The

vector of any point upon the line which joins the terminus of

s and the terminus of a is

y s + #a

x + y

If this point lies upon the surface

8*0*8+

x + y x + y

2 x y

If the terminus of s lies in the polar plane of a the two values

of the ratio x:y determined by this equation must be equal

in magnitude and opposite in sign. Hence the term in x y

vanishes.

Hence s a = 1

is the desired equation of the polar plane of the terminus

of a.

Let a be replaced by z a. The polar plane becomes

s . (p . z a = 1,

1
or s (P a = -

z

1 It is evidently immaterial whether the central quadric determined by * be

real or imaginary, ellipsoid or hyperboloid.
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When z increases the polar plane of the terminus of z a

approaches the origin. In the limit when z becomes infinite

the polar plane becomes

s a = 0.

Hence the polar plane of the point at infinity in the direction

a is the same as the diametral plane conjugate with a. This

statement is frequently taken as the definition of the diame

tral plane conjugate with a. In case the vector a is a radius

vector of the surface the polar plane becomes identical with

the tangent plane at the terminus of a. The equation

s <P a = 1 or s IT = 1

therefore represents the tangent plane.

The polar plane may be obtained from another standpoint

which is important. If a quadric Q and a plane P are given,

and P= r c C = 0,

the equation (r r - 1) + k (r c - C)
2 =

represents a quadric surface which passes through the curve

of intersection of Q and P and is tangent to Q along that

curve. In like manner if two quadrics Q and Q
f

are given,

Q = T r 1 =

Q = T* -r-l = 0,

the equation (r r 1) + k (r # r - 1) =

represents a quadric surface which passes through the curves

of intersection of Q and Q and which cuts Q and Q
f

at no

other points. In case this equation is factorable into two

equations which are linear in r, and which consequently rep

resent two planes, the curves of intersection of Q and Q
r

become plane and lie in those two planes.



382 VECTOR ANALYSIS

If A is any point outside of the quadric and if all the tangent

planes which pass through A are drawn, these planes envelop

a cone. This cone touches the quadric along a plane curve

the plane of the curve being the polar plane of the point A.

For let a be the vector drawn to the point A. The equation

of any tangent plane to the quadric is

s . . r = 1.

If this plane contains A, its equation is satisfied by a. Hence

the conditions which must be satisfied by r if its tangent

plane passes through A are

a . r = 1,

r <P r = 1.

The points r therefore lie in a plane r (<P a) = 1 which

on comparison with (13) is seen to be the polar plane of A.

The quadric which passes through the curve of intersection

of this polar plane with the given quadric and which touches

the quadric along that curve is

(r r - 1) + k (a r - I)
2 = 0.

If this passes through the point -4,

(a . . a - 1) + k (a a - I)
2 = 0.

Hence (r r - 1) (a a - 1)
-

(a r - I)
2 = 0.

By transforming the origin to the point A this is easily seen

to be a cone whose vertex is at that point

140.] Let be any self-conjugate dyadic. It is expres

sible in the form

where A, 5, C are positive or negative scalars. Further-

more let A<B<G
- Bl = (<7- B) kk - (5 - A) ii.
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Let V C B k = c and V B A i = a.

Then 0- Bl = cc-aa=
\ j(c

+ a)(c-a)+(c-a)(c+a)
J.

Let c + a = p and c a = q.

Then <P = 51 + -(pq + qp). (14)

The dyadic $ has been expressed as the sum of a constant

multiple of the idemfactor and one half the sum

pq + qp.

The reduction has assumed tacitly that the constants -4, B,

are different from each other and from zero.

This expression for <P is closely related to the circular

sections of the quadric surface

r r = 1.

Substituting the value of $, r r = 1 becomes

5 r r + r p q r = 1.

Let r p = n

be any plane perpendicular to p. By substitution

B r.r-ftt q r 1 = 0.

This is a sphere because the terms of the second order all

have the same coefficient B. If the equation of this sphere

be subtracted from that of the given quadric, the resulting

equation is that of a quadric which passes through the inter

section of the sphere and the given quadric. The difference

q r (r p n) = 0.

Hence the sphere and the quadric intersect in two plane

curves lying in the planes

q . r = and r p = n.
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Inasmuch as these curves lie upon a sphere they are circles.

Hence planes perpendicular to p cut the quadric in circles.

In like manner it may be shown that planes perpendicular to

q cut the quadric in circles. The proof may be conducted as

follows :

.5 r r + r p q r = 1.

If r is a radius vector in the plane passed through the center

of the quadric perpendicular to p or q, the term r p q r van

ishes. Hence the vector r in this plane satisfies the equation

B r-r = l

and is of constant length. The section is therefore a circular

section. The radius of the section is equal in length to the

mean semi-axis of the quadric.

For convenience let the quadric be an ellipsoid. The con

stants A, B, C are then positive. The reciprocal dyadic (P"1

may be reduced in a similar manner.

B

B \B C \A B

Let 1 =1-* and d = -i.

Then 1 -
-^

I = f f - dd =
\ j

(f + d) (f
-

d)

+ (f-d)(f +
d)j

Let + d = u and d = v.

Then 0-i = 4 1 + I O v + vu). (15)
> *
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The vectors u and v are connected intimately with the cir

cular cylinders which envelop the ellipsoid

r r = 1 or N (t>~
1 N = 1.

For - N N + N u v N = 1.
z>

If now N be perpendicular to u or v the second term, namely,

N u v N, vanishes and hence the equation becomes

N - N = B.

That is, the vector N is of constant length. But the equation

is the equation of a cylinder of which the elements and tan

gent planes are parallel to u. If then N N is constant the

cylinder is a circular cylinder enveloping the ellipsoid. The

radius of the cylinder is equal in length to the mean semi-axis

of the ellipsoid.

There are consequently two planes passing through the

origin and cutting out circles from the ellipsoid. The normals

to these planes are p and q. The circles pass through the

extremities of the mean axis of the ellipsoid. There are also

two circular cylinders enveloping the ellipsoid. The direction

of the axes of these cylinders are n and v. Two elements of

these cylinders pass through the extremities of the mean axis

of the ellipsoid.

These results can be seen geometrically as follows. Pass

a plane through the mean axis and rotate it about that

axis from the major to the minor axis. The section is an

ellipse. One axis of this ellipse is the mean axis of the

ellipsoid. This remains constant during the rotation. The

other axis of the ellipse varies in length from the major to the

minor axis of the ellipsoid and hence at some stage must pass

through a length equal to the mean axis. At this stage of

25
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the rotation the section is a circle. In like manner consider

the projection or shadow of the ellipsoid cast upon a plane

parallel to the mean axis by a point at an infinite distance

from that plane and in a direction perpendicular to it. As the

ellipsoid is rotated about its mean axis, from the position in

which the major axis is perpendicular to the plane of projec

tion to the position in which the minor axis is perpendicular

to that plane, the shadow and the projecting cylinder have the

mean axis of the ellipsoid as one axis. The other axis changes
from the minor axis of the ellipsoid to the major and hence at

some stage of the rotation it passes through a value equal to

the mean axis. At this stage the shadow and projecting

cylinder are circular.

The necessary and sufficient condition that r be the major
or minor semi-axis of the section of the ellipsoid r $ r = 1

by a plane passing through the center and perpendicular to a

is that a, r, and r be coplanar.

Let r <P r = 1

and r a = 0.

Differentiate : d r $ r = 0,

d r a = 0.

Furthermore d r r = 0,

if r is to be a major or minor axis of the section; for r is a

maximum or a mininum and hence is perpendicular to dr.

These three equations show that a, r, and r are all ortho

gonal to the same vector dr. Hence they are coplanar.

[a r 4> r] = 0. (16)

Conversely if [a r <P r]
= 0,

dr may be chosen perpendicular to their common plane."
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Hence r is a maximum or a minimim and is one of the prin

cipal semi-axes of the section perpendicular to a.

141.] It is frequently an advantage to write the equation

of an ellipsoid in the form

r ?T2 r = 1, (17)

instead of r <P r = 1.

This may be done ; because if

ii jj kk
* = -

2
+ ^ +

ir>

is a dyadic such that W* is equal to <P. may be regarded as

a square root of <P and written as $*. But it must be re

membered that there are other square roots of <P for

example,

and

For this reason it is necessary to bear in mind that the square

root which is meant by <P* is that particular one which has

been denoted by .

The equation of the ellipsoid may be written in the form

or .r. .r = .

Let r be the radius vector of a unit sphere. The equation of

the sphere is

r r = 1.
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If r = ?Trit becomes evident that an ellipsoid may be

transformed into a unit sphere by applying the operator

to each radius vector r, and vice versa, the unit sphere may
be transformed into an ellipsoid by applying the inverse oper

ator
~ l to each radius vector r . Furthermore if a, b, c are

a system of three conjugate radii vectors in an ellipsoid

a- ?F2 a = b F2 b = c ^.0 = 1,

a 2 b = b * c = c 2 a = 0.

If for the moment a , b , c denote respectively W a, W b,

W c,

a a = V V = c c = 1,

a . V = V c = c a = 0.

Hence the three radii vectors a
,
b

,
c of the unit sphere into

which three conjugate radii vectors in the ellipsoid are trans

formed by the operator W ~1 are mutually orthogonal. They
form a right-handed or left-handed system of three mutually

perpendicular unit vectors.

Theorem : Any ellipsoid may be transformed into any other

ellipsoid by means of a homogeneous strain.

Let the equations of the ellipsoids be

r <P r = 1,

and r r = 1.

By means of the strain 0* the radii vectors r of the first

ellipsoid are changed into the radii vectors r of a unit sphere

r = 01. r, r .r = l.

By means of the strain ~l the radii vectors r of this unit

sphere are transformed in like manner into the radii vectors f

of the second ellipsoid. Hence by the product r is changed
into f.

f = r- . . r. (19)
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The transformation may be accomplished in more ways
than one. The radii vectors r of the unit sphere may be

transformed among themselves by means of a rotation with or

without a perversion. Any three mutually orthogonal unit

vectors in the sphere may be changed into any three others.

Hence the semi-axes of the first ellipsoid may be carried over

by a suitable strain into the semi-axes of the second. The

strain is then completely determined and the transformation

can be performed in only one way.

142.] The equation of a family of confocal quadric sur

faces is

--ir-a* n o* n c* n

If r r = 1 and r W r = 1 are two surfaces of the

family,

2 n
l

6 2
TI

I
c
2

7&

kk
-

.-.. ^ Tin C 7l*
2

0-1 = (a
2 - 71^11+ (&

2
-tti)jj + ((^-w^kk,

y-i = (a
2 - 7i

2) i i + (&
2 - n

2) j j + (c
2 - n

2) k k.

Hence 0- 1 - r- 1 ^
(7i2

-
74) (ii + j j + kk)

The necessary and sufficient condition that the two quadrics

r r = 1

and r r = 1

be confocal, is that the reciprocals of <P and differ by a

multiple of the idemfactor
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If two confocal quadrics intersect, they do so at right angles.

Let the quadrics be r <P r = 1,

and r r = 1.

Let s = <P r and s = r,

r = 0- 1 . s and r = ~ l
s .

Then the quadrics may be written in terms of s and s as

s 0- 1 .s = l,

and s W~ l . s = 1,

where by the confocal property,

0-i_ W~* = xl.

If the quadrics intersect at r the condition for perpendicularity
is that the normals d> r and r be perpendicular. That is,

s s = 0.

But r = W~l s = 4>rl s = ( r-1 + x I) s

= ?r-i . s + # s,

x s s = s W~l
s - s r-1 * s = 1 - s 5T-1 s .

In like manner

r = 0-1 = F-1 s = (0-1 -
I) s = 0-1 s - x s .

X 8 S
f = S (P""1 S S <P~l S = S <P~l S 1.

Add: 2 a s s = s (0~
l - P"1

) s = x s s .

Hence s s = 0,

and the theorem is proved.

If the parameter n be allowed to vary from oo to + oo the

resulting confocal quadrics will consist of three families of

which one is ellipsoids ; another, hyperboloids of one sheet ;

and the third, hyperboloids of two sheets. By the foregoing
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theorem each surface of any one family cuts every surface

of the other two orthogonally. The surfaces form a triply

orthogonal system. The lines of intersection of two families

(say the family of one-sheeted and the family of two-sheeted

hyperboloids) cut orthogonally the other family the family

of ellipsoids. The points in which two ellipsoids are cut by

these lines are called corresponding points upon the two ellip

soids. It may be shown that the ratios of the components of

the radius vector of a point to the axes of the ellipsoid

through that point are the same for any two corresponding

points.

For let any ellipsoid be given by the dyadic

The neighboring ellipsoid in the family is represented by the

dyadic 11" JJ kk=
a2 d n b2 dn c

2 dn

y-\= $-i ldn.

Inasmuch as and are homologous (see Ex. 8, p. 330)

dyadics they may be treated as ordinary scalars in algebra.

Therefore if terms of order higher than the first in dn be

omitted, 0+&dn.

The two neighboring ellipsoids are then

r r = 1,

and r (# + # 2 d n) f 1,

By (19) f (0 + <Z>
2 d n)-i # r,

r= I +

f (I I<Pdn) T r ~
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The vectors r and r differ by a multiple of r which is

perpendicular to the ellipsoid 0. Hence the termini of r and

r are corresponding points, for they lie upon one of the lines

which cut the family of ellipsoids orthogonally. The com

ponents of r and f in the direction i are r i = x and

dn . dn x
f i = x = r i i . *r = x -.

2 2 a 2

/> ft
fj\

The ratio of these components is - = 1- -

X A a

The axes of the ellipsoids in the direction i are Va2 d n and

a. Their ratio is

i dn
A/a

2 dn a - i
.. dn x= " l~*

T ,., V& 2 dn y j V^2 dn z
In like manner = - and = -.by c z

Hence the ratios of the components of the vectors r and r

drawn to corresponding points upon two neighboring ellip

soids only differ at most by terms of the second order in d n

from the ratios of the axes of those ellipsoids. It follows

immediately that the ratios of the components of the vectors

drawn to corresponding points upon any two ellipsoids, sepa

rated by a finite variation in the parameter n, only differ at

most by terms of the first order in dn from the ratios of the

axes of the ellipsoids and hence must be identical with them.

This completes the demonstration.

The Propagation of Light in Crystals
1

143.] The electromagnetic equations of the ether or of any

infinite isotropic medium which is transparent to electromag

netic waves may be written in the form

1 The following discussion must be regarded as mathematical not physical.

To treat the subject from the standpoint of physics would be out of place here.
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d 2 V
Pot + .FD + VF=O, V.D = O (i)

where D is the electric displacement satisfying the hydrody-
namic equation V D = 0, E a constant of the dielectric meas

ured in electromagnetic units, and V F the electrostatic force

due to the function F. In case the medium is not isotropic the

constant E becomes a linear vector function 0. This function

is self-conjugate as is evident from physical considerations.

For convenience it will be taken as 4 TT <D. The equations

then become

-4-7T0.D + VF=0, V-D=0. (2)
U/ (/

Operate by V x V x.

V x V x Pot + 47rVxVx0.D = 0. (3)
CL t

The last term disappears owing to the fact that the curl of

the derivative VF vanishes (page 167). The equation may
also be written as

Pot V x V x -r-y + 47rVxVx<P.D = 0. (3)

But VxVx=VV.-V.V.

Remembering that V D and consequently V and
-n _ (t t

V -V-TT vanish and that Pot V V is equal to 4 TT the
a t

2

equation reduces at once to

,72 Tk

0.D V V $ D, VD = 0. (4)
dt*

Suppose that the vibration D is harmonic. Let r be the

vector drawn from a fixed origin to any point of space.
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Then D = A cos (m r n f)

where A and m are constant vectors and n a constant scalar

represents a train of waves. The vibrations take place in

the direction A. That is, the wave is plane polarized. The

wave advances in the direction m. The velocity v of that ad

vance is the quotient of n by m, the magnitude of the vector

m. If this wave is an electromagnetic wave in the medium

considered it must satisfy the two equations of that medium.

Substitute the value of D in those equations.

The value of V D, V V $ D, and VV D may be

obtained most easily by assuming the direction i to be coinci

dent with m. m r then reduces to m i r which is equal to

m x. The variables y and z no longer occur in D. Hence

D = A cos (m x n f)

3DV D = i -z = i A m sin (m x n f)d X

V V d> D = m 2 A cos (m x n f)

V V # D = m 2
i i- 4> A cos (mx nf).

Hence V D = m A sin (m r nf)

V V d> D = m m D

VV* 0.D = -mm. </>.D.

Moreover
-j--^

= 7i
a D.

Hence if the harmonic vibration D is to satisfy the equa
tions (4) of the medium

n2 D = m-m <P D m m <P D (5)

and m A = 0. (6)
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The latter equation states at once that the vibrations must

be transverse to the direction m of propagation of the waves.

The former equation may be put in the form

D = <P D - 4> D. (5)n 2
7i

2

Introduce s = -
n

The vector s is in the direction of advance m. The magnitude
of s is the quotient of m by n. This is the reciprocal of the

velocity of the wave. The vector s may therefore be called

the wave-slowness.

D s - s D s s D.

This may also be written as

D = (s x s x D) = s x (0 D) x s.

Dividing by the scalar factor cos (m x n t\

A = sx(0A)xs = ss A S A. (7)

It is evident that the wave slowness s depends not at all

upon the phase of the vibration but only upon its direction.

The motion of a wave not plane polarized may be discussed by

decomposing the wave into waves which are plane polarized.

144.] Let a be a vector drawn in the direction A of the

displacement and let the magnitude of a be so determined

that a d> a = 1. (8)

The equation (7) then becomes reduced to the form

a = sx (<2>*a) Xs= s-s #-a ss-#-a (9)

a a = 1. (8)

These are the equations by which the discussion of the velocity

or rather the slowness of propagation of a wave in different

directions in a non-isotropic medium may be carried on.

a a = s s a a = s s. (10)
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Hence the wave slowness s due to a displacement in the

direction a is equal in magnitude (but not in direction) to the

radius vector drawn in the ellipsoid a a = 1 in that

direction.

axa = = ss a x <P a a x s s <P . a

= s s(aX # a)- # a aXs # a s # a.

But the first term contains <P a twice and vanishes. Hence

a x s a = [a s a] = 0. (11)

The wave-slowness s therefore lies in a plane with the

direction a of displacement and the normal a drawn to the

ellipsoid a <P a = 1 at the terminus of a. Since s is perpen
dicular to a and equal in magnitude to a it is evidently com

pletely determined except as regards sign when the direction

a is known. Given the direction of displacement the line of

advance of the wave compatible with the displacement is com

pletely determined, the velocity of the advance is likewise

known. The wave however may advance in either direction

along that line. By reference to page 386, equation (11) is seen

to be the condition that a shall be one of the principal axes of

the ellipsoid formed by passing a plane through the ellipsoid

perpendicular to s. Hence for any given direction of advance

there are two possible lines of displacement. These are the

principal axes of the ellipse cut from the ellipsoid a a= 1

by a plane passed through the center perpendicular to the

line of advance. To these statements concerning the deter-

minateness of s when a is given and of a when s is given just

such exceptions occur as are obvious geometrically. If a and

a are parallel s may have any direction perpendicular to a.

This happens when a is directed along one of the principal

axes of the ellipsoid. If s is perpendicular to one of the

circular sections of the ellipsoid a may have any direction in the

plane of the section.
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When the direction of displacement is allowed to vary the

slowness s varies. To obtain the locus of the terminus of s, a

must be eliminated from the equation

a = s s <P a SB a

or (I
- s s + s s (P) a = 0. (12)

The dyadic in the parenthesis is planar because it annihilates

vectors parallel to a. The third or determinant is zero. This

gives immediately

(I + #) 8
= 0,

or (0-
1 - s s 1 + ss) 3

= 0. (13)

This is a scalar equation in the vector s. It is the locus of

the extremity of s when a is given all possible directions. A
number of transformations may be made. By Ex. 19, p. 331,

(<P + ef)8 = <PS + e <Pa f = 8 + e 00-
1 f </>

3
.

Hence

Dividing out the common factor and remembering that $ is

self-conjugate.

1 + s- (CM-s- si)-
1 -8 = 0.

1 +

8-1.8
+ s ----r -8 =

S S I 8 8

8 S

Hence s ---= s = 0. (14)
1 8*8 (P

Let
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1 /^_W/_J_\
jj + / i u k

i-i.i*-^_-jj [i_g
JJ+

[ir^J

Let s = xi + yj + zk and s2 = # 2 + y* + z2 .

Then the equation of the surface in Cartesian coordinates is20 o
^ j?/

2 z*

-72
= 0.

(14)l-fl i-_
a2

The equation in Cartesian coordinates may be obtained

rpnf1v frr\m
directly from

The determinant of this dyadic is

a 2 s 2 + x 2 x y x z

x y 6 2 s 2 + y^ y z

x z y z c 2 s 2

= 0. (13)

By means of the relation s2 = x2 + y
2 + z 2 this assumes the

forms

n n I o i o ~T~ n n
~~" -^

+ "2 2
s 2 c 2

or

This equation appears to be of the sixth degree. It is how

ever of only the fourth. The terms of the sixth order cancel

out.

The vector s represents the wave-slowness. Suppose that a

plane wave polarized in the direction a passes the origin at a
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certain instant of time with this slowness. At the end of a

unit of time it will have travelled in the direction s, a distance

equal to the reciprocal of the magnitude of s. The plane will

be in this position represented by the vector s (page 108).

If s = ui + vj + wit

the plane at the expiration of the unit time cuts off intercepts

upon the axes equal to the reciprocals of u, v, w. These

quantities are therefore the plane coordinates of the plane.

They are connected with the coordinates of the points in the

plane by the relation

ux + vy + wz = \.

If different plane waves polarized in all possible different

directions a be supposed to pass through the origin at the

same instant they will envelop a surface at the end of a unit

of time. This surface is known as the wave-surface. The

perpendicular upon a tangent plane of the wave-surface is the

reciprocal of the slowness and gives the velocity with which

the wave travels in that direction. The equation of the wave-

surface in plane coordinates u, v, w is identical with the equa

tion for the locus of the terminus of the slowness vector s.

The equation is

=
(15)

where s 2 = u 2
-f v 2 + w 2

. This may be written in any of the

forms given previously. The surface is known as FresneVs

Wave-Surface. The equations in vector form are given on

page 397 if the variable vector s be regarded as determining a

plane instead of a point.

145.] In an isotropic medium the direction of a ray of

light is perpendicular to the wave-front. It is the same as

the direction of the wave s advance. The velocity of the ray
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is equal to the velocity of the wave. In a non-isotropic

medium this is no longer true. The ray does not travel per

pendicular to the wave-front that is, in the direction of the

wave s advance. And the velocity with which the ray travels

is greater than the velocity of the wave. In fact, whereas the

wave-front travels off always tangent to the wave-surface, the

ray travels along the radius vector drawn to the point of tan-

gency of the wave-plane. The wave-pknes envelop the

wave-surface; the termini of the rays are situated upon it.

Thus in the wave-surface the radius vector represents in mag
nitude and direction the velocity of a ray and the perpen

dicular upon the tangent plane represents in magnitude and

direction the velocity of the wave. If instead of the wave-

surface the surface which is the locus of the extremity of the

wave slowness be considered it is seen that the radius vector

represents the slowness of the wave; and the perpendicular

upon the tangent plane, the slowness of the ray.

Let v be the velocity of the ray. Then s v = 1 because

the extremity of v lies in the plane denoted by s. Moreover

the condition that v be the point of tangency gives d v per

pendicular to s. In like manner if a
r be the slowness of the

ray and v the velocity of the wave, s v = 1 and the condition

of tangency gives d s perpendicular to v. Hence

s v = 1 and s - v = 1, (16)

and s d v = 0, v d s = 0, v - d s = 0, s d v = 0,

v may be expressed in terms of a, s, and as follows.

a = s s <P a s s <P a,

da = 2s.tfs<P.a s- ^arfs + ss<?-rfa

sds- & -
a. s s # d a.

Multiply by a and take account of the relations a s = and

a 4> . d a and a a = s s. Then
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s d s a d s B a = 0,

or d s (s a s <P a) = 0.

But since v d s = 0, v and s a s <P a have the same

direction.

v = x (s a s a),

s v = # (s s s a s a) = x s s.

,
s a s . . a

Hence v =
, (17)8*8

s . op . a a $ a s $ a
v <P a = = 0.

s s

Hence the ray velocity v is perpendicular to a, that is, the

ray velocity lies in the tangent plane to the ellipsoid at the

extremity of the radius vector a drawn in the direction of the

displacement. Equation (17) shows that v is coplanar with

a and s. The vectors a, s, a, and v therefore lie in one

plane. In that plane s is perpendicular to a ; and v;

, to a.

The angle from s to v is equal to the angle from a to $ a.

Making use of the relations already found (8) (9) (11)

(16) (17), it is easy to show that the two systems of vectors

a, v , a x v and a, s, (<P a) x s

are reciprocal systems. If a be replaced by a the equa
tions take on the symmetrical form

s . a = B s = a a a a = 1,

vf -af = v .v =a -a s . v = 1,

a = s x a x s a = v x a x v (18)

s = a x v x a v = a x s x a

a a = 1 a 0-1 a = 1.

Thus a dual relation exists between the direction of displace

ment, the ray-velocity, and the ellipsoid on the one hand ;

26
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and the normal to the ellipsoid, the wave-slowness, and the

ellipsoid
~l on the other.

146.] It was seen that if s was normal to one of the cir

cular sections of the displacement a could take place in any
direction in the plane of that section. For all directions in

this plane the wave-slowness had the same direction and the

same magnitude. Hence the wave-surface has a singular

plane perpendicular to s. This plane is tangent to the surface

along a curve instead of at a single point. Hence if a wave

travels in the direction s the ray travels along the elements of

the cone drawn from the center of the wave-surface to this

curve in which the singular plane touches the surface. The

two directions s which are normal to the circular sections of

are called the primary optic axes. These are the axes of equal

wave velocities but unequal ray velocities.

In like manner v being coplanar with a and a

[4> a v a]
= [a v <P~l a ]

= 0.

The last equation states that if a plane be passed through

the center of the ellipsoid <P~l
perpendicular to V, then a

which is equal to a will be directed along one of the prin

cipal axes of the section. Hence if a ray is to take a definite

direction a may have one of two directions. It is more con

venient however to regard v as a vector determining a plane.

The first equation

[0 . a v a]
=

states that a is the radius vector drawn in the ellipsoid to

the point of tangency of one of the principal elements of the

cylinder circumscribed about parallel to v : if by a principal

element is meant an element passing through the extremities

of the major or minor axes of orthogonal plane sections

of that cylinder. Hence given the direction v of the ray, the

two possible directions of displacement are those radii vectors
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of the ellipsoid which lie in the principal planes of the cylin

der circumscribed about the ellipsoid parallel to v .

If the cylinder is one of the two circular cylinders which

may be circumscribed about the direction of displacement

may be any direction in the plane passed through the center

of the ellipsoid and containing the common curve of tangency

of the cylinder with the ellipsoid. The ray-velocity for all

these directions of displacement has the same direction and

the same magnitude. It is therefore a line drawn to one

of the singular points of the wave-surface. At this singular

point there are an infinite number of tangent planes envelop

ing a cone. The wave-velocity may be equal in magnitude
and direction to the perpendicular drawn from the origin to

any of these planes. The directions of the axes of the two

circular cylinders circumscriptible about the ellipsoid are

the directions of equal ray-velocity but unequal wave-velocity.

They are the radii drawn to the singular points of the wave-

surface and are called the secondary optic axes. If a ray

travels along one of the secondary optic axes the wave planes

travel along the elements of a cone.

Variable Dyadics. The Differential and Integral Calculus

147.] Hitherto the dyadics considered have been constant.

The vectors which entered into their make up and the scalar

coefficients which occurred in the expansion in nonion form

have been constants. For the elements of the theory and for

elementary applications these constant dyadics suffice. The

introduction of variable dyadics, however, leads to a simplifica

tion and unification of the differential and integral calculus of

vectors, and furthermore variable dyadics become a necessity

in the more advanced applications for instance, in the theory
of the curvature of surfaces and in the dynamics of a rigid

body one point of which is fixed.
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Let W be a vector function of position in space. Let r be

the vector drawn from a fixed origin to any point in space.

d r = dx i + dy j + dz k,

3W
,

5W 5W
^dx-^ + dy + dz-Ti .

$# c?y c/ z

( SW 3W 5W)
Hence d W = d r H ---h j -= + k - > .

(
dx dy dz )

The expression enclosed in the braces is a dyadic. It thus

appears that the differential of W is a linear function of c?r,

the differential change of position. The antecedents are i, j, k,

and the consequents the first partial derivatives of W with re

spect of x, y, z. The expression is found in a manner precisely

analogous to del and will in fact be denoted by V W.

=i- + j + k-. (1)

Then dW = dr.VW. (2)

This equation is like the one for the differential of a scalar

function F.

dV=dr VF.

It may be regarded as defining VW. If expanded into

nonion form VW becomes

.VW = 11
3x

.5X .9Y 3Z
+ ki

ls-+kj T- + kk-^--,dz 3 z <y z

if W
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The operators V and V x which were applied to a vector

function now become superfluous from a purely analytic

standpoint. For they are nothing more nor less than the

scalar and the vector of the dyadic V W.

div W = V W = (V W)* (4)

curl W = V x W = (V W) x . (5)

The analytic advantages of the introduction of the variable

dyadic VW are therefore these. In the first place the oper
ator V may be applied to a vector function just as to a scalar

function. In the second place the two operators V and V x
are reduced to positions as functions of the dyadic V W. On
the other hand from the standpoint of physics nothing is to

be gained and indeed much may be lost if the important in

terpretations of V W and V x W as the divergence and curl

of W be forgotten and their places taken by the analytic idea

of the scalar and vector of VW.
If the vector function W be the derivative of a scalar

function V^

dW = dVF=e?r VVF",

where VV F= i i 75- + i j = =- + i k ^ ,

<y x <y x c/ y <y x c/ z

Qty 32 y 3 2 F"

**- TT o T
dy dx &yz dy d z

+ kj - + k j -g- + k k
dzdx 9zSy

The result of applying V twice to a scalar function is seen to

be a dyadic. This dyadic is self-conjugate. Its vectorV x VV
is zero ; its scalar V V V is evidently

3 2 F 3 2 V 9 2 VV-VF= (VVF)*= 0-2 + T-2 + TT2 * *
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If an attempt were made to apply the operator V symboli

cally to a scalar function V three times, the result would be a

sum of twenty-seven terms like

* *

,etc.r r, ^r = ;r-
c/ x 6 v x d y & z

This is a triadic. Three vectors are placed in juxtaposition

without any sign of multiplication. Such expressions will

not be discussed here. In a similar manner if the operator V
be applied twice to a vector function, or once to a dyadic func

tion of position in space, the result will be a triadic and hence

outside the limits set to the discussion here. The operators

V x and V may however be applied to a dyadic to yield

respectively a dyadic and a vector.

S 50 30
V x = i x ^- + j x ^- + k x ^-, (7)dx Sy 9z

30 30 30
V- = i._ + j

. + k- T-. (8)3x dy 3z

If = u i + v j + w k,

where u, v, w are vector functions of position in space,

Vx $ = V x u i + Vxvj + Vx w k, (7)
f

and V 0= V u i + V v j + V w k. (8)

Or if = i u + j v -f k w,

X)v
T r x* / w W ^ V

\ I* ** ^ WVx 0= i{- ^-) + j^ =-

* -++ <8>"

In a similar manner the scalar operators (a V) and (V V)
may be applied to 0. The result is in each case a dyadic,
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30 30 5d>
(a.V)<P = a.1^ + a

2 ^- + a
8 ^, (9)

32 32 $ 32
(V . V) <P = ^ f + + -

(10)
o/ z2

c? y* d z2

The operators a V and V V as applied to vector func

tions are no longer necessarily to be regarded as single oper

ators. The individual steps may be carried out by means of

the dyadic VW.

(a - V) W = a (V W) = a V W,

(V V) W = V (V W) = V V W.

But when applied to a dyadic the operators cannot be inter

preted as made up of two successive steps without making use

of the triadic V 0. The parentheses however may be removed

without danger of confusion just as they were removed in

case of a vector function before the introduction of the dyadic.

Formulae similar to those upon page 176 may be given for

differentiating products in the case that the differentiation

lead to dyadics.

V (u v) = >V u v + u V v,

V(vxw)=Vvxw Vwxv,

Vx (v x w) = w V v V v w v V w + V w v,

V (v w) = V v w + V w v,

V (v w) = V v w + v V w.

Vx (v w) = V x v w v x V w,

V . (u #) = V u <P + u V 0,

VxVx <P = VV. <P V V <P, etc.

The principle in these and all similar cases is that enun

ciated before, namely : The operator V may be treated sym-
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bolically as a vector. The differentiations which it implies

must be carried out in turn upon each factor of a product

to which it is applied. Thus

V x (vw) = [V x (v w)] v + [V x (vw)]^

[Vx (vw)]w = V xvw,

[V x (v w)] v = - [v x V w] v = - v x V w.

Hence Vx (v w) = V x vw v x V w.

Again V (v x w) = [V (v x w)] T + [V (v x w)]^

[V (v x w)]w = V v x w,

[V (v x w)]v = [ V (w x v)] v = V w x v.

Hence V(vxw) = Vvxw v w x v.

148.] It was seen (Art. 79) that if C denote an arc of a

curve of which the initial point is r and the final point is r

the line integral of the derivative of a scalar function taken

along the curve is equal to the difference between the values

of that function at r and r .

r* VF= F(r)- F(r ).

In like manner Cd r . VW = W (r)
- W (r ),

J c

and Cd r VW = 0.

Jo

It may be well to note that the integrals

fdr.VW and fvw dr

are by no means the same thing. VW is a dyadic. The

vector dx cannot be placed arbitrarily upon either side of it.



VARIABLE DYADICS 409

Owing to the fundamental equation (2) the differential di

necessarily precedes V W. The differentials must be written

before the integrands in most cases. For the sake of uni

formity they always will be so placed.

Passing to surface integrals, the following formulae, some

of which have been given before and some of which are new,

may be mentioned.

ff

ax VW= fdr W

ff da. Vx W= fdr*

r/daVx0= I dr <

The line integrals are taken over the complete bounding curve

of the surface over which the surface integrals are taken. In

like manner the following relations exist between volume and

surface integrals.

fff dv VW=rfa W

///<* V x *-
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The surface integrals are taken over the complete bounding
surface of the region throughout which the volume integrals

are taken.

Numerous formulae of integration by parts like those upon

page 250 might be added. The reader will rind no difficulty in

obtaining them for himself. The integrating operators may
also be extended to other cases. To the potentials of scalar

and vector functions the potential, Pot </>, of a dyadic may be

added. The Newtonian of a vector function and the Lapla-

cian and Maxwellian of dyadics may be defined.

Pot <? =

New W = //
r

^^I^> dV

d ,

Max * =

The analytic theory of these integrals may be developed as

before. The most natural way in which the demonstrations

may be given is by considering the vector function W as the

sum of its components,

W = Xi+ Fj + ^k

and the dyadic as expressed with the constant consequents

i, j, k and variable antecedents u, v, w, or vice versa,

These matters will be left at this point. The object of en

tering upon them at all was to indicate the natural extensions

which occur when variable dyadics are considered. These ex

tensions differ so slightly from the simple cases which have
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gone before that it is far better to leave the details to be worked

out or assumed from analogy whenever they may be needed

rather than to attempt to develop them in advance. It is suffi

cient merely to mention what the extensions are and how they

maybe treated.

The Curvature of Surfaces
1

149. ] There are two different methods of treating the cur

vature of surfaces. In one the surface is expressed in para-

metic form by three equations

x =/i <X v ) y =/a O> *0 * =/8 <X ")>

or r = f (u, v).

This is analogous to the method followed (Art. 57) in dealing

with curvature and torsion of curves and it is the method

employed by Fehr in the book to which reference was made.

In the second method the surface is expressed by a single

equation connecting the variables x,y,z thus

, z) = 0.

The latter method of treatments affords a simple application of

the differential calculus of variable dyadics. Moreover, the

dyadics lead naturally to the most important results connected

with the elementary theory of surfaces.

Let r be a radius vector drawn from an arbitrary fixed

origin to a variable point of the surface. The increment d r

lies in the surface or in the tangent plane drawn to the surface

at the terminus of r.

Hence the derivative V^is collinear with the normal to the

surface. Moreover, inasmuch as F and the negative of F when

1 Much of what follows is practically free from the use of dyadics. This is

especially true of the treatment of geodetics, Arts. 155-157.
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equated to zero give the same geometric surface, V F may be

considered as the normal upon either side of the surface. In

case the surface belongs to the family defined by

F (#, y, z)
= const.

the normal V F lies upon that side upon which the constant

increases. Let V F be represented by N the magnitude of

which may be denoted by N, and let n be a unit normal drawn

in the direction of IT. Then

(1)

If s is the vector drawn to any point in the tangent plane at

the terminus of r, s r and n are perpendicular. Consequently
the equation of the tangent plane is

(s-r)

and in like manner the equation of the normal line is

(s-r)x VjF=0,

or s = r + & V JP

where k is a variable parameter. These equations may be

translated into Cartesian form and give the familiar results.

150.] The variation dn of the unit normal to a surface

plays an important part in the theory of curvature, dn is

perpendicular to n because n is a unit vector.
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-*N iv 2

The dyadic I nn is an idemfactor for all vectors perpen

dicular to n and an annihilator for vectors parallel to n.

Hence

dn (I n n) = d n,

and V^.(I-nn)=0,

N J N N

Hence rf n = d r VV .F (I nn).

But d r = d r (I n n).

Hanco .-*,. <* ~"> V^ P-").
(2)

Let > = (I-..

Then dn = dr <P. (4)

In the vicinity of any point upon a surface the variation d n of

the unit normal is a linear function of the variation of the

radius vector r.

The dyadic is self-conjugate. For

N4> c = (I
- nn), (VV F) c (I

- nn)^

Evidently (I
- n ri) c = (I

- n n) and by (6) Art. 147 VVF
is self-conjugate. Hence <PC is equal to 0. When applied to

a vector parallel to n, the dyadic produces zero. It is there

fore planar and in fact uniplanar because self-conjugate. The

antecedents and the consequents lie in the tangent plane to
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the surface. It is possible (Art. 116) to reduce to the

form
4> = a i i + b j j (5)

where i and j are two perpendicular unit vectors lying in the

tangent plane and a and b are positive or negative scalars.

dn = dr (a i i + b j j ).

The vectors i , j and the scalars a, 6 vary from point to point
of the surface. The dyadic C? is variable.

151.] The conic r r = 1 is called the indicatrix of the

surface at the point in question. If this conic is an ellipse,

that is, if a and b have the same sign, the surface is convex at

the point ; but if the conic is an hyperbola, that is, if a and b

have opposite signs the surface is concavo-convex. The curve

r . r = 1 may be regarded as approximately equal to the

intersection of the surface with a plane drawn parallel to the

tangent plane and near to it. If r r be set equal to zero

the result is a pair of straight lines. These are the asymp
totes of the conic. If they are real the conic is an hyperbola ;

if imaginary, an ellipse. Two directions on the surface which

are parallel to conjugate diameters of the conic are called con

jugate directions. The directions on the surface which coin

cide with the directions of the principal axes i , j of the

indicatrix are known as the principal directions. They are a

special case of conjugate directions. The directions upon the

surface which coincide with the directions of the asymptotes

of the indicatrix are known as asymptotic directions. In case

the surface is convex, the indicatrix is an ellipse and the

asymptotic directions are imaginary.

In special cases the dyadic may be such that the coeffi

cients a and b are equal. may then be reduced to the

form
= a(i i + j j ) (5)
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in an infinite number of ways. The directions i and j may be

any two perpendicular directions. The indicatrix becomes a

circle. Any pair of perpendicular diameters of this circle

give principal directions upon the surface. Such a point is

called an umbilic. The surface in the neighborhood of an

umbilic is convex. The asymptotic directions are imaginary.

In another special case the dyadic $ becomes linear and redu

cible to the form
<p = a i i . (5)"

The indicatrix consists of a pair of parallel lines perpendicular

to i . Such a point is called a parabolic point of the surface.

The further discussion of these and other special cases will be

omitted.

The quadric surfaces afford examples of the various kinds

of points. The ellipsoid and the hyperboloid of two sheets

are convex. The indicatrix of points upon them is an ellipse.

The hyperboloid of one sheet is concavo-convex. The in

dicatrix of points upon it is an hyperbola. The indicatrix

of any point upon a sphere is a circle. The points are all

umbilies. The indicatrix of any point upon a cone or cylinder

is a pair of parallel lines. The points are parabolic. A sur

face in general may have upon it points of all types elliptic,

hyperbolic, parabolic, and umbilical.

152.] A line of principal curvature upon a surface is a

curve which has at each point the direction of one of the prin

cipal axes of the indicatrix. The direction of the curve at a

point is always one of the principal directions on the surface at

that point. Through any given point upon a surface two per

pendicular lines of principal curvature pass. Thus the lines

of curvature divide the surface into a system of infinitesi

mal rectangles. An asymptotic line upon a surface is a curve

which has at each point the direction of the asymptotes of the

indicatrix. The direction of the curve at a point is always
one of the asymptotic directions upon the surface. Through
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any given point of a surface two asymptotic lines pass. These

lines are imaginary if the surface is convex. Even when real

they do not in general intersect at right angles. The angle

between the two asymptotic lines at any point is bisected by
the lines of curvature which pass through that point.

The necessary and sufficient condition that a curve upon a

surface be a line of principal curvature is that as one advances

along that curve, the increment of d n, the unit normal to the

surface is parallel to the line of advance. For

rfn= 0. dr = (a i i + b j j ) dr

dr x i + yj .

Then evidently d n and d r are parallel when and only when

dr is parallel to i or j . The statement is therefore proved.

It is frequently taken as the definition of lines of curvature.

The differential equation of a line of curvature is

dnxdr = 0. (6)

Another method of statement is that the normal to the surface,

the increment d n of the normal, and the element d r of the

surface lie in one plane when and only when the element d r

is an element of a line of principal curvature. The differential

equation then becomes

[n dn rfr]
= 0. (7)

The necessary and sufficient condition that a curve upon a

surface be an asymptotic line, is that as one advances along

that curve the increment of the unit normal to the surface is

perpendicular to the line of advance. For

dn = dr <P

dn dr = dr dr.

If then d n d r is zero d r tf> d r is zero. Hence d r is an

asymptotic direction. The statement is therefore proved. It
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is frequently taken as the definition of asymptotic lines. The
differential equation of an asymptotic line is

d n d r = 0. (8)

153.] Let P be a given point upon a surface and n the

normal to the surface at P. Pass a plane p through n. This

plane p is normal to the surface and cuts out a plane section.

Consider the curvature of this plane section at the point P.

Let n be normal to the plane section in the plane of the

section, n coincides with n at the point P. But unless the

plane p cuts the surface everywhere orthogonally, the normal

n to the plane section and the normal n to the surface will not

coincide, d n and d n will also be different. The curvature

of the plane section lying in p is (Art. 57).

____
ds d s2

As far as numerical value is concerned the increment of the

unit tangent t and the increment of the unit normal n are

equal. Moreover, the quotient of d r by d s is a unit vector

in the direction of d n . Consequently the scalar value of C is

d n1 dr dnf dr

ds ds ds 2

By hypothesis n = n at P and ndr = n -dr = 0,

d (V d r) = d n d r + n - d 2 r = 0.

Hence d n d r + n d 2 r = d n d r + n d 2
r.

Since n and n are equal at P,

dn*dr dr <P dr dr <P dr
Hence C = ^ =-j-^

- =
3
-

3
-

(9)ds 2 ds2 dr dr
27
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.

C7 = a - -- + b
dr ar ar ar

Hence tf= a cos 2
(i , dr) + & cos 2 Q , dr),

or (7= a cos 2
(i , rfr) + b sin 2

(i , dr). (10)

The interpretation of this formula for the curvature of a

normal section is as follows : When the plane p turns about

the normal to the surface from i to j , the curvature C of the

plane section varies from the value a when the plane passes

through the principal direction i , to the value b when it

passes through the other principal direction j . The values

of the curvature have algebraically a maximum and minimum

in the directions of the principal lines of curvature. If a and

b have unlike signs, that is, if the surface is concavo-convex

at Pj there exist two directions for which the curvature of a

normal section vanishes. These are the asymptotic directions.

154.] The sum of the curvatures in two normal sections

at right angles to one another is constant and independent of

the actual position of those sections. For the curvature in

one section is

C
l
= a cos 2

(i , dr) + b sin 2
(i , dr),

and in the section at right angles to this

(72
= a sin2 (i , di) + b cos 2

(i , dr).

Hence O
l + C2

= a + b = 4> a (11)

which proves the statement.

It is easy to show that the invariant $%s is equal to the pro

duct of the curvatures a and b of the lines of principal curv

ature.

4>t S = ab

Hence the equation x* <Pa x + 0^3 = (12)
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is the quadratic equation which determines the principal curv

atures a and I at any point of the surface. By means of this

equation the scalar quantities a and b may be found in terms

of F(x, y, z).

. (I-nn)
N

N

(nn VV.F- nn)^ = (nn nn VV^7

)^ = (nn

(VV^) (nn^
Hence 9. = - -^

(nn. VV^)^ = nn: VVJ^=n. VV F n.

V.V^ VFVF:WF
Hence <^^ = --

(13)

.

** T---^i
--

CIS)

These expressions may be written out in Cartesian coordinates,

but they are extremely long. The Cartesian expressions for

2/5
are even longer. The vector expression may be obtained

as follows:

(I nn) 2
= nn.

Hence

S-IA\

155.] Given any curve upon a surface. Let t be a unit

tangent to the curve, n a unit normal to the surface and m a
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vector defined as n x t. The three vectors n, t, m constitute

an i, j, k system. The vector t is parallel to the element d r.

Hence the condition for a line of curvature becomes

t x d n = 0. (15)

Hence m d n =

d (m n) = = m dn + n d m.

Hence n dm = 0.

Moreover m d m = 0.

Hence t x d m = 0, (16)

or dmxdn = Q. (16)

The increments of m and of n and of r are all parallel in case of

a line of principal curvature.

A geodetic line upon a surface is a curve whose osculating

plane at each point is perpendicular to the surface. That the

geodetic line is the shortest line which can be drawn between

two points upon a surface may be seen from the following

considerations of mechanics. Let the surface be smooth and

let a smooth elastic string which is constrained to lie in the

surface be stretched between any two points of it. The string

acting under its own tensions will take a position of equili

brium along the shortest curve which can be drawn upon the

surface between the two given points. Inasmuch as the

string is at rest upon the surface the normal reactions of the

surface must lie in the osculating plane of the curve. Hence

that plane is normal to the surface at every point of the curve

and the curve itself is a geodetic line.

The vectors t and d t lie in the osculating plane and deter

mine that plane. In case the curve is a geodetic, the normal

to the osculating plane lies in the surface and consequently is

perpendicular to the normal n. Hence
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n*tx<2t = 0,

n x t d i = (17)

or m d t = 0.

The differential equation of a geodetic line is therefore

[n dr d 2
r] =0. (18)

Unlike the differential equations of the lines of curvature

and the asymptotic line, this equation is of the second order.

The surface is therefore covered over with a doubly infinite

system of geodetics. Through any two points of the surface

one geodetic may be drawn.

As one advances along any curve upon a surface there is

necessarily some turning up and down, that is, around the

axis m, due to the fact that the surface is curved. There may
or may not be any turning to the right or left. If one advances

along a curve such that there is no turning to the right or

left, but only the unavoidable turning up and down, it is to be

expected that the advance is along the shortest possible route

that is, along a geodetic. Such is in fact the case. The

total amount of deviation from a straight line is d t. Since n,

t, m form an i, j, k system

I = tt + nn + mm.

Hence dt = tt*dt + nndt + mm*dt.

Since t is a unit vector the first term vanishes. The second

term represents the amount of turning up and down; the

third term, the amount to the right or left. Hence m d t is

the proper measure of this part of the deviation from a

straightest line. In case the curve is a geodetic this term

vanishes as was expected.

156.] A curve or surface may be mapped upon a unit

sphere by the method of parallel normals. A fixed origin is

assumed, from which the unit normal n at the point P of a
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given surface is laid off. The terminus P r of this normal lies

upon the surface of a sphere. If the normals to a surface at all

points P of a curve are thus constructed from the same origin,

the points Pr will trace a curve upon the surface of a unit

sphere. This curve is called the spherical image of the given

curve. In like manner a whole region T of the surface may
be mapped upon a region T

1 the sphere. The region T
1

upon
the sphere has been called the hodogram of the region T upon
the surface. If d r be an element of arc upon the surface the

corresponding element upon the unit sphere is

dn= dr.

If da be an element of area upon the surface, the corre

sponding element upon the sphere is d*! where (Art. 124).

d a = <P
2

d a.

= a i i + & j j

<P
2
= a6 i x j i

f

xj
f = ab nn.

Hence dd = ab nn d a. (19)

The ratio of an element of surface at a point P to the area of

its hodogram is equal to the product of the principal radii of

curvature at P or to the reciprocal of the product of the prin

cipal curvatures at P.

It was seen that the measure of turning to the right or left

is m d t. If then is any curve drawn upon a surface the

total amount of turning in advancing along the curve is the

integral.
r
m dt. (20)

c

For any closed curve this integral may be evaluated in a

manner analogous to that employed (page 190) hi the proof

of Stokes s theorem. Consider two curves C and near
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together. The variation which the integral undergoes when

the curve of integration is changed from C to C is

S f m- dt.

S fm.dt= Cs (m - di)= fSm - dt+ Cm*Sdt

d(m-8t) = dmSt-hmd 8 1

S Cm* dt= C Sm* dt- C dm* St + C d (m Si).

The integral of the perfect differential d (m S t) vanishes

when taken around a closed curve. Hence

S I mdt= / Sm dt I dm Sk

The idemfactor is I = tt + nn + mm,

8m (2t = m I e2t = m nn dt,

for t c t and S m m vanish. A similar transformation may
be effected upon the term dm S t. Then

S / mdt= /(Smn n^t rfmn n-St).

By differentiating the relations m n = and n t = it is

seen that

c?mn=:--m^n n . dt = dn t.

Hence 8 /m^t=/ (m Sn t*dn m dn t Sn)

Sim rft=/(mxt-8nx^n)= I n Sn x dn.
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The differential Sn x dn represents the element of area in

the hodogram upon the unit sphere. The integral

/ n 8 n x <J n = / n d a

represents the total area of the hodogram of the strip of

surface which lies between the curves C and Cf

. Let the

curve C start at a point upon the surface and spread out to

any desired size. The total amount of turning which is re

quired in making an infinitesimal circuit about the point is

2 TT. The total variation in the integral is

f 8 fin. rft=f m.dt-27T.

But if H denote the total area of the hodogram.

Hence / m d t = 2 TT -JET,

or iT=27r fm rft, (22)

or H+ Cm* dt = 27r.

The area of the hodogram of the region enclosed by any
closed curve plus the total amount of turning along that curve

is equal to 2 TT. If the surface in question is convex the area

upon the sphere will appear positive when the curve upon the

surface is so described that the enclosed area appears positive.

If, however, the surface is concavo-convex the area upon the

sphere will appear negative. This matter of the sign of the

hodogram must be taken into account in the statement made

above.
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157.] If the closed curve is a polygon whose sides are

geodetic lines the amount of turning along each side is zero.

The total turning is therefore equal to the sum of the exterior

angles of the polygon. The statement becomes : the sum of

the exterior angles of a geodetic polygon and of the area of

the hodogram of that polygon (taking account of sign) is

equal to 2 TT. Suppose that the polygon reduces to a triangle.

If the surface is convex the area of the hodogram is positive

and the sum of the exterior angles of the triangle is less than

2 TT. The sum of the interior angles is therefore greater than

TT. The sphere or ellipsoid is an example of such a surface.

If the surface is concavo-convex the area of the hodogram is

negative. The sum of the interior angles of a triangle is in

this case less than TT. Such a surface is the hyperboloid of one

sheet or the pseudosphere. There is an intermediate case in

which the hodogram of any geodetic triangle is traced twice in

opposite directions and hence the total area is zero. The sum

of the interior angles of a triangle upon such a surface is equal

to TT. Examples of this surface are afforded by the cylinder,

cone, and plane.

A surface is said to be developed when it is so deformed that

lines upon the surface retain their length. Geodetics remain

geodetics. One surface is said to be developable or applicable

upon another when it can be so deformed as to coincide with

the other without altering the lengths of lines. Geodetics

upon one surface are changed into geodetics upon the other.

The sum of the angles of any geodetic triangle remain un

changed by the process of developing. From this it follows

that the total amount of turning along any curve or the area

of the hodogram of any portion of a surface are also invariant

of the process of developing.
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Harmonic Vibrations and Bivectors

158.] The differential equation of rectilinear harmonic

motion is

The integral of this equation may be reduced by a suitable

choice of the constants to the form

x = A sin n t.

This represents a vibration back and forth along the X-axis

about the point x = 0. Let the displacement be denoted by
D in place of x. The equation may be written

D = i A sin n t.

Consider D = i A sin n t cos m x.

This is a displacement not merely near the point x =
Or,

but along the entire axis of x. At points x =-
, where

in

k is a positive or negative integer, the displacement is at all

times equal to zero. The equation represents a stationary

wave with nodes at these points. At points midway between

these the wave has points of maximum vibration. If the

equation be regarded as in three variables x, y, z it repre

sents a plane wave the plane of which is perpendicular to

the axis of the variable x.

The displacement given by the equation

D
x
= i A l

cos (m x n f) (1)

is likewise a plane wave perpendicular to the axis of x but

not stationary. The vibration is harmonic and advances

along the direction i with a velocity equal to the quotient of
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n by m. If v be the velocity; p the period; and / the wave

length,
n 2?r 2 TT /

v = -, ^p
=

, I = , v = -. (2)m n m p

The displacement

D 2
= j A

2 cos (m x nt)

differs from Dj in the particular that the displacement takes

place in the direction j, not in the direction i. The wave as

before proceeds in the direction of x with the same velocity.

This vibration is transverse instead of longitudinal. By a

simple extension it is seen that

D = A cos (m x n t)

is a displacement in the direction A. The wave advances

along the direction of x. Hence the vibration is oblique to

the wave-front. A still more general form may be obtained

by substituting m r for m x. Then

D = A cos (m r n
t). (3)

This is a displacement in the direction A. The maximum
amount of that displacement is the magnitude of A. The

wave advances in the direction m oblique to the displace

ment; the velocity, period, and wave-length are as before.

So much for rectilinear harmonic motion. Elliptic har

monic motion may be defined by the equation (p. 117).

The general integral is obtained as

r = A cos n t + B sin n t.

The discussion of waves may be carried through as pre

viously. The general wave of elliptic harmonic motion

advancing in the direction m is seen to be
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D = A cos (m r n t) B sin (m r n t). (4)

dV ( }= n
|

A sin (m r n t) + B cos (m r n t)
j

(5)

is the velocity of the displaced point at any moment in the

ellipse in which it vibrates. This is of course entirely differ

ent from the velocity of the wave.

An interesting result is obtained by adding up the dis

placement and the velocity multiplied by the imaginary
unit V 1 and divided by n.

D H-- = A cos (m r n t) B sin (m r n f)

+ V 1
\
A sin (m r n t) + B cos (m r n t) }.

The expression here obtained, as far as its form is concerned,

is an imaginary vector. It is the sum of two real vectors of

which one has been multiplied by the imaginary scalar V 1.

Such a vector is called a bivector or imaginary vector. The

ordinary imaginary scalars may be called biscalars. The use

of bivectors is found very convenient in the discussion of

elliptic harmonic motion. Indeed any undamped elliptic har

monic plane wave may be represented as above by the pro

duct of a bivector and an exponential factor. The real part

of the product gives the displacement of any point and the

pure imaginary part gives the velocity of displacement

divided by n.

159.] The analytic theory of bivectors differs from that of

real vectors very much as the analytic theory of biscalars

differs from that of real scalars. It is unnecessary to have

any distinguishing character for bivectors just as it is need-



HARMONIC VIBRATIONS AND BIVECTORS 429

less to have a distinguishing notation for biscalars. The bi-

vector may be regarded as a natural and inevitable extension

of the real vector. It is the formal sum of two real vectors

of which one has been multiplied by the imaginary unit V 1-

The usual symbol i will be maintained for V 1. There is

not much likelihood of confusion with the vector i for the

reason that the two could hardly be used in the same place

and for the further reason that the Italic i and the Clarendon

i differ considerably in appearance. Whenever it becomes

especially convenient to have a separate alphabet for bivec-

tors the small Greek or German letters may be called upon.

A bivector may be expressed in terms of i, j, k with com

plex coefficients.

If r = TJ + i r
2

and r
i
= x

i
*

r = # i

or r = #i + yj + z.

Two bivectors are equal when their real and their imaginary

parts are equal. Two bivectors are parallel when one is the

product of the other by a scalar (real or imaginary). If

a bivector is parallel to a real vector it is said to have a real

direction. In other cases it has a complex or imaginary
direction. The value of the sum, difference, direct, skew,

and indeterminate products of two bivectors is obvious with

out special definition. These statements may be put into

analytic form as follows.

Let r = TJ + i r
2

and s = s2 + i s
2

.

Then if r = s, r
l
= B

I
and r

2
= s

2

if r
||
s r = x s = (x l + i #3) s,



480 VECTOR ANALYSIS

r + s = (r 1 + s
1) + i(r 2 + s

2),

r . s = <>! B!
- r 2 s

2) + i (r l
s2 + r

2 Sl),

r x s = (r l
x B

I
r
2 x s

2) + i (r x
x s

a + r
a x s

x)

rs = (r l
s
l + r2 s

2) + i (T I
s
2 + r 2 Sj).

Two bivectors or biscalars are said to be conjugate when

their real parts are equal and their pure imaginary parts

differ only in sign. The conjugate of a real scalar or vector

is equal to the scalar or vector itself. The conjugate of any
sort of product of bivectors and biscalars is equal to the pro

duct of the conjugates taken in the same order. A similar

statement may be made concerning sums and differences.

Oi + i r
2) (ri

- * r
2)
= r

x TJ + rt r2 ,

Oi + * *2) X (rx
- i r

2)
= 2 i r

2 x TV

Ol + * r2> (rl
~ * F2>

=
(rl r

l + F2 r2> + * (r2 F
l
- r

l
r2>-

If the bivector r = TJ 4- i r2 be* multiplied by a root of unity
or cyclic factor as it is frequently called, that is, by an imagi

nary scalar of the form

cos q + i sin q = a + ib, (7)

where a 2 + & 2 = 1,

the conjugate is multiplied by a i 6, and hence the four

products

are unaltered by multiplying the bivector r by such a factor.

Thus if

r = r/ + i r2
= (a + iV) (rx + i r

2),

TI TI + *z r2
= r

x T! + r2 r2, etc.
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160.] A closer examination of the effect of multiplying a

bivector by a cyclic factor yields interesting and important

geometric results. Let

r
i + * ra

=
(cos ? + * sin 2) (ri + i ra)- (8)

Then r
x
= i

l
cos ^ r

2
sin ,

r
a
= r2 cos q + T

I
sin j.

By reference to Art. 129 it will be seen that the change pro

duced in the real and imaginary vector parts of a bivector by

multiplication with a cyclic factor, is precisely the same as

would be produced upon those vectors by a cyclic dyadic

d> = a a + cos q (bb + c c )
- sin q (c b - be )

used as a prefactor. b and c are supposed to be two vectors

collinear respectively with r
x
and r

2
. a is any vector not in

their plane. Consider the ellipse of which TJ and r
2

are a

pair of conjugate semi-diameters. It then appears that r^

and r
2

are also a pair of conjugate semi-diameters of that

ellipse. They are rotated in the ellipse from r
2
toward r

1$ by
a sector of which the area is to the area of the whole ellipse

as q is to 2 ?r. Such a change of position has been called an

elliptic rotation through the sector q.

The ellipse of which T
I
and r

2
are a pair of conjugate semi-

diameters is called the directional ellipse of the bivector r.

When the bivector has a real direction the directional ellipse

reduces to a right line in that direction. When the bivector

has a complex direction the ellipse is a true ellipse. The

angular direction from the real part T
I
to the complex part r

2

is considered as the positive direction in the directional

ellipse, and must always be known. If the real and imagi

nary parts of a bivector turn in the positive direction in the

ellipse they are said to be advanced ; if in the negative direc

tion they are said to be retarded. Hence multiplication of a
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bivector by a cyclic factor retards it in its directional ellipse by
a sector equal to the angle of the cyclic factor.

It is always possible to multiply a bivector by such a cyclic

factor that the real and imaginary parts become coincident

with the axes of the ellipse and are perpendicular.

r = (cos q + i sin q) (a + i b) where a b = 0.

To accomplish the reduction proceed as follows : Form

r r = (cos 2 q + i sin 2 q) (a + i b) (a + i b).

If a b = 0,

r r = (cos 2 q + i sin 2 q) (a a b b).

Let r r = a + i 6,

and tan 2 q = -.
a

With this value of q the axes of the directional ellipse are

given by the equation

a -f i b = (cos q i sin q) r.

In case the real and imaginary parts a and b of a bivector

are equal in magnitude and perpendicular in direction both a

and b in the expression for r r vanish. Hence the angle

q is indeterminate. The directional ellipse is a circle. A
bivector whose directional ellipse is a circle is called a circu

lar bivector. The necessary and sufficient condition that a

non-vanishing bivector r be circular is

r r = 0, r circular.

If r = zi + 2/j + *k,

r . r = x* + y* + z 2 = 0.

The condition r r = 0, which for real vectors implies r = 0,

is not sufficient to ensure the vanishing of a bivector. The
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bivector is circular, not necessarily zero. The condition that

a bivector vanish is that the direct product of it by its con

jugate vanishes.

Oi + i r
2) (rx

- t r2)
= r

x
r
x + r2 ra

= 0,

then F!
= r2

= and r = 0.

In case the bivector has a real direction it becomes equal to

its conjugate and their product becomes equal to r r.

161.] The condition that two bivectors be parallel is that

one is the product of the other by a scalar factor. Any bi-

scalar factor may be expressed as the product of a cyclic

factor and a positive scalar, the modulus of the biscalar. If

two bivectors differ by only a cyclic factor their directional

ellipses are the same. Hence two parallel vectors have their

directional ellipse similar and similarly placed the ratio of

similitude being the modulus of the biscalar. It is evident

that any two circular bivectors whose planes coincide are

parallel. A circular vector and a non-circular vector cannot

be parallel.

The condition that two bivectors be perpendicular

is r s = 0,

or r
t !

r2 83
= r

x s2 + r2 B
I
= 0.

Consider first the case in which the planes of the bivectors

coincide. Let

r = a (TJ + i r2), s = I (s1 + i g2).

The scalars a and b are biscalars. r
x may be chosen perpen

dicular to r2, and s
l may be taken in the direction of ra . The

condition r s = then gives

ra 82
= and r

x
s2 + r

a nl
= 0.

28
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The first equation shows that r
2 and s2 are perpendicular and

hence s
l
and s2 are perpendicular. Moreover, the second

shows that the angular directions from r
x
to r2 and from s

1
to

s
2
are the same, and that the axes of the directional ellipses

of r and s are proportional.

Hence the conditions for perpendicularity of two bivectors

whose planes coincide are that their directional ellipses are

similar, the angular direction in both is the same, and the

major axes of the ellipses are perpendicular.
1 If both vectors

have real directions the conditions degenerate into the per

pendicularity of those directions. The conditions therefore

hold for real as well as for imaginary vectors.

Let r and s be two perpendicular bivectors the planes of

which do not coincide. Resolve T
I
and r

2 each into two com

ponents respectively parallel and perpendicular to the plane
of s. The components perpendicular to that plane contribute

nothing to the value of r s. Hence the components of r
x

and r
2 parallel to the plane of s form a bivector r which is

perpendiqular to s. To this bivector and s the conditions

stated above apply. The directional ellipse of the bivector r

is evidently the projection of the directional ellipse of r upon
the plane of s.

Hence, if two bivectors are perpendicular the directional

ellipse of either bivector and the directional ellipse of the

other projected upon the plane of that one are similar, have

the same angular direction, and have their major axes per

pendicular.

162.] Consider a bivector of the type

where A and m are bivectors and TI is a biscalar. r is the

position vector of a point in space. It is therefore to be con-

1 It should be noted that the condition of perpendicularity of major axes is not

the same as the condition of perpendicularity of real parts and imaginary parts
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sidered as real, t is the scalar variable time and is also to

be considered as real. Let

A = Aj + i A*p

m = ni + i mj

D =

As has been seen before, the factor (Ax + i Aj) e <(mt * r ~ nif)

represents a train of plane waves of elliptic harmonic vibra

tions. The vibrations take place in the plane of Aj and A2 ,

in an ellipse of which A
x
and A% are conjugate semi-diam

eters. The displacement of the vibrating point from the

center of the ellipse is given by the real part of the factor.

The velocity of the point after it has been divided by nj

is given by the pure imaginary part. The wave advances

in the direction mr The other factors in the expres

sion are dampers. The factor ""*
is a damper in the

direction m2
. As the wave proceeds in the direction m^ it

dies away. The factor e*** is a damper in time. If n
a

is

negative the wave dies away as time goes on. If n2
is posi

tive the wave increases in energy as time increases. The

presence (for unlimited time) of any such factor in an ex

pression which represents an actual vibration is clearly inad

missible. It contradicts the law of conservation of energy.

In any physical vibration of a conservative system n
a

is ne

cessarily negative or zero.

The general expression (9) therefore represents a train of

plane waves of elliptic harmonic vibrations damped in a

definite direction and in time. Two such waves may be com

pounded by adding the bivectors which represent them. If

the exponent m r n t is the same for both the resulting

train of waves advances in the same direction and has the
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same period and wave-length as the individual waves. The

vibrations, however, take place in a different ellipse. If the

waves are

the resultant is (A + B) **.
By combining two trains of waves which advance in opposite
directions but which are in other respects equal a system of

stationary waves is obtained.

A e
- m*- 1V (mi - lr- n0 + A e~ m* r

Ae-^- e-"" (e
<mi * r + $-"i") = 2Acos (n^ r) e-m* p e^int

The theory of bivectors and their applications will not be

carried further. The object in entering at all upon this very
short and condensed discussion of bivectors was first to show
the reader how the simple idea of a direction has to give way
to the more complicated but no less useful idea of a directional

ellipse when the generalization from real to imaginary vectors

is made, and second to set forth the manner in which a single

bivector D may be employed to represent a train of plane

waves of elliptic harmonic vibrations. This application of bi

vectors may be used to give the Theory of Light a wonderfully

simple and elegant treatment.1

1 Such use of bivectors is made by Professor Gibbs in his course of lectures on
" The Electromagnetic Theory of Light" delivered biannually at Yale University.

Bivectors were not used in the second part of this chapter, because in the opinion

of the present author they possess no essential advantage over real vectors until

the more advanced parts of the theory, rotation of the plane of polarization by

magnets and crystals, total and metallic reflection, etc., are reached.
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