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PREFACE

THIS book, as its name suggests, presents those principles

of mechanics that are believed to be essential for the student of

engineering.

Throughout the book the aim has been to make the principles

of mechanics stand out clearly ;
to build them up as much as pos-

sible from common experience (the student's experience); to

apply the principles to concrete problems of practical value;

and to emphasize the physical rather than the mathematical

interpretation of the principles. Important equations are printed

in bold-faced type and the statements of the more important

principles are italicized.

The book is divided into three parts; namely, Statics, Kine-

matics, and Kinetics. Statics is presented first because of its

simplicity and its direct relation to the student's experience.

However, in the first two chapters are developed certain concepts

and elementary principles that are fully as important in kinetics

as in statics, and the authors feel that it is essential to a satis-

factory grasp of mechanics, as a whole, that sufficient time and

care be taken to cause these elementary concepts and principles

to crystallize in the student's mind before the more general prin-

ciples and problems are studied. The equilibrium of the various

types of force systems are treated both by the algebraic and by the

graphical method. A large number of problems involving the

equilibrium of the simpler structures and machines are given, and

figures illustrating the structures and machines are used freely.

Although kinematics as herein developed is mainly a prelim-

inary to kinetics, the authors' experience indicates that the

kinematic properties of motion must be isolated and developed

with care if they are to be used with success in the study of the

kinetics of the motion.

iii



iv PREFACE

Both kinematics and kinetics have been developed with regard
for the increasing importance of dynamics to engineers. The

geometric and physical conceptions and interpretations of the

quantities in kinematics have been emphasized rather than the

mathematical conceptions. A treatment of acceleration is given

which, it is hoped, will help to overcome some of the difficulties

frequently found in the use of this quantity. The treatment of

kinetics has been restricted to the more common types of motion

found in engineering practice, but these motions have been treated

more fully than is usual in elementary texts on mechanics. This

is particularly true of plane motion. D'Alembert's principle

(involving inertia forces) has been used for each type of motion

as a second method of solution. The methods of procedure used

in the analysis of kinetics problems are strongly emphasized both

in the general discussions and in the solutions of illustrative

problems.

Illustrative problems are given at the end of the more important
articles and many problems are offered for solution. Great care

has been exercised in selecting problems that are of practical

interest and yet are easily comprehended and are free from unim-

portant details so that the principles used in their solution will

stand out clearly. The answers to about one-half of the problems

are given.

Graphical methods of representation and of solution have been

used frequently in all three parts of the book. A knowledge of

elementary calculus is assumed although little use is made of it

in the first four chapters.

The discussion of centroids (Chapter V) is developed directly

from the principle of moments a principle given much emphasis

throughout the book.

Several special topics are discussed in Section 3 of Chapter IX.

They may be omitted without interfering with the continuity of

the book, or any one of the topics may be studied alone without

studying the whole section. Further, if it is desired to reduce the

time given to kinetics, the second method of analysis of the motion

of rotation or of plane motion (which employs D'Alembert's

principle and inertia forces) in Section 2 of Chapter IX may be

omitted. And, in general, the last part of the material in any
section or chapter may be omitted without interfering with the

student's progress in the first part of the next section or chapter.
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ANALYTICAL MECHANICS FOR ENGINEERS

PART I. STATICS

CHAPTER I

FUNDAMENTAL CONCEPTIONS AND DEFINITIONS

1. Introduction. The term Mechanics is used in a broad

sense to denote the science which treats of the motion of bodies,

rest being considered as a special case of motion. The science

of mechanics constitutes a large part of our knowledge of the

laws of the Universe, including the laws concerning gases and

liquids as well as those of rigid bodies, and it takes a prominent

place in the study of Astronomy and Physics as well as in the

study of machines and structures which are involved in engineer-

ing practice.

The object of Analytical Mechanics as developed in this book

is to determine the laws by which the motions (including the state

of rest) of bodies (mainly rigid bodies) are governed and to apply
these laws to conditions met in engineering practice.

In the development of the laws of mechanics certain concepts
are assumed to be fundamental, that is, no one of them can be

expressed in terms of the others or in simpler terms. Such

concepts grow out of our experiences, and other ideas and laws

are derived from these condensed experiences.

The fundamental concepts involved in the laws of mechanics

of rigid bodies are: (1) force, which is made known to us through
the tension and the compression of our muscles as a pull or a push,

(2) bodies or inert material (matter) on which forces act and with-

out which forces cannot exist, (3) space, and (4) time. A more
definite understanding of force and inert bodies can be obtained

after the laws of kinetics have been developed. To start with,
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however, it is necessary only to recognize the existence of these

quantities.

In the process of the development of the laws of mechanics,

considerable use is made of mathematics. It should be kept in

mind, however, that mechanics is a physical science and that

mathematics is used, mainly, as a tool to express and interpret

physical laws.

For convenience, the study of mechanics is considered under

three main divisions; namely, Statics, Kinematics, and Kinetics.

Statics is that branch of mechanics which treats of bodies that are

acted on by balanced forces and hence are at rest or are moving
with uniform motion (without change of motion). Kinematics

is that branch of mechanics which treats of the motion of bodies

without considering the manner in which the influencing factors

(force and matter) affect the motion. It deals with the funda-

mental concepts of space and time, and the quantities, velocity

and acceleration, derived therefrom. It is, therefore, sometimes

called the geometry of motion. Kinematics forms an important

part of the study of mechanics, not only because it treats of a part

of the general kinetics problem, but also because in many problems
which involve mainly the relative motion of parts of a machine,
the principles of kinematics, alone, are sufficient for the solution

of the main problem. Such problems are discussed in treatises on

Kinematics of Machinery, in which subject the motion of such

machine elements as valve gears, quick-return mechanisms, etc.,

are considered. Kinetics is that branch of mechanics which treats

of bodies which are acted on by unbalanced forces and, hence,

have non-uniform or accelerated motions. In particular, it treats

of the change of motion of bodies and the manner in which the

change is related to the factors that affect it; namely, the actions

of other bodies (forces), and the properties (inertia, etc.) of the

bodies themselves. It will be noted that the study of the motion

of a body that moves uniformly may be regarded either as a prob-

lem in statics or as
p, special case of a kinetics problem.

Since both statics and kinetics deal with the action of forces on

bodies, that part of mechanics embraced in these two subdivisions

of the subject is sometimes called Dynamics. Frequently, how-

ever, the term dynamics is used in technical literature to denote

those subdivisions of mechanics with which the idea of motion is

most closely associated, namely, kinematics and kinetics.
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For simplicity the kinematics and kinetics of a particle (mate-,

rial point) will be treated before extending the study to bodies.

In many problems the body considered may be assumed, without

serious error, to be a particle. This assumption may always be

made when the dimensions of the body are negligible in comparison

with the range of its motion. A body, however, may always be

considered to be made up of particles.

2. Rigid Body. As was stated in Art. 1, the bodies dealt with

in this book are, in the main, considered to be rigid. A rigid body
is denned as a definite portion of matter the parts (particles) of

which do not move relative to each other. Actual solid bodies

are never rigid. The relative motion (deformation) of their par-

ticles forms an important part of the study of Strength of Materials.

But the theoretical laws which govern the motion of ideal rigid

bodies may be used, usually with very small error or, with modi-

fications if necessary, to determine the motion of actual solid

bodies.

3. Conception of a Force. It was stated in Art. 1 that force

is one of the fundamental concepts on which the subject of me-

chanics of rigid bodies is built. A force is the action of one body on

another body. The idea of force, then, implies the mutual actions

of two bodies, since one body cannot exert a force on another body
unless the othe'r offers a resistance to the one. A force,therefore,

never exists alone. Forces always occur in pairs; one force acting

on one of two bodies and the other force on the other body. In

fact, to every action there is an equal and opposite reaction.

Our conception of force comes mainly from our experiences

in which we have been one of the bodies between which mutual

actions have occurred. The resistance which is offered by bodies

to the action of other bodies arises out of (1) their ability to resist

change of shape (rigidity) and (2) their ability to resist change of

motion (inertia). If a body is acted on by one force, only, a

change of motion of the body will always take place, but if the

body is acted on by two or more forces, it may be held at rest.

Although a single force never exists, it is convenient in the

study of the motion of a body to think of a single force and to

consider only the actions of other bodies on the body in question
'without taking into account the reactions of the body in question
on the other bodies. However, the fundamental nature of force

should hp. kent in mind.
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4. External Effects of a Force. When a force is applied

to a rigid body the external effect on the body is either to change
the motion of the body acted on or to develop resisting forces

(reactions) between the body acted on and other bodies. Both

of the foregoing effects, of course, may be produced simulta-

neously. For example, consider a body falling freely under the

action of gravity. The sole external effect of the force acting

on the body (its weight) is to produce an acceleration g (32.2 ft.

per sec.
2

approximately). If the same body is placed on the

floor of an elevator which is at rest, the sole external effect of the

weight is to produce an upward reaction of the floor on the body.
If now the elevator moves downward with an acceleration less

than g, the effect of the weight is partly to cause an acceleration

of the body (the same as that of the elevator) and partly to pro-

duce an upward pressure (reaction) of the floor on the body.
The internal effects of a force are to produce stress and defor-

mation in the body on which the force acts. The internal effects

of a force are discussed in books on Strength of Materials.

5. Characteristics of a Force. From experience we learn that

the external effects of a force depend on, (1) the magnitude of the

force, (2) the position of the line of action of the force in the body,
and (3) the sense of the force, that is, the direction along the line of

action. - These three properties of a force are called its elements or

characteristics. A change in any one of them causes a change in

the external effect of the force. A discussion of the exact manner

in which these characteristics influence the change of motion of a

body forms an important part of the study of kinetics, and their

influence on the reactions developed in holding a body at rest is

considered in the study of statics.

6. Measure of a Force. Units. Although we are conscious

of forces of varying magnitudes, we are not able to compare the

magnitudes with precision by means of our muscular sense.

In order to express the magnitude of a force some standard force

must be selected as a unit in terms of which other forces may be

expressed. The unit of force commonly used by the engineer

is the earth-pull (weight) on an arbitrarily chosen body, as found

at a specified or standard position on the earth's surface. Exam-

ples of such units are the pound, ton, kilogram, etc. The earth-

pull on any body (its weight) varies slightly with its position

(altitude and latitude) on the earth. For most engineering cal-
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dilations, however, the variation in the weight of a body may
be neglected.

1

The unit of force as here denned is called a gravitational unit

of force. (For a discussion of other units of force see Arts. 141

and 142.)

There are two common methods used by the engineer for

measuring a force, that is, for finding the number of units in a

force: (1) by use of the spring balance in its various forms

such as steam gages, certain forms of dynamometers, testing

machines, etc.; (2) by use of a beam or lever balance or system
of levers such as platform scales, screw type of testing ma-

chines, etc.

(1) Due to the fact that many materials possess nearly per-

fect elasticity, within limits, the unit of force ma,y be considered

as the force required to produce a certain stretch or deflection

of an elastic body, the specified stretch or deflection being that

caused by the earth-pull on an arbitrarily chosen body at a stand-

ard locality. A properly graduated spring balance, therefore,

furnishes one means of measuring any force in terms of the arbi-

trarily chosen unit of force.

(2) In the beam or lever balance, the force to be measured

is applied at one end of a lever or system of levers and an arbi-

trarily selected body is placed at such a position on the other end

of the lever that the earth-pull on the body balances the force.

The arbitrarily selected body is a body on which the earth-pull

at a standard location is the unit of force or some multiple thereof.

The lever is so graduated that the number of units in the unknown
force may be read off directly from the lever or beam.

Attention should here be called to the fact that it is impossible, funda-

mentally, to measure the earth-pull (weight) of a body by means of a beam
or lever balance as stated under (2) above. The weight of the body, as

already noted, varies with the position of the body on the earth's surface

and this variation is not indicated by the beam balance. Hence if this vari-

ation were large the beam balance could not be used for measuring a force.

Its use, then, is permissible only because the quantity measured (not the

earth-pull) is nearly equal (numerically) to the earth-pull or weight.

1 The earth-pull on a body varies directly with g, the acceleration due
to the earth-pull. The extreme variation in the value of g corresponding
to a change in the position of the body on the earth's surface from a high
altitude at the equator to the pole is 0.6 per cent. Within the United States

the maximum variation is about 0.3 per cent.
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Units of space (length), such as the foot, yard, mile, meter,

etc., and units of time, such as the second, minute, hour, eta, are

assumed to be familiar to the student.

7. Scalar and Vector Quantities. Vector Representation of a

Force. Quantities which possess magnitude only, as, for example,

areas, volumes, etc., are called scalar quantities. Many quantities

involved in the study of mechanics, however, have direction as

well as magnitude. Any quantity which has direction as an in-

herent property as well as magnitude is called a vector quantity.

Thus, as stated in the preceding article, the effect of a force depends
on its direction as well as its magnitude, and hence force is a vector

quantity. Other examples of vector quantities are velocity, accel-

eration, momentum, etc.

A vector quantity may be conveniently represented wholly or in

part by means of a directed straight line. Any such line is called a

vector. Thus, the direction of a force may be represented by a

straight line drawn parallel to the action line of the force, the

sense being represented by an arrow-head on the line, and the

magnitude of the force may be represented by the length of the

line according to some convenient scale. If the magnitude and

direction, only, are to be represented, the vector may be drawn

anywhere in the plane of the force. Such a vector is called a

free vector. If, in addition, the action line of the force is to be

represented, the vector must be laid o along the line of action.

Such a vector is called a localized vector. Further, if it is desired

to represent the point of application of the force, the point of

application may be taken as the initial end of the vector, that is,

the point from which the vector is drawn. It will be noted, how-

ever, that the point of application of a force which acts on a rigid

body is not one of the essential characteristics of the force (Art. 5).

In dealing with the forces which act on a given body it is

convenient frequently to represent the forces by free vectors.

The diagram in which are represented the free vectors (that is, the

vectors representing the magnitudes and directions of the forces) is

called the vector diagram." The diagram which represents the body
and the action lines of the forces that act on the body is called the

space diagram. Both diagrams as a rule play an important part

in the complete solution of a problem and will be used frequently

in the subsequent pages./'In Fig. 1 is shown a wall bracket, the

horizontal arm of which is acted on by three forces having points of
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applications at 1, 2, and 3, the action lines being indicated by ab,

be, and cd, as shown in the space diagram. - The forces are repre-

sented in magnitude and direction in any convenient place by the

vectors AB, BC, and CD, the lengths of the vectors representing

the magnitudes of the forces

according to a convenient scale.

The direction of each vector

is parallel to the action line of

the force which it represents.

The notation used in the

above illustration is known as

Bow's notation and will be used

frequently in the subsequent

pages. According to this nota-

tion the action line of a force is

denoted by two lower-case let-

ters and the vector which re-

presents the magnitude and

direction of the force is denoted

by the corresponding capital FIG ^

letters.

8. Classification of Forces. Definitions. Forces may be

classified as surface forces and body forces, sometimes called forces

of contact and forces at a distance according as the action of one

body on another is exerted over a portion of the surfaces of two

bodies that are in contact or is distributed throughout the mate-

rials of the bodies. The most important body force considered in

mechanics is the earth-pull (weight). Magnetic forces are of the

same class. A surface force becomes a concentrated force when
the area over which the force is distributed is so small compared
with the surface of the body acted on that it may be regarded as a

point. This point is called the point of application of the force.

The action line of a concentrated force is a line containing the point

of application of the force and having the same direction as that

of the force.

Any number of forces treated as a group constitute a force

system. A force system is said to be concurrent if the action lines

of all the forces intersect in a common point and non-concurrent if

the action lines do not intersect at a point. A force system is said

to be coplanar when all the forces lie in the same plane and non-
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coplanar when the forces do not lie in a common plane. A parallel

force system is one in which the action lines of the forces are par-

allel, the senses of the forces not necessarily being the same, and

a non-parallel system is one in which the action lines of the forces

are not parallel. If the forces of a system have a common line

of action the system is said to be collinear.

Two force systems are said to balance if, when applied simul-

taneously to a body, they produce no external effect on the body.
The forces which hold a body at rest always balance. Forces or

force systems which balance are said to be in equilibrium and the

body or bodies on which they act are also said to be in equilibrium.

If a body is acted on by a force system which is not in equilibrium
there always is a change in the motion of the body. Such a force

system is said to be unbalanced or to have a resultant. The
' resultant of a force system is the simplest equivalent system to

which the given system will reduce, that is, the simplest system
which will produce the same change of motion. The resultant of a

force system is frequently a single force. For some force systems,

however, the simplest equivalent system is composed of two equal,

non-collinear, parallel forces of opposite sense, called a couple.

And still other force systems reduce to a force and a couple as the

simplest equivalent system. The process of reducing a force

system to a simpler equivalent system is called composition. The

process of expanding a force or a force system into a less simple

equivalent system is called resolution. A component of a force is

one of the two or more forces into which the given force may be

resolved. The anti-resultant or equilibrant of a force system is the

simplest force system which will balance the given system.

9. Principle of Transmissibility. It was stated in Art. 7

that the external effect of a force on a rigid body does not depend
on the point of application of the force. This very useful fact, the

truth of which is found in our experience, is formally expressed in

the principle of transmissibility. This principle states that the

external effect of a force on a rigid body is the same for all points of

application along its line of action. It will be noted that the

external effect, only, remains unchanged. The internal effect

of a force (stress and deformation) may be greatly influenced by a

change in the point of application along the line of action.

10. Parallelogram Law. The parallelogram law is the funda-

mental principle on which the composition and the resolution of
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forces is based. The law states tnat the resultant of two

which act on a rigid body is represented in magnitude and in

direction by the diagonal of a parallelogram, the sides of which rep-
resent the magnitudes and the directions of the two forces. In

Fig. 2 (a) P and Q are two of the forces acting on a rigid body
(bell-crank), Q being a pressure of 150 Ib. at B produced by a force,

P
}
of 100 Ib. at A. If Q is laid off from a point (Fig. 26) to some

convenient scale in the proper direction and if, in like manner, P
is laid off from the same

point then R 1
represents

in magnitude and in di-

rection the resultant of

P and Q. If the point

is taken as the inter-

section of the action lines

of P and Q as in Fig. 2a

then the diagonal repre-

sents the action line of

the resultant as well as

its magnitude and direc-

tion.

> The parallelogram
law is not susceptible

of rigid proof. It is an

(c)
assumption which ex-

presses a relation be-

tween forces (and other

directed quantities such FKJ. 2.

as velocities, accelera-

tions, etc.); an assumption, however, which appeals to experi-

ence as reasonable; which is used intuitively in interpreting
and analyzing many of our common experiences; and which

thereby becomes a fundamental or basic fact in mechanics.

11. Triangle Law. The triangle law is a corollary of the par-

allelogram law. It states that the resultant of two concurrent

forces is represented in magnitude and in direction by the third

1 The fact that a force is the resultant of two or more forces is frequently
indicated by two arrow-heads on the vector representing the force. This

fact will also be indicated sometimes by drawing the force vector as a dashed
or broken line.
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side of a triangle, the other two sides of which represent the two

forces in magnitude and direction. Thus, in Fig. 2(c), the result-

ant R of the two forces P and Q is represented in magnitude and in

direction by the side AC of the triangle ABC in which AB and BC
represent the magnitudes and the directions of QandP respectively.

The action line, ac, of the resultant is parallel to AC and passes

through the point of concurrence of the two forces. "Although

the triangle law is included in the parallelogram law, its extension :

to more than two forces, leading to the force polygon, makes its use

ore convenient than that of the parallelogram law.

Instead of determining the resultant of two forces graphically,

from the parallelogram or the triangle of forces, it may be found

algebraically. Thus, referring to Fig. 2(6), by use of trigonometry,

the magnitude and the direction of the resultant may be expressed

by the equations,

R=

a Q sin a

where a is the angle between the action lines of Q and P, and 6 is

the angle between the action lines of R and P.

Although it is not necessary to draw the parallelogram or tri-

angle of forces to scale in determining the resultant of two con-

current forces by the algebraic method, the student should always

make a free-hand sketch of the parallelogram or triangle of forces

when using the above equations.

The expression for the resultant of two forces at right angles

to each other (a
= 90) is of great importance. The resultant

is completely determined by the above equations, which reduce

for this special case to the following equations :

tan 6 =

It should be noted that two equations are needed to determine

the magnitude and the direction of a resultant force, whereas one

vector diagram is sufficient for the same purpose.
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PROBLEMS

1. Two forces having magnitudes of 7 Ib. and 3 Ib. have the same point of

application on a body. The action line of the 3-lb. force is horizontal with its

sense to the right, while that of the 7-lb. force makes an angle of 45 with the

horizontal with its sense upward to the left. Find the magnitude and the

direction of the resultant. Solve graphically and check the result by the alge-

braic method.

Ans. Magnitude = 5.3 Ib.

Direction, 111 28' with the 3-lb. force.

2. A vertical force of 200 Ib. which is applied at point A of the bell-crank

shown in Fig. 3 causes a horizontal pressure of 300 Ib. on the vertical arm at

point B. (a) Find the magnitude
and the direction of the resultant

of the forces at A and B by the

algebraic method. (6) Find the re-

sultant completely by the graphical

method.

12. Resolution of a Force.

In the two preceding arti-

cles it was assumed that a

certain body was acted on by
two other bodies, and the ac-

tion of a third body was found

which if allowed to replace

the two would have the same external effect on the body in ques-
tion. The reverse of this process, namely, the resolution of a force,

is also of great importance in mechanics. The action of one body
may be replaced by that of two bodies. The resolution of a force

is accomplished by means of the parallelogram and triangle laws

and the components (resolved parts) may be found graphically or

algebraically. For example, in Fig. 4 (a), F\ represents the steam

pressure on the crosshead, D, of a locomotive and FZ represents the

pressure on the crank-pin, H, of the driver. Let it be required to

resolve F\ into two components, one along the connecting rod

DH, and the other parallel to the crank OH. The action lines, ab

and be, of the two components must pass through D as shown in

the space diagram. The magnitudes and the directions of the

components are represented graphically by AB and BC in the

triangle of forces (Fig. 46). This triangle was constructed by

FIG. 3.
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laying off AC or FI parallel to ac and by drawing from A a line

parallel to ah and from C another line parallel to be, the two lines

intersecting at B. Thus, the components of ^i are represented in

magnitude and in direction, but not in action line, by AB and BC.

The resolution of a force into two rectangular components is of

special importance. The particular value of resolving into rect-

angular components lies in the fact that these components may be

found from very simple algebraic expressions. Thus, let the crank-

pin pressure F% (Fig. 4a) be resolved into two rectangular com-

a
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magnitude of the force by the cosine of the acute angle which the force

makes with the given direction.

A force can be resolved into two components in an indefinite

number of ways by drawing lines from any point or pole to the ends

of the force vector. Thus, in Fig. 5 three sets of components are

shown for the force AB, the components being AO and OB for

each position of the pole 0.

It is frequently convenient to resolve a force into three rectan-

gular components. This involves only a slight extension of the

parallelogram law. Thus, the force F (Fig. 6), represented by OA,

FIG. 6.

may be resolved into the two rectangular components OB and OC,
and the component OC may be resolved further into two rectan-

gular components OD and OE. The magnitudes of the com-

ponents of F in the x-, y-, and ^-directions, respectively, are

Fx=FcosOx Fy
= FcosBv Fs

= Fcosez,

in which 6X ,
Ov ,

and 0,, are the angles which the force makes with

the x-
} y-, and ^-directions respectively.

PROBLEMS

3. Given the three concurrent forces as shown in Fig. 7. Find the magni-
tude and the sense of the component of the system (sum of the components
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of the forces) along the line AB. Solve algebraically and check the result

by the graphical method.

Ans. Magnitude = 24.2 Ib.

Sense, Downward to the left.

so ib

2011)

30
'

,801b

,200 Ib.

FIG. 7. FIG. 8.

4. Resolve the weight of 200 Ib. (Fig. 8) into (a) two rectangular com-

ponents perpendicular and parallel respectively to AC, (6) into two components

parallel to AC and BC respectively.

5. Resolve the force F (Fig. 9) into three rectangular components in the

x-j y-, and ^-directions.

13. Moment of a

Force. The moment of

a force about (with re-

spect to) a point is the

product of the magni-
tude of the force and

the perpendicular dis-

_ x tance from the point to

the action line of the force.

Thus, the moment of

the forced (Fig. 10) about

the point is Fd. The

point about which the

moment is taken is called

the moment-center (or

origin) and the distance d is called the moment-arm. A unit\
moment is the product of a unit force and a unit distance such )

FIG. 9.
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FIG. 10.

as a lb.-ft., lb.-in., ton-ft., etc. The moment of a force with

respect to a point may also be regarded as the moment of the

force with respect to the line which passes through the point
and is perpendicular to the plane determined by the point and

the action line of the

force. Thus, in Fig. 10,

Fd also represents the

moment of F about the

axis YY.
The physical signifi-

cance of the moment
of a force as defined

above is built up in-

tuitively from our ex-

periences in which we
have exerted moments
on other bodies. It ex-

presses a measure of the tendency of the force to turn the body ,

on which it acts
,
about a given axis. ^ Strictly speaking, the

fact that the tendency of a force to turn a body about a given
axis is directly proportional to the moment of the force, is an

assumption which, when reinforced by experience and the anal-

ysis of observed facts,

crystallizes into a fun-

damental or basic truth

of mechanics.

In general, the mo-
ment of a force about

an axis which is not

perpendicular to the

plane of the force is de-

fined as the moment of

the component of the

force perpendicular to

the given axis, the other

component of the force being parallel to the axis. Thus, in

Fig. 11 the moment of the force F about the axis ZZ is Fy -OA.
As a rule it will be convenient to select the moment axis as

one of the coordinate axes. The moment of a force with respect

FIG. 11.
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to a coordinate axis will be considered as positive if the direction

of rotation is counter-clockwise when viewed from the positive end

of the axis.

PROBLEMS

6. A force of 20 Ib. is exerted on the knob of a door as shown in Fig. 12.

If the action line of the force lies in a plane perpendicular to the door, what is

the moment of the force about the axis 77? Ans. 42 .4 Ib.-ft.

FIG. 12. FIG. 13.

7. Find the moment of the 40-lb. force (Fig. 13) with respect to each of the

coordinate axes; each division represents 1 in.

14. Principle of Moments. Varignon's Theorem. The prin-

ciple of moments is of great importance in mechanics. It applies

to lines, areas, volumes, etc., as well as to forces. It will be con-

sidered, however, at this point only in connection with two con-

current forces. * The principle for this restricted case, which is

known as Varignon's theorem, states that the algebraic sum of the

moments of two concurrent forces about any point in their plane is

equal to the moment of their resultant about the same point.

The principle of moments, like the parallelogram law, is an

assumption; an assumption, however, which appeals to experi-

ence as reasonable; which is frequently and intuitively used in

interpreting and analyzing observed facts, under various con-

ditions; and which thereby becomes one of the fundamental

facts or principles of mechanics.
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The fact that the principle of moments for forces is in agree-

ment with the parallelogram law may be shown by deducing the

principle from the parallelogram law as follows: In Fig. 14 let

P and Q represent two forces concurrent at A, the resultant accord-

ing to the parallelogram

law being R. Let be

any moment-center in

the plane of the forces.

It is required to prove
that

where p, q, and r are

the moment-arms of P,

Q, and R, respectively. jpIG 14

Let a set of rectangular

coordinate axes AX and AY be chosen as shown in the figure,

A Y passing through the moment-center 0. Let a, /3, and 6

denote the angles which the action lines of P, Q, and R, respect-

ively, make with the AX axis. From the figure it is seen that

that is,

P cos a+Q cos (3
=R cos 6.

By multiplying both sides of this equation by AO, the following

equation is obtained :

Hence,

P-AO cos a+Q-AO cos = R-AO cos 6.

Pp+Qq= Rr.

It will be noted that the definition of the moment of a force

about a line as given in Art. 13 is in accordance with the principle
of moments. It is often convenient to obtain the moment of a

force about a point in its plane (or about an axis through the point

perpendicular to the plane) by finding the sum of the moments of

its rectangular components. In accordance with the principle of

transmissibility a force may be resolved into components at any
point along its line of action. Thus, in Fig. 15, Fx and Fv are one
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pair of rectangular components and F'x and F'y are another pair

of components of the force F. The moment of the force F about

the axis ZZ is, by the principle of moments, equal to the sum of

FIG. 15.

the moments of the forces of either pair of components. Hence,

the moment of F may be expressed as follows :

If the force F is not in a plane perpendicular to the axis, as in

Fig. 16, the force may
be resolved into three

rectangular compo-

nents, one being par-

allel to the axis and

the other two in a

_ plane which is perpen-

dicular to the axis.

The moment of the

force is then the sum
of the moments of the

components which lie

in this plane. Thus,
in Fig. 16, the mo-

-dx
-

,

N

FIG. 16.

ment of F about the axis MN is,

The component Fz, being parallel to the axis MN, has no moment
about the line MN.
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15. Couples. Two equal parallel forces which are opposite in

sense and are not collinear are called a couple. A couple cannot

be reduced to any simpler force system. The fact that the only

effect of a couple is to produce or to prevent turning is obtained

intuitively. The moment of a couple about any point in the

plane of the couple (or any axis perpendicular to the plane of the

couple) is denned as

the algebraic sum of

the moments of the

forces of the couple

about the point (or

axis). From this defi-

nition it follows that

the moment of a couple

about any point in

the plane of the couple

(or axis perpendicular
to its plane) is the

product of the magni- FIG. 17.

tude of either force of

the couple and the perpendicular distance (moment-arm) between

the action lines of the two forces. This statement may be

proved as follows: In Fig. 17 let P, P be the two forces of a

couple and any point in their plane or, YY any axis perpen-
dicular to their plane. The algebraic sum of the moments of

the two forces about (or YY) is

P-OB-P-OA,

which may be written thus,

P(OB-OA)=P-AB = Pp.

In like manner the moment of the couple may be shown to be the

same about any other point in the plane (or any other axis parallel

to YY). Since the moment of a couple depends only on the

product of either force of the couple and the arm of the couple it

follows that the turning effect of a couple on a rigid body about an
axis in the body is the same for different magnitudes and lines of

action of the forces, provided that the moment of the couple
remains constant. For example, in Fig. 18, if cords are wrapped



20 FUNDAMENTAL CONCEPTIONS AND DEFINITIONS

around two pulleys, of radii r\ and r<i, which are keyed together

and equal weights are attached to the other ends of the cords, the

pulleys will rotate exactly the same as they would if forces F, F
were applied as shown by the dotted lines, provided that the

moments of the two couples are the same, that is if W(r2 n) is

equal to F-2r2. On the other

hand if motion is to be prevented
a couple having a moment of

(F-2r2) would be required.

16. Characteristics of a

Couple. The external effect of

a couple when applied to a rigid

body is either to cause a change in

the rotational motion of the body
or to develop a resisting couple

due to the actions of other bodies

on the body in question. Both of

the foregoing effects may of course

be produced simultaneously.

From experience we learn that

the external effect of a couple

depends on (1) the magnitude
of the moment of the couple, (2)

the sense or direction of rotation of the couple, and (3) the aspect

of the plane of the couple, that is, the direction or slope of the plane

(not its location) . These three properties of a couple are called its

characteristics. Since parallel planes have the same aspect it

follows from what has been stated above that two couples which

have the same moment and sense are equivalent if their planes are

parallel. The fact that the external effect of a couple is independ-
ent of the position of the plane of the couple and depends only
on the direction of the plane is amply verified by experience.

7 Thus, in screwing a pipe into a joint by means of two pipe wrenches

the forces applied at the end of the wrenches constitute a couple,

and it is a matter of experience that the effort required is the same

regardless of the position along the pipe at which the wrenches are

applied (assuming perfect alignment between pipe and joint).

17. Vector Representation of a Couple. In dealing with

couples it is convenient to represent the couples by means of vec-

tors. In order to represent a couple completely by a vector all of

FIG. 18.
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the characteristics of the couple must be represented. The moment
of the couple may be represented to scale by the length of the vec-

tor. The aspect of the couple may be represented by drawing the

vector perpendicular to the plane of

the couple and hence parallel to the

axis of the couple that is, parallel

to the axis about which the couple

rotates or tends to rotate the body
on which it acts. The sense of the

couple may be represented by an

arrow-head on the vector, the usual

convention being to direct the arrow-

head away from the plane of the

couple in the direction from which the

rotation appears counter-clockwise.

This method of representing the sense

of a couple involves the so-called con-

vention of the right-handed screw,

since a right-handed screw having an

axis perpendicular to the plane of the couple would move in the

direction of the arrow if given a rotation which agrees in sense

with that of the couple. Thus, in Fig. 19 the vector OA com-

pletely represents the couple Fd, provided that the length of OA

represents to scale the product F d.

PROBLEMS

8. The steering wheel of an automobile shown in Fig. 20 is 18 in. in diam-

eter. Forces exerted by the hands on the wheel constitute a couple which is

FIG. 19.

r

FIG. 20. FIG. 21.
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FIG. 22.

represented by the vector AB. If the length of AB is 1.5 in. and the scale

used is 1 in. =60 lb.-in., represent the forces of the couple on the circumference

of the wheel.

9. A couple having a moment of 60 lb.-in. is required to open the blow-off

valve shown in Fig. 21. Represent the couple completely by a vector, using a

scale of 1 in. =24 lb.-in.

18. Resolution of a Force into a Force and a Couple. In many
problems, both in statics and kinetics, it is convenient to resolve a

force into a force parallel to the

given force, and a couple in

the plane of the force. Thus, in

Fig. 22, let P represent a force

acting on a body at A. Let

two equal, opposite, and col-

linear forces P, P be introduced

at any point 0, each of the

forces being parallel to the orig-

inal force and of the same

magnitude. The three forces

are equivalent to the original one, since the two equal, opposite,

and collinear forces have no effect on the body. The force system

may now be considered to be a force P acting at (parallel to the

given force and of the same magnitude and sense), and a couple,

the moment of which is the same as the moment of the original

force about 0.

The action lines of the forces of the couple, however, may be

moved to any location in the plane of the forces and the magnitude
of the forces of the couple may be changed to any value, pro-

vided that the forces remain equal and parallel to each other and

also that the moment and sense of the couple are not changed.

Couples will be discussed in greater detail in Art. 27.

Since a force may be resolved into a force and couple in the

plane of the force it follows that a force and a couple in a plane may
be combined into a resultant force in the same plane. Further,

the resultant force has the same magnitude, direction, and sense

as the given force and its action line is parallel to the action line

of the given force. In other words, the sole effect of combining a

couple with a force is to move the action line of the force into

a parallel position, the force being unchanged in all other

respects.



RESOLUTION OF FORCE INTO FORCE AND COUPLE 23

ILLUSTRATIVE PROBLEM

10. In Fig. 23 is shown an arm mounted on an axle 0. A vertical force

P = 20 Ib. acts on the arm at C. Resolve the force P into a force acting

through and a couple the forces of which act at A and B.

^ 40 lb.

P= 20 lb.

i

40 lb. \
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I

P-100 Ib.

13. A load P of 100 Ib. acting on a wall bracket as shown in Fig. 26 causes

the wall to exert a horizontal force of 150 Ib. and a vertical force of 50 Ib. at

each of the wall attachments.

Consider the two 50-lb. forces

to be equivalent to one 100-lb.

force and replace this 100-lb

force and the two 1 50-lb.

forces by an equivalent single

150 ib.

FIG. 26.

-50 ib. / force.

19. Methods of Solution

of Problems. A Igebraic and

ISP ib.
> Graphical Methods. In the

analysis and solution of

501b% problems in mechanics two

general methods may be

used, namely, the algebraic

and the graphical methods.

In the algebraic method of solution, quantities are represented

by letters or by numbers which are dealt with according to

the rules of mathematics. In the graphical method of solu-

tion, quantities are represented by lines which are dealt with

by means of geometric constructions. Simple graphical methods

have already been used in the preceding articles in con-

nection with forces, couples, etc. In general, either of the two

methods may be used in the solution of a problem. Some prob-

lems, however, may be solved much more easily by the algebraic

method while other problems yield much more readily to the

graphical method. The operations involved in the solution of a

problem by the two methods are so radically different that one

method of solution serves as an excellent check on the other

method.

Approximate Methods. In making computations it is impor-
tant to keep in mind the degree of accuracy which should be

obtained. The degree of accuracy desired will depend, in general,

on two factors, namely:

(1) The degree of accuracy of the original data or quantities

on which the computation is based, and

(2) The use which is to be made of the computed results.

The data on which many engineering computations are based

are determined from experiments and hence are approximate

values, the degree of approximation depending on the instruments
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and methods used, and on the care and skill of the observer. ^The \

computed results which are based on these values cannot have a
f

greater degree of accuracy than that of the original data. In .

general a sum, difference, product, or quotient of two approximate
)

values will not have a greater degree of accuracy than that of

the least accurate of the two numbers. For example, if one

numerical quantity is accurate to two significant figures and

another quantity to three significant figures, the product of the

two numbers will not be accurate to more than two significant

figures, and hence more than two significant figures should not be

retained in the result.

Dimensional Equations. In algebraic equations in which the

variables represent physical quantities, all of the terms of the

equation must be of the same dimensions, or, to express the same

idea in mathematical language, an algebraic equation which

expresses a relation between physical quantities must be homo-

geneous. The use of this principle is of assistance in checking any

equation for correctness and in determining the specific units in

which a result is expressed when computed from a given equation.

For each of these purposes the given algebraic equation is replaced

by a dimensional equation.

The dimensional equation corresponding to any algebraic

equation is formed by replacing each term of the given equation

by a term which indicates the kinds of fundamental quantities

in wkich the term is expressed and which also indicates the degree

of the corresponding quantities in each term.

The fundamental quantities used in engineering are force,

length, and time (F, L, and T). Hence, in an equation, a term

which represents an area is replaced by L2 in the dimensional

equation since an area is the square of a length. A velocity is a

length divided by time and hence is represented in the dimensional

equation by LT~l and similarly for other quantities. It should

be noted that in the dimensional equation only the kinds of funda-

mental quantities are indicated and not the specific units used in

measuring these quantities and also that the number of such units

is not indicated. Hence, numerical constants in the algebraic

equation do not appear in the dimensional equation.
For example, consider the equation ad2 -{-d3 = v, in which a

represents an area, d a length, and v a volume. Since an area is

the square of a length (L
2
) and a volume is the cube of a length
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(L
3
), the dimensional equation is L4+L3 = L3 and hence the given

equation is incorrect.

Consider also the equation P+kv = as in which P represents a

force, k a weight (force) per unic volume, v a volume, a an area, and

s a force per unit area. The dimensional equation then may be

written,

-L3 =L2 '

L3 L2
'

That is, F+F= F,

and hence the equation is dimensionally correct.

PI
Further, consider the equation E= ,

in which P represents a
ae

force in pounds, I a length in inches, a an area in square inches,

and e a length in inches. Let it be required to determine the units

in "which E is expressed. The dimensional equation is

L2XL L2 '

Hence, in accordance with the units stated (pound and inch), E
is expressed in pounds per square inch (Ib./sq. in. or lb./in.

2
).

PROBLEMS

14. The equation Q = .622 V%(& 0.2/i) ti% is used to determine the quan-

tity of water flowing per unit of time over a rectangular weir of width 6 when

the height of water above the weir is h, g being the acceleration due to gravity

(32.2 ft. /sec.
2
). (a) Write the dimensional equation, (b) What are the units

of Q if b and h are expressed in feet? (c) If Q equals 24.4 cu. ft. per sec. and b

equals 3 ft. compute the value of h to the same degree of accuracy as is used in

expressing Q, that is, to three significant figures. NOTE: This formula is

valid only when .2h is small compared with 6. Hence the term .2h may be

omitted and a trial value of h may be found by solving the resulting equation.

This value of h may now be used in the term .2h and a second trial value of h

may be obtained by solving the resulting equation. This process may be

repeated.

16. In finding the diameter of a pipe required to discharge a given quantity

of water, the formula d5 =Ad+B is used, in which A and B are known quan-

tities. If A = 15.5 and 5 = 400 compute the value of d to three significant

figures. If the given equation is dimensionally correct what can be said of

the quantities A and J5?
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16. In the following equation, T is the moment of a force, S is a force per
unit of area in pounds per square inch, h, h

, 6, and b
,
are lengths in

inches. Is the equation dimensionally correct? What are the units of T?

2 /A-ftoX1 = - o ~



CHAPTER II

RESULTANTS OF FORCE SYSTEMS

20. Introduction. The determination of the resultants of

various force systems as discussed in this chapter is of importance,

mainly, (1) in the study of the conditions which the forces of a

system satisfy when they hold a body in equilibrium (Statics,

Chapter III), and (2) in the study of the laws by which the motions

of bodies are governed (Part III, Kinetics).

(1) The equations of equilibrium for a given type of force

system are obtained by expressing the conditions which the forces

must satisfy in order that the resultant of the system shall be

zero. Therefore the resultant to which a given type of force

system reduces must be known before the conditions which are

required to make the resultant equal to zero can be established.

Furthermore, in dealing with forces in equilibrium it is frequently

convenient to replace several of the forces of a balanced system

by the resultant of the several forces and to deal with the result-

ing force system instead of the original system.

(2) The motions of bodies are influenced by the unbalanced

part (resultant) of the forces which act on the bodies. In the

study of the motions of physical bodies, therefore, a knowledge of

the resultants of various force systems and of methods of expressing

the characteristics of resultants in terms of the forces of the system
must be understood.

1. COLLINEAR FORCES

21. Algebraic Method. The resultant will be found first for

two collinear forces, P and Q, having the same sense. It is a matter

of experience that the two forces are equivalent to a single force

which has a magnitude equal to P-\-Q and a line of action and

sense which are the same as the line of action and sense of the

given forces. This proposition may be proved, however, by apply-

ing the parallelogram law. Thus, according to this law, the result-

ant of any two concurrent forces P and Q, the lines of action of

28
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which make an angle a with each other, is a single force of magni-

nitude, R, which is given by the equation R =V^P2+Q2+2PQ cos a

(Art. 11). In the special case of two collinear forces here consid-

ered, a equals zero and hence R = ^P2+Q2+2PQ =P+Q. Sim-

ilarly, the resultant of two forces P and Q having opposite senses

(P being the larger of the two forces) is a force the magnitude of

which is given by the equation R =PQ, the sense of R being the

same as the sense of the larger force P. Hence, the resultant of

any two collinear forces is a single force having the same line of

action as the given forces, the magnitude and sense being indicated

by the algebraic sum of the forces. The extension of this method

to any number of collinear forces may easily be made. Thus the

resultant of two of the forces may be combined with a third force;

the resultant thus obtained may then be combined with a fourth

force, and so on, until the entire system is reduced to a single

resultant force. Therefore the magnitude of the resultant of a

collinear force system is given by the equation,

2. CONCURRENT FORCES IN A PLANE

22. Graphical Methods. First Method. The resultant of an

unbalanced system of concurrent forces in a plane is a force which

may be found by means of the parallelogram law. In Fig. 27

are shown three forces FI, F^ and

FS which act on a body at the point

0. The forces FI and ^2 may be

combined into a single force Ri by
means of the parallelogram law.

Similarly Ri and ^3 may be com- .

Q F

bined into a single force R%. R%
then is the resultant of the given

forces. By continuing this process FIG. 27.

any number of concurrent forces

may be combined into a single force. The order in which the

forces are taken is immaterial. If the resultant force obtained by

combining all except one of the forces of a concurrent system is

equal to that one, collinear with it, and of opposite sense, the two
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forces cancel and hence the resultant of the given system is

equal to zero.

. Second Method. Another graphical method of determining the

resultant of a system of concurrent forces in a plane involves the

application of the triangle law. Consider, for example, the three

forces FI, F2, and FS, which act on a body and concur at a point

as shown in Fig. 28(a). In order to determine the resultant of

the three forces, draw from any arbitrary point A (Fig. 286), a

vector representing the magnitude and the direction of the force FI ;

from the end of this vector draw another vector representing the

A Fl

(b)

(a)

FIG. 28.

magnitude and the direction of the force F%. Ri, the resultant of

FI and F2, is represented in direction and magnitude by the vector

drawn from A to the end of F%. To find the resultant of R\ and Fa,

and hence of the three given forces, draw from the end of R\

(or F%) a vector representing FB in magnitude and in direction.

The resultant of R i and Fs is then represented in magnitude and in

direction by the vector Rz drawn from A to the end of Fa. It

should be noted that this vector R^ represents the magnitude and

the direction, only, of the resultant of the given forces and not the

action line of the resultant. The action line of the resultant must

pass through the point in the body at which the forces are con-

current.

This method of determining the resultant may be stated

formally as follows: In order to find the resultant of a system of

concurrent forces in a plane, construct a polygon the sides of

which are vectors representing the given forces in magnitude and in

direction; a line drawn from the beginning of the first vector to
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the end of the last vector represents the magnitude and the direc-

tion of the resultant of the given system. If the force polygon

closes, that is, if the end of the last vector coincides with the begin-

ning of the first vector, the resultant of the given system is equal

to zero.

23. Algebraic Method. In Fig. 29 (a) is represented a coplanar

force system which is concurrent. Each of the four forces of the

system may be resolved into two components, one lying along the

x-axis and one along the i/-axis. The z-components of the forces

constitute a collinear system the resultant of which is a force along

(6)

(a)

FIG. 29

the x-axis. The magnitude of this resultant is equal to 2FX . The

^/-components of the forces likewise constitute a collinear system
the resultant of which is a force along the i/-axis of magnitude
^Fy . Since the system, by this method, is reduced to two forces

the resultant of the given system is the resultant of these two forces.

If the magnitude of this resultant is denoted by R and the direction

which its action line makes with the z-axis by the angle X as shown
in Fig. 29(6), the resultant may be found from the equations:

o
Sf"

tane, = ^r.

The action line of the resultant must of course pass through the

point of concurrence of th forces.
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ILLUSTRATIVE PROBLEM

17. Find the resultant of the system of concurrent forces shown in Fig

30(a).

Algebraic Solution:

2^ = 20 cos 30 -30 cos 60 -10 cos 45 +25 cos 45

= 17.32-15-7.07+ 17.67

= 12.92 Ib.

2FV
= 2Q cos 60+30 cos 30-10 cos 45-25 cos 45

= 10+25.98-7.07-17.67
= 11.24 Ib.

and

V(12.92)
2+ (11.24)

2 = 17.1 Ib. (Fig. 306)

11.24
03;
= tan-

12.92
41'

60'

(a)

Graphical Solution:

(6)

FIG. 30.

To determine the resultant of the system graphically a force polygon is

constructed as shown in Fig. 30 (c). The resultant is represented by the vector

AE. The magnitude of the resultant is found, by measuring the length of

AE, to be 17.1 Ib. and the angle which the resultant makes with the a>axis is

found to be 41 .

PROBLEMS

In the following three problems the forces are concurrent at the origin.

The values of F are the magnitudes of the forces and the values of 6X are the

angles which the action lines of the forces make with the positive end of the

re-axis, the angles being measured in a counter-clockwise direction. In each

problem it is required to find the resultant of the forces specified



18.

19.

20.

ALGEBRAIC METHOD

F 100 Ib. 60 Ib. 40 Ib. 50 Ib.

33

Ox 30 135 240 c

330

Am. # =
F 20 Ib. 10 Ib. 15 Ib. 5 Ib.

Qx 45 120 270

Ans. R =24.7 Ib., X =37 35'.

F 25 Ib. 10 Ib. 30 Ib. 40 Ib.

ex 30 135 240

21. Fig. 31 represents a body acted on by four forces. Determine com-

pletely the resultant of the four forces by the graphical method and check the

results by the algebraic method. Ans. # = 186 Ib.; ^ = 164 45'.

^ 100 ib.

FIG. 31. FIG. 32.

22. The body represented

in Fig. 32 is acted on by five

forces as shown. Replace the

two 80-lb. forces by a single

force and then find the resultant

of this force and the remaining
three forces.

23. Find by the graphical
method the resultant of the five

forces shown in Fig. 33.

24. Solve the preceding

problem by the algebraic

method.

\
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\'
\
\
\
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3. PARALLEL FORCES IN A PLANE

24. Graphical Methods. First Method. A system of two

parallel forces having the same sense will first be considered.

In Fig. 34 are shown two such forces, P and Q, the points of appli-

cation of which are B and A respectively. The resultant of these

two forces cannot be found directly by the parallelogram law. How-

ever, by introducing at B and A any two equal, opposite, and colli-

near forces F, F, as shown in Fig. 34, the parallelogram law may be

used. Thus the forces

Q and F may be re-

placed by their result-

ant RI. Likewise P
and F may be replaced

by their resultant R2 .

At (7, the point of in-

tersection of the lines

of action of RI and R2 ,

let RI be resolved into

components Q and F,
and R2 into compo-
nents P and F. The
two forces F, F at C
cancel, thereby reduc-

ing the system to two collinear forces P and Q along the line DC.
The resultant of these two forces, which is also the resultant of

the original two forces, is a single force of magnitude P+Q
along the line DC. In order to determine the position of the

action line DC of the resultant, consider the two similar triangles
AJG and ACD. From these similar triangles there is obtained
the relation,
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By eliminating F from equations (1) and (2) the resulting equation

is

=
Q~BD

Hence the resultant of two parallel forces of like sense is a

force having a line of action which is parallel to the lines of action

of the two forces and which divides the distance between them

internally into segments which are inversely proportional to

the magnitudes of the forces. The magnitude of the resultant is

the sum of the forces and its sense is the same as that of the forces.

If the forces P and Q are unlike in sense it can be shown in a

manner similar to that used above that their resultant is a force

of magnitude PQ(P being larger than Q), the sense of which is

the same as that of P. The line of action of the resultant is parallel

to the lines of action of the forces and divides the distance between

them externally into segments which are inversely proportional to

the magnitudes of the forces. The proof is left to the student.

It should be noted that the construction used in Fig. 34 fails

if the two opposite, parallel forces are equal in magnitude since two

such forces constitute a couple and cannot be replaced by a single

force.

This method of finding the resultant of two parallel forces can

be extended to any number of parallel forces. For, any two forces

of such a system can be combined into a single resultant force;

this resultant and a third force of the system can be combined in

exactly the same manner, and so on, until the entire system has.

been reduced to a single resultant force. It is evident that the

magnitude of the resultant is equal to the algebraic sum of the

given forces. If in combining the forces of a parallel system by the

above method it is found that the resultant of all except one of the

forces of the system is a force which is equal to the force omitted

and opposite to it in sense, the two forces constitute a couple

which is the resultant of the system. If, however, the lines of

action of the two forces just mentioned are collinear, the forces

balance and the resultant of the system is equal to zero. Hence

if the resultant of a system of parallel forces in a plane is not

equal to zero, the resultant is either a force or a couple.

The determination of the line of action of the resultant force

by the method just discussed involves considerable work if there
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are many forces in the system. A second graphical method will

now be considered. This method involves less construction than
the method just considered and possesses other important advan-

tages.

Second Method. In Fig. 35 (a) is shown a system of four par-
allel forces having the action lines ab, be, cd, and de. On a line par-
allel to the action lines of the forces are laid off vectors AB, BC,

CD, and DE which represent the given forces in magnitude and
direction (Fig. 356). From any arbitrarily chosen point, 0, lines

are drawn to the points A, B, C, D, and E. The figure thus con-

structed is called a force polygon; the point is called the pole,

(a)

de

o ^
~d

FIG. 35.

and the lines OA, OB, OC, OD, and OE are called rays. From the

triangle law it follows that by this construction the force AB is

resolved into two components represented in magnitude and in

direction by the rays AO and OB. AO and OB, however, do not

represent the lines of action of the two components, since the lines of

action of the components of AB must intersect on ab. Similarly,

BO and OC represent the magnitudes and the directions of two

components into which BC is resolved, and so on for the remaining

rays. The given system then may be replaced by another system
of eight forces which are represented in direction and in magni-
tude by the rays AO, OB, BO, OC, CO, etc. The forces repre-

sented by the rays OB and BO (OC and CO, etc.), are equal in

magnitude, opposite in sense, and their lines of action are parallel.
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If now the action lines of the pairs of parallel and equal forces OB
and BO, OC and CO, OD and DO, are made to coincide, each pair

will cancel and there will remain only two forces, AO and OE.

The resultant of these two forces is the resultant 'of the given

system and is represented in magnitude and in direction by the

vector AE.
The action line ofAE will pass through the point of intersection

of the action lines of its components AO and OE. In order to locate

the point of intersection of the action lines of these two forces it is

necessary to construct another figure called the funicular polygon.

This is a polygon the sides of which, called strings, are parallel to

the rays of the force polygon. The funicular polygon is con-

structed as follows: From any point on ab, the action line of AB,
strings ao and ob are drawn parallel to the rays AO and OB.

These strings represent the action lines of the forces AO and OB
into which AB was resolved. From the point of intersection of ob

and be the string bo (which will coincide with the string ob) and

the string oc are drawn. From the point of intersection of oc

and cd are drawn co and od and from the point of intersection of od

and de are drawn do and oe. Since ob and bo, the action lines of

the equal and opposite forces OB and BO, are collinear, the two
forces OB and BO will cancel. Similarly for OC and CO and for

OD and DO. The system then is reduced to two forces repre-
sented in magnitude and in direction by the vectors AO and OE,
the action lines of the forces being ao and oe. The resultant of

these two forces, which is also the resultant of the given system,
will pass through the point in which their action lines ao and oe

intersect. The resultant then is completely determined by the

force and funicular polygons; the former determines its magni-
tude and direction; the latter determines a point on its action line.

If the force polygon closes, that is, if E coincides with A, the

rays AO and OE represent two forces which are equal in magni-
tude and which have parallel action lines and opposite senses.

The resultant in this case is a couple provided that the funicular

polygon does not close. If, however, the funicular polygon also

closes, that is if ao and oe coincide, the two forces AO and OE will

balance and the resultant of the given system will be equal to

zero.

In constructing the force and funicular polygons any point may
be taken for the pole and the funicular polygon may be started
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at any point on the action line of any one of the forces. A change
in the positions of these points has the effect, only, of locating a

different point on the action line of the resultant if the resultant of

the system is a force. If the resultant of the system is a couple,

the effect is to change both the magnitude of the forces constituting

the resultant couple and the length of its moment-arm. The

couples will be equivalent, however; that is, they will have the

same moment and sense.

ILLUSTRATIVE PROBLEM

25. Find by the graphical method the resultant of the four parallel forces

shown in Fig. 36 (a).

10 Ib. Ib. 25 Ib. 15 Ib.

b b
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when the resultant is a force, and (6) the moment and sense of the

resultant of the force system when the resultant is a couple. A
formal statement and proof of the principle of moments will not

be given for each of the force systems considered since the method

of proof is substantially the same for all the force systems. As

applying to a system of parallel forces in a plane the principle may
be stated formally as follows : The algebraic sum of the moments of

the forces of a coplanar parallel system about any point in their plane

is equal to the moment of the resultant of the system about the same

point.

In demonstrating the truth of this statement use will be made of

the diagram in Fig. 35 and of the methods of the preceding article.

The given system of four forces (Fig. 35) was replaced by another

system of eight forces which were represented in magnitude and

in direction by the rays of the force polygon and in line of action

by the strings of the funicular polygon. Six of these forces occur

in pairs, the two forces of each pair being collinear, equal in magni-

tude, and opposite in sense. Obviously, the sum of the moments

of the two forces of each pair with respect to any point in their

plane is equal to zero. For any moment-center in the plane, by
use of Varignon's theorem, the following relations may be written,

moment of AB = moment of AO+moment of OB,
BC= " BO+ "

OC,
CD= " CO+ "

OD,
DE= " DO+ " OE.

If the two sides of the above equations are added the result

obtained may be stated as follows:

The sum of the moments of the forces of the system
=moment of A0+moment of OE,

since the remaining terms on the right side of the equations cancel

in pairs. But AO and OE are the components of the resultant

force of the system and hence, by Varignon's theorem, the sum of

the moments of AO and OE is equal to the moment of the resultant

of the system. Hence, the proposition is proved for a parallel

force system in which the resultant is a force.

If the resultant of the force system is a couple, that is, if the

forces AO and OE are parallel, equal, and opposite as in Fig. 36,
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the proposition also holds, since the sum of the moments of AO
and OE is equal to the moment of the resultant couple.

26. Algebraic Method. A system of coplanar parallel forces

is shown in Fig. 37, the forces being parallel to the y-axis. In the

graphical determination of the resultant of such a system it was

seen that the resultant was either a force or a couple. If the

resultant is a force, R, its action line is parallel to the action lines

of the forces of the system and its magnitude and sense are indi-

cated by the algebraic sum of the forces, that is, R = 2F. In

order to locate the line of

action of the resultant force

the principle of moments will

be applied. For convenience

the origin, 0, will be taken

as the center of moments.

The moment of R then with

-x respect to is equal to the

F,

F2

FIG. 37.

algebraic sum of the mo-
ments of the forces with

respect to the same point.

If the distance from the

action line of R to the y-axis is denoted by x, the moment of R
with respect to the origin is equal to Rx. Further, if the algebraic

sum of the moments of the forces of the system with respect to

the origin is denoted by ^(Fx) or ZMo the principle of moments

may be expressed by the equation Rx = 2Mo. The resultant, then,

if a force, is parallel to the i/-axis and is determined by the following

equations,

It should be noted that the sign of x is not always indicated prop-

erly by the ratio of 2Mo to R. The sign of x may be determined

by inspection, since the resultant force must lie on that side of the

moment-center which will make the sense of its moment agree

with that of the moment of the system.
If the resultant of all, except one, of the forces of the system is

equal to that one and of opposite sense, SF then equals zero and

the resultant is a couple, the moment of which, according to the
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principle of moments, is equal to the algebraic sum of the moments

of the forces of the system. Hence, if the resultant of a coplanar

parallel force system is a couple the moment, C, of the couple may
be determined from the expression,

the aspect of the couple, of course, being the same as that of the

plane of the forces.

If both 2F and 1>M equal zero the resultant is equal to zero.

ILLUSTRATIVE PROBLEMS

26. Fig. 38 represents a beam resting on two supports and carrying four

loads as indicated. Find the resultant of the loads.

2000 lb.

1500 lb.
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27. An arm mounted on an axle at (Fig. 39) is acted on by the four forces

shown. Determine the resultant of the forces.

20 Ib.

24 lb.

15 lb.

24 Ib.

forces,

figure.

Solution.

R = ZF = 15+ 15 -20 -10=0.

Therefore the resultant is not a

force, but is a couple, C, the moment
of which may be found by taking mo-
ments about 0. Thus,

C = SM = 20X10 -15X6 -10X5

+15X 12 = +240 lb .-in.

Hence any couple having a moment
of +240 Ib.-in. will produce the same
external effect on the arm (change in

the rotational motion) as the four given
One resultant couple having forces equal to 24 lb. is shown in the

15 lb.

FIG. 39.

PROBLEMS

28. Fig. 40 represents a beam 12 ft. long acted upon by five forces as shown .

Find the anti-resultant of the five forces.

29. Five forces act on a body
as shown in Fig. 41. Replace 200 lb.

the two 60-lb. forces by a single 150 n,.

force and then find the resultant

of this force and the remaining
three forces.

30. A force of 10 lb. acts along

the 2/-axis, the sense of the force

being positive. Resolve the force

into components P and Q along
the lines x = l and # = 3, respect-

ively.

Ans. P = 151b. Q=-51b.
31. A bar 6 ft. long is hinged

at A and is acted on by five forces as shown in Fig. 42. Determine the

resultant of the five forces.

Ans. C=+901b.-ft.
32. A bar 10 ft. long is acted on by the forces shown in Fig. 43. Find

the equilibrant of the force system and represent it acting on the bar.

Ans. Equilibrant = +15 lb., 2f ft. to the left of the 20-lb. force.

33. The 40-lb. force shown in Fig. 44 is the resultant of the 10-lb. force and

a force P not shown. Determine P completely by means of a force and

a funicular polygon and check the result by the algebraic method.
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In each of the following three problems find the resultant of the force

system. The forces in each problem are parallel to the y-axis. The values

80 Ib.
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27. Couples. In Art. 15 a couple is defined as two equal,

parallel, non-collinear forces of opposite sense. The moment of a

couple is defined as the algebraic sum of the moments of the two

forces of the couple, and it is shown that the moment is the same

for all moment-centers in the plane of the couple. Further, it is

shown that the characteristics of a couple (moment, aspect, and

sense) may be completely represented by means of a vector.

Since couples play an important part in engineering problems it

will be of advantage to consider certain additional propositions

and transformations by means of which couples can easily be

combined with other couples or with other forces.

PROPOSITION I. A couple may be translated into any parallel

position in its own plane or into any parallel plane without changing

its &xternal effect on the body on which it acts.

Proof. Consider the couple Pp having a moment-arm, AB,

equal to p as shown in Fig. 45. Construct a parallelogram having
AB as one side and CD as

p ^" the opposite side. This par-

allelogram may or may not

be in the plane of the given

couple. At each of the

B points C and D introduce

two forces of opposite sense

which -are parallel to the

forces of the given couple and

P equal to them in magnitude.
The force P at A and the

upward force P at D may be

replaced by their resultant.

This resultant is an upward

force, 2P, the action line of

which is parallel to the ac-

tion lines of the forces of

the given couple and is locat-

ed half way between them.

Hence the action line passes through 0, the point of intersection

of the diagonals of the parallelogram. Similarly, the force P at B
and the downward force P at C may be replaced by a downward

force, 2P, acting through parallel to the forces of the given

couple. The two forces 2P, 2P at cancel, thereby leaving only
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the upward force P at C and the downward force P at D. These

two forces constitute a couple which is equivalent to the given

couple. Hence the proposition is established.

PROPOSITION II. A couple may be rotated through any angle in

its plane without changing its external effect on the body on which ii

acts.

Proof. In Fig. 46 the two equal forces, PI and P^ consti-

tute a couple having a moment-arm, AB, equal to p. Through 0,

the midpoint of the arm, draw any line CD making an angle 6 with

AB and scale off OD and OC
each equal to %p. At C in-

troduce two opposite forces,

PS and P4, which are perpen-
dicular to CD, each of which

is equal in magnitude to the

forces PI and PZ of the given

couple. Similarly at D intro-

duce two forces, PS and PQ,

perpendicular to CD, each

being equal in magnitude to

the forces of the given couple.

Prolong the action line of PI

until it intersects the action

line of P4 at E. The resultant

of the two forces PI and P
is a force the action line of which bisects the angle AEC and hence

coincides with EO. Let R denote the magnitude of this force.

In the same way the resultant of P*> and P<z may be shown to be a

force of magnitude R the action line of which is FO. Since these

two forces R, R are equal, collinear, and opposite they cancel,

thereby leaving the forces PS and PQ which constitute a couple

having a moment-arm CD which, by construction, is equal to p.

This equivalent couple, therefore, is merely the given couple
rotated through an angle 6.

PROPOSITION III. The magnitudes of the forces of a couple and
the moment-arm of the couple may be changed to any values without

changing the external effect of the couple, provided that the product

of either force and the moment-arm remains constant.

Proof. Given the couple Pp (Fig. 47) having a moment-arm,
AB, equal to p. Let the arm be increased to CD = (p-}-2x) as

FIG. 46.
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shown. At C introduce two forces of opposite sense each equal to

Pp
p+2x

and perpendicular to CD. Similarly, introduce two forces

Pv Pv
. n at D. The force P at A and the upward force ~- at D

p+2x p+2x
may be replaced by their resultant, which is an upward force of

magnitude ~=
,
the direction of the line of action being per-

pendicular to CD. The position of the line of action of this result-
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-p.

This proposition can be proved by means of the three trans--

formations discussed above. It is sufficient to prove the propo-

sition for two couples, for, if two couples can be combined into a

single resultant couple, evidently this couple can be combined with

a third coHiple, and so on. Let the two couples Pp and Qq (Fig.

48a) act on a body. The magnitude of the forces of the second

couple may be changed from Q to P by changing the moment-

arm from q to ^ (Fig. 486), as discussed in Proposition III.

The second couple can then be rotated until the forces of the two

couples are parallel (Fig.

48c) . The second couple

can now be translated

until one of its forces is

collinear with one of the

forces of the first couple

(Fig. 48d). This trans-

lation can always be

made in such a way that

these two equal, collinear

forces are opposite in

sense and hence will can-

cel, thereby leaving the

two equal, parallel, and

opposite forces P,Pwhich

constitute a couple. The
arm of this resultant

couple is (P+ p )
'

moment is P

(c)

(*)

FIG. 48.

-M }
=

Pp+ Qq. Hence the mo-

ment of the resultant is

equal to the sum of

the moments of the

given couples as stated in the proposition.

PROPOSITION V. Two coplanar couples which have the same

moment and sense are equivalent.

This proposition follows from the three transformations pre-
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viously discussed, since, by means of them, one of the couples

may be superimposed on the other.

4. NON-CONCURRENT, NON-PARALLEL FORCES IN A PLANE

28. Graphical Methods. First Method. The resultant of a

system of non-concurrent, non-parallel forces in a plane is either

a force or a couple. If the resultant is a force it may be

determined by use of the parallelogram law. In Fig. 49 are

shown three non-concurrent, non-parallel forces FI, F2, and F%

acting on a body. The forces F\ and F^ may be combined into a

single resultant force R\. R\ and Fa may be combined into a

FIG. 49.
'

single force R% which is the resultant of the given system of

forces.

If the resultant obtained by combining all, except one, of

the forces of such a system is equal to that one and is parallel to

it and of opposite sense, the two forces constitute a couple.

Furthermore, if the action lines of these two forces are collinear

the forces cancel and the resultant of the system is equal to

zero.

Second Method. The resultant of a sytem of non-concurrent,

non-parallel forces in a plane may also be found by the con-

struction of a force and a funicular polygon. This method is of

great importance in engineering problems. The method of con-

struction of these polygons is the same as that described in con-
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nection with a system of parallel forces (Art. 24) and will not here-

be discussed in detail for the non-parallel force system. The
method will be illustrated, however, by the following problem.

ILLUSTRATIVE PROBLEM

37. A beam 9 ft. long is acted on by four forces as shown in Fig. 50.

Determine the resultant of the forces by use of the force and funicular

polygons.

Solution. The force polygon as shown in Fig. 50(6) is constructed by
laying off the vectors AB, BC, CD, and DE which represent the magni-
tudes and the directions of the given forces. The closing side AE of

the polygon represents the resultant force in magnitude and in direction.

By measuring AE to scale the magnitude of the resultant force is found

Scale. 1 in. = 8 ft.

(a)
Scale. 1 in.= 20001b.

(6)

FIG. 50.

to be 2450 Ib. and the line AE is found to make an angle of 80 with the

horizontal.

In Fig. 50 (a) is shown the funicular polygon in which one point on the

action line of the resultant is found, namely, the intersection of oa and oe.

Therefore the action line of the resultant passes through this point and is

parallel to AE. By measurement the action line is found to intersect the

beam at a point 3.6 ft. from the left end of the beam. Hence, if the

four forces were replaced by a single force, R, of 2450 Ib. as shown in Fig.

50(a), the reactions at the ends of the beam (external effects) would be

unchanged.

29. Principle of Moments. The algebraic sum of the moments
of the forces of a coplanar, non-concurrent, non-parallel force

system about any point in the plane of the forces is equal to the
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moment of the resultant of the system about the same point.

The proof is identical with that given for a system of parallel

forces (Art. 25) and the principle will be used, in the algebraic

method, for finding the action line of the resultant force or the

moment of the resultant couple similar to the way it was used for

parallel forces (Probs. 26 and 27).

30. Algebraic Method. The resultant of a system of non-con-

current, non-parallel forces in a plane is either a force or a couple

as explained in Art. 28. If the resultant is a force it may be deter-

mined as follows: In Fig. 51 (a) is represented a body acted on by
four forces F f

, F", F'", and F"". Let each force be replaced

7 _'/

A.

47

F'

FIG. 51.

by its x- and ^/-components. The original force system is now

resolved into two systems of parallel forces, the resultant of

each parallel S3
rstem being a force parallel to the forces of

the system. According to Art. 26 the resultant of the com-

ponents in the z-direction is 2FX and similarly, the resultant

of the components in the ^/-direction is 2Fj/. Hence, the

magnitude and the direction' of the resultant of these two forces

(which is also the resultant of the original forces) may be

found from the equations R =V (ZFX)
2+(2FV)

2 and tan6x =

(Fig. 516), in which 6X is the angle which the action line of R
makes with the #-axis. In order to obtain the position of the line

of action of the resultant force R the principle of moments may be
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used. The principle is expressed by the equation Ra =
in which a (Fig. 5 la) is the perpendicular distance from the mo-

ment-center, 0, to the action line of the resultant, and SAfo is

the algebraic sum of the moments of the forces with respect
toO.

Hence, if the resultant of a coplanar, non-concurrent, non-

parallel system of forces is a force, it may be determined completely

by the equations,

If both 2FX and 2FV are equal to zero the resultant is not a

force and hence is a couple the moment, C, of which, according to

the principle of moments, is the algebraic sum of the moments of

the forces of the system, that is,

The center about which the moments of the forces are taken may
be any point in the plane of the forces since the moment of a couple
is the same about all points in the plane. The sense of rotation

of the resultant couple is indicated by the sign of the algebraic

summation and the aspect of the couple, of course, is the same as

that of the plane of the forces.

If 2FX and ^Fv are equal to zero and 2M is also equal to zero,

the resultant is equal to zero.
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ILLUSTRATIVE PROBLEM

38. Find the resultant of the system of four forces which act on the body

represented in Fig. 52 (a). Each space represents 1 ft.

w

Solution. The solution may be put in tabular form as follows:

F
20 45

Therefore,

14.14

25 135 -17.67

5 270 0.00

20 20.00

Fy =F sin ex

14.14

17.67
- 5.00

0.00

16.471b.

R = V(16.47)
2
+(26.81) 2 = 31 .45 lb.,

26.81
03= tan -

16.47
= 58 25',

33.28

M
28.28

0.00

-15.00
20.00

o
= 33. 28 Ib.-ft.

PROBLEMS

39. Fig. 53 represents a board 3 ft. square acted upon by four forces as

shown. Find completely the resultant of the forces. Specify the action line

of the resultant by the perpendicular distance from the origin 0.

Ans. # = 47.6 lb. 6^ = 78 10'. a = 1.98 ft.
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40. Determine completely the resultant of the five forces acting on the-

body shown in Fig. 54. Each space represents 1 ft.

FIG. 53. FIG. 54.

41. The forces of a coplanar system are specified below, the magnitudes of

the forces being expressed in pounds and distances x and y in feet.

20

0, 2

15

0, 2

45

10

4,2
90

15

6,2
135

Find the resultant of the system.
Ans. fl = 37.1 Ib. 6X = 57 20' a = 1.71 ft.

5. CONCURRENT FORCES IN SPACE

31. Graphical Method. The resultant of a system of non-

coplanar, concurrent forces is a force which may be found by any
of the graphical methods used in finding the resultant of a system

of coplanar, concurrent forces as discussed in Art. 22. In applying

any one of these methods, the forces are projected on two of the

coordinate planes and the resultants of the two projected systems

of forces are found. The resultant of the original force system will

be a force the projections of which on the two planes are the

resultant forces of the projected systems. If the force polygon
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for each of the projected systems closes the resultant of the given

system vanishes. A graphical method of determining the resultant

of any non-coplanar system of forces is less convenient than is

the algebraic method of solution.

32. Algebraic Method. Before discussing the method of

determining the resultant of any number of non-coplanar, con-

current forces the special

case of three concurrent

forces having action lines

which are mutually perpen-
dicular will be considered.

In Fig. 55 are represented
three such forces, P, Q,

and S, the action lines of

the forces being taken as

the coordinate axes. The
forces P and Q may be

combined into a single force

OA the magnitude of which

FIG. 55. is VF^+Q2
. The result-

ant of this force and the

force S is also the resultant of the given system of three forces

and is represented by the vector OB, its magnitude being

Vp2+Q2+$2
. Hence the magnitude of the resultant, R, of the

three forces and the angles 6X , V) and 2 ,
which the line of action

of the resultant makes with the coordinate axes may be found

from the equations,

P Q
COS0x

= -
5 , 0080,= ,

rr

COS dz = -=:.

In finding the resultant of any number of non-coplanar, con-

current forces by the algebraic method it will be convenient to

take the point of concurrence of the forces as the origin of a set of

rectangular axes. Each force of the system may be resolved into

components along the coordinate axes (Art. 12). The system is

thus replaced by three collinear systems each of which may be

replaced by a single force (Art. 21). Thus, the resultant of the

components along the z-axis is a single force along the x-axis, the
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magnitude of which is expressed by 2FX . Similarly, the

ponents may be replaced by a single force of magnitude 2Fy along

the i/-axis, etc. (Fig. 56). These three forces may be combined

into a single force which is the resultant of the given system and

which is completely defined by the following equations:

R =

cos *
=

cos v
=

where 6X,
8V ,

and Sz are the

angles which the action line

of the resultant makes with

the coordinate axes as shown

in Fig. 56.

2FZ

2F"

FIG. 56.

ILLUSTRATIVE PROBLEM

42. Find the resultant of the following system of forces which pass through
the origin. The values of F are the magnitudes of the forces and the values

of x, y, z are the coordinates of points on the action lines of the forces.

F 50 Ib. 90 Ib. 100 Ib. 60 Ib. 20 Ib.

x, y, z 5, 5, 7, 5, 3 3, 0, 4 2, 5, 4 0, 5, 3

Solution:

:50--^L+90.-?=+100-!-+60-
V50 A/83 5

: 35.4+69.2 +60+17.9+0
> 182Jib.

-50.-^+9o.-L
V50 V83

= 35.4+49.3+0+44.7+17.1
= 146.5 Ib.

-
V34

V45

V45 *N/34

= 0+29.6+80+35.8+10.3
= 155.7 Ib.
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>

2
+(146.5) 2 +(155.7) 2 = 281

?x = cos- 1

^||^
= cos- 1 .650 = 49 30'.

Jv
= cos - 1

i||p
= cos - 1 .521 = 58 35'.

?z
= cos- 1

^fp^cos-
1 .553 = 56 25'.

PROBLEMS

In the following problems the forces are concurrent at the origin. It is

'equired to find the resultants of the systems.

43. F 10 lb. 20 lb. 15 lb.

x, y, z 1, 2, 1 2, 2, 3 3, 1, 2

Ans, 72 = 43.1 lb. 0^ = 53 10'. 0^
= 59 30'. 02

= 51 50'.

44. F 100 lb. 150 lb. 50 lb. 200 lb.

x, y, z 2, 2, 1 3, 2, -2 -4, -3, -5 3, -2, 4

Ans. 72 = 273 lb. 0^ = 18 10'. 0^=80 45' 2
= 7420'.

46. F 10 lb. 30 lb. 20 lb.

x, y, z 1, 2, 1 1, 4, 2 2, 3, 3

6. PARALLEL FORCES IN SPACE

33. Graphical Method. The resultant of a system of non-

coplanar, parallel forces (see Fig. 57) is either a force or a couple.

If the resultant is a force the action line is parallel to the forces

of the system, its magnitude and sense being given by the algebraic

sum of the forces. The resultant force may be found graphically

by a repeated use of the first method described in Art. 24 for finding

the resultant of two parallel forces. Since this method of solu-

tion, however, involves constructions in various planes it is not

convenient to use. The resultant force may also be found by the

construction of a force and a funicular polygon as described in

Art. 24. In using this method the forces are projected on two of

the coordinate planes and the resultant of each of the two systems

of projected forces is found. The resultant of the given force

system is a force the projections of which on the two coordinate

planes are the two resultants of the projected forces.
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34. Principle of Moments. The algebraic sum of the moments
of any number of non-coplanar, parallel forces about any line in

space is equal to the moment of their resultant about the same

line. The proof of this proposition is similar to the proof of the

principle of moments given for a coplanar, parallel force system
and will be left to the student. This principle will be used in the

algebraic method of determining the resultant of a non-coplanar,

parallel system in much the same way that it was used in Arts.

26 and 30.

35. Algebraic Method. In determining the resultant of a

system of non-coplanar, parallel forces by the algebraic method it

is convenient to select coordinate axes so that one axis is parallel

to the forces. In Fig. 57 is shown a system of parallel forces

referred to such a set of axes. The resultant, if a force, is parallel

to the forces, its magnitude, R, being equal to the algebraic sum of

the forces. The line of action of the resultant force is found by
applying the principle of moments. Thus, if the algebraic sum
of the moments of the forces with respect to the x-axis be denoted

by 1iMx and the distance of the resultant from the z-axis be

denoted by y, then the principle of moments is expressed by the

equation Ry = ^Mx . In a similar manner, Rx=2My . Th*

resultant, if a force, will then be completely denned by the fol-

lowing equations:

R

y= R

FIG. 57.

If the resultant of all,

except one, of the forces

of a parallel system is a

force which is equal to that

one but of opposite sense,

then ZF equals zero and hence the resultant is not a force and is

therefore a couple. According to the principle of moments the

moment, CXj of the resultant couple with respect to the x-axis is
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equal to the algebraic sum of the moments of the forces with

respect to the :c-axis, that is,

Similarly,

Thus, the resultant is a couple which lies in a plane parallel to the

z-axis, the moments of which, with respect to the x- and j/-axes, are

Cz and Cv as expressed above. Methods of expressing a resultant

couple in terms of its component couples are discussed in Art. 36.

ILLUSTRATIVE PROBLEM

46. Find the resultant of the system of parallel forces as shown in Fig. 58.

Each space in the figure represents 1 ft.

.10 Ib.

tz

15 Ib.

// s /////*

20

/

il=251b.

FIG. 58.

30 Ib.

Solution :

-20-30 = -25 Ib.

SMs=20X2+30X3-10Xl-15Xl.

= 1051b.-ft.

ZMV
= 10X1+15X3-20X2-30X5.

= -135 Ib.-ft.
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and

Hence the resultant is a downward force of 25 Ib. as shown in Fig. 58.

Caution. Care must be exercised in finding x and y. For instance, in the

above example if the value of ?MX (+105 Ib.-ft.) be divided by R( 25 Ib.)

the quotient is 4 ft., which is not the value of y, since a downward force of

25 Ib. in this position would have a moment of 105 Ib.-ft. with respect to the

x-axis. The magnitudes of ~x and y should be obtained by dividing the mag-
nitudes of 2MV and *2MX by the magnitude of R and their signs should be

determined by inspection. The signs of x and y, of course, must be such that

the moment of the resultant will have the same sense of rotation as indicated

by the algebraic sum of the moments of the forces of the system.

PROBLEMS

47. A board 6 ft. square is acted on by five forces as shown in Fig. 59.

Determine the resultant of the forces.

Ans. #=+101b. 3= +2.5 ft. ?/
= +3.5 ft.

20 Ib.

60 Ib.

10 Ib

25 Ib.

15 Ib.

r

30 Ib.

FIG. 59. FIG. 60.

48. A table 5 ft. square carries four concentrated loads as shown in Fig. 60.

Find the resultant of the four loads.

Ans. # = 135 Ib. x = +2.04 ft. =+2.26 ft.

49. Find the resultant of the following system of forces which are parallel
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to the z-axis. The values of x and y, expressed in feet, are the coordinates

of the points where the action lines of the forces intersect the xy-pl&ne.

F 20 Ib. 10 Ib. 25 Ib. -15 Ib. -10 Ib.

x, y 1, 3 3, 2 6, 6 2, 5 6, 4

7. COUPLES IN SPACE

36. Resultant of a System of Couples. Proposition. The

resultant of any number of couples is a couple.

Proof. It is sufficient to prove
this proposition for two couples,

only, since if two couples can be com-

bined into a single resultant couple

this couple can be combined with a

third couple in exactly the same way
and so on. Thus, consider the two

couples Pp and Qq in planes making
an angle a with each other as shown

in Fig. 61 (a). The forces Q, Q of

the couple Qq can be made equal to

P, P if the arm be changed to
-p-

(Art. 27) as shown in Fig. 61(6).

Each couple can then be rotated

in its plane until the forces of the

couples are parallel to the line of

intersection of the two planes (Art.

27) as shown in Fig. 61(c). Now let

the two couples be translated until

one force of each couple lies in the

line of intersection of the two planes.

This translation can always be made
so that the two forces in this line

are opposite in sense and hence will

cancel, thereby leaving a couple the

forces of which are P, P (Fig. 6 Id).

The arm of this couple from trigo-

nometry is,

FIG. 61.

Special Cases. I. If the angle a equals 90, that is, if the

(d)
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planes of the couples are perpendicular (Fig. 62), the moment, C,
of the resultant couple is

C -

That is, the moment of the resultant couple is the square root of

the sum of the squares of the moments of the two couples. The

plane of the resultant couple makes
an angle <j> (Fig. 62) with the plane of

the couple Pp such that

and the sense of rotation of the re-

sultant couple is indicated in Fig. 62.

II. If a equals 180, the couples

are in the same or in parallel planes

and hence have the same aspect.

The moment of the resultant couple

then is,

FIG. 62.

That is, the moment of the resultant couple is the algebraic sum

of the moments of the two couples and its aspect, of course, is the

same as that of each of the couples, the sense of rotation being

indicated by the sign of the algebraic summation.

(6)

FIG. 63.

Resultant of a Couple and a Force. A couple and a force not in

the plane of the couple may be replaced by two non-coplanar

forces. Thus, consider a couple Pp in the plane MN and a force F
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as shown in Fig. 63 (a). The couple may be translated according
to Art. 27 until one of the forces of the couple Pp and the force F
are concurrent (Fig. 636) . Therefore P and F now may be replaced

by their resultant R and hence the given system is replaced by a

force P in the plane of the original couple and a force R not in the

plane. Conversely, any two forces not in the same plane may be

replaced by a force and a couple.

37. Composition of Couples by Means of Vectors. Proposi-
tion. // any number of couples be represented by their vectors, the

resultant of these vectors will represent completely the resultant

couple.

It will be sufficient to prove the proposition for two couples.

The extension of the proof to any number of couples is obvious.

Proof. Given two couples P\p\ and P^pz in planes which
make an angle a with each other as shown in Fig. 64 (a). It is

FIG. 64.

assumed that the couples have been transformed (see Art. 36)

so that PI equals P%. Let DOE (Fig. 646) represent a cross-section

of the two planes shown in Fig. 6.4 (a). The couple P\p\ can be

represented by a vector OA perpendicular to the plane of the

couple, the length of OA being proportional to P\p\. Likewise,

the couple P^i can be represented by the vector OB perpendicular

to the plane of the couple, OB being proportional to P2P2- Con-

struct the parallelogram OACB. In order to show that OC repre-

sents completely the resultant couple it must be shown that OC is

perpendicular to the plane of the resultant couple (which is the

same as showing that it is perpendicular to DE) and also that its
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length represents to scale the moment, Pp, of the resultant couple.

In the two triangles OAC and ODE the angle OAC equals the angle

DOE. The vector OA is proportional to P\p\. This fact is

expressed by the equation,

OA=kPiPl ,

Similarly,

Hence,
OA kPii i OD

Therefore, the triangles are similar and hence OC is proportional to

DE. That is,

OC = OA^kPpi =
DE OD pi

Therefore,
OC =DEXkP = kPp.

Hence OC represents the moment of the resultant couple. Further-

more, OC is perpendicular to DE
} for, since the triangles OAC and

ODE are similar and the corresponding sides OA and OD are per-

pendicular, it follows that the corresponding sides OC and DE are

perpendicular. Hence, OC represents the aspect as well as the

magnitude of the resultant couple. It is plain from Fig. 64(6)

that OC also represents the sense of the resultant couple. Any
number of couples then may be combined into a resultant couple by

representing each couple by a vector and rinding the resultant of

the system of vectors. The resultant vector will represent com-

pletely the resultant couple.

For an application of this method of combining couples see

the discussion of the problem of balancing rotating masses, such as

an engine crankshaft, in Chapter IX, Section III.

Three Couples in Mutually Perpendicular Planes. Let the

given planes be taken as the coordinate planes. The couple lying

in the ?/2-plane may be represented completely by a vector along

the x-axis. Let this vector be denoted by Cx . Similarly, the

couples in the xz- and .^-planes may be represented by vectors

Cv and Cz along the y- and z-axes respectively. The resultant of

the three couples will be represented by the resultant of the three
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vectors Cx,
Cy , Cg. If the resultant of these three vectors be

denoted by C the resultant may be found from the equation,

Also, if
<f>x, fa, and fa be the angles which the vector C makes with

the coordinate axes, these angles may be found from the equations,

r r r1* i ~\

^ V i
^ zGOG

That is, if the couples Cx ,
Cy ,

and C2 ,
which act on a given body,

are replaced by the couple C acting in the plane denned by the

angles fa, fa, and fa, the external effect on the body will be

unchanged.

ILLUSTRATIVE PROBLEM

50. Determine the resultant of the three couples which act on the body
(cube) as shown in Fig. 65. Each of the edges of the cube is 4 ft. in length.

Solution.

(7*
= 200X4 = 800 Ib.-ft.

300 lb.

Cy
= 300X4 = 1200 Ib.-ft.

Cz
= 100X4= 400 lb. ft.

Therefore,

C = ^(800)
2+ (1200)

2+ (400) \

-1500 Ib.-ft.

COO^ cos
- 1

:^r 57047
'>

FIG. 65. *=--' Sir 740

Hence a single couple having a moment of 1500 Ib.-ft. and located in a

plane perpendicular to the line denned by the above angles will have the same

external effect on the body as the three given couples.

38. Resolution of Couples. In order to resolve a couple into

two or more component couples, the vector representing the given

couple may be resolved into component vectors each of which

represents a component couple.
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One of the most important cases of the resolution of a couplers

that in which the couple is resolved into three component couples

lying in planes which are mutually perpendicular. Let the planes

of the component couples be taken as the coordinate planes and

let fa, 4>v ,
and fa be the angles which the vector representing the

given couple, C, makes with the coordinate axes. If CX) Cy ,
CZj be

the component couples lying in the yz-, zx-, and #?/-planes,

respectively, they may be found from the following equations :

CX=C cos fa, Cv
= C cos fa, Cz

= C cos fa.

8. NON-CONCURRENT, NON-PARALLEL FORCES IN SPACE

39. Graphical Method. The resultant of a system of non-

concurrent, non-parallel forces in space may be a force and a couple,

a single force, or a single couple. Further, since a force and a

couple, not in the same plane, may be replaced by two non-

coplanar forces (Art. 36), the resultant of such a system may also be

regarded as two non-coplanar forces. If the graphical method is

used in determining the resultant of such a system of forces, it is

convenient to reduce the system to two forces rather than a force

and a couple. The resultant may be found by selecting arbitrarily

any plane which is not parallel to any of the action lines of the

given forces and resolving each force, at the point where its action

line pierces this plane, into two components, one perpendicular
to this plane and one lying in the plane. The system consisting

of the components which lie in the plane may be combined accord-

ing to the method of Art. 28 and the components which are per-

Vsndicular to the plane may be combined according to the method
of Art. 33. If the resultant of each of these systems is a force

these two forces may be regarded as the resultant of the given

system. The two forces may be replaced, however, by a force and
a couple. Further, in special cases the force may vanish and

thereby leave a single couple as the resultant of the given system.

Again, the couple may vanish, in which case the resultant of the

system is a force. If both the force and couple vanish the given
force system has no resultant.

40. Principle of Moments. The algebraic sum of the moments
of the forces of any non-coplanar, non-concurrent, non-parallel

system about any line is equal to the moment of the resultant
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of the system about the same line. Since the resultant in general

consists of a force and a couple, the moment of the resultant

about any line must be regarded as the algebraic sum of the

moments of the force and the couple about the line.

41. Algebraic Method. When the resultant of a system of

non-concurrent, non-parallel forces in space is a force and a couple,

the force may be made to pass through any arbitrary point, but,

for different positions of this point, the moment of the couple will

vary. In determining the resultant force and couple by the alge-

braic method it is convenient to select a rectangular set of coor-

dinate axes so that the origin is the arbitrary point through which

the resultant force passes. Each force of the system may be

replaced by an equivalent parallel force through the origin and a

couple as in Art. 18. Thus the system is reduced to a system of

concurrent forces through the origin and a system of couples.

The concurrent system at the origin may be combined into a

resultant force, as in Art. 32, which is completely defined by the

following equations:

The system of couples may be replaced by a single couple as in

Art. 37. For convenience in determining the resultant couple it

will be considered to be resolved, as in Art. 38, into three com-

ponent couples lying in the coordinate planes. Let the couple

lying in the z?/-plane be denoted by Cx,
since it may be represented

by a vector along the z-axis. The vector which represents this

couple will also be denoted by Cx . Similarly, let the couples

in the other two planes, as well as the vectors which represent

them, be denoted by Cv and Cz . The given system then is equiva-

lent to the system shown in Fig. 66, namely, a force R through the

origin and the couples Cx,
Cv ,

and Cz . Since the two systems are

equivalent, the sum of the moments of the forces of the given sys-

tem about any line is equal to the sum of the moments of the
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forces of the system shown in Fig. 66 about the same line. Thusp
let moments be taken about the .r-axis and let the moment of

the given system about the x-axis be denoted by 2MX . The only

part of the system shown in Fig. 66 which has a moment about

the x-axis is the couple lying in the ye-plane, and the moment of

this couple is Cx . Hence, 2MX=CX . Similarly 2My
= Cv and

2MZ
= C2 . The resultant of the three couples then may be deter-

mined as in Art. 36. Thus the resultant couple is defined by the

following equations :

Z

C
'

= COS"

I ^-trj. y= COS~ l --,

^COS- C FIG. 66.

All of the force systems which have been discussed above

may be considered as special cases of this system, and the six

equations which define the resultant of this system will reduce to

the same equations which were found necessary to define the

resultants of the simpler systems.

ILLUSTRATIVE PROBLEM

51. Find the resultant of the system of four forces which act on the cube

as shown in Fig. 67. Each side of the cube is 4 ft. long.

Solution: In resolving the 10-lb. force into its three rectangular compo-
nents, A will be taken as the point of application of the force and at this

point the force may be resolved into two components, one along AC and one

along AB. The latter component may be resolved into components along
AE and AF. The quantities needed in the solution may be put in tabular

form as follows, forces being expressed in pounds and moments in pound-feet.

*

10
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R = V (13.33)
2
+(23.15)

2+(165) 2

= 31.6 Ib.

-42 50'

31.6

,23.15

31.6

z
31.6

C =V(40) 2
+(120.7)

2
+(66.66)

2

= 144 Ib.-ft.

<*>*
=
cos-^

= 73 50'

~' 7 = 146 55'

FIG. 67. 144~
=

NOTE. In specifying the angles which the vectors representing the result-

ant force and the resultant couple make with the coordinate axes, the smaller

of the two angles which each vector makes with the positive end of the given
axis is specified.

PROBLEMS

62. Find the resultant of the three forces which act on the cube as shown
in Fig. 68. Each side of the cube is 4 ft. long.

20 lb.

FIG. 68. FIG. 69.

63. The sides of the cube shown in Fig. 69 are each 4 ft. long. Find the

resultant of the three forces which act on the cube.



CHAPTER III

EQUILIBRIUM OF FORCE SYSTEMS

1. INTRODUCTION

42. Preliminary. In the preceding chapter equations and

graphical constructions were found by the use of which the result-

ants of the various force systems may be determined. In the pres-

ent chapter are determined the algebraic and graphical conditions

which the forces of the various force systems must satisfy in order

that the resultants of the force systems shall be equal to zero;

that is, in order that the force systems shall be in equilibrium.

If a force system which is in equilibrium acts on a body, the body
is either at rest or has a uniform motion.

The independent equations which must be satisfied by the

forces which hold a body in equilibrium are called the equations of

equilibrium, and the graphical constructions which the forces must

satisfy are sometimes called equilibrium diagrams or equilibrium

polygons.

Many problems in engineering practice involve bodies which

are in equilibrium under the action of a system of forces as, for

example, a bridge, roof-truss, crane, etc. In such problems there

may be certain elements of the forces acting on the body which are

unknown as, for example, the magnitude or the direction of one or

more of the forces. These unknown elements or quantities may
be found if their number is not greater than the number of equa-
tions of equilibrium for the force system involved. Such force

systems are said to be statically determinate. If the number of

unknown quantities in a force system is greater than the number
of equations of equilibrium for that particular force system, the

force system is said to be statically indeterminate, as, for example,
the forces which act on a horizontal beam which rests on three or

more supports and carries known vertical loads. The beam is in

equilibrium under the action of a system of coplanar, parallel forces

all of which are known except the three upward reactions of the

supports. As is shown in Art. 49, there are only two independent
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equations of equilibrium for such a force system, and hence

the three reactions cannot be found from the equations of

equilibrium. The force system is therefore statically indeter-

minate.

43. Graphical Conditions of Equilibrium. In the previous

chapter it was shown that the resultant of an unbalanced force

system in a plane is either a force or a couple. Further, it was
shown that if the resultant is a force, it is represented in magni-
tude and in direction by the closing side of the force polygon, and

that if the resultant is a couple, the two forces of the couple act

along the first and last strings of the funicular polygon. Hence,
if the force polygon closes, the resultant cannot be a force, but

may be a couple. If, however, the funicular polygon also closes,

that is, if the first and last strings along which the two forces of

the couple act are collinear, the two forces cancel and hence the

resultant couple vanishes. Hence there are two conditions which

the forces of a coplanar force system must satisfy if they have no

resultant, that is, if the forces are in equilibrium.

(1) The force polygon must close. If this condition is satis-

fied the resultant cannot be a force.

(2) The funicular polygon must close. If this condition is

satisfied the resultant cannot be a couple.

The conditions of equilibrium for non-coplanar force systems

may be stated in a similar manner. In order to determine the

resultant of a non-coplanar system graphically, the forces of the

system are projected on two of the coordinate planes and a force

and a funicular polygon is drawn for each of the projected systems.

The conditions of equilibrium for a non-coplanar system, then,

are that the force and funicular polygons for each of the projected

systems must close.

44. Algebraic Conditions of Equilibrium. The two conditions

which the graphical diagrams for a balanced force system must

satisfy as stated in the preceding article may also be expressed

algebraically. Thus, if the force polygon closes, the projections

(components) of the forces on any line also form a closed polygon,

as shown in Fig. 70, and since these components are collinear their

vector sum is the same as their algebraic sum. Hence, the f^,ct

that the force polygon for the components closes may be expressed

by stating that the algebraic sum of the components is equal to

zero. Therefore, if the force polygon for the given system of
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forces closes, the algebraic sum of the components of the forces in__

any direction is equal to zero.

If the funicular polygon closes, the resultant cannot be a couple,

since the first and last strings of the funicular polygon are collinear

and hence the algebraic

sum of the moments of cl

the two equal and opposite

forces which act along

these strings is equal to D

zero. But the algebraic B
"

sum of the moments of <<

A

these two forces is equal to

the algebraic sum of the ^~"
~*"Q> ^B'

moments of the forces of FlG 70

the system. Therefore,

the statement that the funicular polygon must close is equivalent

to the statement that the algebraic sum of the moments of

the forces of the system must equal zero. Hence the algebraic

conditions of equilibrium are :

(1) The algebraic sum of the components of the forces in any
direction must equal zero.

(2) The algebraic sum of the moments of the forces about any
axis must equal zero.

An infinite number of equations could be written in accordance

with these conditions by taking different directions of resolution

and different moment axes, but all of the equations would not be

independent. The number of independent equations is different

for the various force systems, as will be discussed in the succeeding

articles, but for any force system the independent equations of

equilibrium are the equations which are necessary and sufficient

to ensure that the resultant for that particular force system shall

be equal to zero.

If a given body is in equilibrium under the influence of a

system of forces some of which are unknown, wholly or in part,

these unknown elements may be found by applying the equations
of equilibrium which apply to that particular system of forces.

If the number of unknown elements in a system of forces which

is in equilibrium is equal to the number of independent equations
of equilibrium for that particular system, the determination of all

of the unknown elements involves the use of all of the equations of
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equilibrium. Frequently, however, it is not required to determine

all of the unknown elements in such a system, for, a single element

only may be required, as for example, the magnitude of a certain

force, the line of action of which is known. In such cases the un-

known element may frequently be found by using only one of the

equations of equilibrium. In applying the equilibrium equations
the work may be materially simplified by properly selecting the

directions of resolution and the axes of moments. Before applying
the equations of equilibrium to any system of forces which holds

a body in equilibrium it is important to have a clear idea of the

forces which act on the body. For this purpose a free-body dia-

gram is drawn. A free-body diagram is a diagram of a body

showing the actions of all other bodies (forces) on the body con-

sidered. It does not show the actions of the given body on other

bodies.

2. COLLINEAR FORCES

45. Equations of Equilibrium. A system of collinear forces

is in equilibrium if the forces of the system satisfy either of the

following equations :

2^ = 0, (1)

or

SM4 = 0, (2)

where A is any point not on the action line of the forces.

Proof. As shown in Art. 21, if a collinear force system is not

in equilibrium, the resultant of the force system is a force having

the same action line as the forces and having a magnitude, R, which

is given by the equation, R = 2F. If, then, the equation 2F = 0,

is satisfied the resultant is not a force and therefore the system is

in equilibrium. The equation 2MA = is also sufficient to ensure

equilibrium, for, in order to satisfy this equation, the resultant force

must pass through the point A . But this is impossible, since the

resultant force, if there be one, has the same line of action as the

forces and hence cannot pass through A .

Therefore, if either one of the equations (1) and (2) is satisfied,

the resultant is equal to zero and hence there is but one inde-

pendent equation of equilibrium for a collinear force system.
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ILLUSTRATIVE PROBLEM

64. Two men pull on a rope with forces of 100 lb. each (Fig. 71er). What
is the stress in the rope?

Solution. Suppose the rope to be divided into two parts A and B as

shown in Fig. 71(6). Consider as a free-body the part A. The forces acting

100 lb.
| | ,

100
jb.

100 lb. A
,

S S B 100 lb.

FIG. 71.

on A are two in number, namely, the 100-lb. force and the force exerted by B
on A. The latter is the internal stress required. Let this stress be denoted

by S. The equation of equilibrium then becomes,

Therefore,

S = 1001b.

Obviously, B could have been taken as the free body and the same result

would have been obtained.

3. CONCURRENT FORCES IN A PLANE

46. Equations of Equilibrium. A system of coplanar, concur-

rent forces is in equilibrium if the forces of the system satisfy the

following equations :

=
(A)

where x and y denote any two non-parallel lines in the plane. It

is convenient, however, to take as the two lines a set of rectangular

axes with the point of concurrence of the forces as origin.

Proof. In Art. 23 it was shown that if a concurrent system of

forces in a plane is not in equilibrium the resultant is a force, the

components of which are equal to 2FX and 2FV . If, then, the

forces of the system satisfy the equation 2FX=Q the resultant

cannot have a component along the z-axis and if the equation
2FV

= Q is satisfied the resultant cannot have a component along

the ^/-axis. Therefore if both of these equations are satisfied, the

resultant cannot be a force and hence the system must be in
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equilibrium. There are, then, only two independent equations
of equilibrium for a coplanar, concurrent system of forces.

Another set of independent equations which, if satisfied by the

forces of a coplanar, concurrent force system, are sufficient to

ensure equilibrium may be expressed as follows:

where x denotes any line in the plane (taken for convenience as one

of two rectangular axes through the point of concurrence of the

forces) and A is any point in the plane not on the 2/-axis.

Proof. If the equation 2^= is satisfied, the resultant cannot

have a component along the z-axis, that is, the resultant, if there

be one, must lie along the ?/-axis. If the equation 2AfA = is sat-

isfied, the resultant, if there be one, must pass through the point A.

It is impossible for a force to satisfy the two equations simultane-

ously, and hence if both of the equations are satisfied the system
is in equilibrium.

A third set of equations of equilibrium for a coplanar, con-

current force system is as follows :

(C)

where A and B are any two points in the plane of the forces, pro-

vided that the line joining A and B does not pass through the point

at which the forces are con-

current. The proof that

theseequations are sufficient

to insure equilibrium will

be left to the student.

47. Lami's Theorem.

When a coplanar, concur-

rent force system consists

of only three forces, the

equations of equilibrium

may be expressed in a spe-

cial form known as Lami's

theorem. Let Fig. 72 (a) represent three concurrent forces in

equilibrium. The force polygon for the three forces is shown

FIG. 72.
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in Fig. 72(6). Since each side of a triangle is proportional to

the sine of the opposite angle, the following equations are

obtained from the force polygon:

That is,

sin (TT ai) sin (TT 0:2) sin (TT as)

XT' E* fr i r 2 "3

sm sin 0:2 sin 0:3'

Hence, if three concurrent forces are in equilibrium, the magnitude
of each force is proportional to the sine of the angle included

between the action lines of the other two. This statement is

known as Lami's theorem.

48. Three Forces in Equilibrium. If three forces are in equilib-

rium the forces must be coplanar and either concurrent or parallel.

In order that the three forces shall be in equilibrium, the resultant

of any two of the forces must be a force which is collinear with the

third force, of equal magnitude, and of opposite sense. Now,
the resultant of the two forces will have the same line of action as

the third force only if the two intersect on the action line of the

third force, or if the two forces are parallel to the third force.

Hence, the three forces must be either

concurrent or parallel. This principle

is of considerable importance, as it

simplifies the solution of many prob-

lems. Consider, for example, the

crane shown in Fig. 73 (a). The forces

acting on the crane are the reaction

Ri at the upper end (assumed to be

horizontal), the load W, the weight of

the crane (not shown), and the reac-

tion R2 at the lower -end, the direction

of the latter force being unknown.

The load W and the weight of the crane may be replaced by a

single resultant force R, and the system will then consist of three

forces RI, R2, and R. Since the three forces must be concurrent,

#2 must pass through the point of intersection of Ri and R, and

hence its action line is determined as indicated by the dotted line.

The magnitudes of the reactions RI and R^ may now be deter-

mined by drawing the force polygon (Fig. 736) . The force polygon

(a)

FIG. 73.
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is constructed by drawing AB to represent the known force R and

by drawing from A and B lines parallel to Ri and R2, respectively,

which intersect at C. The reaction R\ is represented by CA and

#2 is represented by BC.

ILLUSTRATIVE PROBLEMS

66. A body is held in equilibrium by a system of three concurrent forces

as shown in Fig. 74. Find the values of P and 6.

FIG. 74.

Solution. The equations of equilibrium are,

FX =P cos 0-10 cos 30 -20 cos 45 = 0.

/. P cos 8 = 8. 66+14.14 = 22.80 Ib

?FV
=P sin 0+10 sin 30 -20 sin 45 =0.

/. P sin = 14.14-5.00 = 9.14 Ib

By dividing (2) by (1), 6 may be obtained. Thus,

9.14

(1)

(2)

tan 0=; .401.
22.80

.'. = 21 50'.

By squaring and adding (1) and (2) P may be obtained. Thus,

P2 = (22 .80)
2+ (9. 14)

2 = 603.5,

/. P = 24.51b.
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66. Fig. 75(a) represents a lower panel point of a pin-connected Pratt_

truss. The stresses in two of the members are 1000 Ib. and 3000 Ib. as shown.

Find the stresses, P and Q, in the other members.

3000 Ib.

1 in. =2000 Ib.

3000 Ib.

Algebraic Solution. -

From (2),

Substituting in (1),

C CD^Q=20001b. D

(6)

FIG. 75.

cos 45 -3000 = 0,

P sin 45 - 1000 = 0.

4
sm 45

Q = 3000 -1414 cos 45.

= 3000 -1000 = 2000 Ib.

(D

(2)

Graphical Solution. The problem may be solved graphically by con-

structing a closed force polygon as shown in Fig. 75(6). The polygon is con-

structed as follows: Vectors AB and BC are drawn to represent the 3000-lb.

and 1000-lb. forces respectively. A line is then drawn from C parallel to the

direction of the force Q and a line is drawn from A parallel to the direction of

the force P. These lines intersect at D. Q is then represented by CD and
P by DA. The magnitudes of Q
and P are found by measuring,

according to the scale indicated,

to be 2000 Ib. and 1410 Ib., respect-

ively.

PROBLEMS

67. A sphere weighing 100 Ib.

rests between two smooth planes

as indicated in Fig. 76. Find the

reactions of the planes on the

sphere.

Ans. #i = 51.7 Ib.; #2 = 73.1 Ib. FIG. 76.
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58. A body weighing 80 Ih. is supported by means of a number of cords

as shown in Fig. 77. Find the tensions in the cords and the value of 6.

.00 Ib.

75 lb

80 ib.

FIG. 77. FIG. 78.

69. Two bodies weighing 75 lb. and 100 lb. rest on a smooth cylinder and

are connected by a cord as shown in Fig. 78. Find the reactions of the cylin-

der on the bodies, the tension in the cord, and the value of 6.

4. PARALLEL FORCES IN A PLANE

49. Equations of Equilibrium. A coplanar, parallel force

system is in equilibrium if the forces of the system satisfy the

equations,

where A is any point in the plane of the forces.

Proof. According to Art. 26, the resultant of a coplanar,

parallel force system which is not in equilibrium is either a force

or a couple. If the resultant is a force the magnitude, R, is

expressed by the equation R = 2F, and if the resultant is a

couple the moment, C, is expressed by the equation C = ^M.
If 2F= Q the resultant is not a force and if 2MA = Q the

resultant is not a couple. Hence, if both equations are satisfied

the resultant of the force system can be neither a force nor a

couple and therefore the system is in equilibrium. Two equa-

tions, then, are necessary and sufficient to ensure that the forces

are in equilibrium. In other words, there are only two indepen-
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dent equations of equilibrium for a system of parallel forces in ar

plane.

Another set of equations of equilibrium for a system of coplanar,

parallel forces may be written as follows:

where A and B are any two points in the plane, provided that the

line connecting A and B is not parallel to the forces of the system.

The proof that these equations are sufficient and necessary to

ensure that the forces are in equilibrium will be left to the student.

An important problem in the equilibrium of coplanar, parallel

forces is one in which the magnitudes of two forces are required,

all of the other elements of the forces being known. The graphical

solution of this problem is of particular interest. The graphical

as well as the algebraic method of solution of such a problem is

illustrated by Problem 62.

ILLUSTRATIVE PROBLEMS

60. In the steelyard shown in Fig. 79 the distance AB = 5 in.

force R acting at B and the distance BC if the steelyard is balanced.

Find the

Solution.

1

ZMB = 40X 5 - 10XBC = 0,

. D - 40X5 . .

.. BC= TTT- =20 in.

10 lb

40 Ib. d

FIG. 79.

61. A load of 1200 lb. is applied to a beam AB as shown in Fig. 80(a).
The left end of the beam is carried by a second beam CD. Find the reactions

on the second beam at C and D.
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Solution. The free-body diagrams for the two beams are shown in

Fig. 80(6) and 80(c). The equation 2MA =Q becomes

1200X9-RB X 12=0,

There is, then, a load of 900 Ib. acting on the beam CD at B. The two reac-

tions RC and RD may be found by applying either set of equilibrium equations.

Thus, using the equations 2Mc- = and SM> = 0, the two reactions may be

found as follows,

#>X10-900X6 = 0, .*. #z> = 540 Ib.

-RCX 10+900X4 = 0, .'. /ec = 3601b.

B
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Graphical Solution. In order to determine the reactions by the graphical

method, a force and a funicular polygon are constructed as shown in Fig. 82.

Since the forces are in equilibrium the two polygons must close. The three

known forces are represented by AB, BC, and CD. The right reaction will be

represented by DE, the position of the point E being as yet unknown. Obvi-

6
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65. A bar 8 ft. long is held in equilibrium by the three forces shown in

Fig. 85 and two forces acting along the lines ef and de. Find the magnitudes
and senses of the two forces.

Ans. DE = +560 Ib. EF= -740 lb.

d-

200 lb.

400 lb.

420 lb.

FIG. 85.

66. A load of 1000 lb. on the system of pulleys shown in Fig. 86 is held

by a force P. Find the magnitude of P and of the stresses in all cords.

Neglect the weights of pulleys and axle friction.

5. NON-CONCURRENT, NON-PARALLEL FORCES IN A PLANE

50. Equations of Equilibrium. A system of coplanar, non-

concurrent, non-parallel forces is in equilibrium if the forces of the

system satisfy the equations,

(A)

where x and y denote the coordinate axes and A is any point in the

plane of the forces.

Proof. If a system of non-concurrent, non-parallel forces in a

plane is not in equilibrium, the resultant of the system is either a

force having components equal to 2FX and 2FV or a couple hav-

ing a moment equal to 2MA (Art. 30). If the equation 2FX= is
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satisfied the resultant, if a force, must be parallel to the 2/-axis.~

If the equation 2FV
= is satisfied, the resultant, if a force, must be

parallel to the z-axis. A force cannot be parallel to both the

x- and ?/-axes and hence, if the first two equations are satisfied,

the resultant of the system cannot be a force. If the equation

2MA = is satisfied, the resultant cannot be a couple. Therefore,

if the forces of the system satisfy the three equations, the force

system is in equilibrium.

Another set of independent equations of equilibrium for a

non-concurrent, non-parallel system of forces in a plane may be

written as follows:

where x denotes any line or axis in the plane of the forces and A
and B are any two points in the plane, provided that the line AB is

not perpendicular to the x-axis.

A third set of equilibrium equations for the force system here

considered may be written as follows :

(C)

where A, B, and C are any three non-collinear points in the plane

of the forces.

It will be left to the student to prove that either set of equa-
tions (B) or (C) are sufficient and necessary to ensure the equilib-

rium of a coplanar, non-concurrent, non-parallel system of forces.

Any one of the above sets of equations, therefore, may be used

to determine the unknown elements of a coplanar, non-concurrent,

non-parallel force system which is in equilibrium, provided there

are not more than three such unknown elements or quantities.
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ILLUSTRATIVE PROBLEMS

67. A ladder rests with its upper end against a smooth vertical wall and
its lower end on a smooth horizontal floor as shown in Fig. 87. Slipping
is prevented by means of a stop at the lower end. If the ladder weighs
50 Ib. and is of uniform cross-section, find the reactions of the wall, the floor,

and the stop, on the ladder.

Solution. A free-body diagram of the ladder is shown in Fig. 87. Since

the wall and floor are smooth, the reactions at these surfaces are perpendicular
to the surfaces and since the ladder has a uniform cross-section, its weight
acts at the center of the ladder. Let the length of the ladder be denoted by I.

The solution is effected by applying the three equations of equilibrium as

follows :

VMA =RvXl sin 60-50XZ/2
cos 60 =

0,

/. Ri = 25 cot 60 = 14.42 Ib.

#3 = #i = 14.42 Ib.

2^=^2-50 =
0,

|R
2

FIG. 87.

68. The wall bracket shown in Fig. 88 (a) consists of a horizontal member

AB, which is attached to the wall at A by means of a smooth pin, and a rod

CB, which is attached to the member AB at B and to the wall at C by means

400 Ib. (a)

3"
1000 Ib.

400 Ib.

(6)
r

!000tt>.

FIG. 88.

of smooth pins. Find the tension, T, in the rod and the pin reaction, R, at

A if the weights of the members are neglected.

Solution. A free-body diagram of the member AB is shown in Fig. 88(6)
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There are three unknown quantities in the force system, namely, T, R, and 0.

The three independent equations of equilibrium are,

(1)2MA = 7
1 Xl2sin30-1000XlO-400X4 = 0,

/. T = 19301b.,

VFX =R cos d-T cos 30 =0,

/. R cos 5 = 1930 cos 30 = 1670,

?FV =R sin 6+T sin 30 -400 -1000=0,

/. fl sin = 1400 -1930 sin 30 =435

By solving equations (2) and (3) the following results are obtained,

# = 17301b.

= 14 35'.

(2)

(3)

PROBLEMS

69. A bar (Fig. 89) leans against a smooth vertical post and rests with its

lower end on a smooth horizontal plane, slipping of the lower end being pre-

vented by the cord as shown. If the weight of the bar is neglected, find the

reactions of the plane at A and of the post at B and also find the tension in the

cord.

Ans. flA =10.91b. RB = 51.1lb. T = 32.81b.

FIG. 90.

70. In Fig. 90 is shown a bell-crank mounted on a smooth pin at O and

subjected to a force of 80 Ib. at A as shown. Find the pin pressure at O and

the reaction at B. Solve algebraically and graphically.

51. Graphical Solution of a Typical Problem. Any of the

problems which involve a balanced non-concurrent, non-parallel

force system in a plane in which there are not more than three

unknown elements may be solved graphically as well as alge-
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braically. A graphical method of solution for one typical problem
will here be discussed. In the force system considered all of the

forces will be assumed to be known completely except two, the

action line of one of these two being known and also one point on

the action line of the other. The three unknown elements, then,

are the magnitude of one of the two forces and the magnitude and

the direction of the other.

As an example of such a force system, consider the forces

acting on the beam shown in Fig. 91 (a). The unknown ele-

ments are the magnitude of the vertical reaction at the left end

of the beam and the magnitude and the direction of the reaction

at the right end of the beam.

V-'-"

e\a

(a)

FIG. 91.

The force and funicular polygons are shown in Fig. 91. In

constructing the force polygon, AB, BC, and CD are first drawn

to represent the three known forces (Fig. 916). Since the mag-
nitude of the force DE is unknown the location of E is not known,
but it must lie in a vertical line through D. The rays are then

drawn from after which the funicular polygon is constructed

(Fig. 9 la). Since the point N is the only known point on the

action line of the force EA, the funicular polygon must be started

at this point. The strings oa, ob, oc, and od are drawn as shown.

Since the string oe must intersect od on de and must also intersect

oa on ea its position is determined. The ray OE must be parallel

to the string oe. Hence E is the point of intersection of a vertical

line through D and a line through parallel to oe. DE then rep-

resents the left reaction, and the right reaction is represented in

magnitude and in direction by EA.
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52. Choice of Moment-centers and of Directions of Resolu-

tion. In applying the three equations of equilibrium to a balanced

force system, of the type here considered, in winch there are not

more than three unknown elements, the solution of the problem

may frequently be simplified by selecting the moment-centers and

the directions of resolution in a particular way. For example, in

Fig. 92 is represented a portion of a roof truss which is held in

equilibrium by the five forces shown, of which P and R are known

completely and FI, F2 ,
and F% are unknown in magnitude. By

selecting C, the intersection of the two unknown forces F2 and ^3,

as a moment-center and applying the equilibrium equation

SA/c= 0, the force FI may be found from the one equation. Like-

wise by choosing D as a moment-center and applying a second

equation of equilibrium, SMz>= 0, the force FS may be found

directly. Similarly, F2 may be found by selecting A as the

moment-center and applying the third equilibrium equation,
2MA = Q. Thus by the proper selection of moment-centers each

of the three equations involves one unknown quantity only.

X
\

F3 . \B

FIG. 92. FIG. 93.

As another example, consider a body which is held in equi-
librium by the six forces shown in Fig. 93, all of which are com-

pletely known except FI, F2 ,
and ^3, which are unknown in mag-

nitude. The forces FI and F% are parallel. By selecting B as the

moment-center, the force FI may be found from one equation,

namely, 2MB= Q. Likewise, F3 may be found from the single

equation ^MA =0, where A is the intersection of the two forces

FI and F2 . Further, F2 may be found from the single equation
2FV

= provided that the ^/-direction is chosen perpendicular to

the forces FI and F%.
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6. EQUILIBRIUM OF TRUSSES, CRANES, AND CABLES

53. Stresses in Trusses. Important examples of balanced

coplanar force systems are met in the analysis of the forces in

trusses, cranes, and flexible cables. In determining the stresses

in pin-connected trusses, only those trusses will here be con-

sidered for which the following assumptions may be made :

(1) The members of the truss lie in one plane and hence the

forces acting on the truss and the stresses in the members form a

coplanar force system.

(2) The members of the truss are connected at their ends by
means of smooth pins.

(3) The loads on the truss act only at the pins, that is, at the

ends of the members.

(4) The weights of the members are neglected, since the stresses

due to the weights are small in comparison with the stresses due to

other loads.

For practical purposes, in computing the stresses in many
structures such as roof and bridge trusses, the structures may be

considered to be in agreement with the above assumptions.

According to assumptions (2) and (3), the only forces acting

on any member are the reactions of the smooth pins at the ends of

the member, and since the member is in equilibrium under the

action of these two forces, the two forces must be collinear, and

hence the action line of each force must coincide with the axis of

the member. Therefore the stress in each member is a direct or

axial pull or push (tension or compression). Thus in the truss

shown in Fig. 94 (a), the member AB is acted on by the pin pres-

sures Fi, FI at the ends of the member which cause a compressive
stress in the member (Fig. 946), while the pin pressures ^2, F%
which act at the ends of member AC cause a tensile stress in the

member (Fig. 94c). The stress S, then, in any member is numeric-

ally equal to the pressures of the pins at the ends of the member,
as is indicated in the freebody diagrams of the two parts of AC
(Fig. 94d). The kind of stress (tension or compression) in a mem-

ber, therefore, is represented by arrows which show the directions

of the pressures of the member on the pins. Thus, a compressive

stress is represented by arrows along the member directed towards

the ends of the member, etc. Thus, the stress in member AC (Fig.
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94a) is shown to be tension and the stress in member AB is shown

to be compression. Another convention commonly used to indi-

cate the kind of stress in a member is to represent a tensile stress

by a plus sign and a

compressive stress by a

negative sign. In the

analysis of the stresses

in a pin-ended structure

two rather distinct meth-

ods may be used, name-

ly, the method of joints

and the method of sec-

tions.

54. Method of Joints.

By the method of

joints -the stresses in

the members of a truss

are found by the solution

of the concurrent force

systems which act at

the pins, and hence not FIG. 94.

more than two unknown

pin pressures at any joint or pin can be determined. For

example, in the truss shown in Fig. 94(a) the pin at A is in

equilibrium under the influence of three forces (Fig. 95a) , namely,

the reaction Ri, which may be found if the dimensions of the truss

and the loads carried by the truss are known, and the two unknown
forces (stresses) FI and F% which

the members AB and AC exert

on the pin. By using the two
F4 equations of equilibrium for a

(a) (6) system of concurrent forces in a

I R ! plane thetwo unknown forcesmay
FIG. 95. be found. The pin at C may now

be considered. This pin is in

equilibrium under the influence of three forces (Fig. 956) namely,
the stress F% in the member AC which has just been determined,

and the two unknown stresses F% and F, in the members CB and

CE. These two unknown stresses may be determined from the

two equations of equilibrium. The pin at B may next be con-

A
I

|
C

(ZO
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sidered, and so on until the stresses in all of the members have

been determined. As already noted, in using this method the

joints must be taken in such an order that there are not more than

two unknown stresses at the joint considered, since there are only
two equations of equilibrium for a concurrent force system and
hence only two unknown stresses may be determined. In con-

sidering the equilibrium of the forces at any joint the senses of the

two unknown forces are not always evident. When such is the

case the forces may be assumed to be directed away from the joint,

that is, the stresses may be assumed to be tensions. If, after

applying the equations of equilibrium and solving for the two

unknown forces, the sign of a force is found to be positive it is

evident that the assumed sense of the force is correct, whereas a

negative sign indicates that the sense of the force is opposite to

that assumed. In most problems, however, the sense of each

of the unknown forces is evident from inspection. The deter-

mination of the stresses in a truss by the method of joints often

requires a large number of calculations with a corresponding chance

for error. Thus, if the stress in a single member near the center

of the truss is required it is necessary to start at the end of the

truss and consider the equilibrium of the joints in order until a

joint is reached which involves that particular member. By the

method of sections (Art. 55) the stress in a single member may
frequently be found by use of a single equation.

55. Method of Sections. In determining the stresses in the

members of a pin-connected truss by the method of sections a

section is passed through the truss so that it cuts not more than

three members in which the stresses are unknown. The part of

the truss on either side of this section is then treated as a free

body in equilibrium under the action of the known external forces

which act on that part and the forces (stresses) which the members

of the other part exert on the part considered. It will be noted

that the method of sections involves a non-concurrent force system
and hence there are three equations of equilibrium from which

three unknown forces may be found. Consequently the section

must not cut more than three members in which the stresses are

unknown. As a rule any one of these three unknown forces

(stresses) may be found by using one equilibrium equation as dis-

cussed in Art. 52. For example, consider the truss shown in

Fig. 94. In order to determine the stress in the member DG con-
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sider the section which cuts the members DF, DG, and EG. The

free-body diagram of the portion of the truss to the left of this

section is shown in Fig. 96(a). This part of the truss is in equi-

librium under the action of six forces; namely, Ri, PI, and P2 ,

which are assumed to be known, and the unknown stresses in the

members DF, DG, and EG. The stress (F6) in the member DG
may be obtained from the equation 2Fy

=
Q, since neither of the

other two unknowns will appear in this equation. Similarly the

stress (^5) in the member DF may be obtained from the single

equation 2MG=Q and the stress (^7) in the member EG may be

obtained from the single equation 2MD = 0.

(a}
(b)

FIG. 96.

It is important to note that the forces ^5, ^6, and F-? are

regarded as internal forces (stresses) when the equilibrium of the

truss as a whole is considered, but that they are regarded as

external forces when the part of the truss on one side of the section

is considered. In considering the equilibrium of the part of the

truss on the left of the section (Fig. 96a) only the external forces

which act on the left part are involved and hence the stresses in

the members of the left part that are not cut by the section do

not affect the values of FS, FQ, and F?. Thus the left part may
be thought of as a solid block as indicated in Fig. 96(6) on which

the forces 5, FQ, and F? act together with Ri, PI, and PI, the six

forces holding the block in equilibrium.

ILLUSTRATIVE PROBLEM

71. Determine the stresses in the members of a Howe truss when loaded

as shown in Fig. 97 (a).

Solution. The stress in any member will be denoted by the same letters

as the member itself. Thus, the stress in member AB will be denoted by
AB. By considering the equilibrium of the truss as a whole, the reactions
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40,000 lb.

20.W
20,000 lb.

20,000 lb.

CE E EG

(d)

FIG. 97.
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RI and R2 are found to be 40,000 Ib. To find the stresses in members AB and

AC the joint method is used. A free-body diagram of joint A is shown in

Fig. 97(6). By applying the equations of equilibrium for a concurrent force

system, the stresses in the two members are found as follows:

2MB = -40,OOOX20+ACX30 = 0,

.'. AC = i -!^*
2

- = 26,667 Ib. (tension)
oO

VFy^-AB cos +40,000 = 0.

4-0 000
/. AB =~^- =40,000 sec = 48,000 Ib. (compression)

To find the stresses in members BC and BD let a section aa be passed

(Fig. 97c). The forces acting on the part of the truss to the left of the section

form a non-concurrent force system. But since the stress in member AC is

already known only two of the three equations of equilibrium are needed.

Thus,

SMC = - 40,000 X 20+BDX 30 = 0,

Dn 40,000X20 ,

. . BD = ^- = 26,667 Ib. (compression)

2FV
= 40,000 -20,000-50 = 0,

.*. BC = 20,000 Ib. (tension)

In a similar manner the stresses in CD and CE may be found by the

method of sections. By considering the part of the truss to the left of sec-

tion 66 (Fig. 97d), the stresses in the two members are found as follows:

-40,000X40 +20,000X 20+CEX 30 = 0,

/. CE= iz?Wj9??
= 40,000 Ib. (tension)oU

2FV
= 40,000 -20,000+CD cos 0=0,

/. CD= -20,000 sec ^= -24,000 Ib. (compression)

It will be noted that all of the stresses except CD (Fig. 97rf) are assumed
to act in the correct directions, and hence are found to be positive whether

they are tensile or compressive. The stress in CD is assumed to be tension

and hence the negative sign indicates that it is compression.
In considering the equilibrium of the forces which act on the pin E (Fig.

97e), it is evident that the stress in DE is zero, and that EC equals EG. Fur-

ther, since the truss is symmetrical with respect to the center line DE and the
loads are also symmetrical with respect to this line, it is obvious that the
stresses in the members of the right half of the truss are equal to the stresses
in the corresponding members of the left half.
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PROBLEMS

72. Find the stresses in the members of the Warren truss shown in Fig. 98.

Ans. AB= -4620 Ib. DB= -3460 Ib.

4000 Ib.

2000 Ib.

FIG. 98.

73. Find the stresses in the members of the Pratt truss shown in Fig. 99

in which the loads P are each 10,000 Ib.

Ans. AB = -30,000 Ib. EC = +10,000 Ib. BD = -26,670 Ib.

FIG. 99.

74. Find the stresses in the members of the Howe truss shown in Fig. 100.

Ans. AB= -12.700 Ib. C=-30001b. D=-90001b.

FIG. 100.
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75. In the Fink truss shown in Fig. 101 BC is perpendicular to AD and R
is the mid-point of AD. Find the stresses in the members.

Ans. C= -1730 Ib. AB= -6000 Ib.

12000 Ib.

2000 Ib. 2000 Ib.

FIG. 101.

56. Graphical Analysis of Trusses. The graphical method of

analysis of framed structures is sometimes simpler than the

algebraic method. This statement is true particularly when the

form of the structure is such that a considerable amount of cal-

culation is necessary to determine the directions and moment-arms

of the forces involved. The graphical method consists essentially

in constructing the force polygons for the concurrent forces at the

joints and superimposing these polygons. The method will be

explained in detail with reference to the Pratt truss shown in

Fig. 102 (a). It will be assumed that the loads carried at the upper

panel points are equal. It is convenient to use the Bow system of

notation (Art. 7). In this system the regions on either side of

the action line of a force (either external or internal) are denoted

by numbers or letters as shown in Fig. 102 (a) and the force is

denoted by the two numbers or letters adjacent to the action line

of the force. For example, the left reaction is denoted by Xi-Y;
the load at the upper panel point at the left end of the truss by
Xi-Xz; the stress in the diagonal in the second panel by 2-3;

the stress in the lower cord at the left end of the truss by
F-l; etc. The order of the numbers or letters denoting an

external force, or an internal stress in any member, may be reversed.

Thus the stress in the diagonal in the second panel may also be

denoted by 3-2. The force polygon shown in Fig. 102(6) is con-

structed as follows: The load line XiX^X^X^X^X^ is first laid off.

Since the loads are symmetrical, the reactions will be equal,

and hence Y will be midway between the points Xi and XQ.
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Consider now the three concurrent forces at the lower left-hand

panel point. Of these three forces the left reaction, Y-X\, is com-

pletely known and the directions of the other ,two, X\-\ and

1-Y, are known. Since these three forces are in equilibrium,

their force polygon must close. Hence, to determine the mag-
nitudes of the last two forces a line is drawn in Fig. 102(6)

through Xi parallel to Xi-1, and a line is drawn through Y par-

allel to 1-Y. These lines intersect in the point 1, and the mag-
nitudes of the stresses are indicated by the lengths of the lines

Xi-1 and 1-Y in the force polygon. It will be noted that the

pressure of the member X\-l on the pin at the lower end is down-

ward to the left and hence the member is in compression.

i

FIG. 102.

As soon as the stresses in the various members are found

arrow-heads should be placed on the members indicating whether

the stresses are tensions or compressions. The second lower panel

point should next be taken. The stress in the member Y 1 is

now known and in order that the polygon for this joint shall close

it is evident that the point 2 must coincide with 1. Therefore

the stress in 12 is zero and the stress in 2 Y is the same as the

stress in Y-l. The first upper panel point can now be taken and

the stresses in .XV-3 and 3-2 may be found. The forces at the

remaining joints may be found in a similar manner. The student

should follow through the construction (Fig. 1026) and build up
the complete polygon.
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ILLUSTRATIVE PROBLEM

76. Find the stresses in the members of the truss shown in Fig. 103 (a).

The members X^-l and 2-3 are parallel and the members Xi~2 and 7-1

are parallel.

30000 lb.

^^\
\
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78. Find, by the graphical method, the stresses in the members of the

truss shown in Fig. 105, the value of P being 10,000 Ib.

FIG. 105.

57. Cranes. It was stated in Art. 53 that in the analysis of the

forces which act on the members of a crane balanced coplanar

force systems are involved. The loads on cranes, unlike those on

trusses, are not applied at the pins only. That is, assumptions

(2) , (3) and (4) of Art. 53 may not always be made in the anal-

ysis of the forces acting on cranes. The force system acting on

a member of a crane, therefore, includes forces other than the

two pin pressures at the ends of the member, and hence the stress

in a crane member, in general, is not a direct axial tension or com-

pression as is the case in a truss. In order to calculate the stress

in a crane member a knowledge of the subject of Strength of

Materials is needed, and consequently the stresses in crane mem-
bers will not, in general, here be found. The main problem here

considered in connection with cranes, therefore, is that of deter-

mining only the forces acting on the various members of the

crane. Since the stresses in the members of a crane are not single

forces directed along the axes of the members, the method of

sections as used in the preceding articles cannot be employed.
The general method of procedure in the analysis of the forces

acting on crane members will be first to consider the equilibrium
of the structure as a whole and determine the external reactions,

and then to consider the equilibrium of the various members

separately and determine the forces (pin pressures, etc.) which

act on the separate members.
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ILLUSTRATIVE PROBLEM

79. In the crane shown in Fig. 106 the post AD weighs 1200 Ib. and the

boom BE weighs 1000 Ib. The member CE is a cable the weight of which

will be neglected. The reaction at D will be assumed to be horizontal. Find

the reactions at A and D, the pin reaction at B, and the tension in the cable CE.

6000 Ib.

(W

FIG. 106.

Solution. First consider the equilibrium of the entire crane, a free-body

diagram of which is shown in Fig. 106(a). The reaction at D will be denoted

by D. The reaction at the pin A will be denoted by A and, for convenience,
will be resolved into its horizontal and vertical components which will be
denoted by A x and A y . The unknown reactions are obtained by applying
the equations of equilibrium as follows:

VMA = 20D - 6 X 1000 - 12 X 6000 = 0,

=A y
- 1200 - 1000- 6000 = 0,
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V(3900)2+(8200) 2 = 9075 Ib.

= 64 35'.

100

Whence,

and,

Next consider the equilibrium of the member BE. The forces acting on this

member are four in number; namely, the tension in CE which will be denoted

by CE, the load of 6000 Ib., the weight of the member, and the pressure of the

pin at B on the member, as shown in the free-body diagram (Fig. 1066) . The
last force is resolved into its horizontal and vertical components as shown in

the free-body diagram. By applying the equations of equilibrium the un-

known quantities may be found as follows:

= 9 XC#-6X1000 -12X6000=0,

*ZFX=BX-CE=Q,

2FV=BV
- 1000- 6000 = 0.

Whence,

and,

80. Determine the forces acting on the members of the crane shown in

Fig. 107 (a). Neglect the weights of the members.

1000 Ib. H
15~~ ~~*5

Y

(6)

1000 Ib.

Fio. 107.
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Solution. Consider first the equilibrium of the entire crane, a free-body

diagram of which is shown in Fig. 107 (a). By applying the three equations

of equilibrium, the unknown quantities may be found. Thus,

-C# cos 30 =
0,

.'. Ai, = 1000+1300 = 23001b.

Whence,

A =V (750)
2+ (2300)

2 = 2420 Ib.

and,

Consider next the equilibrium of the member BH. The forces acting on

BH are shown in Fig. 107(6) . From the equations of equilibrium the unknown

quantities may be found as follows :

ZMH= 10.6XCD-30X 1000 = 0,

2FX=HX-CD cos 45 =
0,

/. Hx= 2830X .707 = 2000 Ib .

2FV
= -Hy+CD cos 45-1000 = 0,

/. Hy
= -1000+2830X707 = 1000 Ib.

Whence,

H = V(2000) 2+(1000) 2 = 2240 Ib.

and,

PROBLEMS

81. In the crane shown in Fig. 108 the post AE weighs 1600 Ib. and the

member CH weighs 1200 Ib. The remaining members are cables the weights
of which may be neglected. The member CH passes through a slot in the

post AE. Determine the external reactions, and the tensile stresses in the

members BC, CD, and DH. Assume the reaction at E to be horizontal and
that there is no reaction between CH and AE
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82. The crane in Fig. 109 is in equilibrium under the action of the two
loads shown and the reactions at B and A, the reaction at B being horizontal.

Find the reactions at A and B and the tension in the member DF. Find also

the pressure of the pin at C on the member CF.

Ans. = 52001b. DF = 15400 Ib.

I

6000 Ib.

FIG. 108. FIG. 109.

58. Flexible Cables. In the following two articles the equi-

librium of flexible cables or cords will be discussed. A cable is

said to be perfectly flexible when it can offer no resistance to bend-

ing. A flexible cable, then, can transmit a stress only along its

axis, that is, the stress at any point of a flexible cable is tangent
to the curve assumed by the cable. Although physical cables

and cords are not perfectly flexible the resistance they offer to

bending is generally so small that it can be neglected without

serious error. In the discussion of cables it will be assumed that

the cables are perfectly flexible and inextensible.

59. The Parabolic Cable. If a flexible cable is suspended
from two points and carries a load that is distributed uniformly

horizontally (Fig. llOa), the curve assumed by the cable is a para-

bola, as will presently be shown. In the present discussion the

points from which the cable is suspended will be assumed to be in

the same horizontal plane. An example of a cable carrying a load

which closely approximates that above indicated is the cable of a

suspension bridge, since the weight of the roadway is uniformly

distributed horizontally and the weights of the cable and hangers

are small in comparison with the weight of the roadway and
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therefore may be neglected. Another example is that of^ar

tightly stretched cable (that is, one in which the sag is small as

compared with the span) which carries no load except its own

weight, as for example, the cable of an electric transmission line,

a telegraph wire, etc. In this case the load carried by the cable

(its weight) is distributed uniformly along the curve assumed by
the cable, but since the sag is small the horizontal projection of an

arc of the curve is approximately equal to the length of the arc,

and hence the load is distributed approximately uniformly in the

horizontal direction.

2^

(6)

FIG. 110.

In the solution of problems involving the parabolic cable, use

is made of the equation of the curve assumed by the cable (para-

bola) and of equations which express relations between the span,

sag, length of the cable, tension, etc. In order to determine the

equation of the parabola a portion AB of the cable will be con-

sidered as a free body (Fig. 1 106) . A
,
the lowest point of the cable,

will be taken as the origin of coordinates and the tension at this

point will be denoted by H . The tension at any point, B, will be

denoted by T. The portion of cable AB, then, is in equilibrium
under the action of the three forces H, T, and the vertical load

wx which acts through the point D midway between A and C.

Since these three forces are in equilibrium they must be concurrent,
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and hence the action line of T passes through D. The equa-
tions of equilibrium are:

2FX=T cos a- PI = 0, (1)

2Fv=Tsma-wx = Q (2)

By dividing (2) by (1), the equation obtained is,

wx
tan a = -7=-.

ti

But,

tana = ^.
x

Hence,
2y _wx
~x

=
TT'

That is,

The curve, then, is a parabola with its vertex at A and its axis

vertical. By squaring and adding (1) and (2) and extracting the

square root of each side of the resulting equation, the following

expression for T is found,

(4)

In applying the above equations we are concerned with the tension

at the point of support since at this point the tension is a maximum.

Hence, if the span be denoted by a and the maximum value of y

(that is, the sag) by /, equations (3) and (4) reduce to

/g (5)

and

in which T represents the tension at the points of support.

The length of the cable will now be determined in terms of the

span and sag. In any curve the length of an arc is obtained from

the equation

From equation (3) , -7- = -77-.
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Hence, if the length of the cable be denoted by Z, we have

a

r
Substituting for H from equation (5), this equation becomes

The exact expression for Z, obtained from this integral, involves a

logarithmic function and is difficult to apply. A simpler expres-

sion for I may be obtained by expanding the expression under the

integral into a series and integrating the series term by term.

This method leads to the following equation,

[S/A2
^9//\4 "I

1+
l(a

/

) "I + ' '

'I
..... (7)

Since the sag ratio f/a is generally small, the series converges

rapidly and it is sufficient in most practical computations to use

only the first two or three terms of the series to obtain a close

approximation to the value of I.

ILLUSTRATIVE PROBLEM

83. The horizontal load carried by each cable of a suspension bridge is

1000 Ib. per ft. The span of the bridge is 800 ft. and the sag is 50 ft. Deter-

mine the tensions at the ends and at the middle of the cable and also find the

length of the cable.

Solution. From equations (5) and (6),

1000X(800) 2

nm
8X50

=
1>600 >

00

and,

7
7 =
^XlOOOX800^/l+^5^1_2

= i )650>o001b.

The length of the cable may be determined by using equation (7) . Thus,

2 QO / ^0 \ 4 ~1-f] =808 -24ft -
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PROBLEMS

84. A telegraph wire weighing 0.1 Ib. per foot is stretched between

two poles 150 ft. apart. The tension in the wire at the insulators (which

are in the same horizontal plane) is 500 Ib. Find the sag, assuming
that the weight of the wire is uniformly distributed horizontally. Find also

the length of the wire.

Ans. /=0.562 ft. 1 = 150.005 ft.

85. Each cable of a suspension bridge carries a load of 1200 Ib. per foot

uniformly distributed along the horizontal. The span is 1000 ft. and the sag

is 50 ft. Find the maximum stress in the cable and the length of the cable.

86. A cable 100 ft. in length is suspended from two points in a horizontal

plane which are 99 ft. apart. If the cable carries a load that is uniformly

distributed along the horizontal what is the sag of the cable?

Ans. /= 6.10 ft.

60. The Catenary. The curve assumed by a flexible cable of

uniform cross-section which is suspended from two points, and

which carries no load except its own weight (Fig. Ill a), is called a

FIG. 111.

catenary. The load which causes a cable to assume the form of

a catenary, then, differs from that which causes the form of a

parabola in that the load is distributed uniformly along the cable

in the former case, whereas in the latter case the load is distrib-

uted uniformly horizontally.

The discussion of the catenary is of practical importance only



THE CATENARY 107

for cables in which the sag ratio is large, since for a small ~so,g

ratio the curve assumed by a cable may be regarded with small

error as being a parabola, as discussed in the preceding article.

In order to determine the equation of the catenary and also

to derive certain important relations between such quantities as

the sag, span, length of cable, tension, etc., the equilibrium of a

portion, OA, of the cable (Fig. 1116) will be considered, being the

lowest point of the cable and A any other point. The point

will be taken as the origin of coordinates, the weight of the cable

per unit of length will be denoted by w, and the length of the arc

OA will be denoted by s. The portion, OA, of the cable is in

equilibrium under the influence of three forces, namely, the ten-

sion H at the point 0, the tension T at the point A, and the weight

ws. The angle which T makes with the horizontal will be denoted

by 6. The equations of equilibrium for the concurrent force

system are,

From (1) and (2) we have,

ws s , H ,,
tan 6= 77-

= where = c (a constant) .He w
Hence,

or s = c-r (3)

This equation is the intrinsic equation of the catenary. The
cartesian equation will now be found. In any curve,

Hence, from (3), the following equat'on is obtained,

ds I c2 _Vs2+c?
~r~ \i * i o

--
ay \ s2 s

Therefore,
, sds

Integrating,
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If now the origin is transferred to 0', where 00' = c, then y c when
s= and hence A=0. The last equation, therefore, becomes,

y=Vs2+c2
. (4)

Eliminating y from (3) and (4),

, cds
dx= -

Integrating this equation,

x+B = c logc (s+Vs2+c2
).

Since s= when x= Q, B = c loge c and hence the last equation

becomes,

, s+Vs2+c2
. y-\-s

X=--C\Oge
- - = C\Oge -. ... (5)

C C

Equation (5) can also be written in the form,

X

c^ (6)

By inverting each side of (6) and rationalizing the denominator of

the left side, the following equation is obtained,

(7)

Adding (6) and (7) and using (4),

c - -- x
y=-~(e

c e c)=ccosh- (8)

This is the cartesian equation of the catenary. Subtracting (7)

from (6) we have,

s=^(e~
c -e~~c)=csmh- (9)

c

Squaring and adding (1) and (2) we have,

T2 =H2+w2s2 =w2c2+w2s2 =w2
y
2

.

Hence,

T=wy (10)
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Summarizing, then, the following important properties of the

catenary may be stated :

(1) The horizontal component of the stress at any point is con-

stant and equal to we.

(2) The vertical component of the stress at any point is equal

to ws.

(3) The total stress T at any point is equal to wy.

In engineering problems which involve the catenary we are

concerned particularly with the tension at the points of support,

since at these points the tension is a maximum. Hence, in the

above formula, T will be regarded as the tension at the points of

support and the values of x, y, and s will be regarded as the values

of the variables at these points. Therefore, if the length of the

cable be denoted by I,
the span by a, and the sag by /, then the

values of x, y, and s in the above equations become
^,
/+c, and

^,

respectively.

It may be noted that when the sag of the catenary is small the

curve very closely approximates a parabola, since the load is

approximately uniform horizontally. The formulas of Art. 59

are generally used when the sag is small, since they are much easier

to apply and the results obtained are sufficiently accurate for prac-

tical purposes. When the sag is large as compared with the span,

however, the above formulas should be used.

Since the relations between the quantities as expressed by the

above equations are complicated, many of the problems which

involve the catenary can be solved only by trial.

ILLUSTRATIVE PROBLEM

87. A cable weighing 4 Ib. per foot is stretched between two points in the

same horizontal plane. The length of the cable is 600 ft. and the tension at

the points of support is 2000 Ib. Find the sag and also the distance between

the points of support.

Solution. From equation (10),

T 2000
?/= = T = 500 ft.

w 4

From equation (4),

c =V^^= V(500) 2-
(300)

2 =400 ft.

Hence, /=j/-c = 500-400 = 100ft.
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From equation (5),

400 loge

Hence,

PROBLEMS

88. A cable 100 ft. long is suspended between two points which are in

the same horizontal plane and 80 ft. apart. What is the sag at the mid-point

of the cable?

Ans. f= 26.54 ft.

89. A cable weighing 2 Ib. per foot is stretched between two points in the

same horizontal plane which are 150 ft. apart. If the sag is 5 ft. what is the

length of the cable and the tension at the points of support.

Ans. 1 = 150.44 ft. T^llSOlb.

7. CONCURRENT FORCES IN SPACE

61. Equations of Equilibrium. A non-coplanar, concurrent

system of forces is in equilibrium if the algebraic sums of the com-

ponents of the forces along any three non-coplanar lines through

the point of concurrence of the forces are equal to zero. As a

matter of convenience the three lines will be taken as a set of

rectangular axes through the point of concurrence, in which case

the equations of equilibrium may be written :

Proof. The resultant of a concurrent system of forces in

space, if not in equilibrium, is a force (Art. 32). In order to sat-

isfy the equation 2/^=0, the resultant, if there be one, must lie in

the 2/z-plane. In order to satisfy the equation ^Fy
=

0, the result-

ant must lie in the zz-plane, and in order to satisfy the equa-

tion 2^2= 0, the resultant must lie in the :n/-plane. It is

impossible for a force to lie in the three planes simultaneously and

hence, if the forces of the system satisfy the above equations, the

resultant cannot be a force and, therefore, the system must be in

equilibrium.
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ILLUSTRATIVE PROBLEM

90. The wall bracket (Fig. 112a) is composed of two flexible cables, AC
and BC, and a stiff rod, DC, which is pin-connected at D and C. The points

A, B, and C lie in a horizontal plane and A, B, and D lie in a vertical plane, D
being vertically beneath E, the mid-point of AB. Find the stresses in the

three members due to the 100-lb. load shown.

IY

Solution. The pin C is in equilibrium under the action of the 100-lb. load
and the reactions of the three members, these reactions being equal to the

stresses in the corresponding members. The free-body diagram of the pin C
is shown in Fig. 112(a). By selecting axes as indicated and applying the

equations of equilibrium, the following equations are obtained :

VFV
=DC cos 45 - 100 0,

DC 100

"cos 45
141.4 Ib.

2FZ =AC sin a BC sin a = 0,

/. AC = BC.
ZFX =DC cos 45 -AC cos a.-BC cos a =

AC DC cos 45

2 cos a
141. 4X. 707

2X.894"

Hence there is a compressive stress of 141.4 Ib. in the rod DC and a tensile

stress of 55.9 Ib. in each of the cables BC and AC.
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PROBLEMS

91. A weight of 150 Ib. is suspended from hooks at points A, B, C, of a

ceiling as shown in Fig. 113. AD, BD, and CD are cords each 10ft. in length.

Find the stresses in the cords.

Ans. AD = 7l.Q8lb. BD
= 18.08 Ib. CD = 67.24 Ib.

92. Fig. 114 represents a stiff-

leg derrick. The member AC lies

in the z?/-plane and the members
BD and BE lie in vertical planes

making angles of 45 with the

z2/-plane. The weight carried is

such as to produce a tensile stress

of 5000 Ib. in the member BC.
Find the stresses in the members

AC, BD, and BE.
Ans. ^C = 56701b.

BE =BD = 4910 Ib.

150 Ib.

FIG. 113.

FIG. 114.

8. PARALLEL FORCES IN SPACE

62. Equations of Equilibrium. A system of parallel forces in

space is in equilibrium if the algebraic sum of the forces is zero,

and if the algebraic sum of the moments of the forces with respect

to each of two non-parallel lines is equal to zero, provided that

neither one of the lines is parallel to the forces of the system. It will

be convenient to select a set of rectangular axes so that one of the
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axes (the z-axis, say) is parallel to the forces. If the axes are so

selected the equations of equilibrium may be written :

Proof. The resultant of a system of parallel forces in space

which is not in equilibrium is either a force or a couple (Art. 35).

If 2F = Q, the resultant cannot be a force. If the resultant is a

couple it must lie in a plane parallel to the zz-plane in order to

satisfy the equation ^Mx 0, and in order to satisfy the equa-
tion 2MV

= Q it must lie in a plane parallel to the 7/z-plane.

A plane, however, cannot be parallel to both the xz- and yz-

planes, and hence, if the two moment equations are satisfied the

resultant cannot be a couple. Therefore if the forces of the

system satisfy the three above equations, the force system is in

equilibrium.

ILLUSTRATIVE PROBLEM

93. In Fig. 115, ABC represents a triangular plate, the sides of which are

each 2 ft. in length. It is held in a horizontal position by vertical cords at the

three vertices. A weight of 200 Ib is suspended from the point E which lies

on the median AD, the distance DE being 6 in. Find the stresses in the

cords neglecting the weight of the plate.

Solution The stresses may be found from the equilibrium equations as

follows:

= T3X2 sin 60-200X=0,

100
^771b
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PROBLEMS

94. A square table weighing 50 Ib. stands on four legs at the mid-points of

the sides. Find the greatest weight that can be placed on one corner of the

table without causing it to overturn.

95. A uniform circular plate weighing 200 Ib. is supported in a horizontal

position at three points on its circumference. Find the reactions at the sup-

ports if the points divide the circumference into arcs of 90, 135, and 135.

9. NON-CONCURRENT, NON-PARALLEL FORCES IN SPACE

63. Equations of Equilibrium. A system of non-coplanar,

non-concurrent, non-parallel forces is in equilibrium if the alge-

braic sum of the components of the forces in each of three direc-

tions is equal to zero and if the algebraic sum of the moments of

the forces with respect to each of three axes is equal to zero, pro-

vided that the directions of resolution are so chosen that lines

drawn through any arbitrary point in these three directions are

not coplanar, and that the moment axes do not lie in a plane, and

that no two of them are parallel. It will be convenient to take

the coordinate axes for the axes of resolution and for the moment

axes, in which case the equations of equilibrium may be written

as follows:

2/^=0,

Proof. The resultant of a non-concurrent, non-parallel system
of forces in space is, in general, a force and a couple (Art. 41).

If the first three equations are satisfied the resultant force must

vanish and if the last three equations are satisfied the resultant

couple must vanish. If, therefore, the forces of the system

satisfy the six equations the force system is in equilibrium.

ILLUSTRATIVE PROBLEM

96. Fig. 116(a) represents a windlass used in lifting heavy weights. The

end bearings will be regarded as smooth and the force P applied to the crank

will be assumed to be perpendicular to the axis of the cylinder and also per-

pendicular to the crank. Find the value of P required to hold the 450-lb
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weight and also find the reactions at the bearings, assuming that the crank is

inclined 30 to the vertical.

450 lb.

Solution. The coordinate axes will be taken as shown in the figure.

There are four forces acting on the windlass, namely, the weight of 450 lb.,

the force P, and the reactions at the bearings. Since the bearing reactions

are unknown in direction as well as in magnitude it will be convenient to resolve

them into horizontal and vertical components, H , V\ and H%, Vz, as indicated

in the figure. Applying the equations of equilibrium to the system of forces

acting on the windlass we have,

-Psin 30-450 = 0.

SMa:
= 15P -450X4 = ......

SMw
= Psin30X62+450X30-50 Fi=0.

2Afs=50#i+Pcos30X62=0. . . .

The solution of these equations gives the following values :

P = 1201b.

H,- -128.8 lb.

7i = 344.41b.

tf2
= 24.92 lb.

V2
= 165.6 lb.

(1)

(2)

(3)

(4)

(5)
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GENERAL PROBLEMS

97. The pressure between the rubbing surfaces of the friction clutch

shown in Fig. 117 is 15 Ib. per square inch normal to the surfaces. What
force P on the bell crank is required to produce this pressure?

Ans. P = 1961b.

FIG. 117.

98. A body weighing 20 Ib. is held in equilibrium by four cords as shown

in Fig. 118. What are the stresses in cords A, B, and C?

Ans. 4=23.1 Ib. = 11951b. C = 23 1 Ib.

99. A sphere which weighs 40 Ib. is held on a smooth inclined plane by
means of a cord which is attached to a ceiling as shown in Fig. 119. Deter-

mine the pressure of the plane against the sphere and the tension in the cord.

60 Ib.

FIG. 119. FIG. 120.

100. A body weighing 60 Ib. is held in equilibrium on a smooth surface by
two cords which pass over frictionless pulleys and carry suspended weights

of 30 Ib. and 50 Ib. as shown in Fig. 120. Find the reaction of the surface on

the body and the angle 6. Ans. #=20 Ib. = 53 8'.

101. The pillar crane shown in Fig. 121 is bolted to the floor by six bolts

as shown. The pressure (or the pull) between the base of the crane and the

floor is assumed to be concentrated along the axes of the bolts. Find the ten-
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sion in the two bolts to the left of the YY axis and the pressure between the

base and the floor at the corresponding bolts to the right of the axis, caused

by the load of 2000 Ib. shown.

Ans. 2170 (tension); 2830 (compression).

FIG. 121. FIG. 122.

102. Find R, the maximum unbalanced pressure (recoil pressure) that can

exist on the breech of a 3-in. gun (Fig. 123), when firing, without causing the

wheels to leave the ground, assuming the earth pressures and the weight of the

gun to be as shown in Fig. 123.

FIG. 123.

103. A uniform beam weighing W Ib. rests with its ends on two smooth

planes which are inclined at angles of 60 and 30 with the horizontal. Find

the inclination of the beam with the horizontal. Ans. = 30.
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104. The two bodies shown in Fig. 124 are held in equilibrium on two
smooth rods by a connecting cord. If the bodies weigh 200 Ib. and 50 lb.,

find the reactions of the rods, the tension in the cord, and the angle 6.

106. The power press shown in Fig. 122 has the following dimensions:

AB = 2.5 ft. BC=BD = l ft. DE = 1.5 ft. FC = S ft. FB = 7.l ft. The

points B, E, and F are on the same vertical line. What force P is required to

cause a pressure of 2000 lb. between the jaws of the press?

50 lb.

FIG. 124. FIG. 125.

106. Forces act along the sides of the polygon shown in Fig. 125. The
forces are proportional to the lengths of the corresponding sides. If the areas

of the two loops are equal, show that the system of forces is in equilibrium.

107. A body weighing 80 lb. is suspended by two strings of lengths 5 ft.

and 12 ft., the upper ends of which are attached to a horizontal plane, the dis-

tance between the two points of attachment being 13 ft. Find the tensions in

the strings. Ans. 30.8 lb; 73.8 lb.

108. A beam 8 ft. long rests on two horizontal supports and is loaded as

shown in Fig. 126. If the weights of the beams are neglected, find the reac-

tions RI and R2 at the points of support.

8000 lb.

1000 lb.
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109. A horizontal beam 10 ftriong is supported at its ends and loacted"

with two concentrated loads and a uniformly distributed load of 100 Ib. per

ft. over a length of 4 ft. as shown in Fig. 127. Find the reactions RI and Ri at

the points of supports. Ans. RI =980 Ib. R2
= 920 Ib.

110. A camp stool loaded as shown in Fig. 128 rests on a smooth floor.

Find the reactions of the floor on the stool.

111. Find the magnitudes of the forces which must act along lines I and II

.(Fig. 130) in order to hold in equilibrium the three forces shown. Solve by
the graphical method.

(30 Ib.

20 Ib.

FIG. 128.

112. In Fig. 132 is shown one form of a dynamometer. The pressure on

the scale beam at D is balanced by the poise weights A and B. The weight of

A and B together is 150 Ib. and that of B alone is 3.5 Ib. The divisions on

the large scale are 1 in. apart and those on the small scale are 0.4 in. apart.

ll

1
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is set at the 15th division, what is the pressure of the dynamometer on the

scale beam at D? Ans. R = 26.75 Ib.

113. In Fig. 131 is shown a diagrammatic sketch of an apparatus for

measuring a load on a beam. If a force of 5 Ib. at E is required to balance the

scale beam CDE when the beam AB carries a load P in the position shown,
find the magnitude of the load.

114. In Fig. 129 is represented a differential chain hoist. Two sheaves

of radii r\ and r2 are fastened together and a continuous chain passes around

the small sheave, then around a movable pulley of diameter r\ + r2 ,
and then

around the larger sheave. Neglecting the resistance due to friction, find

the relation between the applied force F and the load W which it will hold.

FIG. 132. FIG. 133.

115. The bar shown in Fig. 134 is connected to a fixed support by a smooth

pin at A and rests on a smooth surface at B. Find the reaction at B and the

magnitude and direction of the pin pressure at A .

Ans. 4=25.4 Ib.

116. A bar rests against two smooth surfaces as shown in Fig. 133 and is

prevented from slipping by means of a cord attached to the lower end. If the

weight of the bar is neglected, find the reaction of each surface and the tension

in the cord.

Ans. RA =20Q Ib. fl5 = 54.61b. :T = 54.61b.

50 Ib
80 Ib.

TfT
[J^ |501b.

FIG. 134.
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117. In the crane represented in Fig. 135 the weight of the post AB is Flon,
the weight of the boom CE is 0.8 ton and that of the brace DF is 1 ton The
reaction at B is horizontal. Find the reaction at B and the horizontal and

vertical components of the reaction at A. Also find the pin reaction on the

brace at F and at I). Ans. 5 = 5.84 tons; Z) = 11.2tons; F = 11.9 tons.

118. In the crane represented in Fig. 136, the weight of the post AB is

1600 lb., the weight of the boom DE is 1200 lb., and the weight of the rod CE
may be neglected. Find the tension in the rod and the reaction of the pin at

D on the post.

6 tons

4 tons

FIG. 135. FIG 136.

119. Two members AB and BC (Fig. 137) are connected by a smooth

pin at B and their lower ends rest on a smooth horizontal surface, slipping

on the surface being prevented by a cord which connects the ends A and C.

The weight of AB is 120 lb. and the weight of BC is 180 lb. The member BC

FIG. 137.
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also carries a concentrated load of 450 Ib. as shown. Find the reactions of

the surface, the tension in the cord, and the pin reaction at B.

Ans. A =3721b. 72(7
= 378 Ib. 7

7 = 2341b. fo = 3441b.

120. In Fig. 139 is shown a shear for cutting steel bars in a repair yard.

What force P is required to give a pressure of 70,000 Ib. on the anvil when the

3 ft.-6 in. arm is vertical. Solve graphically.

121. Two bars AC and BD (Fig. 138) are connected to each other by a

smooth pin at C and to the floor by smooth pins at A and B. AC = CB = 4 ft.

CD = 3 ft. Find the pin pressures at A, B, and C.

Ans. A = 1401b. B = 109.8 Ib. C = 1401b.

FIG. 138. FIG. 139.

122. In Fig. 140, when r is zero, the tension in the spring, S, is 50 Ib. The

modulus of the spring is 58

when r = 3 in. and also find

the pulls P, P required to

cause this spring tension.

What is the total stretch of

the spring?

Ans. S = 94.1 Ib. P = 24.31b.

Stretch = 1.62 in.

500 Ib. 1

FIG. 141.
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123. The weights of the members AD, BC, and BD of the frame shown in

Fig. 141 are 100 lb., 50 lb., and 75 lb., respectively. Find the pin pressure at C
and the pressure at A, the surface at A being smooth.

Ans. A = 152 lb. (7 = 225 lb.

124. Find by the method of sections, the stresses in the members CE, DE,
and DF of the Howe truss shown in Fig. 142.

FIG. 142.
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129. The framework shown in Fig. 147 is connected at the points. A, D,

C, and E by smooth pins and is supported by a smooth surface at B. Find

FIG. 146.

the pin reactions at A, D, C, and E, and the reaction at B. Neglect the weights

of the members.

1000 Ib. ^ | I

FIG. 147.

130. In the hydraulic crane shown in Fig. 148 the weight of the boom
ABC is 500 Ib., as shown in the figure, and the weights of the members AD and

BD may be neglected. In raising the boom the hydraulic pressure from the

cylinder transmits a pressure P to the pin at D. Neglecting the frictional re-

sistance find the value of P required to raise the boom when loaded as shown.
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Find also the stresses in BD and AD and the pressures of the rolls at A and

at D against the vertical post.

Ans. P = 25001b.; D = A=55401b. DB = +6550 Ib.
; AD=-7601b.

2000 Ib.

131. The crank-pin pressures, PI and P, on the crank shaft shown in Fig

150 are 6000 Ib. and 4800 Ib. respectively. Find the bearing reactions RI

FIG. 149.

and Rz (Fig. 1506) and the resisting moment Qq required for equilibrium of

the shaft.

Ans. #1 = 31201^ #2 = 19201b. Qq = 64,800 Ib.-in.

132. Three rods each of length I rest on each other (Fig. 149) in such a
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way as to form a central equilateral triangle each side of which is fZ. A load P
is applied at one corner as shown. Find the reactions Ri, Rz, and R3 in terms

of P.

FIG. 150.



CHAPTER IV

FRICTION

64. Friction Defined. Friction is defined as the resistance

which one body offers to the motion of a second body when the

second body slides or tends to slide over the former. The fric-

tional force is tangent to the surfaces of contact of the two bodies

and always opposes motion.

Friction is of great importance in engineering practice. Since

it always opposes motion, it is an undesirable and expensive factor

in the operation of many machines or machine elements, and in

such cases is reduced as much as practicable by means of lubricants.

In other machines it becomes a very desirable and useful element,

as in various forms of brakes, friction drives, etc. In fact, many
of our normal physical activities, such as walking, would be impos-
sible without the aid of friction.

If the resistance between two bodies prevents motion of one

body relative to the other, the resistance is called static friction,

while the frictional resistance be- .

tween two bodies which move rela-

tive to each other is called kinetic 1

friction. If the friction is static,

the amount of friction developed is

just sufficient to maintain equilib-

rium with the other forces acting

on the body. That is, static friction

\R

\|
is an adjustable force the magni-
tude of which is determined from

the equations of equilibrium for the forces which act on the

body. Thus, let Fig. 151 represent a body in equilibrium on

a rough horizontal plane under the action of a horizontal force

P, which tends to move the body, the reaction, R, of the

plane, and the weight, W, of the body. Let the reaction R be

resolved into two components F and N parallel and perpendicular,

127
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respectively, to the plane. The component F along, or tangent to,

the plane is the frictional force as defined above. The component
N is called the normal pressure and R is called the total reaction.

Since the body is in equilibrium, the equations of equilibrium must
be satisfied, and hence F is equal to P. If the force P is gradually

increased, F must increase in the same ratio in order to maintain a

condition of equilibrium. There is a definite limit, however, to

the amount of frictional resistance that can be developed, and

when the value of P exceeds this limiting value motion will ensue.

The limiting or maximum value of the frictional force is called

limiting friction and is denoted by F'. Its value depends on
the normal pressure and on the roughness of the surfaces of

contact.

65. Coefficient of Friction. In order to compare the frictional

resisting properties of various pairs of materials or of the same pair

of materials under varying conditions of their surfaces of contact,

and in order to calculate the maximum frictional force corre-

sponding to any normal pressure, a certain experimental constant,
called the coefficient of friction, is used.

The coefficient of static friction for any two surfaces is defined

as the ratio of the limiting friction to the corresponding normal

pressure. Thus, if the coefficient of static friction is denoted by
ju, it may be expressed as follows :

It is important to note that F' in the above equation is the maxi-

mum friction which the surfaces can develop, that is, the

friction corresponding to impending motion. Thus the maxi-

mum frictional force which any two surfaces can develop is equal
to pN.

The value of n must be determined experimentally and, as

stated above, it is a constant for any two materials for a definite

condition of the surfaces of contact. It varies considerably,

however, for different conditions of the surfaces, and it varies

widely for different pairs of materials, as is shown in the following

table which gives the values of the coefficient of friction for dry
surfaces as determined by Morin and others.
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COEFFICIENT OF STATIC FRICTION

Wood on wood 0.25 to 0.50

Metal on wood 20 to .60

Metal on metal 15 to .30

Metal on leather 30 to .60

Wood on leather .25 to .50

Stone on stone 40 to .65

Metal on stone 30 to .70

Earth on earth 25 to 1 .00

If two surfaces move relative to each other, the ratio of the

friction developed to the corresponding normal pressure is defined

as the coefficient of kinetic friction. The value of the coefficient of

kinetic friction for two surfaces is influenced by more factors than

is the value of the coefficient of static friction. A brief discussion

of the influencing factors is given in Art. 68. For values of the

coefficient of kinetic friction for various conditions of rubbing
surfaces the reader is referred to Good-

Mechanics Applied to En-
|

w

gmeenng.
66. Angle of Friction and the Fric-

tion Cone. The angle of static friction

for two surfaces is defined as the angle

between the directions of the total

reaction and the normal pressure when
motion is impending. Thus in Fig. FlQ 152

152, if the force P is just large enough
to develop the limiting friction, the angle which R, the reaction

of the plane on the body, makes with the normal pressure, N,
is the angle of static friction and is denoted by <.

Since the components of R
} parallel and perpendicular respect-

ively to the plane, are F' and N, it is evident from the figure that

tan =
T=. But since the ratio is defined as the coefficientN N

of static friction, ju, the following important relation may be

written :

\L= tan
<(>,

that is, the coefficient of static friction is equal to the tangent
of the angle of static friction.

If the two surfaces move relative to each other then the angle
between the total reaction and the normal pressure is called the
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angle of kinetic friction. Its value is somewhat less than the angle
of static friction, since the frictional force after motion ensues

becomes less than the limiting friction. The relation /*
= tan

also holds for kinetic friction, the value of /* for kinetic friction

being somewhat less than for static friction. The angle of friction

(for both static and kinetic friction) is convenient to use particu-

larly in the solution of problems by graphical methods.

If a body rests on a rough plane and certain forces are applied

to the body, a convenient graphical method
of determining whether the body will slide

or not makes use of the cone of friction.

The cone of friction for two plane surfaces is

the cone generated by revolving, about the

normal to the plane, a line making with

the normal an angle equal to the angle of

friction as shown in Fig. 153. If the re-

sultant of all of the forces acting on the

body, except the reaction of the plane (total

reaction), falls within the cone of friction,

the body will not slide; if the resultant falls

outside the cone of friction, the body will

slide. Thus in Fig. 153 let P represent the

resultant of all of the forces acting on the

body except R, the reaction of the plane.

If the angle which P makes with the
FIG. 153.

normal to the plane is called 0, the force tending to move the body
is P sin 0, and the normal pressure is P cos 0. The body will not

slide if

P sin 0</iP cos 0,

that is, if tan < /* or if tan < tan
</>,

or if 0<0.

If > 0, that is, if P falls outside of the cone of friction the body
will slide, and if =

<f> motion is impending.

ILLUSTRATIVE PROBLEM

133. A lift shown in Fig. 154 slides on a vertical shaft having a square
cross-section 2 in. on a side. Find the greatest distance, x, that a load W
can be placed from the edge of the shaft and still cause the lift to slide on the

shaft. Neglect the weight of the lift and use 0.2 for the coefficient of friction.
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Graphical Solution. Since motion impends, the angle between the reac-

tion RI and the normal pressure Ni of the shaft at A is equal to the angle of

friction; that is, the tangent of the angle is equal to 0.2. Hence, by laying
off ten spaces along the normal and two spaces perpendicular to the normal,
as shown in Fig. 154, the action line of RI is determined. In a similar manner
the action line of R2 is found. Now the three forces RI, R2 ,

and W must be

concurrent in order to be in equilibrium (Art. 48) and hence, W must pass

through the intersection of RI and R2 . Now the intersection of these two
forces can never be nearer to the shaft than the point D, since the angle </>

FIG. 154.

cannot be greater than tan- 1
.2. The distance, x, of D from the shaft is found

by measurement to be 24 in.

Algebraic Solution. The five forces, F\, NI, F' 2 ,
N2 ,

and W which hold the

lift in equilibrium as shown in the free-body diagram (Fig. 154) form a coplanar
non-concurrent force system and hence there are three equations of equi-
librium as follows :

2Fx=Nz -Ni=0 (1)

ZFV =-TF+0.2^+0.2^2=0. . . (2)

in which
2Ms =-Wx+lQNi -2X0.2^=0, .... (3)

0.2ATi = F'i and Q.2N2
= F'2 .

From (1) and (2) we have,

fr-0.42VY-0.4tf,.

By substituting this value of W in (3) the equation obtained is,

whence,
z=24in.
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PROBLEMS

134. If the weight W in the preceding problem is 500 Ib. what vertical

force P applied at E will be just sufficient to start the lift up?

135. The coefficient of friction for the 100-lb. body and the table (Fig. 155)

is 0.4. What weight, W2 ,
will cause motion of the three bodies to impend?

The pulleys are assumed to be frictionless and the cords to be flexible.

Ans. TF2
= 471b.

W 3
=10 lb.

FIG. 155.

136. The ladder shown in Fig. 156 weighs 50 lb. The coefficient of

friction for the ladder and vertical wall is 0.25, and for the floor and ladder

0.5. Find the horizontal force P which will cause motion to impend to the

right.
Ans. P = 51 lb.

< -c

J><]

2ft.

(\ I

FIG. 157. FIG. 158.

137. A rectangular block of wood 10 in. by 10 in. by 20 in. stands on end

on a horizontal floor. The block is acted on by a horizontal force applied

through the center of the top face and perpendicular to one side. The block
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weighs 40 Ib. and the coefficient of friction is 0.20 If the force is gradually
increased until motion ensues will the block slide or tip? What is the mag-
nitude of the force when the block starts to move?

138. A crown friction drive as indicated in Fig. 157 is used on screw

power presses, motor trucks, etc. The cast iron disk B rotates at 1000

r.p.m. and drives the crown wheel C, which is faced with leather-fiber.

The diameter of C is 20 in. and the value of /z is 0.35. If a turning moment of

100 ft.-lb. is transmitted to the crown wheel shaft when slipping impends, what
is the normal pressure between the disk and the crown wheel? What is the

pressure on the bearings at A and D?

139. A load, P, of 80 Ib. is applied to the arm (Fig. 158) at a distance of 2

ft. from the axis of the shaft. If n = 0.15 will the arm slide on the shaft?

140. A cone clutch as shown in Fig. 159 is used on automobiles to connect

the motor with the transmission. If the normal pressure between the two

FIG. 159.

surfaces of contact, as maintained by a spring, is 15 Ib. per square inch and
the coefficient of friction is 0.25, what is the maximum torque the clutch

can transmit? Assume that the frictional force has a mean arm of 14^ in.

What spring pressure, P, is required to produce the normal pressure of 15 Ib.

per square inch? Ans. T = 1235 lb.-ft.; P = 887 Ib.

67. Angle of Repose. If a body rests on an inclined plane,
as shown in Fig. 160, and is acted on by no forces except its weight
and the reaction of the plane, and if

,
the angle of inclination of

the plane to the horizontal, is such that motion of the body
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impends down the plane, the angle a is defined as the angle of

repose.

Since the body is in equilibrium under the action of the two

forces R, the reaction of the plane, and W, its weight, these forces

must be equal, opposite, and collinear.

Hence the reaction R is vertical. Further-

more, the angle which R makes with the

normal to the plane is <, the angle of fric-

tion. It is evident from the figure that the

angles a and </> are equal. The angle of

repose for two surfaces can be found eas-

ily by experiment, after which the coeffi-

cient friction for the surfaces may be found from the relation

IJL
tan = tan a.

68. The Laws of Friction. One of the earliest contributions

to our knowledge of the laws of friction was made by Coulomb,
who published, in 1781, the results of experiments on the friction of

plane dry surfaces. Later experiments by Morin confirmed, in

the main, the results obtained by Coulomb. The results of the

experiments of Morin on dry surfaces, published in 1831, may be

stated as follows :

1. The friction between two bodies when motion is impending

(limiting friction) is proportional to the normal pressure; that is,

the coefficient of friction is independent of the normal pressure.

2. The coefficient of static friction is independent of the area

of contact.

3. The coefficient of kinetic friction is less than the coefficient

of static friction and is independent of the relative velocity of

the rubbing surfaces.

Although these laws are probably correct for the conditions

under which the tests were made, they must be modified in order

to apply to friction which is developed under conditions quite dif-

ferent from those found in the experiments. The pressures used

in the experiments of Morin varied from f Ib. per square inch to

100 Ib. per square inch. It has been found in later experiments

that for pressures less than f Ib. per square inch the value of the

coefficient of static friction increases somewhat. For very great

pressures the coefficient also increases. The highest velocity

used in Morin's experiments was 10 ft. per sec. For greater

velocities than this it has been found in later experiments that
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the coefficient of kinetic friction decreases with the velocity.

The experiments of Jenkin show that for extremely low velocities

(the lowest velocity measured was .0002 ft. per sec.) there is an

increase in the coefficient of kinetic friction. These experiments

indicate that the value of the coefficient of kinetic friction grad-

ually increases as the velocity decreases and passes without dis-

continuity into that of static friction.

From experiments made by Tower, Goodman, Thurston, and

others, on lubricated surfaces, it has been found that the laws of

friction for lubricated surfaces are almost the reverse of those

stated for dry surfaces. For example, it is found that the friction

of two surfaces is almost independent of the nature of the surfaces

and of the normal pressure so long as there is a film of lubricant

between the surfaces. Again, for lubricated surfaces, it is found

that the friction is materially affected by the temperature, which is

not true in the case of dry surfaces.

69. The Inclined Plane. Applications of the inclined plane

are found in various machines such as the jack-screw, the screw

type of testing machine, wedges, etc. Three variations of the

problem which arise in connection with the use of the inclined

plane will now be considered.

CASE I. To Determine the Force Required to Start a Body up the

Plane. Let Fig. 161 represent

a body resting on a plane, the

angle of inclination of which

is a. It is required to find the

value of a force, P, which will

make motion of the body im-

pend up the plane when the

action line of P makes an

angle of 6 with the plane. FIG 161

Although motion of the body

impends, it will not occur unless the value of P is increased

slightly beyond the critical value here considered. And since the

body is still in equilibrium the equations of equilibrium may be

applied to the system of forces acting on it. In addition to the

required force P, the forces acting on the body are the weight, W,
of the body, and the reaction of the plane. The latter force

will be resolved into components N, perpendicular to the plane,

and Ff

(equal to uN), parallel to the plane, as shown in the
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free-body diagram. If the z-axis be taken parallel to the plane
and the y-axis perpendicular to the plane, the equations of equi-

librium may be written as follows :

2FX=P cos 0-nN-W sin =
0,

2FV
=N+P sin B-W cos = 0.

Eliminating N from the two equations we have:

p_TF (sin a+M cos a)

cos 6+iJ, sin 6

If tan be substituted for
JJL

this may be written,

sin (a+0)P=W
cos (00)"

If the values of W, a, and are specified, P may be regarded as

a function of 0. The value of P is a minimum when is equal to

0, since this value of makes cos (0 0) a maximum; the minimum
value of P, then, is TF sin (a+0). If the force P is applied paral-

lel to the plane its value becomes W- .

cos

CASE II. To Determine the Force Required to Prevent Motion

Down the Plane when a > 0. In this case the forces acting on the

body are the same as shown in Fig. 161 except that the frictional

force is directed up the plane. By writing the equations of

equilibrium as before and solving, the equation obtained is,

cos (0+0)
'

For this case P is a minimum when =
0, and the minimum value

of P is W sin (a 0) . If the force P is applied parallel to the plane

n . W sin (</>)
the value of P is---~*

cos

CASE III. To Determine the Force Required to Start the Body
Down the Plane when a<<t>. In this case the forces which act on

the body are as shown in Fig. 161, except that P and /zTV are

reversed. By writing the equilibrium equations as before and

solving, the equation obtained is,

cos (0+0)
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For this case P is a minimum when 6= and the minimum value

of P is W sin (0 a). HP is applied parallel to the plane, the

W sin (<f> a)
value of P becomes

cos <f>

ILLUSTRATIVE PROBLEM

141. A small body weighing 50 Ib. is placed on a rough plane which is in-

clined 30 with the horizontal (Fig. 162). The body is acted on by a force P,
the action line of which lies in the plane and makes an angle of 30 with the

line of greatest slope in the plane. If the coefficient of friction is
,
find the

value of P that will just start the block in motion, and find the direction in

which the block will begin to move.

Solution. There are three forces acting on the body, namely, the force P,

the earth pull of 50 Ib., and the reaction of the plane. The 50-lb. force may be

resolved into two components; 50 sin 30 in the plane (Fig. 162) and 50 cos

30 (not shown) perpendicular to the plane. The reaction of the plane may
be resolved into two components, N (not shown) perpendicular to the plane

and | N lying in the plane. The frictional force N acts opposite to the

direction in which the body will begin to move. Let be the angle which the

frictional force makes with the line of greatest slope. The two forces which

are perpendicular to the plane are in equilibrium and hence are equal. Thus,

AT = 50cos30 (1)

The three forces in the plane are in equilibrium; hence, by Lami's theorem

(Art. 47),
50 sin 30 P * N

sin (0+30) sin sin 30'

By eliminating N from (1) and (2) the equation obtained is,

Sin(8+30)=?^i|?!
=
^.

Hence,
0+30 = 60.

Therefore,
= 30

Substituting in (2) we have, FIG. 162.

P =^-,
2V3

PROBLEMS

142. A body weighing W Ib. rests on a rough plane inclined at an angle

to the horizontal. What horizontal force must be applied in order to start

the body up the plane if the angle of friction is 0? Express the force in terms

<t> and also in terms of ju.

cos u sin
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P-120 lb.

143. A homogeneous rectangular prism, the dimensions of which are 1 ft.

by 1 ft. by 2 ft., stands on end on a flat square

board, the edges of the base of the prism being

parallel to the edges of the board. The coefficient

of friction for the board and prism is 0.2. If one

side of the board is gradually raised will the prism
slide or tip?

W-200 lb.

FIG. 163.

from moving down the

the coefficient of friction for the body
and plane. Ans. M = |-

145. Two bodies weighing 50 lb.

and 100 lb. rest on an inclined plane
and are connected by a cord which is

parallel to the line of greatest slope.

The body weighing 50 lb. is below

the one weighing 100 lb., and the

coefficient of friction for the 50-lb.

body is | and that for the 100-lb. body-

is . Find the inclination of the plane
to the horizontal and the tension in

the cord, when motion impends.

146. A body weighing 200 lb. rests

on a plane inclined 30 to the hori-

zontal and is acted on by a force of

120 lb. as shown in Fig. 163. The
coefficient of friction for the body and

plane is 0.3. Find the friction between

the body and plane. Ans. 3.92 lb.

70. The Wedge. Wedges are

used for lifting-devices, cotter-

pins, keys, etc. In the wedge
shown in Fig. 164(a), it is required

to find the value of the force P
which must be applied to the

wedge to overcome the forces

W, W, applied to blocks A and B.

It will be assumed that the angle

of friction for all rubbing surfaces

is the same. A free-body diagram

of the block A and of the wedge

144. A body weighing 100 lb. rests on a rough

plane inclined 45 to the horizontal. A horizontal

force of 50 lb. is just sufficient to prevent the body
plane. Find

W W

FIG. 164.
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C is shown in Fig. 164(6) and 164 (d), respectively. The force P
may be found graphically by constructing the force polygons for

the forces acting on A and C. Since the force W is known com-

pletely and since the directions of the reactions (Ri and R%) of D
and C on A are known hi direction, the force polygon for A can

be drawn as shown in Fig. 164(c). Having found the reaction R%,

it is now possible to complete the force polygon for the forces

acting on the wedge C. The reaction of A on C is equal and oppo-
site to the reaction of C on A, that is, it is equal to the force R%

just found, but reversed in sense. The force polygon for C is

shown in Fig. 164(e) from which P may be found. Fig. 164(/)

shows the two force polygons superimposed. From the force

polygons it is easy, by means of trigonometry, to derive the expres-

sion for P in terms of W, <f>, and a. It will be of interest, however,
to find the value of P by use of the equations of equilibrium. Thus,
the equations of equilibrium for the forces acting on A and C,

respectively, are,

in^-lfe cos (+0) = 0, .... (1)
For A

2Fv
= Ri cos 0-^2 sin (a+0) = ...... (2)

2Fx=R2 cos (+</>) -#3 cos (+<)= 0, .... (3)

sin (+</) -P = 0. ... (4)

By eliminating Ri from (1) and (2) the equation obtained is,

W cos <>

By eliminating Rs from (3) and (4) the equation obtained is,

P = 2#2 sin (a+0)........ (6)

By eliminating R% from (5) and (6) the final equation is,

p_2TF cos <f> sin (a+<j>)

cos (a+20)

Another problem which arises in connection with the wedge is

the determination of the least force, P, which will prevent the

wedge from being forced upward by the loads W, W. The pro-
cedure in the solution of this problem is similar to that used in the

problem just discussed. The frictional forces, however, will be

reversed and hence the reactions will make angles < on the other
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sides of the normals to the surfaces. The value of P for this case

is given by the equation,

p_2W cos sin (a <ft)

cos (a 20)

When a is less than
<J>,

it is evident that the value of P is negative
and hence the wedge is self-locking, that is, it would stay in place

even if the force P were reduced to zero.

A third problem which arises in connection with the wedge is the

determination of the least pull, P, which is required to withdraw a

self-locking wedge, as for example, in lowering a heavy body by
means of the wedge. By writing the equations of equilibrium and

solving, the value of the pull is found to be

_2TF cos sin (<J>at)

cos a

ILLUSTRATIVE PROBLEM

147. Fig. 165(a) represents a cotter joint. The angle a equals 15 and the

angle of friction for all rubbing surfaces is

|

p 12. What is the value of the force P re-

quired to overcome the 1000-lb. forces

applied on parts A and J5?

Solution. Free-body diagrams of the

block A and the cotter pin C are shown
in Fig. 165(6) and 165(c) respectively.

The equations of equilibrium for the two

blocks may be written as follows:

1000 lb
B

1000 lb.

(a)

1000 lb. For

n 12

-R* cos 27 =
0,

ZFV
=R1 cos 12 -Ri sin 27 = 0. .

ForC
ZFX =R2 cos 27-fl3 cos 12 =

0,

(1)

(2)

(3)

(4)

By eliminating Ri from (1) and (2) the

equation obtained is,

1000 cos 12'

cos 39
(5)



THE WEDGE 141

By eliminating R3 from (3) and (4) the following equation is obtained:

_Pcosl2Kz
sin 39 (6)

By equating values of R2 in (5) and (6) the value of P may be found. Thus,

P cos 12 1000 cos 12

Therefore,

sin 39 cos 39

P = 1000 tan 39 =810 Ib.

PROBLEMS

148. The load of 100,000 Ib. (Fig. 166) is raised by applying forces P, P
to the wedges. What is the required value of P if the coefficient of friction is

0.2 for all surfaces of contact? Ans. P = 26,667 Ib.

I 100,000 Ib.

FIG. 166.

149. Find the value of the force P which must be applied to the wedge A
(Fig. 167) in order to raise a weight W carried by the block B, assuming that

the coefficients of friction for all rubbing surfaces are equal.

Ans. P = TFta

160. Find the expression asked for in Problem 149 if friction is neglected
at all surfaces except that between the block B and the wedge A.

W

1000 Ib. 1000 Ib.

\ /

W \\ V

FIG. 167. FIG. 168.

161. Find the force P which must be applied to the wedge shown in Fig.
168 in order to overcome the 1000-lb. forces applied to blocks A and B as
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shown. Assume the coefficient of friction for all rubbing surfaces to be
0.1. Ans. 467 Ib.

152. What is the value of P in Problem 151 if the horizontal surfaces, on
which blocks A and B rest, are smooth?

71. The Screw. A screw is, in effect, an inclined plane wound
around a cylinder. Screws are made with square threads and

with triangular threads,

|w but square - threaded

screws, only, will be con-

sidered here. Fig. 169(a)

shows a jack-screw with

square threads which is

used in raising or lower-

ing heavy loads. The
radius of the base of the

thread is denoted by r\

and the outer radius by
r<2\ a is called the 'pitch

angle, and p is called the

pitch of the screw. Let

it be required to find the

force, P, which, when ap-

plied at the end of a

lever of length a, is just

sufficient to raise the load

W. The forces which

hold the screw in equi-

librium are: the force P;
the pressure of the cap,

C, on the head, H; and

the reaction of the nut,

B, on the screw. The
latter is distributed over

the area of the threads

in contact with the nut.

If the friction between
FIG. 169.

the cap and the head of the screw is neglected, the pressure

of the cap on the head of the screw will be a vertical force equal

to W. The problem will first be solved on this assumption.

Two of the equilibrium equations which apply to this type of force
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system will be sufficient for the solution of the problem, namely"
2^= and 2^ = where z is taken as the axis of the screw.

The reaction between the nut and the thread of the screw on an

element of area dA will be denoted by dR. This force may be

resolved into components dN normal to the thread and dFf

par-

allel to the thread as shown in Fig. 169(6). In taking moments
about the axis of the thread it will be sufficiently accurate to con-

sider the moment-arm of dF' to be equal to the mean radius of the

thread, J (ri+rz), which will be denoted by r. The equilibrium

equations stated above, then, become:

cos a-^dF' sin a-W= Q,

2rdN sin a-2rdF' cos a = 0.

Since dF' = jjidN, these equations may be written :

cosa2dN-iJLsina2dN-W= Q, ..... (1)

Pa-r smaZdN-pr cosa2dN= ..... (2)

By eliminating 2dN from (1) and (2) the equation obtained is,

cos a
fj.

sin a

By substituting tan <t> for n this equation may be written in the

form,

Pa= Wr tan (0+a).

If the pitch angle a is large and the angle of friction is small,

the load W will cause the screw to run down unless a force is

applied to prevent it. The force P required to hold the load

is found by a method of analysis similar to that used above, the

only difference being that the sense of the frictional force is

reversed. The least value of P required to prevent the screw from

running down is given by the equation,

If a = 4> in the above equation, the force P reduces to zero,

that is, the load will be held by friction alone. If a < 0, a force



144 FRICTION

is required (the sense of which is opposite to that in the two

cases considered) to lower the load. The value of the force

required to lower the load is given by the equation,

Pa= Wr tan (<j>a).

In practice, jack-screws are always made self-locking, that is, a. is

made less than <j>. The values of P for the three cases just con-

sidered will be changed somewhat if friction between the cap and

the head of the screw is considered. If the area of contact between

the cap and the head is a full circle the effective arm of the fric-

tional resistance is two-thirds the radius of the circle as will be

shown in Art. 74. In practice, however, the area of contact is

usually a hollow circle, and it will be sufficiently accurate to take

the mean radius as the effective arm of the frictional resistance.

If the mean radius is denoted by r' and the coefficient of friction

between the cap and the head of screw by /z, the values of P are

given by the following equations:

To raise the load, Pa=Wr tan (0

To hold the load, Pa=Wr tan (a-0)-
To lower the load, Pa=Wr tan O-a)+wW.

PROBLEMS

153. The mean diameter of the screw of a square-threaded jack-screw is

1.8 in. The pitch of the thread is

0.4 in. and the coefficient of friction

for the screw and nut is 0.12. What
force must be applied at the end of a

lever 18 in. long to raise a weight of

5000 lb.? What force is required to

lower the weight?
Ans. 48.1 lb. 12.3 lb.

154. A weight of 1000 lb. is lifted

by applying a couple, Pd, to the

hand wheel of the apparatus
shown in Fig. 170 The diameter.

d, of the hand wheel is 20 in.; the

mean diameter of the screw is 1.5

in.; the pitch of the thread is | in.;

and the coefficient of friction is 0.15.

Find the values of the forces of the

couple when the value of 6 is 15.

W=1000 lb.

FIG. 170.
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FIG. 171.

166. The shaft-straightening hand press shown in Fig. 171 is usecT for

bending or straightening 3 in. steel shafts. What force, P, applied at the

end of a 36-in. lever is required to

produce a pressure, Q, of 24,000 Ib.

on the shaft? The threads have a

mean diameter of 2 in. and there

are four threads per inch. Con-

sider friction between the screw and

nut only, and use a value of 0.2 for

the coefficient of friction.

Ans. P = 161 Ib.

72. Journal Friction and

the Friction Circle. In Fig.

172 is shown an axle or jour-

nal in a bearing, the diameter

of which is slightly greater

than the diameter of the axle.

The difference in the diameters

is exaggerated in the figure

for the sake of clearness.

Since the contact between the axle and the bearing is along a line,

the reaction of the bearing on the axle is distributed along the

line of contact and may be replaced by a resultant force, R, at

A, the midpoint of the line of contact.

If the axle rotates in the bearing or, if

motion impends, the angle between the

action line of the reaction, R, and the

normal to the surfaces at A is the angle

of friction </>. In the former case the

angle is the angle of kinetic friction and
in the latter case it is the angle of static

friction. If the radius of the axle is

denoted by r, a circle having a center

which coincides with the center, 0, of

the axle and which has a radius equal to

FIG. 172. r sin wm< De tangent to the action line

of R. This circle is called the friction

circle. It will be noted that when the angle is small, sin </> is

approximately equal to tan and hence also approximately

equal to /*. Therefore, for small values of
JJL

the radius of the

friction circle may be taken as jur without serious error.
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The friction circle is of importance in locating the line of action

of the reaction between an axle and its bearing since this line is

tangent to the friction circle when motion occurs or is impending.
For example, in Fig. 172 the line of action of the reaction is one of

the two tangents that can be drawn from A to the friction circle.

The direction of motion (or impending motion) will determine

which one of the two tangents should be used. Thus, if the axle

rotates, or is about to rotate, in a clockwise direction the action

line of the reaction is as indicated in Fig. 172. In general the posi-

tion of the line of contact between the axle and bearing is not

(6)

FIG. 173.

initially known. This position can usually be determined, how-

ever, by means of the friction circle. For example, consider the

bell-crank, shown in Fig. 173 (a), which is acted on by a known

force Q. Let it be required to determine the magnitude of the force,

P
t
which must be applied along the line OB in order to cause

motion to impend in a clockwise direction. The forces acting

on the bell-crank are Q, P, and the reaction, R, of the bearing.

Since the three forces are in equilibrium they must be concurrent.

Hence if P and Q intersect at 0, R must also pass through 0.

Furthermore, R must be tangent to the friction circle. There are



JOURNAL FRICTION AND FRICTION CIRCLE 147

only two tangents that can be drawn from to the friction circle.

The one to be used is indicated in the figure. Therefore, the loca-

tion of the line of contact between the axle and the bearing is at A.

Since the action line of R is now known, the magnitudes of P and R
can easily be found by drawing the force polygon (Fig. 1736) for

the three forces. If motion impends in the opposite direction and

it is required to find the least value of the force P which will

maintain equilibrium the other tangent would be used.

ILLUSTRATIVE PROBLEM

156. Fig. 174 represents a pulley, having a diameter of 2 ft., mounted on a

2-in. axle. The coefficient of friction between the axle and the bearing in

which it rests is 0.15. What is the least

value of the force P which will raise the

200-lb. weight, assuming that the fric-

tion between the rope and pulley is

sufficient to prevent slipping? Neglect
the weight of the pulley.

Solution. There are three forces act-

ing on the pulley: the 200-lb. force, P,
and R, the reaction of the bearing.

Since these three forces are in equi-

librium they must be parallel (Art. 48).

Hence R must be vertical and, since it

must also be tangent to the friction

circle, its line of action is determined.

The radius of the friction circle is pr or

0.15 in. The equations of equilibrium
are:

FIG. 174.

?FV =R-P -200 = 0.

SM = 200X 12+0.15R-12P = 0.

Eliminating R from these equations we have,

P = 2051b.

If the force R acted through the center of the axle, that is, if the axle were

smooth, the value of P would be 200 Ib.
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PROBLEM

157. A load of 1000 Ib. is raised by a wooden wheel and axle as shown in

Fig. 175. What is the least value of the force P which will raise the load if the

coefficient of friction between the axle and the bearing is 0.4?

W

FIG. 176.

73. Pivot Friction. In Fig. 176 is shown a pivot in a step

bearing. The pivot will be assumed to turn in its bearing and

hence kinetic friction, only, is involved. In order to determine

the resisting moment due to the frictional forces at the end of a

pivot, certain assumptions will be made as follows:

1. The coefficient of friction is constant over the end of the

pivot.

2. The pressure between the pivot and the bearing at any point

(a) is constant, or

(6) varies in such a manner that the wear of the pivot in the

direction of its axis (axial wear) is uniform over the

area of the pivot. Or, as sometimes stated, the wear,
at any point, normal to the rubbing surfaces (normal

wear) is proportional to the work of friction.

Since the value of the coefficient of kinetic friction varies some-

what with the velocity of the rubbing surfaces, it is evident that

the coefficient is not constant over the end of the pivot, for the

velocity of any point varies as its distance from the axis of the

pivot. The assumption made in (1), however, will not cause
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serious error if a mean value of the coefficient is used. For a new

pivot the assumption 2 (a) seems reasonable, although the pressure,

probably, will not remain constant after wear occurs. If the wear

normal to the pivot (normal wear) at any point of the pivot is

proportional to the work done by the frictional force at that point,

that is, to the product of the frictional force, F', and the distance

traveled by the point, the normal wear will also be proportional

to the normal pressure, since F' is equal to /JV. If, then, the

normal pressure is constant, it is evident that, for a time, the

greater wear will occur near the circumference of the pivot.

The effect of this greater wear at the edge of the pivot will be

to increase the intensity of pressure near the center and to decrease

it near the edge of the pivot. The increased pressure near the

center will in turn result in increasing the wear near the center

and in decreasing it near the edge. This process will continue

until a uniform condition has been established, after which, the

wear will be uniform over the end of the pivot. The assumption
made in 2(6), therefore, seems reasonable for pivots that have

been in use for some time. The frictional moment will now be

determined for several pivots.

74. Solid Flat Pivot. Uniform Pressure. In the flat pivot

shown in Fig. 176 the axial load will be denoted by W, the radius

of the pivot by r, and the area of the pivot by A. The frictional

moment may be found as follows:

W
Pressure per unit of area = -

2
.

W W
Pressure on element of area = ^dA= ^ pdpdd.

uW
Frictional force on element dA = ~ pdpdd.

irr
2H

U.W
Moment of frictional force on dA =

-5- p
2
dpdd.

Total frictional moment = ~

I I P
2
dpdO

_w r* r
~^Jo Jo

'

Uniform Wear. Since the wear at any point is proportional to

the distance traveled by that point, it is proportional to the dis-
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tance, p, of the point from the axis of the pivot. The wear, how-

ever, is also proportional to the friction force and hence, to the

pressure, p. That is, pp is equal to some constant, C. The

frictional moment, then, may be found as follows:

r2" r
Frictional moment = I jj.pp

2
dpdd

Jo Jo

= C (
I

pdpdd

(1)

But, the total pressure must be equal to W. Hence, another

equation containing C may be found. Thus,

W-jrrppdpdd

(2)

FIG. 177.

By eliminating C from equations (1) and (2) the resulting expres-

sion is,

Frictional moment =

75. Hollow Flat Pivot or Collar Bearing. The determination of

the frictional moment for a hollow flat pivot (Fig. 177a), or collar

bearing (Fig. 1776), involves the same steps as were used in finding
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the frictional moment for a solid flat pivot and, hence, will not be

given in detail. The fFictional moment is found to be :

For uniform pressure,
-
o

For uniform wear,

76. Conical Pivot. Uniform Pressure. In finding the fric-

tional moment for a conical pivot (Fig. 178) it will first be assumed

that the intensity of pressure, p, normal to the surface is constant.

The frictional force at any point of course is horizontal. Referring

to Fig. 178, we find the frictional moment as follows:

Frictional force on an element

of area dA = fipdA ;

Moment of this force

Total frictional moment

dp
sn a

_ 2-n-fjip r*_

sin a 3
' (1)

FIG. 178.

The value of the constant pressure p in (1) may be expressed
in terms of W as follows : Since the sum of the vertical components
of the pressures on the elements of area must be equal to the axial

load W, we may write,

W = I pdA sin a= p sin a I dA=pA sin a,

where A is the area of contact between the pivot and bearing.

And, since A Xsma = irr
2 the above equation may be written,

(2)

By eliminating p from equations (1) and (2) the final expression is,

Frictional Moment = - -. -.
3 sin a
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Uniform Wear. If the wear in the direction of the axis of the

pivot is constant it can be shown that,

The ffictional moment = - M

The proof is left to the student.

2 sin a

PROBLEMS

158. The weight of the vertical shaft and the rotating parts of a turbine is

100,000 Ib. and the diameter of the shaft is 10 in. Assuming the coefficient

of friction to be 0.015 and the bearing to be a flat-ended pivot, find the fric-

tional moment (1) when the pressure is uniform and (2) when the wear is

uniform.

159. Find the moment of the friction on a collar bearing, when subjected
to a pressure of 6000 Ib., if the radii of the collar are 3.5 in. and 4.5 in. and the

coefficient of friction is 0.025. Assume the pressure to be uniform.

160. Derive an expression for the frictional moment for the spherical

pivot shown in Fig. 179 for each of the following assumptions: (1) uniform

normal pressure; (2) uniform wear in the axial direction.

Ans. (1)
Sin a cos a

sin 2 a (2)
Wur sin 2

a.

a+sin a cos a'

W

FIG. 179. FIG. 180.

161. Determine the frictional moment for the conical pivot shown in

Fig. 180 for each of the following assumptions: (1) uniform normal pressure;

(2) uniform axial wear.

Ans. (1)
3 sin 2 sin a'
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77. Rolling Resistance. If a rigid wheel or roller which car-

ries a vertical load rests on a rigid horizontal surface, a horizontal

force, however small, will cause the wheel or roller to roll on the

surface. If a wheel rolls over a yielding surface, however, a

resistance to the motion is encountered due to the fact that the

surface immediately in front of the wheel is being deformed.

In Fig. 181 is shown a wheel carrying a vertical load W. Let

P be a horizontal force which causes the center of the wheel to

move with a constant velocity.

Since the surface on which the

wheel rolls deforms under the

wheel, the pressure between the

wheel and the surface is dis-

tributed over the area of con-

tact. The resultant pressure or

reaction of the surface on the

wheel, then, passes through some

point, B, in the area of contact as

shown in the figure. Since the

velocity of the wheel is constant,

the three forces acting on it are in equilibrium and hence the

reaction, R, of the surface on the wheel must pass through 0, the

center of the wheel. Taking moments about B we have,

Since the depression is usually small, OA is approximately equal

to r, the radius of the wheel. By using this approximation and

denoting AB by a, the value of P is found to be,

The force P is equal to the horizontal component of the reaction R
and is called the rolling friction or rolling resistance; the distance a

is sometimes called the coefficient of rolling resistance. However,
since a is a linear quantity and not a pure number it is not a true

coefficient. The value of a is generally expressed in inches. The

laws of rolling resistance are not well known, and there is need of

further investigation on the subject. It was assumed by Coulomb
1 hat the coefficient of rolling resistance is independent of the radius
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of the wheel. Tests by Dupuit indicate that the coefficient varies

as the square root of the diameter. Whether the conclusion of the

latter is correct or not, it seems reasonable to assume that the

value of the coefficient depends on the diameter of the wheel.

The values of the coefficient of rolling resistance given by various

investigators are not in close agreement and should be used with

caution.

COEFFICIENTS OF ROLLING RESISTANCE

(Due to Coulomb and Goodman}

a (inches)

Lignum vitse on oak 0.0195

Elm on oak 0327

Steel on steel.. 007 to 0.015

Steel on wood 06 to .10

Steel on macadam road 05 .20

Steel on soft ground . . 3.0 to 5 .

Pneumatic tires on good road . 02 to . 022

Pneumatic tires on mud road 04 to .06

Solid rubber tire on good road 04

Solid rubber tire on mud road 09 to .11

The resistance due to rolling may be regarded as equivalent

to a couple. In order to show that this statement is true, con-

sider the wheel represented in Fig. 182. A flexible cord passing

over the wheel carries at its ends

weights W and TF+w. Assume
w to be just great enough to

cause the wheel to move with a

constant velocity. Since the

wheel is in equilibrium under the

action of the two vertical forces,

W and W-\-w, and the reaction,

R, of the surface at B, it is evident

that the latter force must be ver-

tical. The reaction R at B may
be replaced by an equal parallel

force through A and a couple having a moment equal to Ra.

Since the force, R, through A also passes through the center of the

wheel it will not effect the rotation. Therefore the rolling resist-

ance is equivalent to the couple Ra. The moment wr, then,

which causes the wheel to roll is equal to Ra.

FIG. 182.
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For moving heavy weights, such as machines, houses, etc., two

or more rollers are frequently used as shown in Fig. 183. If the

coefficient of rolling resistance is the same at the top and bottom

of the rollers it can be shown that the force P required to overcome

friction is given by the expression,

p = Wa
r

w

() O 0_'3%%%%^^
FIG. 183.

PROBLEMS

162. The rolling resistance for the wheels of a freight car is 3 Ib. per ton.

If the diameter of the car wheels is 33 in., what is the coefficient of rolling

resistance? Ans. 025 in.

163. An oak beam which carries a load of 5000 Ib. rests on elm rollers the

diameters of which are 6 in. The rollers rest on a horizontal oak track. What
horizontal force is required to move the load if the weight of the beam is

neglected?

164. What is the rolling resistance of a wagon wheel on a macadam road

if the diameter of the wheel is 4 ft. 6 in.? Assume the coefficient of rolling

resistance to be 0.2 in.

Ans. 14.8 Ib. per ton.

78. Belt Friction. Belt friction is important in the trans-

mission of power by belt and rope drives and in resisting large

loads by means of band brakes, capstans, etc. If a belt, rope, or

steel band passes over a smooth cylinder or pulley the tensions in

the belt, rope, or band on the two sides of the pulley are equal.

If the cylinder or pulley is rough, however, the tensions will not,

in general, be equal. In the present article the relation between

the tensions in the belt, etc., on the two sides of a rough pulley,

when the belt is about to slip, will be determined. It is evident that

the greater tension must be just large enough to overcome the

smaller tension in addition to the friction between the belt and the

pulley. In Fig. 184 (a) is represented a belt on a pulley, the angle

of contact being a and the belt tensions being T\ and T%. Let
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TI be the greater tension and let it be assumed that the belt is

about to slip on the pulley. The normal pressure between the

belt and the pulley per unit length of belt, that is, the intensity of

pressure at any point, will be denoted by p, and the tension in the

belt at the same point will be denoted by T. Fig. 184(6) is a free-

body diagram of an element of belt of length ds. The forces

acting on this element are the tensions T and T-\-dT at the

ends, and the reaction of the pulley. The latter force may be

resolved into a component, dN= pds, normal to the face of the

FIG. 184.

pulley and a frictional component, dF f =
upds, tangent to the face

of the pulley. The equations of equilibrium may be applied as

follows :

(1)

= pds-(T+dT) sin -T sin = 0. (2)

Since -jr- is small, cos
-^-

is approximately equal to unity and
2

sin is approximately equal to -^r. The term dT sin -^ iu a small
2 A A

quantity of the second order and may be neglected. By using

these approximations, equations (1) and (2) become,

pds-TdB =

(3)

(4)
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Eliminating pds from equations (3) and (4) we have,

dT
T (5)

By integrating equation (5) the relation between T\ and T% may
be found as follows :

That is,

T

Ti

T~2

r
Jo

M '

or.

(6)

where e is the base of natural logarithms and a is measured in

radians. It should be noted that in the derivation of equation

(6) the belt is assumed to be perfectly flexible.

ILLUSTRATIVE PROBLEM

165. In the band brake shown in Fig. 185 the force P is 100 lb., the angle

of contact, a, is 270 (|TT radians), and the coefficient of friction, ju, for the band

and the brake wheel is 0.2. If the brake wheel rotates in a counter-clockwise

direction find the tensions in the band and the frictional moment developed.

FIG. 185.

Solution. Since the operating lever ACB is in equilibrium the equation
2MB = may be applied, from which the band pull at C, that is, the tension

T2 ,
is found. Thus,

13001b.
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Since Tz is now known, the tension T\ may be found from the belt-friction

formula. Thus,

=
1300X(2.718)-

2xf7r
>

log Ti = log 1300+0.3*- log 2.718

= 3.114+ .942X.434

= 3.522.

/. Ti = 33301b.

Frictional moment = (Tl-TJX 10

= 2030X10 = 20,300 Ib.-in.

PROBLEMS

166. A body weighing 2000 Ib. is suspended by means of a rope wound
1 turns around a drum. If the coefficient of friction is 0.3 what force must

be exerted at the other end of the rope to hold the body?

167. A boat is brought to rest by means of a rope which is wound around a

capstan. If a force of 4000 Ib. is exerted by the

boat and a pull of 100 Ib. is exerted on the other

end of the rope, find the number of turns the rope
makes around the capstan, assuming the value of

ju to be 0.25. Ans. 2.36 turns.

168. A body weighing 500 Ib. is raised by
means of a rope which passes over a round

beam, the angle of contact being 180. If the

coefficient of friction is 0.4, what is the least force

which will raise the body? What is the least

force which will hold the body?

w

FIG. 186.

169. A rope is wound twice around a post.

If a pull of 50 Ib. at one end of the rope will just

support a force of 6000 Ib. at the other end,

what is the coefficient of friction?

170. A body having a weight, W, of 1 ton is

suspended by means of a wire rope which passes

over two fixed drums, as shown in Fig. 186. If the coefficient of friction for

the rope and drums is 0.3, what force, P, will be required (a) to hold the

body; (6) to start the body upwards?
Ans. (a) P = 4881b,
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171. In Fig. 187 is represented a band brake, the angle of contact ofHie~

P-601b.

FIG. 187.

band on the brake wheel being 180. If the coefficient of friction is 0.2, find

the frictional moment developed (a) when the brake wheel rotates clock-

wise; (b) when the brake wheel rotates counter-clockwise

Ans. (a) 157 Ib.-ft.



CHAPTER V

FIRST MOMENTS AND CENTROIDS

79. First Moments. In the preceding chapters moments of

forces with respect to points and lines have frequently been used.

In the analysis of many problems in engineering, however, expres-

sions are frequently met which represent moments of volumes,

masses, areas, and lines. The moment of a volume, mass,
1
area,

or line with respect to an axis or plane is the algebraic sum of the

moments of the elementary parts of the volume, mass, area, or line,

the moment of an elementary part being the product of the ele-

mentary part (volume, mass, area, or line) and its distance from

the moment axis or plane. This moment of a volume, mass, etc.,

is called the first moment when it is desired to distinguish it from

the moment of inertia (or second moment) of the volume, area,

etc. (see Chapter VI), since the coordinate distances of the parts

of the volume, mass, area, or line enter into the expression for the

first moment to the first power and into the expression for the

second moment to the second power.

80. Centroids. In dealing with a system of parallel forces in

a plane it was found from the principle of moments that the alge-

braic sum of the moments of the forces about a point or axis is

equal to the moment of the resultant of the forces with respect

to the same point or axis. That is, 2(F-x) = 2F-x = Rx (Art. 26).

This equation was frequently used in Chapter II to locate the

position of the resultant, that is, to determine x after first finding

the sum of the moments of the forces, 2(F-x). When the posi-

tion of the resultant is known, however, the moment of the system
of forces is most easily found by determining the moment (Rx) of

the resultant.

1 The term mass cannot be denned completely nor its physical significance

discussed until the laws of motion of physical bodies are treated. (See

Chapter IX.) As here used it is sufficient to think of mass as the inert mate-

rial or matter of which bodies are composed, the quantitative expression of

which is the volume of the body times a density factor.

160
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In a similar way the moment of a volume, mass, area, or line

with respect to an axis or plane (made up of the sum of the moments
of the several parts or elements of the volume, mass, area, or line)

may be expressed as the product of the whole volume, mass, area,

or line, and a distance, x (or y, etc.), from the axis or plane such

that this product equals the algebraic sum of the moments of the

elementary parts of the volume, mass, area, or line.

This relation is sometimes called the principle of moments for

areas, volumes, etc., and it leads to an equation of the same form as

does the same principle in the case of forces. Thus, for an area A,
an element of which is denoted by a or dA, the equation is,

or

/<<"*>-/<

The resulting distance (x or y, etc.), is called the centroidal dis-

tance, and the point located by the centroidal distances is called

the centroid 1 of the volume, mass, area, or line. The centroid of a

volume, mass, area, or line, then, is that point at which the whole

volume, mass, area, or line may be conceived to be concentrated

and have the same moment with respect to an axis or plane
as has the volume, mass, area, or line when distributed in its

natural way.
Hence the coordinates (x and y) of the centroid of an area,

A
}
and of a line, L, are expressed by the following equations, in

which A = 2a= I dA and L = 2l=
j
dL.

1 The term center of gravity is sometimes used in technical literature to

denote not only the point in a body through which the resultant earth-pull

acts, but also to denote what is here denned as the centroid of a line, area,

volume, or mass. Thus, the phrase
"
center of gravity

"
of an area, or vol-

ume, etc., is used instead of the phrase
"
centroid

"
of the area, or volume, etc.

Further, the term centroid is sometimes used in a restricted sense as applying

only to geometrical figures (lines, areas, and volumes), in which case, the

term mass-center or center of mass is used instead of centroid of mass in con-

nection with physical bodies.
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= = _
A A L

Likewise, the coordinates (x, y, and z) of the centroid of a volume,

V, and of a mass, M, may be expressed by similar equations, in

which V=2v=
j
dV and M=2m = I dM. Thus,

V MM=

_

=

V V MM
MM

81. Planes and Lines of Symmetry. If a geometrical figure

(volume, area, or line) is symmetrical with respect to a plane or

line, the centroid of the figure lies in the given plane or line.

This statement is evident from the fact that the moments of the

parts of the figure on the opposite sides of the plane or line are

numerically equal but of opposite sign. If a figure is symmetrical
with respect to each of two planes or lines, the centroid of the

figure lies in the line of intersection of the two planes or at the point

of intersection of the two lines. If the figure has three planes of

symmetry, the centroid coincides with the point of intersection of

the three planes. The foregoing statements apply also to the

centroids of the masses of homogeneous physical solids which are

symmetrical with respect to one or more planes, since the centroid

of a volume coincides with the centroid of the mass of a homo-

geneous body which is congruent with the volume. The centroids

of many simple figures may be partially or completely determined

from symmetry. Thus, the centroids of the volumes or of the

surface areas of the following solids are as indicated below:

(1) Sphere or ellipsoid; the center of the sphere or ellipsoid.

(2) Right prism or cylinder; the mid-point of the axis.

(3) Hemisphere; on the radius perpendicular to its base.

(4) Right cone; on its geometrical axis.
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And the centroids of the following areas, and of their bounding

lines, are as indicated below:

(5) Circle or ellipse; the center of the circle or ellipse.

(6) Isosceles triangle; on the median bisecting the angle

between the equal sides.

(7) Semicircle; on the radius perpendicular to the base.

82. Centroids by Integration. In determining the centroid of a

volume, mass, area, or line by the method of integration, from the

equations of Art. 80 (Vx= I xdV, Ax= I xdA, etc.), it is possible

to select the element of volume, area, etc., in various ways and to

express the element in terms of either cartesian or polar coordi-

nates. The resulting integral may be a single, a double, or a triple

integral, depending on the way the element is selected. The

integral, of course, is a definite integral, the limits of integration

depending on the boundary curve or surface of the figure or body.
In any case the element of volume, mass, area, or line must be

taken so that,

1. All points of the element are the same distance from the line

or plane about which moments are taken; otherwise, the distance

from the line or plane to the element will be indefinite. Or, so that,

2. The centroid of the element is known, in which case the

moment of the element about the moment axis or plane is the

product of the element and the distance of its centroid from the

axis or plane.

The centroids of some of the common figures (lines, areas, and

volumes) will be found in the following illustrative problems.

ILLUSTRATIVE PROBLEMS

Find, by the method of integration, the centroids of the following figures

with respect to the axes indicated.

172. Arc of a Circle. The radius

which bisects the arc will be taken

as the x-axis (Fig. 188). By symmetry
the centroid lies on this axis. Hence

y=Q. If r denotes the radius of the

arc and 2 a the subtended angle, then,

in terms of polar coordinates, the ele-

ment of arc, dL, and its distance x from

the 7/-axis are dL = rd6 and x=r cos 9.

Thus, the element of arc is selected in

accordance with the first of the above

rules and x may be found as follows: FIG. 188.
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Lx = \xdL

-XT-J-a
r cos 6-rde

COS 2r2 sin a.

Therefore,
__2r2 sin _2r

2 sin _r sin a
*~ L~ 2ra ~^~~'

If the arc is a semicircle, that is, if a = 90 =- radians, then, x= . That

is, the distance of the centroid of a semicircular arc from the center of the

circle is slightly less than two-thirds of the radius of the circle.

173. Area of a Triangle. In accordance with the first of the above

rules the elements of area will be taken as strips parallel to the base of the

triangle (Fig. 189) . Since each element is bisected by the median drawn from

the vertex opposite the base, the centroid of each element, and hence of the

entire area, lies on this median. If x denotes the width of the strip, the area

of the strip is dA = xdy. Thus,
r
xydy.

From similar triangles, the relation between x and y is,

x _b _b

Hence,

/ i

A 11' 1 ^
Therefore,

- 1- The centroid of a triangular area, then, is at a

distance of one-third of the altitude from the

FIG. 189. base.

174. Sector of a Circle. First Method. The element of area will be

selected in accordance with the first of the above rules as indicated in Fig. 190.

Since the area is symmetrical with respect to the z-axis, the centroid lies on

this axis and hence
?/
= 0. The value of x may then be found from the equa-

tion,
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= CAx= xdA

Therefore,

+
p cos 6-pdpdd = %r

s sin a.

sin a fr
3 sin a. 2 r sin a

A r*a 3 a

If a; = 90 =
2 radians, that is, if the sector is a semicircular area,

. 4r

FIG. 190. FIG. 191.

Second Method. In accordance with the second of the above rules, the

element of area will be selected as a triangle, as indicated in Fig. 191. The

area of the triangle is %r
2d9 and the distance of its centroid from the i/-axis is

|r cos 6. Hence, the moment of the triangle with respect to the ?/-axis is

r3 cos ede and x is obtained from the equation,

/*+
Ax = I fr

3 cos 6dd
J-<*

= |r
3 sin .

Therefore,

__|r
3 sin a_2 r sin a

r2* ~3~oT~'

175. Volume of a Right Circular Cone. The axis of the cone will be taken

as the z-axis (Fig. 192). By symmetry, i/=0 and 0=0. In finding x, a thin

lamina parallel to the base of the cone will be selected as the element of

volume, the centroid of the lamina being at its center at the distance x from

the ?/z-plane. Hence, -x may be found as follows:

Vx= CxdV/
-f
"Jo
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From similar triangles, the relation between x and z is,

z r r
-=r or z = Tx.
x h h

Hence,

.=! r
h*Jo

Vx=^

Therefore,

FIG. 192.

176. Volume of a Hemisphere. The axis of symmetry will be taken as the

z-axis (Fig. 193). By symmetry x =0 and y = 0. A thin lamina parallel to the

base will be selected as the element of volume, the centroid of which is at the

distance z from the xy-pl&ue. Hence, the z-coordinate of the centroid of the

volume of the hemisphere may be found from the equation,

zdV,/
:

I zirx 2dzTr I z(r
2

i

Jo Jo

Therefore,

z=-
'8

FIG. 193.
177. Parabolic Segment. Let the seg-

ment be bounded by the x-axis, the line

b zx
x = a, and the parabola ?/

2 = as shown in Fig. 194. A strip parallel to

the ?/-axis will be selected as the element of area, the area of the strip being

expressed by ydx. The area of the segment, then, is,

A= CdA= C
a

ydx = -^= ("Vxdx
J Jo Vajo

To find x\

Ax= CxdA

FIG. 194.

Therefore, x = -1
1

=-_|6a 2 fba2 _3X ~
A



AREA OF QUADRANT OF AN ELLIPSE 167

To find </, the same elementary strip will be selected, but since each point
of the element is not the same distance from the z-axis, its moment must be

expressed as the product of the area of the strip and its centroidal distance,

K, from the x-axis. Thus,

Therefore,
-K

3,

|ab 8
'

178. Area of Quadrant of an Ellipse. The semi-axes of the ellipse will

be denoted by a and 6 (Fig. 195) and hence the equation of the ellipse is

A strip parallel to the y-axis will be selected as the element of area. From
the equation of the ellipse y may be expressed in terms of x by the equation,

a

Hence,

FIG. 195.

\irab

To find y, the same strip will be used for the element of area, its centroid

being at the distance \y from the z-axis. Thus,

Therefore,

- Fto-ite-* (\a*-
Jo 2oJo

PROBLEMS

179. A pulley having a thin rim is 2 ft. in diameter. How far from the

center of the pulley is the centroid of each half of the rim?

180. Find the centroid of a semicircular area, the radius of which is

9 in,
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181. Show that the centroid of the surface of a right circular cone is on

the axis of the cone at a distance of |/i from the apex, where h is the altitude

of the cone.

182. The radius of the base of a right circular cone is 5 in. and its height

is 2 ft. Locate the centroid of (a) the volume of the cone; (6) the curved sur-

face area of the cone.

183. Show that the distance of the cen

troid of the surface of a hemisphere from

the base is \r where r is the radius of the

hemisphere.

184. Locate the centroid of the area

included between the y-axis, the line y = b,

b 2x
and the parabola y

2 = as shown in Fig. 196.

FIG. 196. Select the element of area as shown in the

figure. Ans. x=Tua,y = %b.

186. A paraboloid is generated by rotating the parabola y*=px about the

x-axis. Locate the centroid of the volume included between the paraboloid
and the plane x = a.

Ans. x=|a.

83. Centroids of Composite Figures and Bodies. As noted in

Art. 80, if the centroid of a line, area, volume, or mass is known,
the moment with respect to an axis or plane is most easily found by

multiplying the line, area, volume, or mass by the distance of the

centroid from the axis or plane. Thus, if a given line, area, vol-

ume, or mass can be divided into parts, the centroids of which are

known, the moment of the whole line, area, etc., may be found

without integrating by obtaining the algebraic sum of the moments
of the parts into which the line, area, volume, or mass is divided,

the moment of each part being the product of that part and the dis-

tance of its centroid from the line or plane. Thus, for example, in

the case of a composite area, if a\, 0,2, as, etc., denote the parts

into which the area A is divided and x'
,
x ", x f

", etc., denote the

^-coordinates of the centroids of the respective parts, then,

(0,1+0,2+0,3+ )x = aixo
f+a2xo"+0,3X0" + . . .

,

or

or,

Similarly,
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From similar equations the centroid of a composite line, volume,

or mass may be found. Thus,

Ly=2(ly ),

ILLUSTRATIVE PROBLEMS

186. Locate the centroid of the T-section shown in Fig. 197.

Solution. If axes be selected as indicated it is evident from symmetry
that z=0. By dividing the given area into areas a\ and a2 and by taking

moments about the bottom edge of the area, y may be found as follows:

= 3 in.
__12X1+12X5
^"^ 6X2+6X2

FIG. 197. FIG. 198.

187. Locate the centroid of the volume of the cone and hemisphere shown
in Fig. 198, the values of r and h being 6 in. and 18 in. respectively.

Solution. The axis of symmetry will be taken as the ?/-axis. From sym-

metry then x = 0. By taking the x-axis through the apex of the cone as shown
the equation Vy = H(vyo) becomes,

That is,

Therefore,

h+2r

X(18) 2+2X6Xl8+|X(6)
18-1-2X6

16.2 in.
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PROBLEMS

188. Locate the centroid of the channel section shown in Fig. 199.

Ans. 5=0.79 in.

189. The radii of the upper and lower bases of the frustum of a right cir-

cular cone are n and r2 and the altitude is a. Find the distance of the centroid

above the lower base.

_ a r2
2 +2rir2+3r1

2

FIG. 199. FIG. 200. FIG. 201.

190. Locate the centroid of the shaded area shown in Fig. 200.

191. In Fig. 201 is represented a homogeneous solid which consists of a

hemisphere and a right circular cylinder from which a cone is removed.

Locate the centroid of the solid with respect to the axes indicated.

Ans. i= 6,45 in.

192. Locate the centroid of the segment of a circle as shown in Fig. 202.

In the expression for x make =-, and see if the result agrees with the result
z

found in Prob. 174 for a semicircle.

FIG. 202. FIG. 203,
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193. Find the distance from the larger base of the centroid of the area-of

the trapezoid shown in Fig. 203. Ans. z/
o'~r^ j~-

194. A slender steel rod is bent in the form shown in Fig. 204. Locate

the centroid of the rod with respect to the axes shown.

-10-

FIG. 204. FIG. 205.

196. Fig. 205 represents the cross-section of the end post of a bridge.

The area of each channel section is 4.78 sq. in. Find the distance from the

top of the cover plate to the centroid of the section.

84. Theorems of Pappus and Guldinus. I. The area of a sur-

face of revolution generated by revolving a plane curve about any

non-intersecting axis in its plane is equal to the product of the

length of the curve and the length of the path described by the

centroid of the curve.

Proof. Let the curve AB (Fig. 206) be revolved about OX.
The area of the surface generated is given by the equation,

A=
( 2irydL

Y

/
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where y is the distance of the centroid of the curve from OX and L
is the length of the curve.

II. The volume of the solid generated by revolving any plane

area about any non-intersecting line in its plane is the product of

the area and the length of the path described by the centroid of the

area.

Proof. Let the plane area A (Fig. 207) be rotated about the

axis OX. Each elementary area dA will generate a circular ring

the volume of which is 2irydA and hence the entire volume gen-

erated is given by the equation,

=
j
27rydA = 2-jr ( ydA =

where V is the distance of the centroid of the area from OX.

ILLUSTRATIVE PROBLEMS

196. Find the surface area and the volume of the solid generated by

rotating a circle of radius r about a line in the plane of the circle at a distance a

from its center, a being greater than r.

Solution:

A = 2-71-aX 2-n-r = 4ir2ar,

FIG. 208.

197. A V-shaped groove is turned out of a

cylinder as indicated by Fig. 208. Find the

volume of the material removed.

Solution. The distance of the centroid of

the triangle, which generates the volume, from

the axis of the cylinder is 2.5 in. and the area

of the triangle is 1.5 sq. in. Hence,

K-2rX2.5Xl.fi

= 23.55 cu. in.

PROBLEMS

Solve the following problems by the theorems of Pappus and Guldinus :

198. Find the surface area and the volume of a sphere.

199. Find the volume of a cone.
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200. Find the ^-coordinate of the centroid of the trapezoid shown in

209. Determine the volume of the frustum

of a cone generated by revolving the trapezoid

about the z-axis.

201. Find the volume of the ellipsoid gene-

rated by revolving the right half of the ellipse,

r^
o 2
=

li about the w-axis.

FIG. 209.

85. Center of Gravity and Mass-

Center. Center of Gravity. As noted

in Art. 80, if the distance of a certain

point (centroid) in an area, volume,

etc., from a given line or plane is known, the moment of

the area, volume, etc., with respect to the line or plane may
be found by multiplying the whole area, volume, etc., by this

(centroidal) distance. Similarly, the moment of the resultant

earth-pull on a body (weight of the body) with respect to an axis

may be found by multiplying the weight of the body by the dis-

tance of a certain point in the body from the axis. This point is

called the center of gravity of the body. The center of gravity

of a body, then, is a point in the body (or its extension) such that

if the body were conceived to be concentrated at this point the

moment of the weight of the body with respect to any axis would

be the same as the algebraic sum of the moments of the weights

of the particles of the body with respect to the same axis.

The weights of the particles of a body constitute a system of

parallel forces having points of application which are fixed in the

body and it can be shown 1 that the resultant of such a force

1 CENTER OF A SYSTEM OF PARALLEL FORCES. // a system of parallel forces

have fixed points of application in a rigid body the resultant of the system will pass

through a fixed point in the body regardless of the direction of the parallel force

system. This point is called the center

of the system of forces.

In order to show that the resultant

of such a force system doespassthrough
a definite point in the body for all direc-

tions of the parallel force system, it is

sufficient to prove the proposition for

two such forces. In Fig. 210 are shown
two parallel forces P and Q which act

at points A and B of a rigid body (not

shown). Let it be assumed first that

the forces act in the direction indicated

P >
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system passes through a definite point in the body regardless of

the way in which the body may be turned. Hence the center of

gravity of a body is a definite point in the body through which the

weight of the body (earth-pull on the body) acts regardless of the

position of the body.

If, then, W denotes the weight of a body and w or dW denotes

the weight of any particle of the body the coordinates of which are

x, y, and z, the coordinates x, y, and z of the center of gravity of

the body may be found from the equations :

Wx=2wx= xdW,=
j

Wz=2wz= I zdW,

by the full lines. If the point in which the resultant of P and Q intersects the

line AB be denoted by H it can be shown (Art. 24) that --

Let it be assumed next that the action lines of P and Q are rotated through an

angle 90 6 as indicated by the dotted lines, and that the action line of the

resultant of the two forces in this position intersects the line AB in the point

H'. Let BJ and H'l be drawn perpendicular to the action lines of P and Q
and let the point where the resultant of P and Q intersects BJ be denoted by K.

It can be shown as before that,

JK = IH' =^^BJ
=
-^AB sin 0.

Hence in the triangle AIH',

sin 6

Since AH=AH' it is evident that H' coincides with H, and hence the resultant

of P and Q passes through a definite point H on the line AB regardless of the

direction of the two parallel forces.

It is obvious that the proof may be extended to any number of forces, for,

the resultant of P and Q, just found, may be combined with a third force, S,

which has a fixed point of application C (say) in the body, and in the same

manner it can be shown that the resultant of these two forces will pass through
a fixed point on the line HC and so on.

So far as the relations of the forces to the body are concerned it is obviously

immaterial whether the body remains fixed and the forces be rotated relative

to the body as discussed above, or whether the forces remain fixed in direction

and the body be rotated. Hence the center of a system of parallel forces which

have fixed directions and which have fixed points of application in a rigid

body may also be defined as the point in the body through which the resultant

of the forces will pass regardless of the way in which the body is turned.
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Mass-center. As defined in Art. 82, the centroid of the mass

of a body is the point in the body (or its extension) such that if

the mass were conceived to be concentrated at this point, its

moment with respect to any line or plane would be equal to the

algebraic sum of the moments of the masses of the particles of the

body with respect to the line or plane. In discussions (particularly

in Kinetics) in which the relation between mass and weight are

involved, the term mass-center (or center of mass) is frequently used

instead of centroid of mass.

It will be shown in Part III (Kinetics) that the mass of a body
/ W\

is proportional to its weight (M=
) . It can be shown, therefore,

\ y /

that the center of mass of a body may, for all practical purposes,

be regarded as the same point as the center of gravity of the body.
Thus the ^-coordinate of the mass-center is

CxdM CxgdW

~~M~ gW
'

Now, if g be regarded as constant (and for all practical purposes it

may be so regarded), the last term in the above equation becomes

CxdW

center of gravity of the body.

~
,
and this is the expression for the x-coordinate of the

ILLUSTRATIVE PROBLEM

202. Gravel is piled on a floor so that the pressure on the beams which sup-

port the floor increases in the direction

of the beams as shown in Fig. 211.

The intensity of pressure varies from

zero at the left end of the beam to a

maximum ofpw = 800 Ib. per foot at

the right end. What is the weight of

the gravel and how far from the left

end of the beam does the resultant

weight act?

Solution. Let the intensity of pres- FIG. 211.

sure at any distance x from the left end

of the beam be px Ib. per foot. This pressure may be assumed to be constant
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over a length dx and hence the weight of gravel over this length is dW =

But px =Y'pm-
Therefore the total pressure on the beam (weight of gravel) is,

W-fpdx

= r^
Jo I

Hence, the total pressure of the gravel (its weight) is the same in magnitude
as it would be if the gravel were spread uniformly to a depth equal to one-half

that of the maximum depth. The total weight, however, would then act at

the center of the beam, whereas, according to the above distribution it must
act at a distance x such that,

-/Wx= dWx,

Therefore,

This result might have been obtained, without taking the above detailed

steps, from the fact that the gravel may be conceived to be concentrated in a

plane (of triangular shape), the position of the center of gravity of the gravel

then being the same as the centroid of the triangular area (Prob. 173).

PROBLEMS

203. Two homogeneous spheres A and B, connected by a rod, are mounted
on a vertical axis as shown in Fig.

212. The weights of the spheres are

20 lb. and 60 lb., respectively, and the

weight of the rod is 10 lb. How far

^rom tae ax*s *s tne center f gravity

of the three bodies? Ans, 7.94 in.

204. Four bodies A, B, C, and D
FIG. 212. are carrie(j by a rotating shaft as

shown in Fig. 213. The weights of

the bodies are 20, 15, 10, and 8 lb., respectively, and the distances of

their centers of gravity from the axis of the shaft are 12, 6, 5, and 10 in.,

respectively. Find the center of gravity of the four bodies when in the

positions shown.
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205. The density at any point of a slender rod varies directly as the square
of the distance of the point from the end of the rod. Show that the center

of mass of the rod is f Z from the given end.

45

I

FIG. 213.

206. A beam is loaded with brick piled so as to produce the distribution

of pressure as indicated in Fig. 214. Find the center of gravity of the brick.

\

m

FIG. 214.

207. Three particles of equal mass are placed at the vertices of a triangle.

Show that the mass-center of the particles coincides with the centroid of

the area of the triangle.

86. Graphical Method of Determining Centroids of Areas.

If the boundary of an area is

an irregular curve which can-

not be represented by an equa-

tion, the centroid cannot be

determined by the method of

integration. In such cases,

however, the centroid may be

determined by a graphical

method which will now be

described. Let B B'B'B (Fig.

215) be an area, the centroid

of which is to be found.

Draw two parallel lines XX and X'X' any convenient distance
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h apart. Draw a line BB parallel to XX and project the

points B,B on the line X'X', thereby obtaining the points

C,C. Connect the points C,C to any point P on XX. Let

the points where the lines CP intersect BB be denoted by D,D.
Repeat this process for other lines B'B', B"B", etc., and locate

similarly, points D', D'; D", D"; etc. Connect the points

D, D; D', D'; D", D"} etc., by a smooth curve. Let the area

enclosed by this curve be denoted by A 1

'. Then, if the given area

be denoted by A, the distance of the centroid of the area from the

line XX is given by the following equation,

Proof. If DD and CC are denoted by xf and x respectively,

then from the similar triangles PDD and PCC the following rela-

tion is obtained,
x x' .

T = or xy = hx .

h y

The distance, y, of the centroid of the given area from XX,
then, may be found a follows:

ly-xdy hlx'dy A ,

T.-J j_ -I.A-
y ~i f* ~i~*

The areas A and A' maybe determined by the use of a planimeter
or any other convenient method and the value of y is then deter-

mined from the above equation. In a similar manner, by taking

any two lines YY and Y'Y' and proceeding as above, the distance,

x, of the centroid from YY may be determined.

87. Determination of Center of Gravity by Experiment.
When a body is irregular in shape, the center of gravity cannot be

determined by the method of integration since the limits of the

integral cannot be determined. The center of gravity of such a

body, however, may be determined by the following experimental
methods.

Method of Suspension. If a body be suspended by a cord the

center of gravity is on the (vertical) line coinciding with the axis

of the cord. This statement follows from the fact that the two
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forces which hold the body in equilibrium (the upward tension in

the cord and the downward earth-pull) must be equal, opposite,

and collinear, and the earth-pull or weight of the body of course

acts through the center of gravity of the body. Hence if a body
be suspended from each of two points, the center of gravity will be

located in each of two lines in the body and hence is at the point

of intersection of the two lines.

Method of Balancing. If a body be balanced on a knife-edge

the center of gravity of the body will be in a vertical plane through
the knife-edge. Hence if the body be balanced on a knife-edge in

three different positions, three such planes in the body will be

located, and the center of gravity of the body is the point in which

the three planes intersect. A slightly different method involving

the same principle, applicable particularly to large bodies of known

weights, consists in resting one end of the body on a line of sup-

port (knife-edge) and the other end on platform scales. By
weighing the reaction (pressure) on the scales and by measuring
the distance between the knife-edge and the point of support on

the platform scales the action line of the weight of the body may be

found, since it lies in a plane which divides the distance between

the knife-edge and the point of support into segments inversely

proportional to the magnitudes of the reactions at the supports.

By repeating the process for two other positions of the body,
three such planes may be found as in the above method, and

hence the center of gravity may be located.



CHAPTER VI

SECOND MOMENT. MOMENT OF INERTIA

1. MOMENTS OF INERTIA OF AREAS

88. Moment of Inertia of an Area Defined. In the analysis of

many engineering problems as, for example, in determining the

stresses in a beam or column, expressions of the form I x2dA are

frequently met, in which dA represents an element of an area A
}

and x is the distance of the element from some axis in, or perpen-
dicular to, the plane of the area, the limits of integration being such

that each element of the area is included in the integration. An

expression of this form is called the second moment of the area or the

moment of inertia of the area with respect to the given axis. The
moment of inertia of an area with respect to an axis in, or per-

pendicular to, the plane of the area may, then, be denned as the

sum of the products obtained by multiplying each element of

the area by the square of its distance from the given axis.

The term moment of inertia is somewhat misleading, since

inertia is a property of physical bodies, only, and hence an area

does not possess inertia. For this reason the term, second moment
of an area, is to be preferred, particularly when contrasting the

expressions of the form here discussed with expressions which were

defined as first moments of areas in Chapter V. It may be noted

that each term x2dA in the summation which represents the

moment of inertia of an area can be written in the form x(xdA),

and hence represents the moment of the moment of an element of

area, that is, the second moment of the element. The term

moment of inertia, however, is very widely used, due to the fact

that the expression is of the same form as an expression to be dis-

cussed later (Art. 100) which is defined as the moment of inertia

of a body and which does have a physical significance.

The moment of inertia of an area with respect to an axis will

be denoted by I for an axis in the plane of the area and by J
for an axis perpendicular to the plane of the area. The particular

180
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axis (or direction of the axis) about which the moment of inertia

is taken will be denoted by subscripts. Thus, the moments of

inertia of the area A (Fig. 216) with respect to the x- and 7/-axes

are expressed as follows:

and

-f:
x2dA.

Units and Sign. Since

the moment of inertia of an

area is the sum of a number

of terms each of which is

the product of an area and

the square of a distance, the FIG- 216.

moment of inertia of an area

is expressed as a length to the fourth power. If, then, the inch

(or foot) be taken as the unit of length, the moment of inertia

will be expressed as inches (or feet) to the fourth power (written

in.4 or ft.
4
). Further, the sign of each of the products x2dA is

always positive since x2 is always positive, whether x is positive

or negative, and dA is essentially positive. Therefore the moment
of inertia, or second moment, of an area is always positive. In

this respect it differs from the first moment of an area, which may
be positive, negative, or zero, depending on the position of the

moment axis.

89. Polar Moment of Inertia. The moment of inertia of an

area with respect to a line

perpendicular to the

plane of the area is called

the polar moment of iner-

tia of the area and, as

noted in Art. 88, will be

denoted by /. Thus the

polar moment of inertia,

with respect to the z-axis,

of an area in the ^-plane

(Fig. 217) may be ex-

FIG. 217. pressed as follows:



182 SECOND MOMENT. MOMENT OF INERTIA

,.-/**

(x
2+y2

)dA

Therefore,

=
Jx

2dA+ \y2dA.

Hence the following proposition may be stated :

The polar moment of inertia of an area with respect to any axis

is equal to the sum of the moments of inertia of the area with respect

to any two rectangular axes in the plane of the area which intersect

on the given, polar axis.

90. Radius of Gyration. Since the moment of inertia of an

area

I. Radius or Lryration. Since tne moment 01 inertia 01 an

f I x2dA or I r2dA, etc., ) is four dimensions of length, it

may be expressed as the product of the total area, A, and the

square of a distance, k. Thus,

Ix
=j'y

2dA=Akx
2

,

or

Jz
= Cr2dA=Ak 2

.

The distance k is called the radius of gyration of the area with

respect to the given axis, the subscript denoting the axis with

respect to which the moment of inertia is taken. The radius of

gyration of an area with respect to a line, then, may be defined as

a distance such that, if the area were conceived to be concentrated

at this distance from the given line, the moment of inertia would

be the same as the moment of inertia of the actual or distributed

area with respect to the same line.

From the equation Iv
= I x2dA=Akv

2
,
it will be noted that

kv
2

,
the square of the radius of gyration with respect to the

?/-axis, is the mean of the squares of the distances, from the

2/-axis, of the equal elements of area into which the given area may
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be divided, and that it is not the square of the mean of these dis-

tances. The mean distance (x) of the elements of area from the

?/-axis is the centroidal distance as discussed in the preceding chap-

ter. Hence Ax2 does not represent the moment of inertia of an

area with respect to the ?/-axis.

91. Parallel Axis Theorem for Areas. If the moment of

inertia of an area with respect to a centroidal axis in the plane of

the area is known, the

moment of inertia with

respect to any parallel

axis in the plane may
be determined, without

integrating, by means

of a proposition which

may be established as

follows: In Fig. 218 let

YY be any axis through
the centroid, C, of an

area and let Y'Y' be

any axis parallel to YY
and at a distance d therefrom. Further, let the moment of inertia

of the area with respect to the axis YY be denoted by 7 and the

moment of inertia with respect to Y'Y' by /. By definition then,

/= \(x+d)2dA

=
Jx

2dA+2d \xdA-\-d2 CdA.

I=l+Ad2 since
j

Therefore,

Hence the following proposition may be stated:

The moment of inertia of an area with respect to any axis in the

plane of the area is equal to the moment of inertia of the area with

respect to a parallel centroidal axis plus the product of the area and

the square of the distance between the two axes. This proposition is

called the parallel axis theorem.

A corresponding relation exists between the radii of gyration of

the area with respect to two parallel axes, one of which passes
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through the centroid of the area. For, by replacing / by Ak2 and
7 by Ak2 the above equation becomes,

=Ak2+Ad2
.

Whence,

where k denotes the radius of gyration of the area with respect to

any axis in the plane of the area and Tt denotes the radius of gyra-
tion of the area with respect to a parallel centroidal axis.

Similarly, for polar moments of inertia and radii of gyration, it

can be shown that,

J =J+Ad2
,

and,

where J and k denote the polar moment of inertia and radius of

gyration, respectively, of the area with respect to the centroidal

axis and J and k denote the polar moment of inertia and radius of

gyration, respectively, of the area with respect to an axis parallel

to the centroidal axis and at a distance d therefrom.

92. Moments of Inertia by Integration. In determining the

moment of inertia of a plane area with respect to a line, it is pos-

sible to select the element of area in various ways and to express
the area of the element in terms of either cartesian or polar coor-

dinates. Further, the integral may be either a single or double

integral, depending on the way in which the element of area is

selected; the limits of integration are determined, of course,

from the boundary curve of the area. In any case, however,
the elementary area must be taken so that :

(1) All points in the element are equally distant from the axis

with respect to which the moment of inertia is to be found, other-

wise the distance x in the expression x2dA would be indefinite.

Or, so that,

(2) The moment of inertia of the element, with respect to the

axis about which the moment of inertia of the whol6 area is to be

found, is known, the moment of inertia of the area then being
found by summing up the moments of inertia of the elements.

Or, so that,

(3) The centroid of the element is known and also the moment
of inertia of the element with respect to an axis which passes
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through the centroid of the element and is parallel to the given

axis; the moment of inertia of the element may then be expressed

by means of the parallel axis theorem.

The moments of inertia of some of the simple areas will now be

found in the following illustrative problems.

ILLUSTRATIVE PROBLEMS

208. Determine the moment of inertia of a rectangle, in terms of its base

b and altitude h, with respect to (a) a centroidal axis parallel to the base;

(6) an axis coinciding with the base.

Solution. (a) Centroidal Axis. The element of area will be selected in

accordance with rule (1) above, as indicated in Fig. 219. The moment of

inertia of the rectangular area with respect to the centroidal axis, then, is,

<|N

FIG. 219. FIG. 220.

(6) Axis Coinciding with the Base. First Method. The element of area

will be selected as indicated in Fig. 220. The moment of inertia of the rect-

angle with respect to the base, then, is,

h =
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Second Method. Since the moment of inertia of the rectangle with respect

to a centroidal axis is -^bh
3

,
the moment of inertia with respect to the base

may be found from the parallel axis theorem (Art. 91) . Thus,

209. Determine the moment of inertia of a triangle, in terms of its base

b and altitude h, with respect to (a) an axis coinciding with its base; (6) a

centroidal axis parallel to the base.

Solution. (a) Axis Coinciding with the Base. The elementary area

will be selected as shown in Fig. 221. The moment of inertia of the area of the

triangle with respect to the base, then, is,

Cy 2dA = Cy
2
xdy.

But, from similar triangles,

Hence,

hy
h

'

Therefore,

-y)dy

x _/____+ j___

FIG. 221. FIG. 222

(b) Centroidal Axis Parallel to the Base. The centroidal axis parallel

to the base (axis XX) is shown in Fig. 222 (see Prob. 173). Using the parallel
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axis thoerem, the moment of inertia of the triangular area with respect to the

centroidal axis is,

210. Determine the moment of inertia of the area of a circle, in terms of

its radius r, with respect to an axis coinciding with the diameter; (a) using
cartesian coordinates; (ft) using polar coordinates.

Solution. (a) Cartesian Coordinates. The element of area will be

selected as shown in Fig. 223. The moment of inertia of the circular area

with respect to the diameter, then, is,

FIG. 223. FIG. 224.

(6) Polar Coordinates. The element of area will be selected as shown in

Fig. 224. Hence,

CT C2ir

I (P sin 0)* pdpde
Jo Jo



188 SECOND MOMENT. MOMENT OF INERTIA

3 sin 2 6 dpdd

4

suv

4

211. Determine the polar moment of inertia of the area of a circle of radius

r with respect to a centroidal axis : (a) by integration ; (6) by use of the theorem
of Art. 89.

Solution. (a) By Integration. By selecting the element of area as

indicated in Fig. 225, the polar moment of inertia of the circular area is,

.Jp%U

= I p*2irpdp

FIG. 225.

4*
(6) By Use of Theorem of Art. 89.

Snce I and Iy are each equal to \-n-r
4

(Prob. 210), the polar moment of inertia of

the area of the circle is,

212. Find the moment of inertia, with respect to the re-axis, of the area

bounded by the parabola y*=2x, and the line a: = 8 in.

Solution. First Method. The element of area will be selected in accord-

ance with rule (1) of Art. 92 as indicated in Fig. 226. The moment of inertia

of the given area with respect to the z-axis, then, is,

l x = y*dA

- x)dy = 2 - dy

lOJo

136.5 in.<
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Second Method. The elementary area will be selected in accordance witrr

rule (2) of Art. 92 as indicated in Fig. 227. Since each elementary area is a

FIG. 226. FIG. 227.

rectangle of width dx and height 2y, the moment of inertia of the element

with respect to the x-axis is -^^dx (2,y)
3 =^y 3dx (see Prob. 208). Hence, the

moment of inertia of the given area is

!*-=

= 4-^ C>dx
3 Jo

3 L5 Jo

136. 5 in. 4

PROBLEMS

213. Determine the moment of inertia of the area of a circle, with respect

to an axis tangent to the circle, in terms of, r, the radius of the circle.

214. Determine the polar moment of inertia of the area of a rectangle of

base b and altitude d with respect to the centroidal axis.

Ans. j=

215. Find the moment of inertia and radius of gyration of a circular area,

16 in. in diameter, with respect to a diameter.

216. Determine the moments of inertia of the area of an ellipse, the prin-

cipal axes of which are 2a and 26, with respect to the principal axes.

Ans. Ia
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217. The base of a triangle is 8 in. and its altitude is 10 in. Find the

moment of inertia and radius of gyration of the area of the triangle with

respect to the base.

218. Find the polar moment of inertia and radius of gyration of the area

of a square, each side of which is 15 in., with respect to an axis through
one corner of the square.

219. Find the polar moment of inertia, with respect to a centroidal axis,

of the area of an isosceles triangle having a base b and altitude h.

Ans. J=

93. Moments of Inertia of Composite Areas. When a compos-
ite area can be divided into a number of simple areas, such as tri-

angles, rectangles, and circles, for which the moments of inertia

are known, the moment of inertia of the entire area may be

obtained by taking the sum of the moments of inertia of the several

areas. Likewise, the moment of inertia of the part of an area

that remains after one or more simple areas are removed may be

found by subtracting, from the moment of inertia of the total area,

the sum of the moments of inertia of the several parts removed.

ILLUSTRATIVE PROBLEMS

220. Locate the horizontal centroidal axis, XX, of the T-section shown in

Fig. 228 and find the moment of inertia of the area with respect to this cen-

troidal axis.

K_(-*-\ Solution. First Method. The dis-

tance, y, of the centroid of the area

from the axis XiXi may be found from

the equation,

IB

X-i -i Thus,

FIG. 228.

12+12

= 5 in.

The moment of inertia with respect

to the XX axis is the sum of the

moments of inertia of the three parts

a\, 02, and as, with respect to that axis.

Thus,

=4+48+ . 67+83. 33

= 136 in. 4
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Second Method. The moment of inertia of the T-section may also be

determined as follows : First find the moment of inertia of the T-section with

respect to the axis XiXi by subtracting the moments of inertia of the parts

a4 and a5 from the moment of inertia of the rectangular area ABCD and then

find Jx for the T-section by use of the parallel axis theorem. Thus, the

moment of inertia, Ix ,
of the T-section with respect to the XiX\ axis is,

and

221. Find the moment of inertia of the channel section shown in Fig. 229,

with respect to the line XX. Find also the moment of inertia with respect

to the parallel centroidal axis.

V3Mfi 4 J
<N I Q Y

X

FIG. 229.

Solution. The area may be divided into triangles and rectangles as shown
in the figure. The values used in the solution may be put in tabular form as

shown below, where a denotes the area of any part, yo the distance of the cen-

troid of the part from the line XX, I the moment of inertia of the part with

respect to its own centroidal axis parallel to XX, and I'x the moment of inertia

of the part with respect to the axis XX.

Part.
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Therefore, the moment of inertia with respect to a line through the centroid

and parallel to XX is given by the equation,

= 6.89-6.02X(.70)2
= 6.89-2.95
= 3.94 in. 4

PROBLEMS

222. A wooden column is built up of four 2-in. by 8-in. planks as shown
in Fig. 230. Find the moment of inertia of the cross-section with respect to

the centroidal axis XX. Ans. 7^ = 981 in. 4

x-- -H?

id?
-J T

x

FIG. 230. FIG. 231.

223. Find the moment of inertia of the

angle section (Fig. 231) with respect to each of

the centroidal axes parallel to the two legs of the

angle.

224. In Fig. 232 is shown the cross-sor tion

of a standard 9-in. 21-lb. I-beam (fillets are

neglected). Find the moments of inertia of

the section with respect to the centroidal axes,

XX and YY. Ans. Ix = 84.9 in. 4
; 7^

= 5.16 in. 4

225. In Fig. 233 is shown the cross-section

of a standard 3$ -in. by 5-in. standard Z-bar

(fillets are neglected). Find the moments of

inertia of the section with respect to the cen-

troidal axes XX and YY.

T~
|Y 226. In Fig. 234 is shown a built-up

FIG. 232. section made of a |-in. by 20-in. plate and
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four angles. Find the moment of inertia of the section with respert tn

the XX axis.

Ans. 7^=1850 in.
4

*

*r
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228. Find the moment of inertia of a trapezoid (Fig. 236), in terms of its

bases and altitude, with respect to (a) an axis coinciding with its larger base;

(6) a centroidal axis parallel to the bases.

FIG. 236.

94. Product of Inertia Defined. If the moments of inertia

of an area with respect to any two rectangular axes are known, the

moment of inertia with respect to any other axis through the point

of intersection of the two axes may frequently be obtained most

easily in terms of the moments of inertia of the area with respect

to the two rectangular axes and an expression of the form I xydA

in which dA is an element of the given area and x and y are the

coordinates of the element with respect to the two rectangular

axes. This expression is called the product of inertia of the area

with respect to the axes and is denoted by Pxy . Hence, the product
of inertia of an area with respect to any two rectangular axes

may be defined as the sum of the products obtained by multiplying

each element of area by the product of the two coordinates of the

element with respect to the two rectangular axes. That is,

Pxv
= (xydA.

The product of inertia of an area, like the moment of inertia of

an area, is of four dimensions in length and is therefore expressed

as inches (or feet, etc.) to the fourth power (in.
4

,
ft.

4
, etc.).

Unlike moment of inertia, however, the product of inertia of an

area is not always positive, but may be negative or may be zero,

since either x or y may be negative and hence their product may be

negative or equal to zero.

95. Axes of Symmetry. The product of inertia of an area with

respect to two rectangular axes is zero if either one of the axes

is an axis of symmetry. This follows from the fact that for each
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product xydA for an element on one side of the axis of symmetry
there is an equal product of opposite sign for the corresponding

element on the other side of the axis and hence, the expression

xydA equals zero.

ILLUSTRATIVE PROBLEM

229. Find the product of inertia of the area of the triangle, shown in Fig.

237, with respect to the x- and ?/-axes.

Solution. The relation be-

tween x and y is given by the

equation y = %x. Hence,

r rs en*
= xydA = xydxdy
J Jo Jo

90
X

FIG. 237.

PROBLEMS

230. Find the product of inertia of the area of a rectangle, having a base b

and an altitude h, with respect to two adjacent sides.

.4ns. P =

231. Find the product of inertia of the quadrant of a circular area, shown in

Fig. 238, with respect to the x- and t/-axes, in terms of its radius r.

Ans. Pw = |r
4

.

FIG. 238. FIG. 239.

232. Find the product of inertia of the rectangular area with respect to the

x- and 7/-axes as shown in Fig. 239.
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i-T

FIG. 240.

233. Find the product of

inertia of the triangular area

with respect to the x- and ?/-axes

as shown in Fig. 240.

Ans. PXV
= 192 in. 4

234. Find the product of

inertia, with respect to the

coordinate axes, of the area

bounded by the parabola
y

z
ax, the line x = 6, and the

x-axis.

Ans. Pxv = r,ab
z

.

96. Parallel Axis Theorem for Products of Inertia. When
the product of inertia of an area is known for any pair of rectangular
axes passing through the centroid of the area, the product of

inertia of the area with respect to any parallel set of axes may be

determined without in-

tegrating. Thus, in Fig.

241, X'X' and Y'Y' are

axes which pass through
the centroid, C, of the

area; XX and YY are

parallel axes passing

through the point 0. x

The coordinates of C
with respect to XX and

YY are denoted by x

and y. If the product
of inertia of the area with respect to XX and YY be denoted

by Pxy and the product of inertia with respect to X'X' and Y'Y'

be denoted by Piy , then, by definition,

x'

pIG 241

=
|
x'y'dA+xy \dA+y Cx'dA+x \y'dA.

Since each of the last two integrals is the first moment of the

area with respect to a centroidal axis, each integral is equal to

zero. The equation then becomes,

Pxv=Pxv+Axy.
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That is, the product of inertia of any area with respect to any pair

of rectangular axes in its plane is equal to the product of inertia

of the area with respect to a pair of parallel centroidal axes plus the

product of the area and the coordinates of the centroid of the area with

respect to the given pair of axes.

ILLUSTRATIVE PROBLEM

235. Find the product of inertia of the area shown in Fig. 242 with respect

to the x- and z/-axes.

Solution. The area may be divided

into rectangles a\ and a2 as shown. Using
the formula Pxy = Pxy-\-A.xy we have, for the

area a\,

Pxv
=0+12X1X3 = 36 in. 4

,

and for area a2 ,

Hence, for the entire area,

FIG. 242.

PROBLEMS

236. Find the product of inertia of the area shown in Fig. 243 with respect
to the x- and ?/-axes.

-6

FIG. 243. FIG. 244.

237. Locate the centroid of the angle section shown in Fig. 244 and deter-

mine the product of inertia with respect to centroidal axes parallel to the two

legs of the angle. Ans. P= 18.3 in. 4
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97. Moments of Inertia with Respect to Inclined Axes. The
moments of inertia of an area with respect to different lines (in

the plane of the area) which pass through a given point are in

general unequal. The determination of the moment of inertia of

an area by the method of

Y integration i s compara-

tively simple for certain

lines but rather difficult

for other lines. Equations

(1) and (2) below make it

possible to determine the

moment of inertia with

respect to any line passing

through a given point in

the area in terms of the

moments of inertia and

product of inertia of the

area with respect to two rectangular axes passing through the

point. The equations may be derived as follows: The moment
of inertia of the area shown in Fig. 245 with respect to OX'
is expressed by the equation,

lx,=
|
y
/2dA = I (y cos 6 x sin 6)

2dA

= cos2 e I y
2dA+sin2 I x2dA-2 sin 6 cos 6 I xydA

FIG. 245

= IX cos2d+Iy sin2 6 2Pxv sin d cos

In a similar manner the following equation may be derived,

Iy = Ix sin
2 cos2 d+2Pxy sin 6 cos d.

(D

(2)

Thus, from these equations, the moment of inertia of an area with

respect to an axis inclined at an angle 8 with one of a given pair

of rectangular axes may be found, without integrating, if the

moments of inertia and the product of inertia of the area with

respect to the given rectangular axes are known.

By adding equations (1) and (2) the following important equa-
tion is obtained,

(3)
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That is, the sum of the moments of inertia of an area with respect

to all pairs of rectangular axes, having a common point of intersec-

tion, is constant. It should be noted also that each side of equation

(3) is equal to the polar moment of inertia of the area with respect

to an axis passing through the point (Art. 89).

Axes for Which the Product of Inertia is Zero. It may be

shown that through any point in an area there is one set of rect-

angular axes for which the product of inertia is zero. Thus from

Fig. 245.

PX'V'
=

fx'y'dA =(% cos 6+y sin 0)(y cos z sin 6)dA

= (cos
2 0-sin2

d^jxydA+cos
sin

0f(y
2 -x2

)dA

=PXV cos 20+%(Ix-Iy) sin 20

Hence Pxy = when tan 20 = = y .

iy LX

98. Principal Axes. In the analysis of many engineering

problems the moment of inertia of an area must be found with

respect to a certain axis called a principal axis. A principal axis of

inertia of an area, for a given point in the area, is an axis about

which the moment of inertia of the area is either greater or less

than for any other axis passing through the given point. It can

be proved that through any point in an area two rectangular axes

can be drawn for which the moments of inertia of the area are

greater and less, respectively, than for any other axes through the

point. There are then two principal axes of inertia of an area for

any point in the area. Further, it can be shown that axes for

which the product of inertia is zero are principal axes. And, since

the product of inertia of an area is zero for symmetrical axes, it

follows that axes of symmetry are principal axes. The above

statements may be demonstrated as follows:

The direction of the principal axes may be determined from

equation (1) of Art. 97 which may be written in the form,

r l+cos20
,

. l-cos20
I* = Ix ~ \-Iv ~ Pxu sin 20
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The value of 6 which will make /*> have a maximum or a minimum
value may be found by equating the first derivative of I& with

respect to 6 to zero. Thus,

= = sin 26(Iy-II)-2Pxv cos 20 = 0,
au

whence,

tan 26=
2PXV

I*-I*

From this equation two values of 20 are obtained which differ by
180, the corresponding values of 6 differing by 90. For one value

of the value of I? will be a maximum and for the other, a min-

imum. If Pxy
= (which will always be the case if either the x- or

?/-axis is an axis of symmetry) the value of is zero, and hence axes

of symmetry are principal axes.

ILLUSTRATIVE PROBLEM

238. Find the moments of inertia of the angle section, shown in Fig. 246,

with respect to principal axes passing through the centroid.

Solution. The steps in the solution will be made as follows:

(1) The centroid of the area will be located, that, is x and y will be found.

(2) The moments of inertia and the product of inertia (Ix , Iy, and Pxy)

with respect to the centroidal x- and ?/-axes will then be found by the methods

discussed in Arts. 93 and 96.

(3) The directions of the

principal axes will then be found

by use of the equations of

Art. 98.

(4) The moment of inertia

with respect to each of the

principal axes, u and v, will then

be found by means of equations

(1) and (2) of Art. 97.

:_4X|X2+5|X|XA
4Xf+5fXi

3.396
=

3.61
'0.94 in.

FIG. 246.

7.01

3.61

4Xf+5fXf
= 1.94 in.
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/*=-AXfX(5f) 3 +5iXtX(U) 2

+TVX4X(t) 3+4XtX(lf) 2

= 5.57+3.30+0.02+4.59

= 13. 48 in. 4

=0.02+1.19+2.00+1.69

=4. 90 in. 4

To determine Pxv ,
the value of P^y will first be found and then the value of

I5xy may be found by means of the formula in Art. 96. Thus,

= 1.26+0.56

= 1.82 in.4

Using the formula of Art. 96 we have

= 1.82-3.61X(-0.94)X(-1.94)

= -4.76 in. 4

The directions of the principal axes are found from the formula of Art. 98,

Thus,

/. 20 = 48 or 228,
and

= 24 or 114.

From the formula of Art. 97, the moment of inertia with respect to the axis

making an angle of 24 with CX (denoted by u) is,

/ = 13.48 cos 2 24+4.90 sin 2 24 -2( -4.76) sin 24 cos 24

= 11.23+0.81+3.53

= 15.59 in.4

Using = 114 and denoting the corresponding axis by v, we have,

/ = 13.48 cos 2 114 +4.90 sin 2 114 -2( -4.76) sin 114 cos 114
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= 2.23+4.08-3.53

= 2.78 in. 4

Hence, the principal moments of inertia are 15.59 in. 4 and 2.78 in. 4 The

corresponding radii of gyration are 2.08 in. and 0.88 in.

PROBLEMS

239. In the Z-section shown in Fig. 247,

Find the principal moments of inertia.

= 25.32 in. 4 and 7^ = 9.11 in.4

Ans. 31.2 in. 4
; 3.20 in. 4

240. Show that the moment of inertia of the area of a square is constant

for all axes in the plane of the area which pass through the center.

IY

'30
c

IY

FIG. 247.

IY

FIG. 248.

241. Fig. 248 represents the cross-section of a standard 10-in. 25-lb.

I-beam. 7a; = 122.1 in. 4
, Jy = 6.89 in. 4

,
and A =7.37 in. 2 Find the moment

of inertia and radius of gyration of the section with respect to a line making an

angle of 30 with the z-axis. 4 Ans. 7 = 93.3 in. 4

99. Moments of Inertia of Areas by Graphical and Approximate
Methods. It is sometimes necessary to determine the moment
of inertia of an area having a bounding curve which cannot be

defined by a mathematical equation. The moment of inertia of

such an area may be determined by a graphical method or by an

approximate method.
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Graphical Method. Let the area within the outer curve in Fig.

249 be denoted by A and let the line with respect to which the mo-

ment of inertia of A is to be determined be denoted by XX. Draw

any line, such as X'X', parallel to and at the distance h from XX.
Draw any chord, such as BB, and project the points B,B on X'X'

thereby obtaining the points C,C. Connect the points C,(7 to

any point, P, on XX by lines intersecting BB at points D,D.

Project the points D,D, on X'X' thereby obtaining the points

E,E. Connect the points E,E, to P by lines cutting the line

BB in points F,F. This construction may be repeated for a

number of chords parallel to BB, thus obtaining a number of

points similar to F,F. All such points may be connected by a

smooth curve, the area within which will be denoted by A'. The
moment of inertia of A with respect to the axis XX is given by the

product of the area of A' and h2 (A'h
2
). This fact may be proved

as follows: Denoting BB by x, DD by x', and FF by x" we have,
from the similar triangles PFF and PEE,

ar

y

and, from the similar triangles PDD and PCC,

U* T*

~y

=
K

(1)

(2)



204 SECOND MOMENT. MOMENT OF INERTIA

From (1) and (2), the following equation is obtained,

The moment of inertia of the area A with respect to XX, then, is

given by the equation,

C C C1= I y
2dA= I y

2
xdy = h2 I x"dy

= h2A'.

The area A' may be obtained by means of a planimeter or by
approximate methods.

Approximate Method. Although the method described above is

of importance, the amount of work involved in any numerical prob-
lem is considerable. An approximate method will now be described

which can easily be applied to any area. For convenience, how-

ever, a simple area will be selected so that the approximate value

of the moment of inertia as determined by this method may be

compared with the exact value. Thus, let the moment of inertia

of the area of a rectangle, with respect to an axis coinciding with

its base, be found. The area may be divided into any convenient

number of equal narrow strips parallel to the base, as shown in

Fig. 250. (The narrower

the strips the more closely

will the result agree with

the exact result.) Let the

area be divided into ten

such strips each 0.2 in. in

FIG. 250. width. The moment of

inertia of the rectangle is

equal to the sum of the moments of inertia of the strips.

The moment of inertia of any particular strip with respect

to the base of the rectangle is

where y is the distance of the centroid of the particular strip from

the base. The first term is small and may be omitted without

serious error. The moment of inertia of each strip then is approx-
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imately equal to the product of the area of the strip and the

square of the distance of its centroid from the base. Hence, the

moment of inertia of the rectangle is,

= |X13.3

= 15.96 in.
4

According to Art. 92 the exact value is,

2. MOMENTS OF INERTIA OF BODIES

100. Moment of Inertia of Mass Defined. In the analysis of

the motion of a body, the body is frequently regarded as a system
of particles and expressions are frequently met in the analysis

which involve the mass of a particle and its distance from a

line or plane. The product of the mass of a particle and the first

power of its distance from a line or plane is called the first moment
of the particle as discussed in Art. 79 while the product of the

mass of the particle and the square of its distance from the line

or plane is called the second moment of the mass of the particle

or more frequently the moment of inertia of the mass of the particle

(or briefly the moment of inertia of the particle) with respect to

the line or plane. The moment of inertia of a system of particles

(mass-system or body) with respect to a line or plane is the sum
of the moments of inertia of the particles with respect to the given
line or plane. Thus, if the masses of the particles of a system
are denoted by mi, m^, m^, . . . and the distances of the particles

from a given line are denoted by r\, 7-2 , r% . . .
,
the moment of

inertia of the system may be expressed as follows :

-\-m2T2
2
-\-m3T3

2+ . . .

If the mass system constitutes a continuous body the summation
in the above equation may be replaced by a definite integral, and
the expression for the moment of inertia of the body then becomes,

/=
|

r2dM,
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where dM represents an element of mass of the body and r is the

distance of the element from the given line or plane. The limits

of the integral must, of course, be so chosen that each element of

mass of the body is included in the integration. Therefore, the

moment of inertia of a body with respect to a line or plane may be

defined as the sum of the products obtained by multiplying each

elementary mass of the body by the square of its distance from the

given line or plane. The moment of inertia of the mass of a body

(or more briefly the moment of inertia of a body) has a physical

significance, since common experience teaches that if a body
is free to rotate about an axis, the farther from the axis the mate-

rial is placed, that is, the greater the moment of inertia of

the body becomes, the greater is the moment of the forces required

to give the body a prescribed rotation in a specified time. Thus,
if a rod is free to rotate about a vertical axis and carries two spheres

which may be moved along the rod, experience shows that the

farther from the axis the spheres are placed the greater is the

torque required to produce a definite rotation in a given time.

Units. No special one-term name has been given to the unit

of moment of inertia of a body, hence, the units of mass arid the

unit of length used are specified. Thus, if the mass of a body is

expressed in pounds and the dimensions of the body are expressed

in feet, the moment of inertia of the body is expressed in pound-
foot2 units (written lb.-ft.

2
).' In engineering problems, however,

the pound is generally used as the unit of force, in which case mass
/ w\

is equal to force divided by acceleration (M = ), as will be dis-
\ y /

cussed in Arts. 139 and 141, and the unit of mass is, therefore, a

derived unit being expressed in terms of the units of force (pound),

length (foot) ,
and time (second) . Thus, the dimensional equation

W L FT2

for mass is = ^I

~=~T
:=

~j~-
And since the unit of moment of

inertia involves the units of mass and of length squared,, then in

engineering problems the unit of moment of inertia is also a

FT2

derived unit, the dimensions of which are ML2 = j^-XL
2 =FT2

L,L
that is, Ib.-sec

2
-ft. The name geepound or slug is sometimes used for

the engineer's unit of mass, the first because the unit of mass is the

mass of a body that weighs g (32.2 approximately) pounds, and

the second because mass is a measure of the sluggishness (inertia)
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of the body. Thus the moment of inertia of a body is some-

times expressed in geepound-foot
2 or slug-foot

2 units (geepound-

ft.
2 or slug-ft.

2
). It is important, however, to keep in mind that

the unit of moment of inertia is a derived unit, being expressed

in terms of the fundamental units of force, length, and time.

101. Radius of Gyration. It is frequently convenient to

express the moment of inertia of a body in terms of factors, one of

which is the mass of the whole body. Since each term in the

expression for moment of inertia as denned above is one dimension

in mass and two dimensions in length, the moment of inertia of a

body may be expressed as the product of the mass, M, of the whole

body and the square of a length. This length is defined as the

radius of gyration of the body and will be denoted by k. Thus,
the moment of inertia, 7, of a body with respect to a given line or

plane may be expressed by the product Mk2
,
and hence,

or k w
The radius of gyration of a body with respect to any axis, then, may
be regarded as the distance from the axis at which the mass may
be conceived to be concentrated and have the same moment of

inertia with respect to the axis as does the actual (or distributed)

mass.

Viewed differently, the radius of gyration of a body with respect

to an axis is a distance such that the square of this distance is the

mean of the squares of the distances from the axis of the (equal)

elements of mass into which the given body may be divided (not

the square of the mean of the distances) .

102. Parallel Axis Theorem for Masses. If the moment of

inertia of a body with respect to an axis passing through its cen-

troid (center of gravity or mass-center) is known, the moment of

inertia of the body with respect to any parallel axis may be found,

without integrating, by use of the following proposition.

The moment of inertia of a body with respect to any axis is equal

to the moment of inertia of the body with respect to a parallel axis

through the mass-center of the body plus the product of the mass of the

body and the square of the distance between the two axes.

This proposition may be stated in equational form as follows:
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where / denotes the moment of inertia of the body with respect to

an axis through the mass-center and I denotes the moment of

inertia with respect to a parallel

axis which is at a distance d from

the axis through the mass-center.

Proof. Let Fig. 251 represent

the cross-section of a body con-

taining the mass-center, G. Further,

let the moment of inertia of the

body with respect to an axis

through G and perpendicular to

this section be denoted by 7 and

let the moment of inertia with

respect to a parallel axis through
The expression for I, then, is,

FIG. 251.

the point be denoted by /.

= C\(x+d)
2+y2]dM

= C(x
2+y2)dM+d2 CdM+2d (xdM.

Therefore,

I=I+Md2

since

This theorem is frequently called the parallel axis theorem for

masses. A similar relation may be found between the radii of

gyration with respect to the two axes. Thus, if the radii of gyra-

tion with respect to the two parallel axes be denoted by k and k, the

above equation may be written,

=Mk2+Md2
,

Hence,

103. Moments of Inertia with Respect to Two Perpendicular

Planes. The determination of the moment of inertia of a body
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with respect to a line is frequently simplified by making use of the

following theorem : The sum of the moments of inertia of a body with

respect to two perpendicular planes is equal to the moment of inertia

of the body with respect to the line of intersection of the two planes.

Proof. If the moment of inertia of the body (Fig. 252) with

respect to xy- and x^-planes be denoted by Ixy and IIZ , respectively,

the expressions for the moments of inertia are,

xyIxv= z
2dM

and

y
2dM.

By adding these two equations
the resulting equation is,

FIG. 252.
I*

104. Moments of Inertia of Simple Solids by Integration. In

determining the moment of inertia of a body with respect to an

axis by the method of integration, the mass of the body may be

divided into elements in various ways, and either cartesian or polar

coordinates may be used, leading to a single, double, or triple

integration, depending on the way the element is chosen. The
elements of mass should always be selected, however, so that,

(1) All points in the element are equally distant from the

axis (or plane) with respect to which the moment of inertia is to be

found, otherwise the distance from the axis to the element would

be indefinite. Or, so that,

(2) The moment of inertia of the element with respect to the

axis about which the moment of inertia of the body is to be found is

known; the moment of inertia of the body is then found by
summing up the moments of inertia of the elements. Or, so that,

(3) The mass-center of the element is known and the moment
of inertia of the element with respect to an axis through its mass-

center and parallel to the given axis is known, in which case, the

moment of inertia of the element may be expressed by use of the

parallel axis theorem (Art. 102).
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The moment of inertia of some of the simpler solids are found

in the following problems.

NOTE: The symbol 5 will be used in the following pages to denote the

density of a body.

ILLUSTRATIVE PROBLEMS

242. Determine the moment of inertia of a homogeneous right circular

cylinder with respect to its geometrical axis.

Solution. In accordance with the first of the above rules, the element of

mass may be selected as indicated in Fig. 253. The volume of this element is

hpdpdd, and if the density be denoted by 5, the mass of the element is

Shpdpdd. Hence, the expression for the moment of inertia becomes,

7
=/'
w=/X

= fr5hr*.

FIG. 253. FIG. 254.

Since the mass, M, of the cylinder is dTrr
2
h, the above equation may be

written,

2

243. Determine the moment of inertia of a homogeneous rectangular
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parallelepiped with respect to (a) a central axis parallel to an edge; (b)

a median line of one face.

Solution, (a) Central Axis Parallel to an Edge. Let the lengths of

the edges be denoted by a, 6, and c, and let the z-axis, parallel to the edge c,

be the central axis about which the moment of inertia is to be found, as shown

in Fig. 254. The parallelepiped may be divided into elementary volumes as

indicated, the mass of each- element being dcdxdy. The moment of inertia

with respect to the z-axis, then, is,

-f:i\ dc(x
z+y 2

)dxdy

a*b . ab*

i2
+

i2

In a similar way it can be shown that the moments of inertia with respect to

central axes parallel to the edges a and 6 are

and

Thus, the moment of inertia of a homogeneous rectangular prism with

respect to a central axis parallel to any one of the three edges is expressed in

terms of the mass and the lengths of the other two edges.

(6) A Median Line of One Face. In order to determine the moment of

inertia with respect to a median line of one face the formula of Art. 102 may
be used. Thus, if the line MN (Fig. 254) be taken as the axis, the moment of

inertia with respect to MN is

]O\&

244. Determine the moment of inertia of a homogeneous sphere with

respect to a diameter.
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Solution. The cross-section of the sphere in the xy-pl&ne is shown in

Fig. '255. In accordance with the second rule above, the element of volume

may be taken as a thin circular lamina included between two planes parallel

to the 2-plane, as shown in cross-section. This element, then, may be

regarded as a circular cylinder of radius x and altitude dy. The mass of the

elemental cylinder is fax*dy and its moment of inertia with respect to the ?/-axis

is %dirx*dy (Prob. 242). Hence, the moment of inertia of the entire sphere

with respect to the y-axis is,

7 = x*dy

245. Determine the moment of

inertia of a homogeneous right

circular cone about its geometrical
FIG. 255.

Solution. A cross-section of the cone in the xy-p\&ne is shown in Fig. 256,

the y-axis being taken as the geometric axis. In accordance with the second

rule above, the element of volume is taken as a circular lamina included

between two planes parallel to the base, the height of the lamina being dy.

The mass of this elemental cylinder is dirx2
dy and its moment of inertia with

respect to the ?/-axis is %5irx
4
dy. The moment of inertia of the cone with

respect to the ?/-axis, then, is,

f.
Iv = ^87r I x*dy.

Jo

The relation between x and y may be

found from similar triangles. Thus,

h = h-y
r x

That is,

Hence,

r
=

57r^f (h-yYdy
FIG. 256.
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Second Method. If the element of volume be taken in accordance with the

first rule above, as indicated in Fig. 257, the element of mass then is dzpdpdd

and hence the moment of inertia of the cone with respect to the z-axis is,

dzp
3
dpd6.

The relation between z and p may be

found from similar triangles. Thus,

r-p r

or,

Hence,

= ** C
T

r*p3(r-
r Jo Jo

fa**' FIG. 257.

246. Show that the moment of inertia of a homogeneous right prism,

having a cross-section of any shape, with respect to a plane coinciding with

one of the bases of the prism, is / = \MI
2 in whichM is the mass of the rod and

I is the length of the rod. Further, show that for a slender rod the above

expression represents, with slight error, the moment of inertia of the rod with

respect to an axis passing through one end of the rod and perpendicular to

the rod.

FIG. 258.

Solution. -In accordance with the first of the above rules, the element of

mass may be selected as a thin lamina parallel to the end plane as shown in
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Fig. 258. The volume of the element is Adx and its mass is 8Adx, where A is

the cross-section of the prism. Hence,

= dA
I

Jo
x2dx

If the moment of inertia is taken with respect to an end axis (Y F), then, x

(Fig. 258) is not the distance of all points in the lamina from the axis; the

greater part of the lamina is farther from the axis than the distance x. There-

fore the product dM-x 2 = (8Adx}x
2

is less than the real moment of inertia of

the lamina, and hence \Ml 2 is less than the true moment of inertia of the rod

with respect to the end axis YY. But, the products dMx 2 for the laminas

which are greatly in error (for the laminas near the axis YY} have little influence

in determining the value of the summation, I dMx2
,
in comparison with the

laminas far removed from the axis and for which the products dMx 2 are only

slightly in error. Hence, the expression \Ml- is a close approximation to

the moment of inertia of a slender rod, as for example, a flywheel spoke or

connecting rod, etc., with respect to an axis through an end. Thus, the error

in the expression \Ml 2 is only 1 per cent for a circular cylinder when the

length of the cylinder is only 4.3 times its diameter.

247. Show that the moment of inertia of a homogeneous thin circular

lamina with respect to an axis through the mass-center, parallel to the bases

of the lamina, is approximately |Afr
2

,
in which M is the mass of the lamina

and r is the radius.

Solution. A top view and an end view of the lamina are shown in Fig. 259.

The element of volume will be taken as a prism of altitude t and cross-section

pdpde, as indicated in the figure. The mass of the element is Stpdpde . Now
if the thickness t is relatively small, all points in any elementary

prism are approximately at the same distance (y
= p sin 6} from the

re-axis except for those prisms which are near the axis, and these prisms
contribute little to the momen.t
of inertia of the lamina with

respect to the z-axis. Thus, the

moment of inertia of the lamina

with respect to an axis through its

mass-center parallel to the bases of

the lamina is approximately,

sin 2
edpde

FIG. 259.
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It should be noted that the smaller the value of t becomes, the closer is the

approximation. The above expression is also a close approximation to the

moment of inertia of the lamina with respect to a diameter of either base of

the lamina.

248. Determine the moment of inertia of a homogeneous right circular

cylinder with respect to a diameter of one of the bases.

Solution. First Method. In accordance with the third of the above rules,

the element of volume may be taken as a thin circular lamina parallel to the

base as indicated in Fig. 260. The mass of the element is 8Trrzdz and the

moment of inertia of the element with respect to a centroidal axis parallel to the

z-axis, as found in the preceding problem, is ^8-rrr^dz. The moment of inertia

of the element with respect to the z-axis, then, as found by the parallel axis

theorem (Art. 102), is

Hence, the moment of inertia of the entire cylinder with respect to the z-axis is,

- P-l 4 C
H

~Jo
* "r Z

Jo

FIG. 260. FIG. 261.

Second Method. The moment of inertia with respect to the x-axis may
also be found by adding the moments of inertia with respect to the xy- and

rrz-planes (Art. 103). Thus, in Fig. 261,
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From Problem 246 the moment of inertia with respect to the end (xy) plane is

To find the moment of inertia with respect to the zz-plane an element of mass

may be selected as indicated in Fig. 261. Thus,

= Cy*dM = l

+r
y

r+r
= 26/i

j
y*Vr*-

Therefore,

249. Determine the moment of inertia of a homogeneous right circular

cone with respect to a diameter of the base.

Solution. In accordance with the third of the above rules the element of

volume may be taken as a thin cylindrical lamina parallel to the base, as indi-

cated in Fig. 262. The mass of this element is 5irx 2dz and its moment of

inertia with respect to its centroidal axis parallel to the x-axis is %8-jrx
4dz (see

Problem 247). The moment of inertia with respect to the re-axis, according
to the parallel axis theorem (Art. 102), is ^birx^dz-^-dirx^dz. Hence, the

moment of inertia of the entire cone with respect to the z-axis is,

*= |

h

\fax*dz+ r
Jo Jo

8-n-xWdz.

From similar triangles,

r

Hence,

r2 Ch

-2 I
z*(h~

h*jo

FIG. 262.

250. Determine the moment of inertia of a sphere with respect to a central

axis if the density at any point varies directly as the distance of the point from

a central plane perpendicular to the axis.
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Solution. The moment axis will be taken as the y-axis of coordinates

(Fig. 263). The element of volume will be taken as a thin lamina parallel

to the zz-plane. The density at all points in this lamina is proportional to y

and hence may be>denoted by ky. Hence, the element of mass is kyirx
z
dy

and the mass of the sphere is

M

The moment of inertia of the cylindrical lamina is \kyirx*dy (Prob. 242)

and the moment of inertia of the entire sphere is the sum of the moments of

inertia of the elementary cylinders. Thus,

-/.
yx*dy

FIG. 263.

251. Find the moment of inertia, with respect to a central axis, of a cast-

iron sphere 10 in. in diameter. Assume the weight of cast iron to be 450 Ib.

per cubic foot.

Solution. The mass of the sphere is,

450M 4/5 \'=
3* (l2J

Ib.-sec. 2

32T2
r

= .296 lb.-sec. 2-ft. (or slug-ft.
2
).

PROBLEMS

252. Determine the moment of inertia of a homogeneous right circular

cone about an axis through the center of gravity perpendicular to the geo-
metrical axis. Ans.
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253. A homogeneous cylindrical rod is 2 ft. long and the radius is 2 in.

If the moment of inertia is found with respect to a line through one end of the

rod perpendicular to its axis by using the approximate formula of Problem

246, what is the error in the result, in per cent?

254. Determine the moment of inertia of a steel cylinder 6 in. in diameter

and 12 in. high, about its geometric axis. Assume the weight of steel to be

490 Ib. per cubic foot.

255. Show that the moment of inertia of a homogeneous slender rod with

respect to an axis through the mid-point of the rod and perpendicular to the

rod is approximately -

256. Determine the moment of inertia of a homogeneous ellipsoid, the

principal axes of which are 2a, 26, and 2c, about the axis 2a.

Ans. /

257. Determine the moment of inertia of a homogeneous elliptic cylinder,
in which the principal axes of the cross-section are 2a and 26, with respect to

(1) the geometrical axis, and (2) an axis through the center of gravity coin-

cident with the axis 2a of the cross-section.

Ans. (1) 7 =

105. Moments of Inertia of Composite Bodies. If a body can

be divided into several finite parts, the moment of inertia of each of

which is known, the moment of inertia of the given body may be

Obtained by adding the moments of inertia of the several parts.

In like manner if parts of a body are removed, the moment of

inertia of the remainder may be obtained by subtracting from the

moment of inertia of the original body the sum of the moments
of inertia of the parts removed.

ILLUSTRATIVE PROBLEMS

258. Determine the moment of inertia of a homogeneous, hollow, circular

cylinder with respect to its geometric axis, in terms of its mass M and its inner

and outer radii, r\ and r2 .

Solution. Let /2 and M2 denote the moment of inertia and the mass of a

solid cylinder of radius r2 and let 7i and Mi have similar meanings for the

cylinder of radius n which is removed. Then,
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259. Determine the moment of inertia of the cast-iron flywheel shown in

Fig. 264 with respect to the axis of rotation. Assume the weight of cast iron

to be 450 Ib. per cubic foot.

FIG. 264.

Solution. The rim and hub are hollow cylinders and the spokes may be

regarded as slender rods.

Ib.

Ib.

The weight of the rim =

The weight of the hub =* -

The weight of each spoke=7rX^X^\i i

41.7 Ib.

For the hub, ^*I|[ g) *+ g) ]
=0.54 slug-ft.

, 7=6X xX X -11.1

Hence the moment of inertia of the flywheel is,

7 = 102. 3+0. 54+ 11. 1 = 113. 9 slug-ft.
2

PROBLEMS

260. Determine the moment of inertia of the frustum of a homogeneous
right circular cone with respect to the geometrical axis, the radii of the bases

being r2 and n. -
Ans. /
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261. The head of the mallet shown in Fig. 265 is a rectangular parallel-

epiped and the handle is a right circular cylinder. If the weight of the mate-

rial is Ib. per cubic inch, find the moment of inertia of the mallet with

respect to the line YY. Ans. 7 = 3.83 slug-it.
2

4"

-20-

,4

l"

_I

FIG. 265. FIG. 266.

262. The wheel shown in Fig. 266 is made of cast iron and has a solid web.

Determine the moment of inertia of the wheel with respect to the axis of

rotation. Assume the weight of cast iron to be 450 Ib. per cu. ft.

263. From a round steel disk which is 20 in. in diameter and 4 in. thick, are

bored four holes, each 4 in. in diameter. The axes of the holes are parallel

to the geometric axis of the disk and 5 in. therefrom. Find the moment of

inertia of the remainder of the disk with respect to its geometric axis, assuming
the weight of steel to be 490 Ib. per cu. ft.

Ans. 7 = 3.51 slug-ft.
2

264. Two spheres are connected by a horizontal rod and are free to rotate

about a vertical axis midway between the spheres. The diameter of each

sphere is 9 in., the distance between their centers is 2 ft., and the diameter of

the rod is 2 in. Find the moment of inertia of the rod and spheres with respect

to the axis of rotation. Assume that the rod and spheres are made of cast

iron which weighs 450 Ib. per cu. ft.

106. Moments of Inertia of Bodies by Experimental Methods.

If a body is irregular in shape, the moment of inertia cannot be

found by methods of integration, since it is impossible to deter-

mine the limits of the integral. The moments of inertia of such

bodies may be determined experimentally, however, by methods

which make use of the laws of motion of a pendulum. These

methods of determining the moment of inertia are discussed

under the subject of Pendulums (Chapter IX).



PART II

KINEMATICS

107. Introduction. Kinematics treats of the motion of bodies

without considering the manner in which the motion is influenced,

either by the forces acting on the bodies or by the character of

the bodies themselves. That is, the bodies are treated as geo-

metric solids and not physical bodies. When the geometric solids

are endowed with physical properties, we are led to a study of

force, energy, momentum, etc., that is, to a study of Kinetics

(Part III).

Kinematics deals with the relation between distance, time,

velocity, and acceleration. In order to build up the fundamental

conceptions which are involved in the study of the motion of

bodies, the kinematics of a particle (material point) will be

treated first. A particle is a body, or part of a body, the dimen-

sions of which are negligible compared with its range of motion.

Bodies are made up of particles, and the study of the motion of

bodies is largely a study of the motion of their particles.

In treating of the motion of bodies (Chapter VIII), only rigid

bodies will be considered, and the motion of the rigid bodies will

be restricted to translation, rotation, and plane motion.
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CHAPTER VII

MOTION OF A PARTICLE

108. Types of Motion. The motion of a particle along a

straight line path is called rectilinear motion. The motion of a

particle along a curved path is called curvilinear motion. If the

moving particle describes equal distances in equal periods of time,

however small, the motion is said to be uniform. If unequal dis-

tances are described by the moving point in equal periods of time,

the motion is said to be non-uniform or variable.

Thus, if the crank shaft of a steam engine revolves at a constant

FIG. 267.

number of revolutions per minute, the crosshead of the engine

has a non-uniform rectilinear motion, the crank pin has a uniform

curvilinear motion, and any intermediate point on the connecting

rod has a non-uniform, curvilinear motion.

109. Linear Displacement. The displacement of a moving

point is its change of position. The position of a moving point, at

222



LINEAR DISPLACEMENT 223

any instant, may be specified in a number of ways, as, for example,

by stating the rectangular coordinates or the polar coordinates of

the point. Thus, in Fig. 267 the position, at any instant, of the

point M as it travels along the curve from B to C may be specified

by the coordinates (x, y) or by (p, 0), p being the radius vector and

6 its direction angle. The displacement Ac of the point as it moves

from the position (xi, y\) or (pi, 0i) to the position (x2, 2/2) or

(p2, 62) is the straight line BC, that is, the vector drawn from

B to C. This displacement may be expressed as the vector sum 1 of

its a;- and ^/-components. Thus,

Ac= Az-B> Ay,

in which, i

Ax= X2 xi is the displacement in the x-direction, and

A?/
=

2/2 2/1 is the displacement in the ^/-direction.

The magnitude of Ac may be expressed algebraically by the

equation,

and its direction with the x-axis may be expressed by the equation,

tan
(j>
=~.
Ax

The displacement Ac may be expressed also as the vector dif-

ference of the radius vectors to the two positions of the moving
point. Thus,

that is, Ac is the directed distance which must be added to pi to

give p2 . Or, in other words, p2 is the vector sum of pi and Ac.

1 The symbol -H will be used in this and succeeding chapters, when dealing
with vector quantities, to denote the fact that the addition of the quantities
is a geometric or vector addition. Thus, if R is the resultant of the forces

P and Q, the triangle law may be expressed by the equation R =P +> Q. And,
if u and w are components of the velocity v, this fact may be expressed by the

equation v = u 4> w. Similarly, the symbol > will be used to denote vector

subtraction. Thus, t>2 > v\ denotes the geometric or vector difference of two
velocities and not their scalar difference, that is, the difference of their magni-
tudes, only.
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Expressed algebraically, by the law of cosines, the magnitude of

Ac may be written,

Ac= pi
2+p2

2
2pip2 cos A0.

The unit of displacement is any convenient unit of length,

such as the inch, foot, mile, etc. It will be noted, however, that

displacement is a directed distance or length, that is, a vector

quantity. Displacements, therefore, may be combined and

resolved according to the parallelogram (or triangle) law like forces

and other vector quantities. It is important to note that by one

of the above equations the displacement is expressed as the vector

sum of two directed distances, whereas by the other equation it is

expressed as the vector difference of two directed distances. Fur-

ther, one vector equation is sufficient to express both the magnitude
and the direction of the displacement, whereas two algebraic equa-

tions are required for the same purpose.

If the displacement of the particle is decreased indefinitely,

the point C (Fig. 267) will approach the point B and, in the limit,

the chord Ac becomes coincident with the tangent to the path at B.

Therefore, the direction of motion of the particle at any point on

its path is tangent to the path at that point.

110. Angular Displacement. The angular displacement of a

moving point is the change in the angle which the radius vector

to the point makes with some fixed reference line. Thus, in

Fig. 267, the angular displacement, Ad, corresponding to the linear

displacement, Ac, is,

A0=0i 02-

The unit of angular displacement may be any convenient

angular measure, such as the degree, revolution, radian, etc.

It is important to note that the angular displacement of a point

depends upon the reference point or pole about which the radius

vector is assumed to revolve. If the point moves on a circular

arc, the radius vector is usually taken as the radius of the circle

and the pole is the center of the circle.
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PROBLEMS

265. An automobile starts from the position A, as specified with reference

to the axes shown in Fig. 268, and travels to position B along the road indicated

by the curved path. Find (a) the magnitude and direction of the linear dis-

placement of the automobile; (6) the angular displacement.

FIG. 268. FIG. 269.

ds-Ua

266. A point moves on a circular path of radius r from A to B (Fig. 269),

the angular displacement, with reference to the center, 0, of the circle, being
denoted by A0 and, with reference to the pole 0\, by A<. Show that the mag-
nitude of Ac, the linear displacement of the point, is expressed by the equation,

A0
Ac = 2r sin .

If A0=^ radians (45), what is angular displacement, A<, with respect to Oi?

111. Relation between Linear Y

and Angular Displacements. If

a point moves along a circular

path, the linear displacement, dc

(Fig. 270), corresponding to an

indefinitely small angular dis-

placement dd may be considered

to be coincident with the arc ds,

which is subtended by the angle

dd. Since the arc of a circle is

the product of the radius and

the central angle, when the angle

is measured in radians, the rela- FIG. 270.
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tion between the linear and angular displacements may be ex-

pressed by the equation,

ds = rdd.

For a large angular displacement A0, the corresponding linear

displacement Ac is not equal
to rAd. The distance As

along the arc, however, is

expressed by rAd.

If the moving point does

not travel on a circular

path, that is, if the path
does not have a constant

radius of curvature, the

equation ds=rdd may be

used, provided that r is

x the radius of curvature

FIG . 271. f the path at the given

position of the point and

that d& is measured with respect to the center of curvature

as the pole.

If, however, the pole is not chosen as the center of curvature

of the path (Fig. 271), the displacement may then be expressed in

terms of its two components as follows:

ds = pde +> dp,

in which p is the radius vector to the point and not the radius of

curvature of the path at that point.

112. Linear Velocity and Speed. The linear velocity of a

moving particle is the time rate at which the particle is changing

position, or, more briefly, the time rate of linear displacement.

The direction of the velocity of the moving particle at a given

point on its path is tangent to the path at that point (Art. 109).

Hence velocity, like displacement, possesses both magnitude and

direction. The magnitude of the velocity of a point is called the

speed of the point. Speed, therefore, is a scalar quantity. It may
be denned as the time rate of describing distance (not the time rate

of displacement). Although the terms velocity and speed are fre-

quently used interchangeably, it is important to associate with the

word velocity the two properties which it possesses, for, a change in
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the direction of a velocity is fully as important in the laws of

motion of physical bodies as is a change in the speed.

If a point has a uniform motion along any path, the speed of

the point is the ratio of any distance, As, described by the point,

to the corresponding interval of time, A2. Thus,

As

It will be noted that if a particle has uniform motion, whether

rectilinear or curvilinear, the speed of the particle is constant.

The velocity, however, is constant only in the case of uniform

rectilinear motion, since in any curvilinear motion the velocity of

the particle continually changes direction.

If the motion of the point is non-uniform, the above equation
does not give the speed of the point at each instant in the interval,

but gives only the average speed for the time interval, At. The
instantaneous speed is the average speed over an indefinitely small

period of time including the instant, or, expressed in mathematical

form, the speed at any instant is,

. ..As ds

The direction of v, as already noted, is tangent to the path at the

point on the path where the moving particle is located at the

instant.

The unit of velocity may be any convenient unit of length

per unit of time; such as, foot per second (ft./sec.), mile per hour

(mi./hr.), centimeter per second (cm. /sec.), etc.

In order to find the value of v by differentiation, as indicated in

equation (1), s must be expressed algebraically in terms of t.

ILLUSTRATIVE PROBLEM

267. A point moves along a straight line path according to the law,
s = 6<2 +4. What is the velocity of the point at the end of 5 sec.?

Solution. v =^ =J (6*
2+4) =12*.

Hence, when = 5 sec., the velocity of the point is,

v = 12X5 = 60 ft./sec.
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PROBLEMS

268. A point moves along a path according to the law s = 3t*+2t+t- 1
,

s and t being in feet and seconds, respectively. What is the speed of the point
when < = 2 sec.? Ans. v = 13.75 ft./sec.

269. A point moves along a straight line according to the law v = <
3+4<2+2.

If s =4 ft. when t = 2 sec., what is the value of s when t = 3 sec.?

Ans. 8= 47.58 ft.

113. Distance-time Graph. If a point moves in such a way
that the distance s, in equation (1) of Art. 112, cannot be ex-

pressed algebraical!}' in terms of t, or, if the relation between s and
t leads to a complex equation, the speed may often be found con-

veniently, by a graphical process, from the distance-time (s-t) curve.

25
3|0

35 4p

t
}
seconds

FIG. 272.

Thus, instead of expressing the relation between s and t algebra-

ically, it is shown graphically by plotting a series of points, the

rectangular coordinates of each point being simultaneously values

of s and t. One such graph is shown in Fig. 272.

ds
Since the slope to the (s t) curve is represented by -^ and since

ds
V =

-TI
(Art- 112), then the slope at any point of the (s-t) graph

represents, to some scale, the speed at the corresponding
instant.
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ILLUSTRATIVE PROBLEM

270. If the curve in Fig. 272 is the $-t graph for a point moving on a

straight-line path, what is the velocity of the point at the end of 20 sec.?

Solution:

BC 2 units verticallv 1
Slope at A =-r^ = i, rr r . -r-fr~

=
AB 4 units horizontally 2

But 1 unit vertically represents 50 ft. and 1 unit horizontally represents 5 sec.

Hence,

Unit slope = = = 10 ft./sec.
SGC.

Therefore velocity at end of 20 sec. =^X10

= 5 ft./sec.

114. Angular Velocity. The angular velocity of a moving

particle is defined as the time rate of angular displacement of the

particle.

If equal angular displacements occur in equal time intervals,

however small, the motion is said to be uniform, and the angular

velocity, co, is expressed as the ratio of any angular displacement,

A0, to the time interval, A, during which the displacement occurs.

Thus,
A0

If unequal angular displacements occur in equal time intervals,

the motion is said to be non-uniform or variable. For such motion

the above equation gives the average angular velocity during the

time interval At. When the angular velocity varies during the

interval, its value at any instant is the average velocity over an

indefinitely small time interval including the instant. Or,

expressed mathematically, the instantaneous angular velocity is,

. A6 c?6
(0= Limit -r-=-r:.

The unit of angular velocity is any convenient unit of angular

displacement per unit of time; such as, degree per second

(deg /sec.), revolution per minute (r.p.m.), radian per second

(rad./sec.), etc.
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In order to determine the angular velocity from the above

equation, 6 must be expressed algebraically in terms of
t, a require-

ment similar to that met in using the equation v = -r in Art. 112.

The angular velocity may also be found from an angular displace-

ment-time (6-t) graph by a graphical method similar to that used

in determining the linear velocity in Art. 113.

115. Relation between Linear and Angular Velocities. In

many problems in kinematics it is convenient to express the

linear velocity of a point in terms of its angular velocity. The
relation between the two velocities may be found as follows:

Let a point M move on a circular path of radius r (Fig. 273a);

FIG. 273.

let v be the linear velocity of the point at any instant and let co

be the angular velocity of the point at the same instant. From

definition,

ds d6
V= -T. and W = -T-.

dt dt

But the distance ds traversed in the time dt may be expressed in

terms of the corresponding angular displacement dd, by the

equation ds = rdd (Art. 111). Therefore,

rdQ

Hence, at any instant, the linear velocity of a point moving on a
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circular path is the product of its angular velocity
1
(with respect

to the center of the path) and the radius of the path.

If the particle does not move on a circular path, the equa-

tion v = ur is also true if r is the radius of curvature of the

path at the given position of the particle, and if co is the

angular velocity of the particle with respect to the center of curva-

ture as the pole.

Further, if the point moves on a curve of any form and the

center of curvature is not taken as the pole (Fig. 2736), then the

term pco, where p denotes the radius vector to the point, gives one

component only of the linear velocity, as is shown in the next

article.

PROBLEMS

271. A flywheel 6 ft. in diameter rotates at 120 r.p.m. Find the linear

velocity, in feet per second, of a point on its circumference.

272. A rod 4 ft. long rotates in a horizontal plane about a vertical axis

through one end of the rod, so that the

linear velocity of its mid-point is 60 ft. per A
K-50--3H

sec. Find the angular velocity of the rod,

in r.p.m.

273. An automobile is traveling at 30

miles per hour on a straight road. An
observer is stationed at (Fig. 274). Find

the angular velocity of the automobile with

respect to the observer (a) when the auto-

mobile is at A; (6) when at B.

116. Components of Velocity. It

is frequently convenient to find the ^
velocity of a moving point by de- pIG 274.

termining its components, or to deal

with the components of the velocity instead of the total velocity.

The assumption that velocity may be resolved into components
1 When angular velocity is involved in the same expression with linear

velocity, the angular velocity is expressed in radians per unit of time. Since

the number of radians turned through is a length along a circular arc divided

by the length of the radius and, hence, is a ratio of length to length, it has no

dimensions. Thus the dimensional equation for

and hence the equation is dimensionally correct (Art. 19). Likewise, angular

displacement and angular acceleration are expressed in radians and radians

per second 2
, respectively, under similar conditions.

wr s ~ =
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follows from the fact that velocity is a vector quantity. Its truth,

however, is abundantly confirmed by the agreement of results,

deduced by the use of velocity components, with observed facts.

Two sets of components only are here determined; namely, the

axial components (vx and
vv)j parallel, respectively, to

the x- and-?/ axes, and the

radial and transverse com-

ponents (VR and VT), par-
allel and perpendicular,

respectively, to the radius

vector (Fig. 275).

Thus, since the linear

velocity of a point in any
direction is the rate at

which the position of the

the
FIG 275

point is changing

given direction, the axial components of the velocity v

moving point M (Fig. 275) are given by the expressions,
1

in

of the

dx
v,= - and

dt'

or. if the coordinates, x and y, of the particle change uniformly,

then,
Ax x2 -xi __'., _Ay^y2 -yi

At t2 -ti'
and *-?-

Likewise, at any instant, the transverse and radial components,

VT and vRt are expressed as follows:

_pd9 , _c/p

1 These equations follow from the definition of velocity provided that the

assumption is made that the components of a displacement may be treated,

in all respects, like the total displacement itself and that the vector sum of the

rates of change of the components is the same as the rate of change of the total

displacement. The equations may be derived through an algebraic series

of steps beginning with the definition of a velocity component, vx = v cos a

and substituting therein the values of v and cos
; namely, v=-r and cos a

= -^. This method gives an apparent definiteness to the conclusion but is
as

lacking somewhat in its emphasis on the fundamental characteristics of the

quantities involved.
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in which pdd and dp are the component displacements in the

transverse and radial directions during the time interval dt, as

shown in the preceding article, and co is the angular velocity of the

particle with reference to the pole 0. It will be noted that when
is chosen as the center of curvature of the path the transverse

component of the velocity becomes the total velocity, tangent to

the path, VR then being equal to zero.

Since the pole is arbitrarily chosen, the components VT

and VR are different for different positions of the pole or

origin, whereas vx and vv are independent of the origin but

depend on the directions of the coordinate axes. Further, if

the path of the point is circular and the pole is at the center or,

in general, if is the center of curvature of the path, at the instant,

then dp and -37- are zero and the expressions for VT and v are the

same.

ILLUSTRATIVE PROBLEM

274. In the quick-return mechanism shown in Fig. 276, 00i = 18 in. and
the crank OA =8 in. If the angular velocity of the crank is 40 r.p.m., what
is the velocity of the block A? Find graphic-

ally the component of the velocity of A
perpendicular to the rocker arm 0\M (the

transverse component). Find also the angu-
lar velocity of 0\M.

Solution. The block moves on the cir-

cular path of radius r = 8 in. Let to denote

the angular velocity of A with reference to

the pole and coi the angular velocity of A
with reference to the pole 0\ (that is, let toi

denote the angular velocity of OiA, or p).

The direction of the velocity of A is tangent
to the circle and its magnitude is,

g

;^=2.79ft./sec.60

By resolving v, graphically, into its transverse

in.= 4.ft./sec.

FIG. 276.

and radial components as shown in the figure, the following values are found.

But,

= 1.8ft./sec. and ^=2.17 ft./sec.

By measuring, OiA is found to be 11.7 in.
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1

1

8

1

X12 = 1 . 84 rad./sec. = 17.6 r.p.m.

PROBLEMS

276. A rigid body composed of two disks of different diameters (Fig. 277)

turns about the center so that a point on the circumference of each disk

FIG. 277. FIG. 278.

moves with a constant angular velocity of 80 r.p.m. If r\
= 2 ft. and r2 = 3 ft.,

what is the velocity of body A and of body B? A unwinds from the large disk

as B winds up on the small disk. How far will A and B travel in 6 sec.?

276. The link BC (Fig. 278)

is 2 ft. long and has an angular

velocity, <aif of 50 r.p.m. If the

link BA is perpendicular to BC,
at the instant considered, what

is the angular velocity of the

crank A if A is 9 in. long?

277. If the angular velocity

of the oscillating arm OM (Fig.

279) is 40 r.p.m., in the position

shown (0
= 30), find the trans-

verse component of the velocity

of the block A, referred to O as

the pole. Also find the total

velocity of A .

Ans. vA =9.3 ft. /sec.

FIG. 279.

278. The cam shown in Fig. 280 revolves about the axis 0, causing the

roller A to change its ^-coordinate at the rate of 4 in. per second when = 30.
Find the angular velocity of the bell-crank AO\B if OiA is 18 in.

Ans. co -=4.24 r.p.m.
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FIG. 280.

117. Linear Acceleration. The acceleration of a moving point,

at any instant, is the time rate at which its velocity is changing at

the instant. The -velocity of the point has, at any instant, a

definite magnitude (speed) and a definite direction. A change in

the velocity occurs if either its magnitude or its direction changes.

Hence the acceleration of the point may be the rate of change of

the velocity due to a change in the magnitude of the velocity, or it

may be the rate of change of the velocity due to a change in the

direction of the velocity. These statements are not mere arbi-

trary statements; they are in accord with our experience, for

experience teaches that a particle tends to maintain the direction

of its velocity as persistently as it tends to maintain the magnitude
of its velocity. The two properties of velocity are inherent,

independent properties. Hence,

Whenever the velocity of a particle changes in magni-
tude the particle is accelerated.

Whenever the velocity of a particle changes in direction

the particle is accelerated.

If the direction and magnitude of the velocity change simul-

taneously, the acceleration of the particle is then the vector sum of

the two accelerations which arise as the result of the separate

changes.

In rectilinear motion the velocity of a particle can change in

magnitude only, whereas in curvilinear motion the velocity of the
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particle may change in magnitude but must change in direction.

Therefore a particle cannot have a curvilinear motion without

being accelerated.

PROBLEMS

279. A quarter-mile track is made up of two straight parallel sides con-

nected at the ends by semicircles. A boy
runs the quarter mile in 50 seconds at uni-

form speed. Does the boy have an accelera-

tion while on the straight sides? While on

the curved ends? Why?

280. A particle moves with a constant

speed of 10 ft. per sec. on the path shown
in Fig. 281. Does the particle have an

acceleration when at A? at 5? at C?

at D? What is the value of the accelera-

FIG. 281. tion of the particle when at A, and at D?

118. Tangential and Normal Acceleration. Tangential Accel-

eration. The facts stated in the preceding article make it possible

to determine, for a given motion, whether or not a particle is being

accelerated. The exact magnitude and direction of the accelera-

tion produced in each of the two ways mentioned in the preceding

article will now be found.

In Fig. 282 let a point move so that its velocity changes in

. Path *

FIG. 282.

magnitude only. That is, let the point move on a straight line

path. Let vi be the velocity at one instant and let V2 be the

velocity after the time interval At. If the velocity changes

uniformly, the magnitude of the acceleration is the ratio of any

change in the velocity, &v, to the time interval, At, during which

the change Av occurs. Since V2 and v\ have the same direction,

Av is the algebraic difference of V2 and v\ as well as the vector

difference. Hence, the magnitude of the acceleration for uni-

formly accelerated, rectilinear motion is,

Av V2 vi
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If the velocity of the moving point in Fig. 282 does not change

uniformly, then equation (1) gives only the average acceleration

during the period At. When the acceleration varies from instant

to instant its value at any instant is the average acceleration during

a very small time interval including the instant. Or, expressed

mathematically, the instantaneous acceleration for rectilinear

motion is, Av dv
a= Limit-- = -r ...... (2)

v being the velocity of the particle at the instant. In order to

find a from the above equation, v must be expressed algebra-

ically in terms of t.

The direction of the acceleration of the particle is the same as

that of the change of velocity, Ay, but Av is parallel to v, that is,

along (or tangent to) the path. If V2 is smaller than v\, the sense

of Av is negative, that is, opposite to that of v, and hence

the acceleration then is negative.

If the particle moves on a circular path so that, as the

velocity changes from vi to 1*2, its direction as well as its mag-

nitude changes, then -r. expresses only that part of the accelera-
U/L

tion which is due to the change of the magnitude of the velocity.

And the direction of
-^

at any instant, as already noted, is parallel

to the velocity, or tangent to the path at the point where the par-

dv
tide is located at the instant. Therefore, -r. is called the tan-

dt

gential acceleration and is written,

dv
at=

di'

Hence, -r is the total acceleration of a moving point, only, when

the point has a rectilinear motion.

Normal Acceleration. The acceleration produced by a change
in the direction of the velocity of a point will now be considered.

In Fig. 283 let a particle move on a circular path with constant

speed. That is, let the velocity change in direction only. At one

instant the velocity is v\, and during a time interval At the

velocity changes to ^2- The change in the velocity during the

time interval, that is, the vector difference between V2 and v\, is
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Ay, as shown in Fig. 283, since Ay is the velocity that must be

added to v\ to give #2, or, V2 is the resultant of v\ and Ay. For
motion in which the direction

of the velocity does not

change (rectilinear motion),
the vector difference of the

velocities of the point and
the scalar (or algebraic) dif-

ference are the same, but in

curvilinear motion (Fig. 283)
the algebraic difference is

zero, whereas the vector dif-

ference, or change, of the

velocities, is Ay, the mag-
nitude of which is,

Ay

sin -
Fr2

sin =
-

A0
sin

,

in which v is the magnitude of the velocity at any instant,

since v^ = v\ v. Hence, since the acceleration at any instant

is the average acceleration during an indefinitely small time interval

including the instant, the magnitude of the instantaneous ac-

celeration due to the change of direction of the velocity is,

o2y sin .

a = Limit
At

Now, as A* approaches zero, sin -^ approaches and approaches
Zi Z At

-T-. Hence, in the limit,

dd
a=v

Tf
jn

But -IT is the angular velocity of the moving point which corre-
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spends, at any instant, to the linear velocity v. Further, v= cor

(Art. 115). Therefore,

The particular form most convenient for use depends upon the

particular problem under consideration.

The direction of this acceleration is the limiting direction of

Aw as A approaches zero, and since A0 approaches zero as A

approaches zero, it will be seen from Fig. 283 that the h'miting

direction of Ay is perpendicular to v\ and, hence, is toward the

center about which the point is turning, that is, normal to the

path. This acceleration is, therefore, called the normal accelera-

tion and is written,

v2
an = vn= <a

2r= .

If the path on which the particle moves is not a circular path, the

above expression also holds provided that r is the radius of curva-

ture of the path at the point where the particle is located at the

instant, and that co is the angular velocity with respect to the cen-

ter of curvature as a pole. Summarizing, the two following

important theorems may be stated:

I. When the velocity, v, of a particle changes in mag-

nitude, an acceleration is produced the value of which is
-j-;at

its direction at any instant is parallel to that of the velocity,

that is, tangent to the path at the point at which the

particle is located at the instant. Thus,

dv

II. When the velocity, v, of a particle changes in direc-

tion, an acceleration is produced the value of which is

v2

vu = co
2r =

;
its direction, at any instant, is perpen-

dicular to the velocity, towards the center of curvature

of the path, at the point where the particle is located at

the instant. Thus,

v2
an = vu= w2r= .
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The unit of acceleration is any convenient unit of velocity

per unit of time; such as, foot per second per second (ft./sec.
2
),

mile per hour per second (mi./hr./sec.), etc.

ILLUSTRATIVE PROBLEM

281. Two pulleys are connected so that they turn together about the center

(Fig. 284), causing the weight A to unwind and the weight B to wind up.
If the angular velocity of the points M and P change uniformly from 10 r.p.m.

to 60 r.p.m. during a period of 2 sec., find: (a) the tangential acceleration of

each of the two points at any instant during the 2 sec.; (6) the acceleration of

A and of B', (c) the total acceleration of M at the beginning and of P at the

end of the two-second period.

Solution. (a) The velocity of the point M changes in magnitude from

10X27T.

60 :|-j
ft./sec. to ft./sec. in 2 sec. Hence the

tangential acceleration of M is,

^-=^ = - = 1.96 ft./sec.
2

.

At Z o

The velocity of P changes from = ft./sec. to
o

ft./sec. hi 2 sec. Hence,

(6) The magnitude of the velocity of any
point on the circumference of the small pulley

changes the same amount as does the velocity

V&\ of A. Therefore, the tangential acceleration of

M is the same in magnitude as the acceleration

of A . Hence,

} t

= 1.96 ft./sec.
2

aB = (ap) t

= 2. 62 ft./sec.
2

.

(c) The normal acceleration of M at the beginning of the 2-sec. period is,

2 ft./sec.
2

and the normal acceleration of P at the end of 2 sec. is,

.4 ft./sec.
2

.

Therefore the total acceleration of M is,

ft./sec.
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And the total acceleration of P is,

241

aP = V(2.62)
2+ (39 .4)

2 = 39.5 ft./sec.
2

.

The acceleration of M, only, is shown in Fig. 284.

PROBLEM

282. A train, while rounding a curve of mile radius, changes its speed

uniformly from 20 mi./hr. to 30 mi./hr. in 20 sec. What is the total accelera-

tion of the train at the beginning and at the end of the 20-sec. period?

119. Speed-time Graph. In finding the total acceleration

of a point from the equation a =-j- (in rectilinear motion), or,
dt

dv
in finding the tangential acceleration from the equation at= -r

(in curvilinear motion), by the calculus method, v must be expressed

algebraically in terms of t. The relation between v and t may some-

times be shown more conveniently, graphically, by plotting a

speed-time (v-t) graph the coordinates of any point on which are

simultaneous values of the speed and time of the moving point

(similar to the distance-time graph in Art. 113). One such graph
is shown in Fig. 285. Since the slope of the speed-time curve is

represented by -7-, the slope of the v-t graph at any point repre-

sents, to some scale, the acceleration of the moving point at the

corresponding instant. It is important to note that this method

gives only that acceleration which is due to the change in the

magnitude of the velocity. It is applicable, therefore, only to the

total acceleration for rectilinear motion or to the tangential accel-

eration for curvilinear motion.

ILLUSTRATIVE PROBLEM

283. In Fig. 285 is represented

the speed-time graph for a point

which moves on a circular path.

What is the magnitude of the tan-

gential acceleration at the end of

15 sec.?

Solution. at at the end of 15 sec.

= slope at A

2X20
4X5

= 2 ft./sec.
2

100--

60--

20--

5 10 15 20 25

t, sec.

FIG. 285.
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PROBLEMS FOR ARTICLES 118 AND 119

284. A train running on a straight track has a speed of 30 mi. per hr. when

passing a certain mile post and a speed of 50 mi. per hr. when passing the

next mile post. If the rate of change of speed is uniform and the time required

to travel the mile is 1.5 min., what is the acceleration of the train?

285. A point moves on a circular path having a radius of 2 ft. If its speed

changes uniformly from 100 ft. per min. to 240 ft. per min. during a period

of 3 sec., what are the tangential and normal accelerations (a) at the begin-

ning of the period; (6) at the end of the period?

286. A flywheel 8 ft. in diameter turns so that the angular velocity of a

point on its rim changes from 100 r.p.m. to 40 r.p.m. at a uniform rate during a

period of 4 sec. Find the tangential acceleration of a point on the rim during

the 4 -sec. period. Find the total acceleration of a point on the rim at the

end of the period. Ans. a* = 6.28 ft. /sec,
2

;
a =70.5 ft. /sec.

2

FIG. 286.

287. In Fig. 286 is shown the speed-displacement graph for the crosshead,

C, of a steam engine. The crank OA revolves at a constant speed of 233

r.p.m. Show that the slope to the speed-displacement curve represents the

ratio of the acceleration of C at any instant to its speed at the same instant.

If the scale of abscissas is 1 in. = 1.75 ft. and if BC measures 0.33 in.,

what is the acceleration of the crosshead in the position shown? How could

the position of C be found for which C has zero acceleration?

120. Angular Acceleration. The angular acceleration of a

moving point is the time rate of change of the angular velocity of

the point. If the angular velocity, co, of the point changes

uniformly, the angular acceleration, a, is expressed by the ratio of

any change, Ao>, in the angular velocity to the corresponding time

interval, AZ. Thus,
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If the angular velocity of the point does not change uniformly,

the above equation gives only the average acceleration during the

time interval A. When the acceleration varies from instant to

instant its value at any instant is the average acceleration during
an indefinitely small time interval including the instant. Or,

expressed mathematically, the instantaneous angular acceleration

is,

T . Aco dcoa= Limit -T-.
= -T*

And since co =
,
a may also be expressed by the equation,

dt\dt) dt2
'

In order to find a from the above equations, w and must be

expressed in terms of t.

The unit of angular acceleration is any convenient unit of

angular velocity per unit of time; such as, degree per second per
second (deg./sec.

2
), revolution per minute per second (rev./min./

sec.) radian per second per second (rad./sec.
2
), etc.

PROBLEMS

288. What is the angular acceleration of a point on the rim of the flywheel

having the motion described in Problem 286?

289. What is the angular acceleration of the train having the motion

described in Problem 282? Ans. a = 0.000555 rad./sec.
2

290. A particle moves on a circular path according to the law 0=3t 2
+2t.

What is the angular velocity and the angular acceleration of the particle at

the end of 4 sec.?

121. Relation between Linear

and Angular Accelerations. In many
problems in kinematics it is con-

venient to make use of the relation

between the linear and angular ac-

celerations of a point. This relation

may be found as follows: In Fig. 287

let a point move on the circular

path shown, being the center of the Fia. 287.
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path and r the radius. If the magnitude of the velocity of the

point changes (assumed to increase) there is, at any instant during

the change, a tangential acceleration given by the equation,

dv

But, = ro>.

Therefore at
=

, r-jr, since r is constant. But - - is the
at at at

angular acceleration, a, of the point at the given instant. Hence,

Therefore the tangential acceleration,
1 at tmy instant, of a

point moving on a circular path is equal to the angular accelera-

tion of the point, at the same instant, about the center of the path

FIG. 288. FIG. 289.

times the radius of the circle. If the particle does not move on a

circular path, the equation is also true provided that r is

the radius of curvature of the path at the given position of the

particle and that a is the angular acceleration of the particle

with reference to the center of curvature.

If, however, the point moves on a path of any form and the

pole is not taken at the center of curvature of the path at the given

position of the particle (Figs. 288 and 299), then, although the

equation 0,=-^
is true, a, is not equal to pa since v is not equal to

P o> (Art. 115).

1 See footnote for Art. 115.
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The normal acceleration, rco
2

,
of the particle (not shown in

the above diagrams), unlike the tangential acceleration, is inde-

pendent of the angular acceleration. It depends on the angular

velocity at the instant, and not on the rate at which the angular

velocity is changing at the instant.

FIQ< 290.

PROBLEMS

291. As the drum (Fig. 290) turns, the weight A is wound up with decreas-

ing speed. If its speed decreases 20 ft. /sec. each

second, what is the angular acceleration of a

point on the rim of the drum?

292. A rod 3 ft. long is rotated in a hori-

zontal plane about a vertical axis through one

end of the rod so that the angular velocity in-

creases uniformly from 10 to 40 r.p.m. in 3 sec.

Find the tangential acceleration of the mid-point
of the rod. Ana. 0^ = 1.57 ft. /sec.

2

122. Axial Components of Accelera-

tion. The component, in a given direc-

tion, of an acceleration of a point is the

rate of change, in the given direction,

of the velocity of the point. In general, the rate of change, in

the given direction, of the velocity of the point is due partly to

a change in the magnitude and partly to a change in the direction

of the velocity. It will be noted

that the tangential and normal ac-

celerations, at and a, which are dis-

cussed in the preceding articles are

components of an acceleration, one

of .which, at ,
is the rate of change of

the velocity due to a change in its

magnitude only, and the other, a,
is the rate of change of the velocity

due to a change in its direction

only. Thus, if a point moves on a

curved path with increasing (or decreasing) speed (Fig. 291),

both the magnitude and the direction of the velocity changes
and the expressions for the total acceleration as found in the

preceding articles are,

FIG. 291.
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a = at 4> an

dt r

and the direction of a is expressed by the equation,

tan <b=.
an

Acceleration, like any directed quantity, may be resolved into

various sets of components. The axial components, in addition

to the tangential and normal components, are frequently desired.

The axial components (ax and ay) are parallel, respectively, to the

x- and ?/-axes. Expressions for the axial components may be found

as follows:

If the velocity of a point is resolved into components in arbi-

FIG. 292.

trarily selected directions, as, for example, parallel to the x- and y-

axes, then the acceleration of the point is the (vector) sum of the

rates of change in these components. But since the directions

of the velocity components are fixed, the components can change
in magnitude only, and hence the acceleration in each of the

selected directions is of the type
-j-

(Theorem I, Art. 118). There-

fore the axial components of the acceleration of a point (Fig. 292)

are,

dvx dvvax= -TT and av
= -

dt dt
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And since vx =-T- and v***~j. the axial components may also be
at at

written,
d*x d2

y
ax =W2

and av
=
-^2 .

In order to determine the axial components from the above equa-

tions, vx (or x) and vv (or y) must be expressed in terms of t, unless

vx and Vy change uniformly in which case,

~
At" t2 -t l

'

and,
// /

_ AVy_ V yV y

It is important to note that the velocity of a point in a given

direction may be zero without making the acceleration in that

direction zero. For example, a point moving on a circular path
has no velocity component normal to the path, that is, vt is the

total velocity (t>n
=

0) but there is a normal acceleration (rate of

change, in the normal direction, of the velocity) the magnitude of

v2

which as already shown, is . Similarly, a ball thrown horizontally

from a window has no vertical velocity just as it leaves the window,
that is, vy

=
0, but the acceleration of the ball at that instant is

Oy
= 32.2 ft./sec.

2 In other words, vy is changing through its zero

value at the rate of 32.2 ft. /sec. each second. Likewise, the velocity

of the crosshead of a steam engine is zero at the end of the stroke,

but its acceleration, -r, has a large value as the velocity changes

through its zero value.

PROBLEMS
293. The total acceleration of a point on the rim of a pulley, at a given

instant, is 40 ft./sec.
2 in a direction making an angle of 20 with the radius to

the point. If the radius of the pulley is 18 in. what is the angular velocity

and the. angular acceleration of the point at the given instant?

Ans. (o = 5.01 rad./sec.; a = 9. 12 rad./sec.
2

294. A particle moves on the path xy = 4, according to the law, x = 2t z
.

(a) Find the x- and ^/-components of the velocity and of the acceleration at the

end of 2 sec. (6) Determine the total acceleration by combining the com-

ponents graphically, (c) Find the tangential and normal components graph-

ically by resolving the total acceleration in the tangential and normal direc-

tions.
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123. Motion of a Projectile. The equations developed in the

preceding article will here be used in the analysis of the motion of a

projectile. The actual motion of a projectile is influenced by a

number of factors, such as the rotation of the projectile due to the

rifling of the barrel, wind velocity, humidity, etc., which require

modifications in the results found from the assumed ideal condi-

tions. The motion of a projectile moving without rotation in a

vacuum will here be considered. The motion may be studied by

treating the components of the motion in the x- and ^-directions

as follows:

Let a projectile be given an initial velocity u in a direction

making an angle 6 with the hori-

zontal and let the point of pro-

jection be taken as the origin as

shown in Fig. 293. The accelera-

tion of the projectile during its

< flight is constant and is directed

i-e r -J vertically downward. This con-

FlQ 293 stant acceleration, denoted by g y

is the acceleration due to gravity,

since the projectile is a freely falling body, that is, no forces

except the earth-pull (its weight) act on it. Hence,

-= or vx=ux=u cos 0, (1)

and,
v v

av
= v v=g or vv

= uv gt
= u sin 6 gt, . . (2)

I

considering vv and uv positive when directed upward.
The horizontal distance, x

}
traveled in any time interval t is,

(3)

and the vertical distance, y, traveled in any time interval t is the

average velocity times the time interval. Hence,

u sin 6-\-(u sin 6 gt) . , //n
y=--2
- -t= u sin d-t-^gt

2
. . . (4)

Particular values found from the above equations are of special

importance, namely, the range on a horizontal plane, the greatest

height, and the time corresponding to each of these distances.
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Time of Flight. Since y equals zero when the projectile reaches

the rr-axis, the time of flight, tT,
is given by t in the equation,

Therefore,

tr=*^....... ... (5)
y

Range. The range, r, equals the value of x in equation (3)

when t = tr . Therefore,
u2 sin 26

r=- .

g

Time to Reach Greatest Height. When the projectile reaches its

greatest height, vv
= 0. Hence, the time, th , required for the pro-

jectile to reach its greatest height is given by t in the equation,

vy
= u sin 0gt= 0.

Therefore,
u sin

Greatest Height. The greatest height, h, will be given by y in

equation (4) when t has the value th . Hence,

1 (u sin 0)
2

h=
2

'

The equation of the path of the projectile (called the trajectory)

may be obtained by eliminating t from equations (3) and (4),

which gives the following equation :

0-
2u2 cos2 6'

Hence the trajectory is a portion of a parabola with its axis vertical.

PROBLEMS

295. A bullet is projected upward at an angle of 60 with the horizontal

with a velocity of 2000 ft. /sec. Find the range and time of flight.

Ans. r = 108,000 ft.

296. A shot is fired from a gun on the top of a cliff 400 ft. high, with a

velocity of 768 ft. /sec., the angle of elevation of the gun being 30. Find

the range on a horizontal plane through the base of the cliff. Ans. r = 5543 yd.
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124. Uniformly Accelerated Rectilinear Motion. Many
examples of straight-line motion with constant acceleration occur

in engineering practice, such as the motion of a freely falling

body or of a train leaving a station under the action of a con-

stant draw-bar pull. Further, from the preceding article it will

be noted that one of the components of a curvilinear motion

may be a uniformly accelerated rectilinear motion. The rela-

tions between the distance, time, velocity, and acceleration, for

uniformly accelerated rectilinear motion may be deduced as

follows :

By definition,
At; v u

a= AT ........ <

or, v= u+at, ....... (2)

in which u and v are the initial and final velocities, respectively,

corresponding to the time interval At or simply t.

Since the velocity increases or decreases uniformly, the average

velocity is x and the distance, s, traveled in time t is,

u+u+at~~~

(4)

By eliminating t from equations (2) and (4), the following equa-
tion is obtained :

v2 = u2+2as........ (5)

Hence, for uniformly accelerated, rectilinear motion, the fol-

lowing equations express the relations between the distance, time,

velocity, and acceleration,

v= u+at, ........ (6)

s=ut+at2
,
....... (7)

(8)
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If the point starts from rest, u in each of the above equations

is zero, and the equations reduce to simpler forms. For freely

falling bodies, a is the acceleration due to the earthpull on the

body and is usually denoted by g, its value being 32.2 ft. sec.2

(approximately). Further, the above equations also apply to

the motion of a point moving on a curved path if the speed

changes uniformly and if the tangential acceleration at of the

point is used for a.

PROBLEMS

297. Deduce equations (6) and (7) by calculus methods, starting with the

equations, v
ds , dv
-3- and a = -3-.

298. Draw a speed-time graph for uniformly accelerated, rectilinear motion

and deduce equations (7) and (9) .

299. The brakes are set on a train running at 30 mi. per hr., when mi.

from a station. The train slows down uniformly, coming to rest at the station.

Find the acceleration, and the time in stopping.

Ans. a =0.366 ft./sec.
8

. t = 120 sec.

300. If the maximum allowable

speed of an elevator is 800 ft./min. and
if it acquires this speed uniformly in a

distance of 12 ft., what acceleration

does it have?

301. A train in starting is uniformly
accelerated and attains a speed of 60

mi. hr. in 5 min. After running for a

certain period of time at this speed, the

brakes are applied and it stops at a

uniform rate in 4 min. If the total

distance traveled is 10 mi. find the total

time. Ans. t = 14.5 min.
FIG. 294.

302. If the cam A (Fig. 294) moves
to the left, changing its velocity uniformly 5 in. per sec. each second, what
is the acceleration of the rod B (a) before the pin comes in contact with the

cam; (6) just as it comes in contact with the cam; (c) while it is in contact

with the cam?

125. Uniformly Accelerated Circular Motion. Many prob-
lems involving the motion of a point on a circular path with con-

stant angular acceleration occur in engineering practice. The
relation between the angular displacement, angular velocity,
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angular acceleration, and time may be deduced in a manner similar

to that used in the preceding article.

By definition,

_Aco_ co cop . .~
A^~ ~7~'

....... (1)

or, co= coo+aZ, ........ (2)

in which coo and co are the initial and final angular velocities,

respectively, corresponding to the time interval AZ or simply t.

The angular displacement A0, or simply 6, is the average angu-
lar velocity times the time interval. Hence,

(3)

2

(4)

By eliminating t from equations (2) and (4) ,
the following equation

is obtained,

... ..... (5)

To uniformly accelerated circular motion, therefore, the fol-

lowing equations apply :

........ (6)

........ (7)

........ (8)

0)

It will be noted that the above equations may be derived from

the corresponding set of equations in Art. 124 by making use of

the equations, w = coor, v=cor, at
=

ra, and s = rd.

PROBLEMS

303. Derive equations (6) and (7) by calculus methods starting with the

de da
equations, =

-,. and oc = -rr.

304. A wheel starting from rest turns so that a point on its rim has its

angular velocity increased uniformly to 200 r.p.m. in 6 sec. After turning for a
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certain period of time at this speed a brake is applied and the wheel stops at a

uniform rate in 5 sec. If the total number of revolutions is 3100, find the

total time.

126. Simple Harmonic Motion. If the velocity of a point does

not vary uniformly, the acceleration is not constant, and hence

the equations of Art. 124 do not apply. One special case of

rectilinear motion with variable acceleration is simple harmonic

motion. A simple harmonic motion is defined as the motion of a

point in a straight line such that the acceleration of the point is

proportional to the distance, x, of the point from some fixed

origin 0, in the line and is directed toward 0. Or expressed

mathematically,

d2x** ^v * /* \=
~di?~ '

where k is a constant and the negative sign indicates that the sense

of the acceleration is opposite to that of the displacement x (Fig.

295), that is, a is negative when x is positive, and positive when
x is negative.

One example of a simple harmonic motion is the motion of a

weight attached to the lower end of

an elastic spring (the upper end

being fixed) which is allowed to

vibrate freely. The motion of the

crosshead of a steam engine closely

approximates a harmonic motion,
the approximation becoming closer

A

FIG. 295. FIG. 296.

as the ratio of the length of the connecting rod to that of the

crank increases. The motion of an oscillating pendulum also

approximates closely a simple harmonic motion if the arc through
which the pendulum swings is small. Further, if a point moves
with constant speed in a circular path, the motion of the projection

of the point on a diameter of the circle is a simple harmonic

motion. This last statement may be proved as follows: In Fig.
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296 let M be a point moving with constant speed, VQ, and

angular velocity, co, along a circle of radius r. If t is the time

required for M to move from A to its given position, then,

6= a>t, ............ (2)

and x= r cos B= r cos ut........ (3)

Hence the velocity of P, the projection of M, is,

dx . /JX
v= -ji= cor sin ut= wy, ..... (4)

dt

d?x
and a=

-jj2=
u?r cos ut= u2x..... (5)

Therefore, the motion of P is harmonic and the constant k in

equation (1) is here equal to co
2

.

This method of generating a simple harmonic motion is a con-

venient one for studying certain features of the motion. From
the definition it follows that a simple harmonic motion is a periodic

motion. In the study of harmonic motion certain terms are used

which are defined as follows: the amplitude is one-half the length

of the path of the point, that is, in this example, the radius of the

circle; the frequency is the number of complete oscillations of the

point per unit of time, equal, in this example, to the number of

revolutions per unit of time of the point M ;
the period is the

time required for one complete oscillation, that is, the time

required for M to make one revolution. Hence the period T is,

and the frequency n is,

ILLUSTRATIVE PROBLEM

306. A point moves with a simple harmonic motion such that its speed
is 90 in./sec. when it is 4 in. from the center of its path and 80 in./sec. when
it is 6 in. from the center. Determine the period and the amplitude of the

motion. Determine also the maximum velocity and the maximum acceleration

of the point.
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Solution. From equation (4) of Art. 126,

v = co^
= 6jV

/
r2 x2

, (1)

Hence,
90 = wVr*-16, (2)

and,
80 = coW 2 -36 (3)

Dividing (2) by (3),

Squaring and transposing,

81(r
2 -36)=64(r2 -16).

Hence,*
17r 2 = 1892,

That is,

Therefore,

r = 10.56 in.

Substituting this value of r in (2), we have,

co = 9.22 rad./sec.

From equation (6) of Art. 126,

CO

Hence,

r=^2
=

'68SeC -

The velocity at any point may be found from equation (1) . Since the velocity

is a maximum when a: =0, the maximum value is,

= 9.22X10.56 = 97.5 in./sec.

The acceleration is a maximum when the displacement of the point is greatest.

Hence, by using Equation (5) of Art. 126, the maximum value of the accelera-

tion is found to be,

= (9.22)
2 xl0.56=897 in./sec.

2

306. The drivers of a Mikado locomotive are 60 in. in diameter and the

length of the crank is 15 in. If the speed of the locomotive is 30 mi. per hr.,

determine the maximum velocity and the maximum acceleration of the cross-

head and piston relative to the engine frame, assuming that the connecting

rod is so long that the motion of the crosshead is harmonic.

Ans. y = 22 ft./sec.; a=387 ft./sec.
2
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307. A point moves with a simple harmonic motion the amplitude of

which is 10 in. If the period is 2 sec., determine the maximum velocity and
maximum acceleration.

308. The maximum velocity of a point which has a simple harmonic motion

is 10 ft. per sec. and the period is 5 sec. Determine the amplitude of the

motion and the maximum acceleration.

127. Non-uniformly Accelerated Motion. One special case

of non-uniformly accelerated motion is treated in the preceding
article. Each case of this type of motion presents details peculiar

to itself, but the fundamental equations expressing the relations

between the displacement, velocity, acceleration, and time 'are the

same for all cases. For rectilinear motion the equations are,

ds

=di<
....... <

dv d2f!

Eliminating t from these two equations, we have

ads = vdv.......... (3)

By integrating equation (1), the following equations are obtained:

rs2 rt>

I ds= I vdt,

Jsi . In

or,

T'2

52-si = As=
J

vcf/, (4)

and,

X
l

*dt= (
S2

^ds,
Jsi V

or,

t2 -ti = At=: C -ds (5)
ysi "

By integrating equation (2), the following equations are obtained:

I dv= I adt,
Jn Jti

or,

z>2 Vi =Av= ( adt (6)
.Jti
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and,

C
h

dt= I -efo.

J* J* a

or,
*

(7)

The above equations may also be used in the case of curvilinear

motion if the tangential component of the acceleration is used, since

at =-r. The equations may also be used if only a component, in
dt

a given direction, of the motion is considered, provided that s, v, and

a in the above equations be replaced by the components of displace-

ment, velocity, and acceleration, respectively, in the given direc-

tion. Thus,
dvx d2x

= Vxdvx,
etc.

The relations between the displacement, velocity, acceleration,

and the time, may, in general, be determined from the above equa-

tions by either of two methods; namely, by solving the equations

by the methods of calculus, or by a graphical method through the

use of distance-tune, velocity-time, and acceleration-time graphs.

The use of distance-time and speed-time graphs in finding the

speed and acceleration, respectively, have been discussed in

Arts. 113 and 119. The more convenient of the two methods

for any given problem depends upon the character of the problem.
Calculus Method. Equations (1) to (7) may be solved by the

methods of calculus provided that certain relations between

the variables are known. Thus, if s is expressed as a function of t,

the velocity v may be obtained from equation (1). Likewise,

if t; is expressed as a function of s, the time required for a given

displacement may be obtained from equation (5), and so on.

ILLUSTRATIVE PROBLEMS

309. A point moves along a straight path according to the law, v=32 2+4,
the units of distance and tune being the foot and second, respectively. If

s =0 when t = 0, what is the value of s when t = 10 sec.?
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Solution.

y=^ or s= C* vd.t.

Hence.
rio r

-|
10

s=| (3t*+4)dt=\t*-+4t\ =1040 ft.

Jo Jo

310. A point moves along a curved path according to the law a/

tf v = 10 ft./sec. when t = 4 sec., what is the value of v when t = 7 sec.?

Solution. First Method:

Hence,

= Poidt-
j

(Wt+5)dt

= r^2+5<l'= 180 ft./sec

Hence, the gain in speed in the interval between the end of the fourth second

and the end of the seventh second is 180 ft./sec. and, therefore, the speed at the

end of the seventh second is,

vj = 10+ 180 = 190 ft./sec.

Second Method. Instead of using a definite integral as above, the problem

may be solved by means of an indefinite integral as follows :

v= \atdt = \

The constant of integration may be determined by means of the initial condi-

tion that v = 10 ft./sec. when t = 4 sec. Hence, using this condition, the above

equation becomes,
10 =5X42+5X4+C.

Therefore, C= 90 and the velocity at any time may be obtained from the

equation,

If t = 7 sec., the corresponding value of v is,

V7 =5X7H-5X7-90 = 190 ft./sec.

311. A point starts from rest at the vertex of the parabola y* = x and moves

t*

along the parabola according to the law x = ,x and y being in feet and t in

seconds. Find the magnitude of the velocity and of the acceleration of the

point at the end of 2 sec.
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Solution. -The axial components of the velocity and of the acceleration

may be found from the equations of Art. 122. Thus,

--- -- i ft -/sec - when (=2 se -

Therefore,

and,

312. The length of the crank, OA, of a steam engine (Fig. 297) is denoted

by r and the length of the connecting rod, BA, is denoted by I. If the crank

FIG. 297.

turns with constant angular velocity, o>, determine the velocity and the accel-

eration of the crosshead, B, in terms of r, I, co*and the angle, 0, which the crank

makes with the horizontal.

Solution. The displacement, s, of the crosshead from its extreme position

may be determined in terms of 6, and sincej 6 = ut^s may also be expressed as a

function of t, since w is known. Thus,

But,

and,

s = l-\-r I cos
<f>

r cos 6.

AC = 1 sin <j)=r sin 0,

0.
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By expanding the last expression and using only the first two terms of the

expansion, since - is generally small, the last equation may be written, with a

close degree of approximation,

I cos

Therefore,

r2
.

sin 2

s = r

Hence,

and,

-,
sin 2

0.

de
-r=r sin -jT-1 r sin
at dt I

O de
COSd

-dt

=rw (sin 6-\ sin cos 01
,

a=_ ==rw
|
CQS 0_|__ (Cog2

COS 0+y COS 20

0-sin 2
0)1

Graphical Method. The solution of equations (4) and (6) by
the aid of speed-time and acceleration-time graphs will now be

shown. The speed-time graph has already been defined (Art.

119). The acceleration-time graph is a curve, the coordinates

of any point of which represent simultaneous values of the accel-

eration and the time. The acceleration used is either the total

acceleration if the point has rectilinear motion, or the tangential

acceleration if the point moves on a curved path.

300n

10

Time, sec.

FlG. 298.

In Fig. 298 is represented a speed-time curve for a certain

rectilinear motion. The area under the curve between the ordi-

nates v\ and V2 is expressed by,

Area
f*= I vdt.

Jti
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Xd
vdt.

Therefore, the area under the speed-time curve represents, to some

scale (depending on the scales used in plotting the graph), the dis-

tance traveled during the time interval tz ti, corresponding to a

change in the speed from v\ to v%.

ILLUSTRATIVE PROBLEM

313. The speed-time curve for the rectilinear motion of a certain point is

shown in Fig. 298. The scales are: 1 in., vertically, equals 200 ft./sec., and
1 in., horizontally, equals 20 sec. If the area under the curve between t = 10

and t = 35 is 1.2 sq. in., how far does the point travel in the interval?

Solution. I sq. in. represents 200 ft./sec. X20 sec. =4000 ft.

Hence, the distance =1.2X4000 = 4800 ft.

Let the curve in Fig. 299 represent the acceleration-time graph
for the rectilinear motion

of a point. The area

under the curve between 3

the ordinates a\ and

expressed by,

Area= I adt.

is i -.

a 200- -

100- -

But, by equation (6),

T"*

'dt

2. 3

Time, sec.

a 2

FIG. 299.

Therefore, the area un-

der the acceleration-time curve represents, to some scale (depend-

ing on the scales used in plotting the graph) ,
the change in speed

during the time interval h ti.

ILLUSTRATIVE PROBLEM

314. The scales used for the acceleration-time curve in Fig. 299 are:

1 in. = 200 ft./sec.
2 and 1 in. =2 sec. If the area under the curve between the

ordinates t = 1.5 sec. and t = 4 sec. is 1.3 sq. in., what is the speed at the end of

4 sec. if the speed at the end of 1.5 sec. is 20 ft./sec.?

Solution. 1 sq. in. represents 200 ft./sec.
2 X2 sec. =400 ft./sec.
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Hence,
Av = 1.3X400 = 520ft./sec.

Therefore,

v* =20+520 = 540 ft./sec.

PROBLEMS

315. A point moves on a circular path having a radius of 10 ft., according
to the law, v = 20. Determine the position of the moving point, with respect

to its initial position, at the

360 -

45

B 30- -

15- -

(a)

60 90

Time, sec.

120 150

end of 5 sec.

316. A bellcrank oper-

ated by a cam (see Fig.

280) rotates so that its

angular acceleration a fol-

lows the law, a = 4t 2+6 . If

its initial angular velocity is

2 radians per sec., what is

the angular velocity of the

bellcrank at the end of

0.5 sec.?

Ans, w = 5.17

80 100 120

Time, sec.

FIG. 300.

317. Two railway sta-

tions are connected by two

straight parallel tracks.

Two trains A and B start

from rest at one station

and reach the second sta-

tion in 150 seconds. The

speed-tune curve for A
is shown in Fig. 300(a)

and that for B in Fig. 300(6). Draw the acceleration-time curve for each train.

318. What, in Fig. 300, represents the distance between the stations?

From the diagrams find the distance in miles. Ans. 1.5 miles.

128. Relative Motion. In the preceding articles, the motion

of a particle is defined or described with reference to a point or a set

of axes assumed to be fixed. All points and bodies, however, are

in motion, but in most practical problems it is convenient to con-

sider the earth to be fixed. Therefore a set of axes passing through

any point on the earth will be regarded as a fixed reference frame.

The motion of a particle, described with reference to a point on the

earth, is called its absolute motion. The motion of a particle,

described with reference to a point that is moving with respect

to the earth, is called its relative motion. It will be observed that
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the absolute motion of a particle is its relative motion with respect

to the earth.

In considering the motion of two moving particles, the motion

of one particle relative to the other particle is often required.

The relation between the absolute and relative motions of two

particles A and B (assumed, for convenience, to be moving in a

plane) may be stated by the following important theorem.

The absolute displacement, velocity, or acceleration of A is the

geometric or vector sum of the relative displacement, velocity, or accel-

eration, respectively, of A with respect to B and the absolute dis-

placement, velocity, or acceleration, respectively, of B.

This theorem may be expressed in the form of equations as

follows :

aA = aA

or VA = VA -*VB .

B

or aA = aA ^CLB

r

FIG. 301. FIG. 302.

where SA denotes the absolute displacement of A, SB denotes the

absolute displacement of B, and SA denotes the relative displace-
H

ment of A with respect to B
}
and similiarly for velocities and

accelerations.

Relative Displacement. As applying to displacements the above
theorem is nearly self-evident. To illustrate, let A and B be two

particles which occupy the same position with reference to a set of
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axes as shown in Fig. 301. Let the point A be given a displace-

ment sA = AAi and the point B, a displacement sB= BBi. The

point A moves relative to the point B a distance B\A\ and in the

direction B\A\. Hence B\A\ is the displacement of A relative

to B and it is evident that,

or

If the points A and B do not occupy the same positions, the

reasoning is changed but little, the final conclusion being the same

as stated above as will be evident from a study of the diagram in

Fig. 302.

ILLUSTRATIVE PROBLEM

319. The current in a river with parallel sides is 4 mi./hr. A motor boat

starting from one side keeps headed perpendicular to the sides and moves at

6 mi./hr. If the river is one mile wide, what is the absolute displacement of

the boat after reaching the other side?

Solution. Let B (Fig. 303) rep-

resent the boat and W the water

that is in contact with the boat when
the boat starts. Then,

The displacement of the water while

the boat is moving across is,

After the boat has reached the other side its displacement relative to the

water (now at Wi) is,

=WiBi = l mile.

Therefore, sB = l-fr i\/(l)t+(f)*-1.2 miles,

and, tan 0= = f .'. 0=56 20'.
sw

Relative Velocity. The above theorem, as applying to the

velocities of two moving particles, may be proved as follows:
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Let A and B (Fig. 304) be any two moving particles (assumed in a

plane), let the absolute velocity, VA} of A be represented by
and let BB i represent the abso-

lute velocity, VB) of B. Let a

velocity equal to VB but reversed

in direction be given to each

point. The point B will then be

at rest and, hence, the resulting

velocity of the point A is the

velocity of A relative to B. Hence, -VB ^ VB

it is evident from the diagram that, _ B,

"!
'

FIG. 304.

In this proof it is assumed that the additions of equal velocities to

each particle does not influence the relative velocity of the two

particles. This assumption is in accord with an important prin-

ciple in kinematics, namely, that the relative motion of two par-

ticles is not affected by any motion that they have in common.

The above equation as already noted, may be written in the

form

FIG. 306.

which states that the relative velocity
of two points is the difference of

their absolute velocities, as is shown
in the diagram.

ILLUSTRATIVE PROBLEM

320. In the shaper mechanism shown in

Fig. 305, let A be the sliding block and let

B be the point on the rocker arm OiBM
which is coincident with A at the instant.

The distance OOi is 20 in. and is 30. If

co = 20 r.p.m. and r = \ ft., find VB, the abso-

lute velocity of B, and VA,

B
the relative

velocity of A with respect to B.

Solution. Since the block A moves on
a circular arc at constant speed, its velocity
is given in magnitude by the equation,

.20X2* 1

~~60~
X
2 ft./sec.
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and its direction is perpendicular to r, as shown in Fig. 305. The direction of

the absolute velocity of B is perpendicular to OiBM and its magnitude is

unknown. Likewise, the direction of the velocity of A relative to B is known
since it is along (parallel to) the rocker arm. By applying the equation,

B

the magnitudes of VA and VB are determined by the intersection of the lines

~B

that represent their directions. By scaling off the magnitudes, the following
values are found,

vA =0.70ft./sec. and vB = 0.79 ft./sec.

PROBLEMS

321. Two trains A and B travel on parallel straight tracks. The speed of

A is 40 mi./hr. and that of B is 50 mi./hr. in the same direction. What is the

velocity of A relative to ? Of B relative to A?

FIG. 307.

322. A train A travels with a velocity VA =40 mi./hr. and another train B
travels with a velocity v.e

= 50 mi./hr. in the directions shown in Fig. 306.

What is the magnitude and the direction of the relative velocity of B with

respect to A1 Ans. 55.4 mi./hr.

323. In Fig. 307, let A be a block which revolves about at a constant

angular velocity co = 30 r.p.m. and let B be the point on the arm 0\BM coin-

cident with A at the instant. If r =OA -9 in., OOi =3 in., and = 45, find the

absolute velocity of B.

Relative Acceleration. In order bo prove the above theorem as it

relates to accelerations, it will be assumed that the relative accel-
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eration of two particles is not changed if equal additional accel-

erations be given the two particles. This is analogous to the

assumption made in the discussion of relative velocities. Hence, if

equal velocities and accelerations be given to each of two particles

the relative motion of one with respect to the other will not be

changed. Consider, then, two particles A and B which move along

paths as indicated in Fig.

308. Assume that a veloci-

tyequal and opposite to the

velocity of B( vB) is im-

posed on each particle (not

shown at A in Fig. 308).

Assume also that acceler-

ations equal to the acceler-

ation of B but of opposite

sense are imposed on the

two particles. This will

not change the relative

motion of A with respect

to B. Imposing a velocity

of VB and an acceleration

of aB on the particle B will make its position fixed, and hence

the acceleration of A with respect to B will be the same as the

absolute acceleration of A. The acceleration of A, however, is

now the vector sum of aA and aB and hence,

aA =-- aA + aB ,

FIG. 308

or,

Hence, the relative acceleration of one point with respect to a

second point is the vector difference of the absolute accelerations

of the two points.

ILLUSTRATIVE PROBLEM

324. Two friction disks (Fig. 309) rotate with constant angular velocities.

Let A and B be points on the circumferences of the large and small disks,

respectively. If coi
= 40 r.p.m., n = 9 in., and r2 = 3 in., find the magnitude

and the direction of the acceleration of A relative to B.
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Therefore,

and,

Therefore,

coin 40X9 10_
co2
= =

3
= 120 r.p.m.,

aA=l3.3

aA=dA-*aB
B

V(i3.3)
2 +(40) 2 = 42.2 ft./sec.

2
,

as 41

= 18 25'.

PROBLEMS

325. What is the relative acceleration of Ai (Fig. 309) with respect to B,
the data being the same as in the

preceding problem?

326. Two trains A and B
travel in the same direction on

parallel tracks; A increases its

speed uniformly 10 mi./hr./min.
and B decreases its speed uni-

formly 5 mi./hr./min. What is

the relative acceleration of A with

respect to ?FIG. 310.
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327. An automobile, A, is traveling on a straight road, increasing its speed
at the rate of 300 ft./min./sec. when in the position shown (Fig. 310). At
the same time another automobile, B, is traveling in a circular path increasing
its speed at the rate of 5 ft. /sec.

2 Its speed when in the position shown is

VB = 12 mi./hr. and the radius of the circular path is 40 ft. What is the rela-

tive acceleration of A with respect to B ? Ans. 12.3 ft. /sec.
2

129. Transverse and Radial Components of Acceleration. In

addition to the x- and ^/-components and the n- and ^-components
of the acceleration of a particle (Art. 122), the transverse and

radial (T and R) components are sometimes convenient to use.

The transverse direction is perpendicular to the radius vector

(b)

FIG. 311

drawn from any point taken as the center or pole, and the radial

direction is along, or parallel to, the radius vector (see Fig. 311).

The T- and /^-components may be derived by the application of

Theorems I and II (Art. 118). In Fig. 311 (a) let m represent a

particle moving on a fixed path. Let be any center or pole

(not the instantaneous center of rotation, Art. 135). Then, the

total velocity, v, of the particle may be replaced by the two com-

ponents VT and VR . Thus,

Fig. 311 (a) indicates that in general at any instant

VT is changing in magnitude and also in direction, and that,

VR is changing in magnitude and also in direction.

Hence there will be four components of the acceleration: two of
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the type -7-' and two of the type vu, as follows (shown in Fig.
CLL

3116) :

<
-- parallel to ' being the rate of

change of the magnitude of VR .

(2) VRW perpendicular to VR , being the rate of change of VR

due to the change in its direction only.

/o\ dvT d(up) dp . da)

parallel to VT

the rate of change of the magnitude of VT .

fy

(4) Vrco = co
2
p= -^-

perpendicular to VT, being the rate of
p

change of VT due to a change in its direction only.

The T- and /^-components of the total acceleration are,

then (Fig. 26),

rJrpr=- -^(p
2
co),

at at p at

dvR d2p 2='~ =~~

130. Coriolis' Law. It is convenient to consider the motion

of a point of a body as being generated by a motion of the point

along a path (line) as the path moves. Thus, in plane motion

of a rigid body the motion of any point in the body may be con-

sidered as a combination of a motion along a path and a motion

due to a translation of the path.

If a point moves along a path as the path is translated, the

acceleration of the point is the vector sum of the acceleration

relative to the path and the acceleration of the point of the path
which is coincident with the point at the instant (or of any point

of the path since the path is translated). This leads to the same

expression for the acceleration of the point as was obtained in Art.

128, as will be shown later.

If, however, a point moves along a path as the path rotates,

the acceleration of the point is obtained as the vector sum of

three component accelerations. The relation between these three

component accelerations and the total acceleration is known as

Coriolis' law, which may be derived by use of the theorems of

Art, 118 as follows:
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In Fig. 3 12 (a), let m represent a particle (or bead) traveling

along a path (curved wire) with the velocity u, and at the same

time let the path rotate about with angular velocity o>. The

velocity of the particle will then have, at any instant, two com-

ponents, u and w, u being the velocity along (relative to) the path,

and w the velocity of the point on the path which, at the instant,

coincides with the particle.

It will be noted from Fig. 312 (a) that, as the particle passes

from one position to some other position, the velocity u changes in

magnitude and also in direction. Likewise w changes in magni-

Path

(c)

FIG. 312.

tude and also in direction. At any instant, therefore, the accel-

eration of the particle m will have at least four components. It will

be found convenient, however, to consider the change in both u

and w to be made up of several parts, as follows:

The change in u from u\ to u^ is made up of:

(1) A change in magnitude, due to an increasing (or

decreasing) speed along the path.

(2) A change in direction, due to the curvature of the path.

(3) A change in direction, due to the turning of the path.
The change in w from w\ to W2 is made up of :

(4) A change in magnitude, due to the rotation of the path
with increasing (or decreasing) angular velocity
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(assuming p to remain constant, that is, considering

the particle to be fixed to the path).

(5) A change in direction, due to the rotation of the path

(considering the particle fixed to the path) .

(6) A change in magnitude, due to the change in length of p

(assuming co to remain constant), caused by the

movement along the path.

(7) A change in direction, due to the change in the direc-

tion of p, caused by the motion of the particle along

the path (assuming the path fixed). The change in

direction of p and of w are the same since they remain at

right angles.

At any instant, therefore, the acceleration of m will have seven

components, unless (4) and (6) are combined, three being of the

type ,- and four of the type vu. These components (repre-
ctt

sented in Fig. 3126) are expressed as follows:

(1) -r-= ra parallel to u and having the same sense as u

since 12, the angular velocity, and a, the angular accel-

eration, of the particle m with respect to the center of

curvature, S, of the path were assumed to agree in sense

as indicated in Fig. 312(a).

u2

(2) wfl = 12
2r= perpendicular to u

}
towards S.

(3) wco perpendicular to u toward S.

(4) -rr
=

per parallel to w and having the same sense as w,
CLL

since co, the angular velocity, and a, the angular

acceleration, of the path with respect to are assumed

to agree in sense.

w2

(5) wu = u>
2
p = perpendicular to w, toward 0.

By referring again to Fig. 312(a), it will be noted that the velocity

u could also be produced by allowing the particle (bead) to slide

along the straight line p as the line p is rotated about the center

with the same angular velocity, co, as that of the path. The two

components of u would then be VT= cop and VP
=

~JT (see Fig. 312c).
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It will be noted that these components are the radial and trans-

verse components discussed in Art. 116. We are concerned at

present only with the changes in VT due to this motion of the par-

ticle along the path, since the changes in w, not already con-

sidered in (4) and (5), are due to the motion of the point along the

path and are the same as the changes in VT. Now VT changes in

magnitude and also in direction; these changes correspond to the

change in length arid in direction of p. The accelerations thus

produced by reason of the change in VT (or w) are then;

,_ x dvT
(6) 77

dp , >.

u ~~Tf
= VP <*> parallel to VT (or w) and oppo-

Cut

And,

jt
Clt at

site to the sense of w since w is decreasing.

(7) VTU perpendicular to VT (01 w) toward 0.

In (4) p was considered constant and o> was assumed to change

whereas in (6) co was considered constant while p was assumed to

change. Of course (4) and (6) are parts of one expression, namely,

,' -P -s+w-si where co and p are considered to change at
at at at

the same time. Separating the operation into two parts, how-

ever, makes clear the need for both co and p to vary.

Finally, the total acceleration is expressed in terms of the seven

components as follows :

po- +>

100
w2

These components may be grouped in several ways, the most use-

ful grouping depending upon the particular problem under consid-

eration. One such grouping leads to Coriolis
1

law. By combining
the last two components into one term, we have w(vp -&VT}=UU
since v

p -ftvT= u (Fig. 312c). And since wco represents an accel-

eration due to a change in the direction of u it must be perpen-

dicular to u (Theorem II, Art. 118). This may be added to the

third component, since the two will always have the same sense.

Hence the third, sixth, and seventh components combine into

2wco directed perpendicular to u with a sense such that if it were

applied as a force at the end of the vector u it would cause the

Vector u to turn in its actual direction of rotation. Further, let ar
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represent the vector sum of the first two components and let am

represent the vector sum of the fourth and fifth, that is, let

O *>

Or- am -pff
>y.

The total acceleration, then, may be expressed as follows,

This equation maybe stated in words as follows: If a particle moves

on a path as the path rotates, the acceleration of the particle is the

geometric or vector sum of (1) the acceleration the particle would

have if the path were fixed, (2) the acceleration the particle would

have if it were fixed on the path as the path rotated, and (3)

2^60 called the compound supplementary acceleration. This state-

ment is known as Coriolis' law.

From the above derivation, it is seen that 2uu is due (1) to a

part of the change of direction of u
} (2) a part of the change of the

direction of w, and (3) a part of the change of the magnitude of w,

all of which would be absent if the path were translating instead of

rotating. Thus, as noted at the beginning of this article, if the path
is translated, the equation a= ar +> am expresses the same fact as

does the equation of Art, 128 which involves accelerations,

ILLUSTRATIVE PROBLEM

328. The circular arc APB (Fig. 313a) represents the vane of a centrifugal

pump, P being a particle of water. Find the acceleration of the particle P

(V

(a)

Scale 1^=200 ft. per sec?

FIG. 313.

when it is 12 in. from 0, the center of the shaft, if, at that instant, the angular

velocity of the wheel is 10 rad. per sec. clockwise and its angular acceleration

is 50 rad. per sec. 2 clockwise. The tangential velocity of the particle along

(relative to) the vane is 10 ft. per sec. and the tangential acceleration relative
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to the vane is 10 ft. per sec. 2 OB makes an angle of 45 with the horizontal

and is 18 in. long; OA is 3 in.; and OP is 12 in. The radius of the arc APB
is 13 J in.

Solution. By Coriolis' law the total acceleration a is,

a = Or -f> dm +> 2lico,

ar and am are found most easily from their t- and n-components, Hence,

= 10 -B- - 4 50x 4> 10 2 x 4> 2X10X10
loj 12 12

12"

= 10 +> 90.56 4> 50 4> 100 + 200,

each of the quantities being expressed in ft. per sec. 2 The five components
are shown in their proper directions in Fig. 313 (a) and the resultant accelera-

tion a as found from the acceleration polygon is shown in Fig. 313(6). By
scaling the closing line of the polygon, a is found to be 145 ft. per sec. 2 in the

direction shown in Fig. 313(6).

PROBLEM

329. Point P (Fig. 314) moves on the rod OM which rotates about the
fixed point 0. In the given position OP = 6 ft.; the

velocity along the rod is 5 ft. per sec. toward M and is

increasing at the rate of 5 ft. per sec. each second. The
angular velocity of the rod is 2 rad. per sec. in a clockwise

direction, and is decreasing at the rate of 1.5 rad. per sec.

each sec. Find the acceleration of the po'nt P. NOTE.
Usescales: lin. = 2ft.; 1 in. = 5 ft. per sec.; 1 in. = 5 ft. per
sec. 2 Use 8 in. by 11 in. paper with the long edge as the

bottom. Lay the diagram out on left part of sheet, placing

point 1 in. from the left edge and 2 in. from the bottom
-pIG

edge. Show all component accelerations of P to scale.

Combine the components graphically, starting at a point 1 j in. from the top

edge and 1 in. from the right edge. Combine the components in the order

of (am) n , (om\, ar and 2uw.

Ans. ap = 22.0 ft. /sec.
2
vertically downwards.



CHAPTER VIII

MOTION OF RIGID BODIES

131. Introduction. In the preceding chapter the motion of a

point or particle and the relation between the motions of two

particles have been considered. In engineering problems in

general, however, the motion of bodies, not particles, must be

considered. In some problems, the dimensions of the body may
be assumed to be negligible in comparison with its range of motion,

with very small error, and hence, the methods and equations of

the preceding chapter apply directly to the motion of the body.
This assumption is involved in a number of problems in the pre-

ceding chapter, in which a body is assumed to be a particle. In

general, however, the motion of bodies as met in engineering prac-

tice is such that the various points of a body have different

motions.

The object of this chapter is to analyze certain common types

of motion of rigid bodies so that the displacement, velocity, and

acceleration, both linear and angular, may be found from the

methods and equations developed in the preceding chapter. The
motions considered are translation, rotation, and plane motion.

132. Translation. Translation of a rigid body is a motion

such that no straight line in the body changes direction, that is,

each straight line remains parallel to its initial direction. Hence,
at any instant, all points in the body move along parallel paths

and have the same velocity and acceleration. If the transla-

tion is such as to move the particles on curved paths the motion is

called curvilinear translation as, for example, the motion of the

parallel rod of a locomotive. If the particles move on straight-

line paths the motion is called rectilinear translation. The body

may have a uniformly or non-uniformly accelerated motion.

Hence any point in a translating body may have any of the motions

treated in the preceding chapter. Further, since all particles hi

the body have the same motion at any instant, the displacement,

velocity, and acceleration of the body is described by the dis-

placement, velocity, and acceleration of any particle of the body.

276
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PROBLEM

330. A locomotive is running on a straight track at a constant speed of

40 mi./hr. The diameter of the drivers is 6 ft. and the radius of the crank-

pin circle is 15 in. What is the magnitude and the direction of the velocity

FIG. 315.

and of the acceleration of the parallel rod, relative to the engine frame, when
the rod is in the position shown in Fig. 315? What is the absolute velocity

and the absolute acceleration for the same position?

133. Rotation. Rotation of a rigid body is a motion such that

one line in the body (or body extended) remains fixed in space

while all points of the body describe circular paths having centers

on the fixed line. The fixed line is called the axis of rotation and

the plane in which the mass-center of the body moves is called

the plane of motion. The point of intersection of the axis of

rotation and the plane of motion is called the center of rotation.

It will be noted that any line parallel to the plane of motion

changes direction. The motion of a body having rotation cannot

be defined or described by stating the linear displacement, velocity,

and acceleration of any point in the body, as was the case for trans-

lation, since all points in the body do not have the same linear mo-

tion. However, the angular displacements, velocities, and acceler-

ation, respectively, are the same for all particles in the body. Hence

the motion of a rotating rigid body may be described by the

angular motion of any point in the body. Thus all the equations

in the preceding chapter dealing with the angular motion of a

point moving on a circular path, in which the radius vector is the

radius of the circle, apply to the motion of a rotating rigid body,
as well as to each point in the body. The linear displacement,

velocity, and acceleration of any point may also be found from the

equations in the preceding chapter, that deal with the linear

motion of a point moving on a circular path.
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PROBLEMS

331. A straight stick 4 ft. long rotates in a horizontal plane about a ver-

tical axis through one end of the stick. Its angular velocity changes uniformly
from 20 to 50 r.p.m. in 5 sec. What is the linear velocity of its mid-point at

the end of 2 sec.?

332. The flywheel of a punching machine fluctuates from 100 to 80 r.p.m.
at a uniform rate when a hole is punched. If the flywheel makes 1| revolu-

tions while this change of speed takes place, how long does it take to punch
the hole? Ans. t = 1 sec.

333. The flywheel of a rolling-mill engine is 14 ft. in diameter. Just before

the steel is fed hi the rolls the speed of the flywheel is 90 r.p.m. As the

steel enters the rolls the speed decreases uniformly during | sec., before the

governor can operate. If the angular acceleration (negative) of the flywheel
is 20 r.p.m. per sec., what is the decrease in the speed of the flywheel, expressed
in r.p.m.?

134. Plane Motion. Plane motion of a rigid body is a motion

such that each point in the body remains at a constant distance

from a fixed plane. The motion of the connecting rod of a steam

engine is an example of plane motion. The wheels of a locomotive

when running on a straight track also have plane motion. A
plane parallel to the fixed plane, containing the mass-center of the

body, is called the plane of motion. It is evident that a rotation

is always a special case of plane motion, whereas a translation

may or may not be a plane motion.

In plane motion, in general, a straight line in the body lying in

the plane of motion changes direction and, hence, the body rotates,

but not about a fixed axis. The body, therefore, has angular mo-

tion, and its angular displacement, velocity, and acceleration are

the same as that of any straight line in the body, in the plane of

motion, since all such lines have the same angular motion if the

body is rigid. The angular motion of the body, therefore, may be

studied by means of the same equations that apply to the rotation

of a rigid body about a fixed axis.

Rotation, however, is only one part of the motion of a rigid

body having plane motion (except in a special case as noted in the

next article). Plane motion of a rigid body may be resolved into

two component motions, a rotation and a translation, according

to the following theorem:

Plane motion of a rigid body, at any instant, is a com-

bination of: (1) a pure rotation of the body, about an axis
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(perpendicular to the plane of motion) passing through any

point B in the body, with an angular velocity and acceler-

ation the same as that which the body has at the instant;

and, (2) a translation of the body which gives to each point

the same linear velocity and acceleration that the point B
has at the instant.

The point B is called the base point. It is evident that all

points except the base point have two motions; a rotation about

the base point, and a motion the same as that of the base point.

From the analysis of the motion according to the above theorem,
the displacement, velocity, and acceleration of any point, A, in the

body may be found from the equations developed in Art. 128 of

the preceding chapter. The equations are,

VB

To arrive at the above theorem, consider the motion of the

connecting rod of a steam engine (Fig. 316). Let P denote the

position of the crosshead and Q that of the crank-pin, the crank

being of length OQ. When the crank moves from position OQ

FIG. 316.

to position OQi the connecting rod moves from position PQ to

position PiQi. This change of position can be given the rod by
first rotating the rod about P, until it becomes parallel to its new

position, and then giving the rod a translation such that each

point receives a displacement equal to PP\'. By this combina-

tion of motions the point P moves along its actual path but any
other point does not travel in its actual path. The point Q, for
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example, moves along the path QQ'Qi instead of its actual circular

path QQi. However, as the change of position is made smaller

and smaller, the path QQ'Qi approaches the circular path QQi

and, in' the limit, as the two motions are generated simultaneously,

each point is made to move on its actual path by successive

combinations of a proper rotation and a proper translation. The

rotation, at any instant, must give the b9dy its actual angular

velocity and acceleration at the instant, since the translation

does not influence the angular motion of the body. The transla-

tion must give all points of the body the same motion that the

base point has at the instant, since the base point receives its total

motion from the translation.

By the above method, the rod is given a rectilinear transla-

tion, since the point P moves on a straight-line path. If, how-

ever, another base point is chosen as, for example, the point Q,

FIG. 317.

the change of position from PQ to PiQi may then be made by:

(1) a rotation about Q (Fig. 317); and, (2) a curvilinear transla-

tion giving to each point the same motion that Q has. By this

combination of a rotation and a translation the point P is made to

take the path PP'P\ instead of its actual path PP\ y but, reasoning

as above, if the change of position is made smaller and smaller

the path PP'P\ approaches the path PP\ and, in the limit, as

the two motions are imposed simultaneously, each point in the

body is given its exact motion at any instant. Likewise, any other

point in the body may be selected as the base point. And, the

plane motion of any other rigid body may be treated in like

manner. Hence, a plane motion of a rigid body may be consid-

ered, at any instant, as a combination of a rotation of the body
about any base point in the body, with an angular velocity and

acceleration equal to the angular velocity and acceleration that

the body has at the instant, and a translation of the body that
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gives to each point the same linear velocity and acceleration that

the base point has at the instant.

In applying the equations,

VP = vp -+> VQ and aP= ap -f aQj

Q Q

to the motion of any two points in a rigid body having plane

motion, the point Q represents the base point. However, as stated

above, the base point may be any point in the body. Further, the

angular velocity (and acceleration) of the body is the same with

reference to all base points in the body.
Since any two points in a rigid body remain a fixed distance

apart, there can be no relative velocity of one point toward the

other, that is, the relative velocity of either point with respect

to the other is perpendicular to the line joining the two points.

This is not true, however, of the relative acceleration, since it is

made up of a tangential and a normal component, the normal com-

ponent having a direction along the line joining the two points.

'The principles discussed in this article are involved in the solution

of the following problem.

ILLUSTRATIVE PROBLEM

334. A 50 h.p. engine has a cylinder 10 in. in diameter and a stroke of 10

in. The engine runs at a constant speed of co = 300 r.p.m. The ratio of the

length of the connecting rod to that of the crank is 5. Find the velocity

and the acceleration of the crosshead when the crank angle is 30.

FIG. 318.

Solution. Let P be the crosshead and Q the crank pin. Then in Fig.

318 PQ represents 25 in. and OQ or r represents 5 in., according to the scale

used. The velocity of P may be found from the equation,
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There are six elements involved in the equation three magnitudes and three

directions, four of which must be found before the equation can be used

to determine the other two. The direction of the velocity of Q is per-

pendicular to OQ and its magnitude is,

300X27r

The direction of VP is perpendicular to the line joining P and Q and its mag-
Q

nitude is unknown. The direction of VP is horizontal. Hence by laying off

VQ to a convenient scale in the proper direction from P, and by drawing a line

from the end of VQ, perpendicular to the connecting rod, until it intersects a

horizontal line through P, the magnitudes of VP and vp are determined by the

Q
intersection. By scaling off the values of VP and vp, the following results are

Q
found

VP = 11. 4 ft./sec. and VP = 7. 8 ft./sec.

Q

Thinking of the plane motion of the connecting rod as a combination of a

rotation and a translation, VP is the velocity which P is given by the rotation

Q
of the rod about Q and VQ is the velocity given to P by the translation of the

rod. The two velocities produce the resultant velocity VP .

The acceleration of P is given by the equation,

ap=ap -f^ aQ.

Q

For convenience, ap will be replaced by its tangential and normal components.
Q

Hence,

'OP iaP\ +> /ap\

\ Q/ t \Q/n

Eight elements are involved in the equation four magnitudes and four

directions, six of which must be found before the graphical construction

representing the equation can be completed. aQ is directed from Q toward

and its magnitude is,

/300X27r\ * 5 ., ,, /a = co
2r=( ^ J Xj^

= 412 ft./sec.
2

aP is known in direction, being parallel to PO (horizontal), since VP

changes in magnitude only. /aP \ is directed from P toward Q and its

\ Q) n

magnitude is,
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|P\]\ Ql t

has a direction perpendicular to PQ. The two unknown elements

are, therefore, the magnitudes of ap and / aP\ .

\ Q/t

In Fig. 319, starting at P, the vectors are laid off to a convenient scale.

Thus CLQ and /p\ (both of which are completely known) are drawn and

\Q/n
then, fron the end of iaP\ ,

a line is drawn that represents the direction of

\ Q/ n

(5),

FIG. 319.

,
that is, it is drawn perpendicular to PQ. The intersection of this

line with the line PO (which represents the direction of aP) determines the

lengths of the vectors that represent laP\ and aP . By scaling off the

\ Q/t

values, the following results are obtained,

200 ft./sec.
2 and 404 ft. /sec.

2
.

Ql t

PROBLEMS

335. A wheel 4 ft. in diameter rolls, without slipping, on a horizontal track

(Fig. 320). The velocity of its center, at

a given instant, is 4 ft./sec. to the right

and the acceleration of the center is 6

ft./sec.
2 in the same, direction. Find the

velocities and the accelerations of the points

A and B.

336. Find, by the graphical method,
the velocity and the acceleration of the

point C of the four-link mechanism de-

scribed in Problem 337 (Fig. 322). Use

the following scales: lin. = lft.; lin. = 2

ft./sec.; and 1 in. = 10 ft. /sec.
2 FIG. 320

Ans. vc = 1.54 ft./sec.; ac =55.5 ft./sec.
2



284 MOTION OF RIGID BODIES

135. Instantaneous Center. It was shown in the previous
article that a plane motion of a rigid body may be considered, at

any instant, as a rotation, about an axis through any point in the

body, combined with a translation. However, by choosing a par-

ticular axis in the body (or its extension), the motion of the body,
at any instant, becomes one of rotation only, that is, no transla-

tion need be combined with the rotation to produce the actual

motion of the body. This axis is called the instantaneous axis of

rotation or.the instantaneous axis of zero velocity. Its intersection

with the plane of motion is called the instantaneous center of

rotation.

To show a method of locating the instantaneous center, let A
and B be any two points in the plane of motion of a rigid body

having plane motion (Fig. 321). Let VA denote the velocity of A,
and VB ,

the velocity of B. From A draw

a line perpendicular to VA and from B
draw a line perpendicular to VB ,

the two

lines intersecting in 0. Any point in the

body on the line OA, if not at rest,

must have a velocity perpendicular to

OA, since any two points in the body

FIG. 321. cannot move toward or away from each

other if the body is rigid. Likewise, any

point on the line BO, if not at rest, must move perpendicular to

BO. Hence, the point of intersection of AO and BO must be

at rest since it cannot, at the same instant, move in two

directions. Therefore, the body, if not at rest, must rotate

about the point at the instant.

If, then, A and are two points in the rigid body having plane

motion, A being any point, and the instantaneous center, the

equation,

reduces to,

in which co is the angular velocity of the body. Further, since co

is the same for all points in the body, it follows that the

velocities of any two points A and B vary as their distances
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from the instantaneous center. Or, expressed in equational

form,

VB
~
u-OB OB'

It should be noted that the instantaneous center is the center of

zero velocity and not of zero acceleration. In the case of the

motion of rotation of a rigid body about a fixed axis, which is a

special case of plane motion, the axis of rotation is also the instan-

taneous axis and it has zero acceleration as well as zero velocity

since it is at rest. In the general case of plane motion, however,

the instantaneous center changes its position in the body and also in

space. Although the velocity of the point in the body, coinciding

with the instantaneous center at a given instant, is zero, the

velocity is changing through its zero value and hence the point

has an acceleration. Therefore in the equation,

aA = aA +> ao,
~o

in which A is any point and is the instantaneous center, ao is

not zero. Hence the actual acceleration, at any instant, of a

point in a rigid body having plane motion cannot be found by
considering the body to be rotating about a fixed axis through
the instantaneous center, as may be done in determining the

velocity of any point of the body.

ILLUSTRATIVE PROBLEM

337. The four-link mechanism, ABCD, shown in Fig. 322 has the following
dimensions: A = 6in.; C = 3ft.; DC = 2 ft.; AD = 4 ft.;

= 45. Find the

instantaneous center for the link BC. If

the crank AB rotates at a constant angular

velocity w = 10 rad./sec., find the angular

velocities, co2, of the link DC and, ojs, of 0)
s>

the link BC. Also find the linear veloc-

ity, VH, of H, the midpoint of BC.

Solution. The instantaneous center

for the link BC is 0, the point of inter-

section of the lines AB and DC extended.

By scaling off the lengths of OB, OC, and

OH, the following values are found:

OB = 3. 1ft. OC = 0.96ft. O# = 1.72ft.
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The velocity of B is,

vB = wXAB = 10XA = 5 ft./sec.

Therefore the angular velocity of B, considered as a point on BC, is,

"3 =^
=
3^

= 1.61 rad./sec.

and the angular velocities of all points on BC are the same. The linear velocity
of C is, therefore,

yc = w3XOC = 1.61X0. 96 = 1.54 ft./sec.

And,
va =wXOH^. 61 XI. 72=2. 77 ft./sec.

Therefore,
vc 1 . 54

W2 = = ~~~ rad./sec.

PROBLEMS

338. What is the magnitude and the direction of the velocity of the

point E (Fig. 322) on link DC midway between D and C.

Ans. ## = 0.77 ft./sec. perpendicular to DC.

339. Consider the link BC (Fig. 322) to be the triangular piece BOG and

let P be a point on the triangular piece midway from to H. What is the

magnitude and the direction of the velocity of the point P?

340. Locate the instantaneous center of the connecting rod of the steam-

engine mechanism described in Problem 334. Find the angular velocity of

the connecting rod, the linear velocity of the crosshead, and the linear velocity

of a point on the connecting rod midway from the crosshead to the crank-pin.

Ans. 0)2
= 5.47 rad./sec.; vp = 7.70 ft./sec.; yjj/

= 9.12 ft./sec.

341. Find the instantaneous center of the wheel described in Problem 335.

Find also the angular velocity of the wheel and the magnitudes and directions

of the velocities of the points B, C, and D.



PART III. KINETICS

CHAPTER IX

FORCE, MASS, AND ACCELERATION

1. PRELIMINARY CONSIDERATIONS. KINETICS OF A PARTICLE

136. Introduction. Kinetics is that branch of mechanics

which treats of the laws in accordance with which the motion of

physical bodies takes place.

A change in the state of motion of a body always occurs when
an unbalanced force system acts on the body, the unbalanced

part (resultant) of the force system being the cause of the change
in the motion. Common experience teaches that the change
of motion of the body, is influenced both by the characteristics

(Art. 5) of the resultant of the forces acting on the body and by
the nature of the body itself. For example, different force systems

acting, in turn, on the same body do not produce the same change
of motion of the body. Further, the same force system applied
to different bodies, even if they are of the same size and form, does

not produce the same change in the motion of all of the bodies.

Although experience suggests that relations exist between

the force system acting on the body, the properties of the body,
and the change in the motion of the body, it required the work of

many eminent men and a period of several centuries before definite

and complete fundamental relations between these three factors

were finally established. These relations were formulated by
Sir Isaac Newton (1642-1727) and are known as Newton's laws

of motion.

Newton's fundamental laws, however, apply only to the

motion of a particle under the action of a single force, whereas

in engineering practice the motion of a body (system of par-

ticles) under the action of a system of forces must be con-

sidered. The force system acting on the body may produce any
287
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type of motion. Thus, in some cases a motion of translation is

given to the body, in other cases the body is given a motion of

rotation, and in still other cases the force system produces a plane
motion of the body. These three types of motion, only, are con-

sidered in this chapter.

137. The General Kinetics Problem. In each type of motion

however, the general character of the kinetics problem is the same :

A physical body is acted on by a force system that has a resultant,

which causes a change in the motion of the body. In each prob-
lem it is required to deduce, by the use of Newton's laws, the

equations expressing the definite relations between (1) the result-

ant of the force system, (2) the kinetic properties of the body,
and (3) the change of motion of the body, so that the motion of a

given body produced by a given force system may be determined,
or the force system required to produce a given motion may be

found. The equations which express these relations are called

the equations of motion for the body.
These three elements or factors which are involved in the equa-

tions of motion of bodies may be considered briefly before stating

Newton's laws and before deriving the equations which express the

relations between these three factors. Change of motion is

measured in terms of distance, time, velocity, and acceleration,

relations between which, for various types of motion, have already

been considered fully in Chapters VII and VIII. The charac-

teristics of the resultant of a force system have also been consid-

ered in Chapter II, and need only be reviewed briefly at this point

(see next article) to show their connection with the general problem
in kinetics. The nature or property of the body which enables it

to have an influence in determining its own motion, however,

needs to be discussed at greater length (see Art. 139).

138. Characteristics of a Force System. The only part of a

force system that influences the motion of a body is the unbal-

anced part (resultant) of the force system. The forces which

produce the i ypes of motion considered in this chapter are coplanar

forces or may be so regarded.
1 The resultant of a coplanar force

1
Although in most kinetics problems here considered, the motions are pro-

duced by coplanar force systems, the system of forces may be non-coplanar.

It will be evident, however, after discussing the equations of motions for the

three types of motion here considered, that non-coplanar forces that pro-

duce these motions may be replaced by equivalent coplanar force systems.
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system is either a force or a couple (Art. 28) , although the resultant,

when a force, may, for convenience, be considered as another force

and a couple (Art. 18). If the resultant is a force, the character-

istics of the resultant which influence the motion of the body on

which the force system acts are (1) its magnitude, (2) the position

of its action line in the body, and (3) its sense (Art. 5). If, how-

ever, the resultant is a couple, the characteristics of the resultant

which influence the motion of the body on which the force system
acts are (1) the moment of the couple, (2) the sense, and (3) the

aspect or direction of the plane of the couple (Art. 16). These

statements appeal directly to one's experience and may be verified

by simple experiments which the reader may readily perform.

Since the equations of motion of a body must take account of

all the factors influencing the motion, there must be a sufficient

number of equations to determine the influence of all of the charac-

teristics of the resultant of the force system as mentioned above.

This may be done, for the types of motion considered in this

chapter, by means of three equations. These three equations will

contain the algebraic sum of the x-components of the forces acting

on the body, the algebraic sum of the ^/-components, and the alge-

braic sum of the moments of the forces about some axis in the body.

For, if the resultant of the force system acting on the body is a

force, the algebraic sums of the x- and ^-components of the forces

are needed to take account of the influence of the magnitude of

the resultant force and of the direction of its action line, and

the algebraic sum of the moments of the forces is needed to measure

the influence of the position of the action line of the resultant force.

And, if the resultant of the force system is a couple, the motion

of the body is one of rotation as will be seen later (Art. 147), in

which case, the algebraic sum of the moments of the forces is

needed to measure the influence of the moment and sense of the

couple. The aspect of the couple is not involved in the equations
of motion since the plane of the couple always agrees with that of

the plane of motion of the body.
139. Inertia and Mass. The property of a body by virtue of

which it offers resistance to any change in its motion, and thereby
makes the body itself a factor in determining the motion which

unbalanced forces impress upon it, is called inertia. All physi-
cal bodies are inert or possess inertia, but different bodies possess

different amounts of inertia. That is, all bodies influence their
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own motion according to the same law but not to the same

degree.
1

Bodies possess many otner properties such as hardness, grav-

itation, elasticity, strength, etc. In taking into account the

influence which any one of these properties has on the behavior

of the body, under the conditions which make the property a

factor in the problem, a quantity (value of the property) is found

which measures the particular property; that is, which indicates

its relation to the other influencing factors and which, if possible,

has a constant value for the body or for the material of the body.

Thus, when the property of strength is involved in a problem, the

constant values called
"

elastic limit
" and "

ultimate strength
"

are frequently used as a measure of the strength of the material.

Similarly, the constant value called
" modulus of elasticity

"

is used as a measure of the property of elasticity or stiffness of a

material.

In the kinetics problem, that is, in a problem in which a change
in the motion of a body occurs, the property of inertia of the body
is involved. In taking account of the influence which the prop-

erty of inertia has on the motion of the body, a quantity called the

mass of the body is used. The two essential characteristics of

mass are its direct relation to the other factors (forces and accel-

eration) which are involved in the kinetics problem and its con-

stant value. Thus the mass of a body is a constant of the body
which measures a kinetic property (inertia) of the body.

The term mass then, as used in mechanics, denotes the amount
of inertia possessed by a body. Or, the mass of a body may be

defined as the constant of the body which measures the influence

which the body exerts in determining its own motion, when acted

upon by an unbalanced force system. The amount of resistance

offered by a body to a change in its motion (that is, the amount of

inertia possessed by a body), must be determined experimentally.

An experiment for determining the mass may be outlined as follows :

1 The way in which bodies resist motion is analogous to the manner in

which elastic materials, such as steel or timber, resist being stretched. Each

material, within limits, resists according to the same law (stretch is propor-
tional to stress), but some materials resist to a greater degree, that is, some

materials are stiffer than others, which means that some materials require a

greater force to produce a given stretch than do other materials, just as some

bodies require a greater force to overcome their inertia at a definite rate than

do other bodies.
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Let a body A be acted upon by a single force FI causing a change
in its motion such that the acceleration of the body is found to be a\.

In the same manner let the forces F2, F%, etc., act on the same

body, in turn, causing accelerations which are found to be ct2, as,

etc., respectively. The results of such an experiment show that,

FI F2 FS= = = etc. = a constant = C\ (say) .

ai a2 as

If any other body is acted upon in a similar manner !

by other

forces (F
f

,
F"

',
Ffn

', etc.), one at a time, such that the body is given

the same series of accelerations (01, 02, s, etc.) as was given to the

first body, it will be found that,

p, pit pin= = = etc. = a constant = 2 (say) .

ai a2 as

That is, the manner in which a body influences its own motion

is by requiring that any force which is impressed on it shall bear

a constant ratio to the acceleration which the force gives to the

body. Further, it will be noted that the particular change in fhe

motion of the body that is related directly to the forces acting

on the body and the kinetic properties of the body is the accelera-

tion of the body.

Although the ratio of the impressed force to the acceleration

produced is constant for any given body it has different values for

different bodies. That is, Ci and 2 as used above are, as a rule,

not equal. Now Ci and 2 are measures of the inertia resistance

offered by the particular bodies to a change in their motion since

they measure the force required to overcome the inertia at a

definite rate (acceleration). The constants Ci and 2, therefore,

are proportional, respectively, to the masses of the two bodies.

That is, Ci = kM\ and 2 = kM2 in which k is a constant and MI
and M2 are the masses of the bodies. If now the mass, MI, of the

second body is taken as the unit by which the mass of the first body
is measured, then the ratio (Ci/Cy of the constants expresses the

number of units of mass in the first body. The numerical value

of this ratio, therefore, depends upon the choice of the value of

2, and hence, of the unit of mass.

1 It is assumed in this experiment that a motion of rectilinear translation

is given to the body in each case and hence the only cha.acteristic of the force

that changes is its magnitude.
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TfJ

Now, as shown above, 2 is expressed by the equation 2 = .

a

Therefore, the unit of mass will depend upon the units in which

F and a are expressed. The various units of force and accelera-

tion, and the resulting units of mass are discussed in detail in

Art. 141. Mass is considered at this point only to show its general

connection with the other quantities (force and acceleration)

involved in the kinetics problem and to show a method of deter-

mining it.

The experiment suggested above for determining the mass of a

body by finding the ratio of an impressed force to the acceleration

produced, is difficult and inconvenient to perform. Fortunately,

a much simpler experiment serves the same purpose. Careful

experiments have shown that the weights (earth-pulls) of bodies,

when the weights (W) are the only forces acting on the bodies, pro-

duce the same acceleration, g, of all the bodies at a given location

on the earth's surface, the approximate value of g for most localities

being 32.2 ft. per sec. per sec. Hence, if instead of using the ratio

of any force, F, to the corresponding acceleration, a, the ratio

W- is used, the only experiment needed to determine the mass of
9

a body is that of weighing the body on an ordinary spring balance

since the value of g is known. Therefore,

But, as shown above, the ratio of the force F to the accelera-

tion, a, produced by the force is proportional to the mass M of the

F
body, that is,

= kM. Therefore,

W = kM.
g

And if units for W, g, and M are so chosen that k equals unity, as

will be discussed in Art. 141, then the number of units of mass in

a body may be found from its weight by the equation

4
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140. Newton's Laws. Newton established his laws of motion

from a study of the motion of planets whose orbits and speeds

were then well known. Since the dimensions of a planet are

negligible in comparison with the range of its motion, Newton's

laws really apply directly only to a particle, that is, to a body, all

points of which may be considered at any instant to have the same

acceleration. In most cases of motion of bodies, however, the

accelerations of different particles of the body are not the same.

Thus, the accelerations of various parts of a rotating flywheel or

of the connecting rod of a steam engine are quite different. The

expression
"
acceleration of a body

"
is, therefore, indefinite and

meaningless, except for a body having the motion of translation.

Newton's laws may be stated as follows:

First Law. A particle remains at rest or continues to move

uniformly in a straight line unless acted upon by an unbalanced

force.

Second Law. When a single (unbalanced) force acts on a par-

ticle the particle is accelerated; the direction of the acceleration

is the same as that of the force and its magnitude is directly

proportional to the force and inversely proportional to the mass

of the particle.

Third Law. There are mutual actions between any two par-

ticles of a system (body) such that the action of the one on the

other is equal, collinear, and opposite to that of the other on the

one.

1. The first law is a qualitative one. It states that a particle

has inertia, that is, it resists having its motion changed. It states

that a force must act on the particle if its motion (velocity) is

changed either in direction or in magnitude, that is, if an accel-

eration is produced.
2. The second law is a quantitative one. It states what the

magnitude and the direction of the force must be in order to pro-
duce a given acceleration of a given particle, and shows that

although a particle cannot, of itself, change its state of motion it

does nevertheless influence the change of motion caused by the

force, by regulating or governing the manner in which the accelera-

tion shall take place; namely, that it shall be always inversely

proportional to the mass of the particle.

3. In the first two laws it is assumed that a single particle is

acted upon by a single force. But the third law brings out the
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fact that a single force does not exist. One force requires the pres-

ence of another force. A push cannot be exerted unless there is a

resisting force to develop the push; that is, forces always occur in

pairs. A pair of forces, however, requires the presence of a pair of

particles each of which acts on the other, and hence requires that

each offers a resistance to the other. The resistance which the

second particle offers to the first, in general, may arise in two

ways: (1) by transmitting to the first particle the force (static

reaction) which a third particle (or several particles) exerts on

it when holding it in equilibrium, or (2) by virtue of its inertia

as it allows the first particle to change its motion (kinetic reaction).

Or, the resistance may be a combination of these causes.

In a moving system of particles, therefore, the motion of each

particle is influenced by every other particle in the system. These

actions and reactions which influence the motion of the particles of

the body are, in general, impossible to determine. However, since

they occur as collinear pairs (third law) the equations of motion

for a system of particles (body) may be found without introducing
them into the equations, for, in finding the sums of x- and y-com-

ponents and the sum of the moments of all the forces acting on all

the particles, the mutual actions and reactions between the pairs

of particles drop out of the expressions, since these sums are equal
to zero. Hence, by use of Newton's third law, the second law,

which applies directly only to a single particle under the action of a

single force, may be used to extend the equations of motion to a

system of particles under the action of a system of forces.

141. Mathematical Statement of Newton's Second Law. Units.

Newton's second law may be expressed mathematically by the

equation

F= kma,

in which a is the acceleration of the particle of mass m, F is the

single force acting on the particle, and A; is a constant factor the

value of which depends upon the units used to express the other

quantities (F, m, and a) in the equation. But in Art. 139 it was
F W

shown that =
. Hence for any particle,

F W= = km.
a g
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It will be observed, therefore, that although the mass, m, of

F
a particle is always proportional to

,
the numerical value of m

(that is, the number of units of mass in the particle), is expressed

F W
by (or more conveniently by as discussed in Art. 139), only

when units are chosen for the force F and the acceleration a such

that k becomes unity. It is obvious that such a system of units

is desirable for, when such a system is chosen, Newton's second law

may be written simply

F=ma= a.

9

A system of units which gives a value of unity to k may be

chosen as follows: In the equation F= kma four quantities are

involved. If a particular value (unity) is assigned to k then the

units for only two of the other quantities may be chosen arbitrarily.

In engineering, the unit of force and of acceleration are chosen

and hence the unit of mass is derived from the units selected for

force and acceleration. If the pound is chosen as the unit of force

and the foot per sec. per sec. as the unit of acceleration, as is

usual in engineering, it is evident that the body which has a unit

of mass is one which, when acted on by a unit force (pound), will

be given a unit acceleration (foot per second2). That is, if in the

equation F= kma, k is made unity, F is made unity (one pound),

and a is made unity (one foot per second2), then m must be unity

(one unit).

The body which is given an acceleration of 1 ft. per sec. per sec.

by a 1-lb. force, that is, a body of unit mass, may be found by experi-

ment. The direct method would be to allow a 1-lb. force to act

on different bodies until one is found which is given an accelera-

tion of 1 ft. per sec. per sec. However, experiments have been

made which supply sufficient data from which the weight of a body
of unit mass may be found. Thus, experiments have shown that

the earth-pull on any body, if it is the only force acting, gives the

body an acceleration of g, the value of which at most localities is

32.2 ft. /sec.
2
(approximately). Hence, if the earth-pull on a body

is 1 lb., that is, if the body weighs 1 lb., it will be given an accelera-

tion of 32.2 ft. /sec.
2 and not 1 ft. /sec.

2
And, if a 1-lb. force acts

on, a free body which weighs more than 1 lb. the acceleration pro-

duced will decrease in proportion to the increase in weight (New-
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ton's second law). Therefore, a body weighing 32.2 Ib. will be

given an acceleration of 1 ft. per sec. per sec. by a 1-lb. force.

Therefore, a body weighing 32.2 Ib. is a body of unit mass. A
body weighing 64.4 Ib. has two units of mass, or, in general, a

W
body weighing W pounds has units of mass.

No name for the unit of mass as here used has gained general

acceptance as has the name pound for the unit of force. The

name slug (from sluggishness which suggests inertia) is used to

some extent, particularly in England. The name geepound which

suggests 32.2 Ib. is also used to some extent, but, in general, the

unit of mass here considered is called simply a unit of mass (some-

times the engineer's unit of mass as contrasted with that used by the

physicist). If a special name is given to it, such as a slug or gee-

pound, the tendency is to think of the unit of mass as an arbi-

trarily chosen unit like that of force and of acceleration and to

forget that it is a derived unit
;
derived from the units of force and

acceleration. Thus, the number of units of mass in a body when
W

expressed by ,
as discussed above, will be a certain number of

Ib sec 2
'

, for, according to the dimensional equation for mass,
it.

Force F FT2

mass =
Acceleration L^

JT2

Hence the mass of a body which weighs 966 Ib. is

W _ 966 on
lb. sec.

2

g 32.2 ft.

Or, if each of the units of mass is called a slug or a geepound the

mass of the body may be denoted as 30 slugs or 30 geepounds. A
lr) SOP

quantity expressed in the units --^ is difficult to visualize
it.

or to interpret as a physical quantity, which accounts for the fact

that mass as used by the engineer sometimes fails to appeal to

common experience.

142. Other Systems of Units. If the unit of force and unit

of acceleration are chosen arbitrarily and the unit of mass derived

therefrom, as was done in the preceding article, the system of

units thus obtained is called a gravitational system.
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If the unit of mass and of acceleration are chosen arbitrarily

and the unit of force derived therefrom, the system of units thus

obtained is called an absolute system.

If, in either the gravitational or the absolute system of units,

the units are so chosen that the value of k in the equation F= kma
becomes unity, the system is called a systematic or kinetic system.

If the kilogram is selected as the unit of force and the meter

per sec. per sec. as the unit of acceleration instead of selecting

the pound and the foot per sec. per sec. as was done in the preced-

ing article, then the number of units of mass in the body will be,

W
as before, expressed by ,

but each unit of the mass will be ex-
y

pressed in terms of kilograms, meters, and seconds, instead of

pounds, feet, and seconds.

A systematic absolute system of units commonly used by physi-

cists in accurate scientific work and in engineering electrical meas-

urements is a system in which the gram, centimeter, and second

are used as the units of mass, length, and time, respectively.

Thus, if the gram is chosen for the unit of mass and the centimeter

per sec. per sec. for the unit of acceleration and if k is to have a

value of unity, then in the equation F= kma, F must be unity.

Hence, the force that will give a mass of 1 gram an acceleration of

1 cm. per sec. per sec. is the unit of force and is called a dyne.

A dyne is g-Jy of a gram. This fact may be shown as follows:

The earth-pull on a body of unit mass (gram) produces an acceler-

ation of 981 cm. per sec. per sec. instead of 1 cm. per sec. per sec.

Hence, from Newton's law, it follows that a force of ^3- gram
acting on the same body (unit mass) will produce an acceleration

of 1 cm. per sec. per sec. That is, ^^ gram is the unit of force

in the absolute system of units.

If the pound is used for the unit of mass and the foot per sec.

per sec. for the unit of acceleration, an absolute system of units is

obtained in which the unit of force is called the poundal, corre-

sponding to the dyne in the metric absolute system. The poundal
is 3^2 of a pound. This fact may be shown by reasoning in a way
similar to that used above in showing that a dyne is -g-Jy of a

gram.
143. Equations of Motion for a Particle. Since Newton's

laws apply directly only to a particle, they are limited to the action

of a single force or of a force system which has a single force (not a
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couple) for a resultant, for the reason that the force system which

acts on a particle is a concurrent system having as its resultant a

single force acting through the particle (point of concurrence).

Newton's laws, therefore, state the relation between (1) the result-

ant force acting on a particle, (2) the mass of the particle, and (3)

the acceleration of the particle. As noted above, however, by
means of the third law, this relation may be extended so as to

apply to the motion of a system of particles under the action of a

system of forces.

From Newton's second law the equation of motion of a par-

ticle, when systematic units are used, is,

R=ma

in which R is the resultant of all the (concurrent) forces acting on

the particle, m is the mass of the particle, and a is the acceleration

of the particle. The action line of R passes through the particle

since the particle is the point of concurrence of the forces acting

on it. Both R and a are directed quantities and their directions

always agree; hence, both sides of the equation may be resolved

into components. For convenience, three rectangular axes,

Xj y, and z, are chosen and, since RX=2FX ,
RV
=2FV , etc., three

equations of motion may be written as follows:

in which 2FX ,
2Fy ,

2FZ are the algebraic sums, in the specified

directions, of all the forces acting on the particle.

It is important to note that all of the forces acting on the

particle are external to the particle. But, when the particle

considered is one of a system of particles, some of the forces acting

on it are exerted by the other (neighboring) particles of the system
and are, therefore, internal forces when considering the motion of

the whole system of particles.

NOTE. In the problems which follow, the assumption is m<ade that the

bodies having the motions described may be considered to be particles without

introducing serious errors in the analysis of the motion. The problems may
be divided roughly into two classes; (1) the forces acting on the particle are

given and the characteristics (distance, time, velocity, acceleration) of the

resulting motion are required, and (2) the characteristics of the motion are
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given and the forces required to produce the motion are required. In solving

the problems, therefore, the fact should be kept in mind that the kinematics

equations of Chapter VII are to be used, when needed, in conjunction with the

equations of motion of the particle, since the acceleration of the particle is

involved both in the kinematics and the kinetics of the particle. In solving

problems in kinetics it is important to follow a rather definite procedure the

main steps in which may be outlined as follows:

1. Determine carefully what is given in the problem.
> 2. Determine carefully what is required in the problem. These two

steps, as a rule, require a sketch with the known and unknown

quantities either indicated on the sketch or briefly listed.

3. Draw a complete free-body diagram of the body (particle). That

is, show the actions of all other bodies on the particle considered.

This diagram is of particular importance in determining what
shall be used for the left-hand member of each of the equations
of motion for the particle.

4. Write the three equations of motion for the particle and select the

three coordinate axes tp be used in applying the equations.

Frequently, by a proper choice of axes, only two or even one of

the equations of motion will be sufficient for the solution.

5. Write any necessary additional equations such as kinematics equa-

tions, definitions, equations of equilibrium, etc., which apply to

the particular problem, keeping in mind that there must be as

many equations as there are unknown quantities.

6. Solve the equations, using the known quantities stated in the prob-
lem.

ILLUSTRATIVE PROBLEMS

342. A box weighing 16.1 Ib. rests on the floor of an elevator. If the ele-

vator starts up with an acceleration of 8 ft. per sec. 2
,
what is the pressure on

the floor of the elevator?
,

Solution. 'The box is given the acceleration

of 8 ft. per sec. per sec. by the upward pressure,

P, of the elevator and the downward weight,

W, as indicated in the freebody diagram (Fig.

323). Taking the y-axis as vertical, we need

only one of the equations of motion, namely,

^Fy =mav ,
for the solution of the problem. [

Hence using this equation we hav

av ,

Therefore,

20.1 Ib.

w

'I,

FIG. 323.
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343. A small body weighing 4 Ib. is attached to one end of a string

5 ft. long and is made to revolve as a conical pendulum with a constant angular

velocity, to, so that the string is inclined 30 with the vertical as shown in

Fig. 324. What is the tension, T, in the string and the linear velocity, v, of

the body?

W-4 Ib.

FIG. 324.

Solution. The body moves on a circular path in a horizontal plane under

the influence of two forces T and W as shown in the free-body diagram (Fig.

324). The acceleration of the body is ro>
2

,
or

,
toward the center of the circle.

The equations of motion are:

From (1),

From (3),

Tcos 60 =
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By substituting this value of T in (4), the value of v may be found. Thus,

4.62 cos aO'-^Xj^jp.
Hence,

4.62X0.5X32.2X5X0.5 AB9
Vi=

;

= 4b.O.
4

Therefore,
v = 6.8 ft. /sec.

344. Boxes are sent from the street into the basement of a store by means
of an inclined plane as shown in Fig. 325. The plane is 20 ft. long and makes

an angle of 30 with the floor. The boxes are given an initial velocity, v
,
of

10 ft. per sec. Assuming that the coefficient of friction for the box while on

the incline is 0.4, what is the velocity, v, of the box as it reaches the bottom

of the incline and how many seconds does it take to reach the bottom?

XX^%xxJ<<xxx?xJ^

FIG. 325.

Solution. The forces acting on the box during its motion down the incline

are shown in Fig. 325. The z-axis is chosen in the direction of the total accel-

eration, hence ax = a.

The equations of motion are,

SF^ = ratty
=

0, since ay = (2)

In addition to the equations of motion the following equations are needed:

F =^, (3)

v = vo+at (5)
From (1),

TFsin30-F=-a (6)

From (2),

AT-W cos 30 =0 (7)

ftomW,
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Substituting the value of F from (8) and (7) in (6) we obtain,

Therefore,

And from (4)

Therefore,

And from (5),

Therefore,

a = 4.95 ft./sec.
2

y2 = (lO)
2 +2X4.95X20.

v = 17.3 ft./sec.

17.3 = 10+4.95*.

2 = 1.47 sec.

PROBLEMS
345. A balloon weighing 400 Ib. has a vertical acceleration of 2 ft. per sec. 2

The horizontal wind pressure causes the balloon to travel in a direction making
an angle of 30 with the vertical. Find the horizontal component of the accel-

eration of the balloon and the horizontal wind pressure.

Ans. 1.15 ft./sec.
2

;
14.35 Ib.

346. The winding drum of a mine hoist (Fig. 326) is 15 ft. in diameter.

A cage weighing 8 tons is raised by it. If the cage is rising at the rate of 60

ft. per sec. when it is 104 ft. below the surface of the ground, and power is

then shut off, what is the tension, T, in the cable while the cage is coming
to the surface if it comes to rest just as it reaches the surface?

Ans. 7410 Ib.

347. An engine weighing 64.4 tons travels round

a curve having a constant radius of 1000 ft., at a

constant speed of 45 miles per hour. Find the hori-

zontal thrust on the rails.

= 60 ft./ sec.

D
FIG. 326. FIG. 327.

348. In "
looping the loop

"
(Fig. 327), show that if friction is neglected,

the minimum value of the velocity of the car when at C is
A/^-

if the car does

not leave the track.
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349. A small body weighing 12 Ib. rests on an inclined surface (Fig. 328)

which is revolved about a vertical axis with a constant angular velocity of 20

r.p.m. If the body is attached to the axis of ro-

tation by a cord as shown in the figure, and if

friction between the body and plane is neglected,

find the tension, T, in the cord.

350. A box is projected up an inclined plane,

which makes an angle of 20 with the horizontal,

with an initial velocity of 2400 ft. per minute.

If the coefficient of kinetic friction is 0.2, how
far up the plane does the box travel before

coming to rest? Will the box remain at rest?

If not, how long does it take it to reach

the bottom of the incline? FIG. 328.

Ans. s=46.9 ft.

2. KINETICS OF BODIES

144. Introduction. Methods of Analysis. As stated in the

preceding section, the general character of a problem in kinetics

of bodies is the same whether the body has a motion of translation,

of rotation, or of plane motion: A physical body is acted on by a

force system that has a resultant which causes a change in the

motion of the body. For each type of motion, relations are found

between (1) the resultant of the external force system, (2) the

properties of the body (mass, moment of inertia, etc.), and (3)

the change in the motion of the body. For each of the types of

motion of rigid bodies treated in this section, the equations which

express the relations between the three factors or elements in the

problem (equations of motion) are found by the same procedure
or series of steps, as follows:

1. From the motion of the body, the acceleration, a, of any

(and every) particle in the body is found, both in magnitude
and in direction. This step involves the use of the equations
of kinematics as developed in Chapters VII and VIII.

2. From the acceleration, a, of any particle and its mass, m,
the force required to produce the acceleration is found, both in

magnitude and in direction, by applying Newton's second law.

This force, R, is expressed by the equation R = ma, its direction

being the same as that of a. This force is called the effective force

for the particle and is, of course, the resultant of the actual forces

acting on the particle. Some (most) of the particles of a body
are acted on by internal forces only (in addition to their weights),
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that is, by the neighboring particles of the body, and some of

the particles are acted upon by both internal and external forces.

The effective force for a particle, therefore, may be the resultant

of internal forces only or of internal and external forces.

3. The magnitude and the direction of the effective force for

each particle of the body having been determined, in terms of the

mass and acceleration of the particle, the resultant of the effective

forces for all the particles of the body is found completely by the

same methods as were used in Chapter II for finding the resultant

of a given system of forces. The effective forces for bodies having
the motions considered in this section may be assumed to form a

coplanar force system.
1

Therefore, the resultant of the effective

forces, in general, may be determined by writing three equations

(Art. 30) involving the summations of the x-components of the

effectives forces, of the ^/-components of the effectiye forces, and

of the moments of the effective forces about an axis in the body.
4. The equations obtained in step 3, which determine the

resultant of the effective forces for the whole body, contain all

the internal forces and all the external forces which act on all of

the particles. But, in obtaining the summations of the x- and of

the ^/-components and of the moments of the effective forces, the

internal forces drop out of the expressions since they occur in

collinear pairs, the forces of each pair being equal and opposite

(Newton's third law). Hence, the sum of their components in

any direction and the sum of their moments about any axis are

zero. Therefore,

The resultant of the effective forces for the particles of a

1 In the discussion of translation, in this section, the motion will be restricted

to a uniplanar translation. Further, the bodies considered in connection with

the three types of motion discussed in this chapter will be assumed to be

homogeneous and to have planes of symmetry which are the planes of motion

of the bodies (Arts. 133 and 134) and hence, in discussing the kinetics of such

a body having a motion of translation or rotation, or a plane motion, the mass

of the body may be assumed to be concentrated in the plane of motion. Thus,

the body may first be imagined to be made up of elementary rods perpendicular

to the plane of symmetry and then each rod may be imagined to be squeezed
or compressed without having its cross-sectional area changed, until the rod

becomes an elemental disc lying in the plane of symmetry and having the same

mass as does the elementary rod. Therefore, the effective forces may be con-

sidered to form a coplanar force system in the plane of motion of the body.
If the body does not have a plane of symmetry, more than three equations are

needed to define its motion completely.
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body is identical with the resultant of the external forces

which act on the body. Or,

The resultant of the effective forces for all the particles

of a body, if reversed and assumed to act on the body with

the external forces, will hold the body in equilibrium.

This is a statement of D'Alembert's principle. It will be noted,

therefore, that D'Alembert's principle makes it possible to reduce

a problem in kinetics to an equivalent problem in statics by intro-

ducing a force (or forces) which may be found completely from the

motion of the body by means of the first three steps outlined above.

TRANSLATION

145. Kinetics of a Translating Rigid Body. If a rigid body is

acted on by an unbalanced force system that causes a motion of

translation, the resulting accelerations of all the particles of the

body are the same, both in magnitude and in direction (Art. 132).

And, whenever a particle of a body is accelerated, a resultant force

must act on the particle. This force, as already noted, is called

the effective force for the particle. The magnitude of the effective

force is the product of the mass, m, of the particle and its accelera-

tion, a, and its direction is the same as that of a (R = ma from

Newton's second law). Therefore, the effective forces for the

particles of a translating rigid body form a parallel system and,
since all of the forces have the same sense, their resultant must be a

single force (never a couple), the direction of which is the same as

that of each of the effective forces. And, as noted above, if the

body is symmetrical with respect to a plane through the mass-

center (plane of motion), the parallel forces may be treated as a

coplanar parallel system (see footnote under Art. 144). Thus,
let the rigid body represented in Fig. 329 (a) be given a rectilinear

translation along a smooth plane by the force P which produces
the acceleration, a, of each particle of the body. Let the body
be made up of sixteen small cubes (representing the particles

of the body) attached (glued) so that they move as a rigid system.
The cubes may be made of different materials and hence their

masses are not necessarily equal. For convenience, each cube will

be thought of as a particle. The effective force for the first par-

ticle is m\a, for the second particle, m<2,a, etc. The sixteen effect-

ive forces form a coplanar parallel system as shown.
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Resultant of Effective Forces. The resultant of these effective

forces may be found in magnitude, action line, and sense by the

method used in Art. 26 for finding the resultant of a sytem of

parallel forces in a plane. Thus, the resultant of the effective

forces is a force having a magnitude equal to the sum of the forces,

its sense being the same as that of the common acceleration.

Hence,

The magnitude of the resultant of the effective forces = 2raa

=Ma

o

r- direction

(a)

' 1

fit
Ma

W
(6)

FIG. 329.

in which M denotes the mass of the whole body, that is, the sum of

the masses of the particles (M=2m) and a is the acceleration,

which is common to all the particles and hence is a constant and

may, therefore, be taken outside the summation sign.

The action line of the resultant of the effective forces is located

by use of the principle of moments (Art. 25). Thus, in Fig. 329(6),

the sum of the moments of the effective (ma) forces about any point,

0, must equal the moment of their resultant (Ma) about the same

point. Hence, if y denotes the moment-arm of the effective force

for any particle with respect to 0, and p denotes the moment arm

of the resultant Ma with respect to 0, the principle of moments is

expressed by the equation,

That is,

Therefore,

2(my)=Mp, since a is constant.

p=^ir-
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This equation shows, however, that the resultant of the effective

forces passes through the mass-center (and not as shown in Fig.

3296) since the expression for p is also the expression for the ?/-coor-

dinate (y) of the mass-center (Art. 85).

Relation between Effective Forces and External Forces. The
relation between the resultant of the effective forces and the

resultant of the external forces which act on the body may now be

found. The resultant of the effective forces is the resultant of

all the forces acting on all the particles and hence includes all of

the internal forces and all of the external forces. Therefore,

if FT denotes the component of a force parallel to the direction of

a, we may write,

(SFr) External^ (Sfr) internal
= S(ma) = Ma.

However, in obtaining the summation of the r-components of all

the effective forces, the sum of the r-components of the internal

forces becomes zero since the internal forces occur in pairs of equal,

opposite, and collinear forces (Newton's third law). Therefore,

the resultant of the external forces is identical with the resultant

of the effective forces (D'Alembert's principle). That is, it has the

same magnitude, action line, and sense as the resultant of the

effective forces. Hence, the magnitude of the resultant of the

external forces (2Fr) is given by the equation

Thus, the resultant of the external forces (P, W, and N) is

represented completely by the force Ma in Fig. 330(a). Or, to

express the same idea in other words, if an additional force were

acting on the body with the external forces P, W, and TV, the mag-
nitude and the action line of the additional force being the same as

the magnitude and the action line of the resultant (Ma) of the

effective forces, but reversed in sense (opposite to a), as shown in

Fig. 330(6), then the forces acting on the body would be in

equilibrium. This additional (imaginary) force is sometimes

called the reversed effective force for the body or the inertia force

for the body. It will be noted that the normal pressure N cannot

be collinear with W when the force P has the action line as given
in Fig. 330(6).
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The fact that the action line of the resultant of the external

forces passes through the mass-center of the body may be expressed

by stating that the sum of the moments of the external forces with

respect to an axis through the mass-center is zero (S7
T=

0).

\
Ma

I

Ma

FIG. 330.

Therefore, the equations which express the relations between

the external forces, the kinetic property of the body (mass), and

the change of motion (acceleration) for a translating rigid body are

(1)

For convenience, the first of these two equations may be replaced

by two equations which involve the components of the external

forces and of the acceleration of the body, in the directions of two

rectangular axes. Thus if x and y denote the rectangular axes,

the equations of motion then become,

(2)

If the x-axis is chosen in the direction of the acceleration, then

ax is the total acceleration. The second equation then becomes

2Fy
= since ay is zero, that is, the body is in equilibrium as far as

motion in a direction perpendicular to the direction of the accelera-

tion is concerned, and equations (2) reduce to equations (1).

However, the equation SF
tf

= may give an important relation



KINETICS OF A TRANSLATING RIGID BODY 309

between the forces in the solution of a particular problem. Further,

it is sometimes convenient to select x- and i/-axes neither of which

agree in direction with the acceleration. Equations (2) therefore,

will, as a rule, be used and referred to as the equations of motion

of a translating rigid body.

NOTE. In analyzing and solving problems in kinetics of bodies, the same

general procedure should be followed as was outlined in the note at the end

of Art. 143.

ILLUSTRATIVE PROBLEMS

351. The dimensions of block A (Fig. 331) are 3 ft. by 3 ft. by 5 ft. and the

weight of the block is 1200 Ib. The block rests on a carriage, B, which is given
an acceleration a in the direction shown.

If the friction between the block and car-

riage is sufficient to prevent slipping,
what is the maximum acceleration that

the carriage can have without causing the

block to tip over?

Solution. The block has a motion of

translation under the action of two forces,

namely, the weight, W, and the reaction,

R, of the carriage. For convenience

the latter force, which acts at when
the block is on the point of tipping, will

be resolved into the normal pressure, N,
and the frictional force, F, as indicated in

the figure. The equations of motion for

the block are,
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By solving (5) and (6) for F and substituting its value in (4), the values of F
and a become,

F = 7201b.,

a = 19.32ft./sec.
2

Second Method. Inertia Force Method. If the inertia force (reversed
effective force) for the body is assumed to act on the body with the external

forces, the body may be assumed to be in equilibrium (D'Alembert's principle)

and hence the equations of equilibrium may be applied to the force system thus

formed.

The inertia force for the translating block A is,

1200Ma=
32.2

Its direction is opposite to that of a and its action line passes through the mass-

center of the block. Therefore, the forces acting on the block as shown in

1200

32.2

W |=1200 Ib. (B)

120 ib.

FIG. 332. FIG. 333.

Fig. 332 will hold the block in equilibrium. The equations of equilibrium

for the force system (Art. 50) are,

1200

y
=N- 1200 = 0,

^ = 0.

The solution of the equations leads to the same results as were found by
the first method of solution.

It should be noted that in obtaining the moments of the forces in the above

equilibrium equation (SM =
0), the moment-center O may be taken as any

point in the plane of the forces, whereas the moments of the forces in the third

equation of motion (2^ = 0) used in the first method of solution must be taken

about the mass-center of the body.

352. Three bodies A, B, and C are connected by two cords as shown in

Fig. 333 so that all three bodies move with the same acceleration. The pulley,
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D, is assumed to be weightless and frictionless. Body A weighs 36 lb., B
weighs 60 lb., and C weighs 120 lb. The coefficient of kinetic friction for A
and the plane is i, and for B and the plane it is i. Find (1) the acceleration

of the bodies, (2) the tension, T\, in the cord between A and B, and (3) the

tension, T2 ,
in the cord between B and C.

Solution. Each body has a motion of translation. Hence, the equations
of motion for a translating body apply to each body; namely,

(D

(2)

(3)

In addition, two equations involving the coefficients of friction for bodies

A and B are needed, namely,

FA=INA, (4)

(5)

Equation (3) is not needed in determining the quantities asked for. If the

action lines of NA and NB were desired, however, all five equations would be

needed.

A free-body diagram for body A is shown in Fig. 334(a). Applying the

equations of motion to A we have,

(c)

(6) 120 lb.

FIG. 334.

From (1),

From (2),

From (4),

^-36sin30-FA = a*.

ATA -36cos30=0.

(6)

(7)

(8)

By solving for FA from (7) and (8) and substituting its value in (6), the

following equation is obtained,

ri-36sin30-iX36cos30 =
(I)
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In like manner, by applying the equations of motion to body B, the

following equations are obtained (see Fig. 334(6) for free-body diagram):

Tt-Ti-FB-W sin 30= a*,

From the last three equations we obtain,

7
7

2 -7\-iX60 cos 30 -60 sin 30
(

60

32.2
ax ' (ID

For the body C the equation of motion is (see Fig. 334c),

32.2 (HI)

Equations I, II, and III contain three unknowns, 7\, T2 ,
and ax or a (the

x-axis is chosen in each case in the direction of the total acceleration, a). By
solving the three equations for the three unknowns the following results are

obtained;
a = ax = 8.02ft./sec.

2
,

7*1
= 34.76 lb.,

7
1

2
= 90.1 lb.

353. An elevator starts from rest and moves upwards, acquiring a velocity

of 800 ft. per minute in a distance of 18 ft. If the acceleration is constant

what is the pressure of a man on the floor of the elevator if the man weighs
161 lb.?

Solution. The man forms the body (assumed rigid), the motion of which is

considered. Since the body has a motion of translation, the three equations

of motion for a translating rigid body apply, but

since the forces acting on the body pass through
the mass-center and since one of the axes is chosen

in the direction of the acceleration, only one of the

equations is needed; namely,

|Y

t

161 lb.

In addition to the equation of motion one

kinematics equation is needed; namely,

(2)

P

FIG. 335.

Fig. 335 shows the free-body diagram, the two

forces being collinear.

From (1),

P-161--6 a = 161
a

From (2),
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By solving the last two equations the following results are found,

a = 4.93ft./sec.
2

,

P = 185.7 Ib.

In the above problems the bodies have rectilinear translation only. The

parallel or side rod of a locomotive when running on a straight track has a

motion of curvilinear translation with reference to the engine frame. Its

motion is considered in the following problem.

354. The parallel rod of a locomotive (Fig. 336a) weighs 400 Ib. The

crank length, rt ,
is 15 in. and the radius, r2 ,

of the drivers is 3 ft. If the

speed of the engine is 50 miles per hour, what is the reaction of the pin at

each end of the rod when the rod is in its lowest position?

a)

= 9270 Ib.

C<
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forces, as shown in Fig. 336(6), the forces will be in equilibrium (D'Alembert's.

principle) .

It will be observed that the forces form a parallel force system. The equa-
tions of equilibrium for a parallel force system (Art. 49) are,

(1)

(2)

Using (1),

Using (2),

Whence,

^1+^2-9270-400 = 0.

JR1 XJ-(9270+400)X-=0.

PROBLEMS

365. A man who is just strong enough to lift a 150-lb. weight when standing

on the ground can lift a 200-lb. weight from the floor of an elevator when the

elevator is going down with a certain acceleration. What is the acceleration?

What weight can the man lift from the floor of the elevator when going up
with the same acceleration? Ans. a = 8.05 ft. /sec.

2
;
W = l20\b.

366. A 3-ton cage descending a shaft with a speed of 9 yd. per sec. is

brought to rest with a uniform acceleration in a distance of 18 ft. What is the

tension in the cable while the cage is coming to rest?

357. The dimensions of body A (Fig. 337) are 3 ft. by 2 ft. by 4 ft. and

its weight is 1000 Ib. Assuming that the body will not slip on the carriage,

what is the maximum weight that B may have without causing A to tip over

when the acceleration of the carriage is 8 ft. per sec. 2 ? The pulley D is assumed

to be frictionless and weightless. Ans. 201 Ib.

-D

-2^^

FIG. 337. FIG. 338.

358. A man weighing 150 Ib. leaves his room by way of a window which

is 50 ft. above the ground. He has a rope that is long enough to reach to

the ground but it can support a force only of 125 Ib. What is the least velocity

with which he can reach the ground?
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369. Two strings pass over a smooth drum. On one side of the drum the

strings are attached to a 50-lb. weight; on the other side one string is attached

to a 40-lb. weight and the other string to a 30-lb. weight. Find the accelera-

tion of the weights and the tension in each of the strings during motion.

Ans. ^30 = 25 lb.; 7
1

40
= 33.3 lb.; a = 5.37 ft./sec.

2

360. Steam is shut off when a train running at a speed of 30 miles per hour

reaches a 0.4 per cent down-grade. What will be the velocity of the train after

100 sec. if the train resistance is 10 lb. per ton?

361. A small car (Fig. 338) with its load weighs 800 lb. and the center of

gravity, G, of the total weight is 5 ft. from the track. A force P of 120 lb. is

applied to the car as shown.

Neglecting the friction on the

track, find the acceleration of

the car and the reactions of the

track on each pair of wheels.

What would be the reactions on

the wheels if the force P acted

through the point (7?

362. A door is hung on a

track as shown in Fig. 339. The
coefficient of friction for each of

the shoes (A and B) and the

track is i The door weighs
FlG - 339 -

300 lb. What force P is required
to give the door an acceleration of 4 ft. per sec. 2? Find the reactions of the shoes

on the track. How far will the door travel in 2 sec.? Ans. P = 112 lb.

ROTATION

146. Kinetics of a Rotating Rigid Body. If a rigid body is

acted on by an unbalanced force system that produces a motion of

rotation of the body, the resulting linear accelerations of the

various particles of the body are not the same, but vary directly

as the distances of the particles from the axis of rotation (Art. 133).

The angular velocities and accelerations of all the particles, how-

ever, are the same, at any instant, and the linear acceleration of

any (and every) particle in the body may be expressed in terms

of the common angular velocity, ,
and the angular acceleration, a.

Thus, in Fig. 340 is represented a physical body acted on by the

external forces P, W, and the reaction (not shown) of the axis at

0, which cause the body to rotate with an angular acceleration, a,

about an axis through 0. Each particle of the body moves on a cir-

cular path and the linear acceleration of any particle in the body
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has two components; a tangential component, at ,
and a normal

component, an , (Art. 118) such that,

a,
=

ra, directed tangent to the path of the particle, and

v2

an = rco
2 =

,
directed normal to the path of the particle, towards

the center of rotation.

in which co and a are the angular velocity and angular acceleration,

respectively, of the particle (and also of the body) at the instant,

v is the linear velocity of the particle at the instant, and r is

the distance of the particle from the axis of rotation. The accel-

eration components for several particles are shown in Fig. 340.

From the components of the acceleration of any particle of the

body, expressed above, the components of the resultant force

(effective force) required to produce these acceleration components

may now be found. Thus, if m denotes the mass of the particle,

then from Newton's second law,

mat =mra is the tangential component of the effective force, and

man= mru>2 is the normal component of the effective force, as

shown in Fig. 341.

Resultant of the Effective Forces. The resultant of the effective

forces for the whole body may now be found. As already noted
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(see footnote under Art. 144), the effective forces form a coplanar

system in the plane of motion and, as indicated in Fig. 341, the force

system is non-concurrent. According to Art. 28, the resultant of

such a coplanar system is either a force or a couple. In either case

the resultant may be determined completely from the summa-

tion of the components of the forces along each of two rect-

angular axes and the summation of the moments of the forces

about some point in the plane of the forces. Thus, let the two

axes be the T- and TV-axes as shown in Fig. 341, where the TV-axis

is drawn through the center of rotation, 0, and the mass-center of

the body. Let each of the two components, mra and rarco
2

,
of the

effective force for any particle be resolved parallel to the N- and T-

axes respectively. Let 6 be the angle (measured clockwise from

the TV-axis) between the radius, r, to the particle and the TV-axis.

Then, from Fig. 341, the component of the effective force parallel

to the TV-axis is,

wrco2 cos 9 mra sin 6,

and the component of the effective force parallel to the T-axis is,

mra cos 6 mrai2 sin 6.

Hence,
The algebraic sum of the components of the effective forces

parallel to the TV-axis= S ( mrco2 cos 6 mra sin 6)

= co
2Smr cos da'Lmr sin 6

= -Mrco2 -0.

In the above equation Srar cos 6 represents the moment of the

body with respect to the T-axis and hence may be replaced by Mr,
and Srar sin 6 represents the moment of the body with respect to

the TV-axis and hence is zero since the TV-axis passes through the

mass-center of the body. Further, the negative sign indicates

that Mrco2 is directed from the mass-center towards the center of

rotation. In like manner,
The algebraic sum of the components of the effective forces

parallel to the T-axis = 2(mra cos 6 mru2 sin 6)

=a1lmr cos 6 co
22mr sin 6
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The moment of the effective force for any particle about the

center of rotation, 0, is mra r since the normal component, rarco
2

,

of the effective force for each particle passes through the axis of

rotation and has, therefore, no moment about the center 0. Hence,

taking moments about 0:

The algebraic sum of the moments of the effective forces with

respect to the axis of rotation =S(rara-r)

where Io denotes the moment of inertia of the body with respect

to the axis of rotation.

Since the sum of the components, in any direction, of the forces

of a system is equal to the component of their resultant in the same

direction, and since the sum of the moments of the forces about

any point is equal to the moment of their resultant about the

same point, the above results may be summarized as follows:

The component of the resultant of the

effective forces parallel to the JV-axis = Mrco2 .

The component of the resultant of the

effective forces parallel to the T-axis= Mra.

The moment of the resultant of the

effective forces about the center of rotation = /o.

If the resultant of the effective forces is a force, all of the

above expressions are required to determine it completely. If,

however, the resultant is a couple, the first two expressions reduce

to zero, in which case loa expresses the moment of the resultant

couple, as will be discussed in greater detail later in this article.

Relation between Effective Forces and External Forces. The

relation between the resultant of the effective forces for the whole

body and the resultant of the external forces which act on the body

may now be found. Since the effective force for a particle is the

resultant of all the forces (both internal and external) which act

on the particle, the effective forces for all the particles will include

all of the internal forces (exerted by the particles among them-

selves) and all of the external forces. Hence, the summation of

the Af-components of the effective forces is the same as the summa-
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tion of the N-components of the internal forces plus the summation

of the AT-components of the external forces, and a similar statement

applies to the ^-components. Therefore, if F denotes a force

and T the moment of a force, the relation between the above

expressions and the forces acting on the particles is expressed by
the following equations:

External+ (2Fn) Internal

(2Ft ) External Internal
=

(2 To) External+(2 TO) Internal
= /0.

But the algebraic sum of the components, in any direction, of

the internal forces and the algebraic sum of the moments, about

the axis of rotation, of the internal forces are zero, since the

internal forces occur in pairs of equal, collinear, and opposite

forces (Newton's third law). Therefore, the resultant of the

effective forces for the whole body and the resultant of the exter-

nal forces, only, are identical (D'Alernbert's principle).

Therefore, in the above equations, the expressions which involve

the internal forces drop out since as just stated,

Internal
=

0, (^Ft) Internal
=

0, (27o) Internal
= 0.

Hence, if F is now used to denote an external force only, and T is

used to denote the moment of an external force, the equations
which express the relations between (1) the external forces, (2)

the kinetic properties of the body, and (3) the change of motion

(the equations of motion for a rotating rigid body) are,

It will be noted that rco
2 and ra are the normal and tangential

accelerations, respectively, of the mass-center of the body, and
hence the first two of the above equations may be written ZFn=Man

and 2^,= Ma*.

Further, if the body rotates about an axis through the mass-

center, that is, if the points and G coincide, then the right-
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hand members of the first two equations are equal to zero since r

is equal to zero, and therefore the algebraic sums of the components
of the external forces in the two directions are equal to zero.

Hence, if a rigid body rotates about an axis through its mass-

center, the equation of motion for the body is,

in which S77
is the algebraic sum of the moments of the external

forces acting on the body with respect to an axis passing through
the mass-center (axis of rotation) and 7 is the moment of inertia

of the body with respect to the same axis.

ILLUSTRATIVE PROBLEMS

363. The rod BCE (Fig. 342a) is made to oscillate by means of the crank

A D and link DC. The members are connected by smooth pins at B, C, and D.

The rod BCE has a constant cross-section and weighs 16.1 Ib. In the position

shown its angular velocity, co, is 60 r.p.m. and its angular acceleration, a,

is 40 rad./sec.
2
(see Art. 134 for method of finding to and a). Find the pressure,

P, of link DC at C and the reaction, R, of the pin at B.

FIG. 342.

. Solution. The rod rotates about the center B. The equations of motion

for the rod are,

2/^=M?o> 2
(1)

(2)

(3)
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Referring to the free-body diagram for the rod (Fig. 342&) we obtain:

From (1),

From (2),

From (3),

32.2 12 \ 60 /

P-ft+16.1 si

(16.1 cos 60+P) | = 7, |X^X ^40. . .

Solving (4) we obtain,

Solving (6) we obtain,

(4)

. (5)

(6)

Rn = 18.9 Ib.

P = 36.41b.

Substituting the value of P in (5) and solving for ft we obtain,

ft = 11.1 Ib.

Therefore,

364. In Fig. 343, CD represents a brake for regulating the descent

suspended body, A. B is the drum from which the cable attached to

winds as A descends. The radius, n,
of the drum is 6 ft. The radius, r^ of

the brake wheel is 7 ft. The radius of

gyration, k
,
of the rotating parts (drum

and brake wheel) about the axis of ro-

tation is 4 ft. The rotating parts

weigh 2000 Ib. and the body A weighs
1000 Ib. The coefficient of brake fric-

tion is J. If friction on the axle of

the rotating parts is neglected, find the

acceleration, a, of the body A, the

tension, P, in the cable, and the hori-

zontal and vertical components, ft and

ft, of the axle reaction, assuming the

force at C to be 100 Ib. (Consider the

cable to be flexible and neglect its

weight.)

of the

A un-

FIG. 343.

Solution. Three bodies are to be considered, (1) the brake CD which is in

equilibrium, (2) the drum and the brake wheel which have a motion of rotation,

and (3) body A which has a motion of translation. The free-body diagram
for each body is shown in Fig. 344. The brake is held in equilibrium by a

non-concurrent force system in a plane for which the equations of equilibrium
are:

SP* = 0, . . (1)

(2)

(3)
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Equation (3) only is needed in this problem since all of the forces acting on
the brake are not required.

The equations of motion for the drum and brake wheel are:

(4)

(5)

(6)

In addition to these equations the denning equation of the coefficient of

friction must be used, namely,

F=nN (7)

N N

Qi

(b)

FIG. 344.

1000 lb.

a.y
= a = at

Applying the equations we have:

From (3),

One equation of motion only is needed for body A, namely,

Further, since the total acceleration of body A is in the

?/-direction and since it has the same magnitude as the

tangential acceleration, at, of a point on the circumference

of the drum, we may write,

(9)

Whence,

From (7),

100X4.5-0.5AT = 0.

AT = 900 lb.

7^ = 1X900 = 225 lb.
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From (4),

Whence,

From (6),

From (8),

#i-900 = 0, since r=0.

#i = 9001b.

^2000,
~32.2

32.2

(10)

(ID

Substituting
- from (9) for a in (10) and replacing ay in (11) by;a from (9), we

have,

6P _225x7=|oo xl6x f,

and,

And, from (5),

1000-P = 1000

32.2""

R2-P -225 -2000=0, since r=0.

These last three equations contain the three required quantities. The solution

of the equations gives,

a = 12.54ft./sec.,

P = 6091b.,

#2
= 28341b.

365. Two spherical balls are connected by a light, slender, rigid rod and

made to rotate in a horizontal plane about a vertical axis midway between the

balls as shown in Fig. 345. Each sphere

is 12 in. in diameter and weighs 64.4 Ib.

What turning moment must a couple

have which gives the spheres an angu-

lar velocity of 30 r.p.m. in 4 sec.,

starting from rest? If one of the two

forces of the couple is applied 9 in. from

the axis of rotation and the other force

is the reaction of the axis, what is the

magnitude of each force?

Solution. Since the two spheres

have a motion of rotation the equations of motion are,

=
0, since r=0,

FIG. 345.

(1)

(2)

(3)
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Letting the moment of the couple be denoted by C and the mass of each

sphere by M we have, from (3),

But, from definition,

Therefore,

And since,

then

Whence,

x 64 ' 4

5
X
32T2

= 6.65<*.

W-COO 30X27T

i 60X4

C = 6.65X0.785 = 5.23 Ib.-ft.

64 ' 4

= 0.785 rad./sec.
2

6.971b.

PROBLEMS

366. A solid sphere 15 in. in diameter revolves with an angular velocity of

500 r.p.m. about a fixed axis which passes through its center. What force

acting tangent to its surface will stop the sphere in 5 sec. if friction on the

axis is neglected? The weight of the sphere is 500 Ib. Ans. 40.6 Ib.

t

367. A weight of 30 Ib. is suspended from a solid homogeneous cylinder by a

weightless cord which is wrapped around the cylinder. The cylinder weighs
193.2 Ib. and its radius is 18 in. Bearing friction is 18 Ib. and the diameter of

the shaft on which the cylinder rotates is 4 in. If the suspended weight has an

initial velocity of 10 ft. per sec. downwards, what will be its velocity after it

has moved 10 ft.? What time is required to move the 10 ft.?

368. A body C weighing 10 Ib.

rests upon a frame D (Fig. 346) which

rotates about a vertical axis AB,
When the frame is not rotating, the

tension in the spring, S, is 20 Ib. If

the angular velocity of the frame is

30 r.p.m. and the friction under C is

neglected, what is the pressure against

the stop at El Ans. 10.8 Ib.

369. If the rocker arm BCE in

Prob. 363 carries on its outer end E a

spherical ball which weighs 4 Ib., find the values of P, Rt, and Rn , assuming
that the ball is small enough to be considered as a particle.

370. A block A (Fig. 347) weighs 257.6 Ib. and rests on a plane inclined

30 with the horizontal. A flexible rope attached to the block passes over the

FIG. 346.
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FIG. 347.

disc, C, at the top of the plane and is attached to a suspended body, B, which

weighs 644 Ib. C weighs 322 Ib. and is 20 in. in diameter. The axle is 4 in.

in diameter and the axle

friction is 10 Ib. The co-

efficient of friction for body
A is 0.1. Find (a) the

acceleration of B, (6) the

angular acceleration of the

disc, (c) the pull of the

rope on body B. Neglect

the material cut from the

disc for the shaft.

371. A constant turning

moment of 240,000 in.-lb.

turns a flywheel, the weight
of which is 3220 Ib. The

diameter of the flywheel is 8 ft. Its angular velocity is changed from 40 rad.

per sec. to 80 rad. per sec. in 20 revolutions. What is the radius of gyration

of the flywheel with respect to the axis of rotation? Neglect axle friction.

372. The drum B (Fig. 348) is

rotating with an angular velocity

o> = 120 r.p.m. when the brake C is

applied. The drum is a solid cyUn-

der and has a radius of 10 in. Its

weight is 2000 Ib. If the coefficient

of brake friction is 0.2, what force,

P, is required to reduce the an-

gular velocity of the drum to 30

r.p.m. in 3 sec.? Neglect axle

friction. Ans. P = 203 Ib.

FIG. 348.

373. Two bodies, A and B (Fig. 349) rest on a frame, E, which rotates

about an axis CD. A weighs 8 Ib. and B weighs 24 Ib. The tension in

FIG. 349.
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the spring, $, when the frame is not rotating is 30 Ib. If the friction under

bodies A and B and the mass of the spring are neglected, what are the pressures

against the stops F and G when the frame revolves with an angular velocity

of 30 r.p.m.?

374. In Prob. 365, what is the tension in the rod?

147. Second Method of Analysis. Inertia Forces. In some

problems dealing with the rotation of a rigid body under the

action of an unbalanced force system, it is convenient to assume

that the resultant of the effective forces is reversed and acts on the

body with the external forces, thereby forming a force system
that is in equilibrium (D'Alembert's principle), and thus reducing

the kinetics problem of a rotating body to an equivalent statics

problem. In the preceding articles it was shown that the resultant

of the effective forces for a rotating body is either a force or a

couple in the plane of motion of the body. The reversed resultant

force (or resultant couple) is called the inertia force (or inertia

couple) for the body. In using this method of analysis it is

important, therefore, to determine under what conditions of the

motion the resultant is a force and under what conditions it is a

couple. Further, if the external forces are to be put in equilibrium

by the addition of the anti-resultant of the effective forces, that is,

by the inertia force for the body, the action line of the resultant

force must be determined. The facts stated in the following

proposition are of great importance in connection with the method
of solution as outlined above.

Proposition. If a rigid body rotates about a fixed axis through
its mass-center, the resultant of the effective forces (and of the

external forces also) is a couple the moment of which is equal to

/a, the product of the moment of inertia of the body about

the axis of rotation and the angular acceleration of the body. If

the body rotates about an axis which does not pass through the

mass center, the resultant of the effective forces is a single force

having: a magnitude equal to the product of the mass of the

body and the acceleration of the mass-center of the body (Ma);
a direction the same as that of the mass-center; and an action

line which does not pass through the mass-center of the body. For

convenience, however, this single force may be considered to be

equivalent to another force, having an action line which does pass

through the mass-center, and a couple; the magnitude of the force
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is equal to Ma and its direction is the same as that of a; and the

moment of the couple is equal to la.

The facts stated in the above proposition, together with certain

additional facts, are discussed and applied in the following pages,

in connection with the use of inertia forces. It was found in the

preceding article that the expressions Mra. and Mr&2
represented

the T- and TV-components, respectively, and that IQO. represented

the moment, of the resultant of the effective force system for the

rotating body. From these expressions, the resultant of the

effective forces for various conditions of motion may be determined

completely. Thus, it will be noted that if f is zero in these expres-

sions, that is, if the distance from the axis of rotation to the mass-

center of the body is zero, then each of the components, Mra and

Mru>2
,
of the resultant of the effective forces is zero. Hence, the

resultant is not a force. And, since the effective forces have a

moment, the value of which is loa, the resultant is a couple of

moment loot or la since /o i's denoted by / when the axis of rotation

passes through the mass-center of the body. The sense of the

resultant couple is, of course, the same as that of a, the angular
acceleration of the body. Further, since the resultant of the

external forces that act on the body is identical with that of the

effective forces for the body, the body may be considered to be in

equilibrium if an additional couple having a magnitude equal to

la and a sense opposite to that of a is assumed to act on the body
with the external forces. This couple is often called the reversed

effective couple or the inertia couple for the body.
If the body rotates about an axis which does not pass through

its mass-center, as indicated in Fig. 350, then f in the above

expressions is not zero. The resultant of the effective forces for

the rotating body, then, is a single force since Mra and Mrco2

express the components of the resultant force, the moment of the

resultant force (or of its two components) being expressed by loa.

The action line of each of the two components may now be located.

The action line of the normal component, Tlfrco
2

,
of the resultant

force lies along the line connecting the center of rotation and the

mass-center of the body, that is, along the TV-axis as shown in

Fig. 350. This fact may be proved as follows: Mru2 was obtained

by resolving the components mat and man ,
of the effective force

for each particle, parallel to the TV-axis and determining the

algebraic sum of these TV-components (Art. 146). And, it was shown
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that the man components, only, have an influence in determin-

ing the magnitude Mru>2 since the sum of the mat components
was found to be equal to zero. Now the man component of the

effective force for each particle passes through the center of

rotation. Therefore, the sum, Mrco2 ,
of their components parallel

to the N-axis must lie along the N-axis.

The action line of the tangential component, Mra, of the result-

ant of the effective forces may be found from the principle of

moments; namely, the moment of the resultant of the effective

forces about the axis of rotation equals the sum of the moments of

the effective forces about the same axis. The sum of the moments

w

FIG. 350. FIG. 351.

of the effective forces, as already shown, is IQOL. Further, the

moment of the resultant of the effective forces is the moment of its

tangential component, Mra, only, since the normal component,

Mrw2
, passes through the center of rotation. Hence, the principle

of moments is expressed by the equation,

Mra q
= loa,

in which q is the moment arm of Mra with respect to the center of

rotation 0, as shown in Fig. 350. And, since /o =M/c
2

,
in which k

is the radius of gyration of the body with respect to the axis of

rotation, we may write,

Mra q= Mko2a

whence, 9 =T
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Therefore, the action lines of the two components, Mra and

Mru2 ,
of the resultant of the effective forces intersect in a point on

ko
2

the TV-axis at a distance -- from the center of rotation, as shown

in Fig. 350. And, since the resultant of the external forces is

identical with the resultant of the effective forces, the body may
be considered to be in equilibrium if the two forces Mra and Mru>2

,

having the proper action lines as determined above and shown in

Fig. 350, but reversed in sense, are assumed to act on the body
with the external forces. The component Mru>2 of the inertia

force is sometimes called the centrifugal force.

However, instead of determining the resultant of the effective

forces as a single force (or as components of a single force) as was

done above, it is usually more convenient to find the resultant of

the effective forces as an equivalent force and couple; the force

having components equal to Mra and Mru>2 parallel, respectively,

to the T- and TV-axes, as before, but with action lines passing

through the mass-center of the body. The fact that the compo-
nents of this new force are the same in magnitude and sense as those

of the single resultant force, follows from Art. 18, in which the

resolution of a force into a force and a couple is discussed. The
fact that the moment of the couple, C, is equal to la may be proved
as follows: The moment of the effective forces about the axis of

rotation is loa as already proved. And, if the resultant of the

effective forces is a force having components Mra and Mrco2

acting through the mass-center, and a couple the moment of

which is represented by C, as stated above, then, the principle of

moments is expressed by the equation,

But,
IQ =J+Mr* (Art. 102).

Hence,
C = Ia.

Therefore, a rigid body (Fig. 351) rotating about a fixed axis

under the action of an unbalanced force system (P, W, and the

reaction of the axis at 0) may be considered to be in equilibrium
if an additional force and couple are assumed to act on the body
with the external forces. The additional inertia force must act

through the mass-center of the body; it must have components



330 FORCE, MASS, AND ACCELERATION

equal to Mra and Mrco2
,

the directions of which are parallel

respectively to the T- and A^-axes; and the senses of the com-

ponents must be opposite to those of the corresponding components
of acceleration of the mass-center, as shown in Fig. 351. The
additional inertia couple must have a moment equal to la and

must have a sense of rotation opposite to that of the angular accel-

eration, a, of the body, as shown in Fig. 351. The forces of the

couple, of course, may be assumed to act anywhere in the plane of

motion of the body, provided that the moment of the couple

remains constant (Art. 27).

ILLUSTRATIVE PROBLEMS

376. A horizontal bar B (Fig. 352, a) rotates with a constant angular

velocity of 45 r.p.m. about a vertical axis YY. A slender rod C, of constant

cross-section, having a length of

12 in. and a weight of 16 Ib. is

attached to the rotating bar by
means of a smooth pin at E, and
is held in a vertical position by a

weightless cord D. Find the

tension in D and the magnitude
of the reaction of the pin at E on

the rod C.

Solution. A free-body dia-

gram of the rod C is shown in

Fig. 352, 6. The rod has a mo-
tion of rotation about the vertical

axis YY under the influence of

three forces W, D, and the pin

pressure at E (the components
of the pin pressure being denoted

by Ex and Ev).

10 T TE
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ZFX =22Ex D cos 45 =

331

cos 45=0

The solution of these equations gives the following results:

D =20.71b.

Ex = 7.331b., Ev
= 1.33\b., # = 7.451b.

376. A bar B, 2 in. by 6 in. by 4 ft., is attached to a cylindrical disc, A,

by means of two steel straps, D and E, as shown in Fig. 353 (a). The cylin-

drical disc is keyed to a shaft which causes the disc and the bar to rotate in a

vertical plane. When the bar is in a horizontal position as shown, the angular

velocity, co, of the shaft is 30 r.p.m. and it is decreasing, at the instant, at the

rate of 120 r.p.m. per sec. The weight of the bar is 96 Ib. The diameter of

the disc is 18 in. and that of the shaft is 4 in. The straps, D and E, are attached

to the bar by means of smooth pins. Find (a) the torque transmitted from

the shaft to the bar B, (6) the

sum of the pin pressures in the

horizontal direction, and (c) the

sum of the pin pressures hi

the vertical direction.
to

.
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Thus, the force system acting on the bar is a non-concurrent system in a

plane, the equations of equilibrium for which are,

2^ =
0, H- 80.8 = 0,

2FV
=

Q, 103-7-96 = 0,

ZMG = 0, -C+50.0+2F = 0.

Solving these equations we obtain,

tf = 80.81b.,

7 = 7.01b.,

C = 641b.-ft.

The magnitude of each of the forces that form the couple, C, depends on

the distance between the pins. If this distance is 3 in., then each force is 256 Ib.

PROBLEMS

377. Solve Prob. 376 by introducing a single force as the reversed resultant

of the effective forces instead of introducing a reversed force and couple.

378. A small body is placed on a rough horizontal disc which rotates about

a vertical axis. If the distance of the body from the axis is 9 in. and the

coefficient of friction between the body and disc is f, find (1) the greatest

ang ilar velocity and (2) the greatest angular acceleration the disc can have

without causing the body to slide. Ans. u>=51 r.p.m ; a =28.5 rad./sec.
2

379. A flywheel used on a punching machine is 8 ft. in diameter and has a

rim which weighs 1 ton. Each operation of punching a hole causes the speed

of the flywheel to decrease uniformly

from 100 r.p.m. to 80 r.p.m. The fly-

wheel has 6 spokes, each 3.5 ft. long. If

the time of punching a hole is 0.5 sec.,

what moment is transmitted from the

rim to the hub by each spoke. Assume
that the thickness of the rim is small in

comparison with the radius of the fly-

wheel and neglect the weight of the hub

and spokes. Ans. 607 Ib.-ft.

380. A uniform bar AB and a mem-
ber C, to which AB is pinned at A (Fig.

354), rotate, at a speed of 40 r.p.m.

about a vertical axis. The weight
of the bar is 40 Ib. and its length is 4 ft.

If the bar is connected to the axis by a

FIG. 354. spring S (assumed horizontal), as shown
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in the figure, find the pull of the spring and the horizontal and vertical

components of the pin pressure at A.

381. In Fig. 355, A represents a

frame which revolves about a vertical

axis YY at a constant angular velocity

co =40 r.p.m. A bar, B, is attached to

the frame at E by means of a smooth

pin. At the end of B a spherical ball, C,

is fastened. B weighs 20 Ib. and is 16

in. long. C weighs 8 Ib. and is 4 in. in

diameter. Find the reaction of the pin at

E and of the frame at F, on the bar.

148. Center of Percussion.

The point P (Fig. 356) on the |Y

./V-axis, through which the result- JTIG 355

ant of the effective forces for a

rotating rigid body acts, is called the center of percussion of the

body with respect to the given axis of rotation. Hence, the center

i:
Mr a

of percussion is a point on a line joining the center of rotation and
the mass-center, at a distance q from the center of rotation,

such that,

in which ko is the radius of gyration of the body about the axis
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of rotation and r is the distance from the axis of rotation to the

mass-center of the body.
The physical significance of the center of percussion is suggested

in the following illustration. Let a bar (Fig. 356) of weight W
be free to rotate about a horizontal axis when a horizontal

force, F, is suddenly applied to it. If the force, F, is applied
above the center of percussion, as shown in Fig. 356 (a), the hori-

zontal reaction, #2, of the axis of rotation acts towards the left

and becomes larger as the force F is applied closer to the axis of

rotation. If the bar is struck below the center of percussion, the

reaction RZ acts towards the right, as shown in Fig. 356(6).

And if the bar is struck so that the center of percussion is on the

action line of the force, as in Fig. 356(c), the horizontal reaction at

is zero, since the action line at F is collinear with the action line

of the tangential component, Mfa, of the resultant of the effective

forces. It will be noted that the resultant of F and /fo, in each

case, is collinear with Mra ,
since the component of the resultant of

the external forces in any direction is identical with the component
of the resultant of the effective forces in the same direction, that is,

if Mra were reversed and applied to the body as an external force,

it would hold F and R% in equilibrium.

An excellent illustration of the effect of varying the position of

the force F as above discussed is found in batting a baseball. If

the ball strikes the bat at the center of percussion (about three-

fourths the length of the bat from the end, assuming the axis of

rotation at the hands) no reaction perpendicular to the bat is

experienced by the batter. If, however, the ball strikes the bat

near the end or near the hands, the batter experiences a painful

stinging of the hands as a result of the reaction perpendicular

to the bat.

ILLUSTRATIVE PROBLEM

382. A slender rod AB is caused to rotate about its lower end A by the

crank CD, the length of which is 1 ft., and the link DE (Fig. 357a). The

angular velocity, o>, of the crank is very small at the given instant but its

rate of change, a, is 20 rad. per sec. 2 The weight of the rod AB is 64.4 Ib.

and its length, I, is 5 ft. A small body F which weighs 16.1 Ib. is attached

to the rod at a distance of 2 ft. from A. Body F may be considered to be a

particle. What is the distance, d, from A at which the link DE must be

attached if no horizontal reaction occurs at A?

Solution. The resultant of the effective forces for the rod is Mra\ (where

a\ is the angular acceleration of the rod) since on is very small and hence
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Afrcoi
2 is negligible. The tangential acceleration of E, as a point on AB, is

d-ai and the tangential acceleration of D, as a point CD, is CD -a. Since the

accelerations of D and E along .EJD are equal, we have (Art. 121),

Hence,

i =a, since CD = 1 ft.

a 20

(a)

FIG. 357.

Therefore, the resultant of the effective forces for the rod is,

The distance of the action line of Mfai from A is,

The effective force for particle F is,

and its action line passes through the particle F. If these two forces, 7- Ib.
a

20
and Ib., are reversed and assumed to act on the rod with the forces P, Rv ,

Wi, and Wz, as shown in Fig. 357(6), the rod may be assumed to be in equilib-
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rium. The value of d may be determined by using only two of the equilib-

rium equations. Thus,

Solving the equations, we have,

P = 38.61b.,

d = 3.11 ft.

PROBLEMS

383. A uniform slender rod, 6 ft. long and weighing 20 lb., is suspended
from a horizontal axis at one end and is acted on by a horizontal force of 20

lb. at its mid-point. Determine (a) the resulting angular acceleration, (6) the

resulting linear acceleration of the mass-center, (c) the horizontal reaction of

the axis on the rod, and (d) the distance from the axis at which the force must

be applied so as to cause no horizontal reaction.

Ans. (a) 8.05 rad. per sec. 2
(c) 5 lb.

(6) 24.15 ft. per sec. 2
(d) 4 ft.

384. A door of constant cross-section is 3 ft. wide and weighs 32.2 lb. per ft.

of width. It swings on its hinges so that its outer edge has a speed of 8 ft.

per sec. (a) Find the force applied perpendicularly to the door at the outer

edge to .bring it to rest in a distance of 1 ft. (6) What is the horizontal reaction

of the hinges perpendicular to the door while the force is acting? (c) How far

from the hinge line must the force be applied in order that the hinge reaction

shall have no horizontal component perpendicular to the door?

PLANE MOTION

149. Kinetics of Plane Motion of a Rigid Body. As shown in

Art. 134, a plane motion of a rigid body may be considered, at any

instant, as a combination of a rotation about an axis through any

point, 0, in the plane of motion of the body, and a translation of

the body which gives to each particle the same velocity and

acceleration that the point has at the instant. The motion of

any particle of the body, therefore, may be resolved into two

component motions, (1) a rotation about and (2) a motion iden-

tical with that of 0. Hence, the acceleration of any particle

has a normal component, an= ru>
2

,
and a tangential component,

Ot= ra, due to the rotation of the body about 0, and also an acceler-

tion, OQ, the same as that of 0, due to the translation of the body.
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Thus, in Fig. 358, let the diagram represent a body which has

plane motion. The body is assumed to be symmetrical with

respect to its plane of motion and hence may be considered to be

concentrated in the plane of motion (see footnote under Art. 144).

Let the angular velocity and angular acceleration of the body, at

the given instant, be co and a, respectively (co and a are the same

with respect to all axes perpendicular to the plane of motion and

all particles have the same co and a at a given instant, Art. 134).

Let the motion be resolved into a rotation about an axis through

any point 0, giving to the body, of course, its actual angular

velocity and acceleration, and a translation which gives to each

particle a motion the same as that of 0. Let ao denote the acceler-

ation of the point 0. Then, the acceleration of any particle

at a distance r from (Fig. 358) has three components; rco
2

, ra, and

ao, the directions of which are shown for several particles in the

figure.

After the components of the acceleration of any particle of the

body have been found, the components of the resultant force (effect-

ive force) required to produce the component accelerations may be

found from Newton's second law. Thus, as shown in Fig. 359,

the components of the effective force for any particle of mass m
are mat= rnra in the direction of at ,

man = mru2 in the direction of

an ,
and moo in the direction of OQ. For convenience, moo will be

resolved into its x- and ^-components, m(ao) x and m(ao) y ,
as shown

in Fig. 359.
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Resultant of Effective Forces. The resultant of the effective

forces for the whole body may now be found. The effective forces

form a non-concurrent system in the plane of motion. The result-

ant of such a system of forces is either a force or a couple (Art. 28).

It will be shown, however, that when the resultant is a force it

may be resolved, for convenience, into another force which acts

through the mass-center of the body and a couple.

The resultant of a non-concurrent force system in a plane may
be determined completely from the algebraic sums of the ^-com-

ponents of the forces, of the y-components of the forces, and of

the moments of the forces about an axis in the body through

(Art. 30). Thus, referring to Fig. 359, and considering the

effective forces for the whole body we may write:

The algebraic sum of the ^-components of the effective forces

= Zm(ao)z-|-2mra: sin 6 2ma?2r cos 6

The algebraic "sum of the ^-components of the effective forces

= Sm(oo)j/ 2mm cos 6 Smco2r sin 6

=M (OQ) y Mxa Myu2
.

The algebraic sum of the moments of the effective forces about

But the algebraic sum of the ^-components of the effective forces is

equal to the re-component of the resultant of the effective forces,

and similarly for the ^/-components. Further, the algebraic sum of

the moments of the effective forces with respect to is equal to

the moment of the resultant of the effective forces with respect to 0.

Hence, summarizing,

The ^-component of the resultant of the effective forces

=M (OQ) x -fMya MX co
2

.
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The ^/-component of the resultant of the effective forces

= M(ao) v-Mxa-Myw2
.

The moment of the resultant of the effective forces about

= /oa+My (oo) * MX (do) v .

Relation between External and Effective Forces. Since the effect-

ive force for a particle of a body is the resultant of all the forces

acting on the particle, it is the resultant of both the internal and

the external forces which act on the particle. Therefore, the

component, in any direction, of the resultant of the effective forces

for the whole body is the algebraic sum of the components, in the

given direction, of all the internal forces and all the external forces

which act on the particles. Likewise, the moment of the resultant

of the effective forces about any axis perpendicular to the plane

of motion is the algebraic sum of the moments of all the internal

forces and all the external forces which act on the particles.

Hence, if F denotes a force and T denotes the moment (torque)

of a force, the above expressions are connected with the forces

acting on the particles according to the following equations :

(2FX) Ertemal+(2^) Internal
= M(av) x+Mya-MX CO

2

(2Fy) Extemal+(S/'V) internal
=M(OQ) y

-Mxa-MyU2

(ST ) External+(S7o) internal

But, since the internal forces occur in pairs of equal, opposite,

and collinear forces (Newton's third law), the algebraic sum of

their components in any direction, and the algebraic sum of

their moments about any axis perpendicular to the plane of motion,
are zero (that is, the resultant of the external forces alone

and the resultant of the effective forces for the body are identical) .

Hence, in the above equations, the terms which involve the internal

forces may be omitted and therefore the equations expressing the

relation between (1) the external forces acting on the body, (2) the

kinetic properties of the body, and (3) the change in motion of

the body are :

2FX = M(ao) x+Mya-

(1)
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The equations of motion, however, may be written in a simpler

form. As already noted, the center, 0, about which the assumed

rotation takes place and about which the moments of the forces

are taken may be any point in the plane of motion of the body.

Thus, if the mass-center is selected for the center about which

moments are taken, that is, if coincides with G (Fig. 359) then,

in the above equations, x and y are zero; ao becomes a; /o becomes

7; and STo becomes S77
. Hence the right-hand member of each

of the above equations reduces to one term. Thus the equations
of motion for a rigid body having plane motion may be written :

= Max

(2)

ILLUSTRATIVE PROBLEMS

386. A homogeneous cylinder which is 3 ft. in diameter and which weighs
805 Ib. rolls down an inclined plane which makes an angle of 30 with the

horizontal (Fig. 360). The
mass-center of the cylinder has

an initial velocity r = 50 ft.

per sec. The plane is rough so

that the cylinder rolls without

slipping. Find (1) the acceler-

ation of the mass-center, (2)

the magnitude of the friction

force, and (3) the velocity, v,

of the mass-center at the end of

10 sec.W-8051b.

Solution. The cylinder has

plane motion under the action

FIG. 360. of three forces, F, N, and W
,

as shown in Fig. 360. Let the

x- and 7/-axes be chosen as shown in the figure. The equations of motion are,

2Fj/ = May, (2)

*T = Ta. . (3)

From (1),

O/.
(4)
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From (2),

From (3),

-805 cos 30+N =
0, since ay =Q.

3 1 805 /3

2* 2
X

(5)

(6)

There are four unknown quantities involved in these three equations and

hence another equation is needed. Fro on the kinematics of the problem

(Art. 121), we obtain the equation,

By substituting the value of a from (7) in (6) and solving for F, we obtain the

equation,

Substituting this value of F in (4), we obtain,

ax =a = W.73 ft. /sec.
2

Hence,

7^=^X10.73
= 134.1 Ib.

Since the mass-center moves with uniformly accelerated rectilinear motion,
we may use the equation,

v

Hence,
= 50+ 10.73X10

= 157.3 ft./sec.

386. The connecting rod of a steam (engine has a length Z=6 ft. and a

weight TF = 220 Ib. (Fig. 361). The length of the crank is r = l ft. and the

FIG. 361.

engine runs at a speed of on =300 r.p.rn. The pressure P on the cross-

head, when 0=30, is 18,000 Ib. Assume that the cross-section of the con-

necting rod is constant. Find the tangential crankpin pressure, Q, the com-
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pression, S, in the crank arm, and the guide pressure, N, which is assumed to

act vertically (friction neglected).

Solution. The connecting rod has plane motion. Either equations (1)

or equations (2) of Art. 149 may be used. Let equations (1) be chosen and let

the crosshead end of the connecting rod be selected as the origin. Further,

let the x- and y-axes be chosen horizontal and vertical respectively. The

equations of motion then are,

....... (1)

....... (2)

'2TA =IAa+My(aA ) x -Mx(aA ) v ,
...... (3)

in which,
990

(a.0,=0, Mx=aA ,
M =^~ =6.84 slugs, 7A =*JfP-82 slug-ft.

O^i.Z,

Further,

Hence,

Therefore,

sin 30=TL
2-.I sin (f>

= r sin or sin

0=4 47'.

sin =
.0833, x = 3 cos <

= 2.99 ft.,

cos <f>
=

.9965, y = 3 sin = 0.25 ft.

, a>, and a may be found by use of the semi-graphical method discussed in

Scales :-

l" 2ft.

l" 30 ft./sec.

1"-400 ft./sec.
2

a A 936 (scaled)

(4-V
jr-

FIG. 362.

Prob. (334). Thus, in Fig. 362, the following two equations, (4) and (5),

are solved.
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Bl t \

V
A)

VA
= V

B)
/a A = /OB\ and aA are found, by scaling off their

B A' \B) i \ A) t

lengths, to have the following values:

VA
= 18 ft./sec., ^=27.4ft./sec., (a^\

=492 ft. /sec.
2

,
aA =936ft./sec.

2

A \ A"

But,

A ^ A ' 1

Hence,

27 4 492
co=^=4.56rad./sec. and, =

-^- =82 rad./sec. 2
.

6 o

From (1),

18,000-S cos 30-Q cos 60 = 6.84 (936 +0.25X82- 2.99 X4^56
2
).

From (2),

N+S sin 30-Q sin 60-220=6.84 (0 -2.99X82 -0.25 X4T56
2
)-

From (3),

-3.42 +4.93 Q +2.99X220 =82X82 +6.84X0.25X936.

Solving for the three unknown forces, we obtain the following values:

Q = 79501b., =9150 lb., JV = 795 Ib.

PROBLEMS

387. A homogeneous solid sphere rolls without slipping down a reugh

plane which is inclined at an angle 6 with the horizontal. Show that the

acceleration of the center of the sphere is f# sin 6, and that the ratio of the

friction to the normal pressure must be not less than I tan 6 to prevent the

sphere from slipping.
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388. A solid sphere having a radius of 8 in. and a weight of 161 Ib. is made
to roll up a rough inclined plane (Fig. 363) by means of a flexible cord, one

end of which is attached to an axis through the center of the sphere. The
cord passes over a smooth peg and has attached to its other end a suspended

body B which weighs 100 Ib. Find the acceleration of the body B and the

tension in the cord. Ans. a = 1.93 ft. /sec.
2

FIG. 363. FIG. 364.

389. A homogeneous cylinder 1 ft. in diameter has a flexible cord wrapped
around its central plane. One end of the cord is attached to a fixed plane as

shown in Fig. 364. The cord is taut when the cylinder is allowed to fall.

Find (a) the acceleration of the mass-center, (6) the angular acceleration of the

cylinder, and (c) the distance traveled by the mass-center in 10 sec.

390. Solve Prob. 386 by use of equations (2) of Art. 149.

391. A uniform rod AB (Fig. 365) moves with its ends B and A in contact

with smooth planes which are vertical

and horizontal respectively. A variable

horizontal force, F, is applied at the end
A. The weight of the rod is 16.1 Ib.

and its length is 8 ft. If the value of F
for the position of the rod shown (0

= 60)
is such that the angular acceleration, a,

of the rod is 3 rad./sec.
2
,

and the

angular velocity, w, is 2 rad./sec., what
are the values of F, NA, and NB?

Ans. 2V4 = 6.171b.; F=-.031b.;
tfa- 1.22 ft).

392. Two solid cylindrical discs are

keyed to an axle as shown in Fig. 366.

A string is wrapped around the axle in

its central plane and a force, P, is exerted by the string in a direction
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parallel to the plane on which the discs roll and tangent to the under surface

of the axle. Each disc weighs 20 Ib. and is 2 ft. in diameter. The axle is

6 in. in diameter and weighs 40 Ib. The magnitude of the force P is 8 Ib.

\\ , 11 the discs and axle roll forward or backward? Find the acceleration of the

central axis of the discs and axle. Ans. a = 1.91 ft. /sec.
2

393. If the string in the pre-

ceding problem is wrapped around

the axle in the opposite direction

so that the force P is tangent to the

top of the axle, what is the acceler-

ation of the central axis of the

discs and axle?

394. A wheel has an eccentric

weight attached near its rim so that

its mass-center is not the geometric

center of the wheel. If the wheel FIG. 366.

rolls on a horizontal track, will

the wheel leave the track when its velocity attains some particular

value?

150. Second Method of Analysis. Inertia Forces. In some

problems which deal with the plane motion of a rigid body under

the action of an unbalanced force system, it is convenient to assume

that the reversed resultant of the effective forces (inertia force for

the body) acts on the body with the external forces, thereby forming
a force system that is in equilibrium and thus reducing the kinetics

problem to an equivalent statics problem. In order to use this

method of analysis, the location of the action line of the resultant

of the effective forces must be known, as well as the magnitude
and sense of the resultant force.

Equations (1) of the preceding article state that the resultant

of the effective forces for the body (and hence also of the external

forces which act on the body) is a force having x- and ^-components

equal to M(ao) x+Mya Mxco2 and M(ao) y Mxa Mya?, respect-

ively, as shown in Fig. 367 (a), and that the moment of the resultant

force with respect to the axis through the origin is equal to

Ioa+My(ao)x Mx(ao) v . Equations (2) state that the resultant

of the effective forces for the same body is a force having x- and y-

components equal to Max and Mav , respectively, as shown in Fig.

367(6), and that the moment of the* resultant force with respect to

an axis through the mass-center of the body is Ja. The resultant

of the effective forces for any given body as obtained from each set
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of equations is, of course, the same force 1 and its components may
intersect at any point on its action line such as points A and A' in

Fig. 367 (a) and (6).

The action line of the resultant force as located by its moment
arm q in Fig. 367 (a) or q in Fig. 367(6) may be found from the

principle of moments by equating the moment of the resultant of

FIG. 367.

the effective forces to the sum of the moments of the effective

forces. The sum of the moments of the effective forces about the

mass-center, as already found, is Ja. And, the moment of the

resultant force having the components Max and Mav is Ma-q
(Fig. 3676) . Thus the principle of moments is expressed by the

equation,

Ma-q= Ja. But 7

Therefore,

Ma

1 Thus we may write,

M(a )x

Or, canceling the M's, we have the equations dealing with accelerations as

follows,

which state that the acceleration of the mass-center is equal to the relative

acceleration of the mass-center with respect to any axis, 0, plus the accelera-

tion of O; a proposition which is discussed in Art. 128,
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The value of qo (Fig. 367a) may be found in a similar manner.

However, it is more convenient, in general, to resolve the single

resultant force Ma, having an action line which is located at the

k2a
- from the mass-center, into another force equal

a
distance q

and parallel to Ma, but with its line of action passing through the

mass-center, and a couple, C, having a moment equal to Ma-q
(Art. 18) as shown in Fig. 368 (a). But, as shown above, Ma-q= Ia

and hence the moment of the couple is la.

w

(W
FIG. 368.

Therefore, the resultant of the effective forces for a rigid body

having plane motion may be considered to be a force Ma having
an action line which passes through the mass-center of the body
in the direction of the acceleration, a, of the mass-center, and a

couple having a moment equal to la, the sense of the couple being
the same as that of the angular acceleration, ,

of the body. The
above facts together with D'Alembert's principle lead to a state-

ment or proposition which is of great importance in the method
of reducing the kinetics problem of a rigid body having plane
motion to an equivalent problem in equilibrium by introducing
the inertia force (or forces) for the body. The proposition may
be stated as follows:

If a rigid body is acted upon by an unbalanced force system
which gives to the body a plane motion, the body may be con-

sidered to be in equilibrium if an additional force and couple is

assumed to act on the body with the external forces; the addi-

tional force has a magnitude equal to Ma, its line of action
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passes through the mass-center of the body, and its direction

is opposite to that of a; the couple has a moment equal to la

and its direction of rotation is opposite to that of a.

The forces of the couple are not necessarily equal to Ma or

parallel to a as shown in Fig. 368 (a), that is, the couple may be

rotated in the plane of motion and the magnitude of the forces

of the couple may be changed provided the moment of the couple
is always equal to la (Art. 27). Thus, if a force having a magni-
tude equal to Ma, and a couple having a moment equal to Ma q

(or la), act on the body with the external forces (P and W), as

shown in Fig. 368(6), the force system (and the body) would be in

equilibrium.

ILLUSTRATIVE PROBLEMS

396. At what height should the cushion on a billiard table be placed so

that the billiard ball in rebounding from the cushion starts off without causing

any friction on the table top?

Solution. The billiard ball has plane motion and while in contact with the

cushion it is acted upon by three forces; the cushion pressure P, the weight W,
and the table pressure N, as shown in Fig. 369.

If there is no horizontal friction force at A, then P is the resultant of

the external forces which act on the ball and it must be collinear with the

resultant of the effective forces. The re-

sultant of the effective forces is a force of

magnitude Ma, the distance of the action

line from the mass-center being given

P by the equation,

And since a = ra, we have

fr
2 2

Hence,

FIG. 369.

396. Solve Prob. 386 by introducing the reversed resultant of the effective

forces (inertia force for the rod).

Solution. The resultant of the effective forces is a force of magnitude Mo
acting through the mass-center of the rod in the direction of a, and a couple

of moment la, as shown in Fig. 370 (a). If G denotes the mass-center, then
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a may be written ao for convenience. OG may be found from the graphic

equation,

_

in which t-G
= \vA

= 13.7 and a = 82. (See Prob. 386.) Hence,
~B B

ao fi~2! 4> 3 X82 4> 986
o

= 62.6 4> 246 4> 986

= 930 ft./sec.
2
,

as scaled from the acceleration polygon of Fig. 370(a).

l"=2f.

l'=400 ft./sec?

Therefore the resultant of the effective forces is a force,

M
and a couple,

220
Ma=X930 = 6360 lb.,

But,

168.1 Ib.-ft.

=Ma-q or 168.1=6360g. .'. 3 = 0. 264 ft.
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Hence q
= .264 ft., and the inertia force for the rod is a single force of magnitude

6360 Ib. as shown in Fig. 370(&). If the inertia force is assumed to act on the

rod with the external forces, the rod may be considered to be in equilibrium.

The three unknown forces may be found graphically by use of the force and

funicular polygons or, the values of /3 and e may be scaled off and the equations

of equilibrium used. The values of ft and e are found to be /3
= 15 35' and

e = 0.77 ft.

The equations of equilibrium for the non-concurrent forces in a plane as

shown in Fig. 370(6) are,

2/^ = 0, 18,000-6360 cos p-S cos 30-Q cos 60= 0, . . (1)

SFV =0, N - 220 +6360 sin ft+S sin 30 -Q sin 60 =0, . . (2)

SM*=0, 18,000? sin <t>-Nl cos ^,+220X2.99-6360X0.77 = 0, (3)

in which sin < and cos <f> have the same values as were used in Prob. 386.

Thus,

sin = .0833, cos = .9965, sin /3=sin 15 35' = .268, cos /3
=

.963, 1 = 6 ft.

Substituting the known values in the above equations, we obtain the following

equations:

.5Q+.866S-11,875 = 0,

.866Q-.5S-2282=0,

-5.98N+4758=0,

the solution of which gives the following values for the three unknown forces:

Q = 79701b.; S = 91001b.; N = 7971b.

PROBLEMS

397. A solid homogeneous disc 3 ft. in diameter rolls on a straight hori-

zontal track (Fig. 371). A small body, B, is attached to the disc at a distance

d = 0.75 ft. from the center of the disc.

When in the position shown in Fig. 371

the angular velocity of the disc is 6 rad.

per sec., and a force P is retarding the

angular velocity at the rate of 4 rad.

per sec. each second. The disc weighs
60 Ib. and B weighs 8 Ib. Find the

"f"?
f r

<?
f r *he dfec and for the body B.

Also find the value of P and of the friction

force. Ans. P = 7.91 Ib.; ^ = 1.96 Ib.FIG. 371.

398. The resultant, R, of the forces acting on the connecting rod (Fig.

372) is 320 Ib. and its action line is located as shown. If the connecting
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rod is 30 in. long and weighs 83 Ib
,
what is the linear acceleration of the

mass-center of the rod and the angular acceleration of the rod, assuming
the rod to be of constant cross-section?

FIG. 372.

151. Limitations of the Moment Equation T = Ia. As dis-

cussed in Art. 134, a rigid body having plane motion may be given

its actual motion, at any instant, by a combination of a rotation

and a translation. And, it was shown that in giving the body the

rotational motion, the axis about which the body is assumed to

rotate may be any axis, 0, in the body, perpendicular to the plane

of motion, the corresponding translation of the body being

defined by the motion which the arbitrarily chosen axis, 0, has at

the instant. It does not follow, however, that the resultant

external force which is required to produce the translation is

the product of the mass of the body and the translatory accelera-

tion, ooj which each particle receives, as is the case for a body for

which the actual (or sole) motion is translation (Art. 145). Nor
does it follow that the moment of the resultant of the external

forces which is required to produce the rotational part of the

motion is the product of the moment of inertia, /o, of the body
about the arbitrarily chosen axis and the angular acceleration,

a, of the body, as is the case for a body for which the actual (or

sole) motion is rotation (Art. 146).

Equations (1) of Art. 149 show that the resultant force required
to produce the translatory part of a plane motion is the product
of the mass of the body and the translatory acceleration, only

when the axis is chosen through the mass-center of the body,
that is, when x and y in equations (1) are zero. The simple moment

equation, To = /oa, also applies to a rigid body having a plane

motion when the arbitrarily chosen axis, 0, passes through the

mass-center of the body, as was also shown in Art. 149.

It also applies, however, for two other positions of the axis 0,
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as stated under (3) and (4) below. Thus, in considering a plane
motion of a rigid body under the action of an unbalanced force

system, the moment of the resultant of the external forces about

an axis in the body is equal to the product of the moment of inertia

of the body with respect to the same axis and the angular accelera-

tion of the body only when one (or more) of the following four

conditions are satisfied, the first of which restricts the motion

of the body to a special case of plane motion (rotation) and the

other three restrict the choice of the axis in the body, about which

the rotational part of the motion is assumed to take place :

1. If the body rotates about an axis which is fixed in space

as well as in the body, then OQ, in equations (1) of Art. 149, is

zero and hence the moment equation reduces to TO = /O.
This restriction on the axis limits the motion to pure rotation,

which is treated in Art. 146 and is, of course, a special case of

plane motion.

2. If the arbitrarily chosen axis in the body, about which

moments are taken, passes through the mass-center of the

body, then x and y in equations (1) are zero and the moment

equation reduces to T=Ia as discussed above.

3. If the acceleration of the point (in the plane of motion)

through which the moment axis is taken, is directed toward

the mass-center of the body, then, the quantity [M(ao) xy

M(ao)yx] in the expression for the moment, in equations (1),

is zero and hence the moment equation reduces to TQ = IQCX.

The quantity [M(ao) xy M(ao) vx] is the moment of the force

Mao with respect to the mass-center of the body, and if OQ

passes through the mass-center, then Mao also passes through

the mass-center and hence its moment with respect to the

mass-center is zero.

4. If the arbitrarily chosen axis in the body, about which

moments are taken, passes through the instantaneous center

of zero acceleration (not the instantaneous center of zero

velocity, Art. 135) then OQ in equations (1) is zero and the

moment equation reduces to TQ = loa.

The location of the arbitrarily chosen axis as required under

(3)' and (4) above is of considerable importance in the study of

certain problems in Dynamics of Machinery, a detailed discussion

of which is beyond the scope of this book.
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PROBLEM

399. Solve Prob. 385 by use of the equations; 2Fx =Max,
2Fv

=Mav,
and

"2TA=lA<*, in which moments are taken about an axis through A, the point

of contact of the cylinder with the inclined plane. Does the moment equa-
tion ^TA=IAOC apply for this position of the moment axis because A is the

point about which the body is rotating at the instant (instantaneous center of

zero velocity)? If not, which one of the four special cases stated above applies

when the moment axis passes through A?

152. Principle of the Motion of the Mass-Center. For

each of the three types of motion of rigid bodies (translation,

rotation, and plane motion) already discussed in this section,

there are three equations of motion. The first two of each of these

sets of -equations ((2) of Art. 145; (1) of Art. 146; and (2) of

Art. 149) may be written so as to apply to all three types of motion.

The equations are,

2FX= Max and 2Fv

in which x and y denote any two axes at right angles to each other.

Thus, for the motion of translation of a rigid body, ax and av are

the same as the ax and av of any other point in the body and hence,

in equations (2) of Art. 145, ax = ax and av= av - For the motion of

rotation of a rigid body the T- and TV-axes were chosen and in the

equations (1) of Art 146, ra = at and ru2 = an - For plane motion

of a rigid body the first two of equations (2) of Art. 149 are already
in the form written above. However, these two equations are

not restricted to the motion of rigid bodies having the three types
of motion treated in the preceding articles. They apply to any

mass-system having any type of motion.
, They express mathe-

matically a principle which is called the principle of the motion of

the mass-center. The extension of the proof of this principle to

any motion of any mass-system involves the same fundamental

laws and the same methods as were used in the preceding articles

in deriving the equations of motion for a rigid body having the

three special types of motion. The principle of the motion of

the mass-center may be stated in words as follows:

If an unbalanced external force system acts on a body
(whether rigid or not), the resultant of the external force

system, if a force, has a magnitude which is equal to the

product ^of the mass of the body and the acceleration of tte
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mass-center of the body, and the direction of the resultant

force is the same as that of the acceleration of the mass-center.

Likewise, the component, in any direction, of the resultant of

the external forces is equal to the product of the mass of

the body and the component of the acceleration of the

mass-center in the given direction.

The statement of the principle as given above is in the form
which makes it most directly applicable to the method of analysis
which reduces the kinetics problem to an equivalent statics prob-
lem by introducing inertia forces. The principle may also be

stated in the following form :

The algebraic sum of the components, in any direction,

of the external forces which act on any mass-system is equal
to the mass of the whole body times the component, in the

given direction, of the acceleration of the mass-center of the

mass system.

It will be noted that, according to the principle of the motion

of the mass-center, the mass-system or body may be assumed
to be reduced to a particle having a mass which is equal to the total

mass of the body and which is located at, and moving with, the

mass-center of the body. That is, the magnitude and direction of

the resultant of the actual (non-concurrent) forces which act on

the actual body are the same as the magnitude and direction of the

resultant of the (concurrent) forces which would have to act on

the mass if it were concentrated at, and moving with, the mass-

center of the body.
It is important to note, however, that the action line of the

resultant of the forces acting on a body, does not, in general, pass

through the mass-center of the body whereas it would necessarily

do so if the mass of the body were actually concentrated at the

mass-center. Further, the principle cannot be used to determine

the resultant of the forces acting on a body when the resultant is a

couple. Nevertheless, the principle simplifies many problems
and is of much importance in the study of kinetics.
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ILLUSTRATIVE PROBLEM

400. Two bodies A and B (Fig. 373) are connected by a light slender rod

and revolve in a horizontal plane about a,n axle fixed in the top of a vertical

post which supports the two bodies.

Body A weighs 4 Ib. and B weighs 12 Ib.

The bodies rotate with an angular

velocity of 80 r.p.m. What horizontal

force acts on the post tending to bend

the post? The mass of the rod may be

neglected.

Solution. The mass-center of the

two bodies is found by the principle FIG. 373.

of moments to be at a distance r = 5 in.

from the axis of rotation. The acceleration of the mass-center is,

ft./sec.*,

directed toward the center of rotation. The resultant force acting on the

two bodies is,

44-12
Man = ^- --X29.2 = 14.51b.

oZi.Zi

This force is exerted on the two bodies by the post, and the two bodies exert an

equal and opposite force on the post. (Check the answer by finding the force

acting on each body and subtracting one force from the other.)

PROBLEMS

401. A solid wooden disc 10 ft. in diameter rotates in a horizontal plane

about its geometric axis. Two small bodies each weighing 50 Ib. are attached

to the disc at a radius of 4 ft. from the axis of rotation so that the radii make
an angle of 90. If the disc rotates at 40 r.p.m. what is the resultant horizontal

pull on the axis? Solve by two methods, Ans. 154 Ib.

402. A flat-topped boat having a weight of 300 Ib. and a length of 12 ft. is

resting in still water. A man weighing 150 Ib. stands at one end of the boat.

The man starts to run with a speed increasing at the rate of 10 ft. per sec.

each second. When he reaches the other end of the boat he jumps. Assuming
that the water is a perfect (frictionless) fluid what is the acceleration of the

mass-center of the boat and man (considered as one body) before the man
starts to run? While he is running on the boat? After he jumps from the

boat but before he strikes the water? What is the acceleration of the boat

while the man is running on it?

403. Two bodies A and B (Fig. 374), each weighing 8 Ib., are connected by a

string. Body A is placed on a smooth table and the other body B is sus-
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pended over the edge of the table. The two bodies start from rest and move
two seconds before body A reaches the table edge. What is the acceleration

of the mass-center of the two bodies while A is sliding on the table? What is

the acceleration of the mass-center after A leaves the table edge? Discuss

the motion of the system after A leaves the table.

FIG. 374. FIG. 375.

404. The three bodies A, B, and C (Fig. 375) weigh 6 lb., 4 lb., and 10 lb.,

respectively. They are held in the position shown and then released simul-

taneously. The mass of the pulleys and of the strings is negligible. Locate

the mass-center after the bodies have been moving 2 sec. Find the tensions

in the strings. Ans. y
= l3.7 ft.; 7^ = 7.87 lb.

3. SPECIAL TOPICS IN KINETICS

153. Introduction. In this section are discussed several

special problems or topics in kinetics which find direct application
in engineering. The principles and equations of motion employed
in their treatment are developed in the preceding sections of this

chapter and all of the topics here considered could have been

treated as special problems in the preceding sections. However,
the topics are grouped and discussed in this section in order to

give an opportunity to review the principles already developed
and to emphasize their engineering applications.

154. Hoop Tension in Flywheels. The stress developed in

the rim of a flywheel or pulley, when revolving with a high
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angular velocity, is sometimes of considerable importance.

Likewise the stress developed in a belt, due to the same cause, as

it passes around a flywheel or pulley, must sometimes be con-

sidered. If the tension in the

spokes of a flywheel is neg-

lected, the tensile stress in

the rim (often called hoop

tension) corresponding to an

angular velocity, co, may be

found as follows: In Fig. 376

is represented one-half of the

rim of a flywheel. As the

wheel rotates, each half of the

rim tends to separate from

the other half and is prevented
from doing so by the stresses JTIG 375.

P, P which are developed in

the rim. The reversed effective force for the half of the rim is

Mrco2 and it acts through the mass-center of the half-rim. And,
since the reversed effective force (inertia force) is in equilibrium

with the external forces (P, P) which act on the half-rim, the

following equation of equilibrium may be written,

W
ru2

,

in which W is the weight of the half-rim. Now if the thickness of

the rim is small in comparison with the mean radius r, the mass-

center of the rim may be considered to coincide with the centroid

2r
of the semicircular arc, and hence r= (Art. 82).

7T
Whence,

2- X co =
2 Q TT

TFrco2-
.

gir

The stress, s, per unit of area of the rim cross-section is

P

in which a is the area of the cross-section. Therefore,

_W r co
2
_7rmfc r co

2
_kr

2
co
2

" X /N. /\ /\ ,

g TT a g TT a g
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in which k is the weight of the material per unit volume. Or, since

the velocity, v, of the mid-points of the rim is equal to cor, the

expression for s may be written in the form,

kv2

The units in which s is expressed are Ib. per sq. ft. if k is expressed
in Ib. per cu. ft., r in ft., g in ft. per sec.

2
,
and xo in rad. per sec.

It will be noted, therefore, that the intensity of stress, s, developed
in the rim of a rotating wheel, if the rim is thin and the effect of

the spokes is neglected, varies directly as the square of the linear

speed of the rim.

PROBLEMS

405. A common rule limits the peripheral speed of cast-iron flywheels or

pulleys to 6000 ft. per min. (Sometimes stated one mile per minute.) Cal-

culate the tensile unit-stress in the rim corresponding to this speed, assuming
that the effect of the spokes may be neglected. Ans. 970 Ib. per sq. in.

406. Calculate the greatest number of revolutions per minute (r.p.m.)

at which a thin cast-iron hoop can rotate without Bursting. Assume that the

maximum tensile strength of the cast iron is 20,000 Ib. per square inch, that

the material weighs 450 Ib. per cubic foot, and that the radius is 2 ft.

* 155. Superelevation of Railroad Track. The wheels of a

locomotive, electric car, etc., when traveling round a curve of

radius, r, on a level track exert a horizontal thrust, H (flange pres-

sure), on the outer rail as shown in Fig. 377 (a). The reversed
Q

effective force, Mru2 or M-
,

if acting on the car with the four

external forces Ri, R2, H, and W, would hold the car in equilibrium.

Hence Mrco2 and H form a couple the moment of which, for a given
car and radius of curvature, depends both upon the speed of the

car and the height of the center of gravity, G, above the rails. In

order to reduce the magnitude of the horizontal thrust and of the

overturning couple, the outer rail is elevated above the inner rail a

distance, e, which is called the superelevation.

It is desired to determine the superelevation required to reduce

the flange pressure to zero for a given speed of the car and curva-

ture of the track. Thus, in Fig. 377(6), the pressures of the rails

are RI and R2, the resultant of which is R; W is the weight of the
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car; and r is the radius of the curve around which the car is trav-

eling. Since the center of mass of the car travels in a horizontal

plane, the reversed effective force Mrco2 is horizontal and its action

line passes through the center of gravity, G, of the car, as shown.

Since the reversed effective force is in equilibrium with the external

forces, the three forces W, Mrw2
,
and R form a concurrent system

in equilibrium. Therefore, we may write, W v2

2/^= 0, or Rsm =
,

Mror

W

(a)

FIG. 377.

And, by dividing the first of these equations by the second, the

resulting equation is,

tan = -.
gr

Now for small angles the sine and the tangent of the angle are
o

approximately the same. But from Fig. 377(6), sin = - in which
d

d is the distance between the action lines of the rail pressures

(usually taken as 4.9 ft.). Therefore,

tan 0=^= ,

d gr'

Hence, if v is expressed in ft. per sec., g in ft. per sec.2
,
and d and

r in ft., the superelevation (in ft.) is found from the equation

v2d

It will be noted that the value of e which reduces the flange
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pressure to zero also reduces the overturning couple to zero regard-
less of the height of the center of gravity above the rails. How-
ever, if a car travels round a curve at a speed greater than that

for which the flange pressure is zero, there will be, of course, an

overturning couple and its magnitude will depend directly upon
the height of the center of gravity of the car and its cargo above

the rails. In order to indicate common values of the superelevation,

the values used on one particular steam railroad are given in

the following table :

SUPERELEVATION OF OUTER RAIL IN INCHES

Degree
* of
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the string. Although these ideal conditions cannot be realized

fully in any physical apparatus, the motion of a small body sus-

pended by a light thread will be approximately that of the ideal

simple pendulum.
It is desired to find the time or period of vibration of a simple

circular pendulum. Let C (Fig. 378) represent a small body which

is suspended by a thread from the point and is allowed to swing

as a simple pendulum in the arc BB 1
of radius OC or I. By resolv-

ing forces in the direction of the tangent to the path we have,

or

Sft-

wW sin =
a*,

J/

whence,

Or = </ sin 0.

And from Art. 127,

vdv=atds.

Therefore,

vdv = g sin ds.

But,

Therefore,

= ld6.

vdv = lg sin Odd. FIG. 378.

The integration of this equation, after expressing v in terms of t

and 6, leads to a complicated relation between t and 6. However, if

the angle of vibration is small, a close approximation to the correct

solution may be obtained by assuming that = sin 6. The last

equation then becomes

vdv= IgBdB.

And by integrating,

To determine, Ci, the constant of integration, let v= when
= #i. Using these values in the above equation, we have,

Hence,

or,
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ds
The time, t, may now be introduced in the equation since ^ -r-

And, if the particle is moving towards A, s decreases as t increases

ds
and hence

-j-
is negative. Thus,

or,

de

And, by integrating,

If time is measured from the instant the body is at B, then = Q\

when 2 = 0. By substituting these values of 6 and t in the last

equation, the value of 2 is found to be sin" 1
1 or

^-
Thus, the

last equation becomes,

By making 6 equal to zero in the last equation, the corresponding
value for t, that is, the time required for the body to move from B

to A is
^A/-.

Since the body gains velocity during the displace-

ment BA at the same rate that it loses velocity in the displace-

ment AB', the average velocities for the two displacements are

equal. Therefore, the time required for a single oscillation (B to

B') is TT

^-.
The time or period, P, of a complete oscillation

(from B to B' and back to B) then is,

-2-J?
\0

This equation shows that the period P is independent of 6\, that

is, of the amplitude of the oscillation. However, it must be

remembered that the equation applies to oscillations of relatively

small amplitudes.

Jf the amplitude of oscillation is not small enough to permit of
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the assumption that sin =
6, then the time of a complete oscilla-

tion is expressed by the series,

in which

k = sin -.

PROBLEMS

409. A simple pendulum 4 ft. long swings through an angle of 60 (that is,

^=30). Find the period of oscillation, (1) by the approximate method and

(2) by the exact method. Ans. (1) P =2.21 sec.; (2) P = 2.25 sec.

410. Find the length of the simple pendulum which beats half-seconds,

that is, one for which the period of a complete oscillation is one second.

411. What is the length of a clock pendulum which will make one beat per

second. If the clock loses 5 sec. per hour, how much should the pendulum be

shortened?

157. Compound Pendulum. A physical body which oscillates

or swings about a horizontal axis under the influence of gravity

and the reaction of the supporting
axis is called a compound or physi-

cal pendulum.
It is desired to find the time of

oscillation of a compound pendulum.
Let Fig. 379 represent a section of

such a pendulum which rotates about

an axis through 0. From Art. 146

we have as one of the equations of

motion for a rotating body,

Or,

Whence,

Wr sin = 7o a

gr= -<*= f-o sin 0.
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Now, it was shown in the preceding article that the tangential

acceleration of a simple pendulum of length I is,

at
=

g sin 6.

But,
at
= la (Art. 121).

Whence,

(2)

By comparing equations (1) and (2) it will be noted that the

angular motion of a simple pendulum may be made exactly the

same as that of a compound pendulum (if the two start from the

same position) by fixing the length I of the simple pendulum such

that,

A simple pendulum of this length is called an equivalent simple

pendulum. The period, then, of a complete oscillation, of small

amplitude, of a compound pendulum is,

P f)-- I"*

**'w

158. Center of Oscillation. The point, Oi, in the compound

pendulum (Fig. 379) at the distance ~ from the center of rotation

is called the center of oscillation. That is, the center of oscillation

is that point at which the whole mass of the compound pendulum

may be concentrated without changing the period of vibration.

It will be noted that the center of oscillation is also the center of

percussion (see Art. 148).

Further, the center of oscillation may be made the center of

rotation without changing the period of oscillation. That is, in a

compound pendulum the centers of oscillations and suspension

are interchangeable. This fact may be shown as follows: The

distance G0\ from the center of gravity of the compound pendu-
lum to the center of oscillation (Fig. 379) is,

But, from Art. 102,
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Whence,

Now if Oi is made the center of rotation, then the new center of

k2

oscillation, 02, will be a distance G0% from the center of gravity.

But r is now equal to G0\ ; hence,

r 'i?

Therefore 0% coincides with 0\ and hence the centers of sus-

pension and oscillation are interchangeable.

PROBLEMS

412. A uniform slender rod 4 ft. long oscillates as a compound pendulum
about a horizontal axis through one end of the rod, the rod being perpendicular

to the axis, (a) Find the period of oscillation. (6) About

what other point could the rod rotate and have the same /~\0
period of oscillation.

Ans. (a) P = 1.80 sec.; (6) 1.33 ft. from end of rod.

413. Find the length of a uniform slender bar having a

period of oscillation of 1 sec. when allowed to swing as

a compound pendulum about an axis through one end

of the bar. Ans. 1 = 1.22 ft.

414. A steel pendulum consists of a circular disc 10 in.

in diameter and 1 in. thick, and a rectangular bar 30 in.

long, 3 in. wide, and 1 in. thick, as shown in Fig. 380. If

the pendulum oscillates about a horizontal axis through 0,

what is the period of oscillation?

159. Torsion Pendulum. A torsion pendulum FIG. 380.

consists of a body (Fig. 381) which is suspended

by a wire or slender rod and allowed to oscillate about the axis

of the wire. The body is rigidly attached to the wire so that

its center of gravity lies on the axis of the wire and the wire is

rigidly attached at the support. Thus, if the disc of Fig. 381

is given an initial angular displacement, 61, the wire is twisted

and when the disc is released the wire exerts a turning moment on

the disc, which starts it to oscillate.

The torque or turning moment, T, exerted by the wire on the

disc is directly proportional to the angular displacement, provided



366 FORCE, MASS, AND ACCELERATION

that the elastic limit of the material is not exceeded. That is,

T= kd in which ft is a constant; the minus sign indicates that

when 9 is positive T is negative.

Since the disc has a motion of rotation,

the equation of motion is,

Hence,

But,

a

Therefore,

dt2
'

00 _ kW To
9'

The time of an oscillation of the pendu-
lum may now be found by the integration

of this equation. Multiplying each side

of the equation by the factor
-^,

we have,

_ ^
a
de

dt dP IQ df

Whence, by integrating,

Now, when

(
de

\
2 k

(dt)
=
-T

Therefore,

Hence,

By a method similar to that used in Art. 156, the detailed steps of

which are left to the student, the time of a complete oscillation is

found to be

in which IQ is the moment of inertia of the body (disc) with respect

to the axis of the wire and B is the angular displacement, corre-
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spending to which the wire exerts the torque T on the disc. It

will be observed that the period of an oscillation is independent

of the initial displacement, that is, of the amplitude of the vibra-

tion, assuming that the elastic limit of the wire is not exceeded.

PROBLEMS

415. The disc of a torsional pendulum is turned through an angle of 10

by a torque of 1 ft.-lb. When released it is observed to make five complete
oscillations per second. What is the moment of inertia of the disc? (In

using the formula of Art. 159, the angle must be expressed in radians).

Ans. 7 = .00582slug-ft.
2

416. The disc of a torsional pendulum is 1 ft. in diameter and 2 in. thick.

A torque of 1 ft.-lb. is required to turn the disc through 8. Find the period

of oscillation, assuming that the disc is made of cast iron, the weight of which

is 450 Ib. per cubic foot.

160. Experimental Determination of Moment of Inertia.

As noted in Art. 106, the calculation of the moment of inertia of

many bodies is a difficult process and frequently is impossible.

The moment of inertia, however, may be found experimentally

by allowing the body to oscillate as a compound pendulum and

observing the period of oscillation or by allowing it to oscillate

either as a torsion pendulum itself or with a given torsion pendulum
to which it is attached.

/. By Means of a Compound Pendulum. The period of a

complete oscillation of a compound pendulum, from Art. 157, is

P = 27TA/^.
gr

Or,
P2 _

But,

g

Hence,

_MP2 _ _ WP2r
=
~4^~gr

~~

~b?~'

in which Jo is the moment of inertia of the body with respect to the

axis of suspension Now W may be found by weighing the body,
r by balancing the body over a knife edge, and P by observing the

periodjDfjDScillation .
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After 7o is found, the moment of inertia with respect to a

parallel axis through the mass-center (7) may be calculated from

the equation,

II. By Means of the Torsional Pendulum. In order to deter-

mine the moment of inertia of a body by means of a torsional

pendulum, it will be convenient to replace the disc of the pendulum
as described in Art. 159 by two discs rigidly connected as shown in

Fig. 382. If /o denotes the moment of inertia of the two discs

with respect to the axis of the wire, the time of a complete oscilla-

tion of the pendulum (denoted here for convenience by PO) is, by
Art. 159,

..... (1)

in which C is a constant. The value of ^ is a constant of the wire,

and depends on the material of the wire and

its diameter. If this value is known (and it is

readily found), /o may be obtained from the

above equation by observing the period of

oscillation of the pendulum. The method of

determining the moment of inertia of a body
A is as follows: First allow the pendulum to

oscillate and observe the period of oscillation,

PO- Next, place the body A on the lower disc

(Fig. 382) so that the center of gravity of A
is vertically below the wire. If the moment
of inertia of A with respect to the axis of the

wire is denoted by IA and the period of oscil-

lation of the pendulum (and A) is denoted by

P, we have, by Art. 159,

FIG. 382.

... (2)

From (1) and (2) the following equation is obtained:

P VT



NEED FOR BALANCING 363

That is,

Hence,

It may be noted that if the discs are of such form that their moment
of inertia may be calculated it is not necessary to know the con-

P2

T _ T I
L

1 A -tOl ^m

stant ;~, of the wire.;

PROBLEMS

417. The connecting rod of a steam engine weighs 300 Ib. and the distance

of the center of gravity from the crank-pin is found (by

balancing) to be 50 in. When suspended from the crank-pin

end and allowed to vibrate as a compound pendulum, it is

found to make thirty complete oscillations in 75 seconds.

Determine the moment of inertia of the rod with respect

to the axis of the crank-pin and also with respect to a paral-

lel axis through the center of gravity.

Arts. / = 198 slug-ft.
2 7 = 36.5 slug-ft.

2

418. The pendulum (Fig. 383) of a Charpy impact machine,
which is used to determine the resistance of materials

to impact, weighs 50.5 Ib. and the distance of the center

of gravity from the axis of rotation, as determined by
balancing, is found to be 27.33 in. When allowed to vibrate

about the axis of rotation, the pendulum is observed to make FIG. 383.

35 complete oscillations in 61 sec. Find the moment of inertia

of the pendulum with respect to the axis of rotation.

BALANCING

161. Need for Balancing. A moving part of a machine, as a

rule, has either a reciprocating motion similar to that of the cross-

head of a steam engine or a motion of rotation such as that of the

crank-shaft of an automobile engine or the motor of a dynamo.
In any case, if the moving parts are accelerated, forces must be

supplied to produce the accelerations. If the moving parts are

not balanced, the forces which act on the moving masses are

transmitted to them from the stationary parts of the machine such

as the bearings and the machine frame. And, in supplying these

accelerating forces, serious trouble may arise such as, vibrations

in automobiles, turbines, etc.; defective commutations in elec-
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trical machinery; heavy bearing pressures which cause undue

wear; defective work with grinding discs, high-speed drilling

machines, etc.; and defective lubrication. It is of great impor-

tance, therefore, to properly neutralize or balance these forces

in various types of machines.

The moving parts of a machine may be (1) in static or standing

balance or (2) in dynamic or running balance. Standing balance

exists if the forces which act on the parts, when the parts are not

running, are in equilibrium regardless of the positions in which

the parts are placed. Dynamic balancing consists in distributing

the moving masses or in introducing additional masses so that the

inertia forces exerted by the masses of the moving system are in

equilibrium amongst themselves, thereby making it unnecessary

for the stationary parts of the machine to supply any of the

accelerating forces. The complete balancing of a machine, how-

ever, is not always practicable or possible.

The method of balancing rotating masses, only, is here dis-

cussed. For methods of balancing reciprocating masses and for an

excellent discussion of the whole subject of the balancing of engines

see Dalby's
"
Balancing of Engines."

162. Balancing of Rotating Masses. The inertia forces or

kinetic loads due to unbalanced rotating masses may be treated,

in general, (1) as a system of centrifugal forces or (2) as a system
of centrifugal couples or (3) as a combination of the two.

(a)

FIG. 384.

A Single Rotating Mass. Centrifugal Force. If a shaft (Fig.

384a) rotates at an angular velocity a> and carries a single mass MI
the center of gravity of which is at the distance r\ from the axis

of rotation, the shaft will be subjected to a kinetic load (centrifugal

force) of magnitude M\riu>
2

. This kinetic load causes the shaft
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to exert forces on the bearings which in turn are transmitted to

the machine frame. The reactions at the bearings may be elim-

inated by balancing the rotating mass. This may be done by the

addition of a single mass M2 diametrically opposite to MI (Fig.

3846), the center of gravity of M2 being at a distance r2 from the

axis of rotation, such that,

TFi._ , W2
9

But, since -- is a common factor, the conditions for running or

dynamic balance may be expressed by the equation

nf our o " 1 o 'K 2
Mirior =M 2r2 ur or rior=

-If a shaft carries

Now, as is evident from Fig. 384(6), this equation expresses the

condition for standing balance also. Thus, a shop method of

obtaining approximate running balance with a rotating member, in

which the material is substantially in a plane of rotation such as a

disc, a pulley, or a flywheel, consists in drilling out material on the

heavy side or adding material on the light side until standing bal-

ance is obtained.

Two Rotating Masses. Centrifugal Couple.-

two rotating masses MI andM2 in

different planes of rotation but in

the same axial plane (Fig. 385)

and, further, if the centrifugal

forces Miriu2 and M2r2 u>
2 of the

two masses are equal, then the

shaft is subjected to an un-

balanced centrifugal couple which

is resisted by an equal couple

exerted by the bearings. Or, if

the two rotating masses are to be

balanced, two additional masses,

M3 and M, must be introduced

in the same axial plane (Fig. 385)

such that the centrifugal couple

Msraco
2^ or M^r^b which they set up equals the centrifugal couple

of MI and M2 . Hence,

Or,

FIG. 385.

M2r2 a>
2a
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o

And, as before, omitting the common factor we may write,
t/

Wiria= Wznb, etc.

It will be noted that the shaft when carrying only the two masses

Mi and M^. is in standing balance but not in running balance.

163. Several Masses in a Single Plane of Rotation. If sev-

eral masses MI, M%, Afa, etc., lie in the same transverse plane (Fig.

386a), the shaft is subjected to the centrifugal forces,

Mirico
2

, .M^co
2

, Tkfsrsco
2

, etc.,

which form a concurrent system of forces.

The condition that such a force system shall balance is that the

force polygon shall close. That is, the vectors representing the

,
M2r2w2

,
M3r3 co

2
, etc., if laid off in succession, each in

its proper direction, shall form a closed polygon. Or, since Mru2

W
'

CO
2

may be written rco
2 and since is a factor common to the expres-

sion for each force, the products TFiri, W2f2, etc., may be used

instead of the actual forces. Thus, let the four masses as shown

in Fig. 386 (a) be a system of masses which rotate in a transverse

plane. Suppose that the products Win, Wir<y,, Wsrs, and Wr
when laid off as vectors (Fig. 3866) do not form a closed polygon.

It is evident then that the four masses are not in running balance.

In order to balance the system of masses, a mass, MQ, must be added

at a distance, ro, such that the product Woro is represented both in
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magnitude and direction by the closing side, EA, of the vector

polygon. By assuming a convenient value for TO, a value of MQ
may be found. The gap, EA, may be closed, however, by two

or more vectors from which two or more masses may be found that

will balance the system.

164. Masses in Different Transverse Planes. In Fig. 387,

let the masses M i and M<z be connected with the shaft at A and B,

respectively, and through some point, 0, of the shaft let a

FIG. 387.

transverse plane, called a reference plane, be chosen. The mass MI
exerts a kinetic load or centrifugal force, F\, on the shaft such that

Now at introduce two equal and opposite forces each equal and

parallel to FI. The force F\ at A and the equal opposite force at

form a couple, Ci, the moment of which is

Thus the single force F\ at A is replaced by an equal parallel force

at and the couple C\ . In like manner the single force % = M^r^^
at B may be replaced by the equal parallel force F% in the reference

plane and a couple C 2 =M'

^r^a^.

Thus, the kinetic loads on a shaft exerted by a system of

rotating masses may be reduced to a system of concurrent forces
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in an arbitrarily chosen reference plane and a system of couples
which he in different axial planes. The resultant of the system
of concurrent forces, if not balanced, is a single force in the refer-

ence plane, and the resultant of the system of couples, if not bal-

anced, is a single couple in some axial plane. Hence, in general,

the system of kinetic loads, if not balanced, may be reduced to a

single force and a couple. The magnitude of the couple will, of

course, depend on the position chosen for the reference plane.

The conditions then which must be fulfilled to have a system of

rotating masses in equilibrium are,

(1) The resultant of the system of concurrent forces must
be zero. That is, the force polygon for the forces in the reference

plane must close.

(2) The resultant of the system of couples must be zero.

That is, the couple polygon must close.

These conditions may be satisfied by the addition of two rotating
masses in different transverse planes. Thus, let the shaft (Fig.

388) carry an unbalanced system of rotating masses, MI, M2 ,
and

:M 2 f)M 2

r f

FIG. 388.

MS, and let the two balancing masses be denoted by MQ and M'Q.

Let the transverse planes in which these balancing masses are to lie

be chosen arbitrarily but let the plane of one of the masses be chosen
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as the reference plane. The plane of massM 'o will here be selected

as the reference plane. Let OQ, i, &2, and as denote the respective

distances of the masses MQ, MI, M^ and MS from the reference

plane. The couples W\r\ai y Wtfiai, etc., may now be calcu-
O

lated (the common factor is omitted in each term for simplicity).

The only unknown couple is TFoWo, since the couple

is zero due to the fact that the reference plane was chosen as the

plane of M'o, which makes a'o equal to zero. By laying off the

vectors that represent the known couples as the sides of a polygon,

the closing side determines both the magnitude of the unknown

couple Woroao and the axial plane in which it lies. By assigning

any convenient value to the moment arm OQ, the product Woro

may be found, and by assuming a convenient value for ro, Wo may
be determined and placed in the plane indicated by the closing

vector of the couple polygon. Thus, by the addition of the

couple WoToOo condition (2) is satisfied.

Condition (1) may now be satisfied as follows: The kinetic

load due to the added mass MO is replaced by a force in the refer-

ence plane and the couple Moroao as was done for the kinetic loads

due to the original masses. Now, if the products W\ri, Wtfi,

etc. (including Woro) are laid off as the sides of a polygon, the

closing side gives the magnitude and the direction of a product
TPV'o for a body W'o which must be added in the reference plane
to balance the system of concurrent forces in the reference plane
and thereby satisfy condition (1). By choosing a convenient

value for r'o, the mass M'o may be determined and the direction

of the closing side of the polygon gives the direction of M'Q from

the axis of the shaft.

If the couple polygon is formed by drawing the couple vectors

perpendicular to the planes of the couples, as explained in Art. 17,

and then is turned through 90, it will be the same as the polygon
formed by drawing the couple vectors according to the following
rule: Draw the couple vectors parallel to the respective crank

directions; outwards for masses on one side of the reference plane;
inwards towards the axis for masses on the opposite side of the

reference plane.

The vectors of the force polygon are drawn, of course, from the

axis outwards parallel to the radii to the masses,
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ILLUSTRATIVE PROBLEM

419. Three weights W1} W2 ,
and W (Fig. 389) which revolve in the planes

1, 2, and 3 are to be balanced by the addition of two weights. Plane 1 is

chosen as the plane of one of the weights (W ) and the plane of the other

weight (W'o) will arbitrarily be taken 1.4 ft. to the right of plane 3 and will be
selected as the reference plane. It is required to determine values of W and
W'Q and the lengths and directions of the corresponding radii for kinetic

balance. The accompanying table gives the values of the weights, the lengths
and directions of the radii, and the distances from the reference plane.

Plane.
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in planes and O' at radial distances 8 in. and 5 in., respectively, as indicated

in Fig. 389, the system will be in kinetic balance.
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Determine sufficient data for kinetic balance of the system of bodies:

(a) By the addition of a single weight placed 2 ft. from the axis of

rotation.

(6) By the addition of two weights, one of 2 Ib. placed on the ?/-axis,

and the other of 2.25 Ib. placed 2 ft. from the axis of rotation.

421. Four bodies are attached to a revolving shaft in different transverse

planes. The weights and positions of the bodies are indicated in the following

table, the reference plane being the transverse plane in which the mass-center
of the 6-lb. body (W lies.

w
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The gyroscope here considered is a body symmetrical with

respect to each of three rectangular axes. The body rotates or

spins with constant angular velocity about one of the axes and at

the same time turns about one of the other axes with constant

angular velocity. Thus, in Fig. 390, let ABCD represent a circular

disc which is symmetrical with respect to the three axes x, y, and z.

Let the disc rotate or spin with a high constant angular velocity co

FIG. 390.

about the z-axis and at the same time let the disc turn about the

y-axis with the constant angular velocity 12. The problem which

arises is that of determining the forces which must act on the disc

or its axles (axle reactions) in order to maintain this gyroscopic

motion.

166. Analysis of Forces in the Gyroscope. Due to the two

rotations imposed on the disc, a particle, m, at the distance p

(assumed at the circumference of the disc for convenience)

has at any instant, two velocities: (1) a constant velocity wp in the

plane of the disc due to the rotation about the z-axis with angular
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velocity co, and (2) the velocity ftp cos 6 perpendicular to the disc

(parallel to the z-axis) due to the rotation about the 2/-axis with

angular velocity ft.

The changes that occur in each of these two velocities of any
particle due to each of the rotations which are given to the disc

will first be investigated, since the effective force for any particle

must have components corresponding to the change in the mag-
nitude and to the change in the direction of each of these two
velocities (Theorems I and II, Art. 118, and Newton's second law,

Art. 140). And, the effective forces for the particles must be

found in order to determine the external forces required to main-

tain the gyroscopic motion. (Read Art. 144 for the general method
of procedure, keeping in mind that gyroscopic motion is not uni-

planar motion.) It will be found, however, that external forces

come into action as the result of only two of the changes which

occur in the two velocities; namely, the change in ftp cos 6 due to

the rotation about the z-axis and the change in cop due to the

rotation about the i/-axis.

CHANGES IN THE VELOCITIES DUE TO ROTATION ABOUT Z-AXIS

(1) Change in cop. Since co is constant, cop changes in direction

only. The resulting acceleration (co
2
p) and the corresponding

effective force for the particle, is directed towards the center of

rotation (towards the z-axis). And, since the body is symmetrical,
these effective forces for all the particles form a balanced system
and hence, according to D'Alemberfc's principle, no external forces

act on the body by reason of this change in the velocity of the

particles.

(2) Change in ftp cos 6. In one revolution of the disc about the

z-axis, this component of the velocity changes, as follows: It

gradually increases in magnitude downwards from zero at A to a

maximum at B; it then decreases gradually to zero at C; then

increases in the opposite direction to a maximum at D
;
and finally

decreases to zero again at A. The acceleration, a\ t
at any instant

then is (Theorem I, Art. 118),

d(ftp cos 0) . -dB
ai= -r =

ftp sin
Q-j-

=
ftp sin 0co= cofti/,

in which y is the distance of the particle from the z-axis, and the
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minus sign indicates that the sense of the acceleration is opposite

to that of the velocity for the position of the particle as shown in

Fig. 390. Hence, for the position of the particle shown, the direc-

tion of co!2?/ is upwards. The effective force, corresponding to this

acceleration, for any particle in the quadrants OBC and OCD, is an

upward force perpendicular to the plane of the disc. And, in the

quadrants ODA and OAB, it is a downward force. The resultant of

the effective forces for the four quadrants, then, may be represented

by the forces P (Fig. 390). These forces form two couples which

have moments with respect to only one of the rectangular axes;

namely, the z-axis. Further, according to D'Alembert's principle,

the effective forces require that external forces act on the disc

such that the resultant of the external forces is equivalent to that

of the effective forces. Hence, an external couple must act on the

disc (or its axles) as indicated by the forces Q (Fig. 390).

CHANGES IN VELOCITIES DUE TO ROTATION ABOUT Y-AXIS

(3). Change in cop. Let the velocity cop be resolved into two

components; one parallel and one perpendicular, respectively, to

the ?/-axis (Fig. 390). The component parallel to the ?/-axis under-

goes no changes due to the rotation about the ?/-axis; but the

component cop sin 6, which is perpendicular to the ?/-axis, changes
in direction due to the rotation with angular velocity 12 about the

?/-axis. And, according to Theorem II of Art. 118, the accelera-

tion 0,2 corresponding to this change in velocity is the product
of the magnitude of the velocity and its angular velocity of turn-

ing, that is,

02 = cop sin 0-12 = col2i/,

and it is directed upwards perpendicular to the plane of the disc.

This acceleration, therefore, is equal to a\ (see above) and has the

same direction and sense as that of a\ for all positions of the par-

ticle, as will be observed from a study of Fig. 390. Therefore,
external forces which act on the disc as a consequence of the

changes in cop sin 6 due to the rotation of the disc about the ?/-axis

must constitute a couple exactly the same as that found under (2).

(4) Change in 12p cos 0. This velocity changes in direction,

only, due to the rotation about the 2/-axis with constant angular

velocity 12. The resulting acceleration, 12
2Xp cos 9 or 12

2
#, is
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directed towards the center, on the ?/-axis, about which the par-

ticle is rotating at the instant. The corresponding effective forces

for the particles of the whole disc, therefore, form a parallel system
in the plane of the disc. But, since the disc is symmetrical with

respect to the 2/-axis, this effective force system is balanced and

hence no external forces act on the disc as a consequence of the

changes caused in this velocity by the rotation about the i/-axis.

It will be noted, therefore, that if the disc is rotated about

the 2-axis and at the same time is turned about the y-axis, it will

rotate about the z-axis unless an external couple'acts on the disc to

prevent the rotation. This external couple is called the gyroscopic

couple.

A simple experiment for demonstrating the existence of the

gyroscopic couple may be made by holding a bicycle wheel (dis-

mounted from the frame) with one hand on either end of the pro-

jecting (horizontal) axle. If the wheel is spinning in the vertical

plane about the axle which is held in the hands, any attempt to

turn the axle (and hands) in the horizontal plane will cause the

wheel (and hands) to turn about a horizontal axis perpendicular
to the axis of the wheel unless the hands exert a couple to prevent
this rotation.

167. The Moment of the Gyroscopic Couple. In the preceding
article it was shown that the only acceleration of a particle of

the disc which requires the action of external forces on the disc is

a= di+ a>2 co

and that it is directed perpendicular to the plane of the disc;

upwards in the two quadrants BCD, and downwards in the two

quadrants DAB.
The force required to produce this acceleration (effective force)

of the particle of mass m is,

F=ma=mX 2coOt/,

the direction of which agrees with that of a.

The moment of this effective force for the particle, about the

x-axis is,
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and the sum of the moments of the effective forces for all the par-

ticles of the disc is,

22rao)12i/
2

.

But since o> and 12 are constant this may be written,

Zrra/
2 =

27*0)12,

in which Ix is the moment of inertia of the .disc with respect to the

x-axis.

Now the sum of the moments of the effective forces is equal to

the moment of their resultant, but the resultant of the effective

forces is a couple, as shown in the preceding article. Further, this

resultant couple is equal to the external or gyroscopic couple.

Therefore, the moment, C, of the gyroscopic couple is

= 27*0)12.

But, since the disc is symmetrical with respect to the x- and y-axes,

Ix is equal to Iv . Hence, by making use of the equation of Art. 89,

27j may be replaced by the moment of inertia of the disc with

respect to the axis of spin (z-axis). Therefore, the moment of the

gyroscopic couple is,

in which 7 is the moment of inertia of the disc with respect to the

axis of spin.

The following conclusion then may be drawn : If a body is sym-
metrical with respect to each of two rectangular axes (x and y)

and rotates or spins with a constant angular velocity o? about a

third axis perpendicular to each of the two axes (the z-axis or axis

of spin), a couple having a moment about one of the two axes

(the x-axis) is required to maintain an angular velocity, 12, about

the other of the two axes (the 2/-axis); the moment of the couple
is equal to the product of (1) the moment of inertia, 7, of the body
with respect to the axis of spin (z-axis), (2) the angular velocity,

o), of spin, and (3) the angular velocity, 12, about the ?/-axis.

The angular velocity 12 which is maintained by the couple

is called the velocity of precession and the corresponding axis

(y-axis) is called the axis of precession. The axis about which the
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couple 7col2 tends to rotate the disc (z-axis) is called the torque

axis. Hence the disc when spinning about the z-axis with angular

velocity co is said to precess about the i/-axis when acted on by a

couple having a moment of Jcoft about the z-axis.

By referring to Fig. 390, it will be seen that the sense of rotation

about the axis of precession (?/-axis) is in accordance with the fol-

owing rule:

The sense of precession is such as to turn the axis of spin

toward the torque axis, that is, the axis of spin tends to become

coincident with the torque axis.

In the interpretation of this rule the torque axis must be

regarded as that part or end of the z-axis which, considered as a

vector drawn outward from the origin, represents the moment or

torque of the couple 7col2, and the axis of spin must be regarded

as that part or end of the z-axis which, considered as a vector drawn

outward from the origin, represents the angular velocity co about

the z-axis.

Thus, if a disc of weight W (Fig. 391) is given an angular

velocity co about the z-axis and

then one end of the axis is placed

on the vertical post at A, the

couple having a moment Wl will

cause the disc (and z-axis) to ro-

tate with angular velocity 12

about the axis of the post (?/-axis)

such that

Or,

FIG. 391.

Wl
W12

A;
2
co

g

fcV

in which k is the radius of gyration of the disc with respect to the

axis of spin (z-axis). Further, if the sense of a? be as represented

in Fig. 391, the sense of precession about the ?/-axis will be clock-

wise as viewed from the positive end of the i/-axis. For a further

discussion of the gyroscopic couple see Art. 221.
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ILLUSTRATIVE PROBLEM

423. The flywheel of an engine on a ship weighs 6000 Ib. and has a radius

of gyration of 3.75 ft. It is mounted on a horizontal axle which is parallel to

the longitudinal axis of the ship, and has a speed of 400 r.p.m. clockwise when
viewed from the rear. Find the gyroscopic couple when the ship is turning

to the left with an angular velocity of 0.1 rad. per sec. What are the axle

reactions if the distance between the centers of bearings is 4 ft.?

Solution. The moment of inertia of the flywheel about the axis of spin is,

And,
400X27T

= 2620 slug-ft.
2

.,
_ , ,

=41.9 rad. /sec.

Hence the gyroscopic couple is,

/wft = 2620X41.9X0. 1 = 10,980 Ib.-ft.

In accordance with the rule stated in Art. 167, the vector representing this

couple is perpendicular to the axis of the ship and is directed towards the right.

The forces constituting the gyroscopic couple are the axle reactions and hence

the reaction at the forward bearing is downwards and that at the rear bearing

is upwards. Since the distance between centers of bearings is 4 ft. the magni-
tude of each of these reactions is 10,980 -5-4 = 2745 Ib. The effect of the

gyroscopic motion, then, is to increase the reaction at the rear bearing and to

decrease it at the forward bearing. The reaction at each bearing due to the

weight of the flywheel is 3000 Ib. Hence the resultant reaction at the rear

bearing is 3000+2745 = 5745 Ib. and that at the forward bearing is

3000 -2745= 255 Ib.

PROBLEMS

424. A disc 4 ft. in diameter (Fig. 392) rolls on a circular track having a

radius of 10 ft. The center of the disc has a velocity of 20 ft. per sec. The

FIG. 392.
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disc is attached to the central axis OY by means of a rod which is collinear

with the z-axis about which the disc turns. The disc has a flange similar to

that on a car wheel. If the weight of the disc is 450 Ib. find the tension, T,
in the rod and the pressure, P, of the track against the flange of the wheel.

426. A circular disc is mounted on a horizontal axle which is free to rotate

about a vertical axis as shown in Fig. 391, the distance from the center of the

disc to the vertical axis being 2 ft. The radius of the disc is 6 in. and its weight
is 10 Ib. If the disc rotates about the horizontal axle with a speed of 300

r.p.m., with what velocity will it rotate about the vertical axis?

Ans. 12 = 157 r.p.m.

426. The propeller of an aeroplane rotates clockwise when viewed from the

rear. If the aeroplane turns to the right when moving in a horizontal plane,
what will be the effect of the gyroscopic couple?

427. The flywheel of an automobile engine is mounted on a horizontal axle

parallel to the longitudinal axis of the automobile. The flywheel rotates

counter-clockwise when viewed from the rear. What will be the effect of the

gyroscopic couple on (a) the axle reactions of the flywheel, (6) the pressures
of the wheels on the road?

GOVERNORS

168. The Action of Governors. The governor of a steam

engine, hydraulic turbine, gas engine, or other motor, automatically

regulates the supply of the steam, water, gas, or other fluid, so

as to keep the driving force exerted by the working fluid constantly

adjusted to the resistance to be overcome. The governor partakes
of the motion of the motor so that an increase in the speed of the

motor due to a decrease in the load, causes a corresponding increase

in the speed of the moving parts of the governor which, in turn,

causes, by means of a suitable mechanism, either a decrease in

the pressure of the fluid or a decrease in the quantity of fluid deliv-

ered to the motor.

The forces which cause the adjustment of the controlling valve

and which are brought into play by the change of motion of the

governor parts, depend in the main upon (1) the actual change
in the speed of the moving parts or (2) the rate of change of the

speed of the moving parts. Governors in which the governing
action depends mainly upon the actual change of speed of the gov-
ernor parts are called centrifugal governors and may be either pen-
dulum or shaft governors. Governors in which the governing
action depends mainly upon the rate of change of speed of the

moving parts are called inertia governors and are shaft governors.
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A brief analysis of the forces brought into play by a change in the

motion of each of these types of governors will here be made.

169. The Conical Pendulum.

In Fig. 393 (a) a ball of mass M and

weight W is held at the end of an

arm AB and the ball and arm are

caused to rotate about an axle AO
with velocity co. The acceleration

of the center of the ball is directed

towards, 0, the center of its circular

path and its magnitude is rco
2

.

Hence, the force, R, required to

produce this acceleration of the

ball is,

W
R =Mru2 = rco

2
.

Now, the accelerating (effective)

force R must be the resultant of

the external forces which act on the ball. These external forces are

the weight, W, and the tension, T
7

,
in the arm, as shown in Fig.

393(6). If a force which is equal but opposed to R (the inertia

force) is assumed to act with W and T as shown in Fig. 393(6), the

three forces will be in equilibrium and hence the sum of their

moments with respect to the point A is equal to zero. Thus,

(b)

FIG. 393.

W

Therefore,

TFr=
9

in which co is expressed in radians per second and g is equal to 32.2

ft. per sec.
2 If the number of revolutions per minute (r.p.m.)

is denoted by n, then w=
-^7r-

Therefore, h, may be expressed

(in inches) by the equation,

h=
35200

(1)

This equation shows that the height h of the cone depends only

on the speed of rotation and not upon the weight of the ball nor

the length of the arm AB. Now, in the pendulum governor, the

governing action depends upon the manner in which h varies with
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w. The accompanying table is obtained from equation (1). It

will be noted that at low speeds a small change in speed of the ball

n (in r.p.m.)
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the inertia force of the ball or cylinder. If L denotes the weight

of the disc (load) then -~ is the load on each ball and the external
Z

forces W, o", and T which act on the ball form, with the reversed

effective (inertia) force Tlfrco
2

,
a system in equilibrium as shown

in Fig. 395(6). The sum of their moments, therefore, about the

point A is equal to zero. Thus,

and by expressing co in revolutions per minute, h is expressed in

inches by the equation,

TF+-
^2 35200

W n2

This equation shows that the addition of the load to the balls of

L
the conical pendulum increases the height h in the ratio of l+o^
to 1. For example, if W = 5 Ib. and L= 30 Ib. then,

.JL=1+J__ 4""' ^2X5

Thus, the height h of the simple conical pendulum corresponding to

a speed of 200 r.p.m. is 0.88 in. and when loaded its height becomes

4X0.88 = 3.52 in.

For high rotative speeds, loading must be resorted to in order

to increase the change of height for a given change in speed, that is,

in order to increase the sensitiveness of the governor.

171. The Porter Governor. In Fig. 396(a) is shown the Porter

loaded governor, in which the load on the conical pendulum is

suspended from additional links which are attached to the balls.

With this arrangement the load is twice as effective as in the loaded

governor discussed in the preceding article, since, for a given rise

of the balls, the load rises twice the distance that the balls rise.

If, therefore, L denotes the load, the expression for h (in inches)

becomes,
.TT+L 35200

W X
n2

'
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Thus, in the above example, for the Porter governor, the height

becomes

NTfc;

FIG. 396.

The student should derive the above equation for h from the

analysis of the forces in a manner similar to that used in the pre-

ceding two articles. Free-body diagrams
for the revolving ball and load are shown
in Fig. 396(6).

J

PROBLEM

428. A spring-loaded governor is shown in Fig.

397. Let W be the weight (Ib.) of each ball; r (ft.)

the radius of the path of the balls; I (ft.) the length

of each of the four arms; o> the angular velocity in

radians per second. When the radius, r, is zero,

the tension in the spring is T Ib. and the force re-

quired to elongate the spring a unit length is Q Ib.

Show that, if the weight of the balls be neglected,

If W = 3 Ib., / = ! ft., and the balls revolve at 26
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FIG. 398.

rad. per sec. when r = 3 in., find the tension in the spring, assuming the

modulus of the spring to be 58 Ib. per in. Ans. T = 16.8 Ib.

172. The Centrifugal Shaft Governor. In the pendulum gov-

ernors considered above, the governing action is dependent upon
the centrifugal force (inertia force) of a rotating mass and the same

is true for some types of shaft

governors. Thus, let a body
of mass M be pivoted to the

arm of a flywheel as shown in

Fig. 398. Let the distance of

the center of the mass, G, from

the shaft center, S, be denoted

by R and let the wheel rotate

with an angular velocity co.

The centrifugal or inertia force,

then, of the mass M is Mru2
.

As long as co remains constant

this force has a definite value.

To hold it in equilibrium a spring is employed. The moment of the

spring tension about the point must therefore be equal to the

moment of Mrco2 about the same point (the weight of the body is

small in comparison with Mrco2 and hence its moment is neglected) .

If now the angular velocity of the wheel increases to co' due to a

decrease in the load on the engine, assuming the value of r to

remain constant, the centrifugal force increases to Afro/2 and the

excess force Mr(a/
2

co
2
) causes the mass to move outwards

whicji.

in turn changes the time of cut off of the valve and adjusts the

amount of the working fluid deliv-

ered to the engine.

PROBLEMS

429. What must be the initial tension

in the spring and the modulus of the

spring so that the weight, A, in the gover-
nor shown in Fig. 399 will not leave the

inner stop and pass to the outer stop until

a speed of 210 r.p.m. is reached? Assume
that the weight of A is 16.1 Ib., a = 3 in.,

6 = 24 in., c = 8 in., and d = 16 in. If the

spring should be placed farther from E
than 16 in., would A reach the outerFIG. 399.
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stop with the wheel revolving at the same speed that it had when A left

the inner stop? Ans. 7
1 = 2421b.; modulus = 45.4 Ib. per in.

430. Given the arrangement as shown in the previous problem, with the fol-

lowing data : a = 3 in., b = 20 in., c = 9 in., d = 12 in., modulus of spring = 50 in. If

the mean speed, n
,

is 200 r.p.m., what must be the weight of A for a

coefficient of steadiness, ,
of 0.01, where HI and n2 denote the maximum

wo

and minimum speeds respectively? Ans. W = 14.85 Ib.

173. The Inertia Shaft Governor. As already noted, governors

in which the regulating action depends upon a change in the cen-

trifugal force, whether of the pendulum or of the shaft type, are

called centrifugal governors. It

is important to note that with

centrifugal governors there must

be an actual change of speed to

give a governing action. In the

inertia governor, however, the

governing action is entirely differ-

ent. Thus, in Fig. 400, let a

mass M be pivoted to the arm

of a flywheel so that the pin, 0,

passes through the center of mass.

FIG. 400. The centrifugal force of the mass

is balanced by the pin reaction at

and hence the centrifugal force is not involved in the governing

action.

In order to show how the forces which cause the governing
action arise, let it be assumed first that the wheel of Fig. 400 is

standing still and that the mass is turned on the pin, 0, with an

angular acceleration a. To produce this acceleration a moment, T,

is required having a magnitude,

in which /o is the moment of inertia of the mass with respect to

the pin 0. Now, if a change in speed of the wheel (and shaft)

occurs, due to a change in the load on the motor, each particle in

the mass M, by virtue of its inertia, will tend to maintain its linear

velocity and hence will turn relative to the wheel about the axis

and thereby cause the valve mechanism to exert forces on the mass,
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the moment of which about will be equal to /oa. In this type of

governor, therefore, the governing action depends not upon the

actual change of speed but upon the rate of change of angular

speed, that is, upon the angular acceleration of the wheel or engine

shaft. Shaft governors of this type are called inertia governors.

174. Comparison of the Two Types of Governors. Centrifugal

and inertia governors differ in two important particulars. Since,

in the centrifugal type, the governing force depends upon the

change in the speed there must be an increase (or decrease) in the

speed of a definite amount before the governing force is sufficient

to move the valve gear against the frictional forces. In the inertia

governor, on the other hand, the governing force is proportional to

the angular acceleration and, in general, the angular acceleration of

the governing mass is greatest just at the beginning of the change
of speed; hence, before the speed of the shaft has changed appre-

ciably, the governor begins to act although the change in the

centrifugal force is small. It follows then that the inertia gov-

ernor acts more quickly and holds the speed within much smaller

limits than does the centrifugal governor.

The centrifugal type of governor, however, has one essential

property not possessed by the inertia type. The centrifugal

force Afrco2 varies somewhat for different positions of the balls in

Figs. 393, 394, 395, or 396, and of the body in Fig. 398, but for any
fixed position it must have a fixed definite value which is deter-

mined by the weight of the balls (and load on the balls) in the pen-

dulum governors and by the spring tension in the shaft governor.

It follows that, with the governor in a definite position, the speed,

co, of the shaft has a definite value and therefore the speed of the

engine is fixed. Thus, if it is determined that the speed shall be

200 r.p.m. and the governor is properly adjusted, the speed cannot

vary much from that speed as long as the governor is operative.

The speed may sink to 195 r.p.m. under a heavy load or rise to

205 r.p.m. with a light load; but the centrifugal force imposes the

average speed of 200 r.p.m., and the engine cannot be made to

run at a different average speed without some adjustment of the

governor, such as the addition of a weight or an increase in the

spring tension.

175. Analysis of Forces in the Rite's Inertia Governor.-

In the shaft governor known as the Rite's inertia governor, a

combination of the two governing actions discussed above is
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affected by means of a single heavy mass which is pivoted at a

point at some distance from the shaft center but not at the center

of the mass.

To gain a clear conception of the forces which are developed

during the action of a shaft governor of the Rite's type, consider

the motion of a heavy mass of any form (Fig. 40la) pivoted at a

point which is at a distance e from the shaft center S. The

FIG. 401.

center of gravity, G, of the mass is at the fixed distance s from the

pivot and at the distance r from the shaft center S', this latter

distance may of course vary. Let any particle, P, of the mass be

at the distances o- and p from and S, respectively. The procedure

followed in the analysis of the forces in the Rite's governor is the

same as that used in the analysis of the various kinetics problems

in the preceding section. The main steps in the procedure are

outlined in Art. 144. Let,
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WM = =the mass of the body which is pivoted at 0;
\J

o> = the angular velocity of the wheel about the shaft center S
;

12 = the angular velocity of the mass M about the pivot 0;
u = <rSl = the linear velocity of P relative to

;

a = -y =the angular acceleration of the wheel;

a/ = ~T
f

= the angular acceleration of the mass M about
;

lo = the moment of inertia of the mass M with respect to the

pivot 0, and

7= the moment of inertia of the mass M with respect to the

center of gravity G.

Acceleration of Any Particle P. According to CoriohV law

(Art. 130), the acceleration of the particle P (Fig. 4016) has three

components as follows:

(1) The acceleration that P would have considering the wheel

to be stationary and the mass to be rotating about 0; this accelera-

tion may itself be resolved into,

A radial component o-fl
2
along PO, and a tangential component

cr = <jd
f

perpendicular to PO;

(2) The acceleration of that point of the wheel which is coin-

cident with P; this component may likewise be resolved into,

A radial component pco
2
along PS, and a tangential component

=
pa. perpendicular to PS.

dt

(3) The acceleration 2uu along OP.

These components of the acceleration of the point P are shown
in Fig. 401(6). No attempt has been made to show the magnitudes
of the accelerations by the lengths of 4ihe vectors.

It will be found convenient to replace the components pw
2 and

pa by four other components, parallel and perpendicular, respect-

ively, to the lines SG and PG. These four components may be

obtained by direct resolution or by considering the motion of the

wheel to be replaced by a rotation and a translation (Art. 134).

Thus, at any instant, the rotation of the wheel about its shaft, S,

with angular velocity co and angular acceleration a may be con-

sidered as a rotation with the same angular velocity and acceleration
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about a parallel axis in the wheel which passes through the

point G, and a translation of the wheel in a direction perpendicular
to SG. The components pco

2 and pa which, as found above, were

due to the rotation of the wheel about its shaft S will now be

replaced by (1) the acceleration of the point P due to the rotation

of the wheel about G and (2) the acceleration due to the translation,

which is common to all points of the wheel. The accelerations of

the point P of the wheel (that is, the point on the wheel which is

coincident with the point P of the mass M), then, are,

xco
2
along PG

and

xr- = xa perpendicular to P(7,

which are due to the rotation of the wheel about G; and,

ror parallel to SG,
and

ra. perpendicular to SG,

which are due to the (curvilinear) translation of the wheel.

Moment of Effective Forces about the Pin 0. The moment of the

effective forces for the whole body with respect to the pin will

now be found since the rotation of the mass about the pin is the

cause of the movement of the valve mechanism. And, the moment
of the effective forces must be found in order to determine the

moment of the external forces which are brought into action as a

result of this rotation and which are exerted on the valve mechan-

ism. For, by D'Alembert's principle, the sum of the moments
of the external forces must be equal to the sum of the moments
of the effective forces.

The accelerating or effective force for the particle P of mass m
must have a component in the direction of each of the acceleration

components, the magnitude of each component of the force being

the product of the mass m of the particle and the acceleration

component. These seven components of the effective force for

the particle are shown in Fig. 401, acting at the particle P. The
sum of the moments of these forces, for all the particles, about the

pin may be found as follows :

(1) The components mo-122 and 2muco are collinear and act

through the pin 0. The resultant of these components, therefore,
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for the whole body, is a force which acts through 0. The sum of

the moments of these components about the point 0, then, is

equal to zero and hence, these forces have no influence in the prob-

lem under discussion. Their only effect is to produce a pin pres-

sure at 0.

(2) Consider next the forces wrco2 . These forces arise from the

translation given to the body. All of these forces, then, are parallel

to SG and all have the same sense. Therefore, their resultant is

a single force (Art. 145) the magnitude of which is,

Srarco2 =Mrco
2

.

The line of action of this resultant force passes through G (Art.

145), as shown in Fig. 402. The sum of the moments of the mrco2

2 x Area of S G

FIG. 402.

forces about the pin (which, of course, is equal to the moment
of their resultant), then, is (Fig. 402),

Mrco2
X/.

(3) Consider next the mra forces. These forces also arise

from the translatory motion which is given to the wheel (and mass

M). All of these forces then are perpendicular to SG and have the
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same sense. Their resultant, therefore, is a single force (Art. 145)

having a magnitude equal to

'Zmra= Mra.

This resultant force also passes through G. The sum of the

moments of the mra forces with respect to the pin 0, then, is

(Fig. 402),

MraXc.

(4) The moment of the mxu>2 forces will be found next. These

forces are the normal forces due to the rotation of the wheel (and
mass M) about an axis through G. They pass, then, through the

a.xis of rotation and their resultant, therefore, is a single force

having a magnitude equal to Mx^2 which acts through G (Art. 22).

But, G is the mass-center of the mass M and hence, the quantity
Mxu2

is equal to zero since x, the distance from the mass-center to

the axis of rotation, is zero. Therefore, the sum of the moments
of the mxco2 forces about the pin is equal to zero.

(5) The mxa forces are the tangential forces which also arise

due to the rotation of the wheel (and mass M) about the mass-

center G. The resultant of these forces is a couple having a moment

equal to la (Art. 146) in which / is the moment of inertia of the

mass M with respect to the axis through its mass-center. The
sum of the moments of the mxa forces, then, with respect to the

pin (or any other moment-center in the plane of motion, Art.

15) is equal to

(6) Lastly, the mad forces will be considered. These forces

are the tangential forces which arise due to the rotation of the mass

M about the pin 0. The sum of their moments, then, about 0,

the axis of rotation, is (Art. 146),

in which /o is the moment of inertia of the mass M with respect to

the pin 0. This moment, however, for governors as constructed, is

small compared with the other moments since a' is small. There-

fore, the moment /o</ will be neglected in the subsequent discus-

sion.
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The Moment of the External Forces and the Governing Action.

As noted above the moments of the external forces must be equal

to the sum of the moments of the effective forces. Or, if the

effective forces were reversed, external forces would have to act

on the body such that they would hold the reversed effective

(inertia) forces in equilibrium. Hence, external forces must act

on the massM such that the moments of the external forces will

hold in equilibrium the moment (Fig. 402),

(1)

of the centrifugal force, and the moment

..... (2)

which is called into action only when the angular acceleration, a,

exists.

It will be noted, therefore, that if the angular velocity, co,

of the flywheel (and engine) remains constant, that is, if the

angular acceleration, a, of the flywheel is equal to zero, the

moment (Mehu
2
) of the centrifugal force has a constant magnitude

and must be equilibrated by the moment of the spring tension.

Further, if GO is constant the only external moment acting on the

mass M is the moment of the spring tension since a, and conse-

quently Ti, is equal to zero. Thus, the moment T^ unlike the

moment Tc ,
is called into existence only when there is a change in

speed of the flywheel and hence it does not require an opposing
moment except that supplied by the resistance of the valve gear

as the valve gear adjusts itself to the new speed.

To explain further the governing action in the Rite's governor,

let it be assumed that the motor is running at a constant mean

speed wo ;
the moment Tc (

= Mehu>2
) of the centrifugal force is then

just balanced by the moment of the spring tension which may be

denoted by Ts . Now, let the load on the motor be reduced; the

excess of the effort over the resistance will cause the moving parts

of the motor (flywheel, shaft, etc.) to rotate with an increased

speed, coi, and the moment Tc will increase from Mehco2 to Mehui 2
.

The difference, Meh(u\
2 w2

), is the excess of the moment of the

centrifugal force over that of the spring tension and is available

for producing a movement of the governor parts. However, if
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this difference alone is depended on for moving the valve mechan-

ism, the speed coi must be considerably in excess of the mean speed

o)o before the governor and attached valve will move. On the

other hand, the very instant the change in speed begins, the angular

acceleration, a, of the mass M comes into existence and, with it,

the unbalanced moment Tt which is available for moving the valve

gear. In the ideal governor, therefore, there is needed a moment,
TC) of a centrigufal force which is just sufficient to fix a mean speed

wo, and a moment, Tt, of considerable magnitude which arises from

the rate of change of the angular velocity of the flywheel and which

provides for the adjustment of the governor.

Distribution and Position of the Mass M. An inspection of

equation (2) shows that, with a given value of r, the magnitude of

the moment Tt depends on M and 7. With a heavy flywheel, a

is likely to be small; hence, to make T* large, either M must be

made large or, for a given M, I may be made large by constructing

the swinging mass M in two parts which are removed a considerable

distance from the center of gravity, G, and are joined by a bar

(see Figs. 404 and 405).

Further, the governing action of the swinging mass will depend

largely on the relative position of the points 0, S, and G. Thus,
in Fig. 403, let a circle be drawn having a diameter equal to OS or

e and let the sense of rotation of the shaft be assumed clockwise.

As discussed above there are three moments (Mrac, la, and

Meh(ui
2

o)o
2
)) which are effective in producing the adjustment of

the governor. Now these three moments may or may not have

the same sense, depending on the location of the point G. If a

counter-clockwise sense is denoted by + and a clockwise sense

by ,
the following table indicates the sense of each of the

three moments about for a location of G in each of the four

regions, I, II, III, and IV indicated in Fig. 403.

I II III IV

Mrac + +

la + + + +

For the most powerful governing action, the mass-center, G,

of the mass M, therefore, should be located in region I. If (7 is
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located in region III, the moment 7\ becomes equal to (I Mrc)a

and this quantity may be positive or negative according as 7

is greater or less than Mrc. With G located in regions II and IV,

that is, to the left of the vertical diameter, the moment of the cen-

trifugal force and the moment la are opposite in sense. In a gov-

ernor in which the whole mass is concentrated near to G so that

7 is small, it is permissible to locate G in region IV; with a, gov-

ernor of this type the engine may, therefore, rotate in either direc-

tion without changing the governor.

FIG. 403.

In modern governors of the Rite's type 7 is made very large and

hence the moment la is very large compared with the moment
Mrca. Therefore, in these governors, the mass-center of M may
be located on the circle or even in region II if it is desirable to do so

in order to decrease the centrifugal moment Mrca and, in conse-

quence, the size of the spring required.

From Fig. 403, it will be noted that the moment of the cen-

trifugal force Mrui2 is 2Mu>2 times the area of the triangle OSG',

hence, this moment is directly proportional to the area of the tri-

angle OSG. From this fact, it appears that the size of the spring

required varies directly as the area of the triangle OSG; and, to

obtain as light a spring as possible, consistent with good regula-
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tion, the triangle OSG should be made as small as possible. If G
is kept in region I, this object is accomplished by locating G either

near to S at G'
',
or near to at G" (Fig. 403). In the governors

shown in Fig. 404 and 405 it will be noted that G is located near to S.

ILLUSTRATIVE PROBLEM

431. In Fig. 404 is shown a Rite's inertia governor designed for a 6-h.p.

Nagle engine. Experience shows that from 0.5 to 8 ft.-lb. of energy per

FIG. 404.

h.p. should be stored in the governor weight in moving through its arc (work
done in stretching the spring). In the design, 5 ft.-lb. per h.p. was assumed.

Find the inertia weight required and the modulus of the spring from the follow-

ing data: 0=e=3.4in.; h = l.7m.; mean speed = 250 r.p.m.; 1 = QA in. =

unstretched length of spring; Zi
= ll in. =minimum length of spring; 1-2

= 12.2

in. = maximum length of spring; p = 3.8 in. = moment arm of spring tension.

Solution. Since the moment of the centrifugal force (Tc] must equal the

moment of the spring tension (Tf) we have the equation,

That is,

ro>
2/= 7^X3.8,
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or, W
.& (since rf

=
he),

where Tm denotes the mean value of the spring tension. In order to determine

the value of Tm ,
the work stored in the governor is equated to the work done

in stretching the spring. Thus,
_ 12.2-11.0

12
'

Hence,

Using this value of Tm in the above equation, we have,

From which,
w=in\b.

The length of the spring, when the governor is in its mean position is (12.2+
11.0) =11. 6. in. Hence the modulus of the spring is,

300

11.6-9.4 2.2

300= - = 136 Ib. perm.

PROBLEM

432. In the Rite's governor shown in Fig. 405, the inertia weight is 111 Ib.

and the tension of the spring in mid-position is 500 Ib. If e = 7 in., h = 2.6 in.,

r = 3 in., and p =8.2 in.; find,

FIG. 405.
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(a) The normal speed of the engine, that is, the speed when the governor
is in mid-position, and

(6) The power of the governor in ft.-lb. per h.p. if the engine is rated at

50 h.p., assuming that the spring stretches from 20 in. to 22 in. when the

governor moves through its whole range.

Ans. w=268 r.p.m.; 1.67 ft.-lb. per h.p.



CHAPTER X

WORK AND ENERGY

176. Introduction. In the preceding chapter the relations

between force, mass, and acceleration were developed from New-
ton's laws of motion and applied to the motion of bodies under the

action of unbalanced forces. As already noted, the quantities

involved directly in Newton's laws are force, mass, and acceleration.

But, acceleration involves the quantities velocity, distance, and

time. Now, in many problems in engineering, it is convenient

to use certain other quantities, the more important of which

are: work, power, energy, impulse, and momentum. The ex-

pression for each of these quantities is a combination of some of

the six quantities (force, mass, acceleration, velocity, distance, and

time) which are involved in Newton's laws of motion. Thus,
force and distance combine to measure work; force, distance, and

time combine to measure power; mass and velocity combine to

measure momentum and some forms of energy; force and time com-

bine to measure impulse, etc. Although the conceptions of these

quantities are more or less a result of our experience with physical

phenomena, the exact relations between them, as expressed in

certain principles to be developed in the following pages, are based

on the definite fundamental laws of Newton.

The present chapter is devoted to a discussion of the meaning
and use of work, of energy, and of certain principles which involve

these two quantities. Although no fundamental physical laws

other than those of Newton are used in developing the principles

of work and energy, nevertheless, the method of analysis which

makes use of work and energy, possesses certain advantages over

the method which makes use directly of force, mass, and accelera-

tion, even in certain types of problems which involve only rigid

bodies having rather simple types of motion 'such as translation,

rotation, and plane motion. And, in dealing with non-rigid bodies

having unordered motion, that is, motion in which the particles
405
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of the mass system (body) do not follow definite known paths,

the .principles of energy are of particular importance. In fact,

the study of the behavior of non-rigid bodies in general, such

as water, steam, gas, and air is largely based on the principles of

energy and, hence, these principles play an important part in

hydraulics, thermodynamics, meteorology, etc.

1. WORK AND POWER

177. Work Defined. A force does work on a body if the body
on which the force acts is moved so that the displacement of the

point of application of the force has a component in the direction

of the force. The amount of work done by a force is the product
of the force and the component of the displacement of its applica-

tion point in the direction of the force. The work done by a force

may also be expressed as the product of the component of the force

in the direction of the displacement of its application point and

the displacement. The component of the force in the direction

of the displacement of its application point is often called the

working component. And the component of the displacement in

the direction of the force is called the effective displacement.

178. Algebraic Expressions for Work Done by a Force. The
mathematical expression for the work, w, done by a force, F, in a

displacement, s, of its application point depends on the way the

force varies during the displacement. Several important special

cases are considered here.

7. The force is constant in magnitude and in direction and

agrees in direction with the displacement as, for example, the force

exerted in lifting a body vertically upward with a uniform acceler-

ation. The amount of
r*

work done is,

/?Vw
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in which F cos 6 is denoted by Ft since F cos 6 is tangent to the path
of the point of application.

777. The force varies in magnitude but not in direction and the

direction agrees with that of the

displacement as, for example, the

force exerted in compressing a

helical spring or the steam pres-

sure against the piston of a steam

engine after cut off. Thus, in

compressing a spring, the force

corresponding to any displace-

ment, s, is F (Fig. 407) and

this force may be assumed to

remain constant in an infinitesi-

mal displacement, ds. Hence,

according to case 7, the work

done by the force F in the dis-

placement ds is dw = Fds and, p 40
the total work done on the

spring, as F varies from its initial to its final value, is

w= \ *Fds.

A
In order to evaluate the integral by the method of calculus, F
must be expressed in terms of s. That is, the manner in which F
varies with s must be known.

IV. The force varies in magnitude and in direction as, for

FIG. 408.

example, the pressure of the connecting rod on the crank-pin of an

engine (Fig. 408). The expression for the work done by the force
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is found by the same method as was used in case III except that

the tangential component of the force must be used. Hence,

w =

This expression applies whether the displacement is along a circular

path or not. But when the displacement takes place in a circular

path the elemental displacement ds is expressed by the equation
ds = rd6. Whence,

r
rs re2

Ftds= I Ftrd0=
j

Tdd,

in which T is the torque or moment of the force about the center of

the circular path. And if the torque remains constant during an

angular displacement, 6=62 61, then,

CQi.

W=T I dO=T(82 -6i') = T'0.

Thus, in one revolution, the work done by the force F having a

moment T is w= T
7

- 2?r. And if n revolutions occur per unit of time,

then the work done per unit of time is,

w=T-2irn.

179. Work Done by a Couple. Since the magnitude of the

moment of a couple is the algebraic sum of the moments of the

two forces which constitute the couple, and since the moment of a

couple is the product of either force and the perpendicular distance

between the action lines of the forces, it follows from the above

discussion that the work done by a couple, having a moment T, in

a. displacement d6, is

r
w =

Jei
TdQ,

when the moment of the couple varies. And the work done is,

w=T-6,

when the moment of the couple is constant in the displacement.

Hence, the work done by a couple having a constant moment is the

product of the moment of the couple and the angular displace-

ment of the couple.
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180. Work a Scalar Quantity. Sign and Units of Work.

Work is a scalar quantity. Thus the work done by one force

may be added (algebraically) to the work done by another force

regardless of the directions of the forces or of the displacements

of their points of application. And, the work done on one body
of a system may be added (algebraically) to the work done on

the other bodies of the system in order to obtain the total work

done on the system, regardless of the manner in which the bodies

move. The fact that work is a scalar quantity, frequently makes

it convenient to use this quantity under conditions which make
the use of vector quantities difficult or impossible.

It is convenient to regard the work done by a force as having

sign. Work is positive when the working component of the force

and the displacement of its application point agree in sense; and

work is negative when the working component and the displace-

ment are opposite in sense. Thus, a force which retards the motion

of a body does negative work on the body.

The unit of work is the work done by a unit force acting through
a unit distance and hence, depends on the units used for force and

distance. Thus, the more common units for work in the gravi-

tational (engineers') system of units are the foot-pound, inch-

pound, meter-kilogram, etc. No one-term names are given to the

units of work in the gravitational system of units. The common
units of work in the absolute system of units are the dyne-centi-

meter, which is called an erg, and the joule, which is 107 ergs.

For large units of work the horse-power-hour and the kilowatt-hour

are used. For a definition of these units see Art. 184.

181. Graphical Representation and Calculation of Work. In

calculating the work done by a variable force, by the calculus

method, the working component, Ft ,
of the force must be expressed

in terms of the displacement s. If it is impossible to express Ft

in terms of s, or if, when possible, the expression for Ft is complex
and difficult to use, as in the case of the tangential effort on the

crank-pin of a steam engine, the relation between Ft and s may be

expressed graphically by means of a graph or curve, and the work
done may be found from the graphical diagram as follows : If values

of Ft and s are plotted on a pair of rectangular axes for all positions

of the application point of the force F, the curve joining the plotted

points is called a tangential-force-space (Ft-s) curve (Fig. 409).

In most problems, only a sufficient number of values of Ft are
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plotted to make it possible to draw a reliable Ft -s curve, values of

Ft being plotted more frequently when the value of Ft is changing
the more rapidly. The work done by a variable force F as

shown in the preceding article is w =
r*= Ftds.A But, Ftds repre-

sents an elemental part of the area (Fig. 409) between the Ft-s

curve and the s-axis. And, the total area under the Ft-s curve

between any two ordinates corresponding to abscissas si and

s2 is,

area =

Therefore, the work done by a force in any displacement s is

represented by the area under the tangential-force-space curve

between the ordinates si and S2. This diagram is called a work

diagram. In determining the

amount of work represented by
the work diagram, the scales

used in plotting the Ft-s curve

must be considered. Thus, if

ordinates are plotted to a scale

of 1 in. = 50 Ib. and abscissas to

the scale of 1 in. = 5 ft., then

each square inch of area under

the F(-s curve represents 250

ft.-lb. of work.

Since the area of a work dia-

gram equals the product of the

average ordinate and the base, the work done by a force equals the

average value of the tangential (working) component of the force

and the length of the path described by the application point.

The area of the work diagram may be found by means of a

planimeter or by dividing the area into small strips and applying

Simpson's rule. Or, in some cases, less exact methods may be

employed in estimating the area.

ILLUSTRATIVE PROBLEMS

433. A helical" spring (Fig. 410) having a modulus of 200 Ib. per in. is com-

pressed s = 4 in. by an axial load. How much work is done by the (variable)

load in compressing the spring?

s=Displacement

FIG. 409.



CALCULATION OF WORK 411

Solution. If Py denotes the force corresponding to any compression, y,

of the spring, then from case III we have,

But,

Hence,

Pydy.

f.

(when s = 4)

200t/ dy

_200s
2

= 200(4)
2

2 2

= 1600in.-lb.

The expression

200s 2

w =
jj may be written,

FIG. 410.

200s P
w = ~-pr~ Xs = -^ Xs = area of triangular work diagram

2 ^

= average force times total displacement

= area of rectangular diagram having the same area as the tri-

angular diagram.

150
J

60 90
J

One half of crank circumference-

FlG. 411.

434. The tangential-effort diagram for a steam engine (similar to Fig. 411)

is drawn to the following scales: 1 in. of ordinate=24 Ib. per sq. in. of

piston area and 1 in. of abscissa = a 30-arc of the crank-pin circle. The area

under the curve is found to be 11.5 sq. in. Find the work done on the crank-

pin per square inch of the piston area per stroke (one-half revolution), if the

crank length is 7.5 in. Also find the total work done per stroke, the diameter

of the piston being 14 in.
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Solution. A 30-arc of the crank-pin circle = 3.92 in.

1 sq. in. of the work diagram = 24X3.92 = 94.2 in.-lb. Work done per
stroke per square inch of piston = 94 .2 XI 1.5.

= 1083 in.-lb.

= 90.2ft.-lb.

Total work per stroke = 90.2 X
7rX(14)

2

= 13,900 ft.-lb.

436, In the design of punching machines (see Fig. 429) it is important to

know how much work is done in

punching a hole in a plate. Tests

show that the work-diagram for steel

is approximately of the form shown

by the heavy curved line in Fig. 412.

This diagram may be assumed, with-

out serious error, to be equal to the

triangular work-diagram in which the

maximum pressure P corresponds to a

shearing strength in the steel plate of

60,000 Ib. per sq. in. Find the work
done in punching a -in. hole in a f-in.

steel plate.

FIG. 412.

Solution. Pmax = shearing area X 60,000

=TrdtX 60,000

=TT X| XfX60,000 = 103,000 Ib.

The work done in punching the hole, assuming a triangular work diagram, is,

w = average pressure times thickness of plate

_ 103,000 5

2
X

8

= 32,200 in-lb.

PROBLEMS

436. A box weighing 80 Ib. is pulled up an inclined plane by a force, P, of

60 Ib. as shown in Fig. 413. The coefficient of friction is J. Find the work
done by each force acting on the box if it moves 20 ft. Find the total work
done on the box. Ans. 42.8 ft.-lb.

437. A rope which weighs 5 Ib. per foot and which is 500 ft. long, is sus-
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pended by one end from a drum. How many foot-pounds of work must be

done to wind up 200 ft. of the rope?

438. Water is pumped into an elevated tank from a reservoir at the rate of

10 cu. ft. per second. How much work is done, per pound of water pumped,
in raising the level of the water in the tank 12 ft. if the initial level is 40 ft.

above the surface of the reservoir? Assume that the frictional resistance of

the water in the pipe is equivalent to an additional lift of 4 ft. Ans. 50 ft.-lb.

FIG. 413. FIG. 414.

439. Two forces P,P (Fig. 414) exert a constant turning moment (couple)

on the hand-wheel of a large valve. The wheel is 18 in. in diameter. How
much work is done in closing the valve if 8 revolutions of the hand-wheel are

required and each force has a magnitude of 20 Ib.

FIG. 415. FIG. 416.

440. The steam indicator card (Fig. 415) is drawn to the following scales:

1 in. of ordinate = 100 Ib. per square inch and 1 in. of abscissa = 5 in. of the

stroke of the piston. The area of the indicator card is found to be 2.5 sq. in.

and the length of the diagram is 3 in. (stroke = 15 in.). The diameter of the

piston is 14 in. Find the work done per stroke by the steam on the piston.

What is the average steam pressure in Ib. per sq. in. (mean effective pressure)
which will do the same amount of work? Ans. w = 16,000 ft.-lb.



414 WORK AND ENERGY

441. The screw of the bracket clamp (Fig. 416) moves vertically 1 in. when
the hand-wheel is turned 4 revolutions. A helical spring having a modulus
of 200 Ib. per inch is compressed by turning the hand-wheel. The average
ffictional moment of the screw is 20 in.-lb. What is the average turning
moment applied to the hand-wheel in compressing the spring 3 in.?

182. Work Done on a Body by a Force System. So far, the

work done on a body by a single force has been considered. In

general, however, a body is acted on by a force system, and, in

order to find the work done on the body in any displacement, the

work done by the whole force system must be found. In many
cases the simplest and most direct method of obtaining the work

done on the body is by finding the algebraic sum of the works done

by the forces of the system. In certain cases, however, it is con-

venient to find the work done on a body by a force system from the

resultant of the force system. In this connection the following

propositions are important:

(a) The work done by a pair of equal opposite and collinear forces in any

displacement of their application points is zero, provided that the dist nee

between the points of application of the forces remains constant. Although
the resultant of two such forces is always zero the work done, in general, is not

zero. Thus, if one end of a helical spring is attached to a fixed body and a

force is applied gradually to the other end, the applied force and the reaction

of the fixed body are equal but the work done on the spring is not zero. It will

be noted, therefore, that although the resultant of the internal forces in any

body (whether rigid or not) is zero since they occur in pairs of equal, opposite,

and collinear forces (Newton's third law), the work done by the internal

forces of a body is not, in general, zero except for rigid bodies.

(6) The work done on a body by a concurrent force system is equal to

the work done by the resultant force of the system. It is convenient, as a

rule, to assume the point of application of the resultant force to be the point of

concurrence of the forces.

(c) The work done on a rigid body, in any angular displacement, 6, by a

system of coupfes in a plane is equal to the work done by the resultant couple,

S77
. Thus, from Art. 179, the work done is

Or, if the resultant couple remains constant in the displacement, then

(d) The work done by the earth-pull (weight) on a body (whether rigid or

not) in any displacement equals the product of the weight of the body and the
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vertical displacement of the mass-center of the body irrespective of its lateral

displacement. The work done by the earth-pull is positive if the center of

gravity of the body is lowered and negative if the center of gravity is raised.

It will be noted that the earth-pull on a system of particles (body) consti-

tutes a special parallel force system and that the weight of the body is the

resultant of the system.

In determining the work done by a force system which gives

a motion of translation, rotation, or plane motion to a rigid body
there are certain special cases of these motions for which it

is especially convenient to use the resultant in finding the work

done on the body. A brief discussion of these special cases

follows.

By the method of Art. 18, any coplanar system of forces may
be resolved into a system of concurrent forces acting at any chosen

point in the plane and a system of couples in the plane. The
resultant of the concurrent forces is a force (Art. 22); and the

resultant of the system of couples is a couple (Art. 27). Hence the

work done on a rigid body by the resultant of such a force system
is the sum of the works done by the resultant force and couple.

For convenience, the mass-center of the body will be chosen for the

point of concurrence of the concurrent force system for the reason

that the resultant force always agrees in direction with the accel-

eration of the mass-center (Art. 152). Further, the resultant force

is equal to the algebraic sum of the components of the forces in the

direction of the acceleration of the mass-center of the body. It

will be denoted, therefore, by 2^, and the working component of

the resultant will be tangent to the path of the mass-center and

will be denoted by 2^; The resultant couple is the algebraic

sum of the moments of the forces about the mass-center and will be

denoted by 2 T7
. The work done on a rigid body by a coplanar force

system, therefore, is

rs2 re* _
w= I 2Fa

t
ds+ I ZTde, (1)

Jsi Jei

in which s denotes the distance moved by the mass-center along
its path and 6 denotes the angle through which the body turns.

For certain important special cases of the motion of rigid bodies,

this expression reduces to simpler forms as follows.

I. Uniformly Accelerated Rectilinear Translation. 2T7
is zero,

2F is constant and acts in the direction of s. But a and i are
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the same as the a and s of every other point in the body. Hence

equation (1) reduces to

w=2Fa s=2Fa -s (2)

//. Uniformly Accelerated Rotation about an Axis through the

Mass-center. 2/^ is zero and 2T remains constant. Hence,

w=2T-6 (3)

III. Plane Motion in which the Mass-center has Uniformly
Accelerated Rectilinear Motion and the Body has Uniformly Accel-

erated Angular Motion. 27^ is constant and acts in the direction of

s, and 2T7
is constant. Hence,

'

(4)

ILLUSTRATIVE PROBLEM

442. A solid cylinder of radius r ft. and of weight W Ib. rolls down an inclined

plane without slipping. Find the work done on the cylinder while rolling

down the plane if the plane is s ft.

long and makes an angle of <

degrees with the horizontal (Fig.

417).

Solution. The forces acting on

the cylinder as shown in Fig.

417(o) are the weight W, the

normal pressure N, and the fric-

tion F. By introducing two equal
and opposite forces, FF, at the

FIG. 417. mass-center (Fig. 4176), and then

resolving W into x- and y-com-

ponents, the original three forces may be resolved into a force, W sin < F,

and a couple, Fr, as shown in Fig. 417(c). From equation (4) the work done,

then, is,

w = (W sin <f>-F)s+Fr-d.

But the displacement, s, of the mass-center equals the length, s, of the plane.

And, s = rd in which 6 is the angular displacement of the cylinder. That is,

Whence,
w =W sin <j>>s-Fs+Fs

= Wsin <j>-s ft.-lb.

Thus, it will be noted that F does no work, for, if there is no slipping, the point

of application of F moves always perpendicular to F. Likewise N does no

work since its point of application has no displacement in the direction of the
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force. Therefore, the work done on the body is the work done by W. But,

the work done by W is Wh (Art. 182), and from the diagram it will be noted

that h = s sin 0. Hence the work done on the body is w = Ws sin <j> which

agrees with the result found above.

183. Power Defined. The term power as used in mechanics

is defined as the rate of doing work. The use or function of many
machines depends upon the rate at which they do work as well as

upon the amount of work performed. Thus, some machines such

as electric generators, steam engines, etc., are rated in terms of the

power they are able to develop.

If the rate of doing work is constant, the power, P, developed

may be denned by the expression,

w
7'

in which w is the work done in time t. If the rate of doing work

varies, the power'at any instant may be defined by the expression,

HP
184. Units of Power. Power, like work, is a scalar quantity.

The unit of power may be any unit of work per unit of time.

Thus, in the gravitational system of units, the foot-pound per
second (ft.-lb. per sec.) and kilogram-meter per second are common

units, whereas in the absolute system, the dyne-centimeter per
second (erg per sec.) or joule per second are in common use.

In many problems in engineering, however, it is more convenient

to use a larger unit of power than those mentioned above. In the

gravitational system of units these larger units are the British

or American horse-power (h.p.) and the force de cheval or Conti-

nental horse-power. They are defined as follows :

One British or American horse-power = 550 ft.-lb. per sec .

= 33,000 ft.-lb. permin.

One Continental horse-power= 75 kilogram-meters per sec.

= 4500 kilogram-meters per min.

And in the absolute system, the larger units are the watt and kilo-

watt which are defined as follows:

One watt = 107 ergs per sec.

One kilowatt = 1000 watts.
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The watt and kilowatt are used extensively in electrical engineering.

They may be converted into British horse-power by means of the

relations

One horse-power = 746 watts

One kilowatt = 1.34 horse-power.

And, for approximate computations, it is convenient to use 1

horse-power= f kilowatt or 1 kilowatt= ^ horse-power.
For expressing very large quantities of work, the units used are

the horse-power-hour (h.p.-hr.) and the kilowatt-hour (kw.-hr.).

A horse-power-hour is the work done in one hour at a constant rate

of one horse-power. Thus,

One horse-power-hour =33,000X60=1,980,000 ft.-lb.

Similarly, one kilowatt-hour = 1.34X1,980,000= 2,650,000 ft.-lb.

185. Special Equations for Power. If a force, F, remains

constant in a given displacement of its application point and acts

in the direction of the displacement as, for example, the draw-bar

pull of a locomotive, the work done in one unit of time is Fv, in

which v is the velocity of the application point, that is, the distance

moved through in one unit of time. Hence, if F is expressed in

pounds and v in feet per second, the horse-power developed by
the force (or the body exerting the force) is,

>=

If the velocity varies, the above equation expresses the horse-power
at the instant when the velocity is v. If the force does not act in

the direction of the displacement of its application point, the

working component may be used in the above equation. And, if

the force agrees in direction with the displacement but varies in

magnitude as, for example, the pressure of the steam against the

piston of a steam engine or the tangential effort against the crank-

pin, then the value of F (or Ft ) at any instant may be used to obtain

the power at that instant. However, the average power during a

given cycle (or many cycles) of operations is generally more useful

than the instantaneous power. Thus, in the case of a steam

engine the average horse-power is expressed by,

_2Plan
P ~ 33000'
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in which P is the mean effective pressure (Ib. per sq. in.), a is the

piston area (sq. in.), / is the length of stroke (ft.), and n is the

number of revolutions per minute (r.p.m.). For, Pa is the average
force (Ib.) which acts through a distance l-2n (ft.) per minute, the

number of strokes per minute being 2n in a double-acting engine,

and hence the work (ft.-lb.) done per minute (power) is Pa-l-2n

and the horse-power is as given above.

If a couple having a constant moment, T, acts through a given

angular displacement of 6 radians, the work done is T- 6 (Art. 179).

And, if the couple turns through co radians per unit of time, the

work done per unit of time is Tu. But, co is the angular velocity

of turning. Hence, if the moment of the couple is expressed in

pound-feet and co in radians per second, the horse-power developed

by the couple is

H.P.-**.
550

If the angular velocity at which the couple is turning is not

constant, the above equation expresses the horse-power at the

instant at which the velocity is co. But, in most cases the average

horse-power during a given cycle of operations is of more use than

the instantaneous value.

70 Ib.

PROBLEMS

443. A locomotive exerts a constant draw-bar pull of 35,000 Ib. while

increasing the speed of a train from 30 to 45 miles per hour. What horse-

power does the engine develop (a) at the beginning of the period; (6) at the

end of the period? What is the average

horse-power during the period?

444. A man in turning the crank on the

winch of a crane was found to exert the

forces shown in Fig. 418 at the positions indi-

cated. Plot (freehand) carefully a tangen-
tial-effort diagram, the crank (radius) being
15 in. long. Estimate from the diagram the

mean tangential effort and calculate the mean

horse-power developed by the man assuming
that he turns the crank at a constant speed of

40 r.p.m. Ans. 0.55 h.p. FIG. 418.

445. Two pulleys are keyed to the same shaft 10 ft. apart. One pulley is

driven by a belt from an engine. The other pulley is belted to, and drives a

machine. If the first (driving) pulley receives 3 h.p. from its belt what torque
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is transmitted to the shaft (and driven pulley), assuming that the shaft

rotates at a constant speed of 150 r.p.m. .4ns. 105 Ib.-ft.

446. What indicated horse-power will the engine referred to in Prob. 440

develop if it operates at a constant speed of 250 r.p.m. and is double acting?

447. A generator develops 500 k.w. and delivers 450 k.w. to a machine

shop. A price of 4 c.ents per kw.-hr. is paid. Does the machine shop pay for

power or for work? What is the cost to the machine shop per day of 8 hours?

448. A certain machine requires 5 h.p. for its operation. If the machine

is in use 6 hr. per day how many foot-pounds of work are delivered to the

machine in one day?

449. An accumulator loaded to a pressure of 750 Ib. per square inch is used

in emergencies to supply the lubricant to a step bearing of a vertical steam

turbine. If the ram is 10 in. in diameter and has a stroke of 15 ft., what horse-

power does it deliver if one hour is required to complete the stroke?

2. ENERGY

186. Energy Defined. The energy of a body is the capacity

of the body for doing work. Work may be considered to be done

by forces, as in the preceding section, or, since forces are exerted by

bodies, work may also be considered to be done by the bodies

which exert the forces, the work being done by virtue of the

energy which the bodies possess. A body may have the capacity

to do work (possess energy) due to a variety of conditions or states

of the body. Thus, energy may be classified as mechanical energy,

heat or thermal energy, chemical energy, electrical energy, etc.,

depending on the state or condition of the body by virtue of which

it is capable of doing work. Our knowledge of all the conditions

which render bodies capable of doing work is far from complete,

but experience shows that any of the forms of energy may, under

the proper conditions, be transformed into any of the other forms.

Mechanical energy is of particular importance in connection

with the kinetics of bodies and is therefore considered at some

length in the following pages. The other forms of energy are dis-

cussed briefly in Art. 191. Mechanical energy is divided into

potential energy, or energy of position or configuration, and kinetic

energy or energy of motion.

From the definition of energy it follows that energy, like work,

is a scalar quantity. Thus, the energy of any mass-system is the

algebraic sum of the energies of the various particles of the system

regardless of the directions of motion of the particles.
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The units of energy are the same as the units of work discussed

in the preceding section.

187. Potential Energy. The potential energy of a body is the

capacity of the body for doing work due to its position or configura-

tion. Thus, the water above a mill dam posesses potential energy
which may be used in driving a water wheel; a compressed

spring and the compressed steam in a boiler are capable of doing
work by virtue of the relative positions (configuration) of their

particles.

The potential energy of a body may be defined quantitatively

as the amount of work which a body is capable of doing against

forces, in passing from the given position or configuration to some

standard position or configuration, assuming that no other change
in the state or condition of the body takes place. This definition,

however, does not lead to a definite quantity for the potential

energy of the body for a given configuration, unless the work done

by the body (mass-system) depends only on the initial and final

configuration of the mass-system and not at all on the paths
described by the parts of the system while coming to the standard

state. Mass-systems for which this condition is fulfilled are called

conservative mass-systems, and the force system which acts on

such a mass-system while its potential state changes is called a con-

servative force system.

The potential energy of conservative systems, only, will be

considered herein since, in most kinetics problems which involve

non-conservative systems the kinetic energy of the system is

of greater importance in the solution of the problems. The
most common case of a non-conservative system is that in which

the mass-system does work against frictional forces, such as

sliding and journal friction and the friction of the particles devel-

oped in deforming an inelastic body. Conservative mass-systems
occur frequently in engineering problems. In fact any rigid

body under the action of a force system in which friction does not

occur (or may be considered negligible) is a conservative system,

provided, of course, that no change in the state or condition of the

body except that of configuration takes place. A common example
of a conservative system is that of the earth and an elevated body
(whether rigid or not). The work done on the body in any dis-

placement is equal to the earth-pull (weight) of the body times the

vertical displacement of the center of gravity of the body (Art.
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182), regardless of the intermediate positions occupied by the body
in moving from one position to another position. Another example
is that of an elastic body, for, if the body is elastic the energy

possessed by the body when in a given strained condition, that is,

for a given configuration of its particles, is the same regardless of

the relative displacements of the particles which occurred while

being put in the given strained condition. The standard configu-

ration may be arbitrarily chosen, but, for convenience, it is so

chosen that the potential energy of the body is positive. Thus, in

the case of the earth and an elevated body the earth is considered

fixed and the standard configuration occurs when the body is in

contact with the earth. A discussion of the mathematical test for

a conservative system is beyond the scope of this book.

188. Kinetic Energy. The kinetic energy of a body is its

capacity for doing work due to its motion. Thus, by virtue of its

kinetic energy, a body is capable of doing work against forces which

change its motion. For example, a jet of water does work on a

tangential water-wheel; a steam forging hammer does work on the

material which is deformed by the hammer; the rotating flywheel

on a punching machine does work in punching the hole in the

metal plate, etc.

The kinetic energy of a body at any instant may tie defined

quantitatively as the amount of work that the body is capable of

doing against forces which destroy its motion, that is, which bring

it to a state of rest. The expression for the kinetic energy of a

body (mass-system) should, therefore, contain a quantity (velocity)

which is a measure of the motion of the body and also a quantity

(mass, moment of inertia, etc.) which is a measure of the (kinetic)

property of the body that has an influence in governing its change
of motion. The "

velocity of a mass-system," however, is, in

general, an indefinite and meaningless phrase since the velocities

of the various parts of a system are not the same. Hence, an

expression for the kinetic energy of a particle is first obtained and,

since energy is a scalar quantity, the kinetic energy of a system
of particles (mass-system) is the algebraic sum of the kinetic

energies of the particles. However, the expression for the kinetic

energy of a particle is of considerable importance in itself since in

many problems a physical body may be regarded as a particle

without introducing serious errors.

189. Kinetic Energy of a Particle. In Fig. 419, let P be a par-
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ticle of mass m in a body (assumed rigid for convenience only)

which moves so that P travels from position P r

to P"
', along the

path shown, while its velocity decreases from v at P' to zero at P"
due to the forces against which the particle does work. The work

done on the particle by the forces (which form a concurrent system)

is equal to the work done by their resultant R. Or, w = I Rtds.

FIG. 419.

But, by definition, the kinetic energy, Ek ,
of the particle is the work

which the particle does against the forces. Hence, the defining

equation for the kinetic energy of a particle is,

Ei=-w=- I Rtds.

This expression may be transformed so that E* is expressed in terms

of m and v by means of the following relations,

Thus,

Rt
= ma

t)

Ek
=-

dv ds
a<= and v -

= I ma4s= I
m-^ds

r ds, r
m-j-av= I mvdv

J*t
at Jv
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Therefore, the kinetic energy of a particle of mass m having a

velocity v is equal to %mv
2

. That is,

PROBLEMS

460. By making use of the equations of Art. 124, prove that the kinetic

energy of a particle having uniformly accelerated rectilinear motion is mv2
.

461. The German long-range gun which shelled Paris from a distance of

approximately 76 miles was 118 ft. long. The muzzle velocity of the pro-

jectile was not far from 5000 ft. per sec. The diameter of the projectile was

8.15 in. and its weight was 264 Ib. It attained a height of about 24 miles,

was in flight about 3 min., and reached Paris with a velocity of about 2300 ft.

per sec. (For a description of the gun see Journal A. S. M. E., Feb., 1920.)

Neglecting the energy due to the rotation of the projectile, calculate the kinetic

energy of the projectile as it left the gun, and also its energy at the end of

its flight. Find the loss of kinetic energy per second during the flight.

190. Kinetic Energy of a Body. Since energy is a scalar

quantity the kinetic energy of a body (whether rigid or not) is

the algebraic sum of the kinetic energies of its particles. Hence,
for any mass-system,

It is convenient, however, to express the kinetic energy of a

rigid body in terms of the mass (or some other kinetic property
such as moment of inertia) of the whole body and the velocity of

some particular point in the body (as, for example, the mass-

center) or the angular velocity of the whole body. Thus, for

rigid bodies having the special motions of translation, rotation,

and plane motion the expressions for the kinetic energy are found

as follows:

1. Translation of a Rigid Body. All parts of the body have the

same velocity at any instant whether the motion is rectilinear

translation or curvilinear translation (Art. 132), that is, v is con-

stant. Hence,

But, Zra is the mass of the body and may be denoted by M.
Therefore,
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II. Rotation of a Rigid Body. The angular velocities of all

particles are the same at any instant, that is, the angular

velocity co of any particle is the angular velocity of the body.

The linear velocity, v, of any particle, P, of mass m, at a distance,

r, from the axis of rotation, 0, (Fig. 420) is equal to rco. Hence,

the kinetic energy of the body is

=
|Zra(cor)

2 =

But, Smr2
is the moment of inertia of the body with respect to the

axis from which r is measured, that is, the axis of rotation, and

is denoted by 7 . Thus, 7 = 2mr2
.

Therefore,

FIG. 420. FIG. 421.

777. Plane Motion of a Rigid Body. The angular velocities of

all particles are the same at any instant, that is, the angular

velocity co of any particle is the angular velocity of the body.

Further, as shown in Art. 134, the motion of the body at any
instant may be considered to be a combination of a rotation about

an axis through any point, 0, in the plane of motion and a trans-

lation defined by the motion of 0. Hence, the velocity, v, of any

particle P of mass m (Fig. 421) is the resultant of the velocity, cor,

which P is given by the rotation about 0, and the velocity, VQ,

which is given to all particles by the translation. And, since the

body is rigid the velocity cor has a direction perpendicular to r.

Thus,
cos 6.

In Fig. 421, let be the origin and, for simplicity, let the re-axis

have the same direction as VQ. The kinetic energy of the body may
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then be found in terms of the mass of the whole body, the angular

velocity of the body, and the linear velocity of one point (in this

case the point 0) in the body as follows:

cos 0)

cos 6

cos #

But, Smr2
is the moment of inertia of the body with respect to the

axis through from which r is measured. Thus, Smr2 = /Q. Fur-

ther, r cos 6= y, whence, Smr cos 6= 2my=My in which M is the

mass of the body. Therefore,

Et
=

Now since the point is any point in the plane of motion it may be

chosen at the mass-center. That is, the motion of the body may
be resolved into a rotation about an axis through the mass-center

and a translation defined by the motion of the mass-center. If the

point is made the mass-center, then, y = Q, /o becomes /, and

VQ becomes D. Hence, the kinetic energy is given by the expression,

. . ... ... (2)

It is important to note that, although plane motion of a rigid

body may be resolved at any instant, into a rotation about an axis

through any point in the plane of motion and a translation defined

by the motion of that point, it does not follow that the kinetic

energy of the body at the

given instant is the kinetic

energy due to the rotation

plus the kinetic energy due

to the translation, unless

the assumed rotation is

about an axis through the

mass-center of the body
and the translation is de-

F
fined by the motion of the

mass-center.

Alternative Method. Plane motion of a rigid body may be

considered to be pure rotation about the instantaneous axis of
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rotation (Art. 135). The kinetic energy of a body, as for example,

the connecting rod represented in Fig. 422, therefore, is,

in which /* is the moment of inertia of the body with respect to the

instantaneous axis. But, by the parallel axis theorem (Art. 102),

Therefore,

PROBLEMS

452. A body B weighing 60 Ib. is attached by a flexible string to a spring S
(Fig. 423). The pulley over which the string passes is weightless and friction-

less. The spring has a modulus of 40 Ib. per inch.

If a force P of 50 Ib. is gradually applied to 5, how
much is the potential energy of the spring changed? Of

the spring and body B considered as one system?

453. A slender rod, similar to the spoke of a fly-

wheel, is 3 ft. long and rotates about an axis through
one end at a constant speed of 120 r.p.m. The rod

weighs 50 Ib. Find the kinetic energy which the rod

possesses. Ans. Ek = 3Q8 ft.-lb.

454. Two spherical bodies each weighing 20 Ib. are

connected by a slender rod and revolve at 90 r.p.m. in

a horizontal plane about a vertical axis located midway jrIG 423.
between the two bodies. The center of each ball is

10 in. from the axis. The diameter of each ball is 4 in. The weight of the

rod is 6 Ib, Find the kinetic energy of the system. Ans. ^ = 40.5 ft.-lb.

455. The winding drum of a mine hoist is 14 ft. in diameter, its radius of

gyration is 6 ft., and its weight is 7 tons. A cage weighing 6 tons is raised by it.

When the cage is rising at the rate of 40 ft. per sec. what is the kinetic energy
of the system? Ans. #fc

=
554,000 ft.-lb.

456. The cast iron flywheel (Fig. 424) is used on a punching machine in the

forge shop at the University of Illinois. If the flywheel is rotating at a speed
of 225 r.p.m. when the punch starts to punch a hole and has its speed reduced

20 per cent in punching the hole, how much energy does the flywheel give up;

(a) neglecting hub and spoke, (6) including hub and spokes, assuming the spokes
to have a constant mean cross-section and to run from the hub to the rim?

457. Find the kinetic energy of the rocker arm AD (Fig. 425) from the

following data: OB = 10 in.; OA=3ft.; angular velocity of crank OB = 50

r.p.m.; = 30; length of rod AD = 4.5 ft.; and the weight of the rod is 22.7 Ib.
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468. Find the kinetic energy of the connecting rod, the motion of which is

described in Prob. 386.

FIG. 424.

191. Non-mechanical Energy. Experience shows that some

bodies are capable of doing work (possess energy) by virtue of

certain states or conditions of their parts, the nature of which is not

definitely enough known to make it possible to determine their

energy by the methods used in the preceding articles. Energy
which cannot be determined directly as potential or kinetic energy

is called non-mechanical or non-dynamic energy. Thus, heat or

thermal energy, chemical energy, and electrical energy are forms

of non-mechanical energy.

A body is capable of doing work by reason of its heated state or

condition since by giving up its heat it may do work, under

favorable conditions, as in the case of steam in the cylinder of a

steam engine. Energy possessed by a body by virtue of its heated

state is called heat or thermal energy.

Certain bodies are capable of doing work by reason of their

chemical state or condition. Thus, hydrogen and oxygen, under

favorable conditions, combine and give evidence of considerable

energy by transferring heat to surrounding bodies. Likewise,

carbon (coal) and oxygen combine and produce heat which as noted

above may in turn do work. Energy possessed by bodies due to

the state of their chemical elements is called chemical energy.
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Some bodies are capable of doing work by virtue of their elec-

trical state or condition. Thus, a copper wire on an armature

moving in a field of force may develop electric current which in

turn may do work in driving a motor. Or, a charged storage

battery may do work as its electrical condition changes, etc.

Energy which arises out of the electrical conditions of bodies is

called electrical energy.

Any one of these, so-called, special forms of energy may be

converted, under favorable conditions, into mechanical energy,

and there is considerable evidence to indicate that all energy
is mechanical energy. Thus, according to this view, the heat

energy of a body could be determined as kinetic energy if the

motions of the individual particles were known. And, certain

forms of chemical and electrical energy could be determined as

potential energy if the molecular forces were definitely known.

Therefore, the energy possessed by bodies by virtue of special

states of their molecular structure are considered as non-mechanical

forms of energy, not because these special forms are necessarily

different from mechanical energy, but because the energy cannot

be determined directly as mechanical energy, and, therefore, has

to be transformed into mechanical energy and then measured.

Thus, one unit of heat energy, the British thermal unit (B.t.u.),

has a definite mechanical equivalent which carefully made experi-

ments have shown to be

1 B.t.u. = 778 ft.-lb.

However, the lack of knowledge of the molecular structure and

conditions by virtue of which bodies possess energy does not pre-

vent the application of certain principles of energy to such condi-

tions. In fact, the outstanding feature concerning energy is that

certain general principles of energy, such as principles of the con-

servation of energy and of degradation of energy, etc., are the basis

upon which our knowledge of the behavior of non-rigid bodies, in

general, is built and thus they furnish a method of approach to

problems for which the principles of force, mass, and acceleration

are inadequate. They are of special importance, therefore, in the

study of hydraulics, thermodynamics, electrodynamics, physical

chemistry, etc.

In the following section certain principles concerning mechan-

ical energy are developed and applied to the motion of bodies
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(mainly rigid) in which the motion of the particles are definitely

known. And even though the principles of force, mass, and acceler-

ation may be used for many of the problems considered, never-

theless, it will be noted that even for rigid bodies the principles of

work and energy are of great importance in many kinetics problems
as met in engineering practice.

3. PRINCIPLES OF WORK AND ENERGY

192. Preliminary. As stated in Art. 137, in order to deal

with the main problem in kinetics, a relation is found between

the forces acting on the body, the kinetic properties (mass, moment
of inertia, etc.) of the body by virtue of which it influences its own

motion, and the change of motion (involving acceleration, velocity,

distance, etc.) of the body. This may be done by determining the

relation between the work done by the forces acting on the body
and the kinetic energy of the body, since work and kinetic energy
involve quantities in terms of which the three factors in the

kinetics problem as mentioned above are expressed. And since,

in general, the motion of all particles of a body are not the same,

the principle of work and kinetic energy will be developed for a

particle first and then extended to the motion of a body.

However, as already noted, in many problems the body may be

regarded as a particle without introducing serious errors.

193. Principle of Work and Kinetic Energy. /. For a Par-

tide. In Fig. 426 let A'

and A" be two positions

of a body, the motion of

which changes due to the

unbalanced forces (Fi, F%,

FS, and F) which act on

it. The body is assumed,
for convenience, to be

composed of small cubes of

different materials rigidly

attached (glued together),

each cube being regarded

FIG. 426. as a particle of the body.

Let P be one of the parti-

cles which describes the path shown in the figure as the particle

moves from P' to P" while its velocity changes from v\ to v2 due
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to the unbalanced (concurrent) forces which act on it. Let the

resultant of the forces acting on P be denoted by R and its com-

ponent tangent to the path of P be denoted by Rt . It will be

noted that some of the particles (cubes) have their velocities

changed (are accelerated) by forces exerted only by other particles

of the body (internal forces) whereas other particles are acted on

both by internal and by external forces.

The work done by the forces acting on the particle as it moves

c
s
*

along its path from P' to P" is w= I Rtds but, as in Art. 189,

Rtds may be expressed in terms of the mass, m, and velocity,

of the particle by means of the relations,

dv ds
Rt
=mat ,

at
=

~Tf>
and v==

~^f

T 2

The work done on the particle
= I Rtds

i/ S
l

r r= I matds= I

J*
l Js

l

r 4*= I m-r
JVl dt

= I mvdv

M

dv

= change in kinetic energy of the

particle.

Therefore, the work done by the forces acting on a particle of a

body (whether rigid or not) during any displacement is equal to the

change in the kinetic energy of the particle in the same displacement.

Or, expressed in the form of an equation,

w=Ai

II. For a System of Particles. The principle of work and kinetic

energy for a system of particles (body) may now be derived.

Since work and energy are scalar quantities, the work done on a

body is the algebraic sum of the works done on all the particles.

And, the change in the kinetic energy of the body is the algebraic

sum of the changes in the kinetic energies of all the particles.



432 WORK AND ENERGY

But, the work done by all the forces acting on all the particles

equals the work done by the external forces which act on the body

plus the work done by the internal forces of the body. Thus, by
writing the above equation for each particle and adding both sides

of the equations, the resulting equation is,

we -}-Wi = %2

That is, the work done on a system of particles (whether rigid or not)

by all of the external and internal forces in any displacement of the

system is equal to the change in the kinetic energy of the system in

the same displacement.

III. For a Rigid Body. The principle may now be expressed

for the special case of a rigid body, for, as pointed out in Art. 182,

the internal forces in any mass-system occur in pairs of equal

opposite and collinear forces whether the body is rigid or not, but

the work done by these forces is zero, in general, only if the appli-

cation points of each pair of forces remain a fixed distance apart,

which is the case in a rigid body. Hence, for a rigid body, wt
= 0.

Therefore,

u;e
= AEfc.

That is, the work done by the external forces acting on a rigid body
in any displacement is equal to the change in the kinetic energy of

the body in the same displacement.

Although an absolutely rigid body does not exist in nature, the

work done by the external forces in causing the relative displace-

ments of the part-c.es in physical bodies is usually negligible in

comparison with the work done by the forces in causing the

displacement of the body as a whole.

194. Application of Principle to Special Cases of Motion of

Rigid Bodies. By making use of the expressions developed in

Art. 182 and 190, the principle of work and kinetic energy may be

expressed for important special cases of motion of rigid bodies as

follows :

I. For a Rigid Body Having Uniformly Accelerated Rectilinear

Translation.

II. For a Rigid Body Rotating about an Axis through the Mass-

center with Constant Angular Acceleration.
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///. For a Rigid Body Having Plane Motion Such that the

Angular Acceleration is Constant and the Mass-center has Uniformly
Accelerated Rectilinear Motion.

As noted in Art. 182 the work done by the forces acting on any

body may be found by taking the algebraic sum of the works done

by all the forces. And in more general cases of motion than those

stated above, it will be, as a rule, more convenient to find the work
done in this way rather than from the resultant of the forces.

ILLUSTRATIVE PROBLEMS

459. An engine capable of exerting a maximum draw-bar pull of 51,000 Ib.

is used on a certain railroad having small grades to draw freight trains

having a maximum weight of 2000

tons, the average weight of a freight

car with its cargo being about 45

tons. The train resistance per ton

of weight varies with the car weight
and with the speed. If an average 2000 ton̂

1

value of 8 Ib. per ton is used and FIG. 427.

the engine pulls a 2000-ton train

while going up a \ per cent grade, how far will the train travel while its

velocity is increasing from 15 to 30 mi. per hour? How long will it take?

Solution. The forces acting on the train are shown in the free-body dia-

gram (Fig. 427). The angle 9 (exaggerated in the diagram) for a \ per cent

grade is so small that tan 6 may be considered to be equal to sin 6. Hence,
1

sin 6 =- .

200

15,000s =62,200X1452,

8 = 6020 ft.

Since,

_fl+^2
2 '

we have,

-Whence,
t = 182.5 sec.

= 3.04 min.
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460. In the friction-board type of drop hammer used in the production of

drop forgings, the ram (Fig. 428) is attached to the lower end of a friction board

which is lifted by friction driving rolls and these in turn are driven by spur

gears. The rolls are pressed against the board by revolving the eccentric

bearings and they may be released quickly to let the ram drop. The following

data apply to one particular hammer:
F

(

Weight of ram, TT = 1000 Ib.

Angular velocity of rolls, co = 130 r.p.m.

Diameter of rolls, d = ll in.

Normal pressure against friction board,

Eccentric
bearings

Friction board rolls

Ram.

Coefficient of friction, /*
= 0.3.

Total height to which ram is raised, h =
4.5 ft.

Find the distance the ram travels (a) while

being accelerated, that is, while its velocity is

being brought up to the peripheral speed of

the friction rolls; (6) while the ram is coming
to rest after the rolls are released; (c) while the

FIG. 428. ram ig moving with constant velocity, after

the acceleration ceases and before the rolls

are released. Also find the time (seconds) required to travel each of

these distances and the time to complete a cycle (total time). Assume that

the friction rolls do not slip on the friction board. Although there is some

slipping just as the rolls are pressed against the board, this assumption will not

introduce serious errors in the problem.
Solution. The friction force, F', during the acceleration period is,

F' =^N = 0.3 X6000 = 1800 Ib.

The peripheral speed of the rolls is,

= 130X27r 5.5

60
X

12

During the acceleration period, the forces acting on the ram are F' and W, as

shown in Fig. 428. Applying the principle of work and energy, we have,

1 1000
(1800

- 1000)si =

Hence,

800s!=606.

*i= 0.758 ft.
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After the rolls are released, the ram is acted upon only by the earth-pull

(weight) while it gives up its kinetic energy. Thus,

We

1000

Therefore,
s 3
= 0.606 ft.

Hence,
S2
= /1-(S1+S3 )

= 4.5 -(0.758 +0.606)

= 3.14 ft.

Since the distance traveled in each period is the average speed times the time,

we have,

Therefore,

Likewise,

Whence,

Also,

whence,

Further,

Hence,

ti =0.243 sec. = duration of acceleration period.

0.606=^^X^3.

t 3
= 0. 194 sec. = duration of decelerating period.

tz= 0.503 sec. = duration of constant velocity period.

X4.5

= 0.528 sec. =time of falling.

= 1.468 sec. =time of complete cycle.

461. The punching and shearing machine shown in Fig. 429 has a capacity
for punching a 2^-in. hole in a |-in. steel plate. The pinion shaft (and fly-

wheel) is driven at 220 r.p.m. from a counter shaft by means of a belt drive to

the tight pulley on the pinion shaft. Each operation of punching a hole

(punching cycle) causes a fluctuaton (decrease) in the speed of the flywheel.

The "
coefficient of speed fluctuation

"
is 0.8, that is, the speed of the flywheel

decreases 20 per cent in each punching cycle. If the work done in punching
the hole is all supplied by the flywheel, what moment of inertia should the

flywheel have? What is the moment of inertia of the flywheel on the machine
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as actually designed (as shown in Fig. 429), neglecting the material in the hub
and spokes? If the difference in the belt tensions, T2 T\, is 286 Ib. and the

pinion shaft turns through an angle of 230 while the hole is being punched,
how much work is done on the shaft (and flywheel) by the belt while the hole is

being punched? The diameter of the pulley is 22 in.

Solution. The maximum value of the force P required to punch the hole,

Punch attachment

r
Force exerted by
punch

FIG. 429.

using 60,000 Ib. per square inch for the ultimate shearing strength of the

material of the plate, is

=7rXlX 2X60,000

= 235,500 Ib.

The work done in punching the hole, assuming a triangular work diagram

(see Prob. 435), is,

p 1 93^ ^nn
^ =

| X^=^^ = 58,875 in.-lb.

= 4900 ft.-lb. which is supplied by the flywheel.

For the flywheel we have then,

Whence,
7=51.3 slug-ft.

2
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Hence, the moment of inertia of the flywheel should be 51.3 slug-ft.
2 in

order that the speed be decreased not more than 20 per cent. Assuming the

flywheel to be made of cast-iron which weighs 450 Ib. per cubic foot, the

moment of inertia of the flywheel as actually designed, neglecting hub and

spokes, is

,X1. 36X0. 375X450X6. 64
232.2

= 74.3 slug-ft.
2

.

The work done on the flywheel while the hole is being punched is,

=
286X^X230X^10

= 1050ft.-lb.

462. A solid homogeneous cylinder rolls up an inclined plane without

slipping (Fig. 430). The weight
of the cylinder is 120 Ib. and

its diameter is 3 ft. The angle,

<f>,
of inclination of the plane is

15. If the velocity of the center

of the cylinder is 20 ft. per sec.

just as it comes in contact with

the incline, how far up the plane
will the cylinder roll?

Solution. The forces acting

on the cylinder while rolling up
the plane are shown in Fig. FIG. 430.

430. And, the work done by
the forces, as was shown in Prob. 442, is W sin <j)-s.

Thus,

Or,

Also

Hence,

V.

Whence,

-W sin

W sin
,
since v2 and o>2 are zero.

746+372 .=-
3T7l

=36 ft.
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PROBLEMS

463. A body weighing 80 Ib. is projected along a rough horizontal plane
with a velocity of 8 ft. per sec. It comes to rest in a distance of 10 ft. Find

the coefficient of kinetic friction. Ans. /z
= 0.099.

464. An automobile which weighs W Ib. is moving at the rate of 30 miles

per hour when it comes to the foot of a hill. Power is then shut off. The

slope of the hill is 1 ft. in 50 ft. How far will the machine coast up the hill

if the total frictional resistance (parallel to the road) is 0.08 W"?

Ans. s = 301 ft.

466. A sphere rotates about an axis through its center. Its speed is

increased from 600 rad. per min. to 90 rad. per sec. while it turns through 10

revolutions. If the moment of inertia of the sphere with respect to the axis

of rotation is 20 Ib. sec. 2
ft. (or slug-ft.

2
), find the moment of the couple acting

on the sphere.

466. The winding drum of a mine hoist is 15 ft. in diameter, its radius of

gyration is 6 ft., and its weight is 8 tons. A cage weighing 6 tons is raised by it.

If the cage is rising at the rate of 60 ft. per sec., at what level should the power
be shut off in order that the cage may stop at the surface without braking?

Neglect friction. Ans. 103.5 ft.

467. The hand-operated screw

press shown in Fig. 431 is used for

embossing, lettering dies, punching
thin plates, etc. The diameter of

the screw is 2^ in. The screw has

triple threads with a pitch of 2| in.

Each ball weighs 100 Ib. and the

diameter of each ball is 9 in. If

the balls are revolved at 60 r.p.m.,

what is the maximum size (diame-

ter) of hole that can be punched in

a |-in. steel plate, assuming the

shearing strength of the steel to be

60,000 Ib. per square inch and the

efficiency of the screw to be 15 per

cent. Also assume the work dia-

punching the hole to be triangular. (See Probs. 435 and 461.)

Ans. d= 0.60in.

FIG. 431.

gram for

468. A shearing machine has 3 h.p. delivered to it by the belt. Every two

seconds an operation occurs which requires seven-eighths of all the energy

supplied during the two seconds; the other one-eighth of the energy is

required to overcome the friction of the machine. During each operation

the speed of the flywheel decreases from 120 to 80 r.p.m. Assuming that

the work done in shearing is done by the flywheel, what should be the
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moment of inertia of the flywheel?
what is its radius of gyration?

If the weight of the flywheel is 400 lb.~

469. A solid cylinder weighing 500 Ib. is rolled up an inclined plane by
means of a descending weight B (Fig. 432). The diameter of the cylinder is

4 ft. The pulley over which the rope runs is assumed to be frictionless and

weightless. Body B weighs 300 Ib. If the cylinder starts from rest at the

bottom of the incline, with what velocity will its center reach the top?

470. A solid disc 18 in. in diameter is mounted on a shaft 4 in. in diameter

(Fig. 433). The shaft rolls, without slipping, on two inclined tracks. The
disc and shaft weigh 120 Ib. The angle of inclination, <, is 15 and the incline

FIG. 432. FIG. 433.

is 8 ft. long. If the disc starts from rest at the top, what will be the velocity
of its center at the bottom of the incline? Ans. v = 3.46 ft./sec.

195. Conservation of Energy. One of the greatest achieve-

ments of the nineteenth century was the recognition and statement

of the principle of the conservation of energy. Like Newton's

laws of motion it is an inductive generalization from observation of,

and experience with, physical phenomena. The principle states

that in any change of the state or condition of an isolated material

system the total amount of energy of the system remains constant.

By an isolated system is meant one on which no bodies external to

the system have any effect on the system. Hence, an isolated

system neither gives nor receives energy. Thus, the distribution

of energy within the isolated system may be altered and the

various forms of energy changed into other forms but the total

amount of energy remains constant. Or, as sometimes stated,

energy may be transformed or transferred but cannot be created

or destroyed. As noted in Art. 191, the principle of 'conservation

of energy is of particular importance in the study of material

systems which possess non-mechanical energy, although it is also

of much value in the study of mechanical energy. Although an

isolated system does not exist in nature, certain systems approach
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closely thereto, as for example, the earth and a falling body, pro-

vided that the action (and reaction) between the earth and body is

large compared with the resistance of the air and the attractions

of other bodies on the falling body. Again, although external

forces act on a system of bodies, the work done by the forces may
be zero (or negligible) as in the case of a simple swinging pendu-
lum and the earth in which the pull of the string on the bob is al-

ways normal to the displacement of its application point and the

effect of the air is negligible.

196. Relation between Potential and Kinetic Energy for Con-

servative Systems. For non-rigid mass-systems it was found

(Art. 193) that,

but wi} which represents the work done by the internal forces

in any displacement of the system, is equal (but opposite in

sign) to the change in potential energy of the mass-system for

the given displacement,* that is,

wt
= AEP .

Therefore,

Now if the work done by the external forces which act on a mass-

system is zero, then, we
= and hence,

Or,

* This fact may be shown as follows: By definition the change of potential

energy of a body is the work which the body does against forces in passing

from one configuration to another configuration, providing no other change in

the state of the body (such as a change in velocity) takes place. Then from the

equation,

we obtain,

or,

Wt=-We ,

since Al?fc is zero if no change of the velocity state occurs. But, by definition

we is the potential energy of the system in its initial configuration. As

explained in Art. 187, we is a definite quantity only when the forces are con-

servative.
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That is, in any displacement of a conservative mass-system (or

one on which the external forces do no work), the gain (or loss)

in the kinetic energy of the system is equal to the loss (or gain)

in the potential energy of the system.

If the system is not conservative, the transformation of the

energy within the system from potential to kinetic energy (or vice

versa) is accompanied by an increase in other forms of energy

such as heat energy. And, although the total energy remains con-

stant, the mechanical (potential and kinetic) energy does not

remain constant. The relations between potential and kinetic

energy for conservative systems, only, are considered herein.

ILLUSTRATIVE PROBLEMS

471. A body which weighs 50 Ib. falls from a height, h, of 50 in. upon a

helical spring (Fig. 434), the modulus of which is 800 Ib. per inch. What is

the maximum shortening, s, of the spring?

Solution. Little error will be introduced by assuming the spring and body
to be perfectly elastic; by neglecting the air resistance on the falling body;
and by neglecting the inertia of the spring. If this is done, the earth, the body,
and the spring, may be considered to be a conservative system in which the

earth is assumed to be fixed. Thus the mechanical energy of the system re-

mains constant and hence,

But AEk=Q, since the kinetic energy of the system is zero

at the beginning and at the end of the displacement. And
the change in the potential energy of the system is,

Or,
800s2

in which h and s are expressed in inches. This equation
states that the loss of potential energy of the body is

equal to the gain of potential energy of the spring. Solving

the equation, we have,

50(50+s)= 400s 2
.

Or,

8s 2 -s -50=0.

Whence,
s = 2.56 in. FIG 434.

472. A simple pendulum (Fig. 435) consists of a cord having a length, r,

of 4 ft. and a bob (assumed to be a particle) having a weight, W, of 6 Ib. The
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pendulum is displaced an angle, 0, of 60. What will be the velocity, v, of

the bob when in its lowest position, if air resistance is neglected?
Solution. The tension T in the string does no work. Thus, the earth

and bob may be treated as a conservative system. Hence,

AEV=-
w

6(4-4 cos 60)=>\
whence,

v = 11.36 ft./sec.

473. Solve Prob. 462 by use of the

principle expressed by the equation,

f

FIG. 435. Solution. As shown in Prob. 442,

the only force which does work is the

earth-pull. Hence, the earth and the cylinder form a conservative system

Thus,
AEp=-AEk ,

This is the same equation that was obtained and solved in Prob. 462.

Substituting the given values in the above equation as was done in Prob.

462, the value of s is found to be 36 ft.

NOTE. All three of the above problems may be solved by the principle of

work and kinetic energy. It is important, however, to note the relation

between potential and kinetic energy for conservative systems.

4. EFFICIENCY. DISSIPATION OF ENERGY

197. Efficiency Defined. The efficiency of a machine, as for

example, a steam engine, an electric motor, a chain hoist, a jack

screw, etc., is the ratio of the energy output of the machine in a

given period of time to the energy input in the same period, pro-

vided that no energy is stored in the machine which becomes avail-

able at a later period. By input is meant the amount of energy
received by the machine, a portion of which is transformed or

transmitted into the work or energy for which the machine is

designed. The work done or energy delivered by the machine is

called the output. Thus, denoting efficiency by e, we have,

_ energy output

energy input
or e = power output

.

power input
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As already noted, in the transformation and transference of

energy (which is the main function of many machines), some of the

energy always takes the form of a lower grade of energy (heat

energy) and thereby becomes unavailable for the particular process

for which the machine is used. The amount of energy which thus

miscarries or leaks out in the process is spoken of by various names,
such as lost energy (or lost work), energy leak, dissipated energy,
etc. Since dissipation of energy occurs with every physical

process, the output is always less than the input and, therefore,

the efficiency is always less than unity.

The efficiency as defined above is the over-all efficiency

of the machine. Certain parts of the machine, however, may
have their individual efficiencies; and the over-all efficiency

is the product of the efficiencies of the several elements of the

machine.

198. Dissipation of Energy. The work done against friction

is the most frequent cause of dissipation of energy in machines.

Energy dissipated in doing work against frictional forces is trans-

formed into heat energy. Electrical resistance in connection with

electrical machinery also causes a loss of available energy by devel-

oping heat. The work done against friction is, in some machines, a

necessary evil to be reduced to a minimum as in the case of prime

movers, bearings, teeth of gears, etc.
; whereas, in other machines or

machine elements, the main object of the machine is to dissipate

all the energy received by the machine, as in the case of friction

brakes and absorption dynamometers.
Two typical examples involving dissipation of energy in

machines are here considered: (1) a bearing in which the loss of

energy is made as small as practicable by lubrication and (2) a

simple Prony brake or absorption dynamometer, the object of

which is not only to absorb all the energy delivered to it but also

to measure that energy (or power). Another class of dynamom-
eters measures the power delivered by a machine without absorbing

(dissipating) the energy. Dynamometers of this class are called

transmission dynamometers.
199. Work Lost Due to Friction in Bearings. The dissipa-

tion of energy in bearings of machines of various kinds reduces the

useful energy transmitted or transformed by the machine and is,

therefore, an important factor in the design and operation of such

machines. For example, in textile machinery, which involves a
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large number of small parts moving at relatively high velocities, a

large part of the load is due to friction.

Various types of bearings are used to meet the different needs.

Thus, for shafts subjected to a considerable end thrust, as, for

example, a screw-propellor shaft or the shaft of a centrifugal pump,
a collar thrust bearing having several collars may be used, whereas

for slow speeds, such as occur in certain types of rotary cranes,

the end thrust due to the load and weights of the moving parts

is usually carried by an ordinary flat pivot or step bearing.

Fig. 436 represents an ordinary flat pivot in which the work

(and power) lost in friction is to be found. Certain assumptions
must be made. It will be assumed that

the coefficient of friction for the rubbing
surfaces is constant over the whole area

of contact and that the normal wear at

any point (wear normal to the rubbing

surfaces) is proportional to the work of

friction. Thus, according to this as-

sumption, the pressure after wear has

occurred will not be uniform but will be

a maximum at the center where no wear

occurs and will decrease towards the

edge, since the relative velocity of the

rubbing surfaces is zero at the center

and increases towards the edge. It will,

therefore, be well to cut out the material near the center of the

bearing to avoid crushing of the material. Let p be the intensity

of pressure on any elementary area 2irpdp, at a distance p from

the axis of the shaft. The total pressure P, then, is

FIG. 436.

P = 27r I ppdp.

And from the assumption made above, the normal wear, n, is

in which k is a constant. Therefore,

P= 27T \^
Jr\ k

2m
(1)
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The frictional force at any distance p from the axis is,

And the frictional moment Tf for the whole area is,

(2)

By eliminating n and k from (1) and (2), the following equation is

obtained,

(3)

And, if co is the angular velocity of the shaft in radians per second,

the work lost per second, w/, is,

V=7> =^(r2+n) .... (4)

If P is expressed in pounds and ri and r<i in feet, then wf is ex-

pressed in foot-pounds per second and the horse-power lost in

friction is,

In order to increase the amount of rubbing surface and thereby
diminish the intensity of pressure, a collar bearing with two or

more collars may be used. Equations (3), (4), and (5) also apply
to such bearings. It will be observed that the coefficient of fric-

tion is an important factor in the problem of reducing the dissi-

pation of energy due to friction and this fact suggests the great

importance of the choice of bearing materials and of lubricants.

Various other types of bearings may be treated in a manner
similar to that used above.
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200. A Simple Dynamometer. Prony Brake. A simple dyna-

mometer, commonly called a Prony brake, is shown in Fig. 437.

A is a flanged pulley keyed to a rotating shaft. The power trans-

mitted by the shaft is absorbed and measured by the brake.

B, B are bearing blocks against which the pulley develops a fric-

tional resistance, the magnitude of which is varied by adjusting

the nuts C, C. D is the frame or beam with its end E resting on

the platform of a weighing scale. When the pulley is running,

the beam develops an additional pressure on the platform, due

to the friction of the pulley on the bearing blocks. The work lost

in friction and the power developed by the shaft may be found as

follows :

It will be assumed that the scales are adjusted to read zero

when the beam rests on the platform and the pulley is not running.

Thus, the scale reading is a measure of the pressure, P, at E due to

the friction developed on the bearing blocks when the pulley is

running. Since the brake frame is in equilibrium under the action

of the forces, N, P, and F (F denotes the total frictional force on

the two blocks), the sum of the moments of P and F about the

axis of the shaft must equal zero. Or,

Fr = Pa.

And the work done by the frictional moment Fr in one second is,

Wj= Frw

= Paco,

in which co is expressed in radians per second. And, since co = ---
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where n is the number of revolutions per minute (r.p.m.) of the

shaft and pulley, the expression for wf becomes,

27rPan

_irPan
:

~30~*

If P is expressed in pounds and a in feet, then wf will be expressed
in foot-pounds and the horse-power developed by the frictional

moment (and hence by the shaft) is,

, _ irPan
P ~ 30X550

irPan
=

16,500
'

This expression may be simplified if the dynamometer is constructed

so that a has a special value. It should be remembered that the

scale reading should not be used for the value of- P unless the scales

are adjusted to read zero when the pulley is not running.

PROBLEMS

474. What effort, P, is required to raise a load, Q, of 200 Ib. by means of

the differential chain hoist shown in Fig. 438 if e = 30 per cent, r2
= 8 in., and

n=4 in.? Ans. P = 1671b.

475. In a test of a jackscrew (see Fig. 169) with a screw 1.5 in. in diameter

and a pitch of ^ in., it was found that a pull of 72 Ib. at the end of a 15-in. lever

was required to raise a load of 2400 Ib. when no lubricant was used and a pull

of 63 Ib. when a hard oil lubricant was used. What is the efficiency of the

jack for each case? Ans. e = 11.8%; e = 13.5 per cent.

476. The band brake described in Prob. 165 allows a certain load to lower

at a constant speed such that the brake sheaves rotate at 120 r.p.m., in

a counter-clockwise direction. What horse-power is absorbed by the

brake?

477. The dynamometer shown in Fig. 439 was devised by Lord Kelvin in

connection with the laying of the Atlantic cable for braking the cable drum as

the cable was laid out. If it is used in the test of a steam engine, find the

horse-power absorbed, using the following data : W = 400 Ib.
; speed of engine =

150 r.p.m.; r = 4 ft.; reading of spring balance is 85 Ib. Ans. 36 h.p.
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478. Derive an expression for the work done by friction in the spherical

pivot shown in Fig. 179, assuming that normal wear is proportional to the

FIG. 439.

work of friction and that the coefficient of friction is the same for all parts of

the rubbing surfaces.

Ans. Work per revolution =2irnWra+sm a cos a.



CHAPTER XI

IMPULSE AND MOMENTUM

201. Preliminary. In Art. 176, the statement was made that

impulse is a quantity which involves force and time, and that

momentum is a quantity which involves mass and velocity.

And the fact was noted that the use of these quantities in the

analysis of the motion of bodies requires no fundamental laws in

addition to Newton's laws of motion. However, methods which

make use of impulse and momentum offer advantages, in certain

types of problems, over the methods of work and energy (Chap.

X) and of force and acceleration (Chap. IX).

In determining the effect of forces on the motion of bodies,

thus far, by the methods of force and acceleration and of work and

energy, it has been assumed that the forces have acted on rigid

bodies during a definite (comparatively large) interval of time,

and when the forces were not constant the manner in which they
varied during the period was assumed to be known. To such con-

ditions the methods of impulse and momentum also apply, and
in many cases offer a simpler method of solution than the methods

previously discussed. Forces sometimes act, however, for a very
short (indefinite) interval of time during which neither the value

of the force at any instant nor its law of variation is known.
These forces may, nevertheless, produce very appreciable changes
in the motion (velocity) of the body. Such forces are called

impulsive forces. The bodies upon which impulsive forces act

deform under the excessive pressures produced and hence, in

determining the motions of bodies under the influence of impulsive

forces, the bodies cannot always be assumed to be rigid, as in

the preceding chapters, without introducing appreciable errors.

As examples of impulsive forces the following may be mentioned :

the force exerted on a projectile due to the explosion of the pow-
der; the action of one billiard ball on another; the force exerted

by the ram of a pile driver on the pile; the pressure between two

449
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railway cars when making a flying coupling; the action of a steam

jet on the blades of a high-speed steam turbine; the pressure

exerted by the water in a pipe line on a valve which is closed sud-

denly. The principles of impulse and momentum are of special

value when considering the motion of bodies under the action of

impulsive forces.

The purpose of the present chapter is to make clear the con-

ception or meaning of impulse and of momentum, to develop
certain principles which express relations between these quan-

tities, and to apply these principles to problems in kinetics.

1. IMPULSE

202. Impulse and Impact Defined. Units. The impulse of a

constant force is defined as the product of the magnitude of the

force and the time interval during which the force acts. Thus,
if Q denotes the impulse of a force F, the impulse of the force is

defined by the equation,

Q= F-M,

provided that the force remains constant during the time interval

At. If the force varies in magnitude but not in direction, the

impulse for an indefinitely short period of time dt, is F dt and, for

a time interval M =
tz ti, the impulse is,

<?= I Pdt.

In order to evaluate this integral by the method of calculus, F
must be expressed in terms of L The impulse of a force which

acts during a very short (indefinite) interval of time (impulsive

force) is also given by the above expression but, as noted in the

preceding article, the impulsive force cannot be expressed in terms

of t, since its law of variation is not known and hence, the impulse

cannot be determined directly but is found in terms of the change
of momentum as is discussed in the subsequent pages.

The impulse of an impulsive force is sometimes called an

impact, that is, an impact is a sudden impulse. The term impact,

however, is also frequently used as descriptive of the act of collision

of bodies. In some problems it is convenient to estimate the

time interval of the impulsive force and to express the impact as
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the product of an average value of the force and an assumed or

estimated time interval AZ= fe ti - Thus,

Q
/>

in which Fav denotes the average value of the impulsive force which

is assumed to act during the time interval At. The impulse of a

force frequently is called linear impulse in contrast with the

moment of the impulse which is called angular impulse. (See

Art. 204.)

Units. The unit of an impulse is a combination of a unit of

force and of time and hence, is a compound unit. The unit of

impulse has no special name. In the gravitational or engineer's

system of units, if the pound is selected as the unit of force and the

second for the unit of time, then the unit of impulse is the pound-
second (Ib.-sec.) or, if the kilogram is selected for the unit of force

and the second for the unit of time, the unit of impulse is the kilo-

gram-second (kg.-sec.).

203. Components of Linear Impulse. The impulse of a

force, like the force itself, is a directed or vector quantity, the

sense and action line of the impulse being the same as that of

the force. An impulse of a force, therefore, may be resolved

into components and may have a moment with respect to a

point or a line. The component, in any direction, of the impulse
of a constant force is the product of the component of the force in

the given direction and the time interval At during which the force

acts. That is,

Qx
= Fx -At; Qv

= Fv -At, etc.

And, if the force varies in magnitude during the time interval

At = t2 ti, the component of the impulse is,

Qx=
|
Fxdt] Qy

=
|

2

Fvdt, etc.

J* Jti

Linear Impulse of a Force System. The linear impulse, in any
direction, of a force system is the algebraic sum of the components,
in the given direction, of the impulses of the forces of the system.
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Thus, for a force system in which the forces are constant, the

linear impulse, Qx ,
of the force system in any direction x is,

Or, if the forces of the system vary during the interval, then,

Ch

&= S FJt.
Jh

204. Moment of Impulse. Angular Impulse. The moment
of the impulse of a constant force about any point or axis is the

product of the moment, T, of the force about the given point or

axis, and the time interval, A, during which the force acts.

Thus, by letting LQ denote the moment of the impulse of a con-

stant force with respect to an axis 0, the moment of the impulse
of the force is defined by the equation,

And, if the force varies in magnitude during the time interval,

At= fe 1\ ,
the moment of the impulse is expressed by the equation,

in which TO is the moment of the force with respect to the axis 0.

The moment of the impulse of a force is also called the angular

impulse of the force.

Angular Impulse of a Force System. The angular impulse of

a force system about any axis is the algebraic sum of the angular

impulses of the forces of the system about the given axis. Thus,
if the forces of the system are constant, the angular impulse, LO,

of the system about the axis is,

And, if the forces vary, the angular impulse of the force system
about the axis U, for the time interval At = fo t\ ,

is expressed by
the equation,
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It should be noted that the linear (and angular) impulse of a

constant force, or of a variable force for which the law of variation

is known, is not as important a conception in the analysis of the

motion of a body as is the impulse of an impulsive force. However,
as already noted, even for constant forces which act during a

comparatively long time interval, the methods of impulse and

momentum may possess advantages over other methods.

PROBLEMS

479. A body weighing 40 Ib. slides down an inclined plane in 4 sec.

The plane makes an angle of 60 with the horizontal. If the coefficient of

friction is 0.2 find the component of the linear impulse of the force system

acting on the body parallel to the plane.

Ans. Q*= 123 Ib.-sec.

480. The linear impulse of the total pressure of the steam on the piston

of a steam engine is 4200 Ib.-sec. The diameter of the cylinder is 14 in. and

the engine runs at 200 r.p.m. Find the average (time average) pressure (in

Ib. per sq. in.) of the steam against the piston during one stroke.

481. A train having a weight of 2000 tons travels up a | per cent grade.

The draw-bar pull of the engine is 50,000 Ib. and the train resistance is 8 Ib.

per ton of weight. If it takes 2 min. to travel up the grade, find the linear

impulse of the force system acting on the train for the 2-min. interval.

Ans. 1,680,000 Ib.-sec.

482. A constant frictional moment of 200 Ib.-ft. is applied to a rotating

drum by means of a band brake (see Fig. 185). If the moment decreases

the angular velocity of the drum uniformly from 90 r.p.m. to 10 r.p.m. while

the drum makes 30 revolutions, find the angular impulse of the band brake

on the drum. Ans. 7200 lb.-ft.-sec.

2. MOMENTUM

205. Momentum of a Particle Defined. Units. The
momentum of a particle of a moving body, at any instant, is

defined as the product of the mass of the particle and its velocity

at the instant. Momentum, like velocity, is a directed or vector

quantity. Furthermore, like force, momentum is represented by a

localized vector, that is, it has a definite position line. Thus, the

direction of the momentum of a particle is the same as that of the

velocity of the particle and its position line passes through the

particle. Thus, if U denotes the momentum of a particle of mass

m and velocity v, the magnitude of the momentum of the particle

is defined by the equation,

U=mv.
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The momentum of a particle frequently is called linear

momentum in contrast with the moment of momentum of the

particle which is called angular momentum.
Units. The unit of momentum is a combination of a unit of

mass and a unit of time and hence, is a compound unit. The unit

of momentum has no special name. In the gravitational or engi-

neer's system of units, the unit of mass is a derived unit as explained

in Art. 141; derived from the units of force, length, and time and

hence, the unit of momentum is also a derived unit. Thus, if

the pound, foot, and second are chosen for the units of force,

length, and time, respectively, the unit of momentum is expressed

by,

1 unit of massX 1 unit of velocity =
lib. XI sec *

1 ft.

1 ft.

= 1 Ib.-sec.

X
1 sec.

It will be observed, therefore, that momentum is expressed in the

same fundamental units as is impulse.

206. Components of Momentum. Moment of Momentum.
Since the momentum of a particle is a vector quantity it may be

resolved into components and, like any localized vector, it has a

moment with respect to any

point, the moment being denned

as the product of the magni-
tude of the momentum and the

perpendicular distance from the

position line to the point or

moment-center. If, then, Ux

and Vy denote the components
of the momentum of a particle

of mass ra and of velocity v

FlG 440 (Fig. 440) and, if H denotes

the moment of momentum of

the particle with respect to the point 0, the components of the

momentum of the particle and the moment of momentum of

the particle are expressed by the equations,

and

or,
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The latter expression for HQ expresses the fact that the moment of

the momentum of a particle equals the algebraic sum of the

moments of the components of the momentum of the particle.

207. Linear Momentum of a Body. The linear momentum, in

any direction, of any body (mass-system) is the algebraic sum of

the components in the given direction of the momentums of the

particles of the body. In gen-

eral the momentums of the

particles of a body are not the

same either in magnitude or

in direction. It will now be

shown, however, that the

linear momentum of the whole

body may be found from the

mass of the whole body and

the velocity of the mass-center

of the body. Thus, in Fig.

441 are shown three particles

m', m", and m'" of a system

assumed, for convenience only,

to move in a plane. At a

given instant the particles and their mass-center are in the posi-

tions shown. The direction of the momentum of each particle is

tangent to the path of the particle and the velocity, v, of the mass-

center is tangent to the path which the mass-center describes.

The component, in the x-direction, of the linear momentum of the

mass-system is,

Ux= m'vx
f+m"vx"+m"'vx'"+ .

FIG. 441.

But, 2(mvx) may be shown to be equal to Vx'Zm or Mvx as follows:

The z-coordinate, z, of the mass-center is defined by the principle

of moments (Art. 80) by the equation,

m fx'+m"x"+m'"x'"+ . . . =x?m = Mx.

By differentiating both sides of the equation, the following equa-

tion is obtained,
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dx'
But, -j-

is the ^-component of the velocity of m' and hence,

dx'

Similarly,

and
dt

vx", etc.,

dx _

Thus, the above equation becomes,

mV+w'V'+m''V''+ . . .
=Mvx .

!>/"+ = MVy.

;
and U=Mv.

Similarly,

Whence,

That is, the linear momentum of any moving mass-system is the

product of the mass of the whole system and the velocity of the mass-

center of the system and its direction agrees with that of the velocity

of the mass-center.

208. Angular Momentum of a Rotating Rigid Body. Let

Fig. 442 represent a rigid body rotat-

ing about a fixed axis through with

an angular velocity co. The linear

velocity of any particle of the body
at a distance r from the axis of rota-

tion is rco (Art. 115) and the linear

momentum of the particle of mass m
is mv or rarco. Therefore, the moment
of momentum for one particle about

the axis of rotation is,

FIG. 442. mv r = rarco r = mr'2u,

and the algebraic sum of the moments of the momentums of all the

particles about the same axis is,

whence,

= coSmr2
,

=
/oco.
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in which 7 is the moment of inertia of the body about the axis of

rotation.

Therefore, the angular momentum of a rotating rigid body
about the axis of rotation is equal to the product of the moment of

inertia of the body with respect to the axis of rotation and the

angular velocity of the body.
209. Angular Momentum of a Rigid Body Having Plane

Motion. Since a plane motion of a rigid body may be considered

as a combination of a rota-

tion and a translation (Art.

134), the velocity of any

particle P (Fig. 443) is the

resultant of a velocity rco

due to the rotation of the

body with angular velocity

co about an axis and, the

velocity VQ due to the trans-

lation which gives to each

particle the velocity ^o of

the point 0. Therefore, the

components of the momen-
tum of the particle P are

mrco and mvo as shown in Fig. 443. And, if m(vo) x and m(vo) v

denote the x- and ^/-components of the momentum mvo, then the

angular momentum of the particle with respect to the axis is,

rarco r+m(vo) x -y m(vo) v
-

x,

and the angular momentum, H ,
for the whole body with respect

to the axis is,

(1)

FIG. 443.

Now, as already noted, a plane motion of a rigid body may be

considered as a rotation about an axis through any point in the

plane of motion and a translation, etc. Hence, if the point is

taken as the mass-center of the body, then HQ becomes H and the

above expression reduces to

#=/(>, ........ (2)
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since y and x are then equal to zero and /o becomes /. Therefore,

in general, the angular momentum of a rigid body having plane

motion, with respect to an axis in the body, is not equal to the

product of the moment of inertia of the body with respect to the

given axis and the angular velocity of the body. But, for an axis

passing through the mass-center of the body, the angular mo-
mentum is equal to the product of the moment of inertia of the

body with respect to the axis through the mass-center and the

angular velocity of the body.

It may be noted also that if the axis about which the angular

momentum of the body is taken is the instantaneous axis of rota-

tion, equation (1) becomes HQ = !QU since (VQ) X and (VQ) V are equal

to zero. That is, the angular momentum of a rigid body having

plane motion, about the instantaneous axis of rotation, is equal

to the product of the moment of inertia of the body with respect

to the instantaneous axis of rotation and the angular velocity of

the body.

PROBLEMS

483. A small body (particle) weighing 8 Ib. is attached to one end of a

string and is made to revolve as a conical pendulum (see Fig. 324). If the

body revolves at a distance of 15 in. from the axis with an angular velocity of

90 r.p.m., find (a) the linear momentum of the body, (6) the angular momentum
of the body with respect to the axis of rotation.

Ans. (a) E7 = 2.931b.-sec.; (6) tf = 3.66 lb.-ft.-sec.

484. A slender rod rotates in a horizontal plane about a vertical axis

through one end of the rod. If the rod is 3 ft. long, weighs 4 Ib. per foot, and

rotates at 120 r.p.m., find its angular momentum about the axis of rotation.

Ans. #o = 14.05 lb.-ft.-sec.

485. Find the angular momentum, about the axis of rotation, of the fly-

wheel shown on the punching machine in Fig. 429, when the flywheel is rotat-

ing at 225 r.p.m. Use the value of I found in Prob. 461.

486. Find the angular momentum, about the axis of rotation, of the two

spheres shown in Fig. 431, when the spheres are revolving at 120 r.p.m. Each

sphere weighs 100 Ib. and is 9 in. in diameter. Ans. H = 1250 lb.-ft.-sec.

487. A solid cylinder weighing 128.8 Ib. rolls, without slipping, down an

inclined plane. The linear velocity of the mass-center of the cylinder at a

given instant is 30 ft. per sec. The diameter of the cylinder is 18 in. Find

the angular momentum of the cylinder (a) about an axis through the mass-

center perpendicular to the plane of motion, (6) about the instantaneous axis

of rotation. (Ans.) (a) #=45 lb.-ft.-sec.; (&) #* = 135 lb.-ft.-sec.
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488. The connecting rod shown in Fig. 422 is 30 in. long. It has a

constant cross-section and weighs 52 Ib. The crank length OB is 5 in. and

wi is 300 r.p.m. The distance from i to B is found to be 34.68 in. and r is

found to be 23.75 in. Find the angular momentum of the connecting rod (a)

about an axis through the mass-center and (6) about the instantaneous axis

of rotation,

3. PRINCIPLES OF IMPULSE AND MOMENTUM

210. Preliminary. In order to determine the effect of a force

system on trr? motion of a body, that is, in order to treat the usual

problem in kinetics, by means of the quantities impulse and

momentum, the relations which exist between the impulse of

the force system and the momentum of the body on which the

force system acts must be established. These relations are

expressed by means of two principles, namely, (1) the principle

of linear impulse and linear momentum and (2) the principle of

angular impulse and angular momentum.
211. Principle of Linear Impulse and Linear Momentum.

It was stated in Art. 152 that the algebraic sum of the com-

ponents in a given direction of the external forces acting on any

body (whether rigid or not) is equal to the mass of the body times

the component of the acceleration of the mass-center of the body
in the given direction. That is, if x denotes any direction,

(1)

Now if the forces acting on the body remain constant, then ax

will be constant, that is, the mass-center of the body will be uni-

formly accelerated. Hence, according to Art. 124,

in which vx
" and vx are the ^-components of the velocity of the

mass-center of the body at the end and beginning, respectively, of

the time interval A. Therefore,

(2)

Now the left-hand member of this equation is the ^-component of

the linear impulse of the external force system which acts on the

body (Art. 203) and the right-hand member is the change in the
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momentum of the body in the z-direction (Art. 207). The above

equation is a mathematical statement of the principle of linear

impulse and linear momentum for any body when acted upon by
constant forces. The principle applies, however, to the motion of

any body under the action of any force system. Thus, in general,

ax
= - and hence, equation (1) may be written,

or, since M is constant,

Zr.-jg(Jfftr)
........ (3)

And, by integrating this equation, the following equation which

expresses the principle of linear impulse and linear momentum is

obtained,
r* rvx"
2/^= j d(Mvx)

Jh JVx
Or,

C
2

Jti

(4)

in which, as before, vx
" and vx are the a>components of the velocity

of the mass-center of the body at the end and at the beginning,

respectively, of the time interval tz t\. The principle of linear

impulse and linear momentum then, as expressed in equations (2)

and (4), may be stated in words as follows: The algebraic sum of

the components, in any direction, of the impulses of the external forces

acting on a body during any time interval is equal to the change in the

linear momentum of the body in the same direction during the same

interval of time, or, stated in the form of an equation,

in which x represents any direction. The particular forms in

which Qx and Ux are expressed depend upon the type of force

system, the type of motion, and the kind of body (see Art. 214

for expressions which apply to rigid bodies having particular

types of motion).

It should be noted also that equation (3) expresses an impor-
tant principle which may be stated in words as follows: The alge-

braic sum of the components, in any direction, of the external forces
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acting on any body is equal to the rate of change of the linear mo-

mentum of the body in the same direction.

212. Principle of Angular Impulse and Angular Momentum.
It was shown in Art. 146 that if a rigid body rotates about a fixed

axis, the algebraic sum of the moments of the external forces

about the axis of rotation is equal to the product of the moment
of inertia of the body about the axis of rotation and the angular

acceleration of the body. That is,

(1)

Now, if the forces acting on the body remain constant, then a

will be constant, that is, the body will rotate with uniformly accel-

erated motion and hence, from Art. 125,

C02 COla= -*T-
Therefore,

STo-Af = / <D2 -/oi. ...... (2)

Now the left-hand member of this equation is the moment of the

impulse (angular impulse), about the axis of rotation, of the force

system acting on the body, and the right-hand member is the

change in the moment of momentum (angular momentum) of the

body with respect to the axis of rotation.

If the forces acting on the body are not constant, then a will

not be constant, its value at any instant being (Art. 120).
at

Hence, in general,

and since /o is constant, this equation may be written in the form,

(3)

Now by integrating this equation, the following equation, which

expresses the principle of angular impulse and angular momentum
for a rigid body rotating about a fixed axis, is obtained,

rtz r
2T dt= I

Jti Jm
Or,

*

(4)
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The principle, however, applies to any mass-system having any

type of motion. The principle may be stated in words as follows :

The algebraic sum of the angular impulses, about any axis, of the

external forces acting on any body (mass-system) for any period of time

is equal to the change in the angular momentum of the body about the

same axis during the same interval of time. Or, expressed in terms

of the symbols which already have been denned, the principle is

expressed by the equation,

The particular forms in which LO and HQ are expressed depend on

the type of force system, the type of motion, and the kind of

body. (See Art. 214 for expressions which apply to a rigid body

having particular types of motion under the action of constant

forces.)

It should be noted also that equation (3) expresses an impor-
tant principle which may be stated in words as follows: The alge-

braic sum of the moments of the forces acting on a rotating rigid body

about the axis of rotation is equal to the rate of change of the angular
momentum of the body about the same axis. The principle, however,
is not restricted to the motion of a rigid body rotating about a

fixed axis. It applies to any body having any type of motion. It

should be noted, however, that, in general, the angular mo-

mentum of a body is not equal to 7co.

213. Method of Analysis of the Motion of a Body by Means
of Impulse and Momentum. It was noted in Art. 144 that, in

the analysis of the motion of any body under the action of an

unbalanced force system, relations must be found which involve

(1) the forces acting on the body, (2) the kinetic properties of the

body, and (3) the kinematic properties of the motion of the

body (linear and angular velocity or acceleration, etc.).

Now these three factors are involved in the principles of

impulse and momentum. And, as noted in Art. 138, in the

analysis of the motion of any mass-system in a plane, three

equations are needed. Two of these equations are obtained by

expressing the principle of linear impulse and linear momentum
with reference to any two rectangular axes in the plane of motion,

and the third equation is obtained by expressing the principle

of angular impulse and angular momentum with reference to

an axis perpendicular to the plane of motion. Thus, in terms
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of the symbols already defined, the three equations may be written

as follows :

The particular forms of the expressions for the above quantities

depends upon the type of forces (whether constant or variable,

etc.), the kind of body (whether rigid, etc.), and the type of

motion (whether translation, rotation, plane motion, etc.). ,The

particular equations for a rigid body having a motion of transla-

tion, of rotation, and of plane motion, under the action of con-

stant forces, are given in the next article.

214. Application of the Principles of Impulse and Momentum
to Special Types of Motion of Rigid Bodies. The relation between

the impulse of an unbalanced force system which acts on a body
and the momentum of the body, as expressed in a general form by
the three equations in the preceding article, may be expressed

in a more detailed form for the special motions of translation,

rotation, and plane motion of a rigid body as follows :

/. Translation of a Rigid Body under the Action of Constant

Forces. The velocities of all particles of the body are the same

(Art. 132). Therefore, the linear momentum of the body is

equal to Mv and since its position line passes through the mass-

center of the body, the angular momentum of the body about an

axis through the mass-center is equal to zero. Therefore (using

symbols which have been defined in the preceding articles), the

three equations of Art. 213 become,

II. Rotation of a Rigid Body under the Action of Constant

Forces. The linear momentum of the body is Mv (Art. 207)

and the angular momentum about the axis of rotation is

(Art. 208). Therefore (using symbols which have been
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I

defined in the preceding articles) the equations of Art. 213

become,

2FX
- A*= (Mv) x= M(vx

"-
v,') ,

2FV A*= (Mv) y
= M(vy

"- vv'} ,

S7VA*=A(/ co)=/ (o>2-(oi).

III. Plane Motion of a Rigid Body under the Action of Constant

Forces. The linear momentum of the body is Mv (Art. 207) and
the angular momentum of the body about an axis through the

mass-center is 7co (Art. 209). Therefore (making use of symbols
which have been defined in the preceding articles), the equations
of Art. 213 become,

2r-Af=A(7<o)=7(co2-<oi).

It should be noted that each of the three sets of equations above

may be readily transformed into the set of equations which was

derived in Chapter IX for the corresponding motion. However,
under certain conditions, the above equations are more conveni-

ent to use in the analysis and solution of problems than are the

equations of Chapter IX. Furthermore, these equations lead

to an important special principle called the principle of the con-

servation of momentum (Art. 215).

ILLUSTRATIVE PROBLEMS

489. A cylindrical jet of water If in. in diameter impinges on a fixed blade

which is inclined at an angle of 30 with the direction of the jet as shown in

Fig. 444. The velocity of the jet

is 25 ft. per sec. Find the hori-

zontal and vertical components of

the pressure of the water on the

blade (or blade on the water).

Assume that the magnitude of the

velocity of the jet is not changed

by the action of the blade. Also

FIG. 444. assume that the only force acting
on the water while it is in contact

with the blade is the pressure of the blade.

Solution. Let Px and Py be the unknown horizontal and vertical pressures
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exerted by the blade on the water, these pressures being the cause of the

change in the momentum of the water.

The principle of impulse and momentum states that,

(1)

(2)

Let AZ be taken as any convenient time interval (1 sec. say). Then M is the

mass of the water upon which the blade acts in the same time interval.

Taking the direction of the velocity of the impinging water as positive

and the weight of water as 62.5 Ib. per cubic foot, we have,

From (1)

7r (1.5)
2 X25X62.5

'

Px ' 1
"4X144X32.2 (25-25 cos 30 ).

Whence,
P* = 0.594(25-21.65)

= 1.99lb.
From (2),

Pyl =0.594(25 sin 30-0).
Whence,

490. A flywheel weighing 1288 Ib. is keyed to a shaft 4 in. in diameter.

The shaft transmits a turning moment of 1200 in.-lb. to the flywheel, thereby

increasing its angular velocity from 600 rad. per min. to 50 rad. per sec. in

10 sec. Find the radius of gyration of the flywheel.

Solution. The flywheel is a rotating rigid body. Only one of the three

equations which apply to a rotating rigid body is needed in this particular

problem; namely,

Hence,
1200 1288 /600\
12

>
"32.2* \

5U
60 )

Whence,
fco

2 =
0.625,

and,
fco = 0.79 ft.

PROBLEMS

491. A jet of water 2 in. in diameter has a velocity of 30 ft. per sec. in a

horizontal direction. If the jet impinges normally against a fixed vertical

plane, what is the pressure of the water on the plane? If the plane is moving
in the direction of the jet with a velocity of 10 ft. per sec., what is the pressure
on the plane? Ans. P = 38.1 Ib.; P = 16.9 Ib.

492. A 5^-oz. baseball moving horizontally with a velocity of 150 ft. per
sec. is struck by a bat and is deflected 135 from its original direction as
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indicated in Fig. 445. If the speed of the ball as it leaves the bat is 130 ft.

per sec., compute the horizontal and vertical components of the impulse of

the bat on the ball. Assuming that the time
" = 130 ft./ sec. of contact is -^ sec., determine the average

value of the force during the impact.

Ball-^ \ _\ 493. The table of a planing machine together
with the material bolted on it weighs 5 tons.

Find the tune required to change its velocity
from 20 ft. per min. (cutting stroke) to 40 ft.

per min. in the opposite direction (return stroke)

if the average force of the pinion on the rack

while the velocity is being changed is 200 Ib. Ans. = 1.55 sec.

150 ft./ sec.

FIG. 445.

iat

494. The rotating parts of a horizontal-shaft turbine weigh 20 tons

and have a radius of gyration of 2 ft. It takes 10 min. for the turbine to come
to rest from a speed of 55 r.p.m. under the influence of journal friction alone.

The shaft is 12 in. in diameter. What is the average coefficient of friction?

495. A sphere having a weight of 64.4 Ib. and a diameter of 30 in. rolls

without slipping down a plane inclined 30 with the horizontal. What will

be the velocity of its center at the end of 5 sec. if the initial velocity of its

center is 30 ft. per sec.? Ans. v = 87.5 ft. /sec.

496. A body slides down a plane inclined 45 with the horizontal. If the

coefficient of kinetic friction is 0.2, how many seconds will it take for the

velocity of the body to change from 10 ft. per sec. to 30 ft. per sec.?

Ans. = 1.09 sec.

497. A certain machine gun fires 350 bullets per minute. If each bullet

weighs 1 oz. and the muzzle velocity of the bullets is 2200 ft. per sec., what is

the average reaction of 1;he gun against its support? Neglect the reaction

due to the discharged gases.

498. In the relief valve shown in

Fig. 446 the discharge area is assumed

to be equal to the circumference of the

pipe times the lift of the valve. The
rate of discharge of the water is 2 cu.

ft. per sec. The diameter, d, of the

pipe is 6 in. The "lift
"

is 0.25 in.

The pressure p in the pipe is 30 Ib. per

sq. in. Find the force exerted by the

spring on the valve. Hint: The force

causing the change in the horizontal

component of the momentum of the

water from Mvi to Mv% cos 45 is

the difference between the pressure

on a cross-section of the water in the pipe and the force exerted by the

spring.

FIG. 446.
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215. Conservation of Momentum. 7. Linear Momentum.

As already noted, the principle of linear impulse and linear

momentum for the motion of any mass-system under the action of

an unbalanced external force system is expressed by the equation.

in which x represents any direction. Now if the resultant of the

forces which act on the body has no component in the ^-direction,

then the impulse, Qx ,
of the force system in the z-direction will be

zero and hence, A(Mvx) will be equal to zero. Thus,

A (Mvx) = or Mvx = a constant.

That is, if the resultant of the external forces which act on a body

has no component in a given direction, then the linear momentum of

the body in the given direction remains constant. This statement

expresses the principle of the conservation of linear momentum.
II. Angular Momentum. As already noted, the principle of

angular impulse and angular momentum for the motion of any

body under the action of an unbalanced external force system is

expressed by the equation,

Now if the external forces which act on the body have no resultant

moment about a given axis, 0, then the angular impulse, LO, of

the forces about the same axis will be zero and hence A77o will be

equal to zero. Thus,

A#o= or HQ = a constant .

That is, if the external forces which act on a body have no re-

sultant moment about an axis, then the angular momentum of the

body with respect to that axis remains constant. This statement

expresses the principle of the conservation of angular momentum.
It was shown in Arts. 208 and 209 that the angular momentum,

HQ, of a body about an axis, 0, is expressed by 7 co if one of the

following conditions is satisfied:, (a) The body is rigid and rotates

about a fixed axis, the 0-axis being taken as the axis of rotation;

(6) the body is rigid and has a plane motion and the 0-axis passes

through the mass-center of the body. Further, 7 co also expresses
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the angular momentum of a non-rigid mass-system about a fixed

axis of rotation provided that all parts of the mass-system have

the same angular velocity. Thus, if a rod rotates about a

fixed axis as bodies slide radially outwards (or inwards) along
the rod, the mass-system is not rigid but the angular momentum
of the system about the axis, 0, of rotation is IQU.

Therefore, the principle of conservation of angular momentum,
when the above conditions are satisfied) may be expressed as follows :

Joco = a constant.

Thus, if /o decreases co must increase and vice versa. For example,
a gymnast who leaves the swinging trapeze at the top of a circus

tent with a relatively small angular velocity co (his body being

extended) may increase his angular velocity and make several

complete turns in mid-air as he descends in a vertical plane by
"
doubling up." His moment of inertia is thereby decreased and

his angular velocity is increased a sufficient amount to keep IQU
constant since no external torque acts on him while he is de-

scending.

ILLUSTRATIVE PROBLEMS

499. The weight of the parts of a 3-in. field gun (Fig. 447) which move

during recoil is 950 Ib. The weight of the projectile is 15 Ib. and that of the

FIG. 447.

powder charge is 1.5 Ib. The muzzle velocity is 1700 ft. per sec. Determine
the velocity of free recoil at the time the projectile reaches the muzzle (end of

barrel) assuming that the projectile leaves the gun with a horizontal velocity.

Solution. Three bodies are to be considered; the projectile, the powder
charge, and the recoiling parts of the gun. Since the recoil is free, there are

no horizontal external forces acting on these three bodies while the projectile

is reaching the muzzle of the gun and hence, the linear momentum of the system
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remains constant. That is, the momentum of the projectile plus the

momentum of the gases is equal to the momentum of the recoiling parts.

Thus,

MpVp -\-MgVg
=M rVr .

The gases (and unburned powder) form a non-rigid body and hence the

velocity, vg,
of the mass-center must be used. It is usually assumed that v is

one-half of the velocity of the projectile. Thus, using weights instead of

masses since they are proportional, we have,

15X1700+1.5X^ = 950 vr .

Hence,

^25,500+1275
950

= 28.1 ft ./sec.

The velocity of free recoil as the projectile reaches the muzzle of the gun is

about 0.7 of the maximum velocity of free recoil. The bore is filled with

gases for a short interval after the projectile leaves the gun and these gases

continue to exert pressure on the breech and thus to increase the velocity of

recoil.

600. Two spheres (Fig. 448) are mounted on a light rod on which the

spheres may slide without friction.

The rod and spheres rotate about the

vertical central axis. A string is

attached to each sphere and runs over

pulleys so that the pull of each string

is directed along the rod. Each sphere

weighs 8 Ib. and is 2? in. in diameter.

When the distance of the center 01

each sphere from the axis of rotation

is 2 ft., the angular velocity of the

rod is 60 r.p.m. If the spheres are

pulled a distance of 6 in. along the rod

toward the axis of rotation what will be the angular velocity of the rod?

Solution. Since the external forces acting on the spheres have no moment
about the axis of rotation, the angular momentum with respect to the axis of

rotation remains constant. That is, the angular momentum of the spheres
before they are pulled in is equal to their angular momentum after they are

pulled in. Whence,
/i(0l=/20>2.

Little error will be introduced by considering the spheres to be particles and

by neglecting the mass of the rod. Thus,

FIG. 448.
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Hence,
4X27T

:

2:25
= 11.15 rad./sec.

= 106.6 r.p.m.

Thus, it will be noted that as the moment of inertia of the spheres decreases,
their angular velocity must increase. And since the moment of inertia

decreases as the square of the distance from the axis of rotation, a relatively

small inward movement of the spheres causes a relatively large increase in the

angular velocity.

If the pulls of the strings are released when the spheres are at any distance,

x (Fig. 449), from the axis of rotation,

then no force in the horizontal plane
will be acting on either sphere, and
hence each sphere will continue with

constant speed in a straight line until it

strikes the stop at the end of the rod as

indicated in Fig. 449. That is, the

linear momentum of each sphere remains

constant until the stop is hit and then

changes from mv to mvt. The angular
momentum of the sphere, however, is

the same after the sphere strikes the

stop as it was before the sphere struck

the stop since no moment is introduced

by the pressure of the stop. Thus,

FIG. 449.

PROBLEMS

501. If the pulls of the strings on the two spheres of Prob. 500 are released

when each sphere is 2 ft. from the axis of rotation and the angular velocity of

the rod is 90 r.p.m., what will be the linear velocity of each sphere after hitting

the stop, assuming the rod to be 6 ft. long? What is the impulse of the sphere

against the stop?

502. A 2-oz. bullet moving with a velocity of 2000 ft. per sec. strikes,

centrally, a block of wood which is moving on a smooth horizontal plane in the

same direction as the bullet with a velocity of 20 ft. per sec. If the block

of wood in which the bullet embeds itself weighs 16.8 lb., what is the resulting

velocity of the block and bullet? Ans. y = 34.6 ft./sec.

503. Two similar pulleys are running loose on a shaft. One has an angular

velocity of 10 r.p.m. and the other a velocity of 30 r.p.m. in the opposite

direction. They are suddenly coupled together by means of a friction clutch.

What will be the angular velocity of the pulleys after the clutch has ceased

to slip? What proportion of the kinetic energy is lost?

Ans. 10 r.p.m.; 80 per cent.
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604. A 4.7 in. howitzer field gun rests on a wooden platform. Recoil is

checked by heavy ropes attached to stakes driven into the ground in front

of the gun. Assuming that the slack in the ropes allows the velocity of free

recoil to be developed, find the velocity of recoil from the following data:

Weight of gun, 7000 lb.; weight of projectile, 63 lb.; weight of powder charge,

6 lb.; muzzle velocity, 1500 ft. per sec.

216. Impact. The equations of Art. 213 which express the prin-

ciples of impulse and momentum apply to the motion of bodies

whether the bodies move under the action of impulsive forces or of

forces which act during a finite time interval. In fact, as stated

in Art. 201, the principles of impulse and momentum are par-

ticularly well adapted to the solution of kinetics problems which

involve sudden impulses (see Art. 201 for various illustrations).

The effect of impulsive forces on the motion of a body, in most

problems, is so large in comparison with the effect of the other

forces which act on the body that the effect of the other forces on

the motion of the body, while the impact lasts, may be neglected.

The only details of the change in the motion of a body that can be

determined, when the change in the motion is caused by impulsive

forces, are the initial and final velocities of the body. For, the

distance traveled during the impact is indefinitely small; the

time interval is also indefinitely small and hence, the acceleration

produced is indefinitely large since the change in velocity is a

finite quantity. Thus, the distance, time, and acceleration are

indeterminate. There is, however, a definite (appreciable)

change in the velocity although, as just noted, the manner in

which the velocity changes during the period of the impact is

unknown and only the initial and final values of the velocity can

be determined. Therefore, the momentum of the body at the

beginning and at the end of the impact period are definite quantities

and, since these quantities are involved in the principles of impulse

and momentum, problems which involve impulsive forces yield

to this method of solution although the impulse of the impulsive

forces is used and not the forces themselves.

DEFINITIONS. It is convenient to classify or define some of the

ways in which impact of bodies may occur.

Direct and Oblique Impact. If two bodies collide and the

velocity of each is directed normal to the striking surfaces, the

impact is said to be direct. When this condition is not fulfilled

the impact is called oblique.
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Central and Eccentric Impact. If two bodies collide in such a

way that the action line of the pressures exerted by the bodies on

each other is directed along the line connecting the mass-centers

of the two bodies, the impact is called central. If the action line

of the pressures is not so directed the impact is called eccentric.

Impact may occur, of course, with two translating bodies;

with two rotating bodies; with two bodies having plane motion;

or, with two bodies, one having any one of these three types of

motion and the other having either one of the remaining two types

of motion. Two of these combinations of motion are treated in

the subsequent articles.

The period of impact may be divided into two parts: (1)

the time of deformation during which the impulsive force is increas-

ing to its maximum value as the two bodies deform, and (2) the

time of restitution during which the bodies are separating and

partially recovering from the deformation. If the two bodies

were perfectly elastic, the period of deformation would be equal
to the period of restitution and, the velocity of separation would be

equal to the velocity of approach. But, all bodies are more or less

inelastic and hence, the velocity of separation is always somewhat

less than the velocity of approach.

Coefficient of Restitution. For direct central impact of two

bodies, the ratio of the relative velocity of separation to the rela-

tive velocity of approach is denned as the coefficient of restitution.

Thus, if the velocities before impact are denoted by v\ and V2

and after impact by v\ and v^,' and if e denotes the coefficient of

restitution, the value of e is defined by the following equation,

1)2 V\ . . , s /1Xe= or V2 vi = e(V2 vi). . . (1)
V2 Vi

Experiments show that the value of the coefficient of restitution

for two spheres in central direct impact depends only on the

materials of the two spheres. It is generally assumed that the

value of e as found for two spheres of any two materials is the same

for other bodies of the same materials whether the impact is

central and direct or not. But if the impact is not central and

direct the components of the velocities normal to the impact

surfaces must be used in equation (1) instead of the total veloci-

ties.

Notation. In dealing with the problem of the impact of^two
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bodies as discussed in the following articles, the notation as indi-

cated below will be used.

MI = the mass of one body.

M2 = the mass of the second body.

vi (or o>i)
= the linear (or angular) velocity of the impact surface

of MI before impact occurs.

V2 (or 0)2)
= the linear (or angular) velocity of the impact surface

of A/2 before impact occurs.

v\ (or ooi')=the linear (or angular) velocity of the impact surface

of MI after impact.

V2 (or 0)2')
= the linear (or angular) velocity of the impact surface

of M2 after impact.

v (or co)
= the linear (or angular) velocity of the impact surfaces

at the end of the deformation period.

td
= time of deformation.

jf

tT
= time of restitution.

t = td -\-tr = total time of contact.

Pddt= impulse or impact for the time of deformation.

r
I Prdt= impulse or impact for the time of restitution.

Jtd

(Pd) ap
= the average force for the time of deformation. That is,

td

pddt=(Pd) av -td .

(Pr} av
= the average force for the time of restitution. That is,

217. Impact of Two Translating i

Bodies. Direct Central Impact. I 1 i i

M!
j

I M 2 I

In Fig. 450 are represented two X̂J^^J^^^^
translating bodies which collide

FIG. 450.

with direct central impact. It is

assumed that the values of

MI, M2, vi, V2, and e,
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are known, and it is required to find the values of

v, vi
f

,
v2 , |

*Padt or (Pd) avtd ,
and

|
P4t or

Jo Jtd

Evidently five equations must be found from which the five

unknown quantities may be determined. The five equations may
be found as follows: From the principle of conservation of linear

momentum equations (1) and (2) below are obtained. Thus,

MI vi+M2v2 = (Mi+M2)v for the period td . . . (1)

(Mi+M2)v
= Miv1'+M2v2

'

for the period tr . . . (2)

And from Art. 216,

v\ v2
' =

e(vi v2) (3)

From these three equations the values of v
t vi', and v2

f

may be

found. The impulses for the periods td and tr may now be found

by applying the principle of linear impulse and momentum for the

periods td and tr ,
which leads to the following equations,

JT

/

Pddt=M1 (v-vi)=M2(v-v2 ), (4)

P4t=Mi(vi'-v)=M2(v2
f

-v) (5)

PROBLEMS

506. A freight car weighing 40 tons and traveling at a speed of 20 mi. per
hour on a straight track overtakes another car weighing 30 tons and traveling

on the same track in the same direction at a speed of 15 mi. per hour. If

the value of e is 0.2, find the velocity of each car after impact and the impulse
of each car on the other both for the time of deformation and for the time of

restitution.

Ans. vi' = 17.4 mi./hr.; v2
' = 18.4 mi./hr.; (

&
Pddt = 7820 Ib.-sec.;

Jo

JC

506. A body weighing 50 Ib. moving to the right collides with a 30-lb.

body moving to the left. The speed of each body is 15 ft. per sec. The

impact of the two bodies is direct and central. If the coefficient of resti-

tution is 0.6, find (a) the velocity of each body after impact, (6) the velocity
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5'

of each body at the end of the deformation period, (c) the impulse or impact
for the deformation period, and (d) the impulse for the period of restitution.

Ans. vi= 3 ft. /sec.; v2
' = l5 ft. /sec.; v = 3.75 ft. /sec.

218. Impact of a Translating Body with a

Rotating Body. In Fig. 451 let M2 be the

mass of a body which is rotating about a fixed

axis through with angular velocity 002 when
a small translating body of mass MI having a

velocity v\ collides with it at a distance h

from the axis of rotation. This is an example
of direct eccentric impact in which the known

quantities are,

6, h, MI, M2, /2, #1, co2, v2 u2b, and e

where I2 denotes the moment of inertia of

M2 about the axis of rotation. And the quantities to be found are,

v, co, vi't

The necessary equations from which to solve for the eight

unknown quantities may be obtained as follows: From the prin-

ciple of conservation of angular momentum the equations (1) and

(2) below are obtained. Thus,

and,

And from Art. 216,

And from Art. 115,

cl

j, for the period td ,
. . (1)

,
for the period tr . . . (2)

(3)

(4)

From these four equations the quantities v, co, v\, and v2
r

may be

determined. Then from the principle of linear impulse and

momentum for the mass MI the values of the impulse of the pres-
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sure P for the periods td and tr may be found from the following

equations,

f
I

= Mi(v vi) for the period td ,
... (5)

Prd*= Mi fa
'-

w) for the period tr . ... (6)

In a similar way by applying the principle of linear impulse and
momentum to the mass M<, the values of the impulse of the reac-

tion S for the periods td and tr may be found from the following

equations,

Ai Ai
I Pddt+ I Sddl= M2(v V2) for the period fo, ... (7)

J
P^+

J
Srdt=M2 (v2

f

-v) for the period Zr . ... (8)
x 'd x 'd

The kinetics problems involving the impact of two rotating bodies,

of a translating body with a body having plane motion, or of other

combinations of motions may be solved by methods similar to

those used in the last two articles.

PROBLEM

607. The following data apply to the bodies represented in Fig. 451.

The weight of the translating body is W\=Q Ib. and vi=40 ft. per sec. The

rotating body is a slender rod 6 ft. long which is rotating at 4 rad. per sec.

when impact occurs. The weight of the rod is 15 Ib., h = 5 ft., and e = 0.8.

Find v, v'i, v'%, I; Pddt and I Sd dt. Assuming that the deformation
Jo Jo

period is TO sec., what is the average value of S during the deformation?

Ans. v1

/ = 20.4ft./sec.; t*' = 36.4 ft./sec.; Sav
= 5.l Ib.

219. Loss of Kinetic Energy in Direct Central Impact. The
linear momentum of two bodies before impact is the same as the

momentum after impact but the kinetic energy of the two bodies

after impact is less than the kinetic energy before impact since a

part of the energy is dissipated during impact in doing work in

compressing the two bodies which are more or less inelastic. If

the value of the coefficient of restitution for two bodies were

unity, that is if the two bodies were perfectly elastic, no energy

would be dissipated during impact since the work done in the
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deformation period would equal the work recovered during the

period of restitution. The amount of energy lost in impact is

the difference between the energy of the two bodies before impact
and the energy after impact. That is, the loss of kinetic energy,

EL ,
is given by the expression,

EL=$Mlvl
2+M2V2

2
)-(}iMiVi'

2+W2V2'2
). . . . (1)

The expression for EL , however, is more convenient for use if the

velocities (2/1 and 2/2) of the two bodies after impact are eliminated.

This may be done as follows: From the principle of conservation

of linear momentum the following equation is found,

(2)

And from definition,

Vl'-v2'=-e(v1 -v2)....... (3)

By solving equations (2) and (3), the values of v\ and v2 are found

to be, M2

a'T^-a-N^
and,

By substituting these values of v\ and v2
'
in equation (1) the fol-

lowing expression for EL results,

It will be noted that for two perfectly elastic bodies (e=l) the

loss of energy in impact is zero and for two plastic bodies (e
=

0)

the loss of energy is EL = - M \^ (vi~v2 )
2

.

The loss of energy in direct eccentric impact and in other cases

of impact may be found by a similar method.

220. Angular Momentum a Vector Quantity. In the preced-

ing articles of this chapter the magnitude, only, of the angular
momentum of a body has been assumed to change. However, in

expressing the principle of angular impulse and angular momentum
for a body which moves so that its plane of motion changes in

direction (such as the propeller of an aeroplane when making a
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turn), the angular momentum of the body must be considered as a

quantity having direction as well as magnitude, that is, it must be

considered to be a vector quantity. The angular momentum of a

body may be represented by a vector drawn (1) perpendicular to

the plane of motion of the body to indicate the direction of the

plane of motion, (2) of such a length that it represents, fco some

scale, the magnitude of the angular momentum, and (3) with the

sense of rotation indicated by an arrow which points in the direc-

tion along the vector in which a right-handed screw would advance

if given the same sense of rotation as that of the body. Thus,
if a disc (Fig. 452) rotates with angular velocity coi about the axis

OZ, its angular momentum (HiIwi) about the axis of rotation is

represented completely by the vec-

tor OB. It will be noted that the

vector representing the angular
momentum may change in length

only, in direction only, or both in

length and in direction. Thus, in

Fig. 452, if the disc is rotated about

the axis OY and at the same time

the angular velocity about the OZ
axis is increased to 002, the vector

representing the angular momentum

(H2 = Iw2) of the disc is OC.

Furthermore, the change in the

angular momentum of a body is represented completely by the

change in the angular momentum vector. Thus, in Fig. 452 the

change in the angular momentum of the disc is represented by
the vector BC.

221. The Gyroscopic Couple. A disc which rolls round a

curved track (Fig. 453a) revolves simultaneously about two rect-

angular axes and hence it has gyroscopic motion (Art. 165).

Gyroscopic motion of a body will here be analyzed briefly by con-

sidering the changes in the angular momentum of the body.

(See Arts. 166 and 167 for another method of analysis.)

In Fig. 453 (a) is represented a disc or wheel which rotates with

a constant angular velocity co about its axis (axle) OD as it moves

round the curved track with a constant angular velocity ft. It

will be observed that the angular velocity of the disc about an axis

through D perpendicular to the paper is also equal to ft. At a

FIG. 452.
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given instant, the disc is in the position A\Bi and its angular

momentum, H\, is equal to 7co. After an interval of time dt the

disc is in the position A^B^ and its angular momentum is #2, the

magnitude of which is also equal to Jco. That is, the angular
momentum of the disc (7o>) has changed in direction, only, during
the time interval dt.

The change in the angular momentum of the disc from HI to Hz
is represented by the vector EF (Fig. 4536) which connects the

ends of the vectors HI and #2. Now, since the angle dd is small

FIG. 453.

(greatly exaggerated in Fig. 453) the length of DE, that is, the

magnitude of the change in the angular momentum, is

and the limiting direction of the vector EF as dd becomes indef-

initely small is perpendicular to H\. The rate of change of the

angular momentum, then, is

dt

and the direction of the vector which represents this rate of change
of the angular momentum is also perpendicular to HI. Now a
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torque or couple is always required to produce a change in

the angular momentum of a body; the moment of the couple is

equal to the rate of change of the angular momentum of the body
(Art. 212) ;

the plane in which it acts is perpendicular to the vector

which represents the rate of change of the angular momentum;
and the sense of rotation of the couple is such that it would cause

a right-handed screw to progress (in the direction of the arrow)

along the vector which represents the rate of change of the angular
momentum.

Therefore, a couple C must act on the disc in a plane perpen-
dicular to the plane of the disc and to the plane of the paper, with

a clockwise sense of rotation (as viewed from behind), the mag-
nitude of the couple being

It is evident, therefore, that the disc would turn over counter-

clockwise (outward) unless a couple having a moment equal to

7col2 acted to prevent the turning. This couple is called the gyro-

scopic couple.

As noted in Art. 165, the forces of the gyroscopic couple fre-

quently cause considerable pressure on the axle of the rotating

body as, for example, in the case of the rotor of an electric loco-

motive when rounding a curve or of the propeller of an aeroplane
when making a turn, etc.

If a body (Fig. 454) rotates or spins about the 2-axis and a

couple Wl having a moment about the z-axis is applied to the body,
the body will rotate about the ?/-axis with an angular velocity 12

unless a couple having a moment about the ?/-axis acts on the body
to prevent the rotation about the y-axis. The angular velocity 12

is called the velocity of precession. It is necessary that the body
shall precess in order to develop a resistance to the couple Wl and
hence prevent the disc from falling. This fact may be shown by
following the changes which occur in the angular momentum
about the z-axis. Thus, when the couple Wl (Fig. 454) first acts,

the z -axis is turned through an angle dd thereby causing a change
AB in the angular momentum of the disc. This change requires

a couple in the horizontal plane with a clockwise sense as viewed

from below. But, since there are no bodies to develop or supply
this couple, the disc turns (precesses) in the horizontal plane and

thus the necessary couple is developed from the inertia of the
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disc. As soon as precession starts, however, that is, as soon as the

z-axis has turned through the angle d<f>, the change AC m the

angular momentum is produced. This change requires a couple
in the vertical plane (clockwise as viewed by the reader) to pre-

vent the disc and axle from rotating counter-clockwise in the

vertical plane. This couple is supplied by the two forces W having
a moment Wl. Hence, if the body is allowed to precess about the

FIG. 454.

2/-axis with angular velocity ft, the external couple Wl is resisted

by the gyroscopic couple, that is,

W

from which the velocity of precession is found to be,

ft= To,uk2 '

in which k is the radius of gyration of the disc with respect to the

z-axis.

If precession is prevented, a couple (C= 7coft) must be set up
in the horizontal plane, ft here being the angular velocity, at any

instant, produced by Wl, which will be the same whether the disc

rotates about the z-axis or not, since no resistance is offered to the
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external couple unless precession is allowed. This explains why a

heavy rotating flywheel or armature on board a ship, with its axis

horizontal and athwartship, will offer no more resistance to the

rolling of the ship than when it is not rotating. The bearing of

the axles, however, must exert a large couple C= 7cofi in a hori-

zontal plane which tends to
" nose "

the ship around. 2 here

represents the angular velocity of roll.

If an external couple is applied in a horizontal plane to increase

or hurry the precession, the disc and axle (Fig. 454a) will rise

since 7coO>TFZ. This principle is employed in the Brennan

mono-rail car, the precession being hurried by the rolling of the

axle of the revolving flywheels, extended, on a shelf attached to

the side of the car. This principle is also used in the
"
active

type
"

of gyroscope for stabilizing ships. In this case the pre-

cession is hurried by means of a precession engine which acts after

the ship has rolled a very small amount thus producing a gyro-

scopic righting-couple sufficient to extinguish the roll. Since the

roll is checked in its incipiency, only a small amount of work is

done. The stresses produced in the hull of the ship are also small

for the same reason, and hence, the weight and displacement of

the active type of gyroscope likewise may be small. For those

interested in the various ways in which gyroscopic motion may
arise and in the progress which has been made in the application

of the gyroscope to the stabilizing of ships, mono-rail cars, and

aeroplanes; to the guiding of torpedoes; to compasses; and to

the Griffin grinding mill, the following references are appended:

1. Journal of the Franklin Institute, May, 1913.

2. American Machinist, August 7 and 14, 1913.

3. Iron Age, December 1, 8, 15, and 22, 1910.

4. Scientific American Supplement, January 26, 1907.

5. Popular Science Monthly, July, 1909.

6. Scientific American, December 18, 1915.

7. Journal American Society of Mechanical Engineers, Novem-

ber, 1920.

NOTE. For problems on the gyroscope see Art. 167.
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Anti-resultant, 8
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of rotating masses, 370
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Bow's notation, 7, 95
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Center of gravity, defined, 173

by experiment, 178

parallel force system, 173

oscillation, 364

percussion, 333, 364

suspension, 364

Centrifugal couple, 371
-

force, 329, 370

Centroid, denned, 160

by integration, 163

graphical method, 177
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Coefficient of friction, 128

restitution, 472

rolling resistance, 153

speed fluctuation, 435

Composition, defined, 8
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-
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Compound pendulum, 363, 367

Conservation of energy, 439

momentum, 467

Conservative system, 421, 440

Coriolis' law, 270
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definition of, 19

gyroscopic, 382, 478

moment of, 19

resolution of, 64

transformations of, 22, 44

vector representation of, 20

D'Alembert's principle, 305, 307, 326,
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Dimensional equations, 25

Displacement

angular, 224

linear, 222

relative, 263

Dynamics, 2

Dynamometer, 446

Dyne, 297

Effective force, 303
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Energy, 420

conservation of, 439

dissipation of, 443

kinetic, 422

loss of, in impact, 476

non-mechanical, 428
- of a body, 424

particle, 422
-

potential, 421
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Equations of motion, defined, 288

for a particle, 298

plane motion, 339, 340

rotation, 319

translation, 308

Equilibrant, 8

Equilibrium, 8

algebraic conditions of, 70

diagrams, 69

equations of, 69, 72, 73, 78, 82, 110

113, 114

graphical conditions of, 70

of collinear forces, 72

concurrent forces in a plane, 73

space, 110

parallel forces in a plane, 78

space, 112

non - concurrent, non - parallel

forces in a plane, 82

non - concurrent, non - parallel

forces in space, 114

three forces, 75

Erg, 409, 417

First moment, 160

Flexible cables, 102, 106

Flywheel, stresses in, 356

Force, 1

characteristics of, 4

component of, 8

conception of, 1, 3
-

effective, 303

external effect of, 4
-

inertia, 307, 326, 345

measure of, 4

moment of, 14

polygon, 31, 36, 49

resolution of, 11, 22

units of, 4

vector representation of, 6

Forces, classification of, 7

composition of, 8

impulsive, 449

inertia, 326, 345

resultant of a system of, 8, 28,

system of, 7

triangle of, 9

Friction, defined, 127
-

belt, 155

circle, 145

coefficient of, 128

cone of, 129

journal, 145
- laws of, 134

limiting, 128

of inclined planes, 135

screws, 142

wedges, 138

pivot, 148

rolling, 153

work lost due to, 443

Funicular polygon, 37

Geepound, 296

Governors, 386

centrifugal shaft, 391

inertia shaft, 392
-

loaded, 388
-

Porter, 389

Rite's inertia, 393

Guldinus, theorem of, 171

Gyroscope, 378

analysis of forces in, 379

precession, axis of, 383

velocity of, 383, 480

Gyroscopic couple, 382, 478

Harmonic motion, 253

Hoop tension, 356

Horsepower, 417
-

-hour, 418

Impact, 450, 471

loss of energy in, 476

Impulse, 450
-

angular, 451, 452

components of, 451

linear, 451

moment of, 451, 452

Inertia, denned, 289
-

forces, 307, 326, 345

moment of, 180, 205

product of, 194
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Instantaneous center,

of acceleration, 352
-

velocity, 284

Inclined plane, friction of, 135

Joule, 409

Journal friction, 145

Kilowatt, 417

Kilowatt-hour, 418

Kinematics, 2, 221

Kinetic energy, 420

lost in impact, 476

of a body having plane motion, 426

rotation, 425

translation, 424

particle, 422

Kinetics, 2, 287, 303

Lami's theorem, 74

Loss of energy, in bearings, 434

in impact, 476

Mass, 289

Mass-center, 175

motion of, 353

Moment-arm, 14, 19

Moment-center, 14, 87

Moment equation, limitations of, 351

Moment of inertia, 180, 205

about inclined axes, 198

, perpendicular planes, 208
- by experiment, 220, 367

, composite areas, 190

, bodies, 218

, graphical methods, 202

, integration, 184, 209

parallel axis theorem, 183,

207

polar, 181

principal axes, 199

Momentum, 453
-

angular, 454, 456, 457

a vector quantity, 453, 477

components of, 454

conservation of, 467

linear, 454, 455

moment of, 454, 456, 457

Motion, curvilinear, 222

gyroscopic, 378, 478

Newton's laws of, 293

non-uniformly accelerated, 256

of a projectile, 248

mass-center of body, 353, 414
-

rigid bodies, 276

rectilinear, 222
-

relative, 262

simple harmonic, 253

uniformly accelerated curvilinear,

251

uniformly accelerated rectilinear,

250

Motion graphs

acceleration-time, 261

distance-time, 228
-

speed-time, 241, 260

Newton's laws of motion, 293

Pappus, theorem of, 171

Parabolic cable, 102

Parallelogram law, 8

Particle, 221

equations of motion for, 297

Pendulum, compound, 363, 367
-

conical, 300, 387

simple, 360

torsion, 365, 368

Period of oscillation, 362, 364, 366

Pivots, friction of, 148

loss of energy in, 443

Plane motion, 278, 336

Polar moment of inertia, 181

Pole of force polygon, 36

Poundal, 297

Power, 417

special equations for, 418

Principal axis, 199

Principle of impulse and momentum,
459,461

moments, 16, 38, 49, 57, 65

transmissibility, 8

work and energy, 430

Product of inertia, 194

parallel axis theorem for, 196
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Projectile, motion of, 248

Prony brake, 446

Radius of gyration, 182, 207

Rays of force polygon, 36

Relative motion, 262

Resolution, 8

of a force, 11

couples, 64

directions of, 87

Resultant, 8

Resultants of force systems, 28-- collinear forces, 28

concurrent forces in a plane, 29-----
space, 53-- non - concurrent, non - parallel

forces in a plane, 48------
space, 65

parallel forces in a plane, 34

space, 56

Reversed effective force for a body,

307, 326, 345

Rigid body, 3

Rolling resistance, 153

Rotation, 277, 315

Scalar quantity, 6

Second moment, 180

Sensitiveness of governors, 389

Slug, 296

Space diagram, 6

Speed, 226

Statically indeterminate force sys-

tems, 69

Statics, 2

Stresses in trusses, 88

Strings of funicular polygon, 37

Tangential-effort diagram, 411

Theorems of Pappus and Guldinus,
171

Translation, 276, 305

Triangle law, 9

Trusses, analysis of, 88

graphical, 95

method of joints, 89

sections, 90

Units, 294

absolute system of, 297

gravitational system of, 297

systematic system of, 297

Varignon's Theorem, 16

Vector, 6

diagram, 6

quantity, 6

Velocity, angular, 229

components of, 231

linear, 226
-

relative, 264

Work and energy, principles of, 430

Work, 406

done in punching hole in plate, 412

by a force system, 414

expressions for, 406, 408

graphical representation of, 409

units of, 409
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