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PREFACE

Turs book, as its name suggests, presents those principles
of mechanics that are believed to be essential for the student of
engineering. -

Throughout the book the aim has been to make the principles
of mechanics stand out clearly; to build them up as much as pos-
sible from common experience (the student’s experience); to
apply the principles to concrete problems of practical value;
and to emphasize the physical rather than the mathematical
interpretation of the principles. Important equations are printed
in bold-faced type and the statements of the more important
principles are italicized.

The book is divided into three parts; namely, Statics, Kine-
matics, and Kinetics. Statics is presented first because of its
simplicity and its direct relation to the student’s experience.
However, in the first two chapters are developed certain concepts
and elementary principles that are fully as important in kinetics
as in statics, and the authors feel that it is essential to a satis-
factory grasp of mechanies, as a whole, that sufficient time and
care be taken to cause these elementary concepts and principles
to erystallize in the student’s mind before the more general prin-
ciples and problems are studied. The equilibrium of the various
types of force systems are treated both by the algebraic and by the
graphical method. A large number of problems involving the
equilibrium of the simpler structures and machines are given, and
figures illustrating the structures and machines are used freely.

Although kinematies as herein developed is mainly a prelim-
inary to kinetics, the authors’ experience indicates that the
kinematic properties of motion must be isolated and developed
with care if they are to be used with success in the study of the
kinetics of the motion.
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iv PREFACE

Both kinematics and kinetics have been developed with regard
for the increasing importance of dynamics to engineers. The
geometric and physical conceptions and interpretations of the
quantities in kinematies have been emphasized rather than the
mathematical conceptions. A treatment of acceleration is given
which, it is hoped, will help to overcome some of the difficulties
frequently found in the use of this quantity. The treatment of
kinetics has been restricted to the more common types of motion
found in engineering practice, but these motions have been treated
more fully than is usual in elementary texts on mechanics. This
is particularly true of plane motion. D’Alembert’s principle
(involving inertia forces) has been used for each type of motion
as a second method of solution. The methods of procedure used
in the analysis of kinetics problems are strongly emphasized both
in the general discussions and in the solutions of illustrative
problems.

Illustrative problems are given at the end of the more important
articles and many problems are offered for solution. Great care
has been exercised in selecting problems that are of practical
interest and yet are easily comprehended and are free from unim-
portant details so that the principles used in their solution will
stand out clearly. The answers to about one-half of the problems
are given.

Graphical methods of representation and of solution have been
used frequently in all three parts of the book. A knowledge of
elementary calculus is assumed although little use is made of it
in the first four chapters.

The discussion of centroids (Chapter V) is developed directly
from the principle of moments—a principle given much emphasis
throughout the book.

Several special topics are discussed in Seetion 3 of Chapter IX.
They may be omitted without interfering with the continuity of
the book, or any one of the topics may be studied alone without
studying the whole section. Further, if it is desired to reduce the
time given to kinetics, the second method of analysis of the motion
of rotation or of plane motion (which employs D’Alembert’s
principle and inertia forces) in Section 2 of Chapter IX may be
omitted. And, in general, the last part of the material in any
section or chapter may be omitted without interfering with the
student’s progress in the first part of the next section or chapter.
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ANALYTICAL MECHANICS FOR ENGINEERS

PART I. STATICS

CHAPTER I
FUNDAMENTAL CONCEPTIONS AND DEFINITIONS

1. Introduction.—The term Mechanics is used in a broad
sense to denote the science which treats of the motion of bodies,
rest being considered as a special case of motion. The science
of mechanics constitutes a large part of our knowledge of the
laws of the Universe, including the laws concerning gases and
liquids as well as those of rigid bodies, and it takes a prominent
place in the study of Astronomy and Physics as well as in the
study of machines and structures which are involved in engineer-
ing practice.

The object of Analytical Mechanics as developed in this book
is to determine the laws by which the motions (including the state
of rest) of bodies (mainly rigid bodies) are governed and to apply
these laws to conditions met in engineering practice.

In the development of the laws of mechanics certain concepts
are assumed to be fundamental, that is, no one of them can be
expressed in terms of the others or in simpler terms. Such
concepts grow out of our experiences, and other ideas and laws
are derived from these condensed experiences.

The fundamental concepts involved in the laws of mechanics
of rigid bodies are: (1) force, which is made known to us through
the tension and the compression of our muscles as a pull or a push,
(2) bodies or inert material (matter) on which forces act and with-
out which forces cannot exist, (3) space, and (4) time. A more
definite understanding of force and inert bodies can be obtained
after the laws of kinetics have been developed. To start with,
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however, it is necessary only to recognize the existence of these
quantities.

In the process of the development of the laws of mechanies,
considerable use is made of mathematics. It should be kept in
mind, however, that mechanics is a physical science and that
mathematics is used, mainly, as a tool to express and interpret
physical laws.

For convenience, the study of mechanics is considered under
three main divisions; namely, Statics, Kinematics, and Kinetics.
Statics is that branch of mechanics which treats of bodies that are
acted on by balanced forces and hence are at rest or are moving
with uniform motion (without change of motion). Kinematics
is that branch of mechanics which treats of the motion of bodies
without considering the manner in which the influencing factors
(force and matter) affect the motion. 'It deals with the funda-
mental concepts of space and time, and the quantities, velocity
and acceleration, derived therefrom. It is, therefore, sometimes
called the geometry of motion. XKinematics forms an important
part of the study of mechanics, not only because it treats of a part
of the general kinetics problem, but also because in many probléms
which involve mainly the relative motion of parts of a machine,
the principles of kinematics, alone, are sufficient for the solution
of the main problem. Such problems are discussed in treatises on
Kinematics of Machinery, in which subject the motion of such
machine elements as valve gears, quick-return mechanisms, ete.,
are considered. Kinetics is that branch of mechanics which treats
of bodies which are acted on by unbalanced forces and, hence,
have non-uniform or accelerated motions. In particular, it treats
of the change of motion of bodies and the manner in which the
change is related to the factors that affect it; namely, the actions
of other bodies (forces), and the properties (inertia, ete.) of the
bodies themselves. It will be noted that the study of the motion
of a body that moves uniformly may be regarded either as a prob-
lem in statics or as p special case of a kinetics problem.

Since both staties and kinetics deal with the action of forces on
bodies, that part of mechanics embraced in these two subdivisions
of the subject is sometimes called Dynamics. Frequently, how-
ever, the term dynamics is used in technical literature to denote
those subdivisions of mechanics with which the idea of motion is
most closely associated, namely, kinematics and kinetics. ‘



CONCEPTION OF A FORCE 3

For simplicity the kinematics and kinetics of a particle (mate-_
rial point) will be treated before extending the study to bodies.
In many problems the body considered may be assumed, without
serious error, to be a particle. This assumption may always be
made when the dimensions of the body are negligible in comparison
with the range of its motion. A body, however, may always be
considered to be made up of particles.

2. Rigid Body.—As was stated in Art. 1, the bodies dealt with
in this book are, in the main, considered to be rigid. A rigid body
is defined as a definite portion of matter the parts (particles) of
which do not move relative to each other. Actual solid bodies
are never rigid. The relative motion (deformation) of their par-
ticles forms an important part of the study of Strength of Materials.
But the theoretical laws which govern the motion of ideal rigid
bodies may be used, usually with very small error or, with modi-
fications if necessary, to determine the motion of actual solid
bodies.

3. Conception of a Force.—It was stated in Art. 1 that force
is one of the fundamental concepts on which the subject of me-
chanies of rigid bodies is built. A force is the action of one body on
another body. The idea of force, then, implies the mutual actions
of two bodies, since one body cannot exert a force on another body
unless the other offers a resistance to the one. A force,therefore,
never exists alone. Forces always occur in pairs; one force acting
on one of two bodies and the other force on the other body. In
fact, to every action there is an equal and opposite reaction.
Our conception of force comes mainly from our experiences
in which we have been one of the bodies between which mutual
actions have occurred. The resistance which is offered by bodies
to the action of other bodies arises out of (1) their ability to resist
change of shape (rigidity) and (2) their ability to resist change of
motion (inertia). If a body is acted on by one force, only, a
change of motion of the body will always take place, but if the
body is acted on by two or more forces, it may be held at rest.

Although a single force never exists, it is convenient in the
study of the motion of a body to think of a single force and to
consider only the actions of other bodies on the body in question
‘without taking into account the reactions of the body in question
on the other bodies. However. the fundamental nature of force
should he keont in mind. *
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4. External Effects of a Force.~When a force is applied
to a rigid body the external effect on the body is either to change
the motion of the body acted on or to develop resisting forces
(reactions) between the body acted on and other bodies. Both
of the foregoing effects, of course, may be produced simulta-
neously. For example, consider a body falling freely under the
action of gravity. The sole external effect of the force acting
on the body (its weight) is to produce an acceleration g (32.2 ft.
per sec.? approximately). If the same body is placed on the
floor of an elevator which is at rest, the sole external effect of the
weight is to produce an upward reaction of the floor on the body.
If now the elevator moves downward with an acceleration less
than g, the effect of the weight is partly to cause an acceleration
of the body (the same as that of the elevator) and partly to pro-
duce an upward pressure (reaction) of the floor on the body.

The internal effects of a force are to produce stress and defor-
mation in the body on which the force acts. The internal effects
of a force are discussed in books on Strength of Materials.

5. Characteristics of a Force.—From experience we learn that
the external effects of a force depend on, (1) the magnitude of the
force, (2) the position of the line of action of the force in the body,
and (3) the sense of the force, that is, the direction along the line of
action.> These three properties of a force are called its elements or
characteristics. A change in any one of them causes a change in
the external effect of the force. A discussion of the exact manner
in which these characteristics influence the change of motion of a
body forms an important part of the study of kinetics, and their
influence on the reactions developed in holding a body at rest is
considered in the study of statics.

6. Measure of a Force. Units.—Although we are conscious
of forces of varying magnitudes, we are not able to compare the
magnitudes with precision by means of our muscular sense.
In order to express the magnitude of a force some standard force
must be selected as a unit in terms of which other forces may be
expressed. The unit of force commonly used by the engineer
is the earth-pull (weight) on an arbitrarily chosen body, as found
at a specified or standard position on the earth’s surface. Exam-
ples of such units are the pound, ton, kilogram, etc. The earth-
pull on any body (its weight) varies slightly with its position
(altitude and latitude) on the earth. For most engineering cal-
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culations, however, the variation in the weight of a body may
be neglected.!

The unit of force as here defined is called a gravitational unit
of force. (For a discussion of other units of force see Arts. 141
and 142.)

There are two common methods used by the engineer for
measuring a force, that is, for finding the number cf units in a
force: (1) by use of the spring balance in its various forms
such as steam gages, certain forms of dynamometers, testing
machines, ete.; (2) by use of a beam or lever balance or system
of levers such as platform scales, screw type of testing ma-
chines, etc.

(1) Due to the fact that many materials possess nearly per-
fect elasticity, within limits, the unit of force may be considered
as the force required to produce a certain stretch or deflection
of an elastic body, the specified stretch or deflection being that
caused by the earth-pull on an arbitrarily chosen body at a stand-
ard locality. A properly graduated spring balance, therefore,
furnishes one means of measuring any force in terms of the arbi-
trarily chosen unit of force.

(2) In the beam or lever balance, the force to be measured
is applied at one end of a lever or system of levers and an arbi-
trarily selected body is placed at such a position on the other end
of the lever that the earth-pull on the body balances the force.
The arbitrarily selected body is a body on which the earth-pull
at a standard location is the unit of force or some multiple thereof.
The lever is so graduated that the number of units in the unknown
force may be read off directly from the lever or beam.

Attention should here be called to the fact that it is impossible, funda-
mentally, to measure the earth-pull (weight) of a body by means of a beam
or lever balance as stated under (2) above. The weight of the body, as
already noted, varies with the position of the body on the earth’s surface
and this variation is not indicated by the beam balance. Hence if this vari-
ation were large the beam balance could not be used for measuring a force.
Its use, then, is permissible only because the quantity measured (not the
earth-pull) is nearly equal (numerically) to the earth-pull or weight.

! The earth-pull on a body varies directly with g, the acceleration due
to the earth-pull. The extreme variation in the value of g corresponding
to a change in the position of the body on the earth’s surface from a high
altitude at the equator to the pole is 0.6 per cent. Within the United States
the maximum variation is about 0.3 per cent.
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Units of space (length), such as the foot, yard, mile, meter,
ete., and units of time, such as the second, minute, hour, ete., are
assumed to be familiar to the student.

7. Scalar and Vector Quantities. Vector Representation of a
Force.—Quantities which possess magnitude only, as, for example,
areas, volumes, etc., are called scalar quantities. Many quantities
involved in the study of mechanics, however, have direction as
well as magnitude. Any quantity which has direction as an in-
herent property as well as magnitude is called a vector quantity.
Thus, as stated in the preceding article, the effect of a force depends
on its direction as well as its magnitude, and hence force is a vector
quantity. Other examples of vector quantities are velocity, accel-
eration, momentum, ete.

A vector quantity may be conveniently represented wholly or in
part by means of a directed straight line. Any such line is called a
vector. Thus, the direction of a force may be represented by a
straight line drawn parallel to the action line of the force, the
sense being represented by an arrow-head on the line, and the
magnitude of the force may be represented by the length of the
line according to some convenient scale. If the magnitude and
direction, only, are to be represented, the vector may be drawn
anywhere in the plane of the force. Such a vector is called a
free vector. 1If, in addition, the action line of the force is to be
represented, the vector must be laid off along the line of action.
Such a vector is called a localized vector. Further, if it is desired
to represent the point of application of the force, the point of
application may be taken as the initial end of the vector, that is,
the point from which the vector is drawn. It will be noted, how-
ever, that the point of application of a force which acts on a rigid
body is not one of the essential characteristics of the force (Art. 5).

In dealing with the forces which act on a given body it is
convenient frequently to represent the forces by free vectors.
The diagram in which are represented the free vectors (that is, the
vectors representing the magnitudes and directions of the forces) is
called the vector diagram.~ The diagram which represents the body

( and the action lines of the forces that act on the body is called the
space diagram. Both diagrams as a rule play an important part
in the complete solution of a problem and will be used frequently
in the subsequent pages.” In Fig. 1 is shown a wall bracket, the
horizontal arm of which'is acted on by three forces having points of
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applications at 1, 2, and 3, the action lines being indicated by b,
be, and cd, as shown in the space diagram. > The forces are repre-
sented in magnitude and direction in any convenient place by the
vectors. AB, BC, and CD, the lengths of the vectors representing
the magnitudes of the forces
according to a convenient scale.
The direction of each vector
is parallel to the action line of
the force which it represents.

The notation used in the
above illustration is known as
Bow’s notation and will be used Y
frequently in the subsequent .
pages. According to this nota- :| \
tion the action line of a force is e o 2
denoted by two lower-case let- !
ters and the vector which re- .
presents the magnitude and
direction of the force is denoted A
by the corresponding -ecapital
letters.

8. Classification of Forces. Definitions.—Forces may be
classified as surface forces and body forces, sometimes called forces
* of contact and forces at a distance according as the action of one
body on another is exerted over a portion of the surfaces of two
bodies that are in contact or is distributed throughout the mate-
rials of the bodies. (The most important body force considered in
mechanics is the earth-pull (weight). Magnetic forces are of the
same class. A surface force becomes a concentrated force when
the area over which the force is distributed is so small compared
with the surface of the body acted on that it may be regarded as a
point. This point is called the point of application of the force.
The action line of a concentrated force is a line containing the point
of application of the force and having the same direction as that
of the force.

Any number of forces treated as a group constitute a force
system. A force system is said to be concurrent if the action lines
of all the forces intersect in a common point and non-concurrent if
the action lines do not intersect at a point. A force system is said
to be coplanar when all the forces lie in the same plane and non-

c

Fic. 1.
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coplanar when the forces do not lie in a common plane. A parallel
force system is one in which the action lines of the forces are par-
allel, the senses of the forces not necessarily being the same, and
a non-parallel system is one in which the action lines of the forces
are not parallel. If the forces of a system have a common line
of action the system is said to be collinear.

Two force systems are said to balance if, when applied simul-
taneously to a body, they produce no external effect on the body.
The forces which hold a body at rest always balance. Forces or
force systems which balance are said to be in equilibrium and the
body or bodies on which they act are also said to be in equilibrium.
If a body is acted on by a force system which is not in equilibrium
there always is a change in the motion of the body. Such a force
system is said to be unbalanced or to have a resultant. The "~
resultant of a force system is the simplest equivalent system to
which the given system will reduce, that is, the simplest system
which will produce the same change of motion. The resultant of a
force gystem is frequently a single force. For some force systems,
however, the simplest equivalent system is composed of two equal,
non-collinear, parallel forces of opposite sense, called a couple.
And still other force systems reduce to a force and a couple as the
simplest equivalent system. The process of reducing a force
system to a simpler equivalent system is called composition. The
process of expanding a force or a force system into a less simple
equivalent system is called resolution. A component of a force is
one of the two or more forces into which the given force may be
resolved. The anti-resultant or equilibrant of a force system is the
simplest force system which will balance the given system.

9. Principle of Transmissibility.—It was stated in Art. 7
that the external effect of a force on a rigid body does not depend
on the point of application of the force. This very useful fact, the
truth of which is found in our experience, is formally expressed in
the principle of transmissibility. » This principle states that the
external effect of a force on a rigid body is the same for all points of
application along its line of action. It will be noted that the
external effect, only, remains unchanged. ~The internal effect
of a force (stress and deformation) may be greatly influenced by a
change in the point of application along the line of action.

10. Parallelogram Law.—The parallelogram law is the funda-
mental principle on which the composition and the resolution of
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forces is based. The law states that the resultant of two forres
which act on a rigid body is represented in magnitude and in
direction by the diagonal of a parallelogram, the sides of which rep-
resent the magnitudes and the directions of the two forces. In
Tig. 2(a) P and Q are two of the forces acting on a rigid body
(bell-crank), @ being a pressure of 150 Ib. at-B produced by a force,
P, of 1001b. at 4. If Q is laid off from a point O (Fig. 2b) to some
convenient scale in the proper direction and if, in like manner, P
is laid off from the same A
point then R?! represents 0 0.

in magnitude and in di-

rection the resultant of &7\ p g

P and Q. If the point 3 |

O is taken as the inter- &

section of the action lines Q AN

of Pand Q asin Fig. 2 { =R

then the diagonal repre- alv

sents the action line of A @ \

the resultant as well as 5
its magnitude and direc-

tion. Q 5

The parallelogram

ﬁaw is not susceptible B
of rigid proof. Itisan &
agsumption which ex- :

presses a relation be- () %

tween forces (and other ¢
directed quantities such Fig. 2.
as velocities, accelera-
tions, ete.); an assumption, however, which appeals to experi-
ence as reasonable; which is used intuitively in interpreting
and analyzing many of our common experiences; and which )
thereby becomes a fundamental or basic fact in mechanics.

11. Triangle Law.—The triangle law is a corollary of the par-
allelogram law. It states that the resultant of two concurrent
forces is represented in magnitude and in direction by the third

|ty
(L e

1 The fact that a force is the resultant of two or more forces is frequently
indicated by two arrow-heads on the vector representing the force. This
fact will also be indicated sometimes by drawing the force vector as a dashed
or broken line.
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side of a triangle, the other two sides of which represent the two
forces in magnitude and direction. Thus, in Fig. 2(c), the result-
ant R of the two forces P and @ is represented in magnitude and in
direction by the side AC of the triangle A BC in which AB and BC
represent the magnitudes and the directions of Q and P respectively.
The action line, ac, of the resultant is parallel to AC and passes

through the point of concurrence of the two forces. ~Although

the triangle law is included in the parallelogram law, its extension
[ to more than two forces, leading to the force polygon, makes its use
‘more convenient than that of the parallelogram law.

Instead of determining the resultant of two forces graphically,
from the parallelogram or the triangle of forces, it may be found
algebraically. Thus, referring to Fig. 2(b), by use of trigonometry,
the magnitude and the direction of the resultant may be expressed
by the equations,

R=VP24Q%2+2PQ cos a,

Q sin
B " P+Qcosa’

where « is the angle between the action lines of @ and P, and 6 is
the angle between the action lines of R and P.

Although it is not necessary to draw the parallelogram or tri-
angle of forces to scale in determining the resultant of two con-
current forces by the algebraic method, the student should always
make a free-hand sketch of the parallelogram or triangle of forces
when using the above equations.

The expression for the resultant of two forces at right angles
to each other (@=90°) is of great importance. The resultant
is completely determined by the above equations, which reduce
for this special case to the following equations:

R=VP+(,
tan 9=}Q,.

It should be noted that two equations are needed to determine
the magnitude and the direction of a resultant force, whereas one
veetor diagram is sufficient for the same purpose.
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PROBLEMS

1. Two forces having magnitudes of 7 1b. and 3 1b. have the same point of
application on a body. The action line of the 3-lIb. force is horizontal with its
sense to the right, while that of the 7-lb. force makes an angle of 45° with the
horizontal with its sense upward to the left. Find the magnitude and the
direction of the resultant. Solve graphically and check the result by the alge-
braic method.

Ans. Magnitude=5.3 1b.
Direction, 111° 28’ with the 3-lb. force.

2. A vertical force of 200 1b. which is applied at point A of the bell-crank
shown in Fig. 3 causes a horizontal pressure of 300 lb. on the vertical arm at
point B. (a) Find the magnitudé
and the direction of the resultant m
of the forces at A and B by the ;%
algebraic method. (b) Find the re-

sultant completely by the graphical
method. 200 b,

3

”

—In the two preceding arti- A
cles it was assumed that a
certain body was acted on by
two other bodies, and the ac- 6~
tion of a third body was found Fia. 3.
which if allowed to replace

the two would have the same external effect on the body in ques-
tion. The reverse of this process, namely, the resolution of a force,
is also of great importance in mechanics. The action of one body
may be replaced by that of two bodies. The resolution of a force
is accomplished by means of the parallelogram and triangle laws
and the components (resolved parts) may be found graphieally or
algebraically. For example, in Fig. 4(a), F; represents the steam
pressure on the crosshead, D, of a locomotive and F2 represents the
pressure on the crank-pin, H, of the driver. Let it be required to
resolve F; into two components, one along the connecting rod
DH, and the other parallel to the crank OH. The action lines, ab
and bc, of the two components must pass through D as shown in
the space diagram. The magnitudes and the directions of the
components are represented graphically by AB and BC in the
triangle of forces (Fig. 4b). This triangle was constructed by

v
12. Resolution of a Force. /
/ J

FanY
"4

17 /L
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laying off AC or F; parallel to ac and by drawing from A4 a line
parallel to ab and from C another line parallel to be, the two lines
intersecting at B. Thus, the components of F; are represented in
magnitude and in direction, but not in action line, by AB and BC.

The resolution of a force into two rectangular components is of
special importance. The particular value of resolving into rect-
angular components lies in the fact that these components may be
found from very simple algebraic expressions. Thus, let the crank-
pin pressure Fa (Fig. 4a) be resolved into two rectangular com-

Q}f
|
il G A
) i e
g
M, g '
“ (R D L | 7 o
EElaw i . 7 ¢
(a)
\,
: G
/\B’&’ F‘Z
b 3 P P
& c
(v) (c)
Fic. 4.

ponents (Fig. 4c). The action lines of the components must, of
course, pass through the crank-pin, H. Thus, ¢f is the action line
of the z-component and fg is the action line of the y-component.
From the triangle of forces the two components EF and FG may
be found. Thus, if ¢ is the angle between the force and its z-
component, then,

EF=FEG cos ¢ and FG =EG sin ¢.

Or, in general, if F denotes a force which makes an angle 8 with
the z-axis, the z- and y-components of the force are,

F:=Fcos8® and F,=Fsiné

Hence, the component of a force in a given direction (the other
componenl. being perpendicular thereto) equals the product of the
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magnitude of the force by the cosine of the acute angle which the force-
makes with the given direction.

A force can be resolved into two components in an indefinite
number of ways by drawing lines from any point or pole to the ends
of the force vector. Thus, in Fig. 5 three sets of components are
shown for the force AB, the components being AO and OB for
each position of the pole O.

It is frequently convenient to resolve a force into three rectan-
gular components. This involves only a slight extension of the
parallelogram law. Thus, the force F (Fig. 6), represented by OA,

iZ
o]
0 B
* i
B *\ A
(o) [ F Ei
f 3 X
& Q™ )k z
A D (]
(o] Y
Fia. 5. F1a. 6.

may be resolved into the two rectangular components OB and OC,
and the component OC may be resolved further into two rectan-
gular components OD and OE. The magnitudes of the com-
ponents of F in the z-, y-, and z-directions, respectively, are

F.=F cos 0; Fy,=F cos 6, F.=F cos 6,

in which 6;, 6,, and 6,, are the angles which the force makes with
the 2-, y-, and 2-directions respectively.
PROBLEMS

3. Given the three concurrent forces as shown in Fig. 7. Find the magni-
tude and the sense of the component of the system (sum of the components
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of the forces) along the line AB. Solve algebraically and check the result
by the graphical method.
Ans. Magnitude =24.2 1b.
Sense, Downward to the left.

>

G 7k Fia. 8.

4. Resolve the weight of 200 lb. (Fig. 8) into (a) two rectangular com-
ponents perpendicular and parallel respectively to AC, (b) into two components
parallel to AC and BC respectively.

5. Resolve the force F (Fig. 9) into three rectangular components in the
z-, ¥-, and z-directions.

13. Moment of a
Force.—The moment of
a force about (with re-
spect to) a point is the
product of the magni-
tude of the force and
the perpendicular dis-
x tance from the point to
the action line of the force.
Thus, the moment of
the foree F (Fig. 10) about
the point O is Fd. The
Y point about which the
Fia. 9. moment is taken is called
> the moment-center (or
origin) and the distance d is called the moment-arm. > A unit \
moment is the product of a unit force and a unit distance such }

7
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as a lb.ft., lb.-in., ton-ft., etc.> The moment of a force with
respect to a point may also be regarded as the moment of the
force with respect to the line which passes through the point
and is perpendicular to the plane determined by the point and

the action line of the

Y force. Thus, in Fig. 10,
Fd also represents the
moment of F about the

/ F axis YY.
4 The physical signifi-
0° cance of the moment

of a force as defined
above is built up in-
tuitively from our ex-
Y periences in which we
have exerted moments
on other bodies. It ex-
presses a measure of the tendency of the force to turn the body
on which it acts about a given axis.> Strictly speaking, the
fact that the tendency of a force to turn a body about a given
axis is directly proportional to the moment of the force, is an
assumption which, when reinforced by experience and the anal-
ysis of observed facts,
crystallizes into a fun-
damental or basic truth ?
of mechanies.

Fia. 10.

Fy

7 In general, the mo- ©
ment of a forece about
an axis which is not 7
perpendicular to the %4
plane of the force is de- J¢
fined as the moment of 5 A4
the component of the
force perpendicular to Fia. 11.
the given axis, the other
component of the force being parallel to the axis. Thus, in
Fig. 11 the moment of the force F about the axis ZZ is F',-OA.

As a rule it will be convenient to select the moment axis as
one of the coordinate axes. The moment of a force with respect
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to a coordinate axis will be considered as positive if the direction
of rotation is counter-clockwise when viewed from the positive end
of the axis.

PROBLEMS

6. A force of 20 Ib. is exerted on the knob of a door as shown in Fig. 12.
If the action line of the force lies in a plane perpendicular to the door, what is
the moment of the forece about the axis YY? Ans, 42.4 Ib -ft.

W

IR o
1
L

N
»

Fia. 12. Fig. 13.

7. Find the moment of the 40-Ib. force (Fig. 13) with respect to each of the
coordinate axes; each division represents 1 in,

14, Principle of Moments. Varignon’s Theorem.—The prin-
ciple of moments is of great importance in mechanics. It applies
to lines, areas, volumes, etc., as well as to forces. It will be con-
sidered, however, at this point only in connection with two con-
current forces. © The principle for this restricted case, which is
known as Varignon’s theorem, states that the algebraic sum of the
moments of two concurrent forces about any point in their plane is
equal to the moment of their resultant about the same point.

The principle of moments, like the parallelogram law, is an
assumption; an assumption, however, which appeals to experi-
ence as reasonable; which is frequently and intuitively used in
interpreting and analyzing observed facts, under various con-
ditions; > and which thereby becomes one of the fundamental
facts or principles of mechanics.
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The fact that the principle of moments for forces is in agree-
ment with the parallelogram law may be shown by deducing the
principle from the parallelogram law as follows: In Fig. 14 let
P and Q represent two forces concurrent at A, the resultant accord-
ing to the parallelogram
law being R. Let O be
any moment-center in R
the plane of the forces. -

It is required to prove o4 »
that

Y(

Pp+Qq=RT) r Q

LR

where p, ¢, and r are B
the moment-arms of P,
Q, and R, respectively. Tig. 14.

Let a set of rectangular

coordinate axes AX and AY be chosen as shown in the figure,
A7 passing through the moment-center 0. Let «, 8, and 6
denote the angles which the action lines of P, @, and R, respect-
ively, make with the AX axis. From the figure it is seen that

FG+AF=A4G,
that is,
P cos a+@Q cos §=R cos 6.

By multiplying both sides of this equation by A0, the following
equation is obtained:

P-40 cos a+Q-A0 cos B=R-A0 cos 6.
Hence,
Pp+Qq=Rr.

It will be noted that the definition of the moment of a force
about a line as given in Art. 13 is in accordance with the principle
of moments. It is often convenient to obtain the moment of a
force about a point in its plane (or about an axis through the point
perpendicular to the plane) by finding the sum of the moments of
its rectangular components. In accordance with the principle of
transmissibility a force may be resolved into components at any
point along its line of action. Thus, in Fig. 15, F, and F, are one
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pair of rectangular components and F’; and F’, are another pair
of components of the force #. The moment of the force F' about
the axis ZZ is, by the principle of moments, equal to the sum of

U

the moments of the forces of either pair of components.

Fia. 15.

Hence,

the moment of F may be expressed as follows:
Fd=F,-d;—F.-dy=F';-d',+F'y-ds.

If the force F is not in a plane perpendicular to the axis, as in

Fig. 16, the force may
be resolved into three
rectangular ecompo-
nents, one being par-
allel to the axis and
the other two in a
_x plane which is perpen-

Z M
Fz
0 L
Fy ds il
% N
Fia. 16.
ment of F about the axis MN is,
—Fzdy+Fy-ds.

dicular to the axis.
The moment of the
force is then the sum
of the moments of the
components which le
in this plane. Thus,
in Fig. 16, the mo-

The component F,, being parallel to the axis M/ N, has no moment

about the line MN.
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15. Couples.—Two equal parallel forces which are opposite-in _
sense and are not collinear are called a couple. A couple cannot
be reduced to any simpler force system. The fact that the only
effect of a couple is to produce or to prevent turning is obtained
intuitively. The moment of a couple about any point in the
plane of the couple (or any axis perpendicular to the plane of the
couple) is defined as
the algebraic sum of
the moments of the
forces of the couple

about the point (or / 1 P
axis). From this defi- P
e
7 A
A B

X

nition it follows that
the moment of a couple
about any - point in
the plane of the couple
(or axis perpendicular
to its plane) is the Y
product of the magni- Fig. 17.

tude of either force of

the couple and the perpendicular distance (moment-arm) between
the action lines of the two forces. This statement may be
proved as follows: In Fig: 17 let P, P be the two forces of a
couple and O any point in their plane or, Y'Y any axis perpen-
dicular to their plane. The algebraic sum of the moments of
the two forces about O (or YY) is

P-OB—P-04,
which may be written thus,
P(OB—0A4)=P-AB="Pp.

In like manner the moment of the couple may be shown to be the
same about any other point in the plane (or any other axis parallel
to YY). Since the moment of a couple depends only on the
product of either force of the couple and the arm of the couple it
follows that the turning effect of a couple on a rigid body about an
axis in the body is the same for different magnitudes and lines of
action of the forces, provided that the moment of the couple
remains constant. I'or example, in Fig. 18, if cords are wrapped
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around two pulleys, of radii 7; and re, which are keyed together
and equal weights are attached to the other ends of the cords, the
pulleys will rotate exactly the same as they would if forces F, F
were applied as shown by the dotted lines, provided that the
moments of the two couples are the same, that is if W(rs—r1) is
equal to F-2r;. On the other
hand if motion is to be prevented
a couple having a wmoment of
— (F -2r2) would be required.

16. Characteristics of a
Couple.—The external effect of
a couple when applied to a rigid
body is either to cause a change in
the rotational motion of the body
or to develop a resisting couple
due to the actions of other bodies
on the body in question. Both of
the foregoing effects may of course
be produced simultaneously.
From experience we learn that
the external effect of a couple

Tig. 18. depends on (1) the magnitude
of the moment of the couple, (2)
the sense or direction of rotation of the couple, and (3) the aspect
of the plane of the couple, that is, the direction or slope of the plane
(not its location). These three properties of a couple are called its
characteristics. Since parallel planes have the same aspect it
follows from what has been stated above that two couples which
have the same moment and sense are equivalent if their planes are
parallel. The fact that the external effect of a couple is independ-
ent of the position of the plane of the couple and depends only
on the direction of the plane is amply verified by experience.
Thus, in screwing a pipe into a joint by means of two pipe wrenches
the forces applied at the end of the wrenches constitute a couple,
and it is a matter of experience that the effort required is the same
regardless of the position along the pipe at which the wrenches are
applied (assuming perfect alignment between pipe and joint).

17. Vector Representation of a Couple.—In dealing with
couples it is convenient to represent the couples by means of vec-
tors. In order to represent a couple completely by a vector all of
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the characteristics of the couple must be represented. The moment
of the couple may be represented to scale by the length of the vec-
tor. The aspect of the couple may be represented by drawing the
vector perpendicular to the plane of
the couple and hence parallel to the
axis of the couple—that is, parallel
to the axis about which the couple
rotates or tends to rotate the body
on which it acts. The sense of the F
couple may be represented by an
arrow-head on the vector, the usual
convention being to direct the arrow-
head away from the plane of the
couple in the direction from which the F
rotation appears counter-clockwise.
7 This method of representing the sense
"of a couple involves the so-called con-
vention of the right-handed screw, Fra. 19.
since a right-handed screw having an
axis perpendicular to the plane of the couple would move in the
direction of the arrow if given a rotation which agrees in sense
with that of the couple. Thus, in Fig. 19 the vector OA com-
pletely represents the couple Fd, provided that the length of OA
represents to scale the product F-d.

(-4
>

PROBLEMS

8. The steering wheel of an automobile shown in Fig. 20 is 18 in. in diam-
eter. Forces exerted by the hands on the wheel constitute a couple which is

Fra. 21.
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represented by the vector AB. If the length of AB is 1.5 in. and the scale
used is 1 in. =60 lb.-in., represent the forces of the couple on the circumference
of the wheel.

9. A couple having a moment of 60 lb.-in. is required to open the blow-off
valve shown in Fig. 21. Represent the couple completely by a vector, using a
scale of 1 in. =24 1b.-in. :

18. Resolution of a Force into a Force and a Couple.—In many
problems, both in statics and kineties, it is convenient to resolve a
force into a force parallel to the
given force, and a couple in
the plane of the force. Thus, in

/iP AP Fig. 22, let P represent a force
A acting on a body at A. Let
/‘ P two equal, opposite, and ecol-
i linear forces P, P be introduced
at any point O, each of the
forces being parallel to the orig-
Fic. 22. inal force and of the same
magnitude. The three forces
are equivalent to the original one, since the two equal, opposite,
and collinear forces have no effect on the body. The force system
may now be considered to be a force P acting at O (parallel to the
given force and of the same magnitude and sense), and a couple,
the moment of which is the same as the moment of the original
force about O.

The action lines of the forces of the couple, however, may be
moved to any location in the plane of the forces and the magnitude
of the forces of the couple may be changed to any value, pro-
vided that the forces remain equal and parallel to each other and
also that the moment and sense of the couple are not changed.
Couples will be discussed in greater detail in Art. 27.

Since a force may be resolved into a force _gg_a_ggnlplem the

| planeof the force it follows that a force and a couple in a plane may
be combined into a resultant force in the same plane. Further,
the resultant force has the same magnitude, direction, and sense
as the given force and its action line is parallel to the action line
of the given force. In other words, the sole effect of combining a
couple with a force is to move the action line of the force into
a parallel position, the force being unchanged in all other
respects.
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ILLUSTRATIVE PROBLEM

10. In Fig. 23 is shown an arm mounted on an axle O. A vertical force
P =20 1b. acts on the arm at C. Resolve the force P into a force acting
through O and a couple the forces of which act at .A and B.

P=201b.

107 20 1b.

_401b. -@[)%— ‘J

20 1b.

Fia. 23.

Solution.—By introducing two vertical 20-1b. forces at O which are oppo-
site in sense the force is resolved into a vertical downward force of 20 1b. at O
and a couple having a moment of 20 X10=200 lb.-in. This couple may be
replaced by two horizontal forces, of 40 lb. each, acting at A and B as shown.
The force at O and the couple will produce exactly the same external effect
on the arm as the original force at C.

PROBLEMS

11. A gusset plate B (Fig. 24) is attached to another plate A by means of
four rivets as shown. A foree of 10,000 lb. at the point O (1.5 in. below
dotted line) is transmitted to the member A. Resolve this force into a force,
acting along the center line of the rivets, and a couple.

Fia. 24. Fia. 25.

12. A body weighing 20 Ib. is mounted on an axle O (Fig. 25) and is acted
on by a couple as shown in the figure, in addition to its weight and the axle
reaction at 0. Replace the weight and the couple by an equivalent single
force.
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13. A load P of 100 lb. acting on a wall bracket as shown in Fig. 26 causes
the wall to exert a horizontal force of 150 1b. and a vertical foree of 50 1b. at
each of the wall attachments.

% G iib- Consider the two 50-lb. forces

16" to be equivalent to one 100-Ib.
force and replace this 100-1b
force and the two 150-lb.
forces by an equivalent single
force.

19. Methods of Solution
of Problems. Algebraic and
Graphical Methods.—In the
analysis and solution of
problems in mechanics two
general methods may be
used, namely, the algebraic
and the graphical methods.
In the algebraic method of solution, quantities are represented
by letters or by numbers which are dealt with according to
the rules of mathematics. In the graphical method of solu-
tion, quantities are represented by lines which are dealt with
by means of geometric constructions. Simple graphical methods
have already been wused in the preceding articles in con-
nection with forces, couples, ctc. In general, either of the two
methods may be used in the solution of a problem. Some prob-
lems, however, may be solved much more easily by the algebraic
method while other problems yield much more readily to the
graphical method. The operations involved in the solution of a
problem by the two methods are so radically different that one
method of solution serves as an excellent check on the other
method.

Approximate Methods—In making computations it is impor-
tant to keep in mind the degree of accuracy which should be
obtained. The degree of accuracy desired will depend, in general,
on two factors, namely:

(1) The degree of accuracy of the original data or quantities
on which the computation is based, and

(2) The use which is to be made of the computed results.

The data on which many engineering computations are based
are determined from experiments and hence are approximate
values, the degree of approximation depending on the instruments

Fia. 26.
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and methods used, and on the care and skill of the observer. The \
computed results which are based on these values cannot have a
greater degree of accuracy than that of the original data. In
general a sum, difference, product, or quotient of two approximate \
values will not have a greater degree of accuracy than that of
the least accurate of the two numbers. For example, if one
numerical quantity is accurate to two sigunificant figures and
another quantity to three significant figures, the product of the
two numbers will not be accurate to more than two significant
figures, and hence more than two significant figures should not be
retained in the result.

Dimensional Equations.—In algebraic equations in which the
variables represent physical quantities, all of the terms of the
equation must be of the same dimensions, or, to express the same
idea in mathematical language, an algebraic equation which
expresses a relation between physical quantities must be homo-
geneous. The use of this principle is of assistance in checking any
equation for correctness and in determining the specific units in
which a result is expressed when computed from a given equation.
For each of these purposes the given algebraic equation is replaced
by a dimensional equation.

The dimensional equation corresponding to any algebraic
equation is formed by replacing each term of the given equation
by a term which indicates the kinds of fundamental quantities
in which the term is expressed and which also indicates the degree
of the corresponding quantities in each term.

The fundamental quantities used in engineering are force,
iength, and time (¥, L, and T). Hence, in an equation, a term
which represents an area is replaced by L? in the dimensional
equation since an area is the square of a length. A velocity is a
length divided by time and hence is represented in the dimensional
equation by LT-! and similarly for other quantities. It should
be noted that in the dimensional equation only the kinds of funda-
mental quantities are indicated and not the specific units used in
measuring these quantities and also that the number of such units
is not indicated. Hence, numerical constants in the algebraic
equation do not appear in the dimensional equation.

For example, consider the equation ad?+d®=v, in which a
represents an area, d a length, and v a volume. Since an area is
the square of a length (L?) and a volume is the cube of a length
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(L3), the dimensional equation is L*+L?= L3 and hence the given
equation is incorrect.

Consider also the equation P+kv=as in which P represents a
force, k a weight (force) per umpc volume, » a volume, a an area, and
s a force per unit area. The dimensional equation then may be
written,

y F
F+F-L —Lz-fz.
That is, F+F=F,

and hence the equation is dimensionally correct.
Further, consider the equation E=%, in which P represents a

force in pounds, ! a length in inches, a an area in square inches,
and e a length in inches. Let it be required to determine the units
in‘which E is expressed. The dimensional equation is

P (B
TIEXL T IF

Hence, in accordance with the units stated (pound and inch), E
is expressed in pounds per square inch (Ib./sq. in. or 1b./in.2).

PROBLEMS

»

14. The equation @=.622 /2g(b—0.2h) 1* is used to determine the quan-
tity of water flowing per unit of time over a rectangular weir of width b when
the height of water above the weir is %, g being the acceleration due to gravity
(32.2 ft. / sec.2). (a) Write the dimensional equation. (b) What are the units
of Q if b and h are expressed in feet? (c) If @ equals 24.4 cu. ft. per sec. and b
equals 3 ft. compute the value of & to the same degree of accuracy as is used in
expressing @, that is, to three significant figures. Note: This formula is
valid only when .2k is small compared with b. Hence the term .2k may be
omitted and a trial value of & may be found by solving the resulting equation.
This value of & may now be used in the term .2k and a second trial value of kA
may be obtained by solving the resulting equation. This process may be
repeated.

15. In finding the diameter of a pipe required to discharge a given quantity
of water, the formula d5= Ad+ B is used, in which 4 and B are known quan-
tities. If A=15.5 and B=400 compute the value of d to three significant
figures. If the given equation is dimensionally correct what can be said of
the quantities 4 and B?



DIMENSIONAL EQUATIONS 207

16. In the following equation, T is the moment of a force, S is a force per
unit of area in pounds per square inch, k, h, b, and b, are lengths in
inches. Is the equation dimensionally correct? What are the units of 7?7



CHAPTER 1II
RESULTANTS OF FORCE SYSTEMS

20. Introduction.—The determination of the resultants of
various force systems as discussed in this chapter is of importance,
mainly, (1) in the study of the conditions which the forces of a
system satisfy when they hold a body in equilibrium (Statics,
Chapter III), and (2) in the study of the laws by which the motions
of bodies are governed (Part III, Kinetics).

(1) The equations of equilibrium for a given type of force
system are obtained by expressing the conditions which the forces
must satisfy in order that the resultant of the system shall be
zero. Therefore the resultant to which a given type of force
system reduces must be known before the conditions which are
required to make the resultant equal to zero can be established.
Furthermcre, in dealing with forces in equilibrium it is frequently
convenient to replace several of the forces of a balanced system
by the resultant of the several forces and to deal with the result-
ing force system instead of the original system.

(2) The motions of bodies are influenced by the unbalanced
part (resultant) of the forces which act on the bodies. In the
study of the motions of physical bodies, therefore, a knowledge of
the resultants of various force systems and of methods of expressing
the characteristics of resultants in terms of the forces of the system
must be understood.

§ 1. CoLLINEAR FORCES

21. Algebraic Method.—The resultant will be found first for
two collinear forces, P and @, having the same sense. It is a matter
of experience that the two forces are equivalent to a single force
which has a magnitude equal to P+ and a line of action and
sense which are the same as the line of action and sense of the
given forces. This proposition may be proved, however, by apply-
ing the parallelogram law. Thus, according to this law, the result-
ant of any two concurrent forces P and @, the lines of action of

28
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which make an angle « with each other, is a single force of magni-
nitude, R, which is given by the equation R =V P2+@2+2PQ cos
(Art. 11). In the special case of two collinear forces here consid-
ered, @ equals zero and hence R="V P2+Q?+2PQ=P+Q. Sim-
ilarly, the resultant of two forces P and @ having opposite senses
(P being the larger of the two forces) is a force the magnitude of
which is given by the equation R=P—@, the sense of R being the
same as the sense of the larger force P. Hence, the resultant of
any two collinear forces is a single force having the same line of
action as the given forces, the magnitude and sense being indicated
by the algebraic sum of the forces. The extension of this method
to any number of collinear forces may easily be made. Thus the
resultant of two of the forces may be combined with a third force;
the resultant thus obtained may then be combined with a fourth
force, and so on, until the entire system is reduced to a single
resultant force. Therefore the magnitude of the resultant of a
collinear force system is given by the equation,

R=2F.

§ 2. CoNCURRENT FORCES IN A PranNEe

22. Graphical Methods. First Method.—The resultant of an
unbalanced system of concurrent forces in a plane is a force which
may be found by means of the parallelogram law. In Fig. 27
are shown three forces F;, Fs, and
F3 which act on a body at the point
0. The forces F; and F2 may be
combined into a single force B; by
means of the parallelogram law.
Similarly R; and F3 may be com-
bined into a single force Rs. Rs
then is the resultant of the given
forces. By continuing this process Fia. 27.
any number of concurrent forces
may be combined into a single force. The order in which the
forces are taken is immaterial. If the resultant force obtained by
combining all except one of the forces of a concurrent system is
equal to that one, collinear with it, and of opposite sense, the two
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forces cancel and hence the resultant of the given system is
equal to zero.

. Second Method.—Another graphical method of determining the
resultant of a system of concurrent forces in a plane involves the
application of the triangle law. Consider, for example, the three
forces F'1, Fa, and F3, which act on a body and concur at a point O
as shown in Fig. 28(a). In order to determine the resultant of
the three forces, draw from any arbitrary point A (Fig. 28b), a
vector representing the magnitude and the direction of the force Fj;
from the end of this vector draw another veetor representing the

F1 //

(a)

F1a. 28.

magnitude and the direction of the force Fe. Ry, the resultant of
F1 and Fy, is represented in direction and magnitude by the vector
drawn from A4 to the end of #o. To find the resultant of R; and F3,
and hence of the three given forces, draw from the end of R;
(or F3) a vector representing F3 in magnitude and in direction.
The resultant of R; and Fs is then represented in magnitude and in
direction by the vector Re drawn from A to the end of Fs. It
should be noted that this vector Rg represents the magnitude and
the direction, only, of the resultant of the given forces and not the
action line of the resultant. The action line of the resultant must
pass through the point O in the body at which the forees are con-
current.

This method of determining the resultant may be stated
formally as follows: In order to find the resultant of a system of
concurrent forces in a plane, construct a polygon the sides of
which are vectors representing the given forees in magnitude and in
direction; a line drawn from the beginning of the first vector to
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the end of the last vector represents the magnitude and the direc-
tion of the resultant of the given system. If the force polygon
closes, that is, if the end of the last vector coincides with the begin-
ning of the first vector, the resultant of the given system is equal
to zero.

23. Algebraic Method.—In Fig. 29(a) is represented a coplanar
force system which is concurrent. Each of the four forces of the
system may be resolved into two components, one lying along the
z-axis and one along the y-axis. The z-components of the forces
constitute a collinear system the resultant of which is a force along

/o
=F,
X

l;ﬂ

(a)
F1a. 29

the z-axis. The magnitude of this resultant is equal to ZF;. The
y-components of the forces likewise constitute a collinear system
the resultant of which is a force along the y-axis of magnitude
=F,. Since the system, by this method, is reduced to two forces
the resultant of the given system is the resultant of these two forces.
If the magnitude of this resultant is denoted by R and the direction
which its action line makes with the z-axis by the angle 6, as shown
in Fig. 29(b), the resultant may be found from the equations:

R=VEF 1 (EF,?,

3F,
tan 0,= =3F;

The action line of the resultant must of course pass through the
point of concurrence of th - forces.



32 RESULTANTS OF FORCE SYSTEMS

ILLUSTRATIVE PROBLEM

17. Find the resultant of the system of concurrent forces shown in Fig
30(a).

Algebraic Solution:

2F; =20 cos 30°—30 cos 60°—10 cos 45°+25 cos 45°
=17.32—15—-7.07+17.67
=12.92 Ib.

ZFy =20 cos 60°+30 cos 30°—10 cos 45°—25 cos 45°
=10+25.98—7.07—17.67
=11.24 1b,

s R=+(12.92)2+(11.24)2=17.11b. (Fig. 30b)

and

11.24
8, =tan—1 22 —41°,
s =tan~ 1o o%

= §=11 24 1b,
R
N
W
LA

S F,=12.92 Ib,

()
Fia. 30.

Graphical Solution:

To determine the resultant of the system graphically a force polygon is
constructed as shown in Fig. 30(c). The resultant is represented by the vector
AE. The magnitude of the resultant is found, by measuring the length of
AE, to be 17.1 1b. and the angle which the resultant makes with the z-axis is
found to be 41°,

PROBLEMS

In the following three problems the forces are concurrent at the origin.
The values of F are the magnitudes of the forces and the values of 6, are the
angles which the action lines of the forces make with the positive end of the
z-axis, the angles being measured in a counter-clockwise direction. In cach
problem it is required to find the resultant of the forces specified
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100 Ib.

30°

20 Ib.

00

25 1b.
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601b. 401b. 50 1b. L
135° 240° 330°
Ans. R=751b,, 6,=25° 55'.
10 1b. 15 1b. 5 1b.
45° 120° 270°
Ans. R=2471b., 6,=37° 35'.
10 1b. 301b. 401b.
30° {1ISHe 240°

21. Fig. 31 represents a body acted on by four forces. Determine com-
pletely the resultant of the four forces by the graphical method and check the

results by the algebraic method.

Ans. R=186 lb.; 6,=164° 45,

¢,
3
\ %/6. 100 1b.
i
&
N @\
N\ 7 N
WA N\ 80 1b.
\|l 7
\
e N
Pl N
e 2 8
(=1
5 {b. 3‘ 8
Fig. 31. Fig. 32.
2,

22. The body represented &
in Fig. 32 is acted on by five 'y~
forces as shown. Replace the N
two 80-lb. forces by a single N J-
force and then find the resultant W= T
of this force and the remaining -
three forces. 1

23. Find by the graphical /
method the resultant of the five /
forces shown in Fig. 33. < {

24. Solve the preceding S 5 b,
problem by the algebraic

method.

Fia. 33.
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§3. PARALLEL FORCEs IN A PLANE

24. Graphical Methods. First Method—A system of two
parallel forces having the same sense will first be considered.
In Tig. 34 are shown two such forees, P and @, the points of appli-
cation of which are B and A respectively. The resultant of these
two forees cannot be found directly by the parallelogram law. How-
ever, by introducing at B and 4 any two equal, opposite, and colli-
near forces F, F, as shown in Fig. 34, the parallelogram law may be

used. Thus the forces

. P Q and F may be re-
Ly placed by their result-
Ngdh Ry ant Rj;. Likewise P

N g and F may be replaced

F & by their resultant R,.
A RN At C, the point of in-
s : F tersection of the lines
4.7 » of action of R; and Ry,
Q VZ e let R; be resolved into
N\ components @ and F,
and R into compo-
nents P and F. The
Fre. 34 two forces F, F at C

cancel, thereby reduc-
ing the system to two collinear forces P and Q along the line DC.

The resultant of these two forces, which is also the resultant of
the original two forces, is a single forece of magnitude P+4Q
along the line DC. In order to determine the position of the
action line DC of the resultant, consider the two similar triangles
AJG and ACD. TFrom these similar triangles there is obtained
the relation,

_n
o¢———
e

=== L n e ke et

Similarly, from the triangles BKH and BCD the following rela-
tion is obtained,

F=:""""(2)
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By eliminating F from equations (1) and (2) the resulting equation
is

P_4D

Q BD

Hence the resultant of two parallel forces of like sense is a
force having a line of action which is parallel to the lines of action
of the two forces and which divides the distance between them
internally into segments which are inversely proportional to
the magnitudes of the forces. The magnitude of the resultant is
the sum of the forces and its sense is the same as that of the forces.

If the forces P and @ are unlike in sense it can be shown in a
manner similar to that used above that their resultant is a force
of magnitude P—Q (P being larger than @), the sense of which is
the same as that of P. The line of action of the resultant is parallel
to the lines of action of the forces and divides the distance between
them eaternally into segments which are inversely proportional to
the magnitudes of the forces. The proof is left to the student.

It should be noted that the construction used in Fig. 34 fails
if the two opposite, parallel forces are equal in magnitude since two
such forces constitute a couple and cannot be replaced by a single
force.

This method of finding the resultant of two parallel forces can
be extended to any number of parallel forces. For, any two forces
of such a system can be combined into a single resultant force;
this resultant and a third force of the system can be combined in
exactly the same manner, and so on, until the entire system has
been reduced to a single resultant force. It is evident that the
magnitude of the resultant is equal to the algebraic sum of the
given forces. If in combining the forces of a parallel system by the
above method it is found that the resultant of all except one of the
forces of the system is a force which is equal to the force omitted
and opposite to it in sense, the two forces constitute a couple
which is the resultant of the system. If, however, the lines of
action of the two forces just mentioned are collinear, the forces
balance and the resultant of the system is equal to zero. Hence
if the resultant of a system of parallel forces in a plane is not
equal to zero, the resultant is either a force or a couple.

The determination of the line of action of the resultant force
by the method just discussed involves considerable work if there
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are many forces in the system. A second graphical method will
now be considered. This method involves less construction than
the method just considered and possesses other important advan-
tages. -

Second Method.—In Fig. 35(a) is shown a system of four par-
alle] forces having the action lines ab, be, cd, and de. On a line par-
allel to the action lines of the forces are laid off vectors AB, BC,
CD, and DE which represent the given forces in magnitude and
direction (Fig. 35b). From any arbitrarily chosen point, O, lines
are drawn to the points 4, B, C, D, and E. The figure thus con-
structed is called a force polygon; the point O is called the pole,
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Fra. 35.

and the lines OA, OB, OC, OD, and OE are called rays. From the
triangle law it follows that by this construction the force AB is
resolved into two components represented in magnitude and in
direction by the rays AO and OB. AO and OB, however, do not
represent the lines of action of the two components, since the lines of
action of the components of 4B must intersect on ab. Similarly,
BO and OC represent the magnitudes and the directions of two
components into which BC is resolved, and so on for the remaining
rays. The given system then may be replaced by another system
of eight forces which are represented in direction and in magni-
tude by the rays A0, OB, BO, OC, CO, ete. The forces repre-
sented by the rays OB and BO (OC and CO, ete.), are equal in
magnitude, opposite in sense, and their lines of action are parallel.
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If now the action lines of the pairs of parallel and equal forces OB ~
and BO, OC and CO, OD and DO, are made to coincide, each pair
will cancel and there will remain only two forces, AO and OE.
The resultant of these two forces is the resultant 'of the given
system and is represented in magnitude and in direction by the
vector AE. I

The action line of A E will pass through the point of intersection
of the action lines of its components AQ and OF. In order to locate
the point of intersection of the action lines of these two forces it is
necessary to construct another figure called the funicular polygon.
This is a polygon the sides of which, called strings, are parallel to
the rays of the force polygon. The funicular polygon is con-
structed as follows: From any point on ab, the action line of AB,
strings ao and ob are drawn parallel to the rays A0 and OB.
These strings represent, the action lines of the forces AO and OB
into which AB was resolved. From the point of intersection of ob
and bc the string bo (which will coincide with the string ob) and
the string oc are drawn. From the point of intersection of oc
and c¢d are drawn co and od and from the point of intersection of od
and de are drawn do and ce. Since ob and bo, the action lines of
the equal and opposite forces OB and BO, are collinear, the two
forces OB and BO will cancel. Similarly for OC and CO and for
OD and DO. The system then is reduced to two forces repre-
sented in magnitude and in direction by the vectors AO and OE,
the action lines of the forces being ao and oe. The resultant of
these two forces, which is also the resultant of the given system,
will pass through the point in which their action lines ao and oe
intersect. The resultant then is completely determined by the
force and funicular polygons; the former determines its magni-
tude and direction; the latter determines a point on its action line.

If the force polygon closes, that is, if £ coincides with A, the
rays AO and OE represent two forces which are equal in magni-
tude and which have parallel action lines and opposite senses.
The resultant in this case is a couple provided that the funicular
polygon does not close. If, however, the funicular polygon also
closes, that is if ao and oe coincide, the two forces A0 and OF will
balance and the resultant of the given system will be equal to
zero.

In constructing the force and funicular polygons any point may
be taken for the pole and the funicular polygon may be started



38 RESULTANTS OF FORCE SYSTEMS

at any point on the action line of any one of the forces. A change
in the positions of these points has the effect, only, of locating a
different point on the action line of the resultant if the resultant of
the system is a force. If the resultant of the system is a couple,
the effect is to change both the magnitude of the forces constituting
the resultant couple and the length of its moment-arm. The
couples will be equivalent, however; that is, they will have the
same moment and sense.

ILLUSTRATIVE PROBLEM

25. Find by the graphical method the resultant of the four parallel forces
shown in Fig. 36(a).

10 Ib. 20 1b. 25 1h. 15 1b. Dy
N
N\
aldb ble cid dle N
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a \\\\\
~ 7 \:\
\\ N\ 0
~ N
NS EAj——————————
}:‘3. \\\O 0 //IA\ -
b b\\\ /c’ \\ 1) //
Ry " (v)
~ -~
B i A g (4 N cl-
fa) Wi
Scales: 1in=2 ft. 1in=201b.>
Fia, 36.

Solution.—Since the force polygon closes the resultant is not a force and
hence is a couple. In constructing the rays (Fig. 36b) it is convenient to take
the pole O so that the force represented by OA has an integral value. 0OA here
represents to scale 20 Ib. The funicular polygon in Fig. 36(a) is constructed
according to the method described in Art. 24. The resultant is a couple
consisting of the two 20-1b. forces AO and OE. The arm as scaled from the
funicular polygon is 1.25 ft. Hence the moment of the resultant couple is
—25 1b.~ft., the minus sign indicating a clockwise direction of rotation.

25. Principle of Moments.—The principle of moments ‘as dis-
cussed in Art. 14 for the special case of two concurrent forces may
be extended to all force systems. Briefly, the principle states that
the moment of the resultant of a foree system is equal to the alge-
braic sum of the moments of the forces of the system. The prin-
ciple is of great importance in the determination, by the algebraic
method, of (a) the action line of the resultant of a system of forces
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when the resultant is a foree, and (b) the moment and sense of the
resultant of the force system when the resultant is a couple. A
formal statement and proof of the principle of moments will not
be given for each of the force systems considered since the method
of proof is substantially the same for all the force systems. As
applying to a system of parallel forces in a plane the principle may
be stated formally as follows: The algebraic sum of the moments of
the forces of a coplanar parallel system about any point in their plane
18 equal to the moment of the resultant of the system about the same
point.

In demonstrating the truth of this statement use will be made of
the diagram in Fig. 35 and of the methods of the preceding article.
The given system of four forces (Fig. 35) was replaced by another
system of eight forces which were represented in magnitude and
in direction by the rays of the force polygon and in line of action
by the strings of the funicular polygon. Six of these forces oceur
in pairs, the two forces of each pair being collinear, equal in magni-
tude, and opposite in sense. Obviously, the sum of the moments
of the two forces of each pair with respect to any point in their
plane is equal to zero. For any moment-center in the plane, by
use of Varignon’s theorem, the following relations may be written,

moment of A B=moment of AO-+moment of OB,

(RO =1 i ) BO4 e OC;
BB < 4 9GO Lt OB
E BRI w538 DA 1 O,

If the two sides of the above equations are added the result
obtained may be stated as follows:
The sum of the moments of the forces of the system
=moment of AO+moment of OF,

since the remaining terms on the right side of the equations cancel
in pairs. But A0 and OF are the components of the resultant
force of the system and hence, by Varignon’s theorem, the sum of
the moments of A0 and OF is equal to the moment of the resultant
of the system. Hence, the proposition is proved for a parallel
force system in which the resultant is a force.

If the resultant of the force system is a couple, that is, if the
forces AO and OE are parallel, equal, and opposite as in Fig. 36,
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the proposition also holds, since the sum of the moments of AO
and OF is equal to the moment of the resultant couple.

26. Algebraic Method.—A system of coplanar parallel forces
is shown in Fig. 37, the forces being parallel to the y-axis. In the
graphical determination of the resultant of such a system it was
seen that the resultant was either a force or a couple. If the
resultant is a force, R, its action line is parallel to the action lines
of the forces of the system and its magnitude and sense are indi-
cated by the algebraic sum of the forces, that is, R=ZF. In

order to locate the line of

Y 2 action of the resultant force
y the principle of moments will

£ Fs be applied. For convenience

A the origin, O, will be taken

wl

The moment of B then with

0 | X respect to O is equal to the

algebraic sum of the mo-

ments of the forces with

Fia. 37. respect to the same point.

If the distance from the

action line of R to the y-axis is denoted by Zz, the moment of R

with respect to the origin is equal to Rz. Further, if the algebraic

sum of the moments of the forces of the system with respect to

the origin is denoted by Z(Fz) or M, the principle of moments

may be expressed by the equation Rx==My. The resultant, then,

if a force, is parallel to the y-axis and is determined by the following
equations,

TF4 as the center of moments.

Fy

R=ZF,

Rx=3ZM,.

It should be noted that the sign of 7 is not always indicated prop-
erly by the ratio of ZMo to R. The sign of z may be determined
by inspection, since the resultant force must lie on that side of the
moment-center which will make the sense of its moment agree
with that of the moment of the system.

If the resultant of all, except one, of the forces of the system is
equal to that one and of opposite sense, ZF then equals zero and
the resultant is a couple, the moment of which, according to the
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principle of moments, is equal to the algebraic sum of the moments—
of the forces of the system. Hence, if the resultant of a coplanar
parallel force system is a couple the moment, C, of the couple may
be determined from the expression,

C=3M,

the aspect of the couple, of course, being the same as that of the

plane of the forces.
If both =F and ZM equal zero the resultant is equal to zero.

ILLUSTRATIVE PROBLEMS

26. Fig. 38 represents a beam resting on two supports and carrying four
loads as indicated. Find the resultant of the loads.

-
(=3
2
0
1
T 2000 Ib,
1600 1b. |
1000 1b, lmoom
A l l B
[ f ] . ]
| ! ! :
P 1
e L RS L 4t i1
1
= 1.54" |
|
Fic. 38.

Solution— R=2F = —1000—1500—1000—2000= —5500 Ib.
In order to locate the action line of the resultant, the point A will be
selected as the moment-center. Thus,

Rx=2M 4 = —1000X2—1500 X5 —1000 X& —2000 X 12 = —41,500 1lb.-ft.

Therefore,
41500

5500 7.54 ft.

r=

Hence a single-load of 55001b. at a point 7.54 ft. from A will produce the
same external effect (reactions at A and B) as the four given forces,
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27. An arm mounted on an axle at O (Fig. 39) is acted on by the four forces
shown. Determine the resultant of the forces.

- 20 Ib.
24 1b.
15 1b. AR
o :-4
o o
\O -y
ol ends
24, d %o -
K 10 b,
15 1b. 5
Fia. 39.

Solution.—
R=3F=154+15—-20—10=0.

Therefore the resultant is not a
force, but is a couple, C, the moment
of which may be found by taking mo-
ments about O. Thus,

C=2ZM,=20X10—-15X6—10X5
+15X12=+240 lb.-in,

Hence any couple having a moment
of 4240 1b.-in. will produce the same
external effect on the arm (change in
the rotational motion) as the four given

forces. One resultant couple having forces equal to 24 lb. is shown in the

figure.

PROBLEMS

28. Fig. 40 represents a beam 12 ft. long acted upon by five forces as shown.
Find the anti-resultant of the five forces.

29. Five forces act on a body
as shown in Fig. 41. Replace
the two 60-lb. forces by a single
force and then find the resultant
of this force and the remaining
three forces.

30. A force of 10 1b. acts along
the y-axis, the sense of the force
being positive. Resolve the force
into components P and Q along
the lines z=1 and z =3, respect-
ively.

Ans. P=151b. Q=-51b.

31. A bar 6 ft. long is hinged

200 1b.
150 1b.

50 1b.

T W/

80 b,

100 Ib.
Fia. 40.

at A and is acted on by five forces as shown in Fig. 42. Determine the

resultant of the five forces.

Ans. C=+90 Ib.-ft.

32. A bar 10 ft. long is acted on by the forces shown in Fig. 43. Find
the equilibrant of the force system and represent it acting on the bar.
Ans. Equilibrant = +15 1b., 23 ft. to the left of the 20-1b. force.
33. The 40b. force shown in Fig. 44 is the resultant of the 10-lb. force and
a force P not shown. Determine P completely by means of a force and
a funicular polygon and check the result by the algebraic method,



ALGEBRAIC METHOD 43

In each of the following three problems find the resultant of the force
system. The forces in each problem are parallel to the y-axis. The values

o
Yy
~- 7
R A
80 Ib. S /
S F 1
N\, 7
N 2
N[/
\\
N 50 1b.
AN
N
100 1b. 3
&
&
Fra. 41. Fig. 42.
-]
Yo
A N
. 3
= 3
e
40 1b,
10 1b,
5
o ﬁ L L i 3
= v L3 T ¢ T p—
&
Fia. 43. Fra. 44.

of F given are the magnitudes of the forces (expressed in pounds) and the
values of z are the distances of the action lines of the forces from the y-axis
(expressed in feet).

34. F +10 —20 +25 —-15
z e 2 Sl + 3 + 4
Ans. C=—25 lb.-ft.
35. F —10 + 5 —20 +15
z =02 Sl +3 +5
Ans. R=—101b. z=—4ft.
36. F +40 . —60 480 -70 +10

7 0 + 4 a0 +12 +14
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27. Couples.—In Art. 15 a couple is defined as two equal,
parallel, non-collinear forces of opposite sense. The moment of a’
couple is defined as the algebraic sum of the moments of the two
forces of the couple, and it is shown that the moment is the same
for all moment-centers in the plane of the couple. Further, it is
shown that the characteristics of a couple (moment, aspect, and
sense) may be completely represented by means of a vector.
Since couples play an important part in engineering problems it
will be of advantage to consider certain additional propositions
and transformations by means of which couples can easily be
combined with other couples or with other forces.

PropostrioNn 1.—A couple may be translated into any parallel
position in its own plane or into any parallel plane without changing
its external effect on the body on which it acts.

Proof—Consider the couple Pp having a moment-arm, AB,
equal to p as shown in Fig. 45. Construct a parallelogram having

AB as one side and CD as

B 2 the opposite side. This par-
allelogram may or may not
i be in the plane of the given

couple. At each of the
A 70 o8B points € and D introduce
two forces of opposite sense
which -are parallel to the
e 0 7 ¢} forces of the given couple and
P equal to them in magnitude.
The force P at A and the
AL Z upward force P at D may be
r replaced by their resultant.
This resultant is an upward
force, 2P, the action line of
Ye 5 which is parallel to the ac-
2P tion lines of the forces of

Fra. 45. the given couple and is locat-

ed half way between them.

Hence the action line passes through O, the point of intersection
of the diagonals of the parallelogram. Similarly, the force P at B
and the downward force P at C may be replaced by a downward
force, 2P, acting through O parallel to the forces of the given
couple. The two forces 2P, 2P at O cancel, thercby leaving only
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the upward force P at C and the downward force P at D. These—
two forces constitute a couple which is equivalent to the given
couple. Hence the proposition is established. &

Prorosttion I1.—A couple may be rotated through any angle in
tts plane without changing its external effect on the body on which i
acts.

Proof —In Fig. 46 the two equal forces, P1 and P2, consti-
tute a couple having a moment-arm, AB, equal to p. Through O,
the midpoint of the arm, draw any line CD making an angle § with
AB and scale off OD and OC
each equal to ip. At C in-
troduce two opposite forces,
P3 and P4, which are perpen-
dicular to CD, each of which
is equal in magnitude to the
forces P; and Pg of the given
couple. Similarly at D intro--
duce two forces, Ps and P,
perpendicular to CD, each
being equal in magnitude to
the forces of the given couple.
Prolong ‘the action line of Py
until it intersects the action
line of Psat E. The resultant
of the two forces P; and Pq
is a force the action line of which bisects the angle AEC and hence
coincides with EO. Let R denote the magnitude of this force.
In the same way the resultant of Ps and P2 may be shown to be a
force of magnitude R the action line of which is FO. Since these
two forces R, R are equal, collinear, and opposite they cancel,
thereby leaving the forces P3 and Ps which constitute a couple
having a moment-arm CD which, by construction, is equal to p.
This equivalent couple, therefore, is merely the given couple
rotated through an angle 6. R

Prorosrtion II1.—The magnitudes of the forces of a couple and
the moment-arm of the couple may be changed to any values without
changing the external effect of the couple, provided that the product
of either force and the moment-arm remains constant.

Proof—~Given the couple Pp (Fig. 47) having a moment-arm,
AB, equal to p. Let the arm be increased to CD=(p+2z) as

Fia. 46.
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shown. At C introduce two forces of opposite sense each equal to
Pp
P12z

and perpendicular to CD. Similarly, introduce two forces

Pp
o) at D. The force P at A and the upward force +2 at' D

may be replaced by their resultant, which is an upward force of

2P(p+=x)
P42z

pendicular to CD. The position of the line of action of this result-

magnitude , the direction of the line of action being per-

2P (p + x)
p+2x

el

el
3
3

Dtz p+22

(9]

T

]

&=

]

::a\

p

8
-<——4o—+

A
Py _Pp_
D+l - p+2x
2P(p+ )
p+lx
Fia. 47,

ant is found, by applying the principle of moments, to pass through
the mid-point of AB. In a similar manner the resultant of the
force P at B and the downward force Tﬁg—a’ at C is found to be a
2P(p+7)
p+2z
action line of which also passes through ‘the mid-point of AB.
2P(p+x)
p+22

at D, which constitute a couple the

downward foree of magnitude perpendicular to CD, the

The two forces of magnitude balance, thereby leaving two

forces, —— +2 at C and +2

moment of which is equal to Pp.

Prorosition IV.—The resultant of any number of couples in a
plane is a couple the moment of which s equal to the algebraic sum of
the moments of the couples.

t



COUPLES 47

This proposition can be proved by means of the three trans—
formations discussed above. It is sufficient to prove the propo-
sition for two couples, for, if two couples can be combined into a
single resultant couple, evidently this couple can be combined with
a third couple, and so on. Let the two couples Pp and Qg (Fig.
48a) act on a body. The magnitude of the forces of the second
couple may be changed from @ to P by changing the moment-

arm from ¢ to 913q (Fig. 48b), as discussed in Proposition III.

The second couple can then be rotated until the forces of the two
couples are parallel (Fig.
48¢). Thesecond couple Q
can now be translated
until one of its forces is x
collinear with one of the
forces of the first couple Q

(Fig. 48d). This trans- AP : p
lation can always be (b)
made in such a way that

these two equal, collinear P
forces are opposite in
sense and hence will can-
cel, thereby leaving the AP ?
two equal, parallel, and

oppositeforces P, P which

constitute a couple. The
arm of this resultant P
coupleis <p+§2g> and its AP

moment is P(p—]—%’) = N ¢ l (@)
P

Pp+Qq. Hence the mo-
ment of the resultant is P
equal to the sum of
the moments of the
given couples as stated in the proposition.

PropositioN V.—Two coplanar couples which have the same
moment and sense are equivalent.

This proposition follows from the three transformations pre-

(@)

3

3
/]
<

X (c)

=
ra]
Q

Fia. 48.
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viously discussed, since, by means of them, one of the couples
may be superimposed on the other.

§ 4. NON-CONCURRENT, NON-PARALLEL FORCES IN A PLANE

28. Graphical Methods. First Method.—The resultant of a
system of non-concurrent, non-parallel forces in a plane is either
a force or a couple. If the resultant is a force it may be
determined by use of the parallelogram law. In Fig. 49 are
shown three non-concurrent, non-parallel forces Fi, Fa, and Fs
acting on a body. The forces F; and Fz may be combined into a
single resultant force R;. R: and F3 may be combined into a

Fic. 49. -

single force Re which is the resultant of the given system of
forces. .

If the resultant obtained by combining all, except one, of
the forces of such a system is equal to that one and is parallel to
it and of opposite sense, the two forces constitute a couple.
Furthermore, if the action lines of these two forces are collinear
the forces cancel and the resultant of the system is equal to
zero.

Second Method.—The resultant of a sytem of non-concurrent,
non-parallel forces in a plane may also be found by the con-
struction of a force and a funicular polygon. This method is of
great importance in engineering problems. The method of con-
struction of these polygons is the same as that described in con-
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nection with a system of parallel forces (Art. 24) and will not here— —
be discussed in detail for the non-parallel force system. The
method will be illustrated, however, by the following problem.

ILLUSTRATIVE PROBLEM

37. A beam 9 ft. long is acted on by four forces as shown in Fig. 50.
Determine the resultant of the forces by use of the force and funicular
polygons.

Solution.—The force polygon as shown in Fig. 50(b) is constructed by
laying off the vectors AB, BC, CD, and DE which represent the magni-
tudes and the directions of the given forces. The closing side AE of
the polygon represents the resultant force in magnitude and in direction.
By measuring AE to scale the magnitude of the resultant force is found

Scale. 1 in.=8 ft.

(a)

E
Scale. 1 in.=2000 b,

(b)

Fia. 50.

to be 2450 1b. and the line AE is found to make an angle of 80° with the
horizontal.

In Fig. 50 (a) is shown the funicular polygon in which one point on the
action line of the resultant is found, namely, the intersection of oa and oe.
Therefore the action line of the resultant passes through this point and is
parallel to AE. By measurement the action line is found to intersect the
beam at a point 3.6 ft. from the left end of the beam. Hence, if the
four forces were replaced by a single forece, R, of 2450 1b. as shown in Fig.
50(a), the reactions at the ends of the beam (external effects) would be
unchanged.

29. Principle of Moments.—The algebraic sum of the moments
of the forces of a coplanar, non-concurrent, non-parallel force
system about any point in the plane of the forces is equal to the
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moment of the resultant of the system about the same point.
The proof is identical with that given for a system of parallel
forces (Art. 25) and the principle will be used, in the algebraic
method, for finding the action line of the resultant force or the
moment of the resultant couple similar to the way it was used for
parallel forces (Probs. 26 and 27).

30. Algebraic Method. —The resultant of a system of non-con-
current, non-parallel forces in a plane is either a force or a couple
as explained in Art. 28. If the resultant is a force it may be deter-
mined as follows: In Fig. 51(a) is represented a body acted on by
four forces F’, F”’, F'”, and F"”, Let each force be replaced

Y

2F,

Py
/e

b

23l

®)

Fig. 51.

by its z- and y-components. The original force system is now
resolved into two systems of parallel forces, the resultant of
cach parallel system being a force parallel to the forces of
the system. According to Art. 26 the resultant of the com-
ponents in the z-direction is F, and similarly, the resultant
of the components in the y-direction is =F,. Hence, the
magnitude and the direction of the resultant of these two forces
(which is also the resultant of the original forces) may be
found from the equations B =V (2F:)*+ (2F,)? and tan 6, = 3 7.
(Fig. 51b), in which 6. is the angle which the action line of R
makes with the z-axis. In order to obtain the position of the line
of action of the resultant force R the principle of moments may be
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used. The principle is expressed by the equation Ra=ZMy;
in which a (Fig. 51a) is the perpendicular distance from the mo-
ment-center, O, to the action line of the resultant, and ZM is
the algebraic sum of the moments of the forces with respect
to O.

Hence, if the resultant of a coplanar, non-concurrent, non-
parallel system of forces is a force, it may be determined completely
by the equations,

R=(EF)°F =F,),

_3F,
tan 6;-— E—F:“,
RG=EMO.

If both ZF; and =F, are equal to zero the resultant is not a
force and hence is a couple the moment, C, of which, according to
the principle of moments, is the algebraic sum of the moments of
the forces of the system, that is,

C=32IM.

The center about which the moments of the forces are taken may
be any point in the plane of the forces since the moment of a couple
is the same about all points in the plane. The sense of rotation
of the resultant couple is indicated by the sign of the algebraic
summation and the aspect of the couple, of course, is the same as
that of the plane of the forces.

If ZF, and =F, are equal to zero and =M is also equal to zero,
the resultant is equal to zero.
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ILLUSTRATIVE PROBLEM

38. Find the resultant of the system of four forces which act on the body
represented in Fig. 52(a). Hach space represents 1 ft.

N,
%‘45 ;
Q Q{O
< D5
/ g
K / =4 \c'/
5 y = fla
\, d 0 oy
A X AR
(3 A7 20 1b, u /
7 e T
0
2 F=16.471b,
(a) 5 Ib. ®
(0)

Fig. 52.

Solution.—The solution may be put in tabular form as follows:

F (it Fy=F cos 6; Fy=F sin 6; M,
20 45° 14.14 14.14 28.28
25 135° —17.67 17.67 0.00

BYH07 0.00 — 5.00 —15.00
20 0° 20.00 0.00 20.00

2F,=16.471b.  ZF,=26.811b. =M (=33.28 lb.-ft.
Therefore, !
R=V/(16.47)*+(26.81)2=31.45 Ib,,

26.81
16.47

0z=tan-! =58° 25/,

33.28

=3_IT5=1'06 ft.

a

PROBLEMS

89. Fig. 53 represents a board 3 ft. square acted upon by four forces as
shown. Find completely the resultant of the forces. Specify the action line
of the resultant by the perpendicular distance from the origin O.

Ans. R=4761b. 0,=78°10". a=1.98 ft.
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40. Determine completely the resultant of the five forces acting on the——
body shown in Fig. 54, Each space represents 1 ft.

2
8
Y >
Ly
Y
&
/6- 10 Ib.
/’/ (3\'°.
//, ‘\ \
/ ¥ 2
/// § 60 51[’. N \\ 7
s { < %
0
20 b
9 &
NI A %
o/b. R
Fra. 53. Fia. 54.

41, The forces of a coplanar system are specified below, the magnitudes of
the forces being expressed in pounds and distances z and y in feet.

F 20 15 10 15
%Y 0, 2 0, 2 4,2 6, 2
0z 0° 45° 90° 135°

Find the resultant of the system.
Ans. R=37.11b. 6,=57°20" a=1.71ft.

§ 5. CoNCURRENT FORCES IN SPACE

31. Graphical Method.—The resultant of a system of non-
coplanar, concurrent forces is'a force which may be found by any
of the graphical methods used in finding the resultant of a system
of coplanar, concurrent forces as discussed in Art. 22. In applying
any one of these methods, the forces are projected on two of the
coordinate planes and the resultants of the two projected systems
of forces are found. The resultant of the original force system will
be a force the projections of which on the two planes are the
resultant forces of the projected systems. If the force polygon
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for each of the projected systems closes the resultant of the given
system vanishes. A graphical method of determining the resultant
of any non-coplanar system of forces is less convenient than is
the algebraic method of solution.
32. Algebraic Method.—Before discussing the method of
determining the resultant of any number of non-coplanar, con-
current forces the special
z case of three econcurrent
forces having action lines
which are mutually perpen-
S dicular will be considered.
N In Fig. 55 are represented
0. R_7|B three such forces, P, @,
and S, the action lines of
the forces being taken as
Oy the coordinate axes. The
Q forces P and @ may be
’ combined into a single force
Y OA the magnitude of which
Fia. 55. is VP22 The result-
ant of this force and the
force S is also the resultant of the given system of three forces
and is represented by the vector OB, its magnitude being
VP23 Q2+ S2. Hence the magnitude of the resultant, R, of the
three forces and the angles 6., 6,, and 6., which the line of action
of the resultant makes with the coordinate axes may be found
from the equations,

R=VPIEI,

cos 6,= §

Q
R R

cos 0,=g, cos 0,=

In finding the resultant of any number of non-coplanar, con-
current forces by the algebraic method it will be convenient to
take the point of concurrence of the forces as the origin of a set of
rectangular axes. Each force of the system may be resolved into
components along the coordinate axes (Art. 12). The system is
thus replaced by three collinear systems each of which may be
replaced by a single force (Art. 21). Thus, the resultant of the
components along the z-axis is a single force along the z-axis, the
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magnitude of which is expressed by ZF,. Similarly, the y-com- _
ponents may be replaced by a single force of magnitude ZF, along
the y-axis, ete. (Fig. 56). These three forces may be combined
into a single force which is the resultant of the given system and
which is completely defined by the following equations:

R=+V/(3F,)2+(2F,)*+(2F,)?,

2F, Z
R b

cos 0,=

cos 6, 2‘.}1; \ 2k

2F, N9, R

R o | == 5
where 6;, 0,, and 6, are the
angles which the action line 2F,
of the resultant makes with

the coordinate axes as shown
in Fig. 56.

cos 0,=

Fra. 56.

ILLUSTRATIVE PROBLEM

42. Find the resultant of the following system of forces which pass through
the origin. The values of F are the magnitudes of the forces and the values
of z, y, z are the coordinates of points on the action lines of the forces.

F 50 1b. 90 Ib. 100 1b. 60 Ib. 20 Ib.
z,y,2 550 7,5 3 3,04 2, 5,4 0,5, 3
Solution:
2Py =50+ —2=+00- ——+100- 360 2 +20
V50 Vg3 \/"" V34
=35.4469.24+-60+17.9+0
=182.5 Ib.
5 5 0 5
2F,,—50~\/—E+90~—\/:83+100-3—+60 \/‘E-i-zo 75
=35.4449.34-0+44.7+17.1
=146.5 lb.
2Fa=50-—0_400-—5_ 1100-2 +60.—2_+20.-3_
V50 /83 5 V45 V34
=0+429.6+80+35.84-10.3

=155.7 1b.
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R=+/(182.5)+(146.5)*+ (155.7)2 =281 lb.

182.5
=cos -1 = o8=] =49° 30’
0z =cos og] = ©08 .650=49° 30’.
146.5
=cos-1 2 —cos-1 =58° 35’
0y =cos T B 521 =58° 35’,
6:=cos—1 221 ooa~1 553 =56° 257
281 z 9
PROBLEMS

In the following problems the forces are concurrent at the origin. It is
required to find the resultants of the systems.

43. F 10 Ib. 20 1b. 15 Ib.
2, 2 1,2 1 2,2 3 312
Ans. R=4311b. 6,=53°10°. 6,=50°30". 6,=51° 50
4. F 100 1b. 150 Ib. 50 1b. 200 Ib.
T, Y, 2 2,21 3,2 =2 —4, =3, -5 3,-2, 4
Ans. R=2731b. 0,=18°10'. 0,=80°45" 6,=74° 20",
6. F 10 b 30 1b 20 1b
z, U 2 1 %d 1, 4, 2 9, 8

§ 6. PARALLEL I'ORCES IN SPACE

33. Graphical Method.—The resultant of a system of non-
coplanar, parallel forces (see Fig. 57) is either a force or a couple.
If the resultant is a force the action line is parallel to the forces
of the system, its magnitude and sense being given by the algebraic
sum of the forces. The resultant force may be found graphically
by a repeated use of the first method described in Art. 24 for finding
the resultant of two parallel forces. Since this method of solu-
tion, however, involves constructions in various planes it is not
convenient to use. The resultant force may also be found by the
construction of a force and a funicular polygon as described in
Art. 24.. In using this method the forces are projected on two of
the coordinate planes and the resultant of each of the two systems
of projected forces is found. The resultant of the given force
system is a force the projections of which on the two coordinate
planes are the two resultants of the projected forces.
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34. Principle of Moments.—The algebraic sum of the moments _
of any number of non-coplanar, parallel forces about any line in
space is equal to the moment of their resultant about the same
line. The proof of this proposition is similar to the proof of the
principle of moments given for a coplanar, parallel force system
and will be left to the student. This principle will be used in the
algebraic method of determining the resultant of a non-coplanar,
parallel system in much the same way that it was used in Arts.
26 and 30.

35. Algebraic Method.—In determining the resultant of a
system of non-coplanar, parallel forces by the algebraic method it
is convenient to select coordinate axes so that one axis is parallel
to the forces. In Fig. 57 is shown a system of parallel forces
referred to such a set of axes. The resultant, if a force, is parallel
to the forees, its magnitude, R, being equal to the algebraic sum of
the forces. The line of action of the resultant force is found by
applying the principle of moments. Thus, if the algebraic sum
of the moments of the forces with respect to the z-axis be denoted
by ZM. and the distance of the resultant from the z-axis be
denoted by ¥, then the principle of moments is expressed by the
equation Ry=ZM,. In a similar manner, Rz=3IM,. The
resultant, if a force, will then be completely defined by the fol-
lowing equations:

z
R=3F, AF2
R
;__EM " “ Fy
SRR F |
3 ST A A
VN
§=zl;f’- A7 7
e 74
If the resultant of all, Y/ Fy
except one, of the forces Fy
of a parallel system is a Fia. 57.

force which is equal to that
one but of opposite sense,
then ZF equals zero and hence the resultant is not a force and is
therefore a couple. According to the principle of moments the
moment, Cy, of the resultant couple with respect to the z-axis is
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equal to the algebraic sum of the moments of the forces with
respect to the z-axis, that is,

C:=2
Similarly,
Cy=ZM,.

Thus, the resultant is a couple which lies in a plane parallel to the
z-axis, the moments of which, with respect to the z- and y-axes, are
C. and C, as expressed above. Methods of expressing a resultant
couple in terms of its component couples are discussed in Art. 36.

ILLUSTRATIVE PROBLEM

46. Find the resultant of the system of parallel forees as shown in Fig. 58.
Each space in the figure represents 1 ft.

iz
15 1b.
\10 1b. \
a4 ? 7 e
7 7 A
Z T AT IR
/ V4
S FFT VAN
/ o~ /A
/ Cosg g, |
y 20 ]1b.
LS |
R=25 1b.+ 30 1b,

Fia. 58.

Solution :
R=2ZF=104+15—20—-30= —25 lb.

EM:=20X2+30X3—-10X1—-15X1.
=105 1b.ft.

ZMy=10X1-+15X3 —20X2—30X5.
= —135 lb.-ft.
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—_135_ 2 g
e x——25 =52 ft.
"‘_105._ 1
and y_25_._ sft'

Hence the resultant is a downward force of 25 lb, as shown in Fig. 58.

Caution.—Care must be exercised in finding 7 and y. For instance, in the
above example if the value of TM, (+105 lb.-ft.) be divided by R(—25 1b.)
the quotient is —4% ft., which is not the value of 7, since a downward force of
25 Ib. in this position would have a moment of —105 Ib.-ft. with respect to the
z-axis. The magnitudes of Z and 7 should be obtained by dividing the mag-
nitudes of =M, and =M, by the magnitude of R and their signs should be
determined by inspection. The signs of Z and 7, of course, must be such that
the moment of the resultant will have the same sense of rotation as indicated
by the algebraic sum of the moments of the forces of the system.

PROBLEMS

47. A board 6 ft. square is acted on by five forces as shown in Fig. 59.
Determine the resultant of the forces.
Ans, R=+101b. ZT=+25ft. y=+35 ft.

VA 60 1b.
A2 1o
10 Ib 40 Ib,
20 b, = x 201b. 15 b,
1 . )
7 Y, 74
/ KA 8 VA
A AN/ : '
ey L LA v
[ 15 Ib, 0 [T e W] [ B
V7
Yzo 1. o SIRTL Wi,
Fia. 59. Fia. 60.

.

48. A table 5 ft. square carries four concentrated loads as shown in Fig. 60.
Find the resultant of the four loads.

Ans. R=1351b. 7=-+2.04 ft. 7=42.26 ft.
49. Find the resultant of the following system of forces which are parallel



60
to the z-axis.

F
z, Y

RESULTANTS OF FORCE SYSTEMS

The values of r and y, expressed in feet, are the coordinates
of the points where the action lines of the forces intersect the zy-plane.

20 1b.
1, 3

10 Ib.
3, 2

25 Ib.
6, 6

"—151b.
2,5

—10 1b.
6, 4

§ 7. COUPLES IN SPACE

36. Resultant of a System of Couples. Proposition.—The
resultant of any number of couples s a couple.

(&

(L] [T [

{

¢4

g |
(o)
i

(a)

(v)

(@)

Proof—1It is sufficient to prove
this proposition for two couples,
only, since if two couples can be com-
bined into a single resultant couple
this couple can be combined with a
third couple in exactly the same way
and so on. Thus, consider the two
couples Pp and Qg in planes making
an angle a with each other as shown
in Fig. 61(a). The forces Q, @ of
the couple Q¢ can be made equal to

P, P if the arm be changed to Q

¥4

P
(Art. 27) as shown in Fig. 61(b).
Each couple can then be rotated
in its plane until the forces of the
couples are parallel to the line of
intersection of the two planes (Art.
27) as shown in Fig. 61(c). Now let
the two couples be translated until
one force of cach couple lies in the
line of intersection of the two planes.
This translation can always bemade
so that the two forces in this line
are opposite in sense and hence will
cancel, thereby leaving a couple the
forces of which are P, P (Fig. 61d).
The arm of this couple from trigo-
nometry is,

e

Qﬂ)—co

P S @

Special Cases—I. If the angle o equals 90°, that is, if the
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planes of the couples are perpendicular (Fig. 62), the moment, C,
of the resultant couple is

0=P\p+ L = PP

That is, the moment of the resultant couple is the square root of
the sum of the squares of the moments of the two couples. The
plane of the resultant couple makes

an angle ¢ (Fig. 62) with the plane of N--—_____
the couple Pp such that i o 2 |
P |

Q, :
b b7 Qg
tan p=—=5-=
() P Pp’ \K%q :
and the sense of rotation of the re- | [ !
sultant couple is indicated in Fig. 62. I |
II. If & equals 180° the couples NGNS :
are in the same or in parallel planes >
and hence have the same aspect.
The moment of the resultant couple Fig. 62.
then is,

=P+ & et La=P(p+a D) -Pr+as

p e 14 P q P

That is, the moment of the resultant couple is the algebraic sum
of the moments of the two couples and its aspect, of course, is the

same as that of each of the couples, the sense of rotation being
indicated by the sign of the algebraic summation.

et

Fig. 63.

Resultant of a Couple and a Force—A couple and a force not in
the plane of the couple may be replaced by two non-coplanar
forces. Thus, consider a couple Pp in the plane M N and a force F
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as shown in Fig. 63(a). The couple may be translated according
to Art. 27 until one of the forces of the couple Pp and the force F
are concurrent (Fig. 63b). Therefore P and F now may be replaced
by their resultant R and hence the given system is replaced by a
force P in the plane of the original couple and a force R not in the
plane. Conversely, any two forces not in the same plane may be
replaced by a force and a couple.

37. Composition of Couples by Means of Vectors. Proposi-
tion.—If any number of couples be represented by their vectors, the
resultant of these vectors will represent completely the resultant
couple.

It will be sufficient to prove the proposition for two couples.
The extension of the proof to any number of couples is obvious.

Proof —Given two couples Pip1 and Psps in planes which
make an angle « with each other as shown in Fig. 64(a). It is

&)
/”’
/ > K
f”
7 7
// Pl //
/ y .
/ A}
/’ P ’// >l
/ 4
sesbiiby / Py
(a)
F1a. 64

assumed that the couples have been transformed (see Art. 36)
so that P; equals Ps. Let DOE (Fig. 64b) represent a cross-section
of the two planes shown in Fig. 64(a). The couple Pip; can be
represented by a vector OA perpendicular to the plane of the
couple, the length of OA being proportional to Pip;. Likewise,
the couple P2ps can be represented by the vector OB perpendicular
to the plane of the couple, OB being proportional to Pops. Con-
struct the parallelogram OACB. In order to show that OC repre-
sents completely the resultant couple it must be shown that OC is
perpendicular to the plane of the resultant couple (which is the
same as showing that it is perpendicular to DE) and also that its
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length represents to scale the moment, Pp, of the resultant couple:
In the two triangles OAC and ODE the angle OAC equals the angle
DOE. The vector OA is proportional to Pip;. This fact is
expressed by the equation,

0A = kPlpl,
Similarly,

OB=ICP2p2 =AC
Hence,

0A _kPlpl__pl__OD

AC_kpzpz p2 OE.

Therefore, the triangles are similar and hence OC is proportional to
DE. That is,
OC _0OA _kPpy_

ﬁ—ﬁ—pl kP.

Therefore,
OC=DE XkP=FkPp.

Hence OC represents the moment of the resultant couple. Further-
more, OC is perpendicular to DE, for, since the triangles OAC and
ODE are similar and the corresponding sides OA and OD are per-
pendicular, it follows that the corresponding sides OC and DE are
perpendicular. Hence, OC represents the aspect as well as the
magnitude of the resultant couple. It is plain from Fig. 64(b)
that OC also represents the sense of the resultant couple. Any
number of couples then may be combined into a resultant couple by
representing each couple by a vector and finding the resultant of
the system of vectors. The resultant vector will represent com-
pletely the resultant couple.

. For an application of this method of combining couples see
the discussion of the problem of balancing rotating masses, such as
an engine crankshaft, in Chapter IX, Section III.

Three Couples in Mutually Perpendicular Planes—Let the
given planes be taken as the coordinate planes. The couple lying
in the yz-plane may be represented completely by a vector along
the z-axis. Let this vector be denoted by C.. Similarly, the
couples in the zz- and ry-planes may be represented by vectors
C, and C; along the y- and z-axes respectively. The resultant of
the three couples will be represented by the resultant of the three



64 RESULTANTS OF FORCE SYSTEMS

vectors C,, Cp, C.. If the resultant of these three vectors be
denoted by C the resultant may be found from the equation,

C=vCAFCAFCE.
Also, if ¢z, ¢y, and ¢, be the angles which the vector C makes with

the coordinate axes, these angles may be found from the equations,

(@
¢,=cos—1 —* ¢, =cos—1 L ¢;=cos—1—Z,

That is, if the couples C, Cy, and C,, which act on a given body,
are replaced by the couple C acting in the plane defined by the
angles ¢z, ¢y, and ¢, the external effect on the body will be
unchanged.

ILLUSTRATIVE PROBLEM

60. Determine the resultant of the three couples which act on the body
(cube) as shown in Fig. 65. Each of the edges of the cube is 4 ft. in length.

Solution.—
4 Cp =200 X4 =800 Ib-ft.
300 1b,
€, =300 X4 =1200 1b -ft.
5
Y C;=100X4= 400 Ib. ft.
Therefore,
ey’ 100 =V (800) -+ (1200) >+ (400)=.
300 1h, X =1500 1b.-ft.
800
= =1 = . ’
# Oz = COS 1500 57° 47,
1007 T0se Fakie & 1200
=, -1 — 2 /
/Y ¢y =COS 1500 36° 50/,
: 400
Fia. 65. =cos™! ——=="74° 30’
el ¢, =C0S 1500 747 307,

Hence a single couple having a moment of 1500 lb.-ft. and located in a
plane perpendicular to the line defined by the above angles will have the same
external cffect on the body as the three given couples.

38. Resolution of Couples.—In order to resolve a couple into
two or more component couples, the vector representing the given
eouple may be resolved into component vectors each of which
represents a component couple.
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Cne of the most important cases of the resolution of a couple-is
that in which the couple is resolved into three component couples
lying in planes which are mutually perpendicular. Let the planes
of the component couples be taken as the coordinate planes and
let ¢z, ¢,, and ¢, be the angles which the vector representing the
given couple, C, makes with the coordinate axes. If Cz, Cy, C;, be
the component couples lying in the yz-, zz-, and zy-planes,
respectively, they may be found from the following equations:

C:=C cos ¢q, Cy=C cos ¢y, C.=C cos ¢,.

§ 8. NON-CONCURRENT, NON-PARALLEL FORCES IN SPACE

39. Graphical Method.—The resultant of a system of non-
concurrent, non-parallel forces in space may be a force and a couple,
a single force, or a single couple. Further, since a force and a
couple, not in the same plane, may be replaced by two non-
coplanar forces (Art. 36), the resultant of such a system may also be
regarded as two non-coplanar forces. If the graphical method is
used in determining the resultant of such a system of forces, it is
convenient to reduce the system to two forces rather than a force
and a couple. The resultant may be found by selecting arbitrarily
any plane which is not parallel to any of the action lines of the
given forces and resolving each force, at the point where its action
line pierces this plane, into two components, one perpendicular
to this plane and one lying in the plane. The system consisting
of the components which lie in the plane may be combined accord-
ing to the method of Art. 28 and the components which are per-
vendicular to the plane may be combined according to the method
of Art. 33. If the resultant of each of these systems is a force
these two forces may be regarded as the resultant of the given
system. The two forces may be replaced, however, by a force and
a couple. Turther, in special cases the force may vanish and
thereby leave a single couple as the resultant of the given system.
Again, the couple may vanish, in which case the resultant of the
system is a force. If both the force and couple vanish the given
force system has no resultant.

40. Principle of Moments.—The algebraic sum of the moments
of the forces of any non-coplanar, non-concurrent, non-parallel
system about any line is equal to the moment of the resultant
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of the system about the same line. Since the resultant in general
consists of a force and a couple, the moment of the resultant
about any line must be regarded as the algebraic sum of the
moments of the force and the couple about the line.

41, Algebraic Method.—When the resultant of a system of
non-concurrent, non-parallel forces in space is a force and a couple,
the force may be made to pass through any arbitrary point, but,
for different positions of this point, the moment of the couple will
vary. In determining the resultant force and couple by the alge-
braic method it is convenient to select a rectangular set of coor-
dinate axes so that the origin is the arbitrary point through which
the resultant force passes. Each force of the system may be
replaced by an equivalent parallel force through the origin and a
couple as in Art. 18. Thus the system is reduced to a system of
concurrent forces through the origin and a system of couples.
The concurrent system at the origin may be combined into a
resultant force, as in Art. 32, which is completely defined by the
following equations:

R=V(ZF.)*+(SF,?+(2F.)?,

ZF
,=cos™1 R’,
F
6,=cos™! E—”,
B=lCoBNe EI%

The system of couples may be replaced by a single couple as in
Art. 37. For convenience in determining the resultant couple it
will be considered to be resolved, as in Art. 38, into three com-
ponent couples lying in the coordinate planes. Let the couple
lying in the zy-plane be denoted by C;, since it may be represented
by a vector along the z-axis. The vector which represents this
couple ‘will also be denoted by C,. Similarly, let the couples
in the other two planes, as well as the vectors which represent
them, be denoted by C, and C;. The given system then is equiva-
lent to the system shown in Fig. 66, namecly, a force R through the
origin and the couples C:, €y, and C,. Since the two systems are
cquivalent, the sum of the moments of the forces of the given sys-
tem about any line is equal to the sum of the moments of the
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forces of the system shown in Fig. 66 about the same line. Thus;-
let moments be taken about the x-axis and let the moment of
the given system about the z-axis be denoted by ZM.. The only
part of the system shown in Fig. 66 which has a moment about
the z-axis is the couple lying in the yz-plane, and the moment of
this couple is C;. Hence, ZM.=C,. Similarly =M,=C, and
SM,=C,. The resultant of the three couples then may be deter-
mined as in Art. 36. Thus the resultant couple is defined by the
following equations:

vi
C=V(ZM.)?+(ZM,)*+(ZM.)?,
Cs c,,T
¢z=cos™1 2V / R l
T C | I
o* ] Ce o
iy / L ¥ X
by =C0S~ o <——cz
Cy
>M. Y
= il 4
O Fia. 66.

All of the force systems which have been discussed above
may be considered as special cases of this system, and the six
equations which define the resultant of this system will reduce to
the same equations which were found necessary to define the
resultants of the simpler systems.

JLLUSTRATIVE PROBLEM

b1. Find the resultant of the system of four forces which act on the cube
as shown in Fig. 67. Each side of the cube is 4 ft. long.

Solution: In resolving the 10-lb. force into its three rectangular compo-
nents, A will be taken as the point of application of the force and at this
point the force may be resolved into two components, one along AC and one
along AB. The latter component may be resolved into components along
AE and AF. The quantities needed in the solution may be put in tabular
form as follows, forces being expressed in pounds and moments in pound-feet.

F Py F, F, M, M, M,
10 —4.67 —6.25 —6.25 0.00 —6.25 6.25
15 0.00 —10.60 —10.60 0.00 —42.42 42 .42
18 18.00 0.00 0.00 0.00 —72.00 18.00
40  0.00  40.00 0.00 40.00 0.00 0.00

ZFz=13.33 ZFy=23.15 ZFz=—16.85 ZMz=40.0 ZMy=-—120.7 ZM,=66.66



68 RESULTANTS OF FORCE SYSTEMS

z ' R=V(13.33)2+(23.15)*+(16 85)?
2 g =316 1b.
13.33
\ 18 1b, 0 =(l!OS—lﬁ'.—6 =65° 0/
\
\ 23.15
= oS-l s — 490 ’
\\ 6y = cos 31.6 42° 50
\
A _ —16.85 . ...,
F| 1616_ BZ—OOS—"W =11228815
/oL S X
X
NI ¢ =V(40)7+(120.7)74(66.66)
\\ =144 1b.-ft.
\
\\ ¢z = cos—‘% =73° 50’
c —120.7 Ll
/ ¢y =cos~1 144 =146° 55
; 66.6
Fic. 67. bz =cos—‘-—1@— =62° 25',

Notr.—In specifying the angles which the vectors representing the result-
ant force and the resultant couple make with the coordinate axes, the smaller
of the two angles which each vector makes with the positive end of the given
axis is specified.

PROBLEMS

62. Find the resultant of the three forces whicl.l act on the cube as shown
in Fig. 68. Each side of the cube is 4 ft. long.

7 Z
20 1b,
v
o//
&
7
20
Ib X
K %
s/ £ ¢
b \
N
Y Y
Fig. 68. Fic. 69.

63. The sides of the cube shown in Fig. 69 arc each 4 ft. long. Find the
resultant of the three forces which act on the cube.



CHAPTER III
EQUILIBRIUM OF FORCE SYSTEMS

§ 1. InTRODUCTION

42. Preliminary.—In the preceding chapter equations and
graphical constructions were found by the use of which the result-
ants of the various foree systems may be determined. In the pres-
ent chapter are determined the algebraic and graphical conditions
which the forces of the various force systems must satisfy in order
that the resultants of the force systems shall be equal to zero;
that is, in order that the force systems shall be in equilibrium.
If a force system which is in equilibrium acts on a body, the body
is either at rest or has a uniform motion.

The independent equations which must be satisfied by the
forces which hold a body in equilibrium are called the equations of
equilibrium, and the graphical constructions which the forces must
satisfy are sometimes called equilibrium diagrams or equilibrium.
polygons.

Many problems in engineering practice involve bodies which
are in equilibrium under the action of a system of forces as, for
example, a bridge, roof-truss, crane, etc. In such problems there
may be certain elements of the forces acting on the body which are
unknown as, for example, the magnitude or the direction of one or
more of the forces. These unknown elements or quantities may
be found if their number is not greater than the number of equa-
tions of equilibrium for the force system involved. Such force
systems are said to be statically determinate. If the number of
unknown quantities in a forece system is greater than the number
of equations of equilibrium for that particular force system, the
force system is said to be statically indeterminate, as, for example,
the forces which act on a horizontal beam which rests on three or
more supports and carries known vertical loads. The beam is in
equilibrium under the action of a system of coplanar, parallel forces
all of which are known except the three upward reactions of the
supports. As is shown in Art. 49, there are only two independent

69
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equations of equilibrium for such a force system, and hence
the three reactions cannot be found from the equations of
equilibrium. The force system is therefore statically indeter-
minate.

43. Graphical Conditions of Equilibrium.—In the previous
chapter it was shown that the resultant of an unbalanced force
system in a plane is either a force or a couple. Further, it was
shown that if the resultant is a force, it is represented in magni-
tude and in direction by the closing side of the force polygon, and
that if the resultant is a couple, the two forces of the couple act
along the first and last strings of the funicular polygon. Hence,
if the force polygon closes; the resultant cannot be a force, but
may be a couple. If, however, the funicular polygon also closes,
that is, if the first and last strings along which the two forces of
the couple act are collinear, the two forces cancel and hence the
resultant couple vanishes. Hence there are two conditions which
the forces of a coplanar force system must satisfy if they have no
resultant, that is, if the forces are in equilibrium.

(1) The force polygon must close. If this condition is satis-
fied the resultant cannot be a force.

(2) The funicular polygon must close. If this condition is
satisfied the resultant cannot be a couple.

The conditions of equilibrium for non-coplanar force systems
may be stated in a similar manner. In order to determine the
resultant of a non-coplanar system graphically, the forces of the
system are projected on two of the coordinate planes and a force
and a funicular polygon is drawn for each of the projected systems.
The conditions of equilibrium for a non-coplanar system, then,
are that the force and funicular polygons for each of the projected
systems must close.

44. Algebraic Conditions of Equilibrium.—The two conditions
which the graphical diagrams for a balanced force system must
satisfy as stated in the preceding article may also be expressed
algebraically. Thus, if the force polygon closes, the projections
(components) of the forces on any line also form a closed polygon,
as shown in Fig. 70, and since these components are collinear their
vector sum is the same as their algebraic sum. Hence, the fuct
that the force polygon for the components closes may be expressed
by stating that the algebraic sum of the components is equal to
zero. Therefore, if the force polygon for the given system of
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forces closes, the algebraic sum of the components of the forcesin
any direction is equal to zero.

If the funicular polygon closes, the resultant cannot be a couple,
since the first and last strings of the funicular polygon are collinear
and hence the algebraic
sum of the moments of CL___.___ ¢
the two equal and opposite
forces which act along
these strings is equal to DY._
zero. But the algebraic g]-_L> 8

sum of the moments of | :
these two forces is equal to IlA , b
the algebraic sum of the o N o 8
moments of the forces of Fra. 70.

the system. Therefore,

the statement that the funicular polygon must close is equivalent
to the statement that the algebraic sum of the moments of
the forces of the system must equal zero. Hence the algebraic
conditions of equilibrium are:

(1) The algebraic sum of the components of the forces in any
direction must equal zero.

(2) The algebraic sum of the moments of the forces about any
axis must equal zero.

An infinite number of equations could be written in accordance
with these conditions by taking different directions of resolution
and different moment axes, but all of the equations would not be
independent. The number of independent equations is different
for the various force systems, as will be discussed in the succeeding
articles, but for any force system the independent equations of
equilibrium are the equations which are necessary and sufficient
to ensure that the resultant for that particular force system shall
be equal to zero.

If a given body is in equilibrium under the influence of a
system of forces some of which are unknown, wholly or in part,
these unknown elements may be found by applying the equations
of equilibrium which apply to that particular system of forces.

If the number of unknown elements in a system of forces which
is in equilibrium is equal to the number of independent equations
of equilibrium for that particular system, the determination of all
of the unknown elements involves the use of all of the equations of
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equilibrium. Frequently, however, it is not required to determine
all of the unknown elements in such a system, for, a single element
only may be required, as for example, the magnitude of a certain
force, the line of action of which is known. In such cases the un-
known clement may frequently be found by using ouly one of the
equations of equilibrium. In applying the equilibrium equations
the work may be materially simplified by properly selecting the
directions of resolution and the axes of moments. Before applying
the equations of equilibrium to any system of foreces which holds
a body in equilibrium it is important to have a clear idea of the
forces which act on the body. For this purpose a free-body dia-
gram is drawn. A free-body diagram is a diagram of a body
showing the actions of all other bodies (forces) on the body con-
sidered. It does not show the actions of the given body on other
bodies.

§ 2. CoLLINEAR FORCES

45. Equations of Equilibrium.—A system of collinear forces
is in equilibrium if the forces of the system satisfy either of the
following equations:

SE=0, . 10 i SR
or
M =0y oo it eliibreilaris st el

where A is any point not on the action line of the forces.

Proof—As shown in Art. 21, if a collinear force system is not
in equilibrium, the resultant of the force system is a force having
the same action line as the forces and having a magnitude, R, which
is given by the equation, R=Z2F. If, then, the equation ZF=0,
1s satisfied the resultant is not a force and therefore the system is
in equilibrium. The equation M ,=0 is also sufficient to ensure
equilibrium, for, in order to satisfy this equation, the resultant force
must pass through the point A. But this is impossible, since the
resultant force, if there be one, has the same line of action as the
forces and hence cannot pass through A.

Therefore, if either one of the equations (1) and (2) is satisfied,
the resultant is equal to zero and hence there is but one inde-
pendent equation of equilibrium for a collinear force system.
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ILLUSTRATIVE PROBLEM =

64. Two men pull on a rope with forces of 100 lb. each (Fig. 71¢). What
is the stress in the rope?

Solution.—Suppose the rope to be divided into two parts A and B as
shown in Fig. 71(b). Consider as a free-body the part A. The forces acting

100 1b. 100 1b,
@
O e S Y e L1
()
Fia. 71.

on A are two in number, namely, the 100-1b. force and the force exerted by B
on A. The latteris the internal stress required. Let this stress be denoted
by S. The equation of equilibrium then becomes,
ZF=8—-100=0.
Therefore, .
S=100 lb.

Obviously, B could have been taken as the free body and the same result
would have been obtained.

§ 3. CoNCURRENT FORCES IN A PLANE
46. Equations of Equilibrium.—A system of coplanar, concur-
rent forces is in equilibrium if the forces of the system satisfy the
following equations:

SF,=0
} : (4)

3F,=0

where = and y denote any two non-parallel lines in the plane. It
is convenient, however, to take as the two lines a set of rectangular
axes with the point of concurrence of the forces as origin.
Proof—In Art. 23 it was shown that if a concurrent system of
forces in a plane is not in equilibrium the resultant is a force, the
components of which are equal to ZF; and ZF,. If, then, the
forces of the system satisfy the equation ZF.=0 the resultant
cannot have a component along the z-axis and if the equation
ZF,=0 is satisfied the resultant cannot have a component along
the y-axis. Therefore if both of these equations are satisfied, the
resultant cannot be a force and hence the system must be in
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equilibrium. There are, then, only two independent equations
of equilibrium for a coplanar, concurrent system of forces.

Another set of independent equations which, if satisfied by the
forces of a coplanar, concurrent force system, are sufficient to
ensure equilibrium may be expressed as follows:

2F,=0 }

EMA= 0 (B)

where x denotes any line in the plane (taken for convenience as one
of two rectangular axes through the point of concurrence of the
forces) and A is any point in the plane not on the y-axis.

Proof —If the equation =ZF,=0 is satisfied, the resultant cannot
have a component along the z-axis, that is, the resultant, if there
be one, must lie along the y-axis. If the equation ZM 4=0is sat-
isfied, the resultant, if there be one, must pass through the point A.
It is impossible for a force to satisfy the two equations simultane-
ously, and hence if both of the equations are satisfied the system
is in equilibrium.

A third set of equations of equilibrium for a coplanar, eon-
current force system is as follows:

EMA=0}

IMz=0 ©

where A and B are any two points in the plane of the forces, pro-
vided that the line joining 4 and B does not pass through the point
at which the forces are con-
current. The proof that
theseequations are sufficient
to insure equilibrium will
be left to the student.

47. Lami’s Theorem.—
When a coplanar, concur-
rent force system consists
of only three forces, the
equations of equilibrium

Fie. 72. may be expressed in a spe-

cial form known as Lami’s

theorem. Let Fig. 72(a) represent three concurrent forces in
equilibrium. The force polygou for the three forces is shown
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in Fig. 72(b). Since each side of a triangle is proportional te—
the sine of the opposite angle, the following equations are
obtained from the force polygon:

Fy Fo F;

sin (r—ay) “sin (r—ag) ~sin (r—asz)

That is,
Fi Fo F;

sin o  Sin ag  sin ag’

Hence, if three concurrent forces are in equilibrium, the magnitude
of each force is proportional to the sine of the angle included
between the action lines of the other two. This statement is
known as Lami’s theorem. _
> 48. Three Forces in Equilibrium.—If three forces are in equilib- |
rium the forees must be coplanar and either concurrent or parallel.
In order that the three forces shall be in equilibrium, the resultant
of any two of the forces must be a force which is collinear with the
third force, of equal magnitude, and of opposite sense. Now,
the resultant of the two forces will have the same line of action as
the third force only if the two intersect on the action line of the
third force, or if the two forces are parallel to the third force.
Hence, the three forces must be either
concurrent or parallel. This principle Ry
is of considerable importance, as it /| sl ¢
simplifies the solution of many prob- i Vl
lems.  Consider, for example, the ) i
crane shown in Fig. 73(a). The forces 7 R W
acting on the crane are the reaction /- B
R, at the upper end (assumed to be (d)
A, (@)

horizontal), thie load W, the weight of

the crane (not shown), and the reac-

tion Re at the lower-end, the direction Frc. 73.

of the latter force being unknown.

The load W and the weight of the crane may be replaced by a
single resultant force R, and the system will then consist of three
forces Ri, Re, and R. Since the three forces must be concurrent,
Ry must pass through the point of intersection of Ry and R, and
hence its action line is determined as indicated by the dotted line.
The magnitudes of the reactions R; and R may now be deter-
mined by drawing the force polygon (Fig. 73b). The force polygon
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is constructed by drawing A B to represent the known force R and
by drawing from'A and B lines parallel to R, and Rq, respectively,
which intersect at C. The reaction R is represented by CA and
Rq is represented by BC.

ILLUSTRATIVE PROBLEMS

65. A body is held in equilibrium by a system of three concurrent forces
as shown in Fig. 74. Find the values of P and 6.

Fig. 74.

Solution.—The equations of equilibrium are,
SF,=P cos §—10 cos 30°—20 cos 45°=0.
S Pcos 0=8.66+1414=22801b. . . ' i vt o O
ZFy =P sin 6410 sin 30°—20 sin 45°=0.
oo P sin 6=1414—-5:00=9141b. o . = 0 2 af s )
By dividing (2) by (1), # may be obtained. Thug,

9.14
tan 0 =5580" 401,

S 0=21° 50/,
By squaring and adding (1) and (2) P may be obtained. Thus,
P2=(22.80)2+(9.14)2=603.5,

S P=2451b.
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66. Fig. 75(a) represents a lower panel point of a pin-connected Pratt
truss. The stresses in two of the members are 1000 Ib. and 3000 1b. as shown,
Find the stresses, P and @, in the other members.

B 3000 1b. A
2
% 1 in.=2000"1b,
NSl
| v
3000 Ib. (7 Q_ X
‘_('_‘ o 1' ) C Co=Q-200015. D O
®)
(a)
Fig. 75.
Algebraic Solution.—
2F;=Q+P cos 45°—3000=0, MT T e = ()
2F, =P sin 45°—1000 =0. Bt s T i O
From (2), P=dl =141 b,
Substituting in (1), Q=3000—1414 cos 45°.

=3000— 1000 =2000 lb.

Graphical Solution.—The problem may be solved graphically by con-
structing a closed force polygon as shown in Fig. 75(b). The polygon is con-
structed as follows: Vectors AB and BC are drawn to represent the 3000-Ib.
and 1000-1b. forces respectively. A line is then drawn from C parallel to the
direction of the force @ and a line is drawn from A parallel to the direction of
the force P. These lines intersect at D. @ is then represented by CD and
P by DA. The magnitudes of @
and P are found by measuring,
according to the scale indicated,
to be 2000 1b. and 1410 1b., respect-
ively.

PROBLEMS

57. A sphere weighing 100 Ib.
rests between two smooth planes
as indicated in Fig. 76. Find the
reactions of the planes on the
sphere.

Ans. R,=51.7 lb.; R,=73.1 b,
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68. A body weighing 80 1b. is supported by means of a number of cords
as shown in Fig. 77. Find the tensions in the cords and the value of 6.

Frg. 77. Fig. 78.

69. Two bodies weighing 75 Ib. and 100 Ib. rest on a smooth cylinder and
are connected by a cord as shown in Fig. 78. Find the reactions of the cylin-
der on the bodies, the tension in the cord, and the value of 6.

§ 4. PARALLEL FORCES IN A PLANE

49. Equations of Equilibrium.—A coplanar, parallel force
system is in equilibrium if the forces of the system satisfy the
equations,

SF=0
} . (4)

SM,=0

where A is any point in the plane of the forces.
Proof.—According to Art. 26, the resultant of a coplanar,
parallel force system which is not in equilibrium is either a force
or a couple. If the resultant is a force the magnitude, R, is
expressed by the equation R=ZF, and if the resultant is a
couple the moment, C, is expressed by the equation C=ZM.
If ZF=0 the resultant is not a force and if TM,=0 the
resultant is not a couple. Hence, if both equations are satisfied
the resultant of the force system can be neither a force nor a
couple and therefore the system is in equilibrium. Two equa-
tions, then, are necessary and sufficient to ensure that the forces
are in equilibrium. In other words, there are only two indepen-



EQUATIONS OF EQUILIBRIUM 79

dent equations of equilibrium for a system of parallel forces in a— -
plane.

Another set of equations of equilibrium for a system of coplanar,
parallel forces may be written as follows:

MA=O
i } . ()

XMz=0

where A and B are any two points in the plane, provided that the
line connecting A and B is not parallel to the forces of the system.
The proof that these equations are sufficient and necessary to
ensure that the forces are in equilibrium will be left to the student.

An important problem in the equilibrium of coplanar, parallel
forces is one in which the magnitudes of two forces are required,
all of the other elements of the forces being known. The graphical
solution of this problem is of particular interest. The graphical
as well as the algebraic method of solution of such a problem is
illustrated by Problem 62.

ILLUSTRATIVE PROBLEMS

60. In the steelyard shown in Fig. 79 the distance AB=5 in. Find the
force R acting at B and the distance BC if the steelyard is balanced.

R
Solution.—
ZF=R—40—10=0, 4 J—l ' c
& K2
R=501b. ;s
EMp=40X5—10XBC =0, Y "
405 10 lb.tl
3 N ot 40 b,
BB = T 20 in.
Fia. 79.

61. A load of 1200 1b. is applied to a beam AB as shown in 'Fig. 80(a).
The left end of the beam is carried by a second beam CD. Find the reactions
on the second beam at C and D.
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Solution—The free-body diagrams for the two beams are shown in
Fig. 80(b) and 80(c). The equation =M 4 =0 becomes

1200 X9 — Rp X 12=0,

s Rp=9001b,
There is, then, a load of 900 1b. acting on the beam CD at B. The two reac-
tions B¢ and Rp may be found by applying either set of equilibrium equations.

Thus, using the equations ZM¢=0 and ZMp=0, the two reactions may be
found as follows,

RpX10—-900X6=0, .. Rp=5401b.

—R¢X104900X4=0, .. Rc=360 Ib.

, | 1200 1.
O
g [~ e
c | 1A
D
Y le—d 4
(@) 1200 1b. 2000 1b, 2000 1b.
& 1000 Ib.
R, A 8
‘ 14 ’ ’ ’
2 3 3 4
Ry R3
Fia. 80. F1a. 81.

62. A beam 12 ft. long carries three loads as shown in Fig. 81. Find the
reactions at the ends of the beam.

Algebraic Solution.—
ZMp=—12R;41000 X 1042000 X 742000 X4 =0,
12R, = 32000,
. R,=26066% lb.
=M 4 =12R;—1000X2—2000X5—2000X8 =0,
12R, = 28000,
. R,=2333} 1b.

In order to check the results the equation ZF =0 may be applied. Thus,
26663 +2333% =10004-2000--2000.
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Graphical Solution.—In order to determine the reactions by the graphical
method, a force and a funicular polygon are constructed as shown in Fig. 82.
Since the forces are in equilibrium the two polygons must close. The three
known forces are represented by AB, BC, and CD. The right reaction will be
represented by DE, the position of the point E being as yet unknown. Obvi-

blc cld dle
e A \\\
ol 5 L—— "%‘_ o O/// \\\\
=500 ~7d Bl~~o_ ~<
a~-o | o e T
. Sl e et
(b) E —-::::: 1111 & ///
cl~ ///
7~
Scale.1 in.=10 ft. s
2 ()
2
D 7 Scale. 1 in.=4000 b,
Fi1a. 82.

ously the left reaction will be represented by EA since the force polygon must
close. The strings oa, ob, oc, and od of the funicular polygon are drawn par-
allel to the corresponding rays. Since the string oe must intersect the string
oa on ea and since o¢ must also intersect the string od on de, the position of the
string oe is determined. The direction of the ray OF is now determined
also, since it must be parallel to the string oe. Hence E is the point where a
line drawn through O parallel to oe intersects the line AD. The magnitudes
of DE and EA are found, from the diagram, to be 2330 Ib. and 2670 1b., which
agree closely with the values found by the algebraic method of solution.

PROBLEMS

63. A beam 14 ft. long carries a concentrated load of 1000 lb. and a uni-
formly distributed load of 200 lb. per linear foot as shown in Fig. 83. If
the weight of the beam is neglected find the reactions at the ends of the beam.

1000 1b,
200 1b. per ft,
- 500 1b,

7 200 1b.

H

]
R, i 10 et
Fic. 83. Fia. 84.

64. The beam shown in Fig. 84 weighs 10 lb. per linear foot. Find the
reactions due to the weight of the beam and the loads shown.

Ans. Ry=202 lb.; R;=638 lb.
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66. A bar 8 ft. long is held in equilibrium by the three forces shown in
Fig. 85 and two forces acting along the lines ef and de. Find the magnitudes
and senses of the two forces.

Ans. DE=+4560 lb. EF=—740 lb.

400 1b,

_@;_4221‘”_ 1000 Ih,

Fic. 85. Fia. 86.

66. A load of 1000 1b. on the system of pulleys shown in Fig. 86 is held
by a force P. Find the magnitude of P and of the stresses in all cords,
Neglect the weights of pulleys and axle friction.

§ 5. NON-CONCURRENT, NON-PARALLEL FORCES IN A PLANE

50. Equations of Equilibrium.—A system of coplanar, non-
concurrent, non-parallel forces is in equilibrium if the forces of the
system satisfy the equations,

ZF,;=0
TP, =05, o
2M.=0

where z and y denote the coordinate axes and A4 is any point in the
plane of the forces.

Proof —If a system of non-concurrent, non-parallel forces in a
plane is not in equilibrium, the resultant of the system is either a
force having components equal to =F; and 2F, or a couple hav-
ing a moment equal to EM 4 (Art. 30). If the equation TF,=0is
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satisfied the resultant, if a force, must be parallel to the y-axis.
If the equation ZF, =0 is satisfied, the resultant, if a force, must be
parallel to the x-axis. A force cannot be parallel to both the
2- and y-axes and hence, if the first two equations are satisfied,
the resultant of the system cannot be a force. If the equation
SM 4 =0 is satisfied, the resultant cannot be a couple. Therefore,
if the forces of the system satisfy the three equations, the force
system is in equilibrium.

Another set of independent equations of equilibrium for a
non-concurrent, non-parallel system of forces in a plane may be
written as follows:

EF::=O
SM, =0 [P T (B
1 2Ms=0

where 2z denotes any line or axis in the plane of the forces and A
and B are any two points in the plane, provided that the line AB is
not perpendicular to the z-axis.

A third set of equilibrium equations for the force system here
considered may be written as follows:

>M,=0
EM_B:O . . . . . . . . (C)
IM:=0

where A, B, and C are any three non-collinear points in the plane
of the forces.

It will be left to the student to prove that either set of equa-
tions (B) or (C) are sufficient and necessary to ensure the equilib-
rium of a coplanar, non-concurrent, non-parallel system of forces.

Any one of the above sets of equations, therefore, may be used
to determine the unknown elements of a coplanar, non-concurrent,
non-parallel force system which is in equilibrium, provided there
are not more than three such unknown elements or quantities.
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ILLUSTRATIVE PROBLEMS

67. A ladder rests with its upper end against a smooth vertical wall and
its lower end on a smooth horizontal floor as shown in Fig. 87. Slipping
is prevented by means of a stop at the lower end. If the ladder weighs
50 1b. and is of uniform cross-section, find the reactions of the wall, the floor,
and the stop, on the ladder.

Solution—A free-body diagram of the ladder is shown in Fig. 87. Since
the wall and floor are smooth, the reactions at these surfaces are perpendicular
to the surfaces and since the ladder has a uniform cross-section, its weight
acts at the center of the ladder. Let the length of the ladder be denoted by .
The solution is effected by applying the three equations of equilibrium as
- follows:

EM 4 =R, X1 sin 60°—50%1/2
cos 60°=0,

. R;=25 cot 60°=14.42 Ib.
SF,=R;—R,=0,
o Rs =R1 = 1442 lb.

3Fy=R,—50=0,

. Ry=501b.

68. The wall bracket shown in Fig. 88(a) consists of a horizontal member
AB, which is attached to the wall at A by means of a smooth pin, and a rod
OB, which is attached to the member AB at B and to the wall at C by means

/

R T
74 30°
[?'L—‘— ]
I 4 6° 2>
ahie {moon:.

Fig. 88.

of smooth pins. Find the tension, T, in the rod and the pin reaction, R, at
A if the weights of the members are neglected.
Solution.—A free-body diagram of the member AB is shown in Fig. 88(b)
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There are three unknown quantities in the force system, namely, T, R, and 6.
The three independent equations of equilibrium are,

EM4=TX12 sin 30°—-1000X10—400x4=0, . . . . . . (1)
", T=19301b.,
ZFz=R cos —T cos 30°=0, \
R CoRa =1 030ieoRIa0 =670, " mr o el e T (2)
2F,=R sin 0+T sin 30°—400—1000=0,

*. R sin 6=1400—1930 sin 30° =435. ol i )
By solving equations (2) and (3) the following results are obtamed

R=17301b.
6=14° 35",

PROBLEMS

69. A bar (Fig. 89) leans against a smooth vertical post and rests with its
lower end on a smooth horizontal plane, slipping of the lower end being pre-
vented by the cord as shown. If the weight of the bar is neglected, find the
reactions of the plane at A and of the post at B and also find the tension in the

cord.
Ans. R4=1091b. Rp=5111b. T=3281b.

Fia. 89. Fia. 90.

70. In Fig. 90 is shown a bell-crank mounted on a smooth pin at O and
subjected to a force of 80 lb. at A as shown. Find the pin pressure at O and
the reaction at B. Solve algebraically and graphically.

51. Graphical Solution of a Typical Problem.—Any of the
problems which involve a balanced non-concurrent, non-parallel
force system in a plane in which there are not more than three
unknown elements may be solved graphically as well as alge-
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braically. A graphical method of solution for one typical problem
will here be discussed. In the force system considered all of the
forces will be assumed to be known completely except two, the
action line of one of these two being known and also one point on
the action line of the other. The three unknown elements, then,
are the magnitude of one of the two forces and the magnitude and
the direction of the other.

As an example of such a force system, consider the forces
acting on the beam shown in Fig. 91(a¢). The unknown ele-
ments are the magnitude of the vertical reaction at the left end
of the beam and the magnitude and the direction of the reaction
at the right end of the beam.

™M N
-
/,// ’_/’//// ;H(
a e//;/’/‘,,
f
(@)
Fra. 91.

The forece and funicular polygons are shown in Fig. 91. In
constructing the force polygon, AB, BC, and CD are first drawn
to represent the three known forces (Fig. 91b). Since the mag-
nitude of the force DE is unknown the location of E is not known,
but it must lie in a vertical line through D. The rays are then
drawn from O after which the funicular polygon is constructed
(Fig. 91a). Since the point N is the only known point on the
action line of the force £A, the funicular polygon must be started
at this point. The strings oa, ob, oc, and od are drawn as shown.
Since the string oe must interseet od on de and must also intersect
oa on eaq its position is determined. The ray OF must be parallel
to the string oe. Hence E is the point of intersection of a vertical
line through D and a line through O parallel to ce. DE then rep-
resents the left reaction, and the right reaction is represented in
magnitude and in direction by EA.
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52. Choice of Moment-centers and of Directions of Resolu~
tion.—In applying the three equations of equilibrium to a balanced
force system, of the type here considered, in which there.are not
more than three unknown clements, the solution of the problem
may frequently be simplified by selecting the moment-centers and
the directions of resolution in a particular way. For example, in
Fig. 92 is represented a portion of a roof truss which is held in
equilibrium by the five forces shown, of which P and R are known
completely and Fy, Fo, and F3 are unknown in magnitude. By
selecting C, the intersection of the two unknown forces Fz and Fs,
as a moment-center and applying the equilibrium equation
2M¢=0, the force F; may be found from the one equation. Like-
wise by choosing D as a moment-center and applying a second
equation of equilibrium, ZMp=0, the force F; may be found
directly. Similarly, F2 may be found by selecting A as the
moment-center and applying the third equilibrium equation,
M ,=0. Thus by the proper selection of moment-centers each
of the three equations involves one unknown quantity only.

/[D .
P F1 // /I g Q
> L
47 ’! P A F
B 7 by
Fy
7{ < N
/ AN
N
4 T 2O I
(o]
Fia. 92. Fra. 93.

As another example, consider a body which is held in equi-
librium by the six foreces shown in Fig. 93, all of which are com-
pletely known except F'1, Fg, and F3, which are unknown in mag-
nitude. The forces F'1 and F3 are parallel. By selecting B as the
moment-center, the force F; may be found from one equation,
namely, ZM5=0. Likewise, F3 may be found from the single
equation ZM 4 =0, where A is the intersection of the two forces
Fy and F2. Further, F2 may be found from the single equation
2F,=0 provided that the y—dlrectlon is chosen perpendicular to
the forces F; and Fs.
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§ 6. EquiLiBriuMm oF Trusses, CRANES, AND CABLES

53. Stresses in Trusses.—Important examples of balanced
coplanar force systems are met in the analysis of the forces in
trusses, cranes, and flexible cables. In determining the stresses
in pin-connected trusses, only those trusses will here be con-
sidered for which the following assumptions may be made:

(1) The members of the truss lie in one plane and hence the
forces acting on the truss and the stresses in the members form a
coplanar force system.

(2) The members of the truss are connected at their ends by
means of smooth pins.

(3) The loads on the truss act only at the pins, that is, at the
ends of the members.

(4) The weights of the members are neglected, since the stresses
due to the weights are small in comparison with the stresses due to
other loads.

For practical purposes, in computing the stresses in many
structures such as roof and bridge trusses, the structures may be
considered to be in agreement with the above assumptions.

According to assumptions (2) and (3), the only forces acting
on any member are the reactions of the smooth pins at the ends of
the member, and since the member is in equilibrium under the
action of these two forces, the two forces must be collinear, and
hence the action line of each force must coincide with the axis of
the member. Therefore the stress in each member is a direct or
axial pull or push (tension or compression). Thus in the truss
shown in Fig. 94(a), the member AB is acted on by the pin pres-
sures F1, F'1 at the ends of the member which cause a compressive
stress in the member (Fig. 94b), while the pin pressures Fs, Fs
which act at the ends of member AC cause a tensile stress in the
member (Fig. 94¢). The stress S, then, in any member is numeric-
ally equal to the pressures of the pins at the ends of the member,
as is indicated in the freebody diagrams of the two parts of AC
(Fig. 94d). The kind of stress (tension or compression) in a mem-
ber, therefore, is represented by arrows which show the directions
of the pressures of the member on the pins. Thus, a compressive
stress is represented by arrows along the member directed towards
the ends of the member, ete. Thus, the stress in member AC (Fig.
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94q) is shown to be tension and the stress in member AB is shown _
to be compression. Another convention commonly used to indi-
cate the kind of stress in a member is to represent a tensile stress
by a plus sign and a

compressive stress by a Py P2 Pa = Pu Ps
negative sign. In the % D
analysis of the stresses
in a pin-ended structure
tworather distinct meth- A
ods may be used, name- (=<
ly, the method of joints i
and the method of sec- IR (a) Ry

tions. / f
54. Method of Joints. B
—By the method of @)
joints the stresses in ()
the members of a truss A F, A GEEiE,

are found by the solution /
R

of the concurrent force F, RS F

systems which act at (@)

the pins, and hence not Fig. 94.

more than two unknown ‘

pin pressures at any joint or pin can be determined. For

example, in the truss shown in Fig. 94(a) the pin at A4 is in

equilibrium under the influence of three forces (Fig. 95a), namely,

the reaction R;, which may be found if the dimensions of the truss

and the loads carried by the truss are known, and the two unknown
forces (stresses) Fi1 and F2 which

R FEdiae the members AB and AC exert

on the pin. By using the two

A . R F,  equations of equilibrium for a
T (@) ( system of concurrent forces in a
R, plane thetwo unknown forces may
Tia. 95. be found. The pin at C may now

be considered. This pin is in

equilibrium under the influence of three forces (Fig. 95b) namely,
the stress Fs in the member AC which has just been determined,
and the two unknown stresses F3 and F4, in the members CB and
CE. These two unknown stresses may be determined from the
two equations of equilibrium. The pin at B may next be con-

A
|
“
c
b

~—
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sidered, and so on until the stresses in all of the members have
been determined. As already noted, in using this method the
joints must be taken in such an order that there are not more than
two unknown stresses at the joint considered, since there are only
two equations of equilibrium for a concurrent force system and
hence only two unknown stresses may be determined. In con-
sidering the equilibrium of the forces at any joint the senses of the
two unknown forces are not always evident. When such is the
case the forces may be assumed to be directed away from the joint,
that is, the stresses may be assumed to be tensions. If, after
applying the equations of equilibrium and solving for the two
unknown forces, the sign of a force is found to be positive it is
evident that the assumed sense of the force is correct, whereas a
negative sign indicates that the sense of the force is opposite to
that assumed. In most problems, however, the sense of each
of the unknown forces is evident from inspection. The deter-
mination of the stresses in a truss by the method of joints often
requires a large number of calculations with a corresponding chance
for error. Thus, if the stress in a single member near the center
of the truss is required it is necessary to start at the end of the
truss and consider the equilibrium of the joints in order until a
joint is reached which involves that particular member. By the
method of sections (Art. 55) the stress in a single member may
frequently be found by use of a single equation.

55. Method of Sections.—In determining the stresses in the
members of a pin-connected truss by the method of sections a
section is passed through the truss so that it cuts not more than
three members in which the stresses are unknown. The part of
the truss on either side of this section is then treated as a free
body in equilibrium under the action of the known external forces
which aet on that part and the forces (stresses) which the members
of the other part exert on the part considered. It will be noted
that the method of sections involves a non-concurrent force system
and hence there are three equations of equilibrium from which
three unknown forces may be found. Consequently the section
must not cut more than three members in which the stresses are
unknown: As a rule any one of these three unknown forces
(stresses) may be found by using one equilibrium equation as dis-
cussed in Art. 52. For example, consider the truss shown in
Fig. 94. In order to determine the stress in the member DG con-



METHOD OF SECTIONS 91

sider the section which cuts the members DF, DG, and EG. —The -
free-body diagram of the portion of the truss to the left of this
section is shown in Fig. 96(a). This part of the truss is in equi-
librium under the action of six forces; namely, Ri, Pi1, and P,
which are assumed to be known, and the unknown stresses in the
members DF, D@, and EG. The stress (Fe) in the member DG
may be obtained from the equation £F,=0, since neither of the
other two unknowns will appear in this equation. Similarly the
stress (Fs) in the member DF may be obtained from the single
equation ZM¢=0 and the stress (F7) in the member EG may be
obtained from the single equation ZMp=0.

Py Py

&y
o
=2

\

eyl
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Fig. 96.

It is important to note that the forces Fs, Fe, and Fy7 are
regarded as internal forces (stresses) when the equilibrium of the
truss as a whole is considered, but that they are regarded as
external forces when the part of the truss on one side of the section
is considered. In considering the equilibrium of the part of the
truss on the left of the section (Fig. 96a) only the external forces
which act on the left part are involved and hence the stresses in
the members of the left part that are not cut by the section do
not affect the values of F5, F, and Fy. Thus the left part may
be thought of as a solid block as indicated in Fig. 96(b) on which
the forces F's, s, and 7 act together with Ry, Py, and Ps, the six
forces holding the block in equilibrium.

ILLUSTRATIVE PROBLEM

71. Determine the stresses in the members of a Howe truss when loaded
as shown in Fig. 97(a).

Solution.—The stress in any member will be denoted by the same letters
as the member itself. Thus, the stress in member AB will be denoted by
AB. By considering the equilibrium of the truss as a whole, the reactions
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R, and R, are found to be 40,000 1b. To find the stresses in members A B and -
AC the joint method is used. A free-body diagram of joint A is shown in
Fig. 97(b). By applying the equations of equilibrium for a concurrent force
system, the stresses in the two members are found as follows:

EMp=—40,000X20+A4C X30=0,

3
5 AC= 4_0,0(;(())>< 20 _ 26,667 Ib. (tension)

2F,= —AB cos $+40,000=0.

S. AB =4_100_L_000 =40,000 sec ¢ =48,000 lb. (compression)

08 ¢

To find the stresses in members BC and BD let a section aa be passed
(Fig. 97¢). The forces acting on the part of the truss to the left of the section
form a non-concurrent force system. But since the stress in member AC is
already known only two of the three equations of equilibrium are needed.

Thus,
=M= — 40,000 X20+BD X30=0,

40,000 X 20
30

=Fy=40,000 —20,000 — BC =0,
*. BC' =20,000 lb. (tension)

s BD= =26,667 1b. (compression)

In a similar manner the stresses in CD and CE may be found by the
method of sections. By considering the part of the truss to the left of sec-
tion bb (Fig. 97d), the stresses in the two members are found as follows:

=M p= —40,000<404-20,000 X204-CE X30=0,

s CE= E%OTQ(E =40,000 lb. (tension)

=Fy=40,000—20,000+CD cos ¢ =0,
.~ CD= —20,000 sec ¢ = —24,000 lb. (compression)

It will be noted that all of the stresses except CD (Fig. 97d) are assumed
to act in the.correct directions, and hence are found to be positive whether
they are tensile or compressive. The stress in CD is assumed to be tension
and hence the negative sign indicates that it is compression.

In considering the equilibrium of the forces which act on the pin E (Fig.
97e), it is evident that the stress in DE is zero, and that EC equals EG. Fur-
ther, since the truss is symmetrical with respect to the center line DE and the
loads are also symmetrical with respect to this line, it is obvious that the
stresses in the members of the right half of the truss are equal to the stresses
in the corresponding members of the left half.
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PROBLEMS

72. Find the stresses in the members of the Warren truss shown in Fig. 98.
Ans. AB=—46201b. DB=—3460 lb.

4000 1b,
2000 1b, 2001 1b.
ls D F
c \z
K P
A Cc E G
; E
] f ’
10 <——10 . 10
R Ry
Fia. 98.

73. Find the stresses in the members of the Pratt truss shown in Fig. 99

in which the loads P are each 10,000 1b.
Ans. AB=—30,0001b. BC=+10,0001b. BD= —26,670 lb,

B D F H J ___T
k-
A c E G 1 RE = \L
20’ | 20 20 20" ¢ 20 20/
P e o P P
R1 Ry
Fia. 99.

74. Find the stresses in the members of the Howe truss shown in Fig. 100
Ans. AB=-12,7001b. BC=—30001b. BD=—9000 lb.

12,0001,

Ry B :
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76. In the Fink truss shown in Fig. 101 BC is perpendicular to AD and B _

is the mid-point of AD. Find the stresses in the members.
Ans, BC=—-17301b. AB=—6000 lb.

2000 1b.
2000 1b. 2000 Ib.
D
B F
A 30° (o] B &
A
10— 10— s—1 04—
Ry R.
Fia. 101,

56. Graphical Analysis of Trusses.—The graphical method of
analysis of framed structures is sometimes simpler than the
algebraic method. This statement is true particularly when the
form of the structure is such that a considerable amount of cal-
culation is necessary to determine the directions and moment-arms
of the forces involved. The graphical method consists essentially
in constructing the force polygons for the concurrent forces at the
joints and superimposing these polygons. The method will be
explained in detail with reference to the Pratt truss shown in
Fig. 102(a). It will be assumed that the loads carried -at the upper
panel points are equal. It is convenient to use the Bow system of
notation (Art. 7). In this system the regions on either side of
the action line of a force (either external or internal) are denoted
by numbers or letters as shown in Fig. 102(a) and the force is
denoted by the two numbers or letters adjacent to the action line
of the force. Tor example, the left reaction is denoted by X:1-Y;
the load at the upper panel point at the left end of the truss by
X1-X3; the stress in the diagonal in the second panel by 2-3;
the stress in the lower cord at the left end of the truss by
Y-1; etc. The order of the numbers or letters denoting an
external force, or an internal stress in any member, may be reversed.
Thus the stress in the diagonal in the second panel may also be
denoted by 3-2. The force polygon shown in Fig. 102(b) is con-
structed as follows: The load line X1 X2X3X4X5Xg is first laid off.
Since the loads are symmetrical, the reactions will be equal,
and hence Y will be midway between the points X; and Xe.
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Consider now the three concurrent forces at the lower left-hand
panel point. Of these three forces the left reaction, Y-Xj, is com-
pletely known and the directions of the other two, X;—1 and
1-Y, are known. Since these three forces are in equilibrium,
their force polygon must close. Hence, to determine the mag-
nitudes of the last two forces a line is drawn in Fig. 102(b)
through X; parallel to X;-1, and a line is drawn through Y par-
allel to 1-Y. These lines intersect in the point 1, and the mag-
nitudes of the stresses are indicated by the lengths of the lines
Xi~1 and 1-Y in the force polygon. It will be noted that the
pressure of the member X;-1 on the pin at the lower end is down-
ward to the left and hence the member is in compression.

3 A
7

Xa § X § X § %
> 5
X 3 5 A6 |3 X i 2
1§ 2\V4 v |2 44 >\/1'2’2'1 Y
(@ 3

Fig. 102.

As soon as the stresses in the various members are found
arrow-heads should be placed on the members indicating whether
the stresses are tensions or compressions. The second lower panel
point should next be taken. The stress in the member Y-1 is
now known and in order that the polygon for this joint shall close
it is evident that the point 2 must coincide with 1. Therefore
the stress in 1-2 is zero and the stress in 2-Y is the same as the
stress in Y-1. The first upper panel point can now be taken and
the stresses in Xo-3 and 3-2 may be found. The forces at the
remaining joints may be found in a similar manner. The student
should follow through the construction (Fig. 102b) and build up
the complete polygon.
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ILLUSTRATIVE PROBLEM

76. Find the stresses in the members of the truss shown in Fig. 103(a).
The members X,—-1 and 2-3 are parallel and the members X;-2 and Y-1
are parallel.

30000 1b.
9 B
X RPNE S
+13500 2 o X f "
SA /s \¢ =
&/ +26400 \ /1’ * 2
x&‘ﬁﬁ |: ¥ ¢
AL : : g Y
I 12 1 18 12:
(a) of
1
(0)
Xs

Fia. 103.

Solution.—The stresses are determined from the force polygon shown in
Fig. 103(b). The magnitudes of the stresses are shown on the members
in Fig. 103(a), the plus or minus sign indicating whether the stress in the
member is tension or compression.

PROBLEMS

77. The Fink truss shown in Fig, 104 is subjected to wind loads as indi-
cated, the loads being perpendicular to the upper chord AD. The truss

w <~
o
¥ D
¢ 4 B 300
@“@ g F
A ~30° c E G
\ [
<~ 10 10~ 10+ i
R, 2
Fic. 104.

rests on a smooth plate at the left end and hence the reaction at that end is
vertical. Find the magnitude and direction of the reaction at the right end
of the truss and the stresses in the members, Use the graphical method.
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78. Find, by the graphical method, the stresses in the members of the
truss shown in Fig. 105, the value of P being 10,000 lb.

6 @ 20'=120"

F1a. 105.

57. Cranes.—It was stated in Art. 53 that in the analysis of the
forces which act on the members of a crane balanced coplanar
force systems are involved. The loads on cranes, unlike those on
trusses, are not applied at the pins only. That is, assumptions
(2), (3) and (4) of Art. 53 may not always be made in the anal-
ysis of the forces acting on cranes. The force system acting on
a member of a crane, therefore, includes forces other than the
two pin pressures at the ends of the member, and hence the stress
in a erane member, in general, is not a direct axial tension or com-
pression as is the case in a truss. In order to calculate the stress
in a crane member a knowledge of the subject of Sirength of
Materials is needed, and consequently the stresses in ecrane mem-
bers will not, in general, here be found. The main problem here
considered in connection with cranes, therefore, is that of deter-
mining only the forces acting on the various members of the
crane. Since the stresses in the members of a crane are not single
forces directed along the axes of the members, the method of
sections as used in the preceding articles cannot be employed.
The general method of procedure in the analysis of the forces
acting on crane members will be first to consider the equilibrium
of the structure as a whole and determine the external reactions,
and then to consider the equilibrium of the various members
separately and determine the forces (pin pressures, ete.) which
act on the separate members.
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ILLUSTRATIVE PROBLEM

79. In the crane shown in Fig. 106 the post AD weighs 1200 1b. and the
boom BE weighs 1000 1b. The member CE is a cable the weight of which
will be neglected. The reaction at D will be assumed to be horizontal. Find
the reactions at 4 and D, the pin reaction at B, and the tension in the cable CE.

zfz//f‘i”’.{._g D

-

0\ =<tre
3y

®)

Fra. 106.

Solution —First consider the equilibrium of the entire crane, a free-body
diagram of which is shown in Fig. 106(c). The reaction at D will be denoted
by D. The reaction at the pin A will be denoted by A and, for convenience,
will be resolved into its horizontal and vertical components which will be
denoted by Ay and 4,. The unknown reactions are obtained by applying
the equations of equilibrium as follows:

ZM 4=20D —6X1000—12 X 6000 =0,

. 18,000
S D =" =3900 Ib.

ZFy=Az—D=0,
. D=A45=3900 lb.
=Fy=Ay,—1200 —1000 — 6000 =0,
S Ay=8200 1b.
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Whence, '
k A=V A2+ A4,2="V(3900)2+(8200)%=9075 Ib,
and,
8200
e, s, et o gr/s
04=tan 3900 64° 35,

Next consider the equilibrium of the member BE. The forces acting on this
member are four in number; namely, the tension in CE which will be denoted
by CE, the load of 6000 1b., the weight of the member, and the pressure of the
pin at B on the member, as shown in the free-body diagram (Fig. 106b). The
last force is resolved into its horizontal and vertical components as shown in
the free-body diagram. By applying the equations of equilibrium the un-
known quantities may be found as follows:

ZMp=9 XCE —6X1000—12X6000=0,

CE=-7—8’;ﬂ=8667 Ib.

EF:=Bz—CE=O,
<+ Bz=CE =8667 lb.
2Fy=B,—1000 —6000=0.

s« By=7000 lb.
Whence,
B=+VB;*+B,2="V (8667)%+(7000)2=11,100 Ib.
and, 45
F ok 0 _ oo er
O0p=tan-1 3667 =38° 55'.

80. Determine the forces acting on the members of the crane shown in
Fig. 107(a). Neglect the weights of the members.

c
N
\\
h,\ C‘o
1
45°\\D HEL i ?ﬁzts\o B
A ] N \I 1
c EYall
15+ 15 Huy it i
T 15'——>!<——]:5'——>’
1000 1b, H )
1000 1b.
Bl £
N 45
e (a) (v)
E/G0° /m A g

O
"/ Ay

Fia. 107.
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Solution.—Consider first the equilibrium of the entire crane, a free-body ~
diagram of which is shown in Fig. 107(a). By applying the three equations
of equilibrium, the unknown quantities may be found. Thus,

M 4=20XCE—30X1000=0.

4 _ 30,000 _
B C’E—TO— =1500 Ib.

ZF:=A:—CE sin 30°=0,
s Az=CE sin 30°=750 lb.
ZFy=Ay—1000—CE cos 30°=0,

~ Ay=10004-1300=2300 Ib.

Whence,
A =V (750)2+(2300)2=2420 lb.
and,
—tan—12300 o0 kpy
04=tan-1 750 =71° 55'.

Consider next the equilibrium of the member BH. The forces acting on
BH are shown in Fig. 107(b). From the equations of equilibrium the unknown
quantities may be found as follows:

ZMp=10.6 XCD ~-30X1000=0,

5 _ 30,000 _
&5 CD_——IO.G =2830 Ib.

ZF;=Hz—CD cos 45°=0,
~. H;=2830X.707=2000 1b.

ZFy= —Hy+CD cos 45°—1000=0,
s Hy= —1000-2830.707 =1000 1b.

Whence,
H =V (2000)24(1000)2 =2240 Ib.
and,
1000
™ &1 —98° ’
0 =tan 2000 26° 35'.
PROBLEMS

81. In the crane shown in Fig. 108 the post AE weighs 1600 1b. and the
member CH weighs 1200 lb. The remaining members are cables the weights
of which may be neglected. The member CH passes through a slot in the
post AE. Determine the external reactions, and the tensile stresses in the
members BC, CD, and DH. Assume the reaction at E to be horizontal and
that there is no reaction between CH and AE.
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82. The crane in Fig. 109 is in equilibrium under the action of the two
loads shown and the reactions at B and A4, the reaction at B being horizontal.
Find the reactions at A and B and the tension in the member DF. Find also
the pressure of the pin at C on the member CF.

ot AT Ans. B=52001b. DF =15400 Ib.
E

6000 1b.

81>
B{O---
A 7]7:[; © 10000 Ib.
il 770777

Fia. 108. Fia. 109.
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8. Flexible Cables.—In the following two articles the equi-
librium of flexible cables or cords will be discussed. A cable is
said to be perfectly flexible when it can offer no resistance to bend-
ing. A flexible cable, then, can transmit a stress only along its
axis, that is, the stress at any point of a flexible cable is tangent
to the curve assumed by the cable. Although physical cables
and cords are not perfectly flexible the resistance they offer to
bending is generally so small that it can be neglected without
serious error. In the discussion of cables it will be assumed that
the cables are perfectly flexible and inextensible. A

59. The Parabolic Cable.—If a flexible cable is suspended
from two points and carries a load that is distributed uniformly
horizontally (Fig. 110a), the curve assumed by the cable is a para-
bola, as will presently be shown. In the present discussion the
points from which the cable is suspended will be assumed to be in
the same horizontal plane. An example of a cable carrying a load
which closely approximates that above indicated is the cable of a
suspension bridge, since the weight of the roadway is uniformly
distributed horizontally and the weights of the cable and hangers
are small in comparison with the weight of the roadway and
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therefore may be neglected. Another example is that of &
tightly stretched cable (that is, one in which the sag is small as
compared with the span) which carries no load except its own
weight, as for example, the cable of an electric transmission line,
a telegraph wire, etc. In this case the load carried by the cable
(its weight) is distributed uniformly along the curve assumed by
the cable, but since the sag is small the horizontal projection of an
arc of the curve is approximately equal to the length of the arc,
and hence the load is distributed approximately uniformly in the
horizontal direction.

2,777,
(a) Y
g
/B/
" A ,__.—,-L,e“fc T
| 7l
G M Y 77
- (®)
2 2
wx

Fic. 110.

In the solution of problems involving the parabolic cable, use
is made of the equation of the curve assumed by the cable (para-
bola) and of equations which express relations between the span,
sag, length of the cable, tension, etc. In order to determine the
equation of the parabola a portion AB of the cable will be con-
sidered as a free body (Fig. 110b). A4, the lowest point of the cable,
will be taken as the origin of coordinates and the tension at this
point will be denoted by H. The tension at any point, B, will be
denoted by 7. The portion of cable AB, then, is in equilibrium
under the action of the three forces H, T, and the vertical load
wz which acts through the point D midway between A4 and C.
Since these three forces are in equilibrium they must be concurrent,
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and hence the action line of T passes through D. The equa-
tions of equilibrium are:

ZF;=T cos a—H=0, el E ISR (1)
ZFy=Tsina—wz=0. . . . . . (2

[ ]

By dividing (2) by (1), the equation obtained is,

wr
tan a=—-.

H
But,

tan a=2—y.
z

Hence,
2y wx

Zis o

wa?
Yy =’2—H— PR R TS A i B8 %0 Bt O (3)

That is,

The curve, then, is a parabola with its vertex at A and its axis
vertical. By squaring and adding (1) and (2) and extracting the
square root of each side of the resulting equation, the following
expression for 7' is found,

P=vVIPFwiZ . . . . . . . @

In applying the above equations we are concerned with the tension
at the point of support since at this point the tension is a maximum.
Hence, if the span be denoted by a and the maximum value of y
(that is, the sag) by f, equations (3) and (4) reduce to

wa? :

f=‘8—H, T [N L - (L

)
T=%wa\'1+fé—§, e A ()

in which T represents the tension at the points of support.
The length of the cable will now be determined in terms of the
span and sag. In any curve the length of an are is obtained from

the equation
& dy\?

dy _wa
dx H’

and

From equation (3),
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Hence, if the length of the cable be denoted by I, we have —

l=2f.[1+w“’2
0

Substituting for H from equation (5), this equation becomes

2 2 ;2
z=2f2 (4L g
0 a

The exact expression for I, obtained from this integral, involves a
logarithmic function and is difficult to apply. A simpler expres-
sion for I may be obtained by expanding the expression under the
integral into a series and integrating the series term by term.
This method leads to the following equation,

l=a[1+§(£)2—':%<£>4+ e ] VSR

Since the sag ratio f/a is generally small, the series converges
rapidly and it is sufficient in most practical computations to use
only the first two or three terms of the series to obtain a close
approximation to the value of 1.

ILLUSTRATIVE PROBLEM

83. The horizontal load carried by each cable of a suspension bridge is
1000 1b. per ft. The span of the bridge is 800 ft. and the sag is 50 ft. Deter-
mine the tensions at the ends and at the middle of the cable and also find the
length of the cable.

Solution.—From equations (5) and (6),

1000X (800)*

H="=g%50

=1,600,000 Ib.

and,

(800)2

=1 S TR o
T =3%X1000X800 \/1+16><(50)2 1,650,000 Ib.

The length of the cable may be determined by using equation (7). Thus,

l=800[1+ (50) 2=

300 & (800) ] =808.24 ft.
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PROBLEMS

84. A telegraph wire weighing 0.1 1b. per foot is stretched between
two poles 150 ft. apart. 'The tension in the wire at the insulators (which
are in the same horizontal plane) is 500 lb. Find the sag, assuming
that the weight of the wire is uniformly distributed horizontally. Find also
the length of the wire.

Ans. f=0.562 ft. 1=150.005 ft.

85. Each cable of a suspension bridge carries a load of 1200 lb. per foot
uniformly distributed along the horizontal. The span is 1000 ft. and the sag
is 50 ft. Find the maximuin stress in the cable and the length of the cable.

86. A cable 100 ft. in length is suspended from two points in a horizontal
plane which are 99 ft. apart. If the cable carries a load that is uniformly
distributed along the horizontal what is the sag of the cable?

Ans. f=6.10 ft.

60. The Catenary.—The curve assumed by a flexible cable of
uniform ecross-section which is suspended from two points, and
which carries no load except its own weight, (Fig. 111 a), is called a

[ a h

g Euwws X

(®)

Fig. 111,

catenary. The load which causes a cable to assume the form of
a catenary, then, differs from that which causes the form of a
parabola in that the load is distributed uniformly along the cable
in the former case, whereas in the latter case the load is distrib-
uted uniformly horizontally.

The discussion of the catenary is of practical importance only
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for cables in which the sag ratio is large, since for a small Sag
ratio the curve assumed by a cable may be regarded with small
error as being a parabola, as discussed in the preceding article.

In order to determine the equation of the catenary and also
to derive certain important relations between such quantities as
the sag, span, length of cable, tension, etc., the equilibrium of a
portion, OA, of the cable (Fig. 1115) will be considered, O being the
lowest point of the cable and A any other point. The point O
will be taken as the origin of coordinates, the weight of the cable
per unit of length will be denoted by w, and the length of the are
0OA will be denoted by s. The portion, OA, of the cable is in
equilibrium under the influence of three forces, namely, the ten-
sion H at the point O, the tension 7T at the point 4, and the weight
ws. The angle which 7' makes with the horizontal will be denoted
by 6. The equations of equilibrium for the concurrent force
system are,

SF;=T cos 0—H=0, .. Tcos@=H. g EhE )
ZFy,=T sin §—ws=0, .. T sin §=ws. o hms A= (2)
From (1) and (2) we have,

ws 8 = HE
tan()—ﬁ-——c where e (a constant).
Hence,
dy
s—c.tano or s=con . . . . . (3)

This equation is the intrinsic equation of the catenary. The
cartesian equation will now be found. In any curve,

ds 2
dy \/1+< ) ;

Hence, from (3), the following equation is obtained,
ds_ . [ &_V&ted
A 1—|— o

=2 sds
Vite

Therefore,

Integrating,
y+A =Vsit el
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If now the origin is transferred to 0’, where OO’ = ¢, then 3= ¢ when
§=0 and hence A =0. The last equation, therefore, becomes,

y=VETE ... .. @

Eliminating y from (3) and (4),

cds

& S

Integrating this equation,
z+B=c log, (s+V s2+c?).

Since s=0 when z=0, B=c log, ¢ and hence the last equation
becomes,

)
z=c log, L\/j—j—_—c— =clog, yT-l—s L @)
Equation (5) can also be written in the form,
VEFERHs=cf. . v . o .o e

By inverting each side of (6) and rationalizing the denominator of
the left side, the following equation is obtained,

VaFd—g=ge ., ..M L L
Adding (6) and (7) and using (4),

>

¢, £ ¥
y—ﬁ(e —e )—ccosh—(-:. W e (L

This is the cartesian equation of the catenary. Subtracting (7)
from (6) we have,

Bire - P
s—§(e —e )—-csmhc. BRI | o ()

Squaring and adding (1) and (2) we have,

T? = H?2+w?s? = w2 +w?s? = w?y>.
Hence, '
T=awgt = 10 s AR e S (1)
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Summarizing, then, the following important properties of the
catenary may be stated:

(1) The horizontal component of the stress at any point is con-
stant and equal to we.

(2) The vertical component of the stress at any point is equal
to ws.

(8) 'The total stress T at any point is equal to wy.

In engineering problems which involve the catenary we are
concerned particularly with the tension at the points of support,
since at these points the tension is a maximum. Hence, in the
above formula, T will be regarded as the tension at the points of
support and the values of z, y, and s will be regarded as the values
of the variables at these points. Therefore, if the length of the
cable be denoted by [, the span by a, and the sag by f, then the

values of z, y, and s in the above equations become %, f+e, and —2§,

respectively. f

It may be noted that when the sag of the catenary is small the
curve very closely approximates a parabola, since the load is
approximately uniform horizontally. The formulas of Art. 59
are generally used when the sag is small, since they are much easier
to apply and the results obtained are sufficiently accurate for prac-
tical purposes. When the sag is large as compared with the span,
however, the above formulas should be used.

Since the relations between the quantities as expressed by the
above equations are complicated, many of the problems which
involve the catenary can be solved only by trial.

ILLUSTRATIVE PROBLEM

87. A cable weighing 4 lb. per foot is stretched between two points in the
same horizontal plane. The length of the cable is 600 ft. and the tension at
the points of support is 2000 Ib. Find the sag and also the distance between
the points of support.

Solution.—From equation (10),

T 2000
y—'z_o-_T—E’OO ft.

From equation (4),
c=Vyt—s?=V/(500)2— (300)2 =400 ft.
Hence, f=y—c=500—400=100 ft.
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From equation (5),

s VA 00
T=C loge ————S L +8 =400 loge (300) + (400)2+300
¢ 400
i =2772 ft.
ence.
’ a=2r=5544 ft,
PROBLEMS

88. A cable 100 ft. long is suspended between two points which are in
the same horizontal plane and 80 ft. apart. What is the sag at the mid-point
of the cable?

Ans. f=26.54 ft.

89. A cable weighing 2 1b. per foot is stretched between two points in the
same horizontal plane which are 150 ft. apart. If the sag is 5 ft. what is the
length of the cable and the tension at the points of support.

Ans. [=150.44 ft. T=11301b.

§ 7. CoNCURRENT FORCES IN SPACE

61. Equations of Equilibrium.—A non-coplanar, concurrent
system of forces is in equilibrium if the algebraic sums of the com-
ponents of the forces along any three non-coplanar lines through
the point of concurrence of the forces are equal to zero. As a
matter of convenience the three lines will be taken as a set of
rectangular axes through the point of concurrence, in which case
the equations of equilibrium may be written:

EF;.;:O,
2F,=0,
2F.=0.

Proof —The resultant of a concurrent system of forces in
space, if not in equilibrium, is a force (Art. 32). In order to sat-
isfy the equation ZF,=0, the resultant, if there be one, must lie in
the yz-plane. In order to satisfy the equation =F,=0, the result-
ant must lie in the zz-plane, and in order to satisfy the equa-
tion ZF,=0, the resultant must lie in the zy-plane. It is
impossible for a force to lie in the three planes simultancously and
hence, if the forces of the system satisfy the above equations, the
resultant cannot be a force and, therefore, the system must be in
equilibrium,
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ILLUSTRATIVE PROBLEM

90. The wall bracket (Fig. 112a) is composed of two flexible cables, AC
and BC, and a stiff rod, DC, which is pin-connected at D and C. The points
4, B, and C lie in a horizontal plane and 4, B, and D lie in a vertical plane, D
being vertically beneath E, the mid-point of AB. Find the stresses in the
three members due to the 100-1b. load shown.

E 24" c
45°
3
@)
D 45°
(@)
D
"
E ®___—cC \
. tan a= 5
= sin a= %5‘- =447
3 (b) cos A= v—lg =894

Fia. 112.

Solution.—The pin C' is in equilibrium under the action of the 100-Ib. load
and the reactions of the three members, these reactions being equal to the
stresses in the corresponding members. The free-body diagram of the pin ¢
is shown in Fig. 112(a). By selecting axes as indicated and applying the
equations of equilibrium, the following equations are obtained:

ZFy=DC cos 45°--100=0,

100
DC—C—()—ST5°—141.4 Ib.
ZF;=AC sin a—BC( sin a =0,

S AC=BC.

2F;=DC cos 45°—AC cos a—BC cos a =0
DC cos 45°=2AC cos «,

_DCcos45 _141.4X.707 _
S AC= g s = 2x gog —2591b.

Hence there is a compressive stress of 141.4 1b. in the rod DC and a tensile
stress of 55.9 Ib. in cach of the cables BC and AC.
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PROBLEMS

91, A weight of 150 Ib. is suspended from hooks at points A4, B, C, of a
ceiling as shown in Fig. 113. AD, BD, and CD are cords each 10£t. in length.
Find the stresses in the cords.

Ans. AD=71681b, BD
=18.081b. CD=67.241b.

92. Fig. 114 represents a stiff-
leg derrick. The member AC lies
in the zy-plane and the members
BD and BE lie in vertical planes
making angles of 45° with the
zy-plane. The weight carried is
b such as to produce a tensile stress
of 5000 lb. in the member BC.
Find the stresses in the members

150 Ib. AC, BD, and BE.
Ans. AC=5670 lb.
Fia. 113. BE=BD=4910 Ib.

Fia. 114.

§ 8. PARALLEL FORCES IN SPACE

62. Equations of Equilibrium.—A system of parallel forces in
space is in equilibrium if the algebraic sum of the forces is zero,
and if the algebraic sum of the moments of the forces with respect
to each of two non-parallel lines is equal to zero, provided that
neither one of the lines is parallel to the forces of the system. It will
be convenient to select a set of rectangular axes so that one of the



EQUATIONS OF EQUILIBRIUM 113

axes (the z-axis, say) is parallel to the forces. If the axes are 50 -
selected the equations of equilibrium may be written:

SF=0,

ZMZ= 0,

Proof —The resultant of a system of parallel forces in space
which is not in equilibrium is either a force or a couple (Art. 35).
If ZF=0, the resultant cannot be a force. If the resultant is a
couple it must lie in a plane parallel to the zz-plane in order to
satisfy the equation ZM,=0, and in order to satisfy the equa-
tion ZM,=0 it must lie in a plane parallel to the yz-plane.

A plane, however, cannot be parallel to both the zz- and yz-
planes, and hence, if the two moment equations are satisfied the
resultant cannot be a couple. Therefore if the forces of the
system satisfy the three above equations, the force system is in
equilibrium.

ILLUSTRATIVE PROBLEM

93. In Fig. 115, ABC represents a triangular plate, the sides of which are
each 2 ft. in length. It is held in a horizontal position by vertical cords at the
three vertices. A weight of 200 b is suspended from the point E which lies
on the median AD, the distance DE being 6 in. Find the stresses in the
cords neglecting the weight of the plate.

Solution —The stresses may be found from the equilibrium equations as
follows:
IM:=T;X2 sin 60°—200X 1 =0,

100

G =5 am 60° =57.71b.

EM,=TyX1-T:X1=0,
S TymT,.
ZF =T+ Ty +T;—200=0,
Ty +T:=200—T;,
2T, =142.3,
& T=T,=71151b.
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PROBLEMS

94. A square table weighing 50 Ib. stands on four legs at the mid-points of
the sides. Find the greatest weight that can be placed on one corner of the
table without causing it to overturn.

95. A uniform circular plate weighing 200 Ib. is supported in a horizontal
position at three points on its circumference. Find the reactions at the sup-
ports if the points divide the circumference into arcs of 90°, 135°, and 135°.

§ 9. NON-CONCURRENT, NON-PARALLEL FORCES IN SPACE

63. Equations of Equilibrium.—A system of non-coplanar,
non-concurrent, non-parallel forces is in equilibrium if the alge-
braic sum of the components of the forces in each of three direc-
tions is equal to zero and if the algebraic sum of the moments of
the forces with respect to each of three axes is equal to zero, pro-
vided that the directions of resolution are so chosen that lines
drawn through any arbitrary point in these three directions are
not coplanar, and that the moment axes do not lie in a plane, and
that no two of them are parallel. It will be convenient to take
the coordinate axes for the axes of resolution and for the moment
axes, in which case the equations of equilibrium may be written
as follows:

b 2 SM,=0,
SF,=0, =M,=0,
ZFZ v O) EM; =0.

Proof—The resultant of a non-concurrent, non-parallel system
of forces in space is, in general, a force and a couple (Art. 41).
If the first three equations are satisfied the resultant force must
vanish and if the last three equations are satisfied the resultant
couple must vanish. If, therefore, the forces of the system
satisfy the six equations the force system is in equilibrium.

ILLUSTRATIVE PROBLEM

96. Fig. 116(a) represents a windlass used in lifting heavy weights. The
end bearings will be regarded as smooth and the force P applied to the crank
will be assumed to be perpendicular to the axis of the cylinder and also per-
pendicular to the crank. Find the value of P required to hold the 450-lb
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weight and also find the reactions at the bearings, assuming that the crank is
inclined 30° to the vertical.

N
0

y =
| 30 '/‘ (i} 211
V. Hy

vl
l 46 b,

Fig. 116.

Solution.—The coordinate axes will be taken as shown in the figure.
There are four forces acting on the windlass, namely, the weight of 450 1b.,
the force P, and the reactions at the bearings. Since the bearing reactions
are unknown in direction as well as in magnitude it will be convenient to resolve
them into horizontal and vertical components, H , V, and H,, V,, as indicated
in the figure. Applying the equations of equilibrium to the system of forces
acting on the windlass we have,

ZFy=P cos 30°+H,+H,=0. . . . . . . . . (@
ZFe=V1+V:—P sin 30°—450=0. . . . . . . (2)
IM;z=15P —450X4=0. SN SRR Bt 3w ()
My =P sin 30° X62+450X30—50 V,=0. . . . . (4)
SM=50 Hyi+P cos 30°X62=0. . . . . . . . (5

The solution of these equations gives the following values:
P=120Ib.
H,=—1288 Ib.
V1=34441b.
H:=24921b.

V2=165.6 lb.
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GENERAL PROBLEMS

97. The pressure between the rubbing surfaces of the friction clutch
shown in Fig. 117 is 15 1b. per square inch normal to the surfaces. What
force P on the bell crank is required to produce this pressure?

Ans. P=196 1b.
\ Ak
\‘g‘ﬂ’\‘ A
7R 124°
= Wi‘:'}
&s Jl=7_ 6
“ - P
Z 0
7 (»— =1 ©
g 15” S |
Fra. 117. Fia. 118.

98. A body weighing 20 lb. is held in equilibrium by four cords as shown
in Fig. 118. What are the stresses in cords A, B, and C?
Ans. A=23.11b. B=11951b. C=2311b.

99. A sphere which weighs 40 1b. is held on a smooth inclined plane by
means of a cord which is attached to a ceiling as shown in Fig. 119. Deter-
mine the pressure of the plane against the sphere and the tension in the cord.

Fia. 120.

100. A body weighing 60 lb. is held in equilibrium on a smooth surface by
two cords which pass over frictionless pulleys and carry suspended weights
of 30 1b. and 50 1b. as shown in Fig. 120. Find the reaction of the surface on
the body and the angle 6. Ans. R=201b. 6=53°§8'.

101. The pillar crane shown in Fig. 121 is bolted to the floor by six bolts
as shown. The pressure (or the pull) between the base of the crane and the
floor is assumed to be concentrated along the axes of the bolts. Find the ten-
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sion in the two bolts to the left of the Y'Y axis and the pressure between the
base and the floor at the corresponding bolts to the right of the axis, caused

by the load of 2000 1b. shown.
2 Ans. 2170 (tension); 2830 (compression).

/>
Q

[e)

Fia. 121. Fig. 122,

102. Find R, the maximum unbalanced pressure (recoil pressure) that can
exist on the breech of a 3-in. gun (Fig. 123), when firing, without causing the
wheels to leave the ground, assuming the earth pressures and the weight of the

gun to be as shown in Fig. 123.

==

W=2520 1b,

Fia. 123.

103. A uniform beam weighing W 1b. rests with its ends on two smooth
planes which are inclined at angles of 60° and 30° with the horizontal. Find
the inclination of the beam with the horizontal. Ans. 6=30".
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104. The two bodies shown in Fig. 124 are held in equilibrium on two
smooth rods by a connecting cord. If the bodies weigh 200 1b. and 50 1b.,
find the reactions of the rods, the tension in the cord, and the angle 8.

105. The power press shown in Fig. 122 has the following dimensions:
AB=25 ft. BC=BD=1 ft. DE=15 ft. FC=8 ft. FB=7.1 ft. The
points B, E, and F are on the same vertical line. What force P is required to
cause a pressure of 2000 1b. between the jaws of the press?

Fic. 124, Fia. 125,

106. Forces act along the sides of the polygon shown in Fig. 125. The
forces are proportional to the lengths of the corresponding sides. If the areas
of the two loops are equal, show that the system of forces is in equilibrium.

107. A body weighing 80 lb. is suspended by two strings of lengths 5 ft.
and 12 ft., the upper ends of which are attached to a horizontal plane, the dis-
tance between the two points of attachment being 13 ft. Find the tensions in
the strings. Ans. 30.8 lb; 73.8 1b.

108. A beam 8 ft. long rests on two horizontal supports and is loaded as
shown in Fig, 126. If the weights of the beams are neglected, find the reac-
tions R; and R, at the points of support.

8000 Ib.
1000 Ib.

Ll [ | I} 500 1b.
(0] (@]

I ] I T l ] 100 1b. per ft.

o T v R [

F1g. 126. G 1274
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109. A horizontal beam 10 ft."long is supported at its ends and loaded"
with two concentrated loads and a uniformly distributed load of 100 lb. per
ft. over a length of 4 ft. as shown in Fig. 127. Find the reactions R, and R: at
the points of supports. Ans. R;=980 lb. R,=920 Ib.

110. A camp stool loaded as shown in Fig. 128 rests on a smooth floor.
Find the reactions of the floor on the stool.

111. Find the magnitudes of the forces which must act along lines I and II
(Fig. 130) in order to hold in equilibrium the three forces shown. Solve by
the graphical method.

130 1b.
20 Ib.

o” 112 2/

Fia. 128. Fig. 129.

112. In Fig. 132 is shown one form of a dynamometer. The pressure on
the scale beam at D is balanced by the poise weights A and B. The weight of
A and B together is 150 1b. and that of B alone is 3.51b. The divisions on
the large scale are 1 in. apart and those on the small scale are 0.4 in, apart.

1
I 201b.

30 Ib.

Fia. 130. Fia. 131.

When both A and B are set at zero on the scales they are just balanced by the
weight C. If, in order to maintain balance, 4 is set at the 2nd division and B
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is set at the 15th division, what is the pressure of the dynamometer on the
scale beam at D? Ans. R=26.75 lb.

113. In Fig. 131 is shown a diagrammatic sketch of an apparatus for
measuring a load on a beam. If aforce of 51b.at £ is required to balance the
scale beam CDE when the beam AB carries a load P in the position shown,
find the magnitude of the load.

114, In Fig. 129 is represented a differential chain hoist. Two sheaves
of radii r; and 7, are fastened together and a continuous chain passes around
the small sheave, then around a movable pulley of diameter 71+ r,, and then
around the larger sheave. Neglecting the resistance due to friction, find
the relation between the applied force F and the load W which it will hold.

7

H S Ll L]
<12 X B

Df‘

Fre. 132. Fia. 133.

—
RN

iz

115. The bar shown in Fig. 134 is connected to a fixed support by a smooth
pin at A and rests on a smooth surface at B. Find the reaction at B and the
magnitude and direction of the pin pressure at A.

Ans. A=25.41b.

116. A bar rests against two smooth surfaces as shown in Fig. 133 and is
prevented from slipping by means of a cord attached to the lower end. If the
weight of the bar is neglected, find the reaction of each surface and the tension
in the cord. :

Ans. R4=2001b. Rp=5461b. T=546lb.
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117. In the crane represented in Fig. 135 the weight of the post AB is 1 ton,
the weight of the boom CE is 0.8 ton and that of the brace DF is 1 ton. The
reaction at B is horizontal. Find the reaction at B and the horizontal and
vertical components of the reaction at A. Also find the pin reaction on the
brace at F and at D, Ans. B=5.84 tons; D=11.2 tons; F=11.9 tons.

118. In the crane represented in Fig. 136, the weight of the post AB is
1600 1b., the weight of the boom DE is 1200 Ib., and the weight of the rod CE
may be neglected. Find the tension in the rod and the reaction of the pin at
D on the post,

]71‘/_’3/-‘.’%8 A 6 tons
K 15~ 0
]
E
B
/572
& Shizle
T e N
B —|E
|
12’ 4
® 4 tons
NF
"o
A ;m A
Ve 275777
Fig. 135. Fia. 136.

119. Two members AB and BC (Fig. 137) are connected by a smooth
pin at B and their lower ends rest on a smooth horizontal surface, slipping
on the surface being prevented by a cord which connects the ends 4 and C.
The weight of AB is 120 Ib. and the weight of BC is 180 1b. The member BC

Brois
/m
L q. PRI 7 A 1’

9 4 12 :
. g
N & :
] 4 450 1b, [
1 1
i |

A Cord (o}

Fic. 137.
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also carries a concentrated load of 450 lb. as shown. Find the reactions of
the surface, the tension in the cord, and the pin reaction at B.
Ans. R4=3721b. Rc=3781b. T=2341b. Rp=3441b.

120. In Fig. 139 is shown a shear for cutting steel bars in a repair yard.
What force P is required to give a pressure of 70,000 1b. on the anvil when the
3 ft.-6 in. arm is vertical. Solve graphically.

121, Two bars AC and BD (Fig. 138) are connected to each other by a
smooth pin at C and to the floor by smooth pins at A and B. AC=CB=4 ft.
CD=3ft. Find the pin pressures at A, B, and C.

- 