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Preface. 
This monograph intends to give a general survey of the different 

branches of the geometry of linear displacements which so far have 
received attention', The material on this new type of differential 
geometry has grown so rapidly in re cent years that it is impossible, not 
only to be complete, but even to do justice to the work of the different 
authors, so that a selection had to be made, We hope, however, that 
enough territory is covered to enable the reader to understand the 
present state of the theory in the essential points, 

The author wishes to thank several mathematicians who have helped 
hirn with remarks and suggestions; especially Dr. J. A. SCHOUTEN of 
Delft and Dr. N. HANSEN BALL of Princeton. 

Cambridge, Mass., October 1933. 

D. J. STRUIK. 
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Introduction. 
The theory of linear displacement is a result of an investigation into 

the foundations of differential geometry and also into the structure of 
geometryas a whole. Though based upon the analysis of space conception 
undertaken by RIEMANN in 18541, it received its impetus only with 
the advent of general relativity in 19162• Here, space-time is interpreted 
as a RIEMANNian manifold which is locally euclidean of the MINKOWSKI 
type, so that the question arises how the comparison between the 
euclidean world at different points is being performed. This'led to the 
discovery of parallelism in a RIEMANNian manifold 3, then to the exten­
sion of this parallelism to manifolds of a more general type. The essential 
character of the local space changed, in these investigations, from 
euclidean to affine, the character of the general manifold from RIE­
MANNian to what is now called affine with or without torsion. This is 
the principal idea of the work done from 1917 to 1924 by WEYL, SCHOUTEN 
and EDDINGTON 4. Closely connected with these investigations are the 
basic papers of HESSEN BERG and KÖNIG 5, which deal with the purely 
mathematical aspect of the space problem only. From the beginning 
there has always been an intimate relation between the various attempts 
to improve or to generalize the theory of relativity and the systematical 
development of the mathematical theory. For evidence there is, for 
instance, the re cent monograph of VEBLEN 6• 

The development of the theory proceeded mainly in three directions. 
In the first place there came the further study of the displacement of 
a vector in the tangent space of the manifold (Xn), the generalization 
of parallel transport at ion in the sense of LEVI-CIVITA. Representative 
of this stage in the theory is SCHOUTEN'S book "Der RIccI-Kalkül" 
(1924) 7. In this sphere also falls a displacement which received con­
siderable attention when EINSTEIN proposed it as a possible space-time 
manifold 8, and the related theory of HERMITian displacements 9• 

A second mode of attack focusses not so much on the displacement 
of a vector as on the lines of constant direction of the connection, the 

1 RIEMANN: 1854 (1). 2 EINSTEIN: 1916 (2). 
3 LEVI-CIVITA, 1917 (1); SCHOUTEN, 1918 (1). 
4 WEYL: 1918 (2) - 1918 (3) - 1923 (8). - SCHOUTEN: 1924 (5). - EDDINGTON: 

1921 (1) - 1923 (9). 
5 HESSENBERG: 1916 (1). - KÖNIG: 1919 (1) - also 1920 (1) - and 1932 (5). 
6 VEBLEN: 1933 (1). 7 SCHOUTEN: 1924 (5). 
8 EINSTEIN: 1928 (2). - See E. BORTOLOTTI: 1929 (8). 
9 SCHOUTEN and VAN DANTZIG: 1930 (6). 

Ergebnisse der Mathematik. HI/2. Struik. 



2 Introduction. {18Z 

so-called "paths". In this case the starting point is a system of oo2n-2 

curves in an n-dimensional manifold, which can be defined by a system 
of ordinary differential equations of the second order. It is natural 
to inquire for the different kinds of connection compatible with the 
system of curves as paths. This leads to projective transformations of 
a dis placement and to projective invariants. A similarity between these 
transformations and the conformal transformations of a RIEMANNian 
manifold leads to conformal invariance l . The field was opened in 1922 
by VEBLEN and EISENHART, its method underlies especially the work 
of VEBLEN and T. Y. THOMAS and EISENHART'S "Non-Riemannian 
Geometry" (1927) 2. 

A third theory seems, however, to embrace all the others. It is con­
nected with the work of E. CARTAN who established it and has been de­
veloping it since 1922; it appeared for the first time in a paper by KÖNIG3• 

This theory substitutes for the displacement of a vector as primary element 
the mapping of aspace at a point of a manifold on aspace at a point 
in the infinitesimal neighborhood. Displacement of a vector in the affine 
connections causes such a mapping, but a special variety, namely the 
affine mapping of affine spaces. It is, however, just as possible to map 
local spaces projectively upon each other, or conformally. The local 
space does not need even to be the tangent space; it may differ from 
it in fundamental group and in number of dimension~. The displacement 
is then not necessarily a vector displacement ; it may be a point dis­
placement, a sphere displacement, a displacement of a line complex, 
etc. Differential geometry in this stage becomes the study of an n-di­
mensional manifold X n , with each point P of which is associated a 
space Sk defined by a transformation group and of k dimensions, and 
such that the spaces Sk are related by a law defining the comparison 
of the Sk at P with the Sk at a point P' of the X n at infinitesimal 
distance4 • 

It could now be shown that the projective and conformal theory 
need not be derived from the affine or RIEMANNian theory, but that 
they are capable of independent foundation. Just as either the classi­
cal affine or the classical projective geometry can be taken as the 
primary element, and the other derived from it, so can the "curved" 
affine and projective geometry; the same may hold for the conformal, 
the euclidean and the projective geometry, though this has not yet 
been satisfactorily shown. To projective geometry a fair amount of 
study has been devoted, so that the independent structure of this con-

1 This point is already in WEYL: 1921 (2). - VEBLEN: 1922 (5). - EISENHART: 
1927 (1). - See VEBLEN: 1933 (1). 

2 EISENHART-VEBLEN: 1922 (3). - VEBLEN: 1922 (4). 
3 CARTAN: 1922 (6) - 1923 (1), (2) - 1924 (1), (2). - KÖNIG: 1919 (1). 
4 SCHOUTEN: 1926 (1). 
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nection is weH established1. Recent attempts of EINSTEIN and others 
to establish amore comprehensive theory of relativity can also be 
interpreted in the frame of this geometry2. Even the DIRAC theory of 
the spinning electron has turned out to be an analysis of HERMITIAN 
quantities fitting into the generalized differential geometry3. 

It is clear that this type of geometry seems far removed from the 
principles laid down in KLEIN's program of Erlangen. In fact, this 
program, despite its tremendous influence on the geometrical thought 
of the last sixty years, was already in a certain respect antiquated at 
the moment it was conceived. RIEMANN'S conceptions on general 
manifolds went beyond the scope of the Erlangen program. In the 
infinitesimal neighborhood of a point, however, KLEIN'S conceptions 
hold, even in RIEMANNian manifolds and in the other manifolds of 
the theory of linear connections. The new theory therefore does not 
break with KLEIN'S program, but generalizes it and gives it a new 
content 4. 

There are several directions in which this theory of linear dis­
placements has again been generalized. Aseries of papers have dis­
cussed the case for which the displacement does not only depend on the 
points of the X n , but on the line elements. This work dates back to 
FINSLER and BERWALD; for arecent exposition we may refer to KAWA­
GUCHI5. Another method is to let the dis placement be a displacement 
dependent on the points of the X n , but to introduce mapping of line 
elements of the local spaces. This has been suggested by WIRTINGER. 
We may even combine the first and the second methods of generalization6• 

Linear displacements may be defined in function-space'. And finaHy, 
we may give up the linearity of the displacement, which leads to con­
nections, some of which have already been studied by PASCAL8• 

The mathematics to be used in these theories is the so-called tensor 
analysis, or calculus of RICCI9• In the course of years it has undergone 
considerable change but the central idea of this method has been pre­
served. In this monograph we shaH use the notation and terminology 
suggested by and under the influence of SCHOUTENlO, a notation which 

1 VAN DANTZIG: 1932 (1) - 1932 (2). 
2 See VEBLEN: 1933 (1). - SCHOUTEN and VAN DANTZIG: 1932 (4). - SCHOU­

TEN: 1933 (2). 
3 SCHOUTEN: 1931 (18). 
4 CARTAN: 1924 (3). - SCHOUTEN: 1926 (1). - VEBLEN-WHITEHEAD: 1932 

\ 17) p. 31, 
5 FINSLER: 1918 (4). - KAWAGUCHI: 1932 (12). 
6 WIRTINGER: 1922 (2). - KAWAGUCHI: 1931 (14). 
7 KAWAGUCHI: 1929 (15). - MICHAL: 1928 (13). ~ Comp. MICHAL-PETERSON: 

1931 (13). 
8 PASCAL: 1903 (1). - See also NOETHER: 1918 (5). 
9 RICCI: 1884 (1) and later. 

10 See VAN DANTZIG: 1932 (1), (2). - GOLAB: 1930 (13). - SCHOUTEN: 1924 (5). 

1* 
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allows us to deal with all cases in a uniform way, and to preserve at 
all times, throughout the fog of the computational work, the guiding 
geometrical principles. 

Textbooks illustrating the development in different stages are the 
books of WEYL, SCHOUTEN, VEBLEN, EISENHART l . There are also 
several papers which give comprehensive accounts. We mention those 
of SCHOUTEN, VEBLEN, CARTAN, STRUIK, BORTOLOTTI, WEATHERBURN, 
EISENHART 2. Extensive bibliographies of the subject as a whole or of 
parts of it are found in the textbooks mentioned and also in papers by 
STRUIK, HLAVATY, VAN DANTZIG, and others3• 

1 WEYL: 1918 (2) -·1923 (8). - SCHOUTEN: 1924 (5). - VEBLEN: 1927 (2) -
1933 (1). - EISENHART: 1927 (1). 

2 SCHOUTEN: 1923 (5) - 1926 (1). - VEBLEN: 1923 (7). - BORTOLOTTI: 1929 
(8) - 1931 (3). - CARTAN: 1924 (3) - 1925 (1). - STRUIK: 1925 (4) - 1927 (3). 

EISENHART: 1933 (7). - WEATHERBURN: 1933 (8). 
3 STRUIK: 1927 (3). - HLAVATY: 1932 (7). - VAN DANTZIG: 1932 (1). 



Chapter 1. 

Algebra. 
1. Vectors and tensors in En • The starting point in the investiga­

tion is the geometry of an affine space of n dimensions En and the corre­
sponding tensor algebra. Such aspace can be defined as an ordinary 
euclidean space of n dimensions Rn' in which only those properties which 
are invariant under the group of affine transformations are studied. 
For our purpose we confine ourselves to the subgroup which leaves the 
origin invariant. The transformations of this group, ~n' can be given 
by the equations 

x'" = ~'A'" x" = A'" x" ~ x x' 

" x, 1, p" 'V, = ... = 1,2, ... , n 
'X', 1', p,', v', = ... = 1',2', ... n' LI = IA:' I = Determinant ofthe A:' =F 0 

where the x", x'" represent the oblique CARTES ian coordinates of a point 
before and after the transformation in the coordinate systems that we 
can indicate by (x) and ('X'); the A:' are constants. The sign E is omitted 
in accordance with the usual convention. The inverse transformations 
ca.n be given by 

x" = 2: A:, x'" = A:, x'" . 
,,' 

In such an En we can define contravariant, covariant and mixed tensors1 

in the ordinary way. The notation can be seen from this example: 
" " ~ ~ xl" .xq A "1-· .Hq "1·· .Ar Xl.· .Hg 

V •••... . lf, . . l; == "1 .. . Xq Äi .. . A; V ...... . Al •. . Är • 

This is a transformation of a mixed tensor of order q + r, of contra­
variant order q, and covariant order r, and 

A";···"~Al ... Ar = A";A'" A"~AAl AÄ2 A Är 
Xl'" xqli· •• A; Xl "2'" Y.q ).~ 1,2'" Ä; • 

The effect of a coordinate transformation is therefore to change the 
indices but to leave the central letter (in our case v) unchanged. This 
centralletter stands for the geometrical entity represented by the tensor, 
an arrow, a plane, a transformation, a complex, etc. The central prin­
ciple of vector analysis, and of all direct notation, namely the computa-

1 Following the general use, we speak of tensors. Often the word affinor is 
used for what we call tensor; the word tensor is then used for what we call a sym­
metrical tensor. The term polyadic (dyadic, etc.) has become obsolete. Instead 
of the term order the term valence has been recently used. 
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tion with the geometrical entities themselves, IS In this way carried 
into tensor calculus. The connection of two or more entities by multiplica­
tion, done in direct notation by special symbols, is here performed by 
agreements about the indices. 

Two special symbols however are further required, a symbol for 
symmetrical multiplication and a symbol for alternating multiplication, 
e. g. 

1 
v(). W,.~) = 3! (VlWp • + V,.W~l + v~ Wl,. + v,. Wl~ + v~ W,.l + v;.. W~,.) 

1 
v[}. W,.~] = 3! (Vl. w,uv + v,. WVA. + v. w;.,. - v,. Wl.. - v" W,.l - Vl W",.) . 

We also use these brackets to denote the symmetrical or alternating 
part of a tensor, e. g. 

1 
W[Ä,A.,Ä.Ä,] = 4! (WÄ,).,A.Ä, - WA,l,) .• Ä. + WA.l,A,). - etc., In total 24 terms). 

Such an alternating tensor V[l,l, ... lg] is called a q-vector. There is 
also a mixed tensor Ai with components 1 (if " = A) and 0 (if " =1= A) 
in all coordinate systems. This is the unit tensor and it fqllows equations 
such as vl"A; = Vl,.. It should not be confused with the so-called 
KRONECKER symbol c)~, which is simply a matrix of n 2 numbers equal 
to 1 when " = A and to 0 when " =1= A. The c)l have nothing to do with 
transformations. The unit tensor is therefore a mixed tensor, the com­
ponents if which in every coordinate system are given by the KRON­

ECKER symbol. 
2. Densities. The volume of an n-dimensional volume in E n is an 

invariant under the group mn only when LI = 1. When LI =!= 1 a trans­
formation multiplies the value by LI. We call a quantity .\:J which 
behaves in that way a scalar density of weight -1. Densities are written 
with a Gothic letter. A scalar density of weight +1 is defined by its 
transformation 

(,,') A r(") 
.\:J = LJ- .\:J (the ", ,,' indicating the coordinate systems) . 

A tensor density of weight + f is defined by the transformation 
, , , " , 

\)'1'" "q _ LI-I A"l,., "gA, ... "" b""" "q 
....... Ai ... ;.; - " •... "g Al ... .;. ....... 1 •.. . Är • 

A contravariant n-vector VA, ... .<.. = v[l.,..'<"l has all its components 
zero except those for which the i~dices are all different; they are all 
equal to V12 ... n or its negative. This component V12 ... n is itself a 
scalar density of weight - 1 as 

vI •Z• ... ,.' = A 1'2' .... ,.' vÄ• Ä •••• A .. = ~ A[1'2' ... n'] V12 ... n = LI V12 ••• ,.. 
A,Ä .... Ä" n! [12 ... n] 
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To every scalar density of weight -1 belongs a volume in En with an 
n-dimensional screw-sense, determining a contravariant n-vector, and 
similarly a covariant n-vector when the weight is + 1. 

An example of a tensor density of weight + 2 is I h),f' I h"y, where 
Ih)'ftl is the determinant of the tensor h),ft of rank n. Tensor densities 
of weight f are also called relative tensors of weight -tl 

3. Measuring vectors. To every coordinate system (,,) belongs a set 
of n contravariant measuring vectors e", e", ... , e", in short e", where 

1 2 n ), 
e" has components (1,0, ... ,0), e" (0,1,0, ... ,0), etc., in short 
1 2 

e" * b". 
J. J, 

The star above the = sign meaning that the equation holds only for 
a special coordinate system.2 The components of the e" change when 

), 

we pass to another coordinate system (,,'): (= A:' r. In the same 
1 2 n. " 

way we have n covariaI].t measuring vectors e)" ei" •.. , ei., In short e;" 
satisfying 

" * -"" e). = u),. 

The contravariant measuring vectors determine the edges of an n­
dimensional parallelepiped. Its (n - 1)-dimensional faces can be taken 
as the covariant measuring vectors, a covariant vector being geometri­
cally represented by an En- 1 in the same way as a contravariant vector 
is represented by a point Eo' in conjunction with the origin. Point v" 
and En - 1 w), are incident if v),w), = 0. Covariant measuring vectors 
'selected in this way can therefore be related to the contravariant 
measuring vectors by the equations 

eJ, eY * -"v J, U" • 

" We have, besides, as a result: 
Ä 
e el-' = AI-' 

x A x· 

The four symbols AI:, bl: , ~)" r therefore represent all the same 

numbers in a fixed coordinate system, but follow different laws of 
transformation, i. e. 

From the equations following from the definition 

A:' AI:, = Al: 
1 WEYL: 1918 (3). - VEBLEN-THOMAS: 1924 (8). - THOMAS: 1925 '(6). -

THOMAS-MICHAL: 1927 (5). - HLAVATY: 1928 (10). - SCHOUTEN-HLAVATY: 1929 (2). 
2 See a more general application in SCHOUTEN-VAN DANTZIG 1933 (6). 
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we see that A~ can be taken as the (u') component of the transformation 
matrix A~,. This justifies the use of the same centralletter A for trans­
formation matrix and unit tensor. 

Tensors can be decomposed with respect to these measuring vectors, 
e. g. 

the h are scalars, defined only with respect to the coordinate system 
'H " 

of the e;..1 Densities can also be decomposed with respect to these 
measuring· vectors: 

* • v" = V e" 
< 

the bare scalar densities of the same weight as the vector density v".Z 

4. Point algebra. Tensors are defined with respect to a certain 
group of transformations. On the geometrical interpretation of this 
group depends the geometrical interpretation of the tensors. It is 
therefore possible to introduce a projective interpretation, a conformal 
interpretation, etc. We shall illustrate this by sketching a point algebra. 

The starting point is an n-dimensional projective space Dn , in which 
a coordinate (n + 1}-cell is given by an origin-point P and n linearly 
independent other basic points. We can now build up a system of 
homogeneous coordinates, in which P is given by a set ua , a = 0, 1 , 2, 

o 
... , n, and the other basic points by ~a, i = 1 , 2, ... , n. Every other 

t 

point va of D n can be expressed as a linear combination of the ua • This 
brings us to an algebra identical with the point calculus of MÖBIUS3. 

If we consider as essential the components and not their ratio, we have 
to attach to every point a weight, and consequently we will say that 
every vector va represents a point of certain degree. We can represent 
the transformation of points under a change of coordinate system in 
the following wa y: 

a,b, ... =O,1, ... ,n 
a', b', ... = 0',1', ... , n'. 

Covariant points can be interpreted as Dn - 1 in Dn • They transform in 
this way: 

We may, without loss of generality, take the determinant 11)1:' 1 = 1. 

1 About this process of "Abdrosselung" see SCHOUTEN - VAN KAMPEN: 
1930 (21). 

2 KÖNIG: 1920 (1) - 1932 (5). - SCHOUTEN: 1924 (5). 
3 MÖBIUS: 1827 (1). - See R. MEHMKE: 1913 (1). 
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We can define in a similar way covariant, contravariant and mixed 
tensors of higher order and given degree. There is a unit tensor w~ 

oa = wg Ob.1 

We normalize this tensor in such a way that 

Extension of the vector symbolism to the conformal group has also 
been investigated2• 

5. The general manifold Xn • Classical differential geometry is 
obtained by taking a euclidean space RN (usually, N = 3) and im­
bedding into this RN certain surfaces V n (usually n = 2). The geometrical 
properties of the RN induce into the Vn a differential geometry, that 
is a way to compare the geometrical properties at one point of the V n 

with those at a point of the Vn in the immediate neighborhood. The 
theory of displacements begins differently. It starts with an n-dimen­
sional manifold X n in the sense of analysis situs, and then sets up a 
group of postulates by which it is possible to define a differential geo­
metry without the necessity of imbedding the X n into a metrical manifold 
of more dimensions. To allow this, the X n must first satisfy certain 
general conditions 3, which will allow us to build up a one to one corre­
spondence between a set of points P of this X n and a set of ordered 
sets of n real numbers ~", x = 1 ,'2, ... , n which form a coordinate 
system (x) in X n. The ~" are called the original variables. It must be 
possible to define the co ordinate transformations 

,,' 
~", = IW), 

I 
f) ~'" I A = Determinant f) ~" i =\= 0 

x, A, p, Y, .•• = 1, 2, ... , n 
x', 1', p.', y', . .. = 1',2', ... , n' 

in this X n in such a way that there is about each point ~" a region in 
which the transformation of the differentials () 

defines an affine transformation in an En- Under circumstances it may 
also be required that higher derivatives of the functions involved exist. 
A manifold X n , in which a differential geometry can be constructed 
may be called a regular manilold, and when we write X n we always 
mean such a manifold. 

1 CARTAN: 1924 (3). - GOLAB: 1930 (13). 
2 CARTAN: 1923 (2). - See also BLASCHKE: Differentialgeometrie 111. 
3 VEBLEN-WHITEHEAD: 1932 (17) - 1931 (1). - cfr. also JÄRNEFELT: 

1928 (14). - VEBLEN: 1925 (3). 
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Transformations (@~) form a group, which allows us to define in 
the En at a point P of the X n ("the local En") all the tensors and tensor 
densities defined in the preceding articles. As this is possible at all 
points of X n, we are able to define fields of tensors and tensor densities, 
defined as functions of ~", transforming under (@n) in the ordinary way, 
if we take A:' = 0 ~"'Jo~", A:. = 0 ;"10 ~"', e. g. 

When, in an X n, we deal with a field of vectors, tensors, ete., we 
will simply say that we are dealing with "a vector", "a tensor", etc. 
if this can be done without ambiguity. We assume analyticity for 
these functions, though the existence of a certain number of derivatives 
is sufficient for many purposes. 

There are fields of functions of ~" whieh also are transformed under 
a eoordinate transformation, but not like tensors or tensor densities. 
A simple example is ov"lo ~I', whieh transforms as follows 

o ,,' ov" A'" A Ov" 0 A'" ,,' A Cl" "AA ~ A'" 
i: V = o~i.' = "i.' oe + v" oe: ,,= A"Ie' uleV + V le'U Ie ", 

where we write Oie = % ~Ie, 0): = alo ~Ie', ete. 
We now introduee with VEBLEN the notion of geometrical obfect 

(more briefly: obfect) 1. This is a set of N functions of the ~", given 
in a eoordinate system (x), which obey a transformation law by whieh 
we can eompute a unique corresponding set of N functions of ~", in 
the transformed coordinate system, expressed in original functions, 
the A~' and their derivatives. If the transformation is linear homo­
geneous, with the parameters of the transformation as eoefficients in 
the way indieated in art. 1, we have a tensor (special ease: sealar, 
veetor). Densities are also geometrie al objects. Tensors and densities 
are called quantities. A more general object is the set of CHRISTOFFEL 

symbols {;1} belonging to a symmetrieal tensor glel' which transforms 

{ X'} All;,'" { x } + Ai,,,, 0 A" !l l' = p' ).' " fl 1 Ie' " ). 1'" 

where the transformation involves only the N "eomponents" {;l}' the 

parameters of the transformation and their first derivatives. The 
system (v", Oie v") is also a geometrieal object and an cxample of an 
"absolute system" of VITALI 2 (but not O!.V" alone). 

6. Non-holonomic measuring vectors. In the loeal En at a point P 

of X n, we ean again introduce two sets of measuring vectors e" and ~;, i. 

1 See VEBLEN-WHITEHEAD: 1932 (17) p.46. 
2 VITAL!: 1929 (24). - Comp. BORTOLOTTI: 1931 (6). 
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defined with respect to the variables ~x. But we can also introduce 
these measuring vectors independent of the ~x; we shall then write t}", 

~2 ' i, j, k = 1,2, ... , n. Then we have a new coordinate system (k) 
in the En , (not necessarily in the X n) and we can pass from one set of 
measuring vectors to another set, leading to a new coordinate system (k'). 
We have 

Tc 
e" e -"'- ~~ . i x- t , 

i 
e"el. =A". i i. 

Tc 
The components of t}" and ei. with respect to (k) can be indicated by 

Tc ~ 

t}Tc, ei' We have A ~ as the unit tensor in the new co ordinate system: 
t 

e" -*- ~. -*- Sk * A k 
. ~ U z z • 
~ 

The components of a vector v", 1('1. with respect to these coordinates 
can be denoted by latin indices, 

W,' = w, el. ~,. * Wl. el. 
. Tc i 

When both the t}", ~l. and the original measuring vectors exist in the 
~ 

same En , we can give a meaning to a component like V;j·k, namely, 

"Tc "kAi 
VI.; = Vij l.' where also A" j 

i = '!" ei' 
J 

We are now able to introduce a system of "local" coordinates into the 
Iocal En , defined by means of a vector x" with respect to the measur­
ing vectors, 

i k 
x" = x" e" t;" -~ x" e" 

~ 

which coordinates are independent of the ~". At each point P of the 
X n such systems can be established. The 12" then build up in the X n 

~ 

n congruences of curves, but the ~I. do not necessarily build up n systems 
of oolXn_ 1 . This is the case only if 

Tc 
0[,., el.l = 0, equivalent to o[,.,All = O. 

Then the ~l. are gradient vectors, and there exist n independent scalar 
k k k 

fields ~ such that el. = 01. ~. These scalar fields can now be taken as 

original variables ~" in the X n . If, however, 0[1' ~l.l * 0 there are no 
such scalar fields and the expression 
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is not an exact differential. Then we say that we have in the En a non­
holonomic system of parameters l . In such a system we can introduce 
the same algebra as in a holonomic system, e. g., 

VA = w)' uVI-'~VI = wl Uns 
.Vf~ ·ns 

which is the same geometrical relation referred to different coordinate 
systems. 

An example in RIEMANNian geometry is that of the introduction 
of an orthogonal ennuple, that is a system of n mutually orthogonal 
congruences. RICCI has often simplified his equations by referring them 
to such an orthogonal ennuple, taking unit vectors as measuring vectors. 
We shall return to this in eh. H. 

7. Pseudotensors. It is often necessary t,) introduce into the X n 
apart from the coordillate tram::formations 

~", = I'" W), LI = I 0" ~", i =f= 0 

a transformation of an auxiliary co ordinate ~o 
~o'='r~o 

where .,; is a function of the ~". This allows us to define a pseudoscalar 
tJ of dass f which transforms in the manner 

(x') (x) 
tJ = Tl tJ ' in short tJ' = .,;l tJ 

where .,;1 is the Hh power of .,;, and pseudotensors of dass f, as 

bX' ),' = .,;fA~,/'bd. 

Two cases are possible, .,; being either dependent on the transforma­
tion of the ~" , or independent. A special case of dependence is .,; = .1- 1. 

In this case we get the densities and for this reason we denote 
pseudoquantities also with a gothic letter. The other case is new. 

To the coordinate ~o belongs a measuring scalar e of dass 1 with 
one component of value 1 for this special coordinate system. When 
~ 0 is transformed to ~ 0' = .,; ~ 0, we have a new measuring scalar e', 
with component 1 in the new system. Hence in the old system 

e'-"'~.,;e· T. 

To every pseudotensor of dass f belongs an ordinary tensor with the 
same components with respect to ~", ~ 0, e. g. 

"X ~ -I b"" 2 
VI-')' - e 1-'2' 

Pseudotensors, like tensors, are quantities. They appear often in an 
intermediate state of the theory, when it is necessary to single out 
one variable. 

1 VRANCEANU: 1926 (4). - HORAK: 1927 (8). - SCHOUTEN: 1929 (4). - Comp. 

also HESSENBERG: 1916 (1). - SCHOUTEN: 1918 (1). - CARTAN: 1923 (1). -
HLAVATY: 1924 (9). - VRANCEANU: 1928 (15). 

2 SCHOUTEN-HLAVATY: 1929 (2). 
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Chapter H. 

Affine connections. 
1. The principle of displacement. In euclidean geometry it is pos­

sible to move a vector parallel to itself from one point to another point 
at finite distance. This means that in this geometry a law is given by 
which it is possible to associate in a unique way a vector to every point 
in space, if a vector is given at one point. The length of one vector 
and the angle between two vectors are invariant under such a parallel 
displacement. 

This parallelism allows us to compare vectors at different points of 
euclidean space as to length and direction. By parallel displacement 
one vector can be brought to the point at which the other vector is, 
after which comparison can be made by purely local means. 

On this principle is based the method of the moving trihedron which 
plays an important role in the differential geometry of curves and sur­
faces. In the case of a surface V2 in euclidean space Ra, we have connect­
ed with each point P of Vz a local trihedron built up by two vectors 
in the tangent Rz and the surface normal. It is useful to express this 
by saying that with every point of V2 a local Ra is associated. The 
moving trihedron method allows us to compare the local Ra at different 
points of the V2 .1 In this case we can combine the local Ra into one 
"collective" Ra. We shall see that this is a special case from the point 
of view of displacement theory. . 

An entirely different case was presented by LEVI-CIVITA and SCHOU­

TEN2. They showed how it is possible to connect with a RIEMANNian 
geometry an intrinsic parallelism, which does not require the imbedding 
of the RIEMANNian manifold VII in a euclidean space of more than n di­
mensions. In this displacement parallelism is defined for points at 
infinitesimal distance in a given direction. The length of the vector 
and the angle between two vectors again remain invariant. With the 
aid of this a covariant differential is defined 

bv" = dv" + {:A}Vf'd~,t, 
where b v" is again a vector. The parallel displacement along a curve 
is uniquely determined, but not for two points connected by different 
curves. We can express this kind of displacement by saying that with 

1 DARBOUX: 1889 (1) Livre V Ch. l. 
a LEVI-CIVITA: 1917 (1). - SCHOUTEN: 1918 (1). The method of LEVI-CIVITA 

still required imbedding, though his result was intrinsie. SCHOUTEN, however, 
used an intrinsic method. 
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every point of the Vn a loeal Rn (the euclidean tangent spaee, or the 
loeal tangent spaee of the first differentials) is assoeiated, and the laws 
of this parallelism allow us to eompare the loeal Rn at different points of 
the Vn . 

A third ease, seeming entirely separated, is CLIFFORD parallelism 
in elliptie spaee. Here we ean define, in two different ways, a direction 
through a point parallel to a given direetion through another point at 
finite distanee. 

The theory of linear displacements has unified all these points of 
view. All three eases appear now as speeializations of a general theory, 
in whieh we assoeiate with every point of an X n a loeal spaee Sk and 
build up laws to eompare these loeal spaees. 

To understand this bett er, we sketch this point of view for the 
seeond ease, that of the RIEMANNian eonneetion Vn . 

At two points P, P' at infinitesimal distanee exist two loeal tangent 
Rn' one belonging to P, the other, R~, to P'. In eaeh Rn is a system 
of referenee, e. g., a CARTEsian eoordinate system. An observer at P 
ean think that he is in an Rn; he ean, for a given Vn, also loealize in 
this Rn the point P' and the eoordinate system of the R~ at P', whieh 
have a definite position with respect to the eoordinate system in the 
Rn at P. If we now eonsider aseries of loeal Rn along a eurve PQ of 
Vn , then the observer at P will be able to loealize sueeessively, in the 
same Rn' all the different R~ of the points Q' of the eurve PQ. The 
eurve PQ is thus developed, with its different eorresponding Rn' on the 
Rn at P. The observer at A will only be aware that he is not in an Rn' 
but in a manifold of different connection, when he loealizes in his spaee 
Rn the point Q and its co ordinate system, onee by developing the Vn 
along one eurve PQ of Vn , and another time along another eurve PQ 
of Vn . It is not apriori obvious that he will get the same point and 
eoordinate system. If we now take for PQ an infinitesimal closed eurve, 
Q falling on P, then it ean be proved that in the ease of LEVI-CIVITA 
parallelism the point Q will always eome in the same plaee (we eall 
this absence of torsion; see art. 3) but the eoordinate system will turn. 
In this the curvature of the V n reveals itself. Other connections ean be 
eonstructed by modifieation of the loeal spaee or introduction of 
torsion 1. 

2. Affine displacement Ln. The first generalization of the par­
alleIism of LEVI-CIVITA was obtained by assoeiating with every point of 
the X n a loeal E n . This is natural, as we ean take as Ioeal En the tangent 
En to the X n , the existenee of whieh is established by the definition 
of Xn- The geometry thus obtained is ealled the geometry of the affine 
connection and we shall denote it by Ln. 

1 CARTAN: 1924 (3), (4) - 1925 (1) - 1930 (9). 
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Such a connection is defined by an aifine displacement1• This can 
be done by the definition of a covariant differential which allows us 
to compare the local En at a point P with the local En at a point P', 
at infinitesimal distance. 

In the X n we again introduce a groUp of transformations of the 
original variables, 

(2.1) ~"'=/"'W), L1=la,,~"'I=l=o 

implying 

(2.2) d~'" = A~' d~", A~' = a,,~%'. 

We introduce fields of geometrical objects, in the first place, fields 
of quantities (i. e. tensors and densities), e. g.: 

v'" )( ",' = A" .Ie' ,u' v" J. ,u 
xA,u • 

For local E n we will now take the tangent En in which these quantities 
behave, at each point, like ordinary affine quantities (Ch. I), and in 
which furthermore pseudotensors can be defined. 

Then we define the covariant differential tJ T of a quantity in the 
following wa y: 

1. Every quantity has a covariant differential depending on this 
quantity, its first ordinary derivatives, and on a direction of progress d ~". 

2. The components of a quantity and of its covariant differential 
transform in the same way under (2.1) and (2.2). This means that the 
covariant differential of a vector is again a vector, etc. 

3. The covariant differential is a linear homogeneous integral function 
of the d~". 

4. Covariant differentiation of a sum or of an outer product of two 
quantities T and U follows the ordinary formal rules. Hence tJ (T + U) 
= tJ T + tJ U; tJ (T U) = (tJ T) U + T ( tJ U) . 

5. Rule 4. also holds for the inner product. Hence 

tJ(v"w,,) = (tJv") w" + V"tJW",2 
tJA~=O. 

From these rules follow other rules. 
a) The covariant derivative of a scalar is the ordinary derivative. 
b) The covariant derivative of a vector is of the form 

tJv" = dv" + r;J. VJ.d~f', 

tJwl. = dwJ. - r,7!. w"d ;"', 

1 Following a'suggestion by VEBLEN we use displacement (Übertragung) when 
there is an infinitesimal transportation of quantities. The manifold X n obtains 
a certain connection (Zusammenhang), when there' is also a covariant derivative. 

2 SCHOUTEN-HLAVATY: 1929 (2). Omission of 5. leads to different rf~j. for 
covariant and for contra variant quantities. - See SCHOUTEN: 1924 (5) eh. Ir. 
Introduction of densities makes this discrimination superfluous. 
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where the r;l form a geometrieal objeet with n3 eomponents, dependent 
on the~" and not on the vector field 1. The differenee in sign of the seeond 
term of the seeond member is a result of rule 5. For these r;l the 
equations 

hold. 
e) Covariant derivatives of tensors follow rules similar to those of 

RIEMANNian geometry, e. g. 

!5v~l" = dV~l" + r;n v'!;." d ~fL - r;l v~n" d~p, - r;" v\nd~p,. 

d) For the eovariant differentials of pseudosealars of dass I we find, 
if we introduee a eoordinate transformation ~o' = .. ~o 

~.p = d.p - fr,..d~'" i-

where r,.. are a set of n functions of the ~" defining a geometrieal ob­
jeet. As long as the function .. is independent of the transformation 
of the ~" , whieh defines tensors and densities, the r;. are independent of 
the r;l' For densities of weight - f there exists a relation which can 
be found from the covariant differential of a eovariant n-vector (Ch. I, 2). 
Sueh an n-vector defines a density of weight + 1; henee 

!5w)" ... l,. = dWl, ... ) ... - r;"Wl, ... l"d~"', 

From this we derive for densities the relation between r;.. and r;;. 
F;. = r;". 

e) For the covariant differentials of pseudotensors of dass I the 
formula is therefore as in this example: 

dU'" = dU'" + r" U'''dtl' - r" U·"d t,.. - IU'" r dl:.,.. l J. ",,). \> ,,1,," Ä,.. \> • 

When the coordinate system is transformed from (;Je) to (;Je'), we have 
(see Ch. I, art. 6) 

r ", - A"',I1)· T" + A"':l A" - A"',..;. r" - Al,.. vA'" p.' J..' - "",U.').' p,Ä 'JI () ft' ).' - Xft',1.' ftÄ ,t' p' ft l' 

n.' = A1,r;. + Vl,ln ... 

The latter formula shows that as long as .. is independent of the para­
meters of the transformation of the~" , the rl behave like the components 
of a vector when ~o does not vary. 

The covariant derivative can be found from the definition: 

dT=d~"'V"T. 
Hence v U·" = v U·" + r" U·" - r" U·" - IU·Hr ,.. 1 ,.. 1 ,.." 1 ,..;.,,, 1,.· 

This symbol V is taken ·from ordinary vector analysis, it is HAMIL­

TON'S "nabla" operator. It behaves algebraically like a covariant 

1 DOUGLAS: 1928 (1) writes - r for our r. 
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vector, and enters therefore into tensor ealculus with one eovariant 
index. 

A displacement for whieh the eovariant differential is zero will be 
ealled a parallel displacement. It ean be uniquely defined along the 
are of a eurve in X n. In this way the loeal En at a point P of X n is 
mapped with its body of vectors on the loeal En along the eurve. This 
mapping is also an affine mapping. In this way we eome to a genera­
lization of the developing proeess sketehed in art. 1. 

It should be notieed, however, that this mapping of veetors, which 
ean always be moved parallel to themselves in eaeh loeal En , does not 
uniquely determine a mapping of points of an En upon the En at a point 
in the immediate neighborhood. Various assumptions are still allowed. 
We ean for instanee map eaeh En upon the "next" by mapping the point 
P W') upon the eorresponding point PI W' + d;") of the X n . Another 
way is that of mapping PIon that point of the En at P whieh eorre­
sponds to -d;". This last way, indieated by CARTAN, allows a simple 
interpretation of the torsion. 

3. Torsion. The functions r~J. are not neeessarily symmetrieal in 
fo and A. From the transformation formulas it ean be shown that 
r;.}. - rtf' is a tensor. We write 

5;Y' = Hr;). - r:l') = r~A] = - 5;',~". 

The tensor eharacter follows from the formula (dl ;" and d2 ;" are two 
different line elements) 

(}2 dl ;" - (}I d2 ;" = 2 dl ;f' d2 ;A 5 ; ~" , 

which shows that (}2dl ;", the eovariant differential of dl ;1' in the d 2;"­

direetion is not equal to (}l d2 !;". This also means that (s being a small 
eonstant) f (}d t" = 2s/[.U)'] 5' ;" 

~ l"A , 

taken along an infinitesimal eireuit determined by the infinitesimal 
bivector s/l.«}.l; therefore, we see that the tensor S;/, measures the 
deviation of the point P from its original position after the loeal En has 
been mapped eonseeutively in the sense of CARTAN on the En along 
the eireuit until it returns. It returns to its original position if 

Sr:'/' = 0. 

In this ease we eall the eonnection symmetrieal. It may be denoted by 
An. In the other ease S!:i." t 0, we say that the Ln at P has torsion, 
and 5;t is ealled the torsion tensor l . When S,~i." = Sl,uAl.j' the 
eonnection is ealled semisymmetrical 2• 

1 CARTAN: 1922 (6). - Here also the name torsion. Conception introduced 
by EDDINGTON: 1921 (1). - See SCHOUTEN: 1924 (5). 

2 SCHOUTEN: 1922 (1) - 1924 (5) p. 73 - 1926 (2). - FRIEDMANN-SCHOUTEN: 
1924 (7). 

Ergebnisse der Mathematik. III/2. Struik. 2 
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The r;). is the case of a general Ln can be expressed in terms of S~t 
and the covariant derivative of an arbitrary symmetrical tensor g,..). = g).w 
We find, if the CHRISTOFFEL symbol refers to g).,..: 

r" - {u}+ 17 "" 1 ""17 "'(I+S"" 2 "'" S"e 1 ,..). - flA g,,(,.. J.)g - 2g).",g"'(lg ag ,..). - g g(l('" ).),,; . 

4. WEYL connection. Of special interest are those affine connections 
in an X n for which there exists a symmetrical pseudotensor g).,.. = gJ.,.. e 
of rank n and dass 1, defined for a function -r independent of the para­
meter o,,~'" and for which the covariant differential vanishes: 

J7 f,g;." = o. 
This gives for r;). the condition 

r;J. = {;A[ - Hr,..A1 + r).A; - g""g,..).r,,) , 

where g).f' is determined by the relation g)."g,.." = A! and {;A[ is the 

CHRISTOFFEL symbol constructed with the pseudotensor gu).. 
For g).,.. we find 

J7,..g)." = J7,..e- 1 g;." = -e- 2 (J7,..e) g;.,. = r"~,..g).,,. 
If we transform ~o into ~o', the scalar e is changed to e', and we 

get for the new tensor g~,.. 
g;.,.. = -r g).,... 

At the same time r~ = F;. + o).ln-r. 

As long as ~o does not change, the r;. behaves like a vector, which 
we write - Q).. Then the Q). is changed under a transformation of the 
~o as follows 'Q). = Q). _ o).ln-r 
and J7,..g;." = - Q,.. g;." , 

(4.1) r;). = {;A} + Q(,..A1) - !g""Qvg,..).; {;A} belongs to g).v. 

This displacement determines a WEYL connecfion. It is determined 
by a pseudotensor g).,.. = g,..). of rank n and dass + 1, satisfying 17,.. g)." = 0 
and by giving the r). in an arbitrary manner. 

Another way of defining this connection without introducing the 
notion of a pseudotensor is by postulating immediately that a tensor 
g;.,.. = g,..). exists for which the covariant derivative J7,..g;." breaks up into 
a product -Qf,g;.V. It can then be shown that the tensor g).,.. is deter­
mined but for a factor 7:: 'g).,.. = -rg).,.. and that the r;). take the same 
form as in (4.1) 2. 

1 For general Ln see also GOLAB: 1930 (12). 
2 WEYL: 1918 (2), (3). For the method with pseudotensors see SCHOUTEN­

HLAVATV: 1929 (2). Further literature SCHOUTEN: 1929 (5). - EISENHART: 

1927 (1). - HLAVATY: 1928 (9) - 1929 (12). - GUGINO: 1933 (5). - CARTAN: 

1926 (7). 
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5. Metrical connection. When a tensor g).", = g",l of rank n exists 1, 
for which V!,gl" = 0, 

we call the connection metrical because we can introduce this tensor g.." 
as fundamental tensor of a metric. The local En at each point becomes 
a euclidean space Rn and parallel displacement is equivalent to the 
mapping of an Rn orthogonallyon an Rn in a neighboring point. There 
is still a considerable degree of freedom in this mapping. 

Two cases are of importance: the case without torsion and the case 
with torsion. When the torsion is zero 

S"" =0 . ",l , 

we have a RIEMANNian manifold Vn , because we can show that 

r;l = Tl", = {;l} , 
where {;l} are the CHRISTOFFEL symbols of the second kind belonging 

to gl!,; the displacement of a vector becomes that of LEVI-CIVITA. The 
equation V", gl" = 0 then becomes the identity of RICCI for a RIEMANNian 
manifold 2• 

The case with torsion can also be obtained by introducing into 
the X n n independent contravariant vector fields v", i = 1,2, ... , n 

i 
and defining with the aid of these vectors a fundamental tensor 
gl", = ± 1: ~l 'P'" (summed on i) with respect to which they are mutually 

t t 

orthogonal unit vectors3• 

6. Curvature. In euc1idean space a vector always returns to its 
original position after parallel transportation along a c10sed curve. This 
is not necessarily the cas~ in an Ln. We may therefore use the difference 
between a vector before and after parallel displacement along a c10sed 
curve as a measure of the curvature of an Ln at a point P. The formula 
for an infinitesimal circuit along an E 2-element at P, measured by 
I" l d (1, I" l being a simple bivector and d (1 an affine measure for the 
area, is' Dv" = I"!' R;~i."vÄda, 

DWl =-I"f'R;~tw"da, 

where R; ~t is the curvature tensor (or RIEMANN-CHRISTOFFEL tensor) 

R;~i" = -2o["r;ll - 2r[~I"'lr;ll' 
1 For the case of rank <n see BORTOLOTTI: 1931 (7). 
2 We do not discuss RIEMANNian manifolds in any detail. See e. g. BERWALD: 

1927 (9). - CARTAN: 1925 (8) - 1928 (16). - DUSCHEK-MAYER: 1930 (20). For 

the conditions that the r;';. may be written as CHRISTOFFEL symbols see EISEN­

HART: 1927 (1) § 29. - GRAUSTEIN: 1930 (7). 
3 For other types of Ln see KUNII: 1931 (37). - NOVOBATZKY: 1931 (27). -

STRANEO: 1932 (27). - NALLI: 1931 (24). - FERNANDEs: 1931 (21). 
4 An exact derivation e. g. in SCHLESINGER: 1928 (8). 

2* 
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where I n 1 means that the n is not to be included in the alternation. 
For this tensor we have the first identity 

(I) or 

which follows from the definition. 
The corresponding formulas for higher order quantities are of the 

following form 

D .",! - fead (R···" .,), + R·· .;, .,,, - R···' ·"i,) VI' - a (!O' vf' (!a, vf' (!af' V, • 

Related are the formulas for the application of f7 [vf7 f']' the alternating 
part of the second covariant derivative, e. g. 

2f7[vf7f'jWA = R;~tw" - 2S;~"f7"WA' 

in which however a term in S~"{ appears. 
For a pseudoscalar we find 

D t> = +2t>fV f'O Lur"j da. 

7. Integrability. When Dv" = 0 for every circuit and every vector 
we must have R;~i," = o. 

In this case parallel transportation of a vector and of every tensor 
from one point of Ln to another is independent of the curve along which 
the displacement takes place. It is possible to define at every point a 
vector (tensor) parallel to a given vector (tensor). There exists tele­
parallelism or absolute parallelism, as in euclidean space. Such dis­
placements are called integrable. 

For pseudotensors, integrability exists if 

o [1,rv1 = o. 

In the special case of densities, this me ans 

o[f'r~X = R~i~" = 0, 

so that integrability for tensors also implies integrability for densities. 
But it implies more. A volume is a scalar density. Hence we see that 
the equation R,:~"/ = 0 expresses the fact that teleparallelism exists for 
volumes. Such an Ln is called equivoluminar 1. For such a manifold it 
must be possible to select a scalar density t> in such a way that b t> = 0 
for all directions d~". 

A RIEMANNian manifold Vn with R;~t = 0 has the property of ad-

mitting n mutually orthogonal gradient fields ~f' = f7 f' p , i = 1 , 2, ... , n: 
These ~ can be taken as a new CARTEsian coordinate system. We call 
the connection euclidean, and we denote it by Rn. It is applicable to 
euclidean space. 

1 VEBLEN: 1922 (5). - SCHOUTEN: 1924 (5) p. 89. 
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A symmetrical manifold An with R; ~)." = 0 is called affine euclidean. 
It is applicable to the space En belonging to the affine group in the 
sense of KLEIN 1. 

A metrical manifold with R~ ~t = 0 without torsion is euc1idean. 
With torsion it has been the subject of many investigations by WEITZEN­
BÖCK, VITALI and others. EINSTEIN proposed it for n = 4 in 1928 as a 
space-time of relativity 2. 

It is known as a RIEMANNian manitold with torsion, or RIEMANNian 
manifold admitting absolute parallelism. 

It can be obtained by introducing a fundamental symmetrical tensor 
gl.1-' by means of n contravariant vector fields (see Ch. II, art. 5), and by 
defining a parallel displacement which carries every vector at a point P 
over into a vector at another point P' with exactly the same length 
and position with respect to the unit vectors of the n congruences. A 
simple example can be constructed by drawing meridians and parallels 
on a sphere and by defining a parallel displacement which brings every 
vector making an angle IX with the meridian into a similarly situated 
vector of equal length at another point3. It is c1ear that this is not 
a displacement of LEVI-CIVITA. It also indicates how this connection 
can be mapped on a RIEMANNian manifold with a given system of n 
mutually orthogonal congruences4• CLIFFORD parallelism in elliptic 
space can also be interpreted as a connection of this type. It deserves 
mention that the teleparallelism in this connection is independent of the 
metric, as it can be defined with n contravariant vector fields. This 
teleparallelism is unchanged if the n vector fields are replaced by n 
linear combinations with constant coefficients. For its application to 
group theory see this Chapter, art. 10. 

8. So me identities li• Apart from the first identity (art. 5) we have, 
for the curvature tensor, the following identities in Ln: 

(II) 

If J7,ugAy. = Q/" and R;~j:'g,." = R"I-'I." , a third identity exists: 

(III) 

so that for every symmetrical connection R[;;it = 0 and for every 
RIEMANNian connection, R"I-'().") = O. 

1 SCHOUTEN: 1924 (5) Ch. IV. 
2 WEITZENBÖCK: 1921 (4) No. 18 - 1923 (10) p. 317. - EINSTEIN: 1928 (2) 

- 1930 (11). - See the comprehensive articles af BORTOLOTTI: 1929 (8). - CARTAN: 
1930 (9)· - EISENHART: 1933 (7). - See further REICHENBACH: 1929 (21). -
BORTOLOTTI: 1931 (4). - THOMAS: 1930 (1). - ZAYCOFF: 1931 (21). - LANCZOS: 
1931 (33). - TAMM: 1929 (16). - ROBERTSON: 1932 (21). - VITALI: 1932 (20). -
SEN: 1931 (25) - and aur Ch. II art. 10. Camp. also HOSOKAWA: 1932 (11). 

3 CARTAN: 1923 (1) p. 404 - 1924 (3) p. 301. - Camp. ANDERSON: 1929 (20). 
4 LEVI-CIVITA: 1929 (10). 5 SCHOUTEN: 1924 (5), Ch. II. 
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If both identities exist, that is, in a RIEMANNian manifold, we can 
find by purely algebraical computation a fourth identity 

(IV) 

For an Ln the curvature tensor has ~n3 (n -1) linearly independent com­
ponents. For a Vn the number reduces to ~n2(n2 - 1). 

The identity of BIANCHI for an Ln is 

By contraction we find from this identity that for a V n 

where 
Gf'!. = Rf'!. - iRgl"A' 

R = Rf'!.gf'1. 

In a Vn the RI"A is symmetrical. In a general Ln there is a symmetrical 
and an alternating part to it, which fact has occasionally been used for 
relativity, where a symmetrical tensor and a bivector have to define 
the gravitational and the electromagnetic field. 

9. Non-holonomic systems. So far we have considered only 
geometrical properties referred to holonomic systems. If we now in­
troduce non-holonornic measuring vectors1, we can express the displace­
ment of a contravariant vector in the Ln in this way 

V.vk = A,~,kV VV = A~ko VV + Al!'lcrv VA = 
I IY U IY I" JV 1.1. 

_ 0 k + Ai.I"Tcrv i + iAk~ Ai. - GjV ijv u!.v v,i v j i' 

k k' = 0jV + rjivt , 

where 
Oj=A7°1" 

rti = AU'vk r;!. + A1(\Ai = Atfvk r;;, - AZojAf. 

We can write in a similar way 

VjWi = djW, - ri~Wk' 

The r ikj can be taken as the parameters of displacement in the non­
holonomic system. We have 

r~,· v.i· 
tl I i ' 

When the r;J. are symmetrical, the rlj need not be symmetrical. As 

r k - S"k AI"J.a A' Tc [in - ij - ij [I' !.l' 

we see that the measuring vectors are holonomic when and only when 
rii i ] = sit In the non-holonomic case the r[~i] have no tensor character. 

1 SCHOUTEN: 1929 (4). 
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If we write nk AI"A ~ Ak 
~,tij = - ij 0[1" Al' 

we have Sjl = r&il + Q:j' The Qfj are called the anholonomic para­
meters. They form a geometrical object, not a quantity. 

The non-holonomic components of the curvature tensor take the 
following form 

An application to RIEMANNian geometry can be made by intro­
ducing as non-holonomic measuring vectors the unit tangent vectors {" , 
k t 

i;, along an orthogonal ennuple (Rrccr's AL Ahl j)' Then we find 

r;j .~ Vj ~k , 
• 

which shows that the rfj are the rotation eoeffieients1 of RrccI, belonging, 
in RIccr's notation, to the ennuple, or: 

r k * (R" ') * ghk ij= lCCl notatlon =Yihj = -Yhij' 

With these non-holonomic displacements in Vn also deal some papers 
by CrSOTTI and PAsToRr 2• 

In the RIEMANNian connection with torsion (art. 7), the fields v" 
i 

also build a non-holonomic system of reference. They may be used for 

a holonomic system as soon as the corresponding covariant fields ~A form 
X n _ l ·3 

10. Transformation groups. The transformations of a finite con­
tinuous simple group in n parameters $" can be represented as points 
in an Ln' in which two kinds of RIEMANNian connections with torsion 
can be defined. If T ~ represents the general transformation of the group, 
then the parameters of the infinitesimal transformation Ti 1 THdi; define 
the n contravariant vectorfields of the first connection, and those of 
T Hd$ Ti l the vectorfields of the second connection. The components 
of the torsion tensor S),~" are equal to the constants ofthe structure eij k 

of LIE. 
For such connections the geodesics coincide with those of the RIE­

MANNian connection with the same definite ds 2 • An example is elliptic 
space of 3 dimensions, in which the connections with torsion are those 
with CLIFFORD parallelism 4. 

1 E. g. RICCI-LEVI CIVITA: Math. Ann. Vol. S4 (1901). 
2 Comp. PASTORI: 1930 (17). - INFELD: 1932 (24). - VRANCEANU: 1932 (34). 
3 SCHOUTEN: 1929 (3). 
4 See SCHOUTEN: 1929 (5). - CARTAN: 1927 (13) - 1930 (9); in the latter 

the literature is given. Also: EISENHART: Proe. Aead. Sei. U. S. A. Vol. 11 (1925) 
p.246. - SLEBODZINSKI: 1932 (25), (26). - WHITEHEAD: 1932 (18). 
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Chapter III. 

Connections associated with 
differential equations. 

[204 

1. Paths. In a RIEMANNian geometry a geodesic can be defined 
as a curve generated by a lin~ar element moved parallel to itself in its 
own direction. This definition can immediately be extended to an Ln. 
If the linear element is denoted by the contravariant vector vI< we must 
express that v1' V l' v" has the direction of vI<. If the geodesic has the 
equations ~" = ~x (t), we find for its differential equation 

(1.1 ) iX coefficient depending on ~x 

or 
d2 1;" '" d I;'u d 1;1- d 1;" 
([i2 + I 1'~ dtdt = iX dt · 

It is possible to find an invariant parameter s = s(t) on the curve 

s = Cl + c2 cf'" dt d t, Cl' C2 constants, 

by which the equation of the geodesic takes the form 

(1.2) 

This is a system of n differential equations which, in a certain domain 
of Ln' allow a solution such that through each point passes an integral 
curve in every one of the oon-l directions, and one integral curve 
passing through two points. It defines, therefore, a system of oo2n-2 

geodesics, also called paths l . 

The most general system of paths is given by the differential equation 

(1·3) 

where the I" are homogeneous of the second degre in d ~1' / d t .2 In this 
case, however, the r depend, as a rule, on d~"/dt, a case which we do 
not discuss in detail. 

It is now possible to begin the investigation with a system (1.1) of 
differential equations, and to define the connection by its coefficients 
r;;,. Instead of letting the connection define the paths, the paths can 
be made to define the connection. In this case, however, the paths 

1 EISENHART-VEBLEN: 1922 (3). - See EISENHART: 1927 (1). - Also WHITE­

HEAD: 1932 (19). 
2 DOUGLAS: 1928 (1). - ROWE: 1932 (29). - RASCHEWSKY: 1932 (10). 

Generalization of the system of equations (1.3) in DOUGLAS: 1931 (15)· 
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always define a symmetrical connection r;J. = r[~ as the torsion does 
not affect the paths. To one system of paths belongs therefore an 
infinity of Ln' 

2. Projective transformations. A system (1.1) of paths does not 
even define uniquely one connection An' Indeed, the transformation 

2 1) 'r" r" + A"p + A" P r" + A" P ( • ,nA = f'J. ,; /' f'). = f'A 2 (A f')' 

where Pf' is an arbitrary covariant vector, leaves the equations (1.2) in­
variant though it may change the parameter s. The transformation 
fails to change the parameter on the paths only if Pf'd~f' = 0, that 
is, if the E n- 1 of P,lt contains the path direction. 

For an asymmetrie connection a more general transformation pre­
serves pa ths : 

(2.2) T;l = r;,; + PuA";. + qAA~ . (PA, qJ. arbitrary vectors) 

We say that all manifolds An with the same paths are projectively 
related, and the transformation (2.1) is called a projective transformation 
of the An'! The projective geometry of An is the theory of geometrical 
objects defined with respect to these transformations. 

The curvature tensor transforms under (2.1) as follows 

(2.3) {'R;":";.,, = R;~t _. 2p[v"jA l + 2A cv Pf']J., 

pf'J. = r; f'Pl - Pf'PA' 

This tensor is therefore not invariant under projective transforma­
tions. From it, however, we can derive the tensor 

P,:~";." = R;f:;," - 2P[vf'] Al + 2A(" Pf']A' 

1 
Pf'J. = -112=--1 (nRf'). + RA1J, Rf'A = R;~"/, 

and a verification shows that this tensor is unchanged by a projective 
transformation. It is called the projective curvature tensor, and vanishes 
identically for n = 1, n = 2. For n > 2 it satisfies the identities: 

17 P"'" 1 A" 17 P ... v 
Y [f' . v"'lJ. = -.-- [v Y 1"1 "'f'JJ., n-2 

which can be verified from the corresponding identities for the curvature 
tensor R;~).". 

The vanishing of the projective curvature tensor for n> 2 is the ne­
cessary and sufficient condition that the An can be changed, by a projective 
transformation, into a euclidean manifold Rn. Such a manifold is called 
projective-euclidean and its paths pass into the straight lines of the Rn' 
For n = 2, when the projective curvature tensor does not exist, another 
condition is necessary, namely, that PpA (existing for n = 2) satisfies 

1 WEYL: 1921 (2). - For condition (2.2) see HLAVATY: 1926 (3) - comp. 
1927 (16). - Related is SCHOUTEN: 1927 (10). 
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the condition VL"p).]v = O. Indeed, a surface in ordinary space cannot, 
as a rule, be mapped on a plane with the preservation of the geodesics, 
it has to be of constant curvature. The general theorem can be found 
by writing down the conditions of integrability of the equations 

0= R;,:i." - 2p[v,u]A1- 2A['vP,u]A' 

which follow from (2.3) by the assumption that 'R;,:";." = 0. 1 

Point transformations which preserve the paths are called collinea­
tions. The properties of finite continnous groups of collineations have 
been investigated2• 

3. THOMAS parameters. A geometrical object unaltered by a pro­
jective transformation of An is 

n" - r" 2 A" r v 3 ,IlJ.- ,uA- n +1- Cu AlY' 

These n;A' which satisfy the identity n;" = 0, may be considered as 
the parameters of a displacement, which is uniquely determined by 
the paths as soon as the . coordinate system is fixed. They determine 
a kind of projective displacement, of which the paths are the solution 
of the differential equations 

~2( n" d~,u d~A _ 
dp2 + ,uA dp dp - 0, 

the P being a normalised projective 
constants Cl and C2 : 

j' 2 

P = Cl L1n+l dt + C2 ' 

parameter defined but for two 

The LI enters here, as it does in the definition of densities; it also 
enters into the transformation equations of the n;J, when we pass from 
(u) to (u' ), which can be written 

n", - A"',uJ· [J" + A'" ~ A Y 2 A"'"" I A 
,u' J! - "I";: ,uJ, v 0,u' A' - n + 1 (A' U ,u') nLJ. 

When LI = 1 the n transform like the rand P is independent of the 
coordinate system. This is the equiprojective case4. 

This occurence of the LI shows that the projective parameter p 
depends not only on the curve, but also on the choice of original va­
riables, The problem of finding projective equivalence of An can be 
reduced to the study of the integrability conditions of the transformation 
equations of the n;A.6 For a further treatment of this subject we refer 
to EISENHART'S book6, 

1 See also SCHOUTEN: 1924 (5). Ch. IV; SCHOUTEN: 1926 (2); 1927 (12). 
2 KNEBELMAN : 1928 (17); EISENHART: 1927 (1) p. 127. 
3 THOMAS: 1925 (6); 1926 (3). 4 THOMAS: 1925 (2). 
5 VEBLEN-THOMAS: 1926 (8). 6 EISENHART: 1927 (1) Ch.III. 
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4. Conformal transformations. Closely related in its formal appa­
ratus is the theory of conformal transformations of a RIEMANNian mani­
fold Vn 

a = aW). 

In this case we have for the CHRISTOFFEL symbols of the second kind: 

(4.1) T;), = r;), + A~,S),) - !g"Vgfh),sv, 

S;. = d;.1na. 

Such conformal transformations leave the angle between two vectors 
unaltered. The conformal theory of V n is the theory of the geometrical 
objects defined with respect to these transformations. 

The curvature tensor transforms under (4.1) as follows: 

'R;~'x" = R;~';." - 2g;.[VSfh]"'g''''', 

Sfh), = 2VfhS;. - SfhS;. + !S"s"gfh),' s" = g")'s),. 

From it can be derived the following tensor invariant under conformal 
transformations: 

C"'" R"'" 4 L'" v/l). = VfhA - n~ g),(v fh)' 

This is the conformal curvature tensor and it vanishes identically for 
n = 1, 2, 3; for n > 3, it satisfies the identities 

here also 

The vanishing of the conformal curvature tensor tor n > 3 is the neces­
sary and sufticient condition that the V n can be mapped on an Rn by a 
conformal transformation!. Such a manifold is called conformal-e~tclidean. 
For n = 3, when the conformal curvature tensor vanishes, the condi­
tion is that Lfh). (existing for n = 3) shall satisfy the condition of 
COTTON that V[fhL),]v = O. A V 2 can always be conformally mapped on 
an R 2 in as many ways as there are analytical functions of a complex 
variable. 

A geometrical object unaltered by a conformal transformation lS 

Z" r" 2 A" r v + 1 "V rn: 
,UA = fh), - 11, (fh ),)v n g gfhÄ vn: 

for which Z;" = O. The Z;), may be taken as parameters of a displace­
ment, which is uniquely determined as so on as the metric and the 
coordinate system is given. 

1 For literature see SCHOUTEN: 1924 (5) p.170. - See also 1927 (12). 
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It is possible to build Up a theory of conformal invariants in V n 

starting with the remark that the quantity 

GAI, = gAI-' I gA,u i-1/n , I gÄI-' I = Determinant of g;,1-' 

behaves like a tensor density of weight - 2/n which is independent of a. 
The theory of conformal invariants thus be comes a theory of invariants 
of tensor densities1. 

It is not possible to get a non-trivial projective transformation for 
a V n which is at the same time conformal. Then we need 

AZUSA) - is"g,u;. = 2A(I-'P;.) 

or 2{n + 1) 4 
SA = ~---P). = - --PI., n n - 2 

which does not give acceptable values for n. Indeed, a Vn is fully de­
termined by its geodesic lines and specification of its fundamental 
tensor but for a factor 2 • 

5. Normal coordinates. The equations (1.2) of the paths enable us 
to define a special set of coordinates at each point of X n . The integral 
curve through a point P(~") in direction v" = d~"/ds has an equation 
of the form 0 0 0 

1 (d2 ~") 1 (d3 ~") ~" - ~" = v" s + - - 52 + - -- S3 + .... 
o 0 2 ds2 0 6 ds3 0 

The coefficients of this series, which we suppose to be convergent, 
can be found by means of (1.2) and its derived equations: 

d3 ~" " d ~I-'l d ~,u, 1-'. 
dss + r"11-"1-'3 crs crs ds = 0, 

Hence 

If we write v" s = r)", we can, by virtue of the fact that I fJ ~"/fJ'Y}Ä I =f= 0, 
o 

invert these equations and get 

o 0 

(5.1) 'Y}" = C" + lA11,(1-'(1 + lA~Av(I-'(;'(V + ... 
where 

1 THOMAS: 1925 (6) - 1932 (9). - VEBLEN: 1928 (4). 
2 WEYL: 1921 (2). 
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The rj" form the components of a vector which in the local En at P 
may be taken as the radius vector from P to a point. In RIEMANNian 
geometry the rj" are sometimes caUed RIEMANN'S normal coordinates. 
We caU them normal coordinates l . They give a representation of a 
domain ab out P in which the series converges on the local En at P. 

The importance 01 normal coordinates lies mainly in the prrperty that 
at P the values r;J., expressed in the r( coordinates, disappear. Indeed, 
from (5.1): 

[
i) i) f'] i) [" 0 "I' 1 _ <\ . - -- = --- A, - r '17 - ... = r , i),." i) J, i) I" ,. 1<1· . . " ,., 
7 r; '1=0 r; 

so that according to the transformation formulas for the r, when 
passing from ~" to rj": 

o , 
l~~,;., = o. 

This holds only at P and only for the r, but not in general for their 
derivatives. At P however aU covariant derivatives of the first order 
in An can be written as ordinary derivatives with respect to 'Yj", e. g. 
{f7I"V,lv)o = (cv;,v/o'Yjl")o' 

This holds for aU coordinates which can be defined at P by means 
of aseries in (" which have the first two terms in common with (5.1), 
in particular, the system 

o 
'1)" = C" + i r; J, (li 1/ . 

In normal coordinates many proofs are very simple, e. g. those for 
the second identity of the curvature tensor or for the identity of BIANCHI. 
Their use in the establishment of existence theorems has been shown 
by EISENHART, VEBLEN, THOMAS and others. We refer here especially 
to VEBLEN'S book on invariants. 

It is possible to construct systems of normal coordinates based on 
the II;A of equi-projective or the Z;;. of conformal displacements. In 
such systems the study of the objects of such connection lS considerably 
simplified2 . 

Related is a theorem of FERMI, which states that for the case of a 
Vn there is always a coordinate system in which the CHRISTOFFEL sym­
bols vanish along a curve. It can be shown that this also holds for the 
r; A of an An' This means that corresponding to a curve in the An there 
exists an En with the same r along the curve3 . 

1 VEBLEN: 1922 (4). - VEBLEN-THOMAS: 1923 (6). - For Vn see RIEMANN­

WEYL: 1854 (1). - Also HLAVATV: 1927 (17). - See also THOMAS: 1929 (7)· -
RUSE: 1931 (29). - MICHAL: 1931 (12). 

2 THOMAS: 1925 (2) 1930 (2), (3). - EISENHART: 1927 (1). - See esp. 
VEBLEN: 1927 (2). 

3 EISENHART: 1927 (1) p.64. - An extension in \VHITEHEAD-\VILLIAMS: 

1930 (25). 
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6. Displacements defined by a partial differential equation. The 
previous dis placements were all defined with the aid of systems of 
ordinary differential equations. An entirely different procedure can 
be followed if a linear partial differential equation of the second order 
lS defined in the X n . Let it be: 

F(1jJ) == aVf'd;l<1jJ + aY oy1jJ + a01jJ = 0, 0;1< = 02/0~vO~I<, 

aY l', aA, a ° functions of ~". 

The left hand side remains invariant under a coordinate transformation 
of the ~". It defines a symmetrical tensor, which we assume to be of 
rank n 

It also defines a contravariant and a covariant vector: 

P" = a~ - -;;~ on (yggx 1<) 
rg , 

and 

respectively, and a scalar field ~ ° = a 0, so that F (IP) = ° takes the form 

The equation F (1p) =0 also remains invariant under a transformation 

i arbitrary function of ~x, 

by which the gl<J., p", ~o transform according to the formulas 

The equation F (1p) = ° therefore determines in an X n a set of coor­
dinates ~", ; ° as in eh. I, art 8, a pseudotensor \3"1< of dass 1 and a set of 
parameters of displacement Ti. = PA' With the aid of these quantities 
linear displacements can be defined. If, e. g., we assume X n to be an 
An, we can take Vl<g;.v = ° and define a WEYL connection1. We can also 
use these tensors to construct a projective connection (eh. V). 

This method enables us to build up in X 4 theories of relativity on 
a wave equation of the SCHRÖDINGER type. In this case we must take 
for F (1p) = ° an equation of the hyperbolic type which leads to a pseudo­
tensor of MINKOWSKI signature. Determination of the i can be obtained 
by suitable gauging. Like all theories of this kind involving pseudo­
tensors it is contained in the more symmetrical theory which works 
with homogeneous coordinates (eh. V). 

7. Differential comitants. We cannot here discuss the many papers 
dealing with the construction of complete systems of differential co­
mitants related to different connections. We refer only to ErSENHART'S 

1 STRUIK-\VIENER: 1927 (4). 
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book dealing with tensors in An 1 and a paper by THOMAS-MICHAL dealing 
with tensor densities in Vn and containing a discussion of the literature2• 

For other material on this subject see papers by WEITZENBÖCK and 
KRAUSS3 • 

ChapterIV. 

HERMITian connections. 
1. HERMITian quantities4 • The variables x" of an En can be made 

to run through all complex values. We have then to consider the 
conjugate complex variable xi< of xx, U, A, ... = T, .2, ... , n. Then 
it is possible to define quantities with respect to the xi< in one to one 
correspondence with those defined with respect to x" e. g., 

v'" - A"-'v" - " , ,,' Al<'" 
V = "v; A~' is the conj. to A:' . 

A next step is the introduction of quantities in which some indices 
refer to the x" and some to the x", as 

... = A<1i A;-Ii - A< Ali 
g<, ,u' <'li' g;.!,-, <'li' - A' Ii" 

Such quantities are called HERMITian. To each HERMITian quantity be­
longs one and only one quantity with complex conjugate components; we 
denote them through the indices, as in Po:'? ~ Pi/i". We can construct 
HERMITian tensors and densities in a way similar to those defined with 
real variables. With the definition of symmetry and alternation we 
must be careful, because a tensor like v<!iv defines Vf!,-1" but not Vfd1" 
Without an additional assumption we are able, however, to define sym­
metry for tensors of the second order. Indeed, the equation 

hAIi = hliA (e. g. for n = 2: h11 = hil, h12 = h'i.1, 

h21 = h12 , h22 = h22) , 

is fully determined and is preserved under coordinate transformations; 
the same holds for an alternating tensor of second order: 

hAi< = -h"A' 

1 EISENHART: 1927 (1). ~ Further THOMAS: 1929 (7) ~ 1930 (2), (3). 
2 THOMAS-MICHAL: 1927 (5). 
3 KRAUSS: 1927 (6), and e. g. WEITZENBÖCK: 1932 (32). 
4 SCHOUTEN-VAN DANTZIG: 1929 (6) ~ 1930 (6). For the purpose of sim­

plieity we write for the eonjugate eomplex of x" the symbol xx, for the eonju­
gate eomplex of gA!'- the symbol gJ. f" ete. Professor J. A. SCHOUTEN remarks 
in a letter that this may lead to ambiguities and suggests for the eonjugate 
eomplex quantities the symbols x", fÜ,u, ete. No ambiguity enters however in 
the subject matter of this ehapter, if we merely write ip for the eonjugate com­
plex of a sealar rp. 
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2. Linear displacement. We ean also assign in an X n real and 
eomplex values to the original variables ~". At every point we have 
a loeal En of the above mentioned type. It is then possible to introduee 
HERMITian tensorfields into the X n which transform in this way: 

_ AI" g.,-, - A,,-,g,--, 
/. I" "I'- Af' 

A general linear displaeement ean be introduced as an expression of 
the form 

bv" = dv" + r" .vA d~/I + r" vTd~1" + r~ vJ• dt + r~-vrdt, 
I"~ 1'2 1"2 1"1. 

b v" = dv" + r", vJ• d~,Li + r.", v)'d~1" + Ti< ,vA d~f' + r", Vi. d~,II, 
I"A I"A I"A I"A 

where the rare 8n 3 independent parameters, functions of ~", ~". Their 
number can immediately be reduced to 4n3, when we assume that the 
eovariant differentials of conjugate quantities are conjugate themselves. 
This makes r,: 1. the conjugate of rr; Je' etc., an assumption already 
accounted for in our notation. 

As in the case of the Ln we shall reduce the form of this displacement 
by special assumptions. To interpret them it is useful to map, for a 
special choice of coordinates, the X n on an X 2n with real variables only, 
using the equation 

where the ~'" and the ~"2 together form 2 n real independent variables 
in the X 2n • In this X 2n the equations ~"= const, e = const. represent 
two families of ocn X n which, in analogy to the case where the X 2n 
is an R 2 , may be called the isotropie X n of the first and second kind. 

The X n of the first kind, ~" = const, and those of the second kind, 
~"= const, correspond to each other point by point through association 
of the points with conjugate complex coordinates. This implies a one 
to one corespondence of the linear elements d~" at a point of ~" = const, 
to the linear elements d~" at the corresponding point of ~"= const. We 
may call this equipollence. 

The following assumptions coneerning the r can now be interpreted 
geometrieally. 

a) r;r = 0, hence 1'.:1. = O. The n-direction of every isotropie X n 
retains this property by parallel transport in a direction of this X n • 

This may be expressed by calling the isotropie X n geodesie. 
b) r;r = 0, hence r;;. = O. When the points of an X n ~"= const 

are moved along equipollent segments (0, d~"), the X n passes into an­
other X n of the same kind; a similar property holds for the X n of the 
other kind. We may express this by calling the isotropie X n of each 
kind parallel. 
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e) r~;. = 0, henee r;r = 0. Every veetor in an isotropie X n 
~" = const, if moved parallel in a direetion eontained in an isotropie 
X n of the other kind to another X n ~" = eonst, will pass into an equi­
pollent veetor, and similarly for a veetor in e = eonst. This expresses 
the equipollenee of the isotropie X n under this displaeement. If b) and 
c) are satisfied there exist infinitesimal "parallelograms" of which two 
sides lie in an isotropie direction of the first kind and two in an iso­
tropie direction of the seeond kind, the opposite sides being parallel in 
the sense of this displaeement. Inside an isotropie X n sueh infinitesimal 
parallelograms need not exist, for in this ease the torsion must vanish, 

- -

that is r;" = r;;., ~~.u = r;I (see below). 
If the conditions a), b), e) are satisfied, we have a displaeement 

that ean be formally expressed like one of the type Ln 

~v"=dv"+r",v)'d~", ~" d "+I'" Id~'" 
"" V = V fiI V ..: 

We must, however, not forget that 

dv" = (d" v") d~" + (dfi v") d~fi; d v" = (d,u v") d~" + (dfi V") d ~fi. 

Such a connection will be ealled a Kn • 
3. Connection Kn • This connection is fully determined as far as 

quantities are concerned. For instanee we have 

~WA = dWA - r;'Aw"d~.u (also its conjugate), 

~h;'fi = dhAfi - r:A h"fid~v - r:fihA"iid~v (also its conjugate). 

In this displaeement several covariant derivatives belong to one co­
variant differential. Ta ~v", ~v" belong 

J7" v" = d"v" + 1,,: l v). ; J7 i-' v" == o"v" + r;IVI , 

J7f,iV" = of,iv"; J7"v"= d"V". 

In the X 2n these equations can be written as one 

J7 b V C = Ob VC + r~ a va , a, b, C, '" = 1, ... , n, 1, ... , n:. 
As we deal with a K n , some r~a vanish. The corresponding eurvature 
tensor is 

Rb~6a = -Zd[OrCJb - Zr{ble,r;lli. 

It has the following non-vanishing components: 

of which the last two sets satisfy the equations 

R ····" R"'" ° r" '"1'). = - ,,~'l = - :v f'l' 

There is a torsion tensor 

S~i." = r[~).l; S~i" = r~il' 
Ergebnisse der Mathematik. Ill/2. Struik. 3 
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There is also a second identity for the curvature tensor 

Ri;~j." - R;!.~" = 2i)vS~~" = 2I7v S;,Ä", and its conjugate, 

together with o = 217[1' S;:;t + 2s[~·/r Sv'j;"" , 

and also identities of BIANCHI 

17[1' R;'j"i/ = S,;~[! R~~J.", (and its conjugate), 

17[{< R~j~I" = S;~(! R;ii", (and its conjugate). 

[214 

A connection K n can be made rnetrical by the introduction of a 
syrnrnetrical HERl\IITian tensor g;./i = g/il satisfying the equation 

bg;./i = O. 

A rneasurernent can be introduced by ds 2 = g)./id!;Ad!;/i. Such a 
connection is better called unitary, and is denoted by Un0 For a Un 
we find, frorn bgÄI' = 0 

and therefore 

There is now a third and fourth identity for the cornponents of the 
curvature tensor that do not vanish, narnely 

Such a connection can be obtained, sirnilarly to the affine connection 
i 

with torsion (Ch. II), by introducing n independent vectors U;., i = 1, 
i i 

2, ... , n at each point, and building up a gi./i = 1:u).Ui<' As a rule the 
displacement does not carry these vector fields into thernselves because 

i 
of the non-vanishing of R~ ~ ;,". The u). are called unitary vectors and 
satisfy the conditions 

i . 
UI'l1X = bj, 

1 

if 1f" are the reciprocal vectors to the ~)., so that a tensor g'-" is uniquely 
I . 

defined as gA" =1: 1fl1f". The ~ A can be considered as mutually orthogonal 
I I 

unit vectors. There exists a contracted curvature tensor Ri; / and a 
curvature scalar 

R = R{,,~~Agvl', R = R,;p}.Agv/.i. 

It is also possible to define Un of constant curvature R~~)."=CA[l'gv]A, 
where C must be a constant on account of BIANCHI'S identity. These 
U n are applicable to the projective HERMITian geometries of FUBINI 
and CARTAN 1. 

1 SCHOUTEN and VAN DANTZIG: 1931 (17). 
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4. Analyticity. A eomplex function q; = (X + i ß of a complex 
variable z = x + iy is ealled analytical when the RIEMANN-CAUCHY 
equations are satisfied. This ean be expressed by the equation Gz q; = 0, 
when iJz = ojox - i iJjoy; or by the equivalent Oz({; = 0, when Oz = iJjiJx 
+ iiJjoy. In the same way we eall a function q;(~") of the complex 
variables ~" = ~'" + i ~"2 analytieal, if 

0/iCP=O, 0/i=iJ",-io"" O"i=iJ/O~"i 
equivalent to ~ - Cl ~ +. Cl of'cp=O, Uf'=U"" ~u"" 

Quantities with analytieal eomponents are ealled analytieal. This pro­
perty is unehanged under eoordinate transformations. 

This propertyadmits a simple geometrieal interpretation in the X 2n • 

A scalar field is analytieal in ~" when it is eonstant in the X n ~" = const 
and viee versa. The vector field VC whieh is eomposed of the eomponents 
v", v" has, in the ease of analytieity of v", v"the property that its eom­
ponent in every isotropie X n of one kind is equipollent to itself. An 
analytieal transformation of the X n eorresponds to a transformation of 
the X 2n whieh earries the two families of isotropie X n into themselves. 

A displaeement, whieh earries analytieal quantities into analytical 
quantities is also ealled analytical; and so is the eorresponding 
eonneetion. Sueh a displaeement 

S" d" r" Je d tf' u V = V + .nl. V ", 

must have for dv" the simple expressions, similar to those in Ln: 

dv"= (ol,v")d~f', dv" = Wl<vii)d~fi, 

and must further have the r;v analytieal: 

ofir:v = 0, of'r;v = 0. 

This last equation is equivalent to 

Ri-;2" = 0, R;~t = 0. 

This condition is therefore the necessary and sufficient condition tor the 
analyticity 0/ the connection Kn-

An analytieal K n has therefore a torsion tensor 5 ;1", S~i." and a 
curvature tensor R~~~ ", Riii". For an analytieal Un the eurvature tensor 
vanishes. Suppose, morover, that the torsion vanishes. Then we can 
show that the unitary vectors 'lf" are now earried into themselves by 

t 

parallel displaeements. They must therefore be analytical, and gradient 

vectors of n analytieal sealar fields ~. These fields can be taken as 
coordinate variables, and form a CARTEsian eoordinate system. We have 
a plane HERMITian geometry in the U n' With respeet to this eoordinate 
system we ean write the ds 2 in the form d~ld~l + "', or 

d S2 = ± L, d~" d~" . 
3* 
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Such a plane HERMITian geometry has vanishing torsion, vanishing curv­
ature tensor and an analytical connection1. 

5. Spin connections; introduction. In investigations connected with 
the spinning electron it has been shown that we'can obtain a geometry 
of HERMITian quantities in an E 4 by taking as starting point a euclidean 
R 4 of the MINKOWSKI type. In such an R4 there exists a hypersphere 

gijXiXj = 1, i, f = 0,1,2,3, -goo = gn = g22 = g33 = +1, 

gij = 0, i =1= f 
of signature - + + + . The 003 straight lines of this hypersphere 
determine the directions of 004 vectors. These vectors can be represented 
by the 004 points of an auxiliary E4 , the so-called spin-space. The 
orthogonal transformations which carry this hypersphere into itself 
(LORENTZ transformations) can be used, as we will show, to define HER­
MITian quantities in this E 4 , especially a HERMITian tensor. If now a 
V4, locally of the MINKOWSKI type, is given, then the problem arises 
of defining a connection with a displacement which allows comparison 
of these spin-spaces. This dis placement must, therefore, map the vectors 
in the straight lines of the hypersphere in the local R 4 at one point 
onto the corresponding vectors of an adjacent point. This connection 
is of importance for the DIRAC theory of the spinning electron. 

6. Spinspace 2• Between the 006 points rC , c = 0, 1, 2, ... , 5 of a 
euclidean R6 and the 006 bivectors rAG, A, B, C, ... = 1, ... 4 of an 
affine E 4 a one to one correspondence can be established 

rAG = rCx~AG. 

The X~AG themselves can be taken as a tensor with its lower index c 
in R 6 and its indices A C in E4 • To the fundamental tensor gii corresponds 
!s[ABGD], where S[ABGDl is the unit four vector of E 4 • The corresponding 
relation between contravariant and covariant quantities in R6 and E 4 

follow from the corresponding equations 

r a = gabrb, r b = gabra-+rAB = !sABCDrCD , rCD = !SABCD rAB • 

We have r AB rBG = C O(.~, where C is an invariant and O(.~ is the unit 
tensor of E 4 • 

To orthogonal vectors in R 6 belong bivectors in involution of E 4 , 

rese = 0 -+ r[AB SCD] = o. 
There exist in E 4 six bivectors in involution corresponding to six ortho­
gonal unit vectors i e of R 6 • This imposes the following conditions 

a 
upon x~ AC 

X(~ACXb)BC = gabO(.~' 
1 Camp. KÄHLER: 1932 (13). 
2 SCHOUTEN: 1933 (2). - SCHOUTEN-VAN DANTZIG: 1933 (6); VEBLEN: 1933 

(9), 1933 (10). 
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To all <X.)2 bivectors r AB satisfying the equation vAr AB = 0, where 
VA is a given point of E 4 , belong the 002 points of an R 2 in the R6 • From 
VA rA B = ° follows r [A B r CD] = 0, which corresponds to rc rC = 0, the 
zero sphere in R 6 • We see therefore that to a point VA of E 4 corresponds 
a simple bivector in a plane Rs in the zero sphere of Rs. 

We now single out an Rs in Rs by the condition that t be a fixed 

vector. This corresponds to the fixing of a bivector XAB in E 4' The 
points of E 4 correspond now to the R 2 in the zero cone of this R5 • 

There are five mixed tensors determined by this choice 

lX~?A = -X~CBXBA = XCDXaDA' in short lX = -XaX = XXa, 

which satisfy the conditions 

lX{;.b)?A = lX{~?lBllXi)~A = -X{~CBXb)BA = gablX~, 

or more briefly 

Now we take the Rs of signature - - - + + +, 
S2 = _ (rO) 2 + (r1)2 + (r2)2 + (r3)2 _ (r4)2 _ (r6)2. 

In this case we have 

i=l=i, i, i = 0, 1, ... ,4. 

The lXa , which may all be taken real, behave like the units of asedenion 
system, that is, a hypercomplex number system which can be built up by 
linear combination of 16 units 1; lXo, lXl> lX2 , lXa ; lXab = lXalXb , lXabc = lXalXblXc' 

lX4 = lXo iX1 lX2 iX3 , and satisfying the associative law 

lXa (lXb lXc) = (iXa lXb) lXc = lXa!Xb!Xc ' 

The zero cone of Rs has the equation 

° = _ (rO)2 + (r1)2 + (r2)2 + (r3)2 _ (r4)2. 

If we now introduce the coordinates 

this zero cone passes into the fundamental sphere 

(e1)2 + (e2)2 + (e3)2 - (e4)2 = 1 

of a MINKOWSKI R4 , of which the vectors in the generating straight 
lines correspond to the points of the E 4• As quantities expressing this 
correspondence the sedenions lX can be taken. These sedenions can be 
expressed in every coordinate system of E 4 as matrices. Such a matrix 
is a spinmatrix of quantum theory. The E4 is therefore aspinspace, 
its quantities are spinquantities. 
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7. HERMlTian quantities in spinspace. The sedenion tensors 
lXo, lXI , lX2 , lXa are determined but for LORENTZ transformations. The 
lX4 = lXo lX1 lX2 lXa = lX[O lXI lX2 lXal remains however invariant (but for the 
sign). The lX4? Adetermines a matrix of which the elementary divisors 
are Je - i, }. - i, Je + i, Je + i and can therefore be written with the 
aid of 4 contravariant measuring spinvectors eO and the corresponding 

covariant vectors ~ A (lX~ = ~o ~ A) as follows a 

'0 . 0 1 . 0 2 . 0 3 . 0 4 
lX4. A = - 2 e e A - 2 e e A + tee A + tee A' 

1 2 3 4, 
(i=V- 1) 

This shows that there exist, in E4 , two invariant E2 , the E2 of eO , eO 
1 2 

and the E2 of eO, eO, which have only the origin in common. We call 
3 4 __ 

these planes E 2 and E 2 • 

_ Every vector vO in spinspace can be decomposed in the E 2 and the 
E 2 • We can write this in the form 

where i, i are the unit tensors in the E 2 , E 2 , 
o 0 

b = !(1 + ilX4), t = !(1 - ilX4) 

which is the abbreviation of 

i OA = eO~A + eot = !(lX~ + ilX40 A)' and similarly for i. o' 1 2 . 0 

Th e tensors belonging to lXo, lXI , lX2, lXa can now be decomposed 

lX" = ß" + (1", (,,=0,1,2,3) 

where ß" is a tensor which belongs with the contravariant index to E 2 

and with the covariant index to E2 , and the (1" behaves in the opposite 
way. The other two parts of lX", belonging to E 2 and E 2 alone, vanish. 
We express ß", fJ" as follows: 

ß" = ß~:a, ß" = ß~~~ 

where the indices a, b, c, ... belong to E 2 , 2l:, )S, ([, ... to E 2 • We have 
for the ß the property, reminiscent of the sedenion properties 

ß(J3j)=i gij, ß(ißj)=~ gij, -gOO=gll =g22= g3a= + 1, gij=O, i =1= i· 
These two formulas are the inverse of each other for k = 1 , 2, 3. For 

k = 0, there is a change of sign. For every LOREN TZ transformation 
these formulas take another form. 

The i can be completed to a set of quaternions, as can the i, e. g. 
~ _ 0 

i l = ißOßI = -ß2ßa, etc. It can now be shown that a choice of the 
- -

coordinate systems in E 2 , E 2 may be made so that the i and i, and hence 
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also the ß and jJ, obtain conjugate complex components. This is possible 
only because we started with a MINKOWSKI form of linear element in 
R 4 • We have to restriet the coordinate transformations in E 2 , E 2 to 
linear homogeneous ones with complex conjugate coefficients, in order 
to make the choice invariant. The determinants of the ß satisfy, under 
these transformations, the equations 

I ßo I = -I ß" I ' I Po I = - [p" I· (" = 1, 2, 3) 

We postulate, secondly, that the transformations will have real 
determinants, that is, 

I ßo I = - I ßi I = -I ß21 = -I ßal = + 1, 

I Po I = -I Pi I = -I ß21 = -I Psi = + 1 . 

Now we have established in E4 a system of HERMITian quantities 
with a group of transformations under which they remain HERMITIan. 
It can even be shown that through these assumptions symmetrical 
HERMITIan densities of order -1 are determined1. 

8. Spin connections. We consider a V4 which has, at each point, 
a loeal R4 of MINKOWSKI eharacter. To every R 4 is associated a loeal 
spin spaee determined by the straight lines on the fundamental quadrie. 
It is possible to define an indefinite number of linear connections whieh 
map these local spin spaces upon eaeh other. As the ß, 11 have the 
character of units, we may postulate that their covariant differentials 
vanish. Nevertheless it is not in general possible to define the spin­
connection uniquely by means of the quantities in the V4 • There is 
however one exeeption. Covariant differentiation of eontravariant and 
covariant spinvector-densities of weight +i and -!' respectively is 
uniquely determined. 

To show this, let the displacement of a spinvector be 

j refers to V4 

The ß~~1Jf is a quantity with the kin V4 and with the c and m in E2 and 
E2 • Therefore we can write under assumptions similar to those of art. 2, 
taking a nonholonomie system of reference in the V4 , 

Vjß~~1Jf = aiß~~IJf+ rfi(3i.~1Jf + A;I&ß~~1Jf - A~~ß~~0:' 

When Viß~~m vanishes, we have, as ajß~~m == 0, 

2 rik = _A'c ßk0: -ßill! + A'0:. ß-ill! ßkC . 
) J (!; •• Il! •• c 1Jf" • C •• (!; 

As ri k = 0, we have 

° = -Ai~ + Ai~, (imaginary part of Ai~ = 0) 

1 SCHOUTEN: 1931 (18). 
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but we cannot express the A in terms of r. If now we write Aju, Ar~ 
for the parameters of covariant differentiation of contravariant and 
covariant spinvector densities of weight +! and -!, respectively, 

r . r 
AC - A'C 1 ,C Ab. A(I; - A'(I; 1 .(1; AlS 

ia - ia - 2~U ib, i~ - i~ - 26m jlS 

(A~li is the real part of A~li); then we can solve the equations for A and 
get, if ßißk = ßik 

Ac - 1 Tl ßikC A(I; _ I Tl ß-ik(l; 
iU--41.iki ... n, im--4"1.iki ... m· 

If we had taken a weight different from +! or -!, we should not 
have had a unique solution. For the physical application it is sufficient 
that at any rate one type of vector density allows unique determination 
of the connection by the r of the V 4' 

9. Remarks. The spinquantities of the previous articles appeared 
first as matrices in DIRAC'S theory of the spinning electron. As long 
as we have a MINKOWSKI space (special relativity) this means that we 
study tensors with the aid of a preferred coordinate system. In a V4 

there are 004 local spin spaces, and it is necessary to introduce also the 
transformation schemes. In MINKOWSKI space the spinquantities 
appeared first, after a suggestion by EHREN FEST, as so-called spinorsI, 
of which the analysis has been given by VAN DER W AERDEN, SCHOUTEN, 

LAPORTE and UHLENBECK 2• The relations to sedenions were given in 
full detail by SCHOUTEN2, who also showed the possibility of a spin­
connection. The relation of the spinvectors to the straight lines of the 
fundamental quadric in MINKOWSKI space, which removed all artifi­
ciality from spinspace, was indicated by VEBLEN and fully constructed 
by SCHOUTEN and by VEBLEN. SCHOUTEN also showed the way in which 
spinquantities enter into a five-dimensional theory2, and together with 
VAN DANTZIG a related theory of projective connections3 (Ch. V). 

Chapter V. 

Projective connections. 
1. Introduction. We have seen, in Chapter IU, that the paths of 

an An are not changed by a projective transformation 

(1.1) 'Fr:A = r;;. + 2p(f'A2)' PA = arbitrary vector 
The problem arose of associating with this group of transformations a 
single "projective" connection, which will take the place of the infinite 

1 See VAN DER WAERDEN: 1929 (17). 
2 SCHOUTEN: 1931 (18). - LAPORTE-UHLENBECK: 1931 (31); VEBLEN: 1933 (9), 

1933 (10). 
3 SCHOUTEN and VAN DANTZIG: 1932 (3) - 1933 (6). 
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number of Ln connections. The introduction of the parameters II;!. was 
one step, but it was not yet sufficient, because they depend on a special 
choice of coordinates. We must try to continue in the same direction 
of research, changing the group of transformations. This has been done 
and has lead to important results. It seems however more useful to 
attack the problem from another side and use as the starting point the 
fundamental principle of differential geometry, as formulated in Ch. I. 
We take anXn and associate with every point a local projective spaceDn . 

We ask for the linear connections associable with this configuration. 
It can then be shown that an infinite number of Ln related by (1.1) 
can be obtained from this profective connection. 

There is a fundamental principle involved in this independent con­
struction of a projective connection. HistoricaIly, the Ln came first; 
there exists therefore a certain tendency to relate connections to Ln' 
This is similar to the way plane projective, affine and conformal geo­
metries were developed. First these geometries were studied as aspects 
of euclidean geometry, the oldest. Later, however, it was recognized 
that each of these geometries could be independently established, and 
taken as center of reference for the other geometries. Projective geo­
metry was first the study of those properties of euclidean geometry 
which are invariant under projective transformation. Later it was 
recognized that euclidean geometry was that branch of projective 
geometry in which certain absolute elements are invariant. A similar 
process is now being undertaken in the theory of displacements. At 
present the independent construction of projective connections is weIl 
established, and the independent construction of other connections is 
weIl under way. 

A text -book dealing wi th the subj ect matter ofthis chapter is V EBLEN' S 

"Projective relativity". We follow here the independent construction 
of projective differential geometry due to VAN DANTZIG I . A related 
theory of conformal connections is due to CARTAN2. 

2. Xn with local Dn . We introduce into the X n homogeneous co­
ordinates xo, Xl, x 2, x 3, ••• , xn, in short x", " = 0, 1, ... , n. All systems 
Y" = A x" determine the same point. We subject these coordinates to 
the group S)n + 1 of transformations 

restricting the t to homogeneous functions of the first degree in the x 
(not necessarily linear). This is essentially the old @n' Apart from this 
coordinate transformation we also allow the point transformation 

(F) x" = ex", 

1 VAN DANTZIG: 1932 (1). 
2 CARTAN: 1923 (2). - SCHOUTEN: 1924 (10); 1926 (1) - see also Ch. UI, 

art. 4. 
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where e is a function of XX of degree zero. The group (F) does not 
change the points of Xn- This X n we call Hn. Points in Hn are there­
fore not identical with points in X n . We may indicate this by calling a 
spot the series of 001 points of Hn corresponding with one point of X n . 

Furthermore we admit only functions t (x"), homogeneous of degree 
t in x", and therefore satisfying the condition 

t (ex") = er f (x"), 

equivalent to the EULER equation 

x" (j I' f = t f , (j I' = a / (j xf' . 

At every point P of the X n we can define a local projective spaceDn • 

With the aid of 

we can here define a point calculus (eh. I, art. 4), in which the A~' have 
the function of the 12l~'. Here we have to discriminate between the trans­
formations (SJn+l) and (1<'). A tensor of degree t transforms under 
(SJn+l) as in this example 

.. x' AAP'X' "'X 

v): 1" = ):"',, vAl' 

and under (F) as follows vi;," = er vi;," 

A tensor v;,::: ;'8""" "I of degree r has an invariant, the excess (or 
weight) e = r + s - f.1 We study only tensors of excess zero. 

This space Dn , which so far has been defined independently of the x" 
with the exception of the A:', A:" can be more closely related to the 
Hn by the following property which has no analogue in Ln. The point 
x" of Hn is itself a vector of degree 1 in Dn- Indeed, as a result of EULER'S 

equation x,uc"x'" = x"A~' = x"'. 

This point x" can be taken as "point of contact" of the Dn . 

Another difference with Ln is that in this case dx" is a vector only 
with respect to (SJn+l) ' but not with respect to (F): 

dx" = e(dx" + x"dlne). 

There is, therefore, in general no point in D n corresponding to dx". 
3. Projective derivative. This behavior of the dx" makes it in general 

impossible, to define a covariant differential. But we can define a pro­
jective derivative2 

1 VEBLEN: 1929 (28). 
2 The n and Q used in this chapter have a meaning different from the Il and 

Q used in eh. IrI and II. 
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which follows from assumptions parallel to those of Ch. II, art. 2. The 
lItl-' form a system of (n + 1)3 functions of the XX of degree -1, and 
the Q I-' form a system of n + 1 functions of the same degree. Hence 

XV ov lI;!. = -lI;i., 

xvovQI-' = -QI-" 

The II transform in the ordinary way under transformations of 
the x" 

There is a torsion tensor, homogeneous of degree -1, 

S~/ = Il[~Al' 
but also two new tensors (obtained from 17 I-'x") 

P~A = lI;AX'''' 

Q" - n" xA - p" + 2 S"" Xi, '1-' - I-'A - 'Il ,uA' 

As xl-'J7l-'v" = P~I-'Vll, xl-'v,uWJ, = -P':I.WI-' , we see that the operator 
x,tl 17", defines a projective transformation inD n for vectors, which depends 
on points of Hn , because xl-' 17,) v" = Axl-' 17 I-'v", when A is of degree O. 

Covariant differentiation of tensors of high er order follows in the 
usual way (Ch. II, art. 2). 

There is a curvature tensor, homogeneous of degree - 2 

N;~/' = - 22[Jl;p - 2lI~, i"l II;p. 

It satisfies the identities (I) N~;~" = - N~~~ X and 

(II) 

and BIANCHI'S identity 

(III) 

For the symbol 17[" J7 1-'1 we get terms that do not occur in Ln: 

where 17 " !. ). 
Uvl-' = [vQI-'I - S"U QA - A[vQ"'lQA' 

4. Projective differential. If we define 

bv" = dxl-' 171-' v" , 

then the bv" transform under (S)n + 1) like the components of a vector, 
but not under (F), because 

'bv" = et{bv" + (Pi"v!. + tQv") d lne}, 

Q = 1 + },I-' Q,u . 
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Now we im pose upon the parameters II the conditions 

Q =0. 

In this case we have a covariant differential, and therefore the possibility 
of mapping consecutive Dn upon each other by taking the covariant 
differential zero. A projective connection is thus defined, and consecu­
tive D n are mapped projectively on each other. In this representation 
the II;A are determined but for multiples of A~ and the Q,. remain 
arbitrary, subject only to the given restrictions. The point of contact 
of a Dn does not, in general, remain a point of contact during a parallel 
displacement. 

5. Relation to a metrical geometryl. The transition to a metrical 
geometry can be performed independently of any previous transition to 
an An by introducing immediately into the Dn of the projective con­
nection Hn a symmetrical tensor G;.,,,. This can be interpreted as a 
quadric on which lie the points v" for which GA,. VA v,. = o. If we now 
postulate that the point of contact x" does not lie on the quadric, we 

may write GA.uXA x." = w2, 

and normalize the GI .. " by giving the w 2 as a fixed number. Now a 
euclidean metric can be constructed in the D n . To a point v" can be 
assigned a modulus -YGÄ,.vÄv.u. As the modulus of x" is w we can introduce 
a unit point of contact q" = w- I x", which can be defined as center of 
the quadric. The Dn- I q", = G}.,,,x;' can then be taken as the Dn - I at 
infinity. 

Functions ~k, k = 1,2, ... , n, of degree zero in the xx, independent 

and satisfying q." G,u ~k = 0 

can now be taken as non-homogeneous coordinates; the ~k transform 
according to the group @n- There is a unit tensor A; = Gv ~k, qV A; = 0, 
and a unit tensor A~. With respect to @n ordinary affine tensors can 
be defined 

To a point in Dn a vector in this metrical space is now uniquely deter­
mined. We write, identifying the vectors vk with the contravariant 
points VV in the En- I qv = 0: vk = A!vv, if VV qv = 0, and also wi = Atw;., 
if w;.q). = 0, and A% is defined by A~A: = A~, qvA~ = o. 

Every point can be written as a sum of a vector and a multiple of q": 
'+ h'" A" A + "I. v v" = v" vq", w ere v = Ä V qAq V . V = -v qv 

In the same way we can associate to every projective tensor an affine 
tensor which is identified with those projective tensors that admit, with 
respect to every index, inner multiplications with 

-A v AV v 
J. = }. + qAq . 

1 SCHOUTEN-VAN DANTZIG: 1932 (4) - 1933 (6). 
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As lop.ql"] = 0 we find that 0[i.q,u] itself is an affine tensor, denoting 
a null system in the D n-l at infinity q;, = 0, a fact of importance for 
projective relativity. 

In this way an affine connection can be constructed in the original 
projective connection, taking at every point a fixed covariant vector q;.' 1 

The symmetrical tensor 
g;, ,u = G; .. u + q;, q,u 

cin then be taken as a RIEMANNian fundamental tensor. 
If we take the covariant derivative of an affine tensor, then this 

covariant derivative has apart which is an affine tensor. In this way 
the projective connection determines an affine connection. This affine 
connection can be specialized to a RIEMANNian connection. We write 

R R _ 

r;>k = OjVk + rfi vi, I1f , v" = A~: 11 g va 
R R _ 
I1j W i = OjWi - rfiWk, l1,uw'1c = A~!.l1ew, 

for v"q" = 0, w;,q" = O. In projective coordinates we can complete this 
connection to a projective connection by the conditions 

R 

R 

r;,=o. 

Therefore, we have for the parameters II;;, of this projective RIEMANNian 

displacement 

[JR" A-ii" r k + -A" ~ A-:n; I< '" 
1"), = fdk ii "o,u;, - q UI" q;, , 

so that the projective connection is not symmetrical, 
R 
S;,j,X = o[!<qJ.]q". 

By a special assumption, as 

P l " = 40)q~", Q" 2 ." . I" = 0) qf' ' 

we can determine the complete projective connection. This assumption 
has been suggested by the requirements of relativity. We find under 
these assumptions 

IIk_{k}. 
ji - ji ' 

Llk _ -lQk _ k jO-O) .j-2q.j' IIIJ - -lQ - 2q ji - 0) ji - - ji' 

II~o = Iljoi = IIgi = ngo = O. 

In this way a RIEMANNian connection in X n can be uniquely connected 
with a metrical projective connection. 

6. Specialization to affine connections. Through specialization we 
can find several ways by which we may compare the projective dis-

1 VAN DANTZIG: 1932 (2). - SCHOUTEN-VAN DANTZIG: 1933 (6). 
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placements defined, in Chapter III, by means of an An of given geodesie 
lines. For this it is first necessary to pass from the homogeneous co­
ordinates x" to non-homogeneous ones by singling out one coordinate. 
This is done, as a rule, by transformations 

k=1,2, ... ,n. 

The transformations of (Sjn+1) then pass into1 

~O, = ~o + fPW), ~k' = ~k'W), 

so that the ~k are transformed like the original variables of an Ln' q; (~k) 
is an arbitrary function for which the value 

(6.1) J = Det I ak,~k I 
has been taken2• This case can be considered as that of an An in which 
a scalar density q; of weight 1/(1 - c) (n + 1) = c is fixed: 

fP' = q;,1c. 

In this An a local projective space Dn belongs to every point. It is 
now possible to define a number of conditions by which the II;;. can 
be uniquely determined from the Tl'm of the An, if the rz"m are given 
but for projective transformations. The components of the projective 
curvature tensor can then be identified with those of the curvature 
tensor N;;~". The special character of the scalar density q; permits us 
to work only, in this specification, with point densities of degree zero. 

7. Historical remarks. The first to construct a projective dis­
placement by associating to every point of an X n a D n was CARTAN3. 
It could be shown that such a displacement can be associated in a unique 
way with every An given but for projective transformations of its paths. 

Another approach is due to THOMAS', who introduced the parameters 
II;;. discussed in Ch. III, Art. 3. To these parameters belong an Hn +1 

with a limited transformation group and a covariant derivative, but not 
a covariant differential. This geometry corresponds to c = -1/(n + 1) 
in formula (6.1). 

A third approach is due to VEBLEN5. He wrote the equations of 
the transformation in X n as a quotient of two power series and used 
the members of order zero and one of these series in the definition of 
projective tensors. These tensors have a covariant derivative and no 
covariant differential. They correspond to the limiting case c ~ 1 in (6.1). 

1 VEBLEN: 1933 (1). 
2 SCHouTEN-GOl-AB: 1930 (5). - On D n see WHITEHEAD: 1931 (39). - BORTO­

LOTTI: 1932 (14). - See also HLAVATY-GOl-AB: 1932 (6). 
3 CARTAN: 1924 (2). - SCHOUTEN: 1926 (1). 
4 THOMAS: 1926 (3). • VEBLEN: 1928 (3). 
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A fourth method was indicated by WEYL1 ; he introduced a dis­
placement by the assumption of non-homogeneous coordinates in the 
local Dn . 

All these methods were brought into the frame of one theory by 
SCHOUTEN-GOLAB2• This theory involved, however, a sub-group of the 
group (5)n + 1)' and therefore still had the variable x 0 in a singular 
position. VEBLENa then passed to a group holomorphic with (5)n + 1) 
and applied it to relativity4. The theory was then remodelled into an 
independent branch of the connection theory by VAN DANTZIG5. 

SCHOUTEN and VAN DANTZIG showed how a unified field theory could 
be constructed on the basis of this projective connection, containing 
not only the gravitation al and electromagnetic equations, but also the 
equations of SCHRÖDINGER and DIRAC6• 

Chapter VI. 

Induction. 
1. Ordinary surface theory. If we define, in ordinary euclidean 

three-space Ra, a manifold X 2 by the equations x" = x" (u, v) , " = 1 , 2, 3, 
then a measurement is determined in this X 2 : 

ds2 = Edu2 + 2Fdudv + Gdv2 , E = ~ (~~t, etc. 

and this linear element defines a RIEMANNian connection V2 in the X 2 • 

We say that the RIEMANNian connection is induced into the X 2 by the 
euclidean connection of the Ra. When LEVI-CIVITA, in 1917, demon­
strated the possibility of a parallel displacement in a V2 , he did it by 
just such a process of induction7• Since that time the method has often 
been used to obtain a differential geometry of X m imbedded in an X n 
with a certain connection. RIEMANNian geometry in a Vn leads to a RIE­
MANNian geometry in an imbedded X m , a plane affine geometry in an 
En to an Am in an imbedded X m.8 The "generalized absolute calculus" 
of VITALI is founded upon this principle9• We shall first show how it 
can be applied to an Ln. 

1 WEYL: 1929 (9). 2 SCHOUTEN-GOLAB: 1930 (5). 
3 VEBLEN: 1929 (28) 1933 (1). See the latter for the literature. 
4 Discussion of the theory in this state in BORTOLOTTI: 1931 (3). 
5 VAN DANTZIG: 1932 (1). 
6 SCHOUTEN and VAN DANTZIG: 1932 (3) - 1933 (6). 
7 LEVI-CIVITA: 1917 (1). 
8 SCHOUTEN: 1924 (5). - Camp. V. D. WOUDE-HAANTJES: 1933 (4). - HLAVATV: 

1928 (9). 
9 BORTOLOTTI: 1931 (6). 
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2. Xm imbedded in Xn . In an X n with original variables ;" an X m 

lS imbedded (m < n). This can be done by giving n equations 

X,A,/-l,Y, "', == 1, "', n; a,b,c, ... = 1, "',m, 

in which the 1]c are independent coordinates and the ;" satisfy necessary 
conditions as to differentiability. At a point of the Xm we have a local 
tangent En of X n and a local tangent Em of X m • In the En we have 

% a 
the measuring vectors e", e)., in the Em cC , ec and the unit tensors Al, B~. 

,\ a 
The differentials d1]c and d;", determining the same linear element of 
X m are related by the equation 

d~" = p~ drJ", 

The p~ behave as a vector in the X n with respect to the upper index, 
and as a vector in the Xm with respect to the lower index: 

To every contravariant vector vC of Xm is associated, in a unique 
way, a contravariant vector v" of X n : 

We may take vC , v" as different components of the same vector v 
m the Xm lying in X n . 

To every covariant vector w,\ of X n (not X m , but X n) is associated, 
m a unique way a covariant vector 'wa of X m : 

This vector 'wa may be represented by the Em - 1 obtained by inter­
secting the En - 1 of W,\ with the local Em of the X m . As 

P~B~ = P~, 
we may write B~ for P~. 

We get more correspondences when the X m is fixed 1 in the X n , that 
is, if with every point of X m we associate adefinite local En - m of X n at 
P which has no direction in common with the local Em (in ordinary 
differential geometry the surface normal, in plane affine geometry the 
affine normal, etc.). This "pseudonormal En- m" can be defined by 

taking m independent covariant vectors ~)., C = 1, .. " m of which the 

En- 1 do not contain the local Em of X m • Now a quantity QJ. = ~). ( 
arises. We can then associate to a covariant vector wa of X m a covariant 
vector w). of X n 

1 German : "eingespannt". 
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The En - 1 of W;, can be considered as the composition of the Em- 1 of W a 
with the pseudonormal En- m . To a contravariant vector v" of En belongs 
a covariant vector 'v" of Em 

I" QC f' V = P V , 

which can be taken as the "projection" of v" on Em in the diTection 
of the pseudonormal En - m . When v" lies in the En- m IV" = 0, i. e. the 
projection is zero. As 

we may write B~, for Q~" The tensor B has therefore components Bh I 
Bt B~, B1. A quantity of X n can have components partly or wholly 
indicated by indices a, b, ... , when the geometrical entity it represents 
lies partly or wholly in the X m . 

To the En - m belongs the tensor C1 = A1 - B1.1 

It is not necessary to use holonomic systems in X n . We can even 
introduce a system of local Em in X n that need not integrate to an X m . 

We can always give adefinite meaning to the formulas. 
3. Xm in Ln. Into the X n we introduce a connection Ln by the 

displacement 

.s: "- d " + r"· ;, d /:/' V" '"" + r" Je u V - V /' I. V ~, fl V = U f' V f' Je V • 

If we consider V" a vector in X m we can take the Xm-component 
of the contravariant vector t5v". This component defines an induced 
displacement L m in the X m : 

In a similar manner we come to a dis placement for other tensors. It 
is not even necessary to use holonomic systems. If we introduce into 
the X n a non-holonomic system (k) (eh. II), we can pass from 

m 
t5vk = dvk + rf; Vi (d$)j . 

m X n to t5vc m X m : 
m 
t5ve = dve + Fta Va (dW . 

In this case we can also consider a vector w" in the pseudonormalEn _ m, 
and define 3 other displacements 2 : 

m 
t5wr = dw r + rbpwP (dW ml = n - m, 
m' 
t5vC =dvC +rgava(d$)q. p,q,r,oo.=m+1,m+2, ... ,n,-m, 
m' 

a,b,c, ... =1,2, ... ,m. 

1 SCHOUTEN and VAN KAMPEN: 1930 (21). 
2 WEYL: 1921 (2) - CARTAN: 1925 (8) p.47. 

Ergebnisse der Mathematik. Ill/2. Struik. 4 
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To each belongs a covariant derivative 

m 
17 C ::l C + rc a Bf'C 17 • rb V =Vb V ba V = b.rf'V, 
m 
r7 r , r + rr P Bf' Cr 17 • rb W = Cb W bp W = b • r f' W , 
m' 
17 C 0 C + r c a CU BC 17 • qV = OqV qaV = q .""v, 
m' 
17 r .'l r + rr p CU r 17 v r q W = v q W qp W = 'q v r f' W . 

Hence we can write these quantities in original variables of X n : 

m m 
Vuw" = B~C;VbWr, 

ln' m' m' m' 

V,u v" = C!B~VqvC, V,uw" = C!~VqWr. 

Such formulas also hold, as we saw, for non-holonomic systems. 
From the first formula we get 

where 

In similar manner 

where 

m. m 
The tensors H~;," and L/}, are the first and second (relative) curvature 

m 
tensors of the Lm in Ln' H,;,;." lies with its last index in En- m, with 

m 
the first two indices in the L m , L~~Ä lies with the middle index outside 

, m' m' 

of L m . There are also two other curvature tensors H~)." and L~ ~}. be-
m m 

Ion ging to the field of En - m , as H~i," and L~~Ä belong to the Em. 

4. D-notation. The differential symbols so far introduced do not 
exhaust all the possibilities of forming induced differentiation. It is, 
for instance, possible to construct a covariant differential of a tensor 
v,i" lying with the first index in L m and with the second in En- m (and 
therefore equivalent to v~P), which has these same properties. We have 
namely to form d$~B~~C:I7f'viv. We can introduce a notation which 
takes all these possibilities into account. We define, for a u" in Ln' 
v" in L m , w" in En- m , 

a) a differentiation with respect to Ln: 

D,n u" = V,u u", 

D,u VC = B~ V,u v· , 

D.uwr = C~ V,.w·, 
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b) a differentiation with respect to L m : 

Dbp = B~Vf'P' 
Dbu" = BtV/<u", 

DbvC = B~;Vf' v", 
Dbw' = BrC~ V f'w" , 

51 

c) a differentiation with respect to Lm" the displacement defined with 
respect to the En- m , which as a rule is non-holonomic: 

Dd = C~Vf'P' DqvC = C~B~Vf'v", 
Dqu" = q'Vf'u", Dqw' = C~~Vf'w". 

Similar formulas can be defined with respect to covariant vectors 
and other quantities. The operators D satisfy the ordinary rules for 
differential operators with respect to addition and multiplication. Even 
for inner products the ordinary rules hold: 

There should be made, however, astriet diserimination between the 
rules for D and the rules tor V so far as indices are concerned. 

The relative eurvature tensors ean now be written 
m 
Hb~"= DbB~ = DbDa~",l 
m 
Li:;. = DbBJ.. 

5. Vm in Vn • Let a RIEMANNian manifold Vn with fundamental 
tensor g;.,u be given. In an X m in Vn a RIEMANNian eonnection is indueed 
with fundamental tensor bab = bba 

bab = B!~g;.f'. 
There is a tensor cpq defined by C~~g;.,u, lying in the pseudonormalEn_ m• 

here the normal Rn- m . We have, from RICCI'S identity V,ug;." = 0, 

m m 
The two eurvature tensors Li~" and Hi.~" can be identified: 

m m 
Lb~" = DbbacBfg;'" = DbB~ = Hb~'" 

1 m 
We shall write Lb~" instead of Lb~'" and similarly for Hz,,;". If we 

introduee the unit vectors i" into the normal Rn - m , we have 

kb~% = -B:,~ (V)J i". We al:osee that1h~" for Vn- 1 in Vnsplitsinto 
q 

hba i", where hba = hab is the second fundamental tensor of the Vn- 1 and 
n' 1 

i" the unit normal. I t deserves to be mentioned that Hb~" is symmetrical 
'n 

1 V. D. WAERDEN: 1927 (11). - BORTOLOTTI: 1928 (6). - DUSCHEK-MAYER: 

1930 (20) p. 156. - See also LAGRANGE: 1926 (5) p. 10. - Historical account in 
SCHOUTEN and VAN KAMPEN: 1930 (21) p.774. 

4* 
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in a and b, but only when the V n - 1 is holonomic. In the same way, 
if the V m is replaced by a field of oon - m non-holonomic fields of Rm 

I 

in Vn , the Hb~" is not symmetrical in band a, but it is symmetrical 
when the Rm can be integrated to V m' The necessary and sufficient 
condition for the complete integrability of these R m into a system of 

I 

oon - m V m is the symmetry of H~b" in band a. 
The equations of GAUSS and CODAZZI assurne the form 

%ui. r "'1' 1" r 
B dba Gv R"I'A = - 2D[d H bl a (CODAZZI) , 

I 

where R~~}.v is the curvature tensor of Vn, Rdb~c of Vm.1 
6. Formulas of FRENET. At a point P of V min Vn we consider the local 

R m , in which a fundamental tensor bab and a unit tensor B~ are defined. 
The connection between the local Rn and the R m is given by the formula 

Db~" = B~. 

The application of the operator D b to B: gives the relative curvature 
kmor I 

DbB~ = Hb~'" 
1 

This tensor Hb~" lies with its first two indices in the Rm , and with 
its last index in an Rm, _L Rm. This Rm, forms, together with the Rm, 
an Rm.+m, (mI = m) in which all vectors iJaiJb~x lie. For the case of a 
V 2 in Rn this Rm, is in general an R 3 , in which the "curvature cone" 
lies, formed by the curvature vectors of all geodesics of V 2 issuing from 
P. If special conditions are introduced, the Rm2 may have fewer dimen­
sions than three. For the case of a V 3 in Rn this Rm, is at most an R 6 ; 

for a V m. we have m2 <: iml (mI + 1). The Rm, may be called the 
"first normal space". In the case of a curve the R m, is the principal 
(first) normal. 

If we pass to vectors iJa iJbiJc~", we get aspace Rm• + m, +m. in which 
all vectors lie. There is therefore in general an Rm, 1- Rm• + m,' the 
second normal space. We denote the fundamental tensor and unit 

2 2 

tensor of this Rm, by Gp,q" B;~, and denote, accordingly, those of 
I 1 2 

Rm• by GM., B;~. We have for DbB;, 
I 2 2 1 I 

B~ DbB;, = -B;2Hi,~" = -Hi,:p.; 
2 2 2 2 2 2 

B~2DbB;2 = B~'~2DbB;'= -B~'~2Db(AI - BD = 0, 

1 For Am in An see SCHauTEN: 1924 (5). - For L,. in Ln see HLAVATY: 
1930 (24). - Comp. also BORTOLOTTI: 1931 (8). - HLAVATY: 1926 (9). - Related 
is a paper by RUSE: 1931 (29). 
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2 1 

SO that the tensor DbB;, + Hb~P' lies with its v-index in a region ..LR1/'I, 
and ..L Rm" hence (as the order of differentiation guarantees) in the 
Rm,. We write 

2 1 2 

DbB~, + Hb~p, = Hi,;,". 

In this way we can continue to define with the aid of the third, fourth ... 
etc. normal spaces. 

as long as the left hand side does not vanish identically. The successive 
relative curvature tensors of higher order lie with their v-index in the 
successive first, second, third, ... , normal spaces R1/'I.' R1/'I" R1/'I" ... 
The osculating l-space of every curve of the Vnp considered as a curve 
of Vn , lies in the Rm• +11'1,+ ..• +11'11' When for a certain mk' m1 +m2+··· 
+ mk <: n, the left hand side vanishes, the last equation' becomes 

k k-l 

DbB~k = -Hb~Pk' 

Hence, we have, for V 1/'1 in Vn , the lormulas 01 FRENET I 

o 
H=O, 

k 
H=o. 

l = 1, .. 0' k 

For VI in Ra these formulas are equivalent to the ordinary formulas 
of FRENET for space curves. 

The integrability conditions of the first of these equations are the 
equations of GAUSS-CODAZZI. The integrability conditions of the other 
equations give generalizations of these equations.2 

7. Curves in Ln. In a general Ln no orthogonality relations exist 
and the theory must take another form. So far, only the case of curves 
in Ln has been discussed. Formulas similar to those of FRENET can 
here be found due to the fact that, though no orthogonality relations 
exist, there exists on the curve an invariant parameter. Indeed, the 
equation 

determines, but for a multiplicativc constant, a scalar density of weight 
- 1 along the curve C. 

1 SCHOUTEN and VAN KAMPEN: 1931 (40), also 1930 (21). - Comp. DUSCHEK­
MAYER: 1930 (20). - MAYER: 1931 (34). - EURSTIN: 1932 (35). 

2 For the equations of GAUSS-CODAZZI for Am in An see SCHOUTEN: 1924 (5). 
- EISENHART: 1927 (1). - For invariants of Am in An see VAN DER WAERDEN: 
1927 (11). - MICHAL-BoTSFORD: 1932 (33). 
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We introduce, for a vector field u" defined along C, the vector 

Du" = ou"/dt = du"/dt + r::A uA d~f.I./dt. 
Then we can construct the following vectors 

v" = d~"ldt, 
1 

v"= Dv", 
2 1 

v" = Dv" V" = D V" . 3 2 ' •.• , k k-l 

In general k = n, but under circumstances the series of V" may be inter­
t 

rupted for a k < n. Let us assume the general case that k = n, and 
that the vectors v", v", ... , v" form a linearly independent set at each 

1 2 n 
point of the curve. 

The parameter t will now be changed into a function p = p (t) of t. 

Then we can define anew 

w" = D w" ... , w" = D w" . 
2 1 ' n n-l 

The ~" again form an independent set. We now determine p in such 
t 

a way that n (n +1) 

(dt)-W['" w'" W"nl = - 2 V['" v'" V"nl = 
1 2 ..• n - dp 1 Z ••• n 

n(n + 1) 

= _ 2 VI2 ... nA[",A", A"nl = (dt)-
- dp 1 Z· •• n 

= wA[",A", A"nl 
1 2'" n . 

This is an invariant condition as VI 2 ••. n is also a scalar density of 
weigh t - 1. Hence t 

p = f(Vl~ .. ~tn(n+l) dt 

to 

is an invariant parameter along the curve, and the vectors 

w" = d~xldp, 
1 

w"=Dw", ... , 
2 1 

w"=Dw", 
n n-1 

form an invariant set of n independent vectors in the En of Ln defined 
at a point of the curve. 

As Dw["'w"' ... w"nl = (Dw)A[I"'A z"' ... A"nl = 0, 
1 2 n n 

it follows that D w" is a linear combination of w", . .. w": 
n 1 n-l 

Dw" = "lW" + "2W" ... ""-1 w". 
n 1 2 n-l 

This equation and 

Dw"= w", 
i i+l 

i=1, ... ,n-1 
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form analogues, for a curve in Ln' of the equations of FRENET. The 
functions "1'" ., "n-1 of p, the affine curvatures, can be found from 
the FRENET equations by determinant expressions. 

These equations can be cast into a simpler form. If we introduce 

the n covariant vectors ~';" i = 1 , ' .. , n, by the relations 

application of the operator D gives the equations 

i i-I i 
Dw;. = - W;. - "n-i WJ., 

i=1,2, ... ,n 
o "0 = 0, W;, = 0 

as a result of the FRENET formulas. 
By further substitution 

n n-1 
Du;. = - u;., 

n-I n-2 2 1 
Du;. = -- UJ., •.. , Du;.= -u;.' 

and transformation to the corresponding contravariant vectors ~t: 
t 

i . 
UJ.1!J. * bj, 

J 

we finally arnve at the formulas 

Du"=U" 
1 2' 

Du" = - fl u" + u" , 
2 <::1 1 2 

D u"= --fl u" + u" k-1 <::k-2 1 k' 

D u"= -(ln-2 u" + u", 
n-1 1 2 n 

Du" = -(ln-l u", 
n 1 

i 
u,u"- A" Ai - ).' 

in short: 

Du" = - fl· _ u" + u " . i <::J 1 1 1+1' 

1=1,2, ... ,n, 
(10 = 0, 

u "=0. 
n+l 

which show more outer similarity to the c1assical FRENET formulas. 
The (11 ... (ln-1 are functions of the pa rameter p. The n vectors u", ... , u" 

1 n 
form the associate affine ennuple at a point of the curve1. 

It should be noticed that this parameter p does not pass into the 
arc-Iength s when the Ln becomes a Vn . For this reason the (I) ••• I?n-l 

do not pass directly into the ordinary curvatures of a curve in Vn . 

8. Pm in Pn. In an X n with a projective connection Pn (eh. V) an 
X m is given. Then a Pm can be introduced into this X m by means 
of a system II~b' Q~ satisfying the homogeneity relations 

1 HLAVATY: 1929 (11) - see also 1931 (10), - Extension to curves on non 
holonomic L n _ 1 HLAVATV: 1930 (24). - For curves in a VVEYL connection see 
SCHOUTEN: 1924 (5), - HLAVATY: 1928 (9), - Related is a paper by WUNDHEILER : 
1932 (23). 
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We cannot yet say that the Pm is induced into the X m by the P n as 
long as no relations are given connecting the coefficients of dis placement 
in P n and Pm' We can, however, already define a relative curvature 
tensor Hb~'" a quantity of degree - 1 in x", 

H ··" D B" A B" BfdI/" B" I/'c ba = b a=Ob a+ ba ,uJ,- c ab, 

satisfying the identities 

H"" a - P'''Bi' _ B"p'·e ab X - ,l' beb, 

H ··" b Q"!' "Q'e ab X = . i. Ba - Be . a • 

Induction begins when we relate the Q~ and QA by Q~ = B~QA' The 
ni~ and II,l~!' can be related by equations similar to those for L m in f n , 

if the Pm is fixed in P n: 

n 'e B,uAe 1/" + Be 0 B X 

ba = ba"',ld "Ob a' 
Then 

Q'e Be" QY 
• b = y'b ',ll' 

In this case we have a second relative curvature tensor 

L~~J,=B~~f7",B1. 

In such a connection there are geodesics only when certain conditions 
are satisfied. Indeed, a curve is here a manifold of two dimensions. Hence 
a geodesic must be defined by the equation H~ b" = 0, or 

A B" + B",J· ll" B"Ll'e 0 Ob a ba "'A _. e ab = , a, b = 0, 1 
or 

if for a moment we write ua, ub for xa, xb• 

As totally geodesic P 2 are not in general possible, certain integrabi­
lity conditions must be satisfied. We find that they are of the form 

Pi" = p!,x" + (P - Pi.'xl!)A7, 

Q~,ll = q",x" + (P - Pi.'Xi!)A~. 

P;"xA = Px" 

PA' qi. arbitrary. 

These conditions are the necessary and sufficient conditions that through 
every point of P n a geodesic line may pass in every direction. 

In this case it can be proved that the P n can be uniquely determined 
from the X n considered as an An but for a projective transformation 
of paths1• 

1 VAN DANTZIG: 1932 (1). - For manifolds in D n see BORTOLOTTI: 1932 (15)· 
- See on the paths of a projective connection also CARTAN: 1924 (2), - THOMSEN: 
1930 (4). - ün curves in special P n HLAvArv: 1931 (9). 
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second derivative v 15 d k s D 'J) 

first derivative f.l y c J r C Q; 
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first contra varian t u LX a h p A m 
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