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Preface.

This monograph intends to give a general survey of the different
branches of the geometry of linear displacements which so far have
received attention. The material on this new type of differential
geometry has grown so rapidly in recent years that it is impossible, not
only to be complete, but even to do justice to the work of the different
authors, so that a selection had to be made. We hope, however, that
enough territory is covered to enable the reader to understand the
present state of the theory in the essential points.

The author wishes to thank several mathematicians who have helped
him with remarks and suggestions; especially Dr. J. A. SCHOUTEN of
Delft and Dr. N. HaNSEN BaLL of Princeton.

Cambridge, Mass., October 1933.
D. J. STRUIK,
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Introduction.

The theory of linear displacement is a result of an investigation into
the foundations of differential geometry and also into the structure of
geometry as a whole. Though based upon the analysis of space conception
undertaken by RIEMANN in 18541, it received its impetus only with
the advent of general relativity in 19162 Here, space-time is interpreted
as a RiEMANNian manifold which is locally euclidean of the MINKOWSKI
type, so that the question arises how the comparison between the
euclidean world at different points is being performed. This'led to the
discovery of parallelism in a RIEMANNian manifold3, then to the exten-
sion of this parallelism to manifolds of a more general type. The essential
character of the local space changed, in these investigations, from
euclidean to affine, the character of the general manifold from Rik-
MANNian to what is now called affine with or without torsion. This is
the principal idea of the work done from 1917 to 1924 by WEYL, SCHOUTEN
and EppincgTon4 Closely connected with these investigations are the
basic papers of HESSENBERG and KONIG3, which deal with the purely
mathematical aspect of the space problem only. From the beginning
there has always been an intimate relation between the various attempts
to improve or to generalize the theory of relativity and the systematical
development of the mathematical theory. For evidence there is, for
instance, the recent monograph of VEBLENS,

The development of the theory proceeded mainly in three directions.
In the first place there came the further study of the displacement of
a vector in the tangent space of the manifold (X,), the generalization
of parallel transportation in the sense of LEvI-CiviTa. Representative
of this stage in the theory is ScHOUTEN’s book ‘“Der Ricci-Kalkiil”
(1924)7. In this sphere also falls a displacement which received con-
siderable attention when EINSTEIN proposed it as a possible space-time
manifold8, and the related theory of HErMITian displacements®.

A second mode of attack focusses not so much on the displacement
of a vector as on the lines of constant direction of the connection, the

1 RIEMANN: 1854 (1). 2 EINSTEIN: 1916 (2).

3 Levi-CiviTa, 1917 (1); SCHOUTEN, 1918 (1).

4 WEYL: 1918 (2) — 1918 (3) — 1923 (8). — SCHOUTEN: 1924 (5). — EDDINGTON:
1921 (1) — 1923 (9).

5 HESSENBERG: 1916 (1). — KoONI1G: 1919 (1) — also 1920 (1) — and 1932 (5).

6 VEBLEN: 1933 (1). 7 SCHOUTEN: 1924 (5).

8 EINSTEIN: 1928 (2). — See E. BOorRTOLOTTI: 1929 (8).

9 ScHOUTEN and VAN DaNTzZIG: 1930 (6).

Ergebnisse der Mathematik. III/2. Struik. 1



2 Introduction. [182

so-called “‘paths”. In this case the starting point is a system of oo?#~2
curves in an #-dimensional manifold, which can be defined by a system
of ordinary differential equations of the second order. It is natural
to inquire for the different kinds of connection compatible with the
system of curves as paths. This leads to projective transformations of
a displacement and to projective invariants. A similarity between these
transformations and the conformal transformations of a RizMaANNian
manifold leads to conformal invariancel. The field was opened in 1922
by VEBLEN and EISENHART, its method underlies especially the work
of VEBLEN and T.Y.Tuomas and EisenHART's “Non-Riemannian
Geometry” (1927)2.

A third theory seems, however, to embrace all the others. It is con-
nected with the work of E. CARTAN who established it and has been de-
veloping it since 1922; it appeared for the first time in a paper by K163,
This theory substitutes for the displacement of a vector as primary element
the mapping of a space at a point of a manifold on a space at a point
in the infinitesimal neighborhood. Displacement of a vector in the affine
connections causes such a mapping, but a special variety, namely the
affine mapping of affine spaces. It is, however, just as possible to map
local spaces projectively upon each other, or conformally. The local
space does not need even to be the tangent space; it may differ from
it in fundamental group and in number of dimensions. The displacement
is then not necessarily a vector displacement; it may be a point dis-
placement, a sphere displacement, a displacement of a line complex,
etc. Differential geometry in this stage becomes the study of an #n-di-
mensional manifold X,, with each point P of which is associated a
space S;, defined by a transformation group and of %2 dimensions, and
such that the spaces S are related by a law defining the comparison
of the S; at P with the S; at a point P’ of the X, at infinitesimal
distance?.

It could now be shown that the projective and conformal theory
need not be derived from the affine or RiemMannian theory, but that
they are capable of independent foundation. Just as either the classi-
cal affine or the classical projective geometry can be taken as the
primary element, and the other derived from it, so can the “curved”
affine and projective geometry; the same may hold for the conformal,
the euclidean and the projective geometry, though this has not yet
been satisfactorily shown. To projective geometry a fair amount of
study has been devoted, so that the independent structure of this con-

1 This point is already in WEYL: 1921 (2). — VEBLEN: 1922 (5). — EISENHART:
1927 (1). — See VEBLEN: 1933 (1).

2 EISENHART-VEBLEN: 1922 (3). — VEBLEN: 1922 (4).

3 CARTAN: 1922 (6) — 1923 (1), (2) — 1924 (1), (2). — Konic: 1919 (1).

4 SCHOUTEN: 1926 (1).
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nection is well established!. Recent attempts of EINSTEIN and others
to establish a more comprehensive theory of relativity can also be
interpreted in the frame of this geometry%. Even the Dirac theory of
the spinning electron has turned out to be an analysis of HERMITIAN
quantities fitting into the generalized differential geometry?.

It is clear that this type of geometry seems far removed from the
principles laid down in KLEIN's program of Erlangen. In fact, this
program, despite its tremendous influence on the geometrical thought
of the last sixty years, was already in a certain respect antiquated at
the moment it was conceived. RIEMANN’s conceptions on general
manifolds went beyond the scope of the Erlangen program. In the
infinitesimal neighborhood of a point, however, KLEIN’s conceptions
hold, even in RIEMANNian manifolds and in the other manifolds of
the theory of linear connections. The new theory therefore does not
break with KLEIN’s program, but generalizes it and gives it a new
content4.

There are several directions in which this theory of linear dis-
placements has again been generalized. A series of papers have dis-
cussed the case for which the displacement does not only depend on the
points of the X,,, but on the line elements. This work dates back to
FinsLER and BERWALD; for a recent exposition we may refer to Kawa-
cucHI®. Another method is to let the displacement be a displacement
dependent on the points of the X,,, but to introduce mapping of line
elements of the local spaces. This has been suggested by WIRTINGER.
We may even combine the first and the second methods of generalization®.
Linear displacements may be defined in function-space?. And finally,
we may give up the linearity of the displacement, which leads to con-
nections, some of which have already been studied by Pascat®.

The mathematics to be used in these theories is the so-called tensor
analysis, or calculus of Riccr®. In the course of years it has undergone
considerable change but the central idea of this method has been pre-
served. In this monograph we shall use the notation and terminology
suggested by and under the influence of SCHOUTEN?(, a notation which

1 van DanNtzic: 1932 (1) — 1932 (2).

2 See VEBLEN: 1933 (1). — ScHOUTEN and VAN DANTZIG: 1932 (4). — ScHoU-
TEN: 1933 (2).

3 SCHOUTEN: 1931 (18).

4 CARTAN: 1924 (3). — SCHOUTEN: 1926 (1). — VEBLEN-WHITEHEAD:@ 1932
(17) p. 31.

5 FINSLER: 1918 (4). — KawacGucHI: 1932 (12).

8 WIRTINGER: 1922 (2). — KawacGucHI: 1931 (14).

7 KAWAGUCHI: 1929 (15). — MicHAL: 1928 (13). — Comp. MiCHAL-PETERSON:
1931 (13).
8 PascaL: 1903 (1). — See also NOETHER: 1918 (5).
9 Rrccr: 1884 (1) and later.
10 See vAN DANTZIG: 1932 (1), (2). — GOEAB: 1930 (13). — SCHOUTEN: 1924 (5).
1*
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allows us to deal with all cases in a uniform way, and to preserve at
all times, throughout the fog of the computational work, the guiding
geometrical principles. ‘

Textbooks illustrating the development in different stages are the
books of WEYL, SCHOUTEN, VEBLEN, EI1SENHART!. There are also
several papers which give comprehensive accounts. We mention those
of SCHOUTEN, VEBLEN, CARTAN, STRUIK, BORTOLOTTI, WEATHERBURN,
E1sensarT2 Extensive bibliographies of the subject as a whole or of
parts of it are found in the textbooks mentioned and also in papers by
STRUIK, HLaVATY, vaN DaNTZIG, and otherss.

1 WEYL: 1918 (2) — 1923 (8). — SCHOUTEN: 1924 (5). — VEBLEN: 1927 (2) —
1933 (1). — EI1SENHART: 1927 (1).

2 SCHOUTEN: 1923 (5) — 1926 (1). — VEBLEN: 1923 (7). — BORTOLOTTI: 1929
(8) — 1931 (3). — CARTAN: 1924 (3) — 1925 (1). — STRUIK: 1925 (4) — 1927 (3).
— EISENHART: 1933 (7). — WEATHERBURN: 1933 (8).

3 STRUIK: 1927 (3). — HLAVATY: 1932 (7). — van DanNTzIG: 1932 (1).



Chapter I.
Algebra.

1. Vectors and tensors in E, . The starting point in the investiga-
tion is the geometry of an affine space of # dimensions E,, and the corre-
sponding tensor algebra. Such a space can be defined as an ordinary
euclidean space of #» dimensions R,,, in which only those properties which
are invariant under the group of affine transformations are studied.
For our purpose we confine ourselves to the subgroup which leaves the
origin invariant. The transformations of this group, %,,, can be given
by the equations

w7 = DAY x = AY ",
) X h Y= =1,2,--,1m
Y, = =12, . W

4= 'A:‘ = Determinant of the A% 40 Y

%A1
where the x*, #* represent the oblique CARTES ian coordinates of a point
before and after the transformation in the coordinate systems that we
can indicate by (%) and (»'); the A% are constants. The sign X' is omitted
in accordance with the usual convention. The inverse transformations
can be given by

,

v =Y An " = Anx
<

In such an E, we can define contravariant, covariant and mixed tensors?
in the ordinary way. The notation can be seen from this example:

n'l...n; ull...n;ll...b Hio.oitg
v T A gV Medye

This is a transformation of a mixed tensor of order ¢ + #», of contra-
variant order ¢, and covariant order », and
Au;...x;ll...ﬂq: A%; A%é A%;Ali A}”g Alr
’ "y ng """ "g /1'1 lé"'

’ ’ e
1o tgdan A, b

The effect of a coordinate transformation is therefore to change the
indices but to leave the central letter (in our case v) unchanged. This
central letter stands for the geometrical entity represented by the tensor,
an arrow, a plane, a transformation, a complex, etc. The central prin-
ciple of vector analysis, and of all direct notation, namely the computa-

1 Following the general use, we speak of femsors. Often the word affinor is
used for what we call tensor; the word Zensor is then used for what we call a sym-
metyvical temsor. The term polyadic (dyadic, etc.) has become obsolete. Instead
of the term order the term valence has been recently used.
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tion with the geometrical entities themselves, is in this way carried
into tensor calculus. The connection of two or more entities by multiplica-
tion, done in direct notation by special symbols, is here performed by
agreements about the indices.

Two special symbols however are further required, a symbol for
symmetrical multiplication and a symbol for alternating multiplication,
e. g.

1
VG Waw) = 57 010n + 0002 + 0 Wiy + Wiy + 0, Wps + V20, p)

:3

UV Wyl = (1);, Wy + Uy Wy + v Wiy — Vp Wiy — Uy Wyg — V5 wv,u) .

';!
We also use these brackets to denote the symmetrical or alternating
part of a tensor, e. g.

1
v(xl) — a (vxl + le)

Wiy oy = W) a0 h, — Wi, aigh, + Wi 2,14, — €tC., in total 24 terms).

4l (
Such an alternating tensor vy,;,.. ., is called a g-vecior. There is
also a mixed tensor 45 with components 1 (if % = 1) and 0(if % =+ 4)
in all coordinate systems. This is the unit tensor and it follows equations
such as v;, 4% =wv;,. It should not be confused with the so-called
KRONECKER symbol ¢, which is simply a matrix of #* numbers equal
to 1 when % = 1 and to 0 when » #= 4. The 07 have nothing to do with
transformations. The unit tensor is therefore a mixed tensor, the com-
ponents if which in every coordinate system are given by the KRON-
ECKER symbol.

2. Densities. The volume of an #-dimensional volume in E, is an
invariant under the group ¥, only when 4 =1. When 4 + 1 a trans-
formation multiplies the value by 4. We call a quantity p which
behaves in that way a scalar density of weight —1. Densities are written
with a Gothic letter. A scalar density of weight +f is defined by its
transformation

(’b): A—f(f)) (the %, % indicating the coordinate systems).
A tensor density of weight ¥ is defined by the transformation
21 ... %y % % }*1 A Hyeeo K
ol = AT % g DU Theeidr

A contravariant n-vector vl""l" = ylh---4l has all its components
zero except those for which the indices are all different; they are all
equal to »'2-" or its negative. This component v'?-+" is itself a
scalar density of weight —1 as

ror 1 ror s
vl: —A%/z ,Ull}., ™ :——Au?"'”]vlz'“”=Av12"‘".
1hz . An n! mnz..
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To every scalar density of weight —1 belongs a volume in E, with an
n-dimensional screw-sense, determining a contravariant #-vector, and
similarly a covariant #-vector when the weight is +1.

An example of a tensor density of weight +2 is |4;,|4,,, where
|h1,.| is the determinant of the tensor 4;, of rank n. Tensor densities
of weight  are also called relative tensors of weight —f.1

3. Measuring vectors. To every coordinate system (x) belongs a set

of # contravariant measuring vectors (i”, t;", ..., €, in short f”, where
n
f” has components (1,0, ..., 0), g” (0,1,0,...,0), etc., in short
e* £ 6.

A

The star above the = sign meaning that the equation holds only for
a special coordinate system.? The components of the ¢ change when

we pass to another coordinate system (x'): f”' =A% ¢“. In the same

. . 1 2 n o, %
way we have # covariant measuring vectors ¢;, ¢;, . .., €;, In short ¢,

satisfying

The contravariant measuring vectors determine the edges of an #-
dimensional parallelepiped. Its (# — 1)-dimensional faces can be taken
as the covariant measuring vectors, a covariant vector being geometri-
cally represented by an E,_; in the same way as a contravariant vector
is represented by a point E, in conjunction with the origin. Point v*
and E,_;w, are incident if v*w,=0. Covariant measuring vectors
‘'selected in this way can therefore be related to the contravariant
measuring vectors by the equations

v
el ey 2 a,.
M
‘We have, besides, as a result:

i
_ Au
e,,f” = A%.

The four symbols 47, 07, Zl, f” therefore represent all the same

numbers in a fixed coordinate system, but follow different laws of
transformation, 1. e.

b
® #* Sx % Ey
AT 2 L, er.

From the equations following from the definition
CAY A7 = A7

1 WEYL: 1918 (3). — VEBLEN-THOMAS: 1924 (8). — THOMAS: 1925 (6). —
TrOMAS-MICHAL: 1927 (5). — HLAVATY: 1928 (10). — ScHOUTEN-HLAVATY : 1929 (2).
2 See a more general application in SCHOUTEN-VAN DANTZIG 1933 (6).
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we see that A% can be taken as the (»') component of the transformation
matrix A%. This justifies the use of the same central letter 4 for trans-
formation matrix and unit tensor.

Tensors can be decomposed with respect to these measuring vectors,
e g.

M2 hese,
0T
the % are scalars, defined only with respe(ft to the coordinate system

oT
of the ¢,.1 Densities can also be decomposed with respect to these
measuring vectors:

p* * B e*
the b are scalar densities of the same weight as the vector density v*.2

4. Point algebra. Tensors are defined with respect to a certain
group of transformations. On the geometrical interpretation of this
group depends the geometrical interpretation of the temsors. It is
therefore possible to introduce a projective interpretation, a conformal
interpretation, etc. We shall illustrate this by sketching a point algebra.

The starting point is an #-dimensional projective space D,,, in which
a coordinate (# -- 1)-cell is given by an origin-point P and # linearly
independent other basic points. We can now build up a system of
homogeneous coordinates, in which P is given by a set 1&“, a=0,1,2,

..., n, and the other basic points by u%, ¢ =1, 2,...,n. Every other
v

point v% of D, can be expressed as a linear combination of the u®. This
brings us to an algebra identical with the point calculus of MOBIUS®.
If we consider as essential the components and not their ratio, we have
to attach to every point a weight, and consequently we will say that
every vector v® represents a point of certain degree. We can represent
the transformation of points under a change of coordinate system in
the following way:

a,b,...=0,1,...,n

pe = Y p*
e a, v, ..=0,1,...,%.

Covariant points can be interpreted as D, _; in D,,. They transform in
this way:
mbf - 912» mb .

We may, without loss of generality, take the determinant | |=1.

1 About this process of ‘‘Abdrosselung” see SCHOUTEN-VAN KAMPEN:
1930 (21).

2 KO6N1G: 1920 (1) — 1932 (5). — SCHOUTEN: 1924 (5).

8 Mo6BIus: 1827 (1). — See R. MEHMKE: 1913 (1).
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We can define in a similar way covariant, contravariant and mixed
tensors of higher order and given degree. There is a unit tensor %}

P = g[g pb .1
We normalize this tensor in such a way that
QItl * a

Extension of the vector symbolism to the conformal group has also
been investigated?.

5. The general manifold X, . Classical differential geometry is
obtained by taking a euclidean space Ry (usually, N = 3) and im-
bedding into this Ry certain surfaces V,, (usually # = 2). The geometrical
properties of the Ry induce into the V, a differential geometry, that
is a way to compare the geometrical properties at one point of the V,,
with those at a point of the ¥V, in the immediate neighborhood. The
theory of displacements begins differently. It starts with an #-dimen-
sional manifold X,, in the sense of analysis situs, and then sets up a
group of postulates by which it is possible to define a differential geo-
metry without the necessity of imbedding the X,, into a metrical manifcld
of more dimensions. To allow this, the X, must first satisfy certain
general conditions®, which will allow us to build up a one to one corre-
spondence between a set of points P of this X, and a set of ordered
sets of # real numbers &, % =1,2,...,# which form a coordinate
system (%) in X,,. The & are called the original variables. It must be
possible to define the coordinate transformations
(©x) & =1,

%A p, v, ... =1,2,...,n

. o0&
A = Determinant ] 9‘5—; “ :%: 0 H,, l’, //; ’V’, L= ,1/, 2/, . n’

in this X, in such a way that there is about each point E" a region in
which the transformation of the dlfferentlals

(®n) A& = " &

65"
defines an affine transformation in an E,. Under circumstances it may
also be required that higher derivatives of the functions involved exist.
A manifold X, in which a differential geometry can be constructed
may be called a regular manifold, and when we write X, we always
mean such a manifold.

1 CARTAN: 1924 (3). — GoraAB: 1930 (13).

2 CARTAN: 1923 (2). — See also BrascekE: Differentialgeometrie III.

3 VEBLEN-WHITEHEAD: 1932 (17) — 1931 (1). — cfr. also JARNEFELT:
1928 (14). — VEBLEN: 1925 (3).
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Transformations (®;) form a group, which allows us to define in
the E, at a point P of the X, (“the local E,”’) all the tensors and tensor
densities defined in the preceding articles. As this is possible at all
points of X,,, we are able to define fields of tensors and tensor densities,
defined as functions of &%, transforming under (®,) in the ordinary way,
if we take AL = 0&7/0&", AL = 0E* |0, e

v = A¥ v,

When, in an X,, we deal with a field of vectors, tensors, etc., we
will simply say that we are dealing with “a vector”, “a tensor”, etc.
if this can be done without ambiguity. We assume analyticity for
these functions, though the existence of a certain number of derivatives
is sufficient for many purposes.

There are fields of functions of & which also are transformed under
a coordinate transformation, but not like tensors or tensor densities.
A simple example is 0v”/0 &, which transforms as follows

(")1}”/__ ,,,Ic")v

a;';‘vx S5 —651' S5 ’” 657

+ v AL = AL 6, v + v A4%0,47,
where we write 0; = 0/d &, (9,1, = 0/0 &, etc.

We now introduce with VEBLEN the notion of geometrical object
(more briefly: object)1. This is a set of N functions of the &%, given
in a coordinate system (%), which obey a transformation law by which
we can compute a unique corresponding set of N functions of & in
the transformed coordinate system, expressed in original functions,
the A7 and their derivatives. If the transformation is linear homo-
geneous, with the parameters of the transformation as coefficients in
the way indicated in art. 1, we have a tensor (special case: scalar,
vector). Densities are also geometrical objects. Tensors and densities
are called guantities. A more general object is the set of CHRISTOFFEL

symbols {,u%/l} belonging to a symmetrical tensor g;, which transforms

/ % % x x
{;2.'} - Aﬁ,ﬁ,,‘{ﬂl} + 439,47,

where the transformation involves only the N “components” { Hl}, the

parameters of the transformation and their first derivatives. The
system (v*, 9, v*) is also a geometrical object and an example of an
“absolute system’ of ViTarLi? (but not d;v* alone).

6. Non-holonomic measuring vectors. In the local E, at a point P

. . . ®
of X,, we can again introduce two sets of measuring vectors f" and ¢,

1 See VEBLEN-WHITEHEAD: 1932 (17) p. 46.
2 VitaLi: 1929 (24). — Comp. BorTOLOTTI: 1931 (6).
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defined with respect to the variables &% But we can also introduce
these measuring vectors independent of the &%; we shall then write ¢*,
T

]fzi , 4,7, k=1,2,...,n. Then we have a new coordinate system (k)
in the E,, (not necessarily in the X,) and we can pass from one set of
measuring vectors to another set, leading to a new coordinate system (%’).
We have

k i
2 k. . »
fe,,iéi, f”el—A;.-

The components of ¢* and ¢; with respect to (£) can be indicated by
E b . . .

¢®, ¢;. We have A% as the unit tensor in the new coordinate system:

(4

fnk

%_“(SL' AL

4
i

The components of a vector v*, w; with respect to these coordinates
can be denoted by latin indices,

i )
v =vre, X ure,,
?

k
wi:wlilei%wwl.

K

When both the ¢*, ¢; and the original measuring vectors exist in the
1
same E,, we can give a meaning to a component like v;;"*, namely,
i

.o e y . ' i .,
v; ¥ =u; kAL, where A% =¢;¢%¢; also A =¢*e;.
Aj ij 3 :, i i B

We are now able to introduce a system of “local” coordinates into the
local E,, defined by means of a vector x* with respect to the measur-
ing vectors,

Xt = x”ei,,c_zkéx"g,,
2
which coordinates are independent of the £#. At each point P of the
X, such systems can be estabhshed The ¢ then build up in the X,

# congruences of curves, but the e; do not necessarlly build up # systems
of ootX, ;. This is the case only if

k
3[,4 ey =0, equivalent to 6[MAf] =0.

Then the ’é,l are gradient vectors, and there exist # independent scalar
k k

fields & such that ’é,l = 0, &. These scalar fields can now be taken as

original variables &* in the X,,. If, however, 0, ]2;4 74 0 there are no

such scalar fields and the expression



12 1. Algebra. [192

is not an exact differential. Then we say that we have in the E, a non-
holonomic system of parameters!. In such a system we can introduce

the same algebra as in a holonomic system, e. g.,

A

1
vt = w%wz%vﬂ_)vl = W, ps U",

which is the same geometrical relation referred to different coordinate
systems.

An example in RiEMANNian geometry is that of the introduction
of an orthogonal ennuple, that is a system of # mutually orthogonal
congruences. Riccr has often simplified his equations by referring them
to such an orthogonal ennuple, taking unit vectors as measuring vectors.
We shall return to this in Ch. IL

7. Pseudotensors. It is often necessary to introduce into the X,
apart from the coordinate transformations

¥ =), A=]8.8%0
a transformation of an auxiliary coordinate &°
EY — q £°

where 7 is a function of the &% This allows us to define a pseudoscalar
p of class f which transforms in the manner
%): ﬁ(s), in short p" = tp
where 7t is the fth power of 7, and pseudotensors of class ¥, as

v = AL v

Two cases are possible, T being either dependent on the transforma-
tion of the &#, orindependent. A special case of dependence is 7=24"1,
In this case we get the densities and for this reason we denote
pseudoquantities also with a gothic letter. The other case is new.

To the coordinate £° belongs a measuring scalar e of class 1 with
one component of value 1 for this special coordinate system. When
&° is transformed to £° ==7£° we have a new measuring scalar e’,
with component 1 in the new system. Hence in the old system

gXtrets.

To every pseudotensor of class f belongs an ordinary tensor with the
same components with respect to &%, £°, e. g.
v, 2 et .2
Pseudotensors, like tensors, are quantities. They appear often in an
intermediate state of the theory, when it is necessary to single out
one variable.

1 VRANCEANU: 1926 (4). — HORAK: 1927 (8). — SCHOUTEN: 1929 (4). — Comp.
also HESSENBERG: 1916 (1). — SCHOUTEN: 1918 (1). — CaArTAN: 1923 (1). —
HrLavaTVé: 1924 (9). — VRANCEANU: 1928 (15).

2 SCHOUTEN-HLAVATY: 1929 (2).
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Chapter II.
Affine connections.

1. The principle of displacement. In euclidean geometry it is pos-
sible to move a vector parallel to itself from one point to another point
at finite distance. This means that in this geometry a law is given by
which it is possible to associate in a unique way a vector to every point
in space, if a vector is given at one point. The length of one vector
and the angle between two vectors are invariant under such a parallel
displacement.

This parallelism allows us to compare vectors at different points of
euclidean space as to length and direction. By parallel displacement
one vector can be brought to the point at which the other vector is,
after which comparison can be made by purely local means.

On this principle is based the method of the moving trihedron which
plays an important role in the differential geometry of curves and sur-
faces. In the case of a surface ¥, in euclidean space Ry, we have connect-
ed with each point P of V, a local trihedron built up by two vectors
in the tangent R, and the surface normal. It is useful to express this
by saying that with every point of V7, a local R, is associated. The
moving trihedron method allows us to compare the local Ry at different
points of the V,.1 In this case we can combine the local R, into one
“collective” R;. We shall see that this is a special case from the point
of view of displacement theory. '

An entirely different case was presented by Levi-Civita and Scuou-
TEN2, They showed how it is possible to connect with a RiEMANNian
geometry an intrinsic parallelism, which does not require the imbedding
of the RiEMANNian manifold V,, in a euclidean space of more than # di-
mensions. In this displacement parallelism is defined for points at
infinitesimal distance in a given direction. The length of the vector
and the angle between two vectors again remain invariant. With the
aid of this a covariant differential is defined

% ® % A
dv* = dv —[—{[ul}v“(if )

where dv* is again a vector. The parallel displacement along a curve
is uniquely determined, but not for two points connected by different
curves. We can express this kind of displacement by saying that with

! DarBoux: 1889 (1) Livre V Ch. L

2 Levi-CIviTA: 1917 (1). — ScHOUTEN: 1918 (1). The method of Levi-CiviTa
still required imbedding, though his result was intrinsic. ScHOUTEN, however,
used an intrinsic method.
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every point of the V, a local R, (the euclidean tangent space, or the
local tangent space of the first differentials) is associated, and the laws
of this parallelism allow us to compare the local R, at different points of
the V,.

A third case, seeming entirely separated, is CLIFFORD parallelism
in elliptic space. Here we can define, in two different ways, a direction
through a point parallel to a given direction through another point at
finite distance.

The theory of linear displacements has unified all these points of
view. All three cases appear now as specializations of a general theory,
in which we associate with every point of an X, a local space S; and
build up laws to compare these local spaces.

To understand this better, we sketch this point of view for the
second case, that of the RiemANNian connection V.

At two points P, P’ at infinitesimal distance exist two local tangent
R,, one belonging to P, the other, R;, to P’. In each R, is a system
of reference, e. g., a CARTESian coordinate system. An observer at P
can think that he is in an R,; he can, for a given V,, also localize in
this R, the point P’ and the coordinate system of the R; at P’, which
have a definite position with respect to the coordinate system in the
R, at P. If we now consider a series of local R, along a curve PQ of
V,, then the observer at P will be able to localize successively, in the
same R,, all the different R; of the points Q' of the curve PQ. The
curve PQ is thus developed, with its different corresponding R,,, on the
R, at P. The observer at A will only be aware that he is not in an R,,,
but in a manifold of different connection, when he localizes in his space
R, the point Q and its coordinate system, once by developing the V,
along one curve PQ of V,, and another time along another curve PQ
of V,. It is not a priori obvious that he will get the same point and
coordinate system. If we now take for PQ an infinitesimal closed curve,
Q falling on P, then it can be proved that in the case of LEvi-Civita
parallelism the point Q will always come in the same place (we call
this absence of torsion; see art. 3) but the coordinate system will turn.
In this the curvature of the V, reveals itself. Other connections can be
constructed by modification of the local space or introduction of
torsion®.

2. Affine displacement L,. The first generalization of the par-
allelism of LEvI-C1viTA was obtained by associating with every point of
the X, a local E,,. This is natural, as we can take as local E,, the tangent
E, to the X,, the existence of which is established by the definition
of X,. The geometry thus obtained is called the geometry of the affine
connection and we shall denote it by L,.

1 CARTAN: 1924 (3), (4) — 1925 (1) — 1930 (9).
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Such a connection is defined by an affine displacement'. This can
be done by the definition of a covariant differential which allows us
to compare the local E, at a point P with the local E, at a point P’,
at infinitesimal distance.

In the X, we again introduce a group of transformations of the
original variables,

(2.1) &= ), A=|0,&|+0
implying
(2.2) A& = Ayd&, Ay =0,&.

We introduce fields of geometrical objects, in the first place, fields
of quantities (i. e. tensors and densities), e. g.:

D R T STy )
v = ALl v

For local E,, we will now take the tangent £, in which these quantities
behave, at each point, like ordinary affine quantities (Ch. I), and in
which furthermore pseudotensors can be defined.

Then we define the covariant differential 7 of a quantity in the
following way:

1. Every quantity has a covariant differential depending on this
quantity, its first ordinary derivatives, and on a direction of progress d &*.

2. The components of a quantity and of its covariant differential
transform in the same way under (2.1) and (2.2). This means that the
covariant differential of a vector is again a vector, etc.

3. The covariant differential is a linear homogeneous integral function
of the d&*

4. Covariant differentiation of a sum or of an outer product of two .
quantities T and U follows the ordinary formal rules. Hence 6 (T + U)
=0T+ 0U; 6(TU) = (0T)U 4+ T(6U).

5. Rule 4. also holds for the inner product. Hence

d(v*w,) = (0v*) w, + v* 0w, 2
047 =0.
From these rules follow other rules.

a) The covariant derivative of a scalar is the ordinary derivative.
b) The covariant derivative of a vector is of the form

8V =dv* + F;‘Av’ldff‘,
dw; = dw;, — I'w,dér,

1 Following asuggestion by VEBLEN we use displacement (Ubertragung) when
there is an infinitesimal transportation of quantities. The manifold X, obtains
a certain connection (Zusammenhang), when there is also a covariant derivative,

2 ScHOUTEN-HLAVATY: 1929 (2). Omission of 5. leads to different I, for
covariant and for contravariant quantities. — See ScHOUTEN: 1924 (5) Ch. II.
Introduction of densities makes this discrimination superfluous.
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where the I';; form a geometrical object with #® components, dependent
on the & and not on the vector fieldl. The difference in sign of the second
term of the second member is a result of rule 5. For these I';; the

equations ) x
I‘;;vdf#iaf"; I’Z,ld.f"édel
hold.
c) Covariant derivatives of tensors follow rules similar to those of
RiEmMANNian geometry, e. g.

0v%,, = avy, + I'y 07, a8 — I’;’lvf‘mdé" — Iy, v7, a8,

d) For the covariant differentials of pseudoscalars of class f we find,

if we introduce a coordinate transformation &% = 7&° '
op =dp —trdée y

where I « are a set of # functions of the &* defining a geometrical ob-
ject. As long as the function 7 is independent of the transformation
of the &, which defines tensors and densities, the I'; are independent of
the I ;‘ ,. For densities of weight —f there exists a relation which can
be found from the covariant differential of a covariant #-vector (Ch. I, 2).
Such an #-vector defines a density of weight +1; hence

0wy, . 1y =AW, 0 — L i, 1, AE".
From this we derive for densities the relation between I, and Iy,
r,=1rI%,.

e) For the covariant differentials of pseudotensors of class f the
formula is therefore as in this example:

ou* = dWy” 4 Iy Wy dée — I'y, 0, " dé — fW;* I, dée.
When the coordinate system is transformed from (x) to (%'), we have
(see Ch. I, art. ) -
o Ax,‘”;'r.[ml + A:’aM’Av’ — AH'#l ;A _ Al/t'&,‘ ’i"

w ww' M wp' L M
F)_' = A;»I‘; + 6;_'1111,'.
The latter formula shows that as long as 7 is independent of the para-
meters of the transformation of the £, the I'; behave like the components

of a vector when &° does not vary.
The covariant derivative can be found from the definition:

0T =d&v,T.
Hence R
v =o,m" + I, W — I, 0, — tu; r,.

This symbol V is taken from ordinary vector analysis, it is HAMIL-
TON’s ‘“nabla” operator. It behaves algebraically like a covariant

1 DouGLAs: 1928 (1) writes —[" for our I'.
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vector, and enters therefore into tensor calculus with one covariant
index.

A displacement for which the covariant differential is zero will be
called a parallel displacement. It can be uniquely defined along the
arc of a curve in X,,. In this way the local E,, at a point P of X, is
mapped with its body of vectors on the local E,, along the curve. This
mapping is also an affine mapping. In this way we come to a genera-
lization of the developing process sketched in art. 1.

It should be noticed, however, that this mapping of vectors, which
can always be moved parallel to themselves in each local E,,, does not
uniquely determine a mapping of points of an E, upon the E, at a point
in the immediate neighborhood. Various assumptions are still allowed.
We can for instance map each E,, upon the “next” by mapping the point
P (&%) upon the corresponding point P, (§* + d&%) of the X, . Another
way is that of mapping P, on that point of the E, at P which corre-
sponds to —d & This last way, indicated by CARTAN, allows a simple
interpretation of the torsion.

8. Torsion. The functions I';; are not necessarily symmetrical in
# and . From the transformation formulas it can be shown that

o — L7, is a tensor. We write

Spi* = %(P;;. — Pﬁ) = I =—Si.".
The tensor character follows from the formula {4, £” and d,&* are two
different line elements)

Opdy &% — 0y dy &% = 2d, £ dy 5 S5,

which shows that d,4,&”, the covariant differential of d,&" in the d,&*-
direction is not equal to 6;d,&*. This also means that (e being a small

constant) [od e = 26fun S, 57,

taken along an infinitesimal circuit determined by the infinitesimal
bivector ef“!1; therefore, we see that the tensor S,;* measures the
deviation of the point P from its original position after the local E, has
been mapped consecutively in the sense of CARTAN on the E, along
the circuit until it returns. It returns to its original position if

Si*=0.

In this case we call the connection symmetrical. It may be denoted by
A,. In the other case S,;” == 0, we say that the L, at P has torsion,
and S,;* is called the forsion femsor. When S;;*= S, 47, the
connection is called semisymmetrical?.

1 CARTAN: 1922 (6). — Here also the name torsion. Conception introduced
by EDDINGTON: 1921 (1). — See SCHOUTEN: 1924 (5).

2 SCHOUTEN: 1922 (1) — 1924 (5) p- 73 — 1926 (2). — FRIEDMANN-SCHOUTEN:
1924 (7).

Ergebnisse der Mathematik. III/2. Struik. 2
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The I';; is the case of a general L, can be expressed in terms of S, 7
and the covariant derivative of an arbitrary symmetrical tensor g,,; =g, .-
We find, if the CHRISTOFFEL symbol refers to g;,:

.,:l = {:l} + gv(uyl)gnv - %glngﬂgg}m[]a gre + S#;/—- Zgnngg(/zslf);zg .

4. WEevt connection. Of special interest are those affine connections
in an X, for which there exists a symmetrical pseudotensor g;, = g;, ¢
of rank # and class 1, defined for a function 7 independent of the para-
meter 0,& and for which the covariant differential vanishes:

V,u Aiy = 0.
This gives for I';; the condition
»® % ! k2 » oV
Pu}.: {Iui}_%(]—ruAﬁ—*—FlA”—g g/Ava>;
where g*# is determined by the relation ¢*”g,, = 4% and {:/1} is the
CHRISTOFFEL symbol constructed with the pseudotensor g,;.
For g;,, we find

Vugir = Ve 1g = —e2(Vu0) g1, = Ieugn .
If we transform &° into &%, the scalar e is changed to ¢', and we
get for the new tensor g,
Giu = T8u-
At the same time =T+ d;Inz.

As long as £° does not change, the I'; behaves like a vector, which
we write —Q;. Then the Q; is changed under a transformation of the

£° as follows ‘0, =0, — 0;Int
and Vﬂg“:-—Q#glm
Wi In=ohe s —1e0ea {) belonss to g

This displacement determines a WEYL connection. It is determined
by a pseudotensor g, , = g, ; of rank # and class -1, satisfying V, ,, =0
and by giving the I') in an arbitrary manner.

Another way of defining this connection without introducing the
notion of a pseudotensor is by postulating immediately that a tensor
81, = g1 exists for which the covariant derivative V, g;, breaks up into
a product —Q, g;,. It can then be shown that the tensor g;, is deter-
mined but for a factor 7: ‘g, = 7g;, and that the I';, take the same
form as in (4.1)2%

1 For general L, see also GoraB: 1930 (12).

2 WevL: 1918 (2), (3). For the method with pseudotensors see SCHOUTEN-
HravaTY: 1929 (2). Further literature SCHOUTEN: 1929 (5). — EISENHART:
1927 (1). — Hravat¥: 1928 (9) — 1929 (12). — GuciNo: 1933 (5). — CARTAN:
1926 (7).
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5. Metrical connection. When a tensor g;, = g,; of rank » exists?,

for which Vigin =0,

we call the connection metrical because we can introduce this tensor g;,
as fundamental tensor of a metric. The local E,, at each point becomes
a euclidean space R, and parallel displacement is equivalent to the
mapping of an R, orthogonally on an R, in a neighboring point. There
is still a considerable degree of freedom in this mapping.

Two cases are of importance: the case without torsion and the case
with torsion. When the torsion is zero

| Sui* =0,
we have a RIEMANNian manifold V,, because we can show that

" - %
e =ry, = {M}’
where {:2} are the CHRISTOFFEL symbols of the second kind belonging

to g;,.; the displacement of a vector becomes that of LEvi-CiviTa. The
equation V', g;, = 0 then becomes the identity of Ricct for a RIEMANNian
manifold?2.

The case with torsion can also be obtained by introducing into
the X, # independent contravariant vector fields ¢”,1=1,2,...,7

?
and defining with the aid of these vectors a fundamental tensor
g'* = & >'v* v* (summed on4) with respect to which they are mutually
)

orthogonal unit vectors3.

6. Curvature. In euclidean space a vector always returns to its
original position after parallel transportation along a closed curve. This
is not necessarily the case in an L,,. We may therefore use the difference
between a vector before and after parallel displacement along a closed
curve as a measure of the curvature of an L, at a point P. The formula
for an infinitesimal circuit along an Ej-element at P, measured by
f**do, f** being a simple bivector and do an affine measure for the

is4 .
area, 1S DU" — ]W’u Rv,uln y* dO’ ,
Dw; = —[**R;; i w.do,
where R; ;3" is the curvature tensor (or RIEMANN-CHRISTOFFEL tensor)
oo £ * 7T
Rwl”: “20[1'11,4];,"2]1 Fy]i»

v|z|

1 For the case of rank <» see BORTOLOTTI: 1931 (7).

2 We do not discuss RiemManNian manifolds in any detail. See e. g. BERWALD:
1927 (9). — CarTAN: 1925 (8) — 1928 (16). — DusCHER-MAYER: 1930 (20). For
the conditions that the I‘: 3 may be written as CHRISTOFFEL symbols see EISEN-
HART: 1927 (1) §29. — GRAUSTEIN: 1930 (7).

3 For other types of L, see KuNii: 1931 (37). — NovoBaTzKY: 1931 (27). —
STRANEO: 1932 (27). — NaLLIi: 1931 (24). — FERNANDES: 1931 (21).

4 An exact derivation e. g. in SCHLESINGER: 1928 (8).

2%
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where | 7| means that the z is not to be included in the alternation.
For this tensor we have the first identity

which follows from the definition.

The corresponding formulas for higher order quantities are of the
following form

D'l);j‘;’ — fgodo(Ré;'Z%v/;zl + Ré;;zvkxz _ Ré;;‘rv;z}.) .

Related are the formulas for the application of V',V
part of the second covariant derivative, e. g.

2V oV gws = Ry 7w, — 25,7V w0,

«1» the alternating

in which however a term in S,;* appears.
For a pseudoscalar we find

Dp == —{—pr”‘é[ﬂl’v]do.

7. Integrability. When Dv* = 0 for every circuit and every vector
we must have R:* % — 0
vuh — Y.

In this case parallel transportation of a vector and of every tensor
from one point of L, to another is independent of the curve along which
the displacement takes place. It is possible to define at every point a
vector (tensor) parallel to a given vector (tensor). There exists tele-
parallelism or absolute parallelism, as in euclidean space. Such dis-
placements are called ¢ntegrable.

For pseudotensors, integrability exists if

aLur,,] = 0 .
In the special case of densities, this means
a[,u'l-'f]x =R.i.* =0,

so that integrability for tensors also implies integrability for densities.
But it implies more. A volume is a scalar density. Hence we see that
the equation R;,;* = 0 expresses the fact that teleparallelism exists for
volumes. Such an L, is called equivoluminar®. For such a manifold it
must be possible to select a scalar density p in such a way that dp =0
for all directions d&*.

A RiemaNNian manifold ¥, with R;;;* =0 has the property of ad-

mitting » mutually orthogonal gradient fields Tftu =V M?p, 1=1,2,...,n

These &) can be taken as a new CARTESian coordinate system. We call
the connection euclidean, and we denote it by R,. It is applicable to
euclidean space.

1 VEBLEN: 1922 (5). — SCHOUTEN: 1924 (5) p. 89.
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A symmetrical manifold 4, with R, ;,7* =0 is called affine euclidean.
It is applicable to the space E, belonging to the affine group in the
sense of KLEIN

A metrical manifold with R,;;* = 0 without torsion is euclidean.
With torsion it has been the subject of many investigations by WEITZEN-
BOCK, VITALI and others. EINSTEIN proposed it for # = 4 in 1928 as a
space-time of relativity2.

It is known as a RIEMANNian manifold with torsion, or RIEMANNian
manifold admitting absolute parallelism.

It can be obtained by introducing a fundamental symmetrical tensor
g, by means of # contravariant vector fields (see Ch. II, art. 5), and by
defining a parallel displacement which carries every vector at a point P
over into a vector at another point P’ with exactly the same length
and position with respect to the unit vectors of the » congruences. A
simple example can be constructed by drawing meridians and parallels
on a sphere and by defining a parallel displacement which brings every
vector making an angle « with the meridian into a similarly situated
vector of equal length at another point3. It is clear that this is not
a displacement of LEVI-Civita. It also indicates how this connection
can be mapped on a RiEmMaNNian manifold with a given system of »
mutually orthogonal congruencest. CLIFFORD parallelism in elliptic
space can also be interpreted as a connection of this type. It deserves
mention that the teleparallelism in this connection is independent of the
metric, as it can be defined with # contravariant vector fields. This
teleparallelism is unchanged if the # vector fields are replaced by =
linear combinations with constant coefficients. For its application to
group theory see this Chapter, art. 10.

8. Some identities®. Apart from the first identity (art. 5) we have,
for the curvature tensor, the following identities in L,:

(II) Ry = —2VyS.u" + 455, Shx".
If Vﬂg“ = Q,;“ and R, "8, = R,.1., a third identity exists:
(III) vau,(lx) = —V[vQy]}.n - S;;«,ninn;

so that for every symmetrical connection Rp,,;;* =0 and for every
RiEMANNian connection, R,, .y = 0.

1 ScuouTeEN: 1924 (5) Ch.IV.

2 WEITZENBOCK: 1921 (4) No. 18 — 1923 (10) p. 317. — EINSTEIN: 1928 (2)
— 1930 (11). — See the comprehensive articles of BORTOLOTTI: 1929 (8). — CARTAN:
1930 (9). — EIsENHART: 1933 (7). — See further REICHENBACH: 1929 (21). —
BoRTOLOTTI: 1931 (4). — THOMAS: 1930 (1). — ZAYCOFF: 1931 (21). — LaNczos:
1931 (33). — TaMM: 1929 (16). — ROBERTSON: 1932 (21). — VITALI: 1932 (20). —
SEN: 1931 (25) — and our Ch. I art. 10. Comp. also Hosorkawa: 1932 (11).

3 CARTAN: 1923 (1) p. 404 — 1924 (3) p. 301. — Comp. ANDERSON: 1929 (20).

4 Levi-CiviTAa: 1929 (10). 5 ScHOUTEN: 1924 (5), Ch. IL.
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If both identities exist, that is, in a RIEMANNian manifold, we can
find by purely algebraical computation a fourth identity
(IV) Rvu,{z = Rlnvlzu

For an L, the curvature tensor has 3#®(n — 1) linearly independent com-
ponents. For a V, the number reduces to Zn2(n? — 1).
The identity of Bianch1 for an L, is
VR = = 25430 Rirai
By contraction we find from this identity that for a V,
VMG"_”;,-——O, if G!M:R,ul_%Rgﬂl’
where oo
RM]»:RVIM’ RZRM,{g’“I.

In a V, the R,; is symmetrical. In a general L, there is a symmetrical
and an alternating part to it, which fact has occasionally been used for
relativity, where a symmetrical tensor and a bivector have to define
the gravitational and the electromagnetic field.

9. Non-holonomic systems. So far we have considered only
geometrical properties referred to holonomic systems. If we now in-
troduce non-holonomic measuring vectors?, we can express the displace-
ment of a contravariant vector in the L, in this way

k_ gukp v _ guky v k i
Viok = A3V 0" = AfJ 0,0 + ASF D, 0" =
= 0;0F + AR o0 + v A%0, 45,
— Ok ki
= 0;v° + I'j;0",
0; = Af 0 P
A v A A v A
TY = AMED, + A¥0, A} = AT, — A}0,4%.
We can write in a similar way
ijl: = ajw,' - Fikjwk.

The I}, can be taken as the parameters of displacement in the non-

holonomic system. We have
kX k. ko k
I‘@?—V7€ N Fi]-—Vje,i.
When the [';; are symmetrical, the I'}; need not be symmetrical. As
ko Gk A Ak
Tiin=Si" — 445 0y, 43,

we see that the measuring vectors are holonomic when and only when
i=>S;;" In the non-holonomic case the I,y have no tensor character.

1 SCHOUTEN: 1929 (4).
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If we write i in ok
Qi = — A0, 4%,
we have S;i¥ = I't; + 2f;. The 2f; are called the ankolonomic para-
meters. They form a geometrical object, not a quantity.

The non-holonomic components of the curvature tensor take the
following form

seel ) 1 ! m m T
Rijit=-—20; j]k_zr[ilml-rj]k_z‘gij mk -

An application to RIEMANNian geometry can be made by intro-

ducing as non-holonomic measuring vectors the unit tangent vectors ¢”,
k 1

i, along an orthogonal ennuple (Riccr's 4, 4, ;). Then we find

E %[ &
Fw':ngk: If,=o,

which shows that the I'f; are the rotation coefficients! of Riccl, belonging,
in Riccr’s notation, to the ennuple, or:

gnie I'l; 2= (Ricci notation) %y, = — 4.

With these non-holonomic displacements in V,, also deal some papers
by Cisortl and PASTORIZ.

In the RiEmaNNian connection with torsion (art. 7), the fields v
also build a non-holonomic system of reference. They may be used for

a holonomic system as soon as the corresponding covariant fields v, form
Xp_ 1.8

10. Transformation groups. The transformations of a finite con-
tinuous simple group in » parameters £* can be represented as points
in an L,, in which two kinds of RIEMANNian connections with torsion
can be defined. If T, represents the general transformation of the group,
then the parameters of the infinitesimal transformation T3 ' T, 4, define
the # contravariant vectorfields of the first connection, and those of
Tepqe TF' the vectorfields of the second connection. The components
of the torsion tensor S;,” are equal to the constants of the structure c;;;
of LIE.

For such connections the geodesics coincide with those of the RiE-
MANNian connection with the same definite ds?. An example is elliptic
space of 3 dimensions, in which the connections with torsion are those
with CLiFFORD parallelism4.

1 E. g. Ricci-Levi Civita: Math. Ann. Vol. 54 (1901).

2 Comp. PASTORI: 1930 (17). — INFELD: 1932 (24). — VRANCEANU: 1932 (34).

3 SCHOUTEN: 1929 (3).

4 See SCHOUTEN: 1929 (5). — CARTAN: 1927 (13) — 1930 (9); in the latter
the literature is given. Also: EISENHART: Proc. Acad. Sci. U. S. A. Vol. 11 (1925)
p. 246. — SLEBODZINSKI: 1932 (25), (26). — WHITEHEAD: 1932 (18).
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Chapter III.

Connections associated with
differential equations.

1. Paths. In a RIEMANNian geometry a geodesic can be defined
as a curve generated by a linear element moved parallel to itself in its
own direction. This definition can immediately be extended to an L,,.
If the linear element is denoted by the contravariant vector v* we must
express that v*F,v* has the direction of v*. If the geodesic has the
equations &* = £*(¢), we find for its differential equation

1o % 2
(1.1) % V f‘% = tx»%, o coefficient depending on &~

o ac& as 4
% e 2 ._ d&.x
ae +IMT¢77““ dat *

It is possible to find an invariant parameter s = s(f) on the curve
s=¢; +cpe/*dtdt, ¢, € constants,

by which the equation of the geodesic takes the form
d2 Ex . d 5/4 d El _
g T gy a5 =
This is a system of # differential equations which, in a certain domain
of L,, allow a solution such that through each point passes an integral
curve in every one of the oo"~1 directions, and one integral curve
passing through two points. It defines, therefore, a system of oo®n—2
geodesics, also called paths?.

The most general system of paths is given by the differential equation

aes d&
(13) (e,
where the f* are homogeneous of the second degre in d&*/d¢.2 In this
case, however, the I" depend, as a rule, on d&*/d¢, a case which we do
not discuss in detail.
It is now possible to begin the investigation with a system (1.1) of
differential equations, and to define the connection by its coefficients

.- Instead of letting the connection define the paths, the paths can
be made to define the connection. In this case, however, the paths

(1.2)

1 EISENHART-VEBLEN: 1922 (3). — See EISENHART: 1927 (1). — Also WHITE-
HEAD: 1932 (19).

2 DouGLas: 1928 (1). — RowEe: 1932 (29). — RASCHEWSKY: 1932 (10). —
Generalization of the system of equations (1.3) in DoucGrLAs: 1931 (15).
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always define a symmetrical connection I';, = I';, as the torsion does
not affect the paths. To one system of paths belongs therefore an
infinity of L,.

2. Projective transformations. A system (1.1) of paths does not
even define uniquely one connection 4,. Indeed, the transformation

(2~1) Toy=1Tm+ Aipa+ Autpr =Lz + 24004,
where p,, is an arbitrary covariant vector, leaves the equations (1.2) in-
variant though it may change the parameter s. The transformation
fails to change the parameter on the paths only if p,d&* = 0, that
is, if the E,_, of p, contains the path direction.

For an asymmetric connection a more general transformation pre-
serves paths:

(2.2) Thy=Ty,+ puA5+ ¢4, . (P2, ¢ arbitrary vectors)

We say that all manifolds 4, with the same paths are projectively
related, and the transformation (2.1) is called a projective transformation
of the 4,.1 The projective geometry of 4, is the theory of geometrical
objects defined with respect to these transformations.

The curvature tensor transforms under (2.1) as follows

,Ri:;;i% = Rvyln - 2?[1%]14; + ZA’[{’V py]l:
pM = V/tibl - 75/4’/1-

This tensor is therefore not invariant under projective transforma-
tions. From it, however, we can derive the tensor

Py = R;ui" — 2Py A7 + 241 P,

(2.3)

1 -
Pﬂl:—ﬁ(nRﬂl—*‘Rlﬂ), RﬂizRvul >

and a verification shows that this tensor is unchanged by a projective
transformation. It is called the projective curvature tensor, and vanishes
identically for » = 1, » = 2. For » > 2 it satisfies the identities:
Pl =—Pui,  Puii =0, VP =1 ALV P,
which can be verified from the corresponding identities for the curvature
tensor R, ,;".

The vanishing of the projective curvature tensor for n > 2 1s the ne-
cessary and sufficient condition that the A, can be changed, by a projective
transformation, into a euclidean manifold R, . Such a manifold is called
projective-euclidean and its paths pass into the straight lines of the R,,.
For » = 2, when the projective curvature tensor does not exist, another
condition is necessary, namely, that P, (existing for » = 2) satisfies

1 WevL: 1921 (2). — For condition (2.2) see HLAVATY: 1926 (3) — comp.
1927 (16). — Related is SCHOUTEN: 1927 (10).
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the condition V', P;;, = 0. Indeed, a surface in ordinary space cannot,
as a rule, be mapped on a plane with the preservation of the geodesics,
it has to be of constant curvature. The general theorem can be found
by writing down the conditions of integrability of the equations

0=R,,;" — 2ppmd] — 245Pu1,

which follow from (2.3) by the assumption that 'R, ;"= 0.1

Point transformations which preserve the paths are called collinea-
tions. The properties of finite continnous groups of collineations have
been investigated?.

3. THOMAS parameters. A geometrical object unaltered by a pro-
jective transformation of A4, is

Hu}_ F})v-

/"'1 - _l*:']
These II;;, which satisfy the identity II;, = 0, may be considered as
the parameters of a displacement, which is uniquely determined by
the paths as soon as the coordinate system is fixed. They determine

a kind of projective displacement, of which the paths are the solution
of the differential equations

d2§‘ L e aE

“ap ap =

the p being a normalised projective parameter defined but for two
constants ¢; and c¢,:

2
¢=01/A”+1dt+cz, A = Det |0, &].

The 4 enters here, as it does in the definition of densities; it also
enters into the transformation equations of the II};; when we pass from
(%) to (»'), which can be written

I, = AZ0L D7, + 476, ;,_WLH %0, InA.
When 4 =1 the I transform like the I" and p is independent of the
coordinate system. This is the equiprojective caset.

This occurence of the A shows that the projective parameter p
depends not only on the curve, but also on the choice of original va-
riables. The problem of finding projective equivalence of 4, can be
reduced to the study of the integrability conditions of the transformation
equations of the IT;;;.5 For a further treatment of this subject we refer
to EISENHART’s book®.

1 See also ScHOUTEN: 1924 (5), Ch. IV; ScHOUTEN: 1926 (2); 1927 (12).
2 KNEBELMAN: 1928 (17); EISENHART: 1927 (1) p. 127.

3 THOMAS: 1925 (6); 1926 (3). 4 THOMAS: 1925 (2).

5 VEBLEN-THOMAS: 1926 (8). 8 EiseNHART: 1927 (1) Ch. IIIL
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4, Conformal transformations. Closely related in its formal appa-
ratus is the theory of conformal transformations of a RIEMANNian mani-

fold V.
" /gﬂl = O08ul> 0= a(&).

In this case we have for the CHRISTOFFEL symbols of the second kind:

(4.1) Tii=Ty+ AGsy — £878urs,
s; = 0;Ino.

Such conformal transformations leave the angle between two vectors
unaltered. The conformal theory of ¥, is the theory of the geometrical
objects defined with respect to these transformations.

The curvature tensor transforms under (4.1) as follows:

J e PP
]ev,ul}ﬂ = Rv,u}vn - zgl[vs_u]ng””:
Suz =2V us; — sus1+ $5.5 g1, §* = grls;,

From it can be derived the following tensor invariant under conformal
transformations:

ceen ceen 4 .x

Cv/d. = Rvul - w2 gl(vLy)_ ’
1 een
L[ui:-—Rﬂl—l——‘——z(n_’) ng},: R:gﬂanlul .

This is the conformal curvature tensor and it vanishes identically for
n=1,2,3%; for n > 3, it satisfies the identities

valn = _C/Avlu: C[‘;/:t}.,]n =0, Cvuln = _Cv,uul;

here also Copin = Cixvp-

The vanishing of the conformal curvature tensor for n > 3 s the neces-
sary and sufficient condition that the V, can be mapped on an R, by a
conformal transformationt. Such a manifold is called conformal-euclidean.
For #n =3, when the conformal curvature tensor vanishes, the condi-
tion is that L,; (existing for » = 3) shall satisfy the condition of
CorroN that V', L;;, = 0. AV, can always be conformally mapped on
an R, in as many ways as there are analytical functions of a complex
variable.

A geometrical object unaltered by a conformal transformation is

,l’:l =L ur— ; A(,u'r';)v + ;g g.ul'l-':'rn

for which Z,, = 0. The Zj,; may be taken as parameters of a displace-
ment, which is uniquely determined as soon as the metric and the
coordinate system is given.

1 For literature see SCHOUTEN: 1924 (5) p. 170. — See also 1927 (12).



28 III. Connections associated with differential equations. [208

It is possible to build up a theory of conformal invariants in V,,
starting with the remark that the quantity

Giw = Gin| o |7Hm, | giu| = Determinant of g;,
behaves like a tensor density of weight — 2/# which is independent of o.
The theory of conformal invariants thus becomes a theory of invariants
of tensor densities!.

It is not possible to get a non-trivial projective transformation for
a V, which is at the same time conformal. Then we need

A?usl) 28 gu/l 2A(;4P})
or n -|— 1) 4
$i = 2(n }5 =— =50

which does not give acceptable values for ». Indeed, a V,, is fully de-
termined by its geodesic lines and specification of its fundamental
tensor but for a factor2.

5. Normal coordinates. The equations (1.2) of the paths enable us
to define a special set of coordinates at each point of X,,. The integral

curve through a point P(é"‘) in direction v’ = dE”/ds has an equation
of the form

2 3 2
oy 1 (E) e L)

The coefficients of this series, which we suppose to be convergent,
can be found by means of (1.2) and its derived equations:

d3 &* d Elh d 5'“2 1223

ds® + 1T “h"zl‘a ds ds ds =0,

T pe  dEhasn | dEh

ds? Mz tp ds  ds ds ~ 7’
7 . ” y
Brfhs oo piph a(lme- P v(/"lf"z o Up— lp,up)l'

Hence 0 0
= E =yt — LN vPons — LT, hytyrs?
r=¢ 05 0 25wl g 67 pivg 9 0

If we write v*s = 7, we can, by virtue of the fact that | §&#/0%*| == 0,
0

invert these equations and get
(5.1) W= bk A LD A, 0
where A =17,

A;lv = :ﬂ.v + 3/1;(,11 w]’:['u); etc.

1 THOMAS: 1925 (6) — 1932 (9). — VEBLEN: 1928 (4).
2 WEvYL: 1921 (2).
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The #%* form the components of a vector which in the local E, at P
may be taken as the radius vector from P to a point. In RIEMANNian
geometry the #” are sometimes called RIEMANN’s normal coordinates.
We call them normal coordinates®. They give a representation of a
domain about P in which the series converges on the local E, at P.

The vmportance of normal coovdinates lies mainly in the preperty that
at P the values I';, expressed in the 1 coordinates, disappear. Indeed,

from (5.1):
" 0 0, .
{a aé} : [A7 — I — | =T
7=

=T w?s
on' ont| _, n*

so that according to the transformation formulas for the I', when
passing from &* to #*:

0,

Iiy=0.

This holds only at P and only for the I", but not in general for their
derivatives. At P however all covariant derivatives of the first order
in 4, can be written as ordinary derivatives with respect to %%, e.g.
(72,0 = (601,/671,.

This holds for all coordinates which can be defined at P by means
of a series in {* which have the first two terms in common with (5.1),
in particular, the system

0
=0 § T 0

In normal coordinates many proofs are very simple, e. g. those for
the second identity of the curvature tensor or for the identity of BIANCHI.
Their use in the establishment of existence theorems has been shown
by Eisenuart, VEBLEN, THOMAS and others. We refer here especially
to VEBLEN’s book on invariants.

It is possible to construct systems of normal coordinates based on
the II}, of equi-projective or the Z7;; of conformal displacements. In
such systems the study of the objects of such connection is considerably
simplified?.

Related is a theorem of FERMI, which states that for the case of a
V., there is always a coordinate system in which the CHRISTOFFEL sym-
bols vanish along a curve. It can be shown that this also holds for the
I';; of an A4,,. This means that corresponding to a curve in the 4,, there
exists an E, with the same I along the curve3.

1 VEBLEN: 1922 (4). — VEBLEN-THOMAS: 1923 (6). — For V, see RIEMANN-
WEYL: 1854 (1). — Also Hravat¥: 1927 (17). — See also THoMaAs: 1929 (7). —
RuUSE: 1931 (29). — MICHAL: 1931 (12).

2 THOMAS: 1925 (2) — 1930 (2), (3). — EISENHART: 1927 (1). — See esp.
VEBLEN: 1927 (2).
3 EISENHART: 1927 (1) p. 64. — An extension in WHITEHEAD-WILLIAMS:

1930 (25).
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6. Displacements defined by a partial differential equation. The
previous displacements were all defined with the aid of systems of
ordinary differential equations. An entirely different procedure can
be followed if a linear partial differential equation of the second order
is defined in the X,. Let it be:

Fly)=ardy + a6y +a’y=0, 0&,=00&0¢,
a’*, a*, a° functions of &

The left hand side remains invariant under a coordinate transformation
of the &#. It defines a symmetrical tensor, which we assume to be of

rank #
gl‘";' =S aﬂ'iv .

It also defines a contravariant and a covariant vector:
. 1 —
pr=a— g0, Uegt)  and =gt
respectively, and a scalar field £° = a°, so that F (y) = 0 takes the form
g VoVuy + eV, + 9 =0.

The equation F ()=0 also remains invariant under a transformation
‘F(yp) =7F(y), 7 arbitrary function of &*,
by which the g,;, % &° transform according to the formulas
gr=1g,  pp=p+Inr, S =1&.

The equation F(y) = 0 therefore determines in an X, a set of coor-
dinates &, £° as in Ch. I, art 8, a pseudotensor g*“ of class 1 and a set of
parameters of displacement I, = p,. With the aid of these quantities
linear displacements can be defined. If, e. g., we assume X, to be an
A,,, we can take V', g;, = 0 and define a WEYL connection!. We can also
use these tensors to comstruct a projective connection (Ch. V).

This method enables us to build up in X, theories of relativity on
a wave equation of the SCHRODINGER type. In this case we must take
for F (y) = 0 an equation of the hyperbolic type which leads to a pseudo-
tensor of MINKOWSKI signature. Determination of the 7 can be obtained
by suitable gauging. Like all theories of this kind involving pseudo-
tensors it is contained in the more symmetrical theory which works
with homogeneous coordinates (Ch. V).

7. Differential comitants. We cannot here discuss the many papers
dealing with the construction of complete systems of differential co-
mitants related to different connections. We refer only to EISENHART’s

1 STRUIK-WIENER: 1927 (4).
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book dealing with tensors in 4, and a paper by THoMAS-MICHAL dealing
with tensor densities in V, and containing a discussion of the literature2.

For other material on this subject see papers by WEITZENBOCK and
Krausss.

Chapter IV.
HEerMiTian connections.

1. HERMITian quantities?. The variables x* of an E, can be made
to run through all complex values. We have then to consider the
conjugate complex variable x* of x*, #, 4, ... =1, 2, ..., n. Then
it is possible to define quantities with respect to the x* in one to one
correspondence with those defined with respect to x* e. g.,

vt =A% 0", o =A;v"; A% is the conj. to 4} .

A next step is the introduction of quantities in which some indices

refer to the #* and some to the x*, as
Gow =408, AL =440

Such quantities are called HermiTian. To each HErRMITian quantity be-
longs one and only one quantity with complex conjugate components; we
denote them through the indices, as in P;f — P.;*. We can construct
HEerwmiITian tensors and densities in a way similar to those defined with
real variables. With the definition of symmetry and alternation we
must be careful, because a tensor like v,5; defines vz,,, but not v, .
Without an additional assumption we are able, however, to define sym-
metry for tensors of the second order. Indeed, the equation

hig=hz, (e.g.forn=2: Mmi=hiy, Mhz=ha,
ha1 = Mg,  hog = hz3),

is fully determined and is preserved under coordinate transformations;
the same holds for an alternating tensor of second order:

hlz = '_'h;t A

1 EISENHART: 1927 (1). — Further THoMAS: 1929 (7) — 1930 (2), (3).

2 THOMAS-MICHAL: 1927 (5).

3 Krauss: 1927 (6), and e. g. WEITZENBOCK: 1932 (32).

4 SCHOUTEN-VAN DaNTZIG: 1929 (6) — 1930 (6). For the purpose of sim-
plicity we write for the conjugate complex of x* the symbol #*, for the conju-
gate complex of gj, the symbol gj,, etc. Professor J. A. SCHOUTEN remarks
in a letter that this may lead to ambiguities and suggests for the conjugate
complex quantities the symbols ¥%, gj,, etc. No ambiguity enters however in
the subject matter of this chapter, if we merely write ¢ for the conjugate com-
plex of a scalar ¢.
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2. Linear displacement. We can also assign in an X, real and
complex values to the original variables &*. At every point we have
a local E,, of the above mentioned type. It is then possible to introduce
HerMrtian tensorfields into the X, which transform in this way:

A 2 i @ n
8y = Alfﬁ’glﬂ’ 4;,=29,¢&, A;' =0 ¢&".
A general linear displacement can be introduced as an expression of
the form

00" = dv* + I o' d&" + I, ' a8 + I o A" + T o ad,
0v = dv* + I v a8+ I o' a8 + I’ ad 4 I o',

where the I"are 8x3independent parameters, functions of &%, &. Their
number can immediately be reduced to 4#3, when we assume that the
covariant differentials of conjugate quantities are conjugate themselves.
This makes I';, the conjugate of I'Y,, etc., an assumption already
accounted for in our notation.

As in the case of the L, we shall reduce the form of this displacement
by special assumptions. To interpret them it is useful to map, for a
special choice of coordinates, the X, on an X,, with real variables only,
using the equation

Errfa fgfa, PR Ea il

where the &% and the &= together form 2 % real independent variables
in the X,,. In this X,, the equations £ = const, & = const. represent
two families of oo”X, which, in analogy to the case where the X,,
is an R,, may be called the isotropic X, of the first and second kind.

The X, of the first kind, £* = const, and those of the second kind,
&% = const, correspond to each other point by point through association
of the points with conjugate complex coordinates. This implies a one
to one corespondence of the linear elements d&* at a point of & = const,
to the linear elements 4&* at the corresponding point of £* = const. We
may call this eguipollence.

The following assumptions concerning the I" can now be interpreted
geometrically.

a) I';; = 0, hence I :; =0. The n-direction of every isotropic X,
retains this property by parallel transport in a direction of this X,.
This may be expressed by calling the isotropic X, geodesic.

b) I';z = 0, hence T’}j » = 0. When the points of an X, &= const
are moved along equipollent segments (0, 4£*), the X, passes into an-
other X, of the same kind; a similar property holds for the X,, of the
other kind. We may express this by calling the isotropic X, of each
kind parallel.
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¢) I';; =0, hence I, %7 =0. Every vector in an isotropic X,
&” = const, if moved parallel in a direction contained in an isotropic
X, of the other kind to another X, §* = const, will pass into an equi-
pollent vector, and similarly for a vector in & = const. This expresses
the equipollence of the isotropic X, under this displacement. If b) and
c) are satisfied there exist infinitesimal “parallelograms” of which two
sides lie in an isotropic direction of the first kind and two in an iso-
tropic direction of the second kind, the opposite sides being parallel in
the sense of this displacement. Inside an isotropic X, such infinitesimal
parallelograms need not exist, for in this case the torsion must vanish,

that is I, =1, I7, = I";; (see below).

If the conditions a), b), c) are satisfied, we have a displacement
that can be formally expressed like one of the type L,

$v' = dv + T7 0" dE", v =dv + [0 dg",
We must, however, not forget that
dv* = (0,v7)d&* + (0zv*) d&*;  dv* = (0,v%)d&" + (Ozv*) d&-.
Such a connection will be called a K,,.

3. Connection K,. This connection is fully determined as far as
quantities are concerned. For instance we have

dw, =dw; — I;w,d&" (also its conjugate),
Ship = Al — Iy hd& — [ ahyzd€ (also its conjugate).

In this displacement several covariant derivatives belong to one co-
variant differential. To §v*, dv* belong

V”v" = 8,/1)" + F;:;_‘v’l; V"‘v; = 6;;1);‘ + F;Iv;' s
Vave = 0v7; V,v*= 0,0%
In the X, these equations can be written as one
2n
C (4 C a —
Vev' = dgv" + Ig,v", a,b,¢,---=1,...,0,1,...,%.

As we deal with a K,,, some 'y, vanish. The corresponding curvature
tensor is

el a C 3
Ryty = —20pLge — 2L 10 L.
It has the following non-vanishing components:
R, Ryui” Ry, R,
of which the last two sets satisfy the-equations
R;.i*= —Rui* = —0; T
There is a torsion tensor
Sui =Thu;  Sui”=Tun.
Ergebnisse der Mathematik. III/2. Struik. 3
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There is also a second identity for the curvature tensor
Ry — Ry =205 S, =2V S,.;*, and its conjugate,

together with 0 = 2V Sivi* + 280" S

and also identities of B1ANCHI
Vi Ry = Sua? Reii”, (and its conjugate),
Vie R,;]';f = S..° Rg';';f;, (and its conjugate).
A connection K, can be made metrical by the introduction of a
symmetrical HERMITian tensor g, = g, satistying the equation
d0g:a=0.
A measurement can be introduced by ds? = gwdE’Idé'i‘. Such a

connection is better called wumitary, and is denoted by U,. For a U,
we find, from dg;; =0
I, = g”f’lg,w: 7 =g 0iguv,

and therefore cen —
R ;" =0, R..:"=0.

vl Vi

There is now a third and fourth identity for the components of the
curvature tensor that do not vanish, namely

Ripii=—Ryuz21; Repin— Rizvu=2V;Svau—2V5Siuw.
Such a connection can be obtained, similarly to the affine connection
with torsion (Ch. II), by introducing » 1ndependent vectors %;, 1=1,

2,..., nat each point, and building up a g;; = Z“Wu As a rule the
displacement does not carry these vector fields into themselves because

of the non-vanishing of Ry, ;*. The 1;,1 are called unitary vectors and

satisfy the conditions
i . i .
um = d}; m’u/‘. =0,

if u are the rec1procal vectors to the u,l, so that a tensor g** is uniquely

defined as g = u M’ u . The #, can be considered as mutually orthogonal

unit vectors. There ex1sts a contracted curvature tensor Ry, ;7 and a
curvature scalar

R=Ry g%, R=R'gr.
It is also possible to define U,, of constant curvature R;, ;"= CAf, 811,
where C must be a constant on account of BiancHI’s identity. These

U, are applicable to the projective HERMITian geometries of FUBINI
and CARTANI

1 ScHOUTEN and vaN Danrtzic: 1931 (17).
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4. Analyticity. A complex function ¢ = & + 78 of a complex
variable z = x -+ ¢y is called analytical when the RiEMANN-CAUCHY
equations are satisfied. This can be expressed by the equation d; p=0,
when 0; = 0/0x — i 9/dy; or by the equivalent ¢, = 0, when 6, = 9/ %
+40/0y. In the same way we call a function ¢(&*) of the complex
variables &* = &4 4 ¢ &% analytical, if

aﬁ(p:O, a’;:anl——iéxa, 8,{1.:6/65%1
equivalent to d,9=0 0,=0, +10,,.

Quantities with analytical components are called analytical. This pro-
perty is unchanged under coordinate transformations.

This property admits a simple geometrical interpretation in the X,,,.
A scalar field is analytical in & when it is constant in the X, & = const
and vice versa. The vector field v* which is composed of the components
v*, v* has, in the case of analyticity of v*, v* the property that its com-
ponent in every isotropic X, of one kind is equipollent to itself. An
analytical transformation of the X, corresponds to a transformation of
the X,, which carries the two families of isotropic X, into themselves.

A displacement, which carries analytical quantities into analytical
quantities is also called amalytical; and so is the corresponding
connection. Such a displacement

8 = dv" + I de”, 00" =dv" + v dE”
must have for dv* the simple expressions, similar to those in L,:
dv* = (0,v*) d &, dv* = (0,0%) d &,
and must further have the I, analytical:
8ﬁrl%v=0; a,u ;17:0.
This last equation is equivalent to
Ry.i*=0, R;zi"=0.
This condition is therefore the mecessary and sufficient condition for the

analyticity of the commection K,.

An analytical K, has therefore a torsion tensor S,7% S;;* and a
curvature tensor R, ,;%, R; z7”. For an analytical U, the curvature tensor
vanishes. Suppose, morover, that the torsion vanishes. Then we can

show that the unitary vectors #* are now carried into themselves by
?
parallel displacements. They must therefore be analytical, and gradient

vectors of » analytical scalar fields % . These fields can be taken as
coordinate variables, and form a CARTEsian coordinate system. We have
a plane HERMITIan geometry in the U,,. With respect to this coordinate
system we can write the ds? in the form 4£d&! + ---, or

dst = + X dEdem.
3*
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Such a plane HErRMITian geometry has vanishing torsion, vanishing curv-
ature tensor and an analytical connection®.

5. Spin connections; introduction. In investigations connected with
the spinning electron it has been shown that we'can obtain a geometry
of HERMITIan quantities in an E, by taking as starting point a euclidean
R, of the MinkOwsKI type. In such an R, there exists a hypersphere
i ¥'w =1, 1,1=0,1,2,3, —8o0 = 811 = 8o2 = £a3 = +1,

g=0, 1]

of signature — + + 4. The oo® straight lines of this hypersphere
determine the directions of oot vectors. These vectors can be represented
by the oc* points of an auxiliary E,, the so-called spin-space. The
orthogonal transformations which carry this hypersphere into itself
(LoreNTz transformations) can be used, as we will show, to define Her-
MITian quantities in this E,, especially a HErmITian tensor. If now a
V4, locally of the MINKOWSKI type, is given, then the problem arises
of defining a connection with a displacement which allows comparison
of these spin-spaces. This displacement must, therefore, map the vectors
in the straight lines of the hypersphere in the local R, at one point
onto the corresponding vectors of an adjacent point. This connection
is of importance for the Dirac theory of the spinning electron.

6. Spinspace?. Between the oc® points #¢, ¢ =0,1,2,...,5 of a
euclidean Rg and the oo® bivectors 74¢, A, B, C,...=1,...4 of an
affine £, a one to one correspondence can be established

PAC = 4oy, AC,

The x,4¢ themselves can be taken as a tensor with its lower index ¢
in Rgand its indices 4 C in E,. To the fundamental tensor g*/ corresponds
364 BODI where el4BC D is the unit four vector of E,. The corresponding
relation between contravariant and covariant quantities in Ry and E,
follow from the corresponding equations

— b b gab _1 ¢D ,CD _ 1,4BCD
Yo = gap?’, ¥ =g°r,>74p = FEapcep?" ", "X =1}e¢ 74B-

We have 748 ¢y, = Coag, where C is an invariant and «§ is the unit

tensor of E,.
To orthogonal vectors in Ry belong bivectors in nvolution of E,,

785, = 0> Y4B CD) = o

There exist in E, six bivectors in involution corresponding to six ortho-
gonal unit vectors ¢ of Rg. This imposes the following conditions
12
upon y,4°¢
1@ Bo = Bap &5
! Comp. KAHLER: 1932 (13).

2 SCHOUTEN: 1933 (2). — SCHOUTEN-VAN DANTZzIG: 1933 (6); VEBLEN: 1933
(9), 1933 (10).
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To all oo bivectors 74 5 satisfying the equation v47, 5z = 0, where
v4 is a given point of E,, belong the 002 points of an R, in the Rg. From
v47,5=0 follows 74 p7¢p; = 0, which corresponds to 7,7° = 0, the
zero sphere in Rg. We see therefore that to a point v4 of E, corresponds
a simple bivector in a plane R; in the zero sphere of R,.

We now single out an R; in R4 by the condition that 1° be a fixed
vector. This corresponds to the fixing of a bivector x 5 in E,. The
points of E, correspond now to the R, in the zero cone of this Rj.

There are five mixed tensors determined by this choice

%% == P ypa =2’ yupa, inshort o= —y, 7= %74,

which satisfy the conditions

N N B __ .CB _ c
Katy-a = %@ 18| %304 = —Xa = AtyBA = Bab %4>

or more briefl
Y Kab) = X(a®p) = 8ab-

Now we take the R, of signature — — — + + 4,
2= — ()2 4+ ()2 + ()2 + (r3)2 — ()2 — (19)2.
In this case we have
— Ky = (g Ky = Ky Ky = Kg g = — Ky &y = +1,
a0 =—o;0, =0, 137, ,1=0,1,...,4.
The «,, which may all be taken real, behave like the units of a sedenion
system, that is, a hypercomplex number system which can be built up by
linear combination of 16 units 1; oy, &y, &g, Kg; K== Kq 0, Kgpe= 0z 0%,
&y = X, &y 0¢g, and satisfying the associative law
0t (00 O6g) = (00 0p) Oty = 0% O O
The zero cone of R; has the equation
0= _(70)2 + (71)2 + (72)2 + (73)2 —_ (74)2 .
If we now introduce the coordinates
71 7t

= e 0t=15

this zero cone passes into the fundamental sphere

@) + (@) + (@)* — (@) =1
of a MINKOWSKI R,, of which the vectors in the generating straight
lines correspond to the points of the E,. As quantities expressing this
correspondence the sedenions & can be taken. These sedenions can be
expressed in every coordinate system of E, as matrices. Such a matrix

is a spinmatrix of quantum theory. The E, is therefore a spinspace,
its quantities are spinquantities.
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7. Hermitian quantities in spinspace. The sedenion tensors
Xy, &, Ky, &3 are determined but for LORENTZ transformations. The
Oy = Oy 0y Kgg = g% KBy Temains however invariant (but for the
sign). The «;¢, determines a matrix of which the elementary divisors
are A— ¢, A—1, A+ 4, A+ 7 and can therefore be written with the
aid of 4 contravariant measuring spinvectors sc and the corresponding

. a [ ¢ c?
covariant vectors e4loy = e%e4) as follows
a
o1 .2 R} 4 . —
0646,'A=—151306A—1508A+1503A+1205A- GG=7-1)
This shows that there exist, in E,, two invariant E,, the E, of fo’ go

and the E, of go, 20, which have only the origin in common. We call

these planes E, and E,.
~ Every vector v° in spinspace can be decomposed in the E, and the
E,. We can write this in the form

0 = (1):(.711 v4 gc.’A v4,

where i, 7 are the unit tensors in the E,, E,,
)

which is the abbreviation of
o ! 2 0L o . ~
104 =%y + foq = ol 4+ 1x3%,), and similarly for ¢,
0
The tensors belonging to «,, &, &, &; can now be decomposed

O‘x:ﬂx—}‘ﬂx; (”:0;4:273)

where B, is a tensor which belongs with the contravariant index to E,
and with the covariant index to E,, and the f, behaves in the opposite
way. The other two parts of «,, belonging to E, and E, alone, vanish.
We express B, B, as follows:

Bu=Bitar Bx=PB:Su
where the indices a, b, ¢,...Dbelongto E,, %, B, €, ... tofz. We have
for the f the property, reminiscent of the sedenion properties
ﬂ(iBj):ggij: /?(iﬁj)z(z;g”, —Zo=811=82=83=T1, &;=0, 1.

These two formulas are the inverse of each other for =1, 2, 3. For
k = 0, there is a change of sign. For every LorRENTz transformation
these formulas take another form. ~

The ¢ can be completed to a set of quaternions, as can the g, e. g.

0_
1y = 1Bof1 = —Pafs, etc. It can now be shown that a choice of the
coordinate systems in E,, E, may be made so that the ¢ and ¢, and hence
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also the f and B, obtain conjugate complex components. This is possible
only because we started with a MINKOWSKI form of linear element in
R,. We have to restrict the coordinate transformations in E,, E, to
linear homogeneous ones with complex conjugate coefficients, in order
to make the choice invariant. The determinants of the f satisfy, under
these transformations, the equations

Iﬂ0j=_‘1ﬂ"=’ lﬁO‘:—“g"i (%=1:2’3)

We postulate, secondly, that the transformations will have real
determinants, that is,

[Bol=—|B|=—1Bel =~ =+1,
}/30\ :_!,81‘ = “1/32‘ 2—11331 = +1.

Now we have established in E, a system of HERMITIan quantities
with a group of transformations under which they remain HERMITian.
It can even be shown that through these assumptions symmetrical
HerwMiTian densities of order —1 are determined™.

8. Spin connections. We consider a ¥V, which has, at each point,
a local R, of MinkowsKI character. To every R, is associated a local
spin space determined by the straight lines on the fundamental quadric.
It is possible to define an indefinite number of linear connections which
map these local spin spaces upon each other. As the 8, § have the
character of units, we may postulate that their covariant differentials
vanish. Nevertheless it is not in general possible to define the spin-
connection uniquely by means of the quantities in the V,. There is
however one exception. Covariant differentiation of contravariant and
covariant spinvector-densities of weight 4% and —%, respectively is
uniquely determined.

To show this, let the displacement of a spinvector be

Vvt = d,0° + Ajq0*. i refers to V,

The f*¢y is a quantity with the & in V', and with the ¢ and % in E, and
E,. Therefore we can write under assumptions similar to those of art. 2,
taking a nonholonomic system of reference in the 7,

ViBtoq = 0; Bt o+ If Bty + A B9 — A5 BY S -
When V; B¢y vanishes, we have, as 9;8%y = 0,
2Tk = — A5 prSu f + A BBl
As I'l* =0, we have
0 = —Aj% + Aj, (imaginary part of 45 = 0)

1 SCHOUTEN: 1931 (18).
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but we cannot express the 4 in terms of I If now we write A5, Afy
for the parameters of covariant differentiation of contravariant and

covariant spinvector densities of weight 44 and —3}, respectively,
7
¢ & 4B
Aja = /1 gia/lﬂ, s /1]9[ = /1 — %191/17'53

(/lbr, is the real part of 4; 5) then we can solve the equations for A4 and
get, if BifF = pi*

Ajo=—3TiiB%,  Afu=—4Tus B %
If we had taken a weight different from 4 or —%, we should not
have had a unique solution. For the physical application it is sufficient
that at any rate one type of vector density allows unique determination
of the connection by the I" of the V,.

9. Remarks. The spinquantities of the previous articles appeared
first as matrices in DIRAC’s theory of the spinning electron. As long
as we have a MINKOWSKI space (special relativity) this means that we
study tensors with the aid of a preferred coordinate system. In a V,
there are oo* local spin spaces, and it is necessary to introduce also the
transformation schemes. In MINKOWSKI space the spinquantities
appeared first, after a suggestion by EHRENFEST, as so-called spinors?,
of which the analysis has been given by VAN DER WAERDEN, SCHOUTEN,
LAPorTE and UHLENBECKZ The relations to sedenions were given in
full detail by ScrHOUTEN2, who also showed the possibility of a spin-
connection. The relation of the spinvectors to the straight lines of the
fundamental quadric in MINKOWSKI space, which removed all artifi-
ciality from spinspace, was indicated by VEBLEN and fully constructed
by SCHOUTEN and by VEBLEN. SCHOUTEN also showed the way in which
spinquantities enter into a five-dimensional theory?, and together with
VAN DANTZIG a related theory of projective connections® (Ch. V).

Chapter V.
Projective connections.

1. Introduction. We have seen, in Chapter III, that the paths of
an A4, are not changed by a projective transformation
(1.1) ‘Thy= T+ 2puAsy.  pi = arbitrary vector
The problem arose of associating with this group of transformations a
single “‘projective” connection, which will take the place of the infinite

1 See VAN DER WAERDEN: 1929 (17).

2 SCHOUTEN: 1931 (18). — LAPORTE-UHLENBECK: 1931 (31); VEBLEN: 1933 (9),
1933 (10).

3 ScHOUTEN and VAN Dantzic: 1932 (3) — 1933 (6).
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number of L, connections. The introduction of the parameters I1;;; was
one step, but it was not yet sufficient, because they depend on a special
choice of coordinates. We must try to continue in the same direction
of research, changing the group of transformations. This has been done
and has lead to important results. It seems however more useful to
attack the problem from another side and use as the starting point the
fundamental principle of differential geometry, as formulated in Ch. I.
We take an X, and associate with every point a local projective space D,, .
We ask for the linear connections associable with this configuration.
It can then be shown that an infinite number of L, related by (1.1)
can be obtained from this projective connection.

There is a fundamental principle involved in this independent con-
struction of a projective connection. Historically, the L, came first;
there exists therefore a certain tendency to relate connections to L,.
This is similar to the way plane projective, affine and conformal geo-
metries were developed. First these geometries were studied as aspects
of euclidean geometry, the oldest. Later, however, it was recognized
that each of these geometries could be independently established, and
taken as center of reference for the other geometries. Projective geo-
metry was first the study of those properties of euclidean geometry
which are invariant under projective transformation. Later it was
recognized that euclidean geometry was that branch of projective
geometry in which certain absolute elements are invariant. A similar
process is now being undertaken in the theory of displacements. At
present the independent construction of projective connections is well
established, and the independent construction of other connections is
well under way.

A text-book dealing with the subject matter of this chapter is VEBLEN’s
“Projective relativity”’. We follow here the independent construction
of projective differential geometry due to van DanTzigl. A related
theory of conformal connections is due to CARTANZ

2. X,, with local D,,. We introduce into the X, homogeneous co-
ordinates x°, ¥, x2, 3, . . ., 2", inshort x* % =0,1, ..., n. Allsystems
y* = A x* determine the same point. We subject these coordinates to
the group §,, ,, of transformations

(Onr1) =)
restricting the f to homogeneous functions of the first degree in the
(not necessarily linear). This is essentially the old &,. Apart from this
coordinate transformation we also allow the point transformation

(F) ¥ = px*,

1 vaN DANTZIG: 1932 (1).
2 CARTAN: 1923 (2). — SCHOUTEN: 1924 (10); 1926 (1) — see also Ch. III,
art. 4.
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where ¢ is a function of x* of degree zero. The group (F) does not
change the points of X,,. This X, we call H,. Points in H, are there-
fore not identical with points in X,. We may indicate this by calling a
spot the series of oo points of H, corresponding with one point of X,.

Furthermore we admit only functions f(x*), homogeneous of degree
t in %, and therefore satisfying the condition

flex*) = o'/ ("),
equivalent to the EULER equation
20, f =1f, 0,=0[0xm.

At every point P of the X, we can define a local projective space D,,.
With the aid of A7 — oo

A:’ == (7,,'?6",
we can here define a point calculus (Ch. I, art. 4), in which the 4% have
the function of the 9. Here we have to discriminate between the trans-
formations (9,.;) and (£). A tensor of degree 1 transforms under
(Dny1) as in this example
Vi = AV v

and under (F) as follows _. ., N
v;, w =0 v, w -

A tensor wv; [ ;™™ of degree r has an invariant, the excess (or

weight) e =14 s — £.! We study only tensors of excess zero.

This space D,,, which so far has been defined independently of the x*
with the exception of the A%, A%, can be more closely related to the
H, by the following property which has no analogue in L,. The point
x* of H, is itself a vector of degree 1 in D,,. Indeed, as a result of EULER’s

equation x40, x" = xM A% = x¥,

This point x* can be taken as “point of contact” of the D,,.

Another difference with L, is that in this case dx” is a vector only
with respect to (9,.1), but not with respect to (F):

dx* = g(dx* + x*dInp).
There is, therefore, in general no point in D, corresponding to dx*.
3. Projective derivative. This behavior of the dx* makes it in general

impossible, to define a covariant differential. But we can define a pro-
jective derivative?

*® % x A %
V,uv = 6,uv + II;L).'U + EQ,uv )
4 %
V,uwl = a,uwi. - lY,uﬁ.wn + EQ,uw}.;

1 VEBLEN: 1929 (28).
2 The /T and Q used in this chapter have a meaning different from the IT and
Q used in Ch. IIT and II
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which follows from assumptions parallel to those of Ch. II, art. 2. The
II7, form a system of (n + 1) functions of the x* of degree —1, and
the Q, form a system of # + 1 functions of the same degree. Hence

xva,,ﬂul = —-II’c
20,0, =—0Q,.

The II transform in the ordinary way under transformations of

the x* wis
=Ay/ xHM] +A a Al

There is a torsion tensor, homogeneous of degree —1,
Sui = Uy,
but also two new tensors (obtained from V,x”)
P’.‘;, — H'x u ,
> ® ph > LR W)
Q-,u =11,,* = Pl + ZSM~ x
As &V, v* = P o, ¥V w; = —P!;w,, we see that the operator
¥, defines a projective transformation inD,, for vectors, which depends
on points of H,, because x*V, Av* = Ax*V ,v*, when 1 is of degree 0.
Covariant differentiation of tensors of higher order follows in the

usual way (Ch. II, art. 2).
There is a curvature tensor, homogeneous of degree — 2

Ny = =20 113, — 2007, 1 1.
It satisfies the identities (I) NV,,;” = —N,;;” and

1)  Npan =455 "Sax + 2V S + 200 Sen”
and BriancHI's identity
(I1I) Vi Na:;;].lu = —25[;!;QN,;]'Q'; - 2A€qu Nr;].e.l%'

For the symbol V',V , we get terms that do not occur in L,:
VoV #]'u = “%Nwl v —}—SWQV 7 —{—A[,,Q,,] 0 -l—rUm'u s
V[v r/,u]wl = +']2"Nv,u,l wx+ Sa’,ue pr + A[vQ,u] Vnwl_l_ rvawl;

where iy
U,,# = V[VQMI - Svy QZ - A%”Q#] Q;v'

4. Projective differential. If we define
ov* =dxV , v,

then the dv* transform under (§, ) like the components of a vector,
but not under (F), because

‘§v* = gt{0v* + (Pi*v* + tQv¥)d Ing},
Q=1+ 10,
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Now we impose upon the parameters I the conditions
P =P4;; Q=o0.

In this case we have a covariant differential, and therefore the possibility
of mapping consecutive D, upon each other by taking the covariant
differential zero. A projective connection is thus defined, and consecu-
tive D,, are mapped projectively on each other. In this representation
the 11, are determined but for multiples of A7 and the @, remain
arbitrary, subject only to the given restrictions. The point of contact
of a D, does not, in general, remain a point of contact during a parallel
displacement.

5. Relation to a metrical geometry!. The transition to a metrical
geometry can be performed independently of any previous transition to
an A, by introducing immediately into the D, of the projective con-
nection H, a symmetrical tensor G;,. This can be interpreted as a
quadric on which lie the points v* for which G;,v*v* = 0. If we now
postulate that the point of contact #* does not lie on the quadric, we

may write Gin what = 2,

and normalize the G,, by giving the w? as a fixed number. Now a
euclidean metric can be constructed in the D,. To a point v* can be
assigned a modulus ]/E,l «v*v*. As the modulus of x* is & we can introduce
a unit point of contact ¢ = w~'#* which can be defined as center of
the quadric. The D,_, g, = G,,#" can then be taken as the D,_; at
infinity.

Functions &,k =1,2,...,n, of degree zero in the x*, independent
and satisfying 40,8 =0

can now be taken as non-homogeneous coordinates; the & transform
according to the group ®,. There is a unit tensor 4% = ¢, &, ¢’ 45 =0,
and a unit tensor Af. With respect to ®, ordinary affine tensors can
be defined o — AUk

li¢ vkYr -

To a point in D,, a vector in this metrical space is now uniquely deter-

mined. We write, identifying the vectors ¥ with the contravariant

points »” in the E,_; ¢, = 0: v* = A%v’,if vq, = 0, and also w, = A}w;,,
if w;¢* =0, and A% is defined by AjA* = A%, ¢ Ay = 0.

Every point can be written as a sum of a vector and a multiple of ¢*:

v ="v* +vg*, where v'=A}" + ;4" 0" v=—1"q,

In the same way we can associate to every projective tensor an affine
tensor which is identified with those projective tensors that admit, with
respect to every index, inner multiplications with

A=A+ qq.

1 SCHOUTEN-VAN DANTZIG: 1932 (4) — 1933 (6).
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As ¢*6;,9,) = 0 we find that éj;¢,, itself is an affine tensor, denoting
a null system in the D, _; at infinity ¢, = 0, a fact of importance for
projective relativity.

In this way an affine connection can be constructed in the original
projective connection, taking at every point a fixed covariant vectorg;.!

The symmetrical tensor

8ru="GCrut G2 qu
can then be taken as a RiEMANNian fundamental tensor.

If we take the covariant derivative of an affine tensor, then this
covariant derivative has a part which is an affine tensor. In this way
the projective connection determines an affine connection. This affine
connection can be specialized to a RIEMANNian connection. We write

R R _
ko k koo . ox [/
Viok = 0;0% 4 I'f;0', Vv = AgV 00
R R _
A k
Viw; = 0;w; — I'Fwy, Vaiw, = ALV w0,

for v*g, = 0, w;¢* = 0. In projective coordinates we can complete this
connection to a projective connection by the conditions

R R R
Vﬂq"ZO, Vﬂqlzo, P =0.

R
Therefore, we have for the parameters ]Y =, of this projective RIEMANNZan
displacement

R;z = ijfkrjki + Z;aﬂzf— 7 0.q,
so that the projective connection is not symmetrical,
g,}},x = Ognq” -
By a special assumption, as
Pi"=4wq", Q" =2wgq.,
we can determine the complete projective connection. This assumption

has been suggested by the requirements of relativity. We find under
these assumptions

Ify = 00% = 2¢';, 1= o0 'Q; = —2g,
H(;Co = H]Qi = H(?i = I[(?o = 0.
In this way a RIEMANNian connection in X, can be‘uniquely connected
with a metrical projective connection.

6. Specialization to affine connections. Through specialization we
can find several ways by which we may compare the projective dis-

1 vaN DANTZIG: 1932 (2). — SCHOUTEN-VAN DANTZIG: 1933 \6).
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placements defined, in Chapter III, by means of an A4, of given geodesic
lines. For this it is first necessary to pass from the homogeneous co-
ordinates x* to non-homogeneous ones by singling out one coordinate.
This is done, as a rule, by transformations

Eo=1nx°, F=2akx°, k=1,2,...,n.
The transformations of (§,,,) then pass into!
=+ o@E), F=5@E),

so that the & are transformed like the original variables of an L,. ¢ (&%)
is an arbitrary function for which the value

1

(6.1) wmz—mjm+n

has been taken?. This case can be considered as that of an 4, in which
a scalar density ¢ of weight 1/(1 — ¢)(» + 1) = ¢ is fixed:

lnA, A‘—“Det Iﬁkfkl

¢ = pd°.

In this 4, a local projective space D, belongs to every point. It is
now possible to define a number of conditions by which the II}; can
be uniquely determined from the I%, of the 4, if the I}, are given
but for projective transformations. The components of the projective
curvature tensor can then be identified with those of the curvature
tensor N,;,”. The special character of the scalar density ¢ permits us
to work only, in this specification, with point densities of degree zero.

7. Historical remarks. The first to construct a projective dis-
placement by associating to every point of an X, a D, was CARTANS.
It could be shown that such a displacement can be associated in a unique
way with every A4, given but for projective transformations of its paths.

Another approach is due to THOMAS?, who introduced the parameters

., discussed in Ch. III, Art. 3. To these parameters belong an H, ,
with a limited transformation group and a covariant derivative, but not
a covariant differential. This geometry corresponds to ¢ = —1/(n + 1)
in formula (6.1).

A third approach is due to VEBLEN®. He wrote the equations of
the transformation in X, as a quotient of two power series and used
the members of order zero and one of these series in the definition of
projective tensors. These tensors have a covariant derivative and no
covariant differential. They correspond to the limiting case ¢ — 1 in (6.1).

1 VEBLEN: 1933 (1).

2 ScHOUTEN-GOEAB: 1930 (5). — On D, see WHITEHEAD: 1931 (39). — BorTo-
LOTTI: 1932 (14). — See also HravaTv-GoraB: 1932 (6).

3 CARTAN: 1024 (2). — SCHOUTEN: 1926 (1).

4 THOMAS: 1926 (3). 5 VEBLEN: 1928 (3).
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A fourth method was indicated by WEYL!; he introduced a dis-
placement by the assumption of non-homogeneous coordinates in the
local D,,. ’

All these methods were brought into the frame of one theory by
ScHOUTEN-GOzAB2. This theory involved, however, a sub-group of the
group (9, 4+1), and therefore still had the variable x° in a singular
position. VEBLEN3 then passed to a group holomorphic with (§, . 1)
and applied it to relativity®. The theory was then remodelled into an
independent branch of the connection theory by van DaNTzIGS.
ScHOUTEN and vaN DanTziG showed how a unified field theory could
be constructed on the basis of this projective connection, containing
not only the gravitational and electromagnetic equations, but also the
equations of SCHRODINGER and Diract.

Chapter VI.
Induction.

1. Ordinary surface theory. If we define, in ordinary euclidean
three-space R;, a manifold X, by the equations ¥ = x*(x, v), » =1, 2, 3,
then a measurement is determined in this X,:

is? = Edu? + 2Fdudv + Gdv?, E :Z(%”;f etc.

and this linear element defines a RIEMANNian connection V, in the X,.
We say that the RiEMaNNian connection is ¢nduced into the X, by the
euclidean connection of the R;. When Levi-CiviTa, in 1917, demon-
strated the possibility of a parallel displacement in a V,, he did it by
just such a process of induction?. Since that time the method has often
been used to obtain a differential geometry of X, imbedded in an X,
with a certain connection. RIEMANNian geometryina V,, leads to a RiE-
MANNian geometry in an imbedded X,,, a plane affine geometry in an
E, to an A, in an imbedded X,,.8 The “‘generalized absolute calculus”
of ViTaLl is founded upon this principle®. We shall first show how it
can be applied to an L,.

1 WEYL: 1929 (9). 2 SCHOUTEN-GOEAB: 1930 (5).

3 VEBLEN: 1929 (28) — 1933 (1). See the latter for the literature.

4 Discussion of the theory in this state in BORTOLOTTI: 1931 (3).

5 vaNn DantzIG: 1932 (1).

6 ScuoUTEN and VAN DaNTZIG: 1932 (3) — 1933 (6).

7 Levi-CiviTA: 1917 (1).

8 SCHOUTEN: 1924 (5). — Comp. v. D. WOUDE-HAANTIES: 1933 (4). — HLAvVATY !
1928 (9).

9 BORTOLOTTI: 1931 (6).
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2. X,, imbedded in X,,. In an X, with original variables §* an X,,
is imbedded (m < ). This can be done by giving # equations

Ekzgx(nc); %:Z’:MJ/V:"'):,I)"')?L; a,b,C,"‘:1,"‘,m,

in which the 7° are independent coordinates and the & satisfy necessary
conditions as to differentiability. At a point of the X,, we have a local
tangent E, of X, and a local tangent E, of X,,. In the E, we have

the measuring vectors i", 21, in the E,, ¢°, Zc and the unit tensors 47, B;.
a
The differentials dn® and 4&*, determining the same linear element of
X,, are related by the equation
A& = Pidyn®, Pj= 0&0n°.

The P} behave as a vector in the X, with respect to the upper index,
and as a vector in the X,, with respect to the lower index:

PY—AYBLPl,  AY = 08j0F; B = bnjorr.

To every contravariant vector v* of X,, is associated, in a unique
way, a contravariant vector v* of X,:

v = P’
We may take »°, v* as different components of the same vector v
in the X, lying in X,,. ‘
To every covariant vector w; of X, (not X, but X,) is associated,
in a unique way a covariant vector ‘w, of X :

“w, = Phw,.
This vector ‘w, may be represented by the E,,_, obtained by inter-
secting the E, _; of w; with the local E,, of the X,,. As

P;B, = Pg,
we may write By for Pj.

We get more correspondences when the X, is fixed! in the X, that

is, if with every point of X,, we associate a definite local E,, _,, of X, at
P which has no direction in common with the local E,, (in ordinary

differential geometry the surface normal, in plane affine geometry the
affine normal, etc.). This “pseudonormal E,_,,~ can be defined by

taking m independent covariant vectors fal, ¢=1,...,m of which the
. . b
E,_; do not contain the local E,, of X,,. Now a quantity Q] = e,lfc

arises. We can then associate to a covariant vector w, of X,, a covariant
vector w; of X,

b
w, = Q1.

1 German: ‘“‘eingespannt’’.
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The E, ; of w, can be considered as the composition of the E,,_, of w,
with the pseudonormal E,,_,,. To a contravariant vector »” of E,, belongs
a covariant vector v¢ of E,,

v = Q"
which can be taken as the “projection” of v* on E,, in the divection
of the pseudonormal £, _,,. When v* lies in the E,,_,, v° =0, i. e. the
projection is zero. As

0k By = Q.

we may write B), for (). The tensor B has therefore components B%,
7, By, Bi. A quantity of X,, can have components partly or wholly

indicated by indices @, b, . . ., when the geometrical entity it represents
lies partly or wholly in the X,,.

To the E,_,, belongs the tensor C; = A5 — B .1

It is not necessary to use holonomic systems in X,. We can even
introduce a system of local E,, in X, that need not integrate to an X,,.
We can always give a definite meaning to the formulas.

3. X,,, in L,. Into the X, we introduce a connection L, by the
displacement

8" = dv* + Tyv &, V0" = 8,0" + It
If we consider v* a vector in X,, we can take the X,,-component

of the contravariant vector dv*. This component defines an induced
displacement L,, in the X,,:

m
0v° = B, 6v" = Bydv’ + B, Ty, o* dg
= dv° + Iiyo*dy’.
In a similar manner we come to a displacement for other tensors. It

is not even necessary to use holonomic systems. If we introduce into
the X, a non-holonomic system (%) (Ch.II), we can pass from

Ovt = dvt + I'f; v (d&)
in X, to dv° in X,,:

m

0v° = dv*® + I'f, v* (d&)°.

In this case we can also consider a vector @* in the pseudonormal E,,_,,,,
and define 3 other displacements?:

:gwr:dw'—i—]”{pwp (dE)° w=n—m,
gv“ =dv + I, 0" dé" - pq7,...=m+ 1, m+2, N

m,
0w = dw + I';, wP (d§)! a,be,...=1,2,...,m.

1 ScHouTEN and vaAN KAMPEN: 1930 (21).
2 WEvYL: 1921 (2) — CARTAN: 1925 (8) p. 47.

Ergebnisse der Mathematik. III/2. Struik. 4
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To each belongs a covariant derivative

w c
Vv

(4 [ a (3 4
abv +rba'v :Bgv V,uv )
m
s 7 ~ 7 r o ey v
Vyw' = 0y’ 4+ I'ypw” = By GV w”,

C ~ [ (4 a Y12 c v
Vo' = 0,0° + Iygv" = Cy BV, 0",
w

ot A 7 T D ur »
Viw = 6,w" + Iy’ = CLV, 0.

Hence we can write these quantities in original variables of X,,:

m m » b xm "
Vv —~B,wl7bv Viw" = B,C;/Vyw',
m’ ‘ m’ N ”m’ ,
V.o =CLB; V,,v , V,w' = CLV,u".

Such formulas also hold, as we saw, for non-holonomic systems.
From the first formula we get

Y4 P LA PR
BV =V, "+ v H,",
where

wh

i % _ pfa x__ Bo eq 3¢
H Bul Vﬂctx = B;thﬁBa = B,u). Vﬂ a)€
q

In similar manner m m
B v
B.Vsw, =V, 0w, +w,L,;,

where
m .
L

H/:

—BYVCi = B V,B; = — B (Vﬂe’)gl.

m.
The tensors H,,;*and LM ; are the first and second (velative) curvature

tensors of the L, in L,. H“ ) hes with its last index in E with

n—m:?

the first two indices in the L, Lu -, lies with the middle 1ndex out51de

’

m
of L,. There are also two other curvature tensors H,,;*and Lu ; be-

longing to the field of E,_,,, as H‘M; and L .+2 belong to the E,.

4. D-notation. The differential symbols so far introduced do not
exhaust all the possibilities of forming induced differentiation. It is,
for instance, possible to construct a covariant differential of a tensor
v;* lying with the first index in L,, and with the second in E,_,, (and
therefore equivalent to v,?), which has these same properties. We have
namely to form dfi’B’},ng V,v;”. We can introduce a notation which
takes all these possibilities into account. We define, for a #* in L,,
v*in L,, win E,_,,,

a) a differentiation with respect to L,:

D.p=V.p, D,v* = BV, v
D‘uu%: V,u%x: D.u,w = C; ,uwv;
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b) a differentiation with respect to L,,:

Dyp = ByV,.p, Dyv° = By, V,. 0",
Dyw* = BV, u*, Dyw" = By CLV v,

c) a differentiation with respect to L,,,, the displacement defined with

respect to the E,_ ., which as a rule is non-holonomic:
Dyp =CHV .9, Dy = C{ByV v,
Dyw = CYV ,u, Dyw" = C{V w”.

Similar formulas can be defined with respect to covariant vectors
and other quantities. The operators D satisfy the ordinary rules for
differential operators with respect to addition and multiplication. Even
for inner products the ordinary rules hold:

va,;"w“ = (vad’{) w* v,;"(wa“) )

There should be made, however, a strict discrimination between the
rules for D and the rules for V' so far as indices are concerned.
The relative curvature tensors can now be written

m
Hy*= DyBj; = DyD, &}
m
L, = D,Bj.
5. V,, in V,,. Let a Riemannian manifold V,, with fundamental
tensor g; , be given. In an X,, in V,, a RIEMANNian connection is induced
with fundamental tensor bop = bpe

i
bab = Ba/l:gl/z .
There is a tensor ¢,, defined by C;;/; 814, lying in the pseudonormal E,,_,,,
here the normal R, ,,. We have, from Riccr’s identity V,g;, = 0,
Dbbac:O; quac:(): Dbcp,zo, chpr::O_

m m
The two curvature tensors L;*, and H;,* can be identified:

m m“
Ly” = Dy bacB}c,glnz DB = Hp,™.
1 m
We shall write L;;* instead of L;,”, and similarly for H;,*. If we
introduce the unit vectors ¢* into the normal R,_,, we have

ba

1 q g 1
H;,”=—BS* (Vﬁ z'[x) 1. We also see that Hy,* for V,,_, in V,, splitsinto
q

hye z‘ where /,, =, is the second fundamental tenslor of the V,,_; and

#* the unit normal. It deserves to be mentioned that H;,*is symmetrical
n

1 v, p. WAERDEN: 1927 (11). — BorToLoTTI: 1928 (6). — DUSCHEK-MAYER:
1930 (20) p. 156. — See also LAGRANGE: 1926 (5) p. 10. -— Historical account in
ScrHOUTEN and vaN KAMPEN: 1930 (21) p. 774.

4*
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in @ and b, but only when the V,_; is holonomic. In the same way,
if the V,, is replaced by a field of co” =™ non-holonomic fields of R,
1

in V,, the H;,” is not symmetrical in b and «, but it is symmetrical

when the R, can be integrated to V,. The necessary and sufficient

condition for the complete integrability of these R,, into a system of
1

oo =™l is the symmetry of H,;” in b and a.
The equations of Gauss and Copazzi assume the form

1 1 1
2 WA ceey cen . .y
BdgafRn/M = Rdbuc + 2H[dc\q Hb]aI (GAuss),
R 1
UL M4 ..
Bdba C: Rz,ul = - ZD[d Hb]ar (CODAZZI) ,

1
where R, ;" is the curvature tensor of V,, Rg;,° of V.1
6. Formulas of Frener. Ata point Pof V, in V,, we consider the local
R,,, in which a fundamental tensor b,, and a unit tensor B are defined.
The connection between the local R, and the R,, is given by the formula

D,&* = Br.

The application of the operator D, to B} gives the relative curvature

tensor 1
DyB; = Hy,”.
1

This tensor H;,” lies with its first two indices in the R,,, and with
its last index in an R,,, [ R,. This R, forms, together with the R,
an R, i, (m; = m) in which all vectors d,6,&* lie. For the case of a
V, in R, this R, is in general an R;, in which the “curvature cone”
lies, formed by the curvature vectors of all geodesics of V, issuing from
P. If special conditions are introduced, the R, may have fewer dimen-
sions than three. For the case of a V;in R, this R, is at most an Ryg;
for a V,, we have my = im,(m, 4+ 1). The R, may be called the
“first normal space’’. In the case of a curve the R, is the principal
(first) normal.

If we pass to vectors 0,0,0,6%, we get a space R, 1y, +m, il Which
all vectors lie. There is therefore in general an R, L R, .,,, the
second normal space. We denote the fundamental tensor and unit

2
tensor of this R . by Cp « By and denote, accordingly, those of

2

R, by C B;i' We have for D, B,

20
2
14 v . . .
Bg’DbBP-z:—Bl)sz?” :—Hbeps’
2 2 2 2 2 2
BpD,B,, = Byl D,Bj=—BpiDy(4; — B) =
1 For A4,, in A, see SCHOUTEN: 1924 (5). — For L,, in L, see HLAVATY:

1930 (24). — Comp. also BorTOLOTTI: 1931 (8). — HLAVATY: 1926 (9). — Related
is a paper by RUSE: 1931 (29). '
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2 1
so that the tensor D, B, + H,%,, lies with its »-index in a region L R,,
and LR, , hence (as the order of differentiation guarantees) in the
R, . We write

2 1 2
Dsz;’ + Hb%i’_) = Hl;l;z"'
In this way we can continue to define with the aid of the third, jourth . . .

etc. normal spaces.
-1 i

!
DB}, + Hity, = Hi”,

as long as the left hand side does not vanish identically. The successive
relative curvature tensors of higher order lie with their »-index in the
successive first, second, third, ..., normal spaces R, , R,,, R,,, - ..
The osculating /-space of every curve of the V,,, considered as a curve
of V,, lies in the R, . ,, . ..., When for a certain my, m,+my+---
-+ my =n, the left hand side vanishes, the last equation becomes

k k-1
o __ .
DbBl’k ’— bepye

Hence, we have, for V,, in V,, the formulas of FRENET!

-1 l

!
DbB;l :_Hl;,“pl—‘i—Hb‘élzJ l:1,,k

0 3
H=0, H=o0.

For V, in R, these formulas are equivalent to the ordinary formulas
of FRENET for space curves.

The integrability conditions of the first of these equations are the
equations of Gauss-Copazzi. The integrability conditions of the other
equations give generalizations of these equations.?-

7. Curves in L,. In a general L, no orthogonality relations exist
and the theory must take another form. So far, only the case of curves
in L, has been discussed. Formulas similar to those of FRENET can
here be found due to the fact that, though no orthogonality relations
exist, there exists on the curve an invariant parameter. Indeed, the
equation

_dw x A&
Dwkztf +]"Mfﬁw—

determines, but for a multiplicative constant, a scalar density of weight
—1 along the curve C.

! ScHouTEN and vaN KAMPEN: 1931 (40), also 1930 (21). — Comp. DUSCHEK-
MAYER: 1930 (20). — MAYER: 1931 (34). — BuURsTIN: 1932 (35).

2 For the equations of Gauss-Copazzi for 4,, in 4, see SCHOUTEN: 1924 (5).
— EiseNHART: 1927 (1). — For invariants of 4,, in 4, see VAN DER WAERDEN:
1927 (11). — MicHAL-BoTsFORD: 1932 (33).
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We introduce, for a vector field #* defined along C, the vector
D' = du’ldt = du*ldt + I, o dE"[dt.
Then we can construct the following vectors
v = d&xldt,

v* = Dy~ vt = Duv*, ..., vV =D v*.
2 1 3 2 E k-1

In general £ = #, but under circumstances the series of ¥* may be inter-
%

rupted for a £ << n. Let us assume the general case that 2 = #, and

that the vectors ?”’ g", ..., v* form a linearly independent set at each
n

point of the curve.

The parameter ¢ will now be changed into a function p = p(#) of ¢.
Then we can define anew

w*=d&*dp, w* = Dw*, ..., w* =D w*.
1 2 1 n

n—1

The zg“ again form an independent set. We now determine p in such

a way that n(n+1)
dt 2
[ # ] = (22 [21 )%, #*n] —
wrrwtr ... W = prarypTe L0
1 2 n dp) 1 2 n
i n(n+1)
p— t 2 12... [%: A% en] —
:<E) v nAl AzA; =

=wAl A% . A,
1 2 n
This is an invariant condition as v!2-™ is also a scalar density of

weight —1. Hence ¢
b [(vlzu-ri)z/n(nﬂ)dt

w

to
is an invariant parameter along the curve, and the vectors

z{v"—_—d&"‘/d;b, Zg”ZD'Lf)",..., w* =D w

3
n n—1

form an invariant set of # independent vectors in the E, of L, defined
at a point of the curve.

As  Dylays . gl = (Dw) A Az ... A" =0,
1 2 n n
it follows that Dw” is a linear combination of w*, ... w’l':
n 1 n—
Dw” = % w” + %y w* ... #,_q W".
n 1 2 n-—
This equation and
Dw* = w* 1=1,...,n—1

. . »
1 i+1
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form analogues, for a curve in L,, of the equations of FRENET. The
functions #%,, ..., %,_; of p, the affine curvatures, can be found from
the FRENET equations by determinant expressions.

These equations can be cast into a simpler form. If we introduce

. i .
the # covariant vectors w;, ¢ =1,...,n, by the relations

i . i
w, wh = 0, w, w* = A
j i '

application of the operator D gives the equations

i i—1 i 1=1,2,..,%
Dw) = —w) — #p_qwy, 0
%= 0, w, = 0
as a result of the FRENET formulas.
By further substitution
n n n n—1 n—1 n—2 2 1
Mlz(—1)”wlr Dul:_ U , DM), = %)H,...,DM;,:—M;.,

and transformation to the corresponding contravariant vectors #*:
1
i A i
w, w5}, ww = Af,
i

we finally arrive at the formulas

Duw* = w*,
1 2
D;"":—Qﬁf”“i’g‘”x in short:

.......... .. Du* = —p,_ w4+ u*
i ¥ T

D w= — w* 4 u* -
S Tk WU, f=1,2,...,m,
...... e e 90:0,
D MK:_Qn—2M;+“Z» #*=0.
n—1 1 n n+1
Du* = —p,_; u*,

which show more outer similarity to the classical FRENET formulas.
The g, ... p,_; are functions of the parameter p. The n vectors %t", cee, X
n

form the associate affine ennuple at a point of the curvel.

It should be noticed that this parameter p does not pass into the
arc-length s when the L, becomes a V,,. For this reason theg, ... 9,_,
do not pass directly into the ordinary curvatures of a curve in V.

8. P,, in P,. In an X, with a projective connection P, (Ch.V) an
X,, is given. Then a P, can be introduced into this X, by means

’¢

of a system [I.;, (, satisfying the homogeneity relations

a re __ 12 d ;. /

x ad bgd_ bfw X aan—_Qa'
1 HIAVATY: 1929 (11) — see also 1931 (10). — Extension to curves on non
holonomic L,_; HravaTy: 1930 (24). — For curves in a WEYL connection see

SCHOUTEN: 1924 (5). — HLAVATY: 1928 (9). — Related is a paper by WUNDHEILER:
1932 (23).
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We cannot yet say that the P, is induced into the X, by the P, as
long as no relations are given connecting the coefficients of displacement
in P, and P,. We can, however, already define a relative curvature
tensor H;,*, a quantity of degree —1 in x*,
e n > ~ P 7 x® » ’
Hba = DbBa = ObBa + Biaﬂ,u;. - Bc I]az:

satisfying the identities

H,y'x" = P,/ By — B P}",

Hyy's" = Q"1 B, — B;Q"a.
Induction begins when we relate the @/ and Q; by Q, = B2Q,. The

»e and II7; can be related by equations similar to those for L,, in L,

nAh

if the P, is fixed in P,:
1% = B 11 + BLéy By
Then
Pr=BuP’,  QYW=B4Q,.
In this case we have a second relative curvature tensor
L, ;=B V,Bj.

In such a connection there are geodesics only when certain conditions
are satisfied. Indeed, a curve is here a manifold of two dimensions. Hence
a geodesic must be defined by the equation H,;* = 0, or

&,Bs -+ By2 I, — Bi1l,5 =0, a,b=0,1
or
R . Oxh ExM ;e Ox%
owraw T ki gue g — i gy =0

if for a moment we write u®, u® for x%, x°.
As totally geodesic P, are not in general possible, certain integrabi-
lity conditions must be satisfied. We find that they are of the form

Pi* = p,a" + (P — px9) 47, P;*xt = Px*
Q% u = qux* + (P — pox0) Ay, $1, ¢, arbitrary.

These conditions are the necessary and sufficient conditions that through
every point of P, a geodesic line may pass in every direction.

In this case it can be proved that the P, can be uniquely determined
from the X,, considered as an 4, but for a projective transformation
of paths. ‘

1 yax Dantzic: 1932 (1). — For manifolds in D, see BORTOLOTTI: 1932 (135)-
— See on the paths of a projective connection also CARTAN: 1924 (2). — THOMSEN:
1930 (4). — On curves in special P, HrLavaty: 1931 (9).
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Notation used.

second derivative » 6 d &k s D D D
first derivative w y ¢ 7 r C G ¢
first covariant A B b i g B B b
first contravariant » « a 4 p A U a

A, = group of all affine transformations in E, with fixed origin
x*—x*" (in #» variables).
®,, = group of all transformations &*— &* in # variables.
$ns1 = group of all homogeneous transformations of degree one x* — x*'
in# + 1 variables.
F = group of all point transformations x* = px”, ¢ homogeneous,
zero degree, in &
, = n-dimensional regular manifold with original variables £* and
group &, of coordinate transformations.

>
Il

L, = X, with affine connection.

A, = symmetrical L,.

E, = affine-euclidean space (a space with ordinary affine geometry).
R, = euclidean space.

H, = n-dimensional manifold with # + 1 homogeneous coordinates

x”%, Pp+1 as group of coordinate transformations, and in addi-
tion the group F of point transformations.

P, = H, with projective connection.

D, = projective-euclidean P, (a space with ordinary projective

geometry).

U, = HerMITian metrical connection.

A geometrical object is denoted by a central letter which is always
the same, and different kinds of component-indices, e. g., v*%, v.,%
v,,;j, 1)9:[@.

The word space is used only for manifolds with a group in the sense
of KiLEmN: euclidean space R,, affine space E,, projective space D,.
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