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PREFATORY NOTE

In the following treatise on mechanics and heat an effort

has been made to present the subject in as clear a manner as

possible for use of a college student. A knowledge of plane

trigonometry is necessary before undertaking this study, and

the more mathematics a student knows the better he will ordi-

narily succeed in physics.

Some changes ' have been made in the form of the usual

college text and in the method of presentation. The aim of

the writer has constantly been to say the words that would

help the student to understand the subject. Thus it is hoped

that the book will prove to be not only a treatise but also a

text-book for students.

Reference matter and tables are placed in the appendix

instead of being scattered through the text. This takes less

room and is much more convenient for reference. A number of

short lists of problems are found where they are needed to

illustrate the application of principles learned. Answers to

problems are given at the end of the lists, but a student should

be made to understand that numerical results are not so impor-

tant here as his ability to present the line of argument involved

in the problem. The tables of sines, cosines, tangents, etc., are

intended to make the book more desirable as a complete working

text.

We acknowledge our obligation to the Ball Engine Co. for

cuts of the steam engine, to D. Van Nostrand Co. for cut of the

Parsons steam turbine, to the T.aylor Instrument Companies

for the cuts of pyrometers, and to the De Laval Steam Turbine

Co, for cuts of the De Laval turbine.
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GENERAL PHYSICS

MECHANICS

^,

CHAPTER I

KINEMATICS

1. Metrology.— Metrology is the science of weights and

measures. Convenient and well-defined units of measurement

are essential in any highly organized social state. Exact units

are particularly necessary to the advancement of science. The

scientist is constantly trying to make exact determinations of

length, area, volume, and mass. He must express these quanti-

ties in fixed units. A record is thus made which can be compared

with the results of other investigations and can be understood

by all who are familiar with the units used. If the units em-

ployed by different investigators are not exactly defined or are

carelessly used, great confusion is sure to result and progress

will be checked.

In early times, when the people of a community were not so

closely dependent on each other as now, the head of a family or

clan might choose units of length and weight as he thought

best. He would, however, choose some convenient and natural

unit. For short distances the length of his foot, the breadth of

his hand, or the length of his forearm would be chosen. Longer

distances would be designated as so many paces, and still longer

distances by the distance a man could travel in one day.

For determination of mass he would naturally use seeds, as

is evidenced by terms still in use, e.g., the grain and the carat

(from carob, bean).

When people began to live together in larger and more com-

pact communities, it became necessary for the king or some one

in high authority to fix certain standards to be used in common
1
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by a great number. Thus, it is said, the English yard was first

determined by the length of the king's arm.

As the various nations advanced in science, arts, and indus-

trial pursuits, it became necessary to fix and define certain units

which all would use. The units of length having most extensive

use are the yard and the metre.

The yard was defined by the English Parliament in 1855.

It is a solid square bar made of a special bronze, 38 inches in

length and one square inch in cross section.

Near each end a circular hole is sunk to half the

depth of the bar. Fig. 1. At the bottom of each

hole is a gold plug upon which is inscribed a

transverse line. When the temperature of the

bar is 16f° C, the distance between the lines is

the imperial standard yard of 36 inches. This

bar is carefully preserved at the standards office,

Westminster. Four other bars called Parliamen-

tary copies were made and deposited for safe

keeping at other places. These, by law, must
be compared with the original once every ten

years, so that if the original is lost or destroyed,

it may be exactly reproduced from its copies.

A number of other standard yards were made of

the same material and distributed to various in-

stitutions in Great Britain and to other nations.

Bronze standard No. 11 was presented to the

United States. It is .000088 inch shorter than

the imperial standard.

This description is sufficient to show the care which has been

taken to define and preserve a unit of length.

The standard unit of mass in the English system is a piece

of platinum marked P.-S., 1844, 1 lb. This is the avoirdupois

pound, and yinnr of this mass is the grain.

The unit of time is the mean solar second. A solar day is

the interval between the passages of the sun across the meridian.

These intervals are not equal, for the earth does not move with

the same speed at all points of its orbit, but the mean of all the

intervals in one year is the same as in another year. If there

is any difference it has not yet been detected. A mean solar

Fig. 1.
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day is divided into 24 mean solar hours, the hour into 60 minutes,

and the minute into 60 seconds, making 86,400 seconds in a

mean solar day.

If it is found, as some think, that the earth is rotating on

its axis more slowly than formerly, a different and less variable

unit of time may be selected as a standard.

The English standards of length and mass are arbitrary,

—

i.e., they were selected by Parliamentary enactment, and their

perpetuity depends on the care with which they are preserved.

As standards they are probably as good as any of this character.

The chief objection to the English system is the manner in

which the standards are divided. The system is not a decimal

one, and the various derived units are very inconvenient.

In the latter part of the eighteenth century the subject of a

rational system of weights and measures was strongly agitated

in France. This was a time when the French people were

making many changes and were in a mood to make this one,

however radical the change might have seemed at other times.

The plan was to agree on some natural unit of length, something

that would not change while the world stands.

The French Academy of Sciences recommended the length of

the earth's meridian from the equator to the pole. The measure-

ment of this distance was made by M^chain and Delambre

(1791-1798). Of course they could not measure the entire

distance, but chose the distance from Dunkirk, in the northern

part of France, to Barcelona, in Spain, on the shore of the

Mediterranean Sea. This distance was very carefully measured

by the method of triangulation, taking into account the curva-

ture of the earth. The difference of latitude between these

points was found to be 9° 40' 45" Knowing the length and the

number of degrees, the length of 1° is easily found, and then the

length of 90°, the quadrant sought.

One ten-millionth (tt^) of the length of the quadrant was

called 1 metre (m.).

Thus the effort was made to determine a natural standard of

length, but it has since been found that the quadrant is more

nearly 10,000,880 metres. The metre in use is practically an

arbitrary standard, just as the yard is, and is defined as the
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distance between two transverse lines on a certain platinum-

iridium bar when the temperature is 0° C. This bar is preserved

with great care by the International Metric Bureau at Sevres,

near Paris.

Fig. 2.

The standard of mass in the metric system is the kilogram,

originally intended to be the mass of one cubic decimetre of

water at its greatest density, 4° C. A mass of platinum supposed

to be equal to this quantity of water was selected as the stand-

ard, but it has since been found that 1000 c.c. of pure water at

4° C. weighs about .04 g. less than the standard mass of platinum.

Fig. 3.

The subdivisions of the metric standards are made on a

decimal basis. The convenience of the metric system has led to

its universal adoption for scientific purposes, and in many coun-

tries of Europe it is used for all purposes.
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The unit of time in the metric system is the mean solar

second, as in the English system.

In the year 1866 the metric system was made lawful through-

out the United States, the weights and measures in use being

defined in terms of the metric units. The yard was defined

as fffr nietre, and the pound avoirdupois as -^.Twrs kilogram.

Thus the metric system is made the standard in the United

States, but its use is not compulsory.

The original advocates of the metric system failed to estab-

lish a natural and invariable standard, but the arbitrary metre

and kilogram as now defined are better standards than natural

ones which are subject to change or for which new values are

likely to be found by later and more refined processes.

In recent times Prof. Michelson has determined the length

of the metre in terms of wave lengths of ligiit. He found that

for red light, whose wave length is .64384722/x, the length of

the metre is 1,553,163.5 waves; for green light, of wave length

.50858240/i, 1,966,249.7 waves; for blue light, of wave length

.47999107/1, 2,083,372.1 waves.

Thus the length of the metre is fixed in terms of an invari-

able natural unit,—wave lengths of light,—and if for any reason

the present standard metre should be destroyed, it could be

exactly reproduced from the record of its length in terms of

light waves.

2. Fundamental and Derived Units.— Fundamental units

are those that are chosen as a basis for a system of units. The

fundamental units most commonly employed are those of

length, mass, and time. The unit of nearly all other physical

magnitudes can be fixed in terms of these three.

Derived units are those whose magnitude is expressed in

terms of the fundamental units. Area, for example, is a length

squared. Volume is a length cubed. Velocity is a length divided

by a time. Density is a mass divided by a length cubed.

A system of units fixed in this manner is called an absolute

system, because physical magnitudes are thus determined not

by reference to some other magnitude of the same kind which

might have been adopted as a standard, but by reference to

fundamental units which do not change.

The most common absolute system in physical investiga-
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tions is that in which the unit of length is the centimetre; the

unit of mass, the gram ; and the unit of time, the second. This

is the centimetre-gram-second or c.g.s. system.

3. Dimensions.—Dimensions of a derived unit are expressed

by a power of the fundamental unit. Thus [U\ expresses the

dimensions of volume in terms of length.

Dimensional equations are found by calling length L, mass

M, time T, and then placing these in the proper relation to

express the physical quantity under consideration. Velocity,

for example, is a length divided by a time; hence it is expressed

by
I

" I or [LT"~']. Momentum is a product of mass by velocity

;

hence' it is expressed by [M] [LT-^]=[MLT-^].

These expressions only show the relation between the funda-

mental and derived units. When the magnitudes of the funda-

mental units have been determined, the magnitude of the derived

unit may be found from its dimensional equation. Thus

velocity [F] = [Lr-i]

and, if c.g.s. units are used, the velocity is expressed as '^'"/sec-

To express the magnitude of any physical quantity we must
know not only the unit used but also the number of units.

In the expression

X represents a pure number and is called the numeric.

Dimensional formulse are valuable in many ways, as will

appear in later discussions. To illustrate one of their uses,

suppose it is desired to convert a velocity of 12 m. per minute

to cm. per second. Let x be the numeric sought,

—

i.e., the

number of cm. per sec. Also let L^ and T-^ be the length and
time in metres per minute and L^ and T.^ be the same for centi-

metres per second. Then,

"-''[ErT;]-"'"'°-<SJ-'''"'-

4. Motion and Rest.—Motion is a change of position. The
position of a body is indicated by its distance and direction
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from a known point of reference. If the position of A is known
and B is 30 m. due north, then B may be located. This method
of locating objects is in constant use. If either the distance or

direction of a body in reference to the fixed point of reference

is changing, the body is in motion.

Motion, then, is only a change of distance or direction in

reference to another body, and hence is relative and not absolute.

A and B may both be in motion in such a manner that there

would be no change in distance or direction in relation to each

other. They would then be said to be at rest provided one is

located by reference to the other. In reference to C, however,

both A and B may be in motion.

In our ordinary judgments of motion we assume that the

solid earth and the fixed objects upon it are at rest. There is

no rest except in a relative sense. There is no point in the uni-

verse which is fixed and to which all other objects may be

referred. The earth, for example, rotates from west to east, so

that bodies on the equator are moving about 1040 miles per

hotir. If a cannon were stationed on the equator and a ball

projected westward with the same velocity as that of the earth

eastward, observers would ordinarily consider the cannon to be

at rest and the ball to be the only body in motion. More prop-

erly the force of the explosion of powder only served to bring

the ball to rest while the observers and the cannon moved on

with their original speed. The object aimed at would move up
and strike the ball. Such would be the appearance to an ob-

server who did not partake of the motion of the earth on its axis.

5. Axes of Reference.—^Although all positions and motions

are relative, yet it is necessary for us to assume certain points

and lines as fixed and then calculate the position and motion

of bodies in reference to these.

One common method is illustrated in Fig. 4. The point o is

called the origin. The lines XoX^ and YoVj are called co-

ordinate axes. When the angles at o are right angles, the lines

of reference are called rectangular axes. The X-axis is often

called the abscissa and the Y-axis the ordinate. The distance

between the fine lines in the figure is one millimetre, which may
be taken to represent one metre, one foot, or any other space.

Suppose it is desired to locate the point in the first quadrant.
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It is seen that Pj is 10 mm. from o as measured along the X-axis

and 15 mm. from o as measured along the Y-axis. The abscissa

of Pj is then 10, and the ordinate 15. This is usually written

Pi (10, 15), the abscissa being given

first. Any abscissa to the right of

is called positive (+ ), and to the

left negative (— ). The ordinates

above o are positive, and below,

negative. Thus the point Pj is

located by P^C-IO, 5). The lo-

cation of the point in the third

quadrant is P3 (— 10, — 10), and
in the fourth, P^ (10, —15).

A point is also often located,

as shown in Fig. 5, by a line, r,

indicating its distance from the

origin, o, and by an angle, d, made by r with the initial line, oX.

The line r and the angle d are called the polar coordinates of the

point P. The position of P is then expressed by P (r, d) . It

is easy to pass from polar to rectangular coordinates and vice

versa by observing the trigonometric relations shown in Fig. 5,

Fig. 4.

where
y =r sin

and

whence

X =r cos I

y _ sin d

X cos d
= tan

(1)

(2)

(3)

or

Also

e =tan-' ^

r'= aj^-l-j'^

(4)

(5)

Fig. 5.

From these relations it is possible to find r and when x and y
are known, or having r and to find x and y.
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Problems.

1. Locate on coordinate paper as in Fig. 4, P(7, 15) P(8, — 12)

P(-3,-14).
2. Construct polar coordinates for P(12, 45°) P(20, 270°) P(10, 0°)

P(40, 360°).

3. Given the rectangular coordinates for a point P(8, 6), find the

corresponding polar coordinates.

4. Find the rectangular coordinates of P(2, 60°).

1. .

3. P(10, 36^52').

4. P(l, |/3)

6. Translation and Rotation.—A motion is called a trans-

lation when a body moves in such a manner that all its particles

have the same motion. If, for exam.ple, a body changes its

position from A to B, Fig. 6, in such a manner that a line con-

necting any two of its parts remains parallel to itself, the motion

Fig. 6.

is one of translation. A locomotive running on a straight track

would be an example of this kind of motion. If, however, one

point or axis of a body is fixed and the other points are moving

about it, the motion is called rotation. An example of this is

a wheel or sphere rotating on a stationary axis. A body rolling

along a plane has a combination of both translation and rotation.

7. Measurement of Length or Distance.—Numerous methods

are employed in the measurement of displacement and length.

For ordinary measurements of long distances extreme accuracy

is not necessary. For distances between cities an error of several

rods is in most cases of little consequence. In certain surveys,

however, such as was used in finding the distance from Dun-

kirk to Barcelona, the length of a base line must be measured

with extreme care, for it enters into all subsequent calculations.
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I I I

Fig. 7.

For measurement of small lengths, such as are used in the

shops and laboratory, it is often sufficient to lay a graduated

scale on the object to be measured, with the scale divisions close

to the object. If the scale is graduated in millimetres, the

object may be measured to

tenths of a millimetre with a

fair degree of accuracy. The

object A, Fig. 7, is 5.4 divi-

sions long. Practice will en-

able one to estimate tenths

with sufficient accuracy for many purposes.

To assist in measuring tenths or other fractional part of a

scale division, a vernier is frequently used. This is a small

auxiliary sliding scale, as V in Fig. 8. Let the vernier be as

long as nine of the scale divisions and divided into ten equal

parts. Each of the vernier divisions will then be nine-tenths of

a scale division,

—

i.e., will be shorter by one-tenth. In Fig. 8, A,
the first vernier space is shorter than the first scale space by
one-tenth of the scale unit. The second mark on the vernier is

two-tenths to the left of the corresponding mark on the scale;

the third, three-tenths, and so on, the tenth mark on the vernier

coinciding with the ninth on the scale. If now the vernier be
moved to the right so that 1 on it and the scale coincide, the

distance moved must be one-tenth of one of the scale divisions.

When 2 coincides with 2, the dis-

tance is two-tenths of a scale divi-

sion. Thus, whatever mark on the

vernier coincides with any mark on

the scale is the number of tenths, in

this particular vernier, of one scale

division. To determine the length

of the line ab, Fig. 8, 5, read the

two whole divisions on the scale,

then look along the vernier for coincident lines. In the figure

it is the seventh line ; hence the length of ab is 2.7 scale divisions.

If the scale were in millimetres, ab would be 2.7 mm. long; if

in tenths of an inch, .27 inch long.

If the divisions on a scale are ^ inch and 25 divisions on the

vernier are equal to 24 on the scale, then each division on the

/ I'l'i' i' i 'i' i \
J_i_

U J i

'

i

'
'

'

Fig. S.
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-5-5-^ inch shorter than a scale division. Withvernier is -f^ 01 2%, or

this arrangement direct readings are made to within .002 of

an inch.

Stating these facts in a general way, if n is the number of

divisions on the vernier and w — 1 the number on the scale, then

nV= {n-l)S (6)

where V and 5 represent the value of the divisions on the vernier

and scale respectively. From equation (6)

\ n J n

..s-v=—s
n

(7)

The term —S is often called the least count. It indicates the
n

degree of precision for which the vernier has been constructed.

In Fig. 8 the least count is one-tenth of the scale division.

Fig. 9.

In Fig. 9 is shown the use of a vernier on a vernier caliper.

One jaw is fastened rigidly to the scale while the other is mov-

able and carries a sliding vernier. Many instruments of this

character are provided with verniers.

Another kind of instrument, based on the use of a microni=

eter screw, is often employed in refined measurements of

length. The manner of its use may be gathered from Fig. 10.

A strong frame, F. carries at one end a stop, E, and at the other

end a graduated arm, A. Within the arm is a fixed nut in which

the screw turns. Attached to the head of the screw is a sleeve, 5,

which fits on the arm and is graduated on its bevelled edge.
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The graduations on the arm are usually in millimetres or frac-

tions of an inch. In a common form of this instrument the

pitch of the screw is .5 mm., the arm is divided into millimetres,

2 ^ s p
^ii<i ths sleeve has its bev-

elled circumference divided

into 50 equal parts. Two
turns of the screw, then,

would move the sleeve one

millimetre on the arm. A
turn of the screw through

one division of the sleeve would move the screw longitudinally

^ of
-J

or y^ mm. The least count is Ym nini-> but by esti-

mating in tenths measurement may be made to thousandths

of a millimetre. To facilitate setting of this instrument and

to secure the same pressure in different measurements, a ratchet,

R, is provided, which will turn without turning the screw when
a certain pressure has been reached.

Fig. 10.

Fig. 11.

Another valuable instrument for measurement of small

lengths is the micrometer microscope. This consists of a simple

microscope with micrometer, mounted as shown in Fig. 11.

The objective, o, of the microscope produces an enlarged image
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of the object within the tube in the plane MS. This image is

viewed through an eye-piece, E. The micrometer, shown
nearly full size in Fig. 12, is mounted in the plane of the image.

The screw is attached to a light frame, across which are stretched

spider lines. By turning

the screw the lines are

made to move across the

field from one end of the

image to the other. The
head of the screw is a disk

the circumference of which

is divided into 100 equal

parts. The number of

turns of the screw is a measure of the length of the image. To
measure an object in millimetres it is necessary first to determine

the constant of the instrument,

—

i.e., the number of turns of the

screw necessary to cause the spider lines to move over a space

of one millimetre as seen through the eye-piece. Suppose this

constant is found to be 9.35, then the length of an object which

requires for its measurement 3.927 turns is 3.927-^9.35 or .42 mm.
Numerous other devices are employed in the measurement

of length, but most of them involve the principles already

explained.

8. Measurement of Change in Direction.—In case the motion

is a simple rotation, the displacement involves a change of

direction but not of distance from

the origin. Measurement is then

made of the angle through which

the line connecting the body with

the centre of the circle moves. If

a body moves from X to P along

an arc whose radius is oX, it has

changed in direction but not in

distance from 0. The displacement

,
of the body may then be indicated

by giving the number of degrees which the line oP makes with oX.

For the construction and accurate measurement of angles,

various forms of protractors are frequently used. In Fig. 14

is shown a protractor having a vernier, a transparent centre for
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accurate placing over the origin, o, and a long arm one edge of

which is in a true line with the centre. With such an instru-

ment a difference of one minute in the magnitude of an angle

may be measured. The degree is the unit in this method of

measurement.

Another unit, often much more convenient in the measure-

ment of angular displacement, is the radian. A radian is the

angle at the centre of a circle measured by an arc whose length

is that of the radius of the circle. If the radius oa, Fig. 15, is

laid off on the circumference, not as a chord but so as to coin-

FiG. 14. Fig. 15.

cide with the curve of the circumference, as ah, then the angle

at formed by the lines aa and ho is a radian. It is evident that

the angle at o is not quite 60°, as would be the case if the radius

were inscribed as a chord.

Since the circumference of a circle is 27tr, the radius can be

laid off on the circumference 2tc or 6.2832 times,

—

i.e., there are

6.2832 radians in 360° The value of one radian is then 57.2958°,

about 57.3°.

When the angular displacement of a body is given in radians,

it is easy to pass to degrees by multiplying by 57.3, or to find the

linear distance passed over by multiplying radians by the length

of the radius.

Problems.

1. What must be the structure of a vernier that a scale graduated in

J mm. may be read to -^m^ cm. ?

Find value of V from (7) and substitute in (6) for n.

2. The divisions on the scale of a barometer are ^^ inch. 25 divisions

on the vernier are equal in length to 24 on the scale. What is the least

cotuit in fraction of an inch?
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3. In a circle whose radius is 20 feet two bodies on the circumference

are 85.96° apart. Express this angular distance in radians. What is the

distance in feet as measured along the circumference

4. A wheel 10 cm. in radius rotates 360 times per minute. What is

its angular velocity and what is the speed of any point on the circum-

ference ?

1. 50 divisions on vernier to 49 on scale.

2. .002 inch.

3. 1.5 radians.

30 feet.

4. 37.7 radians (nearly).

377 cm.

9. Velocity.—Velocity is the rate of change of position. It

is the change of position which would take place in a unit of

time if the body continued its motion uniformly during that

time. A body moving with a velocity of 500 cm. per minute

may in fact be in motion for only one second of time or less, but

while it was in motion its rate was such that it would traverse

a distance of 500 cm. if its motion continued for one minute.

A velocity of 10 radians per second simply indicates the amount
of angular displacement which would occur in one second at that

rate.

Since there are two kinds of motion, there are two kinds of

velocity,

—

linear and angular. Linear velocity is that which

occurs along a line, whether that line be straight or curved.

It is the distance traversed per unit of time as measured along

the line of motion. Angular velocity is the rate at which the

angle at the centre changes when the motion is a rotation. It

is the number of degrees or radians by which a body changes

its direction in a unit of time.

10. Uniform and Accelerated Motion.—A motion is uniform

when the same distances or angles are traversed during each

successive unit of time,

—

i.e., the motion is uniform when the

velocity is constant. Such a moving body changes its position

a certain number of centimetres or radians per second during

each second of its motion.

Whether the motion is actually uniform or not, it is possi-

ble, when the distance and time are given, to find a uniform

rate of motion by which the same space would be traversed in

the given time. If the distance from A to B is 500 cm., and the
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time required for a body to move from the one point to the other

is 20 seconds, then, no matter what the nature of the motion

may be between A and B, the uniform rate or average velocity

is 500 -f- 20= 25 cm. per sec. In all such cases

V being the average velocity, 5 the space traversed, and t the

time in seconds.

When the velocity is increased or diminished a certain amount
each second, the motion is said to be accelerated. The accelera-

tion may be positive or negative,

—

i.e., the velocity may increase

or decrease. If the velocity at the beginning of a certain period

is known, and to this are added the successive accelerations

during the time, the result is the velocity at the end of the period.

If the accelerations are negative, they must be subtracted from
the initial velocity.

1

1

. Uniformly Accelerated Motion.— When the change of

velocity is the same for each successive unit of time, the motion
is said to be uniformly accelerated. If a body starts from rest

and moves with uniformly accelerated motion (U. A. M.), its

velocity at the end of any period of time is found by the equation

v= at (9)

where v is velocity, a the acceleration, and t the time. The
truth of this statement is apparent from the definition of a,

for if a is the increase in velocity per second, then the increase

per second times the number of seconds must be the final velocity.

If under similar conditions it is desired to find the total

distance through which the point moves, first find the average

velocity and then multiply by t. Since the acceleration is

uniform, the average is one-half the sum of the first and last

velocities. This may be expressed by

assuming that the motion begins from rest. This is the uniform
velocity the moving point must have to traverse the space in t

seconds. The total space, s, must then be

s = iat.t= ^af (10)
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These two equations, (9) and (10), are the fundamental

ones for U. A. M., but a number of other important equations

may be derived from them.

Problems.

1. Combine (9) and (10) so as to eliminate t and show that

v' = 2as (11)

2. Make use of equation (10) to find the total distance when the time

is (t—1). Subtract this from the distance when the time is t. Call the

distance during any one second of U. A. M, d and show that

d= la(2t— l) (12)

3. If a body has a uniform motion, of velocity V, and is given, in

addition, a. U. A. M., show that

(i = y±ia(2f— 1) (13)

4. Show that
v = V±at (14)

5. Show that when there is initial velocity V and U.A. M. the dis-

tance J in time t is

s = Vt±iat' (15)

6. By eliminating t from (14) and (15) show that

v' = V'±:2as (16)

7. Prove that the distance passed over in the first unit of time of

U. A. M. is one-half the acceleration. Use (10).

12. Angular Velocity and Acceleration.—^Angular velocity is

the rate of change in direction. This may be either uniform or

accelerated, and the acceleration may be uniform or variable,

just as in linear velocity.

When a body rotates on an axis, its various particles have

different linear velocities depending on their distance from the

axis, but all have the same angular velocity, for there are 360°

in any circle whatever its radius may be. Let the radian be the

unit and let o) represent the number of radians per second. The
angular distance in any given time is then expressed by

(Ot

Any particle located at a distance r from the axis has evi-

dently a linear velocity

v= a)r (17)

for (ij is the number of radians per second and r is the length of

the arc which subtends one of them.
2
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13. Vectors.—^A vector is a quantity in which both magni-

tude and direction are considered. Velocity is a vector quantity,

because it is designated by a number and a direction. Distinction

is made between velocity and speed in that speed is designated

by a number without consideration of direction. A race-horse

moves with a certain speed, the direction of his motion being a

matter of no interest.

Quantities are classified as vector and scalar. Examples of

vectors are velocity, acceleration, momentum, currents of

water, and force. Examples of scalars are speed, mass, and
density.

A Ime may be drawn to represent any given magnitude

which has also a direction. In case of velocity, the length of the

line drawn to any convenient scale will represent the magnitude

of the velocity while its direction is that of the motion.

y, i £ i t—4a
Velocityin "^c Scale Toi

Fig. 16.

If, for example, a velocity of 500 '^^Uec due eastward is to be

represented by a line, we may choose a certain scale, say 1 cm.

of- length to 100 cm. of velocity, and draw the line AB, Fig. 16,

assuming directions as on a map. If the direction is marked by
an arrow-head, the information in Fig. 16 is complete, and
any one accustomed to this form of representation will at once

read 500 ^'"/sec due eastward.

The lines themselves may be called vectors, but only in the

sense that they represent vector quantities.

14. Composition and Resolution of Velocities.—^Two or more
velocities may combine and pro-

duce a resultant velocity. The
resultant is easily calculated by a

consideration of the vectors which
represent the component velocities.

Let two component velocities be
represented by the vectors oY and

oX. A moving point starting at o must in one second be oy
distant from oX, and oX distant from oY,—i.e., it must be

at R and its velocity must be oR.
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This is the parallelogram of velocities, in which the two

componeiits are taken as the two adjacent sides of a parallelo-

gram and the resultant is the diagonal drawn from the common
origin. This is true no matter what the angle formed by the

components may be.

In case there are more than two components, as a, b, and c

in Fig. 18, it is only necessary to combine a and b in the manner

already shown and then combine their resultant with c.

Fig. 18.

Another method, known as the polygon of vectors, consists

in placing the vectors end to end,

—

i.e., placing the end of

one to the origin of the next. The line connecting the end

of the last with the origin of the first is the vector of the

resultant. Thus the resultant of a, b, c, and d, Fig. 19, is R.

If the component vectors form a closed polygon, there is no

resultant.

Not only can resultants thus be found when components

are given, but any given vector may be resolved into components

which would produce the same effect. Let oR be a vector and

oY, oX, the rectangular coordinates drawn through the origin,

o (Fig. 20). It is evident that oR represents a velocity oH
along the X-axis and HR along the F-axis. oH and HR may
then be considered components of oR.

Since the coordinates may have any position, an indefinite

number of rectangular components may be drawn.

The components may also be at any angle with each other,

as, in Fig. 21, a and b may be taken as components of oR.
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The kind of resolution which should be made depends on the

nature of the problem which is to be solved. Numerous appli-

cations of these principles will be found in later pages of this

work.

Fig. 20.

15. Methods of Calculating Resultants.—Two methods are

commonly used in finding the magnitude and direction of the

resultant when the components are known,—^namely, the

graphical and the mathematical. By the graphical method exact

drawings are made in the manner just indicated, the vectors

being drawn on some convenient scale and true in direction.

The resultant is then measured and its value found from the

scale adopted. For example, if the component vectors of velocity

are drawn so that each centimetre represents one metre of

velocity, and the resultant is found by measurement to be 4.5

cm. long, the resultant velocity is 4.5 m. This method is in

common use in drafting rooms where problems of this character

are considered.

r

Fig. 22.

By the mathematical method the principles of geometry and

trigonometry are in most cases sufficient. When two vectors

are at right angles to each other, as in Fig. 22, it is sufficient

to apply the well-known principle of geometry,

r^^x'+y^ (18)
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k

In case the vectors are not perpendicular to each other, as

a and h, Fig. 23, they may be referred to the axes in such a

manner that a, say, will coincide with the X-axis. Then h may
be resolved into two components, bcosd, which is along the

X-axis and so can be added

to a, and b sin 6, which is 2l_

parallel to the Y-axis and so

is at right angles to a. Now
we have two vectors at right

angles and can solve as above

by equation (18).

A general equation for
—

calculating the magnitude of

the resultant may be deduced

as follows: Referring to Fig. 23, where a and b are the two

components whose resultant is to be found, the vector value

along the X-axis is seen to be a+b cos d, and along the Y-axis

it is b sin 0. Hence the square of the resultant is equal to the

sum of the squares of these two rectangular components,—-that is,

r^= {a + b cos dy + ib sin ey
= a' + 2ab cos O + b^ cos^ d + b^ sin^ d

= d' + b\sia'' ^-Fcos^ d)+2ab cos 6

= a' +¥ + 2ab cos d (since sin^ d + cos^ ^= 1)

•• r=-i/a.^+b^+2abcosd (19)

Fig. 23.

This is the expression for what is usually called the addition

of vectors. Vectors may also be subtracted by reversing the

direction of one of them and

then finding the resultant in

the usual manner. In Fig. 24

let a and b be the two vectors

which are to be subtracted.

The resultant is r,—a magni-

tude which is less in this par-

F"5- 24. ticular case than that from

addition. The operation must be made algebraically, and

consequently the result of the subtraction may be a larger

number than that from addition.
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The operation of finding the resultant in case of subtraction

is similar to that for addition, but the component of b along the

X-axis is now—b cos 6,—i.e., its direction is opposite to that of

a. Fig. 25, and must be subtracted. The equation then is

r^ = (a-bcosdy + (bsmey

r=i/a'+b''-2ab cos ^
(20)

Fig. 25.

To determine the angle which the resultant makes with one

of the components, let a and b, Fig. 26, make an angle 6 with

each other. Let <p be the angle made by r with a, and <p the angle

Aale. /cjn..=2t7 •^iSee.

Fig. 26. Fig. 27.

with b. The supplement of d is tc— O. Since the sides of tri-

angles are proportional to the sines of their opposite angles,

r _sin (;r—^)_sin d

sm <p sm <p

sin <ff=— sin d
^ r

(21)

When f is known, <j) may at once be determined.
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Problems.

1. Find the magnitude of the resultant of two vectors representing

velocities 5 and 7 miles per hour, the angle between them being 67°

2. If the velocity of a moving point is 48 m/sec N. 30° E., what is its

velocity due northward?

3. A boat is propelled directly across a stream at the rate of 12 miles

per hour, while the stream runs 4 miles per hour. Use the graphical

method and find the resultant velocity by measiirement.

4. Find the velocity along the V-axis when conditions are as repre-

sented in Fig. 27.

5. If two vectors whose values are 3 and 5 form an angle of 45°,

what angle does the resultant make with the 5 cm. vector ?

6. Find the resultant of two velocities, one 10 ™/sec E. 10° N. and
the other 20 ra/sec N. 30° W.

1. 10.06 miles per hour.

2. 41.569 m/sec

3. 12.65 ™les/hr.

4. 5 m/sec, positive.

5. ^ = 16° 35', approximately.

6. 19 ™/sec, approximately.

Fig. 28. Fig. 29.

16. Uniform Circular Motion.— When a point, P, Fig. 28,

moves in a curved path, any very small portion of the curve

may be considered the resultant of two vectors, one of which is

tangent to the curve at the point considered, and the other

at right angles to the tangent. The arc which is considered the

resultant must be taken infinitely small, for the direction of the

motion continuously changes. The speed does not change, for

it is the resultant of the same vectors at every point of the curve.

Let ab, Fig. 29, be an arc so small that it and its chord may
be considered as coincident. Let am be the velocity vector

when the point is at a, and bn when at b. These two lines are
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equal in length, since they represent equal magnitudes, the

speed being uniform. The direction of the motion, however,

has changed in passing from a to h. The magnitude of this

change is found by taking the difference in the velocities at

points a and h,—i.e., by subtracting the vectors. Draw oQ to

represent the magnitude and direction of the velocity at a, and
oP to represent the same at h. The vectors oQ and oP are equal

in length, for the motion is uniform. The line QP will represent

the change of velocity, for oP is the resultant obtained by
adding oQ and QP; hence QP is the change of velocity while a

particle moves from a to h,—i.e., QP is the acceleration. Since

the unit of time is taken very small, the arc ah and its chord

may be considered equal and the triangle oQP is similar to oah.

Hence
QP_^^
Qo ao

But Qo is the velocity of the particle at a, and ab is the distance

traversed in unit time,

—

i.e., velocity v. The radius ao is r.

Hence
QP V

V r

or QP
(22)

r

At the limit, time t = 0, QP is perpendicular to Qo and hence

parallel to ao, the direction of motion changing at every instant

of time. The acceleration, then, is equal in magnitude to —
and is directed toward the centre of the circle.

It has already been shown that angular velocity, cj, is equal

in radians to linear velocity divided by the radius. This was
expressed by

V
a) =—

r

whence v^ = uiV

Substituting this value of v^ in the equation for acceleration

toward the centre, (22),

QP-^ =^ = '^'r (23)
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Thus, suppose a body revolves uniformly twice a second in

a circle whose radius is 10 cm. In one revolution there are 2n

radians, hence the magnitude of the velocity is An or 12.5664

radians per second. The value of QP, equation (23), is then

1579.14 =">Aec=.

Again, let P be the period,

—

i.e., the time reqtiired for one

complete revolution. The circumference of a circle is 2nr;

hence the magnitude of the velocity v is

2nr
v=-

or
4;rV'

p2

QP=^=^=^ (24)

r

This gives the acceleration in terms of the period and radius.

Using for illustration the same problem as above,

QP=^='-2<^:^^=1379.U^^U.,

It is sometimes convenient to have this equation in still

another form. The number of revolutions, «, varies inversely

as the period; hence
1

and QP= 4ffVM' (25)

This gives the acceleration in terms of the radius and the number
of revolutions per second.

Using the illustrative problem in this equation also,

QP = 4 X9.8696X 10 X22 = 1579.14 <='n/3ec.

Problems.

1. Assuming that the moon revolves uniformly about the earth, the

period being 27 days, 7 hours, and 43 minutes (2,360,580 seconds), and
that the radius of the orbit is 3.844(10)'° cm., find the acceleration.

2. How mattiy times per minute must a body revolve in a circle

whose radius is 10 cm., in order that the acceleration may be 39,478.4

"%ec2 ?
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3. What is the linear velocity of a body which moves with an angular
velocity of 183.36° per second in a circle of 20 cm. radius?

1. .2722 cm/sec2.

2. 600 revolutions/min.

3. 64 cm/sec.

17. The Motion of a Projectile.—When a body, under the
influence of gravity, is projected so that its line of motion makes
any angle, except 90°, with a horizontal plane, it will move in a

curved path called a parabola. This

curve, as shown in Fig. 30, is the

locus of all the points which are

equally distant from the focus F
and a line AD called the directrix.

Thus FP= PD", FP' = P'D', and so

on for all points on the curve.

Let a body be projected from o

with a velocity V in the direction

oH, making an angle 6 with a horizontal plane. Draw the rec-

tangular coordinates oY and oX. The velocity V may be resolved

into two components, one parallel to the X-axis, v^, and the

other parallel to the V-axis, Vy. From trigonometrical relations

Fig. 30.

and

v^= V cos

Vy= V sin d—gt

(26)

(27)

The velocity parallel to the X-axis is uniform, for gravity

acts in a direction perpendicular to this motion. But in the

direction of the V-axis the velocity is retarded by as much
as gt in time t, where g is the acceleration due to gravity. Hence

gt must be subtracted from the velocity which the body would

have in the vertical direction without gravity. The distance

the projectile moves in the direction of these axes is therefore

x-=V cosd .t

and y= V sin d .t-^gf

(28)

(29)

In equation (28) the distance is simply the uniform velocity

multiplied by the time. But in (29) the initial velocity alone

would in time t raise the body a distance NH, Fig. 31. Dtiring

this same time the body falls ^gf,—i.e., to P.
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By use of these four equations it is possible to detennine (1)

the time of flight from o to i?, (2) the range or distance from o

to R, (3) the elevation for maximum range, (4) the time of rise,

and (5) the height of rise, when the initial velocity and angle of

elevation are known.

Y

^ I'Mm
Fig. 31.

To find the time of flight, it is observed that when the pro-

jectile has reached K the value of y has become zero. Hence

equation (29) may be written

whence

F sin (9 . t-\gt^= o

2V sin d
*(ffight)

=

S
(30)

Thus, when V and d are known, the time of flight can easily be

calculated, g in all cases being approximately 980 ""^Uec^ or 32.2
feet

Isec'.

The range is found from (28) when the time of flight is known,

by substituting in (28) the value of t from (30). Thus,

«= V cos d . t

= F cos (9

2V sin

g
X/2=— 2 sin 5 cos
i

'

g
sin 20= range (31)

for 2 sin 6 cos ^= sin 20.

It is plain from (31) that the range will be greatest for any

given velocity when sin 20 is greatest. The sine is greatest

where the angle is 90°; hence, that 20 may be 90°, must be

45°. Consequently the value of x, or the range, will be maximum
when is 45°.
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To find the time of rise, it is observed that when the pro-

jectile reaches its highest point the velocity in the vertical

direction becomes zero. Hence (27) may be written

V smd-gt=

whence t(^se) = (32)

Comparing (32) and (30) it is observed that the time of flight

is twice as great as the time of rise, as would be expected, for

the time of ascent is equal to the time of descent.

The greatest height to which a projectile will rise may be
found by substituting in (29) the value of t from (32). Thus,

„ . „ Fsin^ , F^sin^'^
y=^V smd .

— ig p

y^sin^^ F^'sin^'^ F^ 31^2 ^
whence y= ^

=
^ (33)

g 2g 2g

By use of (33) the vertical height to which a projectile will

rise may be calculated.

In case the projection is vertically upward, d becomes 90"*

and its sine is 1. Under this condition equation (31) shows that

the range is zero,

—

i.e., a body thrown vertically upward will

return in the same path. Under the same conditions it is ob-

served from (32) that, since sin 90° equals 1, V=gt,—i.e., the

velocity which a body will have on its return is equal to that

with which it was thrown vertically upward.

The influence of the atmosphere upon projectiles has not

been considered in these discussions. When a bullet is thrown

at the rate of 2000 **^Vsec through still air, the effect is the same
as if the bullet were still and the air blowing 2000 ^^^'/sec against it.

The elevation for maximum range in vacuum is 45°, but in

air a greater range will be obtained when the angle is a little

less than 45°, about 44°-

Problems.

1. What is the diflference in range of two projectiles thrown with the

same velocity, one at an angle of 30° and the other 60°?

2. A projectile is thrown at an angle 90° to the horizontal, with a
velocity of 2000 f^^^/sec. What will be the range and time of flight ?

3. How high will a body ascend when it is projected with a velocity

of 500 ™/sec and the angle of elevation is 30° ?
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4. If a point is moving with a velocity V in a direction inclined 0°

to the V-axis, what is its velocity parallel to the X-axis ?

5. If a projectile thrown vertically upward rises to a height of 500

m., with what velocity was it thrown? (Use (33).)

6. What must be the angle of elevation of a cannon in order that a

projectile thrown with a velocity of 1600 i^^^lsec may strike a target at a

horizontal distance of two miles?

1. No difference

.

2. Range =0. Time = 2 min. 4.2 sec.

3. Height = 3188.77 m.

4. o^ = Vcos(j-dy

5. V = 98.1 m.

6. e = 3°34'.

18. Simple Harmonic Motion.—When any series of changes

recur again and again in equal intervals of time, the operation

is said to be periodic. The time required for the completion of

the series is called a period. The motion of the earth around the

sun is periodic, the period being one year. Each succeeding year

is a repetition of the events of the previous year. Any recurring

movement of this character is periodic, and numerous examples

may be cited.

Fig. 32.

If the periodic motion is forward and backward in the same

path, it is called a vibration or oscillation. Thus, a pendulum or

tuning-fork is said to vibrate.

One very important kind of periodic motion is simple har-

monic motion, which may be defined as the movement of a

point to and fro along a line in such a manner that its accelera-

tion is proportional to its displacement.

Suppose a material point is located at o, Fig. 32, and let it

be set in motion so that it vibrates between A and B. Let the

distance of the point on either side of o be represented by 5.

Then the motion will be simple harmonic when

acceleration « — s

The negative sign shows that the rate of retardation is pro-

portional to the displacement of the point, the velocity being

greatest at o but less and less as the point approaches A or B.
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The vibrations of strings or of any body giving out a musical

tone are instances of S. H. M. The name originated in the fact

that harmonic sounds are produced by this kind of vibration.

A good experimental illustration of S. H. M. may be observed

by suspending a heavy ball by a long string and causing the

ball to move in a circle in a horizontal plane, after the manner
of a conical pendulum. By observing this motion from a dis-

tance with the eyes nearly closed so that the motion may be

seen indistinctly, the ball will appear to move from side to side

at right angles to the line from the observer to the pendulum.

The ball is moving in a circle, but the apparent motion along a

Fig. 34.

diameter of the circle is a S. H. M. In accordance with this

idea a S. H. M. may be defined as the projection, upon one of

the diameters of a circle, of a point which moves with uniform

speed along the circumference of that circle.

The circle whose diameter is the path of the S. H. M. is called

the circle of reference. Let a point start at A, Fig. 33, and

move around in the positive direction,

—

i.e., counter-clockwise.

Draw the coordinate axes through the centre, o. Let the cir-

cumference be divided into a number of equal arcs, over each of

which the point will move in equal times, since the speed is

uniform. In successive intervals of time the point will pass

B, C, D, E, F, G, H, and so on back to A. The component

along the X-axis is found by projecting the moving point upon

that axis. Likewise for the y-axis. Thus the projection of

B on the X-axis is b, and of C, c, and so on.
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In a uniform circular motion the component which is parallel

to the X- or Y-axis is a S. H. M.

In considering the motion of a point around a circle, let a

radius be drawn from any position of the point to the centre

of the circle, making an angle 6 with the X-axis. When the

point has moved from A to B, it has moved along the X-axis

from A to b. By trigonometry

Bb = r sin 6

In like manner, Cc =r sin d

being any angle made by a radius with the X-axis. The general

equation for any component along the V-axis is

y— r sm (34)

By assuming a value for r and a number of successive values

for e, as 30°, 60°, 90°, 120°, and so on to 360°, and from these

finding by (34) the corresponding values of y, it is possible to

construct what is called the harmonic curve, Fig. 35. This is

/fl MX
, ,,

Fig. 35.

done by using the values of y as ordinates and dividing the

abscissa into equal spaces to represent equal intervals of time

or an interval corresponding to values chosen for d.

Since the motion of the point is supposed to begin at A, the

motion along the Y-axis will begin at o. Let r, for example,

have the value 10, then, as we have assumed that the point will

move over 30° in the first unit of time,

y = \0 sin 30° = 5

At b, Fig. 35, erect an ordinate 5 units long. At the end of the

next unit of time
j'=10sin 60° = 8.66
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At c erect an ordinate 8.66 units long. When the angle is 90°,

y=r sin 90° = 10

Erect at d an ordinate 10 units long. No ordinate can be greater

than r, for the sine of an angle cannot be greater than unity.

The ordinates will all be positive as long as the angle is less

than n (180°). In the third and fourth quadrants the sines are

negative and therefore are dropped below the abscissa.

If now a line is drawn connecting the ends of all the ordinates,

we have what is called the harmonic or sine curve. Much smaller

time intervals may be chosen and consequently more ordinates

constructed.

This curve is only a graphical representation of S. H. M.

and is useful in a discussion of many physical problems.

The angular velocity of the point on the circle of reference

2iz
is ^-, where P is the period. This is the same as saying that

the angular velocity is equal to 360° divided by the time of one

revolution. Thus, if the point moves \ of the distance around

the circle in one second, the period is 3 seconds. The angular

velocity or distance per second is, then, -^f^, or 120°, or -s-

radians. The angle described in t seconds is therefore

2TZt

and equation (34) may now be written

2nt
y=rsm.-p-

or y=r sin 2Ttnt (35)

since -p- is equal to the number (w) of revolutions or vibrations

in unit of time. For example, if the period is \ sec, ^, or 2,

is the number of complete vibrations in one second.

Let E, Fig. 36, be a fixed point from which the periodic time

is coimted. The angle EoA is then called the epoch e. This

angle e is constant, and, since the time is counted from the

moment the point P passed through E, the angle e must be
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added to the angle made by oP with oE to obtain the angle

PoA. Hence the equation for the sine curve under this condi-

tion is

j' = r sin {2Knt+e) (36)

The amplitude of the vibration in S. H. M. is the maximum
displacement of the vibrating particle,—for example, Dd or Jj
in Fig. 35. This is obviously the radius of the circle of reference.

It is plain, from an inspection of Fig. 34, that the velocity

along the V-axis will be maximum when the moving particle

is at A ov A'. For let w be the angular velocity in the circle of

reference, then an is the linear velocity on the circumference of

Fig. 36. Fig. 37.

the circle. This is the velocity at all points on the circumfer-

ence, since the motion is uniform; but at A and A' this motion
is parallel to the Y-axis, while at all other points only a com-
ponent of the velocity, or none at all, is in that direction. Hence
the maximum velocity in S. H. M. is the angular velocity in the

circle of reference multiplied by the amplitude, or on:.

It has been shown in equation (23) that when a point is

moving uniformly in a circle it has an acceleration which is

directed toward the centre, and the magnitude of the accelera-

tion is (xi^r, where o) is the angular velocity and r is the radius

of the circle. In Fig. 37 let the point P be moving around the

circle in a positive direction, and let its acceleration be repre-

sented by the vector aP, the value of which is wh. This can be

resolved into components parallel to the X and Y diameters.

3
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Consider here only the motion of P along the X diameter. The
acceleration in this direction is hP. Hence

bP= (o^r cos d (37)

But the motion along the X-axis is S. H. M., and x, the dis-

placement of P, is

x=rcos0 (38)

Comparing equations (37) and (38)

,

bP = o)H (39)

Stated in words, the acceleration of a particle vibrating in

S. H. M. is equal to the square of the angular velocity in the

circle of reference multiplied by the displacement of the particle.

The angular velocity is

and, substituting this value in equation (39)

,

bP=^ (40)

that is, the acceleration in S. H. M. is 4f3i? times the displace-

ment, X, divided by the square of the period, or acceleration is

proportional to displacement.

The phase of vibration is the number of degrees in an arc

of the circle of reference, from the position of the moving point

to the point from which the angle is reckoned. In Fig. 36 the

phase of the point P is PoA. Phase is also often indicated by

the ratio of the angle to the circumference. For example, if

the angle PoA is 60°, the phase is ^, or \. If the angle is 90°,

the phase is -|—= 4, called often the quarter; 180°, the half;

120°, the third.

If two points are vibrating at the same time, their difference

of phase is the difference of these angles.

By use of equation (36) it is possible to find the position of

any vibrating particle when the amplitude, the number of

vibrations, the time, and the epoch are known.

Suppose a particle makes 10 complete vibrations per second,

and it is desired to find its position at the end of \ sec, the
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amplitude being 3 cm. and the epoch 30°- We may substitute

these values as follows:

27:nt = 27c . 10 . i= 20.944 radians= 1200°

27rM< +^= 1200 + 30 = 1230°

This shows that the point has made three complete vibrations

and 150° on the next, hence

y= 3 sin 150° = 3 sin (180°-150°)=|

i.e., the displacement of the particle is 1^ cm.

, f A 1^

Fig. 38.

Fig. 39.

To plot the harmonic curve according to the conditions of

this problem, let the abscissa. Fig. 38, be divided into a number
of equal parts representing successive equal intervals of time.

In this case, since the angular velocity is great, let each space

represent -^ sec. Now find, by use of equation (36), the values

of y for each -^ sec. up to ^ sec.

When f— 0, -j-j-, -j^,



36 GENERAL PHYSICS.

makes ^ sec, but the time given is -^ or f^ sec, hence the

point will be at P where y is 1\ cm. This curve shows the

whole movement of the vibrating particle for ^ sec.

Let the student take the intervals of time as xiir sec, find

corresponding values of y, and insert them in Fig. 38.

Fio. 40.

If two harmonic curves are referred to the same axis, as

abed and ABCD, Fig. 39, their resultant may be found by add-

ing the ordinates. The resultant in the figure is the dotted line.

The line mr is the sum of mn and ms. The line hB is composed

of the positive line ib and the equal negative line iB ; hence their

sum is zero and the resultant curve here crosses the axis. In a

similar manner the resultant curve may be found at any point.

When two S. H. M.'s at right angles are compounded, a large

variety of resultants may be obtained, depending on the period,
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the phase, and the amplitude of the components. An experi-

mental illustration may be made by suspending two pendulums
so that they will swing in planes perpendicular to each other,

Fig. 41. (i) Fig. 42.

as shown in Fig. 40. One pendulum should, preferably, beat

seconds. The other can be made any length by sliding a heavy

bob up or down. Both are suspended from knife edges, that

Fig. 43. (j) Fig. 44.

the friction may be as little as possible. The rods extend a

few centimetres above the knife edges, and to the tops of these,

light rods, ac and be, are attached by universal joints. These

horizontal rods are connected at c by a hinge, from which a
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needle projects downward. The needle point must then trace

the resultant motion of both pendulums. By placing a smoked
glass beneath c, this motion may be recorded. In Fig. 41

the period of one pendulum was twice that of the other. A
number of periods are required to make a figure such as this.

The period of each pendulum is constant, but, because of friction

and a very slight variation in the ratio of the periods, the trac-

FiG. 45.

ings are separated from one another. In Fig. 42 the periods are

as 2 to 3, as indicated by the fraction beneath the figure. In

Fig. 43 the pendulums are made of such length that while one is

making three vibrations the other makes four. The ratios in the

other figures are as indicated. The ratio in figures such as these

may be determined by beginning at one of the sharp points of the

tracing and counting the number of times across in a horizontal

and then in a vertical direction to a corresponding symmetrical

point on the other side of the figure.



CHAPTER II

DYNAMICS

19. Definition of Terms.— The preceding chapter has been

devoted to a discussion of motion, without consideration of the

cause of the motion or the mass of the moving body. The prob-

lem there was to find the path of a moving point under certain

given conditions. The chapter was entitled Kinematics because

xivTina (kinema) means motion.

In this chapter attention is directed mainly to a considera-

tion of force and its effect in changing motion or causing strain

in masses of matter. Force as a cause of motion is often treated

tmder the title kinetics,—that which causes motion,—while the

subject of equilibrium under stress is often called statics.

Kinetics and statics are subdivisions of dynamics.

20. Newton's Laws of Motion.— Sir Isaac Newton, in the

latter part of the seventeenth century, announced three im-

portant laws which contain the fundamental principles of

dynamics. These laws were written in Latin, and their inter-

pretation is about as follows

:

1. Every body of matter persists in its state of rest or motion.

2. The effect of an impulse in changing the momentum of a

mass of matter is independent of other impulses which may be

applied at the same time and of the momentum which the mass

may already have.

3. The application of a force is always accompanied by an

equal resistance in the opposite direction, and the energy ex-

pended by any body acting as agent is equal to the energy

received by another body which resists the agent.

21. Inertia. — Inertia is that property by virtue of which

matter persists in whatever state of rest or motion it may have.

This is a general property of all matter. Newton's first law is

simply a statement of the principles of inertia. In accordance

with this property, a body resting at any point in space will

remain there forever, and a body in motion will continue its

motion forever in a straight line, provided it receives no impulse

39
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from an external force. In other words, a mass of matter sepa-

rated from all other masses cannot change its state of rest or

motion.

It is impossible to supply the conditions of a moving body
completely unaffected by outside influences, but we assume that

the law is true in reference to moving bodies, and on this assump-

tion we solve problems in mechanics the results of which con-

form with experimental tests. For example, if a body is pro-

jected vertically upward with a certain velocity, we assume

that it will continue its velocity uniformly. We also know the

effect which gravity will have on the body at the same time.

By subtracting the opposing gravity effects we obtain results

which are in accordance with the facts of experience. Hence the

assumption is regarded as correct.

22. Force.— The word "force" is derived from the word
fortis, meaning strong, and the primary idea of force was prob-

ably related to muscular ability. The muscular effort required

to lift a weight, for example, would be a measure of force or

strength. Then a push or pull, by muscular effort against any

resistance, would be called a force. Then inanimate bodies

which by their motion or otherwise would do what might be

done by muscular effort, would by a kind of personification be

said to exert force. As applied to inanimate objects, force is a

consequence of the laws and properties of material bodies.

Thus, expanding gas or steam may move adjacent bodies only

to secure more room for itself. A steel spring in a strained

condition may push or pull other bodies to restore its own
molecular equilibrium. One body may collide with another,

and the motion of both will be changed as a result of the inertia

of the bodies. Numerous examples of this kind may be cited

where force is said to be exerted by one mass on another.

The common effect of force, as the term is used in mechanics,

is motion or strain in bodies of matter. Hence force may be

defined as that which produces or tends to produce motion.

23. Units of Force.—A force is measured by the effect which

it produces. Any force, however small, will set in motion any

mass, however large, provided no resistance is offered except

that of the inertia of the mass. A constant force

—

i.e., one which

continues to be of the same magnitude—will produce in a mass
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a uniformly accelerated motion. If the mass is small, the accel-

eration may be large, and if the mass is large, the acceleration

may be small. In any case, for a given constant force, the prod-

uct of the mass and acceleration is a constant quantity. This

is usually expressed by
F=ma (41)

By this equation it is seen that for any given mass, m, the force,

F, varies directly as the acceleration, a. Therefore the accelera-

tion which is produced may be employed as a measure of the

force applied. There are two common units based on this prin-

ciple. They are the dyne and the poundal.

The dyne is a force which will cause a mass of one gram to

have an acceleration of one centimetre per second every second.

The poundal is a force which will cause a mass of one pound
to have an acceleration of one foot per second every second.

These two units are absolute, because they are not affected

by surrounding conditions. The mass of a body is the same
whether it is located in the vicinity of the earth, the moon, or

is alone in space. Such units are of great value in science.

There are also other units of force, such as the pound, the

gram, the kilogram, and in fact any of the units by which the

quantity of mass is ordinarily determined may be used as units

of force.

The pound or gram of force is that force which will support

a mass of one pound or one gram. This gives the primary idea

of what is meant by one pound or one gram of force,

—

i.e., the

unit is thus determined. The force may then be exerted in any

direction, whether gravity is considered or not, and it will be

such a force that if it were exerted against gravity it would

lift one pound or one gram as the case may be. Such are known
as gravitational units. They are not absolute, because gravity

changes with change of distance from the centre of the earth

and with change of location on the surface.

The relation between the dyne and the gram as units of force

is found from a consideration that if 1 dyne gives Ig (mass)

an acceleration of 1 ^/sec^, and Ig (force) gives to Ig (mass) an

acceleration of 980 "^^/sec^, as determined by the acceleration of

falling bodies, then Ig (force) must be equal to 980 dynes. In

the same manner it may be shown that 1 lb. (force) is equal to
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32.2 poundals. These numbers are not exact except for certain

locations on the earth's siirface. At points near the equator

the acceleration due to gravity is 978 "^^/sec^; near the poles, about

983; at Cincinnati, 980. (See page 298.)

The value of the poundal in terms of dynes, found by mtdti-

plying the number of centimetres per foot (30.48) by the number
of grams per pound (453.593), is 13,825.5. The same result is

found by use of the dimensional equations, as follows: Since

F= ma, the dimension of force is the product of the dimensions

of m and a,

[M][LT-^=[MLT-^

Let the dimensions when the unit is the poimdal be [M,Lir,~^],

and when the unit is the dyne be [MjLjTj"^]. The numeric x
will be the number of dynes in the poundal. Hence

M T T 2

^=453.593 4^ = 30.48 4^=1

.-. a;= 453.593 30.48 • 1 = 13825.5

.•. 1 poundal =13,825.5 dynes

The purpose of this kind of solution of so simple a problem is

not to obtain a result, but to give exercise in the use of dimen-

sional equations.

24. Impulse and Momentum.—Impulse involves two factors,

—a force and the time dturing which the force acts. It is a

matter of common experience that the velocity of a freely

moving body will be increased by increasing either the force

which causes the motion or the time during which the force is

applied. The product of these two factors is called impulse.

Thus,
impulse= Fi

The effect of the impulse is a quantity of motion in a mass of

matter which is free to move. The amoxint of motion in any

moving body depends on two factors,—the mass of the body

and its velocity. The product of these is

momentum=mv
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The momentum is therefore proportional to the impulse, and
we may write

Ft=mv (42)

This equation may also be derived from a consideration of the

fact that
F=ma

and "^ ^T

„ mv

or Ft= mv

There are no names for the units of impulse and momentum, but

the symbols of the units may be found from the dimensional

formulae. Impulse is the product of force by time, hence its

dimensions are

[MLT-^][T] = [MLT-']

Momentum is the product of mass by velocity, hence the dimen-

sions are
[M][LT-'] = [MLT-']

Hence the symbol of the unit for either impulse or momentum
Icf 1cm

in c.sf.s. units is —

f

,

—

i.e., the unit momentum is the amount
*"

1 sec

of motion in 1 g. moving with a velocity of 1 cm. per sec. , and

unit impulse is that which will produce this effect.

To use equation (42), F must be in dynes or poundals, de-

pending on the units employed.

By Newton's second law, any impulse will produce a certain

change of momentum independent of other impulses applied

at the same time, and independent of the momentum which the

body may already have. Momentum involves not only a

quantity of motion (mv), but also a direction. It is therefore

a vector quantity. Change of momentum is always in the

direction in which the force is applied.

25. Stress and Strain.—Stress is a mutual action between

two forces or between a force and that which resists it.

Strain is the deformation resulting from a stress.
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For illustration, if two forces are applied in opposite direc-

tions at the ends of a wire, the wire is subjected to a stress called

tension. The effect is the same when one end of the wire is

fastened to a rigid support, the resistance of the support being

equal to the active force at the other end of the wire. The strain

in this case is the change in length of the wire, and its measure

is the ratio of the increase in length to the original length.

If a body of gas is enclosed in a cylinder and a piston is pressed

down upon it, there is the mutual action of the force upon the

piston and the reaction of the gas within the cylinder. This stress

is called a pressure. The strain in this case is the decrease in

volume, and it is measured by the ratio of the diminution of

volume to the original volume.

If an elastic rod is rigidly fastened at one end and the other

end is twisted through a few degrees, there is the mutual rela-

tion of force and resistance called shearing stress. The strain

in this case is measured in a manner which is described later

under elasticity.

In all cases, whenever a force is applied, an equal and oppos-

ing force or resistance is offered to it. Without resistance

there could be no such thing as force. If a force is applied to a

body which does not move, the effect is a deformation resulting

from a stress. If the body is free to move, the resistance due to

the inertia of the body is equal to the force which causes the

motion. The force need not be a "little greater" than the

resistance to produce motion.

26. Graphical Representation of Forces.— Since force is a

vector quantity, it may be represented in magnitude and direc-

tion by a line whose length, drawn to proper scale, represents

the magnitude and whose direction is that in which the force is

applied. The composition and resolution of forces are effected

in a manner which has already been described for velocities.

The parallelogram and polygon of forces, the methods of cal-

culating resultants and their direction, and the resolution of

forces are the same as in the case of velocities.

27. Resultant and Equilibrant.—A resultant force is one

which may be substituted for two or more other forces and
which will produce the same effect as the others combined.

An equilibrant is equal and opposite to the resultant.
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The resultant of two parallel forces in the same direction is

their sum; when parallel but opposite in direction, the result-

ant is their difference; when the two forces are perpendicular

to each other, the resultant is the hypotenuse of a right-angled

triangle of which the two forces are the legs. When the angle

between the forces is acute or obtuse, the resultant is found by

use of the well-known equation

r' = d' + b^ + 2ab cos ^ (compare equation 19)

Fig. 46.

The graphical method of solution may also be used in any of

these cases. An illustration is here given. Let oa,o6,oc, and od rep-

resent forces acting as indicated in Fig. 46. Through o draw rec-

tangular coordinates and resolve

each force into its components

along the X- and Y-axes. The
components oe and of are posi-

tive, while oh and og are negative.

Also, ea and hd are positive

and fb and gc are negative. By
measurement and addition, all

the forces may thus be composed

into two at right angles. The re-

sultant can then be easily found.

When the angles made by the vectors with the axes are

known, the values of the components can most easily be cal-

culated from the simple trigonometrical relations.

28. Resolution of Forces.—The principles and methods of

resolution of vector quantities have already been discussed.

These principles have many important applications, and addi-

tional illustrations will here be given. Suppose a force is applied

in the direction BC, Fig. 47, on a rope attached to the top of a

pillar AB, and it is desired to know the component of this force

which is effective in pulling the pillar over. BC can be resolved

into the two components BD and DC. An infinite number of

components may be drawn, but these are the two which are

desired in this case, for DC has no effect in pulling the pillar

over, while BD is acting at the greatest advantage for the pur-

pose in view. Hence the effective part of the force is BC sin d.

The larger d becomes the greater the sine will be, and at 90°
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the sine is tinity. Hence the longer the rope is the more effective

the force will be.

Another illustration of resolution may here be given, in case

of wind or water directed against a turbine wheel. Let TT',

Fig. 48, represent one blade of the wheel. Let the plane of

rotation be as indicated by the arrow D and let the force of the

wind be represented by the vector wo. Resolve wo into wp.

Fig. 47.

parallel to the blade, and po, perpendicular. It is evident that

po is the only effective component, but it is not in the direction

of the rotation. Let po, for convenience, be extended to m,

making om equal to po. Resolve om into sm and os. Then sm
is the component whose value is to be found. Inspection of

the figure shows that, since the plane of rotation is kept per-

pendicular to the direction of the wind,

sm=om sin ^
= po sin <p

—po cos d

But po=wo cos <p

=wo sin d

.'. sm=wo sin d cos d (43)

Suppose, for example, that the blades of a wind turbine are

set at an angle of 45° to the plane of rotation and the wind blows

with a force of 20 oz. to the square inch. Then

J-t/2 = 10= 20 iV2

i.e., one-half the force is expended in producing rotation.
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Problems.

1. What acceleration per second will be produced by a constant
force of 10 g. acting on a mass of 5 g. ?

2. What force will be required to lift a mass of 10 lbs. vertically

with an acceleration of 20 ft/sec' ?

3. What change of momentum will be produced by a force of 25 g.

acting 10 sec. ?

4. What is the resultant of two forces whose magnitudes are 20 and
30 dynes respectively, the angle between them being 24° 10' ?

5. If a force of 500 lbs. is required to push a car on a straight track,

what force would be needed if applied in a line making an angle of 30°

with the track?

6. What force is required to move a mass of 75 g. a distance of 200
cm. in 10 sec. ?

7. When wind blows at right angles to the plane of rotation of a
turbine wheel, show by inspection of the table of sines and cosines that

the maximum rotating effect wiU be obtained when the blades are set

at an angle of 45° to the direction of the wind.

8. A bullet is shot horizontally from a rest 120 feet high with a
velocity of 2000 feet per second. When and where will it strike the

ground?
9. By use of a dimensional equation change 986 feet per minute

per minute to centimetres per second per second?

1. 1960 cm/secs.

2. 522 poundals.

3. 245,000 8- cm/sec.

4. 48.9 dynes.

5. 577.35 lbs.

6. 300 dynes.

7. .

8. 5460 ft., 2.73 sec.

9. 8.348 cm/sec!.

29. Moment of Force.—The moment of a force is the product

of that force by the perpendicular distance from the axis of

rotation to the line of direction of the force. Thus, let o be an

axis about which a body oa may
rotate. The moment of the force

F applied at /, perpendicular to

oa, is F . of. It is observed that

the importance of F increases

as the distance from o increases.

It is a common experience that the longer the arm of a lever

the greater will be the effect of any given force in producing

rotation about the fulcrum—the axis of rotation.
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Ordinarily the efEect of a force or several forces is to produce

both rotation and translation accompanied by a deformation

of the body upon which the forces act. For our present purpose

only rotation is considered, and oa is taken to represent a rigid

body fastened at o.

Only that component of a force perpendicular to the line

connecting o and / is effective in causing rotation. Let bf, Fig.

50, represent a force acting at an angle 6 to oa. Resolve this

force into he parallel to oa, and cf perpendicular. The com-

ponent he plainly causes only a strained condition of the body

and has no effect in producing rotation about o. The moment
in this case is, then, of .F sm 0.

F.
—
\
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To make this principle clear, another illustrative problem is

here given. Let ab, Fig. 53, be a line through any body ; let forces

10, 20, 8, and 6 dynes act at right angles to ab. It is required

to find a resultant force and its point of application such that

there will be neither motion of translation nor rotation. Assume
the forces to be 2 cm. apart. The magnitude of the resultant is

28 dynes and it is directed to the right. The equilibrant is,

then, 28 dynes directed to the left. This would prevent motion

of translation, but, to prevent rotation also, the equilibrant must

/Cf-

8*-

-*«

-»•.?(?

i
•

Fig. 52. Fig. 53.

be applied at such a distance from any axis that the moment
of the equilibrant in reference to that axis will be equal in mag-
nitude to the sum of the moments of the components in reference

to the same axis. Any point may be selected as the axis. Take
b, 2 cm. from the force of 6 dynes. The negative moments are

10X8, 20X6, and 6X2. Their sum is —212. The positive mo-
ment is 8X4= -1-32. The sum of these is — 180. Consequently,

the 28 dynes must be applied at such a point that its moment
will be + 180. The distance from b is therefore 6f cm.

In case of two parallel forces acting in the same direction,

the resultant is their sum applied at a point between the two

and at distances from the lines of the forces inversely as those

4
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forces. An example of this is a beam with weights suspended

from its ends, the beam being supported at the point through-

which the resultant passes.

31. The Couple.—When two equal and oppositely directed

forces, whose lines are parallel but not coincident, are applied

to a body, they constitute what is called a mechanical couple.

fr In this case it is evident that the

resultant is zero, and so there

can be no motion of translation.

^ There will, however, be rota-

tion. In Fig. 54 let F be equal,

parallel, and opposite to F' , o

being the axis of rotation. The

r' moment of F is +F . oa while

Fig. 54. that for F' is — F' . oh. The

sum of these is F{oa—oh) or F . ah, since F= F'. Hence the

moment of a couple is the product of either force by the perpen-

dicular distance between them.

An approximate experimental illustration of the action of a

couple may be made by supporting a bar magnet on a cork on

the surface of water. Under the influence of the earth's magnetic

field, which may be assumed

to be uniform in the region of

the experiment, the magnet will

turn and will take a position in

the magnetic meridian, but will

have no motion of translation.

Problems.

1. Two forces, 20 and 50 lbs., act

in opposite directions, their lines of

direction being 5 ft. apart. Find

the magnitude and position of the pj^, gg
resultant.

2. Awheel is free to rotate on its axle. A force of 100 g. is applied

at P midway between a and b and directed parallel to the F-axis. The
radius of the wheel is 3 cm. What force at c will produce equilibrium ?

3. The sides of an equilateral triangle are 10 cm. long. A force of

500 dynes acts along one side. What is the moment about the opposite

vertex?
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4. How high above the base of a tall pole should a rope be fastened,

the rope being 20 ft. long, in order that a force applied at the other end
may be most effective in pulling the pole over?

1. 30 lbs. 8i feet from force of 20 lbs.

2. 70.71 g.

3. 4330.

4. 14.142 feet.

32, Moment of Inertia. — Force in its relation to linear

acceleration has already been discussed, the relation being

expressed by F=ma ; i.e., force is measured by .^

the acceleration it will give to a mass of matter. ^

We will now consider the relation of moment

of force to angular acceleration. Let m, Fig. 56,

be a mass at a distance r from an axis of rota-

tion 0. Let a force F act in a direction perpen-

dicular to r. It will cause a linear acceleration

in m in accordance with

F =ma

But angular acceleration is the linear accelera-

tion divided by the radius ; hence

r
o

Fig. 56.

where A is the angular acceleration. Hence

F=mrA
or Fr= mr'A (44)

Comparing this equation with

F=ma

it is observed that force in one corresponds to moment of force

in the other; linear acceleration in one, to angular acceleration

in the other; and mass in one, to the quantity mr^ in the other.

It is this quantity, mr'', which measures the inertia of matter

in case of rotation.

We have considered here only a single particle w at a dis-

tance r from the axis. If each of the infinite number of particles

that compose a body be multiplied by the square of its distance

from the axis of rotation, the sum of all these products is called
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Fig. 57.

the moment of inertia of the body. Sometimes also called the

inertia of rotation.

The moment of inertia depends not only on the mass of a

body but also on the distribution of the mass. Two wheels

may have the same mass, but the one which has its mass farther

from the axle will have the greater moment of inertia.

Moment of inertia may be defined as that property of a

body by virtue of which it resists the moment of force that

tends to produce angular acceleration.

The dimensions of this quantity are

[MU], for it is a mass times the square

of a distance. The c. g. s. unit is then 1 g.

1 cm.^; i.e., a mass of 1 g. placed at a dis-

tance of 1 cm. from the axis of rotation

has unit moment of inertia.

The symbol ordinarily used for moment
of inertia is /.

For regular and homogeneous bodies

the value of I may be calculated by the

methods of the integral calculus. This

operation consists in the addition of the quantities mf-' for each

of the particles of which a body is composed. This may be

expressed by

In this way it can be shown that for a cylinder rotating on

its own axis and having a mass M and a radius R,

7 = iMi?=' (Appendix?)

and for a sphere rotating on an axis through its centre,

/= |Mi?2 (Appendix 9)

When a body is irregular or is not homogeneous, the value

of / cannot ordinarily be calculated, but must be determined

by experiment. In such a case it may be determined by the

moment of force required to produce unit acceleration. Thus, if

force F. Fig. 57, is one dyne and r is one centimetre, and if Fr
causes the body D to rotate with a change of velocity of one

radian per second each second, then D is said to possess unit

moment of inertia. The value of Fr required to produce tmit
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change of velocity in any other body is a measure of / of that

body, or, using the same value of Fr, the value of / will be

inversely as the angular acceleration produced. This relation is

expressed by
Fr=IA (45)

Fr
or 7=-

where A is the angular acceleration.

The total mass of a rotating body may be supposed to be

concentrated at a point whose distance from the axis is such that

the resistance to angular acceleration would be the same as that

actually observed. Let k be this distance, then, since the total

mass is now by supposition at a distance k from the axis.

or k^= M (46)

This distance k is called the radius

of gyration. The value of k^ can be

found from any equation for / by

omitting the factor M.
It may be shown that the mo-

ment of inertia (7) about any axis

is equal to the moment of inertia

(/„) about a parallel axis through the

centre of gravity, increased by the

product of the mass and the square of

the distance between the axes. (See

page 275.) This may be expressed by

7= /o + mr'

I
or, smce k^= M'

k' = k\+r^

Fig. 58.

(47)

(48)

In Fig. 58, the axis ab passes through the centre of gravity o,

while cd is parallel to ah and at a distance r from it.

ZZ. Centripetal Force.—A body in motion will continue its

motion uniformly in a straight line except in so far as it receives
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an impulse from without. Consequently, when a mass is moving
in a circular path, there must be a force which changes the

direction of its motion.

It has already been shown, under "uniform circular motion,

"

that the acceleration is directed toward the centre of the circle

and that its value is —

.

^ 2v
Since F = m,a, and a in this case is — , the force directed

f
toward the centre is

r

Representing this force by F^, we may write

(49)

It has also been shown that acceleration may be expressed by

p^ or 4:7:^rn' (see (24) and (25) ) ; hence equation (49) may be

written

Fc= p^ (50)

or F^= ^n'mrn^ (51)

where n is the number of revolutions per second.

It should be noted that the mass moving in a circular path

has no tendency to move away from the centre in the direction

of the line connecting it with the centre. If the force F„ should

cease, the body would continue its motion in a direction tangent

to the circle.

The force which produces acceleration toward the centre is

called centripetal force. There is no such thing as "centrifugal

force" unless by that term is meant the inertia of the mass

which causes it to continue in a straight line except in so far as

centripetal force changes its motion.

By inspection of equation (49) it is seen that if the radius r

decreases, the velocity being unchanged, the force F^ must

increase, for the smaller the circle is, the more rapid is the change

of direction. To round a sharp curve requires greater effort

toward the centre. If F^ decreases, m and v remaining the same,
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the mass meets with less interference in its tendency to move
in a straight Hne. If velocity alone increases, the force must
increase as the square of the velocity.

Instances and applications of centripetal force are found on

every hand. The planets move in elliptic orbits under the

influence of the sun. Bodies on the surface of the earth move
in a circular path under the influence of gravity. "Centrif-

ugal" governors are employed to regulate the admission of

steam to an engine. In laundries clothes are dried by rapid

rotation in perforated cylinders. An indefinite number of such

examples may be given.

34. Stability of a Rotating Body.—A body in rapid rotation

will change its position so as to rotate on its shortest axis. This

is a natural consequence of the inertia of matter. When the

rotation is around the shortest axis, a greater number of particles

of which the body is composed are thus permitted to move in

larger circles,

—

i.e., more nearly in a straight line. In Fig. 59 B,

a circular disk is represented as rotating on an axis mn, while

in A the axis is perpendicular to the disk. Only the points a

and b in B rotate in a circle as large as the circumference of the

disk, while in A all the particles in the circumference rotate in

the largest circle. The same may be shown for any correspond-

ing concentric circles. If the disk B is free to change its axis

it may, provided its axis is one of perfect symmetry, continue

its rotation on mn, but a slight disturbance will cause it to

take the position A, which is a position of stability for a rotat-

ing body.
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This may be shown experimentally by suspending a disk or

ring or a piece of board by a string attached to a turning table.

The string is fastened to one edge of the object, and thus will

have the position B in the figure. By a rapid rotation it will take

a horizontal position, thus rotating on its shortest axis as in ^4.

The phenomena of a rolling hoop illustrate this principle. Another
example is the permanence of the earth's rotation on its polar axis.

35. The Conical Pendulum.—A conical pendulum is one

where a mass revolves in a horizontal plane about an axis from
which it is suspended. In Fig. 60 let w be a heavy mass sus-

pended from o by a connecting rod I. Let

the vertical rod os, which is in the position

of the axis, be rotated. The mass m will

swing out farther and farther as the speed

of rotation is increased, for the larger the

circle the more nearly m will approximate

a straight line. Let the period be such

that m moves in a circle of radius r. The
distance h in the figure is from o to the

plane of revolution of m.

That m may move in a circle and not

in a straight line, there must be a force

directed toward c, the centre of the circle.

This is furnished by a component of the

force of gravity on the mass m. Let Fg,

the total force of gravity, be resolved into the components mq
and qp. The former causes only a tension of the rod / and need

not here be considered, but the component qp is the force F„

which causes the mass m to move in the circle of radius r.

Let 6 be the angle which / makes with h. Then

F,=^F,tsLne =F~
But Fg=mg

where g is the acceleration due to gravity, hence

F,= ing-^

Also F,=—p— (see equation 50)
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Hence, equating these values of F„,

mg-.

or •=-vi (52)

It appears from this equation that the period of a conical

pendulum varies directly as the square root of h and inversely

as the square root of g. Since I does not appear in the equation,

the period is independent of the

length of the rod or string from

which the mass is suspended. A
number of masses suspended from

o by strings of different length

will revolve in the same horizon-

tal plane.

The principle of the conical

pendulum has been extensively

used in the regulation of the

speed of the steam engine. In

the Watt governor. Fig. 61, con-

nections are made by rods a, a',

from the pendulums to the ring 5

which slides on the rod om. The
whole may be operated by a belt

from the axis of the fly-wheel or

by a shaft and cogs as shown in

cut. The ring s is attached by
proper mechanism to a valve in

the steam pipe. Any increase in the speed of the engine will

partly close the valve, while a decrease in speed will cause the

valve to open. In this manner a fair degree of uniformity in

speed may be obtained.

Other and more sensitive forms, such as the "parabolic"

and "centrifugal" governors, have in large measure superseded

this one, but in all of them the principle is that stated in New-
ton's first law of motion.

36. Effect of Rotation of the Earth on the Weight of Masses.—
In Fig. 62 let the axis of the earth be represented by NS, the

Fig. 61.
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equator being EE'. A mass at E is acted on by a force, called

gravity, which is directed toward the centre of the earth. The

greater part of this force gives the body what is called weight.

The remaining part keeps the body from moving on in a direc-

tion tangent to the equator,

—

i.e., gives the mass an acceleration

toward the centre and thus causes motion in a circle. Hence

the equation for this latter part of the force of gravity is

jr^= .—_

—

(see equation 50)

and the acceleration is therefore

47rV
(see equation 24)

The period of the earth's rotation is 86,400 seconds and the

radius of the earth is about 6.4(10)* cm. Hence the accelera-

tion is 3.385 <=™/sec2- The total force of gravity will cause an

acceleration of about 980 <=™/sec2, which is very nearly 289 times

Fc
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all the value of F^ would be expended in keeping the mass in a

circular path, consequently objects at the equator would have
no weight.

A body located north or south of the equator moves in a

circle of less radius than that of the earth. Let a mass m, Fig. 63,

be located in latitude L. The radius of the circle in which m
moves is r'. But

r' = r sin d = r cos L

Let FJ be the component of the force of gravity directed toward

o' Then

^^,^
4.WcosL

^^3^

By resolution of F„ as shown in the figure,

F„'=F„cosL

Hence the force necessary to keep the mass w in a circle of

radius r' will produce an acceleration 3.385 cos L<=™/seo2, while

the total force toward o' will produce an acceleration 980 cos L
""/secs ; consequently the ratio of the component of gravity acting

toward o' to that portion needed to keep the mass in a circle

is the same as at the equator. Hence, if the earth should rotate

17 times faster, the total force FJ would be needed to produce

the necessary acceleration toward o'. The force F„ has been

resolved into two components,

—

FJ directed toward o' , and nm
directed toward the equator. This resolution may be made
for any latitude in the northern or southern hemisphere. As a

consequence of the component nm, the shape of the earth is a

spheroid having a polar diameter about 26 miles less than the

equatorial.

37. The Law of Gravitation.—In the latter part of the seven-

teenth century Sir Isaac Newton announced a law known as the

universal law of gravitation. The law may be stated as follows:

Every particle of matter in the universe attracts every other

particle with a force which is directly proportional to the product

of the masses and inversely as the square of the distance between

them.

This law may be expressed by the formula

Foc'^ (54)
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where tn and m' represent the masses of two bodies and r is the

distance between their centres of mass.

This formula simply states a proportionality. The value of

F in any of the adopted units of force cannot be determined

\mtil the value of a constant of gravitation is first found by
experiment and introduced in the formula. The attractive

force between two masses, each one gram, the distance between

their centres being one centimetre, may be chosen as this con-

stant. It is usually denoted by G, and its value as found by
use of a torsion balance (§83) is 6.6579(10)"' dynes. Conse-

quently we may introduce this factor in (54) and write

_ -mm' ,,_.F=G^^ (55)

and when c.g.s. tmits are used the value of F is thus found in

dynes.

With this knowledge it is possible to calculate the mass of

the earth as Cavendish first did. Consider the attraction between

two masses,—the earth and a unit mass of 1 g. at the surface of

the earth. It is known that the force between these two masses

is about 980 dynes, for gravity will give to the gram an accelera-

tion of 980=™/sec2- Hence

980 =G^
where m' is 1 g. and m is the mass of the earth. Then

980r^

Taking the value of r as 6.4(10)» cm. and G as 6.6579(10)-*

dynes,
»M= 6.0275(10)" grams

= 6.64(10)^^ tons (English)

Knowing the mass and volume of the earth, the mass per

tmit volume—density—may easily be calculated. Thus, it can

be shown that the mean density of the earth is about 5.527 s/cc,

—i.e., the density of the earth as a whole is more than 5.5 times

greater than that of water. Most substances on the surface of

the earth are much lighter than this ; consequently much of the

matter in the interior must be much denser.
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The law of universal gravitation applies not only to the

earth and bodies on its surface, but to all bodies in the universe.

The mutual influence of the sun and planets causes the latter

to move in their orbital paths. The satellites, the stars, and

the sun itself move in paths which are determined by this

universal law.

Newton showed, for example, that the law of gravitation

satisfactorily accounted for the motion of the moon in its orbit.

Let the radius of the moon's orbit be r^ and the acceleration

toward the centre a. Then

a=— =—p^ (see equations 22 and 24)

and the value of a at a distance r^ from the earth has been

shown to be about .272 '^'"/sec^- (See prob. 1, page 25.)

Let this result be compared with that obtained by the uni-

versal law expressed in equation (55), where the force varies

inversely as the square of the distance. Since a force varies

directly as the acceleration which it produces, the acceleration

varies inversely as the square of the distance; hence

-=-^ (56)

or a=fl (57)

where r = radius of the earth, ro = radius of moon's orbit, g =
acceleration at surface of earth, and a = acceleration at dis-

tance of moon. Taking ro = 3.844(10)'" cm. and r= 6.4(10)^ cm.,

980X6.4(10)« _
" 3.844(10)'»

~-'^^^ '"'''

Considering probable inaccuracy in data, this result agrees very

well with that given above.

38. Gravity.—The attractive force of the earth for bodies

on its surface is called gravity. The force of gravity is the

result of the universal law of gravitation as applied to the rela-

tion of the mass of the earth and adjacent masses.



62 GENERAL PHYSICS.

The force of gravity, like other forces, is measured by the

acceleration it produces. This is about 980 '^'"Uec', or 32.2 ^Vsec'.

The force is not the same at all points on the earth's surface,

being greatest at the poles and least at the equator, the standard

of reference being 980.6 ''"'Isech which is the value of g at sea level

in latitude 45°.

Force of gravity, and consequently acceleration, varies in-

versely as the square of the distance from the centre of the

earth. At twice the distance the acceleration is one-fourth as

-4 ?*

Fig. 64.

great; at three times the distance, one-ninth as great, and so on.

In Fig. 64 let E represent the earth, r its radius, and 5 a distance

from o greater than r. Let g be the acceleration on the surface

and a the acceleration at the distance s. Then

- =4 (58)

or a=^ (59)

Thus, when r and .s are known, the acceleration at any point

above the surface of the earth may be calculated. The value

of a is evidently not imiform, but increases each instant as 5

decreases, or vice versa.

A body falling from $„ to 5 would acquire a velocity which

may be calculated from the equation

M~-i) (60)

where 5 and s^ represent distances from the centre of the earth.

Suppose, for example, it is desired to know what velocity a
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body would acquire if it fell from an infinite distance to the

surface of the earth. Here

So 00

5 r

.". u^= 2gr

g= 32.2 f«<=Vsec^ = -00609 ™'^/sec«

r= 4000 miles

.•.z;= 6.98™i=Vsec

For a distance of a few hundred feet above the surface of

the earth the change in acceleration is very slight. Even at a

height of five miles the difference in acceleration as compared

with that at the surface is only about 3 "^"/sec^- Hence no serious

error will be introduced if falling bodies near the surface be

regarded as acted upon by a constant force,

—

i.e., their motion

may be considered as uniformly accelerated. With this assump-

tion the equations for falling bodies are the same as those deduced

for U.A. M. Let g take the place of a and we may write

v=gt (61)

s = igt' (62)

v^ = 2gs (63)

and so on for all equations that are true for that kind of motion.

39. Equilibrium in Orbital Motion.—If a planet, such as the

earth, were moving in its orbit about the sun with uniform cir-

cular motion, the force necessary to keep it in a circular path is

It has just been shown that the force which keeps a planet in its

orbit is

„ „mm'

which shows that, while F„ varies inversely as r, F, varies

inversely as r^ Under this condition, any change in the value
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of r, however little, would change F, much more than F„. If

r should increase, the planet would leave its orbit and never

return; if r should decrease, the planet would be drawn to the

sun, for Fg would be greater than the force necessary to hold it

in the circle. Such an orbital path is plainly an unstable one.

The actual orbit of a planet is an ellipse. This is true of

any mass whose motion is periodic and in a curved path about

a force which varies inversely as the square of the distance.

In Fig. 65 let the sun S be at one of the foci of an ellipse, and
let a planet move from aphelion A to perihelion P in direction

indicated by arrows. A line drawn from 5 to any point on the

ellipse is called a radius vector.

During the whole trip from AioP
the radius vector makes an acute

angle with the direction of the

planet's motion; hence a compo-

nent of the sun's attraction is

directed along the path of motion,

increasing the velocity until the

tendency to continue in a straight

line carries the planet on in its

orbit notwithstanding its approach

to the sun. After the point P is passed, the radius vector makes

an obtuse angle with the direction of motion at any point be-

tween P and A,—i.e., there is a component of the sun's attrac-

tion directed opposite to the path of the motion. The velocity

of the planet will thus be retarded and its tendency to continue

in a straight line will be lessened to such an extent that the

sun is able to deflect it from its course and cause it to round the

curve at aphelion. Such a relation of planet and sun may be

said to be stable, for only an enormous external force would be

able to cause the planet to leave an elliptic orbit and move on

in a parabola or hyperbola.

40. Gravity beneath the Surface of the Earth.—If the earth

-were uniform in density, acceleration of gravity at any point

beneath the surface would vary directly as the distance from

the centre,

—

i.e., a body 1000 miles beneath the surface would

weigh three-fourths as much as at the surface. To understand

the reasons for this, let £ be a shell composed of the outer crust

Fig. 65.
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of the earth. Let w be a mass placed anywhere within this

shell. Draw through m two lines making a very small angle

with each other and cutting the shell at w' and m". The tri-

angles thus formed are to be considered the _» s
vertical sections of cones with their vertices

at m, their bases at m' and m", and having

altitudes r' and r". The masses of the shell

in the bases of the cones may be regarded

as proportional to their areas. Let these

masses be m' and m". The areas of the

bases of the cones vary directly as the Fig- 66.

squares of the distances from the vertices. Hence the proportion

m' r'^

Let g' and g" be the acceleration of m due to the masses m' and
m" respectively. Then, by the law of gravitation,

A comparison of these proportions shows that

m' r
g'

or

whence

m'g' = m"g"

where F' and F" are the forces measured by m'g' and m"g"
respectively. Since F' and F" are equal and oppositely directed,

the mass m will have no acceleration and no weight, as far as

the shell is concerned, for m is at any point

within the shell. There will be a stress, but

no motion. Suppose a mass M, Fig. 67, is

located at a distance oM from the centre of

the earth. It will be unaffected by the mass
of a shell whose thickness is MA,—i.e., as

far as motion or weight is concerned. But

it will be attracted by an unbalanced force

due to the mass of a sphere of radius oM. Since the volumes of

spheres and consequently their masses, if uniform, vary directly

as the cubes of their radii, the force of attraction due to the mass
5

Fig. 67.
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of the central sphere varies as oM^ At the same time the force

varies inversely as the square of the distance from the centre;

hence

F oc =^ or oM (64)

It has already been shown that the density of the earth is

much greater at the interior. Consequently, as a body moves
from the surface toward the centre its weight will for a time

increase, because a position nearer the dense interior more than

compensates for the decrease of mass due to the fact that the

shell is not effective in causing weight. At a point still nearer

the centre the weight will again be the same as on the surface,

and from that point will decrease until at the centre the body

will be subject to balanced forces and so will have no weight.

41. Weight.—The weight of a body is the force of gravity

exerted upon it. It is the force which must be exerted to hold

a body free from other support, or the resistance which a sup-

port must offer to equal the force of gravity. In other words,

weight is the resultant of all the forces of gravity which act

upon the material particles of which a body is composed. Weight

is not inherent in a mass of matter, but is dependent on sur-

rounding conditions. A mass located alone in space would have

no weight. If surrounded by other masses so that attractions

are equal in all directions, again there would be no weight.

Weight and mass should be clearly distinguished. Mass is

the amount of matter in a body. The body may or may not

have weight, but, no matter what changes in surrounding

conditions may be made, the mass does not change.

The weight of a body is found by measuring the resultant

force of gravity. One method of doing this is to suspend the

body from the end of a coiled spring and note the distance the

spring is stretched. Hooke's law in regard to elastic bodies is

that, within the limits of elasticity, the force of restitution is

proportional to the displacement,

—

i.e., the effort of the spring

to regain its original shape is proportional to the strain. The
strain, then, may be taken as a measure of the force which causes

it. A familiar application of this principle is found in the spring

scales. Weight may also be determined by balancing an object
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against certain standard masses, in accordance with the prin-

ciples of moments of force. Knowing the force of gravity on

the standard, the weight of the object may be readily found.

42. Centre of Gravity.— The centre of gravity of a body

may be defined as that point through which the resultant of

all the forces of gravity exerted upon the particles of which a

body is composed must pass, no matter what position a body

may have. In other words, it is that point about which the

sum of the moments of force due to the action of gravity upon

the particles of the body is zero. Another form of statement

is that the centre of gravity is a point at which the total weight

of a body may be supposed to be concentrated, so that the

resultant of the forces of gravity acting through this point may
produce motion of translation but not of rotation.

y

o

Fig. 68.

The position of the centre of gravity may be found by con-

sidering the relation of the particles of which a body is com-

posed to certain axes or planes of reference. In Fig. 68 let a

number of particles be in a straight line oP, parallel to the X-axis

and distant y from it. Let the number of particles be n, their

masses Wj, Wj, m^, and so on to m„, and their distances from

the Y-axis, Xi, x^, x^, . . . . x„, respectively. Then the moment
of each particle about o is found by multiplying its weight by

its distance from o. The sum of all these moments divided by
the sum of the weights of all the masses^magnitude of the

resultant—gives the distance from o to the point where the

resultant must be applied to produce the same moment. This

may be expressed by

m^x^+m^x^ + 111^X3 . + m„x„

Wi-f-Wj-l-Wg . . . . +m„
= x
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where x is the distance from o to the point of application of the

resultant. The common expression for this is

2mx
Im

-= x (65)

which may be read, the sum of the moments of all the particles

of which a body is composed divided by the weight of the body

equals the location of the centre of gravity in reference to that

axis about which the moments are taken.

In the same way the distance of the centre of gravity from

the X-axis is found by
Imy _—

In the particular case illustrated in Fig. 68, the value of y is

the same for all the particles; hence y= y.

4-^ 4-<^

Fig. 69.

To illustrate this principle by use of a simple problem, let

four bodies whose weights are 2 g., 3 g., 1 g., and 6 g. be placed

in a straight horizontal line, as shown in Fig. 69. Then

Imx 2X1+3X3+1X6+6X8 ., ,

^>^
=

2+ 3 + 1+6 =^^ '='"• *'"°^ "

The point of reference o may be taken at any distance from the

system of bodies; as here taken, the centre of gravity of the

system is 5^^ cm. from o, or 4^ cm. from the mass of 2 g.

When the particles are not in a straight horizontal line,

but in a vertical plane, as represented in Fig. 70, the distance

of the centre of gravity from both the X and Y-axis must be

found. Thus —
j,

will locate the centre of gravity some-

where in the line a parallel to the Y-axis, and —„ will locate2m
it in line b parallel to the X-axis. It is therefore at their point

of intersection.
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In case the particles are so arranged that three dimensions

must be considered, the centre of gravity is located by finding

its distance from three planes of reference, XZ, XY, and YZ,

Fig. 71. Thus —^^ will determine its distance from the plane

YZ; its distance from XZ\ and its distance

from XY. The centre of gravity is therefore at the point of

intersection of the three planes.

z

X _I—>:

Fig. 70. Fig. 71.

43, Centre of Mass.—The centre of gravity and centre of

mass coincide, but their definitions are different. The centre of

mass is a point whose distance from the three planes of reference

is equal to the mean distance of the particles, supposed equal,

from the same planes. Centre of mass may be found by the

same methods as have just been described for centre of gravity.

When a body is regular in shape, as a sphere or cube, and is

uniform in density, the centre of mass or centre of gravity is at

the centre of figure.

44. Stable Equilibrium.—In reference to the action of gravity

on masses of matter, a body is said to be in stable equilibrium

when it is so situated in reference to any axis that a moment of

force tending to produce rotation on that axis causes a rise in

the centre of gravity. Let A, Fig. 72, be a body suspended

from 5, the centre of gravity being at c, in a line drawn from 5

toward the centre of the earth. This line is the direction of the

resultant of all the forces of gravity acting on the body, and

consequently there is here no moment tending to cause rotation

on the axis s. Let the body be now changed to the position B.

There will then be a moment equal to the product of the resultant
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by the distance sa, tending to restore the body to its position at

A. Any disturbance of the body that will cause rotation about

5 will cause a rise in the centre of gravity. Consequently the

position at A is said to be stable.

If a body is placed as in Fig. 73, where the centre of gravity

is directly above the support, the condition is one of unstable

equilibrium, for the least disturbance will result in a moment
that will bring c below s, and the condition will then be stable

again.

A B

Fio. 72.

When the axis of rotation passes through the centre of

gravity, the body is said to be in neutral equilibrium, for rota-

tion can neither raise nor lower the centre of gravity.

In general, whether gravity is concerned or not, a system is

said to be stable when it tends to restore its configuration after

certain disturbing forces have been removed.

45. Determination of Mass.—One method of determining the

quantity of matter or mass of a body is to apply to it a certain

force and note the acceleration produced. Then, from the

relation F= ina, m can be found. Thus, if a force of 500 dynes

produces an acceleration of 5 '^'"/sec^, the mass must be 100 g.

This method has the advantage of being independent of the

force of gravity, but it is impractical in ordinary operations.

The practical method is to determine the force of gravity,

or weight, and consider the mass as proportional to the weight.

That this proportionality exists has been shown experimentally

by dropping masses of different size and kind from a height

and noting that they reach the ground in the same time. To
produce the same acceleration in a large mass as in a small one.
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the force must be proportional to the mass, for F — ma. Newton
performed an experiment in which he used a pendulum with a

hollow bob. By filling the bob at different times with various

kinds of matter and counting the vibrations through a con-

siderable length of time, he was not able to detect any difference

in period. From this he concluded that the force of gravity is

directly proportional to the mass and independent of the kind

of matter.

If the force of gravity exerted on 1 g. of matter is g,—980

dynes,—then the force on m grams is mg, which is the weight. At
any point on the earth g may be considered a constant quantity

;

hence any change in the weight, mg, must be a change in mass.

In instruments commonly used for determination of mass,

two principles are employed. First, the principle stated in

Hooke's law, where the amount of displacement caused by a

mass suspended from the end of

an elastic coil or rod is taken as .
^ ^

a measure of the mass. All spring i\ "

scales are based on this principle.

Second, that there is equilibrium

when the sum of the moments _
Fig. 74.

tending to produce positive and
negative rotation about an axis is zero, and that, when the ratio

of the distances from the axis to the line of direction of the

forces is known, the ratio of the weights will be inversely as

these distances. Thus, in Fig. 74, let a and b be distances from

the axis o to the line of direction of the weights w and w'

respectively. When the system is balanced,

wa= w'b (66)

w b

w' a

b w
When the ratio — is known, that of —r is also known, and when

a w'

the mass in one scale pan is known, as is usually the case, the

value of the unknown mass is easily determined. If a and b are

now made equal in length, w will equal w' whenever there is

equilibrium. Balances for accurate weighing are constructed

in this manner.

or
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with very little strain.

M
In Fig. 75 is a diagram of one style of beam used in physical

and chemical balances. Its shape permits considerable stress

At the centre is a knife-edge o made of

agate and resting on a plate of agate,

p. The knife may be two or three

centimetres long and is here shown
only in cross section. Near the end
of the beam are other agate knife-

edges o' and o". Upon these rest

agate plates from which scale pans are

suspended. A long pointer is rigidly

fastened to the beam and sweeps over

the scale 5 when there is any rotation

on o. The beam must be so constructed

that it will be stable,—i.e., it will when
disturbed rotate from side to side on o

and finally come to rest in its original

position. The distances oo' and oo"

must be equal, to make the balance

c Trrmfr TTTTTTJ

Fig. 75.

true. The same results must be obtained when equal masses are

weighed at different times. A small difference of mass in the pans

should cause a movement of the pointer,

—

i.e., the balance

should be sensitive. The movement of the pointer should be

sufficiently rapid, so that too much time may not be consumed
in the operation of weighing.

StabiUty is secured by constructing the beam in such a

manner that its centre of gravity is a short distance below o.

In the diagram, Fig. 76, let the centre of gravity be at c, directly

below o when the beam is in a horizon-

tal position. If the beam is turned

through an angle 0, c will move to c',

the Une oc also turning through an

angle d. Let W,, be the weight of the

beam, then the moment tending to

restore it to a horizontal position is

Fig. 76.

Wi.f^' = Wt,.oc' smO

Let a and h be the arms of the beam, and let weights be placed

in the pans such that the one suspended from o' is greater than
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that from o" by a difEerence d. Then the moment tending to

produce positive rotation is

d . a cos d

while that tending to produce negative rotation is

Wt . oc' smO^Wt, . a;sin(?

by letting x stand for oc or oc' Hence

d . a cos = Wj, . « sin 5

sin d , „ a
or

cos d
= tan 6 —

W^x

(67)

(68)

From this equation it appears that to make the balance

very sensitive,

—

i.e., to construct the beam so that a small

difference d may produce as great a value for d as possible,

—

a

should be made long, and W,, and x as small as possible. If a,

however, is made very long, the time of the swing becomes very

long. If Wft or X are decreased, the moment tending to restore

the beam to a horizontal position is decreased and again the

time of the swing is increased. These conflicting results are all

considered, and a balance is constructed best suited to the

purpose for which it is intended.

Mounted at the centre of the beam is a nut which may be

raised or lowered, thus changing the position of the centre of

gravity. In this way different degrees of sensibility may be

obtained at the will of the operator.

That there may be the same

sensibility when the differences in

the weights on the pans are not the

same, it is necessary that the three

knife-edges be in the same plane.

In Fig. 77 let cabd be a rigid beam
with the pans hung from c and d.

Let the beam be turned to the

position ef. It is observed that the

moment of the force F has de-

creased, for oa has decreased to oi,

but the moment due to F' has, in the position shown, actually

increased. Hence the moment tending to restore the beam to a
horizontal position will be increased, and therefore the pointer

'tF

Fig. 77.
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will not move over a number of divisions of the scale proportioned

to the difference in load, as it will do when the knife-edges are

in the same plane.

To obtain the true weight, the length of the arms of the beam
must be equal if they are assumed to be so. If they are not

Fig. 78.

equal, the true weight may be found by double weighing. Let

w' be the apparent weight as indicated by standard weights

placed in the pan A, Fig. 78, while the body whose true weight

is w is in B. Then
w'a= wb (69)

Now let w be placed in A and standard weights w" in B ; then

w"h—wa (70)

The product of these two equations is

w'w"ab = w^ab (71)

hence w=i/i(:;'w" (72)

The true weight is therefore equal to the square root of the

product of the apparent weights. In very accurate weighing

this method is often used even when the lengths of the arms are

supposed to be equal.

Another method for the elimination of error due to difference

in arm length is to place the object whose mass is desired in one

pan and counterbalance it with any convenient mass in the other.

Then remove the object and put in its place standard weights

until equilibrium is again restored. The mass of the standard

weights and that of the object must be the same.

Problems.

1. Calculate the moment of inertia 7 of a cylinder rotating on its

own axis, the radius being 10 cm. and the weight 3 kg.

2. Find 7 of a wheel, radius 1 m., when a force of 500 dynes applied

to the rim causes an acceleration of »r radians per sec'.
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3. A mass of 500 g. is made to revolve 120 times per minute in a

circle of radius 50 cm. Find the centripetal force.

4. What must be the speed of a conical swing that a car suspended
from the top of the central pole by a rod 50 feet in length may incline at

an angle of 45°?

/ v^\
{F^ — mgta.n0 F„ = nia a = ~)

5. What velocity will a body acquire in falling from a point 1000

miles above the surface of the earth to the surface, on the supposition

that the body will encounter no resistance?

6. Show that, if three equal masses are placed at the comers of an
equilateral triangle, their centre of gravity will be at a point one-third

of the distance from the middle of the base to the opposite vertex.

7. A weight of 500 lbs. is suspended from a rope and allowed to

descend from the top of a building with an acceleration of 10 ^^^^/sec''.

What is the tension of the rope?

8. A uniform beam weighing 100 lbs. is at rest in a horizontal posi-

tion on a fulcrum placed one-fourth of its length from one end. A weight

of 500 lbs. hangs from the end nearest the fulcrum. What is the weight

on the other end.

1. 150,000 g. cm'.

2. 15,915.45 g. cm^
3. 4028.4 g.

4. 33.7 feet/jec.

6. 3.12 miles/sec

6. .

7. 344.7 pounds.

8. 133.33 pounds.

46. Work and Energy. — When force applied to a body

produces motion in the direction in which the force acts, work is

done. The magnitude of the force times the distance through

which it is appUed is a measure of the work done. This is

expressed by
W = Fs

where W is the work, F the force, and s the space or distance.

No work is done in the application of force unless motion

results. The figure of a giant cut from stone and placed as one

of the supports of a building does not do any work, however

great the weight upon his shoulders.

It is not necessary that the body as a whole should be moved
that work may be done. If the body is elastic, the force may
compress, elongate, or twist it, and thus the point of application
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of the force may move through a certain distance. When this

force is removed, the body may in turn do work on other bodies.

By virtue of work done upon them bodies are able to do work,

and are then said to possess energy. Energy is the capacity for

doing work.

Work in general may be defined as the process of transferring

energy from one body to another. It requires work to lift a

stone to the top of a building, but the energy expended is then

in the stone by virtue of its position relative to the ground.

Work must be done in setting a mass of matter in motion, and

the mass then contains energy by virtue of its motion. It re-

quires work to pass a current of electricity through a storage

cell, and the cell then contains the energy

expended, by virtue of chemical changes

which have been made.

While energy exists as a distinct physical

quantity, it is here assumed to have no inde-

pendent existence. Wherever it is found, it

is associated with matter, matter here being

taken in a sense to include ether.

Whatever difference of opinion may exist

in regard to the essential character of matter
Fig. 79. ^^^ energy, yet for purposes of physical

investigation no false conclusions will be reached by assuming

that matter has an objective existence and that energy is a rela-

tive condition of matter by virtue of which work may be done.

The chief function of matter, then, is to serve as the vehicle

of energy. The mill owner cares nothing for the water in the

mill-pond as a body of water, but he highly prizes the fact that

the water is on a higher level than the mill-wheel. The engineer

cares nothing for steam as a vaporized mass of matter, but he

makes use of the rapidly moving molecules to drive the piston

of his engine. The value of foods consists not so much in the

material of which they are composed as in the work which has

been done upon them by sunlight.

Matter in this respect may be defined as anything capable

of possessing energy as a result of work done upon it.

The two factors which determine the quantity of work are

the force applied and the distance through which it is applied.
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The product of these factors is a measure of the quantity of

work done. In case the direction of the force is at an angle to

the direction of the motion, only that component of the force

which is in line with the motion is considered. Let F, Fig. 79,

be applied to raise a mass m. Let F make an angle with the

direction of the motion. Resolve F into two components, F^

and Fj. The component Fj causes only pressure against the

support while F, is effective in lifting the mass. Hence the

work done is

W =F^=F cose .s (73)

where s is the vertical distance through which the mass is raised.

The greater part of the energy expended in raising this mass

against the force of gravity is now possessed by the mass. A
certain quantity of energy may be said to have been trans-

ferred to it, and it as a consequence is capable of doing work.

47. Units of Work and Energy.—^As in the case of force, so

for work and energy there are both absolute and gravitational

units of measurements.

The absolute units are the erg and the foot-poundal.

The erg is the work done by a force of one dyne acting

through a distance of one centimetre.

The foot=poundaI is the work done by a force of one poundal

acting through a distance of one foot.

These units are absolute because the factors which enter

into their definitions are invariable in time and place. They are

not dependent on a variable force such as gravity.

Since work is the product of a force by a distance, the di-

mensions of its units are

[MLT-'] [L] = [MUT-']

1 ST 1 cm^
The symbol of the c. g. s. unit, then, is —y j— ,

—

i.e., the erg is

the product of 1 cm. by a force which will give to 1 g. an accelera-

tion of 1 '^"/sec!- The symbol for the foot-poundal is
— —

.

The relation of these two tmits may be found in the usual

manner by finding the numeric for dimensions in c.g.s. units
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when that for foot-poundals is unity. Thus,

hence x= \TL
. ^ ^1 -1X453.59X30.48=' = 4.214(10)=

hence there are 4.214(10)* ergs in a foot-poundal.

The erg is inconveniently small, being only about the amount
of work required to raise one milligram to a height of one centi-

metre. For this reason, ten million (10') ergs are employed as

a practical unit called the joule.

The gravitational units of work are the foot-pound, the gram-

centimetre, the kilogram-metre, or any convenient product of

a gravitational force by a distance.

A foot=pound is the work done by a force of one pound exerted

through a distance of one foot. The gram-centimetre is defined

in a similar manner.

In the gravitational units the force is that of gravity exerted

on a pound or gram of matter. Since gravity is not the same at

all points on the earth, these units will differ with location.

Gravitational units are in common use by engineers, for in most
structural work gravity is the chief agent against which force

must be exerted, and for rough work the slight variations in the

force of gravity in different localities may be neglected. It is

possible, however, to select a certain locality, say latitude 45°

at sea level, and consider the force of gravity per unit mass at

that point as the standard. Then, if a mass m at that place is

raised a distance h, the work done is mh in foot-pounds or gram-
centimetres, depending on the units selected. The standard

force of gravity per gram is 980.6 dynes. Then, in another

locality where g is, say, 978 dynes, the work performed by the

same operation is

978W= mh ft.-lbs. or g.-cm.

Since weight is the product of mass, m, by the force of gravity,

g, per unit mass, the work W done in raising a mass to a height

h is

W=mh gram-centimetres or foot-pounds

and W=mgh ergs or foot-poundals
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From this relation it is easy to pass from the absolute to the

gravitational system or vice versa. One foot-pound equals

approximately 1.355(10)' ergs.

Work may be represented by an area, as shown in Fig. 80.

Let divisions on the abscissa represent distance; and those on
the ordinate, intensity of force. Suppose each millimetre on

the abscissa stands for one centimetre of actual distance, and
those on the ordinate represent dynes. Then
30 dynes acting through 30 cm. would do

work which is here represented by the rec-

tangle oahc,—900 square millimetres, each

representing one erg of work. If the force is

not uniform but is constantly changing, the

work may be represented by the number of

unit squares enclosed by the abscissa and the

curve def. This curved line is the locus of all the points whose

distances from the abscissa represent the intensity of the force

at each successive small change in the distance. This graphical

method of representing work will be used in later discussions.

48. Power.—Power is the rate of doing work. If the quan-

tity of work only is specified, there is no indication of the time

within which it was performed. A small force acting for a long

time may accomplish as much work as a large force acting for

a short time. A small boy may do as much work as a strong

man. But when the element of time enters into the considera-

tion, then the time-rate is a measure of the power, or, as it is

sometimes called, the activity of an agent. Steam engines

differ in power because they differ in the rate of doing work.

A common unit of power is the horse=power. An engine or

other agent is said to have one horse-power when it can do

33,000 foot-pounds of work in one minute or 550 ft. -lbs. in one

second.

Another unit of power is the watt, which is the rate of doing

work when one joule is performed in one second. There are

approximately 746 watts in one horse-power.

49. Potential and Kinetic Energy.—Energy, as has already

been defined, is the capacity for doing work, and work is an

operation of transferring energy from one body of matter to

another. The amount of energy lost by an agent in the per-
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formance of work is a measure of the work done. Hence the

units for energy are the same as those for work.

All energy is potential in the sense that it is a capacity for

doing work, but a division is commonly made into potential

and kinetic energy. The energy which a body possesses by
virtue of its position in relation to other objects, or by virtue

of a strain which has been caused by work done, is called poten=

tial. Examples of this are particles of carbon in coal in relation

to the oxygen in the air, the coiled spring of a watch or clock,

a mass raised to a position from which it may fall.

Kinetic energy is the energy which a body has by virtue of

its motion. A heavy projectile in flight possesses a great deal

of energy, by virtue of the fact that the exploding powder did

a great deal of work upon it.

It is desirable to have an equation by which the kinetic

energy can be calculated when the mass and velocity of the

moving body are known. To do this we assume that any mov-
ing body has the energy which was given to it by a force that

started it from rest and accelerated the motion until the velocity

was as now observed. While the velocity is uniform, no energy

is gained or lost, as may be inferred from Newton's first law.

The force F which caused the acceleration a in mass m, is

The distance, s, through which the force acted to give the mass

the observed velocity, v, is

s =^ (from v^ = 2as)

The formula for energy or work is

W or E=Fs (74)

v^
hence Ejdn = '"^^q- = i***^^ (75)

From (75) the kinetic energy in ergs or foot-poundals may be
found when velocity and mass are known.

50. Energy of a Rotating Body.—When the mass and angular

velocity of a rotating body are given, the energy of each particle

of the mass is foimd by (75),—namely, E]nn = \mv'. In Fig.



DYNAMICS. 81

81 let a solid disk be represented as rotating on axis o. Con-

sider the energy of a particle m^ which is moving with angular

velocity w at distance r from the axis. Since w is the number
of radians per second, oir is the linear velocity of m^, hence the

kinetic energy of the particle Wj is

Ekin= iw^miH (76)

The total energy is the sum of the energies of all the particles,

hence
E)^-^= ^'' {rn^r^ +m^r^ -k-m^r^ .... -|-m„0

Fig. 81.

The sum of the quantities within the parenthesis is the moment
of inertia of the rotating body, hence

E^n =¥^' (77)

Since I =Mk^ where M is the total mass and k is the radius of

gyration,
E^^= iMaj'k' (78)

Equation (78) simply states that the kinetic energy of a

rotating body is equal to one-half the mass times the square of

the linear velocity of that point where the total mass is supposed

to be concentrated. If e.g. s. units are used and the value of

o) is taken in radians, the result will be in ergs.

51. Conservation of Energy. — The total quantity of the

energy in the universe is constant. The operations of life and

the activities in nature show a constant change of energy from

place to place and from body to body, but what is lost at one

point is gained at another, and the total quantity remains

unchanged. This is the doctrine of the conservation of energy.

The material changes which are observed in the world or

universe are the transferences of energy from body to body,

or the result of such transferences. The potential energy, for

example, which exists in coal by virtue of the relation between

6
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carbon and oxygen may, by burning the coal beneath a boiler,

be converted to kinetic energy of countless numbers of particles

of water, and these may in turn transmit their energy to an
engine, causing mechanical motion. The engine then passes

the energy on to various machines whch it operates. The sum
of all the work done in this instance, counting the energy lost

by friction or otherwise, is exactly equal to the energy which was
originally in the coal.

Another illustration may be given in the case of a falling

body. Let a mass m be located at a height 5. The body is then

said to possess potential energy, the quantity of which in gravi-

tational units is ms, and in absolute units mgs. This may be

expressed by
Ep=-mgs (79)

where E^ is potential energy. If now the body falls through the

distance s, it will acquire a velocity v, and its kinetic energy

will be

But v^ = 2gs, hence

Ekin =\m . 2gs = mgs = E^

Hence the quantity of energy is the same whether it is kinetic

or potential. When the body has fallen part of the distance, the

energy is part kinetic and part potential.

At one-third the distance from the top, for

example, two-thirds of the energy is poten-

tial and one-third kinetic.

The same is true in case the body de-

scends along an inclined path AB, Fig. 82,

for the length of the path is —.—^, where
sina

s is the vertical height, and the value of FFig. 82.

along the incline is mg sin 6, hence

E = -1—;; tng sin d= mes
sm c*

52. Available Energy.— While it is an established fact of

science that all the energy expended in the performance of work

is conserved, yet it is not all available for the performance of

other work. For example, when a heavy stone is raised by
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means of a wheel and axle and pulleys, a part of the resistance

is due to friction in the various parts of the machinery. Extra

work must be done because of friction, and this results in heat,

which consists in an increased motion of the molecules. This

portion of the energy is thus dissipated throughout the mass

of matter and into space. The energy is not now available by
man for the performance of other work. It is not lost in the

sense that it has been destroyed, but only in the sense that it

was not applied in increasing the potential energy of the stone.

The energy which is transferred to the stone is available, for it

may, by proper connection with a machine, be made to do work
while it descends.

Only a small part of the total energy of the world is available

for work, for, no matter how great the quantity may be, it is

only while energy is being transferred that work can be done.

If all water were at the same level, there would be no rivers or

water-falls; but when there is a difference of level, the fall is

accompanied by a change from potential to kinetic energy, result-

ing finally in heat at the bottom of the precipice. This energy in

a sense may be said to be lost because it is not available for the

performance of work. If, however, a wheel of proper construc-

tion is placed in the path of the falling water, much of the energy

may be made to do useful work. It is only while the water is

falling that its energy is available.

In a similar manner, if all bodies were of the same tempera-

ture, none of the great store of molecular energy would be avail-

able. But when the temperature of one body is higher than

that of another, then, in the process of transference of heat,

energy becomes available and work may be done. The steam

engine, as will be shown later, is a device for utilizing the mo-
lecular energy of steam while heat is being transferred from a

hot to a cold body.

Numerous examples of this kind may be given, showing that

the constant tendency is to diminish the quantity of potential

energy and produce a condition of uniformity under which no

energy would be available for the performance of work.

The sun is the chief source of energy on the earth. To it

alone we are indebted for that store of potential energy which

makes life possible.
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Problems.

1. A ladder 30 feet long stands at an inclination of 30° to a vertical

wall. How much work will be done in carrying a mass of 50 pounds to

the top of the ladder?

2. A force of 5000 dynes is applied at the end of a rope to drag a

mass along a horizontal surface. The rope is inclined 35° to the surface.

How much work is done in moving the mass a distance of two metres ?

3. If one joule of energy is expended in lifting 1 kg., to what height

will the mass be raised? (g = 980).

4. What is the horse-power of an engine capable of lifting 2 tons of

brick to the top of a 50-foot building in 5 minutes?

5. A mass of 200 g. is thrown vertically downward with a velocity

of 50 cm/ggg at a point where the acceleration due to gravity is 980.5

<=™/sec'. If its fall is not obstructed for 10 sec. what is its energy at the

end of that time ?

6. A cylinder whose mass is 2 kg. and radius 3 cm. rotates on its

own axis ten times per second. What energy does it possess ?

1. 1299 ft.-lbs.

2. 819,150 ergs.

3. 10.2 cm.

4. 1.21 h.-p.

5. 9.712(10)' ergs.

6. 1.776(10)' ergs.

53. The Simple Pendulum.—A simple pendulum consists of

a particle suspended from a point and capable of oscillation

under the influence of gravity. The rod or chord connecting

the particle to the point from which it is suspended is supposed
to be without weight. Gravity exerts

y^
no influence upon any part of the

pendulum except the suspended
particle.

Such a pendulum cannot be real-

ized in actual construction, but a
~^^^ near approach to it can be made by

suspending a body, whose mass is

supposed to be concentrated at a
point, by a fine thread or wire of

'"' ^^'
negligible mass.

Let a mass m. Fig. 83, be suspended from o, and let its

position at any instant during oscillation make an angle Q with
its position of rest at os. The force of gravity acting on m is mg,
directed vertically downward. This may be resolved into two
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components, F^ and F^. The latter causes only a tension of the

thread and has no effect in moving m along the arc ms. The
other component, F^, acts in a direction tangent to the arc at

the point m, and thus is the part of the force of gravity that

causes the pendulum to swing. This force is called the force of

restitution, because by its action the pendulum is given an

acceleration, either positive or negative, which restores it to

the position of rest.

When the pendulum swings to m or m^, the mass m is raised

a distance sR, which we will call h in this discussion, and its

potential energy is then mgh. When it falls to the lowest posi-

tion, s, the mass m is moving in a horizontal direction with a

velocity v. The energy is then all kinetic and is expressed by

^w^. At the extreme limit of the oscillation the energy is all

potential. At the lowest point it is all kinetic. At intermediate

points it is partly potential and partly kinetic. The total quan-

tity of energy is the same at all points of the swing. Hence

or v^ = 2gh (80)

Equation (80) shows that the velocity of the horizontal motion

at 5 is the same as the vertical velocity of a mass falling from

R tos.

The force of restitution is expressed in terms of force of

gravity and displacement by

F^ =mg sin 6 (81)

Now, in S. H. M. the force of restitution as well as the result-

ing acceleration must be proportional to the displacement.

Here the force varies as sin d and not as d. Hence the motion

of the pendulum is not a S. H. M. The displacement is the

distance from s to m measured along the arc,

—

i.e., 6 measured

in radians,—and, according to equation (81), Fi varies as the sine

of this angle.

If, however, the amplitude is small, so that 6 is not greater

than 2° or 3°, d and sin 5 will differ so little that one may be

used for the other without appreciable error.
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The period of a simple pendulum may be determined in terms

of its length and the value of g in the following manner : The
force of restitution, F^, Fig. 84, is

** F^=mg sin d

It has been shown in equation (40) that the

acceleration in S. H. M. is

4^

where x is the displacement of the particle.

Hence the force of restitution is

Fig. 84.
^

In Fig. 84, X is the displacement as measured along the arc

sm. Since d is measured in radians,

x:=ld

and we may write for the force of restitution

F^= f5r—

Substituting this value in (81)

=mg sin d (82)

Since the arc is assumed to be so small that d and sin d will not

sensibly difEer,

47r^/=g

whence '=2^V (83)

54. Tiie Physical Pendulum.—A physical or compound

pendulum is one in which the mass is distributed over the entire

body of the pendulum, as a bar of wood or metal suspended

from o, Fig. 85. It is evident that, as this bar oscillates, the

particles near o would, as simple pendulums, move faster and

those near s more slowly than they do when all are rigidly
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connected. There must then be some point between o and 5

where a particle oscillates naturally,

—

i.e., as it would if it

^o were the particle of a simple pendulum. The length of the

compound pendulum is the distance from this point to the

point of suspension, or, in other words, it is the length of

a simple pendulum which has the same period of oscillation.

The compound pendulum is the only kind that can be

realized in construction, and hence the only kind that is

actually used. Any body suspended

so that its centre of gravity is below

the point of support is a compound
pendulum.

The problem, then, is to find the

length of a simple pendulum that

will vibrate in the same time. Let

a body be suspended from o, Fig.

86, and let its centre of gravity be
Fig. 85. at P. The force of gravity will be

mg. The moment of force causing rotation about o is

mg . Ps

Let r be the distance from the point of suspension to the centre

of gravity, then

Ps = r sin 6

and mg Ps = mgr sin 6

this is the restoring moment when the angle is d.

In the discussion of moment of inertia it was shown that

Fr = IA (see equation 45)

—i.e., the moment of force (Fr) tending to produce rotation is

equal to the product of moment of inertia / and angular accelera-

tion A. Hence
mgr smd =IA (84)

or
mr

g sin d
(85)

Suppose the whole mass to be concentrated at the point which

vibrates naturally, and let the distance of this point from o be
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represented by I. This is the length of a simple pendulum of

the same period. The moment of inertia of this mass at the

distance I from the axis is mP, and r has, under this assumption,

become I. Hence

l^^l^l^ (86)
ml A ^ ^

hence Z =— (87)
mr

Substituting this value of I in equation (83),

^/_jL (88)
V mermgr

or, since— is the square of the radius of gyration, we may writem

P=2n^ (89)

From this it appears that, if the square of the radius of gyration

is divided by the distance from the point of suspension to the

centre of gravity, the quotient will be the length of a simple

pendulum of the same period.

The equation for the pendulum shows that the period of

vibration is independent of the mass and,_within certain limits,

of the amplitude, but varies directly as Vl and inversely as l/g.

The pendulum furnishes a very accurate means of determin-

ing the value of g at any locality. By a change in the form of (83)

g =5? (90)

hence, if the values of / and P are accurately determined, g can

readily be calculated.

The point where the whole mass of the pendulum may be

supposed to be concentrated without change in the period

—

i.e.,

the point which vibrates naturally—is called the centre of

oscillation, as c in Fig. 85. This point is also called the centre

of percussion, because, if an impulse is applied here in a direc-

tion at right angles to the line from o to c, the axis of suspension

will not be strained as it would be if struck above or below that

point.
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55. Reversibility of Compound Pendulum.—If a compound
pendulum is reversed and suspended from its centre of oscilla-

tion, the period of vibration will not be changed. To prove this

it will be shown that the length of the equivalent

simple pendulum is not changed by the reversal.

Let OS be a rod suspended from o, its centre of

gravity being at G and centre of oscillation at c.

Let r be the distance from o to G and let li be the

length of an equivalent simple pendulum. It has

been shown that the length of an equivalent simple

pendulum is — (see equation 89). It has also

been shown that the square of the radius of ^1. ,1

gyration about any axis is equal to the square

of the radius of gyration about a parallel axis

through the centre of gravity increased by the

square of the distance between the axes (see equa-

tion 48). Hence

h-^ (91) Lsr.

or k^= r{l^-r) (92)

where k^ is the square of the radius of gyration about G. Now
let the pendulum be reversed, and suspended from c. The

distance from c to G is l^—r. Let Zj be the length of the equivalent

pendulum after reversal, then

i==^^±^ (83)

just as in (91) above. Substituting the value of k^ from

(92) in (93),

:^^
ril.-r)^iyry

^^^l^_,^:^ (94)

Hence the length, and consequently the period, is the same in

either position.

This principle is utilized in finding the length of a simple

pendulum whose period is the same as that of the compound one.

In Fig. 88 is shown a physical pendulum, usually known as

Kater's pendulum, which consists of a brass rod having an
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adjustable knife-edge near each end, and cylindrical masses

which may be shifted on the bar. It is possible by proper ad-

justment to find positions of the knife-edges at different distances

from the centre of gravity such that the period will be the same

when the pendulum is supported by either knife-edge. The

Fig. 88.

distance between the knife-edges can then be measured. This

distance is the length of a simple pendulum of the same period.

56. Use of Pendulum for Measurement of Time.— It has

been shown that the vibrations of a pendulum are practically

isochronous,

—

i.e., the period is independent of the amplitude.

By proper mechanism a pendulum may be made to record its
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Fig. 89.

own vibrations and so is an excellent means of keeping time.

As the pendulum swings from side to side, it allows a tooth of

the escapement wheel to pass the pallet at each swing. The
escapement wheel is connected through a train of wheels to the

weights or springs which are the source of

energy, and also to the hands of the clock.

The motion of the hands is thus controlled and

regulated, but not operated, by the pendulum.

Were it not for friction and resistance of

the air, a pendulum once started would never

come to rest. To keep the pendulum going,

a wire extends from the pallet down a short

distance along the pendulum rod, by which

a slight impulse is given while the bob is at

the lowest point of each swing. It is essential

that the impulse be given while the pendulum

is at the lowest point of its swing, L, Fig. 89. Let oa be a force

applied while the pendulum has a position A. There will then

be a component ah which will act in conjunction with the force

of gravity, and consequently, during the time of the impulse, the

force of restitution would be increased. The force F, however,

acts in a horizontal direction and so has no component with or

against the force of gravity.

Problems.

1. The bob of a pendulum while passing its lowest point has a velocity

of 100 c™/sec. To what height will it rise where g = 980 c^^sec^?

2. The displacement of a simple pendulum is 30° and its mass is 10 g.

What is the force of restitution?

3. If in a certain locality a pendulum 99.3 cm. long beats seconds,

what is the value of g?

4. If a pendulum loses 20 sec. per day at a place where g is 980.3
cm/ggg!, what is its length?

5. The length of a uniform cylindrical brass rod is 216.7 cm., its

radius is 7.2 mm., and its mass is 2977 g. Its moment of inertia about an
axis perpendicular to it through its centre of gravity is ^ma'+ ^mb',

where OT = mass, a = half the length, and i = the radius. If this rod is

suspended at one end and made to oscillate as a physical pendulum,
what will the period be? (g = 980).

1. 5.1 cm.
2. 4900 dynes.

3. 980.05 cm/sec!.

4. 99.37 cm.
5. 2.4 sec.
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57. Machines.— A machine is any contrivance through

which energy may be advantageously expended in doing work.

A machine is simply a medium for the transmission of energy.

It receives energy by virtue of work done upon it or energy

transmitted to it, and then may expend this energy in doing

work. The kind of energy transmitted may be very different

from that received, but the quantity, including the so-called

lost energy, is exactly the same. A machine of itself can neither

do work nor assist in doing work. It is only a convenient medium
through which work may be done. This principle of conserva-

tion of energy in machines makes the "perpetual motion"
machine impossible.

Work is defined as the product of a force or resistance by a

distance. If the force applied to a machine is F, and the force

applied by the machine is R, also if the respective distances

through which they move are Sj. and S^, then

FS^=RSr (95)

This equation expresses the machine principle and states the

equality between energy received and energy expended. Also,

since each member of the equation contains two factors, either

factor may be changed in value provided the other is at the same
time changed in an inverse ratio. In this fact consists the chief

advantage in the use of ma-
chines. Thus, let FSf repre-

sent a certain quantity of

work. It is possible by use

of a machine to make F
one-fifth as great, for ex-

Ci) Fig. 90.
ample, and at the same
time make Sf five times as

great, the amount of work remaining the same.

This principle may be further illustrated by reference to

Fig. 90. Suppose it is desired to do the work of lifting a weight

through the distance ab. This may be done by use of a simple

form of machine,—the lever. If the force F is applied at c,

c and a being equidistant from o, then F and R must move
through equal distances and so F equals R as before. But if F
is applied at d, od being, say, twice oa, then the arc df, or Sf, is
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twice the arc ab, or 5,. Hence F=— . This illustrates how a

machine may be an advantage, and also that, whatever changes

may be made in F, the value of Sf changes in such a manner that

the product of the two is unchanged.

58. Mechanical Advantage.—Mechanical advantage is a ratio

expressing the number of times the force is multiplied by the

use of a machine. It is the ratio of R to F. The ratio of Sf to 5^
gives the same result. Also, the ratio of any parts upon which
the values of R and F depend, such as the arms of levers and the

radii of wheel and axle, may be used to determine the mechanical

advantage. If, for example, the ratio in any case is found to be

24, this means that the resistance against which the machine is

capable of working is 24 times as great as the force applied to

the machine.

It is not to be imderstood from the term advantage that a

force applied to a machine is always increased by that machine.

The number expressing the advantage may be a fraction. It

is often desirable that F be greater than R, but in that case Sf

is proportionately less than 5,.

59. Kinds of Machines.—Machines are usually classified as

simple and compound, the compound being a combination of

simple machines.

Simple raachines are of two kinds,—namely, the lever and

the inclined plane. All simple machines may be classed with

one or the other of these two. Thus, pulleys and wheel and axle

are levers, while the wedge and screw are inclined planes. The

ordinary hand pump is a simple machine of the lever form, by

which the energy expended in the operation of the pump is

transmitted to the water which is raised from the well. The

dynamo is a simple machine of the lever form, which causes a

flow of electricity. The various kinds of compound machines

are combinations of levers and inclined planes.

60. Levers.—A lever is a mechanical device such that a

force applied at one point produces or tends to produce rotation

about an axis called the fulcrum, against a resistance which

tends to prevent such rotation.

The commonest form of lever is a straight or bent bar, the

axis or fulcrum having various positions relative to the points

of application of the force and the resistance.
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Levers are usually divided into three classes, distinguished

by the relative positions of the force F, the resistance R, and the

fulcrum o. When o is between F and R, the lever is one of the

first class; when R is between F and o, second

class; when F is between R and o, third class.

The mechanical advantage in any case is

determined by the ratio of the distance fromF
to o to that of R from o.

If the direction of the force is not perpen-

dicular to the lever, then, as already explained

under the subject of moments, only that com-

ponent which is perpendicular is to be considered

as effective in producing rotation. Thus, in a

bent lever aob. Fig. 92, let a force F be applied

at a, its line of direction making an angle ^ with

the arm oa. The only part of F that causes

rotation about o is the component ac, equal to F sin <p; hence

-F sin (p . oa=R . oh

or, since oe, which is perpendicular to the line of direction of F.

F F
Fig. 91.

R*

is equal to oa sin ^, or oa equals
oe

sin^'

F . oe=R . ob (96)

61. Pulleys.—A ptilley is usually a grooved wheel or disk,

called a sheaf, supported in a frame called a block. All pulleys

are levers of either the first or the second class. In Fig. 93, A, the

pulley is supported at T. It

is then said to be fixed, and a

force F applied at one end of

a rope passing over the sheaf

will have the same effect as if

applied at b,—one end of the

lever ab. The fulcrum of the

lever is at o, the centre of the pulley, hence F and R are equal.

A fixed pulley may thus be considered a lever of the first class

in which the mechanical advantage is unity. As the wheel is

turned, the infinite number of such levers of which the wheel

is composed come successively into use in the position ab.

Fig. 92.
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Although neither F nor Sf is changed in magnitude in passing

to R and 5^, the direction of the motion is different. A weight,

for example, may be raised by a force directed downward.

A pulley is said to be movable when it is supported in a bight

of a cable or rope one end of which is fastened to a support.

This, as shown in Fig. 93, B, is the use of a lever of the second

B

Fig. 93.

class, for the resistance is applied at the middle of the wheel

and the force-arm ob is twice as long as the resistance-arm oa.

Hence in a movable pulley

R = 2F

In case the strands of the cable are at an angle to each other

as shown in Fig. 94, let d be the angle which oa makes with the

vertical line oc, R being the force of gravity. The tension of the

rope at any point is F, and the angle which ob makes with the

vertical is also 0. Hence the vertical component directed up-

ward on each side of the pulley is F cos d. The resultant is their

sum, which is

2F cos e

Hence, since the equilibrant is equal to the resultant,

7? = 2F cos e

R
or F=

2 cos (9

(97)
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The same result may be obtained by the addition of vectors

in the usual manner. Thus, since oa and ob may be considered

two equal vectors whose divergence is 2d, each having the value

F. the resultant and also the equilibrant R may be found by

R = V'F^+F^ + 2F^ cos 2d

= V2F' + 2F^{2 cos^ d- 1)

= V4:F' cos^ 9

= 2F cosB

R
. .F =

2 cos 6

It is shown by equation (97) that if 6 becomes zero

its cosine is unity and

-I
which is the case when the strands are parallel. But if d

becomes — (90°) , then the cosine is zero and

FiG.95. -^ =7^°°

—i.e., it is impossible to apply sufficient force at the end of a

rope to hold it in a straight horizontal position while a weight

is suspended from it.

Pulleys may be combined in a variety of ways. Several

sheaves may be combined in one block, as shown in Fig. 95.

The cable is continuous, one end being fastened to either the

fixed or the movable block and the other threaded through the

grooves of the sheaves in both blocks. The force is then applied

at the free end. The resistance R, which may be a weight or

any other resistance, is supported by the number (n) of strands

between the two blocks. Since F is the tension of any strand

of the rope,

F=- (98)

The mechanical advantage in this arrangement is n, and the

distance through which F moves is n times as great as that

through which R moves.
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62. The Wheel and Axle.—The wheel and axle is a form of

lever of the first, second, or third class. If W, Fig. 96, is the

wheel and A is the axle, then a force F applied at the periphery

of the wheel will balance R applied at the periphery of the axle,

when
F . ob =R . oa

This is a lever of the first class.

If R is applied at c and directed upward, the arrangement
will be a lever of the second class, and the mechanical advantage
is the same as before.

a
ITT

u.
T

Fig. 96. Fio. 97.

If F is applied at c and directed downward while R is applied

at b and directed upward, the arrangement is a lever of the

third class, and the mechanical advantage is —r, while in the

first two cases it is
o6

oc

ob'

A modification of the simple form of wheel and axle consists

of two axles or drums of different radii attached to a wheel, and
all rotating on a common axis, as shown in Fig. 97. As the

wheel is turned, one end of the rope is woimd on the larger

drum and the other end is unwound from the smaller one, a

movable pulley being suspended from the middle part of the

rope. This arrangement is called the differential wheel and axle.

To calculate the value of F for any given value of R or vice

7
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versa, let r be the radius of the wheel, r" that of the larger drum,

and r" that of the smaller drum. Then

Fr--
Rr'-Rr"

or R = 2Fr
(99)

A machine constructed on this principle is used in shops where

heavy masses are to be lifted. It is known as the differential

pulley or chain hoist. As shown in Fig. 98, a continuous chain

is thrown over the larger wheel, then looped up over the smaller

one. This forms two free loops, L and P Into one of these a

movable pulley is placed, while the other may be grasped

when force is to be applied at F. The
mechanical advantage is calculated

just as for the differential wheel and

axle above, the larger wheel here serv-

ing for both wheel and larger drum
of Fig. 97. Hence

Rr'

2
Fr=~
R--

2Fr

r—r'

Fig. 98.

This equation shows that the mechan-

ical advantage may be enormously great

if r and r' are made nearly equal, for as

the quantity r—r' approaches zero, the value of R approaches

infinity. Thus a small force exerted through a great distance may
be employed to raise a great weight through a small distance.

63. The Inclined Plane.— An inclined plane is a plane so

inclined to the direction in which a body is to be moved that a

mechanical advantage is obtained. Examples of this kind of

machine are the screw, the wedge, a cam, a plank with one end

elevated, a roadway up a hill, and so on.

The principle in this machine is the same as in all others,

—

namely, the quantity of work necessary to cause a given dis-

placement against a given resistance is not changed by a change

in the method by which that work is accomplished. This is on

the assumption that no energy is lost in friction or otherwise.
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Let a mass m, Fig. 99, be moved from A to B against a force

of gravity which is directed vertically downward. When the

mass reaches B it will have been raised a distance CB against

an opposing force mg. The amount of work, then, is the same
whether the mass is moved along AB or CB, but in the former

case a smaller force is exerted through a longer distance. An
agent possessing small power may thus accomplish work which

would not be possible without the use of a machine.

Fig. 99. Fig. 100.

The mechanical advantage in the use of the inclined plane
depends on the angle of inclination and the line of direction of

the force and resistance. Let m, Fig. 100, be a mass which may
be moved without friction along the incline AB. Let F be a
force acting on m, its line of direction making angle <p with the
incUne. Let the resistance here considered be the force of

gravity. The vector ab may be taken to represent the total

weight of m, and this may be resolved into ac and cb. The
component ac is normal to the inclined plane and has no effect

on motion along the incline, but cb is parallel to the incUne and
directed toward A. The resistance along the incline is there-

fore

R sin

while the component of F in the opposite direction is

F cos (p

Hence, for equilibrium,

F cos ^=R sin 6

sin 6
or F=R-

cos <p

(100)
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The same result may be obtained by using the general

equation for work. Thus,

Fcos^ . AB = i? . CB

CB
or

Since . „ = sin d.

F=^RAB cos (p

AB

F=R sin

cos (p

If the direction of F is parallel to the plane, <p becomes

zero and its cosine is unity, hence

F=R sin

or, since sin d is the ratio of the height h to the length I of the

inclined plane,

F=Rj (101)

If the force is applied in a direction parallel to the base AC,
the angle <p becomes equal to the angle 9, hence

„ _sm5 „ „hF—R n=R tan d=R-r
cos a

(102)

where b is the length of the base.

64. The Wedge.—^A wedge is an inclined plane and its use

involves the principles just described. A common form of

wedge consists of two inclined

planes placed base to base as

shown in Fig. 101. Let a force

F be applied in a direction co

so as to separate two bodies A
and B in directions at right angles

to the direction of the force. Let

d be the inclination of each plane

of the wedge and the resistance R
perpendicular to the faces. Then,

according to the principle of work,

F . co=R cos 6 .lib
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But, since ab = 2co tan 6

F= 2i?cos^tan(?

or F= 2R sin d (103)

65. The Screw.—The screw is an inclined plane by which a

great mechanical advantage may be readily obtained.

If the right-angled triangle ABC, Fig. 102, made of thin

flexible material, be wrapped on

the cylinder L so that BC is

parallel to the axis of L, the

edge AB will mark the position

of the threads of a screw. The
distance between two consecu-

tive threads, measured parallel

to the axis of the cylinder, is the

pitch of the screw. If the line Ab will go once around the cylin-

der, ab is the pitch. Let r' be the radius of the cylinder, then

Fig. 102.

ab= 27:r' tan <9 (104)

If a screw is turned by a force F, Fig. 103, applied at a dis-

tance r from the axis of the screw, then, applying the principle

of work, and knowing that for each turn of the screw an advance

equal to the pitch is made against the resistance R,

F .2nr =R . pitch (105)

By comparison with equation

(104),

F . 2xr=R . 2Ttr> tan (9

or F= i?-tan e (106)

By use of either (105) or (106)

the mechanical advantage may be

found.

66. Friction.—^When there is

a relative motion between two

bodies that are in contact, the resistance to this motion resulting

from the contact is called friction.

Fig. 103
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Friction is observed on every hand. In all movements of

liquids and gases friction enters into the calculation. This

will be more definitely considered in a later discussion.

The most important cases of friction are those of solids on

solids. Friction is encountered in the operation of all machines.

As a result of friction much energy is lost, as has already been

explained. In the operation of most machines friction is, as

far as possible, avoided by lubrication, by ball bearings, by
pivotal bearings, and in many other ways.

Friction is not, properly speaking, a force, for it does not

exist until there is relative motion of bodies in contact, and

when the direction of the motion changes, the direction of the

resistance also changes. Since, however, the effect is the same as

if an active force were exerted, the term force of friction is often

employed. Friction between solids may be classified as sliding

and rolling, the former being subdivided into static and kinetic.

67. Sliding Friction.—To illustrate a simple case of sliding

friction, let a block, of mass w, rest on a horizontal plane AB,
Fig. 104. The pressure P of the block, normal to the plane, is

mg. Instead of the force of gravity it may be any other pressure

normal to the plane. Let a force F act parallel to the plane.

Y^9

Fig. 104. Pig. 105.

then, as found by experiment, the relation between F and P
for any given surfaces is such that when F is just sufficient to

start the motion of the block, the ratio of F to P is a constant.

This is a case of static friction, for it is the friction while standing

and just on the point of starting. This constant ratio is called

the coefficient of friction, and for static friction may be desig-

nated by II. Then
F

^=P (107)
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—i.e., friction is independent of the area of the surfaces in con-

tact, and varies only with the pressure normal to the surface in

any given case under consideration. When the value of fi is

once determined, the value of F for any given value of P can

readily be found.

One method of finding fi for any given material is to elevate

one end of a plane, AB, Fig. 105, until the block m just begins

to sUde. The inclination of the plane is called the angle of

repose. Let d be this angle. The pressure normal to AB is

mg cos d

and the force which causes the block to slide is

mg sin d

Hence
wgsm^

^^^^^
mg cos ^ '

Thus the coefficient of static friction is equal to the tangent of

the angle of repose.

68. Kinetic Friction.—The friction between two soUds when
actually in motion relative to each other is called kinetic friction.

This is usually less than static friction. The coefficient of kinetic

friction can be found in a manner just described for static

friction. The inclination of the plane. Fig. 105, is varied so that

the block, once started, continues to slide with a uniform motion.

Since the movement is not accelerated, the friction must just

equal the component of the force of gravity which causes the

sliding. Hence, if k is the kinetic friction,

«=^M^= tan^ (109)mg cos a ^ '

For illustration, suppose a mass of 1000 g. slides uniformly

down a plane when d is 32° Then

K= tan 32° = .6249

If now the same plane be placed horizontally, the force required

to drag the mass along may be found from (109). Thus

F

or F= kP = .6249X1000 = 624.9 g.
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—i.e., a force of 624.9 g. will be required to drag the mass* along

with a uniform motion. If a force of 724.9 g. be applied, then

100 g. of the force will be expended in giving the mass an acceler-

ated motion, and since

F=ma
100X980 = 1000a

or a= 98<='"/sec2.

69. Rolling Friction. — When a wheel, cylinder, or any

circular body rolls on a horizontal plane, there is a resistance

which causes the body to come to rest. The cause of the resist-

ance is a depression in the plane at the point where the wheel is

in contact with it, and also a slight flattening of the wheel at

this point. The resistance is not friction, then, in the sense

just explained.

Let a wheel of mass m be rolled along a plane P, Fig. 106.

Just in front is a slight bulge which is virtually an inclined plane

up which the wheel must ascend. The resistance is mg sin 0,

which is equal to a force that would cause the wheel to be in

equilibrium on the incline. The smaller d becomes, the more

nearly this resistance vanishes.

Fig. 106.

Resistance due to "rolling friction" is small compared to

that of sliding friction, if the plane and wheel do not readily

yield to pressure. An extreme example of resistance of rolling

friction is the movement of a carriage wheel through a bed of

sand or gravel.

70. Uses of Friction.— Friction is commonly considered as

something to be avoided or reduced to a minimum. It, however,

like all other conditions in nature, is an advantage in many
ways. It makes possible the use of belts in transmitting energy

from pulleys. Brakes applied to wheels would be useless with-

out friction. Walking on a pavement or driving on a street or

highway would be hazardous if there were no friction. Numer-

ous examples of this kind may be given.
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A special use of friction for determining the power of a

machine is here described. The power of a steam engine, for

example, may be found experimentally by use of a friction

dynamometer. Let A, Fig. 107, be a broad-faced wheel at-

tached to the shaft of an engine. A strap

thrown over the wheel is fastened at one

end to the spring scales s, and weights are

hung on the other end. Sufficient weight

is used to cause the engine to work at its

full capacity against the friction of the

strap on the wheel. When the wheel turns

in the direction indicated by arrows, the

friction tends to lift the weight w and

relieve the strain of the spring in s.

Hence the reading of j subtracted from

the known weight w is the force of friction

R. Hence
R—w—s

Let the number of rotations per minute

be n, then the distance through which the force of friction is

exerted is

27crn

where r is the radius of the wheel. The work done is therefore

2KrnR

or 27irniw—s)

Since one horse power (h. p.) is 33,000 foot-pounds per

minute, then if r, w, and 5 are measured in feet and pounds,

and n is the number of revolutions per minute,

27:rn(w—s)
^P" 33000

(110)

71. Efficiency.—Efficiency of a machine is the ratio of the

quantity of energy which a machine transmits to that which it

receives. Since some friction is always present, the efficiency

can never be unity. If, for example, 500 foot-pounds of work

are done on a machine and it in turn can do but 300 foot-pounds,

its efficiency is 60 per cent. Any reduction of friction increases

the efficiency of a machine.
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Problems.

1. A weight of 50 kg. is suspended from the block of a single movable
pulley. The strands of the cable are at an angle of 70° to each other.

What force applied at one end of the cable will support the weight?

2. What is the mechanical advantage in a chain hoist where the radii

of the wheels are 10 and 11 inches and the weight is suspended from a

single movable pulley ?

3. The elevation of an inclined plane is 37° and the direction of a.

force applied to hold a body on the incline makes an angle of 40° with

the plane. What is the mechanical

advantage ?

4. A chain is hung over an inclined

plane in the manner shown in Fig. 108.

Show that the force of gravity tending

to cause the portion ha to slide down
the incline is equal to that on he, and
that there will be no movement of the

chain even when friction is completely

eliminated.

5. How much energy has been lost

in friction if a mass of 100 g. sliding

down a plane 80 cm. high acquires a

velocity of 300 cn»/sec?

6. The slope of an inclined plane is 16°. What force will be required

to drag a mass of 20 kg. up the incline when the coefficient of kinetic

friction is .385?

7. If the radius of the body of a cylindrical screw is 1.5 inches, and

the slope of the thread is 24°, what force applied to the best advantage

3 feet from the head of the screw will cause a pressure of 2 tons?

30.52.
1

.786:1.

1.

2.

3.

4; .

5. 3,340,800 ergs.

6. 12.9128 kg.

7. 74.2 lbs.



CHAPTER III

SOLIDS

72. Constitution of Matter.—The scientific conception of a

body of matter is that it is composed of a great number of very

small particles called molecules. These particles are never in

permanent contact; consequently all substances are porous in

the sense that there are spaces between the molecules. The
particles are in a continual state of agitation or rapid motion,

colliding with and rebounding from their neighbors or other

bodies with which they come in contact. Many of the properties

and phenomena of matter are the result of molecular arrange-

ment and relations. Crystallization, tenacity, temper, rigidity,

heat, expansion, elasticity, and many other subjects might be

classed under the general head of molecular physics.

The molecule is considered to be the smallest particle into

which a substance can be divided without destroying the identity

of that substance. Thus, a molecule of limestone, CaCOj, is

limestone—as much so as a ton of it. If, however, this mole-

cule is separated into its constituents by any chemical process,

it becomes calcium, carbon, and oxygen. These parts are called

atoms, and were originally supposed to be the limit of divisi-

bility of matter, as the word "atom" indicates. There is now,

however, very strong evidence that the atom is composed of

many small parts called corpuscles or electrons. These may be

the ultimate particles of which all matter is composed.

This conception of matter furnishes a convenient model with

which the mind can grasp and explain many of the observed

phenomena of nature. The fact that by its aid satisfactory

explanations can be made and new truths discovered, is suffi-

cient justification for its existence.

73. States of Matter.— Matter is found in various states,

depending on the relation and condition of its molecules. A
solid is a body which will, under ordinary conditions, retain its

shape and size by virtue of its molecular structure. The mole-

cules of a solid can not, apparently, move beyond a limited

space in which they vibrate. To furnish a mental picture, the

107
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molecules of a solid may be considered as so related that they

form a rigid framework. Within certain limits which are different

for difEerent substances, the framework is of itself able to with-

stand the stress to which it is subjected. It may yield, but

will return to the original position when the stress is removed.

This property is called elasticity and is discussed in succeeding

paragraphs.

A liquid is a substance in such a state that its molecules

appear to move among their neighbors without any permanent

restraint. A liquid when not confined by a solid will change its

shape under the influence of a force however small. Liquids

when exposed to air or other gases, or in a vacuum, have a

definite free surface and are capable of being formed into drops.

In these two respects liquids are clearly distinguished from gases.

A gas is a substance in such a state that the molecules appear

to repel each other and to move with freedom from point to point

throughout the body of the substance. As a consequence, the

shape of a gas is that of the total interior of a containing vessel.

Many substances may easily be made to assume any one of

the three states— solid, liquid, or gas— by application of the

proper quantity of heat.

Some bodies in their natural state partake of the nature of

both solids and liquids. Such substances as ice and asphaltum,

for example, have the rigidity of solids when subjected to a

momentary stress, but if the stress is continued for a time they

exhibit properties of liquids and will slowly flow. If asphaltum

is placed in a funnel, it will, under the force of gravity, slowly

yield and adapt itself to the shape of the funnel, flowing on

through like a liquid. Such substances are said to be viscous.

Ether is a substance which is assumed to fill all space, includ-

ing even the interspaces of the molecules of a body. Ether is

not matter in the ordinary sense of the term,

—

i.e., our senses

furnish no evidence of the objective existence of ether; but

there is strong evidence that ether exists and that it possesses

some of the most important properties of matter. For example,

light is known to be, not a substance, but a periodic disturbance

of some kind in the ether. If light, then, is transmitted as a

wave motion on ether, the ether must possess elasticity, for

otherwise there would be no restoring force after the deforma-
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tion produced by the passage of a wave. Also, it is known
that Hght has a finite speed of about 3(10)"' cm. per second;

hence the medium on which it travels must possess inertia, for

otherwise time would not be required. There are no direct

raethods by which ether may be studied, and it is not known
whether it is continuous or not.

The substance which remains in a tube from which the air

has been almost completely exhausted exhibits properties not

observed in other states of matter. Sir William Crookes, who
made an extensive study of this subject, referred to the condi-

tion, when a current of electricity was passed through it, as a

"fourth state of matter." This so-called fourth state appears

to be one in which the constituent parts of atoms have been

separated from their ordinary group arrangement and made to

flow in a stream through the medium within the tube.

74. Elasticity of Solids.— Most solids are to some extent

elastic, though some, such as lead and gold, are so slightly elastic

that they are called plastic,—i.e., even a slight stress causes a

permanent deformation. Others, such as ivory and steel, are

very elastic,

—

d-.e., when the force which causes their deforma-

tion is removed, they will regain their original shape and
volume. A substance like rubber is fairly elastic, but is remark-

able for its limit of elasticity,—i.e., it may be greatly deformed

and yet will recover its shape when the deforming force is

removed.

Three kinds of elasticity may here be considered. 1. Elas-

ticity of volume, where all parts of a body are subjected to an

equal and normal stress. A body subjected to hydrostatic

pressure is an example of this kind of stress. 2. Shearing elas-

ticity, where stress causes a change in shape without change in

volume, as, for example, the torsion of a rod. 3. Longitudinal

elasticity, where the stress is in only one direction while at right

angles to this the body is free to expand or contract, as, for

example, a wire subjected to a longitudinal stress.

The coefficient of elasticity is the ratio of a stress to the

resulting strain. Thus, if a stress is denoted by F and the strain

by 5, the coefficient k may be expressed by

.=5 (111)





SOLIDS. Ill

with a screw and pltuiger for increasing the pressure. The liquid

under exaniination is in the bulb B, which is provided with a

fine capillary stem open at the top. The capacity of B and the

capillary tube are known, and any change of volume of the

liquid due to pressure may be indicated

by the movement of a short thread of

mercury in the stem. The pressure is

calculated from the rise of liquid in the

manometer M, which is a glass tube

closed at the top but open at the bottom

and filled with air. When the volume

of air is reduced one-half, for example,

the pressure is twice as great. The ap-

parent change of volume of the liquid

must be corrected for the decrease in

the capacity of the bulb due to com-

pression of the bulb, for although the

hydrostatic pressure is equal on the

inside and outside, yet each small cube

of which the walls may be supposed to

consist is pressed into smaller volume

and hence the total volume is decreased

just as if the bulb were solid glass, ^i
Hence the correction is added.

The piezometer may also be used

to find the bulk modulus of solids.

76. Shearing Elasticity.—If several metal disks were piled

one on top of another, a force applied in a horizontal direction

to any one of them would cause a sliding of one relative to the

others. If the disks were welded together and a similar force

then applied, the effect would be to cause one portion of the

solid to slide on an adjacent portion, but because of the rigidity

of many solids the extent of the sliding is very limited. The

change in the relative position of the molecules is called a shear.

The stress is called a shearing stress, and the effect of the stress

is a shearing strain. There is no change in the volume of the

body as a result of the strained condition, for the molecules in

each imaginary layer of the solid have not changed their distances

from one another and the layers have come no closer together. If

Fig. 109.
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the strain does not exceed a certain limit, the molecules will return

to their original positions when the force is removed. This ability

to recover from a shearing strain is called shearing elasticity.

77. Coefficient of Shearing Elasticity.— The coefficient of

shearing elasticity, also called the coefficient of rigidity, is the

ratio of the force per unit area to the strain produced by that

force,

—

i.e., it is the ratio of the stress to the strain.

To find an expression for this coefficient in terms of measur-

able quantities, let a thin cylindrical shell C, Fig. 110, be fast-

ened at one end to a support A
and let a force be applied at the

other end to twist it through

an angle 0. Each layer of the

cylinder will thus be made to

slide on an adjacent layer, the

amount of sliding or shear

layers being the same. The
as a measure of the strain.

^G*'

(^ f
Fig. 110.

between any two successive

angle <p in radians is taken

Let / be the total force applied directly to the surface of

the cylinder at a distance r from the centre, and n the rigidity

coefficient. Then, according to the definition,

/

M=area (114)

Let t be the thickness of the shell and r its radius, then the

area of one end of the shell is 2;rrt. The area here is that of a

cross section of the material of the shell. Hence

/

2nrt<p
(115)

The linear distance oa is 6r or (pi, the length / being great com-

pared with oa. Hence
^l= dr

Or
or ^= -p

Substituting this value of ^ in (115),

fl
w=

2TirHd
(116)
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This total force / is applied to the shell at a distance r from the

centre and so its moment is /r. Let a force F be applied at a

distance h from the centre, by means of a crank rigidly fastened

to the end of the cylinder as shown in the figure. Then its

moment is Fh. These tWo moments are equal, for they produce

the same strain of the cylinder, hence

Fh=jr

, Fk
or 7 =—

r

Substituting this value of / in (116),

Fhl

2TtrHd
(117)

Thus n is expressed in terms that are capable of experimental

determination.

It is more common, however, to find n by use of a solid rod.

Such a rod may be considered as composed of many cylindrical

shells whose radii differ by only the

very small quantity t,—the thickness

of each shell,—as shown in Fig. 111.

The inoment Fh is different for each

shell and the total moment required

to produce a strain <p in the solid

rod is the sum of all the moments
required to produce the same strain

in the various shells. From (117),

Fh-
2nndrH

I Fig. 111.

The only two variable quantities here are Fh and r. Hence, for

a solid rod,

Fh,+Fh^+Fh, + . . . =^!^{r,^+r^' + r,\ . . .)

or Fh=
2n-w(?r' nndr*

whence n = -
2Fhl

nr'd

21
(118)

(119)
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The proce.ss of deriving this final result is given in appendix 5.

78. Longitudinal Elasticity. Young's Modulus. — When a

rod or wire is stretched, as by a weight suspended from one end

of it, any minute portion of the material is changed in both

shape and volume. The wire is increased in length, decreased in

diameter, and increased in volume. Consequently there is both

a shearing and a volume elasticity.

The elasticity of wires, rods, and pillars, when subjected to

a longitudinal stress, is of such importance in practical work

that another coefficient called Young's modulus has been defined

to suit these conditions.

Young's modulus is the ratio of the stress (force) per unit

area of cross section, to the strain (elongation) per unit length.

Let F be the force, L the length, A the area of cross section,

and I the change in length. Then, if Y represents Young's

modulus,

F

L

When the value of Y is once determined for any given kind

of material, it can thereafter be used to find the elongation /

whenever any given rod of that material is subjected to a

known stress. This is evidently a valuable coefficient in most

structural iron work.

The elongation here considered is only within the elastic

limit. The stress must not produce permanent deformation.

Young's modulus applies not only to stretching but also to

compression, as when a pillar is made to support a structure.

One method of finding the value of Y for any given material

is to select a wire of that material and measure its diameter.

From this the area of its cross section A can be calculated.

A convenient value of L for experimental purposes is about 1 m.

or more. The elongation / may be found by some such apparatus

as that shown in Fig. 112. Two wires are fixed to a beam and
from their lower ends are hung two metal rings. The rings

support a delicate spirit level which is pivoted at one end to

one of the rings but rests on the point of a micrometer screw
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at the other end. Any convenient weights are placed in the

pans c and d to straighten the wires preliminary to the experi-

ment proper. The wire h is the one upon which the experiment

is to be made. The level is now
adjusted and known weights are

placed in pan d. The level is

again adjusted by turning the

micrometer screw, and the ele-

vation required to restore the

spirit level to its former position

is the elongation for that stress

(weight).

The advantage of having two

wires fastened to the same beam
is that if the beam itself yields

to the weight, both rings will be

lowered an equal distance and so

there will be no relative motion

on this account. The wire h, of

course, must not be stretched

beyond its elastic limit. When
the weights are removed from d

the wire should recover its orig-

inal length.

Young's modulus may also be

found by observing the distance

through which a bar will bend

when under stress. Let a bar of

length I, breadth h, and depth d

be supported at the ends and a weight w hung from the middle

point, then if B is the bending, experiment shows that

Fig. 112.

or B = C

where c is a constant whose value may be shown to be j^, Y
being Young's modulus.
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Hence „ wP
t>

4y6d3

If the bar is clamped at one end and loaded at the other,

79. Value of k in Terms of Y and n.—It is difficult to deter-

mine by experiment the coefficient of volume elasticity, k, of

solids; but if Y-, which is easily found, and the coefficient of

rigidity, w, are known, the value of k may be found from

«^ ^=9^^ (124)

80. The Torsion Pendulum.—A torsion pendulum is not a
pendulum at all in the sense the term has already been used,

for its operation is not dependent on gravity but on the elasticity

of a twisted wire. If a heavy cylinder, for example, is suspended

from a wire and is turned on its axis through a few degrees and

then released, it will execute torsional vibrations whose period

depends on the dimensions and rigidity of the wire and the

moment of inertia of the cylinder. The vibrations are simple

harmonic, for the force of restitution is proportional to the

displacement, in accordance with Hooke's law for elastic bodies.

Consequently the acceleration at any point of the vibration is,

from equation (40),

A=^ (125)

where A is the acceleration, P is the period, and d is the dis-

placement.

By equation (45)

A^^ (126)

where h. is put in place of r to avoid confusion in later formulae.
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Combining (125) and (126),

Fh 4nU
e
- p2 (127)

'= 2j:-Jjk_whence P= 2n^l Fh (128)

Fh
The expression —r— is called the moment of torsion, and is a

constant for a wire of any given length and radius. The con-

stancy results from the fact that in an elastic body the strain

(0) is proportional to the stress {Fh).

81. Use of a Torsion Pendulum in finding I.—If a cylinder of

known moment of inertia is suspended from a wire, Fig. 113, and

Fh
the period of torsional vibration counted, the value of —r- may

be determiaed once for all for that particular wire by use of

equation (127). If any other body is then suspended from this

same wire in place of the cylinder, its moment of inertia

can be found by observing P and substituting in (127).

Other methods of finding I by use of the torsional

pendulum may be found in manuals for laboratory work.

82. Use of Torsional Pendulum for finding n.—From
equation (119),

2Fhl

or

From (127),

hence

or

n =
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83. The Torsion Balance.—A torsion balance is a mechanism
by which it is possible to measure a moment of force tending to

twist a wire. A light rod, ab, Fig. 114, is suspended from a

fine wire and the whole enclosed in a

glass case. Any horizontal rotation

of ab is resisted by the rigidity of the

wire, and the angle through which

the wire is twisted is proportional to

the force which causes the twist, as

required by Hooke's law for elastic

bodies. Hence two forces may be

compared by measuring the angle

through which they will separately

cause a6 to rotate. By means of a

small mirror attached to ab at o,

minute deflections may be read by
use of a telescope and scale, or the

upper end of the wire may be provided with a torsion head by
which it is possible to read the angle through which the wire

must be twisted at the upper end to balance the moment or

torque at the lower end.

It has been shown in equation (118) that the twisting moment
is

Fh^"^ (130)

Fig. 114.

This shows that a force applied at a or 6, tending to produce

rotation in a horizontal plane, varies directly as the fourth

power of the radius. If the radius is reduced one-half, for exam-

ple, the force F need be only one-sixteenth as great to produce

the same angular displacement. Thus by using very fine wire

for suspension, very small forces may be detected.

It was by use of an instrument of this kind that Cavendish

first determined the value of the gravitation constant G. Refer-

ring to equation (55), let the two small masses at a and b (Fig.

114) be denoted respectively as m and m'. Let two large masses,

M and M', be placed at c and d. The force of gravitation

between a and c at one end of ab and d and b at the other end

will produce a couple which will cause a twisting of the wire.
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Since the moment of a couple is the product of either force by
the distance between the two forces, the moment in this case is

„wM -r
Lr—;-

. ab

where r is the distance between the centres of a and c or of 6

and d.

Let the angle through which the wire is twisted be denoted

by (p. The angle through which a unit moment of force (1

dyne at a distance of 1 cm. from the axis) will twist the wire is

determined by a preliminary experiment. This may be done

by causing ah, with masses m and m' attached, to vibrate as a

torsion pendulum, the large masses M and M' meanwhile being

removed. The moment of inertia of the system is known or

can readily be found, and the period can be counted. Conse-

quently the value of Q produced by unit moment can be deduced

by use of equation (127), for all the terms of the second member
of this equation are known, and, assuming that Fh is unity, the

value of d is found.

If unit moment of force will cause a deflection of d radians,

then a moment which will cause a deflection <p is -^, for the

force varies directly as the angle through which the wire is

twisted. Hence

or G=_Lf_ (132)
mMdab

The value given for G (§ 37) was found by Boys, who used,

instead of a fine metal wire, an exceedingly fine fibre of quartz.

When quartz is heated to a white heat in an oxyhydrogen

flame, it may be spun out into an exceedingly fine thread.

Quartz also possesses the excellent property that it is not so

subject to fatigue as metals are,

—

i.e., it will promptly and

completely recover from a strain.

84. Impact of Elastic Bodies.— When two elastic bodies

collide, they will suffer a deformation as a result of the impact.

Since they are elastic, they will regain their original shape and
in doing so will react on each other.
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Let this action and reaction be in a straight line joining the

centres of the bodies, and let v^ and V2 be the respective veloci-

ties before impact, and u^ and u^ after impact. During the time

of impact the force exerted by either mass is met by an equal

and opposite force from the other mass, no matter what the

velocity or mass of the bodies may be. Each body will there-

fore receive the same impulse, since equal forces are exerted

during equal times. Consequently the change of momentum in

each body will be the same in magnitude, but the direction will

be opposite. Hence

m, (v^—u^) = - Wj (t/j— Mj) (133)

The negative sign may be placed before either one of the members
of this equation, as it simply indicates that the quantities are

oppositely directed. By rearrangement of terms of (133),

Wi^i -|- jMji'z= »WiWi 4- WjMj (134)

which shows that the sum of the momenta before impact is the

same as that after impact, the addition being made algebraically.

In case the bodies are perfectly elastic, the sum of their

kinetic energies will not be changed by the impact; hence

^miVi^+m.jv^') =\{miU^+m2U^) (135)

or m^{v^—u^)=m2{u^—v^) (136)

Dividing (136) by (133) and substituting the value of u^ or u^

thus found in (134), the velocity after impact, in case of per-

fectly elastic bodies, is found to be

m^ + m^

and
2m,v,+v,{m,-m,)

'
nty+ m^

There are no solids, however, that are perfectly elastic.

Newton showed that the relative velocities of two spheres before

and after impact bear to each other a constant ratio. The
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relative velocity before impact is Vj—V2; and after, w.

The constant ratio is

u,—u.

This quantity is a constant fraction called the coefficient of

restitution. It is independent of the mass and also of the

velocity, as long as the force of the impact does not produce

permanent deformation.

The coefficient of restitution is usually denoted by e, and

since the relative velocity before impact is opposite to that

after, we may write

_2V-M^_^
(139)

M,— M,
- = e (140)

Comparing (140) with (134) and solving for velocity after

impact.

and

mj + m^

w,7;j + Wjiij + »Wig(iii— u^)

w?, 4-^2

(141)

(142)

When the bodies are perfectly elastic, e=\, and these values of

«! and Mj become the same as in (137) and (138).

In case of impact between a sphere and a fixed

surface, as when a steel ball is dropped on an

anvil, m^ may be considered infinite and V2 zero.

Substituting these values in (141) and considering

that Wi + 00 = 00 , and also that a finite quantity

divided by 00 is zero, the equation becomes

Wi = —e^i (143)

This equation states that the velocity after im-

pact is a certain fractional part of that before,

and that the direction is opposite.

By the use of (143) the coefficient of restitution may be de-

termined experimentally by noting the distance s^. Fig. 115,

through which a sphere of a given material is allowed to fall

«S/

Fig. 115.
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upon a fixed plane, and the distance s^ through which it re-

bounds. Since v = y2gs, the velocity varies as the square root

of the space, hence

(144)
Vs,

85. Impact of Inelastic Bodies.— In case the bodies are

inelastic, they will adhere to each other and will not rebound

after impact. The bodies will then have the same velocity,

which we will here denote by v„ retaining Wj and v^ with the

same meaning as in the paragraph above.

Since momenta are the same before and after impact whether

the bodies are elastic or non-elastic,

or

(145)

(146)

If m^ is at rest at the time of the impact, m^V2= 0, and (146)

becomes

or

m^ + m^
(147)

(148)

Equation (148) suggests a use for the ballistic pendulum.

In Fig. 116, B is a block of wood suspended so that it may
freely swing. This constitutes the pendulum. Suppose it is at

rest and its mass is Wj. If a bullet

is shot into the block, the bullet

and block will move with velocity

v^. Hence, if the mass (mj of the

bullet is known, its velocity may
be calculated from (148) when v,

has been determined by experi-

ment. If the apparatus is so con-

structed that the block will, when
it swings, push a light rider i along

the arc, the vertical height 5 through which it has been raised

may be measured, and the velocity with which it started can be

calculated by

Fig. 116.

V2gs
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Hence (148) may for this purpose be written

^
^^^h+nt,^—

(149)

If in equation (145) the two masses are equal and m^ is at

rest at the time of the impact,

(150)

This is as would be expected, for, since the total momentum is

not changed by impact, then, if the mass is doubled, the velocity

will be one-half as great.

Whether the bodies are elastic or inelastic, the total kinetic

energy due to the motion of the masses is less after impact,

for part of the energy is converted into molecular motion (heat)

.

Problems.

1. If the coefficient of rigidity of steel is 8.2(10)" and Young's niodu-

lus is 22(10)", what is the volume elasticity?

2. A right cylinder weighing 10 kg., radius 3 cm., is suspended from

a wire. Its period of torsional vibration about its own axis is 5 sec. Find

the moment of torsion of the wire.

3. A lead cylinder weighing 8 kg., 16 cm. in length and 7.5 cm. in

diam., is suspended by a steel wire 126 cm. long and .72 mm. in diam.

It is found that 10 periods of torsional vibration are executed in 1 min.

51.2 sec. Find the rigidity of the wire. (Lengths must be in centimetres,

masses in grams, and time in seconds.)

4. A brass rod is 101 cm. long and its diameter is 6.39 mm. It is

fastened at the ends, one end being attached to the axis of a wheel 14.8

cm. in diam. A. weight of 1000 g. hung from the periphery of the wheel

twists the end of the rod through 7°. Find the rigidity of the brass rod.

(Angular displacement must be in radians.)

5. Find Young's modulus of a brass wire .1 cm. in diam. and ^60 cm.

long when a load of .2 kg. will stretch it .0149 cm.

6. Two spherical bodies are equal in mass and are assumed to be

perfectly elastic. One is at rest and the other moves toward it in a line

connecting the centres of the two spheres. Show by use of equations

(137) and (138) that after impact the spheres will have exchanged veloc-

ities.

7. A marble, dropped from a. height of 64 cm. upon a solid mass,

rebounds to a height of 49 cm. What is the coefficient of restitution?

8. Two masses of lead move directly toward each other. One has a

velocity of 500 cm/sec and a mass of 20 g., the other a velocity of 200

<=™/sec and a mass of 15 g. What will be their velocity after impact?
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9. If the suspended mass of a ballistic pendulum weighs 3.7 kg. and
is raised 2 cm. by the impact of a bullet which weighs 120 g., what is;

the velocity of the bullet ?

1. 23.1(10)".

2. 71061 dyiie-cm/radian.

3. 8.58(10)".

4. 3.66(10)".

5. 10(10)"-

6. .

7. .875.

8. 200 cm/sec.

9. 1993.08 cm/sec.



CHAPTER IV

GASES

86. Fluids.— The term fluids includes both Uquids and
gases. A distinguishing property of fluids is that they cannot

sustain a shearing stress. They yield to the least force which

tends to produce a change of shape. Both liquids and gases,

however, resist any force tending to compress them into

smaller volume.

As a result of the fact that a fluid cannot sustain a tangential

or shearing stress, it follows that the forces exerted at any

point in a fluid at rest are equal in all directions, for otherwise

there would be motion. It

also follows that the pressure

of a fluid must be normal

(perpendicular) to the walls

of a containing vessel, for

otherwise there would be an

unbalanced component of

force, as ab or dc, Fig. 117,

which would cause motion of

the liquid. For a similar

reason, the free surface of a still liquid is horizontal,

—

i.e., the

surface is perpendicular to the direction of the force of gravity.

Pascal's law and the principle of Archimedes are results of this

general property of fluids.

87. Character of a Gas.—The molecules of a gas appear to

repel each other, and a gas will occupy the total interior of a

containing vessel. If the vessel be enlarged, the same quantity

of gas will continue to fill the vessel. When air, for example, is

pumped from a receiver, the pump does not "draw" the air out,

but only increases the space into which the air may expand at

each upward stroke of the piston.

The theory that a repellant force exists between the mole-

cules of a gas was entertained by many scientists even as late

as the middle of the nineteenth century A.D. This is now
125

Fig. 117.
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replaced by the kinetic theory, by which the various phenomena
of gases can be more satisfactorily explained.

88. The Kinetic Theory of Gases.—In accordance with the

kinetic theory, the molecules of which a body of gas is composed

are in rapid motion. There is no force of repulsion between

them, but when they collide with one another or strike the walls

of a containing vessel, they rebound according to the laws of

impact of perfectly elastic bodies. The molecules, except during

impact, move on in a straight line. Thus a gas expands as a

result of the free motion of its molecules.

The pressure which a gas exerts upon the walls of a vessel

is not due to the application of a steady force, as was once

supposed, but to the impacts of countless numbers of molecules.

When air, for example, is compressed, its pressure is increased

because there are more molecules per unit volume to strike the

walls of the containing vessel. The impulse which moves the

piston of a steam engine is the sum of all the impulses received

from the rapidly moving molecules of steam.

89. Pressure of a Gas.—^To calculate the magnitude of the

pressure of a gas on the sides of a vessel according to the kinetic

theory, let a unit cube. Fig. 118, 1 c.c. in capacity, be filled

with a gas. The molecules are regarded as having a varying

velocity resulting from impacts with one another and against the

sides of the vessel, but the mean velocity of a great number of

them may be considered to be constant as long as the tempera-

ture and pressure are constant. In 1 c.c. of

any gas at 15° C. and at standard pressure,

there are about 3.6(10) '^ molecules. Since the

total energy of this great number of molecules

is assumed to be constant, the average veloc-

ity will also be constant. This may be illus-

trated by the method of finding the average

time of a human life. The average duration

of life of a few himdred men, chosen at random, would not be

reliable data for all. But if the lives of several million men are

considered, the average for all may be determined with a fair

degree of accuracy, such that, if each lived only during the

average period, the death rate in the world would not be changed.

In a similar manner we may determine the average velocity of the
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molecules of a body of gas such that if possessed by each mole-

cule the efEect would be the same as that which is observed.

Let V represent this velocity, and suppose a single molecule of

mass m and velocity v rebounds from side to side in a line per-

pendicular to the side A. The molecule is assumed to be per-

fectly elastic, and therefore it will rebound from the walls with

the same velocity it had before impact. During the interval

between impacts on the side A the molecule must move twice

across the cube, hence the number of impacts per second on

V
this side is — . During each impact not only is the motion of the

molecule completely stopped, but also an equal motion in the

opposite direction is imparted. Consequently the total change

of momentum resulting from each impact is 2wjy, and the

change per second is

Let the whole number of molecules be n. One-third of them
may be considered as moving in a direction perpendicular to A,

another third perpendicular to B, and the remainder perpen-

dicular to C. The motions are, in fact, in every direction, but

may all be resolved into these three. Collisions may occur,

but the efEect on the sides of the vessel will be the same as if

the molecules had passed on without affecting each other, for

they are assumed to be perfectly elastic. Considering, then,

ft D
that -^ molecules strike -^ times per second against the side A,

and the total change of momentum at each impact of a mole-

cule is 2 fnv, the total change of momentum

—

i.e., the total

impulse on the side A—is

This is the expression for the time rate of change of momentum.
The relation between impulse and momentum has been

expressed by equation (42) as

Ft = mv

whence F=—

—
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which shows that force is measured by the time rate of change

of momentum. Hence the force or pressure p exerted by the

molecules on the side A is

p = \nmv^ (151)

But the product of the number {n) of molecules by the mass {m)

of each is the total mass M of the gas. Hence (151) may be
written

p^lMv" (152)

Since M is the mass per unit volume, it is the density {p) of the

gas, and (152) may be written

^ =>' (153)

^=V? (154)
P

By use of (154) it is possible to calculate the average velocity

of the molecules of a gas when the pressure and density are

known. Thus, for example, 1 c.c. of hydrogen, at 0° C. and
under standard atmospheric pressure of 1.013(10)° dynes per

square centimetre, has a mass of 8.96(10) ~^
g. Hence

_ 3X1.013(10)°
^'=

8.96(10) -5

or w = 184,100'='"/seo

90. Avogadro's Law. — According to this important law,

announced early in the nineteenth century by an Italian named
Avogadro, equal volumes of gases under the same conditions of

temperature and pressure contain the same number of molecules.

The experimental facts of chemistry lead up to an establish-

ment of this law, for the ratio of the densities of two gases tinder

the same conditions of temperature and pressure is the same as

the ratio of their combining equivalents or molecular weights.

It follows that the number of molecules in two equal volumes

is the same, and their difference in density results from a differ-

ence in the weights of the individual molecules.

Proof of Avogadro's law, based on the kinetic theory of

gases, may be given as follows:

Consider a cubic centimetre of each of two gases under the

same conditions of temperature and pressure. Let them be
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designated as 1 and 2. Since their pressures are equal, then,

from (151),

|MiWi1;,2= |m2W2u/ (155)

Since the gases are at the same temperature, the average kinetic

energies of the individual molecules are equal; hence

\m'^^ = \m^.^^ (156)

A comparison of (155) and (156) shows that

This fact, in turn, serves as a basis for the determination of

molecular weights in chemistry. Molecular weight, so called,

is not an absolute weight, but a ratio. Thus, if the molecular

weight of hydrogen is assumed to be 2, that of oxygen is 32.

If, then, the density of any gas is determined, its molecular

weight may be found by comparison with the density of another

gas of known molecular weight, assuming that the nuraber of

molecules in the two gases is the same.

91. Dalton's Law.—Many phenomena of gases indicate that

the distance between their molecules is much greater than the

diameter of the molecules themselves,

—

i.e., the space actually

occupied by the molecules is small as compared to the volume

of the gas. On this assumption it would be expected that dif-

ferent gases would readily mingle with each other, apparently

occupying the same space at the same time. If some ether or

other liquid that will readily evaporate be introduced into a

closed vessel already filled with air, just as much of the liquid

will evaporate as when no air is present. If a quantity of other

liquid, alcohol say, be now introduced, it will evaporate in the

presence of both air and ether just as it would do in a vacuum,

except that the rate of evaporation is slower when other gases

or vapors are present. A gas or vapor acts as a vacuum to

another gas. Such facts show that there is between the mole-

cules of a gas ample room for molecules of another gas.

It has been shown above that the pressure of a gas is due to

the activity of the molecules. It is a natural inference, then,

that if two or more gases are enclosed in the same vessel, the

molecules of each would continue their motion, and their im-

pacts against the sides of the vessel, either direct or indirect,

9
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would not be changed. In case of collision with one another

there would be the exchange of velocity which results from the

impact of perfectly elastic bodies, so that the result will be the

same as if the impact had been made directly upon the sides of

the vessel. Consequently the pressure

would be the sum of the pressures which

each would exert if it occupied the space

alone.

Dalton was the first to investigate

this subject, and the result of his experi-

ments may be stated as follows: The

quantity of a liquid which will evaporate

into a given space is the same, for the same

tem-perature , whether the space is a vacuum
or is already filled by a gas, and the press-

ure exerted by a mixture of two or more

gases or vapors is the sum. of the pressures

which each would exert if it occupied the

space alone.

92. Boyle's Law.— The relations of

pressure, volume, and density of a gas

were first systematically investigated by
Robert Boyle about the middle of the

seventeenth century A. D. By use of a

glass tube of the form shown in Fig. 119,

a quantity of gas enclosed in ae may be

subjected to various pressures by pouring

mercury into the long arm be. Let a

small amount of mercury be first intro-

duced and adjusted so that it stands in each arm at the level

ab. A certain volume of gas is thus entrapped in ae and its

pressure on the mercury at a must be equal to that in the other

arm at b. If, now, mercury is poured into the long arm until it

stands at c, it will also rise in the short arm to some point,

d,—i.e., the gas will be compressed to the volume de. The

original pressure on the gas was the pressure of the atmosphere,

but now there is an additional pressure of the column of mercury

fc. By varying the pressure in this manner and noting the

corresponding volume in each case, Boyle was able to announce

Fig. 119.
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that the product of the pressure and volume of a gas is a constant

quantity if the temperature is constant. This law was announced

several years later by Mariotte, and it is known on the continent

of Europe as Mariotte's law.

If P is pressure and V is volume, then

PV=k (157)
where fe is a constant.
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The same result may also be deduced from the kinetic

theory of gases. Thus, it has been shown that

or, since density is equal to mass divided by volume.

PV = iMv' (158)

The second member of this equation is a constant quantity if

v' is constant. This is the case when the temperature does not

change. Thus Boyle's law may be derived from a theoretical

consideration alone.
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The data obtained from an experiment such as that described

above may be conveniently recorded on co-ordinate paper as

shown in Fig. 120, the pressures being the ordinates and the

volumes the abscissas. This may be called the PV diagram.

At all points of the curve thus plotted, PV is the same or varies

only slightly due to errors of experiment. This constant product

is a distinguishing property of a curve called the equilateral

hyperbola. The data in the figure were obtained from an
experiment when the barometric pressure was 73.5 cm. of

mercury and the volume of air at that pressure was 15 c.c.

More elaborate experiments than those of Boyle were made
later by other investigators, principally Regnault and Amagat,
who subjected gases to much greater pressure. They showed
that hydrogen was less compressible than Boyle's law would
require, for the product PV became larger and larger as the

pressure increased., Amagat experimented with other gases

also, and found that, although at moderate pressures the gases

were more compressible than Boyle's law would require, at high

pressure they, like hydrogen, became less and less compressible

as the pressure increased,

—

i.e., a greater pressure was neces-

sary to produce the same diminution of volume.

This is what would be expected from the kinetic theory of

gases. When the gas is subjected to a moderate pressure, the

molecules occupy but little of the space in which the gas is

enclosed. Their mean free path is limited, practically, only

by the sides of the vessel. If, however, the pressure is greatly

increased, so that the space occupied by the molecules becomes

an appreciable part of the volume of the

gas, the mean free path is diminished.

Since the molecules are assumed to

J CiW have sensible dimensions, then when

Y there is an impact of a and b, for ex-

ample, against the wall of the vessel.

Fig. 121, the centre of the molecules
^"'- ^^^- would not become coincident with the

wall by nearly the radius of the molecules. Consequently as the

pressure is increased the number of impacts on the sides increases

at a greater rate than the increase in the number of molecules

per unit volume, for the molecules are assumed to remain of the
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same size and their radii bear a greater ratio to a short distance

than to a longer one. Also, when the molecules are crowded by
pressure they will come into more frequent collision with one an-

other, and their mean free path will be less for this reason also,

for the centres of c and d, for example. Fig. 121, do not become

coincident on collision, but rebound from each other so that the

space cd is not traversed by either one. This decrease in dis-

tance causes a more frequent reversal of momentum and con-

sequently a greater pressure.

The fact that at moderate pressures the product of pressure

by volume is less than Boyle's law requires, is probably due to

the attractive force between the molecules,—a force which is

not negligible in comparison with the impacts of the molecules

at that stage of compression. It may be shown that this force

would vary inversely as the square of the volume. Its effect is

to decrease the pressure due to the impacts of the molecules.

93. Equation of Van der Waals.—An equation which expresses

more accurately the relation of volume to pressure of gases is

[p-\—
^ J (u— 6) = constant (temp, const.) (159)

This is known as Van der Waal's equation. The value of h, a

constant, depends on the size of. the molecule, while the value of

a, another constant, depends on the attractive force between

the molecules. For carbon dioxide, for example. Van der

Waals gives a = .00874 and & = .0023 for a specified mass and

temperature.

It has been shown above that the virtual decrease in the

volume due to the fact that molecules have sensible dimensions

increases the pressure, hence h is subtracted from v to obtain a

value which will hold true for v in Boyle's equation. Likewise,

since the intermolecular attraction depends on the mutual

force between the attracting and attracted molecules, the force

varies as the square of the number of molecules,

—

i.e., as the

square of the density or inversely as the square of the volume.

Expressed in formula, Foo—j or F=—^ where a is a constant.

Since this force decreases the pressure, —^ niust be added to p.
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If in equation (159) v becomes very large,

—

i.e., if the gas

becomes very rare, ^ becomes negligible in comparison with

p, and b has a similar relation to v. When a gas is in this condi-

tion Boyle's law may be assumed to express the correct relation

of p and V.

94. Elasticity of Gases.— As already explained, a gas can

have only volume elasticity, expressed as a ratio of the stress

to the strain per unit volume,—that is,

t
V^ = constant, K

where p is the change of pressure which caused the volume V
to decrease by a volume v. Let the change of pressure and the

consequent change of volume be very small. P will then become
P+p and V will be V—v. According to Boyle's law,

PV={P+p){V-v)

or PV=PV-Pv+pV—pv

Since p and v are very small, their product may be neglected,

and therefore

It appears therefore that the coefficient of volume elasticity

of a gas is equal to the pressure to which the gas is at any time

subjected. This may be roughly verified by substituting in (160)

values given in Fig. 120, keeping in mind that p is change of

pressure. This coefficient is constant for the same pressure,

but is different at different pressures. The greater the pressure,

the greater the elasticity. If the added pressure p is very small,

the original pressure is practically the total pressure,

—

i.e., the

pressure which just equals the coimter-pressure of the gas. This

may be called isothermal elasticity, since the temperature is as-

sumed to be constant during the change of volume.

If the gas is suddenly compressed so that heat is developed,

the product of pressure by volume is increased and so likewise

the elasticity. An opposite effect will be obtained if the gas is



GASES. 135

suddenly expanded. The discussion of elasticity under these

conditions is deferred to the chapter on heat (§ 177).

95. Pressure of the Atmosphere.—After the invention of the

air-pump by Von Guericke, it was demonstrated by experiment

that the atmosphere exerts great pressure on bodies at the

surface of the earth. Air is matter, and so it is subject to

gravitational forces which bind it as a great gaseous envelope

on the earth.

The weight of a small mass of air causes very little pressure

on the bottom of a vessel in which the air is confined, but a

great number of such masses piled one on top of another to a

height of several miles would press at the bottom with a force

equal to the weight of all.

One cubic centimetre of air at 0° C. and at sea-level atmo-

spheric pressure in latitude 45° weighs .001293 g., or one litre

weighs 1.293 g. If the air were of the same density -

at all altitudes, the pressure at the surface of the 1

1

earth would be the weight of 1 c.c. times the height na""^
of the atmosphere in centimetres. But since air is

very compressible, it is most dense in the lower layers

and becomes more and more rare in the upper regions.

The pressure of the atmosphere at any point may
be found by balancing it against a column of mercury.

If a glass tube A, Fig. 122, about 80 cm. long and
closed at one end,, is filled with mercury and then

inverted with its open end in a pool of the same
liquid, the mercury will stand at a certain height h

above the surface in the vessel. The pressure at the

bottom of this column is

p=pgh ^
where p is the density and g is the force of gravity in

dynes per gram. This pressure is in equilibrium with

atmospheric pressure, and so is a measure of that pressure.

The proper unit of pressure is 1 dyne per cm.'', but it is often

more convenient to employ as a unit the weight of 1 c.c. of

mercury at 0° C. in latitude 45°, where the value of g is 980.6.

The mass of this cube is 13.596 g., hence

p = 13.596 X 980.6 X 1 = 13332.24 dynes
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Pressure is frequently indicated by simply naming the

height of a column of mercury. Thus, a pressure of 73 cm. of

mercury means that the pressure per square centimetre is the

weight of 73 c.c. of mercury. This is true, no matter what the

actual cross section of the column may be.

Another unit often employed is one atmosphere, which is

the pressure at the bottom of a column of mercury 76 cm. high.

Expressed in dynes, this unit is

76X13,332.24 = 1,013,250 dynes

For most purposes it is a sufficient approximation to say

one atmosphere = 1.013(10)° dynes

A pressure of 75 cm. of mercury is almost exactly (10)*

dynes, or one megadyne. This is sometimes used as a unit of

pressure and is called the barie.

96. The Barometer.—A barometer is an instrument used to

indicate atmospheric pressure. The principle on which it oper-

ates has been explained in the preceding section. One of its

standard forms is illustrated in Fig. 123. A glass tube, t, is

filled with mercury and inverted with its open end in a cistern

partly filled with the same liquid. The upper part of the cistern

is a glass cylinder, but the bottom is a leather bag N. The
graduations at the top of the tube show the correct height of

the colunan of mercury only when the mercury in the cistern is

at the zero level indicated by the "ivory point" h. When air

pressure increases, mercury will be forced into the tube and
consequently the surface in the cistern will be below the zero

level, but when pressure decreases mercury will run back into

the cistern and the surface will rise above the zero level. For
this reason it is necessary, before reading the barometric height,

to raise or lower the level in the cistern to the zero point. For

this purpose a screw, o, is provided, by means of which the

bottom of the leather bag may be raised or lowered until the

point h just touches the surface of the mercury.

The glass tube is enclosed in a tube of brass upon which are

placed the graduations in millimetres or fractions of an inch,

or both. For convenience and accuracy of reading, a sliding

vernier is provided, as shown in Fig. 124. The lower edge of

the vernier is moved down to the top of the meniscus of mercury.
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and, to avoid error of parallax, a screen at the back of the tube

is fixed to and moves with the vernier. The proper position for

reading is reached when the top of the meniscus and the lower

edge of both screen and vernier are in the same plane. The scale

is then read up to the zero on the vernier, in a common form of

which, as shown in the figure, 25 divisions are equal in length to

iBI

Hit

ri
i««

1

i

« 1

Fig. 123. Fig. 124.

24 on the scale in English units, while 20 vernier divisions cover

19 mm. in metric measure. One inch on the scale is divided

into 20 equal parts, hence each division on the vernier is -^-^ of ^'0-

or .002 inch shorter than one of the scale divisions,

—

i.e., the

least count is .002 inch. The figures 1, 2, 3, 4, and 5 on the

vernier, therefore, show the number of hundredths of an inch

to be added to the scale reading. On the metric side the least

count is -jV or .05 mm. The height of the mercurial column as

shown in the figure is 74.18 cm. or 29.212 in.
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97. Corrections of Barometric Readings.— To reduce the

reading of a barometer to standard conditions, several correc-

tions must be made, as follows:

1. In most instruments the scale is made on the brass tube.

If this scale is correct at 0° C, its reading at f will be too low,

for each millimetre space has expanded and so the number of

such spaces equal to the height of the mercury column is not

so great as at 0° C. If, for sake of illustration, each millimetre

should expand to twice its true length, there would need be only

half the number to cover the same space, and the true height

would be twice the reading. Such an extreme expansion, of

course, cannot occur, biit the coefficient of linear expansion of

brass is .0000178,

—

i.e., brass will expand .0000178 of its length

when its temperature is raised 1° C. The length of each milli-

metre at t° will then be 1 +.0000178/°, and the number of these

false units decreases, for any given length, in the same proportion

as the length of each increases. Hence the ratio of the observed

to the true height is equal to the ratio of the true to the false

scale division. This may be expressed by

h 1

ha 1 +.0000178/°

or /fo= /j,(l + .0000178/°) (161)

where ht is the observed height and \ is the height at 0°C.

Thus the correct reading as far as the brass scale is concerned

may be obtained.

2. When the temperature rises, the density of the mercury

becomes less. Consequently the column of mercury must rise

to a greater height to balance the same atmospheric pressure.

The height of the colunan at 0°C. is less than at any higher

temperature for the same pressure. The coefficient of cubical

expansion of mercury is .0001818,

—

i.e., the volume of 1 c.c.

of mercury at t° is 1 + .0001818/° cubic centimetres. Since the

height of the column varies inversely as the density, and the

density varies inversely as the volume,

K _ fa ^ 1 + -0001818 <°

Ih" p,

"
1
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where h^ is the height as measured by the corrected brass scale,

H„ is the correct height when the temperature of the mercury
is 0°C., p^ is the density at 0°C., and p,^ the density at tem-

perature t° From this relation,

h
^"^

1 + .0001818 i°
^^^^^

But the value of ——-ri-5-^-5 is l-.0001818/° + (.00018180'-

(.0001818^°)^, etc. Since the coefficient is very small, all powers

above the first may, without sensible error, be neglected, and
we may write

Ho = fe„(l-.0001818 i°) (163)

By substituting the value of h„ as found above,

i?o = ^.(1 + .0000178 1°) (1- .0001818 1°) (164)

Thus by use of equation (164) correction is made for tempera-

ture effects in both the brass scale and the mercury. It is not

necessary to consider the expansion of the glass tube, for pressure

depends only on the height of the mercury, being independent

of the area of cross section.

3. The barometric height may also be reduced to a corre-

sponding height for the same pressure at sea level in latitude 45°,

where g is 980.6. At any point of observation where the value

of g is greater, the height of the column will be less; if g is less,

the height will be greater. Hence to reduce any observed

reading to that at sea level, latitude 45°, it is only necessary to

a
take the fractional part expressed by -^—. the numerator being

the value of g at the point of observation, and the denominator

the value at sea level in latitude 45°- Equation (164) then

becomes

H„ = -^(1-1-.0000178 i°)(l-.0001818 i°) (165)

The value of g for various points on the surface of the earth is

given in the tables, or a fairly accurate value can be found from

g= 978(1 + .00531 sin^L) (166)

where L is the latitude of the place.
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4. Correction should also be made for depression resulting

from capillarity. When the diameter of the column is about

2.5 cm., the depression is negligible, but for smaller tubes a

correction should be made. This can best be done by comparison

with some standard instrument or by reference to tables of

correction provided for this purpose.

98. Glycerin Barometer.—Any liquid may be used in the

construction of a barometer, but, all things considered, mercury
is the best. A water barometer would not be satisfactory,

because it would need to be more than 34 feet high (13.6 X 30 in.)

,

and water vapor would fill the vacuum at the top of the tube,

thus causing a depression of the column which would vary

with every change of temperature. An excellent barometer,

however, can be made by use of glycerin. The density of this

liquid is 1.28 ^/cc ; hence, when the mercury column is 30 inches

high, the glycerin would be raised by the same pressure to a

height of 318.5 inches. For this instrument, then, the tube

must be nearly 27 feet long. Its construction is possible where

the lower part of the tube may extend into a room or basement

below, only the upper end being exposed in the room where the

readings are to be made. The great advantage in the use of

this instrument is that, since its height is about 10.5 times as

great as that of mercury, its variation in height for change of

pressure is also 10.5 times as great. A change of 1 cm. in the

height of mercury corresponds to a change of 10.5 cm. in the

height of glycerin. Glycerin does not evaporate, and so the

Torricellian vacuum at the top of the tube is maintained.

99. The Aneroid Barometer.—The aneroid barometer is so

called because no liquid is used in its construction. It consists

of a cylindrical metal box of German silver. Fig. 125, with a

flexible, corrugated top. The air is nearly all pumped from the

box, and the collapse of its sides is prevented by a stifE spring,

R, attached to the central post on the top. Any increase in the

pressure of the air will cause a further depression of the top,

while a decrease will permit the top to spring out. In either

case the movement will be such as to restore equilibrium between

the air pressure on one hand and the elastic force of the top

and spring on the other. This movement is multiplied by means

of a system of levers, and is communicated to a hand which is
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made to move over a graduated dial. The chief advantages of

the aneroid are portability and sensitiveness. If carefully cali-

brated by comparison with a mercurial barometer, it will record

variations in atmospheric pressure with a fair degree of accuracy.

FiQ. 125.

100. Mechanical Air=pumps.—A mechanical air-pump in its

simplest form does not differ in principle from the common
lifting pump used in raising water. A receiver, R, Fig. 126, fits

air-tight on a plate, P. A tube leads from the interior of the

receiver to the base of the pump. There are two valves, a and

b, both of which open upward. By raising the piston the air

pressure is removed from the top of the valve a and the impacts

of the molecules beneath cause it to

open. A portion of the air from the

receiver thus passes into the space

o. When the piston is pushed

down, a is closed by the excess of

molecular impacts from above, and
b is opened by an excess of impacts

from below. This operation is re-

peated in each successive stroke of the piston, a certain constant

fractional part of the air remaining in the receiver being removed

by each cycle of operations. Let the volume of the receiver,

including the connecting tube, be V, and the volume of the

cyUnder between the limits of motion of the piston be v. When
the piston is raised in the first stroke, the air in the receiver

expands to a volume V+v. Now, when the piston is pushed

Fig. 126.
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down, a certain volume v of the air which had expanded to F +u
escapes. Consequently the fractional part of the total mass, m,
removed by the first stroke is

V+v
The mass remaining after the first complete stroke is, therefore,

V V
V +v V+v

The sum of these is seen to be the original mass. By a second

cycle of operations the same fractional part of the remaining

air will be removed,

—

i.e.,

V V Vv
V+ v V+ v

^~ {V+vy^
and the mass remaining after the second cycle is

V Vv V
V+ v"^ (V+vy"^^ {V+ vr"^

In a similar manner it may be shown that the mass remaining

after the third cycle is

V
(v+vy

V
and so on for any number of strokes, the exponent of ^ —
always being that number. When the number of strokes is n,

the mass of air remaining in the cylinder is

Since this coefficient of m expresses the fractional part of the

original mass occupying the volume V, it also expresses the

fractional part of the original density and pressure. If the

operation of this pump were exactly as here assumed, any

degree of vacuum could be obtained by increasing the number

of strokes. But, for mechanical reasons, a limit is reached at

the end of a few strokes. It is difficult to prevent leaks between

the piston and the walls of the cylinder, and after a certain

degree of exhaustion has been reached, the pressure of air in the

receiver is not sufficient to raise the valve a.
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An improved mechanical pump, known as the "geryck" or

Fleuss pump, is free frdm many of the defects of the ordinary

pump. Its construction is illustrated in Fig. 127. A pipe. A,

leads to the vessel which is to be

exhausted. The air passes into

the annular space B and thence,

without any obstruction, through

the port p into the space above

the piston. A leather bucket, CC,
forms part of the piston and is

held against the sides of the cylin-

der by the pressure of the air and

oil above. The piston valve E
operates only during the first

stages of exhaustion, and when
the vacuum is less than about 1.3

cm. it becomes inactive. A pipe,

F , leads from the annular space B
to the bottom of the cylinder, the

purpose of which is to prevent a

great difference of pressure be-

tween the upper and lower sides

of the piston at the beginning of

the ascent during the first few

strokes. Otherwise there would

be a vacuum below the piston and

full atmospheric pressure above.

The air can pass freely from B
into the cylinder, there being no

valves to be pushed open. When
the piston is raised, the port p is

closed, and all air thus entrapped

in the cylinder is carried up
through the valve G into the

upper chamber of the cylinder.

The valve G is held on its seat by a spring K. When the piston

reaches the upper end of its stroke, it raises the valve G and holds

it open while all the air below passes through, the two bodies of

oil meanwhile becoming one. Thus, it is not possible for any

^^^ay
^s^
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air to pass the piston. If oil leaks through at the valve or

between the piston and cylinder, it is picked up during the next

stroke of the piston.

With this style of pump a very good vacuum may be obtained.

When two are joined in series, as shown in Fig. 128, and the

air is made to pass through a drying tube filled with phosphoric

pentoxide before it enters the pump, a vacuum of about -gTnnr ^™-

Fig. 128.

may be obtained. The rapidity with which a vacuum may be

produced gives this pump a great advantage over mercury

pumps for many purposes.

101. Mercury Air=pump.—If the space at the top of a barom-

eter tube is made to include the vessel which is to be exhausted

of air, a very good vacuum can be obtained. A common form

of pump constructed on this principle, and known as the Sprengel

pump, is illustrated in Fig. 129. Mercury from, the reservoir F
is made to fall drop by drop into the top of the tube T. The

vessel to be exhausted is attached at A . Each drop of mercury
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carries before it a quantity of air which escapes at o. As the

exhaustion progresses the quantity of air between the drops

becomes less and less until there will be a continuous column

of mercury in T, equal to the height of the

barometric column. The vacuum in C and

also in the vessel attached to A will then be a

Torricellian vacuum, so called, at the top of a

barometer. The loop B is longer than the

height of a barometric column, so that no air

can enter C through the tube leading from the

reservoir even when all the mercury has run

out of F.

102. Diffusion of Gases.—If two or more

gases are enclosed in the same vessel, each gas

will in a short tirae be distributed to all parts

of the vessel, just as if the other gases were not

present,

—

i.e., there will be a uniform mixture

of all the gases. This process is called diffusion.

The rate of diffusion may be deduced from a

consideration of the velocity with which a gas

will issue from a small orifice in the side of a

vessel. Let a body of gas, G, Fig. 130, do work

by expanding and thus exerting pressure on

the piston o. Let the pressure per unit area be p and the area

of the piston A. Let the piston be moved by the expanding gas

through the distance x. The work done is expressed by

W=pAx
W being the work and pA the total pressure or force. The
product Axis the change of volume, hence the work is equal to the

product of pressure by change

Fig. 129.

of volume. If, now, instead of

^^^^ moving the piston, the same

increase of volume is produced

by allowing the gas to escape

from a small orifice, work will be

done in giving kinetic energy to a stream of gas. The mass of

the issuing stream is Vp, where V is the volume, equal to Ax
above, and p is the density. Hence the kinetic energy is

Fio. 130.

E,= ^Vfw'

10
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where v is the velocity of the stream. Hence

. =^ (167)

From this it is seen that the velocity of the gas as it issues from

the orifice varies inversely as the square root of the density of

the gas.

This deduction may be shown to be consistent with the

v
kinetic theory of gases, for, as already shown, there will be -^

impacts of each molecule upon one of the walls of a unit cube

in which the gas is confined. If n is the total number of mole-

cules and one-third of them move in each of the three possible

directions,

n V nv
"3 '2^'Q

is the total number of impacts upon one side of the vessel, v

being the average velocity of the molecules. Now, if a small

hole of area 5 is made in this side of the vessel, the number of

molecules that formerly formed impacts against that portion

of the side will now issue from the hole. The rate at which the

gas will escape is, then,

nvs
~6"

The only variable quantity in this expression is v, n being,

according to Avogadro's law, the same for all gases under the

same conditions. Consequently the rate of escape of the gas is

proportional to the average velocity of the molecules. But it

has been shown in equation (154) that

Vp
—i.e., the rate of escape of the gas is inversely proportional to

the square root of the density.

To illustrate this principle, let a vessel. Fig. 131, be divided

into two compartments by a porous partition, C, which may be

made of tmglazed porcelain or plaster of Paris. A manometer,
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T, partly filled with liquid passes through a cork into the cham-
ber V. If a stream of hydrogen is made to flow through the

bottom of the bottle into the space 0, it will diffuse through the

partition into V more rapidly than the gas there will pass in the

opposite direction, and the increased press-

ure in V will be shown by the manometer.

If V is filled with oxygen and with

hydrogen, the rate of diffusion toward V
will be four times as great as from V to 0.

If V is filled with hydrogen, the manom-
eter will show decrease of pressure. In a

short time, however, the liquid will stand

at the same height in each arm of the

manometer, showing that diffusion is

complete.

The atmosphere is a mechanical mix-

ture of several gases of different density,

but each gas is uniformly distributed by
diffusion.

103. Buoyancy of Air.—According to

the well-known principle of Archimedes,

a body is buoyed up by a force equal to

the weight of the fluid which a body dis-

places. When the body is dense, as iron

or copper, the effect of buoyancy of air

is not always apparent ; but a light body
of large volume, as a balloon inflated with hydrogen, will be

buoyed up by a force greater than the weight of the body.

The force of buoyancy is just as great in case of a solid mass of

iron as large as the balloon, but it is not so apparent.

For accurate weighing allowance must be made for buoyancy
of air. If a body is placed in one of the pans of a balance and is

counterpoised by a known weight on the other pan, both are

buoyed up by a force equal to the weight of the air which they

displace. The true weight (weight in vacuum) , less the weight of

air displaced, is the apparent weight. Let x be the true weight

of the body and p its density. Also let w represent the standard

weight in the other pan, and p^ its density. Let the density of

air be a. If the body had the same density as air, its apparent

Fig. 131.
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weight in air would be zero. If twice as dense as air, its apparent

weight would be -^x. Whatever the density p may be, the

loss of weight is —x. Likewise the standard weight will lose

w. Since the apparent weights in the pans are balanced.
Pi

a a
X-—x=w w

p Pi

K'-f)=K'~)
a

If both sides of this equation be divided by 1

i2

or

/a a a^ \
x = w[l-\ h^retc. )

^ P Pi P I

x='W+'wa( jnearly (168)
\p p^l

for the square or higher powers of — and — may be considered

negligible quantities.
"

To illustrate the use of this equation, suppose a mass x of

aluminum is balanced in air by a brass weight marked 500 g.

Then

*:= 500 + 500 X.001293(-^—^)
or a;= 500. 174 g.

—i.e., the weight in vacuum is .174 g. more than the weight in

air.

If the density of the object is the same as that of the standard

weight,

wax (=0
\p pj

hence x=w

and no correction is necessary.

If the density of the object is greater than that of the stand-

ard weight, the correction must be subtracted from w, as equa-

tion (168) shows.
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Problems.

1. If the average velocity of the hydrogen molecules at a pressure of

1.013(10)" dynes and at 0° C. is 184,100 cm/sec, what is the average velocity

of oxygen molecules under the same conditions?

2. If the atmosphere were all as dense as it is at sea-level, latitude

45°, what would be its height where the pressure is 76 cm. of mercury?
3. Calculate the value of g in the latitude where you live. (Use

(166).)

4. A mercurial barometer is inclined 10° to the vertical. The read-

ing is 73.2 cm. What would be the reading in a vertical position?

5. What part of the mass of air remains in a receiver after five cycles

of the piston of an air-pump, the ratio of the capacities of the pump and
receiver being ^?

6. A sphere 10 cm. in diameter weighs 523.6 g. in air of density

.0012 8/cc. What would the sphere weigh in vacuum, the standard weights

being brass?

7. A glass tube used in sounding is 24 inches long and is covered on
the inner walls with a brown pigment which becomes white when in con-

tact with sea water. The tube, open end down, is lowered in water in

which the pressure at a depth of 33 feet is equal to one atmosphere. On
raising the sounder it is found that the pigment is white for a distance of

18 inches from the open end. What is the depth of the sea water?

1. 46025 cm/gec.

2. 5 miles, approx.

3. .

4. 72.08.

5. .328, approx.

6. 524.155.

7. 99 ft. of water.



CHAPTER V

LIQUIDS

104. Liquid Pressure.—^One cubic centimetre of pure water

at its greatest density, 4°C., weighs almost exactly one gram.

Water, like other liquids, is almost incompressible, hence the

pressure at any given depth, h, measured in centimetres, is hg

dynes per square centimetre. For any other liquid of density

p the pressure at a depth h is pgh. It has been shown that at

any point in a fluid at rest the pressure is equal in all directions,

and in liquids the pressure at any point may be taken as pro-

portional to the depth. The pressure here considered is only

that due to the weight of the liquid.

105. Transmission of Pressure.—The pressure per unit area

exerted on a fluid enclosed in a vessel is transmitted to every equal

unit area on the interior of the vessel. This principle is known
as Pascal's law. It is a direct consequence of the fact that

fluids do not resist a shearing stress. Let C be a cylinder filled

. with fluid and let a and A

I

m
Fig. 132.

"
be the respective areas of

/p the pistons as shown in
*

Fig. 132. If the small pis-

- ton is thrust against the

fluid with a pressure p per

unit area, every equal unit area within the cylinder will be sub-

jected to the same increase of pressure. Any area 5 within the

body of the fluid is subjected to an increased pressure ps. The
total pressure of the small piston is pa, and that on the large pis-

ton pA. Thus, whatever pressure is exerted at o is multiplied

— times at R, for
a

pa .
— =pA

The mechanical advantage in this case is the ratio of the areas

of the pistons. This is the principle of the hydrostatic press.

By making A large, the total pressure may be enormously
150
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increased, but the distance moved is less in proportion as the

area of A is greater. Hence the hydrostatic press conforms to

the general law for machines.

106. Pressure of a Liquid on the Walls of a Vessel.—Since

the pressure resulting from force of gravity is proportional to

the depth of a liquid, and also since the pressure per unit area

at any depth is transmitted to every equal unit area below that

depth, it follows that the pressure on the horizontal bottom of

a vessel is

P= hpgA„ (169)

where h is the vertical height and A„ is the area of the bottom.

It also follows that this pressure is independent of the shape of

the vessel, for, according to Pascal's law, if the box B, Fig. 133,

has a tube T inserted at one side, or at any point, and the whole

be filled with liquid to a height /, the pressure on the bottom of

the vessel is the same as if, instead of the tube, the sides of B
had been extended up to the level / and the whole filled with

the same liquid. Whatever the shape of the vessel may be,

the pressure on the bottom, or any part of it, may be found by
equation (169).

c 1

! !

<
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Fig. 135.

etc.), the total pressure is the average pressure times the area.

In Fig. 134 a rectangular box is supposed to be filled with a

liquid of density p. The total pressure on AB, a portion of one

side, is the area oiAB times the pressure at o. The total pressure

on SD is its area times the pressure

at o' So also the total pressure on

the circle C is its area times the

pressure at o". When the area of

the side considered is not symmetri-

cally divided by a horizontal line

through its centre, the total pressure

cannot be found in this manner. If, for example, the side is in

form of a triangle, as ABC, Fig. 135, the total pressure on the

triangle when the vessel is full of liquid is the area of ABC times

the pressure at o, the distance from A to <? being two-thirds of

the altitude of the triangle. (Appendix 1.)

107. Buoyancy of Liquids.

—

A body immersed in a liquid

is buoyed up by a force equal to the weight of the liquid dis-

placed. This is known as the princi-

ple of Archimedes and is applicable

to all fluids. Buoyancy is a result

of the fact that pressure increases

with depth and at any given depth

is equal in all directions. Let abc be

a rectangular block the upper surface

of which is at a depth d below the

surface of the liquid. The pressure

in dynes on the top of the block is bcdpg, while the upward
pressure on the bottom is bc{d+a)pg. The excess of upward
pressure is, therefore,

be (d+ a)pg— bcdpg = abcpg

and this is the weight of liquid displaced by the block. In case

the block floats partly submerged, the depth d becomes nega-

tive and there is no pressure on the top of the block, hence the

excess of upward pressure on the bottom is

bc{a—d)pg

or abcpg— bcdpg

which is again the weight of the liquid displaced.

Fig. 136.
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108. Density and Specific Gravity.— The density of a sub-

stance is the quantity of matter in the unit volume. Specific

gravity is the ratio of the mass of a substance to the mass of an

equal volume of water. In the metric system of units density

and specific gravity are numerically the same, since the mass of

1 c.c. of water at 4° C. is assumed to be 1 g. Thus, we say, for

example, that the density of brass is 8.5 e/^^,, or the specific grav-

ity is 8.5, the latter being a pure number.

109. Density of Solids.—^A common method of finding the

density of a solid is to take the ratio of the weight of the solid

in air to its loss of weight when immersed in water, for, accord-

ing to the principle of Archimedes, the loss of weight is the

weight of an equal volume of water. This ratio is the specific

gravity, which, multiplied by the density of water, 1 s/cc, .gives

the density.

The specific gravity in reference to any liquid other than

water may be found in the manner just described for water, and

the density is then
W

P--^Pi (170)

where p is the density of the solid, W^ its weight in air, Wi
the weight of an equal volume of the liquid, and pi the density

of the liquid.

In case a Solid floats on water it may be submerged by at-

taching to it a sinker, and its density is then found by the

equation

where W„ is the weight of the solid in air, W^ the weight of solid

and sinker, the latter being submerged, and W^, the combined

weight when both are submerged. The difference between W,
and PF55 is evidently the buoyancy of the water on the solid,

and hence is the weight of a volume of water equal to that of

the solid.

When only small fragments of a solid are obtainable, the

density may be found by placing the fragments in a specific-

gravity bottle. Let Wf be the weight of fragments and bottle

less the weight of the bottle, W„ the weight of bottle when filled
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with water less the weight of the bottle, and W^ the weight of

the bottle when filled with both fragments and water les$ the

weight of the bottle. Then

P= W,+W^-Wjfw
(172)

for the fragments displace their own volume of water.

Fig. 137. Fig. 138.

The Nicholson's hydrometer may often be used to find the

density of solids. This instrument consists of a hollow metal

cylinder, Fig. 138, supporting a pan above and one below. It

floats in water in an upright position. The solid under consider-

ation is placed on the upper pan, and known weights are added

until the hydrometer sinks to a mark on the slender stem below

the upper pan. The solid is then removed, and known weights

are put in its place to restore the mark again to the surface of

the water. The weight last added is the weight of the solid in

air. Now place the solid on the lower pan beneath the water.

The weight which must be added to that already in the upper

pan to restore the mark to a position at the surface of the water

is the weight of water displaced by the solid. From these data

the density can at once be determined.

110. Density of Liquids.— In liquids as in solids there are

numerous ways of finding density. In all, however, the stand-

ard for comparison is water,

—

i.e., the density is found to be a cer-

tain number of times that of water, which is 1 s/cc- One method

is to find the weight of a solid when it is immersed in water and
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then when immersed in a liquid the density of which is sought.

The ratio of the loss of weight in the liquid to the loss of weight

in water is the ratio of the weights of equal volumes of two liquids,

one of which is water, and so is the density of the liquid. A con-

venient instrument made expressly for finding the density of

liquids in the manner just described is illustrated in Fig. 139,

and is known as Mohr's balance. A hanger containing a ther-

mometer is suspended by a fine platinum wire from one end of

a beam and just balances a counterpoise at the other. When
the hanger is immersed in a liquid, certain riders which accom-

pany the instrument are placed on the graduated beam to

restore the balance. The density of the liquid is then read

directly from the position of the riders.

Fig. 139. Fig. 140.

A convenient method of finding the weights of equal volumes

of two liquids, one of which is water, is by use of specific=gravity

bottles, also called pyknometers. In one form, Fig. 140, the

bulb of a thermometer projects into the liquid. A ground glass

stopper forms a part of the stem of the thermometer. The

bottle is filled with Uquid to the top of a capillary tube, which is

covered with a glass cap to prevent evaporation. If Wi is the

weight of the liquid and PF„ the weight of an equal volume of
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water at temperature t°, the density of the liquid is

W,
Pi = ^^Pu, (173)

where jO„ is the density of water at the temperature t°. At 4° C.

the density of water is nearest 1 e/^c- For any other temperature

its density may be found in appendix 20. The temperature

should be considered when exact results are desired.

For rapid though generally not very accurate determinations

of the density of liquids, hydrometers are used. These are of

two kinds. 1. Hydrometers of constant volume, such as the

Nicholson's hydrometer already described, where the

same volume of liquid is always displaced by sinking

the mark on the stem to the same point. The use of

this instrument in finding the density of liquids is

apparent. 2. Hydrometers of variable volume. Fig. 141,

where the volume of liquid displaced is inversely as the

density. These consist usually of glass tubes loaded

with mercury or shot at the .gjower end to cause them

to float upright. The weight of the hydrometer is con-

stant, and it will sink only as far as is necessary to

displace its own weight of liquid. These instruments

are made in a variety of styles suited to special purposes.

The graduations on the stem of the hydrometer may be

so spaced that the density can be read directly from the

mark at the surface of the liquid. By making the stem

slender the divisions may be widely separated for even
' small differences of density, for the more slender the stem

the greater the distance it must rise or sink to produce any

given change of displacement. The range, however, is decreased

in the same proportion as the scale divisions are increased.

Since the volume of liquid displaced by any given hydrometer

varies inversely as the density of the liquid, the spaces on direct

reading scales become shorter and shorter as the density increases.

Scales with equal divisions may be employed, but the density,

if desired, must be calculated from the reading in each determi-

nation.

The divisions on the scale of Baume's hydrometer are equal

in length. In forming such a scale it is necessary to know the
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depth to which a hydrometer will sink in two liquids of known
density. Baum6 chose water for one liquid and brine (15 parts

of salt in 85 of water) for the other. Marks were made on the

stem at the surface of pure water and at the surface of the salt

solution. The space between these two marks was divided into

15 equal parts, and these graduations were continued through-

out the length of the stem (Fig. 141). Let p^, be the density

of the water and p, that of the salt solution. Also let y„ be the

volume of liquid displaced when the hydrometer sinks to the

zero mark,

—

i.e., in this case, when it is floating in pure water.

Then, if one of the scale divisions is taken as a unit of volume

and n is the number of divisions from zero down to the surface

of a liquid,

VoPw=iy^—n)p,

for each member of this equation is the weight of the hydrom-

eter. Hence

V - '^P'

Ps— Pw

In the solutions here considered, p„=l, ;0, = 1.116, and « = 15.

Hence
-. 15X1.116 ... „F„=

^^g
=144.3

For any other liquid denser than water,

(144.3-A/');0=144.3^„

for again each member of the equation is the mass of the

hydrometer. Hence

where N is the reading of the scale and p is the density sought.

For liquids lighter than water the zero mark is near the

lower end of the stem and the hydrometer sinks deeper as the

density decreases. To determine the divisions on this scale

Baum^ made a solution of 10 parts salt in 90 parts water, and

marked the stem zero at the surface of the salt solution, and

10 at the surface of water. Then, using the same letters as above,

^oft=(^o + 10)p„
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If ;0„ = 1 and jOj = 1.085, then

10
F„ = 117.6°" .085

Hence for any other Hquid lighter than water

(117.6+A^)^ = (117.6 + 10K
127.6 ,,^,,

111. Twaddell's Hydrometer.— Baum^'s hydrometer is in

common use, but is both unscientific and inconvenient where
specific gravity is desired. There is no connection between the

Fig. 142.

readings on a Baurn^ hydrometer and specific gravity, though the

latter may be deduced from the former in the manner shown in

§ 110. In the proper use of this instrument any given number on
the scale, as 30 or 70 Baum€, should indicate a desired strength of

solution without reference to specific gravity. The use of whole

numbers and equal scale divisions is an advantage in the arts.

The divisions on Twaddell's hydrometers have a direct

relation to the specific gravity of the liquid, each division indi-

cating a difference of .005 in the specific gravity. To avoid the
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inconvenience of a long stem, there are usually six spindles, as

shown in Fig. 142. The total number of divisions is from to

174, each spindle continuiag the reading of the one before it.

In water at 15.5° C. the first spindle sinks to 0. At this mark,

then, the specific gravity is tinity (1) . Hence, when the Twaddell

reading is known, an easy mental calculation will give the specific

gravity. Thus, 20 Twaddell is

l + (20X.005) = 1.10sp. gr.

and 174 Twaddell is

1 + (174X.005) = 1.87 sp. gr.

The divisions are shorter as the density increases, but, since they

are distributed over six spindles, even the shortest may be

conveniently read.

112. Equilibrium in Case of Buoyancy.—The weight of liquid

displaced by a floating body is equal to the weight of the body.

The centre of gravity of the displaced body of liquid is called

the centre of buoyancy. The centre of gravity of a body and

the centre of buoyancy of the liquid displaced may be so related

in position that any one of the three states of equilibrium

—

stable, unstable, or neutral—may obtain. Let a uniform rod

of wood be floated on water as shown in Fig. 143, A. The centre

of gravity of the rod is at g and of buoyancy at b. The force

of gravity is directed downward, and that of buoyancy upward.

While b is in the line of direction of gravity,

—

i.e., directly be-

neath g,—the rod will be in unstable equilibrium, for the least

disturbance of this relation of g and b will result in a couple,

Fg . db or Fi, . db, which will cause the rod to topple over.

In case of the floating sphere B, the equilibrium is neutral,

for b will remain directly beneath g in any position of the sphere.

To secure stable equilibrium of a floating body it is necessary

that there be a righting couple,

—

i.e., a couple which will restore

6 to a position in the line of direction through g. In the figure

C represents a ship rocked to one side so that b is at b', and

there is a couple, F„ .gs or Ff, .sg, tending to right the ship.

A vertical line through b' intersects ah at a point, m, called the

metacentre. Whenever the metacentre is above g, the equilib-

rium is stable. When m and g coincide, the equilibrium is
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neutral, but when m is below g, unstable. The bodies A and B
may be made stable by loading them with some dense substance

at points below g. The ballast of ships serves this purpose.

It is evident that the shape of the keel is an important

matter in the construction of ships, that the centre of buoyancy
may, when the ship lists, be shifted in such a manner as to result

in a restoring couple.

Fig. 143.

113. Valve Pumps for Liquids.—If a bucket is lowered into

water, a valve in the bottom will open while the bucket is filling,

but will close when the bucket is lifted. Let this bucket be

fitted into a tube, T, which extends down to water or other

liquid. If the tube is closed except through the valve v, a short

up-and-down movement of the bucket, here called the " sucker,

"

will lift water to the top of the tube. If the sucker is above the

level of liquid in the reservoir, pressure of the atmosphere

performs a necessary part of the operation of the pump, causing

liquid to pass through v and follow the sucker even to the height

of a water barometer, or the barometric height of whatever
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liquid is being pumped. If both valves are beneath the liquid,

air pressure is not essential to the operation of the pump. This

device is called a lifting pump. (Fig. 144.)

In Fig. 145 are shown the essential parts of a force pump.
Two valves are necessary in this as in all pumps. A solid plunger,

F, takes the place of the sucker of a lifting pump, and when it is

raised a quantity of liquid is entrapped above the valve v and

B n

cs::

Fig. 144. Fig. 145.

then forced out through v' by a downward thrust of the plunger.

The vessel C, an expansion of the outlet tube, is full of air, which

serves as a cushion to the liquid and causes a steady flow from e.

114. The Siphon.—A siphon is a contrivance by which force

of gravity and pressure of the atmosphere are employed in the

transference of fluids. Let two barometer tubes be filled with

mercury and inverted as shown in Fig. 146. Let A be at a

higher level than B. The atmospheric pressure at A is balanced

by the pressure of the mercurial column Ac, and at B by the

column Bd. If now the tubes are connected at the top by a

cross tube, T, thus forming an inverted U-tube, the pressure of

11
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the air at A will cause mercury to fill the space T and join the

top of the column at d. The column of mercury on one side of

the U-tube is then Ac, and on the other Be. Let Ac be repre-

sented by h and Bd by h\ and let de be x. Also let the atmo-

spheric pressure at A be P„, and at B, P^. Then

Pa-hgp= P,~h'gp

for the height of the columns are proportional to the pressures

at A and B. There will then be an unbalanced force, xpg,

directed toward B, which will cause the liquid to flow in that

direction. The tube T may cross

from Ac to Bd at any point be-

tween c and A, the extreme

height being the barometric

height of the liquid which fills

the siphon. The value of h^ is

always such that

r\

K

h

B

or h' =^h

—i.e., h' is the height to which

the pressure at B is capable of

p,g 146. raising the liquid, no matter what
the actual height of the siphon

may be. In a short siphon

—

i.e., one of little altitude—P^ and

Pa are exerted for the most part against each other. The dif-

ference between h' and the greatest height at which the siphon

will operate for any given fluid is %, where xpg is the force

causing the flow. Since B is in a lower stratum of air than A,

Pj, is a little greater than P^, but for fluids that are denser

than air

P^-P^<xpg

and the flow will be toward B, i.e., in the direction of the force

xpg. If, however, the fluid is less dense than air, hydrogen for

example
P^-P^>xpg
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and the flow will be toward A . To transfer hydrogen from A to

B the whole apparatus shown in the figure should be inverted.

115. Efflux of Liquids.—If an opening be made in the side

or bottom of a vessel filled with liquid, the velocity of efflux

will depend, for the most part, on the depth of the liquid. Let

a vessel. A, Fig. 147, be filled to a height, h, above e, with a

liquid of density p. If, now, 1 c.c. of the

same kind of liquid is forced into A through

e, the amount of work done is equal to that

required to lift a column of h cubic centi-

metres of the liquid 1 cm. high. This is the

same as lifting 1 c.c. to a height of h centi-

metres. If m is the mass of 1 c.c, the work
done or the increase of potential energy of „

the whole mass is m-gh ergs. The actual rise

of liquid in the vessel is inversely proportional to the area of

the surface, but in any case the increase of energy is equal to

the work done in introducing liquid at e. If now the liquid is

allowed to flow from e, the potential energy of a mass m may be

assumed to be all converted to kinetic energy, ^mv^. Hence

or v^ = 2gh (176)

Thus it appears that the velocity of efflux is the same as that of

a body falling freely from the surface of the liquid to the orifice.

It would seem that if the area of the orifice is a and the

velocity of efflux is v, the volume of liquid which would flow

out in time t would be avt. But because portions of the liquid

in the vessel move from all directions toward the orifice, the

issuing stream is contracted at a point, c, called the vena con-

tracta. Let the area of cross section at this point be A„, then the

volume of efflux in any given time is A^vt, the value of which is

about .62 of avt. If a short tube (about two or three times as

long as the diameter) is fitted to the orifice, the rate of flow is

increased to about .82 avt. In this discussion the viscosity

(internal friction) of the liquid has not been considered.

116. Velocity of Efflux in Terms of p and p.—The pressure

p which causes the flow of liquid from an orifice depends on the
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depth h and the density p of the liquid, and may be expressed by

P=Pgh (177)

The pressure of the atmosphere downward on the surface of the

Uquid and inward at the orifice may for most cases be considered

as balanced. From equation (177)

h-

Substituting (178) in (176),

or

-1^
Pg

pg

P

(178)

(179)

which is the same expression as that for the velocity of a gas

escaping from a small orifice.

117. Lateral Pressure of a Moving Stream.—The pressure per

imit area at a depth h is mgh, and this, as shown above, is the

potential energy of a unit mass (w) in vessel A, Fig. 148. Hence

the potential energy per unit mass

is equal to the pressure. If, then,

the potential energy becomes wholly

kinetic, the pressure p becomes zero.

Let B be a tube, small as compared
with A, and at the end of B let the

liqtiid issue from a small orifice, e.

If the velocity of efHux at e is the

=? same as that which would be ac-

quired by a body falling freely

through a distance h,—i.e., from

the surface of the liquid to a point on a level with the orifice,

—

all the potential energy of that portion of the liquid becomes

kinetic, and so there is no lateral pressure at that point. For,

let P be the pressure at any point in a flowing stream, then

Fig. 148.

or

P=p—^mv'

P=p-^fyV (180)

since m is the mass of unit volume. The pressure while the
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liquid is not flowing is p. If the value of v in (179) be substituted

in (180)
p=p-p = (181)

The velocity of the flow of liquid through B is less than at e,

for the same volume passes a larger cross sectional area. The
energy of the liquid in B is therefore partly potential and partly

kinetic, the pressure being found by equation (180).

118. Viscosity. — Viscosity is that property of fluids by

virtue of which they partake in some measure of the properties

of solids. A perfect liquid would offer no resistance to a shear-

ing stress, but all liquids and gases do to some extent resist

such a stress. Work must be done in sliding one layer of liquid

on an adjacent layer. The degree of resistance offered to a

shearing stress is a measure of the viscosity of a substance.

There is a coefficient of rigidity for fluids as well as for solids.

No distinct line of division can be made between liquids and

solids. Some liquids, such as alcohol and ether, are very mobile,

—i.e., comparatively free from viscosity. Others, such as

molasses, heavy oils, pitch, and molten glass, are distinctly

viscous. Other substances, such as ice and asphaltum, are

classed as solids, but will permanently change their shape when
subjected to a continued stress. A great mass of ice will flow

down a channel just as a river of water does, though much more

slowly. A lead bullet placed on a block of asphaltum will in

time sink to the bottom, while a cork placed beneath the block

will rise to the top. Thus a substance which is brittle when
subjected to a sudden stress, behaves like a liquid under a

continued stress.

When a liquid, such as water, flows through a tube or pipe,

it adheres to the walls of the pipe, forming a layer over which

the liquid flows. When a pipe is full of flowing water, the part

having the greatest velocity is at the centre of the pipe, while

that adhering to the walls does not flow at all. Consequently

the rate of flow is independent of the nature of the tube. It is

plain from this that viscosity will retard the rate of flow, and

the greater the viscosity the greater the retardation.

The coefficient of viscosity may be defined as the tangential

force per tmit area required to move one plane with unit velocity

parallel to another plane which is fixed, the space between
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them being filled with a viscous fluid. As shown in Fig. 149,

let a and h be planes 1 cm. apart, the space between them being

filled with a Uquid which adheres to the planes. Then the force in

dynes required to move the plane a with a velocity of 1 '=™/sec,

divided by the area of a, is the coefficient of viscosity of the

liquid.

It may be shown that the volume of liquid under pressure

that will flow through a tube in a given time is

V-
TcprH

8l<p
(182)

where V=volume, r=radius, i = time, Z= length of tube, p==

difference of pressure at the ends of the tube, and ^= coefficient

of viscosity. Hence the value of tp for any liquid may be deter-

mined experimentally by measuring all the other terms of (182).

i/cm

Fig. 149. Fig. ISO.

Viscosity is also apparent in case of a relative motion of

bodies of gas. A jet of gas will drag with it other gas that is

adjacent to it. The cause of viscosity of gases may be explained

in accordance with the kinetic theory, for when one layer moves

adjacent to another, molecules from the moving mass would

cause the adjacent mass to move in the same direction, while

those from the mass of gas at rest would retard the moving mass.

This may be illustrated by considering the case of two trains

of cars on parallel tracks, one train being at rest or in slow

motion relative to the other, and both being loaded with small

bags of sand. If while the trains are side by side numerous

bags are thrown from one to the other, the motion of the slow

train will be increased while that of the other will be retarded.

The train having the more rapid motion would thus appear to

drag the other with it.
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The effect of viscosity of gases is apparent in many phenom-
ena. If, for example, a strong blast of air is forced from A,
Fig. 150, across the top of the tube B, there will be a decrease

of pressure at the sides of the blast, and surrounding air will be

set in motion. A liquid in L will then be raised in B by the

unbalanced atmospheric pressure and dashed into spray by the

blast of air. Atomizers are operated on this principle.

A light ball may be supported on a blast of air

as shown in Fig. 151. The jet of air sets in motion

the adjacent layers, thus creating a partial vacuum.
Air then flows in from all sides and is carried up by
the swiftly moving current. Thus, the pressure at

the sides of the current is less than atmospheric

pressure, and if the ball is disturbed by a slight

lateral pressure, it will be promptly

pushed back in position.

The curving of a ball when thrown

in the proper manner is the result of

viscosity of air. If a light ball is

thrown from o, Fig. 152, and at the

same time is made to spin in the

direction indicated by the arrows, the

ball will curve in the direction indi-

cated by the broken line. If three

slender poles, a, b, and c, are placed

upright in the same plane, the ball

may easily be thrown so that it will

pass to the left of a, the right of b,

and the left of c. The cause of this

deviation from a straight line is found in the fact that one side

of the ball, /, is moving with a velocity equal to that of the ball

plus that due to its rotary motion, while the forward velocity at

r is the difference of these two quantities. Air adhering to the

ball drags adjacent air with it and consequently is more crowded
at / than at r,—i.e. , the ball meets more resistance on the side /

and hence is deflected toward r. A simple experimental illustra-

tion of this fact may be made by suspending a tennis ball or any
light ball by a string. Then if, by means of a turning table or

otherwise, the ball is made to rotate rapidly while at the same

6.1
I

/

/ .«

Fig. 151.

o
Fig. 152.
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water or other liquid and then lifted a short distance by a force,

F, a film of liquid will fill the space enclosed by the wire and the

surface of the liquid. Although this film is thin, yet in com-

parison with the range of molecular attraction it has consider-

able thickness, and the force due to

surface tension is operative on both

sides of the film. Hence the force

F in this case is

Fig. 155.

F= 2r.5c

By measuring F and 5c a rough a
determination of T may be made.

This film differs from a stretched elastic membrane, such as

a sheet of rubber, in several particulars. In the first place,

the film of liquid will, when released, contract indefinitely.

Secondly, the force exerted by the film is independent of the

thickness, for there are only two surfaces whatever the thick-

ness may be. This is true at least until the film becomes so thin

that the molecules on the two surfaces come within the limits of

attraction of each other. Thirdly, considering only the tension,

the force F, Fig. 155, is constant for the various heights through

which the film may be raised from the liquid if the width of the

film is constant. In case

of a rubber band the force

must be increased with the

distance through which it

is stretched, while a liquid

film increases in length

and area by the addition

of more molecules from

the body of the liquid.

122. Pressure due to Surface Tension.—When the surface of

a liquid is plane, the surface tension does not cause any lateral

pressure, just as a stretched sheet of rubber would exert no
pressure upon a plane which it covers. If, however, the surface

is curved, there will be a component of the tension which will

cause pressure in the liquid on the concave side of the surface.

Consider a cylindrical surface as shown in Fig. 156. Let T
be the tension of the film, and let the body of liquid under con-

FiG. 156.
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sideration be boiinded above by the curved surface and below

by the plane abed. Let the width of the surface, ab or cd, be

1 cm. The vectors T and T', representing the surface tension,

may each be resolved into two forces, xy and x'y' being the com-

ponents that produce pressure within the liquid on the plane

abed. Since these components are equal, parallel, and in the

same direction, the total pressure is their sum. But

xy = T sin d

and x'y = T' sin d

Since T and T' are equal, the total pressure is

2T sin d

The total area of the plane abed is ac times cd. But cd is, for

sake of simplicity, taken as 1 cm., and ac is equal to 2r sin d, r

being the radius of the curved surface. If p is the pressure per

unit area, then
2pr sin d

is the total pressure on abed as a result of the tension of the film.

Hence
2T sind = 2prsmd

or p =L
'

(184)

Hence the increase of pressure per unit area in passing from the

convex to the concave side of a liquid film varies directly as the

tension and inversely as the radius.

If the film is curved in two directions at right angles to each

other, the total pressure is the sum of the pressures resulting

from the surface tension in two direc-

tions. If r is the radius of curvature in

one direction and r' that in another, then

^^^{t+v) (^^^)

Fig. 157.

If a body of liquid is in form of a

sphere, as a falling drop of water, or,

better, a drop of olive oil suspended in a

mixture of water and alcohol of the same density, the pressure p
may be found in a manner similar to that given above. In Fig.

157 let abed be a plane through the centre of the sphere. The
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total force exerted by the surface tension upon abed is the tension

T per unit length times the circumference of the circle. This is

expressed by
2^rT

where r is the radius of curvature. The area upon which this

pressure is exerted is the area of the circle abed,—-i.e., Tzr\

Hence
pTir' = 2nrT

2T
or p = -j- (186)

which is the same as equation (185), since r and r' are in this

case equal.

If the sphere were a soap bubble instead of a continuous

mass of liquid, there would be a tension on both sides of the

film, and so in this case

P =— (187)

the radii of the inner and outer surfaces being considered equal.

123. Angle of Contact.—^When a liquid adheres to a solid

with more force than its particles cohere, it is said to wet the

solid. When a wet solid is placed in a liquid, as shown in Fig.

Fig. 158.

158, the surface of the liquid and the film on the solid become

continuous. As a consequence, the liquid near the solid will be

raised, and its surface will be curved along abc. The pressure

on the concave side of this curve is greater than that on the

convex side, the difference being equal to the weight of liquid

raised above the hydrostatic level. The angle at which the liquid

meets the solid is called the angle of contact, marked d in the

figure. The size of the angle depends on the character of the
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liquid, the surface of the solid, and the nature of a third fluid,

usually air, which rests on the liquid \inder consideration. When
a liquid thoroughly wets a solid, the angle of contact is zero.

When the liquid does not wet the solid, as when a plate of glass

is dipped in mercury, the surface of the liquid is depressed.

The effect is as if the glass were pressed down on a stretched

membrane on the surface of a

liquid. The surface tension in

this case depresses the liquid

below the hydrostatic level, and

the angle of contact is greater

than 90°. For mercury and glass

in air, ^ is about 137° (Fig. 159.)

124. Capillary Action due to

Surface Tension.—The phenom-

ena of surface tension were first

investigated in reference to the

rise of liquids in capillary tubes.

Let a tube having a fine bore be

wet with a liquid, say a glass tube

wet with water, and let it be

placed vertically with its lower

end in the liquid. The liquid will rise to a height such that its

weight is equal to the surface tension at the top of the column.

In case of water and glass the angle of contact is zero, but to

make the consideration general the angle will be assumed to be d.

The component of T which is effective in lifting the liquid is ac,

which is equal to T cos Q, Fig. 160. This is the tension per

centimetre, and the number of centimetres to be here considered

is the circumference of the bore of the tube. Hence the upward
force due to the surface tension is

2KrT cos d

This force is balanced by the weight of the column of liquid,

which is

nr'-hpg

Hence 2'KrT cos d = nr'^hpg

27 cos d

Fig. 160.

or h-
rpg

(188)
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where h is the height of the column, T the tension, r the radius

of the tube, p the density of the liquid, and g the acceleration

due to gravity.

In case of water in a glass tube,

and cos 6 = 1

2T
hence h= (189)

rpg

This equation shows that the elevation of a liquid varies inversely

as the radius of the tube. The same is true for depression when
the liquid does not wet the tube.

The value of h is the height of the liquid up to the bottom

of the meniscus plus ^r, for the quantity of liquid above the

lowest point of the meniscus is equal to a cylinder the base of

which is the area of cross section of the column and the height ^r.

By accurate measurements of h and r the value of T for

various liquids may be found by equation (188).

125. Some Surface Tension Phenomena.— The area of the

surface of a liquid will always be as small as possible as a result

of the force which constantly tends to drag molecules from the

surface into the body of the liquid, and so the shape and posi-

tion of the liquid will be such that as few as possible of the

molecules will be on the surface. ^
A soap bubble will contract fWr^

into a smaller and smaller sphere ~ ^^r^~^:: z:^r ^=^
-̂

and finally become a flat mem- ~ "^

brane across the bowl of a pipe

or other instrument by which

the bubble was blown.

A soap film across the wide

end of a funnel will, if the

funnel is wet, move to a position P'°- isi-

at the small end where the area of the surface of the film is least.

If two light bodies, such as short pieces of a match, are

placed on the surface of water, about one centimetre apart,

they will come together. As shown in Fig. 161, A, the water

wets the pieces and is raised between them by surface tension.
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Fig. 162.

Thus, the pressure on the convex side of the surface is less than
in the surrounding water, and the bodies are pushed together.

The same movement is noticed when a Ught floating body is

near the side of a vessel.

If the bodies are not wet by the liquid, as when two pieces

of metal are floated on mercury, the liquid between them is

depressed, as shown in Fig. 161,

B, and the bodies are pushed

together by the liquid outside

which is at a higher level.

If a soap film is supported on
a ring or loop of wire, and a loop

of fine thread is floated on the

film, as in Fig. 162, A, then if

that portion within the thread is

broken, as may easily be done

with a hot wire, the thread will be pulled into the form of a

perfect circle, as shown at B.

126. Diffusion of Liquids.— "When two liquids which are

miscible are placed in contact with each other, they will slowly

mingle or diffuse until the whole body of liquid is homogeneous.

The process is similar to diffusion of gases. In gases, however,

molecules move with little interference from neighboring mole-

cules and so the diffusion is rapid, while in liquids the molecules

are never beyond the sphere of influence of other

molecules, hence their rate of diffusion is slow.

The subject of diffusion was first investi-

gated by Graham in 1850 A.D., and he found

that such substances as acids, bases, and salts,

which may in most cases be rediiced to a

crystalline form, will diffuse rapidly, while such

substances as gums, albumen, and starch,

which are amorphous, diffuse slowly. He
therefore classified substances as crystalloids and colloids.

A colloid will prevent the passage through it of another

colloid but will permit the passage of a crystalloid. If, then, a

mixture of crystalloids and colloids be placed in a vessel the

bottom of which is a colloidal membrane, such as parchment

paper, and the whole is placed so that the membrane is beneath

Fig. 163.



LIQUIDS. 175

the surface of pure water, Fig. 163, the crystalloids will pass

into the water, but the colloids will be retained in the vessel.

This operation is called dialysis.

127. Osmotic Pressure. — When liquids which diffuse are

separated by a partition which prevents the passage of one and

permits that of the other, a difference of pressure will be main-

tained on the two sides of the partition. This is known as

osmotic pressure, and may be illustrated by

tying a piece of bladder, coat of intestine, or

other animal membrane over the mouth of a

thistle tube, then filling the tube with copper

sulphate and placing it so that the membrane
is beneath the surface of water. Water will

pass through the membrane into the tube

more rapidly than the copper sulphate passes

out, and the rise of liquid in the tube is a

measure of the increased pressure on that

side of the membrane.

Accurate determinations of osmotic press-

ure have been made by Pfeffer and others by
use of semipermeable membranes which per-

mit a free passage of water but completely

prevent the passage of certain substances

dissolved in water. Such membranes are

made in accordance with a principle dis-

covered by Traube, that a mixture of certain

substances causes a precipitate which is pervious to water but
impervious to certain other substances including the two from
which the precipitate was formed. Pfeffer prepared such a mem-
brane by filling ah unglazed porcelain cup. Fig. 164, A, with a

solution of potassium ferrocyanide and then suspending the cup
in a solution of copper sulphate. The two liquids would meet
within the walls of the cup and precipitate ferrocyanide of

copper, which would appear as a brown ring in a cross section of

the walls as shown in the figure, 5. This membrane may also be
made to form an inner lining of the cup. To the top of the cup
is cemented a glass tube, G, to which is attached a manometer,
m. If the cup and tube be now filled with a solution, of sugar

say, and suspended in a bath of water, the water can pass in

Fig. 164.
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but the sugar cannot come out. The increase of pressure within

the tube is called the osmotic pressure of the solution.

Determinations of osmotic pressures of various substances,

using solutions of various strengths and at various tempera-

tures, show the following results

:

1. Boyle's law for gases is true also for substances in solu-

tion, for osmotic pressure is proportional to concentration,

—

i.e., the pressure is inversely proportional to the volume of

liquid in which the substance is dissolved.

2. Avogadro's law for gases also holds for solutions, for

when a number of grams equal to the molecular weight of a

substance is dissolved in a given quantity of water or other

liquid, at constant temperature, the osmotic pressure is the

same whatever the substance may be,

—

i.e., the pressure of

different substances in solution is the same when the volume,

temperature, and number of molecules are the same.

3. Charles's law for gases, that pressure is proportional to

absolute temperature, is found to be as truly applicable to

substances in solution.

It thus appears that substances in solution exert the same

pressure as they would if converted to gases under the same

conditions.

In certain solutions which are conductors of electricity

—

i.e.,

electrolytes—the osmotic pressure is abnormal, being, in very

dilute solutions, about twice as great as would be expected from

the number of molecules in solution. This is the result of dis-

sociation of molecules into ions, and will be further discussed

under the subject of electrolytes.

Problems.

1. A body weighing 100 g., density 3 e/cc, is immersed in a liquid

the density of which is 1.84 g/cc What will the body then weigh?

2. A mass of 50 g., density 2.6 b/cc, weighs 23.076 g. less when im-

mersed in a liquid. What is the specific gravity of the liquid?

3. A piece of wood weighs 25 g. A sinker weighing 226 g., density

11.3 g/cc, is attached to it and both in water weigh 181 g. What is

the density of the wood?

4. A bottle containing 60 g. of sand weighs, when filled with water,

220 g. When filled with water alone it weighs 180 g. Find the density

of the sand.
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5. A tube contains 2 g. of mercury in 10 cm. of its length. Find the

radius of the tube.

6. A cubical box contains 1000 c.c. of water, density 1 g/cc- A
tube, also filled with water, extends 10 m. from the top of the box at

angle of 30° to the horizontal. Find the total pressure on the bottom of

the box.

7. With what velocity will water issue from an orifice when the

pressure is 100 g. per square centimetre, viscosity not being taken into

account ?

8. What volume of glycerin at 20° C, the coefficient of viscosity

then being 8.3, will flow through a tube 1 m. long and 1 cm. radius in

1 min., the difference of pressure at the ends of the tube being 1000

dynes ?

9. If a soap solution of density p rises to a height h in a. capillary

tube of radius Rt, what, in these terms, will be the pressure on the inte-

rior of a bubble of radius Rb formed of the same solution?

1.



CHAPTER VI

HEAT

128. Heat and Temperature.—Heat is the state or condition

of a body in reference to the kinetic energy of the particles of

which a body is composed. As already explained, the molecules

of all bodies are in motion, and it is the energy possessed by
virtue of this motion that we call heat. This form of energy

includes not only that due to the molecule as a whole, but also

that due to the motions of the atoms and electrons within the

molecule.

Temperature is the degree of activity of the particles of which

a body is composed.

For a long time there were two theories in regard to the

nature of heat. The commonly accepted theory up to the begin-

ning of the nineteenth century was that heat is a fluid the total

quantity of which is constant. This supposed fluid was called

caloric. It was assumed to be self repellent and that it would

consequently spread throughout a body of matter. Bodies

were hot or cold according as caloric was present or absent.

The various phenomena of heat were explained in accordance

with this hypothesis. But those who believed that heat is not

a substance but a condition of a substance finally brought

forth experimental evidence, as will be shown later under ther-

modynamics, which completely overthrew the caloric theory.

It is now well established that heat is a certain quantity of

energy which a body may possess by virtue of the invisible

motion of its particles, and temperature is the degree to which

such energy exists in any given mass of matter.

The terms hot and cold have no absolute sigfnificance in

physical science, but are used to describe sensations. A body is

said to be hot or cold when its temperature is higher or lower

than that of the human body. These terms may be used in a

relative sense. Thus, ice may be said to be hot in relation to

liquid air or liquid hydrogen, and a red-hot piece of iron may be

considered cool in comparison with the electric arc.

178
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Heat afEects nearly all the properties of matter. Inertia

and mass are not changed by a change of temperature, but

volume, elasticity, tenacity, conductivity, state as to solid,

liquid, or gas, and so on, are all changed when heat is added or

withdrawn from a body.

Some of the phenomena and laws of gases, such as the kinetic

theory and Boyle's law explained in a previous chapter, are, in

a sense, heat phenomena, but there the purpose was to explain

the nature of a gas, while in this chapter attention is directed

to the effects when heat is increased or diminished, and the

relation of heat to dynamics.

129. Expansion.—One of the most noticeable effects of heat

is change in the dimensions of a body when a quantity of heat

is added or withdrawn. The expansion which results from an

increase of heat may be considered as linear, superficial, or

cubical. Expansion is always cubical, but each dimension may
be considered separately.

The coefficient of expansion is the increase per unit length,

area, or volume, when the temperature rises from 0° to 1° C.

Consider first the linear expansion of solids. Let k be the

coefficient, L„ the length at 0° C, and L^ the length when the

temperature is raised to t°. Then, assuming for the present

that the rate of expansion is the same for each degree,

^=^^ (190)

Thus, the coefficient of linear expansion is the fractional part of

the total length at zero which a body increases in length when
the temperature is raised from 0° to 1° C.

1 «*

Fig. 165.

From (190) the length at any temperature is expressed by

or Lj= L„(l+;i) (191)

In case of solids the value of the coefficient is very small,

and hence L„ need not be at 0° C, but may be the length at any
given temperature. If a bar, B, Fig. 165, is increased in tem-
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perature from 0° to 1° C, it will increase in length ab, say

.00001 of its length. Then if the temperature is further increased

from 1° to 2°, the increase in length will be as before and .00001

oi,ab in addition. This increase in the length of ab is, for most
purposes, negligible. Hence, if a bar of iron, for example, is

100 cm. long at 20° C, its length at 100° C. is found with suffi-

cient exactness by

L,o„ = 100(1 + .000012 X 80)

The coefficient of linear expansion of solids may therefore be

defined as the increase in length per unit length per degree.

For gases and liquids, particularly for gases, the coefficient

is comparatively large, and consequently, as will be shown later,

the increase per degree must be taken as a constant part of the

volume at zero.

The coefficient of superficial expansion of solids is the increase

in area per unit area per degree. Let this be represented by a,

then
At=A„il+at) (192)

where A is area.

Since unit area is the square of unit length, equation (191)

may be written

or At= Aa{l+2Xt+ X'f)

But, since ^ is a very small fraction, being of the order .00001,

the quantity XH' is negligible, and so

At=A,{l+2M) (193)

—i.e., the coefficient of superficial expansion of solids may be

considered as equal to twice that of linear expansion.

The coefficient of cubical expansion of solids is the increase

in volume per unit volume per degree. Let this be represented

by V, then
V,= V,{l+vt) (194)

where V is volume.

Since volume is the cube of the unit of length, equation (191)

may be written

Ut^L^il+ZXt + dX'f+kV)

or F,= y„(l+3A0
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since ZXH^ and XH^ are negligible, for reasons given above.

Hence the coefficient of cubical expansion of solids may be

considered as equal to three times that for linear expansion.

130. Determination of L— Numerous methods have been

devised for the experimental determination of the coefficient

of linear expansion. In all of them the effort is made to measure

exactly the increase in length of a given rod for a certain change

of temperature. One method is illustrated in Fig. 166. Microm-

eter microscopes are first focussed on fine lines near the ends

of a rod, ab, while ice-water or water at a known temperature

g
| i'

\ \^
i

\
Fig. 166.

is made to flow through the jacket A. Then steam at tempera-

ture t° is in turn passed through the jacket and the micrometer

screws are turned till the spider lines again coincide with the

lines on the bar. The sum of the changes in the readings of the

micrometers is the increase in length, and this, divided by the

length at 0° C. and the number of degrees through which the

temperature is raised, is the average coefficient of linear expan-

sion for the range of temperature used, as shown by equation (190)

.

131. Expansion of Liquids.—In case of liquids cubical expan-

sion is the only kind that is ordinarily considered. Since liquids

are contained in vessels which also expand or contract with

change of temperature, the apparent change in the volume of

the liquid is the difference between its change and that of the

vessel. This is called the apparent expansion. The actual

expansion of the liquid is called its absolute expansion. The

rise of mercury in a thermometer, for example, is a case of

apparent expansion, the absolute expansion of mercury being

considerably greater than that of glass.

If a large bulb with capillary tube attached. Fig. 167, is filled

with a liquid, the effects resulting from temperature changes may
be observed by changing the bulb from one bath to another of

different temperature. Thus, in a certain experiment the bulb

was filled with water and placed in a bath at 10.8° C. The top

of the water in the stem came to rest at b. The bulb was then
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transferred to another bath at a temperature of 24° C, and the

water in the stem at once dropped from bto a,a distance of 8 mm.
From a the Hquid then gradually moved up to c, a distance of 162

mm. above a. The drop from & to a was caused by an increase

in the capacity of the bulb before heat was conducted

to the liquid within. A moment later the water began

to receive heat and, since its coefficient of expansion is

greater than that of glass, the water was forced up the

tube. The thread ac is thus the total increase in the

volume of the water. If the bulb could be first

-6 warmed without any heat being communicated to the

La liquid and the liquid then raised to the same tempera-

/^\ ture, the volume ac would be the absolute expansion.

This divided by the total volume of liquid and the

number of degrees rise in temperature would be the

coefficient of absolute expansion. Approximate results

may be obtained in this manner, but it is better to

V y observe the apparent expansion be and to this add
Fig. 167. ^-^^ increase in the capacity of the bulb, for it is clear

that if the volume of the bulb had remained constant, the liquid

would have risen higher by a distance ab. Hence, if V is the

original volume of the liquid, and also the capacity of the bulb,

Vg the coefficient of expansion of the glass, w„ the coefficient of

apparent expansion, v the coefficient of absolute expansion, and

t the rise in temperature, then

Vvt=VvJ + Vv„t

or v=v^+Vg (195)

—i.e., the coefficient of absolute expansion of a liquid, as meas-

ured in this maimer, is the sum of v^+Vg.

The value of Vg may be found by filling the bulb with a liqiiid

of known coefficient of cubical expansion, mercury for example,

and thus finding the value of w„ for mercury. Then, knowing

V and Va, the value of Vg is at once calculated by (195). The
volume per tmit length of the stem may be foimd by weighing

a measured length in it of a liquid of known density, then the

volume for this length would equal the mass divided by the

density.
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An improved method, not affected by the expansion of the

containing vessel, was devised by Dulong and Petit and later

improved by Regnault for finding the absolute coefficient of

expansion of liquids. Two tubes, ab and cd, Fig. 168, are con-

nected at the top by a horizontal

tube, ac. Side tubes at the bottom,

bg and de, are connected to each

other as shown. The vertical tubes

are filled with liquid to the top of

the arm ac, a small hole n insuring

that the height in the tubes will not

be greater than at n. The tube t com-

municates with an air-compressor, so

that the pressure on the surface of

the liquid at k and / may be varied

at will. The tubes ab and cd are

surrounded by vessels which may be

filled with ice, or water at any desired

temperature. Suppose cd is packed

in ice at 0° C, and ab in water at t° Then, since the heights

of columns of liquid that balance each other are inversely as the

densities of those liquids,

Iff e

-f

Fig. 168.

(196)

where \ and p^ are the height and density of the column at

0° C, /i and p being the height and density of the warm column.

The upper surfaces of both columns are in the horizontal line

ac, and the pressure at k is the same as that at /. Hence the

difference of level at / and k must result from the greater density

of the cold liquid. If the portion ef has the same temperature

as the cold liquid, it will just balance the portion md in the tube,

consequently the pressure at / is due to the column cm. Like-

wise, if gk has the same temperature as the warm column, the

pressure at k is that due to the column ao. Hence, if cm is repre-

sented by ha and ao by /j,

KSPo = hgp (197)

or
h

_P_

Po
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By measuring the difference in level between / and c, which is

h^, and between k and a, which is h, the ratio of the densities

may easily be found.

From (194), the equation for cubical expansion,

Since volume in any case is equal to mass divided by density,

P

and so the equation for cubical expansion may be written

m m—=— (1+^0
P Po

p K

hence v=Kr^ (198)

where v is the absolute coefficient of cubical expansion.

If the liquids in both ef and gk axe at the temperature of

the cold body, dm is balanced by ef as before, but gk now
requires a longer column than ho, say hi, to balance it. Hence,

taking depth to represent pressure on each side,

ab— bl= cd—ef,

and, by adding bl = gk,

ab=cd—ef -\- gk = cd—kf

From this it is seen that if the total length ah is measured and

called h, the same distance less the vertical distance between

k and / is \. These values can then be used in (198).

The coefficients of cubical expansion of liquids are con-

siderably larger than those for solids (see table 24 in appendix)

,

hence for accurate work it may be necessary to consider the

coefficient as a fractional part of the volume at 0° C. only.

132. Maximum Density of Water.—Water differs from other

liquids in that it is most dense when its temperature is about
4° C. When the temperature of a body of water is raised or

lowered from this point, expansion occurs. The density of water

at 0° C. and that at 8° C. are very nearly the same. Since the
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Pig. 169.

cooling of a body consists in a decrease of molecular activity,

a body must always contract in volume when it is cooled. If

it expands when cooled, some other cause must be assigned for

the effect. In case of water it appears that a rearrangement of

molecules begins at about 4° C, and, as the

cooling continues, more and more molecules take

positions in the crystalline form peculiar to ice,

an arrangement which requires more room. This

is sometimes expressed by saying that "ice mole-

cules" and "water molecules" exist together

when the temperature is between 0° C. and 4° C.

The density of water at various temperatures is

given in table 20 of the appendix.

133. Expansion of Gas.—When the thermal

expansion of a gas is considered, it is necessary

to designate the pressure to which the gas is sub-

jected, for a gas differs from a solid or liquid in

being very compressible. Let a body of gas. Fig.

169, be enclosed in a cylinder under the pressure of the atmos-

phere and the weight of the piston. If the gas is now heated,

the piston will be raised,

—

i.e., the volume will be increased under

constant pressure. The volume at any temperature may then

be expressed by
V,= V„(l+vt) (199)

where v is the coefficient of cubical expansion at constant pres=

sure.

If the piston had been fixed in position, the applciation of

heat would have caused an increase of pressure but no change

of volume. In this case the pressure at any temperature would

be expressed by
P, = P,il+^t) (200)

where /? is the coefficient of pressure. Thus we may find the

coefficient at constant pressure or at constant volume. Careful

experiments show that for a perfect gas these two coefficients

are numerically the same. The value of v may be found experi-

mentally from (199), where
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and the value of /? from (200) , where

Pt-Pop=-
Pot

The value of /?, the coefficient of pressure, can be more easily

and accurately found, and hence it, instead of v, is nearly always

determined. The method consists in enclosing a mass of gas

—

air, for example—in a bulb and subjecting it to a pressure such

that, whatever the temperature of the gas may be, the volume

is kept constant. Thus let B, Fig. 170, be a glass bulb filled

Fig. 170.

with dry air and connected to A by a tube of small bore. The

tubes A and 5 with the connecting rubber tube are filled with

mercury as shown. A pointer is fused into the glass at P to

indicate the exact height to which the mercury in A must be

kept that the volume of air may be constant. If B is now sur-

rounded by snow or shaved ice, the temperature of the air within

will become 0° C. The tube 5 is then raised or lowered until

the pointer P just touches the surface of mercury in A. The

difference of level in A and 5 is then read by means of a cathe-

tometer. This difEerence added algebraically to the height of the

barometer gives, in centimetres of mercury, the pressure of the

air in the bulb. Call this pressure h^. Then let the bulb be

surrounded by steam at, say, 100° C. The pressure of the gas
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will increase and it will be necessary to raise 5 a considerable

distance to bring the mercury again to the pointer. This dif-

ference of level added to the barometric height gives the pres-

sure at 100° C. Call this pressure h^^g. Then

P —P h —h

for the pressure is proportional to the height of the column of

mercury. Careful experiments of this kind show that

V-^o ^ 3gg (202)

Now, if this range of temperature from the freezing of water to

the boiling of water at a pressure of 76 cm. of mercury be divided

into 100 equal steps or degrees, then for each degree

—i.e., for a rise or fall of one such degree as we have assumed

the pressure or volume of a gas is increased or diminished yts of

the volume at the temperature of melting ice. Such a scale of

temperature is known as the Centigrade scale.

134. Law of Charles.—A law known as the law of Charles,

also as the law of Gay-Lussac, states that the thermal coefficient

of all true gases is .00366 or ^-fj-—*-^-i ^.n increase in tempera-

ture of Y^xr of the range from the freezing to the boiling of water

under standard pressure increases the volume or pressure -^-g.

Since this coefficient is large as compared to that for solids, it

is always to be taken of the volume at the freezing temperature

of water,

—

i.e., 0° C. Thus, suppose it is desired to know how
much 100 c.c. of a gas at 20° C. will increase in volume if its

temperature is raised to 50° C, the pressure being constant.

From equation (194)

V, = V,{l+^t)
. -.100 = ^0(1+^%)

or y„ = 93.174 c.c. = volume at 0°C.

Then F^, = 93.174(1 -|-^) = 110.24 c.c. at 50° C.

A better method of making such a calculation is given in the

next section.
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135. Absolute Temperature.— It is evident from equation

(200) that since

then, if t becomes —-273,

—

i.e., 273° C. below the temperature

of melting ice,—the pressure becomes

•• P-273=^ero

This means that all molecular motion at that point would cease,

and, since temperature, which is the degree of molecular activity,

cannot be further reduced, this point in the centigrade scale is

called the absolute zero. The number of degrees of tempera-

ture reckoned from the absolute zero is the absolute temperature

.

Thus, for any temperature t as reckoned from 0° C. the absolute

temperature is 273 +i, which will here be denoted by r. Now,

from equation (200)

^»=#J (205)

—i.e., the pressure of a gas at constant volume is proportional

to the absolute temperature, for Pj and x are the only variable

quantities in (205).

It has been shown that if the pressure is constant the volume

will vary as does the pressure when the volume is constant,

hence we may also write

V.^^ (206)

—i.e., the volume of a gas varies directly as the absolute tem-

perature. Hence the illustrative problem of the preceding

section may be more simply solved by making the volumes

proportional to the absolute temperature, thus

X _ 273-f50

100 ~ 273 -H 20

. . :K = 110.24c.c. at 50° C.

136. Laws of Boyle and Charles Combined.—^If a body of

gas at 0° C. and of volume V,, is under a pressure P„, then if the
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pressure is changed to P the resulting volume will be, say, V^.

By Boyle's law
PoVo=PV,

the temperature being constant during this change. If then

this volume F^ is kept at constant pressure while the temperature

is changed, the volume will be changed to, say, V. Then, by
equation (206) , substituting the value of V, for Vg,

^=W (207)

whence the volume at any pressure and temperature may be

found if the volume under standard conditions is known. A
temperature of 0° C. and pressure of 76 cm. of mercury are

standard conditions for a gas.

It is often desirable to reduce a gas to standard conditions

when the volume at any given pressure and temperature is

known. This may readily be done by use of (207). Thus,

273PF
(208)

" P„T

where Pq is 76 cm.

Equation (207) may be written in the form

P FtPV=^ (209)

P F
in which „"„„'' is a constant for any given gas and is usually

designated by R. Hence (209) may be written

PV =Rr (210)

for unit mass of gas. For a mass m,

PV^mRv (211)

or P = -^Rz= pRz (212)

where p is the density of the gas.

When p, T, and P of any gas are known, the value of R can

be found once for all for that gas. For air the value of R is

2.872(10)'; for hydrogen, 4.14(10)'; for oxygen, 2.59(10)«;

for nitrogen, 2.96(10)°.
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Problems.

1. What must be the length of an iron wire or rod at 20° C. that it

may just fit into a space of 100 cm. when its temperature is 100° C. ?

(Coef. =.0000117.)

2. If the steel bars of a gridiron pendulum are 85 cm. long, how long

should the brass bars be that the length of the pendulum may not change

with change of temperature? (Coef. of steel = .000012, coef. of brass =
.000018.)

3. A copper wire 100 m. long is found to be 3.44 cm. shorter when
its temperature falls 20° C. What is its coefficient of expansion?

4. If a metre bar of nickel steel is correct in length at 0° C, its co-

efficient of expansion being .0000012, what is the correct length of a

metal rod which when compared with the standard bar at 20° C. meas-

ures 800 mm. ?

5. A sheet of lead is 3X20, feet in area and its coefficient of linear

expansion is .000028. What will be its change in area if the temperature

is raised 40° C. ?

6. The mass of a certain body of oxygen is 6 g. The temperature is

22° C. and the pressure is 74.3 cm. of mercury. What is the volume of

the gas?

7. The capacity of a glass bulb is 50 c.c. It is filled with a liquid.

The capillary stem attached to the bulb is uniform in bore and 10 cm.

of its length will hold .1 c.c. of liquid. When the bulb is heated 10° C.

the- liquid rises 23.725 cm. in the stem. What is the absolute coefficient

of expansion of the liquid if the coefficient of linear expansion of the

glass is .0000085?

8. A certain volume of gas at 0° C. and under a pressure of 74 cm.

of mercury is heated to 100° C. and its pressiu-e is then found to be 101.084

cm. What is its coefficient of cubical expansion?

9. If 2500 c.c. of a gas is under a pressure of 82 cm. of mercury and at

a temperature of 20° C, what will be its volume under standard conditions ?

10. What is the value of the constant R for a gas which under stand-

ard conditions has a density of 1.5 g. per litre?

11. What is the density of oxygen gas at —73° C. and under a pres-

sure of 10 atmospheres?

1. 99.906 cm.

2. 56.666 cm.

3. .0000172.

4. 800.0192 mm.
5. 19.35 sq. in.

6. 4629.1 c.c.

7. .0005.

8. .00366.

9. 2513.2 c.c.

10. 2.474.

11. .019 g. per c.c.
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137. Thermometry.—A thermometer is an instrument by
which the degree of molecular activity of one body may be
compared with that of another,

—

i.e., it is an instrument for

the comparison of the temperatures of bodies. The tempera-

ture sense may be employed for this purpose with a fair degree

of accuracy in the comparison of two bodies of the same kind

when their temperatures do not differ widely from that of the

human body. If, however, the two bodies have the same tem-

perature but are of different materials, as wood and metal, the

metal will feel much cooler than the wood if both are cooler

than the hand, and warmer if both are warmer than the hand.

This results from the fact that metal conducts heat more rapidly.

The unreliability of the temperature sense may be illustrated

by placing one hand in hot and the other in cold water for a

short time, then transferring both to tepid water. The sensa-

tion in one hand will be markedly different from that in the

other, though the temperature is the same.

That temperature may be accurately and reliably measured,

it is necessary to select some property of matter that is, as

nearly as possible, always affected in the same manner by the

same changes of temperature. The properties commonly
selected are (1) cubical expansion of gases or mercury, (2) change

in electrical conductivity of platinum when the temperature is

changed, (3) the change in electromotive force when there is a

change of tem^perature at the junction of dissimilar metals which

form part of a conducting circuit, (4) the change in the energy

radiated from a hot body when its tem,perature changes, and (5)

the displacement of maximum radiation to shorter wave lengths

when temperature rises (§ 166).

138. Hydrogen Thermometer.—There are two thermometers

in very common use, one being dependent on the cubical expan-

sion of a gas, usually hydrogen, nitrogen, or air, and the other

dependent on the cubical expansion of a liquid, usually mercury.

The former consists of a bulb filled with a gas and operated as

shown above in Fig. 170. When the bulb is filled with hydrogen,

the apparatus is known as a hydrogen thermometer. The
International Committee of Weights and Measures, in 1887,

adopted the hydrogen thermometer as the standard.
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By equation (200)
P —P

' "
(213)

hence, if the pressure of the hydrogen at the temperature of

melting ice is P„ and at the temperature of boiUng water under

standard condition of pressure is P^, and if this range of tem-

perature be divided into 100 equal parts, the temperature of

melting ice being called zero, then the temperature at boiling

point is

or, if pressure is expressed in height /t of a column of mercury,

h —h

The value of /? has been very carefully determined and found to

be .0036625, which is equal to ^fj to within .0000005. Hence

the temperature at the boiling point of water at 76 cm. pressure

^=^Ii%-^ (216)

Hydrogen is used as the standard because it most nearly com-

plies with Boyle's law, and its coefficient of thermal expansion

is the same at different pressures, at least through a considerable

range in pressure.

If Pt—Pa= ^TsPa' then, from equation (213),

273Po
'~273P„~^ ^-

—i.e., an increase in the pressure of the gas at constant volume

by ^4t o^ *^^ pressure at zero indicates a change of 1° C. in tem-

perature.

If Pt—P<i = YT% of t^^ pressure at zero, then

^ 100X273P„

273Po
: 100° C.

Thus any other temperature on this scale may be found if the

pressure at zero and the pressure at that temperature are

known. Thus, suppose the pressure P^ or h^ is 78 cm., includ-
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ing, of course, the atmospheric pressure, and P, or fe„ the press-

ure at the given temperature, is 90 cm., then

^^
(90-78)273 ^^^.^

In determining the temperature by this method a correction

must be made for the expansion of the bulb and also for the

portion of gas in the stem which is not subjected to the change

of temperature.

139. Mercury=in=glass Thermometers. — Gas thermometers

are used chiefly as standards and are useful in testing the accu-

racy of other thermometers. But, for obvious reasons, they are

not employed in the ordinary determinations of temperature.

The mercury thermometer is in most common use, and the

principle upon which it is based is that the apparent change in

the volume of a mass of mercury in glass may be taken as a

measure of the change of temperature which caused the change

of volume. Mercury is selected as the best liquid for this pur-

pose because (1) its rate of expansion is nearly constant at any

temperature between its freezing and boiling points, (2) it is

a good conductor of heat, (3) it does not wet the glass, (4) it

remains a liquid through a wide range of temperature (about

—39° C. to 357° C.) , and (5) it is opaque and can readily be seen.

In form this thermometer consists of a glass tube with a fine

bore and having a bulb blown on one end. It may be filled by

inserting the open end in raercury and heating the bulb to drive

out some of the air. When the bulb cools, a small quantity of

mercury is forced by air pressure into the stem and bulb. This

is then boiled, and thus the whole bulb and tube are filled with

vapor of mercury. When this vapor condenses, the air pressure

from without will fill the bulb with mercury. The thermometer

is then heated to the highest temperature which it is intended

to measure and the open end is sealed with a blowpipe. When
the mercury contracts, there will be a vacuum above the thread

in the stem.

Since the bore of the stem is very fine,—scarcely visible

except as it is magnified by the convex surface of the glass,

—

a small change in the volume of the mercury in the bulb causes

a very perceptible rise or fall of the thread in the stem. But the

13
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observed change of volume is only apparent, for the glass bulb

also changes in volume, and it is only because the coefficient of

cubical expansion of mercury is about .00018 while that for

glass is only about .000025 that mercury rises in the stem when
the bulb is heated. The hollow bulb will increase in volume
just as if it were solid glass.

140. Graduation of Thermometers. — The temperature of

melting ice is chosen as a point of reference; hence, if the bulb

of a thermometer is packed in pure crushed ice or snow, the

thread of mercury in the stem will sink to a

certain point and become stationary while the

ice is melting. This point is marked zero on the

centigrade scale. The bulb and stem are then

immersed in a bath of steam above boiling water

under a pressure of 76 cm. of mercury. The
mercury rises and becomes stationary at a point

which is marked 100° C. on the centigrade scale.

The intervening space is then divided into 100

equal parts or degrees, these being in some cases

divided into fifths or tenths of a degree. This

thermometer is almost exclusively employed for

scientific purposes, and to some extent also for

industrial and domestic purposes.

Another form of graduation, called the

Fahrenheit scale, is commonly used in England

and America for commercial and meteorological

purposes. In it there are 180 divisions between

the temperature of steam and melting ice, the

zero being 32 of these divisions below the

temperature of ice. The boiling point of water on this scale

is therefore 212° F. when the pressure is 76 cm.

Another scale, named after Reaumur, is used in Germany.

It consists of 80 divisions between the melting point of ice,

which is zero, and the boiling point of water, which is 80° R.

These three styles of scales are shown together in Fig. 171.

In transferring from one scale to another, it is only neces-

sary to consider that 100° C, 180° F., and 80° R. all indicate

the same range of temperature. Hence for the same range the

number of degrees C. is f of the number F. and f of the num-

FiG. 171.
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ber R. The number F. is f of the number C. and f of the

number R. Likewise any given range R. equals f C. or f F.

To transfer the reading from, any one of the three scales to

another, it is only necessary to multiply by the proper ratio.

The result will be the reading in reference to the ice line. If,

however, the transfer is from the F. scale to either of the others,

32 must first be subtracted to obtain a reading F. in reference

to the ice line, while, if the transfer is to F. from either C. or R.,

the reading of C. or R. is first multiplied by the proper ratio,

which gives the reading F. in reference to the ice line, and 32°

is then added to obtain a reading in reference to 0° F. This is

the procedure whether the readings are positive or negative.

141. Calibration of Thermometers. — If a mercury-in-glass

thermometer is to be used for exact measurement of tempera-

ture, it should be calibrated,

—

i.e., its error at any given tem-

perature must be noted and recorded so that proper corrections

may be made whenever the thermometer is used. One method
of calibration is to compare the readings to the temperature as

indicated by a hydrogen thermometer when both are subjected

to the same temperature, as when the mercury thermometer

and the bulb of the hydrogen thermometer are placed in the

same bath. By varying the temperature of the bath, the errors

on the mercury scale as indicated by the hydrogen thermometer

may be noted. This operation is tedious, and a much easier

method is to compare one thermometer with another which has

been carefully calibrated and can therefore be used as a standard

for many purposes.

Another method, fully described in laboratory manuals,

consists in finding the error of the boiling and zero points by
immersing the thermometer first in a bath of steam and then

packing the bulb in pure melting ice. The bore of the tube is

then tested for variation in cross section by separating a short

thread of mercury and measuring its length as it is moved from

point to point along the tube. With these data it is possible

to make on coordinate paper a chart which shows at a glance

the correction which should be made at any temperature.

One source of error in mercury thermometers is a slow change

in the volume of the bulb which continues for a long time after

the glass has been intensely heated in the process of manufacture.
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The bulb becomes smaller and smaller with comparative rapidity
^ during the first few weeks, but may slowly continue

this so-called secular change for several years.

Even after the glass has thoroughly recovered from

the effects of the first heating, if it is transferred from

steam to ice there will be a depression of the zero point,

showing that the glass does not at once recover its

volume. Different kinds of glass behave differently in

this respect, but good thermometers made of the same
kind of glass agree very closely with one another.

The sensitiveness of a mercury-in-glass thermometer

may be indefinitely increased by increasing the capacity

HI of the bulb and decreasing the bore of the tube. With
the Beckmann thermometer, shown in Fig. 172, a change

of xrff" C. may be read on a graduated scale. The
range, however, is greatly reduced, being here only

J^ about 5° C. The instrument is so constructed that this

range may be selected at any place from several degrees

s below 0° C. to a number of degrees above

g 100° C, according to the particular tempera-

ture at which the change is to be noted. By
aid of an auxiliary scale. Fig. 172, B, the

J g) I I^H thermometer may be set for any desired

temperature, by warming the bulb till mercury

rises to that temperature as marked on the

auxiliary scale and then, by inverting the

thermometer, the excess of mercury may be

passed around the bend in the tube. The
fine thread of mercury will then show the

iJli 1 changes at that temperature. To find the

exact temperature and the value of 1° on the

Beckmann scale, comparison must be made
with a standard thermometer.

142. Thermometers for Special Purposes.

—

It is often desirable to know the highest or

lowest temperature reached during a given

period of time. An instrument so constructed
Fig. 172. that it wiU automatically make such a record

is called a maximum and minimum thermometer. One form of
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such instrument is shown in Fig. 173. It consists of two ther-

mometers placed in a horizontal position. The maximum ther-

mometer—the lower one in the figure—is filled with mercury.

As the temperature rises, a thread of mercury is pushed along in

the stem, but when the temperature falls, the thread will sepa-

i
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gives room for the expansion of the liquid and also supplies

the pressure needed to support a diflEerence in level of the mercury-

column when the temperature falls. By use of a magnet the

glass tubes are brought back to the mercury.

Another thermometer, of special construction for convenience

of physicians in taking the temperature of the human body, is

called the clinical thermometer, Fig. 175. In this instrument

• JTn?aTrrrri-rc: )

Fig. 175.

the scale need extend over only a few degrees, say from 90° to

110° F. Consequently the stem is short and the mercury does

not reach the scale until the temperature is about 94° F. At a

point just above the bulb there is a constriction in the tube, so

that the thread of mercury which rises in the stem will remain

there. The thermometer can then be taken from the mouth and

read at leisure, for when the mercury in the bulb contracts it

will break at the constriction. By shaking or swinging, the

mercury in the stem may be returned to the bulb.

The expansion of any substance may be used for thermo-

metric purposes, though, as has been shown, some substances are

much better for this purpose than others. The expansion of

metals is sometimes used to indicate temperature, according to

principles illustrated in Fig. 176. Two bars of metal of different

P/-

coefficients of expansion are riveted or brazed together, as B
and S, brass and steel, one end being fastened to a firm support,

A. Since B will expand more than S (see appendix 24), then,

when the bar is heated, the end c will move downward; when

cooled, upward. This motion may be multiplied by a lever,

ap, pivoted at o. A pencil at p may be made to trace a line on

a revolving drum. The drum is slowly rotated by clock-work, and

the line is traced on paper specially prepared for the instrument,
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horizontal lines indicating temperature and vertical lines time.

This instrument is called a thermograph, and is useful in making a

record of temperature changes during any chosen interval of time.

143. Pyrometry.—Mercury tmder a pressure of one atmo-

sphere will boil at 357° C. and in vacuum will boil at lower

temperature. For this reason an ordinary mer-

cury-in-glass thermometer cannot be used to

measure temperatures which are much above

300° C. Air thermometers may be used at higher

temperatures, but are not suitable for ordinary

determination because of the difficulties in their

manipulation.

A department of physical science devoted to

laws and methods for the measurement of high

temperatures is known as pyrometry. Not only

for scientific but also for many industrial purposes,

it is often a great advantage to know with some

degree of accuracy the temperature when it is

high. For example, in annealing furnaces, porce-

lain kilns, glass furnaces, and steel castings, the

best results are obtained only within a compara-

tively narrow range of temperature.

One form of thermometer, capable of measur-

ing temperatures from about —200° C. up to

about 1200° or 1400° C, is the platinum resistance

thermometer. This, shown in Fig. 177, consists

of a coil of platinum wire, from which leads

extend to the top, where they are connected to

two of the binding posts. Lying close to these

leads is a loop of wire having exactly the same
resistance as the leads and connected to the other

two of the four posts at the top. The coil and Fig- 177.

leads are enclosed in a porcelain or glass tube. For high

temperatures porcelain is used. The end of the tube containing

the coil of platinum is placed in a furnace, molten metal, or

whatever it may be of which the temperature is desired. The
method by which the temperature is obtained is shown in the

diagram. Fig. 178. The platinum coil T is connected, by means
of cables, P,P, to one arm of the bridge, while the compensating

"W
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loop is connected by cables C,C, of the same resistance as P,P, to

binding posts at a gap in the adjacent arm. The purpose of the

compensating loop and cables is, that, whatever change in resist-

ance may result from a change of temperature in the leads and

cables in one arm, the same change will be made in an adjacent

arm, and so the balance of the bridge will not be disturbed on

this account. Only the change of resistance in the coil T will

a Banery
G C. Barancinc Cell

B S. Battary Switch

6 W. Bridgo Wire

Con^psnaating Lsads
G- Calvanomater
CW Calvanometar Wire

I B. lea Bobbin
P. Thefmomct«< Leadtf

R Rheoatat

RAR. Ratio CoilB

r. Battery RcaiatarvMb
T. Thcrmomatar Bulb
2 Za^o CoU

Fig. 178.

affect the bridge. The bridge may be balanced by adjusting the

resistance in BC and R. Then any change in the temperature

of the coil will be indicated by the position on the bridge wire,

BW. where contact must be made with the galvanometer to

maintain the balance of the bridge.

If now the resistance of the platinum coil is measured while

it is at the temperature of melting ice, i?„, and then when at

the temperature of boiling water under a pressure of 76 cm.,

i?i^, the change in resistance per degree centigrade is

100
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and so the temperature for any other resistance, Rt, is

Tpt={Rt—Ro)
100

100(ig,-.R„)
(217)

where Tpt represents the temperature as measured by the

platinum thermometer. If the change of resistance from 0° C.

to 100° C. is one ohm, then the temperature is found by

r^,=ioo(i?,-i?„) (218)

Other substances of known temperature should also be used

in calibration,—for example, sulphur, which boils at 445° C.

The cables may be of any length, so that the measuring

device may be at any convenient distance from the heated

body whose temperature is being measured.

Another valuable instrument in pyrome-

try is the thermo=electric thermometer. The
principle in this thermometer is, that, if two

wires or bars of dissimilar metals are joined

at one end and made part of a conducting

circuit, then, if the temperature is changed

at the juncture, a current of electricity will

be caused to flow in the circuit. The electro-

motive force caused by heating the joint is

proportional to the temperature. A delicate

voltmeter will indicate the electromotive

force, and so by proper calibration with

known temperatures the scale of the volt-

meter may be marked in degrees and the

temperature is then read directly from the

voltmeter. As shown in diagram. Fig. 179,

two wires forming the thermo-electric couple

are fused together at one end and enclosed

in a tube.

Since this end of the couple must be

raised to the high temperature which is to ^'°- ^''^

be measured, it must be made of the most infusible metals.

A common form of couple consists of platinum for one element

and an alloy of platinum and iridium or platinum and rhodium

for the other. These may be used up to temperatures of 1400°
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or 1600° C. For lower temperatures less infusible metals may
be used, such as copper and constantan. This style of pyrometer

is in common use. It is suitable for any temperature within

the range 500° C. to 1600° C. It can be used to determine the

temperature of small quantities of a substance and is less

expensive than the platinum resistance thermometer.

Both the thermo-electric and the platinum thermometers

may be made to record temperature on a rotating drum through

any desired interval of time.

F:g. 180.

A third style of instrument is known as the radiation pyrom=

eter. The principle underlying the use of this instrument is

a law known as the law of Stefan and Boltzmann,—viz., the

total energy radiated from a black body is proportional to the

fourth power of the absolute temperature of that body. If T
is absolute temperature and E is the radiant energy,

E<xT*

This pyrometer, as shown in Fig. 180, consists of a tube in which

is mounted a concave mirror, M, and a thermo-couple, F.

Radiations from a hot body fall upon the mirror and are focussed

on F. This heats the thermo-couple and causes a current of

electricity to flow through a galvanometer, as explained above

in case of the thermo-electric thermometer. The observer

sights through E and makes sure that the image of the hot body
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overlaps F on all sides. The deflection of the galvanometer

needle is proportional to the energy focussed upon the thermo-

couple, and the energy, as just stated, is proportional to the

fourth power of the absolute temperature. Hence, if R^ and R^

are the deflections corresponding to T^ and Tj, the divisions on

the galvanometer scale being uniform, then

T. ^R.
(219)

Thus, if a body having a known temperature, T^, causes a

deflection, R^, then the temperature, T^, of another body which

causes a deflection i?2, can be calculated. In this manner the

scale of the galvanometer may be graduated in degrees centi-

grade and the temperature read directly.

The advantages of this thermometer are that it may be used

to determine any temperature from 500° C. up to the highest

temperatures known, while the thermo-couple itself need not

be raised to more than about 100° C. in any case. Also, the

heated body may be of any size and the thermometer at any

distance, provided only the image is large enough to cover

entirely the thermo-couple. When the thermometer is set

closer to the heated body, more radiant energy falls upon the

mirror, but at the same time the image is larger, so that the

same amount of energy falls upon the constant area of the

couple.

The law of Stefan and Boltzmann is true only in case the

heated body is black when cold,

—

i.e., the body must be capable

of emitting waves of all lengths. For this reason the radiation

pyrometer gives what is called block body temperature. This

is the true temperature if the body is black, but the tempera-

ture of a bright body, such as platinum, when determined in

this manner, is less than the true temperature. The temperature

of iron or of a furnace as observed through an opening in one

side is very close to the true temperature. The black body

temperature is just as useful as the true one if it is known to

indicate a state which is desired.

Other pyrometers (§ 168) adapted to special uses are also

employed in pyrometry and are described in special works on

that subject.
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Problems.

1. If a certain mass of gas at constant volume is under standard

conditions of temperature and pressure, what increase of temperature

will increase the pressure to 100 cm. of mercury?
2. What increase of temperature will be required to cause a confined

mass of gas to exert twice as great a pressure?

3. If the temperature changes 25° C, what is the change F. ?

4. If the reading on the Fahrenheit scale is 12°, what is the read-

ing C?
5. If the sum of the readings of all three thermometers (C, F., and

R.) for the same temperature is 150, what is the temperature C. ?

6. Calculate the absolute zero as expressed on the Fahrenheit scale.

7. A glass flask of 200 c.c. capacity is filled with dry hydrogen at

0° C. and 76 cm. pressure. The pressure is constant while the temper-

ature is raised 100° C. How much gas, measured under standard con-

ditions, will flow out, the coefficient of cubical expansion of glass being

.000025?

8. What correction in degrees C. should be made for the expansion

of the glass bulb of a hydrogen thermometer, the pressure of the gas at

constant volume being increased by heat from 76 cm. to 86 cm. ?

1. 86.2° C.

2. 273° C.

3. 45° F.

4. -11J°C.
5. 32.78° C.

6. —459.4° F.

7. 53.25 c.c.

8. .279° C.

144. Calorimetry.—A quantity of heat is a definite physical

magnitude and so is capable of measurement. For this purpose

some convenient and practical unit must be selected. The
quantity of heat required to melt one gram of ice would be a

good unit, but would be inconvenient and impractical in many
ordinary determinations. The joule (10' ergs) is a unit of energy

and might be adopted as the unit quantity of heat, for heat is

a form of energy. Again, the unit might be the heat resulting

from the passage of a known current of electricity through a

conductor of known resistance. While any of these might be

adopted as a standard, just as a hydrogen thermometer is the

standard in temperature, yet for practical use the unit that is

nearly always employed is the amount of heat that will raise

the temperature of 1 g. of water 1° C. This unit is called the

gram, calorie, often simply the calorie. The amount of heat

required to raise 1 kg. of water 1° C. is called the large calorie.
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It is found that the quantity of heat needed to change the tem-

perature of 1 g. through 1° C. is not exactly the same at different

temperatures, being least at about 30° C. and increasing from

that point toward 0° C. or 100° C. The difference is slight, and
for most purposes the quantity needed to change 1 g. 1° C. may
be taken as

i-J-j-
of that required to change the temperature of

1 g. 100° C. For very precise work it may be necessary to specify

that the calorie used was the quantity of heat needed to change

the temperature of 1 g, of water from 0° to 1°, from 4° to 5°, or

whatever temperature is selected. There is an advantage in

taking as the calorie the amount of heat needed to change the

temperature of 1 g. from 10° to 11° C, for then the mechanical

equivalent of heat (§ 171) is almost exactly 42,000,000 ergs or

4.2 joules. The British thermal unit (B.T.U.) is the quantity of

heat required to raise the temperature of 1 lb. of water 1° F.

145. Thermal Capacity.—It is a matter of common experi-

ence that the temperatures of equal masses of different substances

will often be very different although each may receive the same

quantity of heat. That substance in which the temperature is

least changed is said to have the greatest capacity, just as in

case of several vessels the one which is least filled by the same

amount of water has the greatest capacity. The quantity of

heat that will change the temperature of a body 1° C. is the

thermal capacity of that body. Thus, if 475 cal. of heat will

raise the temperature of 1 kg. of copper 5° C, the thermal

capacity is

475-^5 = 95 cal.

Thus 1000 g. of copper has the same thermal capacity as 95 g. of

water.

146. Specific Heat.—The specific heat of a substance is its

thermal capacity per unit mass. Thus, if H is the quantity of

heat applied to a substance, t the change in temperature, and

m the mass, then the specific heat, s, is

^-~ (220)

Since the value of 5 for water is unity, the specific heat of any

substance is the ratio of the quantity of heat required to change

its temperature 1° C. to the quantity required to change the
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same mass of water 1° C. at a chosen standard temperature.

The average specific heat of glass, for example, is about .2, which
means that two calories of heat would change the temperature

of a given mass of glass as much as ten calories would change

the same mass of water.

147. Molecular Heat.—The number of calories required to

raise one gram-molecule of a substance 1° C. is called the mo-
lecular heat. A gram-molecule of a substance is a number of

grams equal to the molecular weight of that substance,

—

e.g.,

2 g. of hydrogen, 44 g. of COj, 400 g. of mercury, and so on. The
difference in specific heat of various substances is due in part to

the difference in the number of molecules in unit mass of those

substances. But by taking a gram-molecule of each the number
of molecules is the same in all, and the molecular heat for cer-

tain groups of substances is then fotmd to be very nearly the

same. Thus, the specific heat of oxygen at constant volume is

.2175 cal. per gram per degree. The molecular weight of oxygen

is 32 g., hence the molecular heat is

.2175X32 = 6.95

Likewise the specific heat of hydrogen at constant pressure is

3.409, and the molecular weight is 2, hence the molecular heat is

3.409X2 = 6.82

Similarly for CO, the molecular heat is

.245 (12-1-16) =6.86

For a number of simple substances in a gaseous condition the

molecular heat is about the same as in these illustrations, but

for solids, liquids, and the more complex gases the molecular

heat is much greater. This is due to the fact that the heat

applied to a body is expended not only in increasing the motion

of translation of the molecules, but also in doing internal work,

such as the separation of the molecules against a force of cohe-

sion, a change in the rate of motion of the atoms and electrons

within the molecules, change in the structure of the molecule,

or any work other than that which changes the energy of the

molecule in translatory motion. In case of simple gases the

molecules are assumed to be very nearly independent of one

another, and hence very little internal work need be done. Their
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molecular heat is consequently expressed by a small number.
In other substances the heat must not only increase the trans-

latory motion but also do internal work. The specific heat of

copper, for example, is .095, and its molecular weight is 126.8,

hence the molecular heat is

.095X126.8 = 12.05

For steam the molecular heat is

.4805 (2 + 16) =8.64

A number of substances similar in structure to copper will have
about the same molecular heat, while another group of substances

will be classed with steam in this respect,

—

i.e., the difference in

molecular heats is due only to the quantity of internal work
which must be done.

The relation between specific heat and atomic weight was
pointed out by Dulong and Petit early in the nineteenth century,

and they announced a law which bears their name, that the

product of specific heat by atomic weight is a constant for all

elementary substances. This, as shown above, is approximate

only for certain groups of substances, being about 6.4 for ele-

mentary solids and 3.4 for elementary gases. These numbers are

one-half of the molecular heats.

148. Change of Specific Heat with Change of Temperature.—
The specific heat of most substances increases with increase of

temperature. For gases, water, and most solids this change is

small, and for most purposes the average specific heat between
0° and 100° C. is a sufficient approximation. In case of most

liquids, however, the change is not negligible, and the specific

heat of carbon in form of diamond has been shown to be about

four times as great at 300° C. as at 0° C.

149. Water Equivalent.—It is often an advantage to know

the number of grams of water that will have the same thermal

capacity as a given mass of any other substance. This is called

the water equivalent of the substance, and may be found by

multiplying mass by specific heat. Thus, the water equivalent

of 100 g. of copper is 9.5 g. In this way the equivalent of a

containing vessel may be added to the water contained, the

whole then being treated as water.
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ISO. Latent Heat.—When solids which are crystalline are

heated, the temperature will rise till a point called the melting

point is reached. The temperature then becomes stationary

until all the solid becomes liquid. The quantity of heat required

to change 1 g. of such a solid at melting point to a liquid at the

same temperature is called the latent heat of fusion. If the liquid

be further heated, the temperature will again rise until the

boiling point is reached, where the temperature again becomes

stationary and remains so until all the liquid is converted to

vapor. The amount of heat needed to convert 1 g. of a liquid

at boiling point to vapor at the same temperature is called the

latent heat of vaporization. Each crystalline substance has a

definite latent heat for both fusion and vaporization, and these

values for ice and water are greater than for any other substance.

(Table 24.)

The calorists explained these phenomena by saying that a

certain quantity of heat became latent when a substance changed

its state. The term is retained, but the explanation is that the

heat which is called latent is expended, not in increasing the

motion of translation of the molecules, but in the separation of

the molecules against forces which bind them together. Heat

energy applied in this manner becomes potential energy, and

does not then affect the thermometer which indicates only the

energy of molecular motion. When the operation is reversed,

as when steam is changed to water or water to ice, all this po-

tential energy will be restored in form of heat energy, just as

the potential energy of a mass of iron or stone lifted to a certain

height may all be recovered in form of heat or other energy by
allowing the mass to fall to its original position.

The latent heat of fusion of ice has been determined many
times by various experimenters, and a fair average of the results

is that about 80 cal. of heat are required to melt 1 g. of ice,

—

i.e.,

the latent heat of ice is 80 cal.

If 100 g. of ice at 0° C. is mixed with 200 g. of water at 100° C,
the water equivalent of the containing vessel being a part of the

200 g., the resulting temperature, correction being made for

radiation, will be about 40° C. The heat lost by the hot water is

expended in melting the ice and raising the temperature of the

water resulting from the melting of the ice from 0° to 40° C.
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experimenters

Since the loss of heat on one side is equal to the gain on the

other, then, if L is the latent heat of ice, we may write

200 (100-40) = 100L + 100 X40

.". L= 80 cal. per gram.

In a similar manner it may be shown, by condensing steam

in a given mass of water and noting the change in temperature,

that the latent heat of vaporization of water at 100° C. is

very nearly 536 cal. per gram. Some careful

obtain as high as 536.6 cal.

A convenient instrument

for determination of latent

heat of vaporization is that

known as Berthelot's appa-

ratus, shown in Fig. 181. A
small quantity of liquid,

about 50 c.c, is put into the

vessel a and heated by a ring

burner beneath. The vapor

passes down a tube to the

ground joint /, where it

enters a coil and is con-

densed by the surrounding

water in the calorimeter.

The condensed liquid is col-

lected in the bulb h, and the

amount is determined by weighing the coil and bulb before and

after the experiment. The water in the calorimeter is stirred by

the loop of wire, and its rise of temperature is noted. From these

data the latent heat of vaporization is readily found by use of

an equation similar to that given above for latent heat of fusion

of ice.

ISi. Specific Heat by Method of Mixture.—^A common method
of finding the specific heat of solids and liquids is by immersing

in water a certain mass of a substance at a high temperature

and noting the resulting change of temperature in both the

substance and the water. If equal quantities of water at differ-

ent temperatures are mixed, the resulting temperature will be

the average of the two; but if some other Uquid or a solid is

14

Fig. 181.
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mixed with colder water, the water will be raised only a few

degrees while the other substance will fall many degrees. Let

Wy, be the weight of the water, W„ the weight of the calorim-

eter, i„ the change in the temperature of the water, W^ the

weight of the solid body or liquid, tf, its change of temperature,

s,. the specific heat of the calorimeter, and s the specific heat of

the body; then, if all the heat lost by the body is gained by
the water and calorimeter.

In this equation no allowance is made for radiation. Errors due

to radiation may for the most part be prevented by surrounding

the calorimeter with non-conducting material or by taking the

temperature of the calorimeter as much below that of the room

as it will be above at the end of the experiment. If correction

for radiation is to be made, it may be done as explained in § 169.

152. Specific Heat by the Method of Melting Ice.—A method

employed by Black was to heat a body to the temperature of

boiling water, or some other known temperature, and then

place it in a cavity in a block of ice, covering all with a slab of

ice. A certain quantity of the ice will be melted, and water, ice,

and the body will after a time have a temperature 0° C. If

now the water be collected by use of a sponge or filter paper,

and weighed, it is evident that

s=^ (222)

where L is the latent heat of fusion of ice and the other letters

have the same values as ia the preceding paragraph. It is

evident that exact results cannot be expected by this method.

153. Bunsen's Ice Calorimeter.—An excellent instrument for

finding the specific heat of solids and liqtiids was devised by

Bunsen. The principle involved is that when ice melts its

volume is considerably reduced—about one-twelfth. A glass

tube, t, is fused to a bulb, B, as shown in Fig. 182. From the

bottom of B a side tube rises to /. The bulb B is filled with
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water which has been carefully boiled to exclude all air bubbles.

The lower end of B and all of the side tube are filled with mercury.
A glass tube of fine bore, about one metre long and graduated
in millimetres, is connected by a ground-glass joint to f through
a stopcock, C. By turning the stopcock the mercury in the

funnel g may be allowed to run out to any desired point in M,
and by turning the cock to another position connection with g
is closed and the mercury in M is joined to that in /. The whole
is enclosed in a double-walled vessel and packed in snow or

crushed ice, only the gfraduated tube and the tops of / and t

extending above. By nmning a stream of ice-water into t, the

temperature of the water in B is soon reduced to about 0° C.

c
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or, to make the conditions general, suppose the end of the thread

of mercury moved from a to b. Then the number of calories

indicated by each scale division would be

wt

Now, if a quantity, Wi, of some other substance at a tempera-

ture t° and of specific heat 5 is dropped into the tube, additional

ice will be melted and the mercury will further withdraw to

some point c,—i.e., through b—-c divisions. The number of

calories of heat given to the ice by the substance is w^t^s cal.

;

hence again the value of each scale division is

Hence

or

b-c



HEAT. 213

the bottle in each case is proportional to the time. Hence

mt _ T
m^ts Ti

where 5 is the specific heat sought, and, since t is the same in

both cases,

niiT
(224)

The mass of the liquids must include the water equivalent of

bottle and thermometer.

155. Specific Heat by Electric Heating.—An excellent method
of finding the specific heat of some liquids is by use of two electric

calorimeters similar to that shown in Fig. 184. Two heavy

copper wires, covered with a coat of shellac to protect them
from the action of the liquids, extend from binding posts down
to a coil of resistance wire near the bottom of the calorimeter.

If the resistance of the coil is about 2 or 3 ohms, a current of

5 amperes will cause it to be-

come hot and thus heat the ^^^3^^ ^-j--

liquid in which it is placed. '^''^ImH/nmW _ i ?

The two calorimeters are ex-

actly alike and the current is

passed through them in series.

The liquid must be thoroughly

stirred and the temperature is read on a delicate thermometer

which passes through the cover. One calorimeter is partly

filled with water of mass m, and the other with liquid of

unknown specific heat the mass of which is m-^. The two

masses are made such that the rise in temperature is very

nearly the same in each calorimeter. This may be done by

a preliminary trial or may be calculated when the specific heats

are approximately known. By doing this the water equivalent

of the calorimeters and the correction for radiation may be

neglected. Let t° be the rise of temperature of the water and t^

that of the other liquid. Since each calorimeter will receive the

same quantity of heat in the same time.
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where 5 is the specific heat sought. Hence

s =^ (225)

156. Specific Heat of Gases.—Gases have two specific heats,

(1) specific heat at constant pressure, which may be denoted by
Cp, and (2) that at constant volume, C„.

If a mass of gas is enclosed in a horizontal cylinder one end of

which is closed by a movable piston, the pressure on the enclosed

gas is that of the atmosphere, which during the time of the

experiment may be considered constant. If now the gas is

heated, it will expand and move the piston against this pres-

sure. Hence an amount of work will be done equal to the product

of the pressure by the change of volume of the gas (§ 102) . Thus,

not only is the gas heated but a certain amount of work is done

beside, both being at the expense of the heat applied. Conse-

quently, when a gas under pressure is made to expand, more

heat must be applied to change its temperature through any

given number of degrees than when it is confined to a constant

volume. When the process is reversed,

—

i.e., when heat is

taken from the gas,—the quantity will be not only that which

caused a rise in temperature but also that which was expended

in work.

If the gas is confined in a vessel which does not permit a

change of volume, less heat is required to cause a given rise of

temperature, for no external work is done. Hence the value of

Cp is always greater than C„.

Specific heat of gases cannot be accurately determined by

simple devices such as are used for solids and liquids, for the

thermal capacity of the containing vessel is large compared

with that of the gas itself, and so it is difficult to obtain reliable

data for the gas which contains only a small part of the total heat.

The operation for finding Cp usually consists in passing a

large quantity of gas continuously through a long spiral coil

immersed in a bath of hot water or other liquid. The gas,

heated as it passes through this coil, is then passed on through

a second coil immersed in the water of a calorimeter. The

product of the mass of water by its rise of temperature gives the

number of calories of heat received from the gas. The mass of
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gas is calculated from its volume and pressure. The product of

its mass by its fall in temperature while passing through the

calorimeter and by its specific heat is the number of calories of

heat given to the water. By equating the calories given up by
the gas and those received by the water, the specific heat of the

gas is readily found. By this method a large quantity of gas

may be used, and by passing it slowly through the coils the

pressure may be kept practically constant.

Specific heat of a gas at constant volume is difficult to deter-

mine by experiment, for reasons mentioned above; but by use

of the steam calorimeter, invented by Jolly, of Dublin, fairly

reliable results have been obtained. This

consists of a vessel, B, Fig. 185, into which

steam is admitted through a tube, 5. The

mass of steam condensed on any object

within S is a measure of the quantity of

heat needed to raise it to the temperature

of the steam. For gases two hollow globes

of the same mass and material are suspended

within the calorimeter, one from each end of

the beam of a delicate balance. Both globes

are exhausted. If steam is now admitted

and the balance remains undisturbed, the

heat capacity of the two globes is the same,

for the same amount of steam is condensed

by each. If the balance is disturbed, weights are added to com-

pensate for the difference. One of the globes is now filled with

a gas under a pressure of 30 or 40 atmospheres, that the mass

may be as great as possible. The other globe remains exhausted.

Steam is again admitted, and the condensation on the globe filled

with gas will be increased, for the gas must receive sufficient

heat to raise its temperature to that of the steam. The weight

needed to restore the balance is the mass of water condensed by

the gas. Knowing the mass of gas nig, its rise in temperature t°,

and the mass of steam condensed m..

Fig. 185.

nigts =Lm„

mJ
.'. 5= - (226)
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where 5 is the specific heat of the gas and L is the latent heat

of steam. No allowance for the thermal capacity of the globe

need be made, for the globes are alike in this respect, nor does

the change of buoyancy due to immersion in steam affect the

balance when two globes are used.

The steam calorimeter may be used in finding the specific

heat of solids and liquids as well as of gases. The solid may be
suspended by a fine wire from one end of the beam and counter-

balanced by weights at the other end.

Specific heat of a gas at constant volume may be deduced

from the fact that the ratio of Cp to C„ is a constant quantity

for any given gas. Thus

where j- is a constant quantity, being 1.41 for air. The value

of y may be fotmd from the velocity of soimd in any gas; the

value of Cp is found in the manner described above, and C„ may
then be calculated from

C. =^ (227)

This ratio is more fully discussed in § 175.

Problems.

1. If 50 g. of copper at 100° C. immersed in 50 g. of water at 20° C.

raise the temperature of the water to 26.94° C, what is the specific heat

of the copper?

2. If a copper calorimeter weighs 50 g. and contains 80 g. of water

at 18° C, what will be the temperature of the water after 10 g. of melt-

ing ice have been strired into it ?

3. How much steam at 100° C. must be condensed in 1 kg. of water

at 20° C. to raise the temperature of the water to 75° C. ?

4. How much heat would be required to melt a block of ice 20 X
30 X 50 cm. ?

5. A room measures 3X4X6 m. The air within the room is at a

temperature of 15° C. and under a pressure of 72 cm. How many degrees

will the temperature of the air be raised by condensing 1 kg. of steam

at 100° C. to water at 100° C. in the steam radiators?

1. .095.

2. 7.65° C.

3. 98.04 g.

4. 2367.18 large calories.

5. 26.6° C.
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157. Fusion and Solidification.— The state of a substance,

solid, liquid, or gas, is mainly dependent on temperature. Iron,

for example, is known as a solid because its temperature is com-

monly such that it is found in that state. Mercury for the

same reason is usually known as a liquid, and hydrogen as a
gas. But any of these substances may be changed to any one

of the three states by proper changes in temperature and pressure.

In case of most crystalline substances there is a definite

temperature known as the melting point. When this point is

reached, a solid will begin to change to the liquid state. While

the solid is melting, the temperature will be constant, for the

heat energy applied is expended in causing a change of state.

During the process of melting, the solid and liquid exist side

by side in equilibrium. More heat simply changes some of the

solid to liquid, and if some heat is abstracted, a portion of the

liquid will change back to the solid state. The quantity of heat

per unit mass required to produce this change of state is called

the latent heat of fusion. (§ 150.) (Appendix 24.)

Substances which are amorphous,—^not crystalline,—such as

glass, rosin, solder, paraffin, etc., gradually soften and finally

become liquid as the temperature is raised, but there is no exact

point at which they may be said to fuse.

The melting point of alloys is lower than that of the metals

which are fused together to form the alloy. Thus, by melting

together tin and lead in different proportions, solder of different

degrees of hardness may be made. Rose's fusible metal, com-

posed of 4 parts bismuth, 1 part tin, and 1 part lead, melts at

94° C. Wood's fusible metal, 4 parts bismuth, 2 parts lead,

1 part tin, and 1 part cadmium, by weight, melts at 60.5° C.

There appears to be a change in the grouping of molecules of

an alloy so that not so much heat is needed to change the state.

Substances which have a definite melting point will in some

instances also change abruptly in volume at the moment of

change of state. Cast iron has practically the same volume in

the solid or liquid state, hence it will take the exact form of the

pattern in moulding. Bismuth and antimony increase slightly

in volume when they solidify. Most substances decrease in

volume when they change from liquid to solid. Water more

than any other substance increases in volume when it solidifies.
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One cubic centimetre of water at 0° C. will in form of ice

have a volume 1.0907 c.c, an increase of more than 9 per cent.

This is a fact of great economic value in nature.

It may readily be inferred from what has just been said that

pressure affects the melting point of those substances that

change in volume on change of state, for pressure would either

assist or hinder that change of volume which accompanies the

change of state. Phosphorus, for example, increases in volume

when it is melted. It will when all pressure is removed melt at

about 44° C, but under a pressure of 2000 kg. per sq. cm. it

melts at about 97° C. Ice, on the other hand, melts at a lower

temperature vinder pressure. Professor James Thomson showed,

from theoretical considerations (see equation 259), that a

pressure of one atmosphere lowers the melting point of ice

.0075° C. Lord Kelvin later verified this by experiment. Under

Fig. 186.

a pressure of 1000 atmospheres water will not freeze above
—7.5° C. Hence, if a strong vessel is filled with water and

closed, the water will either remain a liquid or the vessel will be

hvLTSt when the temperature is reduced below 0° C. Many illus-

trations of the effect of pressure on the melting point of ice

might be given. If a strong iron cylinder, Fig. 186, be filled with

fragments of ice, both cylinder and ice being below 0° C, and

pressure be applied by screwing in the plug which exactly fits

the bore of the cylinder, the ice will be melted, but when the

pressure is then removed the water will by regelation become
one solid block of ice. In accord with this same principle,

snowballs are formed by the pressure of the hands, but if the

snow is very cold the pressure may not be sufficient to cause

any melting. An experiment due to Bottomley consists in sus-

pending a weight from each end of a wire thrown over a block

of ice. The ice beneath the wire is melted by pressure and

flows to the upper side where it is frozen. Thus the wire will in

time pass through the ice and leave the block as solid as before.

The formation of "ground ice" at the bottom of streams or at
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points where there are eddies in the current results from the

fact that water at such points may be near the freezing tem-
perature, and pieces of ice carried by the water are driven against

the bottom. The ice is first melted at the point of concussion

and then at once is frozen and so adheres to the bottom. Other

pieces in a similar manner are frozen to this and so the mass
accumulates.

158. Freezing Point of Solutions.—It is a matter of common
observation that a liquid when pure will freeze at a higher

temperature than when it contains foreign substances in solu-

tion. The principles underlying this subject were investigated

in the last quarter of the nineteenth century by the French

chemist Francois Marie Raoult. He found experimentally

the lowering of the freezing point which resulted from a solu-

tion of acids, bases, and salts in water, acetic acid, benzene,

and other solvents. He used very dilute solutions, less than

one gram-molecule in 2 kg. of the solvent. The advantage in

this is that a considerable quantity of ice can be formed without

greatly changing the concentration, the range of lowering can

be made 1° C. or less and so a delicate thermometer can be used,

and dissociation if such occurs is most nearly complete in very

dilute solutions. From this it is possible to calculate the lower-

ing which would occur in a 1 per cent, solution, assuming that

the rate of lowering would continue. Thus different solutions

would all be reduced to a standard for comparison. The lower-

ing for 1 per cent, solution

—

i.e., 1 g. of a substance in 100 g. of

the solvent—is called the coefficient of lowering. Raoult's

expression for finding this is

where A is the coefficient of lowering, K is the lowering observed

in the experiment, P is the mass of the solvent,- and P' is the

mass of the substance dissolved. The product of this value of

A by the molecular weight M of the dissolved substance is the

molecular lowering T,—i.e., T is the lowering which would be

obtained if one gram-molecule of the substance had been dis-

solved instead of 1 g. This is expressed by Raoult in the equation

MA = T (229)
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As a concrete illustration of this procedure, suppose 40 g. of

H2SO4 is dissolved in 1000 g. of water and that the observed

lowering is 1.56° C. Then, by equation (228),

.4-156
^""° -30

^-^•^^40X100
~-^^

The molecular weight of HjSO^ is 2 + 32+64= 98. Hence, from

equation (229),

r= .39X98= 38.22

The values of T throughout a great variety of solutions cluster

about two numbers, one of which is twice as great as the other.

For solutions in water the numbers are 18.5 and 37. For the

same number of physical molecules in a given solvent the lower-

ing is the same whatever the character of the substance may be.

Variation in experimental results can usually be explained as

resulting from special causes. The purpose of multiplying A
by M in equation (229) is that the lowering can thus be obtained

for the same number of molecules in all cases, for in equal masses

of two substances the numbers of molecules vary inversely as

the molecular weights. Distinction is made between a chemical

molecule and what is often called a physical molecule, the latter

of which may consist of a grouping of, or may be a part of, a

chemical molecule. The greater the number of physical mole-

cules the greater is the lowering of freezing point. When water

is used as the solvent the values of T are either 37 or 18.5. For

all strong acids and bases and all salts of alkalies the number

is 37. These are also the substances which cause abnormally

great osmotic pressure (§ 127) and an abnormal elevation of the

boiling point (§ 161). These are also the solutions known as

electrolytes,

—

i.e., conductors of electricity. In explanation of

this difference in the behavior of solutions, Svante Arrhenius in

1887 announced the dissociation theory now generally accepted.

In accordance with this theory, the molecules of the dissolved

substance in an electrolyte separate iato ions, which are atoms

or groups of atoms charged with positive or negative electricity.
+ -

Thus H2SO4 in water will separate into H and 80^. Each ion

then acts as a physical molecule, and the molecular lowering is

therefore twice as great as when such dissociation does not occur.

In the experimental work of finding the freezing point the solu-
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tion is placed in a test tube around the bulb of a delicate ther-

mometer, the whole being surrounded by a freezing mixture.

When the temperature is sufficiently reduced small flakes or

granules of ice will appear. The difference between this tem-

perature and that at which the pure solvent freezes is the lower-

ing due to the substance in solution.

Since it is the solvent that freezes, the remaining liquid is a

more concentrated solution than before. If the temperature is

further reduced, more ice will be formed, and so on till the

solution is saturated. Any further withdrawal of heat does not

reduce the temperature, but causes more of the solvent to freeze

and a precipitation of some of the substance in solution. This

may be continued till the whole becomes a solid,—a mechanical

mixture called cryohydrate.

It was pointed out by Raoult that the laws governing mo-

lecular lowering could be used to determine molecular weight.

For illustration, the value of T for all salts of alkalies is 37.

Then, if the coefficient of lowering is found for any salt of this

kind, by equation (228), the molecular weight is

M =^ (230)

159. Evaporation.—The process by which many substances

slowly and quietly change to a vapor is known as evaporation.

The process is chiefly observed in the change of volatile liquids

to aeriform fluids, as in case of water, alcohol, ether, etc. Some

solids, such as snow, ice, iodine, etc., may change to an aeriform

state by sublimation,

—

i.e., they appear to evaporate directly

without change to a liquid.

Evaporation is a result of molecular motion within a sub-

stance, and hence may be considered as a heat phenomenon.

It has already been explained that when a substance is in a

gaseous state the molecules are widely separated from one

another as compared with the diameter of the molecules them-

selves, the interspace being something like 100 times greater

than the diameter. Hence there is freedom of motion and but

little constraint from neighboring molecules. In solids and

liquids, however, the molecules are within the range of attrac-

tion of one another. In liquids a molecule has freedom of
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motion through the mass of a substance, but whatever position

it may have, it is subjected to the attractive influence of its

neighbors (§ 119).

The molecules of a liquid are in motion in all directions as

long as the substance contains any heat energy. Only at the

theoretical, absolute zero are all supposed to be at rest. If,

then, molecules move up to the surface of a liquid, as cotmt-

less numbers are doing, their escape into the space above will

in most cases be prevented by the attraction of their neigh-

bors below. Consequently a liquid has a definite surface and a

surface tension. It may readily happen, however, that some

molecules moving with greater speed than others will leap from

the surface and will free themselves from the attractive force

of their neighbors. In this way a mass of liquid may under

proper conditions of temperature and pressure be completely

changed to a vapor. Not only do molecules of the liquid leap

into the space above, but a number of those of the vapor re-

enter the liquid. As long as the former is in excess, evaporation

will continue. When the number leaving the liquid is equal to

the number that re-enter it, the vapor is said to be saturated.

Then, although evaporation still continues, the quantity of

liquid is not diminished.

A liquid is cooled by evaporation. This is as would be ex-

pected, for those molecules that are moving with greatest velocity

are the ones most likely to leap from the surface, hence there is

a decrease in the average kinetic energy of the molecules that

remain in the liquid. Hence when a liquid evaporates rapidly

there will be a rapid fall in temperature. This fact is utilized

in the manufacture of ice. Ammonia gas is liquefied by cooling

and compression and is then allowed to evaporate rapidly into

a coil which is submerged in strong brine. The temperature of

the brine is thus reduced below 0° C. and is then made to flow

about the metal moulds which contain the water to be frozen.

The same gas is returned to the pump, where it is again lique-

fied and the operation is repeated.

In accordance with the theory of the cause of evaporation,

it is plain that the rate at which a liquid will evaporate depends

on (1) the area of the surface exposed, (2) the temperature of

the liquid, (3) the removal of the vapor as soon as it appears
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at the free surface, as by fanning or any movement of air, and

(4) decrease of pressure on the surface of the liquid.

160. Vapor Pressure.—-The molecules of a vapor are in

rapid motion, and so will, like a gas, exert a pressure on the

walls of a containing vessel. The vapor of each liquid will when
saturated exert a pressure known as its vapor pressure at that

temperature. While a saturated vapor is in presence of its liquid,

any change in the volume of the vapor will

not change the pressure, for any decrease of

volume only changes some of the vapor to

liquid and any increase of volume only

allows some liquid to vaporize. This fact

may be shown experimentally by use of the

apparatus shown in Fig. 187. A U-shaped

glass tube, each arm of which is about 76 cm.

long, is closed at one end by a stopcock. By
inclining the tube to one side with the end a

beneath the surface of mercury, an aspirator

or pump may be used to fill one arm of the

tube. If the stopcock is now closed and the

tube placed upright, the difference in height

of the mercury columns in the arms will show

the atmospheric pressure in centimetres of

mercury. If now the tube a above the stop-

cock is filled with ether or some other volatile

liquid, and the cock is turned so that only a

drop or two of the liquid is admitted to the

vacuum above c, the heights of the mercury

in the arms will change, as shown in B.

Sufficient ether is admitted so that a small

quantity in the liquid form may be seen at c'.

saturated, and the difference in the levels c

from the difference in level of c and b is the vapor pressure ex-

pressed in centimetres of mercury. If this pressure were equal to

the pressure of the atmosphere, c' and 6' would be at the same level.

Now let some mercury be poured in at d'. Both c' and b'

will rise, but their difference of level will be unchanged. As c'

rises, more vapor will change to liquid, but the pressure will not

change. (Appendices 28 and 29.)

Fig. 187.

^
The vapor is then

and b' subtracted



224 GENERAL PHYSICS.

161. Boiling Point.—When a mass of liquid is heated, not

only is evaporation increased but at a certain temperature bub-

bles of vapor formed within the liquid rise to the surface. The
liquid is then said to boil, or to be in a state of ebullition. When
boiling begins, temperature becomes constant, and all heat

applied to maintain the process of boiling becomes latent heat

of vaporization (§ 150). The temperature at which boiling

begins is called the boiling point under the conditions present.

Boiling point is greatly modified by pressure. This is as would
be expected, for bubbles of vapor cannot form until there is

equilibrium between vapor pressure and external pressure. In

fact boiling point may be defined as such an equilibrium. It

will be noted in appendix 28 that water boils at 100° C. when the

pressure of the atmosphere is 76 cm., because the vapor pressure

at that temperature is also 76 cm. The same table shows that

when the external pressure is 45 cm. water will boil at 83° C.

When a liquid is confined in a vessel,

—

e.g., water in a boiler,—
it may be heated far above the boiling point, for the pressure of

steam above the water prevents vaporization. Any decrease

of steam pressure, as when a valve to the engine is opened,

permits some water to vaporize. When a confined mass of

water contains all the heat necessary for its vaporization, it

will, unless the containing vessel is strong enough to prevent it,

explode with terrific violence, for 1 c.c. of water will when vapor-

ized in air occupy nearly 1500 c.c. of space. It is safe to heat

water to the boiling point, 100° C, only because an additional

536 calories must be added to convert each gram of it to a vapor,

and this under ordinary conditions is a slow process.

Many other conditions also modify the boiling point. The
nature of the material of a vessel and the roughness or smooth-

ness of the interior walls may cause a difference of several degrees.

In a glass vessel the temperature of boiling water may be as

much as 3° C. higher than in a metal one. A few tacks or a

small quantity of sand thrown into a vessel of hot water will

lower the boiling point 1° C. or more. Water must contain

nuclei of some kind, such as air, which is nearly always found

in water, before bubbles of vapor can be formed. Pure water

from which all air has been removed may be heated far above

the boiling point. It is then in an unstable condition and liable

to vaporize all at once,

—

i.e., it will explode.
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Bubbles of vapor formed at the bottom of a vessel are under

the pressure of water above them and also the pressure due to

surface tension of the bubble. For these reasons, the tempera-

ture is higher than need be for equilibrium with atmospheric

pressure, but when the bubble breaks at the surface, the vapor

at once expands and is thus cooled to the true boiling point.

For these reasons, the bulb of a thermometer is suspended in

the vapor above a liquid, and not in the liquid, when the true

boiling point is sought.

The boiling point of solutions was investigated by Raoult,

and his results were published in 1887-8 A.D. His researches

showed that when one gram-molecule of a non-volatile substance

is dissolved in 100 g. of a solvent, the molecular lowering of

vapor pressure is independent of the nature of the substance,

—

i.e., is dependent only on the number of physical molecules

present; that in dilute solutions the lowering is proportional to

the concentration; and that for a given solvent there is nearly

a constant ratio between the molecular lowering of the freezing

point and that of vapor pressure. Since vapor pressure is

lowered by the presence of substances in solution, the boiling

point is raised, for a higher temperature is then necessary to

cause equilibrium between the vapor and the external pressure.

Some substances in solution cause an abnormal lowering of

vapor pressure. These are the same substances as those that

cause an abnormal osmotic pressure or an abnormal depression of

freezing point. These phenomena are due to dissociation (§ 158).

From a knowledge of the lowering of vapor pressure or,

what is more easily determined, the elevation of the boiling point,

it is possible to calculate molecular weights of soluble substances

that are non-volatile. The vapor above a solution is that of the

pure solvent, and hence the bulb of a thermometer must be

placed in the solution to obtain its boiling temperature.

162. Isothermals of a Vapor.—According to Boyle's law, the

product of pressure by volume of a gas is constant as long as

the temperature does not change. A curve plotted on the pres-

sure-volume diagram for a gas which is very nearly true to

Boyle's law is shown in Fig. 120. This is the curve for a given

mass of air at 22° C. If air had been at a higher or lower tem-

perature, other similar curves would have been formed either

15
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farther from or closer to the axes of reference. Such curves are

called isothermals, for the temperature remains constant dur-

ing the changes in volume and pressure. In case of a vapor,

however, the curve is different, because at the point of satura-

tion a decrease of volume is not accompanied by an increase of

pressure (§ 160). Thus, in Fig. 188 let the point a represent the

pressure and volume of an tinsaturated vapor. As the pressure

increases the volume will decrease,

forming the curve ab, which is thus

far much like the curve of a gas.

Further decrease of volume does

not increase the pressure (§ 160),

but will convert the saturated

vapor at 6 to a liquid at c. This

change is therefore represented by
the horizontal line he, in which the

vapor and liquid exist together

with a distinct plane of separation.

If the state is /, the ratio of the

quantity of vapor to the quantity

of liquid will be as cf to fb. When
all is in the state c a further increase of pressure results

in only a slight diminution of volume, as indicated by cd, for

liquids are only slightly compressible. The curve abed is an

isothermal of a vapor. If successively higher temperatures are

taken, a similar series of changes in volume and pressure will

produce similar isothermals, but the horizontal parts of the

curves will become shorter and shorter, for there must be a

greater decrease of volume before condensation begins and the

liquid has greater volume at higher temperature. The point at

which the horizontal line becomes infinitely short is called the

critical point. If a line is passed through the points of satura-

tion and the points of complete conversion to liquid, as shown

by the dotted line in Fig. 188, the highest point of the curve

thus formed is the critcial point P The line Pb is sometimes

called the steam line and Pc the water line. The temperature

of that isothermal which passes through the critical point is

called the critical temperature. The pressure corresponding to

the point P is called the critical pressure, and the volume of

Fig. 188.
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represents a state of tinsaturated vapor at 65° C. and a pressure

of 10 cm. It is plain from this diagram that a vapor in this

state may be saturated either by uicreasiag the pressure to 6,

—

i.e., to 20 cm.,—or by reducing the temperature to c,—i.e., to

49° C. Whenever the state may be represented by a point on

the saturation curve, the vapor is saturated.

In Fig. 190 any point on the curve Pc represents a state in

which a vapor and its liquid are in equilibrium,

—

i.e., they can

exist together without any of either passing over into the state

of the other. This is the saturation curve of Fig. 189. Any
point in Ph represents the

pressure and temperature

at which a state of equilib-

rium exists between the

solid and the liquid. In

this diagram Ph is drawn
for ice and water, and,

since ice melts at a slightly

higher temperature when
pressure is decreased, the

line will slope a very little
^'"'° downward toward the

right. Some solids, such as

ice, will evaporate and pass into vapor by a process called

sublimation. This process will continue until there is equi-

librium between the pressure resulting from the tendency of

the solid to pass into vapor and the counter pressure of

the vapor against the solid. Any point on the line Pa
represents a state of equilibrium between a solid and its

vapor at that pressure and temperature. A point common to

these three lines represents a state called the triple point. Here
the vapor is in equilibrium with its liquid, the liquid with its

solid, and the solid with its vapor. This condition may be

realized by a simple experiment first performed by Leslie.

A shallow metal dish containing 3 or 4 c.c. of water is supported

over another dish containing strong sulphuric acid. These are

placed on the plate of an air-pump and covered with a shallow

receiver. By exhausting the air the water will rapidly evaporate

and its vapor is in large measure absorbed by the acid. Satura-
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tion of vapor in the receiver is thus prevented and the water

will be rapidly cooled to the freezing point where its vapor

pressure is only .46 cm. The triple point has then been reached,

and the water is observed to boil and freeze at the same time.

163. Humidity.— Humidity is the state of the atmosphere

in reference to the amotmt of water vapor it contains. Rela-

tive humidity is the ratio between the mass of vapor actually

contained in a given quantity of air and the mass which it would

contain if it were saturated. This is evidently the same as the

ratio of the vapor pressures or vapor densities on the assumption

that Boyle's law holds true for vapors. Absolute humidity is the

mass of vapor in the unit volume of air. Relative humidity is of

greater importance and is usually designated simply as humidity.

Air in its natural state always contains more or less water vapor,

which may be brought to a state of saturation by a reduction of

temperature, thus causing clouds, fog, and dew. The dryness of

air, however, depends not so much on the quantity of vapor

present as on the nearness to saturation. An increase of tem-

perature will cause air to appear dry though the quantity of vapor

remains the same.

That which relates to the determination of humidity is

called iiygrometry, and an instrument used for this purpose is a

hygrometer. The three classes of instruments of most impor-

tance are (1) chemical hygrometers, (2) dew-point hygrometers,

and (3) wet and dry bulb hygrometers.

In use of a chemical hygrometer a quantity of air of known
volume, temperature, and pressure is passed through a drying

tube which contains calcium chloride, pumice stone soaked in

sulphuric acid, or phosphorus pentoxide. The increased weight

of the tube is the actual amount of vapor in the air used. The
ratio of this quantity to that which the air would hold if satu-

rated is the humidity. (Table 30.) This method is accurate,

but is somewhat difficult and tedious and is seldom used except

for special scientific purposes.

The dew=point hygrometer is in common use. There are

several different styles of instruments of this kind. A good form

is one shown in Fig. 191, known as the AUuard hygrometer.

The face of this instrument is polished nickel. The surface D is

the front part of a metal tube which is filled with ether. One
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thermometer shows the temperature of the ether and the other

that of the air. By attaching a long rubber tube to A, it is pos-

sible by use of a bulb to force a stream of air bubbles up through

the ether. Thus the temperature is rapidly lowered and a mist

appears on the surface D. The
temperature of the ether when the

mist first appears is the dew-point.

The thermometers are read through

a telescope at a distance, so that the

humidity may hot be affected by the

breath or heat of the body. Knowing
the dew-point and the temperature of

the air, it is seen from the diagram,

Fig. 189, that the pressure of a satu-

rated vapor at these temperatures

would be represented by ordinates

erected at the proper points of tem-

perature on the abscissa and limited

above by the saturation curve. The
ratio of the ordinate at dew-point to

the one at the temperature of the air

is the humidity, for the longer ordi-

nate is the pressure which the vapor

would exert at that temperature if

saturated. Instead of using the curve

the pressures may be taken from table

29 in the appendix.

The wet and dry bulb hygrometer

is also in common use. One form of

it is shown in Fig. 192. Two ther-

mometers are mounted as shown, and

the bulb of one of them is covered

by a hollow wick which extends into

a vessel of water. If the air were saturated with moisture no

water would evaporate and the two thermometers would show

the same temperature. But in proportion as the air is dryer the

rate of evaporation will be greater and consequently the reading

of the wet bulb thermometer will be lower. Evaporation at the

maximum rate will occur when the air is moving about 10 feet per

Fig. 191.



HEAT. 231

second. After the temperatures have become stationary the ther-

mometers are read. Then, by reference to psychrometrical tables

prepared by long observation and by comparison of this instrument

with dew-point hygrometers, the humidity may be directly found.

164, Transference of Heat.—There

are three ways by which heat is dis-

tributed or moved from one point to

another,—viz., conduction, convection,

and radiation. There is but one way,

in fact, by which heat as such distrib-

utes itself through a body, and that is

by conduction, where heat energy is

passed from molecule to molecule.

Convection is an efficient method in

the distribution of heat, as when por-

tions of heated gases or liquids are

displaced by buoyancy, thus causing

a circulation which brings the colder

portions of the fluid in contact with the

source of heat. Convection involves

the use of some agent outside of the,

heated body to effect the transference.

The heated body is carried from place

to place. A hot mass of iron carried

into a cold room would be a method of

distribution according to the principles

of convection. The uses of convection are numerous, as in

the heating of water by the application of heat to the bottom

of a vessel; the heating of buildings by the circulation of hot

air or hot water; the circulation of the atmosphere and the

movemients of ocean currents. In case of radiation a heated

body sets up ethereal vibrations which are not heat, though

they possess energy at the expense of the body whence they

came, and when they are arrested by another body heat energy

will appear again. Thus heat energy may be transferred through

the agency of ether waves. Conduction and radiation are more

fully discussed in the sections which follow.

165. Conduction. — While we say that heat is conducted

from molecule to molecule throughout a mass of matter, yet it is

Fig. 192.
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not known by what mechanism this is accomplished. There

appears to be an intimate relation between heat and electricity,

as is evidenced by the fact that a good conductor of heat is also

a good conductor of electricity. It has been suggested that the

"roaming electrons," which when set in motion along a con-

ductor cause what is known as a current of electricity, are also

the agents by which heat is conducted. Silver and copper are

the best conductors of electricity and also of heat. A list of

conductors and non-conductors of electricity stand in nearly

the same order as for heat.

Heat conductivity is usually measured by the number of

calories of heat that will pass through a cubic centimetre of a

substance in one second when the difference of temperature on

two opposite faces is 1° C. It is plain that more heat, Q, will

flow in proportion as the area of the faces a, the time T, and the

difference of temperature, t^ — t^, are greater. Also Q will be less

in proportion as the distance, /, between the two faces is greater.

Hence

Qcc-
I

If k is the constant for any given substance,

—

i.e., the conduc-

tivity as just defined,—then

Q^^ait-QT
^231)

where Q=k when all the other terms in the equation become

unity. From (231)

a{t,-t,)T
(232)

By use of an apparatus like that shown in Fig. 193 the value

of k may be found experimentally. A rod of copper, c, is enclosed

at one end in a jacket through which steam from the tube a is

made to flow. The other end is surrounded by a coil through

which a steady stream of water flows. The thermometers t^

and ^2 are fitted into holes in the rod at a distance, /, from each

other. The whole is packed in abestos or other non-conducting

material, that radiation may be prevented. Practically all the

heat communicated to the rod by the steam will be conducted
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to the water at the other end. After the steam and water have

been flowing for some time the readings of the thermometers

will become stationary. Then, by collecting a mass, M„, of

Fig. 193.

water which flows in time T around the end of the rod, the

quantity of heat which flows through the rod in that time can

be measured. The temperature of the water has been raised

ti—ig degrees; hence

Q = M„{t-t,) (233)

Equation (232) may then be written

a{h-h)T
(234)

in which all the terms in the right-hand member may be deter-

mined by the experiment.

The rate at which the temperature of a bar of metal or other

substance will rise when heat is applied at one end of it depends

not only on thermal conductivity but also on another property

called diffusivity,—i.e., the rate at which heat spreads, causing

a rise of temperature in the cooler parts of the body. This

depends on the specific heat of the body as well as on the con-

ductivity. A body of large coefficient of thermal conductivity
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and also large specific heat may diffuse heat more slowly than
one of low conductivity and very small specific heat. Let 5 be

the specific heat and p the density of the substance, then sp is

the quantity of heat required to raise the temperature of unit

volume 1° C. But if the quantity of heat measured by k is

applied to this unit volume, the temperature will be raised /°.

Then
k=spt

k
or t =— (235)

Thus it is seen that the rise of temperature is directly propor-

tional to conductivity and inversely proportional to specific

heat. The ratio expressed by the right-hand member of equa-

tion (235) is called the diffusivity.

166. Radiation.—Radiation is a process by which a heated

body sets up waves in the surrounding ether. The body is thus

cooled by a loss of heat energy which then appears as energy

of wave motion. Ether serves as a medium for the transference

of heat, but the medium itself is not heated. If several bodies

at different temperatures are placed apart from each other in an

enclosure from which the air is exhausted, all will in time have

the same temperature. The transference could not have been

by convection for there was no air in the vessel, nor could it

have been by conduction for the bodies were not in contact.

One may feel the warmth of a fire at a distance from it, though

the intervening air may be at freezing temperature. Heat

energy of the sun is transformed into that of ether waves which

move with the velocity of light, 3(10)"* cm, through about 1.5(10)'

kilometres of space to the earth, where the energy is converted

back to heat.

According to Prevost's theory of exchanges, all bodies are

constantly giving out ether waves whether there are other

bodies to receive the waves or not. When several bodies of

different temperatures are considered in their relation to one

another, the hotter bodies radiate more heat than they receive

from the cold ones, so in time there will be thermal equilibrium.

Radiation still continues, but each body receives as much heat

as it loses and hence there is no change of temperature.
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There is abundant evidence that heat and light waves are

identical in character, the only difference being the length of

the -waves. Both are transmitted on the ether and travel with
the same speed. Both may be reflected, refracted, or dispersed.

They are distinguished only by the difference in effects produced
by waves of different length. When the wave length is .0004

mm. a sensation of violet is produced in the eye. As the waves
grow longer and longer all different shades of color will result

until red is reached, where the wave length is .00076 mm. These

are only the limiting values of wave lengths that affect the eye.

Much longer waves, formerly called heat waves, may be detected

below the red of the spectrum.

167. Source of Ether Waves.—Waves set up in any medium
have their origin in a vibrating body. A vibrating bell or tun-

ing-fork sets up waves in the air, but waves of heat and light are

transmitted on ether. These travel with a speed of 3(10)"' cm.

per second; hence, if the wave length is .00004 cm., as in case

of violet light, the number of waves per second must be 3(10)""-^

4(10)'^ = 7.5(10)'^ This then must be the number of vibrations

of the particles which cause waves of violet. It is thought

that the vibrating particles which cause heat and light radia-

tions are not the molecules but the minute corpuscles of which

the molecules are composed. Waves of ether may vary in length

all the way from .00001 cm. to several kilometres in length.

168. Measure of Radiant Energy.—Instruments used in the

measurement of etherial radiations are called radiometers.

Various forms of radiometers have been devised, the most

common of which are here described.

The thermopile, shown in Fig. *

195, consists of a number of thermo- ' ^^
couples made preferably of bars of "" *

antimony and bismuth joined so that -—

the electromotive force at each joint

will be in the same direction. In ^'°' ^^*'

Fig. 194 three couples are thus connected, the circuit from the

first to the last bar being closed by a conducting wire and gal-

vanometer. If the joints at the ends h axe heated, a current of

electricity will flow from bismuth to antimony, while at the ends

c the current is from antimony to bismuth. When the ends c are
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0° C. and h is 100° C, the electromotive force for these metals is

only about .01 volt for each couple, but by joining a large num-
ber of these couples a very small difference of temperature may
be detected by use of a sensitive galvanometer. The thermopile

shown in Fig. 195 consists of 49 couples. Their ends are black-

ened, that they may more completely absorb the radiant energy

which falls upon them. In

the instrument shown, where

the galvanometer is not par-

ticularly sensitive, the radia-

tions from a candle flame at

a distance of 10 feet will

cause a deflection of several

divisions on the galvanom-

eter scale.

The bolometer is an in-

strument invented by Lang-

ley for the detection and

measurement of small
changes in temperature. It

consists essentially of a

Wheatstone bridge, Fig. 196,

in one arm of which is inserted a strip of platinum foil covered

with lampblack. The bridge is first balanced and the galvanom-

eter shows no deflection, then when radiations from a heated

body fall upon the blackened strip P, the resistance in that arm
is increased, thus throwing the bridge out of balance. The result-

ant deflection in the galvanometer is a measure of the change of

temperature of the platinum strip. The intensity of radiation

from various sources may thus be compared. A change of

.0001° C. may be detected.

The radiomicrometer is an instrument devised by D'Arsonval

and later improved by Boys. It is a delicate D'Arsonval gal-

vanometer in which the movable coil consists of a single turn of

pure copper wire suspended between strong magnets. Fig. 197.

One end of the coil is soldered to a light block of antimony, a,

and the other to a similar block of bismuth, b. These are joined

to a thin strip of copper, d, which extends a short distance below

and is covered with lampblack. Radiations falling on d will

' J I ¥1

Fig. 195.
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heat the junction of the thermo-couple, thus causing a current

of electricity to flow through the coil C. This causes the coil

to turn in the magnetic field, and the distance through which

771

A

Fig. 196.

a
Fig. 197.

m

it turns is a measure of the intensity of radiation. This instru-

ment may be made exceedingly sensitive.

Crookes's radiometer, shown in Fig. 198, consists of a light

frame, at the ends of the arms of which are

mounted light disks of mica blackened on one

side. This is supported so that it will freely

rotate in a glass bulb from which the air is

exhausted to a vacuum of about one-thou-

sandth of a centimetre of mercury. When
radiant energy from some heated body passes

through the glass into the bulb, the blackened

faces are heated more than the polished ones,

and the whole frame will rotate with the

blackened faces moving away from the source

of heat. The cause of the rotation is that

when the molecules of air next to the black

surfaces are heated they leap away with in-

creased energy and by their reaction cause the

disk to move in an opposite direction. Since

the air is rare, the mean free path of the molecule is compara-

tively long. Hence the pressure due to this increased molecular

motion is not communicated through the mass of air to the

opposite side of the disk, as would be the case at ordinary density.

Fig. 198.
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Professor E. F. Nichols has modified this instrument by
suspending a horizontal arm from a fine quartz fibre, a mica

disk blackened on one side beiag supported at each end of the

arm. In the wall of the glass vessel is a fluorite window which

freely admits radiations of all wave lengths. One of the black-

ened disks is opposite the window, and when it is repelled as

explained above the quartz fibre is twisted through an angle

which may be measured by aid of a light mirror attached to

the arm. This is the most sensitive of all radiometers.

169. Laws of Radiation.—When a certain quantity, Q, of

radiant energy falls upon a body, a portion of it, q, will be ab-

sorbed and converted to heat. The ratio ~ is called the coeffi=

cient of absorption, or simply the absorption. If in any case

this ratio is unity, the body will absorb all the incident waves
and convert them into heat. Such bodies are said to be perfectly

black, or simply "black bodies," A body covered with lamp-

black is nearly a "black body," though in no case is the ratio

exactly unity.

The ratio of the quantity of heat emitted by a body to the

quantity which it would emit if it were a "black body" is called

the emission.

For any given body the absorption and emission are numeri-

cally the same. This law was first deduced by Balfour Stewart

and Kirchhoff, and is sometimes known as the Stewart=Kirch=

hoff law. It may be directly deduced from Prevost's law of

exchanges, for when a body is in thermal equilibrium with its

surroundings its absorption and emission must be the same or

its temperature would change. The relation between emission

and absorption may be illustrated by a simple apparatus like

that shown in Fig. 199. A glass tube, bent in the form shown,

communicates with the interior of the metal cylinders p and b

and is partly filled with a colored liquid. The cylinders are full

of air. When the cylinders are at the same temperature, the

liquid in the tube will be stationary. The face of b is covered

with lampblack while that of p is polished. The face B of the

central drum C is black and P is polished. Now if C is filled with

boiling water or other hot Uquid, no change will be noted in the

tube; consequently the air in the two cylinders is equally heated.
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The blackened face b absorbs all the energy radiated by the

polished face P, while p absorbs only a portion of that from B.

But the faces ^ and P are alike, and P emits as much heat energy

as p absorbs. Hence the ratio of heat emitted by P to that

which it would emit if it were black is the same as the ratio of

the amount absorbed by p to that which fell upon it,

—

i.e., p
absorbs as much energy as it would emit if its temperature were

the same as P.

The power of absorption possessed by matter may be ex-

plained as a kind of resonance. When the motion of the minute

particles of which matter is composed is synchronous with the

ether waves which fall upon a body,

the effect is increased motion or heat.

Consequently we would expect that

the waves which are thus absorbed

would be the ones which would be

emitted when the body is heated.

Thus a body which transmits red light

must absorb the waves which would

give the higher colors of the spectrum.

If then this same body is sufficiently

heated, it will give out a bluish-green

light. Heated carbon will emit waves

of all lengths; hence when carbon is

cold it will absorb waves of all lengths

and will as a consequence be black. Lampblack and platinum

black absorb nearly all the radiations that fall upon them.

Polished silver reflects nearly all radiations incident on it,

absorbing only about .02 of them. Rock salt transmits about

.92 of the incident radiations, absorbing practically none.

The Stefan=Boltzman law, already referred to under pyrom-

etry (§ 143), states that the total energy emitted by a black

body is proportional to the fourth power of the absolute tem-

perature. By total energy is meant that due to waves of all

lengths. Radiation from such a body is independent of the

nature of the substance and depends on temperature only.

If E represents the total energy, t the absolute temperature,

and c a constant for any conditions that are selected, then

E= CT* (236)

Fig. 199.
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By use of a radiation pyrometer operated according to these

principles, it is possible to determine the temperature of distant

bodies. Thus, the temperature of the s\m is found to be about

6000° C. This, however, is the "black body" temperature.

Estimates from other data give 7000° C. or more. The tempera-

ture of the electric arc is 3500° C, and, since the body is black,

this is about the true temperature. The Nemst lamp is about

1950° C. and the incandescent lamp about 1500° C.

The displacement law, first formulated by Wien and often

known by his name, states that if the radiations from a "black

body" which is heated to a high temperature are dispersed so

as to form a spectrum, there will be one color,

—

i.e., a train of

waves of definite wave length,—where the energy of radiation

is maximum,

—

i.e., greater than for any other train of waves.

As the temperature of the body rises, this region of maximum
radiation shifts to waves of shorter wave length. Wien has

shown that if X is the wave length of that train of waves where

radiation is maximum and t is the absolute temperature, then

Xt:= c, a constant (237)

After c is once determined and the value of X found by observa-

tion, T is readily calculated. This principle is applied in one

form of optical pyrometer.

A body at a high temperature will lose heat by radiation

more rapidly than when it is cooler. Newton's law of cooling

is that the rate of cooling is proportional to the difference in

temperature between the body and its surroundings. This

law, however, is not exact, as may be seen from the following

data of an experiment.

Difference
of temperature.
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ever, the difEerence in temperature is small, only a few degrees,

as is the case in many laboratory experiments, the law raay be

applied to determine the loss of heat due to radiation. This

may be done, with a fair degree of approximation, as follows:

Suppose correction is to be made for the loss of heat of a calo-

rimeter where the temperature of a mass of water or other liquid

has been raised by the introduction of a hot body. The tem-

perature is noted at short intervals during the rise, and the

average of these gives the mean temperature i„ of the calo-

rimeter. The temperature of the surrounding air t^ may be

considered constant or its mean may be determined. Then the

mean difference of temperature during the time of the experi-

ment is t^ — ta- If the time required for the experiment is n

minutes, the number of calories, q, lost during that time is

q= c{t^-Qn (238)

The constant of radiation, c, may be found after the tempera-

ture of the calorimeter begins to fall by noting the number of

calories lost per minute when the difference of temperature

between the calorimeter and its surroundings is 1° C. For exam-

ple, suppose that in 3 minutes the temperature falls .6° C. and

that the mean difEerence of temperature between the calorimeter

and air during that time is 5° C, then if the mass of water includ-

ing the water eq\uvalent of the vessel is 300 g.,

300X.6 ,„ ,

^ =^X^ = 12cal.

This is the loss in one minute when the difEerence in tempera-

ture is 1° C. Hence equation (238) gives the loss in n minutes

when the difEerence in temperature is i„— /„.

170. Thermodynamics.—Thermodynamics, as the name im-

plies, treats of the relation between heat energy and mechanical

or other forms of energy. The motion of the small particles of

which a mass is composed represents a certain quantity of

energy, just as truly as does the motion of the mass as a whole.

Any kind of energy may be converted into molecular motion

(heat), and this heat energy is exactly equal to the energy

expended in producing it. Heat may in turn be often converted

into mechanical motion. In all such changes there is an exact

16
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equivalence between energy expended and energy received for

the same amovint of heat.

The fact, now well established, that heat phenomena are

included in the general law of conservation of energy is one of

the greatest and most important generalizations of modem
science. The principle of conservation of energy is, that, while

energy may appear in a great variety of forms,—^heat, electrical,

mechanical, wave motion, etc.,—yet the sum total of all the

energy in the universe is a constant quantity, and the various

forms are so correlated that whenever energy of one form dis-

appears an exact equivalent in some other form appears. This

is a ftindamental principle in physical science, and includes

heat energy as well as other kinds.

Up to the beginning of the nineteenth century a generally

accepted theory stated that heat was an imponderable, self-

repellent fluid called caloric. A body was hot when it contained

a large quantity of caloric. Water had a great capacity for

heat because it could hold a large quantity of caloric. Friction

caused a rise of temperature because the abraded particles had
less capacity for heat than when in the solid body. A piece

of metal was heated by concussion because the impact increased

the density of the metal and so the caloric was squeezed out.

Thus, heat was assumed to be a material substance. An anal-

ogous theory, also generally accepted at that time, explained

combustion as the escape of a material substance called phIogis=

ton. Such theories prevailed up to 1800 A.D. and were not

abandoned till about the middle of the nineteenth century.

Even in an edition of the "Encyclopaedia Britannica" published

in 1856 heat is defined as a "material agent of peculiar nature.

"

The first to combat publicly the caloric theory was Benjamin

Thompson (Count Rumford), a native of Massachusetts, U.S.A.,

but at that time superintending the construction of cannon at

Munich, Germany. He in 1798 performed a simple experiment

which led to very important results. He noticed that the

cannon were heated by boring, and was able, by using a blunt

drill, to produce a large quantity of heat while only a small

quantity of the metal in form of powder or shavings was bored

away. As long as his engine continued to turn the drill, heat

was produced. He rightly concluded that the heat was com-
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mtinicated to the cannon by the motion of the drill and at the

expense of work done by his engine. According to the calorists

the amount of heat should be in proportion to the quantity of

shavings or abraded particles, but Rumford showed that the

capacity of the shavings was the same as that of the solid metal.

The calorists in reply insisted that while the temperature might

rise as before, yet the quantity of heat was less. The claims of

Count Rumford and others who believed as he did were ridiculed

by the calorists for about forty years. But a line of experimental

evidence has firmly established the modem theory of heat and

thermodynamics.

In 1799 Sir Humphry Davy performed a simple but convinc-

ing experiment which the calorists could not satisfactorily

explain. By rubbing together two blocks of ice he showed that

the ice will be melted. The calorists admitted that water has a

greater capacity for heat than ice has. Whence, then, does the

heat come if not from the motion of rubbing?—for the experi-

ment can be successfully performed in a vacuum or in air below

the temperature of melting ice. In this case the friction did not

diminish the capacity for heat.

Later a series of most careful and painstaking experiments

were performed by James Prescott Joule, of Manchester, to test

the claim that heat is a form of energy due to motion of particles

within a body and to determine the number of units of energy

in a thermal tmit. Later still, in 1878-9, Rowland, of Johns

Hopkins University, made a similar but more exact determina-

tion as described in the next section. Then Griffiths (1893),

Schuster and Ganon (1894), and Callendar and Barnes (1899)

made similar tests, using the heat effects of electric currents.

171. Mechanical Equivalent of Heat.—The mechanical equiv-

alent of heat is the number of units of energy which when con-

verted into heat will produce one thermal \init. Thus, it may
be the number of foot-pounds of energy required to raise the

temperature of 1 lb. of water 1° F. at any chosen temperature of

the water, or it may be the number of ergs required to raise the

temperature of 1 g. of water 1° C. at any selected temperature.

Joule employed a variety of experiments in his endeavor to

find this mechanical equivalent. His methods were direct,

—

i.e.,

he converted a measurable quantity of mechanical energy into
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heat and then measured the quantity of heat produced. Thus
the heat effects due to work done in compressing air, in expansion

of air, in friction of mercury, friction of iron plates, friction of

water, etc., were measured by the rise of temperature in a given

mass of water or other Uquid. The chief value of Joule's work
was not so much his numerical results as the fact that the con-

stancy of his results showed that heat is only another form of

energy, and the quantity of

heat measured in energy

units is equal to the quantity

of work expended in produc-

ing it.

In Joule's later and more
accurate work he used an

apparatus illustrated by dia-

gram m Fig. 200. Paddles

are attached to the vertical

axis of the calorimeter C and
are made to rotate in a meas-

ured quantity of water. Pro-

jecting strips fastened to the

interior walls of C prevent the movement of the water as a body

along with the paddles. The calorimeter is supported mainly

from beneath by the vessel v, which floats on water. Thus fric-

tion of the bearings is greatly reduced. The paddles were made
to rotate by turning the wheel a. Cords, b, b, passed tangentially

from opposite sides of a circular rim at the top of C, over pulleys,

and to their ends were attached weights, w, w. When the paddles

are turned with sufficient speed, the weights are just sufficient to

prevent any rotation of C. By means of a recorder attached to

the vertical axis, the rotations in a given time are automatically

counted. To calculate the work done, let r be the radius of the

rim D, then the circumference is 2nr. Although the weights do

not rise or fall, yet the work done in tiuming the paddles through

one revolution is just the same as if the weights had been raised

through a distance 27:?',

—

i.e., the work is the same as if the

paddles had been stationary and the calorimeter had been turned

by a force 2w exerted through a distance 2Kr. Hence

work= 27n- . 2w= ^-jzrw (239)

Fig. 200.
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and in n revolutions
work= 4LKrniv (240)

If the quantity of water including the water equivalent of the

calorimeter is M and the rise of temperature is t°, the mechanical

equivalent, /, is

/=^=^ (24.)

This is the energy per unit mass per degree,

—

i.e., the mechanical

energy per caloric of heat.

Joule gave as his result

7= 772.65 .j^*"",^!*!; for water at 61.69° F.
'

lb. 1° F.

This expressed in c. g. s. units and centigrade degrees is

7= 4.167(10)'
ergs

g. 1°C.
at 16.5° C.

Dr. Joule used a mercury-in-glass thermometer which by com-

parison with recent standards is found to be inaccurate. A
recalculation with correction for errors in temperature gives as

the results of Joule's experiment

7= 4.173(10)'

Henry Augustus Rowland (1848-1901) devised an apparatus

similar in principle to that of Joule but much better in construc-

tion. The paddles were rapidly turned by means of an engine

and thus the time of each experiment was shortened. He
repeated his experiment thirty times, varying the temperature

of the water and using different thermometers. His original

values were

Temperature.
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It was by this series of experiments that Rowland estab-

lished the fact that the capacity of water for heat is different

for different temperatures. As seen in the table above, the

value of J diminishes with rise of temperature to 30° C. and then

begins to increase. The change in capacity is shown by the

change in the number of ergs required to raise the temperature
1° C. Rowland's results are probably the most reliable of all

the various determinations of /, and we may accordingly give

as a very close approximation

7= 4.187(10)' y-5^||^ between 15° and 16° C.

Thus, our thermal iinit may be defined in terms of dynamic
tmits as 4.187 joules of energy, or, if a temperature of 10° C. is

chosen, 4.2 joules.

Other experimenters, principally those mentioned at the

end of the preceding section, sought by indirect methods to

determine the value of /,

—

i.e., they measured the heat effects

of a current of electricity when passed through a wire submerged

in water. If the strength of current, i, is measured in amperes,

and the resistance, R, in ohms, then the energy expended in

heating the wire in T seconds is

energy ='j^i?r joules (242)

The number of calories of heat, Q, received by the water is

determined by the mass of water and its rise in temperature.

Hence
JQ = i'RT(10y (243)

from which the value of / can be calculated.

Values obtained by this and similar methods are

Griffiths, 4.187(10)' at 25° C.

Schuster and Gannon, 4.190(10)' at 19.1° C.

Callendar and Barnes, 4.190 (10)' at 15° C.

172. Laws of Thermodynamics. — There are two general

principles underlying the phenomena of heat energy, known as

the laws of thermodynamics.
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1. Whenever mechanical energy is transformed into heat, the

heat energy thus produced is exactly equal to the mechanical energy

which disappeared. This may be expressed by

E=JQ

where E is the mechanical energy expended or work done and Q
is the number of calories of heat which appears as a consequence.

This law is only a statement that heat is included in the general

law of conservation of energy.

2. Heat cannot of itself pass from a cold to a hot body.

This law states the direction of the flow of heat,

—

i.e., always

from a body of higher to one of lower temperature. Since it is

only during the transference of heat that its energy becomes

available, it is impossible to devise any machine which will

derive any mechanical effect from a body which is colder than

all surrovmding bodies. The cold body may contain a consider-

able quantity of energy, but no way is known by which that

energy may be made available except by the transference of

heat from it to a body which is still colder.

173. Difference of Specific Heats of Gases.— It has been

shown (§ 136) that
PV^Rmr

If now the pressure is constant while the temperature is raised

one degree, the volume will become V^. Hence

PFi=i?w(T+l) (244)

The difference between these equations is

P{V^-V)=Rm (245)

But m = \ g. , since specific heat is the quantity of heat needed

to raise 1 g. 1° C. Hence in this consideration

P{V,-V)=R (246)

This is the work done, for P{V^—V) is the product of pressure

by change of volume.

The cause of the difference in specific heat at constant pres-

sure, Cp, and that at constant volume, C„, is the external work

done when the pressure is constant (§ 156). Hence, expressing
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this difference in mechanical units,

JiC^-C^)=P{V,-V)=R (247)

The value of R may be foimd when the pressure, volume, and

temperature of a gas are known (§ 136) ; Cp can be reUably

determined by experiment; hence C„ can be calculated.

174. Effect of Intermolecular Forces.—When a gas expands

without doing any external work, its temperature as a whole

does not change, for it has lost none of its energy. This is on the

assumption that the energy of the gas consists only in the

motion of its molecules. But if there is cohesion between the

molecules, then when the gas expands some of the kinetic energy

of the molecules would become potential, for work would have

to be done in effecting a separation against cohesion. The
effect would be a fall of temperature,

—

i.e., a lowering of kinetic

energy. If, on the other hand, there is repulsion between mole-

cules, this would add to kinetic energy in case of expansion and

the temperature would rise. Dr. Joule attempted to test this

matter experimentally by compressing gas in one vessel and

allowing it to escape through a small tube into another vessel

from which the air was exhausted. Both vessels were immersed

in a water bath. By this arrangement no external work would

be done during expansion, but Joule was not able to detect any

change in the temperature of the water and concluded that if

there was any change it was very slight. In a later experiment,

with an improved apparatus and more delicate thermometers.

Dr. Joule and Lord Kelvin performed what is known as the

porous plug experiment. They passed air and other gases through

a copper coil immersed in a water bath at constant temperature

and allowed the gas to escape through a plug of cotton wool,

the difference of pressure on the two sides of the plug being one

atmosphere. The temperature of the gas on each side of the

plug was measured by delicate thermometers. An air-pump

operated by an engine was made to do the external work which

the gas would have had to do if it had expanded without assist-

ance. Hence any change of temperature would be due to work

done because of intermolecular forces. By this arrangement it

was possible to maintain continuous expansion of a stream of

gas. The porous plug prevents a rapid motion of the gas, which
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if permitted would represent a certain amount of kinetic energy

obtained from the heat energy on the other side of the plug.

The results for a few gases are

Gas.
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Professor Dewar in 1898 liquefied hydrogen and by allowing it to

evaporate under reduced pressure changed it to the solid state.

The hydrogen must first be cooled by liquid air or other cold

liquid, and then it can be further cooled by the regenerative

process. The boiling point of liquid air under one atmosphere is at

first — 192° C, but later, after the nitrogen has escaped, — 182° C.

Hydrogen boils at — 253° under a pressure of one atmosphere.

In the year 1908 Professor Onnes, of the University of Leyden,

succeeded in changing helium to the liquid state. He was able

to obtain a considerable quantity of this gas from monazite sand.

By cooling with liquid hydrogen and by use of the regenerative

process he obtained about 60 c.c. of liquid helium, the density of

which he found to be .15 and the temperature of the boiling

point 4.5° C. on the absolute scale. This is the lowest tempera-

ture known.

Temperature as low as — 200° C. may be measured with a

platinum thermometer. For still lower temperature the hydro-

gen thermometer is reliable provided the pressure is well above

the critical pressure.

175. Ratio of Specific Heats of Gases.—^When a gas is heated,

the energy thus expended (1) will increase the translatory motion

of the molecules,

—

i.e., give them greater kinetic energy due to

their increased velocity; (2) may do external work, as when a

gas expands against pressure; (3) may increase the rotary or

vibratory motion within the molecule, a change which is prob-

ably proportional to the change of translatory motion; or (4)

may do work in separating molecules against intermolecular

forces. The fourth will ordinarily consume but a small quantity

of heat, as is shown by the porous plug experiment; hence we

may consider theoretically what the ratio -^ should be if all

heat were expended as indicated in (1) and (2), and compare

this result with experimental results. The comparative influ-

ence of (3) may thus be shown. _
The kinetic energy of any mass m moving with velocity V is

e= \mV^ (248)

If m is the mass of one molecule of a gas and V is the mean
velocity, the energy e oi n molecules is

i-mnV^ (249)V
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Let n be the number in 1 g. of the gas, then mn is 1 g. ; hence

e= ^y2ory2 = 2e (250)

One gram is taken because we are here discussing specific heat.

By §89, PV= \V^

: PV==ie (251)

Now if this gas is heated 1° C. under constant pressure, its volume

will increase by a certain amovmt, say v, and its energy will

increase to e'. Hence
P{V+v)=y (252)

Subtracting the preceding equation,

Pv^^e'-e) (253)

But Pv is the product of pressure by change of volume, and

therefore it is the external work done by expansion under

constant pressure. The total change of energy is e'— e, hence

two-thirds of this is expended in doing external work. Now,

C„ includes the external work, hence^p

^= ' ^+ ^^^'
^) = 1+1= 1.666 = r (254)

The value of y for various gases and vapors may be found from

the velocity of compressional waves passing through them, as

when sound passes through air. The velocity of such a wave

varies directly as the square root of the elasticity E of the gas

and inversely as the square root of the density p. Hence

velocity of wave= ,

—

V p

But since the compressions and rarefactions are so rapid that

heat has not time to enter or leave the gas during the passage

of the wave, the elasticity is adiabatic, and so is not equal to

the pressure (§§ 94, 176), but to yP Hence

velocity of wave =—

^

Vp

From this the value of y can be determined. For such gases as

argon, helium, and vapor of mercury, experiment shows a value

very nearly equal to 1.66. In these gases the molecules consist
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of a single particle of matter,

—

i.e., they are monatomic,—hence

the heat would all be expended in increasing translatory motion

and doing external work. In a gas such as oxygen, O2, the

value of y is 1.41. In air, 1.41. In ether, with its complex

molecule, C4H10O, the value of

Y is only 1.03. Thus, as might

be expected, the greater the

complexity of the molecule the

greater the amount of heat ab-

sorbed in producing motion

within the molecule.

176. Adiabatic Expansion.—
When a gas expands without

receiving or losing any heat, the

expansion is said to be adiabatic— {a-dia-^atveiv, not to pass through)

.

It is evident that if a gas is

compressed and the heat resulting from the external work
done on the gas is not allowed to escape, the pressure will increase

more rapidly with decrease of volume than when the process is

isothermal. Hence if curves are drawn on the pressure-volume

diagram. Fig. 201, for

PV= constant, isothermal,

and PV'= constant, adiabatic,

the adiabatic curves a, a, a will show a more rapid rise in pres-

sure than the isothermals i, i, i. If the gas expands in doing

external work, the pressure rapidly falls, for no heat is received

from the outside.

177. Elasticity of Gases.— Since a gas may expand either

isothermally or adiabatically, there will as a result be two
coefficients of elasticity. It has already been shown that the

isothermal elasticity (§ 94) is equal numerically to the original

pressure P, for if

V

then, as the increase of pressure p and the resulting change of

volume V approach the limit zero, the actual pressure on the
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gas becomes P; hence
P=E,

The adiabatic elasticity is greater than P because all the

heat energy is retained in the gas. This coefficient, as shown in

appendix 13, is equal to the product of pressure by the ratio

, for since

PV'— a. constant,

E^ = rP (255)

178. Carnot's Cycle. — The modem theory of thermody-

namics may be said to have been established by such scientists

as Lord Kelvin, Helmholtz, Clausius, and Rankine about the

year 1850, yet the foundations upon which these men built
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are adiabatic but the bottom a perfect conductor. Assume
also that the tops of the hot body H and the cold body C are

perfect conductors, the top of B being adiabatic. Let the gas

in A have a pressure and volume represented by the point a on

the pressure-volume diagram Fig. 203. First, having the gas

at the temperature of the cold body, place the cylinder on B and

press the piston down till the temperature rises to that of the

hot body. Here work is done

on the gas and, since no heat

escapes, the change is repre-

sented by the adiabatic line ab.

The gas is now in the state b.

Second, move the cylinder

over onH and allow the gas to

expand. In this change exter-

nal work will be done by the

gas and heat will flow from H—i-- into A and keep the tempera-

ture constant. The volume

will increase and pressure will fall. This change is represented by
the isothermal be. Third, move the cylinder back to B and allow

the expansion to continue till the temperature falls to that of the

cold body. There is an increase of volume and a rapid fall of

pressure. This is represented by the adiabatic line cd. Fourth,

place the cylinder on the cold body C and push the piston down
to the original starting point. Here work is done on the gas,

but without increase of temperature, for heat flows freely into

C. One cycle is now complete and the gas is in the same state

as at the start. The change was from a to b,b to c, c to d, and

thence back to a. The capacity of the bodies H and C are

assumed to be so great that their temperature is practically

tmchanged by the loss or gain of heat.

Some heat was transferred from H to C during the cycle of

operations, but not all of that taken from H was delivered to C.

An inspection of Fig. 203 shows that the lines da and ab represent

changes produced by work done on the gas, while be and cd

show changes while work was done by the gas. If the mean
pressure along each of these four lines is multiplied by the change

of volume, the products will be the work done on or by the gas.
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The difference is the area abed, which is the excess of work
done by the gas.

Thus it is seen that of the heat taken from H part was ex-

pended in doing external work and the balance was delivered

to the cold body. It is also apparent from the diagram that the

greater the difference between the hot and cold bodies, the

greater will be the area of abed,—i.e., the greater the external

work. This is true no matter what the working substance may
be, for the work is accomplished only by the expenditure of the

heat energy.

The efficiency of an engine is defined as the ratio of the work
done to the energy received, or, in other words, the ratio of the

work done by the engine to what it would do if all the energy

which it received were expended in work. Let Qj be the number
of calories of heat received from the hot body, and Q^ that

delivered to the cold body, then the work W, expressed in ergs, is

W = J{Q,-Q,) (256)

and the efficiency E is

^ To a ^ ^

If all the heat were expended in work, Q2 would be zero and

the efficiency would be -^^ = 1. Efficiency could not be greater

than unity.
'

179. Reversible Cycle. — By use of an external agent it is

possible to reverse Camot's cycle and restore to H, Fig. 202,

the heat which was transferred to C. Starting at a, Fig. 203,

let the gas expand isothermally while the cylinder is on C.

Heat will flow from C into the gas and the change will be ad.

Then place the cylinder on B and push the piston down till the

temperature rises to i^. This change is represented by dc.

Then place the cylinder on H and push the piston still lower.

This gives the isothermal cb. Now place the cylinder on B
and let the gas expand till the temperature is t„. The cycle is

thus completed in a reverse direction, a quantity of heat, Q.^,

has been transferred from C to H, and the excess of work done

by the external agent over that done by the gas is represented

by the area abed.
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Camot's cycle is exactly reversible because of the ideal

conditions which are assumed for his engine. In practical

operations, however, it is not possible to avoid conduction and

radiation of heat and friction of the moving parts of an engine.

These cannot be reversed by reversing the engine, and so the

working substance cannot be brought to its original state.

180. Carnot's Theorem.—Camot showed that all reversible

engines working between the same temperatures have the same

efficiency, and no other engine can have a greater efficiency

under the same conditions of temperature. He proved this by
showing that the operation of such an engine would be contrary

to the second law of thermodynamics. Suppose an engine, M,
assumed to be more efficient, is coupled to a Camot's engine,

C, so that C is made to run backward as explained in the preced-

ing article. Let C take Qj units of heat from the cold body and

deliver Qj units to the hot body. Let M take Q^ units from the

hot body and, since M is more efficient, deliver less than Q^, say

Q^, units to the cold body. By this operation the quantity of

heat in the hot body will remain the same, but that in the cold

one will grow less and less. The engine M would thus be able

to operate C and do external work besides. Work would be

done by using up the heat of the cold body. But this is contrary

to experience,

—

i.e., to the second law. Hence no engine can be

more efficient than a reversible one. For the same reason no form

of reversible engine can be more efficient than another. This theo-

rem, in other words, states that an engine is most efficient when all

the heat received from the hot body and from external work done

on the working substance is used in changing the state of the work-

ing substance,

—

i.e., there is no loss by conduction, radiation, etc.

181. Thermodynamic Scale of Temperature.— In all ther-

mometers which have thus far been described temperature is

measured by changes depending on some property of a substance,

as expansion of a gas or mercury, change in electric conductivity,

etc. Exact determinations of temperature by these methods is

very difficult, because of the many different conditions which

modify the results. If, however, there were a perfectly reliable

standard with which ordinary thermometers could be compared,

the latter could be used as effectively as the standard. A per-

fect gas

—

i.e., one in which there are no intermolecular forces.
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and consequently one which is true to Boyle's law—would make
such a standard, but such a gas does not exist.

It has been shown above that the efficiency of a Camot's
engine is independent of the character of the working substance,

and depends only on the difference of temperature of the hot

and cold bodies between which the engine works. The amount
of work done by a working

substance in one cycle depends

only on the difference of tem-

perature between the isother-

mals of that cycle.

Based on this fact. Lord

Kelvin proposed a thermody-

namic scale of temperature

which is independent of the

substance used. Thus, in Fig.

204, A, let a Camot's engine

be of such dimensions that,

when working between tem-

peratures ij and t^, 1 joule of

work will be done in complet-

ing the cycle abcda. Then

ti—t^ might be chosen as a

degree on some new scale. If

the same engine does 2 joules

of work in the cycle fbcef,

h~h would be two degrees on this scale, and 3 joules would be

three degrees, and so on. To make this scale correspond with

the centigrade scale, let the two isothermals of a cycle be tjj^

and t„,—i.e., the temperature of boiling water and that of melt-

ing ice. Then the area abed, Fig. 204, B, will be the work done

in one cycle between these limits of temperature. Now, if

isothermals are drawn dividing this area into 100 equal areas,

each isothermal will differ from the next one by 1° C.

If the temperature of the hot body remains constant and that

of the cold body is lowered until all the heat, JQ^ ergs, taken

from the hot body is expended in work during the cycle, then the

Fig. 204.

efficiency = -

01
' = 1

17
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for 02 has become zero. This could occur only in case the cold

body contains no heat. It could not then be any colder, for the

efficiency cannot be greater than unity. This low temperature

is the absolute zero on the thermodynamic scale.

Lord Kelvin showed by experiment that this scale of tem-

perature coincides very closely with the centigrade scale of a

gas thermometer and would agree exactly if the gas were perfect.

Hence the temperature of melting ice on this scale is almost

exactly 273 and that of boiling water 373.

The hydrogen thermometer most nearly coincides with the

thermodynamic scale, the difference being due to Latermolecular

forces in the gas. This very slight difference was determined

by the porous plug experiment (§ 174), and corrections may be

made accordingly in exact measurements.

By inspection of the diagram, Fig. 204, B, it is seen that if

each small area included by two adiabatics and two adjacent

isothermals be considered as a imit of heat measured in ergs,

the number of such units at any temperature, counting froin

absolute zero, is to the number at any other temperature as the

corresponding absolute temperatures are to each other, for

each change of one degree corresponds to a change of one unit

of heat. Hence, if Tj and ^2 ^^^ the absolute temperatures,

1 =1 (258)

Q!^.h=l3
(259)

Thus efficiency is expressed in terms of temperature.

182. Entropy.—In considering a reversible cycle such as is

represented in Fig. 203, where ab and cd are adiabatics inter-

sected by isothermals, let the point a represent the state of a

body in reference to pressure, volume, and temperature. If

the pressure is increased, no heat being allowed to escape, the

state may be changed to b. Let Q be the total quantity of heat

in a substance in state a,—i.e., the total number of thermo-

dynamic units as measured from absolute zero; also let r be

the absolute temperature at a. Then, as Q is increased, z will

increase in the same ratio ; therefore — will be constant between
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a and b. For illustration, let the total quantity of heat at a

be 22,800 ergs and the absolute temperature 285° C. Then for

each increase of 1° C. there is an increase of 80 ergs of heat

energy. Hence

22800 _ 22880 _ 22960

285 ~ 286 287
^^^'-^^

Whatever the value of Q may be, the ratio

T

Entropy may be defined as that quantity which remains con-

stant during an adiabatic change, just as temperature is that

which remains constant during an isothermal change. For this

reason an adiabatic line is often called isentropic.

Although entropy cannot be measured by any instrument,

as temperature can be measured by a thermometer, yet it is a

distinct physical quantity which can be calculated when the

pressure, volume, and temperature are known.

In passing from b to c, Fig. 203, t remains constant but Q

increases, hence the ratio — increases. From c to d the ratio

is constant, for Q and t decrease at the same rate. From d to a

the temperature is again constant while Q decreases, so the ratio

of Q to T decreases. If Q^ is the increase of heat in passing from

b to c, and Qj is the loss of heat in passing from d to a, then,

according to equation (258),

-^+-^ = (261)

—i.e., in a complete cycle of this character the sum of the ratios

— is zero.
T

A series of changes which form a complete reversible cycle

may be represented by a closed curve, as in Fig. 205. The

area enclosed represents work done, and may be considered as

composed of an infinite number of Camot's cycles such as abcda.

Since equation (261) is true for each cycle, it is true for all the

cycles of which this area is composed. Hence

2-1 = (262)
T
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where q is an infinitely small change in the quantity of heat

gained or lost in the small cycle and t is the absolute tempera-

ture at which the change was made. By making the Camot's

cycles infinitely small the change of state becomes continuous,

as shown by the smooth curve.

Equation (262) shows that the

increase of entropy during one

part of the cycle is equal to the

decrease during another part, so

that on the completion of the

cycle the entropy is the same as

at the beginning.

The natural zero of entropy is

— the state of a substance devoid of

all heat, but it is more conven-

ient to select a certain state arbitrarily as a standard and calcu-

late the change of entropy from that standard, just as the tem-

perature of melting ice is assumed to be 0° C. while in fact the

temperature is 273° C. Thus in Fig. 203 let a be the point of

reference for entropy, then the entropy at c will be the sum of an

infinite number of very small additions of heat each divided by

the temperature at which the addition was made. If entropy is

represented by rj,

rio=I^ (263)

This is the case no matter whether we pass from a to c by the

path ab, be or by ad, dc, and in the continuous change shown in

Fig. 205 the entropy at B in reference to A as a standard is also

expressed by equation (263),

—

-i.e., entropy depends only on

pressure, volume, and temperature, and is independent of how
or by what means the change of state was effected, just as a

weight raised from the groimd to a certain height will possess

a definite amoimt of potential energy in reference to the grotmd

no matter how or by what path it was raised.

In the particular case shown in Fig. 203 it is seen that in

changing from o to 6 there is no change of entropy, but from

b to c r remains constant and change of entropy is proportional

to the increase in the quantity of heat. Here Iq==Q, where
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Q is the total heat added between b and c; hence

-I
but in changes along a path where both q and z are constantly

changing, change of entropy will be found by adding an infinite

number of these ratios as expressed by equation (263)

.

Mechanical energy is constantly being changed into heat,

and heat is constantly passing by conduction, convection, and

radiation from bodies at higher to those at lower temperature.

If 9i is heat transferred from a body at temperature r^ to an-

other body at temperature T2, the entropy of the former will be

diminished — and the latter will be increased — . But since z,

is less than z^, the entropy of the second body will be increased

more than the first is decreased. Clausius expressed this by
saying that the entropy of the universe tends to a maximum.
If the maximum is ever reached, there will no longer be any

available energy, for there will be no high or low and hence no
transference from one to the other.

The Sim is the great disturber of equilibrium, and as a result

we have at present, available for work, fuel, food, running

water, wind, water waves, and direct solar radiation. The
amount of radiant energy intercepted by the earth is only about

^200000 P^rt of the total energy sent out continually from the

sun, yet, according to experiments made at points where the

sun's rays are vertical, the energy value of solar radiations on

each square meter of earth's surface is about one horse-power.

The radiations falling on one-half the whole surface of the earth

are the same as would fall vertically on the area of a great circle

of the earth. This area is about 128(10)" square metres. Hence

the total energy received from the sun in any given time is

equivalent to the work which could be done by 128(10)" horse-

power in the same time.

183. The Steam Engine.— In a steam engine the working

substance is vapor of water at a high temperature and pressure.

A cycle of operations is performed similar to that of a Camot's

cycle, but the walls of the steam engine are not adiabatic, and

so there is considerable conduction and radiation of heat. Such
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heat is lost as far as ef&ciency is concerned. The boiler may be
considered the hot body and the condenser the cold body. The
amount of work done will be, allowing for loss of heat, the

difference between the thermal energy received from the boiler

and that given to the condenser. The maximum efficiency is

expressed by equation (259).

In the reciprocating engine steam is admitted first to one
side and then to the other of a piston, thus causing a forward
and backward motion. As shown in Fig. 206, steam is admitted

Fig. 206.

to the steam chest sc above the slide valve sv. When sv is in

the position shown, steam at boiler pressure is admitted through

port p', thus driving the piston toward B. Before this stroke is

completed, the slide valve moves back and covers the port p',

and the steam in A contiaues to expand to the end of the stroke.

During this time the port p has been closed, but the steam in B,

used in the previous stroke, may escape beneath the slide valve

and out through the exhaust pipe e. The exhaust port is closed

shortly before the completion of the stroke, and the vapor thus

entrapped in B serves as a cushion for the piston. Then the

port p is opened to boiler pressure, and the same operation is

repeated, but in opposite ends of the cylinder.

When the engine is working under full load, more heat

energy is needed than when the load is light. Various devices

are employed to regulate the admission of steam at a rate

adapted to the work being done. One method of accomplish-
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ing this end is to .regulate the flow of steam into the steam chest

by use of a governor like that described in § 35. Another method
is to regulate the motion of the slide valve so that for light work
less steam will be admitted to the cylinder, and the work will

be done by expansion rather than by direct boiler pressure.

This may be accomplished by use of a governor like that shown
in Fig. 207. A stiff spring fastened to the fly-wheel carries a

heavy mass, m. When the wheel rotates, m is thrown out
toward the rim. This moves the arm a and brings the eccentric

Fig. 207. Fig. 208.

ring e to a position more nearly concentric with the axis c.

Around the eccentric and sliding upon it is a metal strap to

which the eccentric rod er is attached. If e were exactly con-

centric with c, the eccentric rod would have no motion and the

slide valve would rest over both steam ports. If e is at maxi-

mum eccentricity, the slide valve would admit steam at boiler

pressure through the whole stroke of the piston. Thus, a con-

stant speed with a changing load is effected by regulating the

distance through which the slide valve moves.

The work which is actually being done by the steam in the

cylinder may be determined by use of a steam-engine indicator,

shown in Fig. 208. Steam is admitted from either end of the

engine cylinder to a small cylinder, C. The steam pressure

raises a small piston against a stout spring, and thus the pencil

P is made to move up or down according to pressure. At the
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spring gives the average pressure of steam—usually in pounds

per square inch. This times the area of the piston in square

inches gives the total pressure. The total pressure times the

distance in feet travelled by the piston per minute is the number
of foot-pounds of work per minute. The indicated horse=power

is then found by dividing by 33,000.

The exhaust steam still contains a large quantity of heat

and so may do more work between its temperature and a lower

one. If the steam is exhausted from the first or high pressure

cylinder into another cylinder of the same construction but

larger, additional work will be done. Such an arrangement

is shown in Fig. 210. Both pistons are attached to the same

axis and move in the same direction. The steam exhausted

from one end of the high pressure cylinder passes into the

opposite end of the lower pressure cylinder. The steam then

passes into the condenser, or into a third, fourth, or even sixth

cylinder, each larger than the preceding one, and then into the

condenser.

Turbine Buckets

Fig. 212.

Instead of having the steam pressure produce a reciprocating

motion of a piston, it may be directed with great velocity against

a row of buckets or blades on the periphery of a wheel. Such

constitutes a rotary engine or steam turbine. In one type of

such engines, steam under high pressure is projected from a

nozzle against a series of buckets attached to the circumference

of a wheel, the wheel being keyed to the drive-shaft. These

may be called impulse turbines. The De Laval turbine, illustrated

in Fig. 211, is one of this type. The turbine proper is shown

to the right of the figure. Steam may be admitted to the buckets

at several points around the wheel as shown. A section of one
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of the nozzles is shown in Fig. 212. To the left of the turbine,

Fig. 211, is shown the gear case. The turbine is nin at high

speed to secure proper efficiency. Here the angular velocity is

reduced, and the motion is communicated to two shafts which

operate the dynamos shown on the left of the figure.

Another type may be called impulse-reaction turbines, for

they are driven not only by the impulse of the steam but also

by the reaction resulting from a change in the direction of

flow caused by numerous fixed and movable blades set in the

path of the steam. This is illustrated in diagram, Fig. 213.

111111 Ml

Fig. 213.

Steam under high pressure is admitted from the side A through

a row of fixed blades, 5, and directed against a row of movable
ones, R, which are thus forced in the direction of the long arrows

passing through them. The same operation is repeated, but

with less intensity, through a number of successive rows, all

fixed to the same spindle. In Fig. 214 is shown a spindle covered

with rows of movable blades, and also one half of the casing.

The fixed or guide blades are attached to the casing and fit in

between the rows of movable ones. Steam is admitted at the

smaller end of the casing and forced along the space between the

casing and spindle,

—

i.e., the space filled with alternate rows of

fixed and movable blades. The Parsons turbines are of this type

and are in common use, particularly for the propulsion of large

steamships. The increase in size of the spindle as the velocity

of steam decreases gives an advantage similar to that in case

of compotind cylinders. The turbine, when properly constructed
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and operated, is quite as efficient as other forms of engine and
is without many of the objections to the reciprocating engines.

Instead of converting water to steam and then using the heat

energy of steam to do work, the energy of fuel may be more
directly used in internal combustion engines, usually called

gas engines. Here the fuel in form of a gas is mixed with oxygen

of the air and exploded in a cylinder. Thus the piston which

closes one end of the cylinder is driven forward. Two impor-

tant types of this engine are the four-cycle and the two-cycle.

In the former there are four strokes of the

piston for each explosion. (1) The outward

movement of the piston draws into the cylin-

der a mixture of gas and air. (2) The back-

ward motion compresses the mixture. (3)

The explosion drives the piston out again.

(4) The return motion exhausts the cylinder.

There cannot in this type be more than one

explosion for every two revolutions of the

fly-wheel.

In the two-cycle engine there may be an
. . T 1 Fig. 215

explosion m each revolution. In diagram.

Fig. 215, (J is a space enclosed by the crank case. When the piston

C moves toward A , it will close the ports p and e, compress the gas

in A , and draw gas through o into the crank case. Then the gas in

A is exploded by an electric spark, and as C descends, the port e is

first opened for the exhaust and then p is opened for the admission

of fresh gas and air. This operation is then repeated. This type

has the advantages of being without movable valves and of being

lighter for the same power, while in the four-cycle type the com-

bustion is more complete and the cylinder is not so highly heated.

The power of a gas engine may be computed in a manner

very much like that for the steam engine. The average pres-

sure is found from the indicator diagram and

horse-power= -

33000

where ^ = average pressure per sq. m.

/= length of stroke in feet

a= area of piston in sq. in.

e=number of explosions per min.
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Problems.

1. If when 1 c.c. of water at ioo° C. is converted to steam under
pressure of one atmosphere its volume increases to 1649 c.c, how much
external work is done? How much internal work?

2. How much is the melting point of ice lowered by a pressure of

one atmosphere?

Use ^'~^' =
'"'~'^'

(see equation 259)

Q, — (32=work done=P(t/j— iij)

P= 1.013(10)' dynes
Change of voliune on melting = .091 c.c. per c.c.

(3i= 80X4.187(10)'ergs=ergs of heat energy expended in melting 1 g.

i",—r2= result sought

n= 273°C.
3. How much ice at 0° C. would be melted by the energy in a mass of

20 kg. moving with a velocity of 3000 cm. per second?

4. If when the temperature of air is 23° C. the dew point is 8° C,
what is the relative humidity?

5. Calculate the maximum efficiency of a steam engine working
between temperatures 120° C. and 10° C. (Equation 259.)

6. Calculate the indicated horse power (I.H.P.) of a steam engine

from following data:

Area of indicator diagram 2.7 sq. in.

Length of diagram 3.0 in.

Diameter of piston 20.0 in.

No. of spring 50

Revolutions per min. (R. P.M.) of fly-wheel. . . .300

Length of stroke 2 ft.

7. How much work can be done by the energy obtained by the

combustion of 50 litres of hydrogen at 20° C. and under a pressure of

10 atmospheres?

8. Calculate the value of / from

J(Cp—Cv) =K
and PV^mRr

Use air at 0° C, assuming it to be a perfect gas. — =— where p ism p

density of air under standard conditions. P = l.013(10)°. r= 273.

1. 1.67(10)» ergs. 2.077(10)" ergs.

2. .00751° C.

3. 26.866 g.

4. 38.3 per cent.

5. 28 per cent.

6. 514.08 h. p.

7. 5.96(10)" ergs.

8. 4.19(10)' ergs/ig. PC.
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APPENDIX

PROOFS NOT FOUND IN THE BODY OF THE TEXT.

1. Pressure on the vertical side of a rectangular vessel

filled with liquid.

It is required to find the total pressure on the side yl, Fig. 216,

of a liquid whose density is p and depth h. Since pressure is

proportional to depth, if the liquid is considered as composed
of elementary layers of width a and depth dx, then at any

depth *; the pressure is pgx, and the pressure against the element-

ary strip is pgaxdx. The total pressure on all the strips is

-•A

/ pgaxdx

= ipgah^

=pgah~

for ah is the total area A. Hence the total pressure on the side

is the weight of a column of liquid whose dimensions are the

area of the side considered and whose depth is half the depth of

the liquid. If c. g. s. units are used, the result is found in dynes.

Fig. 216.

This is true of any area where a horizontal line through its

centre divides the area into equal upper and lower parts.

In case the vertical side is a triangle, as shown in Fig. 217,

the total pressure on that side is found by multiplying the area

of the triangle by the pressure at two-thirds of the depth. Let

ABC be the end of a prism filled with water. Let m be the

271
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length of the horizontal base and h the altitude. Also let a

and b be the segments of m made by the vertical h. Then

tan d = -r
h

hence an elementary strip at depth x and of width dx has an

area

-rxdx
h

The pressure in water at depth x is x, hence the total pressure

on this elementary area is

-z-x'^dx
h

and the total pressure on this part of the triangle is

-•ft

P„= / ^x'dx•=/^-'

ah'
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2. To deduce a formula for the velocity of falling bodies

when the acceleration varies inversely as the square of the

distance.

Fig. 218.

Let r be the radius of the earth and 5 any distance greater

than r. Let g be the acceleration at the surface of the earth

and a the acceleration at a distance 5 from the earth's centre.

Then
a _r'''

since the force of gravitation, and consequently the accelera-

tion, varies inversely as the square of the distance. Hence

of-

Hence, since F= ma, the force at a distance S is

The work done by this varying force is

W= / Fds
-I-

Integrating between S and S„,

"So ISo

W = mgr^ I
~=- = mgr^\ —

=

^
\s ^

/So

1 1
.•. w =mgr'i

18
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The energy of the falling body may also be expressed by

Thus the velocity acquired by a body in falling from a point

S„ to S may be found.

3. A mass swinging as a simple pendulum will at its lowest

point have the same velocity as when it falls vertically from the

same elevation.

In Fig. 219 let om be a pendulum whose length is I and point

of suspension o. Let om be inclined 6° to the vertical. When
m swings to P it will be moving with the

same velocity as if it had fallen from Q
to P. The general equation for velocity

in terms of space is

The value of 5 when the body falls verti-

cally is QP. But QP=l-oQ=l-l cos 6

= 1(1-005 d). Hence v^ = 2gl{l- cos 6) for

velocity acquired in the vertical fall.

When m moves along the arc mP, the

same general equation {v^= 2gs) is appli-

cable, but g becomes g sin d as shown in the figure, and this

quantity varies with each small change in position, ds, along

the arc mP. But ds=ldd, and the square of the velocity will

then be the sum 2gl sin ddd from 6 to zero angle. That is

Fig. 219.

r
v' = 2gl

I
sisin ddd = 2gl cos = 2gl-2gl cos

= 2gl{l-cose)

This is the same result as that found above for the vertical fall

from Q to P.

4. When force is applied to a turbine wheel in a direction per-

pendicular to the plane of rotation, the component causing rota-

tion will be maximum when the blades are set at an angle of 45°.
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Let F be the total force and x the efEective component,

then, as already shown in the text,

x=F sin 6 cos d

By differentiation,

do-^= F(cos='e-sin2(?)

The turning effect of the force will be greatest when —j^ is

zero, consequently the angle sought is one where

F(cos2|9-sin2(9)=0

or cos ^= sin ^

This is true only when the angle is 45°, for only then does cos

(?= sin(9.

5. To find an expression for coefficient of rigidity in case of

a solid cylindrical rod.

For the cylindrical shell it has been shown that

Fhl

2:!drH

The t is here the thickness of the shell.^^.e., the differential of

the radius, dr, of the solid rod, and Fh is the dFh when the

solid rod is considered as composed of an infinitely large number
of concentric shells. Hence

,7^ 2nndrHr
dFh =

:.Fh =

I

2i:wd

I
rHr

.'. n= -

U 21

2Fhl

ndr*

6. Show that the moment of inertia, 7, about any axis is

equal to / about a parallel axis through the centre of gravity

plus the mass of the body multiplied by the square of the dis-

tance between the axes.
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Let o, Fig. 220, be the centre of gravity of the mass. Draw
rectangular coordinates through o. Let one axis, perpendicular

to the paper, pass through o, and another, parallel to the former,

Fig. 220.

through A. Let /„, be the moment of inertia ia reference to the

axis through o, and /„ in reference to that through A. Then it

is to be shown that

Let an elementary mass dm be chosen- at a distance r from o,

and p from A. Then

r.=/./„= / p'^dm

but p^ = y''-\-{x+sy = y^+x'^ + 2xs+s^

'-\-2xs+s^)dm

=
I

{y''+ x^)dm+ 2s I xdm+s" I

I iy^+ x^)dm= Iy'^-\-x^= r^ r^dm=I„

2s I xdm=

for a body is in equilibrium about the centre of gravity, and

hence the sum of the moments, xdm, is zero.
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/dm= s'm

..I^=I„+ms^

7. Find moment of inertia, I, of a circular disk with axis

through its centre and perpendicular to its plane.

Fig. 221.

Let the mass of the disk be m and the radius r. Choose an

elementary ring of radius x and width dx; then the total area

of the surface of the disk is to the area of the elementary ring

as the total mass is to the differential mass dm. That is,

m
2nocdx dm

, 2mxdx
.". dm,= r

—

7

'f'
'dm

Substituting the value of dm and integrating between x= o

and x=r,

2mx^

-P dx

im^= ^mr''
»'

.". I = ^mr^
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The moment of inertia about any other axis parallel to this

one and distant s from it is

I'-m{^+s^)

The radius of gyration, k, is such a distance from the axis

that

In case of this disk

..k'=-m

2w 2

1/2

The square of the radius of gyration in any case is the moment
of inertia with the factor m omitted.

The expression I=^r^ is independent of the thickness of

the disk, and hence is the expression for

the moment of inertia of any cylinder ro-

tating on its own axis.

8. Another method of calculating the

moment of inertia of a cylinder rotating

on its axis is by use of polar coordinates.

Thus, in Fig. 222 let st be a section

perpendicular to the axis, and let dA be

a differential area in this plane. This area

is located by (r, d) and its value is

dA^rdrdd

Fig. 222.
for d is expressed in radians, and there-

fore rdd is the length of the arc in this

elementary area, dA, and dr is the width. If the length of the

cylinder is /, an elementary prism extending the whole length

of the cylinder and having a cross section dA is

IdA^'lrdrdd

and if density is tmiform, the elementary mass is

dm= plrdrdO (p= density)
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But

Jo Jo

/2k

rHrddpl

plR

4

since i:RHp is the mass m, R being the radius of the cylinder.

9. To find moment of inertia of a sphere rotating on an axis

through its centre. Let R be the radius of the sphere, and r

the radius of an elementary section, st, perpendicular to the

axis and at a distance x from the centre of

the sphere. The thickness of this element-

ary section is then dx, and its mass is

pTtr'^dx

where p is the density. The mass of this

elementary section is the differential mass,

dM, of the sphere! The moment of inertia

of this elementary mass is therefore

Ir'^dM

for it is a cylinder of length dx.

^r'dM= ^p7tr*dx

Hence the moment of inertia of the sphere is the sum of all the

elementary sections between +R and —R. That is

I^ipn I r*dx

Fig. 223.

J-B

(R^—x^ydx
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Since r^ = R^—x^, as seen in the figure, r*={R^— x^y

r+R

\pK I iR*-2R'x' + x*)dx=ip7r . nR'= ^7:pR'= i7:R'p . W
But ^nR^p is the mass, M, of the sphere.

.-. I= ^MR^

10. Find the moment of inertia of a thin rectangular plate

whose length is b and whose width is c, when the axis bisects b

and is parallel to c.

b
2
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T'dx

m
T g-X

.-./ =

m
I

IT

24
"*"

24 /^2

1 1 . Find 7 of a rectangular parallelopiped with axis through

its centre and perpendicular to the side ab.

.•«_..:''A

dx

Fig. 225.

Let a be the length, b the breadth, and c the depth. Let m
be the total mass. Let an elementary section at a distance x
from the axis have a mass dm. Then

a m
dx dm

or dm =— dx
a

It has been shown above (10) that I for this elementary mass
yyib'

is —r^ when the axis is through its centre and parallel to c.

It has also been shown (6) that its moment of inertia in reference
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to another axis at a distance x and parallel to its own axis is

( V \
»i(—jj-+ af^). But the wi of this elementary mass is the dm of

the parallelepiped. Hence, substituting for m in >**(—^+a;M

the value of dm =— d%, and integrating between — it and -^-7:,
a ^ A

2

"^ m f b^x x^\

"2

\a 12 • 2j'^ \a " 2iJ

a'+ b'
.I=m

12

12. To prove that pv^ is a constant quantity in case of

adiabatic expansion of gases, f being the ratio of specific heat

at constant pressure to that at constant volume,

—

i.e., -—-.

Let Q be the quantity of heat required to raise unit mass of

a gas through dt degrees, the pressure p being constant. This

heat will be expended both in raising the temperature and in

increasing the volume of the gas. The quantity of heat required

will be the same as if the gas had been kept at constant volume

and the temperature raised dt degrees, and, in addition, the heat

energy required to do the external work in increasing the volume

by dv. This external work is pdv, expressed in ergs, or in

calories (§ 102), / being the number of ergs per calorie. The
increase of temperature per gram requires C„dt calories where

C„ is the specific heat at constant volume. Hence
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But in adiabatic expansion no heat is gained or lost by a gas;

hence Q= 0. Then

^ +CA = Q (1)

By equation (210),
pv=Rx

By differentiation,

pdv+vdp=Rdx

, pdv + vdp
or or=- R

But if p is kept constant, then

pdv=RdT

pdv „
or ^-;—=R

dr

If dr is 1° C,
pvd=R = J{Cr-C„)

since ^dw is the excess of work done at constant pressure over

that at constant volume when the mass and change of tempera-

ture are unity,

—

i.e., it is the difference in specific heats times

the number of ergs per calorie. Hence

, _ pdv+vdp

Substituting this value of dz in equation (1) above,

pdv C^pdv + C^vdp ^

or Cppdv—C„pdv + Cypdv + C„vdp =

r
or -p^pdv+vdp^O

Let -^ be represented by y; then, dividing through by pv,

' V p
By integration,

; log V+ log p = = constant

.'. ^z;v = constant
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13. Adiabatic coefficient of elasticity.

It has been shown that when no heat enters or leaves a body
of gas,

pyT= constant, c (1)

(2>

(3)

(4)

(5>

(6)

Which shows that £,, the elasticity at constant entropy, is equal

to the pressure times gamma, y, where ;-= the ratio of specific

heat at constant pressure to that at constant volume.

It has been shown that elasticity at constant temperature is

E,=P (§94) (7)
Dividing (6) by (7)

-E-r-r-u: (8)

14. To calculate the change of entropy in case of a perfect

gas.

Let Q be a ftmction of pressure p and volume v, then by
partial differentiation
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But —= Cp = specific heat at constant pressure in the first

parenthesis, but C„ in the second.

Since the gas is assumed to obey Boyle's law,

pv=Rz (4)

/arX _v_
' \dp)^~'R

and m =1-
\dv)p R

Substituting these values in (3),

dQ^C^^dv+ C^^dp (5)

pv
Dividing by T=-n-,

T '^ V p
=C,^ +C^^ (6)

Integrating and remembering that / ~^:r = 'il, the change of

entropy.

dp

•. , = C,log,^ + C„log^^ (7)
."i

, r i„„ ^2
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15. Dimensions of mechanical units.

Physical quantity.
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16. Dimensions of ttiermal units.

6= unit of temperature
Thermal unit= e.g. calorie

Dynamical unit= unit of energy e.g. erg.

287

Physical
quantity.
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18.
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19. Density of air.

Density of dry air at 0° C. and under pressure of 76 cm. of mercury is

.001293. Coefficient of expansion = .00367. Hence

h

76

where t is the temperature and h is barometric pressure.

, .^ .001293
density=

^^_QQ3g^^

t°C.
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20. Density of water and mercury in 'Ice.

Water free from air.

Density

t°C. Water

-10
- 9
- 8
- 7
- 6
- 5
- 4
- 3
- 2
- 1
-

1

2
3
4

5

6
7

8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

.998145

8427
8685
8911
9118

.999218
9455
9590
9703
9797

.999871
9928
9969
9991

1.000000
.999990

9970
9933
9886
9824

.999747
9655
9549
9430
9299

.999160

9002
8841
8654
8460

.998259

8047
7826
7601
7367

.997120

6870
6600
6330
6050

.995770
5470

Mercury

13.6203
6178
6153
6129
6104

13.6079
6055
6030
6005
5981

13.5956
5931
5907
5882
5857

13.5833
5808
5783
5759
5734

13.5709

5685
5660
5635
5611

13.5586
5562
5537
5513
5488

13.5463

5439
5414
5390
5365

13.5341
5316
5292
5267
6243

13.5218

5194

fC.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
55
60
65
70
75
80
85
90
95
100
110
120
130
140
150
160
170
180
190
240
290
340
360

Density

Water

.99517
485
452

.99418

383
347
310
373

.99235

197
158
118
078

.99037

.98996
954
910
865

.98820

582
338
074

.97794

.97498
194

.96879
556
219

.95865

Mercury

13.5169

5145
5120

13.5096

5071
5047
5022
4998

13.4974

13.4731

4488

4246

'4005

13.3764

3524
3284
3045
2807
2569
2331
2094

13.1858

1621
1385

13.0210
12.9041

12.7873

12.7406
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21. Reduction of barometric height to 0° C.

ffl=observed height of barometer. o= correction to be subtracted
when rise of temperature is 1° C. The values of o are found by multiply-
ing Ht by the difference between the linear coefficient of expansion of
brass (.000019) and the coefficient of cubical expansion of mercury
(.000181). The correction for any temperature is found by multiplying
a by that temperature in degrees C.

Ht
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24. Heat constants of solids and liquids.

Substance
Linear

expansion
Cubical

expansion
Specific
heat

Melting
point

Boiling
point

Heat of
fusion

Cal.

Heat of
vapori-
zation

Cal.

Air, liqtiid .

Alcohol
Antimony.

.

Aluminum .

Benzene . .

.

Bismuth . .

.

Brass
Cadmium^ .

.

CO2, liquid .

Copper

Glycerin
German silver

Glass
Gold
Hydrogen, liquid.

Ice

Iron.

Lead
Mercury
Nickel
Phosphorus ,

Platinum. .

.

Silver

Steel.

Sulphur
Tin
Turpentine

.

Water
Zinc

.000017

.000023

.000016

.000019

.000031

.000017

.000018

.000008

.000014

soft

.000012
cast

.000011

.000029

.000013

.0000089

.000019

.000011

.000013

.000022

.000029

.00104

.00138

.00053

.000125

.00018

.00105

.58

.049

.21

.38

.03

.093

.055

.095

'

.576

.095

.18

.0316

.46

'

'

.11 .

.0306

.033

.11

.03

'

'

.055

.11

.163

.054

.45

1.00

.0935

632
657

269
900
320

i662
(in air)

1666
1100
1064

"0"

pure
1500
pig

1100
327
—39
1435
40

1760
955

(in air)

1375

115
232

419

—192
to

—182
78.3

1535

80.3

1413

780
—78

290

—253

1600
356.7

288

445*
1600
159
100
930

12.64

13.6

80

30

5.86

2.82

4.6

5.0

27
21

9.4

13

28

210

94

62

362

70
536

* 76 cm. pressure.
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25. Specific heat of gases and vapors.

Cp=sp. ht. at constant pressure.

Cv=sp. ht. at constant voltime.

Gas or vapor. Cp
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27. Thermal conductivity.

Expressed in calories of heat transmitted per sec. per sq. cm. through

a plate 1 cm. thick when the difference of temp, on the two faces' is 1° C.

Smithsonian Tables

Substance
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29. Pressure P of saturated water vapor at temperature t.

P= cin. of mercury.

t°= centigrade.

f
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30. Weight in grams of ttie aqueous vapor contained in a

cubic meter of saturated air.
Smithsonian Tables

Temp.
"C.
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33. Value of gravity in dynes.

Place



APPENDIX. 299

Length, I, of seconds pendulum at sea level,

/ = 39.012540 + .208268 sin^ <p inches

= .990991 + .00529 sin^" (p metres

<p= latitude

Acceleration, g, due to gravity per sec.^ mean solar time,

g = 32.086528+ . 171293 sin^ <p feet

= 977.9886 + 5.2210 sin^" ^ centimetres

Mean distance of earth to sun =92,796,950 miles

Mean distance of earth to moon= 60.269 terrestrial radii

= 238,854.75 miles

= 3.844(10) '» cm.

Circumference of the earth= 4(10)' cm. approx.

Radius of the earth= 6.4(10)* cm. approx.

One radian= 57.2958°

= 57° 17' 44.88"

One degree = .017453 radian

Length of mean solar day = 86,400 seconds

Length of sidereal day =86,164.09965 mean solar seconds
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35. Natural Sines and Cosines.
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36. Natural Tangents and Cotangents.



APPENDIX. 303



304 APPENDIX.

37. Common Logarithms.

N

1

2

3

4
5
6

7

8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36

87
38
39

40
41
42

00,000
30,103

47,712

60,206

69,897

77,815

84,510

90,309

95,424

00,000
04,139

07,918

11,394

14,613

17,609

20,412
23,045

25,527

27,875
30,103
32,222

34,242

36,173

38,021

39,794

41,497

43,136

44,716
46,240
47,712

49,136
50,515

51,851

53,148
54,407

55,630

56,820
57,978

59,106

60,206

61,278
62,325

04,139

32,222
49,136

61,278
70,757

78,533

85,126

90,849

95,904

00,432
04,532

08,279

11,727

14,921

17,897

20,683

23,300

25,768

28,103

30,320

32,428

34,439

36,361

38,202

39,967
41,664
43,297

44,871
46,389

47,857

49,276
50,651

51,983

53,275

54,531

56,751

56,937

58,092
59,218

60,314

61,384

62,428

07,918
34,242

50,515

62,325

71,600

79,239

85,733

91,381

96,379

00,860

04,922

08,636

12,057

15,229

18,184

20,952

23,553

26,007

28,330

30,535

32,634

34,635

36,549

38,382

40,140

41,830

43,457

45,025

46,538
48,001

49,415
50,786

52,114

53,403

54,654
55,871

57,054

58,206

59,329

60,423
61,490

62,531

11,394
36,173

51,851

63,347

72,428
79,934

86,332

91,908
96,848

01,284

05,308

08,991

12,385

15,534

18,469

21,219

23,805

26,245

28,556
30,750
32,838

34,830
36,736

38,561

40,312
41,996

43,616

45,179

46,687

48,144

49,554
50,920

52,244

53,529

54,777

55,991

57,171

58,320

59,439

60,531

61,595

62,634

14,613

38,021

53,148

64,345

73,239

80,618

86,923

92,428
97,313

01,703
05,690
09,342

12,710

15,836

18,752

21,484

24,055
26,482

28,780

30,963

33,041

35,025

36,922

38,739

40,483
42,160

43,775

45,332

46,835

48,287

49,693
51,055

52,375

53,656
54,900

56,110

57,287
58,433

59,550

60,638

61,700

62,737

17,609
39,794
54,407

65,321
74,036
81,291

87,506
92,942

97,772

02,119
06,070

09,691

13,033

16,137

19,033

21,748

24,304

26,717

29,003

31,175

33,244

35,218

37,107

38,917

40,654
42,325

43,933

45,484
46,982

48,430

49,831

51,188

52,504

53,782

55,023

56,229

57,403
58,546

59,660

60,746
61,805

62,839

20,412
41,497
55,630

66,276
74,819

81,954

88,081

93,450

98,227

02,531

06,446

10,037

13,354

16,435
19,312

22,011

24,551

26,951

29,226

31,387

33,445

35,411

37,291

39,094

40,824

42,488

44,091

45,637
47,129

48,572

49,969
51,322

52,634

53,908

55,145
56,348

57,519

58,659
59,770

60,853
61,909

62,941

23,045

43,136
56,820

67,210
75,587

82,607

88,649

93,952
98,677

02,938
06,819

10,380

13,672
16,732

19,590

22,272

24,797

27,184

29,447

31,597

33,646

35,603

37,475

39,270

40,993
42,651

44,248

45,788
47,276
48,714

50,106
51,455

52,763

54,033
55,267

56,467

57,634
58,771
59,879

60,959
62,014
63,043

25,527
44,716
57,978

68,124
76,343

83,251

89,209

94,448

99,123

03,342

07,188
10,721

13,988

17,026

19,866

22,531

25,042

27,416

29,667

31,806
33,846

35,793
37,658
39,445

41,162
42,813

44,404

45,939
47,422
48,855

50,243
51,587

52,892

54,158

55,388

56,585

57,749
58,883

59,988

61,066

62,118
63,144

8

27,875
46,240
59,106

69,020
77,085

83,885

89,763

94,939

99,564

03,743

07,555

11,059

14,301

17,319
20,140

22,789

25,285

27,646

29,885

32,015

34,044

35,984

37,840

39,620

41,330

42,975

44,560

46,090
47,567

48,996

50,379

51,720

53,020

54,283
55,509

56,703

57,864
58,995

60,097

61,172

62,221

63,246
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INDEX

Abscissa, 7

Absolute system, 5

temperature, 188, 258
units, 4

Acceleration, 16

Addition of vectors, 2

1

Adiabatic expansion, 252, 282

Air-pump, 141

Amplitude, 33
Aneroid barometer, 140

Angle of contact, 171

Angular acceleration, 1

6

velocity, 17

Archimedes' principle, 152

Atmosphere, pressure of, 135
Atmosphere, as vmit of pressure, 136

Available energy, 82

Avogadro's law, 128

Axes of reference, 7

B
Balance, 72

Mohr's, 155

Ballistic pendulum, 122

Barometer, 136

correction of, 138, 292

glycerin, 140

aneroid, 140

Baum^'s hydrometer, 156

Beckmann's thermometer, 196

Bending, 115

Berthelot's apparatus, 209

Black-body temperature, 203

Boiling point, 224

Bolometer, 236

Boyle's law, 130

Bulk modulus, fe, 116

Bunsen's ice calorimeter, 210

Buoyancy of liquids, 1 52

of air, 147

correction for, 148

Calibration of thermometers, 195
Calipers, 11

Caloric, 242

Calorimetry, 204
Capillary action, 172
Carnot's cycle, 253

theorem, 256
Centigrade scale, 187, 192, 194
Centre of gravity, 67

of mass, 69
Centrifugal force, 53
Centripetal force, 53
Chain hoist, 98
Charles, law of, 187

Chemical hygrometer, 229
Circle of reference, 30
Clinical thermometer, 198
Coefficient of absorption, 238

of elasticity, 109, 116

of expansion, 179
of friction, 1 02

of pressure, 186

of restitution, 121

of rigidity, 112

Compound curves, 36
Conduction, 231

Conical pendulum, 56

Conservation of energy, 81, 242
Constant of gravitation, 60, 118

Cooling calorimeter, 212

Couple, 50

Critical temperature, 226, 294

D
Dalton's law, 129

Density, 153, 289

of earth, 60

of water, 1 84
Derived units, 5

Dew-point hygrometer, 229
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DifEusion, 145, 174
Difiusivjty, 233
Dimensions, 6, 286, 287

Displacement law, 240
Dynamics, 39
Dynamometer, friction, 105

Dyne, 41

Earth, mass of, 60

Efficiency, 105, 255
Efflux of gases, 146

of liquids, 163

Elastic impact, 119

Elasticity, 109, 292

of gases, 134, 252

Electrons, 107

Emission, 238
Energy, 75

of rotating body, 80

available, 82

Engine, steam, 261

Entropy, 258, 284

Epoch, 32

Erg, 77

Ether, 108

Evaporation, 221

cooling effect of, 223

Expansion, 179

Fahrenheit scale, 194

Falling bodies, 62, 273

Fleuss pump, 143

Flexure, 115

Fluids, 125

Foot-pound, 78

Foot-poundal, 77

Force, 40

Force pump, 161

Four-cycle engine, 267

Fourth state of matter, 109

Freezing point of solutions, 219

of mixtures, 297

Friction, loi

kinetic, 103

rolling, 104

Friction, sliding, 102

Fundamental units, 5

Fusion, 217

a
Gas, 108, 125

Gas engines, 267

Gay-Lussac, law of, 187

Glycerin barometer, 1 40

Governor of engine, 263

Graphic method, 20

Gravitation, 59, 298
constant of, 60

Gravitational units, 41, 78

Gravity, 61

centre of, 60

determination of, 88

Gyration, radius of, 53

H
Harmonic curve, 3

1

Heat, 178

Heat constants, 293

Hooke's law, 66

Horse-power, 79, 265

Humidity, 229

Hydrogen thermometer, 191

Hydrometers, 156

Hydrostatic press, 1 50

Hygrometry, 229

I

Impact, 119

Impulse, 42

Inclined plane, 98
Index of appendix, 269

Indicator, steam engine, 263

Inelastic impact, 122

Inertia, 39
Internal combustion engine, 267
Isothermal elasticity, 134
Isothermals of a vapor, 225

J
Joule, 78

K
Kater's pendulum, 89
Kilogram, 4

Kinematics, i
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Kinetics, 39
Kinetic energy, 79
Kinetic theory of gases, 126

Latent heat of fusion, 208

of vaporization, 208

Lateral pressure of moving liquid,

164

on walls of vessel, 151

Laws of Boyle and Charles com-
bined, 188

Least count, 1

1

Levers, 93
Lifting pump, 161

Liquid, 108, 150

Longitudinal elasticity, 114

M
Machines, 92

kinds of, 93
Mass, 66

determination of, 70

of earth, 60

Matter, states of, 107

Maximum and minimum ther-

mometers, 196

Mean solar second, 2

Mechanical advantage, 93
couple, 50

equivalent of heat, 243, 268

Mercury pump, 144

Metre, 3

Metrology, i

Micrometer microscope, 1

2

screw, II

Mohr's balance, 155

Molecular heat, 206

velocity, 128

weight, 129

Moment of force, 47

of inertia, 51, 117, 275, 288

defined, 52

of torsion, 117

Momentum, 42

Moon, motion of, 61

Motion, 6

N
Natural units, 3

Neutral equilibrium, 70

Newton's law of cooling, 240
law of gravitation, 59
laws of motion, 39

Nicholson's hydrometer, 1 54
Numeric, 6

O
Orbital motion, 63

Ordinate, 7

Oscillation, 88

Osmotic pressure, 175

Parabola, 26

Parallelogram of velocities, 19

Pascal's law, 150

Pendulum, simple, 84, 274
physical, 86

reversibility of, 89
as time keeper, 91

Percussion, 88

Phase, 34
Phlogiston, 242

Piezometer, 11

1

Platinum thermometer, 203

Polar coordinates, 8

Polygon of vectors, 19

Porous plug experiment, 248

Potential energy, 79
Pound, 2

Poundal, 41

Power, 79
Pressure, due to surface tension,

169

effect on fusion, 218, 268

of a gas, 126

of atmosphere, 135
of liquids, 1 50

on walls of vessel, 151, 271

unit of, 13 s

Prevost's theory, 234
Projectiles, 26

Protractors, 13

Pulleys, 94



310 INDEX.

Pumps, 141, 160

Py-diagram, 131

Pyknometer, 155

Pyrometry, 199

R
R, value of, 189

Radian, 14

Radiant energy, 235
Radiation, 234

correction for, 241

laws of, 238

Radiation pyrometer, 203

Radiometer, 237
Radiomicrometer, 236

Radius of gyration, 53

Radius vector, 64

Range of projectile, 27

Reaumur's scale, 194

Reciprocating engine, 262

Rectangular coordinates, 7

Regenerative process, 249

Relative motion, 7

Resistance thermometer, 199

Resolution of forces, 45

Resonance, 239
Resultants, 18, 44
Reversible cycle, 253

pendulum, 89

Rigidity, 113, 117

Rotation of earth, 57

S
Scalar, 18

Screw, 10

1

Semipermeable membranes, 175

Shearing elasticity, 1 1

1

coefficient of, 112, 275

Simple harmonic motion, 29

Sine curve, 32

Siphon, 161

Six's thermometer, 197

Solidification, 217

Solids, 107

Specific gravity, 1 53

Specific heat, 205

by mixtures, 209

by melting ice, 210

Specific heat by cooling, 212

by electric heating, 213

of gases, 214, 247, 250

Stability of a rotating body, 56

Stable equilibrium, 69

Statics, 39
Steam calorimeter, 215

engine, 261

turbine, 265

Stefan-Boltzman law, 239
Stewart-Kirchhoff law, 238

Strain, 43
Stress, 43
Subtraction of vectors, 21

Surface tension, 168, 292

Temperature, 178

absolute, 188

Thermal capacity, 205

Thermodynamics, 241

laws of, 246

Thermodynamic scale, 256

Thermometer, hydrogen, 191

mercury-in-glass, 193

platinum, 199

radiation, 202

scales of, 194

thermo-electric, 201

Thermometry, 191

Thermopile, 235
Time, 2

Torsion balance, 118

pendulum, 116

Transference of heat, 231

Triple point, 228

Twaddell's hydrometer, 158

Two-cycle engine, 267

U
Uniform acceleration, 16

circular motion, 23

Units of force, 40
of heat, 204

of pressure, 135
of work, 77

Unstable equilibrium, 70
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Van der Waals' equation, 133

Vapor, definition of, 227

Vapor pressure, 223, 295-6

Vectors, 18

Velocity, 15

Vernier, 10

Vernier calipers, 1

1

Viscosity, 165

Volume elasticity, no

W
Water equivalent, 207

Watt, 79

Watt governor, 57

Wedge, 100

Weight, 66

Wet and dry bulb hygrometer, 230

Wheel and axle, 95

Work, 75

in expansion, 14.5

quantity of, 76

Yard, 2

Young's modulus, 114








