
conjugate to the Hamiltonian in this problem is P = i/2 log p 2q
This is a relatively complicated operator and substitution into the eq. (8)
yields a result, the interpretation of which has not so far been made clear.
Work on this point is in progress.

1 E. Schrodinger, Ann. der Phys., 79, 734 (1926).
2 C. Eckart, Phys. Rev., 28, 711 (1926).
3M. Born and N. Wiener, Zs. f. Phys., 36, 174 (1926).
4Math. Ann., 98, 1 (1927).
See, for example, R. B. Lindsay, J. Math. and Phys., Mas s. Inst. of Tech., 3, 191

(1924). See also J. Opt. Soc. Amer., 11, 17 (1925).
6 P. A. M. Dirac, Proc. Roy. Soc., 113, 625 (1927).
7The proof of (23) for matrices was given by Born and Jordan, Zs. f. Phys., 34, 8.58

(1925). The proof for operators follows similar lines, i. e., by induction from simple
operations performed on the fundamental relation (6).

8 See the original paper (referred to in footnote 4). Also E. H. Kennard, Zs. f. Physik,
44, 326 (1927).

9 See R. H. Fowler and L. Nordheim, Proc. Roy. Soc., 119, 176 (1928).
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1. These problems are usually treated by the methods developed by
the great. French mathematician Jean Baptist Joseph Fourier who died
100 years ago.
In the case when the differential equation is

?v _ a2v
2X (1)

and the initial condition

v = f(x) when r = 0. (2)

Fourier's solution is (Oeuvres, t. 1, p. 401 (1888))-Th6orie Amalyrique de
la chaleur, 1822-

1 -2v = - f e~"2 dX Jf" cos X(x -t)fQ()d . (3)7r 0 - M

This expression satisfies the initial condition when it is legitimate to write
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Lim v = Jf" dX f ' cos X(x - t)f(Q)d = f(x). (4)
r-O X O -at

For a discussion of these steps reference may be made to Carslaw's Con-
duction of Heat, Chapter 3, 1921.
The theory of the Fourier integral shows that at a point where f(x) has

a finite discontinuity, the value which the integral (4) may be expected
to take is f(x), where

11
f(x) = Lim - U(x + e) + f(x-e)] = 2 [f(x + 0) + f(x - 0)].

This may be different from f(x) and so the solution (3) does not cover all
possible cases. The same remark is applicable also to Laplace's solution

(x-os
V = (rFr) /2 f e 4T f()dS

- a (6)

= (7r)yl/s2 fc e-,' f(x + 2sV'r)ds,
_ co

which is obtained by changing the order of integration in (3). As r -0,
v-*f(x). It should be mentioned that Fourier (Oeuvres, t. 1, p. 421)
uses Laplace's formula to find v in the case whenf(x) = 1 for +a > x > -a
and f(x) = 0 for x2 > a2. His expression for v is

v = 2 F(-x -a,rT- F(-x + a, xr)] (7)1

where
F(o, xr) = (2/V1wr) f e'e2 ds. (8)

It is easily seen that this makes v = 1/2 for x2 = a2. On the other hand, the
solution v = F(| x -x0 |, r -To) corresponds to the following initial condi-
tion for r = xo

v = 1 for x = xo, v= 0 for x$ xo. (9)
Writing

(x-xo)2

S(X - XO, 'T - To) = [7r(T - ro)) e4e(T- TO), (10)

the complete solution for the initial condition (2) is

v = f@ S(x - xO, T)f(xo)dxo + F(Ix - x |, r)[f(x) )],(11)
ao n=l

(X

where the summation extends over all the points of discontinuity of f(x).
This result may be interpreted to mean that the solution S(x - xo, T)

corresponds to a unit source associated with an element of length dxo while

206 PROC. N. A. S.



PHYSICS: H. BATEMAN

the solution F corresponds to a unit source associated with a point. When
T = ro the function S(x -xo, T -To) is zero at all points except x = xo,
where it is infinite, it is in fact a type of function which is now called a
Dirac function' though functions of this type were used by Fourier 100
years ago.2

S(x - xo, r - To) will be called the first fundamental solution of equation
(1) and F(I x - xo 1| r -To) the second fundamental solution. Both of
these solutions are defined only for r > rO. Our aim is to find complete
systems of fundamental solutions for the most important partial differen-
tial equations of mathematical physics. Only a few preliminary results
are given in this paper. The fundamental solutions of the first type have
already been studied by several writers3 and the properties of these solu-
tions are included in the properties of the more general functions that are
usually called Green's functions.

2. For the simple wave equation

-JU =2U (12)

at2 6X2

the fundamental solution of the second type which corresponds to the
initial condition for t = to

u = 1 x =xO
u=0 x 5'xo (13)

= 0 everywhere
1S~~~~~~6is

u = 0 x>xo+t-to
u = 1 xo+ t-to > x > xo-t + to (14)
u = 0 x <xo-t + to

and this solution is valid for t . to.
If, on the other hand, the differential equation is

bu bit (15)
at ax

which corresponds to a propagation of waves in one direction only, the
fundamental solution of the second type corresponding to the initial
condition u = 1, x = xo, u = 0, x # xo (for t = to) is

u =1 x = xO+ t-top u= 0 elsewhere.

3. We now pass on to a consideration of the equations
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=v a2+ a2 + a2 (16)
at 6X2 ay2 ?z2

82u = 82u+ 82u + 82u (17)
Wt - IX2 by2 bz2

Considering first the wave-equation, let u be required to satisfy the follow-
ing conditions (for t = 0)
u = f(x, y, z) on the sphere S whose equation is X2 + y2 + Z2 = a2,

u = 0 elsewhere, -a = 0 everywhere.
at

An appropriate solution has been found elsewhere4 to be

a -
It = f, (18)

r

where r2 = X2 + y2 + Z2 and f is the mean value of f along that circle C
on S whose points are all at distance t from (x, y, z). If no such circle
exists the value of u is zero.
A solution of equation (16) can often be derived from a solution of

(17) by making use of the theorem that if u(x, y, z, t) is a solution of (17)

answering the requirements that u = G(x, y, z), = 0 when t = 0, then

v = (2/Vir) f u(x, y, z, 2sV%Ir)es ds (19)
0

is usually a solution of (16) which satisfies the requirement

v = G(x, y, z) when r = 0. (20)

This result may be used to find v(x, y, z, r) in the case when G is an as-
signed function of position for points on the sphere X2 + y2 + Z2 = a2 and
is zero elsewhere. In the particular case when v is required to be unity
over the sphere S at time r = 0 and zero elsewhere at this time, the solu-
tion is found by this method to be

v = - [F{Ia - ri, x} - F (a + r, T}T]. (21)
r

The general problem of this type for the equation of conduction arises
when v has initially an assigned value f(x, y, z) for each point (x, y, z) of
a certain surface S and is initially zero elsewhere. The solution of this
problem is evidently unique because if there were two different solutions
of the problem their difference would be a non-vanishing solution of (16)
with an initial value zero everywhere. Such a solution does not exist.
To determine the value of v it is convenient to consider the definite

integral
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W = fJ v(x, Y, Z, T)e-T dr. (22)
0

If the differentiations under the integral sign are permissible this integral
satisfies the differential equation

-X + -y + -Z - x2w= -V(Xw ,yp O ). (23)

Let us consider the case when v(x, y, z, 0) = Yn((0, ) where Y is a spherical
harmonic of degree n. Taking the surface S to be the sphere X2 + y2 + Z2
= a2 and assuming that w = R(r). Y.(6, 4)), we find that at points not
on S, the function W(r) = rR(r) must satisfy the equation

d2W = [n(n + 1) + X21W. (24)
dr2 L r2

Let Wo be a solution suitable for the space outside S, Wi a solution suitable
for the space inside S and let the arbitrary constants in Wo and W1 be
adjusted so that

- Wo dWx _ W, dWo = 1. (25)
dr dr

We now replace S by a thin shell bounded by the surfaces r = a - a
and r = a + e Assuming that

rw = A W,(r)Y.(O, 4) r < a
rw = [PWo(r) + QWi(r) + H(r)]Y (Op 4) a < r <
rw = BWo(r) Yn(O,O) r> P

the continuity of rw and - (rw) require that
Ar

AWI(a) = PWo(a) + QW,(a) + H(a)
AW'(a) PPW'(a) + QWI (a) + H'(a)

BWo(,B) = PWo(p) + QW1(#) + H(ft)
BW',C8) = PW'(P) + QW1() + H'(3).

These equations give
A = Q + Wo(a)H'(a)- W(a)H(a)
O = Q + Wo(,B)H%(0) -Wo(1C)HG()
A = f [WO(r)H(r)- Wo(r)H'(r)]dr

a

i.e., A = fl Wo(r)[{ (X2 + n(n + } H(r) - H"(r)]dr.
Similarly
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B-f" Wi(r) [{X2 + n(n + )} H(r) - HV(r)]dr.

To ascertain how H(r) must be chosen we consider the case n = 0 the
solution for which may be derived from (21) by means of equation (22).
In this case we find that

XWo(r) = e' XW1(r) = sinh Xr (26)
XA = 2ae a XB = 2a sinhXa

and the correct result is obtained by writing

X2H(r) - H"(r) = aX[X(r - a)] (27)

where X(0) = 1 and X(s) is a function such that for any continuous
function f(s)

lim fe f(s)X(s)ds = 2f(0). (28)
e 0 -Xe

This function X(s) must, like a Dirac function, become infinite for one
or more values of s in the range (- XE, Xe). In the general case we write

{X2 + n(n + )} H(r) - H"(r) = aX[X(r - a)] (29)

and the analysis gives simply

XA = 2aWo(a) XB = 2aWI(a). (30)

The solution of our problem is thus

Xrw = 2aWo(a)W1(r)Y"(O,,O) r < a (31)
Xrw = 2aWi(a)Wo(r) Yn(O, 4,) r> a.

In the case when n = 0 the solution is

X2 = 2ae-a sinh X r r < a
X2rw = 2ae- sinh Xa r> a. (32)

The corresponding solution for the plane x = xo is

2w = e-).XIXXo. (33)

The solution of the conduction problem for the sphere S may be obtained
directly by means of equation (19) and the solution of the wave-equation

u = (a/r)P (cos c)Y(Y,( ), (34)

where t2 = r2 + a2 - 2ar cos w, when this equation gives a real value of
w, u being otherwise zero. The expression for v is thus
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r+a Fr2 + a2- S2Tl
v = (2/V\/) Jf 24 (a/r)P. 2 I e 2 ds.Yn(O-4)

Jr-all 2ar
247 (35)

=
a Y (O, P.,f,P,(cos co)sin co. d.o1e- (p2/4-)

V/('r') 0 p

where p2 = r2 + a2 - 2ar cos co. We have also the expressions

v = 2a2( )nYn(O, 4) f Oe~'2 Jn+/, (kri)J- n i2(kr2)dk/(ar)'1'0 r1= r, r2= aifr<a
ri = a, r2 = r ifr> a

and this, combined with (31) gives the relation

'XdkWo(r2)W1(ri) = ()n fXJn+ 1,2(kri)J- / (kr2)/(rlr2) /2 r1 < r2
o X2 +k2

which is closely related to an integral given by Sonine.5
1 After P. A. M. Dirac, Proc. Roy. Soc. Lond., 113 (1927), 621.
2 Oeuvres, t. 1, p. 234.
3I. Fredholm, Acta. Math., 23 (1900), 1; Compt. Rend., 129 (1899), 32; Rend.

Palermo, 25 (1908), 346. J. Le Roux, Compt. Rend., 137 (1903), 1230. N. Zeilon,
Arkiv. Mat. Astr. och Fysik., 6 (1911), 9 (1914); Nov. Act. Soc. Sc. Upsaliensis, 4,
(1919) 5, J. Hadamard, Lectures on Cauchy's Problem, rNew Haven, 1923, Ch. 3.

4 Ann. Math., 31 (1930), 158.
' N. Sonine, Math. Ann., 16 (1880), 59. See also H. M. Macdonald, Proc. Lond.

Math. Soc., 1, 35 (1902), 428.
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(A) The Experimental Situation.-The experimental determination
of Avogadro's number is very closely related to the determination of the
charge of the electron on the one hand and to the absolute determination
of the wave-length of x-rays on the other hand. Millikan, as is well
known, measured the charge of the electron directly by the oil drop
method, long before absolute measurements of the wave-lengths of x-rays
were attempted. Values for these wave-lengths, therefore, were obtained
from the charge e of the electron in the following indirect way. From e

and Faraday's constant F, one derives immediately Avogadro's number,
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