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INTRODUCTION
In a detailed theory of a group of physical phenomena an analogy is

exhibited between observed facts and the logical consequences of a self-

consistent mathematical structure. The analogy constitutes the theory.
A theory is valued for the diversity of the phenomena which it describes

and correlates, and for the stimulus it furnishes for the discovery of new

experimental facts. The mathematical structure should be Of such nature

that the analytical manipulations required in the derivation of the theo-

rems can be readily performed.

Judged in this light, the Maxwell-Lorentz theory has attained a de-

gree of success little short of marvelous. Its triumphs have forced it into

the position of an ultimate theory. With Maxwell, light became an elec-

tro-magnetic phenomenon, and the subject of electromagnetic radiation

was opened for investigation. With the electron theory of Lorentz, mat-
ter became an electrical complex. Through the immediate success of this

theory, and influenced by a vast amount of experimental evidence that

was soon forthcoming, the conviction grew that all physical phenomena ,

were electromagnetic. The viewpoint of physicists toward electromag-'

netic theory today is determined by their belief in the basic role played

by the theory. Its fundamental character makes it necessary that the

definitions and concepts of the theory be stated with special care and

precision. Its concepts are the most fundamental concepts of physics.

To "explain" electromagnetic action is meaningless. Simplicity of state-

ment and recognition of the fundamental character of the concepts are

the demands. The basic mathematical structure of the theory consists

of a set of vector differential equations, the "field equations" of the elec-

tron theory. This is the form of statement a century after the science of

electrodynamics was born. The viewpoint toward these equations is, like

the equations themselves, a result of evolution during that century.
The first half of the century saw the acceptance of the conception of

action at a distance for electromagnetic phenomena, and action in a

medium for optical phenomena. With the names of Ampere, Weber,

Grassmann, Gauss, Reimann, Neumann, Kirchoff, Helmholz, Clausius,

and Betti is associated the development of mathematical expressions for

laws of electrodynamic action. Forces between current elements or mov-

ing charges were either expressed directly or through the aid of auxiliary

ix



INTRODUCTION

vectors, or as Lagrangian derivatives of a function playing the-rdle of a

kinetic potential. These laws were all point laws, giving the action of

charges on charges with no attempt to describe the way in which these

forces, acting at different points of space, could arise. In the earlier theo-

ries there was no suggestion of an actual propagation of effects from one

point to another, but a suggestion of this nature was contained in a

letter which Gauss wrote to Weber in 1845. He mentioned that he had
himself (in 1835) attempted to deduce the fundamental law for electro-

dynamic action, but had never published his results because he had
failed to accomplish that which seemed to him the real task the deriva-

tion of the law from a consideration of the propagation of effects with a

finite velocity. Kirchoff in 1857 noticed the coincidence between the

value of the velocity of light and that of the ratio of the electrical units.

In 1858 Riemann presented a paper to the Gottingen Academy in which he

assumed a finite velocity of propagation, and deduced that this must be

equal to the ratio of the units, and hence to the velocity of light. In 1867,

Lorenz, of Copenhagen, extended the theory of Neumann, obtained ex-

pressions for the retarded vector and scalar potentials which are equiva-
lent to the forms commonly used today, and was led independently of

Maxwell to the conception of light as an electromagnetic phenomenon.
The difference in viewpoints is, however, striking; for Lorentz considered

that if light were shown to be electromagnetic in nature there was no

longer the necessity for maintaining the hypothesis of an aether. The
action at a distance theory was thus moving certainly toward the dis-

covery of time lag in effects and toward the electromagnetic theory of

light. Maxwell reached this goal, however, by an attack from quite a

different angle, and in the glare caused by his brilliant investigations

much of the work just mentioned was lost sight of.

Impressed by Faraday's conception of lines of magnetic and electric

force, and by Kelvin's analogies of the electric and magnetic field of force

with heat flow, elastic deformation, and fluid motion, Maxwell turned his

attention aside from elements of current or charge, and conceived of all

phenomena as due to conditions existing in a mechanical medium. From
his equations there resulted the determination of the velocity of propa-

gation of effects. Maxwell at once identified the mechanical medium of

his theory with the aether which optical phenomena had long since led*

physicists to consider, and founded the electromagnetic theory of light.

Light became an electromagnetic phenomenon, but electromagnetism an

aether phenomenon. The vectors of Maxwell's theory expressed the state

of the aether. Confidence was not lacking that the specification of the
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aether as an elastic medium could be obtained, so that the field equations

would follow from the laws of mechanics. Heaviside and Hertz, avoiding

discussion of the detailed mechanical models which Maxwell considered

in the derivation of his equations, simplified the analytical statement of

the theory. The resultant field equations were universally accepted as

the basis of electrodynamic theory. The psychological effect of Max-
well's work was also far reaching in character. Many of his outstanding

results were certainly correct, and these successes, together with the

recognized genius of the man himself, naturally impressed upon the fu-

ture development of the subject not only the analytical expressions for

which he was responsible but also his methods of thought and his point

of view. He gave to physicists a more systematic treatment of the sub-

ject than they had had, a treatment capable of bolder extensions, a theory

amazingly successful in explaining old results and predicting new ones;

and behind it all was the idea, so comforting to the English physicists,

of a mechanical analogy. If there were difficulty or dissatisfaction be-

cause of vagueness of definition and complexity of the underlying con-

cepts, it was overwhelmed by the prestige obtained by the great achieve-

ments of the theory. Through the following years the concepts of the

Maxwell theory became firmly fixed in the mind of each student of phy-

sics. There was so much talk about lines of force, tubes of force, stresses

in the medium, and localized energy that an easy familiarity with the

terms began to carry with it a sense of understanding and reality, and

curiosity became dulled as the years passed by. The idea of a medium
whose state was expressed through the equations of the field was funda-

mental to the theory, and the idea of action at a distance seemed to retain

a historical interest only.

The next great advance was the formulation of the electron theory of

Lorentz. He conceived that all electromagnetic and optical interactions

of matter were due to the presence of corpuscular charges, "electrons,"

within the matter. This is a partial return to the earlier viewpoint,

in which the action of charge on charge played the entire role. But

with Lorentz, the Maxwell theory is preserved. Instead of direct de-

scription of the action of charge on charge, the theory is phrased in terms

of the action of medium on charge, and charge on medium. Electrons

produce a "field" which is propagated in the medium, and which acts on

all other electrons. The r61c of the medium, in Lorentz' theory, becomes

far more clearly that of an intermediary only. With the negative result

of all aether drag experiments, the proof of the covariance of the field

equations under the Lorentz transformation, and the statement of the

xi



INTRODUCTION

theory of relativity, the aether, as a mechanical concept, vanished. To it

was not even left the role of determining a system of reference. The idea

of the field remained, however, as its trace, and electromagnetic theory

remained a field theory, whether the field was thought of in terms of its

components with their energy densities or as a world-tensor.

The end result of Lorcntz' theory is the direct description, through

the retarded potentials, of the action of charge on charge. Thus, though
this is not at all the viewpoint of Loreiitz' own presentation, we may con-

ceive that we are back in spirit to action at a distance, but action after a

lapse of time. Whether we use the language of action at a distance or ac-

tion in the medium is obviously a matter of words only, if the analytical

formulations are really equivalent; but it is not a matter of indifference

if the question becomes one of extension or modification of the theory.

In such attempts, intuition is led by the picture accepted as fundamental.

If the electrodynamic field be considered as fundamental, such concepts

as the localization of energy in space and flux of energy density seem a

compelling, not an arbitrary, assumption. Certainly, in consideration of

such a searching question as the reconciliation of quantum ideas on

energy interchanges with general theory, the type of attempted modifica-

tion will depend upon the choice of viewpoint in this particular.

The great scientific task of the next fifty years is the development of a

new "electromagnetic" theory. It is impossible to forecast the form

such a theory will take, so greatly are we prejudiced by our present views.

It will, however, doubtless be based on a quantitative description of the

individual behavior of charges, and will yield as statistical concepts such

ideas as inertia, force, and even length and time. Thus it will explain the

mechanical behavior of ponderable matter, rather than be itself "ex-

plained" by mechanics. That this new theory should yield ideas such as

those just mentioned, rather than depend upon them, is but consistent

with the basic role this theory must play.

Pending the advent of this new theory, it is essential to have a knowl-

edge of that system of equations which constitutes the present electro-

magnetic theory. Remembering that the future of the theory lies in the

hands of the present students, it seems of the greatest importance to

arrive at these equations in a way which will excite, rather than dull,

curiosity, and which tends to produce that attitude toward fundamentals

which must prevail before a real electron theory of electricity replaces

the present electrical theory of electrons.

The present volume is an introduction to the mathematical field the-

ory of electrodynamics, written in an attempt to keep clear the relation

xii
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between the mathematical mechanism and the physical reality. It is

hoped that a student who gains his familiarity with the Maxwell field

equations from this book will have an open mind, ready to evaluate with-

out prejudice those fundamental new developments in electrical theory
which are bound to come. The authors realize that this volume closes

just at that interesting point where many valuable developments begin.

However, just as, according to the behaviorists, one's psychology is largely

"sot" before he reaches the age of three, so one's viewpoint toward

electrodynamics is a fixed and settled matter by the time one has acquired
the field equations and has discussed certain of their most fundamental

applications. It is with this viewpoint that the authors are primarily
concerned.

The authors wish to acknowledge their indebtedness to Mr. Ivan

Sokolnikoff, Instructor of Mathematics at the University of Wisconsin,
for his kind and efficient assistance in the reading of proof.
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CHAPTER I

COULOMB'S LAW AND SOME ANALYTIC
CONSEQUENCES





PART I. DISCRETE CHARGES

INTRODUCTION

Part I of this chapter introduces the fundamental inverse square law
for the electrostatic action between two concentrated charges. This re-

lationship is then extended, by means of the superposition principle, to

cover the case of any number of discrele charges. The mutual electro-

static energy ^ of a configuration of charges is defined as the amount ol

work which must be done against the electrostatic forces to produce the

given configuration, starting from a configuration in which each charge
is very far distant from any other charge. This quantity ^ depends, for

its value, on the location of every charge, and is thus a function of the co-

ordinates of each charge. If the co-ordinates .r
, /ye ,

2e of one charge e be
allowed to change, all the other charges remaining fixed, the function ^
varies, the change corresponding physically to the fact that work must
be done to move the charge e. The rate at which ^ varies when e is moved
in any direction mathematically expressed, the directional derivative*,

taken at the position of e, of the function ^>(.r e , yty z f) gives the com-

ponent of the electrostatic force on e in that direction. This leads to the

introduction of a vector V<fr, called "nabla psi," whose component in

any direction is the rate of change ^ in that direction, the force on any
charge then being given in terms of this vector V^. In computing such

rates of change of ty it is clearly possible to disregard portions of ty which
do not depend upon 2%, yt ,

z t . The extraneous part of V is therefore dis-

carded, and the remaining portion is e times a quantity which is defined

to be the "electrostatic potential" at x t , yci z t . The negative nabla of this

electrostatic potential is also given a special name the "electrostatic

intensity."

1. Coulomb's Law and Superposition of Effects. The basis for the

analytic study of electrostatics is Coulomb's law of force. This law was

suggested and even roughly verified before the experiments of Coulomb

(1785), but belief in its validity was not general previous to that time

Using a torsion balance, he found that the force between two small

charged bodies was along the line joining them, and varied inversely as

the square of the distance, provided this distance was large compared to



i THE ELECTROMAGNETIC FIELD

the linear dimensions of the two bodies. For such distances the extension

of the bodies may be disregarded, a single point may be taken as giving

the location of each body, and the law of force may be written in the

vector form*

^2=^^,2-712

In this equation r\2 is a vector of unit length pointing from one body

having the charge ei, toward the other body, of charge ez . F2 is the vector

force acting on body 2, and rJ2 is the distance between the bodies. The

measurement of the charges e\ and e2 depends upon the value chosen for

the proportionality factor K. In this book, following Heavisidc and

Lorentz, the value of K is taken as 1/4*, and the law of force becomes

Like unit charges at a distance of 1 centimeter thus repel each other with

a force of 1/4* dynes. This "rational" unit of charge is smaller than the

olderjjlectrostatic unit, corresponding to the choice K = 1
,
in the ratio

1/1/4-7T . Thus if e
f be the measure of a charge in the older electrostatic

units, and e the measure of the same charge in the units here adopted,

then _

The modern theory interprets a charged body as one with an excess

or deficit in the number of its electrons, the total charge being the devia-

tion from the normal number times the electronic charge

1/4^ (4.77X10-
10
)/

The charge of an electron itself is considered negative, on account of

earlier unfortunate conventions, so that a body with a deficit of elec-

trons is called "positively charged."

The force between charged bodies may then be considered as due to

forces between the elementary charges, an electron being an elementary

negative charge, and the nucleus of an atom being an elementary positive

charge. It is obviously in accord with the experiments which establish

(1) to assume: first, that at distances large compared to atomic dimen-

* It is assumed, in the early sections of this chapter, that the charges under con-

sideration are located in "free space." The modification necessary when the charges

are located in a polarizable medium will bo discussed later. All vectors arc repre-

sented by hold face.

4



DISCRETE CHARGES 2

sions there is an electrostatic force between each pair of elementary

charges which obeys Coulomb's law; and, second, that these forces

superpose without alteration, i.e., that the force on a charge due to

several charges is the vector sum of the forces which would be exerted

by these charges separately.

It should not be concluded that these assumptions are the only ones

in accord with the experimental facts of electrostatics. Such experiments

deal with the average value, taken over appreciable times, of the gross

effect of large groups of charges. The actual force between pairs of ele-

mentary charges might follow any law which gives the inverse square

law as a statistical result, i.e., as the time mean of the sum of the forces

between an enormous number of pairs of charges. It is, however, these

gross effects which are under discussion in electrostatics, and for such

purposes it suffices to assume Coulomb's law between elementary charges

at large distances and vector superposition of forces.

It is a matter of some practical importance to note that for the pur-

poses of electrostatics the nature of the law for very small distances is a

matter of indifference, except for the fact that one form of the law may
be more convenient than another for calculation. It would be quite in

keeping with the experimental facts to assume, for example, the law

1 01

provided that /3(r]2) is a factor which reduces effectively to unity for all

except very small distances n2 . If, in particular, it be desired to have a

form which reduces to zero, instead of becoming infinite when rt2
=

0, then

could be chosen as

where a is sufficiently small, an example of which is plotted in Figure 1.

2. Mutual Electrostatic flftj

Energy ^ of a Configuration

of Elementary Charges. The

mutual electrostatic energy

of a set of elementary
charges is defined as the

work which must be done

against the electrostatic

forces to bring the charges

ex - 10-

10'*cm. 5 lCT
6cm

FIG. 1. Graph of

to their given positions, starting from a configuration of "infinite sepa-

5



2 THE ELECTROMAGNETIC FIELD

ration," i.e., a configuration in which all the charges are very far apart.

The amount of work is, of course, the same as that done by the

electrostatic forces when the charges arc allowed to separate from
their configuration to one of infinite mutual separation. It will be seen

that this work is independent of the paths along which the charges move,
and is thus completely determined by the configuration. Consider first

the case of two charges ei and e2 ,
located at points PI and P2 . Let e\ be

kept fixed, while e% is allowed to recede along some definite path. Let s2

measure length from P2 along this path, and let r*i2 be the distance from
the charge ci to the charge e2 ,

so that ru is a function of s2 . Then the

component of electrostatic force acting on e% tangent to the path at any
point is

(rJ2 ,
s2)

x dn,
cos (/'is, 2)=-v- ,

but since

this may be written

(2) (F2 )^ =

the value of the derivative being taken at the point whore the force com-

ponent is desired.

(3)

Fici. 2

The work done by the electrostatic force when ez recedes is therefore

f*y j

6162 1

where, in the last expression, rJ2 is the distance between the charges when
they are in the configuration whose energy is being reckoned. The form
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of the integral giving the mutual electrostatic energy shows at once that

the energy does not depend on the path over which e2 moves; for the

integrand is a derivative with respect to s2 ,
whose integral with respect to

s2 depends only upon the limits, i.e., only upon the initial and final posi-

tions of the charge e2 .

The mutual electrostatic energy x

characteristic of the mutual con-

figuration. If the position of either

charge be changed, this number

changes, and ^i2 becomes a function

of the parameters which give the

location of the charge in question.

If, as was supposed above, e2 moves

on a path along which s2 measures

distance, the mutual energy S^i2 for any position s2 of e2 is a function of

s2 (since riz depends upon s2), and the component of force in the direction

s2 at any point on the path is

of the two charges is a number

rlt+driz

Fid. 3

the value of the derivative being taken at the point where the force is

desired. In particular, the component of force in the direction of s2 at

the point P2 is

In computing a component of electrostatic force on a charge, the idea

of the motion of the charge on a given path is obviously extraneous, and

there is, indeed, nothing in the analytical form of the last equation which

need involve the idea of a path or motion. The expression*

is a directional derivative of the function ^i2 , giving its rate of change at

the point P2 in the direction s2 . Thus (2) may be re-written simply

* See Appendix, 3, A, for a discussion of directional derivatives.

7



3 THE ELECTROMAGNETIC FIELD

where, on the right, it is understood that the rate of change of ^12 in a

direction 82 is calculated for the point P2 . In calculating this derivative

one end of rl2 is fixed at PI, while the other end is variable.

It follows at once from the principle of superposition that the work

done when n charges e l9 located at points P l9 P2 ,
. . . . Pn ,

are allowed

to recede to a state of infinite mutual separation, is given \>y

(4) *-S S
i?'

each pair of charges appearing once in the summation. The component
of force in a direction sk on any one charge 0* due to the others is given

by

In forming this directional derivative, all the r
ijy J7*k, are constant,

while each r tk is a function of SA, one end, P,, being fixed, while the

other end is variable.

3. The Vector Force F Expressed as V>F. The equation express-

ing the component in a direction s of a vector

where i,j, k are unit vectors in the directions of the co-ordinate axes, is

CS
= CX cos (s,x)+Cy cos (s,y)+Cs cos (s,z) .

By comparison of this equation with the equation

d$_d<b dx.tft '/!/ ,

* dz

efo

""

dx ds dy ds dz d*
'

, .
, , x , N=~ cos (s,x)+
dy

cos (s,y) cos (s,z) ,

for the directional derivative of any function $(x,y,z), it is seen that

d$/ds is the component in the direction of 5 of a vector whose compo-
nents in the co-ordinate directions are d$/dx, d$/dy, frb/dz. This vector

is written V$ (read "nabla phi"), so that
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Thus*

*-<"-

Now the maximum component of a vector is the component in the direc-

tion of the vector itself. Therefore V, operating on a scalar-point func-

tion, produces a vector-point function which at every point has the direc-

tion of the greatest rate of increase of the scalar function, and whose

magnitude measures that rate of increase. Thus if z=f(x,y) be thought
of as a surface, z being measured vertically, the two dimensional vector

Vf is given by

At any point x,y this vector has the direction of the projection on the

,rz/-plane, of that tangent line to the surface at the point x,y,f(x,y) which

points "up hill" OH the surface, i.e., which makes a greater angle with

the horizontal than any other tangent line at this point. The magnitude
of Vf is, moreover, the slope of this direction of steepest ascent.

As a second example of the use of this operator, let r be the distance

between P(x,y#) and P'(x', y
f

, z'}. Then

and

The length of the vector Vr is

|Vr|=-^^

and it points, as is seen from its components (or directly from the mean-

ing of the operator nabla), from P f toward P. Thus

* The partial-derivative notation is sometimes used for directional derivatives

See remarks at the end of Appendix 13, A.

9



4 THE ELECTROMAGNETIC FIELD

where r' is a unit vector from P f toward P. Moreover,

When the function upon which the nabla operates contains more than

one set of variables, the set with respect to which the differentiation

involved in V is to be taken can be indicated by means of a subscript

or superscript on the symbol V. Thus

. . dr
,

. dr
, , dr

and obviously

(5) V/W =

for any function /.

Now the vector force on any one of a group of elementary charges may
be expressed in terms of the nabla of the function giving the mutual

electrostatic energy of the configuration. For since

it is evident from the foregoing discussion that

(6) ft=

where the differentiation indicated by the differential operator V^ is to

be taken with respect to the variables Xk, yk, Zk fixing the position of the

charge ek. The energy is indeed a function of Xk, yk, z^ all the rijt j^k
being constant, while each rik is a function of xk , ykj *.

4. Electrostatic Potential and Electrostatic Intensity. Consider a

configuration made up of a charge e and n other charges e t . The total

mutual electrostatic energy of this configuration is conveniently written,

when one is interested in the force on the charge e due to the other

charges e, in the form

.- s
t

\

-- s 6tj

4ir
~*

t\ t 4w
"

rif

10



DISCRETE CHARGES 4

where r l is the distance from e to e t ,
and where, in the second sum,

every pair e, and e, of the n charges is taken once. The portion ty, of

1he total energy may be called the internal electrostatic energy of the

configuration formed by the charges r,. This internal electrostatic ener-

gy, however, is, in general, dependent upon the presence and location of

the charge c, for the positions of the charges c, are, in general, depend-
ent upon the location of the charge e. The portion ^ of the total ener-

gy may be called the electrostatic energy of the charge* c when in the

presence of the charges e,. The advantage of separating the total mu-
tual electrostatic energy into these terms is one of mathematical con-

venience in reckoning the force Fc on the charge e. For the portion ty,

contains all the terms of ^ which depend upon x e
, /y f ,

2e ,
the co-ordi-

ordinates of the charge e. Therefore

where, as above,

The coefficient of c in this expression is called the electrostatic poten-

tial <I> at the position e due to the charges e,. Thus

where, for simplicity of notation, the distance to e
t from the point at

which the potential is being calculated is now written r
t . Accordingly,

The coefficient of e in this expression i.e., the force per unit charge

acting on c- is also given a special name, it is called the electrostatic

intensity E due to the charges c,. That is,

(8) --V3>,

and

The electrostatic potential <I> and the electrostatic intensity E, consid-

ered from a purely analytical point of view as the scalar and vector

point functions defined by the foregoing equations, can obviously be

11



4 THE ELECTROMAGNETIC FIELD

calculated at any point in space. It is dear, however, from their defini-

tions as coefficients of e that these quantities have direct physical signifi-

cance only at points at which charges are located.

PROBLEMS FOR PART 1, CHAPTER I

1. Given

find du/ds, if s measures distance in a direction which makes equal

angles with the positive co-ordinate axes.

2. Referring to Problem 1, what is the numerical value of du/ds at a

point P of co-ordinates (1,2,1)? What is the approximate difference

in the values of u at P and at a second point Pf which is 0.01 units

of distance from P in the direction s?

3. Given:

what is drfdx and d(l/r)/dx?

4. A vector A is 5 units long and has direction cosines 1/2, 1/2.

1/21/2. What are its components? Draw the vector.

5. Referring to Problems 1 arid 4, what is the rate of change of u in the

direction of A ?

6. A vector B has a length of 5 units and makes equal angles with the

negative #-axis, the positive ?/-axis, and the negative z-axis. What
are its direction cosines and its components?

7. Referring to Problems 5 and G, what is the component of A in the

direction of B ?

8. If A represents a force and B a displacement, what is the work

done?

9. Given:

what is Vp f

10. Given:

r2 =(o Zi

compute and discuss V - and Vi -

12



DISCRETE CHARGES 4

il. Given a surface

z being pointed upward; in what direction will a particle slide if

placed on this surface at the point (1,2,7) ?

12. Assuming the surface of Problem 11 to be smooth, what are the x-

and ^-components of the horizontal force which would just prevent

the particle from moving?

13. Show that the operator

,
-

V==i _ Ut
dx J

dy dz

is distributive.

14. Interpret the equation

<7= k V0
,

where fc is thermal conductivity and 6 is temperature.

1 o. If u is a function of x,y.z, show that Vu is normal to the surfaces

u= constant.

16. Show that the electrostatic intensity at a point P(x,y,z) due to

charges e t located at points (jc

'

, y',, z,) is

13



PART II. COMPLEXES OF CHARGE

INTRODUCTION

As was seen above, the total electrostatic force between two small

charged bodies is, in some cases, to be described by Coulomb's law, in

which the spatial distribution of the bodies is neglected. The total charge
of each body and the distance between the bodies determine the force. A
body may, however, be in electrostatic interaction even if it have no total

charge. For example, a small uncharged piece of glass is acted upon by a

small charged body with a force which does not obey Coulomb's law as

applied to the bodies as a whole. The total effect, in this case is due to

the spatial distribution of the positive and negative elementary charges.
In any case the total electrostatic force between groups of charges

is given exactly by summing the action of each elementary charge on

every other elementary charge. As a step in carrying out this summation

process, it is found convenient to calculate the potential due to each

group of charges.

In the following pages the potential due to the charges forming a

small group or "complex of charges" is, represented in terms of a con-

vergent series in inverse powers of the distance to the complex. The first

term of this series depends only on the total charge of the complex.
This corresponds to the Coulomb law applied to the complex as a whole.

But even in very small complexes it is not sufficient to consider this term

alone, for the effect of spatial extension may yield a term just as impor-
tant as the Coulomb term. In fact, there are important cases in

which the Coulomb term is zero, so that the second term of the scries,

which depends upon spatial extension of the complex of charges, is then

the leading term. This second term depends upon the quantity Se/i,

where l t is the vector locating c
t with respect to some point within the

complex. This vector quantity is called the "polarization" of the complex,
and can clearly havo a non-vanishing value when the total charge of the

complex (and hence the first term of the series) is zero.

It is clear that in determining the action between two complexes of

charges, the forces on the charges of one complex will affect their

positions, and thus their actions on the charges of the second complex.

This, in turn, affects the positions of this second set of charges, and so on.

To resolve this problem of interaction, it is necessary to have a relation-

ship between the polarization of a complex and the intensity due to the

14



COMPLEXES OF CHARGE 5

distant charges. It is assumed that when a neutral and unpolarized

complex is subjected to the electrostatic influence of distant charges, the

polarization produced in the complex by the differential shift of positive

and negative charge is proportional to the intensity due to the distant

charges. Such would be the case, for example, if the displacements of all

charges be small, .and if they be opposed by forces which, like elastic

restraining forces, are themselves proportional to displacement.

5. Force between a Mingle Charge and a Complex. A group of

charges will be referred to as a complex when these charges arc con-

tained within a volume whose dimensions are small compared to the

distance to the charge or charges whose interaction with the complex
is under consideration. The force on a charge c due to any set of charges
e t is given, in terms of the potential due to the charges, by the equation

/7c=- e V*
,

where

If the set of charges e,- form a complex, an approximate expression for

this potential may be obtained

by expanding the quantities /\aT
1 /r,. in converging power series

in Zi/r, where Z 4 are the dis-

tances of e t from a point with-

in the complex, and where r is the distance from to the location of *.

Indeed (see Fig. 4),

2rZt cos 0,1 -' =
-s

1 -- l-M M '

r
J

-^fMV.Coofl*.),r o W
where Pn is the so-called Legendre polynomial of degree n, i.e.,

51

_ 2(2n-l)

n(n-l)(n-2)(n-3)
""2 -4 (2-l)(2n-3)

*
Stc, c

jjj , Byerly's Fourier MTMY? and Spherical Harmonica, p. 10.
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5 THE ELECTROMAGNETIC FIELD

Thus the potential at e due to the complex of charges e t may be written

(9) 4ir<I =
*
2e;+i 2c,Z t cos t+i Se,/

2

f (cos
2

t-)+

The first term of this expansion of 4> is the value this function would

have, were a total charge 2e concentrated at 0. The variation of this

term, when the co-ordinates xf , yf , z* of e are allowed to vary, corre-

sponds to a force depending upon the charge 6, the concentrated charge

2e t ,
and the inverse square of the distance. It is obvious that if all pow-

ers of //r, including the first, be dropped, so that the spatial extension

of the complex be entirely disregarded, the expression for the potential

would reduce to this Coulomb-law term which involves simply the

charges and 2e t ,
and the mutual distance r.

In the second term of the expansion, the coefficient of 1/r? appears
as the sum of the projections on r of vectors I/, each multiplied by the

charge e t . The coefficient is, then, the same as the projection on r of the

vector sum

(10) JeScA ,

which will be called the "polarization of the complex" relative to the

point 0. The coefficient of 1/r
2 in the second term may thus be written*

p cos 8
,

where 6 is the angle between the vector p and the direction from to

the location of the charge e. This second "polarization" term in the

expansion for the potential may appear even if the total charge 2e t of

the complex be zero. The term is entirely characterized by the value of

the vector sum p, i.e., by the polarization of the complex; and it is

evident that different configurations of the charges e
ly simple or compli-

cated, having the same polarization, are entirely equivalent as far as this

term is concerned. In a discussion which involves this term only, it is

often convenient to adopt a simplified picture of the complex. Consider

a configuration consisting of two equal and -opposite charges +e and

c, the position of +e with respect to e being given by a vector /.

Then if

el=p,

it is evident that the term of lowest order due to this pair of charges is

identical with the polarization term due to the complex e.

* See also Part II, Problem 5, of this chapter.

10



COMPLEXES OF CHARGE f 5

If one is willing to abandon a physically possible model, this pair of

charges can be idealized into a so-called "doublet," by permitting I to

approach zero, while the magnitude of the charges increases indefinitely

in such a way that the product el is always equal to p . It is evident,

that the total effect of such a doublet is equal to the polarization term

due to the complex; for if / approaches zero while el remains constant,

all the other terms in the expansion of $ for the doublet approach zero,

since they contain higher powers of I. The magnitude p of p is called

the "moment" of the polarization, or of the equivalent doublet, and the

direction of p is called the "axis" of the polarization, or of the equivalent

doublet.

As regards the first two terms in the foregoing expansion for the po-

tential, it is clear that any complex is equivalent to a single charge

of magnitude Se and a doublet of polarization . Both the Coulomb term

and the polarization term depend upon the choice of location of within

the complex. The nature of this dependence is indicated in number 11

of the problems listed next below.

The foregoing remarks have been restricted to the first two terms of

the series for <. It is not possible, on purely mathematical grounds, to

decide how many 'terms of this expansion are required to obtain a suffi-

ciently accurate value for the potential. A physical argument will be

given, in 9, to show that in ordinary problems only the first two terms

are to be retained. Were all charges of the same sign, the second term

would always be much smaller than the first, since the ratio of the con-

tribution a given charge makes to the second term and to the first term is

the small quantity I,, cos Q l/r. Thus, in the case of charges of one sign,

the rapidity of convergence of the series, and, accordingly, the approxi-

mation obtained by breaking off at any given point, is determined in a

simple way by the smallness of the ratio Z t/r. This is why, in the theory

of gravitational potential, it is customary to retain only the first term.

The theory of electrostatic potential is, then, fundamentally more compli-

cated, since Se may vanish so as to make the first term zero, while, at

the same time, 'the second term is riot zero. In the same way it is con-

ceivable that the first two terms vanish, and the third be the leading,

term. The number of terms to be retained would thus have to be deter-

mined by direct examination in each special case wore it not for the

physical arguments, referred to above and to be given later, which

eliminates the necessity of considering terms beyond tho second.

The nature of the polarization term in the expression for the potential

may be better understood by considering the case of a complex whose

17
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total charge is zero, but which is polarized; and for which all the terms

hcyond the second in the expansion of <l> are zero. The force Ft on a

charge * due to this complex may then he written

_ ^ ^ t) _ cosF=- V t<J>=- / V e
--

47T r

and the components of this force in the directions of increasing r and

respectively are*

(F\ - Q-lv (
' S

^\
C^ ^ cos 0__2ep cos

,^x ep / cos 0\ 6-p 1 d cos cp sin

(12)

The force on the complex as a whole is, of course, equal and opposite to

Ft. The angle ^ between the direction of r and the direction of the

force F* is given by
, (F) O sin , ^

In Figure 6 curves are drawn having at every point the direction that Ft

would have if, keeping the configuration of the complex itself constmil
,

the charge e were located at that point.

(>. Force and Torque between Two Complexes. The exact expres-

sions for the effect of one group of charges e-
t
on a second group of

FIG. 5. The components of force on a charge e due to a complex of polarization p

charges e t
- may also be given simpler approximate forms when each of

the groups is a complex, i.e., when the distances between the charges of

one group are small compared to the least distance to any charge of the

other group. The force due to the first complex on a charge ei of the sec-

ond complex is given by
6iV$

* See Part IJ, Problem 4 of this chapter.
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where $ is the potential due to the charges e
; ,
and where Et is the

value at the location of d of the electrostatic intensity E due to the

charges e
}
. The force F on the second complex due -to the first complex

is thus given by

FIG. 6. (Taken by permission from Jeans, Electricity and Magnetism)

Let be some point within the second complex, and let It be vectors

locating e l with respect to 0. Then this sum may be simplified by ex-

panding E in a Taylor's series about the point 0, thus obtaining the

19



6 THE ELECTROMAGNETIC FIELD

special values Ei of the function ,
in terms of the value of E and its

successive derivatives at 0, and in terms of the distances // from to

e t . In fact,

* (f).

where the subscript indicates that the value of the quantity is to be

taken at 0.

It follows from the definition of E that its magnitude cannot ex-

ceed, at any point P, the value 2\e } \ /4-wr^ where r is the least dis-

tance from P to j. It is, in fact, evident that the value of E at P
would be increased (or unaltered) by making; all the charges positive and

moving them all to the position of the one nearest P. Similar upper
bounds may be obtained for the successive directional derivatives of E.

In fact, for a single charge,

dE dE
dr

2e

Thus the rate of change, in any direction, of the intensity due to a group
of charges is increased (or unaltered) by making all the charges positive

and moving them to the position of the nearest. That is,

|
dE
dl

In the same way \cPE/dP\ cannot exceed 6S|e, 1/4^, etc. Thus the

terms of

arc equal to or less than the corresponding terms of the scries

which is "convergent, since the limiting ratio of successive terms is ? t/r .

Hence the series for e^Ei is convergent, and the series 2<?,i, which con-

tains a finite number of terms e,Et, is also convergent. The question,

however, as to how many terms one must use to obtain a good approxi-

mation must be answered, as in the case of the series expansion for $, by
a closer examination. It does not follow, for example, from the upper

20
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bounds just found that the second term is necessarily smaller than the

first, it is merely stated that the first term is smaller than a certain

quantity AI and that the second term is smaller than a certain quan-

tity Az<Ai. The argument, however, to be given in 9, which justifies

discarding terms beyond the second in the expression for $, also applies

to this equation.

If, then, only the first two terms of this series be retained, the force

on the second complex is given by

In the second term of this expression, each charge e t is multiplied by its

distance ^ from 0, and by the rate of change at the point and in the

direction // of the vector E. The rate of change of a vector in any direc-

tion is itself a vector whose components are the rates of change in this

direction of the components of the vector. The rate of change in the

direction // of a component, say E>, of E is given by*

T (It, V#*) .

t't

The vector rate of change of E in the direction If is thus given by

{(li, VEx)i+(li, VE,)j+(lt, VJ?,)*}s (I

where the right-hand side of this equation is an abbreviation for the

left-hand side.f The force F may thus be written, making use of the

notation just introduced, and dropping for simplicity the zero subscript

on E and its, derivatives,

(13)

where

is the polarization of the second complex with respect to the point 0.

* See the Mathematical Appendix for a discussion of scalar and vector products

t See also Part II, Problem 18, of this chapter.
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7 THE ELECTROMAGNETIC FIELD

The vector torque T on the second complex is given by*

If E be again expanded in a Taylor's series, this becomes

(14) T=S

In equation (14) as in (13), the zero subscript has been omitted. In both

these equations, then, it is understood that the value of E and of its deri-

vatives are to be taken at that point within the complex relative to

which the polarization is -defined.

7. The Polarization of a Complex. It is customary, in electro-

statics, to speak of the "location" of the elementary charges under con-

sideration. This idea of the location of a charge is a complicated one

and involves the use of time and space averages. No one believes that

the individual charges forming a body which is in electrostatic equilibri-

um are, in reality, stationary. The experimental evidence for Coulomb's

law teaches that the (time-average) force on a small charged body A\
due to a small charged body A 2 may, for certain separation distances, be

written as a constant times the inverse square of a distance r, one end

of which is within Ai and one end of which is within A 2 . As has been

pointed out above, it is possible to assume, for a law of action between

elementary charges, such an expression as will yield, on resynthesis, this

experimentally checked law for the time-average effects between large

numbers of charges. A given charge e\ may, in fact, move in a very com-

plicated way always remaining, however, within a small volume bA\ of

body Ai, while a second charge e2 is moving within a small volume

AA 2 of A*. It is consistent with Coulomb's law to assign, for the action

of e2 on 61, a value proportional to the inverse square of a distance r,

one end of which is within AAi and the other end within AA 2 . The two

ends of this line would then be called, for electrostatic purposes, the "lo-

cations" or better the "effective positions" of charges e\ and e2 , respec-

tively. It is clear that to a certain approximation involving the ratio of

the dimensions of AAi or AA 2 and r, it is immaterial where, within

AAi and AA 2 ,
the charge is said to be located. It is also clear that a

more exact determination of this "location" would necessitate an aver-

aging process for which one would require a knowledge of the actual

force between the actually moving charges, and a knowledge of their

paths. The statistical nature of the electrostatic problem for ponderable

bodies fortunately permits one to disregard such difficult details.
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When the charges forming a complex are subjected to the electro-

static effect of other charges, forces arise which change the effective posi-

tions of all charges unless restraints of some nature prevent these changes.
If the charges forming the complex are, at the same time, those which

constitute an atom, the charges are constrained to remain within a very
small volume, which may be thought of as the "volume" of the atom. If

no exterior charges are present, the electrons and nucleus making up the

atom would form a certain configuration which from the point of view
of electrostatics would be described, as is indicated above, by giving a

fixed effective position of each charge. The presence of exterior charges
causes an excess force to act on each of the charges of the atom. The
actual effect of this excess force is undoubtedly highly complicated. If

the electrons are in orbital motion about the nucleus, these orbits will

be warped and shifted. The gross effect, however, of all such changes is a

simple shift of the effective time-mean position of each charge, and of

this alone does electrostatics take account. The total disturbance to the

atom is small when, as is actually the case, the excess forces are small in

comparison to the normal forces acting on the charges making up the

atom. Thus the electrostatic effect of exterior charges is to produce a

small differential shift of charge within the atom, the electrons and nucle-

us being oppositely affected. If the exterior charges are sufficiently dis-

tant (or if they are distributed with the necessary symmetry), the force

per unit charge on each of the elementary charges e% of the atom due to

these exterior charges will be the same. That is, the force on each e* due

to the exterior charges e/ will be given by

(15) Fi=e iE J

where E, the electrostatic intensity due to the exterior charges e/, is the

same for all the charges e*. It is assumed that the electrons and nucleus

are bound by intra-molecular forces in such a way that an excess force

produces a displacement proportional to its magnitude and in its direc-

tion. If all the electronic displacements are small with respect to the

distances between the electrons, the reactions of these electrons on each

other will not be sensibly changed, and the force producing the displace-

ments will be solely the force due to the exterior charges. Thus the effec-

tive displacements, and, accordingly, the resulting or induced polariza-

tion, will be proportional to the force per unit charge due to the exterior

charges, i.e.,

(16) p = kE.
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7 THE ELECTROMAGNETIC FIELD

Any atom or complex which polarizes according to this equation will be

called an "isotropic" atom or complex, and the assumption is then that

there are actual atoms or complexes which are isotropic. It is evident

that a ponderable body may be statistically isotropic without being

formed of isotropic atoms.

Equation (16) gives the induced polarization due to an impressed

intensity. A molecule may have, when not under the influence of other

external charges, an inherent polarization pQ . For such a molecule or

complex, the total polarization, in the presence of a fiold, would be the

sum of the inherent polarization and the polarization induced by the

field.

As an example of the polarization caused by a given exterior charge,

consider an isotropic uncharged atom, and a charge e whose distance

from the atom, r, is large compared to the dimensions of the atom. Un-
der these circumstances the charges forming the atom constitute a com-

plex. The force per unit charge on the charges of the complex is sensibly

the same for the different charges, and

(17) p-fcE-

the direction of p being the direction from the charge e to the atom.

PBOBLEMS FOR PART II, CHAPTER I

1. Referring to 5, expand rf
1

,
viewed as a function of l t ,

in a Taylor's

series in the neighborhood of l t
=

0, and thus establish the equation

-i, 1
,.*

cs Oi
, ff(3 cos2

0,-l) ,r
* ~r+ r2

+
2r]

+ .....

The Taylor's series derivation of this equation furnishes more than

a mere check of the result found in 5 by trigonometry and algebra.

See the first footnote to 9.

2. Show that (A,B+C) = (A,B)+ (A,C) .

J. Interpret geometrically the equation

4. Given a function f(r,0) of the polar variables r and 6] explain why
the component of V/ in the direction of increasing 6 is given by

icy
r SO'
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5. Show that the potential at the point P(x,y,z) due to a doublet of

polarization p located at the point 0(x',y',z') may be written

K)
6. If F is a force applied at a point P and r is the vector to P from a

point 0, interpret physically the expression [r,F].

7. The vector S makes equal angles with the positive co-ordinate axes

What is the rate of change at the point (1,2,1) in the direction of S
of the vector

ixy+jzy*+kzx
2 f

8. Given:

A = i2-j3+k,

what is (AS), (AC), (EC), (A,B+C), U-), [AB], [AC], (CB] t

[BA], (A, [BCD?

9. Given:

A = ixz2y+jy2x2
z

what is the rate of change, at the point (1,1, 1), of A in the direc-

tion of B?

10. Given a function F(rtO,<p) of the polar variables r, 0, and p; what

are the components, in the directions of increasing r, 0, and ^?, of

VfV

11. a) If po be the polarization of a complex relative to a reference point

0, and d be the vector from to an alternative reference point

Q, show that

where e is the total charge of the complex, and where pQ is the

polarization relative to Q. When is the polarization of a complex

independent of the reference point?

b) Show that the first or Coulomb terms in the two expressions for

the potential at any point P which correspond to two choices,
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7 THE ELECTROMAGNETIC FIELD

and Q, of a, reference point within the complex, differ by an

amount whose leading term is ( ed, V -
j.

How might this term

be interpreted?

c) Let, as before, r be the scalar distance from P to 0, and let R
1)0 the scalar distance from P to Q. Then if and Q be chosen

as a reference point, the first two terms in the expansion for

47T<$> are

and

respectively. By (a) and (6) the latter expression is equal to

-*, 7'

Show that (po ed, V ^ )
and (po ed, V -J

differ by terms

which are of higher order than "polarization" terms, and hence

show that the sum of the first two terms in the expression for the

potential is independent of the location of the reference point, in

so far as Coulomb and polarization terms are concerned.

12. If an atom is polarized by a charge e at a distance r from it, the

magnitude of the polarization is

while the direction is along r. The potential at the position of c due

to the polarized atom is

Explain why the force on cannot be found by substituting the

foregoing value for p in the expression for 3>, and then computing
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13. Two neutral but polarizable atoms are located a distance a apart.

A distance r (large compared to a) from these two atoms is a charge
e. What is tjie magnitude and direction of the polarization of the

two atoms if: (a) the charge e is located on the line joining the two

atoms; (6) the charge e is located on the perpendicular to the lino

which joins the atoms?

14. A positive charge +e is located and fixed at the point x = a, y = Q.

Two equal negative charges e are placed on the //-axis, on which

they are free to slide. What is the equilibrium configuration?

15. A charge +e is located a distance 3a from the center of a circle

of radius a. Two equal negative charges e are free to move on

the circumference of the circle. Show that equilibrium exists when
the angle between the radius which points toward +e and the radius

to one of the negative charges is approximately 6350'.

16. Three isotropic neutral atoms are located at the vertices of an equi-

lateral triangle. They are polarized by their own interaction and by
an electrostatic intensity of magnitude E whose direction is 'normal

tp one of the sides of the triangle. What is the polarization of each

atom?

17. A charge e is brought from infinity to a position P, while a neu-

tral molecule is fixed at a second point Q. Suppose, first, that the

molecule has a fixed inherent polarization and no induced polariza-

tion; and, second, that it has no inherent polarization, but the in-

duced polarization, as given by equation (17), due to the presence

of the charge e. Show that if the charge e be brought to such a

position that the actual final polarization of the molecule is the same

in the two cases, the work done in the first is twice the work done in

the second.

18. Show that by interpreting V as a vector operator the symbol (AV)B
has precisely the meaning assigned to it in 3, D, of the Appendix.

19. The preceding problem suggests the possibility of viewing (AV)B as

a scalar (A V) times the vector B. This cannot, in general, be done

since a scalar times a vector has the direction of the vector, while

(-4 V)B does not have the direction of B. Nevertheless, show that

and state this result in terms of rates of change.
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7 THE ELECTROMAGNETIC FIELD

20. Show that

and explain how this fact is used in obtaining equation (13).

21. Given the vector i sin x+j cos a*; show that at the origin this vector

is of unit length and points in the ^-direction, while its rate of change

in the direction of a positive z-axis is a unit vector which points in

the positive x-direction.
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PART III. PONDERABLE BODIES

INTRODUCTION

In Part III of chapter i are developed the analytical methods suitable

for the electrostatic, treatment of ponderable bodies. Coulomb's law and

the principle* of superposition still form "the basis of the development, the

characteristic difference between the purely academic theory for isolated

charges and the practical theory for ponderable bodies being that the

latter is essentially a statistical theory. Account is no longer taken of the

separate charges, but certain averaged-over characteristic measures of

the charged condition of the body in question are introduced; viz., the

volume densities of charge and polarization, and, as limiting cases of

these, surface densities of charge and polarization. These densities are

continuous functions of position within the body. The possibility of for-

mulating the electrostatic problem for ponderable bodies in terms of such

continuous densities and the consequent enormous gain in analytical

simplicity is directly due to the fact that it is possible to subdivide a

body into volume cells whose dimensions are very small compared to the

body itself and to its distances to other bodies, but which, nevertheless,

contain a very great number of individual charges. Two important points

must be, noted in connection with these densities: (1) that they are intro-

duced for a definite purpose, viz., as convenient means of expressing the

potential due to a charged body at points not near that body; (2) that

they are inescapably connected with a definite subdivision of the body.
The final sections of Part III are closely connected with the two points

just emphasized, and they can be more profitably discussed, after the

sections have been studied, in the concluding remarks at the end of the

chapter.

8. Forces Due to Large Groups of Atoms. The Statistical Nature of the

Problem. In the preceding sections, methods have been given by means
of which one can obtain the forces on the elementary charges making up
a configuration. Particular study has been given to the case where cer-

tain of the charges, say those which make up an atom, form a complex
whose greatest dimension is small compared to the distance of this com-

plex to any other charge. Such a theory is sufficient if one is content to
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8 THE ELECTROMAGNETIC FIELD

consider only problems involving small numbers of charges in known

positions, but such a theory is not at all able to solve a physical problem

dealing with ponderable bodies. If the bodies involved in some physical

problem were small compared to the distances between them, then they

would each act as a simple charge, if charged, or as a doublet, if polarized.

But bodies must be treated which are not small compared to their sepa-

ration distances. This first distinction between the electrostatic problem
for elementary charges or single atoms, and the electrostatic problem for

ponderable bodies, thus leads at once to the question of distribution of

charge. For, if the bodies involved are large enough so that a single

point docs not effectively locate each body, then evidently one cannot

obtain the forces and torques acting unless the distribution of charge on

each body is known.

This question of the distribution of charge on ponderable bodies, is,

in reality, an extremely complicated one. Vast numbers of charges, com-

posing one body, react on vast numbers of charges composing other

bodies, while at the same time any one charge of a certain body is also

acted upon by all the other charges of this same body. The equilibrium

configuration of the charges within the bodies is thus a compromise be-

tween the interactions of the charges of a body and the forces due to

charges on other bodies. The complexity of the problem is partially indi-

cated by a consideration of the number of terms which enter into the

expression for the mutual electrostatic energy of several ponderable
bodies. The number of terms in the sum

47T Tij

is roughly indicated by the fact that there are 6.06X1023 molecules in a

mol of a substance and several elementary charges in each molecule.

The analytical mechanism previously developed is obviously unsuit-

able for such a problem, and the method of attack is suggested by the re-

mark, just above, concerning the number of elementary charges involved.

Questions which deal with an exceedingly large number of individual

cases are treated by statistical methods, and one loses sight of the indi-

vidual case in a study of the average behavior and the average result.

Advantage is taken, in this way, of the very complexity of the problem,
and the great numbers involved become a distinct help rather than a

hindrance. A similar situation is met, for example, in the kinetic theory
of gases. There are in each cubic centimeter of gas a vast number of

molecules. These molecules collide with one another, and the individual
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history of each molecule is immensely complicated. If the gas is con-

tained in some vessel, the various molecules collide with the walls of the

vessel. One can conceive of the problem of studying the frequency,

speed, and direction with which a particular molecule would strike a

given area of the wall, but such a study is obviously out of the question;

indeed, it would be useless to carry it out even were it possible to do so.

For there are so many molecules present that one may confidently expect

that the predictions of probability will be fulfilled, and that the average

pressure due to all the individual collisions will be the "expected" result

which a statistical study furnishes. That is to say, the data are suffi-

ciently numerous so that the statistics will be regular. If there were only,

say, two hundred molecules in a vessel, the problem would actually be

exceedingly more difficult, for then the individual description of the

motion of each molecule would have to be made. Mechanics describes

definitely the phenomenon of the impact of two perfectly clastic spheres

(just as electrostatics has a definite description for the force between two

elementary charges), but this mechanics of the individual case must be

incorporated in a statistical theory dealing with expected averages be-

fore progress can be made concerning the behavior of a vast aggregate

of molecules.

9. The Concentration Methodfor a Single Complex. It has been seen

above that the force on a charge is given in terms of the potential due to

other charges; and it is evident from the remarks just made that progress

in the electrostatic problem for ponderable bodies depends upon the pos-

sibility of expressing, by a method that will take into*proper account the

statistical nature of the problem, the potential

in some form which is suitable for this case where the number of charges

involved makes the direct summation process a practical impossibility.

As regards the analytical expression of the potential, two alternative

procedures are available which correspond, physically, to a hypothetical

concentration or spreading of the charges present. The first, or concen-

tration method, is useful when all the charges e t are located within a

volume Ar whose greatest linear dimension I is small compared to the

least distance of any of the charges from P, the point at which the

potential is being calculated. The process consists of choosing a fixed

point of reference within AT, and placing there fictitious elements which

serve to represent the potential to any desired order of approximation.
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9 THE ELECTROMAGNETIC FIELD

This method was used above in discussing the force on a single charge
due to a complex, and it was there found that

Se t
,
2ej t cos t

,+ ^ + ,

_ p COS

where r is the distance between P(x,y,z) and 0(x',y
f

,z'), the chosen

reference point within the complex; where

(18) = Ze,-;

and where 6 is the angle between 0-P and the polarization vector p
given by

The potential of this sot of charges e
t

is thus approximately equal to the

potential due to a single concentrated charge of magnitude e and a doub-

.let of polarization p, each located at the point 0.

Although the (n+l)st term in the series expansion for the potential

due to a complex contains the factor (Z/r)
n

,
which is less than the factor

(Z/r)
n

, nevertheless the rapidity of convergence cannot be estimated from

the smallriess of the ratio l/r; neither is it correct to think of l/r as the

ratio of a term to the preceding term. The expression for the potential

may be written as

where

cos

and a comparison of the relative magnitudes of the various terms in the

expansion must be based upon a consideration of the relative size of the

coefficients A t . There is no reason, mathematically, why an arrange-
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PONDERABLE BODIES 9

ment of charges could not occur which would make A 4, say, so large

that the fourth term would be the predominating term of the expansion.
There are sensible physical reasons, however, for restricting attention

to the first two terms. Suppose, for example, that the set of charges e l

are those composing a molecule. The existence of polarized but neutral

molecules evidently makes necessary a consideration of at least the sec-

ond term. It may easily be seen, however, that just as a polarization

depends upon a varying distribution of charge, so the third term of this

series is a sort of "differential polarization" which depends upon a vary-

ing polarization.* Now, in any actual electrostatic problem the charges
?i are located in positions determined by an interplay of external forces

and the interactions of the charges themselves. A uniform external force,

since it acts oppositely on negative and positive charges, can evidently

give them a relative shift and produce polarization. To produce a "differ-

ential polarization" of appreciable magnitude it would be necessary that

the positive and negative charges in one portion of AT be shifted rela-

tively to each other in a way sensibly different from that which obtains

in the other portions of AT. This, in turn, demands either that the ex-

ternal forces vary over the small extension of AT more rapidly than is

physically reasonable, or that the binding forces which affect the inter-

actions of the charges e* have a more rapid non-uniformity than is be-

lieved to actually obtain. It must be remembered, moreover, that even

if the various quantities At, A 2 ,
A 3 ,

. . . .
,
were of the same order of

magnitude, the terms of the series would rapidly decrease on account

of the increasing power of r in the denominator. Incase c = and ^= 0,

the third term is, of course, the leading term, and there is no reason,
other than that just given, why it should not be considered. Further-

more, since the degree of approximation furnished by a given number of

terms is dependent on the distance from the complex to the point at

which the electrostatic effect is to be determined, it is evident that in

cases where this distance is not large compared to I it is not to be ex-

pected that two terms will give an adequate approximation, and the

term involving zonal harmonics of higher order must be included. A simi-

lar extension should presumably be made in the study of the reaction of

an atom to an electric field which varies appreciably over the atom. Vari-

ations of this order of magnitude are in fact present in the case of the

sharp electric pulses which constitute X-rays. It has been customary,

however, to concentrate attention so exclusively on the charge and polari-

* See Part II, Problem 1, of this chapter; also Maxwell, Electricity and Magnetism,
1 (1873), 157-63.
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10 THE ELECTROMAGNETIC FIELD

zation terms that the fact is often lost sight of that they are but the two

leading terms of a convergent series representation.* It is, in general,

impossible to compare the magnitude of these two leading terms

c , v cos
and -

s .

r r2

If, however, ^= when referred to some point within Vr, then the

first term is the predominating term, for then

regardless of the choice of 0, and the ratio of the second term to the

first term is less than l/r. In fact, if the polarization relative to some

point is zero, and Z is a vector from 0' to 0, then I <
I, while

where li are the vectors locating e t relative to 0.

10. The Spreading Method for a Single Complex. The concentra-

tion method is a natural one when dealing with the reaction between an
electron and an atom, or between two atoms; for the spatial extension

of the groups of charges making up each atom is so small that the series

will converge rapidly for reasonable distances r.

Through the "spreading method," an approximate representation of

quite different character may be obtained for the potential due to a com-

plex of charges. In the concentration method, a single point of reference

is arbitrarily chosen, and the potential approximately represented by a

series of fictitious elements placed at that point. In the spreading meth-

od, on the other hand, a definite volume AT is arbitrarily chosen, and an

approximation to the potential of the complex is sought in the form of an

integralf

1

f ^x' yy',z')dx'dy'dz'

4'J |/(z-z
* In recent work, by Debye and others, on the magnetic and dielectric properties

of liquids, it has been found necessary to use third-, fourth-, and even fifth-order

terms in the expansion of the potential.

t The integration variables in this and the following integrals are x',y',z', the po-
tential being calculated for the point P(x,y,z). In any case where confusion could
arise the volume and surface elements of integration will be written with a prime, as

dr', d<r', to remind that the primed variables are the integration variables
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PONDERABLE BODIES 10

carried over the volume AT, where r is the distance from the point

P(x,y,z) to the infinitesimal volume element dr'-dx'dy'dz'. The con-

ditions that p must satisfy in order that this integral furnish, with de-

sired accuracy, an approximation to the potential, are obtained by ex-

panding 1/r in the foregoing integrand about a point within the vol-

ume, and comparing the expression so obtained with the expansion,

given by equation (9) and taken with respect to the same point 0, of

the potential due to the complex. Thus

I V" = 7 I
^r+^ I

J&T T TO Jbr r
Q J&T

_~~
r

'

>-
2 T - -

i

'0 >0

where e is the total charge 2e l} where r is the distance from to P,
and where <p is the angle between O-P and the vector I from to dr

y

and where is the angle between O-P and p. The desired approxima-
tion will thus be obtained if the function p is chosen to satisfy the two
conditions

(19) -

(20)

the second of these two conditions resulting from the fact that the equa-
tion

/ATP/ cos <pdr = p cos

must be satisfied for every direction of r .

These two conditions may be satisfied by a function p which varies

linearly throughout the given volume AT. Assume, in fact, the form

where the origin for x'
, ?/, z', is at 0, so that po is the value of p at

that point. Then

po
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10 THE ELECTROMAGNETIC FIELD

and

These equations reduce to simpler form when the point is chosen

as the center of volume of AT. The conditions (1 9) and (20) then become

independent conditions on the value of p at and on the part of p

which varies linearly and vanishes at 0, viz.,

po T =

The vector equation gives a unique determination of a, 0, y in all cases,

the values being most simply expressed when the x,y,z axes are chosen

in the direction of the principal axes of inertia of the volume AT. Then

fy'z'dr , etc.,

and

where

/yv= jV2dr
,

etc.

Since, in general, /
tfv^/*V, it is seen, from the foregoing equation,

that the direction of the linear variation of p is not, in general, that of

the polarization vector p.

The potential due to a complex of charges which lie in a volume AT is

thus approximately represented by the integral

pdr

taken over AT, where p varies linearly. When the reference point is

taken at the center of volume of AT, as will always be done, the integral

(2i) ;
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represents, to terms of the order 1/rJ, the part /4irrQ of the potential;

by the integral which arises from the variable part of p, namely,

(22)

the part p cos 0/rl is also represented to terms of the order 1/r,*,. This

linear function is the most simple function which will give the required

degree of approximation in terms of a single integral. If approximation
of this same type but of higher order wore required, other than linear

variation of p would be necessary, there being no limit to the degree of

approximation obtainable by allowing p to be sufficiently complicated.
On the other hand, a representation giving the same degree of ap-

proximation may be obtained in terms of two functions, each even more

simple than the linear function p. The expression (21), where p has a

constant value p , represents, as has just been noted, the first term of

(9) to terms of order 1/rJ. The second term of (9), namely, p cos 0/rf,,

has heretofore been represented by the term (22) which arises from a uni-

form variation of p. The second term of (9), however, can be represented

to terms of order l/rj by the integral

(23)

where \[/
is the angle between the direction from dr to P and the con-

stant vector P . In fact, expanding the integrand of (23),

cos I _Po cos fo
,

1 , ,,/> c

J "r

' 9

where ^o is the angle between P and the direction from to P. The

last equation, since it holds for all locations of the point at which the po-

tential is calculated, demands that the projection of ArP on any direc-

tion equal the projection of p on this same direction, i.e., it demands

that
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The potential of the complex of charges wrhich lie in a volume AT may
therefore be approximately represented by the two integrals

1 CptflT ,
1 ("PQ cos \l/ ,

T" I r:r~ I 5 dr ,

47T I r
4iTrJ

r2

where p and Po have the constant values given by

It is evident, therefore, that the spreading method may itself

proceed in either of two ways. A representation, holding up to nth-order

terms, may be obtained by moans of a single integral, in which case con-

ditions on the value at of p and its (n 1) successive derivatives

arise from comparison of the expansion of this integral with (9). Or a

representation holding up to nth-order terms may be obtained by
means of n separate integrals. In this latter case functions appear in

each integral which may have a constant value over AT. These two

procedures correspond, physically, to a hypothetical spreading of charge,

on the one hand, and a hypothetical spreading of charge, polarization,

etc., on the other.- If charge alone be spread, it must be spread in a more

and more complicated way as higher approximation is demanded; if

charge, polarization, etc., be spread, each may be spread uniformly.

11. The Potential Due to a Body. In seeking a representation for

the potential due to the charges which form a ponderable body, it would

be naturally suggested by the foregoing treatment to consider all the

charges as forming a single complex, and to represent the potential due

to this complex either by the concentration or the spreading method.

However, since electrostatic problems often demand the value of the

potential at points whose least distance from some body is not large com-

pared to the dimensions of that body, it is evident that such scries repre-

sentations would, when applied to the body as a whole, converge very

slowly if at all, and even in the more favorable event, many terms would

be necessary to furnish a good approximation.* This difficulty can be

escaped by subdividing the body into volume cells AT t ,
of linear di-

mensions / small compared to the least distance from the body to the

point P at which the electrostatic effect is to be measured, and treating

*The concentration method, with several points of concentration, is, in fact,

used in the "method of images," to be studied later.
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PONDERABLE BODIES 11

the charges in each of these volume cells Ar as a separate complex. The

potential due to the charges in these cells could then be represented
either by the concentration or the spreading method. The concentra-

tion method, however, does not effect as great a gain in simplicity as is

desired, since the potential of the whole body, if this method be used on

the various subcomplexes, consists of a sum of as many terms as there

are volume cells Ar t .

These facts suggest that the spreading method be used for the repre-

sentation of the potential due to the subcomplexes. If the contribution

to the total potential due to the charges in each Ar t is to be represented

by a single integral

L
each function p t must, as was seen above, be the sum of a constant part
and a linear variation which vanishes at 0, the center of volume of Ar t .

The potential of the whole body would then be given by

Pidr

i

r

This expression again involves the sum of as many terms as there are

volume cells Ar t ,
and no gain in simplicity results from the use of the

spreading method unless this sum of integrals can be written as a single

integral. The union of all the functions p t ,
each defined over its own

volume cell Ar, gives a function p, defined over the whole body. Then

the last integral being extended over the whole body. But the simplicity

gained by using p instead of pi is apparent rather than actual, for the

function p is a "patchy" discontinuous function, and the right side of

(24) can be evaluated only by evaluating the left side. Indeed, even in

the idealized case where the subcomplexes in Ar t are identical (each with

respect to its own reference point), they do not join to form a continuous

function p, the situation being as shown in the following schematic

drawing.

It is thus apparent that this representation, by integrals involving a

single function, of the potential due to the subcomplexes in the volume

elements AT< is not a convenient one. The spreading method, however,
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11 THE ELECTROMAGNETIC FIELD

can proceed in either of two ways, and it is evident that the situation

just considered, namely, that of identical subcomplexes in AT,-, will be
treated very simply if the potential is represented by means of two inte-

grals, rather than one, these two corresponding physically to the uniform

FIG. 7. Schematic diagram showing the densities in adjoining cells containing
identical complexes of charge.

spreading of both charge and polarization. The potential due to the

charges in Ar^ will thus be written

1 C P^dr. 1 r PS cos ^
4, r Vlr^47T

where pj and P} are scalar and vector functions, constant over their

region of definition AT,, and given by

An />=/>/,

where \l/
is the angle between P$ and the direction from dr to P,

where e> is the sum of the charges in AT,, and where pi is the polariza-

tion with respect to O t ,
due to the charges in AT t . If all the AT t con-

tain identical subcomplexes, however, it is evident that p
l

Q and Pi are

the same in each AT,, so that the potential of the whole body may be

written

^o cos \l/dr1 /

47rJ

dr 1

V r2

where p is a function, constant over the whole body, formed by the

union of pj; and P is a function, constant over the whole body, formed

by the union of P$.

The case in which the subcomplexes in AT* are identical is, of course,

a trivial one, but the possibility of a simple representation of the po-
tential due to the charges forming a ponderable body depends (as will be

seen presently) upon the fact that it is possible to choose the volume cells
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Ar in such a way that the subcomplexes in neighboring cells, while not

identical, are nearly the same. It is in fact possible to choose volume cells

of dimensions which are small compared to the distance from any cell to

P, but which are large enough so that each Ar will contain very many
elementary charges. If each volume cell contains many charges, the sta-

tistics are regular, i.e., any characteristic of charge when averaged over

the volume element will be uninfluenced by the particular circumstances

of individual charges, and will be a true measure of the slowly varying

ATin i;., AT;

FIG. 8. Schematic diagrams showing the densities p and P of adjoining rolls con-

taining identical complexes

average trend of this characteristic. Such a subdivision then leads to a

simple description of the potential in those cases in which the average
characteristics of charge experience very small percentage changes over

distances of the order of the dimensions of Ar T . The possibility of such

a subdivision of a body definitely depends upon the physical fact that it

is possible to pick out three distinct orders of distances molecular dis-

tances, distances used for dimensions of volume cells, and experimental
distances to those exterior points at which the electrostatic effect is to

be measured.

Suppose, for example, that a body is so subdivided, and consider the

values of t/Ar 7 associated with all the volume elements Ar t cut by some

straight line m-n through the body. Figure 9 shows a possible sot of

m
FKJ. 0. Schematic diagram of the values e t /Ar

such values of d/Ar^ If now the body were redivided into volume ele-

ments one-half as large as before, a new set of values of e./Ar, would re-
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suit. But since the volume elements are in either case large enough to

contain so many charges that individual eccentricities are averaged out,

the set of values in this second case would have the same general aspect

as before (see Fig. 10). If this redivision process were repeated too many
times, a cell size would be reached such that too few charges would lie in

each cell, and the neighboring values of e,/Ar t would differ widely, each

being appreciably influenced by the particular circumstances of individual

charges rather than by the general trend of the average number of

charges. On the other hand, it is obvious that the volume elements

Ar t should be chosen as small as is consistent with the requirement that

each contain many charges, both so that the dimensions of Ar t shall be

as small as possible as compared to r, and so that general tendencies

will not. be masked.

These remarks can be illustrated by means of an example. Suppose
ten thousand coins are tossed simultaneously and the number of heads

and tails counted, and suppose that this experiment is repeated a very

large number of times. There would thus be obtained data from which

could be made a table giving the number of times / which a given num-
ber of heads n actually appeared. A superficial study based directly up-
on these individual number pairs (n,f) might be very misleading. It

would be possible, for example, that a portion of the table be as follows :

/
4.900 17

4.901

4.902

4.903 9

4.904 26

4,90,") 20

4,900 16

No clear indication of a general trend in the frequency / is furnished by
such a set of values. Individual eccentricities could be averaged out,

however, by preparing an auxiliary table giving the frequency / of the

instances in which the number n of heads lay in a range to fc, k to

2/c, 2k to 3fc, .... In choosing the magnitude of k, questions arise

which are entirely similar to those considered above in connection with

the choice of the size of the volume elements Ar t . If k be taken as small

as unity, the individual eccentricities play too great a role. If k is as
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large as ten thousand (to take a ridiculous extreme), the general trend of

the frequency table is completely masked by too gross an averaging

process. The choice of k must then be a compromise one, it being taken

as large with respect to unity as is consistent with the requirement that it

FIG. 10. Schematic diagram of the values

that, shown in Figure 9.

ri using a finer subdivision than

be small with respect to ten thousand. If, for example, k were chosen

to be one hundred, a new table of one hundred entries would be formed

giving the number of times / which the number of heads lay in the range

0-100, 100-200, 200-300, ____ If these values of / are used to construct

a frequency polygon, a figure similar to the following will result.

In this figure the characteristic behavior of the frequency is shown,
freed of the confusing eccentricities of the individual case. But in at-

tempting to formulate a theory of this experiment, and in extending this

nO 3.OOO IO.OOO

FIG. 11. Frequency polygon for heads in an hypothetical coin-tossing experiment.

theory to include other more general cases, a further degree of simplifica-

tion is exceedingly convenient; namely, it simplifies matters greatly to

consider not the discrete set of values /, but rather a smooth curve which

is sensibly equivalent to the actual frequency polygon. In choosing such

a curve it is convenient to establish some definite procedure; for example,
a smooth curve can be drawn, by interpolation, through the midpoints
of each horizontal segment of the frequency polygon, and the further
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discussion of the experiment would be on the basis of a continuous func-

tion F(x) which for the special integral arguments

x = 50, 150, 250, ,

takes on the values /. It would also be possible to introduce a con-

tinuous function whose mean values over the ranges 0-100, 100-200,

200 300, . . . .
, equal the values of /. If there were small percentage

variations of / from one to another of these ranges of //, all such meth-

ods of choosing the smooth curve would furnish sensibly the same result.

This function F(x) has a definite value for every value of the argument,
whether integral or not, although there is obviously no interpretation

for the value of F for a non-integral argument. Indeed, it is evident

that the value of F for an integral argument has no immediate relation

to the actual frequency with which this number of heads appeared; the

usefulness of the function F depends rather upon the fact that the fre-

quency of the cases in which the number of heads was between HI and HZ

is given, to a high degree of accuracy, by the expression

1 '

~F(x)dx.

The introduction of this continuous function makes available, at one

stroke, all the mechanism of calculus, and it is the introduction of such a

continuous function, indeed, which makes possible a statistical theory

conveniently applicable to vast numbers of individual cases.

The possibility of the introduction of a continuous function in the

electrostatic case, as will be seen presently, is directly dependent upon
the fact that the Ar z can be chosen so that the percentage variation in

any quantity characteristic of the circumstances of charge is very small

in neighboring volume cells. The condition of statistical regularity and

slow variation of the polarization may be made precise by writing

(25) pi &pi tfpi ,

where pi is the polarization, with respect to O,, due to the charges in

the ith cell, and where Aj>i, A'2^/, . . . .
,

are the first, second, ... .

differences between the successive values of pi in neighboring cells.*

* The symbol ^> moans "very large compared with," and usually indicates that

any one quantity is negligible compared with its predecessor in such an inequality
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PONDERABLE BODIES 11

Slightly less severe conditions can be imposed in the case of the total

charges <. In applying the spreading method to a single complex, it has
been found that a linear variation in the continuous density p was suffi-

cient to represent the polarization term of an expansion, of type (9), for

the potential due to the complex. In general, a rate of change of density
is interpretable in terms of polarization, and vice versa. It will be seen

later that it is possible to choose volume colls Ar t in such a way that the

separate cells appear polarized, or in such a way that they do not appear
polarized. In the second instance, however, a rate of change of charge is

found to exist which, just as in the case already considered in 10, gives
rise to those terms in the potential which were previously accounted for

by polarization terms. Thus, since both charge and polarization terms
are to be retained, it is not possible to neglect the first differences Ae t

in the values of the total charges e of the volume cells. No higher-order

effects, however, are to be considered, so that

(26) A t A2
l A3

t

It is then clear that if charge and polarization are both spread over
each volume cell AT,, there will result functions pj and Pi, each con-

stant over its region of definition AT,, and satisfying the inequalities

ApJA2
P5....,

Now the unions of the functions pj and Pj do not produce functions

p and P continuous ovor the whole body, since the functions p and
P experience discontinuous jumps in passing from one volume cell to

another. Since matters have boon arranged, however, so that these jumps
in both p and P are very small, the sensible procedure is obviously to

smooth out these small discontinuities and employ continuous functions

p and P. It is thus natural to attempt to represent the potential due to

all the charges forming the body by moans of the expression

. r*+
4,) r +4*(27)

where the integrals extend over the whole body, and where p and P are

no longer constant over AT,, but are slowly varying continuous func-

tions. Since these functions p and P are the functions p'Q and P& with
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12 THE ELECTROMAGNETIC FIELD

the sudden jumps smoothed out, the continuous functions will satisfy

the inequalities

roox l
dp

-?>
p(pp ^>(28) L>> ~* >> '-"

I being a distance of the order of the dimensions of AT,-. For reasons

entirely similar to those stated in connection with (26), it is not permis-

sible to state in (28) that I
fj

is necessarily very small compared to p
CLi

itself.

The essential distinction between the problem of representing the

potential due to a single small complex and the problem of representing

the potential due to a ponderable body thus arises from the necessity,.

in the latter case, of using functions p t and PI, each defined over Ar,

which join on to one another to form functions p and P, continuous

over the whole body. What conditions must be satisfied by the func-

tions p and P, continuous over the whole body, in order that the two

leading terms in the potential due to the body be given by the expression

(27) at least to terms of order 1/r
8
,
where r is the distance from P to

any point of the body?
12. The Approximate Representation of the Potential of a Body in

Terms of Continuous Functions p and P. The potential due to the body
is to be represented in the form (27) where the integrals are extended

over the whole body, and where p and P are continuous scalar and vec-

tor functions which will be called the "volume density of charge" and

the "volume density of polarization," respectively. The expression (27)

can obviously be written

where Ar t are the volume cells, discussed above, into which the body is

divided. Then (27) will approximate, to terms of order 1/r
3

,
the first

two terms in the potential due to the whole body provided each term in

the foregoing sum approximates, to the desired order, the first two terms

in an expansion of type (9) of the potential due to the charges c t in Ar,

i.e., provided

Zcj 2e,lj cos 0,_ r pdr f P cos ^
-i -j i

-
-t- i 2

*T
>

f ~
JbTi

T
J&TI

T
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PONDERABLE BODIES 112

where r is now the distance from P to 0, the center of volume of

Ar, where lj are the vectors locating the charges ej} within Ar,-, with

respect to O f ,
and where 0/ is the angle between Ot P and (/. The

conditions which p and P must satisfy are now to be obtained by ex-

panding the integrands on the right side of (30). Thus,

(31)

C pdr

L-r
:

dr

(32)

where the subscript i on a parenthesis indicates that the value of the

quantity is to be taken at the point O
lf where s measures the distance

FIG. 12

from Oi in any direction to (x
f

, y'j z
r

), and where <p is the angle be-

tween the direction of s and the direction from to P. Two terms
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12 THE ELECTROMAGNETIC FIELD

are omitted in (32) which arc explicitly included in equation (31). These

two terms contain, as factors of the integrand, the expressions

r ,

and -

The first is to be neglected since a second derivative of 1/r is an inverse

cube term. The second is to be neglected on account of (28). For similar

reasons all further terms are to be neglected in (32). The second and
third terms of (32) may be written

Xs cos v? dr+ 1
-

j
I s cos a dr

,

r
i

\ / 1 J&TI

where a is the angle between s and the direction of Vp at 0. Each
of these integrals is zero, since s is measured from 0, the center of

volume of AT,.

Equation (31) thus reduces to

pdr p lAr l 1 C /dp\ ,A
.

- = h-o I s2
[ -r] cos tp dt+ .....

<* *. ' v I \ fict I .

~
' '

where p l is the value of p at

Similarly,

/'J**i

where P t is the value of P at O t ,
and where no terms beyond the first

need be retained since P satisfies equation (29), and since only second-

order terms in l/r t are being retained.

If these values are substituted in (30), the following equation is ob-

tained:

This equation will be satisfied, provided p l satisfies the condition

(33) *-,
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PONDERABLE BODIES 13

where a single cell thick. The first integral of (36) is, to a high degree of

approximation, equal to the integral

/Vfor

where

is the so-called "surface density" of charge, and where dv is an element

of the surface area of the body. Indeed, the two integrands

pdr , Tide phdcr
ami = -----

r r r

are the same, except that the value of r in one differs from its value in

the other by an amount less than ft.

The continuous density of polarization P to be determined through-
out the exterior volume cells AT, is, as before, obtained by interpolation

from the values of the polarization vectors for the individual cells, dimin-

ished by the polarizations already represented by the variation in the

volume density of charge p. The asymmetrical circumstances which ne-

cessitate the separate consideration of the surface cells suggest breaking

up the cell polarizations into two components: (/), the component in

the direction of tho exterior normal to the body, and (pj)t, the compo-
nent in the tangent plane.

* Now as regards directions lying in a plane

tangent to the surface, a surface charge is surrounded by other charges
in as symmetrical a way as is an interior charge. Hence the component

(pj) t due to a given number of charges lying "on" the surface is of the

same order as any component of the polarization due to the same number
of interior charges. On the other hand, the component (pj) n due to a

certain number of charges lying "on" the surface may be of the same
order as a component of the polarization due to a much larger number of

interior charges.

The number of charges available, in a cell AT,, to contribute to the

value of the polarization of that cell cannot be estimated by dividing

the total net charge c, of the cell by the elementary charge. Neutral

polarizablc atoms, for example, may produce large values of p t and, at

the same time, a zero value for e,. In fact, it will be clear, when illustra-

* The polarizations pj
are referred to

Jt
the centers of volume of

AT^.
Let lines

through O normal to the surface cut the surface at
OJ. The tangent planes referred

to are tangent to the surface at the points O'r
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13 THE ELECTROMAGNETIC FIELD

tive examples have been studied,* that the value (when a physically

reasonable mode of subdivision is used) of Pi for a cell depends directly

on the number of polarizable units in this cell, while the polarization

effects due to a changing value, from cell to cell, of the total charge c do

not normally influence the value of Pi. Changing values of e t will be found

to contribute equally to the two terms on the right side of equation (35).

Thus, in actual electrostatic problems, non-vanishing values of Pi arise

when a body is formed of polarizable units of some sort. The number

density of these units is a physical characteristic of the material forming
the body, and is the same at points near the surface and points in the in-

terior. Hence, the number of charges, in a surface cell Ar
; ,

available to

contribute to the final value of P is smaller than the corresponding value

for an interior cell Ar t in the ratio of the volumes; that is to say, in the

ratio h/l. Since this ratio is small, the polarization effects for surface

elements would be negligible if each polarizable unit of a surface element

contributed to pj sensibly the same amount that each interior polariz-

able unit contributes to pi. As regards all but the normal component of

polarization, the contribution, per unit, is the same near the surface as

within the body. The normal component (pj) n may, however, be ab-

normally large. Hence only this component need be considered. More-

over, since the continuous volume density of charge in AT, has no varia-

tion in this normal direction, the whole burden for the representation of

the polarization rests upon the function P, and it is therefore to be de-

termined by interpolation from the values

~

The vector P thus determined is, of course, everywhere normal to the

surface of the body, as the foregoing equation implies.

The second integral of (36) can be written as a surface rather than as

a volume integral, the procedure being entirely similar to that used in

the case of the first integral of (36). In fact,

where

* These examp'es occur in the next section.
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PONDERABLE BODIES 13

is the surface density of polarization of the superficial layer. Thus (36)

can be written

where v\ is a continuous scalar function., defined at every point on the

surface of the body; and where K- is a continuous vector function, also

defined at every point on the surface of the body, and directed along the

exterior normal.

The representation of the potential due to the charges forming a

ponderable body is, then, obtained as follows. A very thin shell at the

surface of the body is to be divided into volume elements AT, of lateral

dimensions I and thickness h, where h is very small compared to i,

and where I, while small compared to the distance to the exterior point

where the potential is desired, is large enough so that a cell of linear di-

mensions I contains very many charges. The remaining portion of the

body is to be divided into volume cells Ar of linear dimensions of the

order of I. The total charge e and the polarization p with respect to

the center of volume is reckoned for each volume cell. The volume

density of charge is obtained by interpolation from

(37) P i
=~e>,

AT*

the values of p at Ot ,
the centers of volume of Ar t . The volume density

of polarization P is then obtained by interpolation from

(38) p
i=-k pi~l

the values of P at Ot-. The surface density of charge r? is obtained by

interpolation from

(39) ,-<,

the values of rj at 0{, the points on the surface of the body which lie

on the same normals as do
} ,

the centers of volume of AT,. The surface

density of polarization H is obtained by interpolation from

(40) *-<>l

'>--A7
J
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14 THE ELECTROMAGNETIC FIELD

the values of |t/ at OJ. The two leading terms in the expansion of type

(9) for the potential due to all charges forming the body are then given

by the two volume and the two surface integrals

2*.

ct

i

v

In the fundamental equation attention is explicitly called to the fact

that the densities arc functions of the integration variables x',y',z'. The

distance r is, of course, a function of both the primed and unprimed
variables. The potential $ is a function of x,y,z only.

14. The Physical Meaning of the Densities p, 17, P, |i. By consider-

ing the idealized case of a rectangular parallelepiped V, formed by* the

planes x 0, x = 2a, y = 0, y = 26, z = 0, z = 2c, and within which arc vari-

ous simple configurations of charge, there

may be seen the relations between the four

densities defined above, and what one is ac-

customed to think of as the physical con-

cepts of charge, polarization, etc. The con-

figurations of charge to be considered may be

most briefly described by giving the locations

of the charges with respect to a standard set

of points within V. Thus suppose V be subdivided by a series of planes,

parallel to the co-ordinate planes and spaced a distance k (of the order

of molecular dimensions and hence very small compared to a, 6, or c).

The pointsM located by the intersections of these planes form a cubical

space lattice. The points M lie on the back face z = of the parallele-

piped, the points Mk on the next parallel plane, the points M2a on the

front face x = 2a, etc.

Suppose first that at all the points M are located equal charges +e.

If equal cubes of side I be chosen for the volume elements Ar t , they will

all contain the same total amount of charge e t
=

[ T }
e. Then the func-

P
tion p, interpolated from the equal values Pi

=
73, is a constant whose
rC

volume integral, extended over any portion of V, gives to a high degree

of accuracy the total charge lying in that portion. The values of PI,

since p is a constant, are given by
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PONDERABLE BODIES 14

If the cells AT, are chosen with their faces parallel to, but midway be-

tween, the planes of the cubical space lattice formed by tho. charges, then

^i
= and the potential of the body is given by

ft-

It is not necessary to use any surface elements AT/ for, under the condi-

tions assumed, equations (25) and (26) are satisfied for all volume cells,

including the outermost ones. If the volume cells Ar t be shifted to the

left, say, a distance smaller than k, each Ar would be polarized as well

as charged. The maximum polarization so introduced, however, is equal

to fat/2. Regardless of the choice of An-, therefore, the polarization

term is negligible compared to the charge term, and the potential of the

body is given by the foregoing integral in terms of the volume density

of charge p. The definition of the densities is, then, in this special case

independent^ the choice of the subdivision of the body into volume cells

AT,.

As a second example, suppose that the charges e are located at the

points MM, n = 0,l,2, . . . .
,
while charges +e are located at all other

M-points. Then along lines L parallel to the z-axis will be found charges

e, +e, e, +e, etc., spaced a distance fc, the last charge being +e,
provided k is chosen so that 2a is an odd multiple of fc. Then move the

charges which lie on alternate horizontal planes a distance, to the front,

I

!

FIG. 14. Arrangement of charges used in illustrations. Subdivision No. 1

which is a small fraction of fc. The charges lying in any plane parallel

to arz-plane would then be located as shown in the following sketch,

where the relative size of the distance k is enormously enlarged, and where

solid dots are used to represent negative charges; circles, positive charges.

It is then possible to choose a set of volume cells AT* (see dotted lines in
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u THE ELECTROMAGNETIC FIELD

Fig. 14; this will be referred to as subdivision I) for which Pi=0 while

Pi has the value Pe/2k*. Then

and the potential due to the whole configuration of charges is given by

(42)
cos \l/

*

Just as in the first example, and for the same reason, surface densities

play no role in this representation. Having chosen the volume cells AT,

in this way, it is natural to say that the body is polarized, but uncharged.
It is possible, however, to obtain, by choosing the AT,- otherwise, an

alternative representation which leads to an alternative physical inter-

pretation. Suppose, in fact, that the cells are chosen as shown in Figure

15, where very thin surface elements AT, are chosen first, and the re-

i

FIG. 15. Subdivision No. II

mainder of the body then subdivided. (This will be referred to as sub-

division II.) It is clear from the figure that the surface elements AT, are

charged, while the interior volume elements Art are both uncharged and

unpolarized. (In the figure the second volume element AT, from the left

has i=0, but the polarization pi is not zero. This is a result, however,
of the gross misrepresentation of relative dimensions. In the case where

fc is very small compared to the dimensions of the volume elements, the

number of uncompensated pairs of charges is vanishingly small as com-

pared to the total number, and the polarization is negligible.) The charge

/ in each exterior volume element AT/ is equal to (l/2k)(l/k)(e).
Thus

I
2e e

, __

"AT/ 2*aP
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PONDERABLE BODIES 14

where the plus and minus signs hold on the faces x equals 2a and 0,

respectively. Then the continuous function rj interpolated from this set

of equal values is given by

and the potential of the whole configuration of charges is given by

(43)

Having subdivided the body in this way, it is natural to say that there is

no volume density of charge or polarization, and that there is a surface

density of charge on the two faces # = 0, x = 2a. That this representa-

tion is mathematically equivalent to the one given by (42) is seen at

once by treating (42) by integration by parts. Indeed, the general

formula*

reduces, for the special value P= Px =e/2fc
2

,
to the equation

e cos ^ , _T / c \ d<r C I e \ da

2V r*
aT -

x= \ W) r+,\Zk*J r

It is impossible to choose, on mathematical grounds, between the two

descriptions; and it is quite meaningless to argue as to whether there

"really is, or is not", a volume density of polarization. A volume density

of polarization can be defined only with reference to a definite volume,

and whether or not such a volume is polarized depends on how it is cho-

sen. There may be, in certain cases, a physical reason for preferring the

representation given by (42), on account of the physical interpretation

to which this equation most naturally leads. If, for example, a body is

thought of as composed of molecules each one of which is neutral but

polarized, it might be convenient to think of the body as possessing a

volume density of polarization, and equation (42) would be, at least in

the first instance, preferable to (43).

As a third example, suppose that at the points M ,
Mky MM, . . . .

,

are located charges e
y e+e\, e+2ei, . . . .

,
where e\ is small compared

* See Part III, Problem 15, of this chapter.
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14 THE ELECTROMAGNETIC FIELD

to e. If equal cubes of side I are then chosen for Ar, a cell which is

ith from the left end of V contains total charge

so that

Pt=,

and the volume density of charge is given by the continuous function

The polarization p, of this ith cell is given by

-- dr'

12k*
'

i c jdp\ , 2ei r
-pj *(&;,*-/*).

The volume density of polarization P would be interpolated from the

values

However,

12fc4
'

where is a distance, parallel to the direction of x, measured from the

center of volume of the cell Ar t . Thus, to a high order of approximation,
the values P t vanish, and the potential due to this configuration of

charges is given by
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in terms of the volume density of charge. This example illustrates the

fact that the complexes within the volume elements Ar can be polar-

ized without there being a volume density of polarization. The variation

in p which is introduced by the interpolation is just sufficient to repre-
sent the second term in the expansion of type (9), and the polarization
term vanishes.

As a fourth example, consider a configuration which is the same as

that of the second example, except that the charges found along a line

L parallel to the a>axis are not equal in magnitude (and alternating
in sign), but are equal to e, +c, (e+ei), +(e+e } ),

-
(e+2d),

+ (e+2ei), etc. Then if subdivision I of the second example be used, the

total charge e t in AT is again zero, while the polarization pi is now giv-
en by

e+

Therefore,

e+

2k

i-l] I

2k

and the volume density of polarization is given by the continuous func-

tion

The potential due to the configuration of charges is thus

(45)

1

2/c
2

cos (r,x)dr

in terms of the volume density of polarization. Having chosen the vol-

ume cells Ar t in this way, the volume and surface densities of charge

are zero, and it is natural to say that the body is uncharged but polarized,

the volume density of polarization being variable.

If the subdivision II of the second example be used, an alternative

representation of the potential is obtained. Each interior volume element

Ar is found to have a negligible polarization pi. The total charge c in

Ar, however, differs from its value zero in the preceding mode of sub-

division, due to the fact that Z*/2fc* positive charges are cut off by the
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14 THE ELECTROMAGNETIC FIELD

new position of the right face of AT*, and an equal number of positive

charges added (or negative charges subtracted) by the new position of the

left face AT,. That is,

Therefore,

and the volume density of charge is given by the continuous function

p= ~w-

The surface elements on the face x= 2a have a total charge

Z
2

so that the surface density of charge on this face is

e_ ,

2fc
2
"

l

"4fcs<

Similarly,

. Pe

e

~2k*

x=0.

The potential of the body is therefore given by

(46)

- --

f
J.o r

d<r.

Just as in the second example, the representations (45) and (46) are

analytically equivalent. Indeed, if (45) be treated, as before, by integra-

tion by parts, the equivalence of the two formulas is immediately estab-
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PONDERABLE BODIES 14

lished. It is thus legitimate to say that the body is uncharged and non-

uniformly polarized, and use (45) for the potential; or to say that the

body is unpolarized and has constant volume and surface densities of

charge, and use (46) for the potential. But it is not legitimate to say that

the body is non-uniformly polarized, treat (45) by integration by parts,

and then, still calling it a "polarized body," say that there is a volume
and surface density of charge. The integration by parts carries with it,

if one insists on a physical interpretation of the result, a changed point of

view. That is, it is not correct to say that a non-uniformly polarized

body has a volume density of charge given, at any point, by div P,
and a surface density of charge given by Pn; but it is true that any polar-

ized body can be viewed as a non-polarized body having a volume density
of charge div P and a surface density of charge Pn .

These examples show the relationships between the mathematically
defined continuous densities for idealized cases which would be recog-

nized, physically, as being instances of uniform charge, uniform polariza-

tion, non-uniform charge, and non-uniform polarization. Although the

examples are very simple and highly idealized, they exhibit the essential

character of the relations which exist in the more complicated and general

cases, and certain general conclusions can be drawn which are of im-

portance in the classification to be made presently, of bodies as conduc-

tors and dielectrics. When a body is formed of neutral polarizable units

whose dimensions are very small compared to the dimensions of Ar t ,

it is possible to choose the cells Ar t in such a way that p t
= p = 0. The

potential due to such a body is then described in terms of the volume

density of polarization P, as interpolated from the values Pi=pi/&r % .

It is natural, and usual, to refer to such a body as a polarized body. In

case the polarization of each unit within Ar t is the same, the polariza-

tion pi of Ar t is equal to the number of units times the polarization per

unit. This neutral polarizable unit may be a molecule, or, as in a crystal,

simply an arbitrary group of charges which may be viewed as a unit of

construction of the crystal structure.

In the case of a body in which there are no such neutral polarized

units whose dimensions are small compared to the dimensions pf Ar t ,

the polarization of Ar has the value which arises from the varying num-

ber density of charges across Ar t . From the statistical regularity of the

problem, it is evident that this variation is small, and that this polariza-

tion pi will be canceled (as in example 2) by that polarization which is

introduced by the interpolated variation of p, so that the values of P,

will vanish. That is to say, when rapid fluctuations in sign are ruled out
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15 THE ELECTROMAGNETIC FIELD

(such as would occur, for example, were small neutral polarized units

present), the slowly varying continuous density p is capable of complete-

ly describing the charged condition of the volume cells. For such a body,

the problem of representing the potential is quite the same as in the gravi-

tational case. The potential of such a body is thus described in terms of

a charge density, and it is natural and usual, to refer to such a body as

charged, but unpolarizcd.

15. Mutual Electrostatic Energy in Terms of the Continuous Densi-

ties. It has been seen above that the mutual electrostatic energy of a

charge e in the presence of a ponderable body (i.e., the total mutual

energy of the whole configuration minus the internal electrostatic energy
of the charges forming the body itself) is given by

(47) *,= e<I>,

where <J>, the potential due to the charges forming the body, is given,

by (41), as a function of x, y, z. Then the force Fe on the charge e is

(48) Fe=-V L& e=-e V*,

the indicated differentiation being carried out with respect to the co-

ordinates of e. The total force F on a set of charges e t is then given by

(49) F - 2e t
- V4> t

= -VSe^ ,

where <f is the value of <f> at the position of e t . If this set of charges

e t forms a second body (as distinguished from the first body, to which $
is due), the total force on this second body is thus expressed as the nega-

tive nabla of

(50) tf-Z**.-^^-',

the mutual electrostatic energy of one body in the presence of the other.

In this sum the charges e,' are those forming the body 1, and the summa-
tion is to be carried out first with respect to V for a fixed i, and then

with respect to i; so that it does not contain the internal electrostatic

energy of either body.

It is obviously out of the question actually to compute Se t<f> 4 for a

ponderable body, and the procedure, as before, is to express this sum in

terms of integrals, of continuous functions, over the volume and sur-

face of the body. The charges forming bpdy 2 are divided, by means of

volume cells Ar t of linear dimensions of the order of Z, into subcom-
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plexes which satisfy the conditions of statistical regularity and slow

variation (25) and (26). Then the sum

where e l are now the charges in AT,, is to be approximately represented

by means of integrals of continuous functions. This problem is, analyti-

cally, entirely similar to the one, just considered, which has resulted in

definitions of p and P, the only difference being that in the sum now

being considered $ appears where 1/r appeared before. It is thus evi-

dent, by direct analogy, that the foregoing sum can be represented by
two integrals of the form

C
J^r l

(P,

where p and P are continuous functions which, as before, are to be

characterized by comparing the terms in the expansions of these two

integrals with the terms obtained by expanding directly the sum 2e,^ t .

The value of <J>, however, cannot exceed 2)
|

e
| /r ,

where the summation

extends over all the charges of body 1, and where r is the minimum dis-

tance from Ar t to body 1. Similarly, 03>/dx cannot exceed 2|e|/r?,,

32
<t>/dx

2 cannot exceed 2S
|

e
| /rj, etc. That is, the quantities

/d*\

\ds)
>

are of decreasing magnitude, and the ratio of successive terms is of the

same order of magnitude as the ratio of successive terms of

1

r' V da
J# 1M
S
\ ds2

/
'

Thus, in characterizing p and P by comparing terms in the expansions

just mentioned, the same terms can be neglected now as were neglected

previously, and the whole computation can be obtained from the previ-

ous equations by simply replacing 1/r by $. The definitions of the

functions p and P are then the same, in terms of the total charge and

polarization of the volume elements of the body 2, as the definitions of

p and P for body 1. That is, the densities, as defined above, are avail-

able for use both in finding the potential due to a body and in finding the
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16 THE ELECTROMAGNETIC FIELD

total force on a body. Indeed, the mutual electrostatic energy of the two

bodies, from the variation of which the force can be found, is given by

(51) V =

the integrals being extended over the volume and surface of body 2, and

$ being the potential due to body 1, as given by (41). Note that the

variables of integration in these integrals are the unprimed variables

x,y,z; and that p, 77, P, p. , and $ are all functions of x,y,z.

16. The Force and Torque on a Body. The total force on a body
can be found by calculating the variation in the mutual electrostatic

energy ^ when the body is shifted but all the charges forming it are

maintained in the same relative configuration. That is, it can be ob-

tained by computing the negative nabla of ^, holding p, 77, P, and ^
constant and, accordingly, allowing only <I> to vary. To make clear the

fact that only $ is to vary, the equation for the force may be written

Thus,

f

The last two integrals can be simplified by means of the identity

VB(A,B) = (A,VB)B+[AcnAB] 9

which, for the special case A=P, B = V4>, reduces to

since

curl V0=0 .

In the expression (P, V) V<J>, it is not necessary to retain a subscript on

either operator V. Making use of this result, and substituting the elec-

trostatic intensity E for V0, the foregoing equation reduces to

(52) F=fpEdT+fiEdff+f(P, v)Edr+f(^ V)Ed<r .

The E vector in this equation is that due to all the bodies except the

one on which the force is being determined. The electrostatic intensity

E and the densities p, rj, P, H are functions of x,y,z, the variables of the

integration.
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PONDERABLE BODIES 16

In a similar way the torque on a body may be obtained by Calculating

the variation in ^ corresponding to a rotation of the body, the relative

configuration of the charges remaining unchanged during the rotation.

The x-component of the vector torque T is thus given by

T* x
06'

where measures an angular displacement of the body about the

Fio. 10 . 17

x-axis. As the body rotates, the y- and 2-co-ordiriates of a fixed point

of the body change according to the equations

y = r cos
,

z = r sin ,

d dz d

dijdO dz

so that

Thus

which is the x-componont of tho vector

J[r,p](/r ,
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16 THE ELECTROMAGNETIC FIELD

where r is a vector from the origin of the co-ordinates x,y,z to the in-

finitesimal element dr. Likewise,

is the ^-component of

Since the relative configuration of the charges is unaltered, the vector

P, at a fixed point in the body, has a constant magnitude, but a direction

which rotates with the body. Thus

Py
= P'cos (a-0) ,

P,= -P'sin(a-0),

where P' is the component of P in the ?/-2-plane. Thus

dd

Therefore,

*-f(r.f+P. *+*$
+<+ is-)

.
-

Since =V<l>, however, the curl of vanishes identically, so that

5^=5^ . dEx^dE* 6Ex^dEv

dy
~~

dz
'

dz
~

dx
*'

dy
"~

dx
'
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PONDERABLE BODIES 17

Using these equalities, the foregoing integrals reduce to

which is the as-component of the vector

f[P t E]dr+f[r,(P,V)E}dT.

In the same way it may be seen that

is the ^-component of

Thus, collecting terms,

(63) r=f[;

Here, as in (52), the vector E is that chic to all the bodies except the

one on which the torque is being; determined. The electrostatic intensity

E, and the densities p, 77, P, H- are functions of Z,T/,Z, the variables of

integration.

17. The Essential Electrostatic Characteristics of a Ponderable Body.

This section is concerned with the relations between p, 77, and P, and

not at all with the density of superficial polarization |i. If the body

under consideration has a polarized surface layer, the density \L is, of

course, an essential electrostatic characteristic of the body which must

be considered along with the two other essential characteristics treated

in this section.

In 14 it was noted, in connection with the illustrative examples,

that if a body be subdivided and the resulting densities p, TJ, and P be

determined, the expression for the potential due to the body, namely,

*= l
0* dr+l- (

^ d,+ -

C( P,V
4jrJ r ^TfJ r 4irJ \
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17 THE ELECTROMAGNETIC FIELD

can be transformed to read :

p-divP)1 A
4TrJ

^

It was furthermore seen, in the examples there considered, that it was

possible to subdivide the body in different ways, giving rise to different

densities; so that, for example, a body could legitimately be considered

to have no volume or surface density of charge and a volume density of

polarization, or to be unpolarized, but charged on the surface and

throughout the interior. The questions "Is the body polarized?" and

"Is the volume density of charge zero?" have, without further specifica-

tion, no meaning. It was found, however, in the examples considered

that the quantities

(p-divP) and

were independent of the mode of subdivision. The examples thus suggest
that these two combined quantities, rather than the three densities

p, 77, P themselves, are the essential measures of the electrostatic char-

acteristics of a body; and that, in any given case, it is possible to sub-

divide in a way that throws the burden of the description on p and rj

only, on P only, or, as an intermediate step on p, 17, and P, the quanti-
ties (p divP) and (y+Pn) remaining unchanged throughout.

It would clearly be difficult to argue directly, in a general case, that

it is always possible to subdivide a body into volume cells Ar t and sur-

face cells AT/ for which pi and pj are, for example, zero, while p t and

Pi are, in general, not zero; and also possible to subdivide this same body
into a set of volume cells Ar t for which p=0, while pi^O. But this

direct argument can fortunately be avoided. Suppose that a first division

of a body A gives rise to densities pi, 171, and PI, and thus to the fol-

lowing expression for the potential due to the body:

i ft-r
. r 4ir r

The force on this body, when in an external field E, is

and the torque is
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PONDERABLE BODIES 17

These expressions for force and Jtorque have been ootained by cal-

culating appropriate rates of change of the mutual electrostatic energy

The last written integral can be transformed by (44) to read

/*P;Ar-/*divPidr ,

and hence

*= J*(pi-div Pi)dr+J<Kr?i+Pi nM<r .

If, now, the force and torque be calculated from this last expression
for M', the following expressions will obviously be obtained:

TA = /[r,(Pi
-

(div P1)]

Thus the potential due to the body and the force and torque on the body
depend only upon the two particular combinations

(p-divP) and fo+P*) .

Thus two bodies, of the same size and shape, for which the values of

(p divP) and the values of (rj+Pn) are identical, are electrostatically

indistinguishable. That is, if a second body B have volume and surface

densities p2 and 772, and a polarization P2 , satisfying the relations

p2 -(livP2 =pi div Pi ,

I&+PI.SIU+PI,, ,

then

SA^S/*, FA=FB, TA=TB,

and the two bodies are electrostatically equivalent. Thus, aside from the

question as to whether A can be so subdivided as to give rise to densities

P2, 172, P*, it is clear that another distribution of charges, entirely equiva-
lent (to the order of the approximation involved in all this treatment)
to the body A, and which may therefore be substituted for A, can be

divided so as to result in densities p2 , r/2 , P2 In particular, either p2 and

172 or P2 , might be zero; so that body A can always be considered to be

charged but not polarized, or polarized but not charged. The choice of

the description is a matter of viewpoint, and the choice of viewpoint
must be made on physical rather than mathematical grounds.
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17 THE ELECTROMAGNETIC FIELD

PROBLEMS FOR PART III, CHAPTER I

1. State in detail the argument by which equation (20) follows from the

equation just below it.

2. By expanding 1/r in the integrand of expression (21) in 10, prove

the statement that this quantity represents, to terms of order 1/rJ,

the Coulomb term in the potential due to the complex.

3. See Figure 12 and justify the sign of the fourth term of equation (32).

4. Given a scalar u and a vector A; show that

div (u,A)=u div A+ (A, Vu) .

5. Show that div Vw=V2
w, where V2= -

i+^_+ .

(i. Calculate div u Vv where u and v are scalar functions.

7. Calculate the values of

1 cos (nx) ,

I I x2
dy dx and

f

-

the first integral being extended over the area of a circle, and the

second around the boundary of the same circle. Explain the result.

8. Integrate x2
throughout the volume of a sphere, and [z

3 cos (nx)]/3

over the surface of the same sphere.

9. Calculate the divergence of the vectors

A = ix+jy+kz ,

10. Show that div -j
= () .

11. Calculate the curl of the vectors

C= irz jyx*+ kxyz.
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12. Show that curl V$=0.

13. Show that div curl -4=0 .

14. In the general formula

I div AdT =jA nd(T ,

substitute for A the vectors u Vu, u Vv, v Vu, where u and v

are scalar functions. Add the two last formulas.

15. In the same general formula, substitute for A the vector P/r. Cf.

with equation (44) ;
cf . 14.

16. Calculate V(A,B) and, as a special case, Vn(A,B) .

17. Show that (A[B,C]) = (B[C,A]).

18. Show that [A[B,C\] = B(A,C)-C(A,B).

19. What condition is imposed on the vector iM+jN by the fact that

Mdx+Ndy is an exact differential?

20. If the total charge of a complex is not zero, there is always some

point relative to which the polarization of the complex is zero. Show

how to locate this point.

21. Why is it impossible to use the result of the last problem and the

argument at the end of 9 to attempt to show that the Coulomb

term is always the leading term in the potential due to a complex
whose total charge does not vanish?
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CONCLUSION TO CHAPTER I

Coulomb's law, as experimentally deduced, is essentially a statistical

law, applying to the action between complexes of charge. It is consistent

with the experimental facts to idealize this law to cover the case of a

single pair of charges, so long as this idealized form of the law is used,

along with the principle of superposition, only in cases where large num-
bers of charge are present. There is some evidence that Coulomb's law

does hold between a single pair of charges, but it is interesting to note

that in the only cases where the direct action between two charges pro-

duces an observable effect, namely, in those cases where the charges

come
t
close together, question has often arisen concerning the exactness

of the inverse square law.

It is hoped that the definitions here given for the electrostatic po-

tential and the electrostatic intensity arc such as will emphasize the fact

that these functions have physical significance only at points where

charge is located, although, considered formally as mathematical func-

tions, their values can of course be calculated at any point in space. The

intensity at an "empty" point in space is often defined as the force which

would act on a unit charge if it were placed there without disturbing

the positions of any of the existing charges. The objection that a unit

charge cannot be introduced without, in general, altering the whole con-

figuration is sometimes met by defining the intensity as the limiting value

of the force per unit charge which would act on a charge were it located

there, the limit being taken as the magnitude of the charge approaches
zero. Such a limiting process is clearly incompatible with the modern

concept of a minimum indivisible charge the electron. The present

authors object to basing physical theories on definitions which involve

what would happen if an impossible thing were true. The most signifi-

cant trend of modern theoretical physics is the general insistence that

theories must be based on the facts of experience. The theory of relativ-

ity, for example, grew out of an insistent demand that we substitute, for

the old hypothetical simultaneity, a concept of simultaneity based on a

physically realizable process. A similar viewpoint is found in the more

recent quantum dynamics, where we also find the proposal to discard

from physical theories quantities which are not subject to experimental

measurement.
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The definition of intensity discussed in the preceding paragraph is

subject, moreover, to an objection other than that which relates to an

impossible limiting process. The point involved is a rather trivial case

of a general question which has been of fundamental significance in the

development of electrical theories, namely, the general question of the

significance of the electric and magnetic vectors at points in empty
space. Physics clearly has no legitimate concern with a theory that can-

not be tested by experience, and it is equally clear that, at present at any

rate, such appeal to the senses as forms the basis of experience can only be

effected by material agencies. The authors feel, therefore, that a physical

theory has no concern with
"
conditions" at an empty point in space, and

for the precise reason that the point is empty. The English school of

physicists have been chiefly responsible for the inclusion of all points of

space within the legitimate field of inquiry of a physical theory, this ex-

tension being based upon the hypothesis that there is something at an

empty point in space the aether. This hypothetical aether has, how-

ever, consistently refused to make any direct appeal to our senses, and it

becomes more and more clear that even were there such a medium, its

essential nature lies in the fact that it cannot make such an appeal. It

would, therefore, seem to furnish physics with no excuse for concerning

itself with conditions at points where there is nothing to be conditioned.

This does not at all mean that a mathematical theory of electricity

should refuse to consider values of such quantities as electrostatic in-

tensity or electrostatic potential at points where there is no charge. In-

deed, the great service which a mathematical theory renders to the

physical theory consists of the imbedding, so to speak, of the discrete

physical quantities in a mathematical continuum, the physical quanti-
ties then appearing as special instances (taken at points where there is

charge) of a mathematical continuous function. This mathematical func-

tion is found to obey a certain differential equation, and certain boundary

conditions, and thus the physical problem is brought under convenient

and powerful methods of analysis. The complete lack of physical sig-

nificance of the mathematical function at points in free space is evident

from the fact that it is perfectly conceivable to imbed the physical values

in two different mathematical continua, satisfying different differential

equations and boundary conditions, but physically equivalent since they

lead to the same values at all points where there is charge.

It will perhaps be felt that the continuous densities arc introduced

with more care and at greater length than is warranted. The authors feel,

however, that confusion has existed here which cannot be met by a brief
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treatment. A procedure often followed is, in fact, this: In the case of

conducting material the volume density p (and as a limiting case, the

surface density 77) is either not defined at all or is defined as a sort of

smoothed-over continuous density of such a sort that its volume integral

throughout any volume is equal to the actual total charge in this volume.

The actual definition of this density p is often open to serious criticism.

Such a definition, for example, as

r Se
p-lmi-

does not produce, in the case of a concentrated charge, a continuous (or

finite) function p; while the concept of an extended charge presupposes
the concept of density. Other writers borrow, without examination, the

notion of a continuous density from potential theory; but even granting

that potential theory has such a concept to lend, the difficulty remains

that the electrical problem differs in an essential way from the gravita-

tional problem, since in the former negative as well as positive elements

appear.

When dielectrics are treated, they are often idealized into electro-

statically equivalent bodies formed of doublets; the volume polarization

P is defined (although not always in such a way as to make it a continu-

ous function) ;
and the potential of a dielectric is then expressed, in terms

of P, as

It is then shown that this integral can be transformed to read

1 r-divP
, ,

1 Cl\
i dr _|_

\irj
r

'lirj
r47T

and it appears that the potential is the same "as though" the dielectric

had a volume charge of density div P and a surface charge Pn . The
idealized doublet counterpart of the body is then used to show that the

body actually does have such volume and surface densities of charge.

All of this, while slightly confusing, is not serious until one asks for the

representation of the potential due to a body which it is desirable (for

physical reasons as, for example, in the case of a leaky dielectric) to de-
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scribe as both polarized and charged. If the densities p, 17, and P are

determined as they were in the separate cases above, do the terms

contain some portion of the term

'U

or do they not? That is to say, has there been a double count, certain

charges appearing in two roles?

It is hoped that the relationship between p, 77, and P is made clear

by the treatment given here. The notion that the functions p, 17, and P
result from a particular subdivision of the body leads, without surprise,

to the fact that different subdivisions might lead to different functions

p, 77, and P. .This physical possibility for a shift in the description finds

its mathematical counterpart in equation (44), which shows how the vol-

ume polarization term can be mathematically changed into volume and

surface density terms. The final answer to the question of the possibility

of shifting the burden of the description from P on to p and rj or vice

versa comes in 17. There it is shown that, since these densities are intro-

duced for the specific purpose of obtaining the potential due to a body or

the force and torque on a body, the body may be subdivided in various

ways that will result in it being judged charged but not polarized, polar-

ized but not charged, etc.
;
but that the essential electrostatic character-

istics (p divP) and (rj+Pn) are independent of the mode of subdi-

vision.

The four examples used to illustrate the physical meaning of the con-

tinuous densities are unfortunately long. They are, however, as simple

as the actual situation being studied permits. Cases of uniform charges

uniform polarization, varying charge, and varying polarization must be

analyzed, and linear variation is the simplest choice. Although these ex-

amples are as simple as possible, an added importance results from the

fact that they are, at the same time, as complicated as possible. The

volume V may be thought of as composing a small part of a body. The

assumed conditions of statistical regularity then limit consideration to

cases of linear variation; and a superposition of the four examples repre-

sents as complex a situation as electrostatics, in its present form, is

competent to deal with.
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THE ELECTROSTATIC PROBLEM FOR CONDUCTORS
AND DIELECTRICS





PART I. THE DISTRIBUTION PROBLEM: CONDUCTORS

INTRODUCTION

The formulation of the preceding chapter enables one to determine

the potential due to a body or the force on a body when the distribution

of charge is known. The present chapter is primarily concerned with the

question of distribution of charge. The obvious mode of attack is to con-

sider the average of all forces acting on charges, and to equate (since an

electrostatic condition is by definition one of statistical equilibrium)
this sum to zero. The condition thus obtained is the essential characteri-

zation of the distribution. In considering all the forces on charge, the

theory of the previous chapter is not sufficient, since it applies only to

the action of distant groups of charge; whereas the charges within a body
are subject to the action of both distant and neighboring charges. A
sphere of radius 6 is therefore drawn about the charge, the forces on

which are under consideration, so as to separate the distant from the

neighboring charges. The force due to the charges outside this sphere can

be treated by the methods of the last chapter. Specific assumption must,
on the other hand, be made concerning the force due to charges within

this sphere, the behavior of this force furnishing a discriminating char-

acteristic of various types of materials.

Before assumptions are made, however, concerning the force due to

the neighboring charges within the 6-sphere, a function $* is intro-

duced, this being defined, at any interior point, as the potential due to

all charges outside a sphere of radius 5 drawn about this point. The
rate of change of this function <$>* does riot give (at least directly) the

force due to the charges without the 5-spherc, since in the variation of

<J>* the deleting sphere moves, and certain charges are removed from

consideration while other new ones are added; while in obtaining force

from the variation of potential, all charges must be held fixed. It is

found that if the densities p and P have negligible variation through-
out the interior of the 6-sphere, the force due to outside charges is given

by JE+P/3, where E is the negative nabla of a function which is com-

puted, at interior points, from the same formula which, at outside points,

gives the electrostatic potential, and where P is the polarization at the

point in question.

The total force on an interior charge is thus E+P/3+f, where f is
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the force due to the charges within 5. The term / is further resolved

into that portion fi due to the charges forming the few atoms immedi-

ately neighboring the point in question, and /2 due to the remaining

charges within 5. A conductor is then defined as a body for which the

force /i, which is characteristic of the detailed structure of the body, is

zero. It is argued, on physical grounds, that P and /2 are both zero.

And since the total force vanishes when there is equilibrium, it follows

that, at such interior points, =
0, or what is equivalent, $ is constant.

The constancy of $ at interior points is, together with a knowledge of

the total charge and of the behavior of < at infinitely distant points,

sufficient to characterize uniquely the distribution. The first two of these

conditions are, however, in integral form arid are not convenient to ap-

ply; and an equivalent set of equations is obtained ([I], p. 99) in the

form of a partial differential equation and boundary conditions. From
these conditions <f> may be found, and hence the distribution of charge
and the forces and torques may be determined. It is shown that the sol-

ution of conditions (I) is unique, so that however a solution be obtained,

one is assured that it is the only one arid hence that it furnishes a correct

solution for the physical problem.

18. The Force on an Interior Charge Due to Non-neighboring Charges.

Equations (52) and (53) above express the total force and torque on a

body in terms of the densities p, T;, P, H of that body and in terms of the

potential due to all charges not located on the body in question. But
the integrals involved cannot be evaluated unless the continuous density

functions p, rj, P, V* are known for all bodies present. These densities,

depending as they do.upon the distribution of charges, are determined by
the exceedingly complicated interaction of all the charges present, and a

new difficulty arises in connection with these interactions; for each charge
of a certain body is affected not only by distant charges on other bodies

and distant charges on the body in question, but also by charges in the

immediate neighborhood of the one being considered. Now it is evident

from the assumptions made when the densities were defined that the ex-

pression for <J> in terms of these densities is valid only when the point at

which $ is being calculated is far from all the charges which contribute

to the densities p, rj, P, p. which appear in the formula for <. To empha-
size this restricted availability of the function <J>,

it will be referred to

as a "group potential." The group potential due to a group of charges has

thus no significance at a point near the group of charges.
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The solution of the distribution problem evidently involves a knowl-

edge of the total force on each charge. The force due to all those charges

which lie outside a sphere of radius 5 about the charge in question ( 6

large compared to molecular and atomic dimensions) can be expressed in

terms of the group-potential function due to these distant charges. The

first step in the solution of the distribution problem thus involves a sepa-

ration of the force on a charge into two parts one due to the distant

charges, and the other due to the neighboring charges within the 6-sphero.

In different types of bodies different assumptions are made concern-

ing the force due to neighboring charges. But before any such separation

of the general problem is made, it is possible to discuss, in terms still en-

tirely general, the force due to non-neighboring charges.

Thus, consider a charge which is within a body of volume r and

surface 2, and let 4>* .be the potential, at 0(x,y,z), the position of this

charge, due to all the charges which lie outside a sphere of radius <5

drawn around 0. That is, let

(64)
r-5

where p', TJ',
P f

, ^' are functions of the integration variables x',y',z
f

.

Although it has direct physical meaning only at a point where a charge

is located, this function <l>* can be calculated at any interior point, but

the negative nabla of this scalar function $* is not the intensity E*

due to all charges outside the 6-sphere, because in calculating the in-

tensity from the variation of the potential, all charges contributing to

the potential are to be held fixed. In considering the variation of <!>*

from point to point, however, the 6-sphere is carried with the variable

point, so that in the process of variation certain charges are removed

from consideration, while other new ones are added. Thus

where V* takes account of the variation from point to point within a

fixed 6-sphcrc of the potential due to the charges outside the sphere.

That is,

(55) -47r* = 47rV*4>* = C p'V-dr'+f v(V, V -

Jr-r, r JT-* \ T
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The analytic distinction between V4>* and V*4>* will be made clear

by considering the variation of an integral of the type

where x,y,z are the co-ordinates of the center of the sphere 5. Then the

change in this function, corresponding to an increment Ax in x, arises

from two sources: first, from the fact that the parameter x in the inte-

grand has the new value z+Az; and, second, from the fact that the inte-

gration region has been slightly altered by the shift of the sphere which is

to be deleted from T. The portion of the

rate of change of u* with respect to x

which results from the first-named source is

obviously

dr

On account of the shift in the 6-sphere, on the

other hand, elements of volume Ar' = d<r'

cos (n,x)Ax are added to the integration re-

gion, where dc' is an element of the surface s of the 6-sphere and n is an

interior normal to the 6-sphere at dv f
. The sign of the factor cos (nx)

takes account of the fact that in the shift of the 5-sphere the region I (see

Fig. 18) is to be removed from, and the region II added to, the region of

integration r 5. Thus the portion of the rate of change of u* with

respect to x which results from the shift of the 6-sphere is

Fio. 18

/ cos (nx)d<r'

so that

(56)

Apply this equation to (54). The result, namely,

(57)
~

ir
?', V
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shows that the difference between the two modes of variation indicated

by V and V* appears as two integral** taken over the surface s of the

5-sphere.

These two integrals can be simplified in case the physical conditions

of the problem permit the assumption that the functions p' and P' are

so slowly varying across the range of the 6-sphere as to be practically

constant. This is a more stringent condition of slow variation than has

previously been assumed for these functions, since 5 must be large

enough to contain many volume cells Ar t if the group potential is to be

legitimately used for all charges outside 5. Under such an assumption
the values p' and P' in the foregoing integrals can be replaced by p

and Po, the values of p' and P' at Of. These integrals then become

Po

the first of which is clearly zero. The second can be written

Po C J >

~47r62

J
s * nd(T

>

where <p is the angle between P and a line from to dv'. It is then

clear from symmetry that this integral has no component perpendicular
to the direction of P , while the component parallel to Po is given by

_? C'
4*#Jo

+Tlii I
cos2 v 27r8

2 sin <pdv>
= +~ .

The value of the integral is thus + lPo, and equation (57) can be re-

written

V** = V*<!>*+,
O

or

(58) *=-V1>*+,

where E* and P are both measured at 0, and where E*, <*, and P
are all functions of x,y,z, the co-ordinates of 0.

Now the mathematical function * defined by (55) is, when p' and

P' are sensibly constant over the sphere, independent of the size 5. For

two different values of E*, corresponding to two different choices of

t Note that this makes PO and Po functions of x,y& the co-ordinates of 0.

83



18 THE ELFXTROMAGNKTK^ FIELD

5, differ by the intensity due to the uniformly charged and uniformly

polarized spherical shell contained between the two 5-spheres in ques-

tion; and the intensity due to this completely symmetrical distribution

is zero.f It is customary to take advantage of this mathematical fact

by letting 6 approach zero. Thus

* = lim E*= -Vim Vf*+lim ,

5 = i<) ;> = <) O

or

(59) JE*=-lim V**+ .

&u o

It should be carefully realized that allowing 5 to approach zero is a

purely mathematical device, and in no way affects the fact that E* is

still the force due to the non-neighboring charges. The advantage, re-

ferred to above, of this last equation over (58) depends upon the fact.

that it is possible to prove that the first term of the right member of (59)

is equal to the negative nabla of a function 4> given by

((50) $ = lim**,
5=0

i.e., a function which is the analytical extension, for points within a body,
of the same function which gives, at exterior points, the potential due to

the body. The proof just mentioned will now be given.

The function <i>* may be written

the four terms $f, 3>2*> **> and ** being abbreviations for the four inte-

grals on the right side of (54). Since 4?3
* and <I>4

* are regular integrals

which do not depend in any way on the value of 5, it is clear that only
^>

t

* and <,? require consideration.

It follows from (56) that

d
d3>i if , r , , ,

1 C ,

"te -4iJT .
P ^ dT

+Sj.
P

cos (nx)-~

P'^ dr>
,

dx

f This portion of this statement which refers to polarization may not seem obvi-

ous. It is easy to check, by direct calculation, that the -ntensity at the center of a

uniformly polarized spherical shell is zero. See Part I, Problem 9, of this chapter
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THE DISTRIBUTION PROBLEM 18

the last step depending upon the fact that the surface integral over s

has been shown to be zero when p' is constant. Then

lim - iim p
>

dT
> = l dT

>

,'

M- JL
iim f p

>

dT
> = 1

(OX 47T ^ QJ T -6 dX ^TTjr

provided the integral on the right exists; indeed, this equation is the

definition of the improper integral on the right. That the improper inte-

gral does exist is made evident by writing dr' = r~dr r/o>, where du is an
element of solid angle; for, when the element of volume is thus written,
the singularity is removed. Then the fact that

depends upon the theorem that an improper integral may be differenti-

ated with respect to a parameter under the sign of integration, provided
the resulting integral is uniformly convergent with respect to the param-
eter. The uniform convergence with respect to x follows at once from
the remarks, made above, concerning the existence of the integral. It is

therefore concluded that

r d<f>f d<t>!
lim ~ -^=- t

.

3.10 oX OX

The function <I>2
*

requires slightly different treatment, owing to the

fact that the integrand of the improper integral,

becomes infinite at r= as 1/r
2

,
rather than as 1/r. This difficulty

can be avoided by the procedure (familiar from the theory of the New-
tonian potential) of reducing the order of the singularity by an integra-
tion by parts carried out before 6 is allowed to approach zero, i.e., be-

fore the integral becomes improper. Thus

+;
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19 THE ELECTROMAGNETIC FIELD

the integration by parts being based upon the identity.

The function <f>.? can therefore be written as the sum of three integrals,

the first of which is entirely analogous to ${", and the second of which

is entirely analogous to <f>3*. It is therefore evident that

provided

lim 4- f
Pn

d*' =v Km CPn dv' .

3^0 dxj^
r dx 5=0J s

r

But since Pf
is constant over

,
the integral

is zero from symmetry, so that the last equation is satisfied.

It has been shown, therefore, that

lim
6=0

where

Equation (59) may thus be written

(63) **=*+' >

where

(64) E=-V<J>.

In these last two equations all quantities written are functions of the

variables x,y,z.

19. Definition of a Conductor. The expression for the force on a

charge due to the non-neighboring charges has just been obtained. The

distribution of charges is determined, however, by the total force on
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THE DISTRIBUTION PROBLEM 19

each charge, so that it is now necessary to discuss the force clue to the

charges within the 6-sphere. This force is affected by the microscopic
details of construction of the body, and is different for different types of

bodies.

Bodies are classified, as regards their electrostatic behavior, into two

groups: conductors and dielectrics. A conductor is a body whose atoms
are so constructed and combined that electrons are free to wander about
in the body, moving from atom to atom. In other words, those forces of

constitution, operative over ranges of atomic dimensions, which are char-

acteristic of the detailed structure of the body are such that the elec-

trons behave, for purposes of electrostatics, as if they were in neutral

equilibrium under these forces. When the condition of a body is that of

electrostatic equilibrium, the total force on each charge may be said to be

zero; and when a conductor is placed under the electrostatic influence of

another body, the charges of the conductor will be acted on by forces in

excess of the normal forces of constitution, and the charges will shift

about into a new equilibrium configuration, i.e., into such new positions
that the total force on each charge again vanishes. An idealization of the

actual physical problem is evidently involved in the statement that the

total force on each charge vanishes when electrostatic equilibrium pre-

vails. It is of course recognized that a conductor is never, microscopical-

ly, in equilibrium. The charges are moving about, but with a random
motion that does not cause any drift of charge from one volume element

to another. A microscopic motion of charge which does not affect the

constant value of the total charge e t and the polarization pi of each

volume cell Ar t will not affect the densities p, 17, P, |i, and is therefore

of no consequence as regards the electrostatic behavior of the body. Each

charge can thus be thought of as stationary at an effective position, and
as acted upon by zero force.

Now it was observed, when the polarization pi of a volume cell Ar t

was discussed, that this polarization is contributed to rneagerly by the

slow variation across AT* of the number density of charges; but that the

major portion of pi, in a case where pi is large enough to be important,
arises from the existence within AT,, of neutral but polarized units.

Such units might be, for example, polarized atoms or molecules. But
such units can exist only if there is, within each unit, some restraint

which allows a small differential shift of the positive and negative

charges, but which prevents these charges from wandering away from

the unit in question. A conductor is, by definition, a body in which such

restraints do not exist, so that the polarization Pi of a volume cell in a
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19 THE ELECTROMAGNETIC FIELD

conductor arises solely from the slow variation across the cell of the num-
ber density of charges. It has been assumed above, however, that the

density p is sensibly constant not only across a cell, but also across the

many cells contained in a sphere of radius 5. It is thus evident that the

volume polarization term should play no role in the discussion of the elec-

trostatic behavior of an idealized conductor, so that the force on an

interior charge, due to the non-neighboring charges, is, from equation

(64), given by

(65)
* = =- y^.

The force due to the charges within the 6-sphere will be denoted by
/, and will be divided into that part /i due to the charges within a few

molecular diameters of the center of the sphere, and the part /2 due to

all the other charges in the S-sphere. The present state of knowledge con-

cerning the forces acting between charges very near one another, and

concerning the detailed construction of a body, makes impossible any

analysis of the forces /i and /2 , and, in general, assumptions must bo

made concerning each of these portions of the total force. However,
the charges whose distances from the one in question are of the order of

atomic dimensions give rise to the above-mentioned force of constitu-

tion, and in the case of a conductor, this force is zero. Thus the force /i

vanishes by virtue of the definition of a conductor. There remains for

consideration the force /2 due to those charges which are within the

5-sphere, but whose distances from the center of the sphere is greater

than the range of the intm-molecular forces of constitution. It is as-

sumed that this force /2 is also zero. This assumption is a natural one

in view of the fact that the density p is practically constant over the in-

terior of the 6-sphere. Under any law of force which depends upon the

distance between charges, and acts along the line joining them, the force

on a charge due to a symmetrical spherical distribution about it would bo

zero. The charges within the 5-spherc do not necessarily form an abso-

lutely symmetrical configuration, but they do give rise to a density p

which is completely symmetrical. The foregoing assumption is thus

based upon the reasonable notion that if the charges give rise to a com-

pletely symmetrical density, they do not themselves sensibly deviate from

a completely symmetrical distribution. Those slight deviations from

complete symmetry which exist in the immediate neighborhood of the

charge in question would be the most likely to give rise to a non-vanish-

ing force, but these immediately neighboring charges have already been

disposed of when considering the force fi.
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THE DISTRIBUTION PROBLEM 20

If, then, the total force on a charge, and the force due to all the charges
within the 5-sphere are each, in the case of a conductor, equal to zero,

it follows that their difference*, i.e., the force due to the non-neighboring

charges, must equal zero. A conductor is thus characterized by the equa-
tion

(66) E* =E=- V$= 0,

which holds at all interior points. It follows directly from this equation
that the function <f> must be constant throughout the interior of a con-

ductor.

20. The Surface Polarization of a Conductor. The surface atoms of

a body are, unlike those in the interior, under conditions which are essen-

tially one sided. It is natural, therefore, that a charge which is very near

the surface of a body be subjected to restraints quite unlike those which

govern interior charges. And it is natural that the "one-sided" electrical

force, which acts on charges near the surface, produce a relative shift of

the unlike charges, and hence a polarization pj of the thin volume cells

AT, which lie along the surface of the body. It should be noted that the

surface polarization now being discussed is one which results not from

any special charged condition of the body, nor from its being under the

influence of any other charged body, but simply from the inherent one-

sidedness of the conditions that obtain at the surface. That is, it is an

intrinsic surface polarization, characteristic of the electrical structure of

the body in question. At a point on the surface the conditions are asym-
metrical with respect to the tangent plane, but symmetrical with respect

to the normal. The intrinsic polarization is thus taken as directed along
the normal, and, since it is determined only by the characteristic struc-

ture of the body, it is assumed to be constant in magnitude. It has been

noted that an intrinsic surface polarization is to be expected on the basis

of the Rutherford atom, and quantitative deductions have been made on

the basis of this model*

It is customary to assume that, in the case of a conductor, there is no

surface polarization other than the intrinsic surface polarization. This

assumption is a, reasonable one, since the forces due to distant charges
are surely small compared to the intra-atomic forces of constitution.

When these intra-atomic forces are in balance, as they are in the interior

of a conductor, the forces due to distant charges may produce ob-

servable results; but when the intra-atomic forces are out of balance, as

*
J. Frenkel, Philosophical Maqnzine, XXXIII (April, 1917), 297-322.
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20 THE ELECTROMAGNETIC FIELD

they are near the surface of a body, a possible polarization produced by
the small external forces would be negligible compared to the intrinsic

polarization produced by the much larger forces of constitution.

The portion of the potential 4> which corresponds to this constant

intrinsic surface polarization is given by

cos 6 da'

where is the angle between H' and the direction from da* to P, ot

co-ordinates x,y,z, the point at which the potential is being measured.

But cos do' is numerically equal to the projection of the area da' on

a plane normal to the direction of r, so that

cos da'

where dw is the solid angle subtended by da f
at the point where the po-

tential is being calculated, the upper or lower sign being used according

as the angle between |i' and the direction from da' to P is acute or

obtuse. The foregoing integral may thus be written in the form

If this integral be extended over the surface of a body, and if the

point at which the potential is being measured be outside the body, a

line having the direction of r cuts the surface at an even number of

points, at half of which Ao is positive, and at half of which rfw ie nega-

tive. Thus the potential due to this normal surface polarization of con-

stant magnitude is, at all points outside the surface, equal to zero. If,

on the other hand, the point at which the potential is being measured is

inside the surface, a line having the direction of r cuts the surface at an

odd number of points; say 2n+l points. At 2n of these points the

values of dco cancel, while at the remaining point do> is positive or nega-

tive, according as |i points along the interior or exterior normal to the

surface. Thus the potential due to this polarized layer is, at interior

points, given by

To avoid carrying the double sign, it can be assumed that the polarization

is directed along a certain one of the normals, say the interior normal.
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THE DISTRIBUTION PROBLEM 21

Then the magnitude itself is to be considered negative if the polarization

is actually oppositely directed. The potential at interior points would

then be given always by +ju.

It should be noted that the potential due to this polarized layer is

discontinuous across the surface, the constant "inside" value differing

from the constant "outside" value by the amount ju. In the more general

case of a variable polarized surface layer, the potential has this same dis-

continuity characteristic, i.e., the value which $ approaches as the sur-

face is approached from without differs from the corresponding inside

limit by an amount /*, where /z is the magnitude of the surface density

of polarization at the point approached.*
21. The Distribution Problem for Conductors. It follows from the

defining characteristic of a conductor, discussed above, that the charge

on a conductor is distributed in such a way as to satisfy the two equa-
tions:

I p -+ I 77
= Constant at interior points,

(67) J r J r

fp dr+fij do-= Total charge on conductor.

The functions p and r; are to be determined from these simultaneous

integral equations. In the special case of a spherical conductor of radius

a and of total charge c, the symmetry of the problem aids one in guess-

ing possible functions p and r/ which will satisfy these equations. For

example, if the volume density of charge p be zero, while the surface

density be uniform and given by e/47ra'
2

,
the second of these equations is

obviously satisfied. Moreover, the value of the function

c <k_
j "7-

is constant within the sphere. In fact, let P be a point within the sphere
whose distance from the center is b, and let be the angle between the

radius through P and any other radius. Then the surface area

2?ra2 sin 6 dO

lying between cones of generating angles 6 and d+dd may be chosen for

the surface element do-, and the integral may be written

e C* sin 6 dd

2) r-
*
See, e.g., Poincarc, Theoric du Potenliel Ncwtomcn, pp. 218 ff.
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21 THE ELECTROMAGNETIC FIELD

If the variable of integration be now changed, according to the scheme

r2= a2+b2-2a6 cos 0,

rdr = ab sin dO
,

the value of the integral is at once seen to be independent of the position

within the sphere of P. In fact,

r+* *

o k I
^/i= '

2abjn-b a

It is obvious, however, that in a less simple case the determination of

the functions p and 77 from equations (67) would offer great practical

difficulties, owing to the fact that such pairs of integral equations have

not received much study. The method of

procedure, by means of which the problem
is reduced to more familiar analytic form, is

a common one, often used in evaluating

difficult integrals. Consider, for example,

the definite integral .

r= I

Jo

** dx .

FIG. 19
This integral can be evaluated by differen-

tiating under the sign, with respect to the parameter a, and by forming
a differential equation which u satisfies. Thus

du

da''

C* -s- a*

ndx C'J s- a *

-2 I e *
,
=-2 I e

" * dz
,

Jo
2

Jo

the last step resulting from the substitution x = . Then
z

du

da''
2u,

and hence

When a= 0, u reduces to the probability integral

I TT

92



THE DISTRIBUTION PROBLEM 21

so that the constant C equals l/V/2, and the value of the definite inte-

gral is

.- e,-2a

A similar procedure will be followed here. The integrals

/"* f* /** d

will be differentiated with respect to the co-ordinates x,y,z of the point

at which <I> is being measured, and a differential equation for $ will be

derived. This differential equation, together with boundary conditions,

will then be shown to have a unique solution, from which the densities

p' and r[ can be deduced.

The differential equation for <f>, just referred to, is obtained, as a

matter of fact, by computing the second rather than the first derivatives

of <. The integrals

. r -, + r d-

are regular, and can be differentiated with respect to x, y, or z under

the sign. Thus:

f* f* d /*** d

!__&_(
,M j ff^r,_r (fa

/ = j. r/_r
(

\TT dx*J r 4?r dx*J dn 4irJ dx*

dn dx*

If these terms lie added to the corresponding second partials with respect

to y and z, the result is*

V*
1

(V ^+^ f p ^' =
i-- fvV -

4:TrJ r 4irJ dn 4irJ r

* See Appendix , 4, (41), for the operator v*ss"nabla square."
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since

If the point x,y,z is a point in empty space, i.e., a point which is not
within some body, the integral

1 f dr'

4rJ
P ~7

is also regular, and

Therefore at all points in empty space the function $ satisfies the linear

partial-differential equation

At points within a conductor the integral

<$!=- I pi
TTJ r

is improper, and care must be used in carrying out the differentiation.

It has already been seen that an improper integral of the type

r

can be differentiated, with respect to x, ?/, or z, under the sign. Thus:*

the integral being carried out over all of the body r which ie exterior to

* One should distinguish carefully between this equation and equation (56). The
sphere, of radius e, here under consideration has a fixed center.
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a sphere, of radius e, drawn about the point Xjij,z. If the expression

within the bracket be treated by integration by parts, the result is

l. 1 Urn / f
d4 I dr>- CP' cos ("*')

dff>- (V
cos P"*)

d,' \
So; 4ir ,io [JT-dx' r Js r Js r )

47T .i

where 2 is the surface of the body r, and where S is the surface of the

e-sphere, the limit of the integral over S being clearly zero.

Both these integrals again satisfy the conditions that permit differ-

entiation under the sign; thus

or, integrating by parts again,

f
*- a-

=^ lim
j
f P

'

~.J2 dr'- fp'
~

47T
ei(| [^ r - e 5.'C

2
J,S C)X

cos

If .this expression be added to the corresponding second partials with

respect to y and z, the result is

But

and

~ cos
,
cos (ny

, COB

cos cos cos

95



21 THE ELECTROMAGNETIC FIELD

Therefore,

-
.

47T f io Js r~

By the theorem of the mean for integrals, this reduces to

'= -liin p ,
= --- lim \ |

dv'= -lii
4fl"

f^ e J fjs

where p is the value of p at some point on the sphere of radius e. Thus

(68)

where the value of p is taken at the point x,y,z. Since, however, the

potential is known to be constant at points within a conductor, and since

V'
2
<l> is therefore zero at all interior points, it follows that the volume

density of charge must be zero, so that, in the electrostatic; problem for

conductors, the potential function <1> satisfies, at every point in space,

the differential equation

(69) V2
<f> = .

The variation, from point to point, of the potential <f> is governed

by this equation. The total function 4> is a sort of "patchwork" func-

tion, built out of parts which are constant within conductors, and the

part which varies from point to point in empty space. A vast number of

functions vary in the way prescribed by the foregoing equation, and to

pick out the one which, in a given problem, will fit properly on to

the constant portions within the conductors, it is necessary to investi-

gate the continuity, across the boundaries of the conductors, of the

potential $ and its derivatives.

It follows from the remark just above concerning the vanishing of p

that the potential is given by the two terms

1 C ,d<r'l C ,
r=

^J"T+4;J ^
The second term, namely, that due to the intrinsic surface polarization,

has been shown to be zero at all exterior points. In determining $ at

such points this term may therefore be disregarded, but it should be re-

membered, in connection with the boundary conditions, that the portion
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of 3> due to this term is discontinuous across the surface of a conductor,

the discontinuity having the constant value /*.

The first term is continuous across the surface of a conductor. It is,

in fact, clear that any discontinuity in this function can arise only from

the integral over a very small region of the surface which contains the

point at which the boundary is to be crossed. A sufficiently small por-

tion of the surface may be regarded as a plane surface over which rj is

sensibly constant. It is thus sufficient to consider the behavior in the po-

tential due to a circular disk with a constant surface density r?.* The

potential due to such a disk, at a point on the axis whose distance from

the disk is .r,
is given by

lirydy

1 x*+yz

__ -g r

o li

where a is the radius of the disk. As jc approaches zero, cither in the

negative or the positive direction, this expression approaches the value

?7/2, so that the potential

is continuous across the disk,

and hence across the surface.

Since this term is continuous

across the surface of a con-

ductor, and since the in-

trinsic polarization term has

the constant discontinuity

/i, it follows that the poten-

tial 4>, at points outside a

conductor, must approach,

as the surface of the conductor is approached, a constant value equal

to $/, so that <f>,+M* is the constant interior value of the potential of

the ith conductor, where /z, is the magnitude of the intrinsic polariza-

tion.

Although the potential due to this circular disk is continuous, the

normal derivative of the potential is discontinuous. Indeed, from the

foregoing expression

FIG. 20. The potential at points on the axis of

i circular disk.

* For a detailed and rigorous treatment, see Poineare, op. cil
, pp 92 (T.
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so that

lim+, x<0.
x=0 X J

That the values of d$/dx just below and just above the disk must

be different is obvious physically. If, for example, the surface density rj

be positive, d$/dx just above the disk is the upward intensity, which

would be clearly positive; while d<b/dx just below the disk is again

the upward intensity, which would clearly be negative at such a point.

Then if m and na are oppositely directed normals to the surface at the

point in question,

,

i

where, for example, (d$/dni)i means the limit of d<b/dn\ as the point

at which the derivative is taken approaches the surface from the side

into which HI points. It is customary to abbreviate this notation and

write simply

the meaning, of course, being the same as before. Although this equa-

tion has been obtained by considering only the potential due to the sur-

face charge rj, it is true if the potential due to the intrinsic polarized

layer be included in <, for the normal derivatives of this latter contribu-

tion are both zero. This equation can be further simplified on account of

the fact that the potential is constant within a conductor. Thus if TU is

an interior normal, and na = n an exterior normal,

so that*

a* a*

* The density rj has boon considered a function of .T',//X, while <!> is a function

of x,y,z. This equation means, as its derivation clearly indicates, that the value of

?; at x',y',z' is equal to the values of dty/dn at .r=.r', //
=

//, 2 = z' . Thus when t)<b/dn

is substituted for 77, x,y,z in d$/dn must he replaced by x',y',z
r

; and vice versa
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A still further specializing characteristic of the potential $ may be

obtained by considering the nature of the limiting value of this function

as the distance from any body to the point at which $ is measured in-

creases indefinitely. It is supposed that all the bodies under considera-

FIG. 21

lion can be contained within some finite volume. Then at any point with-

out this volume

4irJ r
'

the integral being extended over the surface of all conductors. This inte-

gral may be re-written as

*=
4*J (R

2
+r?-2ftr1 cos

so that

R -

Total charge

4ir

In the same way it may be shown that

lim
R--">

ds

is also finite. When it is desired to refer to the characteristic behavior

at infinity which is expressed by these relations, the potential will be

said to be
l

'regular at infinity."
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The various points just discussed give rise to the following schedule

of conditions on the function <f>:

a) V2* = 0, at all points.

b) Either the constant potential $ or the total charge e t of

each conductor must be known. Thus 4> reduces, on each

conductor, to a known constant <$ 4 or $ reduces to an un-

/j\
J known constant, while on the surface 2, of the ith con-

ductor*

c) 4> is regular at infinity.

This schedule of conditions will be referred to collectively by the

Roman numeral (I). The mathematical formulation of the electrostatic"

problem will now be completed by proving that there exists but one

function <i> satisfying these conditions. This theorem will then guarantee
that a function, obtained in any way whatsoever, which satisfies these

conditions, is the actual solution of the physical problem.
22. The Uniqueness of the Solution. Before giving the proof of the

uniqueness of the solution of (I), it is necessary to establish an identity

which is a form of Green's theorem. Integration furnishes the equation t

(72) f% Lx cos (nx)da

where S is the surface of the volume r, and where n is an exterior

normal. If this equation be added to the two corresponding equations
in y and z, the result is

(73) t div4dr= \ A nda ,

where A is the vector whose components are A x ,
A v ,

and A 2 . If A be

given the special form U V[7, this equation reduces to

+QXf)>=<>

which is the identity sought.
* Sec last footnote.

t See Appendix, 5, A, for moro complete discussion
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THE DISTRIBUTION PROBLEM 22

The uniqueness will first be proved for a closed region which is a

cavity within a conductor whose potential
< is supposed known. Sup-

pose that there are two functions $1 and <f>2 satisfying (I), and set

$!-<!><,= U .

Then from (I)

at all points within the cavity ;
while on the walls of the cavity, since

and < reduce, at all such points, to the same constant 3>o,

If these values be substituted in (74), the result is

d!r = 0.

But since the integrand is essentially positive, it follows that it must

vanish identically, i.e., it follows that

OU^clU^dU^
dx dy dz

Thus the rate of change of U in any direction is zero, and since U is

zero on the"boundary of the cavity, it is zero throughout the interior.

The difference between the two solutions $1 and $2 therefore vanishes

identically, and the solution is unique.

Consider next the potential at any point in free space due to a set

of conductors whose potentials are known. Apply formula (74) to the

volume whose interior boundary is the exterior surface of all the con-

ductors, and whose exterior boundary is a large sphere, of radius /?,

which contains all the conductors present, ('all f/, as before, the differ-

ence of two possible solutions. Then from (I), U satisfies the conditions

t/ = on the interior boundary,

U is regular at infinity.

The first volume integral of (74) vanishes as before. The surface integral

must now be extended over both the interior and exterior boundaries.
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23 THE ELECTROMAGNETIC FIELD

The surface integral over the interior boundary vanishes, as before,

since U is zero on this boundary. Let the radius R of the exterior

boundary approach infinity. Then, from the regularity at infinity, U
vanishes as 1/R, and BU/dn^dU/dR vanishes as l/R

2
. Thus if

is an element of surface on the sphere,

*o F C ,

R* =Rr">

where F is some finite number. Therefore, as R approaches infinity,

the surface integral over the exterior surface vanishes. Then, as before,

the region of integration now having become all space exterior to the

conductors, and it follows as before that the potential is unique.

If, in either of these proofs, the potential of each conductor is not

known, but its total charge d is given, the proof must be modified. In

proving that the surface integral over the conductors is zero, it is not now

known that U vanishes on the surface of each conductor. However, since

U is the difference of two solutions *i and 4>2 ,
each of which must reduce

to a constant on each conductor, it follows that U is constant over the

surface of each conductor. Thus

CT*<*U i TrC dU J TJ\ C d$*J f f34>2 ^l TTf * 4-^ O
I U , d<r = U I

--
d<T=*U\ I d(r I d<T

\

=
[/( e,+<?i)=0,

J dn J dn IJ dn J cln
\

and the remainder of the proof, in either instance, goes exactly as before.

23. Gauss'8 Theorem. In the previous section it was shown that the

surface density rj on a conductor is given by d$/dn, so that

()
-

where e is the total charge on the surface of the conductor, the integral

being extended over that surface. It is possible, however, to assign a

more general meaning to this equation. In fact, if the surface integral

be extended over any closed surface S whatever, the foregoing equation

is still correct provided e is interpreted as the total charge contained
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within the surface. To prove this statement, apply (73) to the region in

question, and let A have the special value V*. The formula can be ap-

plied only to a region throughout which the components d$/dx, d$/dy y

d$/dz of V<f> are continuous. It has been shown that these derivatives

are discontinuous across any surface S t where 775^0. Such surfaces of

FIG. 22

discontinuity Si must therefore be excluded from the region of integra-
tion by inclosing them in surfaces o- t, such as are shown dotted in the

figure. Let the volume within S be called r, and the volume inclosed

by the surfaces <n be called 5. Then (74) reads:

As an inclosing surface a l shrinks down on the surface of discontinuity
S t ,

the integral

I dff

approaches the value

I yda .

JSi
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Thus, as all the inclosing surfaces <r t shrink down on the surfaces Si, the

foregoing equation becomes

where e is the total charge within 2.* Equation (75), with the extended

significance just given it, is sometimes called "Gauss's theorem." The
derivation just given includes the case of both surface and volume

densities of charge. In an electrostatic problem for conductors, p is zero,

and only the integral involving r; remains.

24. Applications of the Uniqueness Theorem. The uniqueness
theorem may be used to establish the fundamental additive character of -

potentials and charge densities. Suppose, for example, that a set of con-

ductors be raised to potentials 3> by charges e,, and that <I> is the po-

tential at any point in free space. Then if the charges are given new
values nid, each charge being the same fractional part in of its original

value, the potential at any point will be m$. For the conditions

/dm$
, | d<f> ,

,- d(r =m I -j da = mei ,dn J dn f

w<f> is regular at infinity,

are satisfied; and therefore by the uniqueness theorem m3> is the only

and hence the correct solution. Since the potential at any point in space
is ?/i times its original value, it follows directly that the potentials of the

conductors themselves are given by w$> t . At any point on the surface of

a conductor the surface density of charge is given by the negative rate

of change of the potential in the direction of the exterior normal.

Hence if 77 is the surface density when the charges are e l and the po-
tential $, the surface density when the charges are me,, and the poten-
tial w4> is given by

--- = tn -

dn dn

* It is easily seen that if there be charge on the surface 2 itself, the

der consideration gives the charge on as well as that within 2.
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THE DISTRIBUTION PROBLEM 24

Increasing or decreasing all the charges in a- given ratio thus increases

or decreases (in the same given ratio) both the potential at any point,

and the surface density on all the conductors.

Suppose further that a set of conductors be raised to potentials 4>|

by charges e[, and to potentials <I>" by charges e" ; then they arc raised

to potentials ($>(+$[') by charges (e[+e"). For since charges e{ raise

the conductors to potentials $'
,

V'-V-O,

dn l

<!>' is regular at infinity,

and since the charges e' raise the conductors to potentials $(',

d<
-an

d*=~ e
> '

3>" is regular at infinity,

it follows by addition that

'")=0,

"
is regular at infinity,

which, by the uniqueness theorem, prove that $'+<$" is the potential

when the charges are e[+e". When the total charges on the conductors

are e'
t+e", the surface densities of charge rjt can be shown, in the same

manner as above, to be

where
v\\

and r/-' are the surface densities when the total charges are
e',

and e", respectively.
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24 THE ELECTROMAGNETIC FIELD

As a further illustration of the usefulness of the uniqueness theorem,

consider the problem of determining the potential at any point due to a

conductor which is itself uncharged, but which contains a cavity within

which is located a charge +e.

The potential at any point exterior to the conductor, due to a charge

e located in the cavity, satisfies the schedule of conditions

V2
$> = in free space,

dff e over exterior boundary of the conductor,

<i> is regular at infinity,

the second equation resulting from an application of Gauss's theorem to

the external surface of the conductor. * These conditions are identical,

however, with those which hold when a solid conductor has a charge e. It

follows from the uniqueness theorem, therefore, that the potential at

any point in the space outside the conductor

is the same in the two cases. In the case of

a solid conductor there is a surface charge

given by

and since the potential at every point, and

hence the normal derivative of the potential,

FIG. 23. A charge c located *s ^ne samcm the two cases, there is the same

in a cavity of a conductor. surface distribution on the exterior sur-

face of the hollow conductor. Since, how-

ever, the total charge of the hollow conductor is zero, and since the

volume density of charge is also zero, it follows that there is a surface

distribution on the walls of the cavity of total amount e. In the case

of the hollow conductor, the surface distributions on the exterior surface,

and on the walls of the cavity, are known as "induced charges.
7 '

PROBLEMS FOR PART I, CHAPTER II

1. Under what circumstances can an integral be differentiated with re-

spect to a parameter which occurs in the integrand?
2. The function x2+y2

is integrated throughout the interior of the par-

allelopiped bounded by the planes :r=a, y=bj z c. What
H See preceding footnote.
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THE DISTRIBUTION PROBLEM 24

functions, integrated over the surface of this anme body, would pro-

duce the same final answer?

3. At points outside the sphere x2
+?/

2+22 =4, the intensity

At points inside the sphere, E = 0. What value does 77 have on the

sphere?

4. For z>0, the intensity vector is given by the equation

while for

What is t] on the plane # = ()?

5. On one side of the plane .r+?/+2

while on the other side

What is the surface density of charge on the plane?

6. Prove from the uniqueness theorem that the charge on an isolated

spherical conductor is uniformly distributed.

7. Prove that the potential is constant at points within a cavity located

in a conductor.

8. A conductor, on which is a total charge e, contains a cavity within

which is located an additional amount of charge e'. Use Gauss's

theorem to find the total charge on the wall of the cavity, and on the

exterior surface of the body.

9. Suppose a spherical shell whose interior and exterior radii are r\ and

7-2 to have a uniform volume density of polarization whose magnitude
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21 THR ELECTROMAGNETIC FIELD

is P and whose direction is that of tin* .r-axis. Show that the x-

componcnt of the intensity at the center of (he sphere is

'*'

(2 cos2 sin2
0) ,

. _ . Jn nN
SIT v>& <aitl n fit* fin ~~~^ 1 1_ fjn I olll U Ul Ctl/ w

10. In 20 it was shown that the normal derivative of the potential due

to a circular disk is discontinuous as the disk is pierced. Show that

the tangential derivative of the potential is continuous.

11. As is indicated by the previous problem, the tangential component of

the electrostatic intensity is continuous as one pierces a charged sur-

face. Do the fields given in Problems 3 and 4 conform to this de-

mand?

12. Show that Problem 5 is obtained from Problem 4 by rotating the

x-axis of Problem 4 into the position of a normal to the plane

x+y+z = (), and the ?/-axis of Problem 4 into a position lying in the

x -?/-plane of Problem 5.
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PART II. SPECIAL AND GENERAL METHODS OF SOLUTION

INTRODUCTION

The schedule of conditions (I) above lias just been shown to determine

uniquely the electrostatic potential. For various types of problems spe-

cial methods have been developed which lead conveniently and simply
to the function which satisfies the schedule of conditions (1). Part II of

this chapter exhibits and explains some of these methods. The image

method, for example, furnishes a solution to many problems. For other

problems it is convenient to transform the conditions (I) into the form

they assume when curvilinear co-ordinates are used. The essential ad-

vantage in the use of such co-ordinates is that it is possible (as, for ex-

ample, in the case of the sphere or ellipsoid) to choose such co-ordinates

that the equation of the surface of the conductor in question is X= a,

where a is a constant and X is one of the curvilinear co-ordinates. Then

the condition
" $ is constant on a conductor" is expressed as

"
<f> =

constant, when X = a" a formulation of this condition which is more

simple and more easy to apply than it would be in case other less suitable

co-ordinates were used.

This section also introduces the concept of the capacity of a conduc-

tor, and contains a brief treatment of logarithmic potential.

25. The Method of Images. An important special method of de-

termining the potential and the distribution of charge in certain electro-

static problems is the so-called "method of images." This method will

be illustrated by several problems, the most simple of which is the de-

termination of the potential due to a charge e located a distance a from

an infinite conducting plane whose potential is zero. It is convenient to

separate the potential * into the sum of two terms, one of which, c/4irr,

is the potential due to a charge e; while the other, 4>i, is the potential

due to the charge which is induced on the surface of the conductor. The

potential $1 must satisfy the conditions

V2
<l>i
= in free space,

n

3>i
= - - on the surface of the conductor,
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f 25 THE ELECTROMAGNETIC FIELD

the latter condition arising from the fact that on the conductor

If, by inspection or otherwise, a function $1, regular at infinity, can

be obtained which satisfies those conditions, then the potential <I> is the

physical potential sought. It is easily seen, however, that

is such a function, r' being the distance to 0', the image point of 0,

where e is located. Thus the complete solution is

and the effect of the charge induced on the surface of the conductor is

exactly equivalent, at exterior points, to an imaginary charge e located

at 0'.

Since the intensity within the conductor is zero, the surface density

of charge is given by d<$>/dn, and it is easily calculated from the last

equation that

ae

The surface charge is thus heaped up under the inducing charge e, as is

shown in Figure 24.

The method of images may be stated as follows: Having a given dis-

tribution of charges and conductors, one seeks an arrangement of imagi-

nary charges not located within the region in which the potential is de-

sired, which imaginary distribution together with the actual specified

distribution will make the potential reduce to suitable constants on all

conductors. Then this imaginary distribution may be discarded; for by
the uniqueness theorem the solution obtained is the only one, and the

actual induced surface charge on all conductors may be calculated as

usual from the normal derivative of the potential. The word "image" is

used in describing the method since, as is illustrated by the problem just

discussed, the notion of a geometrical image is often involved in the loca-

tion of the imaginary charges.

110



METHODS OF SOLUTION 25

Consider next a pair of conducting planes intersecting normally, with

a charge e located within the right angle. The potential at any point in

the angle between the planes may be obtained at once by the image

method, the previous illustration suggesting the proper imaginary dis-

tribution of image charges. Reflect +e at in plane B and plane A;
and reflect the last charge so obtained in plane B, changing the sign of

the charge at each reflection. There are thus obtained the three imaginary

image charges located at Oi, O2 ,
and 3 (see Fig. 25). The one actual

FIG. 24 A charge e located a distance

a from the plane face of an infinite con-

ductor.

FIG. 25. A charge c located in the

right-angled corner of an infinite con-

ductor.

and the three imaginary charges have a combined potential which is ob-

viously zero on planes A and B. Therefore, by the uniqueness theorem

the potential sought is

4ir\r r2

The surface charges induced on the planes and effectively equivalent to

the three imaginary charges may be determined by an examination of

the normal derivatives of the potential 4>. The total surface charge on

plane B turns out to be

-tan-"
7T

where a and b are the distances from the charge e to the planes A
/?, respectively.

Ill

and
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The case of the three planes intersecting at right angles can be

treated in the same way. The case of two planes intersecting at an angle

7r/n, where n is an integer, can also be treated by the method of images.

Figure 26, for example, shows the necessary distribution of the image

charges for the case n = 3.

The image method may also be used to obtain the potential due to

a charge e which is located a distance b from the center of a conducting

sphere. Let the radius of the sphere be a, and suppose first that the

sphere be grounded so that its potential is zero. If the image method is to

Fia 20. A charge e located between two perfectly conducting planes intersect-

ing at an angle 7r/3.

furnish a solution it must be possible to locate within the sphorc a charge
e

f
of such a magnitude and at such a distance x from the center that

the potential due to e' will cancel the potential due to the charge e at

every point on the surface of the sphere, i.e., so that

at every point on the surface, r being the distance to e, and r' the dis-

tance to e'. Transposing and squaring, this relation becomes

e*(a?+x
z-2ax cos 0)=?

/2
(a

2+&2-2a& cos 0) .

* For a detailed discussion of the number of reflections necessary, see T. Oryng,

/'////. Zt
, January, 1928, p. 41, and H. Maucr, ibid, March, 1928, p. 147.

112



MKTHODB OF SOLUTION

This expression must bo an identity in 0, so that, equating coefficients,

JTfl
2 = 6c'

2

,

or

x = bp y

where

p = e'^/e
1

.

Also

= l or

x=b: a possibility that is discardedIf p = l, then e'=+e, and

since the charge e' must be

within the sphere. Thus

The sinn of e' is so chosen Fl<i -

'

27-~x cluir* locatcd a distance 6 from

, ,, . ,. , the center of ii perfectly conducting sphere of
as to make the potential m|lhw n

vanish on the surface of the

sphere, the double sign having been introduced by squaring. Then

where r' is measured to the point jr = a?/b at which e
1

is located.

If the potential of the sphere is to be a constant <I>
,
instead of zero,

this modified problem can be solved at once by assuming a second ficti-

tious charge, which obviously must be placed at the center of the sphere

in order that the potential due to it be symmetrical over the surface. In

order that this second charge raise the sphere to potential <I>
,
the magni-

tude of the charge must be 47r(t ()tt. Thus the potential

ea
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satisfies all the conditions of the problem, and is the* unique solution, r"

being the distance from the point at which <t> is measured to the center

of the sphere.

If the sphere has a total charge e, a further modification is neces-

sary. An amount e' of this charge must be placed at the image point in

order to nullify, at points on the surface, the potential due to e. There

remains an amount c ef which, if thought of as located at the center

of the sphere, is available to raise the potential of the sphere to the

value (e 6)/4?ra. Substituting this for 4> in the previous solution, the

potential is given by

_ I ( e ea ,e e

~47r jr~6r' r"

I I e ea be+ea \

The potential as given by this expression is constant over the surface of

the sphere; the surface integral of the negative normal derivative of the

potential is e; the equation V2
4>= is satisfied at every exterior point

(except at the location of e)\ and <J> is regular at infinity: this expres-

sion is, therefore, the only solution. The distribution of charge assumed

in obtaining the solution is, of course, only hypothetical; and if the actual

distribution be desired, it may be calculated from the equation

Using the hypothetical but equivalent distribution of charge, the force

F between the charge e and the sphere can be readily calculated. It is

given by
ea 1

I

~
e+ae/b

\

b (b-x)*^ 62 '

The method of images may be applied to many problems. A finite

number of image charges suffices in any case where the region in which

the potential is to be determined is bounded by:

1. A single spherical surface or a plane.

2. Two planes, a sphere and a plane, or two spheres, the intersections being at

an angle K/n, n integral.
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3. The two surfaces of 2 and a third, which may be either plane or spherical,

which cuts both orthogonally.

4. The three surfaces of 3 and a fourth, cutting the first two orthogonally and
the tlu'rd at an angle TT//I, n integral. Of these four surfaces at least one must
be spherical.*

It is possible, however, to apply the method of images to cases where

a finite number of images will not suffice. The case of a charge located

between two planes which intersect at an angle not commensurable with

TT may, for example, be solved by the image method. An infinite num-
ber of image charges is required, and the potential is expressed by means
of an infinite series, f

An infinite number of image charges is also required in the ease of

two conducting spheres, and on account of its importance, this problem
will be discussed briefly. Let the two spheres A and B be of radii a

and 6, and let the distance between their centers be c. Suppose that A
be at potential <I>o, and that B be grounded. If a charge 47r^> a be lo-

cated at A (the center of sphere A), this charge produces the required

potential $> over the surface of sphere A; but the potential over the

surface of B is not zero. From the last problem discussed, however, it

follows that an image charge ^Tr^oab/c at #', where BB' = 62
/c, will

reduce the potential of sphere B to zero. This charge, in turn, disturbs

the value of the potential over sphere A, which must be restored to the

constant value c
t>o by an image charge

47r (I)oab a

c ~b*
c -

,

nt A', where

c-- .

c

*
Maxwell, Electricity and Magnetism, 1, 206.

t The method of images may also be applied to problems in which the image
points fall within the region in which the potential is desired. In this case one makes
use of superimposed Ricmann spaces, comparable to the many-leaved Riemann sur-

faces of analytic-function theory See Riemann-Weber, Differenlialgleichungen der

Fhysik, Vol. II, chap, xiii (1927).

115



26 THE ELECTROMAGNETIC FIELD

To obtain again zero potential over sphere B requires a .charge

4ir clvib a b

c
'

62
"

a'
2

~

C ' C '

fTJ
c o2

/ __

c

located at J5", where

62

c
b2

c -

c

This process must be carried on indefinitely, the value and position of

each successive charge being given by the results of the previous problem.
The successive charges, moreover, crowd closer and closer together, so

that their effect at exterior points becomes less and less. In the case of

spheres of equal radii, separated a distance greater than a diameter, it

is not necessary to use more than two or three successive image charges to

obtain a very close approximation. The potential is, in the general case,

given by an infinite series. The analysis involved in the summation of

this series is complicated, and will not be given here.

26. Curvilinear Co-ordinates. In locating a point in space by means
of rectangular co-ordinates, the equations x = constant, y constant,

2 = constant each determine a plane. The intersection of two of these

planes is a straight line which intersects the third plane at the point in

question. A more general system of co-ordinates can be obtained by

using not plane but curved surfaces. For example, if special values

UQ, v
,
wQ be assigned to three functions (7, V, and W of x, y, z that is, if

one sets,

then each of these equations determines a surface. Two of these surfaces

intersect in a space curve which intersects the third surface at a point.

The three numbers u
, VQ, WQ which thus determine this point are called

"
curvilinear co-ordinates" of the point. The surfaces u= constant, v== con-

stant, w = constant are known as the "co-ordinate surfaces"; their inter-

sections, pair by pair, are known as the "co-ordinate lines"; and the

tangents to the co-ordinate lines at a point P are called the "co-ordinate
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axes" at P. If such functions are chosen as make the co-ordinate axes

at every point in space mutually perpendicular, the co-ordinates are

known as "orthogonal curvilinear co-ordinates." Most physical prob-
lems are best handled by means of orthogonal co-ordinates, and only
such will be considered here.

The polar co-ordinates p and which locate a point in a plane are a

special example of orthogonal curvilinear co-ordinates in two dimensions.

Since one less dimension is involved than in the general case considered

just above, the co-ordinate surfaces reduce to lines the radial lines

6 = constant, and the concentric circles p constant. These intersect

Fioi. 28. Polar co-ordinates in the FIG. 29. Element of volume using

plane. curvilinear co-ordinates.

everywhere at right angles, the co-ordinate axes at a point P being the

radius and tangent to that circle, with center at the origin, which passes

through P. The distance dsp ,
measured along the p-axis, from the cir-

cle whose radius is p to the circle whose radius is p+dp, is clearly dp.

The distance dse ,
measured along the 0-axis, from the radius whose

t
an-

gle with the polar axis is 6 to the radius whose angle with the polar

axis is 6+dd, is, however, pd6. In general, the distance dsu measured

along the M-axis between two surfaces for which u differs by an amount

du is a function of du which vanishes when du= so that the first term

in the Taylor expansion for dsu as a power series in du is

where e\ is some function of u, v, w. In the same way

dsv
= e^dv ,
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To calculate these quantities e\, c2 ,
and e^ it is necessary, in gener-

al, to obtain by differentiation the values in terms of u,v,w of the incre-

ments dxu , dyu ,
dzu which correspond to an increment du in u, v and

w being held constant. Then

etc., from which ci, e2 ,
and e* may be obtained. This calculation is sel-

dom necessary, however, and in specific cases the three functions

FIG. 30. Cylindrical co-ordinates

FIG. 31. Polar co-ordmatcs

in space.

d t
e2 ,

e3 may usually be determined by inspection, they being those quan-

tities by which increments in the variables must be multiplied to give

distances measured along the co-ordinate axes.

In cylindrical co-ordinates, for example, a point is located by means

of the three variables p, 0, and z. If one chooses

u=p

then from the figure

dse = pdO j

In polar co-ordinates a point is located by giving the radius of the

sphere on which it lies, and its co-latitude and longitude on that sphere,

i.e., it is located by the three variables p, 6, <p, as shown on the figure.

Then if one chosen
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it follows by inspection from the figure that

dsp= dp , dse = pdO ,
ds= p sin 6 d<p ,

0i = l
,

ez
= p ,

e3= p sin .

The expression for the divergence of a vector A in terms of general

orthogonal curvilinear co-ordi-

nates is most easily obtained __ .

from the equation / X \^

div -4 = lim
dr -

dr

which is obtained at once by

applying the mean-value theorem

to the formula

divA dr= A nd(r ,

J- Klemcnt of volume using

1K) ,ar C(M)rdinatcs in spaw .

,, ,
. .

i i

the volume integral being ex-

tended over the infinitesimal

volume dr. This equation is to be applied to a volume element whose

edges have lengths

dsu = eidu ,
ds v

=

and whose faces have areas

dv
,

d dw dw

The surface integral of the normal component of a vector is often re-

ferred to as the "total normal flux" of that vector through the surface

in question. The total normal flux of the vector A out through the sur-

face of the volume element here considered may be written as the sum of

three terms, each of which represents the contribution from a pair of

opposite faces. The total normal flux out through a pair of opposite
faces is equal to the flux out through one face, minus the flux in through
the other, i.e., it is equal to, for example,

d(A udavw)- --- , "I

du

dw+
v dw)

du
- du A uezezdv i

1

J
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where A u is the component of A in the direction of increasing u. The

expression for div A therefore takes the form

,. j i. 1
f d(Aue^dv dw) ,

, d(A e\e^du dw) ,

div ^l= lim ; i ? du-\ dv
eie&idu dv dwi du dv

. d(Aweie^dudv) , 1
H dw I .

dw \

'

or, canceling,

r ._dIV ^\

J'

If the values of eh c2 ,
e 3 for various systems of co-ordinates be substi-

tuted in this formula, the following values for div A result:

a) Polar co-ordinates in the plane:

dp

b) Cylindrical co-ordinates:

dp

-

P dp p do''dz '

c) Polar co-ordinates in space :

_i [d(p
2 sin OA P) d(P sin OA e) d(pA tp

2

a(sin

~\

J
1

P2 dp p sin ^ 30 p sin 5^>
*

At any point the space rate of change of a scalar function * in the direc-

tion of the positive u-axis is given by

r , v, w)$(u, v,w) = 1 d$

Distance from u, v, w to w+du, v, w e\ du
'

Let u' , v', w' be unit vectors which, at every point in space, are directed

along the u-, v-, w-axes at that point. Then if nabla of the scalar func-
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tion $ 1)0 expressed in terms of the curvilinear co-ordinates, the scalar

coefficient of u' is

I d<I>

ei du
'

since this scalar coefficient is the rate of change of & in the ?/-direction.

Hence this expression for V<J> in curvilinear co-ordinates is

_, 1 d$ ,. 1 0$
, ,

1 d$
,

V4>= -- t/'+- - v'+ - w' .

e\ du e^ dv 63 dw

By combining the foregoing expressions by means of the identity

the following expression for V I2
4> in general orthogonal curvilinear co-

ordinates is obtained:

^ + eie* + l6* d*
u d du dv 62 dv dW e* dlV

From the values of e\, e^ e* given above, the following formulas result:

a) Polar co-ordinates in the plane:

b) Cylindrical co-ordinates:

p dp p
2

c) Polar co-ordinates in space:

|

p
2

dp p
2 sin B d3 p

2 sin2 6 dy?
2

'

27. Potential Due to a Charged Sphere: the Capacity of a Conductor.

As a first illustration of the use of curvilinear co-ordinates, consider the

problem of determining the potential at any point in space due to a con-

ducting sphere which carries a charge e. In choosing the type of co-

ordinates to be used, one seeks such co-ordinates that the boundary will
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27 THE ELECTROMAGNETIC FIELD

be expressed by as simple an equation as possible. In this example, if

polar co-ordinates be chosen, the boundary of the sphere is given by the

equation p^a, where a is the radius of the sphere. The potential must

therefore reduce to a constant value for p = a, and since this condition

is independent of the variables 6 and <p, it is sensible to assume that the

potential itself is, at any point, independent of 6 and <p, and that it thus

depends only on p. The nature of the boundary conditions having sug-

gested a simplifying assumption, one proceeds on the basis of this as-

sumption, and if a solution is obtained which satisfies all the conditions,

it is known, from the uniqueness theorem, that this solution is the only

and hence the correct one. That there is a potential, due to a sphere con-

taining charge, which depends only on p and is independent of and ^>,

is also clearly indicated by the physical symmetry of the problem, but

the assumption is again justified only by the fact that the solution to

which it leads is known to be unique. It will be seen in other problems'

that the boundary conditions suggest simplifying assumptions of a simi-

lar nature.

The last written equation for V 2* is thus reduced, by the assumption

that 3> is independent of 6 and <p, to the form.

so that

T a
*

where a and ft are constants of integration.

It remains to satisfy the two conditions

/s~d*& I d*fa

(10= I -.
-

<T = e
ion J dp

$ is regular at infinity .

The second of these two conditions clearly demands that =
0; while

from the first

Cd$> fa C
I ~r rf<r= I -5 da a I dco = 47ra= 6

,

J OP J P
2 J
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The unique solution of the problem is thus given by

mid the potential is seen to be the same as if the charge e were concen-

trated at the center of the sphere. At points within the conductor the

potential is constant. If there be no polarized layer on the surface, so

that the constant value* of the inside potential is equal to the value ap-

proached on the surface by the outside potential, the potential at all

points within the sphere is given by

The ratio of the charge on an isolated conductor to the potential to

which this charge raises the conductor is called the "capacity" of the

conductor. The capacity C of an isolated sphere, namely,

thus varies directly as the radius of the sphere.

28. Concentric Spherical Shells: Potential and Capacity. Consider

next a sphere of radius a surrounded by a spherical shell of inner radius

61 and outer radius 62 . The co-ordinates just used are again obviously

suitable, and, the symmetry being the same as before, the potential in

the space between the two conductors is given by

where ai and ft\ are constants which now depend upon the potentials

and charges of the two conductors. A similar expression

holds for points outside the shell, the regularity at infinity demanding
that 02 = 0.

Suppose first that the inner sphere has charge e, and that the shell
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28 THE ELECTROMAGNETIC FIELD

is grounded so that its potential is zero. Then $1 and 4>2 must vanish

for p = bi and p = &2, respectively, while

It is readily checked that the potential is zero at all points outside the

shell, while the potential at points between the two spheres is given by

The potential of the inner sphere is obtained by setting p=a. Its value

is

,, ,
e /I 1\ e bi-a

which is smaller than the potential to which the sphere would be raised

by the charge e if the surrounding shell were not present. In fact, the

capacity of the sphere, when the shell is present, namely,

~ e

e b\

4rr ab\

may be made as large as desired by making b\ a small enough, i.e.,

by having the outer shell close enough to the sphere. It thus appears

that it is possible greatly to increase the capacity of a conductor by hav-

ing a second conductor in close proximity to it. Such a combination is

called a "condenser/' and the capacity of the .condenser is defined as the

ratio of the charge to the difference of potential of the two conductors.

Since the outer shell is grounded, and thus at zero potential, the capacity

of the spherical condenser just described is given by

c=-
_

47T abi

and is numerically equal to the capacity of -the inner sphere when the

shell is present.

If the inner sphere have charge e but the outer shell be not grounded,

it is possible to obtain the expression for the capacity of the spherical
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condenser thus formed without knowing either the potential or charge

of the outer shell. For the difference of potential of the two conductors

is equal to the difference in the values for p= a and for p= 61 of the ex-

pression

4?rp

Thus

so that the capacity of the spherical condenser is

_ e _47rabi
.

~~

e &i--a~~6i a '

4?r ab\

the same value as that obtained above when the outer shell was grounded.

As regards the distribution of charge, it is evident from the expres-

sion for <i> that in either of the two cases considered the charge e on the

sphere is uniformly distributed as a surface charge of density e/47ra
2

.

If the outer shell be grounded, the surface charge on its inner face is

given by

\dn/p=&, \dp/ p =b l 4ir6?

'

There is no surface charge on its outer face, since the potential at all

exterior points is zero. There is, thus, a total induced charge on the shell

equal to

c e r
I r?rf<r= . , I da=e.
I 47T07 I ,Jp = *>l

1./P='k|

Suppose, however, that the outer shell be not grounded, and that its total

charge be zero. Whatever surface charges may be induced on the inner

and outer walls of the shell will be uniformly distributed so that their

effect, at outside points, will be the same as if the charge were concen-

trated at the center of the shell. The total charge on the shell is, however,

zero. Therefore the potential at outside points is given by
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29 THE ELECTROMAGNETIC FIELD

and the potential of the shell is

Hence the expression

*>

must reduce to e/fabz when p = b^ ;
so that

It follows that there is an induced charge on the inner face of the shell

whose density is given by

while on the outer face of the shell

1?=

From these values it may easily be checked that the total charge on the

shell is zero.

29. Ellipsoidal Co-ordinates: the Potential Due to a Charged, Ellip-

soid. An important physical problem which further illustrates the use

of curvilinear co-ordinates is the determination of the potential due to an

ellipsoid which carries a charge e. Let the equation of the boundary of

the ellipsoid be, in rectangular co-ordinates,

f7*\ i y i -i

(76) -2+ fc2+~2
=1 '

It is desirable to choose co-ordinates in which the boundary is given by
a simple expression involving, if possible, only one of the co-ordinates.

Now the equation
r2 ifi &*/

,
u

,
<& 4
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represents a family of quadric surfaces confocal with the foregoing ellip-

soid (76), the squares of the distances from the origin to the foci being

given, for any value of t, by

d* = (a
2
+t) -(<?+() = a? -c2

,

if a>b>c. Direct examination of (77) then shows that the surface is an

ellipsoid if t > c2 . For c
2 > t> 62

,
the surface is a hyperboloid of one

sheet; and when 62>> a2
,
the surface is a hyperboloid of two

sheets. The locus is imaginary for a*>t. The equation (77) is, for a

given point, x
, i/ ,

2
,
a cubic in

,
and may be seen to have three real

roots u, v
y
w satisfying the inequalities

-b2<v< ~

Indeed, this cubic in t may be written

/(O = (

so that

when t = + oo
, f(t)

= oo
, sign is

when t = - c2 , f() = z
2
(a

2 - c
2
) (6

2- c2) , sign is +
when t= -W

, f(Q = - yj(6
2- c

2
) (a

2- b2) , sign is -
when t = - a2

, f(t)
= z2

(a
2- b2) (a

2- c2) , sign is +

From this table it is evident that the graph of f(t) crosses the axis at

throe points which satisfy the inequality given above. Thus the quadric
surface passing through the point XQ, y^ 2 is an ellipsoid if the parame-
ter / be chosen equal to u

y
a hyperboloid of one sheet if t = v, and a

hyperboloid of two sheets if t = w. These three surfaces, moreover, may
be shown to have mutually perpendicular normals at the point in ques-
tion. The three numbers u, v, w thus determine three curved surfaces

which intersect normally at the point x
, i/o, Z Q ,

so that u, v, w may be

taken as orthogonal curvilinear co-ordinates. Such co-ordinates are

known as "ellipsoidal co-ordinates.
"

It is evident that the boundary of

the ellipsoidal conductor under consideration is given by the relation

w= 0. It is the simplicity of the expression which indicates the probable

advisability of these co-ordinates.
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In order to make use of these ellipsoidal co-ordinates, it is necessary

to determine the quantities d, e^ e^ which cannot, in this case, be ob-

tained by inspection. The calculation may be considerably shortened by
a consideration of the identity

That this is indeed an identity is evident from the fact that each side of

the equation vanishes for t equal to u, v, or w t and that the coefficient

of t* on each side is equal to 1. If, in this expression, t be set equal

to a2
,
the result is

_"
(6

2-a2
)(c

2-a2
)

From this equation there is obtained, by logarithmic differentiation, the*

value of dxu ,
the

'

increment in x which corresponds to an increment

(hi in u, when v and w are held constant; namely,

o ^ZM __
du

x a?+u
'

similar values holding for dyu and dzu . Hence

4

Now from the identity above:

_ (u v)(u w)
. (a

2
+u)(b*+u)(c*+u)

'

t
~~~ u

If the indeterminate form on the left be evaluated by the ordinary process

of differentiating numerator and denominator separately, the equation

takes the form

/ z \
2 (uv)(uw)

V+w = ~^' ^ ^

Therefore,

(u~-v)(uw)
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with similar expressions for c2 and e3 ;
so that, for example,

-v)(c*+v)(a*+wW+w)(c*+w)

These expressions for e\, e<t, e^ are now to be substituted in the general

formula for V2
<t> in orthogonal curvilinear co-ordinates; but since the

boundary condition in the ellipsoidal co-ordinates being used involves

only the co-ordinate u, it will be assumed that the potential itself de-

pends, at any point, only upon u, and is independent of the values of v

and w. If this assumption lead to a solution which satisfies all the con-

ditions of the problem, this solution, since it is known to be unique, is the

potential sought. It will be assumed, therefore, that the potential satis-

fies the equation

e\e^ V2
<l? = =0

,du e\ du

which reduces, after the removal of the factor independent of u> to the

equation

./7
.

The conditions on the potential 4> arc, then, when expressed in ellip-

soidal co-ordinates,

l/(a
2+u)(&2

+u)(c
2+u) ^- =0 in free space ,

ou ou

<1> is constant, and \

I on surface of conductor u=
,

- do- = e
dti

}

$> is regular at infinity.

The equation which the potential satisfies in free space may be integrated

at once to give

du ^
u V (a

2
+u)(b

2
+u)(c~-\-u)

where a is the integration constant of the first integration. The in-

finite upper limit of the integral assures the vanishing of < at infinity
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That $ vjyiishes at infinity in the required manner will be shown later.

Since $ is constant on the ellipsoids u = constant, its maximum rate of

change is in the direction of the normal to u = constant, i.e., in the direc-

tion of increasing u. The value of this normal derivative is

1
r/*^ _ 2

/(Q+M)(b
8
+u)(c?+iQ

^ __
ddu \ (u-v)(u-w)

'

T/(uv)(u w)

2a

Now from the equation

it is clear that as z, ?/, or z increase without limit so does u
y
and since

-*".+ "> ?*.-,- -

it follows that the co-ordinate ^ of a point very far away from the origin

is approximately equal to the square of the distance H to the point.

That is,

where i denotes, as does any e j used below, a quantity which approaches
zero as R increases beyond limit. Since v and w remain finite, being

always included in the range a2 to c2
,

it follows that for points

very far away from the origin

For such points the potential is given by

du 2a

and it is seen that * is regular at infinity.

The constant a must now be chosen in accordance with the condi-
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lion that the charge on the conductor is e. Since any body containing a

charge e produces at a very large distance R a potential of the form

it follows from the preceding equation that

and therefore

du

The surface density of charge t)n the ellipsoid is given by

\('H/u=Q \i dll I u~0 y VW 47Tl VW

Now from equation (78) above, for w = 0,

and it follows that

e 1

^""^i J_4TO&C /X
2

I/
2

. >
'

""

Tlu equation of the plane tangent to the ellipsoid at the point x
, #0,

is

where X, F, Z are running co-ordinates in the plane. After dividing

through by the square root of the sum of the squares of the coefficients

of X, F, and Z, the right member is the distance D from the origin

to the tangent plane. That is,

1

i
4+

6"4+?
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so that

*>.

In other words, the surface density at any point on a charged ellipsoidal

conductor is proportional to the perpendicular distance from the center

of the ellipsoid to the plane tangent to the ellipsoid at the point. The

charge is thus greater on the more sharply rounded ends farther away
from the origin.

If a= b and a be greater than c, the ellipsoid is an oblate spheroid,

e ,

tan~ la*-<*

\c2+u
'

Thus the potential to which a charge e raises an oblate spheroid of semi-

axes a and c is

=- tan~ l <J
-3

1 = cos" 1 -
,

and the capacity of the oblate spheroid is given by

C=
cos~l -

a

If, on the other hand, a= &, and a be less than c,

c , l/c'
2+M+l c

2 o2

log y
- -

,

c2 -a2 l/c2+w~ ^ c2-a2

2

/c l/c- a2
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A very thin circular disk corresponds to the values a = 6, c= 0. Then

The charge distribution on a circular disk can be obtained ihost

readily from the general expression above. If z be eliminated by means
of the equation of the ellipsoid, the general expression is

which, for c= 0, gives

*?
= -

Or, if a = b and :r
2
+i/

2 = r2
,

Since this density occurs on both sides of the ellipsoid, it is necessary,

in the limit c= 0, to double this value, so that, finally,

A round rod corresponds to the values a = 6, ca. Then

log
4c2+u-a2

u+o2 '
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terms of higher order than (a/c)
2 or u/<? being neglected in the last ex-

pression.

30. Two-dimensional (Logarithmic) Potential In many cases of

practical importance the charged conductors, whose potentials are to be

investigated, are long parallel cylinders. The distribution of charge on

these conductors may be Expected to be nearly uniform (as regards dis-

placement along the cylinder) except near the ends. The value of the po-

tential at a point P outside the conductors will be practically independ-

ent of a translation of P parallel to the axes of the cylinders, as long as

P lies in a region R near the middle portion of the conductors. In this

region R the potential is thus effectively a function of but two variables.

If a knowledge of the behavior of the potential in the region R is alone

required, the problem may be simplified by restricting the consideration

to this region, thus reducing the mathematical problem, from the begin-

ning, to one of two dimensions.

This approximate two-dimensional behavior of the problem is illus-

trated by the case of a long prolate ellipsoid of revolution. The potential

has just been found to be

where a is the radius of a cross-section of the ellipsoid, c is the half-

length, and it is the ellipsoidal co-ordinate, determined for any point

a-, y, z by the equation

_JL..L_*_-1
a?+u

where

If the ellipsoid be very long, and if the consideration be restricted to

a region R near the center, then a/c, z/c, and u/c are all small. Since

z/c is small, it follows that

On substituting this value for u, and neglecting squares of the small

quantities, it is seen that the potential is approximately represented in

the region R by the function
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or

e 1
$= -; log hConstant .

4;rc r

The perpendicular distance D from the center of the ellipsoid to a

plane tangent to the ellipsoid is approximately equal to a = b if the

point of tangency lies in the region R. Thus the surface charge in the

region under consideration is given by

_ e n e
71 ~.

~\
LJ .

4iraoc *-*

so that

e' = 2wari = y- ,

where e
r

is the total charge per unit length. The approximate potential

at any point in R can thus be written

and the potential of the ellipsoid itself is approximately

This logarithmic law of variation of the potential in the region R

may be directly obtained without knowledge of the potential of a long

prolate ellipsoid if the assumption, discussed above, be made that the

potential in R, is sufficiently well represented by a function <f> independ-
ent of z.

Laplace's equation in cylindrical co-ordinates reduces, for the case

of a function independent of both z and the angle 0, to

dr

Then

d$>
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where a and j8 are constants of integration. If the charge per unit

length of the cylinder be e', then, for r= a,

,
C<fa

,1 /^ a a d6
e

r - - I , da= I
,

J dr Jo a
'

so that

31. Cylindrical Condenser. -A cylindrical condenser is formed of

two co-axial conducting cylinders. Let the external radius of the smaller

cylinder be r
,
and the internal radius of the large cylinder be n, and

suppose that the condenser be provided at the ends with guard cylinders

to eliminate end effects, i.e., to extend the region R in which the po-
tential is independent of z to include the total length of the cylinders

under consideration. Then the potential at points between the two cylin-

ders may be assumed to have radial symmetry so that, from the foregoing

result,

Then the potentials 3>o and $1 of the inner and outer cylinders are given

by

and the capacity per unit length is

e' 2*
C--

*.-*, r,'

where e' is the charge per unit length.

32. Capacity of a Wire to Earth. Let r be the radius of a long wire

which is at distance b from a plane conductor, and suppose r small as

compared to b. Let e' be the charge per unit length of the wire, and
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radius r
"

assume, as above, that the potential is independent of distance parallel to

the wire. The potential due to the wire alone, at a distance r, is

e' 1

log [-Constant.
^7T 7*

If r be large compared to r
,
this expression is valid regardless of the

distribution of the charge on the

wire. Let the potential of the plane

conductor (the earth) be zero. The

charge induced on the plane con-

ductor then nullifies, for points on the

plane, the effect of the logarithmic

variation of the potential due to the

wire. It follows, as in the correspond-

ing three-dimensional case, that the

image method gives an immediate

solution, the potential being

e' , r'

ear!th-

FIG. 33. The electrostatic problem
for a long wire of radius r located b

units above the surface of the earth,

and having a charge e' per unit length
of wire.

where r' is the distance to the image wire. The potential of the wire is

then

e' . 26

and the capacity per unit length of the wire against the earth is

2?r

log
26'

PROBLEMS FOR PART II, CHAPTER II

1. Find the potential due to an isolated spherical conductor whose total

charge e is known, by solving the equation 7^= in spherical polar

co-ordinates.

2. The Newtonian potential due to a solid homogeneous sphere of volume

density p satisfies Poisson's equation V24>=p. Use the form this

equation takes in spherical polar co-ordinates to find the Newtonian

potential, at external points, due to such a sphere. Evaluate the con-
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stants of integration from a consideration of regularity at infinity,

and from the fact that the expression for the potential must approach,

for distant points, the form M/4wr, where M is the mass of the

sphere. Obtain an expression for the potential at inside points,

evaluating the constants by making use of the fact that the potential

and its normal derivative are both continuous at the surface of the

sphere.

3. Show that the induced surface density of charge on a plane, due to

the presence of a charge e located a units from the plane, is

ae

where r is the distance to the point on the plane under consideration

from the charge c.

4. Referring to the preceding problem, find the force on the charge <j

due to the induced surface charge.

5. Consider two very long cylindrical conductors, of radius a, placed

parallel to one another, a distance c apart, arid each a height b above

the earth. Show that, if a be small compared to b and c, the ca-

pacity, per unit length, between the two conductors, when they are

equally but oppositely charged, is

27T

.

log
a2

(c
2+462

)

6. Referring to the preceding problem, show that, when the two con-

ductors are charged with the same sign, their capacity, per unit length,

with the earth is

47T _
2bV*+W'

10g
"

7. By analytical methods, find the quantities e\, fy, and #3 for polar

co-ordinates in the plane, and for polar co-ordinates in space.

8. Derive an expression for the capacity of three condensers in series.

9. An infinite conductor occupies all of the region where x and y are

not both positive. A charge e is located at the point x
} y }

where

x and y are both positive. What is the magnitude and direction of

the force on the charge e 1
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PART III. DIKLECTHICB

INTllODUCTION

In Part I of the present chapter the force on an interior charge was

found to be +P/3+/i+/a where the first two terms accounted for the

charges outside a sphere of radius 6, where /i was the constitutive* force

due to the charges of the few molecules immediately neighboring the

point in question, and where /a was due to all other charges within the

6 sphere. A conductor, it will be remembered, is defined as a body for

which the characteristic constitutive force /i is always zero, so that if

the other components of the total force do riot vanish or cancel, move-

ment of charge from atom to atom will result. A dielectric, on the other

hand, is a body so constructed that attempted movements of charge are

opposed. As soon as a charge shifts its position when acted on by an

excess force, this shift produces an alteration in the constitutive force fi,

and a new balance is reached in a way analogous to the mechanical case

of an elastic; displacement. To lead to a definite quantitative relation

upon which the analytical theory of dielectrics can be based, it is neces-

sary to consider in detail the various forces which an interior charge ex-

periences, both under normal circumstances (i.e., when the body is un-

charged and unpolarized) and when the body is under the influence of

other charges or charged bodies. It is first argued that, just as in the

theory of a conductor, the force /2 is always zero. It follows from this

that the normal constitutive force /? is zero, the upper index indicating

the value of the constitutive force when the body is uncharged and un-

polarized. When a body is charged and polarized, an interior charge ex-

periences a total force equal, since /2
=

0, to

~f/i = 0.

Thus when a body is polarized, the shift of charge brings into play a non-

vanishing constitutive force f\ which, reversed, balances the force

E+P/3 due to the charges outside the 5-sphere. The analytical theory
of dielectrics is based upon the assumption that this constitutive force

is proportional to the shift which gives rise to it, and hence proportional
to P. It follows at once that E is proportional to P. With this pro-

portionality as a basis, the electrostatic problem for dielectrics is quickly
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and easily formulated in much the same way as was previously done for

conductors.

An example is given of the use of the image method when dielectrics

are present, and two special -cases are treated and illustrated by examples;

namely, the case of the polarization of a body in an external field which

is not appreciably affected by the polarization which it causes, and the

case of a body which polarizes uniformly in a given field.

33. The Definition of a Dielectric: the Mathematical Formulation of

the Electrostatic Problem for Dielectrics. A conductor has been defined as

a body whose atoms are so constructed and combined that electrons are

free to pass from atom to atom. A dielectric, on the other hand, is a body
whose atoms are so constructed and combined that the effective position

of each electron remains near the normal position which it occupies when
the body is not under the electrostatic influence of any other body. When
acted on by a force in excess of the normal forces of constitution, an elec-

tron is influenced in such a way that its effective position shifts slightly

from its normal location, and assumes a new position where it is in stable

equilibrium under all the forces now acting on it.

In order to make a definite quantitative assumption upon which an

analytical theory of dielectrics can be based, it is necessary to consider,

as in a theory of conductors, the total force which an interior charge

experiences. This total force may be written

where the first two terms represent the force due to the charges outside a

sphere of radius 6 and center at the charge in question; where /i is the

constitutive force due to the charges of the few molecules immediately

neighboring the point in question; and where /a is due to the remaining

charges within the 6-sphere.

Consider first the force f^. It is due to charges lying in a spherical

shell of exterior radius d and an interior radius which is a small multiple

of the average distance between molecules. The charges lying in this

spherical shell are located in a way which is sufficiently. symmetrical,
about the center, to give rise to continuous densities p and P which are

(since they are constant within 5) perfectly symmetrical about the

center of the 5-sphere. Now a perfectly symmetrical distribution of

charges, located in this spherical shell, would produce a zero force at the

center. It is reasonable to assume that a distribution of charges which

gives rise to symmetrical functions p and P is itself so nearly symmetri-
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cal as to permit the conclusion that the force /a is zero. It should be

noted that this argument applies to the value of /a when the body is

not charged or polarized, and also to the value of /a when the body is

charged and polarized, just so long as the continuous densities p and P
are sensibly constant over the 6-sphere.* This argument for the vanish-

ing of /2 is independent of the type of body (conductor or dielectric)

under consideration. In the theory of the conductor, given in Part I of

this chapter, the vanishing of /a was argued on the same grounds; the

reasoning is repeated here merely for the sake of completeness.

Consider, now, an uncharged and unpolarizcd body in electrostatic

equilibrium. The total force on each interior charge is, since E and P
are zero,

where the upper indices are used to indicate the "normal" values of these

forces, i.e., the values when the body is not under the electrostatic influ-

ence of any other charges or charged bodies. Since, however, the force

f% is always zero, it follows that the normal constitutive force /J is also

zero.

When this body is under the electrostatic influence of other charges

or charged bodies, the force on an interior charge is

where the force /a = has been omitted. Thus, in equilibrium, the force

E+P/3, due to the charges outside the 5-sphere, is balanced by the re-

versed constitutive force, fi.

The normal constitutive force has just been seen to be.zero. When a

dielectric is brought under the influence of other charges or charged

bodies, the charges forming the dielectric in question move, and shift

their effective position in such a way that a non-vanishing constitutive

force /i is brought into play to balance the force +P/3. The analyti-

cal theory of dielectrics is based upon the assumption that the constitu-

tive force /i which exists when the charges are in this shifted position

is itself proportional to the shift, and hence proportional to the resulting

polarization. If, then, /i is proportional to P, it follows that

* See footnote to 18 and Part I, Problem 9, of this chapter.
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is also proportional to P. Using (e 1) as the proportionality factor,*

(79) P-(-

where e is the so-called "dielectric constant" of the material, f

Since the displacement of all charges is small, and since the body is

supposed to be uncharged when in its normal unpolarized condition, it

is evident that the volume cells AT, may bo chosen so that p 4 0. It is

therefore natural to say that such a body is uncharged but polarized, and

to describe the potential due to it in terms of the volume density of polari-

zation P as obtained by interpolation from the values

and in terms of a surface density of polarization K-. That is,

(so) *-

Now (80) may be written (see equation [44]),

This equation is exactly similar to the one studied in 21, except that

div'P' and P'n now play the roles previously played by p arid 17'. It

therefore follows from (68) thatj

or

(82) div(+P)=0.
* This relationship holds for an isotropic body. For an anisotropic body each com-

ponent of P is assumed to be a linear function of the components of E. See. e

Livens, The Theory of Electricity (1926), art. 79.

f The dielectric constant is also sometimes called the "specific inductive ca-

pacity." There is, in fact, some objection to calling e a "constant" since, in general,

its value for a given body depends upon frequency. This consideration does not, of

course, enter into electrostatics.

t Equation (68) states, in fact, that div E at x,y,z is equal to the value of

div' P' at z'=.r, //
=

//, z' = z, i.e., the value of div P, where P is the same func-

tion of x,y,z as is P' of x',y',z'
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On account of the linear relation between P and E, this last equation
reduces to the form

For a homogeneous substance, moreover, the dielectric constant c has

the same value at all points of the body, so that

div e E e div E ,

and it follows that the potential due to a dielectric satisfies, at all points,

the partial differential equation

It should be especially noted that, in the case of an ideal dielectric, the di-

vergence of the polarization vanishes.

Further conditions on <l> and its derivatives may be obtained by

modifying those previously found for the potential due to a conductor,

by replacing y by the function which now plays the role previously

played by r/. Thus suppose that two dielectrics, 1 and 2, are in contact

along the surface 8. The potential due to these two dielectrics may then

be written, as in (81), in terms of the volume integral of div P and in

terms of the surface integrals of the normal component of P. On the

surface S, the function

plays the role previously played by 77, the negative sign resulting from

the fact that HI and n2 point into the regions 1 and 2, while Pn ,
for

either dielectric-, is the component of P along the normal exterior to that

dielectric. Thus the previous equation

becomes, in the present case,

8n.W ' -

or

l-Eni
-

\(E+P) ni
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where, according to the usual convention, (E+P) ni means the limit,

as the surface is approached from the side 1, of the component of E+P
along the normal directed into 1. From the linear relation between E
and P this last equation becomes

or

(84)

where i and c2 are the dielectric constants of substances 1 and 2, re-

spectively. From equation (79) it is clear that empty space may be re-

FIG. 34. The boundary between two regions

garded as a dielectric whose dielectric constant has the value unity.

Hence this last equation may be written in the form

(85) '

for application to the surface between a dielectric and space.

The behavior of the normal derivative of $ at the boundary be-

tween a conductor and a dielectric can be obtained in a manner similar

to that used above. Indeed, if both conductors and dielectrics are pres-
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cut the potential is given by. the general expression (41), which, by (44),

can be written

9
i ry-*rr) i

(VK)
i n

i^,
4irJ r 4irJ r 4irJ \ r]

where n is a normal exterior to the dielectric;. It therefore follows from

the analytical study of 22 that

or if 1 is a conductor and 2 is a dielectric,

since E is zero in the conductor, and since P
ni
and P

n2
are components

along oppositely directed normals.. Thus,

or

where n is, of course, a normal exterior to the conductor. Equation (75)

is therefore replaced, when the conductor is surrounded by a dielectric,

by the equation

(86) /d<&
e
dn

where n, now, is measured along the normal exterior to the conductor,

and where the subscript can be dropped from the n without confusion,

since at the surface of the conductor only one of the normal derivatives

of * is different from zero. This more general condition to be applied

to the surface of a conductor includes the previous condition, as is seen

at once by giving e the value characteristic of free spicc.

The foregoing discussion gives rise to the following schedule of con-

ditions on the potential <f>, in which, for completeness, the conditions

which apply to conductors are also given. These conditions constitute
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the mathematical formulation of the electrostatic problem when both

conductors and dielectrics arc present.

(ID

a) V2<I>= at all points in free space and at all points within

conductors or dielectrics
;

6) 4> is continuous everywhere except across surfaces where

^^0 (across such surfaces <f>i <f>2
= M) J

c) Across a surface between two dielectrics

d) Across a surface between a conductor and a dielectric

e) On the surface of a conductor:

i) <$ is a known constant 4>,, or

ii) <J> is an unknown constant, and

/) <J> is regular at infinity.

The proof of the uniqueness of the solution when dielectrics are present
is left to the reader (see Part III, Problem 30, of this chapter).

On the basis of the uniqueness theorem, the following theorem can

easily be established: Given a configuration of conductors (_\ of total

charges e t . If the potential at any point, when these conductors are

located in empty space, is
<I>,

then the potential when these same con-

ductors are located in a medium of dielectric constant e is </. For,

in the first instance, the conditions on 4> are

= all points,

Constant on each conductor,
is regular at oo,

/ d3>

Jr.*"
da e l .
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In the second case only the hist condition is changed. It is, in fact,

replaced by

and the theorem stated is obviously true.

Thus the potential due to a conducting sphere of total charge e lo-

cated in a medium of dielectric constant is

It is instructive to interpret this expression in terms of the actual

charges present. From symmetry, the charge c on the sphere would be

uniformly spread on its surface. The dielectric medium will be polarized

according to the equation

since the total electrostatic intensity at any point is that due to the

charge e and that due to the uniform surface density Pn on the internal

bounding surface of the dielectric. When r = a, Pr Pn, so that

or

and the electrostatic intensity at any point is

e
r *

e _I6H^) e c

47T/'
2

47T/'
2

*

Thus the intensity e/4wr* due to the charge e is reduced by the

negative surface charge on the internal bounding surface of the dielectric,

the part subtracted being just enough to reduce the total intensity to the

value e/4?rr
2

. A similar compensation operates in the general case, as

the foregoing theorem shows.
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34. The Image Method for Dielectrics. The image method, which

has been seen to furnish solutions of electrostatic problems involving

conductors, may also be used when dielectrics are present. A simple case

will illustrate the way in which the method is applied. Consider, for ex-

ample, a charge e located a distance a from the plane surface of a di-

electric whose dimensions are so great that, for purposes of analysis, it

may be considered as occupying all of space to the right of the plane

which coincides with the plane face in question. Since div P is zero, the

potential due to the dielectric has the form

= V M ,

the integral being extended over the plane face. It is clear from the sym-

metry of this expression that if the

potential due to the dielectric can,

at outside points, be duplicated by
an image charge c' within the di-

electric and at a distance x from

the plane face, then the potential

due t<) the dielectric can, at inside

points, be duplicated by a similar

and similarly located image charge

outside the dielectric. Thus for

FIG. 35. A charge e located a units

from the plane surface of an infinite di-

electric. The figure, for clarity, shows

the distances a and x as different, al-

though they are actually equal.

points PI in free space

(87)

where r and r' are the distances

from PI to e and to the image

charge e' which is located a dis-

tance x within the dielectric; while for points P2 in the dielectric

(88)

where r" is the distance from P2 to the charge e' outside the dielectric.

It is evident that each of these expressions satifies the equation 7^= 0,

and is regular at infinity ;
and that the potential, as given by these two
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expressions, is continuous across the boundary of the dielectrics. It re-

mains to satisfy the condition

which, in this case, may be written

or

Now, from (87) it follows that K
ni

at a point whose distance, along the

surface of the dielectric, from the foot of the perpendicular through e, is

5, is given by

^ 1

Wl ~47T
/ / \ I

1
I

ae

^
, w ,., ,

^/2
cos ^r

,n;j -^["(^^52)3/2+

Likewise, from (88)

so that the foregoing condition becomes

which must hold identically in 6. Hence, comparing coefficients of like

powers of 6,

x=a
,

*-le=-~
f
e.

The image charge is thus located at the same distance from the dielectric

as is the charge e
,
and the magnitude of the image charge depends upon

the dielectric const ant of the material. It may be noted that as e in-

creases without limit the solution of the corresponding problem involving
an infinite conductor is approached.
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35. The Polarization of a Dielectric in a Given External Field.

The problem of determining the polarization of a dielectric and the po-

tential due to a dielectric is, in general, a complicated one; but it is con-

siderably simplified providing the dielectric in question is far enough
from all other bodies so that changes in its polarization do not sensibly

affect the configuration of charges on these other bodies, i.e., provided
EQ

, the intensity due to everything except the dielectric in question, may
be regarded as unaffected by the presence of the dielectric. Then

/>=(.-!)

may be written

P=(e-l) [EP-VU] ,

where U is the potential due to the dielectric alone. If U can be deter-

mined, P may be obtained from this last equation. The potential (/

must satisfy the conditions

a) V2 f/ = 0,

6) U is continuous,*

d) U is regular at infinity.

Condition (c) is obtained from the relation

?,, = 0,

where region 1 is the dielectric and region 2 is the surrounding space.

Then

dU

where n is measured in the direction of an exterior normal to the dielec-

tric, and where the subscript i indicates the limiting value of the deriva-

tive as the surface is approached from inside. Similarly, the subscript

indicates a limiting outside value. If these expressions be substituted

in (II), (c) of 33, condition (c) is obtained.

* It is assumed here that thorc? is no superficial polarized layer.
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That the solution of these conditions is unique follows at once from
the more general proof for the schedule (II) of 33.

To illustrate the use of these equations the solution will be obtained
for the case of a dielectric sphere of radius a, placed in a uniform ex-

ternal field E. Choosing spherical co-ordinates with the lino = in

the direction of E, it is dear from symmetry that the potential U is

independent of <p. The general equation V 2
t/ = therefore reduces to

the form

(89) dz
(r(J)

,*.
^4. _

dr2 sin dd

It is necessary to obtain two special solutions U t and UQ of this

equation (to be used for the potential inside and outside the sphere, re-

spectively) which satisfy the conditions

/dU t\ fdU Q\ , ,, im
I i ) l n ) =(* 1)# COS
\dn/ l \dn/Q

^ '

at r=

U is regular at infinity.

If it be assumed that U is the product of a function of r alone and a
function of alone, the following solution of (80) is readily obtained:*

;*-0

where n is a positive integer, where bn and cn are arbitrary constants,
and where Pn (cos 0) are the surface zonal harmonics or Legendre poly-
nomials previously referred to in 5.

It is dearly not possible to use a negative exponent for r at points
within the sphere, since this would give rise to an infinite value of U;
and it is also dear that a positive exponent for r cannot be used at out-

side points, since this would interfere with the regularity at infinity. The
fact that only the first power of cos enters the boundary conditions

leads one to attempt to satisfy the conditions by the use of

PI (cos 0)= cos

*
See, e.g., Byerly, Fourier Series and Spherical Harmonics, arts. 74-77.
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alone. These remarks suggest the particular solutions

Ui=br cos 6
,

COS

which will now be tested to determine whether the constants b and c can be

j;iven such values as to make these solutions of (89) conform to all the

conditions of the problem. The continuity of U across the surface of

the sphere demands that

ba cos = ~ cos .

a2 '

or

-$
so that

IT _ ba? cos 6
U ~~

^2

Thus

so that, to satisfy the remaining condition, one must have

A cos B+2b cos 0= (e l)/f cos
,

or

7 6 1 . ,n

All of the requirements of the problem are thus met by the functions

Vi=*~ K rc e >

or
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where x=rcos0, and

The potential at outside points is of the same type as that due to a doub-

let.

The state of polarization of the sphere can now be determined from

the equation

Thus
*

"v^ -*vrv
: "7z^r ^i

so that the polarization of the sphere is seen to be uniform.

If the intensity at points within the sphere be written in the form

it is easily checked from the foregoing expressions that L, which is known
as the "depolarizing factor," has the value 1/3. The significance of the

name is evident from the fact that the field due to the polarization is such

as to weaken the total field, and hence such as to weaken 1 he polarization

itself.

36. The Potential Due to a Uniformly Polarized Dielectric. It has

just been seen that a dielectric sphere is uniformly polarized by a constant

external field. It is sometimes possible to determine the polarization of a

dielectric in a constant external field and the potential U due to the

dielectric by assuming that it is uniformly polarized, and then showing
that the potential U which results from this assumption satisfies all the

conditions of the problem. Since div P= for an ideal dielectric, the po-
tential U can be written

(90)

A function U determined from this equation satisfies V2 / = 0, is con-

tinuous, and is regular at infinity; its derivatives, moreover, satisfy the

relation

'ttf/A _/<H7 \ _ p
dn), \dn),

*'
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where n is the exterior normal to the dielectric. If P also satisfies the

relation

(92) P= (*-

so that

equation (91) becomes

That is, if a function f/ is obtained from (90) under the assumption

that P is a constant, this function U satisfies all the necessary condi-

tions provided the constant value of P be determined from (92). Whether

a constant value of P can be determined from (92) clearly depends upon

whether VU is a constant. Thus if the assumption of a constant P

leads, by (90), to a U whose rate of change in any direction is constant

at points within the dielectric, the constant value of P can be deter-

mined from (92), and all the conditions of the problem are satisfied.

If P is a constant, equation (90) can be written in a more useful

form. Indeed, this surface integral is equal, since div P = 0, to the vol-

ume integral

or

where h is measured in the direction of P, and where the prime on the

symbol of differentiation indicates that the variable end of r has co-

ordinates x', y
f

,
z'. This equation can then be re-written in the form

I. ft P
(94) /=-! I ,r rfr s= -^"7

4Tj d/i 47T i
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where the end of r whose co-ordinates are z, y, z is now variable. The
potential due to a uniformly polarized dielectric can thus be expressed
in terms of the constant polarization vector and the Newtonian potential
function due to the body. This form is useful since the Newtonian po-
tential function is known for many geometrical forms, and it may be

easily tested whether or not the assumption of a constant P leads to a
U whose rate of change is constant.

This method would clearly be successful in the case of a sphere. It

is also successful in the case of an ellipsoid. For an ellipsoid of semi-axes

a, b, and c, for example, the Newtonian potential function for interior

points is given by*

=Consiant ~
l

where M and N are obtained from

j abc C^ du
Jj = ~^

(a+u)(6*+u)(c+tt)

by cyclic permutation of the letters a, 6, c. Then

y'
= (P, iLx+jMy+kNz) =xLPf+VMPw+zNP, ,

so that

- VU = - (iLP JC+jMPy+kNP )

is indeed constant if P is constant. The components of the polarization,
are then given, from (92), as

Since the factors which multiply (c 1) in these equations are the com-

ponents of the total field, it is clear that the three constants L, M ,
and

*
See, e.g., A. G. Webster, The Dynamics of Particles, etc

, p. 418.
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N are the depolarization factors for the three components of the polariza-

tion. If these equations are solved for the components of the polarization,

the results are

y

L+
I

-T

M+ i
'

-i

FIG. 36. The polarization of an ellip-

soidal dielectric in a uniform external

field E.

JBS

N+6-1

As an example of the use of these equations, consider an ellipsoid of

revolution for which b = c, the E vector lying in the x^y plane. Then

EZ
= Q .

These values give, upon substitution,

u _E cosj
1

'

g" sin 6

1
'

M+
c-1

so that (see Fig. 36)

M+~l

If 6<a, then tan ^ is less than tan 0, i.e., the ellipsoid tends to polar-

ize along its major axis.
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37. The Mutual Electrostatic Energy of a System of Conductors and
Dielectrics. An expression has been formed, in an earlier chapter, for

the mutual electrostatic energy of a set of charges. An analogous expres-
sion will now be obtained for the energy necessary to form a configura-
tion of conductors and dielectrics, starting from a condition of infinite

separation of the various bodies involved, and with each conductor al-

ready charged with the same total charge which it has in the final con-

figuration.

This energy is clearly equal to the work done by the electrostatic

forces when the bodies recede, from their given configuration, to posi-
tions of infinite mutual separation. Let all the bodies except one, say
body AI, remain fixed, and let AI move to an infinitely distant position.
The work done by the electrostatic forces when A\ moves off is inde-

pendent of the path on which it moves, so long as its final state is,

in any instance, non-rotating and "isolated." The theorem of conserva-

tion of energy would, in fact, be violated if it were possible to move this

body off along two paths with different total work to positions which are

indistinguishable. It is thus simplest to let AI move with pure transla-

tion on a straight line. Since all other bodies under consideration remain
fixed while AI moves off, one can think of them for the moment as form-

ing a single other body A 1
. That is, A 1 consists of all the bodies pres-

ent except AI. Choose a point P1 fixed in A 1
,
and a point PI fixed in

AI. Join them by a straight line. Mark a point on this line between
P1 and PI, and let s\ measure distance from to PI, while sl meas-
ures distance from to P1

. Now let AI move a distance dsi. The
charge yidvi located on a surface clement da\ of A\ experiences a force,

due to A 1

, equal to

where & is the potential at d<r\ due to A 1
. That is,

/rCj)l 1 / f

^L = _i I i_i ^i
dsi 4^1 cfe!

Thus the work dW\ done by A 1 on AI during this displacement is

given by

/ /^ d "~

1= dsi I ^ I 7?

1 -r-
.y^. v^ 1 i
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This work is clearly also equal to the work Ai would do on A 1
if A 1

were to be displaced a distance ds l = ds lt
' and hence dW\ is equal to the

half-sum of these two equivalent expressions. That is,

d
l

d
l

1=-^
1 f f V / daUcri-^ f V f rj^ d<nd*1

.

2 J .4,V A' di 2 J^i J^ /l
dsi

Now the quantity

has the value zero, since, in the double summation involved, the term

W cos 6 d<r dcr/r
2 for two surface elements is canceled by the term

7777 cos (ir ff)d(T d<r/r*

for these same two elements with interchanged roles. The angles and
TT 6 are, in each instance, between the direction of s and the direction

from the fixed surface element to the variable surface element. If this

last written quantity and an analogous integral over A 1 be added to the

expression for dWi, then the work which A 1 does on Ai during the

displacement dsi can be written in the symmetrical form

d C C ^~
4irdWi = O

l

I 77 I r)~f d<r da .

2jA
}
+Ai JA,+AI d*i

In the foregoing expressions only surface integrals are used, even

though dielectrics be present, since the latter may be considered bodies

of volume density divP = and surface density Pn .

Now the rate of change of Wi with respect to Si is not expressed,

through the foregoing formula, as the total derivative of some quantity
with respect to SL In fact, as AI moves off, the surface densities 77

change continuously, having at any stage of the separation the electro-

static values characteristic of that instantaneous configuration. Hence
the total work cannot be calculated from the foregoing expression without

a knowledge of the rj as functions of SL It is possible, however, to trans-

form the foregoing expression into one which (when both sides are di-
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vided by ds\) is a total derivative with respect to $1, and which may
thus be integrated directly. In fact, if

=-/ f 0-

4Tj Al +Air

is the total potential at any point, then

1 d C *j ! C C r j j ,

1 C f 1 di? , j
n T~ I y<va<r

=
C)
-

I fi I rj
-.- a<7 dff+~ \ rj \ , da da

2 r/,s'!J SirJ J dsi SirJ J r dsi

all integrals being extended over all bodies present. The last two inte-

grals on the right have the same value, as is obvious if one views each as

the limit of a double sum. Hence, replacing these two integrals by twice

the latter,

1 j /* -* r r d /~ ,la! 111 r I drj
I 7)*$ da I T] I 7j da da -f- I

2 dsij 8irJ J dsi J dsi

Thus,

dJfi__l_d_r j Cdri

ds\ 2 ds\J J ds\

Now & is a constant over the surface of each conductor, and the

total charge of each conductor remains constant, so that, over the surface

of any conductor,

"? / dfj d (
(f>da == ^ I

~ da :=: *J* I tida ==

i J ds\ dsij

Hence that portion of the second term of dW\/ds\ which is due to con-

ductors vanishes. Furthermore, for a dielectric,

i d r ^ Cd
"o j

"
I Tl^da = I ,

2 dsij J CU

In fact, since 7j
=Pn and divP= 0,
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But in a dielectric P= (e 1)V4>, so that

/(
The second term in dW\fdsi therefore disappears, the terms for conduc-

tors vanishing of themselves, and the terms for dielectrics canceling

against the corresponding contributions to the first term. There remains,

therefore, only the expression

dWi 1 d C_ __ I
yQdff

dS] 2 dsij

where the integral is extended over the surfaces of conductors only; or,

since $ is constant over each conductor, and since the surface integral

of rj gives the total charge on each conductor,

the sum extending over all the conductors. The work done when AI
moves from an initial position s = s to a final position s~oo is, then,

to be found by integrating the foregoing value for dW/ds\ between the

given limits. Thus,

where the index i runs over all integral values from 1 to n, the num-
ber of conductors initially present; and where $[ is the potential of the

ith conductor after body AI has been moved off. One of the bodies,

namely AI, having been removed from the original configuration, one

may now move another, say A 2 ,
out along a straight line, and calculate

the work W2 done on A 2 . In this way the bodies may be removed one

at a time, and the total work

calculated. It somewhat simplifies the calculation of W to suppose that

the n conductors are removed first. Then
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In fact, the foregoing expression for the work done in removing one body
from the configuration shows that if there are no conductors in the con-

figuration this work is zero. If the expression for dWi/dsi be integrated
between two arbitrary values of si, the result, if there are no conductors

present in the configuration, is also zero; which proves that the force on a

dielectric, due to a configuration of dielectrics only, is zero. Thus if there

are no conductors present the dielectrics will be unpolarized, and will not

react on each other.

If, as is assumed, body AI is a conductor, then one may write

where
<f>J

is the potential to which the charge e\ raises the isolated con-

ductor A\. The remaining dielectrics and n1 conductors now form a

new configuration, for which <I>
t gives the initial potentials of the con-

ductors. Thus, as above,

where $" are the potentials of the remaining n 2 conductors after AI
and A 2 have been moved off, and $1 is the potential to which the charge
e2 raises the isolated conductor A 2 . Thus, by addition,

(95)

where $J is the potential of conductor i, when isolated, due to its own

charge c t ,
and <, is the potential of conductor i in the final configura-

tion.

In the expression just obtained, the value of W appears as a discrete

sum, there being one term for each conductor. It is possible to transform

the expression so that W be given by a volume integral extended over all

the space not occupied by conductors. In fact, since

cEnd<r,
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where e is the dielectric constant (unity for empty space) of the medium

surrounding the it\i conductor, it follows that

W
2
S
(

#n**r= ~2 L(li

the last integral being extended throughout all the space T not occupied

by conductors. The negative sign arises from the fact that the exterior

normal of the region T is an interior normal to a conductor, while En is

the component of E along the normal exterior to the conductor. More-

over,

div (*)=* div 60+ (V*, e)

since div e = div =
0, and V<I>= E.

Thus

(96) TF = !

In the classical electromagnetic theory of Maxwell, this equation is

regarded as especially significant since it has suggested the hypothesis that

the energy W is distributed throughout T with volume density elP/2.

The energy of the configuration here appears as a volume integral, and

it is therefore clearly compatible with this equation to assume that the

electrostatic energy of the configuration is distributed throughout the

space T. Such a statement, however, involves the assumption that

electrostatic energy is, in its nature, something * 7Mcb on^ v^ spatially

distributed. And it is hardly necessary to point out that while the fore-

going equation can suggest such a hypothesis, it in no way demands it.

The hypothesis of a spatially distributed electrostatic energy of volume

density e#2
/2 has, however, played a large role in the development of

electromagnetic theory. Applications of this hypothesis will appear in

later chapters.

PROBLEMS FOR PART III, CHAPTER II

1. Let e be the measure of a given charge in the units used in this

book; let eP8U .
be the measure of the same charge in electrostatic

units, and e< be the measure of this charge in Coulombs. Show that
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, 2. Let $, <
8 u ,

and <!> be the measures in the units here used, in

electrostatic units, and in volts, respectively, of the potential due to

a given configuration of charge. Show that

$= -
3>c.s U .

=-- = = $0 .

V 4ir 300K 47r

3. In electrostatic units, the relation between intensity and polarization

is

P _r e.s.u
"~

Find the relation between and Ee.s.u.i an^ between P and

Pe.s.u.i ail( ' hence show that the numerical measure of a dielectric

constant is the same in the two systems.

4. What differential equation does <f> satisfy in a dielectric where c is

not a constant, but is a specified function of the co-ordinates?

5. A spherical conductor, with a charge e, is surrounded by a shell of

dielectric, of external radius a, and dielectric constant c. Show that,

at points in free space,

while at points within the dielectric,

6. The two plates of a large parallel plate condenser are a distance d

apart. Between them are two slabs of dielectric, one of thickness d/2
and dielectric constant ei, the other of thickness d/2 and dielectric

constant e2 . One plate of the condenser has a charge density +77,

and the other TJ. Obtain expressions for the potential at points

within both dielectrics. Show that the capacity of the condenser, per

unit area, is

26J62

and that the charge density on the face between the two dielectrics is

2 Ci

6lC2
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7. It can be shown (see Poincare*, Th&orie du Potentiel Newtonien [1899],

p. Ill) that the tangential derivatives of the potential are continuous

when an attracting surface is pierced. Use this fact, and knowledge

concerning the behavior of the normal derivatives, to show how the

direction of the E vector is refracted upon passing from one dielec-

tric to another.

8. A charge e is distant b units from the plane face of an infinite di-

electric. Show that the induced surface density of charge on the

face of the dielectric is equal to

eb 1-e

where p is the distance to the point in question from e.

9. Referring to the preceding problem, what is the force on the

charge 6?

10. Use the method of 36 to find the polarization of a spherical dielec-

tric when placed in a uniform field.

11. A sphere, of dielectric constant ei, is located in an infinite medium
of dielectric constant 2. Find the polarization of the sphere due to

a constant and uniform field E .

12. A dielectric sphere is polarized by the action of a point charge e lo-

cated b units from the center of the sphere. Find the state of polari-

zation of the sphere.

13. Find the state of polarization of an infinite dielectric cylinder, placed

in a constant and uniform field E -which is normal to the axis of

the cylinder. Use the method of 35, and the method of 36. What
is the depolarizing factor for a cylinder?

14. An infinite row of doublets, equally spaced a distance a apart, are

polarized by their mutual action and by a uniform field normal to

the row. What is the polarization of each doublet?

15. Show that the torque on an ellipsoidal dielectric in a uniform field is

16. Show that for an ellipsoid of revolution (6
=

c), polarized by a con-

stant and uniform field E which lies in the #-?/ plane (see Fig. 36),

that T2 is a maximum when B = 45.

17. A doublet has a fixed polarization P which makes an angle 6 with

the line joining this doublet and a glass sphere of radius a. What is

the magnitude and direction of the force on the sphere?
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18. The region x negative is filled with a dielectric 1, while the region
x positive is filled with a dielectric 2 . At the point 3= a, y= z= 0,

there is located a small conducting sphere of charge e. What is the

potential at every point, and what is the charge density on the in-

terface between the two dielectrics? For what limiting ratio of ci/e2

does the region x positive act like a conductor?

19. Prove by Gauss's theorem that $ cannot h&ve a maximum or mini-

mum at any point unless this point is occupied by charge.
20. If F(z)=fi(x,y)+ifa(x,y) is any analytic function of the complex

variable z = x+iy, show that fi(x,y) and f*(x,y) are solutions of

V2
/=0. This fact is the basis of the method of conjugate functions,

which is useful when only two dimensions are involved. The student

should consult a standard text, such as Webster or Jeans, for a de-

tailed discussion of this method.
21. Show that

where (7, (?,..., and Cm./. are the measures of a capacity in the

units here used, in electrostatic units, and in microfarads.

22. What is the radius of a conducting sphere whose capacity is 1 micro-

farad?

23. By the use of the symmetrical form of Green's theorem, prove the

following theorem, which is also due to Green: If charges e\ 9
e-2 ,

. . . .
,

on conductors 1,2,...., raise them to potentials $1, <f>2 ,
. . . .

,

and charges e{, e'2 ,
. . . .

,
raise them to potentials $J, *,, .....

,

then

24. Show, as a special case of the preceding theorem, that the potential
to which conductor 1 is raised when unit charge is placed on con-

ductor 2, the other conductors present being uncharged, is equal to

the potential to which conductor 2 is raised when unit charge is

placed on 1, the rest remaining uncharged.
25. A conductor in the form of a prolate ellipsoid or revolution for which

a = 6 = 5 cm., c= 10 cm., is charged with 1 Coulomb of electricity.

To what potential (measured in volts) is it raised?

26. Why is the direction of E, just outside a conductor, normal to the

surface of the conductor?

27. If u is a scalar function which satisfies V2w= at all points except
on certain surfaces of discontinuity S, and which vanishes at infin-
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ity as 1/r, and which is continuous as the surfaces <S are crossed;

and if A is a vector which vanished at infinity as 1/r
2

,
and whose

normal component is continuous as the surfaces S are crossed, show

that

/(Vu, A)dr ,

extended over all space, is zero. Under what circumstances would $
and # satisfy the conditions on u and A? Interpret the vanishing

of the integral in this case.

28. A conducting sphere of radius a is placed in a constant and uniform

field E. If the total charge on the sphere be zero, what is the in-

duced density of charge at points on the surface of the sphere? Show
that the polarization p of the sphere, considered as one complex.
is 47ra3 . Hence show that

29. A rigid molecule of fixed and inherent polarization p is located in a

field whose potential is *. The potential energy of the molecule is

then (p, V$)=pE cos 0, where 6 is the angle between p and E. In

a gas composed of such molecules, the number of molecules whose

polarization makes an angle with the field lying within a solid angle

(L) about the direction specified by 6 is then, by the Maxwell-

Boltzman law, proportional to

pE oos

e kT du
,

where T is the absolute temperature and fc=1.3710~ 16
erg. Show

that the mean value of the component of the polarization parallel

to the field is

where

30. Prove that only one function 4> satisfies the conditions (II) of 33.
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31. Consider a body which has densities MP' . The potential due to

it may be written

i

jV-div^p'
lirj r

Show that the calculation which produced equation (68) of 21 re-

sults, when applied to the present equation, in the relations

= -div = -p+div P ,

div

32. The vector eE=E+P was denoted, by Maxwell, by the letter D
and called the "electric induction." Show that the boundary rela-

tions on the surface between the two media can be phrased as follows:

a) The normal component of D is continuous.

b) The tangential component of E is continuous.
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CONCLUSION TO CHAPTER II

The definitions of conductors and dielectrics, and the treatment of

the force on an interior charge which precedes and makes possible these

definitions, may seem unnecessarily detailed and cumbersome. The

authors would cheerfully scrap such computations and discussions if

they could find a shorter, reasonably logical way to proceed. The con-

tinuous densities p, P, etc., were defined, in this chapter, so as to furnish

a convenient method of approximating the potential due to distant com-

plexes of charge. The value of the function

dr

can, since the resulting improper integral is convergent, be calculated at

points of the region where p differs from zero; but it is perfectly clear

from the original meaning of p that at such points these values have no

immediate physical significance. However, in considering the total force

on an interior charge (as a necessary step in solving the problem of dis-

tribution of charge), assumptions concerning the nature of the force due

to very near charges have led to relationships between the total force and

the nabla of the foregoing function 3>. The region of physical usefulness

of this function has thus been extended beyond what was immediately

anticipated at the time p was defined. One can conceive of an "interior

potential'
'

function of a quite different sort, which would take into ac-

count the Actual effective position of each charge, and whose difference

at two interior points would accordingly measure directly the work

necessary to move a charge from one to the other of the points. Such a

potential would fluctuate widely from point to point, would necessitate

a knowledge of the action of charges at small distances, and would clearly

necessitate the use of far more precise approximations than those used in

defining p. The gap between the rather roughly macroscopic potential

4> defined in terms of the continuous smoothed over p, and the definitely

microscopic quantity, the force on an interior charge, is bridged by means

of the assumptions concerning the constitutive force characteristic of

various types of bodies.

The authors have not felt it practicable or necessary to include much
of the standard classical theory of systems of conductors, nor any except
the most simple and fundamental of the special methods of solution.

The standard texts contain a great fund of such analytical material

which there is no need to duplicate.
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CHAPTER III

MAGNETOSTATICS





PART I. THE FUNDAMENTAL LAW

INTRODUCTION

Electrostatics deals with the actions between "stationary" charges.

Magnetostaties, on the other hand, treats of the actions of moving

charges, or currents, and, in particular, of what are known as "steady-
state" configurations of moving charge. A steady state of motion pre-

vails when at any fixed point any quantity which describes the state of

motion at that point is itself independent of time. This definition re-

quires obvious modification when it is to be applied to a statistical prob-
lem. This modification is of the same sort as that previously required in

the definition of a static configuration. The electric current is thought of

as the steady drift of moving charges which, besides this steady drift,

have complicated motions which may be called random in the sense that

they average out and contribute nothing to the steady drift. To set up
a suitable definition of a steady state of motion in terms of these indi-

vidual motions of charges, one deals not with the instantaneous state of

motion at any instant, but with time averages taken over times which are

long reckoned from an atomic point of view (i.e., long compared to the

period of an orbital electron, the time between two impacts of a molecule,

etc.), but very short from an experimental point of view.

There is an obvious analogy between this situation and the motion of

a gas whose molecules have, besides the general velocity of translation,

heat motions. The analysis of the present situation, however, has to be

fine grained enough to take account of small circulatory motions of

charge, even though these do not contribute to the steady drift of charge
from one place to another. Indeed, Ihe averaging process suggested

above should remove from consideration truly random motions of charge,

but should not wipe out a steady circulation of charge, however small

scale it may be.

The development, of the mathematical theory of electrostatics in the

two preceding chapters began: first, with a statement of the fundamental

law of electrostatic action; second, it was shown that electrostatic forces

are derivable from a potential; third, the sums in the expression for this

scalar potential were replaced by integrals of continuous functions. The

concept of continuous densities (volume or surface) of charge and polari-
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zation arose in connection with the problem of properly determining the

integrands of the potential integrals. Fourth, it was shown, from these

integral expressions, that the potential satisfies the differential equation

V2$= 0, and such boundary conditions were obtained as make the prob-

lem unique.

The same four steps will be followed in this chapter in the develop-

ment of magnetostatics. The final formulation of the general problem
bears a very close analogy to the previous formulation of the general

problem of electrostatics. The details of the development, however, differ

from that of the previous chapters in two principal ways. It will be noted,

for one thing, that in carrying out the third and fourth steps mentioned

above, it is necessary, in magnetostatics, to impose restrictions on the

theory somewhat more severe than those imposed in electrostatics. And
it will also be noted that the situation with respect to the fundamental

law is not so simple as it was before. Experimentation on the forces due

to moving charges is necessarily more difficult than electrostatic experi-

mentation. The empirical basis, here given, for the fundamental law is

found in the celebrated researches of Ampere. Compared to the experi-

ment of Coulomb, it seems complicated and indirect. Four experimental

laws are first stated. To these are joined the principle of superposition of

effects and the assumption that the total force and torque are zero on a

system consisting of two current elements. On this basis it is possible

to deduce a definite law for the action of one current element on another.

The experimental basis does not pretend, however, to justify this ex-

pression except in so far as it is used to find, by integration, the action

of a closed circuit on an element. Indeed, strictly speaking, one has no

right in magnetostatics to consider anything other than the interaction

of closed circuits. For magnetostatics deals only with steady-state dis-

tributions of current. In a steady state, the current, at any fixed point in

space, must be independent of the time. Thus if attention is restricted

to finite current distributions, only closed currents can enter a legitimate

problem of magnetostatics. It will be seen that the actual steps in the

derivation of the fundamental law are: (1) the statement of the

experimental basis; (2) a derivation of an expression for the action

of an element of a closed circuit on a current element; (3) the addi-

tion, to this expression, of terms whose total contribution is zero, when

the action of the whole closed circuit is calculated. This third step re-

sults in a second expression for the force with which an element of a

closed circuit acts on a current element. It is clear that the expqrimental

basis, which deals only with the action of closed circuits, affords no basis
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for a choice between these two expressions. Indeed, it is clear that these

two expressions are equivalent from, the point of view of magnetostatics.
The second form, since it is simpler and more naturally connected with

the more general laws of later developments of the theory, is retained.

The fundamental law of magnetostatics is, however, not to be expressed
in terms of current elements, but in terms of moving charges. So this law

is still further decomposed, and an expression written for the action of

one moving charge on another. It must again be emphasized that this

last expression has validity only when it is properly used. In particular,

it must be emphasized that this expression does not give the actual action

between two isolated moving charges. There is no evidence, in the meth-

od of derivation here given, that the expression is anything more than

such an amount, to be ascribed to the action of one moving charge on

another, as will lead to the correct expression for the action of a closed

circuit. One should not be disturbed at the observation that the funda-

mental law of magnetostatics does not apply to the case of two isolated

moving charges. The reason is, of course, the simple one that two isolated

moving charges cannot form a steady-state configuration. In just the

same way, the fundamental law of electrostatic action does not apply,
in reality, to two isolated charges, since two isolated charges cannot form

a static configuration.

38. The Fundamental Law of Magnetostatics: the Researches of

Ampere. The previous chapters have been concerned with a study of the

forces acting between charges and charged bodies, all of the charges being

statistically at rest. When charges are in motion new phenomena are met

with, and the description of the forces acting is more complicated and

difficult. Steady states of motion will first be studied, as a step in the

passage from the static to the general case.

When, in electrostatics, a group of electrons is said to be at relative

rest, the description, as has been pointed out, is not intended to apply to

each electron individually, but to the group as a whole. It is understood,
for example, that the individual electrons may and probably do have

very lively motions. These motions need not necessarily be thought of as

consisting solely of small fluctuations of each electron about a mean

position of rest, but it is possible that some given electron located on a

conductor which is in electrical equilibrium may wander a considerable

distance in the conductor, in a way analogous to that in which some

given molecule in a gas, devoid of mass motion, may wander off
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through the gas. One speaks of a group of electrons as being at rest in

the same sense that one speaks of the population of a country as being

fixed when (the numerical population remaining constant) the center of

population remains at a fixed point. The individual members of the

population move about within their towns or cities, or even wander off

on long trips, but there are compensating trips of other individuals, so

that the center of population does not move.

It is evident, moreover, that the process of readjustment and com-

pensation will not likely be complete at any one instant of time, so that

there will be small fluctuations, with time, of the mean position of the

group. On the other hand, only time averages are experimentally ob-

servable. Thus when one studies, in what is described as an "electro-

static problem/' the force due to a group of charges said to be in static

equilibrium or "at rest/' he is in reality studying the time average, over

a long time, of the force due to a group of electrons moving in such a way
that their average position fluctuates about a fixed point, and which

exert a force whose time average is constant.

It is necessary to recall this viewpoint in order to be clear as to what

is meant by "charges in motion." A group of charges will be said to be

in motion when their mean position is not stationary, small fluctuations

with time being disregarded. There is no attempt to describe the motions

of the separate charges, but only the drift of the group as a whole. The
center of population of the United States has moved, in the last century,

over 500 miles westward, almost exactly along the thirty-ninth parallel

of latitude. Such a motion, if sensibly uniform, would be described as a

steady westward motion of the population in just the same sense as one

speaks of the steady motion of a group of electrons. In particular, a

steady state of motion will be said to exist when, at every point, the time

average of those functions which describe the motion of charge arc inde-

pendent of the time. At various points in the development, the statistical

nature of the theory finds explicit form in the analysis, but it is essential

to a clear understanding of the limitations of the results that this under-

lying microscopic viewpoint be borne constantly in mind,

Magnetostatics is primarily concerned with the actions between cur-

rents of electricity. Just as there is, in general, a volume density of elec-

tricity when charges are present, so there is a current when moving

charges are present. The precise definition of electric-current density,

however, will not be given at this point, just as the precise definition of

p was not given, in electrostatics, until one sought to express, by means
of integrals, the potential due to ponderable charged matter. The experi-
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ments upon which the fundamental law of magnetostatics is based are,

however, experiments with currents flowing in wires; and so it will be

convenient to adopt a preliminary definition for such a current. If the

cross-section of the wire be negligibly small compared to the other di-

mensions involved, and if the wire be formed of a non-magnetic conduct-

ing material, such as copper, a very simple definition of current can be

given which, after the complete definition of current is later given, will

be found, indeed, to be quite satisfactory for this special case. The mag-
nitude of the current flowing in a wire is, in fact, defined as the total

amount of charge which crosses a given section of the wire per unit time.

When the charge is measured in rational or Hcavisido electrostatic units

the current, thus defined, is measured in rational electrostatic units. It is

convenient, however, to introduce a new unit of current, which is larger

than the rational electrostatic unit in the ratio of c = 3XK)lo
:l. This

unit of current is called the "rational electromagnetic unit." If the meas-

ure of a given current in this rational electromagnetic unit be /, then it

follows directly from the definition just given that

(97) Ids =^V,c

where the current 7 is flowing in a circuit of which ds is a vector ele-

ment of arc, and where N is the number of charges e, moving with

velocity V, present in the element ds at any time. The fact that ds

and V necessarily have the same direction is due to the negligibly small

cross-sectional dimension of the wire. This equality permits one to inter-

pret experiments on currents in terms of the actions between moving

charges. It is clear that the quantities in equation (97) involve, in a

somewhat vague way, certain approximations and averaging processes.

Similarly, vague approximations and averages were employed in passing

from the Coulomb experiments on small charged bodies to the electro-

static law of force between two charges. In both cases the procedure is to

arrive, boldly if need be, at a reasonable law, and then use care and pre-

cision in constructing from this law a theory. The test of the law is then

to be found in the success of the theory.

The early part of the nineteenth century saw the origin of the science

of elcctromagnetism in what is known as "Oersted's experiment." In

1819, while trying to show that there was no effect of an electric current

on a magnetic needle, he accidentally discovered that there was an effect

at right angles to the current. Oersted stopped >vith the discovery itself,

but in the years between 1820 and 1825, Ampere, by a series of wonder-
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fully painstaking experiments, arrived at a set of relations giving the

action of one current on another. His extraordinary researches on this

subject were reported in various papers, the chief of these being the

famous Mbmoire sur la Thforie mathtmatique des Ph&nomknes electro-

dynamiques, which was characterized by Maxwell as "perfect in form and

unassailable in accuracy." The conclusions of Ampere were based upon
the following experimental results:

1. The action of a current on another current or current element is un-

changed in magnitude but reversed in direction when the direction of the

current is reversed.

This followed from the experimental fact that the force exerted by
two straight parallel currents of equal magnitude but opposite direction

is zero when the currents are very near one another. The total force

exerted on these two parallel currents is also zero.

2. The effect of a conductor bent or twisted in any manner is equivalent

to that of a straight one, provided that the two are traversed by equal currents,

and that the former nearly coincides with the latter.

This was experimentally proved by observing that the action of a

closed circuit is zero provided that it consist of a straight portion A-B
and a return portion from B to A which zigzags about the straight

portion A-B in any manner, always, however, keeping within a small

distance of the straight line A-B.

3. The action of a 'closed circuit on a current element is always norma!

to the latter.

A short length of wire was bent into an arc of a circle and fastened,

with its plane horizontal, on the end of a needle which, in turn, was sus-

pended by a vertical thread. The needle was counterbalanced so that

the needle and wire arc were in a horizontal plane, the point of suspension
of the needle being the center of curvature of the arc. The two ends of

the wire were touching mercury, so that a current could be caused to

flow through it, and it be free to move. It was found that when a

closed circuit was brought near this apparatus there was no tendency
to rotate about the vertical suspension, showing that the action on the

arc was normal to it, and hence passed through the axis of suspension.

Capillary action prevented this experiment from being carried out with the

accuracy with which the two previous laws were tested.

4. In similar and similarly situated circuits traversed by equal currents

the forces are equal.

Amp&re tested this Jaw by the use of three circular closed circuits,

whose radii were in the ratio 1:2:4, the distance from center to center
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of the first two and the distance from center to center of the last two being

in the ratio 1:2. The three were traversed by the same current, and the

actions of the two circuits whose radii were respectively 1 and 4 on the

circuit whose radius was 2 were found to be equal (but opposite on ac-

count of the direction of the current). This test is obviously unsatis-

factory due to its lack of generality.

These four laws are concerned with the action of closed circuits, or,

at most, the action of a closed circuit on an element of current. But it is

clearly consistent (and indeed quite equivalent, considering how the re-

sult is to be used) to assume that they hold for the action of one current

element on a second current element. The forces between the current

elements are, further, to satisfy the ordinary mechanical requirements for

equilibrium that (a) there is no total force on the system formed by the

two elements of current; and that (6) there is no total torque on the whole

system. It follows from (a) that action and reaction are equal in magni-
tude and opposite in direction, and thus from (6) that the force between

the two elements must be directed along the line joining them. For if the

force on one element of current has a component perpendicular to the

line joining them, the force on the other element must, by (a), have an

equal and opposite component. But these two components form a couple

the possibility of which is excluded by (6).

To arrive at an analytical expression for the action between two ele-

ments of current, suppose that currents 7 and I' are flowing along the

elementary arcs da and ds'. For briefness the elements of arc ds and

ds' will themselves be referred to as the "elements of current." The ac-

tion of ds' on ds may, by the second law, be obtained by considering

the action of the components of ds' on the components of ds. If ds
f
be

resolved into a component dsr in the direction of r, the vector from ds
f

to ds, and a component ds rl normal to r, and if ds be resolved into a

component dsr along r and a component dsn normal to r, this latter

being further resolved into a component (dSn) P parallel to ds'n,
and a

component (dsn) n normal to dsn ,
then the interactions to be considered

are the forces exerted by

(1) ds'r on dsr , (4) ds'n on dar ,

(2) ds'r on (dsn) p , (5) ds'n on (dsn)P ,

(3) ds'r on (dsn) n , (6) ds'n on (dsn) n .

Let the forces due to the interactions of these various components be

denoted by dFi .... dF6 , the direction of each of these being along r.
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Each of these forces will depend, in some way, upon r, the distance be-

tween the elements, and will he, assuming the superposition of effects,

proportional to the magnitudes of the component arcs concerned and to

the current strengths. Thus the first pair of components listed will give

rise to a force

This expression is clearly consistent with Ampere's first law. It is also

consistent with the principle of action and reaction, since the force with

which ds acts on ds' would be given by an expression which differs

r

FIG. 37. Tho resolution into components of the acting element </.s' and the

element ds being acted on.

from the foregoing only in that the vector r, which points toward the ele-

ment acted on, would be reversed in direction.

The forces dF2 , dF3, and dF* can be treated together, since they

are each due to the action between a component along the joining line

and a component at right angles to that line. It may be easily argued

that these forces are zero. For if there were, for example, a repulsion dF

between two such elements it would, by the first law, change to an at-

traction dF if the current were reversed in the perpendicular com-

ponent. There is, however, nothing to distinguish the relative configura-

tion of r and the component arcs in the two cases, a rotation of 180

about r bringing the two into coincidence. Therefore dF=dF = Q.

The fifth pair of components, however, give rise to a force which may
be written
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and the .sixth pair of components to a force,

both of these forces obeying the first law and the principle of action and

reaction. The last expression may be given a different form if the com-

ponents of arc are written as vectors in the directions along which the

original elements ds and ds' have been resolved. Indeed, the scalar

product

is equal to

| [ds,r] |

ds' cos =
| [ds,r] \

dsn cos <p ,

where 8 is the angle between ds' and [ds,r] t
and <p is the angle (lying

in a plane normal to r) between ds'n and [ds,r]. But the magnitude
of the vector product [ds,r] is rdsn . Thus

([ds,r]ds')
= rdsn cos <p dsn = rdsH(dsn)n ,

or, by cyclic permutation of the vectors entering into the scalar product,

(r[ds',ds])=rds'n(dsn) n .

The force due to the sixth pair of components may thus be re-written

rII'C(r)(r[ds',ds]) .

The total force exerted by ds' on ds then takes the form

(98) dF= rII'[a(r)d*fa+p(r)d8>(^ .

The bracketed expression is a linear function of the two products dsr dsr

and dsn(dsn)p. The two expressions

(ds',ds)
= (ds'r+ds'n,dsr+(dsn)p+(dsn}ri) =dsrdsr+ds

f

n(dsn)p ,

(ds',r)(ds,r)=r*dsrdsr ,

are also linear functions of these same quantities. Hence the term within

the brackets in equation (98) may be written as a linear function of

(ds',ds) and (ds',r)(ds,r), i.e.,

[a(r)d*;<k+/8(r^

*See Appendix, 4 (35).
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and the total force exert oil by ds
f on ds may be re-written in the form

dF= rIl'{A(r) (ds',ds) +B(r) (ds',r) (ds,r)+ C(r) (r(ds' tds}) }

Ampere's fourth law says that the force will be unchanged when all

the dimensions of the ciruits are changed in the same ratio, the currents

being held constant. Thus when r becomes kr, ds becomes k ds and

ds' becomes A; ds', the force dF being unaltered. This condition may be

applied to the separate terms in the force expression, since special cases

may be constructed in which the total force consists of only one of these

terms. If this condition is, then, applied to the first term in the expression

for dF, the result is the following identity in k:

or

Differentiating with respect to k,

Thus if fc= l,

A'(r) = _
A (r)

and, integrating,

log A(r) = 3 log r+log a
,

so that

A( \

In the same way the functions B(r) and C(r) may be determined,

so that the expression for dF is reduced to the form

(99) dF=rII'

There are as yet no restrictions on the values of a, 6, and c in this ex-

pression.
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Use has been made up to this point, however, of only the first, second,

and fourth laws of Ampere. If dFB denotes the component of force

parallel to ds exerted by ds' on ds, then, according to the third law,

the integration being carried out with respect to s' around an arbitrary

closed path. This identity can be used to evaluate the constants a, 6,

and c. If ('artesian co-ordinates x'
, y', z' are introduced with origin at

ds and with the #-axis parallel to ds, then

-r = ix'+jy'+kz' ,

ds' = idx'+jdy'+kdz' ,

ds'ids .

If these expressions be substituted in (99), the component of dF paral-

lel to ds, i.e., the x-component of dF, is soon to be

----
(x'dx'+y'dij'+z'dz')+~ (y'dz'-z'dy')

Thus, rearranging terms, the line integral

must, by the third law, vanish when the integration is carried out around

any closed curve.

The conditions imposed by this requirement upon the terms of the

integrand may be conveniently obtained by the use of an important iden-

tity, known as "Stokes's law," between the line integral, around a closed

path, of the tangential component of a vector, and the surface integral,

extended over any surface terminating in this closed path, of the normal

component of the curl of the same vector. This relation, namely,

(101) pMs=/(curl A) nd<r ,

where A is any vector, and where curl A is defined by the equation
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is essentially a reduction of a double integral to a single integral,* the re-

duction being possible since the integrand of the double integral consists

of sums and differences of partial derivatives. It is clear from this iden-

tity that, if the left member be zero when integrated around any closed

curve, then the surface integral of the normal component of curl vanishes

over every surface, so that the curl of the vector A must itself vanish

identically, i.e.,

dA^^^Ay a4 = a4 6A v_dAx

dy
~~

dz
'

dz
~~

dx
' dx

~~

dy

Now any line integral of the form

ds ds

may be thought of as the line integral of the tangential component of the

vector whose rectangular components are P, Q, and R, respectively,

so that if such a line integral vanishes for every closed curve it follows,

from the discussion above, that

dR^dQ <>P__dR dQ_&P
dy~~dz

'

dz
"~

dx
'

dx
~~

dy
'

If the first of these conditions be applied to (100), the result is

$bx'*y'z' 4caV2 eg' 5bx'*y'z' <icx'z'* ex'

or

~p-=* \^-
Since this relation must hold identically, it follows that c=0.

If the second condition be applied, the result is

Sax'z' 5bx'*z' _ Sfcc'V . 2fccV 4ca'V cy'

,* r7~ r7
+

j& ^-T-^^

or, canceling and setting c=0,

* See Appendix, 5, C.
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If c and 6 be given the values just found, the third condition is identi-

cally satisfied. These results give, upon substitution, the following final

form for the force exerted on ds by ds
f
.

The choice of the constant in this relation fixes the unit of current. If

the force be measured in dynes, and the currents in rational electro-

magnetic units, the constant is experimentally found to have the value

1 /47T. The equation then reads

(102)
~

r iff

The experimental basis for this expression only justifies its use to

find the force due to a closed circuit

S' on ds; and it is thus permissible

to add to the expression for dF any
terms which vanish when integrated

with respect to s' around the closed

curve 5'. That is, terms may be

added which are exact differentials. Thus it is permissible to add the

expression

(103) d'{r(<fc,r)X(r)}

in which ds is a constant, the end of r which describes the closed cir-

cuit Sf

being variable, and .in which X(r) is some function of r. Per-

forming the indicated differentiation, this becomes

(ds,r)X(r)d'r+r(ds,r)X'(r)d'r+ rX(r)d'(ds,r) .

However,

Also

d'(ds,r) = (ds,d'r) = -

'
cos (r,ds')
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Upon substituting these values, the original differential (103) becomes

(104) -ds'(ds,r)X(r)-rX(r)(ds'Js)- ^^ (ds',r)(ds,r)r .

Now choose

X(r) = -
l

,

and add (104) to (102) above. The result is

(105) -*~,l(ds,r)ds'-(ds,ds')r\.

The advantage of the particular choice which has been made in the terms

which have been added to dF is now apparent; for the two terms of*

(105) may by comparison with the vector identity

[A(B,C}]^B(A,C)-C(A,B)

be thrown into the form

[ds[d3',T] ] .

Thus the force on ds due to the clement ds' of the closed circuit Sf
can

be written

It should be clearly recognized that this expression for dF is not

equal to that given by (102), but is equivalent to it, in the sense that the

two lead to the same result for the force on a closed circuit. From this

expression can be written, at once, the fundamental law of magnetostatic

action between moving charges. The force dF is, in fact, acting on the

moving charges e present in the current element Ids at any time. The

force on a single charge c due to a single charge e t moving with a ve-

locity vi in ds' is thus, by (97) and the expression just written,

-AV.BA,
c
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where v is the velocity of the charge being acted on, where n points
from d to e, and where the vector Bi is defined by the equation

Thus the magnetostatic force on a charge e moving with a velocity v

due to a group of charges e t
- moving with velocity vt is

(106) F=-
C

where

(107)

the co-ordinates of e t being T
?', y[, z';, while the co-ordinates of e are

.r, y, z. The law stated in (107) is often referred to as the law of Biot

and Savart. They established this law, however, only for straight cur-

rents.
*

39. The Vector Potential. In electrostatics the form of the law of

force was such that it was possible to obtain the force from a scalar po-
tential. An analogous vector potential will now be obtained for the law

of force in magnetostatics.

If the scalar u and the vector C are functions of the two sets of

variables x, y, z and x', y
r

, z', then the identity

curl uC= u curl C+[Vu, C]

reduces, if u be set equal to 1/r and if C be set equal to e&\, to the

equation

the other term dropping out since the velocities v\ are functions of

%'> y'> z
'

only. Thus from equation (107)

4xc

*Ann. chim. phys., XV (1820), 222.
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This last equation can be written

(108)

where

<

This auxiliary vector A is called the "vector potential." In the electro-

static case, the force was expressed directly in terms of the gradient of

the scalar potential; in the magnetostatic case, the force on a moving

charge is expressed in terms of the vector product of the velocity of the

charge and the curl of the vector potential.

PROBLEMS FOR PART I, CHAPTER III

1. Given the vector

C= ixy+jz+ky .

Form and compare the line integral of C8 around a circle of radius a

in the #-?/-plane, and the surface integral, over this same circle, of

(curl C) 2 .

2. Given
Cjmx ;

find curl C by means of the definition, and by means of the relation

(curlC) n = Ymi

3. Compare (107), 38, with the ordinary expression of the Biot-Savart

law.
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PART II. COMPLEXES OF CHARGE

INTRODUCTION

Part II of this chapter contains the calculation of the vector poten-

tial due to a complex of moving charges that is to say, due to a group
of moving charges whose interdistances are small compared to the dis-

tance from any one of them to the point at which the potential is being

calculated. This one section is set off as a part to emphasize the anal-

ogy between the first three parts of this chapter, and the first three parts

of chapter i.

40. The Vector Potential Due to a Complex of Charges. The value

at a point P(x,y,z) of the vector potential A due to a complex of charges

ei moving with velocities vt is given by (109). The problem of approxi-

mating this vector expression in terms of quantities characteristic of the

complex as a whole is similar to the previous problem of approximating,

by the concentration method, the corresponding scalar potential.

Choose, as before, a point of co-ordinates x',y',z' within the complex,

and denote by r the distance from P to 0. Then, expanding l/rt :

(110)
- 2 -

v

where li are the vectors locating e t with respect to the fixed point 0,

and where r' is a unit vector pointing from to P. It is customary, as

.'0

in the previous case, to consider only two terms of this expansion. The

very small ratio li/r tends, of course, to make the successive terms de-
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40 THE ELECTROMAGNETIC FIELD

crease rapidly in magnitude; and there is in this case, as well as in electro-

statics, a physical basis, to be mentioned presently, for stopping with the

second term.

To write the second term in a form more easily interpreted, it may be

noted that

Also

I

so that

/
1 1 d

Thus

where

(HI) m ĉ
2(lt,e %vi].

The vector m, defined by this equation, is called the "magnetiza-
tion" of the complex. The magnitude of [li,e tvi] is the product of ej>i

and the perpendicular distance from () to vt, so that m measures a sort

of angular momentum of the charge about 0; "momentum" in this case

being the product of charge by velocity rather than, as in the case of

mechanical momentum, the product of mass by velocity.

Now the quantity

is statistically equal to zero for the cases with which magnetostatics deals.

It can, in fact, be easily argued, for three important cases, that zero is the

time average of this quantity over intervals long from the point of view

of atomic phenomena but short from the point of view of ordinary ex-

perimentation. These three cases are: (1) a sensibly uniform drift of the

charges of the complex; (2) any periodic motion of tho charges; (3) a ran-

dom motion of the charges. The first covers the case of that component
of velocity which results in a conduction current; the second, the case of

any sort of orbital motion in a closed path; the third, the case of possible
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COMPLEXES OF CHARGES 40

random motion, such as heat motions, which may be superposed on the

other motions. The arguments for these three cases are indicated in Prob-

lems 1, 2, and 3 at the end of this part.

Making use of these simplifications, and the further definition,

(112) S ^'=/ ,
c

the vector potential due the complex takes the form

', m] ,J '
= -r- -

-:

4?r r 4?rr2

or

(113) A = -=-i+~L, V'-l .

4T r 47rL r
|

The vector j is called the "current" of the complex.
The leading term in the expansion is due to the movement of the

complex as a whole; the second, or magnetization term, is due to differ-

ential movement, or circulation, within the complex. The magnetiza-
tion of the complex would have a non-vanishing value if the velocities of

the charges were such that the complex turns as it drifts as a whole. The
first term would vanish and the second term would give the principal
effect if the complex consisted, for example, of a ring of charge rotating

about a fixed point. If such a complex were subdivided into many com-

plexes, however, it is clear that the description would then be thrown
back again on to the first term, except in those cases which would require,

for this purpose, a finer subdivision into cells than is permitted by sta-

tistical considerations. The description in two terms is thus, just as

before in electrostatics, a result of the order of magnitude of the dimen-

sions of the complexes considered. The third term of this expansion

(which would correspond to a differential circulation) and the following
terms are considered negligible for physical reasons analogous to those

which permitted the two-term expansion of the scalar potential.

As an illustration, consider a complex composed of a single orbital

electron c moving with angular velocity w in a circle of radius a. Then

m|= =-

so that the magnetization of the complex is numerically equal to e/c

times the sectorial velocity of the rotating charge.
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PROBLEMS FOR PART II, CHAPTER III

1. Referring to the quantity

d

of 40, where (Z<) r and (t>) r are the components of li and Vi along

the direction OP; show that when all the charges have the same ve-

locity this quantity has a time average of zero, if the average be com-

puted over an interval which is long compared to the time required

for a charge to move a distance equal to the mean distance between

charges. In fact, to compute the time average of this quantity over

such an interval, one may simply compute the instantaneous value

this quantity would have if, at the given instant, a charge moving
with the common constant velocity were located at every point of the

volume element in question. Then if the reference point within the

element is its center of gravity, simple considerations of symmetry
show that the two terms written above are each zero.

2. Show in the same way that this quantity is also zero, on the average, if

the velocities v\ are random velocities.

3. Since the time average pffi
of any quantity F(f) over an interval

is

1

show that the time average of the quantity referred to in the last two

problems is zero for any periodic motion, the interval fe 1\ being long

compared to the period.
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PAET III PONDERABLE BODIES

INTRODUCTION

The opening sections of Part III of this chapter follow the same gen-

eral lines as those of Part III of chapter i. It is not necessary or desirable

to repeat here the considerations which affect the introduction of those

continuous densities in terms of which may be written the (vector) po-

tential due to ponderable bodies. The present calculation draws heavily

on the former one, and is hence considerably condensed. The striking

analogy between electrostatics and magnetostatics is exhibited in 45.

This part concludes, as does its counterpart in chapter i, with a calcula-

tion of the force and torque on a ponderable body.

41. The Vector Potential Due to a Ponderable Body. It would be

possible, just as in the previous development, to represent the potential

due to a single complex, using the spreading method, in terms of two inte-

grals, extended over an arbitrary volume containing the complex, these

integrals involving vector functions j and m which are constant over the

volume in question. Since the development is closely analogous to that

given before, however, the intermediate details will be passed over, and

the vector potential due to a ponderable body will be considered at once.

Guided by the expression, found above, for the vector potential due to a

single complex, and by the previous development, the vector potential

due to the body r will be represented by means of the two integrals

where i and M are continuous vector functions of the variables of inte-

gration x', y' y
z

r
the co-ordinates* of the point P, at which A is being

calculated, being x, y, z. The definitions of the functions i and M are

to be obtained, as before, by a comparison of the expansion of these two

integrals with an expansion of type (110). The vectors i and M will be

called the "volume densities" of current and magnetization, respec-

tively.

Let the body be divided into volume cells AT,, the order of whose di-

* Primes will not be written on i and M in this section.
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nicnsions is fixed by the statistical considerations discussed at length in

chapter ii. Then

J*rJ

However,

{fj

where the subscript i indicates that the value of a quantity is to be

taken at O t ,
a point within AT;, and where ^ is the angle between 5

and the direction from to P. If the point O t be chosen at the center

of the volume of AT, the first integral (the second term just above)

vanishes.

The second integral (the third term) may be written in the form

' t

the ^-component of which, for example, is

-
( | (Vv)* I

cos (A, 8)dr'=^
Vlf'^

\ s cos (h, s)dr' ,rij**i r J&TI

where h has the direction of (Vv). This integral, and the other two

components in the same way, vanishes since O t is the center of volume of

Ar,. Thus

r
Jbr

Similarly,
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all other terms being dropped on account of the small variation, across

AT,, of M, and on account of the 1

powers of r, in the denominator. The
vector potential due to the charges e, within Ar may, however, be

written, according to (110), as

Therefore, identifying the coefficients of like powers of r t ,
the value at

Ot of the vector current density i is given by the equation

(115) fr.
2

^,cAri

while the value, at O t ,
of the volume density of magnetization M is to

be determined from the equation

M,v'3[fc.M v -

The loft member of this equation and the first term of the right member
are both vectors which are normal to n. The direction of the last term,

however, depends upon the variation of i. .It therefore follows that the

type of representation attempted will furnish the desired approximation
to the vector potential only in case the statistical regularity is such that

this last term is sensibly zero, i.e., only in case that the values (115) cal-

culated for the various volume cells Ar t
- differ so little, from cell to

neighboring cell, that the continuous vector function i, interpolated
from these values, has a negligible variation across any one cell. This

condition is analogous to that previously stated for the variation in the

continuous density function p, there being this difference : in the electro-

static case if the variation of p across a volume cell is not negligible, the

definition of the polarization is affected, while in the present case, if the

variation of i across the volume cell is not negligible, the assumed

representation is itself inadequate. In case this last term does indeed

sensibly vanish, the value at O t of the magnetization density is to be

determined from the equation

(110) MiS3
fr.2c

~
[
'y'wl '
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The continuous vector functions M and i are, as in the previous case,

to be determined from the values Mi and if at 0- by interpolation,

and the vector potential due to the body is given by

By the use of a vector identity,* the last term in this equation may be re-

written

/no\
(118)^ J

1 fcml'M , ,
1 C I'M,,

7- I
- dr'r- I curl' dr' .

4-jrJ r 4irJ r

The second of these integrals may be still further transformed by means

of the identityf

(119) / curl
7 Cdr= /[n,C]rf<r ,

where n is a unit vector directed along the exterior normal to the body.

Thus substituting,

In this fundamental equation all primes are inserted to indicate that i

and M are functions of x', y', z', the variables of integration.

If one defines, for the volume element AT,, the vector m by the fol-

lowing equation:

f
cAr t

- cAr t
-

'

where ey are the charges within Ar t whose velocities vy do not vanish,

then

*-'?
where pi is the density of "moving charge."

If, as in electrostatics, a continuous scalar function p be interpolated

from the values pi, and a "velocity of moving charge" vector u be

interpolated from the values m, then

u

* See Appendix, 4, (38). t Ibid., 5, D.
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This relation will often be used when it is desirable to bring into explicit

evidence the fact that current is moving charge. The foregoing equations

clearly define a velocity of moving charge only when the density of mov-

ing charge does not vanish.

Following the previous development, the next step in the representa-

tion of the vector potential due to a ponderable body would be to con-

struct a thin shell of volume elements on the surface of the body, and to

represent the vector potential due to the charges in these elements by
means of surface integrals. It must be remembered, however, that the

only reason for so doing is an expectation, based upon physical grounds,
that the'demand of statistical regularity in the quantities involved forces

a separate consideration of these exterior volume elements. There is no

point in using these thin exterior volume elements if it be possible to

divide the whole of the body into ordinary volume elements whose char-

acteristics vary slowly, from element to element, throughout the entire

group. It was found, for example, in electrostatics, that it was possible

to subdivide a body in such a way that there was a volume density p
f and

a surface density ??', giving rise to the two terms

and it was found possible to subdivide, if not this same body, then an-

other body electrostatically equivalent to it, in such a way that the con-

sideration of a surface density of charge did not enter at all, there being

a new volume density p{ and a volume density of polarization P(, giving

rise to the terms

if$"+<121 >

This last expression could, however, be transformed into the two new
terms

these two integrals being the equivalents of the previous two integrals

(121) which result from the first method of subdivision. Thus in the

second method of subdivision, the surface density of charge term, which

does not appear, is absorbed in the volume-polarization term. The two

representations, as has been pointed out, are analytically equivalent, but
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correspond to different modes of subdivision and different physical points

of view. The surface density of charge plays such a fundamental role

from the physical point of view in the electrostatic problem for conduc-

tors that it is customary to use the mode of subdivision which keeps the

surface density of charge in specific evidence.

A similar analytical situation obtains in the case at hand. The con-

tributions to the vector potential due to the charges in a very thin ex-

terior volume element would be represented by a term

rf'<
47rJ r

where Ms a surface density of current interpolated from

1,-htj,

the values of I at ]y the centers of volume of the cells AT, whose thick-

ness is h. It is clear that in the steady state the direction, at any point
on the surface, of / must be tangent to the surface at that point. It

often happens, however, that from a physical point of view the current

flowing in these surface elements does not arise from charge which is

actually moving in this thin surface shell, but is a superficial aspect of a

volume distribution of elementary closed circuits or "current whirls."

Thus (see Fig. 40) if an exterior shell is separated from the rest of the

body, this shell will cut through many of the current whirls and, if it is

thin enough, contain few that are not cut; so that, viewed apart from the

rest of the body, this shell contains a moving sheet of charge. If the sur-

face shell were not used, however, this moving sheet of charge would not

exist as such, the moving charges which formed it now being recognized
as belonging to a volume distribution of current whirls. Such current

whirls bear the same relation to the volume density of magnetization M
as do polarized molecules to the volume density of polarization P. It is

customary, in magnetostatics, to throw the emphasis on the M vector,

rather than to bring surface currents into explicit prominence. Physi-

cally this is based upon a belief in the actual existence of such current

whirls; analytically it implies a mode of subdivision that makes unneces-

sary the use of a thin surface shell, and which gives rise to a non-vanishing
value for the volume density of magnetization. A simple picture of a

polarized molecule indicates, in electrostatics, how it is that the two

integrals

j

5 da and
J ^ da
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may correspond to the same physical situation. That the two integrals

Ci , , , AM*] A /
I

- d<r' and I
- d<r'

J r J r

can also correspond to the same physical situation may be indicated by an

analogous argument, using a simple picture of a current whirl (see Figs.

40 and 41). The details of such an argument will not be given; indeed,

M

FIG. 41. This figure, together with

FIG. 40. Figure showing how interior Figure 40, indicates the geometrical re-

whirls of current give rise, when only a lationship between the magnetization
thin shell of surface is viewed, to a sur- M, the surface density of current / and

face current sheet. an external normal n.

there is little interest in them, the identification which arises from the

transformation

being exact and convincing.

In electrostatics it has been seen that it is possible to use all three

densities p, ry, P or to use less than three densities, so long as one can

assign suitable values to

p div P and rj+Pn .

This could clearly be done by choosing p and ij, p and P, or P alone.

In discussing perfect conductors one chooses p and rj. In discussing

ideal dielectrics one chooses P. The transformation written just above
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indicates, in just the same way that one may use, in magnetostatics, i

and I, i and M, orM alone. The choice actually made is precisely the

one not used in either branch of electrostatics, namely, i and M. This

non-analogous choice of densities partially obscures the actual analogy
between electrostatics and magnetostatics and makes it necessary, when
that analogy is exhibited ( 45) to generalize somewhat the customary

equations so as to use, in both instances, all of the available densities.

The foregoing discussion has been limited to but one of the two terms

which would enter were a thin exterior shell used in subdividing the

body. Besides the surface current term, there might also be a surface

integral arising from a superficial distribution of current whirls, corre-

sponding to the normally polarized layer on a conductor. There are,

however, no convincing reasons why abnormalities should exist, near the

surface, in the values m*, and since there is no experimental evidence of.

such a layer, this term is customarily disregarded. The potential due to

a ponderable body is, then, described in terms of the volume current

density and the volume density of magnetization by the equation

(123) A .

or by the equivalent equation

(134) *--L f+euri'Jf
1

47rJ r 4ir

In these last two equations primes have been written on the densities to

remind that they are functions of x',y',z', the variables of integration.

The vector potential A is, of course, a function of x,y,z. The vector n

is a unit vector directed along the exterior normal.

At the beginning of this chapter, the current flowing along a wire was

defined as the amount of charge which, per unit time, passes a given

cross-section of the wire. Similarly, the current passing through any area

or across any line is the amount of charge which, per unit time, passes

through this area or crosses this line. Current thus defined has the di-

mensions of a charge divided by a time. The volume current density i,

however, has the dimensions of charge divided by the product of time

and area. It is thus dimensionally evident that, with the foregoing

definitions, the volume density of current has to be multiplied by area

to obtain current. It is, in fact, evident from the equation which defines i

that ind<r is the charge per unit time (i.e. ,
the current) which passes through

198



PONDERABLE BODIES 41

da. Similarly, if one considers a surface density I of current, the cur-

rent passing across a given line element ds on this surface is given by
lnds, where ln is the component of I normal to ds. It is clear that, in-

asmuch as current is charge per unit time, the terminology of t and / as

volume and surface densities of current is not strictly logical.

The equations given above express the vector potential A in terms

of the volume densities of current and magnetization. When the B field

due to a given configuration of currents is desired, it is sometimes more

convenient to use formulas which express B directly. For example, from

the equation

one calculates

K _dAg dA vB*todz~-

Hence, in general,

(125) B =^ j|
i'+curl'AT,V' ^\dr'+ C\[M',n],V

If only volume densities of currents are present,

(126) j

while if only linear circuits are present,

so that

(127) B-

The expressions for B just obtained from the general expression for A
could also be obtained directly from (107).
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42. The Divergence and Curl of the Vector Potential: Distant Points.

The foregoing analysis applies only to points P which are sufficiently

removed from all parts of the body under consideration to insure the con-

vergence of the approximating expansion. At all such points, A is given

by the equations just above, while

curl A =B ,

so that

divB = .

It may be shown that the vector potential A also has zero divergence
at points in free space. For in the region under consideration the inte-

grals are regular, and may be differentiated under the sign of integration.

Moreover, the identity*

div [C, D] = (D, curl C)-(C, curl D)

gives, in this case,

div[M',V'
ij

=
-div^M',

V
jl
=0

,

since M' is not a function of x, y, z, and since the curl of a nablaiszero.

Also the identityf

div uC=u div C+(C, Vu)

gives, since i' is not a function of a*, ?/, z, the relation

(Uv =
'"'V = ~

'"'V/ = ~ div/ + div
'

'"

the last step following from the fact that, in the steady state, there is no

heaping up of charges at any place, so that div' i' = 0. Thus, susbtitut-

ing these results,

div A= -~ (div'
- dr'= -~ f^ da' .

4TrJ r 47rJ r

* See Appendix, 4, (43).

Wd., (37).
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Since the integration is supposed extended over the whole of the body

containing the current, there is no normal flow across the boundary, and

^= 0. Thus the last integral vanishes and div 4 = 0. Thus

div 4 = 0.

Also at distant points,

1

7
"+

so that

(128) V2 4 = 0.

However, f

curl curl 4= V24+V div A ,

so that, since the vector A has zero divergence,

curl curl A = curl B = - V24 = .

At points removed from any body the vectors A and B thus satisfy

the following relations, set here for reference:

(129)

div 4 =

curl A = B

div 5=

curl B = curl curl 4 =

43. The Vector Potential at Points within a Body. The force on

moving charge is expressed in terms of an auxiliary vector B which itself,

in turn, is expressed as the curl of a second auxiliary vector A. This

vector potential A is directly available for computing the force on mov-

ing charge only at points removed from any body; but, just as was the

case with the scalar potential <f> in electrostatics, the formula from which
A is computed at distant points may also be used to compute the values

at points within the body. There is thus obtained a vector function which

has a value at every point, exterior or interior, and which is the analytical

extension, beyond its region of original physical significance, of the ex-

terior vector potential. This interior vector potential will now be intro-

duced and investigated.

t See Appendix, 4, (42), and 7
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The total force on a moving charge e located at a point within a

body r will be written as

F=?(v,B*+N],
I/

where B* is due to all the charges outside a sphere of radius d drawn

around the charge in question, and where N is due to the neighboring

charges within this sphere. This equation assumes the extension, to

cover the case of very near charges, of the law that the force on a moving

charge is always normal and proportional to its velocity. It makes no

further assumption, however, concerning the force due to nearby charges,

since nothing is said concerning N itself. If 8 is sufficiently large, the

vector B* will be calculated, as above, from the vector potential A* due

to all the charges of the body not within the sphere. Just as in the analo-

gous electrostatic case, however, special care must be used. The vector

A* is, at every point within the body, the vector potential due to all the

charges lying outside a sphere of radius d drawn about that point. In

the variation, from point to point, of this function A*, the deleted

sphere is carried with the variable point, so that certain charges are re-

moved from consideration, and certain other new charges appear. In

obtaining the B vector by taking the curl of the A vector, however, the

position and velocity configuration of charges must not be altered. Thus

curl* A* = B* ,

where curl* and div* are formed by taking the variation, within a fixed

sphere, of the vector potential due to the charges without this sphere,

the special notation being necessary, in the case in hand, to assure the

differentiation being carried out in the proper way. These values will

now be compared with the values curl A* and div A* 9 in the calcula-

tion of which the 5-sphere moves.

It has been previously shownf that if

tSee 18, equation, (56).
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then

(130)
3$*

-T- f P'-^T dr'+-r ( - cos
4irj r _5 dx 4jrJ, r

where s is the surface of the 5-sphere, and where n is a normal interior

to the sphere. Thus,

dAl

dx

so that

,V cos

div

However,

since, in the steady state, there can be no net flow into or out of the

sphere. The other integral over the surface s also vanishes, since the

vector [AT, V'l/r] has no component along the normal to the sphere.

Thus,
div 4* = div* 4* = 0.

The same method yields the value of curl A*. Indeed, making use

of the differentiation-scheme (130),

curlx curl? ~
(

~ &
4irJ8

T
cos - cos

so that

curl A*= curl*
^; f[n> ^1^+^ f[

n
[
M/ 'V/

r II
d*' '
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If the vector i' be sensibly constant over the interior of the S-sphere, the

first surface integral vanishes, as may bo easily seen from considerations

of symmetry. In the second surface integral, the nabla operator is taken

with respect to the variables of integration a-', ?/', z', so that

Thus,

(131)

,.2
'

[M'(n,n)-n(n,M'}\

M'+nMr

where M'r is the component of M' in the direction of W, i.e., the direc-

tion opposite to n. This last vector is to be summed over the surface of

the 5-sphere. If 6 be the angle between M'
and r, then at A and B (see Fig. 42) the

values of M'r are numerically equal but

opposite in sign, while the components of n

normal to Mf
are equal. Since all the sur-

face elements can be paired in this way, it

is seen that the component normal to M'

arising from the integration of the term

nM'r/r2 is zero. The integration of the vector

(131) over the surface of the sphere thus produces a vector in the di-

rection of M'. The component of (131) along M' is

V (l-cos
2
0)

Thus

where M has been removed from under the sign of integration since it,

as well as i, is assumed sensibly constant throughout the 5-sphere.t

Since

t At this point, the prime on M is dropped, since the quantity removed from

under the integral sign is the value of M at the center of the sphere, i.e., at the point
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the value of the foregoing integral is

? | (1-cos2
9) sin e dB^~ .

* Jo o

curl 4*= curl* A-\ ,
o

Thus

or

Consider now the vector, referred to at the beginning of this section,

which is the extension, within the body, of the vector function A. That

is, consider the vector defined, at interior points, by the equation

5=0

and let, for these interior points as well as for exterior points, the equa-
tion

fi=curl A

be the definition of B within the body. The relation

div 4 = div lim 4* = lim div A*= Q
5-0 5=0

then follows from the calculations which establish the relation

5-0 5-0

since it was there shown that for integrals of the type which occur both

here and in the previous instance, the operators d/dx and lim can be

permuted. For the same reason the relation
5~

2
lim B* = lim curl A* lim - M
5=0 5= 5=0 *

reduces to the form

2
lim fi* = curl A lim -M ,

5^0 5=0 "
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or, since M is assumed sensibly constant throughout the 5-sphere,

- M.

The vectors B* corresponding to two different choices of d differ by
the effect of all the charges contained in the spherical shell bounded by
the two spheres. The contribution to B* from the moving charges in

this spherical shell can be calculated directly from the fundamental

equation

where n points from d to the place where B is being calculated. When
the summation is extended over the symmetrical arrangement of moving

charges which (since i and M are assumed sensibly constant over this

region) exists within the spherical shell in question, the result is zero.

The value of B* is thus independent of 6, and

2

If the vector A be written in the form

the first integral is, at interior points, improper. However, the equation

(132)

may be obtained, a component at a time, by applying the differentiation

scheme developed in 21 for the analogous integral

Moreover, since,

curl curl A= VM+V div A ,

and since the vector A has zero divergence everywhere, equation (132)

may be written in the form

curl fi= curl curl 4 = i+curl M ,
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a relationship wfcich corresponds to the second-order partial-differential

equation

p

in electrostatics.

The relationships just developed are collected here for reference. At
all points, both interior and exterior, the vector potential A is given

by (123) or (124), and

(133) div4 = 0,

(134) curl A=5,

(135) div#=0,

(136) curl B= curl curl A = i+ curl M ,

(137) B* = curl4-f M.

The components of A are given by integrals entirely similar, ana-

lytically, to those occurring in the expression for the electrostatic po-
tential <f. It thus follows from previous arguments that A is continuous

everywhere, while across the surface of a body

where, for example, (dA/dn^)i means the limit of dA/dni, as the point
at which the derivative is taken approaches the surface from the side

into which HI points; and where n is the exterior normal to the body.
This equation is usually written in the abbreviated form

(138>

From an argument similar to that used for $, it also follows that the

vector A is regular at infinity, vanishing as 1/r. The previous proof
that there is but one function satisfying the schedule of conditions (I) of
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21 also proves, considering one component at a time,tthat there is but

one vector satisfying the conditions

'a) VM =-(i"+ curl M) ,

V) A is continuous,

(III)
< dA + dA =

d) A is regular at infinity.

It therefore also follows that if a vector be found from the conditions

a) curl curl A = i+ curl M ,

(III')

6) A is continuous
,

, dA . dA

d) A is regular at infinity,

this vector, if it also satisfy the condition that its divergence vanish, is

the unique solution and hence the vector potential sought; for when
div 4 = 0, the two quantities curl curl A and V2A are the same.

44. The Vector Potential Due to an Infinite Cylindrical Shell of Cur-

rent. As an illustration of the use of the foregoing equations, the vectors

A and B will be calculated for the case of an infinitely long cylinder of

radius R on which there is a surface current of density I per unit area,

directed parallel to the axis of the cylinder. This surface current may be

thought of as an actual moving sheet of charge, or as the superficial as-

pect of a volume magnetization, directed, at every point on the surface,

normal to the radius at that point.

For the sake of variety, the schedule (III') will be solved. This ne-

cessitates writing the components, in co-ordinates other than rectangular,

of the curl of a vector. Now from Stokes's law may be written at once the

relation

(139) curln -4 = lim

where curln A is the component of curl A normal to the elementary
area o- around the perimeter of which the line integral is extended. The
direction along this perimeter used in calculating the tangential cornpo-
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nont A a is related to tho direction of n by the right-hand screw rule.

The foregoing equation is analogous to the equation

div A = lim <
-

I Andcr \ ,

T*O I rj }

and, like the latter, is independent of any system of co-ordinates. It

may be used, therefore, just as was the latter, to determine the com-

ponents in general orthogonal curvilinear co-ordinates of the vector

which it defines. The equations so obtained, namely,

, A^
(140)

-
dv

. A v u
curl, A= 1 .

reduce, for cylindrical co-ordinates, r, d, z, to the equations

, 1/flA. drA,\

l/drA 9 dA r

In the case here considered it is clear, from symmetry, that

do
=0,

so that

curlr 4 = ,

curie 4= -
^- ,

, , 1 drAo
curl, 4 = - - - -

.

r dr
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Hence, applying these equations again,

1 1 A l i d 1 d A I
d d A\

curl curl X =-^ 7 ^ rA,+- r -
A,J

,

1 1 A d ] Acurb curl X=--^rAf l

i i 4 ! d d
j

curl, curl -4= r A z .

Now since A may be expressed, through the integral form, as the sum

of vectors all of which are parallel to z, it follows that A, is the only

component of A. Thus,

curlr curl 4 = ,

curb curl 4 =
,

1 14 l d d A
curl* curl 4= r A* .

r ar or

The schedule of conditions (III') thus reduces, since one suposes that

i+curlM is zero, to

v Id d A n
a) ~* r

5?
A--'

6) A z is continuous,

C) /MA _/MA = _iC)
\9r)o (dr)i

l '

d) div A=0 .

For a cylinder whose length is actually infinite, the regularity of A at

infinity cannot be assumed, since the proof of regularity depends upon the

possibility of inclosing all the charges within some finite volume. In the

equations just written the subscripts o and i refer to the values of A,

outside and inside the cylinder. From (a),

A 2=alogr+6 ,

which, together with A r =A0 = 0, satisfies (d). From (5), it follows that

inside the cylinder a must be zero. Thus
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so that, from (c),

5L-. _/

Thus

/ A \ 7~>7 1
-^

I 7 ^*
1 A

i 7

where I= 2irRl is the total current passing along the cylinder. Using (6)

again,

21 1
z) i
= b l

=
(A,) =

log -+6 ,.

when r= R, so that

Now 5 = curl 4, so that #, is zero, while at outside points the only

component of B is

fdA,\ 21

so that the magnitude of B is constant on circles concentric with the

cylinder, the direction of B being tangential to these circles.

45. The Schedule of Conditions on B: Analogy between Electro-

statics and Magnetostatics. The vector potential A has been seen to be

analogous to the scalar potential $. The conditions on the vector A,
which have been found above, will now be translated, through the rela-

tionship 5 = curl A, over into the vector B, in order further to exhibit

the close analytical analogy between the fundamental equations of

electrostatics and magnetostatics.

Since the vector A is continuous across any surface, it follows that

the derivatives of A in directions tangential to the surface must also be
continuous. For suppose that in some direction h tangential to the sur-

face the derivative is not continuous across the surface. At two points
Pi and P2 , lying very near each other, but on opposite sides of the

surface, the values AI and A 2 of A may, since A is continuous, be
made as nearly equal as is desired by choosing PI and P2 near enough
together. Starting at these points, and going a distance d in the direc-

tion h, the values A[ and A* which will be reached cannot, since the
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derivatives in this direction on the two sides of the surface are supposed

unequal, be made to differ by as little as desired. The known continuity
of A is thus contradicted, and the assumption that the tangential deriva-

tive is discontinuous is proved untenable.

The component normal to the surface of curl A is made up, how-

ever, of derivatives taken along directions tangential to the surface. It

therefore follows that the normal compo-
nent of B is continuous across the surface.

Thus

where HI and n2 are oppositely directed

normals to the surface
; or, in vector form

FIG. 43. The surface sepa-

rating regions 1 and 2 is drawn T 1 U -*. '12.^ f i

with a finite thickness, so as . ^\
h be tangentlal to the surface and

to separate the actually coinci-
m the direction of [M,n], and let Si and S2

dent vectors Si and 2 . be tangential to the surface, on its two

sides, in a direction 5 which is normal to

ft, and so chosen that n, ft, and 5 form a right system (see Fig. 43).

Then

dA h dA nt

so that

" dm dh
'

7? _<*Ah_dA ni
*2=a

dn, dh '

where B
8l
and B

8t are the limiting values, on the two sides of the sur-

face, of the component of B in the direction 5. Hence, subtracting,
and noting that two terms cancel on account of the continuity, across

the surface, of the tangential derivative of any component of A,

(141)
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the last step following from the general relation

3A dA
r
._ ,

a^+*r- [M' n] -

.

If one now writes, for the values of B on the two sides of the surface,

where the notation itself expresses the fact that the components of B
normal to the surface, and in the direction of [M,n], are continuous

across the surface,* then

*

[nlfB] = [HIAJ+[mAJ+ [nl9Bh] ,

= - [n*,Bn]
-

[n2AJ - [n^Bh] ,

[Tli,B]
= [m,Bn]+ [/laAJ+ [JtiAl ,

so that, by adding,

The right-hand member of this equation is a vector whose magnitude is

B
82

B
8l
and whose direction is the direction of [M,ri\. Hence (141)

may be written

[ni,B]+[ri2,B]=*(M,n] .

Finally, since A vanishes at infinity as 1//2, the vector B, which is

formed from the derivatives of A, is regular at infinity, and vanishes as

l/R
z

. The conditions on B are thus

curl fi= i+curl M 9

div =
,

(IV)

B is regular at infinity,

the first two of these equations following directly from the relations

B = curl A and curl curl 4 = i+curl M.

* See P.art III, Problem 7, of this chapter.
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In order that one may exhibit, in as complete a form as possible,
the analogy between the electrostatics and magnetostatics it is neces-

sary, at the beginning, to subdivide the bodies in an "analogous" way,*
i.e., so as to throw the burden of the description, in each case, on the

same set of densities. For this reason the electrostatic equations will be
written down as though the bodies had been so subdivided as to exhibit

volume densities of charge and polarization and a surface density of

charge, the polarization term then being analytically merged with the

volume and surface density of charge terms. The formula for $ then
would readf

(142) *=

Analogously the body, in the magnetostatic case, will be so subdivided
as to exhibit the three analogous densities, namely, volume densities of

current and magnetization, and a surface density of current. As above,
the magnetization term is then to be analytically merged with the other
two terms, and the formula for A reads

(143) 4-1 f
i+ [ M *+ ftH*! A, .

4?rJ r 4-jrJ r

Formulas (142) and (143) may now be re-written so as to furnish the
basis for the formal analogy by writing

curl M= IV, M] .

Then

(144)

(145)

See remarks just below Fig. 41 ol 40.

t All primes will be omitted in these formulas, to exhibit as simply as possible the
analogy of form.
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One can pass from one of these equations to the other by interchanging

A and 4>
, B and E

,

i and p , [ ] and ( ) ,

-MandP, () and[].

I and i) ,

Since the mathematical formulation of electrostatics and magneto-
statics is largely obtained from equations (144) and (145), respectively,
the analogy just set forth persists throughout. In fact,

4> is continuous A is continuous,

m> dA
,
dA

, f

vanishes at oo as \/R; A vanishes at oo as l/R ,

[V,B] = z+[V,M] ,

(V,B)=0,

vanishes at oo as 1//2
2

;
B vanishes at oo as l/R2

.

The analogy can be artificially made more complete by interchanging
the two vectors which appear in every vector and scalar product. This,

since it changes the signs of the vector products and does not affect

the scalar products, brings all signs into agreement without requiring
that M be analogous to P. Such an expression, however, as (P,V) is

objectional from an operational point of view; and the fact is, as appears
from a comparison of the equations,

,

that M, and not M, is actually analogous to P.

4G. The Force and Torque on a Complex and on a Ponderable Body.
The force on a single moving charge due to a complex of charges is ex-
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pressed, through the foregoing equations for F, B, and A, in terms of

vectors j and m, which are characteristic of the complex. The total

force and torque on a complex 2 due to a complex 1 can be expressed in

terms of the j and m vectors characteristic of complex 2, and the B
vector due to complex 1. Let charges e-, be moving with velocities Vi in

complex 2. Then the total force on 2 is

where Bi are the values at the positions of the charges e, of the B vec-

tor due to 1. These values Bi may ,be expressed in terms of the value

Bo of B at a point within 2, and in terms of the successive deriva-

tives of B taken at this same point and in various directions. Indeed,

where {/ are the vectors which locate the charges e l with respect to 0.

If the complexes are separated a distance which is large compared to their

own dimensions, the foregoing expression will be rapidly convergent,
and the higher-order terms may be disregarded. This value for Bi gives,

upon substitution,

The term li(dB/dli)o may be written in the equivalent form (1{V)B, so that

the second term in this expression for the force has an x-coiuponent equal

to

(146) i Se^MfoVB,)-- SAi,VB,) ,

where .X;, y ly
z v arc the components of v\. It has been previously shown

in 40, however, that

(147)

'

2e,i;/(l,y)-cli^iii|.

so that, for example,
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Each term of (146) is of the same form as the first member of this last

equation. Thus, (146) reduces to

dBy ,
dB\

,
6By , dB,

-w
+
-^)

+mv^+m
'-^--

Since, however, both div B and curl B are zero, this may be re-written

which is the ar-component of

The force on complex 2 due to complex 1 is thus

(148) F=\

where the value of B is taken at the point with respect to which m is

defined and is due to all charges except those of the complex the force

on which is being calculated.

The torque on complex 2 is

where

If, as a first approximation, Bt is set equal to B , it will be found that

the resulting value for T involves m, the magnetization of complex 2.

It is therefore not necessary to take into account the variation of B, the

term which would result from such a calculation being a negligibly small

one involving the "supermagnetization" of complex 2. Thus,

or
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The coefficient of B in the last term is one-half the time derivative of

2(/iAli/c), and can, by arguments similar to those indicated for a similar

expression in 40, be shown to vanish. The first term is similar to the

left member of (147), with B written for r'. Thus

(149) T=-[B,m] = lm,].

It has just been seen that the torque and force on a complex is given
in terms of the j and m characteristic of the complex. It may I5e

shown (the argument being closely analogous to that previously used in

the electrostatic case) that the continuous densities i and M9 character-

istic of a ponderable body and obtained by an averaging process from the

vectors jt and m; characteristic of the subcomplexcs of the body, are

useful not only for describing the A or B due to the body, but also the

total force and torque on the body. Indeed, the extension of the foregoing

expressions to the integral forms expressing the total force and torque on

a ponderable body clearly leads to the following equations:

(150) F

(151) T=f[Mf

where r is the vector ending at dr and beginning at the point to which

the torque is referred, and where B is due to all bodies except the one

the force and torque on which is being calculated. The densities M and
i as well as the field vector B are all functions of x,y,z, the variables of

integration. The first term in the expression for T is the sum of the

vector torque on the individual subcomplexes into which the body is

divided. The second and third terms represent the contribution to the

total torque due to the forces on the individual subcomplexes.

PROBLEMS FOR PART III, CHAPTER III

1. Find the B vector due to an infinitely long straight wire, of small

cross-section, carrying a current 7.

2. What is the B vector at any point on the axis of a plane circular coil

of wire carrying a current I?

3. What is the B vector at any point on the line perpendicular at its

center of gravity to a rectangular coil of wire?

4. What is the B vector at points on the axis of a long solenoidal coil of

wire carrying a current /, there being n turns of wire per unit

length of the coil?
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5. Equation (127) may (sec Appendix, 5, D) be written:

so that the B vector appears as the negative nabla of the potential
due to a certain double distribution over a surface terminated by the

current-carrying circuit. This distribution is called a "magnetic
double shell," and is treated at length in many texts.

0. Show (see Appendix, 5, D) that the vector potential due to a linear

circuit may be written:

where the surface integral is carried over a surface terminated by the

circuit in question.

7. lieferring to 45, show that:

and hence argue that the component of B in the direction of [M,n] is

continuous as one passes across the surface between two bodies.

H. Many writers use, besides B, a second magnetic vector H^B/p,.
Show that, across the boundary between two magnetizable bodies:

a) The normal component of B is continuous.

6) The tangential component of H is continuous.

9. In 37 the energy of a configuration of conductors and dielectrics

was calculated. The form of the final result has served as a basis for

adopting E'-/2 as the "volume density" of electrostatic energy. By
the aid of the above analogy, show how Z?2/2 is similarly related to

magnetostatic energy.
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PART IV MAGNETISM

INTRODUCTION

In the same sense that the first three parts of this chapter correspond
to the three parts of chapter i, the present part corresponds to the treat-

ment, in chapter ii, to the polarization of a dielectric and the relation

between polarization and electrostatic intensity.

The last two sections of Part IV call attention to the fact that in a

general magnetostatic problem the Coulomb forces have to be taken into

account, as well as the forces specifically associated with the motion of

the charges. This inclusion of both types of force is illustrated by two

problems.

47. The Relation between B and M: Diamagnetism, Paramagnet-

ism, and Ferromagnetism. -If a dielectric which is not inherently and

permanently polarized be placed under the influence of charged bodies,

this dielectric will become polarized, the vector polarization being propor-
tional to the total electrostatic intensity, namely,

(152) P=(e-l).

Analogously, if a body be not inherently and permanently "magnetized"

(i.e., if the magnetization M vanish at every point when the body is

not in the neighborhood of moving charge), it may happen that this body,
when placed near moving charge, will become magnetized. The way in

which the resulting value, at any interior point, of the magnetization M
depends upon the value, at that point, of the B vector can be deter-

mined experimentally. The torque on a magnetized ellipsoid, for ex-

ample, can be observed experimentally, and, B being known, the value

of M computed from equation (151).* It results that if the relationship

be written in the form

(153) M

* This calculation is greatly simplified by the fact that a homogeneous ellipsoid

magnetizes uniformly in a uniform B field, just as a homogeneous dielectric ellipsoid

polarizes uniformly in a uniform E. field.
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or, more closely analogous to (158),*

there is a class of bodies, called
"
paramagnetic," for which /* is a con-

stant greater than 1; a class, called "diamagnetic," for which ju is con-

stant and less than 1
;
and a class, called "ferromagnetic," for which M

is variable and very much greater than 1. The quantity ju is called the

magnetic permeability of the substance in question, f

In the case of a magnetized body carrying no true volume current,

r lir

so that
'

VM = curl M .

But, since div A = 0, curl curl A and VM are equivalent, so that

curl curl A curl M ,

or

curl (B-M)=0.

Since, however, for either paramagnetic or diamagnetic bodies B is pro-
portional to M, it follows that

curl B =
,

curl M = () .

Thus paramagnetic or diamagnetic bodies are magnetized in such a way
that the curl of the magnetization vanishes, just as, in electrostatics, the

divergence of the polarization vanishes.

If a paramagnetic or diamagnetic body be placed in a uniform external

field equal, say, to B, then

* This is a further illustration of the fact, pointed out in 45, that the vector
M is analogous to the electrostatic vector P.

t When one views M as analogous to P, then diamagnetic bodies are analo-

gous to dielectrics.
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where A is the vector potential clue to the magnetized body itself. Then

curl M=0=
(l-i)curl

(+curl X)-
(l-i)curl

curl A,

so that

and the analysis of 35 and 36 may be used, with a change in notation,

for the case of the magnetization of a body in a given uniform external

field, and for the cases in which a body magnetizes uniformly. In par-

ticular, it follows, as was just mentioned in a footnote, that an ellipsoid

magnetizes uniformly in a uniform field.

48. A Rotating Conducting Sphere in a Uniform Magnetic Field.

This chapter has been primarily concerned, thus far, with the forces be-

tween charges which are due to their motions. It is, in general, neces-

sary to consider not only these "magnetic
1 '

forces, but also the Coulomb
forces. In fact, the Coulomb forces, even in so-called "electrostatic

problems," are acting on moving charges. An electrostatic problem is

not, strictly speaking, a static problem, but merely one in which the

effects which are caused by the motions may be disregarded.* If one ex-

amined, for instance, a very small element of volume he would observe

within this element moving charges. He could not decide, from an ex-

amination of this one element, whether the motional effects could be dis-

regarded or not. But, in any event, he would take the Coulomb forces

into account.

The Coulomb forces have not been in specific evidence so far in this

chapter, since it has dealt only with the motional forces. If, for example,
the Ampere experiments could be and had been carried out oil current

elements consisting of flights of electrons, it would have been necessary
to consider Coulomb forces from the beginning. The Ampere experi-

ments were, however, carried out with currents flowing in metal wires,

where the amount of moving negative charges in every volume element

is sensibly equal to the amount of comparatively stationary positive

charge. The Coulomb forces are, under these circumstances, zero.

This and the following section deal with problems which require the

consideration of both the Coulomb and the motional forces. The first

of these problems is that of a conducting sphere rotating uniformly in a

uniform magnetic field.

*
Except, of course, in so far as the motional effects may be partly responsible for

the fundamental assumptions which are used.
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From the definition of current as moving charge it follows at once that

when a body is uniformly rotated about a fixed axis, the charges of the

body form closed circuits of current, and if the body be symmetrical
about the axis of rotation, and if the body be located in a uniform ex-

ternal B field which is parallel to the axis of rotation, it is clear that there

will be a symmetrical distribution of the charge of the body, and ac-

cordingly a steady state of current distribution. Any charge e of the

body will be acted on by a force e[v,B]/c and also by the electrostatic

force eE which arises from the abnormal distribution of the charge.

The potential and the distribution of charge will now be obtained for the

case of a conducting sphere of radius /?, rotating with an angular ve-

locity <o which is in the direction of the uniform external field B. The
external field will be assumed to be large compared to the change in it

caused by the rotating charges of the body, so that this change will be

neglected.

Certain points involved in this section deserve special attention. In

the first place, in a problem involving both Coulomb and magnctostatic

forces, many, but not all, of the equations of chapter ii are available.

The Coulomb force is the negative nabla of the scalar potential <. This

potential is given by the integrals, written in chapter ii, in terms of p,

TJ, P, and |i. Thus, all the analytic consequences of the integral repre-

sentation arc still available for use in this more general situation. The

only relations which are no longer available are those which result from

the electrostatic assumption that the total force on a charge is zero, and
that this force is given, per unit charge, by the electrostatic intensity E
(corrected by the addition of P/3 in the case of dielectrics). Thus, the

equation V2^ = p is still available. In the case of conductors, however,
the interior condition = and its consequences <t = constant and p =
are no longer valid.

In the second place, the equilibrium relation

requires careful consideration. In chapter iv it will be seen that the

division of forces into "electrical" and "mechanical" is a choice resulting

from method of treatment, rather than from basic difference in kind.

Individual electrical forces combine to produce macroscopic forces whose

nature permits simplified treatment, and which are called "mechanical"

forces. In the problem here considered, two forces on charge are recog-
nized as electrical in nature the force due to movement in the external
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B field and that due to abnormal distribution of charge on the sphere.

If this sphere were rotating, with the same angular velocity <o, and the B
field were not present, then the problem would be a purely mechanical

one. Any "particle" of the sphere would be acted on by such a "mechan-

ical" force as would cause it to move with constant speed in a circle. In

the actual problem, then, the two foregoing electrical forces act in addi-

tion to the mechanical force. If

the two electrical forces have a zero

resultant, the sphere acts exactly as

it would if no field were present; i.e.,

the mechanical forces cause each

particle of the sphere to move with

constant speed in a circle. And once

rotating with the angular velocity

CD, the sphere continues indefinitely

to do so. To sum up, then: therer

are present both electrical and me-

chanical forces. The latter are just

such as to produce the desired

motion, and the former thus have

a zero resultant.

Let be the distance of a point

of the sphere from the axis of rota-

tion, so that, if 2 be measured along this axis, ?=x2
+y*. Then the force

per unit charge [v,B]/c, which, on account of its origin, may be called a

"motional intensity," is in the direction of
,
so that, under equilibrium

conditions,

one has

Hence

FIG. 44. A conducting sphere ro-

tating with angular velocity w about the

direction of an applied external field B.

so that
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or

sin2 6

where $ is the potential at the axis. Then

as is obtained at once by differentiating. There is, thus, a uniform nega-
tive volume charge throughout the interior of the sphere. To obtain the

surface distribution of charge from the equation

it is necessary to know the potential $e at exterior points. This exterior

potential satisfies the relations,

>
e
= <l>t , r=R,

e is regular at infinity.

The symmetry of the problem clearly indicates that the equation
7^ = is to be expressed in spherical co-ordinates, and that $e depends
only upon r and 0, so that the solid zonal harmonics

rnPn (cos 0) ,

are available solutions (see 35). It will, therefore, be convenient, in

order to obtain suggestions as to the proper choice of terms for the ex-

terior potential, to express the interior potential in terms of the surface

zonal harmonics Ptt(cos 0). Now

so that
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thus,

3
.

Now every term of the sum

S4 nPn (cos d)r-"~
l

satisfies V2< = and is regular at infinity. The form of the interior po-
tential clearly suggests that the remaining condition

$, = $,, r=R,

can be met by choosing

, __ ^z (cos 6)
q> -^

---
The values of Ao and A 2 are then easily calculated, the resulting value

being

3
, M

* (cos *> '

c

If the total charge e of the sphere be known, rather than the poten-
tial at the axis, the condition*

dn

gives, sincef

(155) fl\ (cos

the result

* Note that this is an application of Gauss's Theorem.

1 This equation is obtained from the fundamental relation ( Pn(r)Pm(x)dx~Q,

(see Byerly, Fowler Series and Sphtrical Harmonics, p. 171, 91) by setting
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Thus, if e-Q,

If, on the other hand, <t> be zero, the total amount of charge brought to

the sphere by grounding the axis is

Since both the interior and exterior potentials are now known, the surface

density of charge can be found at once from (154). Thus, for the case of

zero total charge,

The surface density changes sign" at the zone

cos2 =
\,

= 3914'.
o

Since i\ may be written in the form

2 o>M 5

the total surface charge is, remembering (155),

\3 c / 3c

while the total volume charge is

4 / 2wB\ HirwB/e8

TT/t I I
--- --

.

3 \ C / 3C

49. A Dielectric tiphere Rotating in a Uniform Magnetic Field.

As a further illustration, consider a problem which differs from the one

just solved oi)ly in that the sphere is now formed of a dielectric material,

The polarization at any point is proportional to the total force per unit

charge, i.e.,*

(156) />=(_]) E+ [v,B] .

(
c

)

* The calculation in the preceding section indicates that the solution to such

problems is to be obtained by setting equal to zero the resultant of the electrical
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However, for an ideal dielectric,

div (E+P) = 0,

so that, substituting

^
[v,B]\

= 0,

or

div = -V^=-^ div [vJS\ .

As noted before, moreover, the direction of [v,B]js normal to the axis of

rotation, and its magnitude is w# or uB T/ 2
+i/

2
,
so that

div

Thus the interior potential satisfies the equation

(157) V2
^> l-^p2coB,

and the exterior potential, the equation

(158) V2
<J>,
= 0.

It remains to find the conditions that ^and $ satisfy on the boundary

of the sphere. Equation (83), namely,

forces, the required motion then being caused by the mechanical forces. A casual

reading of the present section might lead one to think that, in the case of a dielectric

sphere, this vanishing of the electrical resultant is not necessary. *To be sure, there

is not written in this section an equation which states explicitly that the total electrical

force vanishes. However, the proportionality between polarization and electrical

intensity is based upon the idea of the balance of two electrical forces th' "external"

electric force and the "internal" electric force which opposes the shii. of charge.

Thus in this problem three forces are recognized as electrical: the two of the previous

section and the internal electrical force just mentioned. The proportionality between

polarization and the. total external electrical force is, in point of fact, equivalent to

the vanishing of the total electrical force.
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reduces, since P is zero at exterior points, to

However,

[v,/?]r
= a># sin = uBr sin2

,

so that, from (156),

, cor/? sin2

and, substituting,

(Er) -e(Br) = co/?/? sin2
,f '' c
'

or

(159)
/M>A /3*A -'- 1

r=sR r/r=R c

The potential is continuous, so that

*<*$, r=/2
,

and is regular at infinity. These last two conditions, together with (157),

(158), and (159) above, serve to determine uniquely the potential.

The boundary condition (159) indicates the use of the surface zonal

harmonic P2(cos 0). The expression

4>i= A +A 2r
2P2 (cos 0)+GY2

will therefore be assumed for interior points, the term Cr2
being added

since V2$t is not zero. From the foregoing expression it follows that

so that

~
3c

For the exterior potential will be assumed the expression

*.-~+* ft (COB ,
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the form of which is indicated by the interior potential. Suppose that the

total charge of the sphere be zero. Then

or, from (155),

/?,=().

This condition that <t> is continuous across the surface of the sphere gives

the results

Also,

f'\ =2HA*P, (cos 6)+2fRC
,

or I ,
= H

sin2

/5*A 3B2 D
(-),., TV*******

Substituting these values in (159) and equating the coefficients of

like powers of sin 6
,

2 1-

f "3 c 2+3 f

so that
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PROBLEMS FOR PART IV, CHAPTER III

1. Calculate and discuss the volume and surface densities of charge

divP, and Pn for the rotating dielectric sphere whose potentials

are given by the last two equations of 49.

2. Given that, in ordinary or c.g.s. electromagnetic units,

*V* ( m it t

show that the measure of permeability is the same in rational and in

c.g.s. electromagnetic units.
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PART V STEADY CURRENTS: OHM'S LAW

INTRODUCTION

This part contains the equations which govern the flow of currents

in matter that is not sensibly polarizable or magnetizable. The impor-
tance of Ohm's law as applied to linear circuits is too well known to re-

quire emphasis. Problems of current flow in volume conductors have

recently acquired new and larger interest and importance on account

of their applications to geophysics. The analogy between such problems
and the polarization of dielectric's is pointed out. The part concludes by
listing the solutions of several classic problems in three-dimensional

flow.

50. Steady-State Currents in Conductors: Ohm's Law. The fol-

lowing two sections contain those further developments of the theorem

of magnetostatics which apply to bodies which carry currents, but for

which the value of /x is very nearly or exactly equal to 1, so that magnet-
ization effects play no role. It has been found, in the electrostatic case,

that all points of a conductor are at the same potential. If, however,

two points of a conductor are maintained at different potentials (the

cause of the potential difference not being important for the present),

the situation is no longer a static one, there being a movement of elec-

trons through the conductor from the point of lower to the point of higher

potential. Such a movement of elementary charges gives rise to a cur-

rent, as has been seen in the previous sections, the direction of the cur-

rent being opposite to the direction of flow of electrons. When a current

flows in a conductor there are always two effects produced: (1) the so-

called "magnetic forces," which have been considered above, are ex-

perienced; and (2) heat is developed in the conductor.

Suppose that the conductor under consideration be a wire of small

cross-section q, and that one end A of the wire be maintained at a

higher potential than the other end B. Under these circumstances elec-

trons will move along the wire from B to A, and if the potential differ-

ence has existed sufficiently long for a steady state to be set up, the

same number of charges pass, in unit time, any cross-section of the wire.

If the average drift velocity of the charges be v, and if i be the volume

density of current measured in electromagnetic units (namely, 1/c times
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the amount of charge in electrostatic Units passing along the wire per

unit cross-section per unit time) then

where N is the number of moving electrons e per unit volume.

Now when a charge e is moved through a potential difference d<$>,

it follows, from the definition of the potential, that the amount of work

W done on the charge is given by

W=ed<f> .

Therefore, since the moving electrons which constitute the current

move, per second, through a potential difference given by

the work done by the charges per second per centimeter of wire is

Ntq -j-
v= qiE8c .

d'S

In the last two expressions for the work done by the charges, the forces

considered are those due to distant charges. The expressions thus

tacitly assume that the forces due to the nearby charges do, on the average,
no work. Those moving charges which constitute the current would also

give rise to magnetic forces; but these forces are always normal to the

velocity of the charges acted upon, and hence do no work. Accordingly,

they do not need to be considered in the foregoing expressions. Thus Q,

the work done per second per unit volume, is given by*

Experimentally, however, it is found that this amount of work, which

appears as heat, is proportional to Z?
2

,
so that, writing <r as the factor

of proportionality, f

* Since a linear circuit is under consideration, it is unnecessary to distinguish
between E and E.

f The Greek letter a is used very widely for conductivity. It is also used, in this

book, for surface area. The two uses are so obviously distinct that no confusion

should result.
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or

(160) i=^.
c

This last equation may be written in the form

dS TI 7

cqi
= Eds

,

q*

where ds is an element of length along the wire. Then

cqiC
1

, Ic . f'd3> . ,

I ds = qi=] -7- ds= <f>A $B ,

Q<rJo ^ Jo ds

so that writing / for //go-, 'and 7 for qi,

(161) *.i -**

The relationship (160), between the current density i and the potential

gradient E, or its equivalent (161), between the total current and the

total potential difference $A $#, is known as Ohm's law; R is called

the resistance of the wire, so that the resistance of the wire is seen to de-

pend directly upon its length, inversely upon its cross-section, and in-

versely upon the value of o-, which quantity is known as the specific

conductivity of the material. According to (160), a is the propor-

tionality factor between the electrostatic intensity E and the current;

in rational electrostatic units, ci= pu. That is to say, v is measured

in rational electrostatic units (see Part V, Problem 1 of this chapter).

Ohm's law has been stated above in scalar form as applied to a linear

conductor. It is found experimentally, however, that in a uniform iso-

tropic medium an immediate extension of the same law, namely,

(162) f=^ ,
C

holds in vector form, where or is a scalar constant characteristic of the

conducting material, and where i is the volume density of current. In

the steady state of volume distribution of current, the net rate at which

charge is leaving any closed region T of surface 2) is zero, since charge

cannot heap up in any part of the conductor, i.e.,

I in(h^ I div idr .
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Since this equation can be applied to an arbitrary volume T, it follows

that the steady state is characterized by the relation

div i =
,

or

div = div V<f>= 0,
c c

'

(1G3)

This last equation furnishes a basis for the determination of <i>, E,

and i for steady currents. To characterize the potential uniquely,

however, it is necessary to add to the relation (lf>3) the relations which

<1> must satisfy on the boundaries of the region under consideration.

Across the boundary between a conductor and a dielectric no flow of

charge can take place, so that /n
=

0, or

d$>
(104) - ^ = 0,' dn '

the quantity on the left meaning, as usual, the limiting value of the nor-

mal derivative as the boundary is approached (in this instance, from

within). The normal flow of charge across the boundary between two

conductors must be, in the steady state, continuous, so that across such

a boundary

or

(105)7
r)/i2

where n\ and n2 are the normals to the surface pointing into the con-

ductors whose specific conductivities are <r\ and 00. There may also be

portions of the boundary on which the potential is a known constant, as

would be the case, for example, if electrodes be maintained at known

potentials.

It is important to note that the problem of determining the steady-

state distribution of current in an infinite conducting medium when elec-

trodes are maintained at given potentials is analytically equivalent to

the electrostatic problem of determining the potential due to conductors

having the form and potentials of the electrodes. If the conducting medi-

um in which the steady currents exist is not infinite in extent in all direc-
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tions, then additional conditions, which have no counterpart in the analo-

gous electrostatic problem, must be satisfied on the boundary of the con-

ducting medium. This additional boundary condition, which expresses the

fact that the flow of current on the boundary must take place in tan-

gential directions, can often be met by introducing image electrodes, or

image conductors, in the analogous electrostatic problem. This method

will be illustrated below.
*

Similarly, the problem of determining the steady-current flow when

a body of one conductivity is immersed in a body of a second conduc-

tivity is analogous to the problem of the polarization of a body of one

dielectric constant immersed in a body of a second dielectric constant.

For the steady-current boundary condition on the surface between the

two conductors is reduced to that which holds in electrostatics at the

boundary between two dielectrics by the interchange of a and c. For.

example, suppose that a charge e be located in a medium of dielectric

constant 1, a distance 6 from a sphere of radius a and dielectric con-

stant 62. If one determines the potential & at all points for this electro-

static problem, he has, at the same time, solved the following steady-

state current problem: a sphere of one conductivity is immersed in a

medium of a second conductivity; at a distance b from the center of the

sphere is located a steady source of current.

51. The Distribution of Currents in Volume Conductors.* The ex-

perimentally important problems concerning current distribution in

volume conductors can be divided into three types:

I. The case in which a portion of the boundary of the region under

consideration consists of electrodes A, B, . . . .
,
at known potentials

4% &B, The potential $ is then to be determined from the fol-

lowing conditions

V2$= in the interior,

4>=^ on the electrode A, etc.,

=0 on the remainder of the boundary .

on

Let the total current passing through electrode A be denoted by IA ,

etc., so that

C C a=
I ind<r=- I

~
JA JAC

* A considerable portion of the material of this section is taken from the article

of Debye, Encyl. der math. Wisa., Vol. V, art. 17. See also Riemann-Weber, Die Part.

Diff.-Gleich., I, 429.
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Then if the integral

f-
J

* T

be treated by integration by parts, the result is

/a*
ro uQ I (7

c dn J c

where the surface integral is extended over the complete boundary. The

values of 4> and d<f>/dn on the boundary, however, reduce this equa-

tion to the form

. . .
-
J \

where Q is the total heat developed in the conductor by the passage of

the current. Similarly

//**
* s* / s* -ijt~

a I trV^ / fa _. \ , I ff d& ,- Vz$>aT= I d\v ar= I I
- vp I d(7= I

- oa
,

y x *^

so that

IA+//J+ .... =0,

an equation which expresses the fact that a steady state prevails.

If there be but two electrodes A and B
,

and

The constant bt defined by the equation

$A

or its equivalent

Q
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is, by analogy with the case of a linear conductor, known as the gross or

effective resistance of the volume conductor. The notion of gross resist-

ance clearly does not apply* to the case of more than two electrodes.

II. The case just considered may be solved more simply provided
the electrodes (which may now be either interior or on the surface) are of

dimensions small enough compared to their distances apart so that they

may be considered isolated point sources of current. In the immediate

neighborhood of one of these point sources, where the influence of the

other electrodes may be disregarded, the flow of current is symmetrical
about the point, and the total flow out through a small inclosing sphere
is

r
(T

c dr
'*"

c dr

so that the behavior of <$> in the neighborhood of the electrode is found

by integration, to be

*=, -

47TOT

In the case of a surface electrode, the integration is extended over half a

sphere, so that the factor 2?r occurs in the place of 4?r. That the elec-

trodes would constitute singular points of this type is also clear by

analogy with the electrostatic case.

The conditions on < are thus

at all points except at certain interior points A, B, . . . .
,
and at cer-

tain points A', B', . . . .
,
on the boundary, where $> becomes infinite

as

C!A clB C!A' C!B

4"ir<rr
'
----

'

2ir<rr
'

The steady-state relation still holds, namely,

IA+IB+ ---- +IA'+!B'+ ---- =0 .

It is necessary, however, to take into account the dimensions of the elec-

trodes in order to calculate the heat developed or, in the case of two elec-

trodes, the gross resistance.

* That is, without modification. Partial gross resistances may be defined.
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III. In case there are circular surface electrodes whose dimensions are

small compared to their separation distances, the behavior of the po-
tential <t> in the neighborhood of one of these disk electrodes is subject

to the same mathematical conditions as is the electrostatic potential in

the neighborhood of an isolated charged circular disk. The distribution

of current over the electrode is thus the same as the distribution of charge
on a circular disk in the electrostatic case. In fact, the electrostatic prob-
lem when a very thin circular disk conductor carries a total charge c

is given by the equations

a)

6) <f>= constant on the disk,

c)

the integration being over the surface of the disk. It is evident from

symmetry that the solution of this problem satisfies the additional

condition,

dn
=

'

at all points of the infinite plane
1 which contains the plane of the disk

(points on the disk being, of course, excluded), the derivative being taken

along either normal to this plane*. This electrostatic problem was solved

in 29, and it was founel that, across the face of the disk,

2- 2

where a is the radius of the disk, /' the distance from any point on the

face of the disk to the center of the face, and where the disk has been

considered infinitely thin (and one-sided) so that the total charge is to

be found by integrating over only one face of the disk. In fact,

C a
2wr dr

^^
J W-r2

^'

Now let a circular disk electrode of radius a be in contact with a

volume conductor of conductivity <r. Let a be small compared to the

distance to any other electrode, and compared to the radius of curvature
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of the surface of the conductor at the place in question. One may then

assume that the current flow in the neighborhood of the electrode is the

same as it would be if the electrode were in contact with an infinite half-

space of conductivity a. The analytical conditions for this problem are

a')

V) <f> = constant on the disk,

t\ *
C)

where / is the current entering the conductor through the 'electrode in

question, the normal n pointing into the electrode; and,

at all points on the plane of the half-space except at points on the disk.

It is thus seen at once that the two problems are entirely similar. In fact,

the potential for the electrostatic problem is determined, except for a

constant factor, by the equations a) and b), the constant then being
determined from c). Thus the solution of the current-flow problem is

to be found at once by redetermining this constant, using c') instead of

c). One thus assumes

a*_ i'
dn

and it is found at once that K =
cI/2ir(Ta. Thus to pass from the electro-

static to the current problem, one first replaces e by 2e (which makes
the disk effectively one-sided), and then replaces e by c//<r. This can

be accomplished in one step by replacing e by 2cl/a. Thus for the case

of surface circular electrodes;

' at all interior points,

d$/dn = on the boundary except at the electrodes,

3A* ~T

on the fcth electrode.

In the last equation Ik is the total current passing through the fcth elec-

trode, ak is the radius of this electrode, and rk is the distance from the

center of this electrode to the point under consideration.
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Many special problems of current distribution have been solved.

The approximate solution for the case of two small spherical electrodes

A and B, of radius a and b located a distance I apart in an infinite

conductor, can be obtained at once. From the remarks made under II

above it follows that

^ d

where ra is the distance to the sphere A at which the current 7 enters

the conductor, and r& is the dis-

tance to the sphere B at which the

current leaves. By direct substitu-

tion it follows that

<f> 4-4-
i

47ro-\a 6 I )
'

FIG. 45. Two spherical electrodes A
and B of radius a and 6 respectively,

located a distance I apart in an infinite

conductor.

so that the effective resistance of the infinite conductor is given by

47rcr\a 6 I /
'

The method of images may be used for the case of a conducting half-

space, one electrode (a small sphere of radius a) being located a distance

h from the face of the conductor, the other electrode (a plane parallel to

the face of the conductor) being infinitely large and infinitely far re-

moved. The spherical conductor may be replaced by a singular point,

and the potential written as

, cl /I ,

where r\ is the distance to the spherical electrode, and r2 is the distance

to the image electrode (see Fig. 46). It will be noted that the singularity

and its image appear with the same sign rather than with opposite sign,

as in the electrostatic case, since here the normal derivative has to vanish

on the face of the conductor rather thaa the potential itself. The po-

tential of the spherical electrode, and hence the potential difference be-

tween it and the infinitely distant electrode, is given by

cl
,

2h

\ cl
=,

/ 47rac

f , ^for/ia
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so that the effective resistance of the half-space is

If the electrode is on the plane face of the conducting half-space, and

may be regarded as a half-sphere,

ft imade the potential is

7

L <t>--
^ 27TOT

'

J"
so that the potential of the elec-

trode is

m cl-

electfode

FIG. 46. A single spherical electrode

located a distance n below the plane sur-

face of a conducting half-space.

and

R--

If the surface electrode be disk shaped rather than spherical, the solu-

tion may be obtained at once from the expression for the potential to

which a circular disk is raised by an electrostatic charge. To pass from

the electrostatic to the current-flow problem it is only necessary, as in-

dicated above, to replace e by 2c//<r. The potential of the disk is thus

2/c Ic

so that

1

4<7tt

Suppose now that two conducting half-spaces 1 and 2 of specific

conductivities <TI and o-2 be in contact along their plane surfaces, a

spherical electrode of radius a being located in 1 a distance h from the

separating plane. Then
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while $1 becomes infinite, at the electrode, as Ic/4ir(nr. The boundary
condition may be written

where

and is then analogous to the equation

which holds on the boundary between free space and a dielectric of con-

stant . The electrostatic problem of an inducing charge +e a distance

h from the plane face of a dielectric half-space has been previously

solved,* and it was found that

,
l-e 1

where r is the distance to e, and r' the distance to the image of e in the

plane face (see Fig. 47) ;
while in the dielectric

$2=
47r(l+e)r

'

These two potentials, with 6= <r = (r2/(7i, satisfy all the demands of the

present problem except the demand that $1 become infinite at the elec-

trode as

Ic

This final condition can be met by multiplying both <$>i and $2 by the

constant cl/a\e. Hence,

^ Ic

* See 34.
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i

-(
i
+ <Tl-~ ff

*.
l~\

ir<Ti\a <ri4-02 2h)

Hence,

It may be readily calculated that, of the total current / which is at

the electrode, an amount I<r*/ (<r\+<ri) flows to an infinitely distant

plane, parallel to the separation plane, and located in region 2, and an

amount I<ri/(<ri+<r2) to a similarly located plane in region 1.

Similarly, if two electrodes

of radius a and b are located

distances h\ and h^ from the

plane surface of a conducting

FIG. 47. A spherical electrode of

radius a located a distance n from the

plane face separating one half-space of

conductivity a\ and a second half-space

of conductivity o-2 .

Fio. 48. Two spherical elec-

trodes of radius a and b locat-

ed distances hi and h2 from the

face of a conducting half-space,

the distance between electrodes

being LI.

half-space, the distance of electrode 1 from electrode 2 and to the image

of electrode 2 being Zi and J2 > respectively, it may be shown that

R
4<(a

+
b
+

2hi
+

2hz h U '

PROBLEMS FOR PART V, CHAPTER III

The conductivity is the factor by which intensity is to be multiplied

to give current. If <r,
<rc .a .M ,,

o-e .m .tt.
denote the conductivity meas-

ured in rational electrostatic units, in electrostatic units, and in

electromagnetic units, respectively, show that

a = 4ir<rf ,8 w .

= c2 4ircrc m.u.
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2. The reciprocal of <r is called the resistivity r. Show that

4?r 9 1011

where r is the resistivity in ohm-ceritimeters.

3. A source and a sink (point) electrode are located on a conducting

plane. Show that the current flows, from one to the other, along arcs

of circles.

4. A source electrode and a sink electrode are located at the points

0*1,7/1 and #2,2/2 on a plane conductor which occupies the region y>Q.
What are the lines of current flow ?

f>. Consider a volume conductor R with electrodes A and B. Iking a

second conductor R' into contact with R along a surface 8'.

Prove that the resistance between electrodes is lowered, and that 'the

heat developed in R alone is greater than before.*

(>. What equation does <i> satisfy in a conductor for which <r is not a

constant, but a function of x,y,z, the co-ordinates of a variable point

of the body ?

*
Pierce, Annals of Mathematics (1904), p 153.
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CONCLUSION TO CHAPTER III

In this chapter the fundamental equations for magnetostatics have

been developed. The theory proceeds along lines closely similar to those

followed in electrostatics. A fundamental law of magnetostatic action is

first obtained, which plays the same r61e that Coulomb's law plays in

electrostatics. In the derivation of this law from experimental evidence,

a certain amount of temporary vagueness of concept is necessary. It is

not possible at the outset, for example, to say accurately what one

means by a "current." This situation is not at all different from or worse

than that met at the beginning of electrostatics, where it is not possible

to specify accurately a density of charge. A charged body is one possess-

ing an excess or deficit of electrons; a current is moving charge. These

general statements are enough, in each case, to permit one to describe

the experimental basis, idealize to the law which expresses the action

between units, and then, in the process of analytical rcsynthesis, accu-

rately define the densities of charge and polarization in electrostatics,

and current and magnetization in magnetostatics.

The analytical discussion necessary to formulate, for the experimental

evidence, the fundamental law of magnetostatics has been seen to be

somewhat complicated. The experimental basis is not sufficient for a

unique deduction of a differential law for the force between current ele-

ments. This is explicitly recognized when one arbitrarily adds, to one

deduced form for a differential law, further terms. It is, in fact, meaning-
less to inquire if a certain one is the differential law for magnetostatics,

because it is logically improper to distinguish between laws which give

the same results in any conceivable magnetostatic problem. It may be

noted, in passing, that although equality of action and reaction was de-

manded, at the outset, for the action between current elements, this

demand was later dropped, for current elements, although not, of course,

for closed circuits. It seems advisable, analytically, to first demand

equality of action and reaction for the elements and then add such terms

as destroy this equality for the elements but not for closed circuits, and

which, at the same time,. simplify the expressions.

Having once obtained a satisfactory differential law that is to say,

one which is handy in form and which is consistent with the experimental
facts for closed circuits the remainder of the development is largely

246



CONCLUSION

a matter of translation, into new notation, of the analytical results de-

veloped in electrostatics. The arguments of the first two chapters show

that if

then F is continuous at all points of space, while

when one crosses one of the surfaces over which the second integral is

extended. Furthermore, at all points,

These general facts, once one has obtained an expression for the vector

potential which is analogous to the expression for 3> in electrostatics,

furnish the analytical skeleton for the theory.

One statistical consideration is in more specific evidence, now, than

in electrostatics; namely, the use of time averages. Time averages do

play a role in electrostatics as when, for example, one speaks of a charge

as "at rest." But in magnetostatics terms automatically appear, when
one seeks to define "current" and "magnetization," which are removed

by explicit recognition of the fact that time averages, only, are "station-

ary" in a magnetostatic problem. The three distinct orders of time in-

tervals which make possible the present form of macroscopic magneto-
static theory are thus as much emphasized as are the corresponding three

distinct orders of distances.

Finally, it is necessary to note that the motional intensity introduced

in magnetostatics will, in general, be experienced in addition to the

Coulomb forces. The Coulomb forces are thus to be thought of not

simply as the forces which act when charges are at rest, but rather as

that part of the force, which acts between any charges, which is inde-

pendent of the state of motion. When the motions are such as to pro-

duce, of themselves, no actions, the problem reduces to an electrostatic

one.
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CHAPTER IV

THE MAXWELL FIELD EQUATIONS





INTRODUCTION

The previous three chapters contain the analysis of those forces, on

charges or charged bodies, which are independent of motion and those

which are due to a steady state of motion. It remains to consider the

general case of the force on charges which are moving in any way what-

soever. The development of this more general theory does not follow

the steps used in both electrostatics and magnetostatics. The passage

from the special to the general equation is one characterized by great

boldness in generalization, and there is less direct dependence on funda-

mental experiments. It is clear that this must be the case, 'because it is

scarcely possible to frame an experiment whose circumstances are as

general as the desired conclusions.

Electrostatics makes use of the equations

div E= p ,

while magnetostatics, in its general form which includes both Coulomb
and motional intensities, is based on the relations

div E = p ,

curl = 0,

div B= Q ,

curl fi=i,

The equations of magnetostatics are, thus, a generalization of those of

electrostatics. The first step in the next generalization is suggested by
an experiment with moving circuits. This experiment is, from one point

of view, a magnetostatic experiment; while, from a second and equally

valid point of view, the currents involved are not steady. Thus the

force equation of magnetostatics has to be generalized so as to be con-

sistent with this experiment. This generalization of the force leads, in

turn, to a non-vanishing value for the curl of the new generalized electric
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intensity vector E. The resulting equation expresses' the Faraday law

of induction. The experiment which leads to the generalization is not a

satisfactory one on which to base a general theory, since it is far too

special in its nature. Nevertheless, it is assumed that the generalization

so obtained is adequate to cover the most general situation.

Not only must a new value bo assigned to the curl of the electric

vector E, but also a new term must be added to the expression for the curl

of the magnetic vector B. An easy calculation suggests the most simple

value to adopt for this new term. The curl of the B vector then is given

by two terms: the first, viz., i, being that given by the Ampere laws;

while the second, namely, B/c, is the new term just mentioned. This

new term is often called the "Maxwell term," since its suggestion con-

stitutes one of the greatest contributions to electromagnetic theory
made by this great physicist. Having obtained a set of equations for

the behavior, in a general case, of the E and B vectors at points in

empty space, the analogous generalizations are then made for points

within matter.

The remainder of the chapter contains certain of the most fundamen-

tal applications of these, the Maxwell field equations, and the method of

solving these equations in terms of scalar and vector potentials. By
studying the rate of doing work of the forces exerted on all the charges

within a certain volume, and by modifying the form of the analytical

expression for this rate, one is led to the concepts of the spatial density
of electric and magnetic energy, and of the Poynting vector which meas-

ures the flux of energy at any point. The authors do not pretend to

understand these concepts, but discuss them as adequately as they are

able. The same remarks apply to the closely related concepts of Maxwell

stresses and of electromagnetic momentum, which are obtained in an

analogous way from the expression for the force acting on all the charges
of a region.

The four field equations give (when suitable boundary conditions are

also present) the values of the field vectors E and B when the posi-

tions and motions of all charges are known as functions of time. Instead

of working with these four simultaneous partial-differential vector equa-

tions, it is possible to introduce two potentials, one scalar and one vector,

in terms of which one can express E and B. Each of these potentials,

moreover, is then to be determined from a single equation, there being
the additional advantage that these two equations for the two potentials

have exactly the same analytical form, that of a so-called "wave-equa-
tion." The solution of the four field equations is thus reduced to the solu-
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liou of a wave-equation. A suitable solution for the wave-equation is

then obtained. The potentials, as given by this solution, are referred to

as "retarded" potentials, since their values at time / and place ap-

pear as the sum of effects which arise at the various points P of space

at previous times t r/c (where r is the distance between and P),

which travel with velocity c, and which then arrive at the point at

the instant t in question. The actual computation of these retarded po-

tentials is somewhat complicated, and a considerable amount of analysis

( 57 and 58) is necessary to modify the integrals to a form more suit-

able for calculation.

These expressions are then used to obtain the E and B fields due

to a uniformly moving point charge and a uniformly moving extended

charge. The case of the extended charge is carried through for two differ-

ent shapes a rigid sphere and a deformable oblate spheroid. The rigid

sphere is often referred to as the "Abraham electron," while the deform-

able spheroid is referred to as the "Lorentz electron." The total electro-

magnetic momentum associated with these two different shapes is cal-

culated. These expressions refer to a uniformly moving charge, but it is

assumed that for a slowly changing velocity the momentum has at any
instant the value given by this formula. From the time rate of change of

this momentum, one calculates the forces acting on the charge due to the

reaction of its own field. This reaction may also be viewed as being the

result of an "electromagnetic mass" possessed by the charge. This elec-

tromagnetic mass turns out to be different for accelerations parallel to and

perpendicular to the velocity of the charge. The two values are hence

called the "longitudinal" and the "transverse" electromagnetic mass.

Not only is the electromagnetic mass dependent \i\xm the orientation

of the acceleration relative to the velocity, but it also depends upon the

velocity itself, becoming indefinitely large as the velocity of the charge

approaches that of light. As the velocity of the charge approaches zero,

the mass approaches the so-called "rest-mass of the charge. The de-

pendence of mass on velocity is somewhat different for the two shapes

assumed above; arid experiments have indicated (although not entirely

conclusively) that actual electrons correspond (at least in this respect)

more nearly to the Lorentz electron than to the Abraham electron. Other

considerations (now quite invalid) have led to the further conclusion

that the mass of an electron is entirely electromagnetic. This conclu-

sion is, from the present point of view, not supported in any way by the

experiments in question, but, as a pure assumption, the statement con-

tinues to be a part of modern electromagnetic theory.
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As a further illustration of the use of the general solutions referred to

above, the case of an oscillating dipole or Herzian oscillator is studied in

some detail. The field is analyzed both "near" the dipole and in the more

distant region, or "wave-zone." The results are of basic importance in

connection with the theory of wireless telegraphy or telephony. The chap-

ter concludes with a brief consideration of the field due to an arbitrarily

moving-point charge.

52. The Maxwell Field Equations. The previous chapters have

been concerned with a study of the forces between charges at relative

rest, and the forces on charges which are moving in a magnetic field

whose value B at every point is

independent of the time t. Thus,
the theory, as developed to this

point, clearly has no immediate

answer concerning the force on a

charge when the steady state does

not prevail, i.e., when the B vec-

tor is a function of t as well as

FIG . 49. Two circuits in uniform f x
> M> z - ^ definite suggestion

relative motion. as to how the theory is to be ex-

tended to cover the general case

can, however, be obtained from the study of an experiment which, from

one point of view, comes under the previous theory but which, from an

alternative point of view, is an example of the general case.* Consider,

in fact, two closed circuits 1 and 2, and suppose first that 2 is stationary

and is traversed by a current which is maintained constant by some out-

side influence, while circuit 1 moves with a velocity v. The magnetic

field due to the current in circuit 2 is then constant at any point, and the

intensity due to this motion on the charges of circuit 1 is

F=- (v,B]

In order that the experiment be rigorously magnetostatic, one may
suppose that a second external influence prevents the motion of charges

in circuit 1. If the total "electromotive force" or E.M.F. seeking to

*
Although not an entirely satisfactory example, as will appear later.
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cause current to flow in a circuit be defined as the line integral around

the circuit of the tangential component of the intensity, then

M.F.~ ( fiA=
J

curl. F da ,

the last integral being extended over any surface terminated in the

closed circuit 1. However

curl /=- curl \
VJB\=~ (v,V)B ,

c c

since, in the general identity,*

curl [vJB]
= (B,V)v- (v,V)B+v div B-B div v ,

the divergence of B is zero, and v is a constant.

Suppose now, on the other hand, that circuit 1 is fixed, and circuit 2

(in which the current is maintained at its previous constant value) moves
with a velocity v. The actual physical situation, according to a simple

relativity principle, is the same in the two cases; in either instance one

circuit moves with respect to the other with a velocity of magnitude v,

and it is a mere peculiarity of the method of description which one is

said to be still and which moving. In the latter case, however, the elec-

trons of circuit 1, the forces on which are being investigated, are at rest.

Thus the motional intensity is zero, as is also the ordinary electrostatic

force, since both wires are supposed uncharged. But since the two cases

arc in reality identical, it must be concluded that there is a force, causing

the electrons of circuit 1 to move, the total E.M.F. around this circuit

being the same as before.

The expression for the total intensity must thus be amended to in-

clude a term, additional to the electrostatic and motional terms, which

will give the force on a charge at rest due to an unsteady state of neigh-

boring moving charges. Thus let the total intensity be

i (v,B]+E+E
f

,
c

where the last term, which may be called the "induced intensity," is the

* See Appendix, 4, (44).
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new additional term just referred to. It follows from the foregoing dis-

cussion that when circuit 2 moves and circuit 1 is stationary,

CE'JS = ( F4s =
J

curU F d* ,

where, as was shown above,

curl F=--(v,V)B..
c

But an observer located on the stationary circuit 1 would calculate, at

any point, a changing value of the B vector due to the moving circuit 2,

the rate of change of B being given by the expression

since the value of B is constant at any point moving, relative to 1, with

the velocity u. Thus

and

"<lB n

or

Since this equation holds for an arbitrary circuit and hence for an arbi-

trary surface, it follows that

(166) curlF--
1

-^.c of

To a large school of physicists the state of the "field" at a given point

in space has a definite and describable reality (a reality aided by certain

mechanical conceptions of the aether) apart from the nature of that

which is producing the "field." That is to say, a given value of B at a

certain point is taken to be descriptive of some condition obtaining at

that point, and the emphasis is so thrown over on to the importance of
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this condition and its description by means of B that one is not to be

concerned particularly with what has produced the value of B. One
who adopts this point of view will say that the last equation above

states that the curl of the E' vector is given by 1/c times the nega-
tive rate of change of the B vector, and will not feel it necessary to

qualify this statement at all; in particular, he will not feel it necessary to

distinguish between two cases, in which the negative rates of change of B
are equal, the cause of the change being quite different in the two cases.

Such an interpretation of the foregoing equation, however, docs not

follow from the derivation of it here given, for the B vector can be

made to change in a way not contemplated in the experiment here con-

sidered, namely, by holding both circuits fixed in space but changing the

current in circuit 2. Suppose, indeed, that the current in circuit 2 be

changed in such a way that, at a certain point, the rate of change of the

B vector due to 2 has the same value it had in the previous case, when
the current in 2 was held steady but the circuit was moved as a whole.

From equation (166) it would follow as a formal result that the value of

curl Ef would be the same in the two cases; and this result would be en-

tirely reasonable to an exponent of the theory that all one needs to know,
at a point, is the

*

'state of the aether" at that point. From the more di-

rect point of view that considers the things acting, as well as the things

acted on, it is clear that the foregoing result, if true, is remarkable and

one not to be expected; for the two cases differ in a fundamental way. In

the case of a moving circuit traversed by a constant current, it is possible

to choose an unacceleratecl set of axes (namely, a set moving with the

circuit) with respect to which the state of motion of the acting electrons

is steady, in the sense that at any point the average velocity of charge is

independent of the time. In the case of a fixed circuit traversed by a

changing current, no unaccelerated set of axes can be chosen with respect
to which the state of motion of the acting electrons is steady. This dis-

tinction might well prove to be an essential one, and it is reasonable to

suspect that the values of curl E' are not actually the same in the two

cases. It cannot be urged that it has been shown experimentally that

moving circuits and changing currents are rigorously equivalent as re-

gards induced electromotive forces. Roughly this must be the case, for

the predictions of a theory based upon this assumption have had general

experimental success; but there appears never to have been an experi-

ment of sufficient accuracy to prove that the two values do not differ

by second- or higher-order terms in such a ratio as v/c. It is very

easy to let the notation carry the burden of the argument, to neglect this
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discussion, and to hold that the value of curl E' is related to the rate of

change of B in every case in the way stated by the last equation. It is

important to point out, however, that by so doing one may be overlook-

ing something of fundamental physical significance, and it is desirable to

insist upon the potential importance of keeping in mind the auxiliary

nature of the vectors E and B, and the necessity of always going back to

the physical case. It is not the purpose of this book to revamp electro-

magnetic theory, but to try to present the existing theory in as logical a

form as it permits, emphasizing but leaving open those questions which

seem actually to be, up to the present, unanswered. Although further in-

vestigation of the point in question would seem highly desirable, the pres-

ent discussion, in accordance with the plan just stated, will be dropped at

this point, and it will be definitely assumed that equation (166) holds,

without restriction, for any case.

The foregoing considerations have led to a value for curl E''. A
similar calculation can be made to obtain the value of the divergence

of E1

'. Indeed,

However,*
div [v,B]

= (B, curl v)
-

(v, curl B) ,

so that, since v is constant,

div E' =--(v, curl B) ,

c

or, setting curl B= i=pu/c, where u is the mean velocity of the charges

which give rise to the density p and the current i,

From these values for the curl and divergence of E' and the previ-

ously obtained values for curl and divergence of E, it follows that

curf (*+*) ,

* See Appendix, 4, (43).
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Since, however, the velocities ordinarily met with are exceedingly small

compared with c=3-1010
,
the last equation can be written simply

div (E+E')= P .

It is thus clear that it is simpler to use a single vector E which will give,

in all cases, the force per unit charge on a stationary charge, whether this

force be due to stationary or moving charges. If only stationary charges
be present,

div E= p ,

curl E=
,

and E is identical with the electrostatic intensity previously discussed.

The same equations and statement hold for magnetostatics. When,
however, a non-steady state prevails,

div E p

i IP
1 dB

,uH =---,

and E includes both the electrostatic term and the new term which has

just been introduced. From this point forward, the vector E will be used

with this extended meaning.

The assumption just made has not entirely prepared the ground for a

study of the general case, for the second of the equations,

curl =--,
c

curl fi= i ,

div E=p ,

div =
,

carries with it a restriction upon the vector current i. In fact, this equa-
tion can only be true under the special condition that div z = 0, since the

divergence of a curl is identically zero. If this equation be amended by

adding a vector X so that

then X must satisfy the relation

div X= div i .
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However, for any region,

/,.
. , /". ,

totdT-Ji.d*--

so that

,. . div E
divi=--

c

Thus, substituting,

so that the most simple and most directly suggested choice for X is

x-*.
C

The revised equation thon reads

The first term on the right side of this equation is, as has been seen, due

to Ampere. The second term is due to Maxwell who, making a bold gen-

eralization based upon the hint that a changing intensity causes, in the

case of a dielectric, a shifting of charge and thus a type of current,

adopted as his definition of current a quantity which is the sum of E
and the ordinary convection current i = pu/c . The analysis to follow will

be based upon the equations obtained above, i.e., upon the four so-called

"field equations"

(167) curlfi= i+*
C

(168) curl =--,
c

(169) div = p,

(170) div = 0,

and upon the force equation

(171) F=E+
}

c
\
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The first two of the foregoing field equations are sometimes referred to as

the "circuital relations," the names of Ampere and Faraday being asso-

ciated with the first and second, respectively. The second equation is,

indeed, the mathematical statement of Faraday's law of induction. The
last equation gives the force F per unit charge in terms of the velocity

i; of the charge acted on, and in terms of the auxiliary vectors E and

B, which are to be determined, through the field equations,* from the

supposed known values of p and pu/c i.

A vector field, it will be remembered, is simply a region at every point

of which a vector is defined. Thus one speaks of the E and B fields,

meaning the totality of values which these vectors assume at the differ-

ent points of the region being considered; and the field equations, as

has just been stated, are the fundamental differential equations from

which these vectors are to be determined. The expressions "E and B
fields" and "field equations" will be used here in this sense, there being no

implication, arising through a non-technical connotation of the word

"field," of the existence of any physical reality which is being measured

by the vectors E and #.f

There is one further equation which, although it is a consequence of

the field equations, is of sufficient physical importance to warrant its

being written here as one of the fundamental equations of electrodynam-

ics. It is the equation of conservation of charge, or "equation of con-

tinuity," which states that, since no charge is created or destroyed, the

rate at which charge leaves a certain volume element must be equal to

the negative time rate of change of the total charge within, i.e.,

(172) div (pu)+p = 0.

This same principle of the conservation of charge was used to obtain

the Maxwell term E, in equation (167); and, indeed, the equation of

continuity can be obtained from (167) by taking the divergence of both

sides, and substituting p for div E.

In chapter ii, Part III, Problem 32, and chapter iii, Part III, Problem

8, it was pointed out that in electrostatics and magnetostatics the

boundary conditions on the surface between two media can be written:

a) The tangential component of E is continuous.

b) The normal component of eE is continuous.

*
Which, in a definite case, must be supplemented by boundary conditions.

fSee, in this connection, A. Einstein, Aether und Relatiintdtstheorie. Berlin:

J. Springer, 1920.
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c) The tangential component of B/n is continuous.

d) The normal component of B is. continuous.

These same conditions are assumed for the general E and B vectors.

These conditions may be deduced from the field equations themselves. *

It may readily be shownf that if EI, BI and E9 , B* are two solu-

tions of the Maxwell field equations which are regular at infinity and for

which, at a given instant, Ei = E* and Bi = B* at all points of space,

then Ei=E* and J?i=S2 at all later instants. This uniqueness proof

does not take account of the fact, which will be discovered in 56, that

the field equations imply a finite velocity of effects. Thus the values of

E and B within a certain closed region r and at a time t should fol-

low uniquely from the initial values of E and B at a time tQ not

throughout all space, but only in that region T
7

, containing T, which

contains all those points which can communicate, so to speak, during the

interval from U to t, with the points of r. A uniqueness proof which

thus takes account of the finite velocity of electrodynamic action has

been given. J

53. The Field Equations within Matter. The field equations, in the

form (167)-(170) written in the previous section, apply only to empty

space. The generalizations necessary for points within matter are easily

obtained. In the argument by means of which equations (167)-(170)

were obtained, use was made of the equations

div E=p ,

curl 5= i .

At points within polarizable and magnetizable matter, these equations

must be replaced by the more general relations (see chap, ii, Part III,

Problem 31; and equation (136), 43).

(173) div = p-divP,

(174) curl B= i+ curl M .

Now since

the first of these equations can be re-written

div = p ;

* See H. Batemun, Electrical and Optical Wave Motion (1914), p. 17.

t See Riemann-Weber, Differentialgkichungen der Physik, II (1927), 393.

t See A. Rubinowicz, Phys. Zeits., XXVII (1926), 707.
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and since

the second becomes

curl - = i .

M

Hence the argument which, in 52, generalized the equation

curl B-i

to read

., E

generalizes the equation

to read

or, using (173) and (174),

curl
c

curl =i
M

B eE
curl - =H ,

M c

curl = i+-+-+curl M .

c c

Thus, if M be a constant,

Hence, within homogeneous matter, equations (167)-(170) are to be re-

placed by

(175) curl B=M+~ ,

(176)
C

(177) div (E=p ,

(178) div B=0 .
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When the current I is a "conduction" current in a conducting body,

then

When the current i arises from the motion of charged bodies or the

motion of ions in space, the current is called a "convection" current, and

is written

-.
c

In the case of a conducting body, (175) can be written

(179) curlB=^+^/L
c c

In many important applications, the dependence of the vectors E
and B upon time is known to be sinusoidal. Thus E and B would be

equal to the real parts of the complex expressions E^e
1"* and B\.e

ltjit

,
re-

spectively, where E\ and BI are now functions of x, y, z only; and

where co, the angular frequency, is related to the period T by means of

the equation

T=-.
OJ

Then

etc., so that equations (179) and (176) become

(180)

(181) curl 1=-- St.
r

It is to be understood that, when these equations (together with [177J

and [178]) are solved, E and B are then given by the real part of the

product of these solutions with eitai
.

54. The Activity Equation. Using the field equations as an ana-

lytical basis, certain integral transformations can be made which have
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played an important r61e in the development of electrodynamics, espe-

cially in connection with the so-called
l

'dynamics" of the electron. Sup-

pose that within a region r there exist charges, giving rise to a density

p, moving with velocity u. If

be the total force per unit charge acting on these charges, then the ac-

tivity of these forces (i.e., the rate at which these forces do work) is

or, substituting the foregoing expression for F t and (107) for pU, and

noting that u and [u,B] aro perpendicular,

I
(u,PF)dr = c I (E, curl B- l

c
E\dr .

The general vector relation*

/{(, curl E)-(E, curl B)}dr = f[E, B]nd<r

furnishes, since curl E=\/cB, the equation

\(E9 curl B)dr= -J (E,B]ndff~ \(BtB)dr ,

so that, finally,

(182) ( (u,PF)dr = -

where, in the last equation, n' is an interior normal.

Having obtained this equation, one seeks to interpret its various

terms. It will perhaps be least confusing if the ordinary interpretation be

stated at once, without comment. This statement will be followed by
remarks concerning this or other interpretations.

* See Problem 1 of this chapter.
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The left member of equation (182) is the rate at which the
'

'forces

of the field" do work on the charges or charged bodies within T. The

volume integral on the right is considered to give the rate of loss of the

spatially distributed energy* within r. It follows, if the principle of con-

servation of energy be assumed, that the rate of doing work on the

charged bodies within r is equal to the total rate of loss of energy of the

field. If the rate of loss of energy of the field within T is not sufficient to

account for the calculated activity of the forces, then this deficiency

must be met by bringing energy across the boundary of r from without.

Thus the surface integral is interpreted as measuring the rate at which

localized energy flows across the boundary of r from without, there

being, on this basis, a "flux of energy" per unit time and per unit normal

area, given by

(183) S= c[E,B].

The conception of such a flow of energy was first formulated by Poynt-

ing,f and the vector S is known as the "Poynting vector." The Poyrit-

ing vector has played an important part in the development of modern

electrodynamics; indeed, H. A. Lorentz has said: "Other examples

might likewise show us how Poynting's theorem throws a clear light on

many questions. Indeed its importance can hardly be overestimated, and

it is now difficult to recall the state of electromagnetic theory of some

thirty years ago, when we had to do without this beautiful theorem.}
The interpretation just given suggests several comments. In the

first place, the present authors are not able to ascribe any significance

whatever to the phrase "localized energy." They do not believe that

"Where?" is a fair or sensible question to ask concerning energy. Energy
* See problem 9, p. 219.

t J. H. Poynting, London Transactions, CLXXV (1884), 343.

t The Theory of Electrons (1916), p. 25.

There is one situation which, in a loose sense, is an exception to the general

statement made here. Suppose one consider a region of space r which is so small that

its dimensions may be entirely neglected relative to the other dimensions under con-

sideration Then r may be said to be located "at" P, where P is any point within

r. Now suppose a configuration of charges to be located within r and suppose the

field of this configuration, however intense it may be within T, to fall off toward zero

very rapidly as one leaves r. An outside charge does not then feel the effect of this

configuration until the outside charge comes very close to i that is, until the charge
is "at" P. The energy of this configuration "belongs" to the configuration, but since

the configuration belongs to the point P, the energy may be said to belong to P, or

to be "at" P.

The theory of relativity furnishes a basis for considering mass and energy to bo
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is a function of configuration, just as the beauty of a certain black-and-

white design is a function of configuration. The authors see no more

reason or excuse for speaking of a spatial energy density than they would

for saying, in the case of a design, that its beauty was distributed over

it with a certain density. Such a view would lead one to assign to a

perfectly blank square inch in one portion of the design a certain amount

of beauty, and to an equally blank square inch in another portion a

certain different amount of beauty.*
In the preceding paragraph the phrase "reason or excuse" was used

Some readers will argue that there may be no impelling or very logical

reason for adopting a concept of localized energy, but that the excuse

lies in the usefulness of the concept. There seems little doubt that the

concept has in the past played a useful role in suggesting calculations and

developments of theory. Such of these as are, in actual fact, independent
of this concept (and this covers a large number of instances) should now
be freed of this suspicious connection. Calculations which depend es-

sentially on the concept of spatially distributed density may be retained

tentatively.

As a matter of history, the notion of the location of energy in space

was the natural result of a supposed understanding of where and how
mechanical energy is stored. But if one is really to believe that matter

is electrically constituted, it will not do to pretend to understand

"where" electrical energy is, on the basis of an illusory conception of

"where" ordinary mechanical energy is. To say that the potential energy
of a spring is "stored in the spring" may perhaps give one some comfort

essentially the same tiling. From this viewpoint, when one remarks that the concept
of location does not, in general, apply to energy, he is at the same time making a

similar statement about mass. Until recently this would have seemed heresy indeed;

but such a conclusion is in agreement with the recent viewpoint of wave mechanics.

When a wave actually pervades all space one speaks of "where" it is only when its

amplitude has markedly high values within a small region, and falls off rapidly outside

this region.

* In a book published just as this volume was going to press A. 8. Eddington

(The Nature of the Physical World, p. 103), speaking of entropy, says: "The concep-

tion of entropy .... marked a reaction from the view that everything to which sci-

ence need pay attention is discovered by a microscopic dissection of objects. It pro-

vided an alternative standpoint in which the center of interest is shifted from the

entities reached by the customary analysis (atoms, electric potentials, etc.) to quali-

ties possessed by the system as a whole, which cannot be split up and located a bit here

and a bit there" (The italics do not occur in the original.) Entropy, like energy, is a

function of configuration.
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so long as he considers the situation from the gross viewpoint of con-

tinuously distributed matter. The modern theory of the electrical con-

stitution of matter, however, recognizes this spring to be but an assembly

of electrons and protons, with comparatively vast regions of "free space*
'

between them. It is thus not possible to use the vague macroscopic con-

cept of localized mechanical energy to help one understand where is the

energy of those charges of which the spring is solely composed.
In the second place, the process of replacing volume by surface inte-

grals, and vice versa, is so familiar that one hardly need remark that

equation (182) suggests the interpretation given, rather than demands

it. This is, of course, recognized by every careful writer on electrody-

namics. In the rather extensive discussion of this theorem given in his

text, Livens presents the customary interpretation, and also an alterna-

tive theory due to McDonald, which ascribes a quite other value* to the

Poynting vector.

In the third place, it is clear that a physical interpretation of any one

term in (182) involves either knowledge or assumption concerning the

nature of the other two terms. The usual analysis, given above, is essen-

tially an interpretation of the third term, based upon a supposed knowl-

ledge of the first term, and an assumption concerning the second.

The phrase "a supposed knowledge of the first term" may seem harsh

criticism when this first term is taken as the start of the calculation, and

is deliberately set up to represent a certain physical rate of doing work.

The significance of this quantity is not, however, clear .until one states

what is doing the work in question, and in what form is the energy reap-

pearing. Suppose, for example, that the force

is calculated from the vectors E and B due to all charges, both those

within and without r. Then the middle term of (182) is the rate of change
of total electromagnetic field energy, and the usual interpretation of the

equation implies that the work being done on the charges within r is

all converted into some other form, such as chemical, thermal, or ordi-

nary mechanical energy. In fact, if the total work per second, say W t

done by the total field on the charges within r is converted, through
the action of the field on the charges, into an equal amount
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where W\ is, say, thermal in nature, while W* is electromagnetic, then

the right side of equation (182), which supposedly measures the net rate

of gain of the field, should equal W Wz= Wi, rather than W.
It cannot be said, moreover, that the nature of the middle term is

really understood apart from this equation itself. In both electrostatics

and magnetostatics, energy densities in space have, to t>e sure, been

calculated. The situation with which (182) deals is now, however, a

general one, and it is hardly to be expected that in terms of the general-

ized vectors E and B, the energy densities will take their previous

simple forms. If one asks for a perfectly general calculation, analogous,

for example, to that which indicated, in electrostatics, the value E*/2
the answer is that the derivation given above of equation (182) is pre-

cisely the requested calculation. This equation, in distinction to the

special forms found earlier, contains two terms on the right side, rather

than one; so that there is, inherently, less compulsion in the separate

interpretation of them. Some writers have attempted to remove this

difficulty by the assumption that the third term would vanish when ex-

tended over an infinitely distant surface. McDonald has pointed out*

the impropriety of this assumption.
Some of the difficulties just raised are met, if one adopts the hypoth-

esis, which will be formally introduced and discussed at a later point, that

every charge moves in such a way that the total force on it is zero, the

force due to its own field just canceling the force due to all other charges.

To understand the effect this hypothesis has on an interpretation of the

foregoing energy relation, it will be necessary to consider, in a more gener-

al way, the relation between electrodynamics and mechanics.

What is referred to as "classical electrodynamics" began its real

development in about 1825. The concepts and analytical framework of

ordinary dynamics were, by that time, essentially complete. It was in-

evitable that the new science would build on the old, borrowing its con-

cepts and its methods. Science now, however, has come to believe in an

electrical theory of the constitution of matter. Electrodynamics is now
the basic science; and in terms of its fundamental concepts must all more

special theories be stated. This ideal has, however, by no means been

realized as yet, and the basic laws of electrodynamics are phrased in

terms of concepts which properly belong to one of its own by-products.
It may eventually turn out that concepts to which the names "force,"

"mass," "momentum," etc., will be attached will continue to be used in

electrodynamics. It may, however, be that an attempt to retain these

*
Electric Waves (1902), p. 33.
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terms will be a serious handicap. To discuss the behavior of a single

charge in the language of mechanics may turn out to be analogous to an

attempt to discuss in detail the impact of two molecules in terms of

thermal concepts.*

Science has been very progressive in adopting the new viewpoint
that electrodynamics is fundamental, but it has been exceedingly con-

servative in its attempt to retain the dynamical concepts. The hypoth-

esis, referred to above, that a charge moves so that the total force on it is

zero results from acceptance of the further hypothesis that the ordinary
mechanical mass of each charge is zero. Thus a charge is admitted to be

a purely electrical entity, and what mechanics views to be its "mass" is

now explained f as the reaction with which its own field opposes its ac-

celeration. This "electromagnetic explanation" of mechanical mass is

viewed to be one of the great triumphs of electromagnetic theory. One

surely has here a glimpse of the power of the theory, but it is at best a

shadowy glimpse. The idea of mass is used to explain away mass, and the

mechanical concept of force is left, parentless, upon our hands.

The quantities with which mechanics deals are supposedly the sta-

tistical aspects of an underlying fine-grained electrodynamics. It is per-

haps too much to say that the foregoing hypotheses of the non-existence

of mechanical mass and the vanishing of total force constitute an ad-

mission that the mechanical concepts entirely collapse in the case of

microscopic electrodynamics, but these hypotheses seem, at least, to be

the last stand of the mechanical nomenclature. It is probable that we

ought merely to say that preliminary calculations, in which mechanical

concepts have been used, have indicated that each charge moves in such

a way that a certain quantity is always zero. This quantity is calculated

in a specified way from the positions and motions of all charges, and does

not, in any ordinary sense, deserve the name "force."

At various places in electrodynamics one takes up positions which,
in varying degrees, admit the fundamental nature of electrodynamical

processes. When one treats of totally uncharged bodies, a roughly macro-
* In his latest book (The Nature of the Physical World) referred to just above,

Eddington speaks (p. 75) of "primary laws" which control the behavior of individual

units, and "secondary laws" which control the group behavior of vast numbers of

individual units. He says: "It has been the conviction of nearly all physicists that

at the root of everything there is a complete scheme of primary law governing the

career of every particle or constituent of the world with an iron determinism." He
adds in a footnote the remark: "There are, however, others besides myself who have

recently begun to question it."

t The details of this argument will be found in 60.
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scopic viewpoint is satisfactory, and one deals with mechanical concepts

alone. For such bodies, in fact, the E and B fields are sensibly zero at

all points outside of a certain surface, which is therefore recognized as the

surface of the body. It is then convenient to annihilate mentally the E
and B fields at all points, and to replace the statistical electrodynamic

properties of this assemblage of charges by mechanical properties. Thus

the mechanical mass of the body is the gross evidence of the individual

reactions, on the charges, which result from a change in their state of

motion and hence in their fields. The mechanical elastic properties of the

body result statistically from the electrodynamic interactions when the

relative configuration is altered, etc.

If bodies are charged, it is customary to use both mechanical and elee,-

trodynamical concepts. When, however, a single charge is under con-

sideration, the nature of the problem indicates an exclusively electrical

viewpoint and only electrodynamical considerations should enter.

Thus, whenever one discusses the force on charge due to all charges,

this "force" is zero if all actions are being recognized as electrodynamical.

If one considers a non-vanishing force on charge due to all charges, he

thereby discloses that he is viewing as mechanical some of the actions

involved. He is, by virtue of his viewpoint, splitting up the total zero

force into two equal and opposite portions

one of which, Fe , he recognizes as electrical, and the other of which,

Fm, he calls mechanical.

It has been seen above that it is not possible to discuss such an equa-

tion as (182) intelligently unless one states where energy is coming from

and in what form it reappears. In the light of the remarks just made,
this means that one must, before interpreting such an equation, tell more

about the charges or charged bodies under consideration so that it will

be clear by inference, if not otherwise, what particular mixture of electro-

dynamics and dynamics one is using. Otherwise the situation is similar

to an attempt to discuss the energy relations when two bodies are rubbed

together without saying whether the point of view is microscopic (so

that heat motions of the molecule are recognized as contributing to

mechanical energy) or macroscopic. For example, if, in (182), the left

side be admitted to be zero, then all actions are electrical and all energies

electrodynamical. The zero value of the right-hand side of the equation

then is interpreted through the theorem of conservation of energy as
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saying that the gain in energy of the field within r must be accounted

for through the flux of energy into the region across its bounding surface.

If, on the other hand, the left side of the equation is claimed to be non-

vanishing, this claim carries with it a completely different point of view.

The non-vanishing electrodyhamic force Fe is equal and opposite to a

force Fm now being called mechanical. Thus the work done by the elec-

trodynamic forces is equal to the work done against the mechanical

forces. The left-hand side of (182) thus must measure the amount of

energy which is being converted, per second, over into a form not recog-

nized as electrical.

These considerations remove the formal difficulties in the interpreta-

tion of (182) so long as only the total field vectors enter. It remains to

see whether similar interpretation be possible when partial field vectors

are involved in the energy relation. It follows from the linearity of the

field equations that any partial field EI, B\, due to a partial group of

charges which give rise to the density pi, satisfy the field equation with

pi written in place of p. Then just as above

where FI is the force due to the group 1 of charges. If the group 1

consists of a single charge e\ moving with velocity t/i, this equation

takes the form

(iMiFO = -\

or, from the hypothesis that the total force on ei is zero,

+~
|j

(El+Bl)dr+
cj

[^Alnder ,

where F2 is the force due to all other charges. This equation is then

normally interpreted to mean that the rato at which the external forces

(the forces due to all other charges) do work on ci is equal to the rate

of gain of the energy of e\ 's field within r, plus the flow out through the

bounding surface of r of energy associated with the field of e\. Further

discussion of the activity equation will be found in the conclusion to this

chapter.

55. The Maxwell Stresses and Electromagnetic Momentum. The

preceding section has dealt with the flow of localized energy into a region
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r. The force on the charges in T is due to the action of charge both

within and without T, and the "medium" theory introduced by Max-

well, since it does not recognize action at a distance, interprets these

forces in terms of stresses in the medium. This interpretation results

from a transformation of the expression

084) F= Cp\E+
l

[v,B]\dT,
Jr I

C
J

for the total force on all the charges within T. Using the relations

p = div E and pi;
= curl BE/c, equation (184) may be written

F= f
{

E div +[curl B, ]-* [E,B]
j

dr
,

or, adding and subtracting the term,

= l

\E,B\-(E t nir\E},
C

and adding, for the sake of symmetry, the term B div =0, the expres-
sion for the total force takes the form

(185) F=
j {E div E+B div 5+[curl , ]+[curl 5, B}}dr-~ Csdr .

The first of these two integrals can be transformed into an integral

extended over the surface of T. The form of the terms containing E
and B being the same, the calculation will be carried through only for

those containing E. In fact, if the ^-component of

f{EdivE+[cur\E,E]}dr

be written out at length, and the terms rearranged, the result is:

f{/ dEx dEv dE,\ / 3EV 3EX

J 1^' te-* te-& dx)
+ '

2 ^ W-i
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or, by partial integration,

= f I
*

(fV-El-E*) cos (nx)+E$v cos (ny)+EIEx cos (nz)
J

d*
,

= rijSfJ&oos (na)+J0irCOB (ny)+A\ COB
(iw)J-^

(Ifc+AVMB) cos (we)
j

da
,

{2ExEn-Ez cos (nz)}d(r .

Thus, writing the similar terms in B, and returning to vector form,

(186)

where n is a unit vector in the direction of the outward drawn normal

to the bounding surface of r. In the case of a steady state of current

distribution, the volume integral vanishes. The average value of the

volume integral would also clearly be zero when the field vectors are

periodic functions of the time. In either of these two instances the force

is given by the surface integral only, and is expressible in terms of

stresses,* known as the "Maxwell stresses," exerted across the elements

of the surface of r by that portion of the medium which is without.

The stress across an element of the surface which is normal to the axis

of x is, for example,

J [2ExE+2B JCB-(E*+B*)x
f

] ,

2t

where xf
is a unit vector in the ^-direction, so that

(187)

(188)

(189)

the other three components of the stress being obtainable from these

by cyclic permutation. A more detailed investigation, based upon more

* For a short discussion of the customary method of specifying the stress at a

point within an elastic solid, see Jeans, Ekctridty and Magnetism (1911), p. 142.
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general assumptions as to the character of the medium involved, fur-

nishes the result* that in the case of a homogeneous but anisotropic

medium and a steady state of currents, the force on the changes within r

is again expressible in terms of stresses exerted across the boundary of T,

this stress having the nine components

u- 2l)+EJEfa- 31)
-E&fa+ 32)]

,

Thus, in the case of an anisotropic medium the stress system is not of the

ordinary mechanical type, which is always self-conjugate that is, in

which Xy
= Yx ,

etc. In the case of a non-hopiogeneous medium further

terms enter, such as, for example,

B2 dr .

Therefore, only provided the second integral of (186) vanish and only

in the case of a homogeneous isotropic medium can the force on the

charges within r be attributed to an ordinary stress system such as exists

in an elastic medium in equilibrium.

To obtain an interpretation of the volume integral

suppose that the region r is infinite, but that all the charges are con-

tained within some finite region within r, and suppose that a steady

state exists. Then since the steady-state vectors E and B each vanish

at infinity as 1/r
2

,
the surface integral in (186) vanishes. If this steady

state could then be disturbed in any way, the surface integral would

retain the value zero for an infinite time, since the altered values of E
and B are propagated outward at a finite velocity c. Under these cir-

cumstances the total force F on all charges would be given by

-if*--
* G. H. Livon8, The. Theory of Electricity (1918), pp. 591, 592, and 200.
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or by

(190) F=-^'
if G be defined by the equation

(191) G=

the integral being extended over all space. If the total force F act to in-

crease the mechanical momentum M of the charged bodies present, then

'-"dt '

so that

(192) -~(M+G)=0.

The vector G is called, following Abraham, the "electromagnetic mo-

mentum vector,
" and equation (192) thus states that the sum of the

mechanical and electromagnetic momentum is conserved. The viewpoint
furnishes a more complete interpretation of equation (18(>). In fact, the

force exerted across the boundary of T is considered to be used partly in

increasing the electromagnetic momentum within r\ the remainder,

namely,

-j Cs

is available to act upon the charges or charged bodies present. The con-

cept of a spatially distributed electromagnetic momentum demands, as

has been pointed out by Lorentz,* an exceedingly great "density" for

the hypothetical medium or "aether." The discussion of the previous

section applies directly to the obvious questions involved in this view-

point. f For example, the relation

dM

*Op. tit., p. 31.

t Livens, The Theory of Electricity (1918), p. 592; Abraham and Foppl, Theoric

der Elektrizitat, II (1918), 28; Richardson, The Electron Theory of Matter (1918),

p. 216.
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is true only provided the force F is engaged solely in altering the ve-

locities of mechanical masses, and not at all in doing work of a purely
electrical character. Even if, however, the concepts of an energy flow,
of stress in the medium, and of an electromagnetic momentum should

turn out to be, from a strict point of view, mere figures of speech which
themselves become vague when closely examined, still they are impor-
tant historically and because of the possibility of their indicating the

first rough approach to new bits of theory. They should be retained as

long as any advantage re-

mains in their picturesque

suggcstiveness, and should

then be discarded without

surprise or reluctance.

As an example illustra-

tive of the use of the con-

'I*-AX

FIG. 50. The radiation pressure on a per-

fectly black and absorbing plane disk of area A.

cepts of aether stresses and

electromagnetic momen-

tum, consider the problem
of determining the pressure

exerted on a perfectly

opaque, perfectly black, plane disk by a beam of light. Suppose that

the disk is of area A, and is normal to the z-axis, and that the beam of

light also has cross-section A , is plane polarized, and is traveling in the

^-direction (to the right). The electromagnetic theory of light will not

be discussed here. It is only necessary to know that such a plane-polar-
ized beam as is here considered is represented by the equations

(193)
y
= a cos w(tx/c)

9
= a cos a>(tx/c)

Let the disk be contained in a flat volume r whose ends are of area A
and parallel to the disk, and whose sides are of vanishing length A,r. In

computing, by means of the Maxwell stresses, the force on all the charge
within this volume r, it should be remembered that, since the disk is

perfectly black, there is no reflected light and the field to the left of the

disk consists only of the incident light (193); while since the disk

is perfectly opaque, the total field to the right of the disk is zero.

Moreover, since the expressions (193) are periodic, the average value is

zero for that portion of the total force which is due to the volume term
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in (186). Therefore the force on the disk can "be found by considering

the Maxwell stress across the left face of r only. From (187)-(189)

Xx
= -~ [cos

2 w(-z

This last expression is the force exerted by the region on tho positive size

of a surface normal to the x-axis. Thus the force exerted by the region

to the left of the left face of r is, indicating average values by means of

bars,

[cos
2
co(-x/c)]

since the average value of the cosine squared is one-half. There is, thus,

a normal pressure on the disk of magnitude dr/2. Since the total electro-

magnetic energy, per unit volume of the incident field, is, on the average,

it appears that the pressure on the disk is numerically equal to the aver-

age energy density in the incident beam.

This same result can be obtained by means of the concept of electro-

magnetic momentum by supposing that, at a certain instant, the source

of the beam of light is removed or destroyed. Then the rear of the beam

of light (that is to say, the plane to the right of which the field is given

by [193] and to the left of which the field vanishes) advances to the right

with the velocity c. The total electromagnetic momentum is decreased,

each second, by the amount contained in a parallelepiped of length c

and cross-section A; or, since the momentum per unit volume within

the beam is given by

278



THE MAXWELL FIELD EQUATIONS &*fi

by an amount

cAa? cos2
g>( .r/c)

c

Since the total momentum is conserved, the average value of this expres-
sion measures the average increase per second of mechanical momentum.
The total force on the disk is therefore x'Aa?/2, and the pressure caused

by the light, a2
/2 as before. This so-called "radiation pressure" has

been experimentally measured by Lebedew,* and later, checking the

result just given to within 1 per cent, by Nichols and Hull.f

Although this result can be obtained, as above, by the use of stresses

in the medium or by the notion of an electromagnetic momentum, never-
'

theless it is quite clear that it can be obtained directly from the equation
(184) for the total force, without any necessity for interpretation of the

various terms on the right side of that equation. Indeed, the fact that it

can be so obtained would seem to be, in the last analysis, the only justi-

fication:]: for the two calculations given above.

56. The Solution of the Field Equations for Free Space: the Wave-

Equation. It is required to determine the electric and magnetic vectors

E and B through the field equations (167)-(170) of 52. It will be- as-

sumed, as an initial condition, that the charges which give rise to the

density p and whoso field is to be determined were at rest in a finite

region of space until after a time t, the field having been electrostatic

up to that time. The equation of conservation of charge is, of course, to

be satisfied at all times.

In this general case, just as in the restricted case of magnetostatics,
the equation div #= indicates the assumption of a vector potential A
satisfying the relation

Us curl A .

It follows from substitution in (168) that the vector E+A/c has zero

*P. Lebedew, Ann. Phj/9., Scries G (1901), 436.

fE. F. Nichols and G. F. Hull, Astropfn/sical Journal, XVII (1903), 315; Ann.
Phys., XII (1903), 225.

J I.e., the only theoretical justification; the final result may, of course, be tested

experimentally.

For a detailed study of the radiation pressure on a perfectly absorbing disk see

W. F. G. Swann, Philosophical Magazine (7th ser., 1926), I, 584. He considers par-
tial fields, the momentum associated with the field due to the disk itself, as well as
forces of non-electromagnetic nature.
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curl, so that* this vector can be determined from a scalar potential 3>,

or

(194) E^-VQ- 1
A.

c

The assumption of an electrostatic condition up to time gives rise to

the following initial conditions on <t> and A:

If the expressions for A and <f be introduced into equations (167) and

(169), each of the resulting equations involves both $ and A, viz.,

(195)
-V2A+V div -4= - V*-

2
A+ Pu ,

(196)

However, only one essential characteristic of the vector potential A is

controlled by the relation # = curl A, and, since it is possible{ to specify
the divergence of this vector without in any way affecting its curl, it is

natural to assume such a value for the divergence MS will simplify tho

problem by separating the potentials. The assumption

(197) div4=--cb
c

* See Appendix, 6, D.

t The notation used here for the scalar and vector potentials is justified by the

fact that these potentials are direct generalizations of the scalar and vector potentials

previously used in electrostatics and rnagnetostatics.

t See Appendix, 6, C, and the paragraph at the end of b
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accomplishes such a separation. Equations (195) and (196) then be-

come, in fact,

(198)
c-

(199)

Conversely, if solutions of these equations are obtained, the resulting

vectors E and B will satisfy the field equations (167)-(170) provided
that 4> arid A satisfy (197). However, adding the divergence of (198)
and 1/c times the time derivative of (199),

(200)

where

Also, from the initial conditions,

(201)

It will l>e shown later that these conditions force W to be identically.

zero, so that the solutions 3> and A of equations (198) and (199) and
the initial conditions also satisfy the condition of connection (197). The
vectors determined from the solutions of (198) and (199) therefore satis-

fy the field equations.

The problem of obtaining E and B is thus reduced to the equiva-
lent problem of obtaining $ and A from (198) and (199). These last

two equations are of the same analytical form, the right member being a

known function in either case. Any equation of the form

is called a "wave-equation," homogeneous or non-homogeneous accord-

ing as x is or is not zero. Such an equation is met with in a study of the

propagation of waves along a string, of longitudinal waves on a rod, of

sound waves of small amplitude, and, in fact, in any problem in which the

disturbances are propagated with a constant finite velocity. Since the
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two wave-equations above are analytically similar, attention will b6

directed to <I>. The problem* may be reduced to one of two independent

variables, in the manner of Poisson, by the introduction of a function U
defined as

(202)

where the integration is taken over a sphere of radius r about the point

P at which the potential 4> is to be determined, dcr = r2d<o being the

element of area. It is clear from this definition that U vanishes for

r = 0; namely,

(203) 17(0,0=0,

and that, from the initial conditions,

(204)

(205) t/2(r,fo)=0,

where the subscript 2 denotes the differentiation of U with respect to

its second argument. If U be found, the value of $ at the point in

question is given by

(206)
I'2 = hni

where the subscript denotes differentiation of C7(r, t) with respect to its

first argument.

Multiply (199) by 1/r and integrate each term over the surface of a

sphere of radius r about P. Then

or

* M. Abraham, TVteorie dr ElektrisiW, II (1918), 39.
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However,

j
r*dr

I
V2$do>=

j
72

<S>dr =
j

div V$dr=
J |

*
d<7= r2 ~

J
$dco

,

where the integration is throughout the volume and over the surface of

a sphere of radius r, dw being an clement of solid angle. Hence, dif-

ferentiating with respect to r,

!
V2

<Mo=;f r2 f I 4>do>

J dr drj

or

r ..

, _i r 2
a2 r ? r

V >a)
~rj

"~ r

dr*J
"

6rJ
"'

ii r
Vf y

-Un.
oi~ Tj

Hence

Abraham has applied a method of Riemann for the determination of U
and thus of <i>. His analysis is, however, unnecessarily complicated, for

it is not necessary to find U itself, since, according to equation (206),

the potential < is determined by f/i(0,2), i.e., by the value at r= of

the derivative of U with respect to r.

The differential equation (207), holding for all values of its argu-

ments, remains an identity in r and t when tr/c is substituted for t, i.e.,

where {p}, the so-called "retarded value" of p, is given by

{p\=p(x,y,z,t-r/c) .
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Now

-tfii-jat/a.

Consequently integration of the foregoing equation with respect to r

from r= to r= c( Jo) gives

or

(208) l/,(c(t-<o),<o)-t/ 1(0,0+ tfi(c(t-<o),<o)- t/i(0,0

-f
Jc(l-t*

the last integral on the right being extended throughout the interior ot a

sphere of radius c(t U).

From equation (204), which holds identically in r, it follows on

differentiating with respect to r and substituting c(t t) for r, that,

writing d<r = r
2
rfw

,

The third and fourth terms of the left member of equation (208) vanish

on account of the initial conditions (205) and (203), respectively, so that,

using (20G),

c(t-M

It has been assumed that the initial potential
< due to the charges in

question was, until after the time to, the electrostatic potential due to

these charges, which were confined to a finite volume of space. This

potential is consequently regular at infinity, so that, however large r

becomes,
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where / is a finite number. If then the initial time to be allowed to ap-

proach oo, the equation results,

(209) 4> =

the integral being taken over all space.

In the same manner the equation

(210) A =

is obtained.

It follows as a result of the unique integral representation that the

function

mentioned above, is identically zero, since it satisfies the homogeneous

equation

and the initial equations

The required equation of connection between the potentials <I> and A is

thus satisfied.

57. The Retarded Potentials. In the discussion which is to follow

it will be convenient to denote by t\ that particular instant of time at

which the value of <i> or A is desired. It is clear from the solution given
above that the value of the scalar (or vector) potential <J> (or A ) at a

point and at a time t\ is to be obtained by summing, for all volume

elements dr of space, l/r times the value which the function p (or pu)

had at these volume elements at times tr/c; these times being earlier

than ti by' just such intervals as would be sufficient, in the case of each

volume element, to permit a disturbance arising at dr at time tr/c
and traveling with velocity c, to arrive at at time fe. It is thus clear

that if the charges producing the potential are all located within a mov-

ing region V with respect to which they are stationary, then the region of
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space which furnishes non-vanishing contributions to the value of <f> at

time ti does not coincide with the position of V at that or any other

instant. A simple example will make clear that there will be points with-

in V at which the retarded p vanishes, and points without V at which

the retarded p does not vanish. Thus, suppose, in a problem involving

only two dimensions, that V be a rectangle of length 6 moving with

speed v directly toward the point O at which < is desired; and sup-

pose that within F, p has

/ the constant value po. Then
the retarded value of p at

a point P (see Fig. 51) is p

or zero according as

o

where a is the distance, at

time t, from to M, the

FIG. 51. The effective shape of a rectangular midpoint of the front face

charged area moving with velocity v toward o. of V; and where X, y are the

co-ordinates of P referred to

M. It is then easily calculated that the front and rear faces of the effec-

tive integration region are portions of hyperbolae whose asymptotes

have, to a second-order approximation in v/c, the slope c/v; and
whose vertices are displaced behind the corresponding faces of V a dis-

tance equal, in each instance, to v/c times the distance of that face from
0. Thus the "length" of the effective integration region, namely,

is greater than the length b of V. The effectiveness of the charge in

producing potential at is thus increased by virtue of the motion of the

charge toward 0, and would be, conversely, decreased if the charge
moved away from 0.

This simple example indicates that the calculation of the retarded

values of p would be, in a more general case, somewhat difficult. But
in any case where the charges under consideration are stationary with

respect to a moving region 7, an alternative interpretation of (209)
leads to a method of calculation which is often more convenient. For the

sake of clearness in the presentation of this new viewpoint, it is useful to
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refer to points within V and fixed relative to V as "material" points,

to distinguish these moving material points, at which the density of

charge is independent of t, from the fixed and purely geometrical points
of space. The point at which the potential $ is being calculated will

be located for convenience, at the origin; and <I> will be calculated at the

instant t } . In the discussion above, the reciprocal of r, the distance to a

point P y
has been associated with the retarded density at P. The al-

ternative viewpoint is based upon the observation that it is equivalent,
in the case under discussion, to associate the reciprocal of r

t the distance

to P, with the value which the density has, at time t ti, at a material

FIG. 52

point PI which was at P at time =
i r/c; for the density at PI is

the same as the density at P at t=*tir/c. The points P are the re-

tarded positions in space of the material points PI, since a.disturbance

arising at P when PI was there arrives at at the instant U under

consideration. To take advantage of this viewpoint, it is only necessary
to transform the expression for <I> so that the integration be performed
with respect to the co-ordinates of the material points PI rather than

with respect to x, ij, z, the co-ordinates of P; for then the integration

will be extended over V itself.

Let
, 77, f be the co-ordinates, at the instant t tiy of a certain ma-

terial point Pi of V. Each material point of V can be identified at this

or any other time by the fixed values
, 77, f characteristic of that point.

The co-ordinates of a material point of V at any other instant t clearly

depend upon what material point of V is under consideration (i.e.,

upon {, TJ, f) and upon t. Thus, let the co-ordinates at time t of the

material point PI(, TJ, f) be
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so that the co-ordinates of P, the retarded position of Pi(f,rj,f), are

(211)

where

r= ti-r/c ,

These equations give the analytical relation between the co-ordinates

of P and PI which enable one to introduce
, 17, f as new integration

variables in (209), namely,

= n/>u= r<^ rfr= r %g*^ .

J r J r J v r
d (,*!,)

d(x,y,z)

The Jacohian occurring in the denominator may be readily calcu-

lated. In fact, differentiating the first equation (211) with respect to x,

] = d/a$ a/ ^ a/df -ar

a$ dx^drj dx"*"dt dx^
J dX

'

From this, and the eight similar equations obtained by differentiat-

ing (211) with respect to x, y, and 2, the partial derivatives

M aj af drj af
dx

'

~dy' ~dz' dx' '

dz

may be calculated in terms of the quantities

a/ a/ a/ dg dh

ar a^ ar ar ar

Any one of these latter quantities, as, for example, a//a , may be

expanded as a Taylor's series in the neighborhood of the value t-ti.

Thus

ar \d

Since, however, the equation

-/iA
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holds identically in , 17, f ,

Also

so that

Similarly,

df\ __

Thus, from the nine linear equations indicated above, one calculates

the partial derivatives which enter the required Jacobian, each of these

derivatives being given as a power series in r/c, the coefficients in these

series involving the spatial variation, relative to the body, of the com-

ponents of velocity, acceleration, etc.

If the region V be moving with constant velocity w in some direc-

tion, say -that of the a>axis, then

and

(*f\ -i (*f\ -o (
df

\ -0
U/i-r lf UA-r' WA-r

etc. Then

so that
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/
} '

dy cr
j

* functional determinant has then, for this case,

l+o
l

abc

where

l+o
a

1

the value

i* l
b

i 1

Thus

The quantity within the brackets is the component of the velocity
of the material point Pfa 77, f) in the direction from to P, taken
at the retarded time T =

*J
r/c, i.e., it is the negative of the retarded

radial component ur of the velocity of Pi($,ij,f), if this radial compo-
nent be reckoned positive from PI to 0. Thus

This value for the functional determinant has been derived under
the assumption that the body has a constant velocity in the ^-direction.

However, if the body moves so that

a+

where w,a t
. . . .

,
are the velocity, acceleration, . . . .

,
in the ^-direc-

tion, the foregoing calculation is unchanged. If the body rotates as it is
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translated, on the other hand, the functional determinant has the more

general value, to be calculated as indicated above.

In changing the variables of integration in the expression for $, it

should be further noted that

where r(x,y,z) is the distance from O to P, and r({,?7,f) is tho dis-

tance from to PI. Finally, then,

(212)
1- '

c

It should be remembered that this equation gives the value at and at

time h, of the potential <b due to a configuration of charges which, con-

sidered as a whole, has rigid body motion of translation with no rota-

tion. The quantities , ry, f , r, and ur specify (at the time ti) the posi-

tion with respect to O, the distance to 0, and the radial component of

the velocity, respectively, of a material point within this moving con-

figuration. It may be, at first sight, doubted whether this expression is

more simple than (209), especially since the integral has not been freed

of retarded quantities. But in the new expression (212) the dependence

upon time of the quantities which are retarded is explicitly expressed.

To obtain the retarded quantities in a specific case it is only necessary
to solve equations (211) for x, y, z in terms of

, 77, f and substitute

these values in

{u,}
= -^ f(T,S,ii,()~fa

<Kr,,T7,f)-
{ *j

AO-,^) .

In making the analogous transformation of the integral which gives

the vector potential 4, one new consideration enters. The vector func-

tion u cannot be treated as was the scalar function p, since it is not

true that the velocity at the point P at time T ti r/c is equal to the

velocity at PI at time t\. Since, however, the material point /Mf,r?,f)

was at P at the time r, the velocity at P at time r is simply the

velocity, at time r, of the material point P\(%, rj, f), i.e., it is equal to
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Denoting this quantity by {i/}, it follows, the other details of the trans-

formation being identical with the former ease, that

It should be carefully noted that the identification of the density at

PI at time t\ with the density at P at time T is true only for rigid

body motion, so that the resulting formulas apply only to such motion.

58. The E and B Fields Due to a Moving Configuration of Rela-

tively Stationary Charges. By means of the relations

5 = curl A ,

and the expressions (209), (210) or (212), (213) for the retarded poten-

tials $ and A, the field due to any system of charges moving with

rigid body motion can be calculated.* The integrals (209), (210) and

(212), (213) give the values of <f> and A at the origin. Before differen-

tiating 3> and A to obtain B and E, it is necessary to modify these

integrals so as to bring into explicit evidence the co-ordinates upon which

f> and A depend. Let the values of $ and A be sought at the point

X, y, Z and at the time t rather than at the origin at the time t\. Then

clearly

(214)

(215)

where now

* There are, of course, restrictions on the use of (212) and (213). These restric-

tions were met in connection with computing the Jacobian in 57.
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It will also be recalled that

The expression for {r} has been written so as to be consistent with the

definition

{r}=i(X-x)+j(Y-y)+k(Z-z) .

This vector points to X, 7, Z from P(x,y,z), the retarded position of

the material point ,rj,f . The definition is chosen thus to conform with

the previous definition of {n,}, the component of {u} in the direction

of {r}. In the discussion which follows the braces will be omitted from
the expressions {u}, {u,}, and [r}, and it will be understood, wherever

u, u, y
and r occur, that the retarded values of these quantities are to

be used. No confusion can arise from this convention since only retarded

values of u and ur occur, and since a different notation will be intro-

duced for the distance from ,^,f to X, Y
y
Z when this unretarded dis-

tance occurs.

The equations just given form the analytical basis for the calcula-

tion of E and B. In differentiating with respect to X, for example, it

must be noted that x, ?/, z are functions of X, Y, Z, since x, y, z are

functions of r, which, in turn, depends upon X, 7, Z. That this must
be so is clear physically since x, y, z are the co-ordinates of the retarded

position of the material point ,r?,f ;
and the retarded position obviously

depends on the point X, Y, Z with respect to which the retardation is

carried out. Since the equations involved are rather long, it will be con-

venient, at certain points, temporarily to replace x, y, z by x l (i
=

1,2,3) ;

X, Y, Z by X,; and /, g, h by /,. As just stated, x l are functions of

Xi,
m in fact,

dxb . dr

whereas

cr
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or, substituting from the previous equation and solving for

dr _-(Xj-Xj)

thus, introducing the abbreviation (1 wr/c)=T,

dr -lY.-arQ

With these preliminaries disposed of, the,calculation of E and B is

easily accomplished. In fact,

curl i

i C ipl==

47cJ
CUr1 ^

the differentiation under the sign being unquestionably legitimate so

long as X, Y, Z is not within the region of integration. However, v

being a scalar and V a vector,

curl K=u curl V+[Vv, V] .

Hence

Now,
d

'

d
CUrl Y U = Vy ^(r>>*?>f) ^v 00",<;,l?,f) >

*\ *\ i n r/

/,"

"r_" ^r " ^"~ g
I'

1 r. ,

where fi is a unit vector in the direction of the retarded vector r. Thus

curl u =
-^ [ii,ri] .

Turning now to the second integral in the expression for B,

1 111-1 1 - 1 V#
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But, from the definition of H,

- -7 v
L I

i

Therefore, substituting,

V + V z^'-*0

Now

4.
2 r3//

so that

v i=_ -

r

Also

so that
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Hence, finally,

1 TI TI(TI,U) TI(U,U) . u
V ~ILf ..or/a ^9~rjA i

and

\v !

L r//'

Substituting this value, the value of 5 is given by

f9irv> a- l

(216) B-

To avoid confusion when reference is made to this important equation,

the braces are written in the integrand to indicate that the retarded

values of u, ii, r, fi, and H are to be used. To carry out the integra-

tion in a given case, it would be necessary to eliminate the variables

r, x, y, z from the integrand, and express it as a function of X, Y,

Z, t and the parameters of integration , ry, f . This would be accom-

plished by solving equations (211) for x, ?/, 2, r in terms of
, 77, <f,.Y, 7,

Z, t and substituting.

In the analogous calculation of E only one new point arises In dif-

ferentiating A with respect to /, it is necessary to note that x, y, z are

functions of t. In fact,

dt

whereas

or, substituting from the previous relation and solving for dr/dt,

dr_ 1 _1
w
~l_lv/ (X,-xj~H

9

Thus,

dii . dr u
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The other details of the calculation are entirely similar to those just

given, and it is found that

2-
(11,11)]

(217)

59. The Field of a Uniformly Moving Point Charge. The general

formulas just found give the field due to any system of charges moving
with rigid body motion. Certain special cases which come under the

foregoing formulas will now be discussed. Consider first a single

point charge e moving with

uniform speed w in the

^-direction. For a point

charge (or for an extended

charge provided the dis-

tance to the point X, l
r

,
%

is large compared to the di-

mensions of the charge) the

quantities in the brackets

in (216) and (217) may be

removed from under the

sign of integration, the in-

tegration of p then giving

simply the total charge e.

In the case of an extended charge the approximation involved in thus

removing from under the sign the terms involving r (the retarded dis-

tance to X, Y, Z from the various portions of the charge) can be defi-

nitely estimated, in any given case, by expanding the integrand in a

power scries in r
,
the distance to X, Y, Z from the retarded position

of some one definite point of the charge. In the case here considered,

since ii = 0, u = w,

|w

KHJ. 53. A point charge moving with ve-

locity w. PI is the instantaneous position of the

charge, and P the retarded position, relative to

the observation point O.

w

(218)
r*H* r3//3

where ft is the ratio of the velocity of the charge to c, i.e., where

w
-

c
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Now (see Fig. 53),

where R is the unretarded vector to X,Y,Z from PI, the position of

the charge at time L From the figure,

so that

Also

SfO= /2 cos

But, from the triangle P PI ,

sin
}j/ c

so that

sn

Thus,

*

where the value of the vector E at time t is now described entirely in

terms of the position of the charge at the same time t. It is important
to note that the magnitude of E varies inversely as the square of the

distance from the charge.

In just the same way, from (216)

(220)^ '
4TC

-|8
8
) [w,r]

47TC

But, since wr/c+R= r ,
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so that

B= (1-P) [w,R]

The electric vector E is thus, at any instant, directed from the charge
toward the point at which E is being measured, while the magnetic
vector B is normal to E and to the velocity of the charge.

The moving charge in question would exert a force of

F=E+-[w,B\
c

per unit charge on any other charge which also has a velocity w, so that

the two are fixed relative to each other. From the expressions just found
for E and B it follows that

However, introducing the co-ordinates X,Y,Z of the point at which
the force is being determined, and taking, for convenience, tho origin of

co-ordinates for X,Y,Z at PI, the position of the charge at time t,

so that

(222) rff=Kl/l-/32 sin2

It is then readily seen that the three components of the force F are the

negative partial derivatives with respect to X,F,Z of the scalar function

(223) e=

That is,

(224) F=-V
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This function
,
which is called "the convection-potential," plays a

role in the case of a charge moving with constant velocity which is

analogous to the role played by the electrostatic potential in the case of

a stationary charge.

60. The Field Due to a Uniformly Moving Extended Charge. Sup-

pose now that the charge whose field is to be determined moves with

uniform velocity w, as in the previous case, but is not small enough to

permit the identification of the distances from X
t Y,Z to its various

points. It will be remembered that ,r?,f are the co-ordinates of the

material points within the charged region at some definite time, and it is

convenient, for present purposes, to choose for this definite time the

instant t at which the values of the field vectors are desired. Then the

vector from the volume element d dy rff (located at ,rj,f) to the point

X,Y,Z has scalar components X ,
etc.

; and, just as was shown above

in equation (220),

rH=R\ l-jpsin2 *=l (Z-

the modification in the last expression arising from the fact that PI is

no longer the origin of co-ordinates for X
y Y,Z. The expression for 4> is,

thus, from (214),

^ =
1 C_____P(^)^M

7
'

'

lmH
(

i-I$+(
x-&+(

Now if new variables Z' and f' br introduced, according to the relations

z=\ Y-pz' , r-i'i^f,

the integral becomes

1 C p(

47rJ \(X-

This, however, is the expression for the electrostatic potential at a point

X,7,Z' due to a charged volume which is obtained from the instan-

taneous volume, occupied at time t by the actual charge in question, by

stretching this actual volume in the Z-direction in the ratio 1:1/1 2
.
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The charge density at corresponding points in the actual and fictitious

stretched volume is, as the integral now stands, the same; so that the

total charge in the fictitious stretched volume is larger than the actual

charge in the ratio 1 : 1/1 fP. Thus if a new volume density p' be de-

fined by the equation

the total charge in the fictitious volume is the same as the actual total

charge, and the fictitious distribution of charge would be producible by
an actual stretch of the actual charge. Then

(225) <!>
=

,,

1/1-jS1

where

(226)

It is in no wise necessary, and from one point of view is unfortunate, to

introduce the density p^ The relation (223) would be simpler if the

original density p(,T7,l/l
2
f') were retained, since the factor 1/1 2

would then not be present. The only possible advantage of introducing

p' is that then the fictitious distribution is producible by an actual

stretch, holding the total charge constant, of the actual distribution

This in itself may easily be, however, a disadvantage, since it tends to

conceal, rather than emphasize, the fact that the stretched configuration

of charge is purely fictitious, and is introduced for purposes of mathe-

matical convenience.

It follows at once from (215) that for the case here considered of uni-

form velocity in the Z-direction,

(227)

It has thus been shown that the scalar and vector potentials at a point

X,Y,Z due to the moving charge can be obtained by calculating the

electrostatic potential of a fictitious distribution of charge which i*
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obtained from the actual instantaneous distribution at time t by stretch-

ing in the Z-direction in the ratio 1:1/1 /3
2

, holding the total charge

constant. It is evident from an inspection .of (226) and (227) that the

moving charge carries its field with it, i.e., that $ and A have values

independent of the time at points which move so as to be fixed relative

to the moving charge. It follows directly from this that, for example,

or

(228)
..--r II)

et
w

dZ '

since the first of these two equations expresses the total increment

Az experiences in moving from a given point to the position which this

point would occupy, after an interval At, if it moved with the charge.

The components of E may be written at once as

(229) dY BY '

i dAz

'dZ'

the relationships (227) and (228) being used in obtaining the value ot

EZ- Also, from

(230)

_
dY '

Bz =0.

The Poynting vector S and the electromagnetic momentum vector G
can now be written at once in terms of the function $'. Since by defi-

nition

S=c[, B\ ,
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it follows that

(231)

and writing dr
f = dXdYdZ' = (1

(232)

a*' a*'
AY A ? I '

(/A Q&

dY dZ1 '

a<t>vi

aTJ J
'

i r o v

-J 'Szdr=^TT^

where the integration is carried out over all space.

A calculation equivalent to the foregoing has been used by various

writers to investigate what properties of the elementary charge, an elec-

tron, follow from various assumptions concerning its shape. Thus Abra-

ham* considered the case of a very thin spherical shell of charge, or what
amounts to the same tiling, a sphere with uniform surface density of

charge. The fictitious stationary configuration is then a prolate ellip-

soidal homeoid, or, in the case of a surface density of charge, a prolate

ellipsoid whose surface charge turns out to be distributed in its equi-

librium configuration. The field $' of such a static distribution being

known, the fields, E,B and the vector G due to the moving spherical

shell can be calculated. Abraham found, for example,

ram(233)

where a is the radius of the sphere and e is its total charge.

* M. Abraham, "Prinzipien der Dynamik des Elcktrons," Ann. der Physik, 10

(1903), 105.
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Before investigating the consequences of this expression for the elec-

tromagnetic momentum due to a moving sphere, the corresponding

expression will be obtained for an electron of slightly different shape.
Since the fictitious fixed configuration is found from the instantaneous

actual configuration by stretching, in the direction of the motion, in the

ratio l:V 1-/3
2

,
it is clear that if the actual configuration were an

oblate spheroid of semi-axes a, a, aKl 2 in the X-, Y-, Z-directions,

respectively, then the auxiliary fixed body would be simply a sphere of

radius a, the potential $' due to which can be written down at once.

Now in an attempt to explain the celebrated Michelson-Morley experi-

ment, Fitzgerald and Lorentz independently suggested, that when a

body is in motion with respe-ct to a system of co-ordinates this body is

contracted, all dimensions (as observed in this system of co-ordinates)

parallel to the motion being made shorter in the ratio 1 1 j8
2
:l, while

the other dimensions are unchanged. Assuming such a contraction, a

spherical electron of radius a would become, if it were in motion, an
oblate spheroid of semi-axes a, a, al/1 /3

2
;
so that the associated elec-

trostatic figure would be, as was just mentioned, a sphere of radius a.

An electron which is, when at rest, a sphere, but whose dimensions

change, when it is in motion, in the way just discussed, is called a
"Lorentz deformable electron," to contrast it with the Abraham "rigid"
electron. For a Lorentz electron, at outside points,

<*>'=

where R' is the distance from the position of the center of the sphere to

the point X,F,Z'; while at points inside the sphere, $ has the constant
value e/4wa. If these values are substituted in equations (232) for the

components of G, it is clear that the integration is to be extended over
all space exterior to the sphere and that, from symmetry, the X- and

7-components of G vanish. Moreover, since

when these integrals are extended over the region exterior to the sphere,
the Z-component of G is given by

sy , /a*

x) +(aFex
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_ 20e- n
~487r2cV I-PJ

'

(234)
24*2cV' 1-02

;
"

Circal'l

Now since

the force on either the Abraham rigid electron or the Lorentz contractile

electron can be found by calculating the time derivative of the expres-

sions which give, in the two instances, the electromagnetic momentum
associated with the electron's field. It is clear that when w is constant,

this force is zero in either case. But it has been assumed that for very

small percentage changes in velocity, the expressions (233) and (234) give

the proper instantaneous values of the varying G vector. Motions in

which the changes of velocity are small enough to permit this approxi-

mation have been called "quasi-stationary" motions. Since the electro-

magnetic momentum vector has been found to be parallel to the velocity

vector w, it is possible to write

w

so that

,G
dG d/G \

a
w Gdw

The time derivative of vector velocity is vector acceleration, so that,

resolving the acceleration into a tangential component f and a normal

component j" >

*./+/.

Moreover, since the magnitude of the tangential component of the accel-

eration is the time derivative of the scalar speed,

dw .,

'dt
W= WJ
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Thus

,G

or, replacing w by its value c/3,

< '--'if-'I-
If there be acting on the charge in question an external force Fe in addi-

tion to the force due to its own field, then the total force F+Fe is re-

lated to the ordinary mechanical mass of the charge by the equation

so that

(236) Fe=

Thus, when an external force is applied to the charge, it reacts to this

force as would a neutral body possessing, with respect to tangential

accelerations, a "longitudinal" mass

(237)

which is different from the
"
transverse" mass

(238) m+<=m+|,
which resists normal acceleration. For this reason the quantities

(239) f-ig,

(240) m" =
S'
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which have to be added to the ordinary mechanical mass to obtain the

effective longitudinal and transverse masses, have been called the "longi-

tudinal" and "transverse" electromagnetic mass of the charge. Such

an increase in effective mass due to the presence of charge was worked

out by J. J. Thomson for the case of a charged sphere before the concept
of an electron had been advanced. The situation is analogous to the

case of a sphere moving in an incompressible perfect fluid which extends

to infinity in all directions. If a force operates on such a sphere to change
its state of motion, the sphere reacts to this force, due to the fact that

the state of motion of the surrounding fluid must also be changed, as if it

had a mass greater than its actual mass. In this hydrodynamical analogy,

however, the addition to the mechanical mass turns out to be a constant

independent of the velocity, and no distinction exists between the trans-

verse and longitudinal masses. From equations (233) and (234) and from

the definitions just given, the longitudinal and transverse electromag-

netic masses of the Abraham rigid electron and the Lorentz contractile

electron can be easily calculated. In fact, for the Lorentz electron,

(241)

m =7r

"GTrac2

while for the Abraham electron

(242)

_m ~

m = e2

where these quantities have been expanded in a power series in ft for

ease in comparison with the preceding values. It is seen that for very
small velocities the longitudinal and transverse masses are equal, and

are, moreover, the same for the rigid and the deformable charge. This

zero-velocity electromagnetic mass is, in' fact, given by
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while in general the longitudinal mass is larger than the transverse mass.

For small velocities the two values

m

m r

which hold for the Lorentz and Abraham electrons, respectively, are so

nearly the same that only very careful experimentation can decide be-

tween them. In fact, vacuum-tube experiments which show the variation

of mass with velocity have not decided with absolute certainty between

the two hypotheses, but the evidence at present is strongly in favor of

the Lorentz contractile electron.

The results just found for the force on an electron due to its own field

have been obtained by using the vectors S and G. In connection with

previous discussion concerning the concepts of the Poynting vector and

the electromagnetic momentum vector it is worth while to note that the

present results could be obtained directly from the fundamental equa-
tion

r \ 1 ~\

dr

without utilizing either S or G. Indeed, the identification of this ex-

pression with the quantity

- dGL_* f
dt

dtj
'Sdr,

where S = [E,B]/c depends, it will be remembered, only upon the vanish-

ing of the surface integral

as the surface over which the integral is extended recedes to infinity so

as to inclose all of space. In this particular instance it may be easily seen

that this surface integral vanishes for all times, since each component of

E or B vanishes as 1/r
2

. It may be, in a definite case, that the calcula-

tion of the integral giving the vector G is simpler than the correspond-

ing direct calculation of F; but it is clear that in this important example,
at least, there is no necessity for attempting to interpret physically the
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intermediate stages of the calculation. The original expression gives the

force; any quantity into which this can be legitimately transformed also

gives the force; and the intermediate steps are of analytical, rather than

necessarily of physical, interest.

In equations (237) and (238) the expressions for longitudinal and

transverse masses have each been written as the sum of two terms, a

"mechanical mass'' term and an "electromagnetic mass" term. The elec-

tromagnetic mass depends, in each instance, on velocity. At the time

these formulas were originally developed, it was assumed that the me-

chanical mass was independent of velocity. Thus when the experiments
revealed an actual change of mass with velocity as predicted by the

electromagnetic-mass terms, and no residual mass independent of ve-

locity, it was natural to conclude that the entire mass of the electron was

electromagnetic in character. This argument no longer has force, for it

has subsequently developed, as an essential part of the restricted theory
of relativity, that ordinary mechanical mass, if there be any such thing,

varies with velocity in just the same way as does electromagnetic mass.

The justification for continuing to assume that the mass of the electron

is entirely electromagnetic is that it is the simplest assumption, and, if

tenable, therefore the most desirable.

The assumption that the mass of the elementary charge is entirely

electromagnetic is more than a mere choice of name. For this assumption
carries with it an assumption concerning the motion of elementary

charges. In fact, if the ordinary mechanical mass be zero, then the equa-
tion just before (236) shows that the total force on the charge is also zero.

That is to say, when an external force ads on an electron, it moves in such

a way that the reaction of its own field on itself exactly cancels the applied

force. This conclusion concerning the motion of a charge is, in one sense

at least, a very curious one. It is the result, on the one hand, of an as-

sumption that an electron is quite unmechanical in that it has no me-

chanical mass, and, on the other hand, of an unwillingness to give up the

fundamental equation of mechanics. It can hardly turn out to be a satis-

factory principle unless it be indeed true that the equations of mechanics

are more fundamental than the concepts of mechanics.

61. The Field Due to an Oscillating Dipole. An important case

which -can be treated by means of equations (216) and (217) is that of a

positive charge +e stationary at a point P accompanied by an oscillat-

ing negative charge e which vibrates about P. The two charges then

form a dipole whose vector moment p is a function of time. The case

ordinarily considered is that of simple harmonic oscillations, and the
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vibrating doublet is sometimes called a "Hertzian oscillator." The field

due to such an oscillator will be found under the restricting assumptions
that the velocity u of the negative charge is small compared to the

velocity of light, so that only leading terms in the ratio u/c will be re-

tained;* and that the dimensions of the charges and the displacement

between the two charges is small compared to the distance to the point

at which the field is being investigated. All quantities except p can

then be removed from under the integration sign in (216) and (217), the

integration then giving the magnitude of the charge concerned. The re-

tarded values of r, TI, or r may, on account of the foregoing assump-

tion, be identified with R, Ri9 or 72, where R is the vector from P to

0. Further, since the moment p of the doublet is the product of e

and the vector displacement which locates +e with respect to e,

The vector B due to the doublet is clearly all due to the oscillating nega-

tive charge, since the velocity of the positive charge is zero. Since only

leading terms in the ratio u/c are to be retained, it is clear, from (216),

that the portion of B depending on the inverse first power from the

dipole is

while the leading term depending upon the inverse second power of the

distance is

I!" "
J I

'

* This statement also furnishes a criterion for dropping higher powers of li/c

since in the case of simple harmonic motion the magnitude of u is of the order of

vii, where v is the frequency.
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Thus

which can also be written, from (243),

1 ilMilL. 1

R
--'

The fixed positive charge +e contributes to the E vector the bne

term

obtained from (217) by setting u=0, or directly from Coulomb's law.

The leading term in l/R due to the negative charge is

47TC2fl3
'

the factor H2
disappearing, just as above, since its inclusion would in-

volve higher powers of u/c. The leading term in E due to e and

varying as l/R* is

47Tfl
2 '

where, for a reason which will appear presently, the retarded vector

has not been set equal to Ri, as was done in the other term. Then

In the neighborhood of the vibrating doublet it is clear that the term de-

pending upon l/R
2 will predominate over the term in l/R, while for

more distant points the term in l/R
2 will be negligible compared to

the term in l/R. The latter more distant region, in which the l/R2
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term may be neglected, is called the "wave-zone." In the neighborhood

of the charge the field is given by

(249)

The B vector has the value which, according to the Biot-Savart law

(107), would arise from a steady-current element

This current -{11} is the current due to the motion which the charge
c

did have at time t-R/c: i.e., in the neighborhood of the vibrator, the

Biot-Savart steady-state values of B are propagated outward with

constant velocity c. The E vector in this region is clearly equal to the

electrostatic E vector due to the instantaneous moment which the di-

pole possessed at the retarded time tR/c (it is clear that the identifica-

tion of Ri and {fi} would conceal this fact; this explains why the two

vectors were not identified above). That is, the electrostatic values E

characteristic of the instantaneous state of the dipole are propagated

outward with constant velocity c.

In the wave-zone the field is given by

(250)

From these values it follows that

so that, since B is normal to RI, the magnitudes of B and E are equal.

This magnitude, moreover, depends only on the component pi of p

normal to R, since p may be written as the sum of this normal compo-

nent and a component pn parallel to R; and
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If 6 be the angle iHitvveou p sunl R, tlion

The three vectors E, B, and /? are mutually perpendicular and form a

right system, the orientation of E and B in the plane normal to R be-

ing fixed by the fact that B is normal to the projection of $ on this

plane. It should be noted that the portion of the total E and B fields

which varies as I/ft, that is to say, the field in the wave-zone, is due not

to the velocity of the charge, but to its acceleration, and, in particular, to

the component of this acceleration normal to the line drawn to the oscil-

lator. The electromagnetic theory of light teaches that a plane-polarized

beam of light moving in the x-direction is nothing other than the electro-

magnetic field

(252)

cos nil - \ ,

In such a field E, B, and the direction of propagation form a mutually

perpendicular right system, just as do E, B, R above. Indeed, it is this

fact that has led to the use of the term "wave-zone" for the region in

which the \/R terms predominate. In the immediate neighborhood of a

point in the wave-zone, the field is entirely similar in character to the

plane-polarized wave (252). However, the amplitude a is not uniform

for points on a sphere about the oscillator, but varies, according to

(251), as the sine of the angle between R and the axis of the oscillator.

The amplitude is thus a maximum on the great circle whose plane is

normal to p, and is zero at the points in which p (extended) cuts the

sphere in question. Further, the amplitude falls off as the inverse first

power of R.

The Poynting vector

S = c{E,B]

has the direction of R, and a magnitude (since E and B are perpen-

dicular)
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This expression indicates a maximum energy flow in the direction normal

to the axis of the oscillator. The total flux U of energy out through a

sphere of radius R is, using the zonal area between 6 and 0+dQ as the

element of area,

27r#2
(
*S sin B d6=^ \ "si

Jo Sire?Jo

this expression giving the instantaneous value of this energy flux at

time t. If the negative charge of the oscillator vibrates with simple

harmonic motion of frequency w/27r, so that

ppo cos ut
,

po being the amplitude of the vibration, then the vectors E and B are

both simple harmonic functions of the time, and

is the wave-length of the resulting disturbance. The wave-zone region

may be characterized somewhat more definitely than previously in terms

of this wave-length X. In fact, going back to equation (247), the ratio

of the l/R term in B to the l/R2 term is

_. ^2

==^?. ==
Waj

== 2
R
-

R(? p~~ c p~ c
~"

X
'

so that the wave-zone is the region for which R is large compared to X.

The same characterization results from a comparison of the terms of E.

The time average of the energy flux out through a sphere of radius

R may now be written at once. In fact,

whereas, since the variation with time is sinusoidal,

so that

77 wp
C 3X4

'
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It should be noted that U and V are independent of the radius R of

the sphere used in reckoning the energy flux, so that there is a flow of

energy continuously away from the oscillator. If the average energy

of the oscillator be W, then since it is the source of the energy flow

just calculated,

_
dt
~-

3X<~'

If the negative charge of the oscillator be considered to have a material

mass m and if it oscillate about its equilibrium position under the in-

fluence of some elastic restraining force, then since, in such a motion, the

average energy is half-kinetic and half-potential,

in or

(254)
=

2 2

Solving (253) and (254) for pi and equating,

dW^ 2e27r

eft 3X2cm f

or

TF

where

-
3X2cm

'

This equation must clearly be used only over intervals of time which in-

clude enough oscillations of the doublet to permit the use of the average
value f/. This diminution in the energy of an oscillator due to its radia-

tion of energy is known as "radiation damping," and the constant fc, as

given above, is the damping factor. If this damping factor be very small,

the oscillations of the negative charge are, over short periods of time,

sensibly simple harmonic. Neglecting the radiation damping, the equa-
tion of motion of the negative charge would be
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or

dv m ,

"-<- ,**.

h? being the stiffness coefficient corresponding to the elastic restoring
force. Including the back action of the charge's own field on itself, the

equation would be of the form

dv m

where K is a clissipative force. By a comparison of the work done by
this force and the energy radiated, it may be argued that

dip

Sire...

2 P

so that the complete equation of motion is a third-order differential equa-
tion. For a further discussion of this matter, a consideration of the mag-
nitude of radiation damping from the viewpoint of interference phe-

nomena, and a treatment of a moving positive charge about which a nega-
tive charge oscillates (a "moving light-source") see Abraham und

Foppl, Theorie der Elektrizitdt, II (1918), 97. The theory of the Hertzian

oscillator has been extensively used in connection with wireless teleg-

raphy.

62. An Arbitrarily Moving Point Charge. The special examples of

the effects of moving charge will be concluded with a brief consideration

of the general case* (216), (217). The vector
'

is not, as in the case of uniform motion, the vector drawn to the observer

from the position of 'the charge at time 2, but is the vector drawn to the

observer from the position the charge would occupy, at time t, if it

moved in the interval from r to t, with a constant velocity equal to the

instantaneous velocity at time T. The vector E has a component which

is parallel to the retarded acceleration of the charge; and a component
along the direction of R. The vector B may be written, as in (253),

* Since (216) and (217) wore obtained from (212) mid (2K5), the equations are

all subject to the restrict ions mentions I, in .57, in connection with the evaluation of

the Jacobian.
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and is, accordingly, normal to {TI} and E. In the wave-zone, where

the terms depending on the inverse second power of the distance may be

neglected,

Now

so that

Thus the vector is in the plane of R and {}, as stated above in

general, it further appearing from this last equation that in the wave-

zone the E vector is normal to {r}, the vector drawn to the observer

from the position of the charge at the retarded time T. In the wave-

zone, then, since B is always normal to {r} and E, the three vectors

{r}, E, B form a mutually perpendicular right system, so that the flux

of energy
S = c[E,B],

is directed away from the retarded position of the charge.

PROBLEMS FOR CHAPTER IV

1. Prove the relation

f{(B, curl )-(, curl B)}dr= {[E,B]nd<r ,

by considering the integral

fdiv [E,B] dr .

2. Check the series expansions given ( GO, equations [241] and [242])

for the longitudinal and transverse electromagnetic masses of the

Lorentz and Abraham electrons.
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3. What is the electromagnetic rest-mass, in grams, of an electron?

Assume the "radius" of the electron to be 1.4X10"" 13 cm.

4. What is the ratio of the longitudinal to the transverse electromag-
netic mass of a Lorentz electron moving with one-quarter the velocity

of light? With one-half the velocity of light?

5. Referring to chapter ii, Part III, Problems 1, 2, and 3, show that

p= I 4?r p, *u ,

Evolts per cm. >

6. The B vector due to a volume distribution of currents is

J?=

(see equation [126]), where i is measured in rational electromag-
netic units. Also, in c.g.s. electromagnetic units,

Be.mM. I lem.u.jV- \dr .

Show that

*" '

7. In rational electromagnetic units, the portion of the vector poten-
tial A which is due to a volume magnetization is given by (see

equation [117])
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while in c.g.s. electromagnetic units

*e.m.u.
=
J [Me .m .M

.,V~Jdr.

Show that

and hence that the numerical measure of the magnetic permeability

M is the same in rational and c.g.s. electromagnetic units.

8. The vector E-{-P = eE was called, by Maxwell, the "electric induc-

tion'
' and was denoted by the letter D. Similarly, the vector

B M=B/iJL was given the symbol H, the name of the H vector

being different for different writers. Show that the field equations

at points in matter are, in terms of these vectors,

curl H=i+ -
,

c

curl=- 1

;fi,
\j

div D = p ,

9. The field equations in the form given by equations (167)-(170) make
use of more than one system of units. The quantities p and E are

measured in rational electrostatic units; the quantities B and i are

measured in rational electromagnetic units. Use the relations de-

veloped in the problems above to show that

curl >WB||!
-

~'

Note that the change from the field equations in rational units to

the field equations in c.g.s. electrostatic and electromagnetic units
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involves, besides the mere change of units, changes in the definitions

of potential and a resulting change in the relation between polariza-

tion and intensity. That is,

*

10. Show that, at points in matter,

*v *,.,..
= 0.

11. Some authors (see, e.g., J. R. Carson, Philosophical Magazine, XLI

[1921], 607) have found it convenient to use an exclusively electro-

magnetic system of units. One may readily check that using c.g.s.

electrostatic and electromagnetic units

@e 8 u == C c , rn u ,

The second of these relations, indeed, follows from the first by
virtue of the fact that the product of charge by potential must be

independent of the units chosen for charge. Polarization, moreover,

must transform in the same way as charge, since it is defined as the

product of charge by distance. One must then write, for the relation

between polarization and intensity,

_1
f.W tt.
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In fact, this relation, when one defines

reduces to the proper relation

Thus the numerical measure of the dielectric constant (which is the

same in rational electrostatic and c.g.s electrostatic units) is, in

c.g.s. electromagnetic units, equal to 1/c
2 times its numerical meas-

ure in c.g.s. electrostatic units.

Using these relations one readily finds

curl 5 =

curl E=-B ,

div *E = 4?rp ,

div =
,

where all quantities are measured in c.g.s. electromagnetic units, or

curl B = i+eE ,

div eE= p ,

where all quantities are in rational electromagnetic units. The last

four equations are entirely free from scale factors, and are there-

fore (especially for theoretical work) in particularly convenient form.

12. Show that

is a solution of
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and hence obtain the retarded potential solution of the equation

See Jeans, Electricity and Magnetism (1911), 645.

13. Show by differentiation of the expressions

r

that the equation

div

is satisfied.
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CONCLUSION TO CHAPTER IV

In the previous chapters the authors have aimed to present in the

actual text as straightforward as possible a presentation of classical elec-

trodynamical theory, relegating to the chapter conclusions critical re-

marks on controversial* matters. In this last chapter it is scarcely possible
to follow this plan. Many of the topics treated are controversial from
the very start, and it has been necessary to include in the text a consider-

able amount of critical matter that would otherwise be found in this con-

clusion. The discussions already given, however, by no means cover the

desirable ground, and this chapter will conclude with a rather disjointed

collection of further observations.

It is worth while, first of all, to reconsider briefly the way in which the

Maxwell field equations have been obtained,* for such is the funda-

mental role they play that any insight into their significance cannot fail

to be useful and important. The five equations have been obtained as

generalizations of the laws of electrostatics and magnetostatics, which

laws rest primarily on the experiments of Coulomb and Ampere. The

generalization has three significant features. The first of these is con-

cerned with the replacement of the old equation

curl =

by the more general relation

curl=--.
c

The second replaces the old equation

curl 5= i

by the equation

curl 5 = i+~.
c

* The reader who is interested in various other ways of obtaining the field equa-
tions should consult An Introduction to Electrodynamics, by L. Page (1922), and "New
Deductions of the Electromagnetic Equations," by W. F. G. Swann, in Physical

Review, XXVIII (1920), 531.

"
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The third generalization is one of significance rather than form. It con-

sists of the assumption that the expression

F=E+}(v,B],c

which gives the force per unit charge in magnetostatics, continues to be

valid for the generalized field vectors.

It has been seen that the first of these generalisations, which furnishes

the Faraday induction law, is in a restricted sense but a rephrasing of the

old Ampere law.of action between currents. Having indicated the nature

of the generalization by means of a special experiment involving moving

circuits, it is assumed that the new expression holds in all cases. This

mode of obtaining the Faraday equation is one that sharply focuses

attention on that mysterious aether whose properties the E and B vec-

tors are supposed to measure. It has, in fact, been pointed out that one

who believes in the aether finds it comparatively easy to accept, as a

universal truth, the equation

curl'=--
c

once he has shown this equation true in a particular case.

A decreasing number of physicists, however, finds the hypothesis

of an aether tenable or desirable. It is beyond the purpose of this volume

to consider the way in which the "aether drift" experiments and the

theory of relativity have removed the last excuses for continuing to

assume such a substance. It has not seemed possible or desirable to

include in this volume any treatment of relativity, although the authors

realize that many will regard this an inexcusable omission. There is cur-

rent a somewhat vague impression that relativity rests, to a considerable

extent, upon electrodynamics; while electrodynamics rests upon rela-

tivity. (Neither dependence has, to be sure, been completely analyzed.)

While no one would doubt the close interlocking of these two subjects,

there is, nevertheless, some danger of assuming that each "proves" the

other. The authors feel that a student must know a certain basic amount
of electrodynamics before he can intelligently study relativity, and they
have attempted to sot down that basic 1 amount of electrodynamics with-

out invoking any but the most elementary relativity principle. This, to

be sure, leaves the development of the theory somewhat rougher (super-
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ficially rougher) in spots than it would otherwise be. The term (u,v)/c*

neglected, for example, in passing from the electrostatic relation

div E= p

to the general relation

div =p

is of precisely the order with which relativity deals.

The aether physicists seem at last to be willing,* in their final philo-

sophical paragraphs, to give up the aether; but they continue to use it

throughout the body of their texts, compelling its unsubstantial texture

to bear the brunt of many an argument. This is by no means the only

instance in electrical theory of the essential use of a concept finally dis-

credited and discarded. The theory frequently has been developed
around certain properties or concepts, only to have the culmination of

the theory be the proof that the property is non-existent or that the

concept is untenable. Examples of this are frequent and familiar: "the

state of the medium" (when there is no medium), "the force on a mag-
netic pole" (when there is no such thing as a magnetic pole), "the ficti-

tious density div P" (which is zero), "the force on a charge" (which

always vanishes). The present authors have by no means avoided all

such difficulties. They wish to point them out and thus draw attention

to the rather obvious warning that it is deceivingly easy to make correct

statements about free space or about non-existent properties. Even the

great physicist Lorentz has said: "The formulae for the aether consti-

tute the part of electromagnetic theory that is most firmly established.

Though perhaps the way in which they are deduced will be changed in

future years, it is hardly conceivable that the equations themselves will

be altered. It is only when we come to consider phenomena in ponder-
able bodies that we are led into uncertainties and doubts." The infer-

ence is plain:

Mother, may I go out to swim ?

Yes, my darling daughter.

Hang your clothes on a hickory limb,

But don't go near the water.

The activity equation and the so-called "spatial density" of energy
have been discussed at considerable length in the text itself. The aether

*
See, e.g., J. H. Jeans, op. cit. (1925), p. 618.
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theory was doubtless responsible for the idea of spatially distributed

energy. The aether has unobtrusively slipped away; and those who, if

there were an aether, would choose to think of the energy of a con-

figuration of charges as being a strain energy in this medium must, it

would seem, now abandon this view. The authors, however, have an

attitude toward spatially distributed density which is quite independent
of the existence or non-existence of an aether.

Some optimistic pragmatist may urge, to counter all these objec-

tions to spatially distributed energy, that the idea has always "worked"

and so deserves a place in our philosophy. The answer is that the idea

has not always worked. In one of the most conspicuous fields of modern

physical research, one comes, if he believes that energy can be located

spatially, face to face with a baffling paradox. How large is a quantum?
It is as "big," as Eddington points out, as the mirror of the 100-inch tele-

scope at Mount Wilson, and it is as "small" as the atom.* It reminds one

(and quite properly so) of the frothy, infinitely rigid, perfectly tenuous,

exceedingly dense, and quite impalpable aether. We should, by this time,

have learned that all statements are true if they are made about nothing.

The authors have already indicated their belief that the conclusion,

"the total force on an elementary charge is zero," is not so much a state-

ment about the vanishing of a quantity as it is the admission of the col-

lapse of a concept. There seem to be, fundamentally, but two sorts of

"forces" in the universe electrical "forces" and the "force" of gravita-

tion. The general theory of relativity has completely changed our de-

scription of gravitational effects. A body A no longer tends to go in a

straight line, and is corrupted away from that tendency by the gravita-

tional force due to a second body B. Body A simply and always travels

on a geodesic in .a four-dimensional space-time manifold. If no other

body B is present, the space aspect of that geodesic is a straight line.

If another body B is present, its presence affects the metric properties

of the space, and the space aspect of the geodesic is a curved line. Thus

*
Eddington's explanation (op. tit. [1928], chap, x) is that we must not think of

space and time at all in connection with an individual quantum. The present authors

have vainly speculated, for roughly ten years, concerning a possible law for the unit

electrical
'

'action-response" that takes place between two electrical elements, this

action-response correlation to be arithmetic in nature, and quite free of any notion of

either time or space. Macroscopic time, geometry, and mechanics should then emerge

statistically.

The quantum theory has evaded most of the difficulties involved in a spatial

density of energy by substituting, in its place, a spatial density for the probability of

energy.
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the old gravitational force is geometrized away. A body is not acted on

by a force. It goes where it will. Its mass imposes on the space-time
manifold such a metric as leads us to locate its successive positions in ac-

cordance with what we would hitherto have called a law for its motion
under a force. A similar geometrization of electrical forces has been wide-

ly attempted, but without complete success. The concept of a macro-

scopic force has been of untold value to science; and macroscopic elec-

trical forces will doubtless, with entire success, be geometrized under the

relativity scheme. The authors believe that microscopic "forces" do not
exist. If all macroscopic forces are geometrized away, we shall not feel so

bad over the lack of microscopic forces.

The collapse of microscopic dynamics which, the authors believe, was
so clearly foreshadowed by the paradoxical character of the "dynamics"
of the electron this collapse is now definitely recognized. The "wave-
mechanics' '

of the newer quantum theory constitutes the first attempt
to construct a microscopic dynamical theory for individual actions. The
early success of this wave-mechanics should be encouragement enough
to convince us that the general tendency of this theory is a correct and

worthy one. The limitations of the present wave-mechanics arise, doubt-

less, from the fact that it is still too mechanical in nature. For this rea-

son, the earlier matrix theory, and the more abstract formulation of wave-
mechanics at the hands of Dirac, seem to be the more promising.

There remains, finally, one relatively trivial matter which should be
mentioned. Except for the linkage with more ordinary notations which
occurs in the problems, use has been made of only two field vectors, E
and B. When in free space, the use of one electric and one magnetic
vector, rather than of the four vectors E, D, B, and H, is an obviously
desirable simplification; and within matter, it is useful to have in explicit
evidence the electrical properties c and n of the matter. The choice of

B as the fundamental magnetic vector, rather than H, rests on the oc-

currence of E and B in the equation for force on a charge. The subject
of magnetostatics has been developed in as close analogy as possible with

electrostatics; and the fundamental magnetic vector the counterpart
of E must clearly be the vector which, in the basic law for magneto-
static action, plays the same r61e as does E in electrostatics. The choice

of B rather than H is also clearly indicated by the fact that the di-

vergence of E gives the total charge, while the curl of B (not of H)
gives the total current. The confusion which results from the choice of

H as the fundamental magnetic vector is, perhaps, most clearly illus-

trated by the equations which arise when one considers the relation be-
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twecn the so-called microscopic and macroscopic field equations.

Lorentz, for example, takes as microcopic equations, valid everywhere,

curl e = ---
,

curl h = - (pv+e)
c dt c

div e = p ,
div ft =

,

and finds that the average values, over physically small-volume ele-

ments, of e and h are given by

where E and B are the ordinary macroscopic field vectors used in this

volume. The last equation indicates that B is the fundamental macro-

scopic vector, and that the fundamental microscopic vector should be

designated by 6 rather than ft.

328



MATHEMATICAL APPENDIX

OUTLINE
PAOB

330 1. Definition of vector and scalar. Components of a vector. Mag-
nitude and direction cosines. Angle between two vectors. Com-

ponent of a vector in any direction. Addition. Representation

by means of fundamental unit vectors.

332 2. Multiplication of vectors.

A. Scalar product: (AB) =A xBx+A yBy+A zBt.

B. Vector product: (AB\ Z=A UB2-A 2BU;

;

AV

B,,

A,

B,

334 3.

334

336

338

341

342

Differential operators.

A. The operator V. Directional derivative of a scalar.

(n, V4>)=d<f>/dn.

B. (V,24)s=div A. Interpretation as strength of a source.

C. [V,4]=curl A. Kinematic interpretation.

D. Directional derivative of a vector (n,V)5; (A,V)B .

E. Line integrals. If J4 8cfe=0, then 4=V*.

345 4. Relations between scalar and vector products, divergence, and

curl.

curl $4=$ curl

div curl 4=0
,

curl V<l>=0
,

div V^V2*
,

curl curl -4 = V div A-V*A ,

div \AJB\
=

(B, curl A)
-

(A, curl B) ,

curl [A,B]
= A div B-B div A+(B,V)A-(A,V)B ,

= (A,V)B+(B,V}A+[A, curl ]+[,. curl A] .

329



THE ELECTROMAGNETIC FIELD
PAGE

347 5. Integral transformations.

347 A. Integration by parts.

348 B. Green's theorem.

349 C. Stokes's theorem.

351 D. / curl BdT = f[n,B]do- ,

dn da
1 J t/

352 6. Vector fields.

352 A. Solution of the equation V2w= p.

355 B. If curl 4 = 0, then 4= V$. If div4 = 0, then 4 = curl B.

357 C. A vector field is uniquely determined by the specification of

divergence and curl.

359 D. Solution when div4 = p, curl 4 = 0. Discontinuities.

363 E. Solution when curl 4 = i, div 4 = 0.

364 F. General solution; an arbitrary vector is the sum of a poten-

tial and a solenoidal vector.

365 7. Curvilinear co-ordinates.

1. Definition of Vector: Components: Addition. Of the measurable

quantities with which one deals in physics many are completely char-

acterized by a magnitude alone; that is to say, they are completely char-

acterized by a single number (to which must be assigned appropriate

dimensions). Temperature, volume density, mass, potential, etc., are

such quantities. Such magnitudes are known as scalar magnitudes, or

simply as scalars. There is an important class of quantities, however,

which possess direction as well as magnitude, arid which require, for their

complete characterization, the specification of three quantities. These

three quantities may be the three projections of this directed magnitude

on the directions of the three axes of an orthogonal system of co-ordi-

nates; or they may consist of two direction cosines and a third number

measuring magnitude alone; or the direction and magnitude may be

specified in any other way by means of three numbers. Such quantities,

which require for their characterization both a magnitude and a direction,

are known as vector magnitudes, or as vectors. Velocity, force, acceleration,

for example, are vector quantities.

To distinguish between vector and scalar quantities, vectors will be
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denoted by letters in bold-face type. The absolute magnitude of a vector,

that is to say, its scalar magnitude regardless of its direction, will be de-

iiroted by |
A

\
or by A

,
the corresponding letter in ordinary type. Thus

the absolute magnitude of the vector A is
|

A
\

=A.

Since a vector quantity possesses both length and direction, it may be

graphically represented by means of _
a directed line segment whose length

is a measure of the absolute magni-
tude of the vector, and whose direc-

tion is parallel to the direction of _
the vector quantity. 7^ ~^

Let the scalar projections of the
^^

vector A upon the directions of the ,, . A . , ..

. %. . *ia. 1. A vector A and its rectangii-
three co-ordinate axes be A x,

A y , iar components.
A z . Let the angles which A makes
with the x-, y-, z-axes be denoted by (Ax), (Ay), (Az), respectively.

The length of the vector is then obviously given by

0) A = I AJ+AS+A?,

while the direction cosines of A are

4 1 A
(2) cos (Ax) =V ,

<'os (Ay) = - "
,

cos (Az) = -p ;
s\ + \ A

and satisfy the relation

(3) cos2 (Ax)+ cos2
(A?/)+ cos2

(Az) = 1
,

as is seen at once from (1). Also, from (1) and (2),

(4) A=A X cos (Ax)+A u cos (Ay)+A z cos (Az) .

For the component A^ of a vector A along any direction s, one has

(5) A S
=A X cos (sx)+Ay cos (sy)+A 2 cos (sz) ,

since the sum of the projections, on any direction, of the sides of an un-

closed polygon is obviously equal to the projection, on this same direc-

tion, of the closing side of the polygon. But since

(6) A S
=A cos (As) ,
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it follows from (2) that the cosine of the angle between two directions is

(7) cos (As) = cos (Ax) cos (sx) + cos (Ay) cos ($?/)+ cos (Az) cos (sz) .

By the sum of two vectors A and B is meant the geometrical sum,

i.e., the initial point of B is placed in coincidence with the end point of

A; then the sum C is defined as the vector whose initial point is the

initial point of A, and whose end point is the end point of B.
'

Let i,j, k be vectors of unit length (usually called "unit vectors")

in the direction of the three axes x, y y
and z, respectively. Then by

A xi is meant a vector whose direc-

tion is the direction of i, and whose

magnitude is the product of the mag-
nitude of i and the scalar A x . Thus

v a scalar h multiplying a vector

FIG. 2. Vector addition stretches the length of the vector in

the ratio h to unity, and does not

affect the vector's direction. A xi is thus a vector pointing in the posi-

tive x-direction, and of magnitude A x . It then follows from the defini-

tion of addition given above that
'

(8) A =Aj+AJ+AJi,

so that a vector may be represented by means of its scalar components

along three orthogonal directions, and unit vectors along these same

directions.

2. Multiplication of Vectors.

A. Two sorts of vector multiplication are in common use, scalar and

vector. By the scalar product of two vectors A and B is meant a scalar

quantity equal to the product of the magnitude of one vector and the

scalar projection of the second upon the first. The scalar product of A
and B will be denoted by (AJS). Thus

(9) (A,B) = \A\.\B\. cos (A,B),

or, from (2) and (7),

(10) (A,B) =A XBX+A yBy+A ZB, .

From the definition it follows at once that

(11)
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and

(12)

By definition, also,

(A,B)

B. By the vector product of two vectors A and B is meant a third

\ector C which is normal to the plane of A and B, so directed that

A,B,C form a right-handed system*, and of absolute magnitude equal to

the product of the magnitudes of A qnd B by the sine of the angle be-

tween them, i.e., equal to the area of the parallelogram formed on A

FIG. 3. The distributive law for the vector product of the sum of two vectors

and a third vector.

and B. The vector product of A and B will be denoted by [4,].
Thus if

then

\

= \A\.\B\-sm(A,B).

A distributive law for vector multiplication can be proved, similar

to (11) for scalar multiplication. Thus let it be required to prove that

Project A,B, and A+B on a plane perpendicular to C. The three pro-

jected vectors are of absolute magnitude A sin (A,0), B sin (B,C), and

* A right-hand screw directed along C advances in the positive direction of C

by a rotation from A toward B through the smaller angle.
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(A+B) sin (A+B,C). Now enlarge in the ratio of C to unity, and rot*

the three vectors thus obtained 90 in their own plane. The three p;

jected, enlarged, and rotated vectors then represent [4,C], [S,C], a

[A+B,C], and the foregoing idcntitj' becomes obvious. Then, since

(15) [iJH** [>>*]
=

i> [M\=J,

it follows that

(16) [AJt] = (iA t+jA,+kA,, iBx+jBu+kB 2] ,

This result may be expressed in determinant form, viz.,

(17) (A,B\ =
J

Ay

B
tl

It should be noted that (A,B) = (B,A) while [A,B] = -[B,A].

3. Differential Operators.

A. Let u be a scalar-point function, i.e., let u be a function of the

three variables x, y, z which assigns a scalar to every point x, y, z of

space. Consider a line through the point x, y, z and let s be distance

measured along this line. Then the values of u for the points of the line

form a function of s. The derivative of this function, with respect to s,

measures the rate of change of u along the line. The value of this

derivative at the point x, y, z is thus the rate of change of the function

u in the direction s at the point x, y, z. This directional derivative is

given by

du _du dx du dy dit dz

ds
""

dx c/s dy ds dz <lx

du
cos

du
cos

du , ,
- cos (sz)

From a comparison of this equation with equation (5), it appears

that a vector with re-, y-, and z-components

du du du

ar
'

dy
'

dz
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would have a component in any direction 5 equal to the rate of change
of u in that direction. Then since its maximum component is in its

own direction, the vector itself would measure the rate of change of u in

the direction of greatest increase, and it would point in this direction.

Such a vector is called Vw (read "nabla u'
1

). Thus.

Since the component of Vu in any direction s is equal to the rate of

change of u in that direction,

(19) (Vu) s =(s,Vw)=^-,

where s is a unit vector in the direction s.

The differential operator

operating on a scalar-point function thus produces a vector-point func-

tion which gives the rate of change and direction of greatest rate of

change of the scalar. It is a fundamentally important operator.

When the function upon which V operates is a function of more than

one set of variables, the set with respect to which the differentiation in-

volved in V is to be taken can be indicated by means of a subscript.

Thus, if r be the distance from a point of co-ordinates XQ, 2/0, ZQ to a

point P of co-ordinates .r
;> , ?/,

z p ,

Then

r
,

. dr . , Or,N -,

(20) v-r.,..
while

and obviously

(22)
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In the discussion just given, the directional derivative has beea

written as a total derivative of u with respect to s. Many books, how-

ever, write

du_du dx du dy du <fe

.ds~~ dx ds dy du dz ds

for the directional derivative. There are arguments for and against both

notations. For example, when the direction of s coincides with that of

x, the total derivative notation produces the rather unfortunate formula

du_du
dx

~~

dx
'

On the other hand, the partial derivative notation describes the to^al

change in the function u resulting from a displacement ds by the

equally unfortunate equation

J ^U Jau= as .

ds

In this book both notations will be used. In certain calculations, such

as that given in 2 of chapter i the total derivative notation is clearly

preferable. On the other hand, when one writes the rate of change of a

function u along a direction n normal to a given surface, it seems prefer-

able to write this as du/dn. In fact, when one speaks of the normal to a

surface, it is very natural to think also of the tangent plane and an

orthogonal trihedral of axes located at the point in question, one directed

along the normal and the other two lying in the tangent plane. Having
all these axes in mind, one writes du/dti rather than du/dn for the same

reasons one writes du/dx rather than du/dx.

B. The differential operator v can be considered formally as a vec-

tor of components , , ,
so that its scalar and vector productsdx dy dz

with another vector may be taken. For example,

This latter quantity is denoted by div A (read "divergence 4"). Thus

fc\A\ * A /*-, A\ dA . dAu . dA.it

(24)
div4-(V,4)-^+-^*+-ai

-.
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A physical illustration will indicate the significance of this quantity.

Suppose that V is the vector velocity at any point of an incompressible

flui'd. Consider a parallelopiped with center at the origin, and of small

sides 2dx 25y, 2dz parallel to the co-ordinate axes. Denote by (VX) Q the

value of the ^-component of velocity at the origin. Then at a neighbor-

ing point x, ?/, z,

(25)

the Maclaurin series expansions being broken off with the linear terms

since they are to be used for values of a-, y, and z less than or equal to

tfy

i

i

>-s

&c

FIG. 4

the small values 8x, 8y, dz. Then the flow of liquid out of the parallelo-

piped through the right-hand face is

Similarly, the flow of liquid out through the left-hand face is

),**/

'
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so that the total loss of liquid per second through these two faces i$

(26) Sdx8y

Thus the total flow of liquid per second out of the parallelepiped is

dr being the volume of the parallelepiped.

The flow of liquid out of the parallelepiped per second per unit vol-

ume is thus

div V,

the value being taken at the point under consideration in this example,

the origin. If there are no sources or sinks in the region under considera-

tion, i.e., if there are no points at which liquid is being introduced or re-

moved, then obviously the total outward flow through any closed surface

must be zero, and accordingly the divergence would be zero. If the di-

vergence is not zero, it gives the rate at which liquid is being introduced

(or removed) and is a measure of what is called the "strength" of the

point source (or sink) at the point. It is seen from this example that

one could set

i- rr ,- (Vnfc
div V=hm j ,

da being an element of surface of the volume element dr, and Vn the

component of V directed along the exterior-pointing normal to the

surface of dr.

C. One may also take the vector product of V and a vector A.

Thus

j k

(29)
d

dx
_ ^

dy dz

This quantity is known as curl A. That is,

(30) [V,4]=curl A .
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The components of curl A are

(curl 4) x=curlx 4 =
-^-*

~
,

(curl ^a-curl, A =
* *

,(31)

An illustration will again help to make clear the meaning of this

quantity. Suppose that one has an incompressible liquid of uniform

density p. Consider a small sphere of the liquid and, at a given instant,

choose the origin of co-ordinates at the center of this sphere. What will

be the location and the shape, after a small interval of time, of the por-

tion of liquid originally contained within this sphere? In the first place,

the sphere may have been translated as a whole; in the second place, it

may have undergone a strain which leaves it no longer a sphere; and, in

the third place, it may have been rotated into a new orientation. The
curl of the vector velocity furnishes a measure of this last type of motion,

as will now be shown.

The components of velocity at the origin being (Fx) , (Vv) , (V,) ,

the components of velocity at points near the origin are given by (25)

above. Then the velocity of a point x, y, z near the origin, relative to the

velocity of the center of the sphere, has components

x+ (9V.\\dy/
. }

- z.

a*

so that the moment of momentum of the sphere about the rr-axis is
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Noticing that, from symmetry,

dx dy <fe=0

and

Jj>
2 dx dy dz = fffy* dx dy dz ,

the moment of momentum becomes

The moment of inertia of the sphere about the same axis is

P///(2/
2+*2

)dz dy dz = 2p///</
2 dx dy dz .

If the moment of momentum be divided by the moment of inertia, a sort

of effective average value is obtained for the angular velocity about the

x-axis which, as the radius of the sphere is allowed to approach zero, be-

comes the angular velocity about the z-axis at the point in question (in

this case, the origin). That is to say, the angular velocity at this point

has the x-component

Hence, if W denotes the vector angular velocity at any point in the

liquid,

(32) W=$ curl V .

A simpler, but less general, interpretation of the curl of a vector may
be obtained from considering the vector velocity of any point P of a rigid

body which is in motion. If Vo be the velocity of some point of the

body, w the angular velocity of the body relative to 0, and r the

vector from to P, then the velocity VP of P is

Then from (44) below (and the fact that F and w are constant vec-

tors) it follows that

curl VP =w div r (w, V)r ,

= u> w
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D. Equation (20) gives the rate of change of a scalar u in a direction

5 as?

provided s be a unit vector in the direction s. In general, one might

say that

often written

(A,V)u ,

gives the rate of change of the scalar u in the direction of the vector A

multiplied by the absolute magnitude of A. This leads one to consider

assigning a suitable meaning to the symbol

A vector field is a region of space at every point of which a vector

is given, say by expressing its components as functions of x, y, and z.

Suppose that at a point x, y, z in such a vector field the vector has the

value

B = iB,+jB1l+kBM ,

and at a neighboring point x-\-dx y y-{-dy, z+cfe the value

B' = iB'x+jB'y+kB'z .

Then the change which the vector B experiences in going from the

first to the second point is

and is obviously a vector whose components are the changes which the

components of B experience. But the components are scalar quantities,

and the rate of change which they experience in going from one point to

another may be expressed as

(a,V)B, , (a,V)B, ,
and (a,V)S, ,

where a is a unit vector pointing in the direction from x, t/, z to x+dx,

y+dy t z+dz. Thus the rate of change which the vector B experiences

in- departing from the first point in the direction of the second point is

i(a,V)B,+j(a,V)By+k(a,V)B, .
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This last expression is adopted as the meaning of the symbol

Thus the vector

(a,V)fi = C
of components

dBx . 3BX

(33)

dB,, dBz . dB,

measures the rate of change of the vector B in the direction of the unit

vector a. Then obviously

(AV)B

measures the rate of change of B in the direction of A, multiplied by the

absolute magnitude of A. This notation furnishes a short way of ex-

pressing the directional derivative of a vector.

E. This section will conclude with a theorem which involves the con-

cept of the line integral of the tangential component of a vector. Before

this theorem is stated and proved line integrals will be briefly discussed.

In mathematical physics one deals constantly with integrals of the

tyPe // dr, jf d<r, and // ds, where / is a scalar-point function and
where dr is an element of volume, da an element of surface, and ds an
element of line. In the first of these integrals, which is extended over a

volume contained within a closed surface, it is not necessary to postulate

any ordering of the elements of the integral, and dr is intrinsically posi-

tive, being simply the numerical measure of the size of the volume of the

element. Similarly, we may consider that the second of the foregoing

integrals means the limit of the sum of products of essentially positive

elements of area da by the value of / at some point of da. These three

fundamental types of integrals are viewed similarly, therefore, only when
we think of ds in the third as intrinsically positive as a mere measure
of the length of a line element.

Consider, for example, the line integral of the tangential component
of a force. The expression "tangential component" is obviously ambigu-
ous until it be stipulated which direction along the curve is to be taken
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as the positive direction. Suppose the integration be carried out along a

curve whose end points are A and B. If it be specified that the direc-

tiori along the curve from A to B is to be considered the direction of the

positive tangent, then the tangential component Ft is thereby defined

at every point of the curve. If it be desirable to indicate, by means of the

notation, that the direction from A to B is considered positive in

reckoning the sign of Ft ,
this may be done by using the letters A and B

as upper and lower limits of the definite integral. Then

F.cfa
CA-- F t d8 t

Jn

but the reason for the change in sign is not that ds has changed sign, nor

is it because the "limits of integration" have been interchanged. The

reason is, of course, that F t in the second integral is equal but opposite

to Ft in the first. In neither integral are the letters A and B to be in-

terpreted as limits in the ordinary sense. Each integral requires the sum-

ming of the product of every positive ds by the associated value of F t .

The letters A and B lay down the convention according to which F t is

to be calculated. The letters A and B also, of course, indicate that all

elements ds lying between A and B are to be included in the integra-

tion process.

To illustrate this viewpoint further, and show that the distinction

being insisted on is not an artificial one, consider Gauss's theorem for a

closed curve in a plane. Namely,

where e is the sum of all tho charge on the plane within the closed curve

and whore Kn is the component, along the external normal to the curve,

of the electrostatic intensity. Having specified that n is the exterior

normal to the curve, En is defined at every point. Then this integral

has, and should have, the same value e regardless of the direction of

transcription of the closed curve. If n be specified as the exterior nor-

mal, but ds given sign, this integral has the value e only when the inte-

gration is carried out in a certain manner, and has the value e if this

order bo reversed.

The expression

fFx dx+Fv dy
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is to be viewed as an abbreviation for the line integral,

\ds.I". 8)

The signs of dx/ds and dy/ds are indeterminate until a sense of tran-

scription has been specified. The element ds, however, is to be con-

sidered as essentially positive, here as always.

This section will now conclude with a proof of the following theorem:

If the line integral of the tangential component A a of a vector around

any closed circuit be zero, then the vector A is expressible n* thp imhla

of a scalar-point function, and vice versa,

First, suppose that

(34) fA,ds = Q.

Then, if

rp
*=*,+ A. da,

Jv

<f> being the value assigned to $ at the point 0, the function * is, by
virtue of (34), a uniquely defined function of position. The amount,

d<f>, by which this function changes in going from a given point a dis-

tance ds to a neighboring point is

d$ = A. ds,

and, accordingly,

Conversely, suppose

4 = V4>.

Then

A^*'
ds

9

and obviously the integral

/'*-/*
will be zero around any closed path.
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4. Relations between Scalar and Vector Products, Divergence,

Curl In this section are listed certain important vector relationships,

together with a brief indication of their proofs.

(35) (A[B,C]) = (B(C,A]) = (C[A,B}) .

[B,C] is numerically equal to the area of the parallelogram formed on the

vectors B and C, and is normal to the plane of B and C. Hence

(A[B,C\) is numerically equal to the volume of the parallelepiped formed

on the three vectors A, B, and C. The other two scalar products may
be likewise interpreted as being equal numerically to this same volume.

(36) (A[B,C\] = B(A,C)-C(A,B).

The ^-component of [4[/?,C] J
is by definition

which may be written

BX(A XCX+A VCV+A SCX) -CX(A rBx+A VBV

which is the ^-component of

B(A,C)-C(A,B).

(37) div $A= $ div 4+ (A,VS) ,

div $A=$ div A+AX
-Q~X
+A V

dv^~
A *

dz

=$ div

(38) curl $4=<i> curl A+[V$,A] ,

=$ curlx A+[V$, A]x .

(39) div curl 4=0,
. d fdA t dA v\.d(dA x dAX.d--+-+

\-. \-. 1~ ?~. ^-"l .a lk/. "^ a/.. Hxw li/w 3ni *

"dxdy dydx dx dz dz dx dy dz dzdy

=0.
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(40) curl V$-0 ,

_**+**+**.*<*
dx^dy^dz-

(42) curl curl .4 = V div ,4-VM ,

. . . d (dA v dA z\ d (dA; dA\
curl, curl A= -^

-
dy j-^- ^) ,

<*, V <, _<PA,_d*A r_fA,
~~dx2 dxdy dxdz dx* ~dy'

2 dz*
'

It is to be noted that this is a vector formula, V2
.4 denoting in Car-

tesian co-ordinates the vector of components V*A f ,
V*AV , V*A,, respec-

tively. For V'M in other co-ordinate systems see 7 of this Appendix

(43) div \A,B]
= (B, curl A) - (A, curl B) ,

div (A,B}
=
^(A vB;-A :Bv)+(A !B,-A fB,)+(A,Bv-A vB,)

> dBy V_,1BA
dy)dx

\ _
x dy

= (B, curl A) -(A, curlS) .

(44) curl \AJB\
= A div B-B div A+(B,V)A- (A,V)B ,

curl, (A,B\ =
ŷ
(A 1Bv-A vR,)-

d

^(A zBt-A tB t) ,
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/ dBx dBy dBz\ _ n / dA x dA v dA g\
-A x ( -a~"T z. ' a, /

x
y d

'

ty dZ /dy dz

dBx A
dBx A

dBx
Ay ,. AZ v

dx dy dz

= A,div B-BX div A+(B,V)A X-(A,V)BX .

(45) V(A,B) = (A,V)B+(B,V)+[A, curl ]+[, curl X]

dx &x &

dA x
, D dA,

J
"da;

2
ax

f

aA x
, D aA,

ax
,_a#,\ - idBx_dB;\*

dy ) \dz dx)

idA y dA x\ D /aAo, aAA

{dx"dJ"AUi""dxj'
5. Integral Transformations.-

A. Consider the expression

'dW
dx

d(r
,

where this surface integral is to be extended over the plane area in-

closed by the curve shown

in Figure 5. This integral j

may be written as

-r

dx "^^(M^r)

"A
-x

where W\ and Tf2 are the YiG.5

values of TF at the points

marked 1 and 2 on the figure. Then according to the convention here
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adopted that ds is intrinsically positive,

dy= ds cos (HJC) at the point marked 2,

dy=ds cos (nx) at the point marked 1,

so that this integral may be written:

rB CB
\ Ws cos (nx)ds+ I Wi cos (nx)ds .

JA JA

Thus

(46) f*y *r= (V cos (nx)ds ,

taken ovet the whole curve.

In just the same way it may be seen that

(47) f^ dr = fw cos (nx)dff ,

where the integral on the left is extended throughout the volume con-

tained within a closed surface. The integral on the right is extended over

this closed surface. It follows at once from this last equation that

*+*A"+
d^\dT= ([A, cos (nx)+A v cos (ny)+A. cos (**)]&? ,

x^dy^dz} J

or

(48) Jdiv A dr= [A n d<r .

B. Green's Theorem. If, in (48), one substitutes for A the vector

u,Vv it follows, from (37) and (20), that

/r to i C\ du to.du dv.du dv
uVH dr-

J
u -

dn d*-) [dx dx
+

dy dy
+

dz

or, if

c , c 3u , rr/3u\
2

J
uV^U dr=

J
u ~ d*-

J [(Yx)(50) I uV2U dr- I u ~ da- I II I +1 -
I -hi vr I \0r .
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Both formula (49) and formula (50) are referred to as "Green's

theorem." A further formula, also called "Green's theorem," but usually

called the "symmetrical form of Green's theorem" to distinguish between

it and the two forms just given, is obtained by interchanging u and v in

(49) and subtracting the resulting equations. Thus:

(51) C[uV*v-vV*u]dr= C\u
d

d

v

n
-v

|*ld(7
.

C. Stokes's Theorem. In A of this section it has been seen that a

three-dimensional integral whose integrand is formed of partial deriva-

tives can be reduced to a two-

dimensional integral. A partial in-

tegration, of this same sort, will

reduce a two-dimensional (i.e., a

surface) integral whose integrand

involves derivatives, to a one-dimen-

sional (i.e., aline) integral. Consider

an open surface, whose equation is

z=f(x,y), bounded by the closed
FIG 6

contour S (see Fig. 6). Let Sf be the

projection of S on the x-y-plane, and let P(x,y,z) be a given function

whose values at points on the surface in question are

Consider the line integral

i'

where, in determining the sign of dx/ds, the curve S.is to be traversed

in the direction judged counterclockwise by a man who stands on the

surface with his head in the direction of that normal to the surface which

we will call n. This integral is equal to

C n d>X j
I Pl --d8,
Js< ds
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since, on the surface P= P\, and since the projection on the z-axisofan

element ds of S is equal to the projection on the x-axis of the projec-

tion of ds on the x-?/-planc. Now by (40)

(
! dy dx = I Pi cos (ny}ds ,

Js1 y Js'

and, ds being essentially positive, dx = cos (ny)ds, so that

(52)

Now

f
Js

dP
}==

dP dP dz

dy
~

dij dz dy'

while, if the point x, y, z and the point x+dx, y+dy, z+dz are both on

the surface z=/0r,?/),

cos (nx)dx+cos (ny)dy+co& (nz)dz
= Q

,

so that
dz _ _gos (ny)

dy cos (nz)

Further, if dv be an element of the surface 2=/(;r,?y),

dx dy = cos (nz)d0, dx dz = cos (ny)dv , dy dz = cos (tt,r)d<r .

Substituting these relations into (52),

Analogous relations can be written down at once for the line integrals

Cg^ds, Cu^ds,
Js ds Js ds

so that, adding,
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or, in vector notation,

(53) fA 8 ds
-
Jcurl nA d<r

,

where A is any vector. This relationship is known as "Stokes's theo-

rem."

D. This section contains the statement and proof of three special

integral transformations

(54)

Consider the it-component of the left member:

1 (

C

fy*~~a/)
dT==

( W* cos ny~ u cos

=
J[n,Xl, da .

(55)

where u is any scalar function, where the integral on the right is ex-

tended over the open surface which spans the closed curve over which the

integral on the left is extended, and where the directions of n and ds

are as in Stokes's theorem.

Consider the x-component of the left member:

where C=m.
Thus, by Stokes's theorem,

I CH ds= I curl n Cda= I cos (ny) cos (nz)
- \d<r ,

which is the as-component of the right member.

J [
(56)

where the surface ami line integrals and the direction of n and ds' are

related as in Stokes's theorem, where the integration variables are
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primed, and where the differentiation involved in V is with respect

to the unprimed variables.

Consider the ^-component of the left member

where

1
a

c >+*

Hence by Stokes's theorem, the component in" question is equal to

or, making use of the relation V'2
(l/r) =0

d - a -

A
^+008 () ^^

/a
a
r^, I a

d
l ,, a I ^

^a^ d<7==

J a*'an^-a*J an

6. Vector Fields

A. A vector field is a region ,of space at every point of which a vector

is defined. The vector might be, for example, the velocity at any point in

a field, or the vector of electric force at any point in the neighborhood of

charge, Mathematical physics is much concerned with the determination

of vector fields of various sorts under given boundary conditions, and it

is the purpose of this section to give some of the fundamental theorems

concerning vector fields.
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If, at every point of its field, a vector has zero divergence, it is known
as a "solenoidal vector"; while any vector which can be represented as

the nabla of some scalar-point function is known as a "potential vector.
"

Thus a solenoidal vector has everywhere zero divergence, while a po-

tential vector has everywhere zero curl. It will be shown that any vector

which is solenoidal, and hence of zero divergence, can be represented as

the curl of some other vector; and that any vector which has zero curl is

necessarily a potential vector. It will further be shown that an arbitrary

vector can be represented as the sum of a solenoidal vector and a po-
tential vector, and the solutions for these two types will be obtained.

THEOREM 1. A solution, continuous together with its first derivatives

and vanishing at infinity as 1/r, of the equation

is given by

Throughout the remainder of this Appendix, in accordance with the

practice used in the text, the variables of integration are, in general, the

co-ordinates x'
t y', z' of a point P. The distance r is measured from a

point 0, of co-ordinates x, y, z to P, so that r is a function of both

the primed and the unprimed variables. Other quantities which occur

under integral signs, such as p' in the last equation, are supposed ex-

pressed as functions of x f

, y
f

,
z'. The values of the integrals are, of

course, functions of x, y, z only.

Proof: Consider a region contained within a sphere S of radius R.

Let an arbitrary point of the volume V contained within S be

chosen as origin, and in Green's formula

f(%-

write tf^l/r, r being the distance from the point to any point P of

co-ordinates x', y', z'. Then since the foregoing formula is valid only for

use in a region throughout which u and v, together with their first

derivatives, are finite and continuous, the origin must be excluded

from the region V by deleting from it a small sphere of radius 5 and
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center at 0. Call the surface of this small sphere <r, and the region
contained between o- and S, 7* . Then

I (late
d

r}. ,, I lldu
d

r

I \. *~ u * da + i \
- -H o

/ \r CM dn/ r \r On dn/
C/<r iy2 '

(- V'sM-wV' 2
l

}dr',> r)

Consider the first of these integrals,

C 1 du , , C du
j

I
- - - aa =r I

- - ace ,

J r dn J dn

where dw is an element of solid angle. Then, since du/dn is finite,

r C d*
i

lim r I rfco = .

r-o J on

Also, since on a

lim I
-

r--.0 J
WC/CO = 47TWQ >

w being the value of u at 0.

The second integral of (57) involves derivatives, along the direction of -

the external normal to V, of u and of 1 jr. As R approaches infinity,

these derivatives become more and more nearly equal to the deriva-

tives of u and 1/r with respect to r. Thus the quantity within
the parenthesis vanishes at infinity as 1/r

1

,
since* u vanishes by

hypothesis as 1/r, so that du/dr vanishes as 1/r
2

. The element of sur-

face, however, increases as r2 . Hence the integral approaches zero as R
approaches infinity,
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Since v/2UA) = throughout V+ 9
the third integral of (58) reduces

to

*7'""'
dr1

.

r
ts

Hence

=l (
47rJ

?dr'.
r

The origin having been arbitrarily chosen, this is the value of u at any
point.

B. In 4 were established the following equations:

div curl 4=0
,

curl V<I> = .

The following more general theorems will now be proved:
THEOREM 2. The necessary and sufficient condition that the curl of a

vector vanish identically is that the vector be the nabla of some function.

THKOKKM 3. The necessary and sufficient cotidition that the divergence

of a vector vanish identically is that the vector be the curl of some other vector.

These theorems will now be proved in order. First assume

then

curl A - curl V4> = .

Next assume

curl 4=0 .

By Stokes's theorem and the last equation,

JA 8 ds Jcurln 4 d(j = .

Then, by theorem of 3, E,

The first of the foregoing theorems is thus established. To prove the

second theorem, assume first that

A = curl B .
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Then, by (39),

divA = div curlfi^O.

Next assume

(58) div 4=0.

It is desired to determine, if possible, a vector B such that

B .

It will, in fact, be shown that it is possible to obtain a third vector C

whose curl is the desired vector B. That is, a vector C will be deter-

mined from the relations

5= curl C ,

A = curl curl C ,

= V div C-V2C .

Thus

(59)

(60)

(61)

provided

(62) div C=0 .

These four differential equations for the determination of Cx ,
C

tf ,
C4

would be independent and hence, in general, would not possess a solution

were it not for the condition expressed in (58). Indeed, by virtue of this

equation the four differential equations above are dependent. The first

three of them give, using (58),

V2 div C=0 ,

which is satisfied by (62).

By the first theorem of this section, Cx and Cy may be determined

from (59) and (60). Then (62) gives Cz except for an arbitrary function

of x and y.

(63) C,=Ci+X(x,y) ,
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where Ci is determined from Cx ,
Cy ,

and (62). But from (61)

^
dz~ dz dz

'

so that

(64)

Thus (61) will be satisfied by (63) provided X is a solution of

The equations (59), (60), (61), and (62) may thus be replaced by

V2X=-<1>.

These equations, which by the first theorem of this section are known to

possess solutions, together with (63) and (64), serve to determine C and

hence B. The proof of the second of the two theorems is thus complete.

C. The importance of the concepts of divergence and curl is made
clearer by :

THEOREM 4. A vector is uniquely determined if the divergence and curl

be specified, and if the normal component of the vector be known over a closed

surface, or if the vector vanish as 1/r
2 at infinity. In the former case the

vector is determined within the closed surface.

Proof: First suppose the normal component to be known over some

closed surface. Suppose there are two vectors A and A', each having
the same divergence and curl throughout the interior of the closed sur-

face, and with An= A'n on the surface. Then if B=AA' ,

(65) curl 5= 0,

(66)
= 0.

Now from (65) and Theorem 2,

(67) B=Vu,

so that
V2u=0 ,
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Also, from (66) and (67),

-

If-these values be now inserted in

SHSWW^*-/*'
one has

or, since the integrand is essentially positive,

*__ _0; V'w=0; B-0.
dx dy dz

Second, suppose that A and A' vanish at infinity as 1/r
2

. If the

vector is to be determined throughout all space, the surface integral of

(68) is to be extended over the surface of a sphere of indefinitely large

radius. This integral may be written

du
2 ,

u-r'du,

where dw is an element of solid angle. Then since B vanishes at infinity

as 1/r
2

,
u will vanish as 1/r, du/dr will vanish as 1/r

2
,
and u

as 1/r
8
,
so that the value of the integral approaches zero as the radius

of the sphere becomes indefinitely great. This integral again being zero,

the proof goes exactly as above.

It has just been proved that a vector field is uniquely determined by
the specification of divergence and curl. Two special cases of this will

now be carried out to completion, i.e., the vector field will be actually ob-

tained in terms of the specified -divergence and curl. In the first example
the divergence will be an arbitrary function of x, y, and z, while the

curl will be identically zero. The first example will thus furnish an ex-

plicit representation of a general potential vector. In the second example
the curl will be an arbitrary function of x, y, and z, while the di-

vergence will be identically zero. Thus the second example will furnish

explicit representation of a general solenoidal vector. The actual gener-

ality of these apparently special cases follows from the fact, proved at
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the end of this section, that any vector is the sum of a potential vector

and a solenoidal vector.

D. First example: It is desired to determine a vector A from the

data,
div A = p , curl 4 =

,

p being a given function of x, y, and z. It is further assumed that the

vector to be determined vanishes at infinity as 1/r
2

. Then since the curl

of A vanishes

so that

div

Since A vanishes at infinity as 1/r
2

,
u vanishes as 1/r, and by Theo-

rem 1

wo that

(09)

This solution tacitly assumes that u and its first derivatives are

everywhere continuous, since use is made of Theorem 1 where this is

necessary. That is, the solution just

given assumes the continuity of A.

In important cases, however, there

are discontinuities. Discontinuities

of a certain type will be assumed in u,

and it will be made clear later to what

important types of distribution of

sources each corresponds. Let it then

be assumed that there is a surface /J2 ,

closed or unclosed, and illustrative of

whatever other surfaces of the same

sort there may be, on which

FIG. 7

du du

(70)

The subscripts 1 and 2 denote the two sides of the surface, arbitrarily

chosen; HI is the normal pointing from the surface toward the side 1;
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n2 a normal pointing from the surface toward the side 2; and n a unit

vector pointing along na . Thus the component of A normal to the

surface experiences a sudden jump in value upon crossing the surface.

Suppose also that there is a surface 7^2, illustrative of a second sort,

across which

(71) Wi-tt2 = p,

HI and HZ indicating the values of u on the two sides of the surface.

Thus u itself experiences a sudden jump p upon crossing such a surface

as Fi2 . Then obviously the surfaces /t2 and Fi2 must be excluded from

the region throughout which the volume integrals of Green's formula are

extended. This can be done by surrounding /i2 and FW by closed sur-

faces / and F which lie everywhere very close to /i2 and /<\2 , respec-'

tivcly. Then the interior of these closed surfaces / and F will bo ex-

cluded, and they themselves must be included in the total boundary
over which the surface integrals are extended. It is to be noted that /u

and n2 are opposite to the exterior normals of / and F. Then, as in

Theorem 1, writing v = l/r in Green's formula,

Ci ^ C C
I I

! du r
\ i / . I / \j i , I /

I I u / dff + I ( )d(T -(- I (
/ \r dti d?v / /

c/<^
' Jf Jv

-/
the integrand in the four surface integrals on the left being the same.

The volume integral is to be extended over the interior of 2 with the

exception of the interiors of o-, /, and F. Then, as in Theorem 1,

lim f(

r-VJ*

lim C(
R = *>Jz

)d<r'=0,

Urn | (r 7'2w-uv'2 MdT'= | -^drf
.
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Also

And

but

a*

Thus

limrn f (

Jf

so that

(73) =4
1

,/:'<"'
+
4

1

,I''*''-sl (""'' I)*"
'

(74) A V ^JjV-V 4\jJW ^(p,V'

These three terms will now be examined and interpreted. The first inte-

gral checks with the original solution, and is obviously the part of A due

to a volume distribution of sources, i.e., a volume distribution of

div A = p.

.
To see the meaning of the second integral, consider a small flat ele-

ment of volume extending half on either side of the surface /i2 ,
and cut-

ting from this surface an element df whose dimensions are large with

respect to the perpendicular dimension of the volume element. Then for
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the total normal flux of the A vector cut through the surface of this ele-

ment one has

since the contribution from the narrow band that forms the sides is

negligible compared to the contributions from the relatively large top
and bottom. But if there were spread over /i2 a surface distribution

of sources of strength (A ni+A nJ per unit area, the flux per second out

from an element rf/i2 would be (A ni
+A n)dfw. That is, (A ni+A n) is

a measure of the strength per unit area of sources distributed on /12 ;
and

is therefore called the
'

'surface divergence.
" Thus the discontinuity in

the normal component tells the per unit area strength of surface dis-

tribution of sources, just as the di-

vergence tells the per unit volume

strength of volume distribution of

sources. The second integral of (74)

therefore gives the part of A due

to surface distributions of sources.

The word "source" is nowhere here

to be thought of too narrowly. One

(i 8 can always form a definite physical

picture by thinking of the sources as

actual sources, in the ordinary sense, of liquid, and A as a velocity vec-

tor. Buff since div E= p, E being the electrostatic intensity and p

volume density of charge, "charge" plays the role of "source" when the

vector under consideration is electrostatic intensity, and surface dis-

tributions of charge would give rise to integrals such as the one here

being considered.

The third integral gives the part of A due to a surface distribution of

doublets, i.e., a surface one side of which has a distribution of sources,

the other a distribution of sinks, the strength per unit area on the two

sides being the same. This can be seen at once from results obtained in

chapter ii, where the potential due to a doublet was considered. For there

it was seen that a surface distribution of doublets whose polarization is

|i per unit area of surface gives rise to an intensity

Thus this third integral is due to a double sheet of moment pn per unit

area.
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Volume distributions of sources and sinks, surface distributions of

sources and sinks, and double-sheet distributions of opposed sources and

sinks are thus responsible forthe three terms of (74).

E. Second example: It is now desired to determine a vector A from

the data,

(75) curl 4=i, div4=0,

i being a given vector-point function. It is further assumed, as before,

that the vector vanishes at infinity as 1/r
2

. Then, since the divergence

of A vanishes, it is possible to write

(76) A^GurlB.

Now the auxiliary vector B has its curl specified by the equation just

given, but to specify it completely one may independently assign any
convenient value to its divergence; in particular, one may assume

(77) divB=0.

Indeed, to any given vector B may be added a potential vector yw
which will not disturb the value of curl B, and such that

div

provided that

an equation which has been shown to possess a solution. Then, from (75),

(76), and (77), .

curl curl B = i = V div B- V*B = - V'
2B ,

V2B=-i.

That is,
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Each of these three equations is known to possess a solution, it being

possible to express the solution of all three by means of the vector equa-
tion

(78) B=
i

where i is now expressed as a function of x', y', z'. Then,

(79) 4 = curl

F. Genera] solution: Now from ((19)

i

if curl Z?= 0, and where, under the sign, div' B' is expressed as a func-

tion of x 1

', y', z' ; while from (78)

, 1 Aurl' C 1

1 ,= curl -r- \
drf

,

47TJ r

if div C= 0, and where, under the sign, curl' C' is expressed as a func-

tion of x',y',z'. Then if one sets A = B+C,

div 4 = div B ,

curl A = curl C ,

and

(80)
_ 1 fdiv' A' .

, , ,
1 fcurl' A'

V --
\ d/+curl -

t

-
I

4.irJ
r 47rJ r

Kciujition (80) is an identity satisfied by any vector-point function A,

continuous together with its first derivatives. It expresses the fact,

proved in Theorem 4, that a vector is determined by means of its diver-

gence and curl, and gives explicitly a vector in terms of specified diver-

gence and curl. It shows, moreover, that an arbitrary vectpr is expres-

sible in terms of a potential vector and a solenoidal vector. This last can

be seen directly. If, A being an arbitrary vector, one determines a func-

tion u from the equation

= div A ;
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sets

5= VN,
and then writes

A

it follows that

div #= di

from which it results at once that the divergence of C is zero, i.e., it is

a solenoidal vector.

The purpose of this section has been chiefly to show the importance
of the concepts of divergence and curl; to show that they can be specified

independently, and that their specification determines uniquely a vector;
and to indicate the method of determining the vector when the diver-

gence and curl are specified.

7. Curvilinear Co-ordinates. The general theory of curvilinear co-

ordinates is developed in the text ( 26), and the expressions for div A,
curl A, V$, and V 2(i> in general orthogonal curvilinear co-ordinates are

calculated ( 26 and 44). These equations will be re-written, near the

end of this section, for convenience in reference. Before this is done, how-

ever, the method of obtaining these relations will be briefly discussed.

Let two vectors be associated with a point P in space (or, more

generally, with every point in space). Let the two vectors be represented

by directed line segments each placed with its initial point at P. Then
the two vectors (whose magnitudes are assumed to be of the same kind,

as regards physical dimensions) are said to be the "same" vector pro-
vided the end points of the two directed line segments also coincide.

Now a vector may be analytically specified by giving, at each point of

space, the three components of the vector along the co-ordinate axes at

the point in question. In this sense, a vector is an ordered set of three

functions. But two vector fields which, at every point of space, are the

"same" may be analytically specified by two entirely different ordered

triples of functions, provided the two vector fields are referred to two
different co-ordinate systems. Thus, at every point P of space, let a

vector point directly away from a fixed point 0, and have a length equal
to the distance 0P. This vector, if one uses polar co-ordinates p, 0, ^,

and a set of unit vectors p', 8', #', corresponds to the ordered set of

functions p, 0, 0, while if one uses Cartesian co-ordinates x, y y
z with

origin at 0, and unit vectors I, j, k, the same vector corresponds to

the ordered set x, y, z.
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Now one originally defines the scalar quantity div A in Cartesian

co-ordinates. The operator "div" associates with the given vector field

A a scalar field. Then one wishes, whatever system of co-ordinates he

may' be using, to be able to calculate at any point of space, the same

numerical value div A, given the same vector field A. As a matter of

direct computations, this is a long and unpleasant task. The work is

greatly simplified by noting that (as the divergence theorem shows) the

numerical value of div A at any point P is the limit of the total normal

flux per unit volume of the vector A out through the surface of any small

volume containing P, the limit being taken as this volume becomes

smaller and smaller. This numerical value can be calculated directly

in general orthogonal curvilinear co-ordinates, and the desired expres-

sion for div A is thus found very simply.

Second, given a vector field A, one knows how, in Cartesian co-

ordinates, to calculate an associated vector field curl A. The problem
now is, given this same vector field A in orthogonal curvilinear co-

ordinates, to obtain the rule for calculating the same associated vector

field curl A. Again the task of direct transformation is avoided, this time

by Stokes's theorem, rather than by the divergence theorem (see 44).

Given a scalar field $, one can associate with it a vector field V$
by means of the operator V. One knows how to compute V<f> from <l> in

Cartesian co-ordinates. To learn how to compute the same vector V4>

from $, using general orthogonal curvilinear co-ordinates, one might

proceed to a direct examination of the general relations between differ-

entiation with respect to x, y, z, and with respect to w, v, w; and the

relations between the two ordered triples of functions which, in Car-

tesian and in curvilinear co-ordinates, furnish the analytical specification

of the vector. Here this unpleasant task is avoided by merely noting
that V$ is a vector whose component in any direction measures the rate

of change of the scalar <i> in that direction. Such a vector can be set up
directly in the curvilinear co-ordinate system.

The calculations just described lead to the formulas:

,. A _ 1 \d CAuftft) .
d (A&ei) ,

d(A ,,

du
+

dv
+ dw
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... ,
1 8*

'

1 d* . ,1 3$
V&ssf/' ---LIT ---Lift' --

d du^ e2 dv
^

e3 dw
'

\ei du dv\e* dv dw\ e3 dw

The foregoing remarks have been made chiefly to prepare the ground
for a discussion of a vector relation which has, apparently, not always
been clearly understood. Py checking components in Cartesian co-ordi-

nates it was proved in 4 of this Appendix that

curl curl -4= - V24+V div A ,

where

VM =

If any orthogonal curvilinear system of co-ordinates be used, one knows,

from the equation written just above, how to calculate at every point

the "same" vector curl curl A and V div A. But how is one to compute
the "same" vector V2A? One may very easily check that the vector

is not the "same" as the vector

If, for example,
A = ix+jy+kz

then

whereas

That is to say, the simple way in which one computes V*A from A in

Cartesian co-ordinates does not, if carried formally over to general orthog-

onal curvilinear co-ordinates, produce the (same) desired vector. There

is, of course, no reason to expect that so simple a rule would be found.

The obvious way to learn how to compute VM in any co-ordinate system
is to make use of the fact that

- V div A curl curl A
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in Cartesian co-ordinates, and the further fact that one knows how, in

any co-ordinate system, to compute the quantities on the right. Thus,

from direct substitution of the results given above it follows that V*A is

a vector whose component in the ^-direction is given by

,

e\ du
\ eiCtfa [

all dv dw

e, id(eiA v) d(<yij\ 1 __d
'

c,
(.d(ciA

u) _^4J.\] 1

i 2 \ ~du dv /] dw eze\ dw' du /Jj
'

The other two components of V2A can be written at once by cyclic

permutation of the indices 1,2,3, and of the letters u, v, w. It is clear

that the expression for V2A is much simple]* in Cartesian co-ordinates

than in other systems. In space polar co-ordinates, for example, the com-

ponent of V2A in the p-direction consists of eighteen terms, three of

which involve A p ,
A &) and A^ eight of which involve first derivatives

of these quantities; and seven of which involve second derivatives of

these qiiantities.

At various points in the text it is calculated, for a certain vector A,

that

where C is some given vector. One is then justified in concluding that,

in general,

or that

V div A curl curl A = C .

On account, however, of the complexity in the relations written just

above, one is not often able to make convenient use of these equations to

calculate A from a knowledge of C in co-ordinates other than Cartesian
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TABLE FOR CHANGE OF UNITS

EXPLANATION

A student is usually told the relations between various units. The

only relation one ever actually uses, however, is not the relation between

units, but rather the relation between measures of quantities when cer-

tain units are used. Thus one actually requires such equations as

which states that the measure e of a certain charge in rational electro-

static units is l
/47r times the measure of this same charge in c.g.s.

electrostatic units.* Since only relations between measures are actually

used, and since a statement of the (inverse) relation between the units

themselves only adds confusion, the table will deal exclusively with meas-

ures.

The following table gives the numerical factors required for the vari-

ous relations between measures. The first two columns contain the ordi-

nary electrical entities listed under the heading "Rational Electrostatic"

or "Rational Electromagnetic" according as one or the other of these

rational units is used for the quantity in question in this book. Any num-

ber listed in the body of the table is the factor by which one must multi-

ply the measure, in the vertically corresponding units, of the horizontally

corresponding quantity in order to obtain the measure of this same quan-

tity in the appropriate rational units. For example, suppose one requires

the relationship between P, the polarization measured in rational elec-

trostatic units, and polarization measured in c.g.s. electrostatic units.

By observing the numerical factor written horizontally opposite P and

vertically under the c.g.s. electrostatic heading, one writes

Similarly,

p- [1.063 X 10 10
] Pcoulomb* per cu. cm. ,

B = ~
,

- -- #P m u

K47T

* The absence of subscripts will indicate that the quantity in question is measured

in rational units. When it is desirable to distinguish between rational electrostatic

and rational electromagnetic, one may use the subscripts r.e.n and r.e.m.

369



THE ELECTROMAGNETIC FIELD

Throughout the table the letter c stands for the ratio between elec-

trostatic and electromagnetic measures of charge. This ratio is known to

be numerically equal to the velocity of light. Thus C-3X1010
. The fac-

tors for reduction to practical units are given in reduced numerical form,

since when one uses these he is likely to want a definite numerical,

TABLE FOR CHANGE OF UNITS

rather than a literal, answer. The units used, as "practical," are:

coulombs for charge and charge densities; amperes for current densities;

volts for potentials; volts per centimeter for electrical intensities; gausses
for magnetic intensities; microfarads for capacity; and reciprocal ohm-
centimeters for conductivity. The reciprocal of the conductivity in

reciprocal ohm-centimeters is the resistivity in ohm-centimeters, i.e.,

the quantity which, when multiplied by length in centimeters and
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divided by cross-section in square centimeters, gives resistance in

ohms.

This table gives, in the first instance, the relations between measures

in rational and in other units. It can be used, however, to obtain rela-

tions between measures in any units. Thus suppose one requires the rela-

tionship between measures of electrical intensity in c.g.s. electromagnetic

and in volts per centimeter. One writes from the table,

C1/47T

from which one obtains at once as the desired result,

#e.m.u. - C1/M9.403 X lO-^volts per cm. .

371





FORMULA INDEX

All of the more important formulas of the text are included in this

Index. The numbers on the left are the equation numbers, as they occur

in the text. The numbers on the right are the numbers of the pages on

which these equations first occur. Any question concerning the meaning
of notations should be settled by reference to the text page indicated.

CHAPTER I

The force on a second charge due t o a first :

The mutual electrostatic energy of a set- of charges:

The electrostatic potential:

The electrostatic intensity:

(8) E=-V$ ................. 11

The force on a charge c:

The polarization of a complex:

(10) =2^1 .............. 16

The r- and 0-eomponents of the force on a charge due to a doublet of

moment p:

(ID

(12) lF.).-2==r
............... 18

The force on a complex :

(13) F^EZCt+lp&B ............... 21
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The torque on a complex'

(14) T-IPM ................. 22

The induced polarization of an isotropic complex :

(16) p=kE ... ................ 23

The potential due to a body: . . , ...........
(41) 4^=e+p',V'/T'+"+,',v'V . . 64

(44)
p- ^ ^+ ,'.V ,/,' . . 57

The mutual electrostatic energy of a set of bodies:

(51) * ,V*)r/<r

>

/(|i,V*)r/<r/

The force on a body:

(52) E=fpEdiJ " ' - '
L ^

The torque on a body :

(53) T=f\r,PE}dT+f(r,riE]d*+f[P,E}dT+f[p,E\d<r+j[r,(P^^

, r

(<T

\ . 67

-divP)Wr+/[r,(77 -fPn)]d<r-f/fK.^j(/r

CHAPTER 11

The force on an interior charge due to non-neighboring charges:

(63)
* = + P=-V4>+P ............ 80

The characteristic equation for a conductor:

(66) Jg:*=:=-v24>=0 . . . , .......... 89

The potential due to volume and surface distributions of charge satisfies, at all

external points, the equation

V2*=0 .............. 94

The potential due to volume and surface distributions of charge satisfies, at

interior points, the equation:

(68) v^^-divJS^-p .............. 9(5
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The potential due to charged conductors satisfies, at all points:

(69) y^-O 96

On any charged surface, the normal derivatives of the potential satisfy the

boundary condition:

On the surface of a conductor:

<71 >
-- *

The electrostatic problem lor conductors:

a) v^fc^O at all points

b) Either the constant potential $ t
- or the total charge c of each

conductor must be known; thus * reduces, on the surface Sj of

the ith conductor, to a known constant ^ or $ reduces to an

(I) {
unknown constant, while 100

X* ./*

I i
<H>

72t Jsi dn

c) 4> is regular at infinity

Gauss's theorem: The total charge e on and within any surface Z is given by

(75)
"~Jvdt

dffsse 102

The divergence of a vector in curvilinear co-ordinates:

du dv dw J

The nabla of a scalar in curvilinear co-ordinates:

e\ du e^ dr e dw

The Laplace operator in curvilinear co-ordinates:

- -
. H~ *

*~
~- h^

* -
I .... 121

PI du di) e^ dv dw 3 dwj
*

The polarization of a dielectric:

t
(79) P = (e-l) 142

The characteristic equation for a dielectric:

143
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THE ELECTROMAGNETIC FIELD

On a surface between two dielectrics:

(84)

On a surface between a dielectric and free space :

(85) e
a
--|~

a
=0

On a surface between a conductor and a dielectric:

a*
i 7T-~
dn\

144

144

145

The electrostatic problem for conductors and dielectrics:

'

a) vM> = at all points

b) <1> is continuous everywhere except across surfaces where
across such surfaces <!>! <$2 ~ p

c) Across a surface between two dielectrics

Across a surface between a conductor and a dielectric

(11)

e) On the surface of a conductor

i) <t> is a known constant <f>
t ,

or

11) * is an unknown constant, while

drc
*'

J) <f> is regular at infinity

The polarization of a dielectric in a given external field:

where

a) V2U=Q

b) U is continuous 150

d) U is regular at infinity ,

The potential due to a uniformly charged dielectric. Compute:

(04) 164

376



FORMULA INDEX

for P constant. Then if U be constant, determine P from

. (92) P = ( -l)(:o -vt/) ............ 154

The mutual electrostatic energy of a system of conductors and dielectrics:

(96) WE^dr ............... 162

CHAPTER 111

The magnet ostatic force per unit of moving charge:

(106) F =
^lv,B]

......... ' ....... 185

The magnetostatic vector B:

The magnetostatic vector potential:

(109) ^ .............. 188

(108) = cur!4 ..... ....... 186

The magnetostatic vector potential due to a complex:

189

The magnetostatic vector potential due to a body:

......... 194

(1M)

The magnetostatic vector B due to a body:

(125) B-^f[i'+curl'Af^]^ ... 199

The magnetostatic vector B due to volume currents only:

(126) * =
4lf[

f/ 'V
'7]'

/T
' ............. 199

The magnetostatic vector B due to linear currents only:

(127) B
-/;/[

d
'^J .............. 199
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At points in free space:

div 4^=0
'

curl 4=0
(129) { V 201

divB=0

k
curl B=curl curl A =0 ,

The magnetostatic vector B at a point in a body and due to non-neighboring

charges:

(137) B* =curl4-?M 207

At points within a body, the magnetostatic vector potential satisfies the differ-

ential equation:

(136) curl curl 4 =i+ curl M ... .... .... 207

On the surface of a magnetized body, the normal derivatives of the magneto-
static vector potential satisfy the boundary relation:

The magnetostatic problem:

b) A is continuous

(III)

jc)
dA+dA=-[Mn \

^ m
k d) A is regular at infinity ,

The magnetostatic force on a complex:

(148) F = [j,B]+ (m,v)B 217

The magnetostatic torque on a complex:

(149) T = [m,B] 218

The magnetostatic force on a body:

(160) F-/[i,B]dT+/(M,v)IWr 218

The magnetostatic torque on a body :

(151) T=/[M,JB]dr-f/[r,[i,B]]dr-H/[r,(M,V)B]dr 218

The magnetization of a body:

(163) M=(I-^}B 220
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The characteristic equation for bodies whose magnetization is proportional to

the B vector:

curl curl A = curl B= curl Af=0 221

The electrostatic and magnetostatic motional intensity:

Total intensity =E+- [v,B] 223
c

Ohm's law:

(160)

<-=? 1
c I for linear circuits 234

>B =cRI I

i*=r<r~ for volume conductors 234

The steady state of currents in volume conductors is characterized by

(}63) a) V24 =

(164) b) cH>/dn=()on the boundary between a conductor and a dielec-

tric or free space
J-

235

(165) e) <TI- h<r2 .
- ~0 on the boundary between two conductors

dn\ oHz

For a body equipped with surface electrodes:

a) v2*=0 in the interior 236

6) $=#,1 on electrode A, etc 236

c)
- =0 on the remainder of the boundary 236

d) ^A^A+*B^fi"i" .... ~Q/c 237

e) IA+IB+ =0 237

For a body equipped with very small electrodes:

a) v24>=0 everywhere except at interior points A .... where'
interior electrodes are located, and at points A' ....
on the boundary, where surface electrodes are located

6) At A .... and A' .... * becomes infinite as L 23

c) /A+ +IA'+ =0
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For a body equipped with small circular surface electrodes:

a) V2*=0 at all interior points

6) =5 *- -. . on the A-th electrodendn r.

c) =0 on the remainder of the boundary

CHAPTER IV

The field equations for free space:

240

(167) curlB^i+e^JT* 260
c c

(168) curl=-*
*

. 260

(169) div=p 260

(170) <liv=0 260

(171) F =E+ lv,B\ 260
c

The equation of continuity:

(172) div(pu)+p=0 261

The field equations within matter:

(175) curl* =m^ 263

(176) curl=-* 263

(177) div = P 263

(178) -div = 263

The circuital relations when the dependence on time is sinusoidal:

(180) curl BI~~^- ~^ EI 264

(181) euri 4--! 264
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The Poynting vector:

(183) S=c[E,B] 260

The electromagnetic momentum:

(191) G-fsdr 27(i

The solution of the field equations for free space the retarded potentials:

(209) *-J-|^dT 285

(210) 4=- dr . . . ...... 285

(194) =-v<t- ............... 280
c

Alternative expression for the retarded potentials:

(212) *-/- ,;, (
, u,\ ............. 291

(213) A =~\ ,., J, _, 1 ........... 292

The fields due to a moving set of relatively fixed charges:

(216) g = + 1U>ril[(r'." (U>U)l
p(.*f)*frWf .... 296

i n &

=SJ |-^(217) = - + -- - -(6*fX*Mt -297

The field of a uniformly moving point charge:

(219) ff^d-fl
2
)

^. ........... 298
47T 2 -12
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THE ELECTROMAGNETIC FIELD

The field of a uniformly moving extended charge:

/n>A\ A/ 1 C p'd&Wf' 301
\&&\J/ V "B

'j
I r/y '..NO

(229) <,,=- (1 -08
)-

1/* , V 302

K - **'

*--a2

k-^ "~P /
'

~rtror

<23 ) J-
r
._ fl(1_^^g^

302

The longitudinal and transverse electromagnetic mass:

(239) '=i^ 30ti

(240) m"-| 306

The longitudinal and transverse electromagnetic mass of the Lorentz electron:

=6& (1 -^"J/2 307

(241)

W" ai ("I AM} -1/2 OfV7A V * p y ' . . . . . . . . . _ . Q\J f

The longitudinal and transverse electromagnetic mass ot the Abraham electron:

307
I ~XflU>V \V VI /

(242) ... 307

307

The rest mass of the Abraham or Lorentz electrons:
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I'ho field due to an oscillating dipole:

> " 1 ........... '

(248) i+-u,,-,,.,) ......... an

The wave-zone field due to an arbitrarily moving point charge:

316

( * \

(254) E
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INDEX
Abraham electron, 304

Activity equation, 264

Addition of vectors, 330

Ampere, experiments of, 176

Analogy, between electro- and magneto-
statics, 214

Angle, between two directions, 332

Appendix, Mathematical, 329

Axis, of polarization, 17

B; see Magpietostatic intensity or Mag-
netic field strength

Biot and Savart, law of, 185

Body, charged, 4

Boundary conditions, electrostatics, 14(5,

215

general case, 261

magneto-statics, 208, 213, 215

Bounds, for derivatives of intensity, 20
for intensity due to complex, 20

(/opacity, definition of, 123

of spherical shells, 124

of sphere, 124

of parallel wires, 138
of wire, 137

units for, 165, 369

Cavity, charge in, 106

Oils, surface, 50
size of, 42-44

volume, 38

Change, rate of; sec Directional deriva-

tive

Characteristic equation, for conductor,
89
for dielectric, 142, 143

Characteristics, essential electrostatic, 67

Charge, concentration method, 32
conservation of, 261

extencled; moving uniformly, 300
in cavity, 106

induced, 106
law for motion of, 309

point, moving arbitrarily, 316

moving uniformly, 297
rational unit of, 4

surface density of, 51

and polarization, 67-69

units, 369
units for, 4, 162, 3C'J

volume density of, 34-36, 48, 49
and polarization, 67-69

units, 318, 369

Choice of field vectors, 327

Circuital relations, 261

Circuits, relatively moving, 254

Circular disk; see Disk and Electrode

Complex of charge, definition of, 15

Concentration method, 31

Concentric shells; see Spherical shells

Condenser, cylindrical, 136

parallel plate, 163

spherical, 123
*""

Conducting sphere, in constant field, 166

rotating; see Rotating

Conduction current, 264

Conductivity, definition of, 233
units for, 244, 369

Conductors, and dielectrics, problem for,

146

energy, 157
characteristic equation for, 89
definition of, 86

problem for, 91, 100

Conjugate functions, 165

Conservation, of charge, 261
of momentum, 276

Constant, dielectric; see Dielectric con-
stant

Constitutive force, conductor, 87

relations, for dielectric, 142
for magnetizable media, 220

Continuity, equation of, 261

Convection potential, 300

Convergence, expansion of intensity, 20

expansion of potential, 32

Co-ordinates, curvilinear; we Curvilinear

Coulomb's law, 3

possible alterations ot, 5

Curl, of a vector, 181, 338, 339, 345, 355,

357, 363, 366

Curl curl, 346, 367

Current, conduction, 264

convection, 194, 264
definition of, 175, 189, 193

electromagnetic unit of, 175

electrostatic, unit of, 175
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in volume conductors, 236

half-space, 241, 242, 244
point source, 238
spherical electrodes, 241
surface electrodes, 236, 239

of a complex, 189

shell; see Cylindrical shell

surface density of, 196, 369
units for. 175, 318, 369
volume density of, units, 318, 369

Curvilinear co-ordinates, 116, 365

cylindrical, 118

divergence, 120, 365

ellipsoidal, 126

nabla, 121, 365
nabla square, 121, 365

polar in space, 118

polar in the plane, 117

Cylinder, logarithmic potential due to,
135

Cylindrical condenser; see Condenser
conductors; parallel, 138

shell, of currents, 208

D; see Electric displacement

5-sphere, 81

Depolarizing factor, 153
for ellipsoid, 155
for sphere, 153

Densities, of charge and polarization,
usual definitions, 74-75

dependence on subdivisions, 67-69
of moving charge, 194
relation between, 67-69
surface; 'of charge, etc.; see Charge,

etc.

volume; of charge, etc.; see Charge, etc.

and surface, physical interpretation,
54

Derivative, directional; see Directional

Determinant, for vector product, 334

Diamagnetic bodies, 221

Dielectric constant, 142
units for, 163, 369

Dielectric, and conductors; energy, 157
definition of, 140

image method; see Image method
polarization in given field, 150

sphere, 151

rotating; see Rotating
Differential operators, 334

Dipole, oscillating, field of, 309

Direction cosines, 331

Directional derivative, of scalar, 8, 334
of vector, 21, 341
notation for, 336

Discontinuities, in potential, 359

Disk, circular charged, 133

electrode, 239

Displacement, electric; see Electric dis-

placement
Distribution of currents, 236

Distribution problem, for conductors, 91

Divergence, 336, 337, 345, 355, 357, 359,
366
curvilinear co-ordinates, 120, 365
of polarization, 143

theorem, 100, 347

Doublet, electrical, 17

E; see Electrostatic intensity or Electric
field strength

Effective position, of charge, in electro-

statics, 22

Electric displacement, 319

Electric field strength; see also Electric

intensity

Electric field strength, electrostatics; see

Electrostatic intensity
general case, 259
units for, 318, 369

induction, 167

intensity, electrostatics, 10; see also

Electrostatic intensity
arbitrarily moving point charge, 317
doublet, 18

general case, 259
oscillating dipole, 312

relatively stationary charges, 297

uniformly moving point charge, 297
extended charge, 302

vector; see Electric intensity

Electrodes, circular, 239
point, 238
spherical, 241

surface, 236

Electromagnetic electric intensity; see

Electric intensity
energy, 266, 269
field; see Field

force, 260, 271

magnetic intensity; see Magnetic in-

tensity
mass, 306
momentum, 272, 276
deformable charge, 305
rigid charge, 303

uniformly moving charge, 303
potentials, scalar, 280, 285, 291

vector, 279, 285, 292

units, 369; see also Entity in question
Electromotive force, 254

Electron, 4, 304

Electrostatic characteristics, of a body,
67
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Electrostatic energy, internal, 11

mutual, 5, 8, 30, 62, 64, 157

,
volume density of, 162'

Electrostatic equilibrium, 87

Electrostatic force, charge and complex,
15

constitutive, 140
normal value, 141

due to doublet, 18

expressed as nabla, 10
on body, 64
on charge, 8, 80, 87, 88, 140
on interior charge, 79-88, 140-42
two complexes, 18

Electrostatic intensity, 10
refraction of, 164

units, 163, 369
E*, 81, 86

Electrostatic potential, 11, 46, 53, 72, 89
additive property, 105
behavior at infinity, 99
conditions on, 100, 146

continuity of, 97, 98, 143, 144, 145
derivatives of, 63
differential equation for, 96, 143
due to any body, 38, 40-46

charged sphere, 121

complex, 16, 25, 26, 40

dielectric, 142, 153

ellipsoid, 126

non-neighboring charges, 81, 84

spherical shells, 123
surface charge, 97, 98

polarization, 90, 91

uniformly polarized dielectric, 153

group, 80

logarithmic, 134

multiplicative property, 104

uniqueness of, 100, 146
units for, 163, 369

Electrostatic problem, 100, 146

uniqueness of, 100, 146

Electrostatic torque, on a complex, 18
on a body, 67

Electrostatic unit, of charge, etc.; act

Charge, etc.

Ellipsoidal coordinates, 126

conductor, 126

dielectric, 155

Energy, electromagnetic; sec Electro-

magnetic energy
ele.ctrostatic; see Electrostatic energy
flux: see Poynting vector

localized, 266
magnetostatic; see Magnetnstatu- en-

ergy

Equation of connection, between po-

tentials, 280
of continuity, 261

Equilibrium; see Electrostatic equi-
librium

Equivalence, of various densities, 56, 59,
67

Essential electrostatic characteristics, 67

Examples, illustrating meaning of densi-

ties, 54-59

Factor, depolarizing; see Depolarizing
factor

Faraday's law of induction, 261

Ferromagnetic bodies, 221

Field, arbitrarily moving point charge,
316
doublet, 18

oscillating dipole, 312
point charge, 10

relatively stationary charges, 297
state of, 256

uniformly moving extended charge,
300

point charge, 297

Field equations, 254, 260
in c.g.s. units, 319, 320
in c.g.s. electromagnetic units, 321
in rational electromagnetic units, 321
in terms of Maxwell's vectors, 319
sinusoidal dependence on time, 264
solution for free space, 279
within matter, 262, 263

Field strength; see Electric intensity and
magnetic intensity

Field vectors, choice of, 327

Fields, vector; see Vector fields

Force, electromotive; see Electromotive
force

electrostatic; see Electrostatic force

equation, general case, 260, 271

magnetostatic; see Magnetostatic force

Flux, total normal, 119

Fundamental law, of electrostat
of magnetostatics, 173, 184

Gauss's theorem, 102

Green's theorem, 100, 348

Group potential, 80

H, 219

Hertzian oscillator, 310

Images, method of, 109, 110

dielectrics, 148

intersecting planes, 111, 112

possible problems, 114, 115

sphere, 112
two spheres, 115

Induced charge, 100, 126

intensity, 255-58
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Induction, electric, 167

Infinity, behavior at, of electrostatic po-

tential, 90
of magnetostatic potential, 207

Inherent polarization ;
see Polarization

Integral transformations; see Trani*

formations

Integrals, line; see Line integrals

Intensity, electric or electromagnetic; net

Electric intensity
induced ;

see Induced intensity

magnetic or electromagnetic; see Mag-
netic intensity

Intrinsic polarization; see Polarization

Isotropic atom, 24

Laplace's equation, 94, 95, 90, 100, 101,

104, 105, 106, 109, 121, 122, 129, 135,

137, 143, 146, 150, 151, 201, 222, 235

236, 238, 239, 240, 242

Lcgcndre polynomial, 15, 151, 225, 229

Limits, for derivatives of intensity 20
for intensity due to complex, 20

Line integrals, 342

Localized energy, 266

Logarithmic potential, 134

Longitudinal mass, 306
Abraham electron, 307
Lorentz electron, 307

Lorentz electron, 304

Magnetic field strength; see Magnetic
intensity

Magnetic field strength, magnetostatics.
see Magnetostatic intensity
general case, 260
units for, 318, 369
intensity, magnetostatics: ace Mag-

netostatic intensity
arbitrarily moving point charge, 316
general case, 260
oscillating dipole, 312
relatively stationary charges, 21)6

uniformly moving extended charge
302
point charge, 298

permeability;
sec Permeability

vector; see Magnetic intensity

Magnetization, curl of, 221
of a complex, 188
relation to B, 220
surface density of, 198
units for, 319, 369
volume density of, 191, 193

388

Magnetostatic energy, 219
force, on a body, 218

on a charge, 185
on a complex, 217
on an interior charge, 202

intensity, 185

B*, 202, 206
conditions on, 213
continuity of, 212
due to linear currents, 199
volume currents, 199 ,

units for, 318 369
potential, 185

behavior at infinity, 207
conditions on, 208
curl of, 200
differential equation for, 206, 222
divergence of, 200
due to body, 191, 194

complex, 187
interior points, 201

uniqueness, 207
units for, 318, 369

problem, 207, 208
torque, on a body, 218
on a complex, 217

Mass, electromagnetic; see Electromag-
netic mass

Mass, rest, 307

Mathematical Appendix, 329
Maxwell field equations; .sec Kield equa-

tions

Maxwell stresses, 272
. anisotrppic medium, 275

limitations on, 274

Maxwell term, in field equations, 260
Method of images; see Images
Moment of polarization, 17

Momentum, electromagnetic, 272, 27(>

Motion, of charge, 174
fundamental law, 309

Multiplication, of vectors, 332
Mutual electrostatic energy; see Electro-

static energy

Nabla, 8, 121, 335, 346, 367
Nabla square, 121, 346, 367

of a vector, 367
see also Laplace's equation and Pois-

son's equation
Normal flux, total; see Flux

Oblate spheroid; see Spheroid
Oersted, 175

Ohm's Law, 232, 234

Orthogonal curvilinear co-onliiiates, 1 17

Oscillating dipole; see Dipolc
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Paramagnetic bodies, 221

Partial integration, 347

Permeability, magnetic, 221
units for, 231, 369

Plane polarized light, 313

Poisson's equation, 68, 96, 121, 137, 206,
207, 208, 215, 221, 225, 228, 247, 353,
357, 359, 363, 364, 365, 368

Polarization, 17, 32
axis of, 17

induced, 24
inherent, 24, 89
of

complex, 16, 22, 25
of conductor, 87
of dielectric, ellipsoid, 155

in constant field, 150

sphere, 151
when polarized uniformly, 153

of isotropic atom, 24
moment of, 17
relation of, to E, 142

surface, 51, 52, 89-91

super, 33
unite for, 163, 318, 369
volume density of, 37, 38, 49

Polynomial, Legendre; see. Legendre

Position, effective; nee Effective position

Potential, convection, 300

electrostatic; sec Electrostatic

electromagnetic; see Electromagnetic
logarithmic, 134

magnet ost at ic; see Magnet ostatic

scalar, for steady currents, 235
see also Electrostatic and Electro-

magnetic
vector; see Magnet ostatic and Electro-

magnetic

Poynting vector, 266
due to oscillator, 313
due to uniformly moving, charge, 303

Practical units; sec Units

Pressure, radiation, 277

Product, scalar; see Scalar

vector; see Vector

Prolate spheroid; -see Spheroid

Radiation damping, 315

Radiation pressure, 277

Rational unit, 4, 369; sec also Entity in

question

Reciprocity theorem, for electrostatics,

165

Refraction of intensity vector, 164

Regularity, statistical; see Statistical

regularity

Regularity at infinity, 99, 207

Relativity, 324

Resistance, of half-space, 241
of infinite conductor, 241
of two half-spaces, 242, 244
of wire, 234

Resistivity, 245
unit of, 245

Rest mass, 307

Retarded values, 283
potentials, 285

Rod, charged, 133

Rotating conducting sphere, in magnetic
field, 222
dielectric sphere, in magnetic field, 227

Scalar magnitudes, 330
-point function, 334
potential; see Electrostatic and Elec-

magnctic
product, 332, 345

Shells; see Cylindrical and Spherical

HolenoidoJ vector, 353, 364

Specific inductive capacity; .see Dielectric
constant

Sphere, charged, 121

conducting, in const ant field, 166
5; nee fi-Sphore

dielectric, 151

rotating; see Rotating
t*ee also Images

Spherical shells, concentric, 123

Spheroid, oblate, 132, 304
prolate, 132, 304

Spreading method, 34-37

State, steady; sec Steady state

Statistical nature, of electrostatics, 29

Statistical regularity, of charge, 45
of polarisation, 44
of potential, 63
of volume densities, 46

Steady state, 171

Stokes's theorem, 181, 349

Stresses, Maxwell, 272

Superposition, electrostatic law of, 5

Surface density, of charge, etc.; wr
Charge, etc

Torque; see Electrostatic torque 01

Magnctostatic torque
Total normal flux ; see Flux

Transformations, integral, 347

Transverse moss, 306
for Lorentz electron, 307
for Abraham electron, 307
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Uniformly moving extended charge, 300

point charge, 297

Uniformly polarized dielectric, 153

Uniqueness, 100, 104, 146, 207, 262

Unit vectors, 332

Units, 369; see also Entity in question

Vector, addition of, 330

components of, 330
definition of, 330

aelds, 352
multiplication of, 332

potential ;
see Magnetostatic and Elec-

tromagnetic
product, 333, 345

symbols for, 331

unit, 332

Velocity, of moving charge density, 194

Volume cells; see Cells

Volume densities; see Entity in question

Wave-equation, 281
solution of, 282

Wave zone field, of oscillator, 312

Wire to earth, capacity; ,xee Capacity


















