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PREFACE TO THE THIRD EDITION.

IN preparing the third edition, great improvements have
been made, and a considerable part of the work entirely re-
written, with the addition of much new material. A number
of new chapters have been added, as those on vector rep-
resentation of double frequency quantities as power and
torque, and on symbolic representation of general alternating
waves. Many chapters have been more or less completely
rewritten and enlarged, as those on the topographical
method, on distributed capacity and inductance, on fre-
quency converters and induction machines, etc., and the
size of the-volume thereby greatly increased.

The denotations have been carried through systematically,
by distinguishing between complex vectors and absolute
values throughout the text; and the typographical errors
which had passed into the first and second editions, have
been eliminated with the utmost care.

To those gentlemen who so materially assisted me by
drawing my attention to errors in the previous editions, I
herewith extend my best thanks, and shall be obliged for
any further assistance in this direction. Great credit is
due to the publishers, who have gone to very considerable
expense in bringing out the third edition in its present form,
and carrying out all my requests regarding changes and
additions. Many thanks are due to Mr. Townsend Wolcott
for his valuable and able assistance in preparing and editing
the third edition.

CHARLES PROTEUS STEINMETZ.

CaMP MOHAWK, VIELE'S CREEK,
July, 1900,






PREFACE TO FIRST EDITION.

THE following volume is intended as an exposition of
the methods which I have found useful in the theoretical
investigation and calculation of the manifold phenomena
taking place in alternating-current circuits, and of their
application to alternating-current apparatus.

While the book is not intended as first instruction for
a beginner, but presupposes some knowledge of electrical
engineering, I have endeavored to make it as elementary
as possible, and have therefore only used common algebra
and trigonometry, practically excluding calculus, except in
§§ 106 to 115 and Appendix II.; and even §§ 106 to 115
have been paralleled by the elementary approximation of
the same phenomenon in §§ 102 to 105.

All the methods used in the book have been introduced
and explicitly discussed, with instances of their application,
the first part of the book being devoted to this. In the in-
vestigation of alternating-current phenomena and apparatus,
one method only has usually been employed, though the
other available methods are sufficiently explained to show
their application.

A considerable part of the book is necessarily devoted
to the application of complex imaginary quantities, as the
method which I found most useful in dealing with alternat-
ing-current phenomena ; and in this regard the book may be
considered as an expansion and extension of my paper on
the application of complex imaginary quantities to electri-
cal engineering, read before the International Electrical Con-
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viii PREFACE.

gress at Chicago, 1893. The complex imaginary quantity
is gradually introduced, with full explanations, the algebraic
operations with complex quantities being discussed in Ap-
pendix I., so as not to require from the reader any previous
knowledge of the algebra of the complex imaginary plane.

While those phenomena which are characteristic to poly-
phase systems, as the resultant action of the phases, the
effects of unbalancing, the transformation of polyphase sys-
tems, etc., have been discussed separately in the last chap-
ters, many of the investigations in the previous parts of the
book apply to polyphase systems as well as single-phase
circuits, as the chapters on induction motors, generators,
synchronous motors, etc.

A part of the book is original investigation, either pub-
lished here for the first time, or collected from previous
publications and more fully explained. Other parts have
been published before by other investigators, either in the
same, or more frequently in a different form.

I have, however, omitted altogether literary references,
for the reason that incomplete references would be worse
than none, while complete references would entail the ex-
penditure of much more time than is at my disposal, with-
out offering sufficient compensation ; since I believe that
the reader who wants information on some phenomenon or
apparatus is more interested in the information than in
knowing who first investigated the phenomenon.

Special attention has been given to supply a complete
and extensive index for easy reference, and to render the
book as free from errors as possible. Nevertheless, it prob-
ably contains some errors, typographical and otherwise;
and I will be obliged to any reader who on discovering an
error or an apparent error will notify me.

I take pleasure here in expressing my thanks to Messrs.
W. D. WEAVER, A. E. KenNELLY, and TowNsEND WoL-
coTT, for the interest they have taken in the book while in
the course of publication, as well as for the valuable assist-
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THEORY AND CALCULATION

OF

ALTERNATING-CURRENT ' PHENOMENA.

CHAPTER L
INTRODUCTION.

1. In the practical applications of electrical energy, we
meet with two different classes of phenomena, due respec-
tively to the continuous current and to the alternating
current,

The continuous-current phenomena have been brought
within the realm of exact analytical calculation by a few
fundamental laws : —

1.) Ohm’s law: 7= ¢ /7 where 7 the resistance, is a
constant of the circuit.

2.) Joule’s law: P= 727, where P is the rate at which
energy is expended by the current, 7 in the resistance, 7.

3.) The power equation: P,= ¢, where P, is the
power expended in the circuit of E.M.F,, ¢, and current, 7.

4.) Kirchhoff’s laws:

a.) The sum of all the E.M.Fs. in a closed circuit = 0,
if the E.M.F. consumed by the resistance, 77, is also con-
sidered as a counter E.M.F., and all the E.M.Fs. are taken
in their proper direction.

6.) The sum of all the currents flowing towards a dis-
tributing point = 0.

In alternating-current circuits, that is, in circuits con-
veying currents which rapidly and periodically change their

I
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ALTERNATING—CURRENT PHENOMENA.

direction, these laws cease to hold. Energy is expended,
not only in the conductor through its ohmic resistance, but
also outside of it; energy is stored up and returned, so
that large currents may flow, impressed by high E.M.Fs.,
without representing any considerable amount of expended
energy, but merely a surging to and fro of energy; the
ohmic resistance ceases to be the determining factor of
current strength; currents may divide into components,
each of which is larger than the undivided current, etc.

2. In place of the above-mentioned fundamental laws of
continuous currents, we find in alternating-current circuits
the following :

Ohm’s law assumes the form, 7= ¢/z where s, the
apparent resistance, or zmgpedance, is no longer a constant
of the circuit, but depends upon the frequency of the cur-
rents; and in circuits containing iron, etc., also upon the
NN

Impedance, 2, is, in the system of absolute units, of the
same dimensions as resistance (that is, of the dimension
LT = velocity), and is expressed in ohms.

It consists of two components, the resistance, # and the

reactance, x, or —
Ay z2=Vri4 a2

The resistance, # in circuits where energy is expended
only in heating the conductor, is the same as the ohmic
resistance of continuous-current circuits. In circuits, how-
ever, where energy is also expended outside of the con-
ductor by magnetic hysteresis, mutual inductance, dielectric
hysteresis, etc., # is larger than the true ohmic resistance
of the conductor, since it refers to the total expenditure of
energy. It may be called then the gffective resistance. 1t
is no longer a constant of the circuit.

The reactance, x, does not represent the expenditure of
power, as does the effective resistance, 7 but merely the
surging to and fro of energy. It is not a congtant of the
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circuit, but depends upon the frequency, and frequently,
as in circuits containing iron, or in electrolytic conductors,
upon the E.M.F. also. Hence, while the effective resist-
ance, 7, refers to the energy component of E.M.F.,, or the
E.M.F. in phase with the current, the reactance, z, refers
to the wattless component of E.M.F., or the E.M.F. in
quadrature with the current.

3. The principal sources of reactance are electro-mag-
netism and capacity.

ELECTRO—MAGNETISM.

An electric current, 7, flowing through a circuit, produces
a magnetic flux surrounding the conductor in lines of
magnetic force (or more correctly, lines of magnetic induc-
tion), of closed, circular, or other form, which alternate
with the alternations of the current, and thereby induce
an E.M.F. in the conductor. Since the magnetic flux is
in phase with the current, and the induced E.M.F. 90°, or
a quarter period, behind the flux, this £ .F. of self-induc-
tance lags 90°, or a quarter period, behind the current ; that
is, is in quadrature therewith, and therefore wattless.

If now & = the magnetic flux produced by, and inter-
linked with, the current 7 (where those lines of magnetic
force, which are interlinked 7-fold, or pass around 7 turns
of the conductor, are counted 7 times), the ratio, @/ 7 is
denoted by Z, and called se/f-inductance, or the coefficient of
self-induction of the circuit. It is numerically equal, in
absolute units, to the interlinkages of the circuit with the
magnetic flux produced by unit current, and is, in the
system of absolute units, of the dimension of length. In-
stead of the self-inductance, Z, sometimes its ratio with
the ohmic resistance, 7, is used, and is called the ZZme-
Constant of the circuit :

I'=

\]k\
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If a conductor surrounds with » turns a magnetic cir-
cuit of reluctance, &, the current, 7, in the conductor repre-
sents the M.M.F. of »Z ampere-turns, and hence produces
a magnetic flux of #//® lines of magnetic force, sur-
rounding each 7 turns of the conductor, and thereby giving
@ = 727/ ® interlinkages between the magnetic and electric
ciccuits. Hence the inductanceis L =@ /7 = 722/ ®.

The fundamental law of electro-magnetic induction is,
that the E.M.F. induced in a conductor by a varying mag-
netic field is the rate of cutting of the conductor through
the magnetic field.

Hence, if 7 is the current, and Z is the inductance of
a circuit, the magnetic flux interlinked with a circuit of
current, 7, is Lz, and 4 VL7 is consequently the average
rate of cutting; that is, the number of lines of force cut
by the conductor per second, where N =freqixency, or
number of complete periods (double reversals) of the cur-
rent per second.

Since the maximum rate of cutting bears to the average
rate the same ratio as the quadrant to the radius of a
circle (a sinusoidal variation supposed), that is the ratio
= /2 =+ 1, the maximum rate of cutting is 2=V, and, conse-
quently, the maximum value of E.M.F. induced in a cir-
cuit of maximum current strength, 7, and inductance, Z, is,

¢e= 27 NLi.
Since the maximum values of sine waves are proportional
(by factor V2) to the effective values (square root of mean
squares), if 7 = effective value of alternating current, ¢ =

2 NL: is the effective value of E.M.F. of self-inductance,
and the ratio, ¢/ = 2 = VL, is the magnetic reactance :

=YL, 7 AV I2,
Thus, if » = resistance, x,, = reactance, z = impedance,—

the E.M.F. consumed by resistance is: ¢ = i»,
the E.M.F. consumed by reactance is: & = ix,;
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and, since both E.M.Fs. are in quadrature to each other,
the total E.M.F. is—

e=Velteal=iVrP x> =iz,
that is, the impedance, 2, takes in alternating-current cir-

cuits the place of the resistance, 7, in continuous-current
circuits.

CAPACITY.

4. If upon a condenser of capacity, C, an EM.F,, ¢, is
impressed, the condenser receives the electrostatic charge, Ce
If the E.M.F,, ¢, alternates with the frequency, /V, the
average rate of charge and discharge is 4 /V, and 27 /V the
maximum rate of charge and discharge, sinusoidal waves sup-
posed, hence, z = 2= NCe the current passing into the con-
denser, which is in quadrature to the E.M.F., and leading.
Gy L
i 2xNC’
the “capacity reactance,” or “condensance.”’

Polarization in electrolytic conductors acts to a certain
extent like capacity.

The capacity reactance is inversely proportional to the
frequency, and represents the leading out-of-phase wave;
the magnetic reactance is directly proportional to the
frequency, and represents the lagging out-of-phase wave.
Hence both are of opposite sign with regard to each other,
and the total reactance of the circuit is their difference,
=z

The total resistance of a circuit is equal to the sum of
all the resistances connected in series ; the total reactance
of a circuit is equal to the algebraic sum of all the reac-
tances connected in series ; the total impedance of a circuit,
however, is not equal to the sum of all the individual
impedances, but in general less, and is the resultant of the
total resistance and the total reactance. Hence it is not
permissible directly to add impedances, as it is with resist-
ances or reactances.

It is then : — Xe =
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A further discussion cf these quantities will be found in
the later chapters.

5. In Joule’s law, P = 727, » is not the true ohmic
resistance any more, but the «effective resistance;” that
is, the ratio of the energy component of E.M.F. to the cur-
rent. Since in alternating-current circuits, besides by the
ohmic resistance of the conductor, energy is expended,
partly outside, partly even inside, of the conductor, by
magnetic hysteresis, mutual inductance, dielectric hystere-
sis, etc., the effective resistance, # is in general larger than
the true resistance of the conductor, sometimes many times
larger, as in transformers at open secondary circuit, and is
not a constant of the circuit any more. It is more fully
discussed in Chapter VII.

In alternating-current circuits, the power equation con-
tains a third term, which, in sine waves, is the cosine of
the difference of phase between E.M.F. and current : —

Py =¢f cos ¢.

Consequently, even if ¢ and 7 are both large, /2, may be
very small, if cos ¢ is small, that is, ¢ near 90°.

Kirchhoff’s laws become meaningless in their original
form, since these laws consider the E.M.Fs. and currents
as directional quantities, counted positive in the one, nega-
tive in the opposite direction, while the alternating current
has no definite direction of its own.

6. The alternating waves may have widely different
shapes; some of the more frequent ones are shown in
a later chapter.

The simplest form, however, is the sine wave, shown in
Fig. 1, or, at least, a wave very near sine shape, which
may be represented analytically by :—

z'=15in-2—2—'75(1—l1)=15in27rN(t—tl);
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where 7 is the maximum value of the wave, or its ampli-
tude; T is the time of one complete cyclic repetition, or
the period of the wave, or NV = 1/ 7T is the frequency or
number of complete periods per second; and 4 is the time,
where the wave is zero, or the gpock of the wave, generally
called the plasc.*

Obviously, “phase” or “epoch” attains a practical
meaning only when several waves of different phases are
considered, as “difference of phase.”” When dealing with
one wave only, we may count the time from the moment

|2

Fig. 1. 8ine Wave.

where the wave is zero, or from the moment of its maxi-
mum, and then represent it by : —
i = 7sin 27 V¢;

ar, i=Jcos2w VL

Since it is a univalent function of time, that is, can at a
given instant have one value only, by Fourier's theorem,
any alternating wave, no matter what its shape may be,
can be represented by a series of sine functions of different
frequencies and different phases, in the form:—

i=Lsin2aNEt—H)+LsindaN{E—4)
+ Lsin6aN(E—1fH)+ ...

* ¢“Epoch * is the time where a periodic function reaches a certain value,

for instance, zero; and ¢‘phase’’ is the angular position, with respect to a

datum position, of a periodic function at a given time. Both are in alternate-
current phenomena only different ways of expressing the same thing.
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where 7, /,, 7;, . . . are the maximum values of the differ-
ent components of the wave, 7, 7, 4, . . . the times, where
the respective components pass the zero value.

The first term, /; sin 2« V (£ — 4), is called the fun-
damental wave, or the first armonic; the further terms are
called the /Zigher harmonics, or “overtones,” in analogy to
the overtones of sound waves. 7, sin 2=z N (2 — #,) is the
7™ harmonic.

By resolving the sine functions of the time differences,
t—t4, t—1%4 ..., we reduce the general expression of
the wave to the form:

i=A, sin2x Nt + Ay sinda Nt + Ay sin 62Nt . ..

+ Bicos2a Nt + Bycosda Nt + Bycos6x Nt + . ..

™, ~

JI\
|

|
|

/
|
|
|

\ \

A\ A4

Flg. 2, Wave without Even Harmonics.

The two half-waves of each period, the positive wave
and the negative wave (counting in a definite direction in
the circuit), are almost always identical. Hence the even
higher harmonics, which cause a difference in the shape of
the two half-waves, disappear, and only the odd harmonics
exist, except in very special cases.

Hence the general alternating-current wave is expressed

b . e s S TR e e S
+ Lsin10x V(@ —8) + . ..
or,
i=A,sin2x Nt 4 Aysin6a Nt 4+ A;sin 10w Nz 4 . . .
+ Bicos2a Nt + Bscos 6w Nt + Bycos 10 Nt 4+, . .
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Such a wave is shown in Fig. 2, while Fig. 3 shows a
wave whose half-waves are different. Figs. 2 and 3 repre-
sent the secondary currents of a Ruhmkorff coil, whose
secondary coil is closed by a high external resistance ;: F ig.
3 is the coil operated in the usual way, by make and break
of the primary battery current; Fig. 2 is the coil fed with
reversed currents by a commutator from a battery.

7. Self-inductance, or electro-magnetic momentum, which
is always present in alternating-current circuits,—to a
large extent in generators, transformers, etc.,—tends to

e

If
H {

Fig. 3. Wave with Even Harmonics.

suppress the higher harmonics of a complex harmonic wave
more than the fundamental harmonic, since the self-induc-
tive reactance is proportional to the frequency, and is thus
greater with the higher harmonics, and thereby causes a.
general tendency towards simple sine shape, which has the
effect, that, in general, the alternating currents in our light
and power circuits are sufficiently near sine waves to make
the assumption of sine shape permissible.

Hence, in the calculation of alternating-current phe:
nomena, we can safely assume the alternating wave as a
sine wave, without making any serious error ; and it will be
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CHAPTER 1II
INSTANTANEOUS VALUES AND INTEGRAL VALUES.

8. IN a periodically varying function, as an alternating
current, we have to distinguish between the znstantancous
value, which varies constantly as function of the time, and
the integral value, which characterizes the wave as a whole.

As such integral value, almost exclusively the effective

/!

Fig. 4. Alternating Wave.

value is used, that is, the square root of the mean squares;
and wherever the intensity of an electric wave is mentioned
without further reference, the effective value is understood.

The mazimum value of the wave is of practical interest
only in few cases, and may, besides, be different for the two
half-waves, as in Fig. 3.

As arithmetic mean, or average value, of a wave as in
Figs. 4 and 5, the arithmetical average of all the instan-
taneous values during one complete period is understood.

This arithmetic mean is either = 0, as in Fig. 4, or it
differs from 0, as in Fig. 5. In the first case, the wave
is called an alfernating wave, in the latter a pulsating wave.

v
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Thus, an alternating wave is a wave whose positive
values give the same sum total as the negative values ; that
is, whose two half-waves have in rectangular coordinates
the same area, as shown in Fig. 4.

A pulsating wave is a wave in which one of the half-
waves preponderates, as in Fig. 5.

By electromagnetic induction, pulsating waves are pro-
duced only by commutating and unipolar machines (or by
the superposition of alternating upon direct currents, etc.).

All inductive apparatus without commutation give ex-
clusively alternating waves, because, no matter what con-

pai \\ // N

Vi \ 7

AVERAGE VALUE

Flg. 5. Pulsating Wave.

ditions may exist in the circuit, any line of magnetic force,
which during a complete period is cut by the circuit, and
thereby induces an E.M.F., must during the same period
be cut again in the opposite direction, and thereby induce
the same total amount of E.M.F. (Obviously, this does
not apply to circuits consisting of different parts movable
with regard to each other, as in unipolar machines.)

In the following we shall almost exclusively consider the
alternating wave, that is the wave whose true arithmetic
mean value = 0.

Frequently, by mean value of an alternating wave, the
average of one half-wave only is denoted, or rather the
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average of all instantaneous values without regard to their
sign. This mean value is of no practical importance, and
is, besides, in many cases indefinite.

9. In a sine wave, the relation of the mean to the maxi-
mum value is found in the following way : —

B
e
7'\1
§ P
A\ (6]
Fig. 6.

Let, in Fig. 6, AOB represent a quadrant of a circle
with radius 1.

Then, while the angle ¢ traverses the arc = /2 from 4 to
B, the sine varies from 0 to OF = 1. Hence the average
variation of the sine bears to that of the corresponding arc
the ratio 1 + #/2, or 2/# <+ 1. The maximum variation
of the sine takes place about its zero value, where the sine
is equal to the arc. Hence the maximum variation of the
sine is equal to the variation of the corresponding arc, and
consequently the maximum variation of the sine bears to
its average variation the same ratio as the average variation
of the arc to that of the sine; that is, 1 + 2/, and since
the variations of a sine-function are sinusoidal also, we
have,

Mean value of sine wave -+ maximum value = %— +1

= .63663.

The quantities, “current,” « E.M.F.,”” “magnetism,” etc.,
are in reality mathematical fictions only, as the components
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of the entities, “energy,” “power,” etc.; that is, they have
no independent existence, but appear only as squares or
products.

Consequently, the only integral value of an alternating
wave which is of practical importance, as directly connected
with the mechanical system of units, is that value which
represents the same power or effect as the periodical wave,
This is called the effective value. Its square is equal to the
mean square of the periodic function, that is :—

The effective value of an alternating wave, or the value
vepresenting the same effect as the periodically varying wave,
is the square voot of the mean square.

In a sine wave, its relation to the maximum value is
found in the following way :

)

sin
sitn/(90
hS)

A\' s

Fig. 7.

Let, in Fig. 7, AOB represent a quadrant of a circle
with radius 1.
Then, since the sines of any angle ¢ and its complemen-
tary angle, 90° — ¢, fulfill the condition, —
sin? ¢ + sin? (90 — ¢) =1,
the sines in the quadrant, AO0B, can be grouped into pairs,
so that the sum of the squares of any pair = 1; or, in other
words, the mean square of the sine = 1 /2, and the square
root of the mean square, or the effective value of the sine,

=1/\/§. That is:
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The effective value of a sine function bears to its maxi-
matine value the ratto, —
1
— +1=.70711.
V2
Hence, we have for the sine curve the following rela-
tions :

ARITH. MEAN.
sy, || i Half | Whole
Period. | Period
3 2
i = - 0
V2 w
1 ST071 | -.63663
1.4142 |1 .90034 (1]
1.5708 |1.1107 |1 0

10. Coming now to the general alternating wave,
i = A, sin 2 Nt 4 A, sin 4z Nt + A3 sin 6= Nt . . .

+ B, cos 2w Nt + B; cos 4a Nt + By cos br Nt 4 . . .,
we find, by squaring this expression and canceling all the
products which give 0 as mean square, the ¢ffectzve value,—

I=v}% AP 4+ A+ BB+ B - )

The mean value does not give a simple expression, and
is of no general interest.
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CLUARIVERESTT:
LAW OF ELECTRO-MAGNETIC INDUCTION.

11. If an electric conductor moves relatively to a mag-
netic field, an E.M.F. is induced in the conductor which is
proportional to the intensity of the magnetic field, to the
length of the conductor, and to the speed of its motion
perpendicular to the magnetic field and the direction of the
conductor ; or, in other words, proportional to the number
of lines of magnetic force cut per second by the conductor.

As a practical unit of E.M.F,, the vo/z is defined as the
E.M.F.induced in a conductor, which cuts 10® = 100,000,000
lines of magnetic force per second.

If the conductor is closed upon itself, the induced E.M.F.
produces a current.

A closed conductor may be called a turn or. a convolution,
In such a turn, the number of lines of magnetic force cut
per second is the increase or decrease of the number of
lines inclosed by the turn, or # times as large with » turns.

Hence the E.M.F. in volts induced in 7 turns, or con-
volutions, is 7 times the increase or decrease, per second,
of the flux inclosed by the turns, times 10—

If the change of the flux inclosed by the turn, or by »
turns, does not take place uniformly, the product of the
number of turns, times change of flux per second, gives
the average E.M.F.

If the magnetic flux, @, alternates relatively to a number
of turns, 72— that is, when the turns either revolve through
the flux, or the flux passes in and out of the turns, the total
flux is cut four times during each complete period or cycle,
twice passing into, and twice out of, the turns.
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Hence, if V= number of complete cycles per second,
or the frequency of the flux &, the average E.M.F. induced
in # turns is,

£y =423 NV 10-8 volts.

This is the fundamental equation of electrical engineer-
ing, and applies to continuous-current, as well as to alter-
nating-current, apparatus.

12. In continuous-current machines and in many alter-
nators, the turns revolve through a constant magnetic
field ; in other alternators and in induction motors, the mag-
netic field revolves; in transformers, the field alternates
with respect to the stationary turns.

Thus, in the continuous-current machine, if 7 = num-
ber of turns in series from brush to brush, ® = flux inclosed
per turn, and V = frequency, the E.M.F. induced in the
machine is £ = 42 ® N10~® volts, independent of the num-
ber of poles, of series or multiple connection of the arma-
ture, whether of the ring, drum, or other type.

In an alternator or transformer, if # is the number of
turns in series, ® the maximum flux inclosed per turn, and
AV the frequency, this formula gives,

E ooy =42 N10~8 volts.

Since the maximum E.M.F. is given by, —

™
Eoper. = 5 Lavg

2
Epx. =272 d N10 -8 yolts.
And since the effective E.M.F. is given by, —

we have

| e

V2

_Eem = '\/Erﬂ@NlO"’ )
=444 2% NV 108 volts,

we have

which is the fundamental formula of alternating-current
induction by sine waves.
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13. If, in a circuit of » turns, the magnetic flux, @,
inclosed by the circuit is produced by the current flowing
in the circuit, the ratio —

flux X number of turns X 10—
current

is called the énductance, L, of the circuit, in henrys.

The product of the number of turns, #, into the maxi-
mum flux, ®, produced by a current of / amperes effective,
or /2 amperes maximum, is therefore —

n® = LIV2 10¢;
and consequently the effective E.M.F. of self-inductance is:

E=~2rndN10-*
=27 NLT7 volts.

The product, r = 2xVL, is of the dimension of resistance,
and is called the reactance of the circuit; and the E.M.F.
of self-inductance of the circuit, or the reactance voltage, is

E = Ix,

and lags 90° behind the current, since the current is in
phase with the magnetic flux produced by the current,
and the E.M.F. lags 90° behind the magnetic flux. The
E.M.F. lags 90° behind the magnetic flux, as it is propor-
tional to the change in flux ; thus it is zero when the mag-
netism is at its maximum value, and a maximum when the
flux passes through zero, where it changes quickest.
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CHAPTER IV.
GRAPHIC REPRESENTATION.

14. While alternating waves can be, and frequently are,
represented graphically in rectangular codrdinates, with the
time as abscissz, and the instantaneous values of the wave
as ordinates, the best insight with regard to the mutual
relation of different alternate waves is given by their repre-
sentation in polar codrdinates, with the time as an angle or
the amplitude, — one complete period being represented by
one revolution, — and the instantaneous values as radii
vectores.

D

Fig. 8.

Thus the two waves of Figs. 2 and 3 are represented in
polar codrdinates in Figs. 8 and 9 as closed characteristic
curves, which, by their intersection with the radius vector,
give the instantaneous value of the wave, corresponding to
the time represented by the amplitude of the radius vector.

These instantaneous values are positive if in the direction
of the radius vector, and negative if in opposition. Hence
the two half-waves in Fig. 2 are represented by the same
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polar characteristic curve, which is traversed by the point of
intersection of the radius vector twice per period, — once
in the direction of the vector, giving the positive half-wave,

>

Fig. 9. B, Fig. 10.

and once in opposition to the vector, giving the negative
half-wave. In Figs. 3 and 9, where the two half-waves are
different, they give different polar characteristics.

156. The sine wave, Fig. 1, is represented in polar
codrdinates by one circle, as shown in Fig. 10. The
diameter of the characteristic curve of the sine wave,
I= OC, represents the intensity of the wave; and the am-
plitude of the diameter, OC, ~ & = AOC, is the phase of the
wave, which, therefore, is represented analytically by the

function : — 1 2% Bicies =t ),

where ¢ = 272/ T is the instantaneous value of the ampli-
tude corresponding to the instantaneous value, 7, of the wave.

The instantaneous values are cut out on the movable ra-
dius vector by its intersection with the characteristic circle.
Thus, for instance, at the amplitude 408, = ¢, = 2q4, ) T
(Fig. 10), the instantaneous value is OB'; at the amplitude
AOB, = ¢, = 2x1,/ T, the instantaneous value is 05", and
negative, since in opposition to the radius vector 05,

The characteristic circle of the alternating sine wave is
determined by the length of its diameter — the intensity
of the wave; and by the amplitude of the diameter — the
phase of the wave.
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Hence, wherever the integral value of the wave is con-
sidered alone, and not the instantaneous values, the charac-
teristic circle may be omitted altogether, and the wave
represented in intensity and in phase by the diameter of
the characteristic circle.

Thus, in polar coérdinates, the alternate wave is repre-
sented in intensity and phase by the length and direction of
a vector, OC, Fig. 10, and its analytical expression would
then be ¢ = OC cos (¢ — ).

Instead of the maximum value of the wave, the ¢ffective
value, or square root of mean square, may be used as the
vector, which is more convenient ; and the maximum value
is then V2 times the vector OC, so that the instantaneous
values, when taken from the diagram, have to be increased
by the factor V2.

Thus the wave, . _‘lN )
b=Bcos2xN(t—4) $-tTete B
3 =-B cos (¢ — dy) N T
is in Fig. 10z represented by =~ ¢=a-m° 0 d—o*
=
vector OB = —, of phase
V2 tls
AOB = &, ; and the wave, ¢_;§r_\m° s
c=Ccos 27 N (¢t} 4) Fig. 10a.
= C cos (¢p+ &,) . C
is in Fig. 10a represented by vector OC' = —, of phase
5 V2
AOC = — &,

The former is said to /ag by angle &, the latter to Jead
by angle &,, with regard to the zero position.

The wave & lags by angle (&, + &,) behind wave ¢, or ¢
leads & by angle (3, + &,).

16. To combine different sine waves, their graphical rep-
resentations, or vectors, are combined by the parallelogram
law.

If, for instance, two sine waves, OB and OC (Fig. 11),
are superposed, — as, for instance, two E.M.F’s, acting in
the same circuit, — their resultant wave is represented by
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OD, the diagonal of a parallelogram with OF and OC as
sides.

For at any time, 7, represented by angle ¢ = 40X, the
instantaneous values of the three waves, OB, OC, OD, are
their projections upon OX, and the sum of the projections
of OF and OC is equal to the projection of OD ; that is, the
instantaneous values of the wave O are equal to the sum
of the instantaneous values of waves OB and OC.

From the foregoing considerations we have the con-
clusions :

The sine wave is represented graphically in polar cosrdi-
nates by a vector, whick by its length, OC, denotes the in-

Fig. 11.

tensity, and by its amplitude, AOC, the phase, of the sine
wave.

Sine waves are combined or vesolved graplically, in polar
codrdinates, by the law of parallelogram or the polygon of
Sine waves.

Kirchhoff’s laws now assume, for alternating sine waves,
the form : —

a.) The resultant of all the E.M.Fs. in a closed circuit,
as found by the parallelogram of sine waves, is zero if
the counter E.M.Fs. of resistance and of reactance are
included.

4.) The resultant of all the currents flowing towards a
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distributing point, as found by the parallelogram of sine
waves, is zero.

The energy equation expressed graphically is as follows :

The power of an alternating-current circuit is repre-
sented in polar codrdinates by the product of the current,
Z, into the projection of the E.M.F., £, upon the current, or
by the E.M.F., £, into the projection of the current, 7, upon
the E.M.F,, or by /E cos (/,E).

17. Suppose, as an instance, that over a line having the
resistance, 7, and the reactance, xr = 2x/VL,— where N =
frequency and L = inductance, —a current of / amperes
be sent into a non-inductive circuit at an E.M.F. of £

E. E

Ef-—F E

Fig. 12.

volts. What will be the E.M.F. required at the generator
end of the line? R

In the polar diagram, Fig. 12, let the phase of the cur-
rent be assumed as the initial or zero line, OZ. Since the
receiving circuit is non-inductive, the current is in phase
with its EM.F. Hence the E.M.F,, £, at the end of the
line, impressed upon the receiving circuit, is represented by
a vector, OE. To overcome the resistance, 7, of the line,
an EMLF.,, 77, is required in phase with the current, repre-
sented by OF, in the diagram. The self-inductance of the
line induces an E.M.F. which is proportional to the current
/ and reactance x, and lags a quarter of a period, or 90°,
behind the current. To overcome this counter E.M.F.
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of self-induction, an E.M.F. of the value /r is required,
in phase 90° ahead of the current, hence represented by
vector OF,. Thus resistance consumes E.M.F. in phase,
and reactance an E.M.F. 90° ahead of the current. The
E.M.F. of the generator, %£,, has to give the three E.M.Fs,,
E, E,, and £, hence it is determined as their resultant.
Combining by the parallelogram law, OE, and OFE,, give
OE,, the EM.F. required to overcome the impedance of
the line, and similarly OE, and OF give OF,, the E.M.F.
required at the generator side of the line, to yield the
E.M.F. E at the receiving end of the line. Algebraically,
we get from Fig. 12 —

By = V(E + Ir)* + (Ix)*;
or, E =~NE2— (Ix)?— Ir.

In this instance we have considered the E.M.F. con-
sumed by the resistance (in phase with the current) and
the E.M.F. consumed by the reactance (90° ahead of the
current) as parts, or components, of the impressed E.M.F.,,
E,, and have derived £, by combining Z,, £, and E.

Fig. 18.

18. We may, however, introduce the effect of the induc-
tance directly as an EM.F,, £/, the counter EM.F. of
self-induction = /x, and lagging 90° behind the current ; and
the E.M.F. consumed by the resistance as a counter E.M.F.,,
E,! = Ir, but in opposition to the current, as is done in Fig.
13 ; and combine the three E.M.Fs. E,, £/, E,, to form a
resultant E.M.F.,, E, which is left at the end of the line.
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E/! and E,' combine to form E/, the counter EM.F. of
impedance ; and since £,' and £, must combine to form
E, E, is found as the side of a parallelogram, OE,EE/,
whose other side, D_E_,’, and diagonal, TE, are given.

Or we may say (Fig. 14), that to overcome the counter
E.M.F. of impedance, OF,, of the line, the component, OZ,,
of the impressed E.M.F. is required which, with the other
component OZ, must give the impressed E.M.F., OF,.

As shown, we can represent the E.M.Fs. produced in a
circuit in two ways — either as counter E.M.Fs., which com-
bine with the impressed E.M.F.,, or as parts, or components,

51

Ef ON—Er

Fig. 14,

of the impressed E.M.F., in the latter case being of opposite
phase. According to the nature of the problem, either the
one or the other way may be preferable.

As an example, the E.M.F. consumed by the resistance
is 7, and in phase with the current; the counter E.M.F.
of resistance is in opposition to the current. - The E.M.F.
consumed by the reactance is /x, and 90° ahead of the cur-
rent, while the counter E.M.F. of reactance is 90° behind
the current ; so that, if, in Fig. 15, OJ, is the current, —

OE, = EM.F. consumed by resistance,
OE,’ = counter E.M.F. of resistance,
OE, = E.M.F. consumed by inductance,
OF,’ = counter E.M.F. of inductance,
OFE, = E.M.F. consumed by impedance,
OE,’ = counter EM.F. of impedance.
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Obviously, these counter E.M.Fs. are different from, for
instance, the counter E.M.F. of a synchronous motor, in so
far as they have no independent existence, but exist only
through, and as long as, the current flows. In this respect
they are analogous to the opposing force of friction in
mechanics.

"
o
“m
v

Ext-~3AEs

Fig. 15.

19. Coming back to the equation found for the E.M.F.
at the generator end of the line,—

E= NEFIT @,
we find, as the drop of potential in the line —
AE=F,— E=~(E+ I+ (Ix)?— E.
This is different from, and less than, the E.M.F. of

impedance —
E, =1z =1~Vr*4+x%

Hence it is wrong to calculate the drop of potential in a
circuit by multiplying the current by the impedance; and the
drop of potential in the line depends, with a given current
fed over the line into a non-inductive circuit, not only upon
the constants of the line, » and x, but also upon the E.M.F,,
E, at end of line, as can readily be seen from the diagrams.

20. If the receiver circuit is inductive, that is, if the
current, /, lags behind the E.M.F., Z, by an angle &, and
we choose again as the zero line, the current O/ (Fig. 16),
the EXM.F., OF is ahead of the current by angle & The

R —
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IE.M.F. consumed by the resistance, /7 is in phase with the
current, and represented by OF,; the E.M.F. consumed
by the reactance, /z, is 90° ahead of the current, and re-
presented by OFE,. Combining OFE, OE,, and OFE,, we
get OF,, the EM.F. required at the generator end of the
line. Comparing Fig. 16 with Fig. 138, we see that in
the former OZ, is larger ; or conversely, if %, is the same,
£ will be less with an inductive load. In other words,
the drop of potential in an inductive line is greater, if the
receiving circuit is inductive, than if it is non-inductive.
From Fig. 16, —

£y = V(£ cosd + Ir)* + (£sind + Jx)

Fig. 16.

If, however, the current in the receiving circuit is
leading, as -is the case when feeding condensers or syn-
chronous motors whose counter E.M.F. is larger than the
impressed E.M.F., then the E.M.F. will be represented, in
Fig. 17, by a vector, OF, lagging behind the current, OJ,
by the angle of lead &'; and in this case we get, by
combining OF with OE,, in phase with the current, and
OF,, 90° ahead of the current, the generator E.MLF,, D‘E:,
which in this case is not only less than in Fig. 16 and in
Fig. 18, but may be even less than Z; that is, the poten-
tial rises in the line. In other words, in a circuit with
leading current, the self-induction of the line raises the
potential, so that the drop of potential is less than with
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a non-inductive load, or may even be negative, and the
voltage at the generator lower than at the other end of
the line.

These diagrams, Figs. 13 to 17, can be considered polar
diagrams of an alternating-current generator of an E.M.F,,
E, a resistance EM.F, E,= /7 a reactance E.M.F.,
E, = Ir, and a difference of potential, £, at the alternator
terminals; and we see, in this case, that with an inductive
load the potential difference at the alternator terminals will
be lower than with a non-inductive load, and that with a
non-inductive load it will be lower than when feeding into

E
A\
\
\
\‘\
/ 5
J
(O £ // l
T
[0) ! ,I/ 4
Jen
4
E.f- €.
Flg. 17.

a circuit with leading current, as, for instance, a synchro-
nous motor circuit under the circumstances stated above.

21. As a further example, we may consider the dia-
gram of an alternating-current transformer, feeding through
its secondary circuit an inductive load.

For simplicity, we may neglect here the magnetic
hysteresis, the effect of which will be fully treated in a
separate chapter on this subject.

Let the time be counted from the moment when the
magnetic flux is zero. The phase of the flux, that is, the
amplitude of its maximum value, is 90° in this case, and,
consequently, the phase of the induced E.M.F., is 180°,
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since the induced E.M.F. lags 90° behind the inducing
flux. Thus the secondary induced E.M.F., £;, will be
represented by a vector, OF,, in Fig. 18, at the phase
180°. The secondary current, /;, lags behind the EM.F,,
E;, by an angle &;, which is determined by the resistance
and inductance of the secondary circuit; that is, by the
load in the secondary circuit, and is represented in the dia-
gram by the vector, OF;, of phase 180 4 &,.

F, Fig. 18.

Instead of the secondary current, /;, we plot, however,
the secondary M.M.F., & = #, /;, where 7, is the number
of secondary turns, and &, is given in ampere-turns. This
 makes us independent of the ratio of transformation.

From the secondary induced E.M.F., £, we get the flux,
@, required to induce this E.M.F., from the equation —

Ey=V2xn, N®10-3%;
where —
£, = secondary induced E.M.F., in effective volts,
N = frequency, in cycles per second,
7y = number of secondary turns,
® = maximum value of magnetic flux, in webers.

The derivation of this equation has been given in a
preceding chapter.

This magnetic flux, @, is represented by a vector, O®, at
the phase 90°, and to induce it an M.M.F., § is required,
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which is determined by the magnetic characteristic of the
iron, and the section and length of the magnetic circuit of
the transformer ; it is in phase with the flux @, and repre-
sented by the vector OF, in effective ampere-turns.

The effect of hysteresis, neglected at present, is to shift
OF ahead of O, by an angle q, the angle of hysteretic
lead. (See Chapter on Hysteresis.)

This M.M.F,, &, is the resultant of the secondary M.M.F.,
&, and the primary M.M.F., §,; or graphically, OF is the
diagonal of a parallelogram with OF and OF, as sides. OF,
and OF being known, we find OF,, the primary ampere-
turns, and therefrom, and the number of primary turns, #,,
the primary current, /, = &,/ »,, which corresponds to the
secondary current, /;.

To overcome the resistance, 7,, of the primary coil, an
E.M.F,, £, = /,7,, is required, in phase with the current,
7,, and represented by the vector, OF,.

To overcome the reactance, x, = 2= #,L,, of the pri-
mary coil, an EM.F. E, = /,x, is required, 90° ahead of
the current 7,, and represented by vector, OF,.

The resultant magnetic flux, ®, which in the secondary
coil induces the E.M.F,, £, induces in the primary coil an
E.MLF. proportional to £; by the ratio of turns #,/#;, and
in phase with £, or, —

AT
B =-2E,,
7

which is represented by the vector OF,'. To overcome this
counter E.M.F,, £/, a primary E.M.F., £, , is required, equal
but opposite to E,’, and represented by the vector, OZ,.
The primary impressed E.M.F., £,, must thus consist of
the three components, OF,, OF,, and OF,, and is, there-
fore, their resultant OF,, while the difference of phase in

the primary circuit is found to be @, = E,OF,.

292. Thus, in Fligs 18 to 20, the diagram of a trans-
former is drawn for the same secondary EM.F., £, sec-
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ondary current, /; and therefore secondary M.M.F., &,, but
with different conditions of secondary displacement : —

In Fig. 18, the secondary current, /;, lags 60° behind the sec-
ondary EM.F., £,.

In Fig, 19, the secondary current, /;, is in phase with the
secondary E.M.F., £).

In Fig. 20, the secondary current, 7, leads by 60° the second-
ary EMLF., £].

Fig. 19.

These diagrams show that lag in the secondary circuit in-
creases and lead decreases, the primary current and primary
E.M.F. required to produce in the secondary circuit the
same E.M.F. and current ; or conversely, at a given primary

Fig. 20.

impressed E.ML.F., E,, the secondary E.M.F., £, will be
smaller with an inductive, and larger with a condenser
(leading current) load, than with a non-inductive load.

At the same time we see that a difference of phase
existing in the secondary circuit of a transformer reappears
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in the primary circuit, somewhat decreased if leading, and
slightly increased if lagging. Later we shall see that
hysteresis reduces the displacement in the primary circuit,
so that, with an excessive lag in the secondary circuit, the
lag in the primary circuit may be less than in the secondary.

A conclusion from the foregoing is that the transformer
is not suitable for producing currents of displaced phase;
since primary and secondary current are, except at very
light loads, very nearly in phase, or rather, in opposition,
to each other. ¢
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CHAPTER V.
SYMBOLIC METHOD.

23. The graphical method of representing alternating-
current phenomena by polar codrdinates of time affords the
best means for deriving a clear insight into the mutual rela-
tion of the different alternating sine waves entering into the
problem. For numerical calculation, however, the graphical
method is generally not well suited, owing to the widely
different magnitudes of the alternating sine waves repre-
sented in the same diagram, which make an exact diagram-
matic determination impossible. For instance, in the trans-
former diagrams (¢f. Figs. 18-20), the different magnitudes
will have numerical values in practice, somewhat like £; =
100 volts, and /7; = T5 amperes, for a non-inductive secon-
dary load, as of incandescent lamps. Thus the only reac-
tance of the secondary circuit is that of the secondary coil,
or, x; = .08 ohms, giving a lag of & =3.6°. We have
also,

nm = 30 turns.
7, = 300 turns.
F, = 2250 ampere-turns,
F 100 ampere-turns.
E,= 10 volts.
E,= 60 volts.
E; = 1000 volts.

I

The corresponding diagram is shown in Fig. 21. Obvi-
ously, no exact numerical values can be taken from a par-
allelogram as flat as OF FF,, and from the combination of
vectors of the relative magnitudes 1:6:100.

Hence the importance of the graphical method consists
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not so much in its usefulness for practical calculation, as to
aid in the simple understanding of the phenomena involved.

24. Sometimes we can calculate the numerical values
trigonometrically by means of the diagram. Usually, how-
ever, this becomes too complicated, as will be seen by trying

£ e R
Ef I
e S E,
1 7] ElE, E,
Fig. 21.

to calculate, from the above transformer diagram, the ratio
of transformation. The primary M.M.F. is given by the
equation : —

Fo=VF2+F,>+ 257, sino,,

an expression not well suited as a starting-point for further
calculation.

A method is therefore desirable which combines the
exactness of analytical calculation with the clearness of
the graphical representation.

© —a

Flg. 22.

25. We have seen that the alternating sine wave is
represented in intensity, as well as phase, by a vector, 07,
which is determined analytically by two numerical quanti-
ties — the length, O7, or intensity ; and the amplitude, 40/,
or phase &, of the wave, /.

Instead of denoting the vector which represents the
sine wave in the polar diagram by the polar codrdinates,
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7 and &, we can represent it by its rectangular coordinates,
@ and & (Fig. 22), where —

a = Jcos & is the horizontal component,
b = [ sin w is the vertical component of the sine wave.

This representation of the sine wave by its rectangular
components is very convenient, in so far as it avoids the
use of trigonometric functions in the combination or reso-
lution of sine waves.

Since the rectangular components @ and 4 are the hori-
zontal and the vertical projections of the vector represent-
ing the sine wave, and the projection of the diagonal of a
parallelogram is equal to the sum of the projections of its
sides, the combination of sine waves by the parallelogram

to

Fig. 23.

law is reduced to the addition, or subtraction, of their
rectangular components.  That is,

Sine waves are combined, or rvesolved, by adding, or
subtracting, their rectangular components.

For instance, if @ and 4 are the rectangular components
of a sine wave, 7, and 2’ and &' the components of another
sine wave, /' (Fig. 28), their resultant sine wave, /,, has the
rectangular components 2, = (@ + '), and 4, = (6 + &').

To get from the rectangular components, ¢ and 4, of a
sine wave, its intensity, 7, and phase, &, we may combine &
and & by the parallelogram, and derive, —

i= Va4 0*

tan o =

QI
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Hence we can analytically operate with sine waves, as
with forces in mechanics, by resolving them into their
rectangular components.

26. To distinguish, however, the horizontal and the ver-
tical components of sine waves, so as not to be confused in
lengthier calculation, we may mark, for instance, the vertical
components, by a distinguishing index, or the addition of
an otherwise meaningless symbol, as the letter 7, and thus
represent the sine wave by the expression, —

-!= a + jb,
which now has the meaning, that & is the horizontal and &

the vertical component of the sine wave /; and that both
components are to be combined in the resultant wave of

intensity, P
and of phase, tan é = &/ a.

Similarly, @ — 74, means a sine wave with @ as horizon-
tal, and — & as vertical, components, etc.

Obviously, the plus sign in the symbol, @ 4 74, does not
imply simple addition, since it connects heterogeneous quan-
tities — horizontal and vertical components — but implies
combination by the parallelogram law.

For the present, 7 is nothing but a distinguishing index,
and otherwise free for definition except that it is not an
.ordinary number.

27. A wave of equal intensity, and differing in phase
from the wave @ + 74 by 180°, or one-half period, is repre-
sented in polar codrdinates by a vector of opposite direction,
and denoted by the symbolic expression, — @ — jb. Or—

Multiplying the symbolic expression, a - jb, of a sine wave
by —1 means reversing the wave, or rotating it 1/'zroug/L 180°,
or one-half period.

A wave of equal intensity, but lagging 90°, or one-
quarter period, behind a 4- 74, has (Fig. 24) the horizontal
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component, — &, and the vertical component, @, and is rep-
resented symbolically by the expression, ja — 4.
Multiplying, however, a + & by 7, we get : —
Ja+7%b;
therefore, if we define the heretofore meaningless symbol,
J» by the condition, —

;2

7/
J (@ 478) = ja— b

=—1

£
we have —

hence : —

Multiplying the symbolic expression, a 4 jb, of a sine wave
by j means rotating the wave through 90°, or one-quarter pe-
viod ; that is, retarding the wave through one-quarter period.

= a

Fig, 24.

Similarly, —

Multiplying by — j means advancing the wave through
one-quarter period.
since Ji=—1, j=V=1;
that is, —

J is the tmaginary unit, and the sine wave is represented
by a complex imaginary quantity, a + jb.

As the imaginary unit ;7 has no numerical meaning in
the system of ordinary numbers, this definition of j =V —1
does not contradict its original introduction as a distinguish-
ing index. For a more exact definition of this complex
‘imaginary quantity, reference may be made to the text books
of mathematics.

28. In the polar diagram of time, the sine wave is
represented in intensity as well as phase by one complex

quantity — FaN
I
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where « is the horizontal and & the vertical component of
the wave ; the intensity is given by —

i=a+ 2,
the phase by — .

tan @ == —,

QI

and
a =1icosa,

b=17sind;
hence the wave @ + & can also be expressed by —
i (cos & + 7'sin &),
or, by substituting for cos @ and sin & their exponential

expressions, we obtain —
76l

Since we have seen that sine waves may be combined

or resolved by adding or subtracting their rectangular com-
ponents, consequently : —

Sine waves may be combined or resolved by adding or
subtracting their complex algebraic expressions.

For instance, the sine waves, —
a +7b
a + 7% ,s
combined give the sine wave —
I=(a+a)+/;(6+5)
It will thus be seen that the combination of sine waves
is reduced to the elementary algebra of complex quantities.

and

29. If /=74 si' is a sine wave of alternating current,
and 7 is the resistance, the E.M.F. consumed by the re-
sistance is in phase with the current, and equal to the prod-
uct of the current and resistance. Or—

rl=ri+jri.
If L is the inductance, and x = 2 = VL the reactance,
the E.M.F. produced by the reactance, or the counter
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E.M.F. of self-induction, is the product of the current
and reactance, and lags 90° behind the current; it is,
therefore, represented by the expression —

Jad = jxi — xi'. Lt Sy =
The E.M.F. required to overcome the reactance is con-
sequently 90° ahead of the current (or, as usually expressed,
the current lags 90° behind the E.M.F.), and represented
by the expression —
—Jjud = — jxi 4 xf'.
Hence, the E.M.F. required to overcome the resistance,
7, and the reactance, x, is —
¥ (r—sx) 75
that is —
Z = v —jx is the expression of the impedance of the cir-
cuit, in complex quantities.
Hence, if 7 = 7 4 ;7' is the current, the E.M.F, required
to overcome the impedance, Z = » — jx, is —
E=21=(r—7x) (i+7i);
hence, since /2= — 1
E=(ritxi") + j(ri' — xi);
or, if £ = ¢ 4 je' is the impressed EM.F,,and Z = » — jx
the impedance, the current flowing through the circuit is : —

or, multiplying numerator and denominator by (r + jx) to
eliminate the imaginary from the denominator, we have —

_ e+ (r+jx) _ er—/x+./r + ex |
72+ X2 7+ %2 2A4ar’
or, if {E: ¢ +je' is the impressed EM.F., and / = 7 4 77’
the current flowing in the circuit, its impedance is —

2L et _(HiDG=f) _citdi, i —d
I it 247 A4 A4




40 ALTERNATING-CURRENT PHENOMENA.

30. If C is the capacity of a condenser in series in
a circuit of current / = ¢ + jz', the E.M.F. impressed upon

the terminals of the condenser is £ = 2 , 90° behind
g 2= NC

74 5,

the current; and may be represented by ﬁf’ or jx, /,

where z; = is the capacity reactance or condensance

1
27 NC
of the condenser.

Capacity reactance is of opposite sign to magnetic re-
actance ; both may be combined in the name reactance.

We therefore have the conclusion that

If » = resistance and Z = inductance,
then x = 2 = /VZ = magnetic reactance.

= capacity reactance, or conden-

If C = capacity, x;, = 5 INC
m™

sance ;

Z =r — j (x — x,), is the impedance of the circuit.

Ohm'’s law is then reéstablished as follows :

£ £
o SN LSS e
The more general form gives not only the intensity of
the wave, but also its phase, as expressed in complex
quantities.

31. Since the combination of sine waves takes place by
the addition of their symbolic expressions, Kirchhoff’s laws
are now reéstablished in their original form : —

2.) The sum of all the E.M.Fs. acting in a closed cir-
cuit equals zero, if they are expressed by complex quanti-
ties, and if the resistance and reactance E.M.Fs. are also
considered as counter E.M.Fs.

4.) The sum of all the currents flowing towards a dis-
tributing point is zero, if the currents are expressed as
complex quantities.
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If a complex quantity equals zero, the real part as well

as the imaginary part must be zero individually, thus if
a+jb =0, a=0,6=0.

Resolving the E.M.Fs. and currents in the expression of

Kirchhoff’s law, we find : —

a.) The sum of the components, in any direction, of all
the E.M.Fs. in a closed circuit, equals zero, if the resis-
tance and reactance are considered as counter E.M.Fs.

4) The sum of the components, in any direction, of all
the currents flowing to a distributing point, equals zero.

Joule’s Law and the energy equation do not give a
simple expression in complex quantities, since the effect or
power is a quantity of double the frequency of the current
or EM.F. wave, and therefore requires for its representa-
tion as a vector, a transition from single to double fre-
quency, as will be shown in chapter XII.

In what follows, complex vector quantities will always
be denoted by dotted capitals when not written out in full ;
absolute quantities and real quantities by undotted letters.

32. Referring to the instance given in the fourth
chapter, of a circuit supplied with an E.M.F., £, and a cur-
rent, ], over an inductive line, we can now represent the
impedance of the line by Z = » — s, where » = resistance,
x = reactance of the line, and have thus as the E.M.F.
at the beginning of the line, or at the generator, the
expression —

E,=FE 4 Z1.
Assuming now again the current as the zero line, that
is, / = 7, we have in general —
Ey,=E +ir —jix;
hence, with non-inductive load, or £ = ¢,
E,=(c+ ir) — jix, <
& =V(c+ ir)?+ (ix)% tan &, = B

[
e+ ir
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In a circuit with lagging current, that is, with leading
EMF, E=¢—je', and

EBy=e¢—jl + (r—jx) i
=(e+ir) —j (+ix),
or o= VEFHF @ F @, tan b, =T,
e+ ir
In a circuit with leading current, that is, with lagging
EMF, E=¢ +je'y and

Eo= (+7) + =)
= (¢4 ir) + j ({ — ix),

e =V (e+ i)+ (¢ — ix)? tan &o='ﬁx;

values which easily permit calculation.
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CHAPTER VI
TOPOGRAPHIC METHOD.

33. In the representation of alternating sine waves by
vectors in a polar diagram, a certain ambiguity exists, in so
far as one and the same quantity —an E.M.F., for in-
stance — can be represented by two vectors of opposite
direction, according as to whether the E.M.F. is considered
as a part of the impressed E.M.F.,, or as a counter E.M.F.
This is analogous to the distinction between action and
reaction in mechanics.

Fig. 25.

Further, it is obvious that if in the circuit of a gener-
ator, G (Fig. 25), the current flowing from terminal 4 over
resistance R to terminal 5, is represented by a vector o7
(Fig. 26), or by /= 7 4+ ji', the same current can be con-
sidered as flowing in the opposite direction, from terminal
B to terminal 4 in opposite phase, and therefore represented
by a vector O/; (Fig. 26), or by 7, = — i — ji'.

Or, if the difference of poténtial from terminal A to
terminal A4 is denoted by the £ = ¢ 4 je', the difference
of potential from A to Bis By = — e — je'.
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Hence, in dealing with alternating-current sine waves,
it is necessary to consider them in their proper direction
with regard to the circuit. Especially in more complicated
circuits, as interlinked polyphase systems, careful attention
has to be paid to this point.

4’ 1

= i

By =i,
Flg. 26.

34. Let, for instance, in Fig. 27, an interlinked three-
phase system be represented diagrammatically, as consist-
ing of three E.M.Fs,, of equal intensity, differing in phase
by one-third of a period. Let the E.M.Fs. in the direction

A

A3
Fig. 27,

from the common connection O of the three branch circuits
to the terminals 4,, 4,, 43, be represented by £, £,, Z;.
Then the difference of potential from 4, to 4, is Z,— 7,
since the two E.M.Fs., £ and E,, are connected in cir-
cuit between the terminals A, and A,, in the direction,
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A;— O — A,; that is, the one, E,, in the direction 04,,
from the common connection to terminal, the other, £, in
the opposite direction, 4,0, from the terminal to common
connection, and represented by — £;. = Conversely, the dif-
ference of potential from A4, to 4, is £, — F,.

It is then convenient to go still a step farther, and
drop, in the diagrammatic representation, the vector line
altogether; that is, denote the sine wave by a point only,
the end of the corresponding vector.

~ Looking at this from a different point of view, it means
that we choose one point of the system — for instance, the
common connection O —as a zero point, or point of zero
potential, and represent the potentials of all the other points
of the circuit by points in the diagram, such that their dis-
tances from the zero point gives the intensity; their ampli-
tude the phase of the difference of potential of the respective
point with regard to the zero point ; and their distance and
amplitude with regard to other points of the diagram, their
difference of potential from these points in intensity and
phase.

Fig. 28,

Thus, for example, in an interlinked three-phase system
with three E.M.Fs. of equal intensity, and differing in phase
by one-third of a period, we may choose the common con-
nection of the star-connected generator as the zero point,
and represent, in Fig. 28, one of the E.M.Fs., or the poten-
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tial at one of the three-phase terminals, by point Z,. The
potentials at the two other terminals will then be given by
the points £, and £, which have the same distance from
O as E,, and are equidistant from £, and from each other.

The difference of potential between any pair of termi-
nals — for instance E, and £, —is then the distance E,Z%,,
or E,E,, according to the direction considered.

35. If now the three branches OZ,, OFE, and OF,, of
the three-phase system are loaded equally by three currents
equal in intensity and in difference of phase against their

BALANCED TNREE‘P:ASE BYSTEM BALANCED THREE-PHASE S8YSTEM

° NON-INDUCTIVE LOAD

2 vl

=3 _m ?
3

Fig. 29. Fig. 30.

E.M.Fs,, these currents are represented in Fig. 29 by the
vectors OF, = OI,= O1, =1, lagging behind the E.M.Fs.
by angles E,01, = E, 01, = E,0l; = &.

Let the three-phase circuit be supplied over a line of
impedance Z, = — j¥, from a generator of internal im-
pedance Z, = x, — j%o.

In phase OF, the EM.F. consumed by resistance 7, is
represented by the distance E,£) = 7, in phase, that is
parallel with current O/, The E.M.F. consumed by re-
actance #, is represented by £;'E/" = Iz, 90° ahead of cur-

]
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rent OZ. The same applies to the other two phases, and
it thus follows that to produce the E.M.F. triangle E,E,E,
at the terminals of the consumer’s circuit, the E.M.F. tri-
angle E,"EJ'E]" is required at the generator terminals.

Repeating the same operation for the internal impedance
of the generator we get E"E" = Iz, and parallel to OZ,
EE° = Iz, and 90° ahead of OZ, and thus as triangle of
(nominal) induced E.M.Fs. of the generator ZP°ELEL.

In Fig. 29, the diagram is shown for 45° lag, in Fig. 30
for noninductive load, and in Fig. 31 for 45° lead of the
currents with regard to their E.M.Fs.

THREE-PHASE CIRCUIT . E‘_
LAG

N TRANSMISSION LINE
- 5 WITH DISTRIBUTED
= (= ) CAPACITY, INDUCTANCE!
N = . RESISTANCE AND LEAKAGE!

BALANCED THREE
-PHASE SYBTEM
48°LEAD

Fig. 31. - Fig. 32,

As seen, the induced generator E.M.F. and thus the
generator excitation with lagging current must be higher,
with leading current lower, than at non-inductive load, or
conversely with the same generator excitation, that is the
same induced generator E.M.F. triangle EPECEY, the
E.M.Fs. at the receiver’s circuit, £, £, E, fall off more
with lagging, less with leading current, than with non-
inductive load.

36. As further instance may be considered the case of
a single phase alternating current circuit supplied over a
cable containing resistance and distributed capacity.
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Let in Fig. 33 the potential midway between the two
terminals be assumed as zero point 0. The two terminal
voltages at the receiver circuit are then represented by the
points £ and E! equidistant from 0 and opposite each other,
and the two currents issuing from the terminals are rep-
resented by the points /7 and /', equidistant from 0 and
opposite each other, and under angle g with £ and £*
respectively.

Considering first an element of the line or cable next to
the receiver circuit. In this an EM.F. EZ, is consumed
by the resistance of the line element, in phase with the
current O/, and proportional thereto, and a current 77, con-
sumed by the capacity, as charging current of the line
element, 90° ahead in phase of the E.M.F. OF and propor-
tional thereto, so that at the generator end of this cable
element current and E.M.F. are O/, and OF, respectively.

Passing now to the next cable element we have again an
E.M.F. E,E, proportional to and in phase with the current
O1, and a current 7,7, proportional to and 90° ahead of the
E.M.F. OF, and thus passing from element to element
along the cable to the generator, we get curves of E.M.Fs.
e and ¢, and curves of currents 7 and 7%, which can be called
the topographical circuit characteristics, and which corre-
spond to each other, point for point, until the generator
terminal voltages OF, and O, and the generator currents
O1I, and OI} are reached.

Again, adding E,E" = I,7, and parallel O/, and E7E° =
Iz, and 90° ahead of O/, gives the (nominal) induced
E.M.F. of the generator O£° where Z,=r, — jx, = inter-
nal impedance of the generator.

In Fig. 83 is shown the circuit characteristics for 60°
lag, of a cable containing only resistance and capacity.

Obviously by graphical construction the circuit character-
istics appear more or less as broken lines, due to the neces-
sity of using finite line elements, while in reality when
calculated by the differential method they are smooth curves.
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37. As further instance may be considered a three-phase
circuit supplied over a long distance transmission line of
distributed capacity, self-induction, resistance, and leakage.

Let, in Fig. 88, OF, OF, OE,= threephase E.M.Fs.
at receiver circuit, equidistant from each other and = £.

Let 07, O, O, = three-phase currents in the receiver
circuit equidistant from each other and = 7, and making
with £ the phase angle é.

Considering again as in § 85 the transmission line ele-
ment by element, we have in every clement an E.M.F.
E,E; consumed by the resistance in phase with the current
07, and proportional thereto, and an E.M.F. Z/, E/” con-

1y SINGLE-PHASE CIRCUIT
60°LAa

CABLE OF DISTRIBUTED
CAPACITY AND REGISTANCE

Fid. 33.

sumed by the reactance of the line element, 90° ahead of
the current O7, and proportional thereto.

In the same line element we have a current 77! in phase
with the E.M.F. OZ, and proportional thereto, representing
the loss of energy current by leakage, dielectric hysteresis,
etc, and a current 7177, 90° ahead of the E.M.F. 0%, and
proportional thereto, the charging current of the line ele-
ment as condenser, and in this manner passing along the
line, element by element, we ultimately reach the generator
terminal voltages £,° £,° £ and generator currents /;°,
I, I?, over the topographical characteristics of EM.F. ¢,
¢, ¢, and of current 7, 7, 7, as shown in Fig. 33.

The circuit characteristics of current ¢ and of E.M.F. ¢

D
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CHAPTER VIL
ADMITTANCE, CONDUCTANCE, SUSCEPTANCE.

38. If in a continuous-current circuit, a number of
resistances, 7y, 7y, 73, . . . are connected in series, their
joint resistance, &, is the sum of the individual resistances
R=nrn+r+r+ ...

If, however, a number of resistances are connected in
multiple or in parallel, their joint resistance, R, cannot
be expressed in a simple form, but is represented by the

expression : —
R = L .
1 1 1
Sdbh=dbEdbs oo
7 7y 73

Hence, in the latter case it is preferable to introduce, in-
stead of the term resistance, its reciprocal, or inverse value,
the term conductance, g = 1/r If, then, a number of con-

ductan'ces, &1+ &9» &3> - . . are connected in parallel, their
joint conductance is the sum of the individual conductances,
or G =gy +g,+ g+ ... When using the term con-

ductance, the joint conductance of a number of series-
connected conductances becomes similarly a complicated

expression — 1
G = o

S Ui
&1 &2 &8s

Hence the term resistance is preferable in case of series
connection, and the use of the reciprocal term conductance
in parallel connections ; therefore,

The joint vesistance of a number of seriesconnected vesis-
tances is equal to the sum of the individual resistances ; the
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Joint conductance of a number of parallel-connccted conduc-
tances is equal to the sum of the individual conductances.

39. In alternating-current circuits, instead of the term
resistance we have the term zmpedance, Z = r — jx, with its
two components, the resistance, r, and the reactance, x, in the
formula of Ohm’s law, £ = /Z. The resistance, 7, gives
the component of E.M.F. in phase with the current, or the
energy component of the E.M.F, [r; the reactance, z,
gives the component of the E.M.F. in quadrature with the
current, or the wattless component of E.M.F., Zr; both
combined give the total EEM.F.,, —

Iz =TIV F 2
Since E.M.Fs. are combined by adding their complex ex-
pressions, we have:

The joint impedance of a number of series~connected impe-
dances is the sum of the individual impedances, when expressed
in complex quantities.

In graphical representation impedances have not to be
added, but are combined in their proper phase by the law
of parallelogram in the same manner as the E.M.Fs. corre-
sponding to them.

The term impedance becomes inconvenient, however,
when dealing with parallel-connected circuits ; or, in other
words, when several currents are produced by the same
E.M.F,, such as in cases where Ohm’s law is expressed in
the form,

E
7

It is preferable, then, to introduce the reciprocal of
impedance, which may be called the admittance of the
circuit, or

=

i 1

¥ = 7
As the reciprocal of the complex quantity, Z = 7 — jz, the
admittance is a complex quantity also, or V=g + 7&;
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it consists of the component g, which represents the co-
efficient of current in phase with the EM.F,, or energy
current, gZ, in the equation of Ohm's law, —

I =VYE = (g +jb) E,
and the component 4, which represents the coefficient of
current in quadrature with the E.M.F,, or wattless com-
ponent of current, 4.

g is called the conductance, and b the susceptance, of
the circuit. Hence the conductance, g, is the energy com-
ponent, and the susceptance, 4, the wattless component,
of the admittance, ¥ = g + 74, while the numerical value of

admittance is = VEFF

the resistance, 7, is the energy component, and the reactance,
x, the wattless component, of the impedance, Z = » — jxr,
the numerical value of impedance being —

z=Vr+axt

40. As shown, the term admittance implies resolving
the current into two components, in phase and in quadra-
ture with the E.M.F., or the energy current and the watt-
less current ; while the term impedance implies resolving
the E.M.F. into two components, in phase and in quad-
rature with the current, or the energy E.M.F. and the
wattless E.M.F.

It must be understood, however, that the conductance
is not the reciprocal of the resistance, but depends upon
the resistance as well as upon the reactance. Only when the
reactance x = 0, or in continuous-current circuits, is the
conductance the reciprocal of resistance. '

Again, only in circuits with zero resistance (» = 0) is
the susceptance the reciprocal of reactance; otherwise, the
susceptance depends upon reactance and upon resistance.

The conductance is zero for two values of the resistance : —

1) If » =, or x = o, since in this case no current
passes, and either component of the current = 0.
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2.) If » = 0, since in this case the current which passes
through the circuit is in quadrature with the E.M.F., and
thus has no energy component.

Similarly, the susceptance, 4, is zero for two values of
the reactance : —

1) f r=00,0r r=o00.

2) Ifx=0.

From the definition of admittance, ¥ = g + 74, as the
reciprocal of the impedance, Z = » — jz,

1 .
r—jx’
or, multiplying numerator and denominator on the right side
by (» + /)

we have Y=-2—,or,g+jb=

b= 7+ jx
Gy =+’

hence, since
(r—Jjx) (r +jx) = + x* =23

. r . X
$’+/b-r2+—xz+/m —+jz,,

r
3 g_r“+x’—z2’
3 Pt L G
24+ar g

and conversely

AL
gz+z,2 yz’
O 50
g“'-l-b’_y".

By these equations, the conductance and susceptance can
be calculated from resistance and reactance, and conversely.
Multiplying the equations for ¢ and 7, we get :—

7o
TS zz},z;
hence, 2P =0 +aY) (244 =1;
nd = (a1 1 1 the absolute value of
¢ Y. g §impedance;
S i 1 the absolute value of
2 ~/Afx | admittance.
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41. If, in a circuit, the reactance, x, is constant, and the
resistance, 7, is varied from 7 = 0 to » = w0, the susceptance,
&, decreases fromb=1/x at r=0,t0 6 =0 at r =« ;
while the conductance, g = 0 at » = O; increases, reaches
a maximum for » =, where g¢=1/27r is equal to the
susceptance, or g = &, and then decreases again, reaching
g=0at r=w.

.
oHMs
2.
1.9
REACTANGE CONSTANT =.5 OHMS p
1.8
. -
RV Y ‘
7
1.5 \ <
rd
1
) \ o s
)
13 5 &
1 &
.2 2%
R S
11 > =
1.0 Vi
/ ~ N
; e N
o //It% NN
0
A P D T~
Ll ) ——
25
A8 )
Al
o) /c ™~
18 ~

RESIS‘I'AN'JE: r,OHMS
1 T
D s Y T e

o 1.0 1.1 1.2 1.3 1.4 15 1.6 L7 1.
Fig. 36.

In Fig. 36, for constant reactance x = .5 ohm, the vari-
ation of the conductance, g, and of the susceptance, &, are
shown as functions of the varying resistance, . As shown,
the absolute value of admittance, susceptance, and conduc-
tance are plotted in full lines, and in dotted line the abso-
lute value of impedance,

z=Vri4tal=

S

2% o i
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Obviously, if the resistance, 7, is constant, and the reac-
tance, #, is varied, the values of conductance and susceptance
are merely exchanged, the conductance decreasing steadily
from ¢ =1/~ to 0, and the susceptance passing from 0 at
x =0 to the maximum, 6 =1/2r=g=1/2x at x =,
andtod =0 at x = 0. .

The resistance, # and the reactance, x, vary as functions
of the conductance, g, and the susceptance, 4, in the same
manner as g and 4 vary as functions of » and x.

The sign in the complex expression of admittance is
always opposite to that of impedance; this is obvious, since
if the current lags behind the E.M.F., the E.M.F. leads the
current, and conversely.

We can thus express Ohm’s law in the two forms —

E=1z,
I =EY,
and therefore — ’ ’

The joint impedance of a number of sertes-connected im-
pedances is equal to the sum of the individual impedances;
the joint admittance of a number of parallelconnected admit-
tances, if expressed in complex quantities, is equal to the sum
of the individual admittances. In diagrammatic represen-
tation, combination by the parallelogram law takes the place
of addition of the complex quantities.
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CHAPTER VIIL

CIRCUITS CONTAINING RESISTANCE, INDUCTANCE, AND
CAPACITY.

42. Having, in the foregoing, reéstablished Ohm’s law
and Kirchhoff’'s laws as being also the fundamental laws
of alternating-current circuits, when expressed in their com-

plex form, E—=2I o, I = VE,

and SZ =0'in a closed circuit,
E'[' = 0 at a distributing point,

where £, /, Z, V, are the expressions of E.M.F., current,
impedan.ce,. and admittance in complex quantities, — these
values representing not only the intensity, but also the phase,
of the alternating wave, — we can now — by application of
these laws, and in the same manner as with continuous-
current circuits, keeping in mind, however, that %, 7, Z, ¥,
are complex quantities — calculate altemating»cl\rr.ent cir-
cuits and networks of circuits containing resistance, induc-
tance, and capacity in any combination, without meeting
with greater difficulties than when dealing with continuous-
current circuits.

It is obviously not possible to discuss with any com-
pleteness all the infinite varieties of combinations of resis-
tance, inductance, and capacity which can be imagined, and
which may exist, in a system or network of circuits; there-
fore only some of the more common or more.interesting
combinations will here be considered.

1.) Resistance in series with a civcuit.

43. In a constant-potential system with impressed

EM.F,
"Eo =4 +].fo” E,=Ve'+¢'?,
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let the receiving circuit of impedance
Z=r—jx, z=Vr*4x%
be connected in series with a resistance, 7,.
The total impedance of the circuit is then

Z+ro=r+ro_jx;
hence the current is

e Bo _ By _E(r+4r,tix)
T Zhn rtn—jz FrytS
and the E.M.F. of the receiving circuit, becomes
oy E, (r—jx) _ Eo{r (r + 7o) + 22— jrox}
oy )t
_ B rre —jra}

2427, 2
or, in absolute values we have the following : —

Impressed EM.F., -
E, =Vt a3

= E“ = E“ .

E.M.F. at terminals of receiver circuit,

E=E, \/ 7?4 x? E,z .
("'1“7‘::)2‘*‘“2 V224 277, 4 7,2 ’

; g . A o &5
difference of phase in receiver circuit, tan & = =3
=

current,

X

difference of phase in supp%y circuit, tan &, = b3

since in general,

o (phase) _ imaginary component

real component
a.) If x is negligible with respect to #, as in a non-induc-
tive receiving circuit,
s E=F T
r+ 7, r47,
and the current and E.M.F. at receiver terminals decrease
steadily with increasing 7,.




60 ALTERNATING-CURRENT PHENOMENA.

4.) If » is negligible compared with x, as in a wattless
receiver circuit,

s bl e T
'\/7’92‘*' %2 \/rf + x2?
or, for small values of 7,,
7= Bk
X

that is, the current and E.M.F. at receiver terminals remain
approximately constant for small values of #,, and then de-
crease with increasing rapidity.

44. In the general equations, x appears in the expres-
sions for 7 and £ only as 2% so that 7 and £ assume the
same value when x is negative, as when x is positive ; or, in
other words, series resistance acts upon a circuit with leading
current, or in a condenser circuit, in the same way as upon a
circuit with lagging current, or an inductive circuit.

For a given impedance, z, of the receiver circuit, the cur-
rent /, and E.M.F., £, are smaller, as 7 is larger; that is,
the less the difference of phase in the receiver circuit.

As an instance, in Fig. 87 is shown the E.M.F, E, at
the receiver circuit, for £, = const. = 100 volts, z = 1 ohm
hence / = £, and —

a.) 7,=.2 ohm (Curve 1.)

b) r,=.8 ohm (Curve I1.)
with values of reactance, r = Vz% — #2, for abscissae, from
r=4+10toxr = — 1.0 ohm.

As shown, 7/ and £ are smallest for x =0, » = 1.0,
or for the non-inductive receiver circuit, and largest for
x = + 1.0, »= 0, or for the wattless circuit, in which latter
a series resistance causes but a very small drop of potential.

Hence the control of a circuit by series resistance de-
pends upon the difference of phase in the circuit.

For 7,= .8, and x=0, r= + .8, = — .8, the polar
diagrams are shown in Figs. 88 to 40.
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2.) Reactance in series with a circuit.
45. Ina constant potential system of impressed E.M.F,,
Eo =6 +j€o,7 E0= Vv fuz + "u”; ’
let a reactance, x,, be connected in series in a receiver cir-
cuit of impedance

Z=r—Jx, z=Vr?4 s’
=
IMPRESSED E.M.F. CONSTANT, E, =100
IMPEDANCE OF RECEIVER CIRCUIT CONSTANT, 2 =1.0
{100 LING RESISTANCE CONSTANT 7% =,2
To=.8
e P~ 12 ——
W 8o,
o
£ LA
2] S
g b — To .8 ot
< g
[
e
o
= INDUGTANCE REACTANCE 'ONDENSANCE -
N r=jonms
oltl-121817!8 |5 ]|4]51.211 +1 122 .33 4 1.5 7.6 .7 7.8 1:9-1

Fig. 87. Variation of Voltage at Constant Series Resistance with Phase Relation of
Receiver Circuit,

Then, the total impedance of the circuit is

Z —jx,=7r—j (x +x,).

Er Ex,

EE  E ]
EJ

Fig. 38. Fig. 39.
and the current is,
T Z,
= — = : H
Y Z—jxy r—j(x+x,)
while the difference of potential at the receiver terminals
is,

E=JZ=F,_ T—J%
> i r_./(x+xa)
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Or, in absolute quantities : —

Current,
/25 oy

= = ;
Vrigeta) Vet 2ax, 4 x?

E.M.F. at receiver terminals,
rita® E,z
o . — —_—
2+ (x + %) V2?4 2xx, 422’

difference of phase in receiver circuit,

E=EFE

tan & = £ B
5
difference of phase in supply circuit,
tan o, = x—+—x° :

a.) If x is small compared with 7, that is, if the receiver
circuit is non-inductive, 7 and £ change very little for small
values of x,; but if x is large, that is, if the receiver circuit
is of large reactance, / and £ change much with a change
of z,

b) If x is negative, that is, if the receiver circuit con-
tains condensers, synchronous motors, or other apparatus
which produce leading currents —above a certain value of
x the denominator in the expression of E, becomes < z, or
E > E,; that is, the reactance, z,, raises the potential.

¢) E = E,, or the insertion of a series inductance, r,,
does not affect the potential difference at the receiver ter-

minals, if .
Va4 2ax, + xS’ =2z;
or, X,= — 2 &,

That is, if the reactance which is connected in series in
the circuit is of opposite sign, but twice as large as the
reactance of the receiver circuit, the voltage is not affected,
but E=E,/=FE,/z. Ifx,<— 2z, itraises,ifz,> — 27,
it lowers, the voltage.

We see, then, that a reactance inserted in series in
an alternating-current circuit will lower the voltage at the
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receiver terminals only when of the same sign as the reac-
tance of the receiver circuit ; when of opposite sign, it will
lower the voltage if larger, raise the voltage if less, than
twice the numerical value of the reactance of the receiver
circuit.

d) If x =0, that is, if the receiver circuit is non-
inductive, the E.M.F. at receiver terminals is :

RN 2 e £,
Vit \/1 +<ﬂ_)z
s
_ 1 Xo i 3 x, ‘
=& 1“§<r> +§(7> —+--}
<_1_. = (1 + x)~} expanded by the binomial theorem

V14 x
(1+x)n=1+nx+’ﬂﬁlg_12xﬂ+ .. )

Therefore, if x, is small compared with »:—

. 1/2,\2
b=Eo(1_§<a::q>>’
E—-F£ _1/x\
E, 2(7‘)'

That is, the percentage drop of potential by the insertion
of reactance in series in a non-inductive circuit is, for small

7

Ev Er

Fig. 40.

values of reactance, independent of the sign, but propor-
tional to the square of the reactance, or the same whether
it be inductance or condensance reactance.
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46. As an instance, in Fig. 41 the changes of current,
7, and of E.M.F. at receiver terminals, £, at constant im-
pressed E.M.F., E,, are shown for various conditions of a
receiver circuit and amounts of reactance inserted in series.

Fig. 41 gives for various values of reactance, x, (if posi-
tive, inductance — if negative, condensance), the E.M.Fs,
E, at receiver terminals, for constant impressed E.M.F.,

voLTS E OR AMPERES |
1

IMPRESSED E.M.F! CONSTANT, E}, =100

lIMPEDANCE OF RECEIVER CIRCUIT CONSTANT.Z)=1L017J0.
1. r=1.0 T=0
W. r=.8 T—+.8 /TN 160 VAN
Wl r=.6 T==.8 ¥
P o
1o
A N\ [/
1140
o 1 /ZINTN
N
B v 111} /] sl
[
o A a8 1
= 1
E J
] T A 2 N
o 50
& ] = - is ~
—
> L | AL
T
20 20
" 1o
b HMS INDUGTANCE -—-RErC'IIAN(E——»rnN ENSANCE
Zo 43028 2.6 2.4 22 20 18 1.6 14 12 10 8 § 4 +2 0-2 4 6 8 1.0 13-4

Fig. 41.

E, =100 volts, and the following conditions of receiver

ekt 2=10, r=1.0, x=  0(Curve L)

z2=1.0, r= .6, x= .8 (Curve IL)
2=10, r= .6, x= — .8 (Curve IIL)

As seen, curve I is symmetrical, and with increasing z,
the voltage £ remains first almost constant, and then drops
off with increasing rapidity.

In the inductive circuit series inductance, or, in a con-
denser circuit series condensance, causes the voltage to drop
off very much faster than in a non-inductive circuit.
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Series inductance in a condenser circuit, and series con-
densance in an inductive circuit, cause a rise of potential.
This rise is a maximum for #, = X+ .8, or, 2, = — x (the
COndlthn of resonance), and the E.M.F. reaches the value,

= 167 volts, or, £ = E,z/». This rise of potential by
series reactance continues up to z, = + 1.6, or, z, = — 22z,

E;, (25

o
Fig. 42,

where E£ = 100 volts again; and for x, > 1.6 the voltage
drops again.

At x, = L .8, x = F .8, the total impedance of the circuit
is r—j@x+2x)=r=.06, r+2x,=0, and tan 6, = 0;
that is, the current and E.M.F. in the supply circuit are
in phase with each other, or the circuit is in electrical
resonance.

Ee

N,

Fig. 43.

&

Since a synchronous motor in the condition of efficient
working acts as a condensance, we get the remarkable result
that, in synchronous motor circuits, choking coils, or reactive
coils, can be used for raising the voltage.

In Figs. 42 to 44, the polar diagrams are shown for the
conditions —

B,=100, x,=.6, x= 0 . (Fig. 42) E = 8b.7
=438 (Fig. 43) E = 65.7
w8 (Fig. 44) £ = 158.1
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47. In Fig. 45 the dependence of the potential, Z, upon
the difference of phase, &, in the receiver circuit is shown
for the constant impressed E.M.F., £, = 100 ; for the con-
stant receiver impedance, # = 1.0 (but of various phase
differences &), and for various series reactances, as follows :

x, = .2 (Curve 1.)
x,= .6 (Curve IL.)
GI=2 8 (Curve IIL.)
x, =1 (Curve IV.)
, = 1.6 (Curve V.)
x, =32 (Curve VL)

B
Fig. 44.

Since z = 1.0, the current, 7, in all these diagrams has
the same value as Z.

In Figs. 46 and 47, the same curves are plotted as in
Fig. 45, but in Fig. 46 with the reactance, x, of the receiver
circuit as abscissa ; and in Fig. 47 with the resistance, 7, of
the receiver circuit as abscissza.

As shown, the receiver voltage, £, is always lowest when
#, and x are of the same sign, and highest when they are
of opposite sign.

The rise of voltage due to the balance of r, and x is a
maximum for x, = + 1.0, r = — 1.0, and » = 0, where



RESISTANCE, INDUCTANCE, CAPACITY.

VOLTS E I
| o |
HPEES 1 IMPRESSED E M. FICONSTANT] Eo110d I
IMPEDANCE OF RECEIVER CIRCUIT] CONSTANT[Z =10 /
I Tol= 1V, To=1.0
10| i roles v, 1.6
1?0 I} Tot-8 VI, To=i8,2 : /
130 /
120 [ —
110 // 1
100 L~ /
) LT N |/
=, 2
J B L= ey g /////
0 d
N, To=0Y_ L L
60 _.——m’r-dﬂ — K
g0 [ W zetis =1 ol
b ly, #o=1.8_ |~ L
o
’/
VI, Te=32 =
0
0
PMASE D|FFERENCE [IN CONSUMER 3|mrurr,% LEAD
S S | 3 == ] B P
w0 8 0 50 40 50 20 1 10 20 30 10 50 60 10 50 90 Dewnces
Fig. 45. Variation of Voltage at Constant Series Reactance with Phase Angle of
Recelver Gircuit.
YOLTS E
on
AMPERES | | [,
% IMPREBSED E.M.F.[CONSTANT,|Eo=100
IMPEDANCE OF| REGEIVER QIRCUIT CONSTANT, Z>=1,0
1, [To.2 1v, Lo=}.0
5 1, 8 v, o
n, Fo=.8 VI, fEo=3,2 ]
= /A=
// L/
1
100\ —
——
e WL rel2 L] .
R B L+~ A /l
80 — %
[ waort T L] v
r 04— rs " L1
L, T
— W T ——
& 1.6+
BRTEA=A 1
et
3 \xi=8.2 e [
e
20
4 IREACTANCE| OF |CONSUMER [OIREUI
1
b1 fhoths fho fhe fhs dr tha fro dea o oifo
Fig. 48. Variation of Voltage at Ca Series R with R of

Receiver Circuit.




68 ALTERNATING-CURRENT PHENOMENA.

E = o ; that is, absolute resonance takes place. Obvi-
ously, this condition cannot be completely reached in
practice.

It is interesting to note, from Fig. 47, that the largest
part of the drop of potential due to inductance, and rise to
condensance — or conversely — takes place between » = 1.0
and » = .9; or, in other words, a circuit having a power

Volts E I ] ' V
or Amperes 1. /
™ D.E.M.F.[CONSTANT, eo=|1oo /
16 IMPE. NCE QF RECEIVER CIRGUIT CONSTANT, Z =10, /
1, Fo .2 IV, Zo=}.0 ~
1 1, Lo =6 ¥, Lo=t.8
", ot 8 VI, Zo=13.2
1 Y
: /
1 // e
/;
11
100 {/
% AN
), Zo=. I /
8
L # B
y o= e
6 = S //
W To=1:0 |t
v, Zox1.8 .’/ |t
-~
VI T 302
LAGQING CURRENT - RESIBTANCE[OF| | . [ EADING CURRENT
1 CONSUMER CIFCUT
0 11 12 |3 J¢ 15 |6 |r 8 1910 9 I8 |7 {6 |5 |4 |s l2 |1 o
Fig. 47. Variation of Voltage at C t Series R with i of

Recelver Circuit.

factor cos & = .9, gives a drop several times larger than a
non-inductive circuit, and hence must be considered as
an inductive circuit,

3.) Impedance in series with a circuil.

48. By the use of reactance for controlling electric
circuits, a certain amount of resistance is also introduced,
due to the ohmic resistance of the conductor and the hys-
teretic loss, which, as will be seen hereafter, can be repre-
sented as an effective resistance.
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Hence the impedance of a reactive coil (choking coil)
may be written thus:—
Zo = 7o — J%o, 2o = '\/rog + %%
where 7, is in general small compared with z,.
From this, if the impressed E.M.F. is
‘.Eo = ¢ + je5, Lo = \/é’o—z‘{‘—fo’2
and the impedance of the consumer circuit is
Z=r— x 3= \/;2—_,72
B i
Z+Z, (r4r)—j(+x)

and the E.M.F. at receiver terminals,

E=E, AL
Z+Z (r+7a)_'/(x+xo)

Or, in absolute quantities,

we get the current, /=

the current is,
E, _ Z,

TNt t G tay Vit f Z0ram)
the E.M.F. at receiver terminals is,
E,z E,z
TNt Gty Vet t20m tam)

the difference of phase in receiver circuit is,

~ X
tan & = —;
7

and the difference of phase in the supply circuit is,
x4+ x,
r+7"

49. In this case, the maximum drop of potential will not
take place for either » = 0, as for resistance in series, or
for » = 0, as for reactance in series, but at an intermediate
point. The drop of voltage is a maximum ; that is, £ is a
minimum if the denominator of £ is a maximum ; or, since
2, 2,, 7,, %, are constant,if 77, + xz, is a maximum, that is,

tan o =

since x = Vz2 — 72 if 77, 4+ 2, Va2 — 7% is a maximum,
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A function, f = 77, + x, V% — 72 is a maximum when
its differential coefficient equals zero. For, plotting f as
curve with » as abscissz, at the point where f is a maxi-
mum or a minimum, this curve is for a short distance
horizontal, hence the tangens-function of its tangent equals
zero. The tangens-function of the tangent of a curve, how-
ever, is the ratio of the change of ordinates to the change
of abscissaz, or is the differential coefficient of the func.
tion represented by the curve.

/
40! //
Zot i 2=1 ——
)
20
= z4—>
ot fo [8]7l65 {41]81.2]1 T $.24-8 -4 £5 56 +7 48 04
Fig. 48.

Thus we have : —
f=7r7,+x,V3* =7 = maximum or minimum, if
af =
ar
Differentiating, we get —

L (—2")=0;

2 \/ 2 __
or, expanded, —
ro Vel —r—x,r=rx—x,r=0,

or, Y X =7, X,
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That is, the drop of potential is a maximum, if the re-
actance factor, x/# of the receiver circuit equals the reac-
tance factor, z,/7,, of the series impedance.

Fig. 50.

50. As an example, Fig. 48 shows the E.M.F, E,
at the receiver terminals, at a constant impressed E.M.F,,
E, =100, a constant impedance of the receiver circuit,
z = 1.0, and constant series impedances,
Zy= 3 —j4 (Curve 1.)
Z,=12-—716 (Curve II.)
as functions of the reactance, x, of the receiver circuit.

Eo

Fig. 61.

Figs. 49 to 51 give the polar diagram for £, = 100,
r=.95,2r=0,r=—.95and Z,=.83—7 4.
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4.) Compensation for Lagging Currents by Shunted
Condensance.

51. We have seen in the latter paragraphs, that in a
constant potential alternating-current system, the voltage
at the terminals of a receiver circuit can be varied by the
use of a variable reactance in series to the circuit, without
loss of energy except the unavoidable loss due to the
resistance and hysteresis of the reactance; and that, if
the series reactance is very large compared with the resis-
tance of the receiver circuit, the current in the receiver
circuit becomes more or less independent of the resis-
tance, —that is, of the power consumed in the receiver

Zo

Fig. 62.

circuit, which in this case approaches the conditions of a
constant alternating-current circuit, whose current is.

7="2r,

T Vit x,
This potential control, however, causes the current taken
from the mains to lag greatly behind the E.M.F., and
thereby requires a much larger current than corresponds
to the power consumed in the receiver circuit.

Since a condenser draws from the mains a leading cur-
rent, a condenser shunted across such a circuit with lagging
current will compensate for the lag, the leading and the
lagging current combining to form a resultant current more
or less in phase with the E.M.F.,, and therefore propor-
tional to the power expended.
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In a circuit shown diagrammatically in Fig. 52, let the
non-inductive receiver circuit of resistance, 7, be connected
in series with the inductance, x,, and the whole shunted by
a condenser of condensance, ¢, entailing but a negligible loss
of energy.

Then, if £, = impressed EM.F,, —

the current in receiver circuit is,
£,

I = —, = g
ST VP
the current in condenser circuit is,
E £,
==, [l == '—n.
¢ ¢
and the total current is
L=1+A=Eo{;. 1.-}
E g g . g, e

7 . &% 1
=‘.E" §r2+x,,’+j(r2+xf—t>}’
2

or, in absolute terms, 7, = £,\/ —— z-}- _ % 1\,
7t rtad o«
whiie the E.M.F. at receiver terminals is,

E=Ir=E T __, E= Lo
C T T T VAt

52. The main current, 7,, is in phase with the impressed
E.M.F., E,, or the lagging current is completely balanced,
or supplied by, the condensance, if the imaginary term in
the expression of ],, disappears ; that is, if

x 1
e —==0.
e - s
2 2
This gives, expanded : et
xo

Hence the capacity required to compensate for the
lagging current produced by the insertion of inductance
in series to a non-inductive circuit depends upon the resis-
tance and the inductance of the circuit. x, being constant,
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with increasing resistance, 7, the condensance has to Le
increased, or the capacity decreased, to keep the balance.

72 4x2
. ¥

Substituting e

we get, as the equations of the inductive circuit balanced
by condensance : —

o Eo E (r+jx,,) e Eo_;
r—jE At Vot g
., 11 /E Xo Eoxy .
'.]1_ +x2’ 5= r‘—}-x‘,"”
E,r : E,r
£y = ——4— Ao A,
TR a2 72 4 xt
E— B E,r E— _ Eer
T =%, v ERrah

and for the power expended in the receiver circuit : —
J553
2o
that is, the main current is proportional to the expenditure
of power.

For » = 0 we have ¢ = x,, or the condition of balance.

Complete balance of the lagging component of current
by shunted capacity thus requires that the condensance, ¢,
be varied with the resistance, »; that is, with the varying
load on the receiver circuit.

In Fig. 63 are shown, for a constant impressed E.M.F.,
E, = 1000 volts, and a constant series reactance, x, = 100
ohms, values for the balanced circuit of,

SPP=

=1E,,

current in receiver circuit  (Curve L),

current in condenser circuit (Curve I1.),
current in main circuit (Curve IIL),
E.M.F. at receiver terminals (Curve IV.),

with the resistance, 7, of the receiver circuit as abscisse.

"1}

B—
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. y —
IMPRESSED E.M.F. CONSTANT, E,=1000 VOLTS.
SERIES REACTANCE -CONSTANT, To= 00 OHMS.
VARIABLE RESISTANCE IN RECEIVER CIRCUIT.
BALANCED BY VARYING THE SHUNTED CONDENSANCE.

I. CURRENT IN RECEIVER CIRCUIT.
Ii. CURRENT IN CONDENSER CIRCUIT.
1, CURRENT IN MAIN CIRCUIT.

Iv. E.M.F. AT RECEIVER CIRCUIT.

10]100d
—
ojooo] TN L
=
8[800 WL 1]
™~
7|00 d ]
Eo 600 |y D> L
- ~—
&6/500/2 A T
Ziuoo) i I Sy e A Ry gy o
U
3/300 Yz =
T
2(200 B —
=
1] 100
RESISTANCE T, OF RECEIV JIRCUIT, OHMS
0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Fig. 63. Compensation of Lagging Currents in Receiving Circuit by Variable Shunted
Condensance.

563. If, however, the condensance is left unchanged,
¢ = x, at the no-load value, the circuit is balanced for » = 0,
but will be overbalanced for »> 0, and the main current
will become leading.

We get in this case:—

&= Xp35
Vi Eo — E0 .
v | . ’ i )

7= %o V74 %2

4 ]E", 11=£";
3 Xy Xo

B,r Ey,7
Ly=7+15= o /= = 0 ;
24 g 5% xn<xo+]r)’ ’ xo_\/rg+xoz’
TR A LA oy P e
aa 75 %o V72 + x?

The difference of phase in the main circuit is, —

a P o
tan g, = — = which is = 0.
0
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when 7= 0 or at no load, and increases with increasing
resistance, as the lead of the current. At the same time,
the current in the receiver circuit, /, is approximately con-
stant for small values of 7, and then gradually decreases.

IMPRESSED E.M.F. CONSTANT, Eo==l000 VOLTS.
SERIES REACTANCE CONSTANT, o =I00 OHMS.
SHUNTED CONDENSANCE CONSTANT, C=100 OHMS,
VARIABLE RESISTANCE IN RECEIVER CIRCUIT.
"LCURRENT IN RECEIVER CIRCUIT.
1I.CURRENT IN CONDENSER CIRCUIT.
III.CURRENT IN MAIN CIRCUIT,
IV.E.M.F. AT RECEIVER CIRCUIT.

AMPERES[VOLTS il.
10]14

\[/
/1\

E

5
I I
L~

RESISTANCE I'—OF RECEIVER CIRCUIT, OHMS.

0 20 30 40 50 Jﬁ 707 80 90 100 110 120 130 140 160 160 170 180 190 200 OHMS

Fig. 54.

In Fig. 54 are shown the values of 7, /7, 7,, £, in Curves
I, IL, IIL, IV, similarly as in Fig. 50, for £, = 1000 volts,
¢ = x, = 100 ohms, and » as abscissz.

5.) Constant Potential — Constant Current Transformation.

54. In a constant potential circuit containing a large
and constant reactance, x,, and a varying resistance, 7, the
current is approximately constant, and only gradually drops
off with increasing resistance, », — that is, with increasing
load, — but the current lags greatly behind the E.M.F. This
lagging current in the receiver circuit can be supplied by a
shunted condensance. Leaving, however, the condensance
constant, ¢ = x,, so as to balance the lagging current at no
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load, that is, at » =0, it will overbalance with increasing
load, that is, with increasing # and thus the main current
will become leading, while the receiver current decreases
(if the impressed E.M.F,, £,, is kept constant. Hence, to
keep the current in the receiver circuit entirely constant, the
impressed E.M.F., E,, has to be increased with increasing
resistance, ; that is, with increasing lead of the main cur-
rent. Since, as explained before, in a circuit with leading
current, a series inductance raises the potential, to maintain
the current in the receiver circuit constant under all loads,
an inductance, x,, inserted in the main circuit, as shown in
the diagram, Fig. 55, can be used for raising the potential,
E,, with increasing load.

«——€ 3
T 2o
T
[ 3
Fig. 55,

Let — . T
Ey=e +je, Ey= V44",
be the impressed E.M.F. of the generator, or of the mains,
and let the condensance be x, = x,; then—
Current in receiver circuit,

7=—L_ H

c r—Jjx,
current in condenser circuit,

5= — L&,

: x,

Hence, the total current in main line is

L=1+11=E.,§ e —Z-}
St Gk oy
E,r :

=jx,- (’—jxo) ’
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E.M.F. at condenser terminals,

E,=E2 Xy 77
9 X,

°

2
= £ (1+j'f-), E,=E\/1 +(§-), hence > £, ;

current in condenser circuit,

4= — 2t =%\/1+(;’—)’;

main current,

e E@ 4 .
AR oM

5 tional to the load
I R o e
=F 50 =T ) phase wi

%o e EM.F, Z,.

The power of the receiver circuit is,
nE=La
x

o

the power of the main circuit,

2.
°

2
LE,= £, ” | hence the same,
72

55. This arrangement is entirely reversible ; that is,
if £, = constant, / = constant; and

if 7, = constant, £ = constant.

In the latter case we have, by expressing all the quanti-
ties by 7,: —
Current in main line,
7, = constant;
E.M.F. at receiver circuit,
E = J,x,= constant;
current in receiver circuit,
I =1,,§‘-’, proportional to the load %‘;

current in condenser circuit,

L=, 14‘("“)#;
R Y
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E.M.F. at condenser terminals,
2
E, =z, I\/1+ (’f) :

Impressed E.M.F. at generator terminals,
2
E,="% 7, or proportional to the load 1
7 r

From the above we have the following deduction :

Connecting two reactances of equal value, x,, in series
to a non-inductive receiver circuit of variable resistance, 7,
and shunting across the circuit from midway between the
inductances by a capacity of condensance, x, = x,, trans-
forms a constant potential main circuit into a constant cur-
rent receiver circuit, and, inversely, transforms a constant
current main circuit into a constant potential receiver cir-
cuit. This combination of inductance and capacity acts as
a transformer, and converts from constant potential to con-
stant current and inversely, without introducing a displace-
ment of phase between current and E.M.F.

It is interesting to note here that a short circuit in the
receiver circuit acts like a break in the supply circuit, and a
break in the receiver circuit acts like a short circuit in the
supply circuit.

As an instance, in Fig. 56 are plotted the numerical
values of a transformation from constant potential of 1,000
volts to constant current of 10 amperes.

Since £, = 1,000, 7 =10, we have: x, = 100 ; hence
the constants of the circuit are:—

£, = 1000 volts ;
= 10 amperes;

£ = 107,plotted as Curve I.,with the resistances, »,as abscissa;

E, = 1000 \/ 14 ({my, plotted as Curve II.;
/ 2
5L =10\/1+4 (ﬁ), plotted as Curve III.-

7, = .17, plotted as Curve IV.
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56. In practice, the power consumed in the main circuit
will be larger than the power delivered to the receiver cir-
cuit, due to the unavoidable losses of power in the induc-
tances and condensances.

CURRENT IN RECEIVER CIRCUIT cousnn‘r' l Jlo AMPERES |
|- IMPRESSED E.M.F.CONSTANT, E;=I000 VOLT.
2 $zAchucssaorz. 100 SHMS EACH, SHONTED IN THEJR MIDOLE [BY
LA 00 OH
VARIABLE RESISTANGE 19 REOEIVER CIRCUIT.
L_| I E.M.F. AT RECEIVER CIRCUIT.
OLTS  yi, E.M.F. AT CONDENSER CIRCUIT.
Rt 1li. CURRENT IN conn:uszn CIRCUIT. et
Y. CURRENT IN MAIN LIN [ -
131 Y. CURRENT IN MAIN LINE INCLUDING LOSS Sl
VI. EFFICIENCY OF TRANSFORMATION,
12{1200) S L1 A7
\ . t
121100] Wi - \
— =
1001 e ®
9 vt - 3
— — =t
g 8le0 ] - =
& Ky
& 7{700| / 0
< ’V \
61600, - 505
H
5 50’0 = Z 505
L E
41y £ o i
3320 L 30
2 ,20J T o
1 'mo S RES{STANCE ——{" QF RECEIVER CIRCUIT, [OHMS 0
S O o | Bl e e O
10, %0. 30, 40, 0. 60, 70, 80. 90 100, 110..120. 130. 140,150, 160.170. 180, 130,200, OHME
Fig. 56. C otential — ( Current Transf i
Let —

71 = 2 ohms = effective resistance of condensance ;
7, = 3 ohms = effective resistance of each of the inductances.

We then have:—
Power consumed in condensance, /;? 7, = 200 4 .02 7*%;
power consumed by first inductance, /%7, = 300;

power consumed by second inductance, 7,7, = .03 72
Hence, the total loss of energy is 500 4 .05 7%;

output of system, J27 =100
input, 500 4 100 » 4 .05 #%;

y 100 »
efficiency,

500 + 100 » + .05 2"

It follows that the main current, 7,, increases slightly
by the amount necessary to supply the losses of energy
in the apparatus.
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CHAPTER IX.
RESISTANCE AND REACTANCE OF TRANSMISSION LINES.

57. In alternating-current circuits, E.M.F. is consumed
in the feeders of distributing networks, and in the lines of
long-distance transmissions, not only by the resistance, but
also by the reactance, of the line. The E.M.F. consumed by
the resistance is in phase, while the E.M.F. consumed by the
reactance is in quadrature, with the current. Hence their
influence upon the E.M.F. at the receiver circuit depends
upon the difference of phase between the current and the
E.M.F. in that circuit. As discussed before, the drop of
potential due to the resistance is a maximum when the
receiver current is in phase, a minimum when it is in
quadrature, with the E.M.F. The change of potential due
to line reactance is small if the current is in phase with
the E.M.F., while a drop of potential is produced with a
lagging, and a rise of potential with a leading, current in
the receiver circuit.

Thus the change of potential due to a line of given re-
sistance and inductance depends upon the phase difference
in the receiver circuit, and can be varied and controlled
by varying this phase difference; that is, by varying the
admittance, ¥ = g + 74, of the receiver circuit.

The conductance, g, of the receiver circuit depends upon
the consumption of power, — that is, upon the load on the
circuit, — and thus cannot be varied for the purpose of reg-
ulation. Its susceptance, 4, however, can be changed by
shunting the circuit with a reactance, and will be increased
by a shunted inductance, and decreased by a shunted con-
densance. Hence, for the purpose of investigation, the
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receiver circuit can be assumed to consist of two branches,
a conductance, g, — the non-inductive part of the circuit, —
shunted by a susceptance, 4, which can be varied without
expenditure of energy. The two components of current
can thus be considered separately, the energy component as
determined by the load on the circuit, and the wattless
component, which can be varied for the purpose of regu-
lation.

Obviously, in the same way, the E.M.F. at the receiver
circuit may be considered as consisting of two components,
the energy component, in phase with the current, and
the wattless component, in quadrature with the current.
This will correspond to the case of a reactance connected
in series to the non-inductive part of the circuit. Since the
effect of either resolution into components is the same so
far as the line is concerned, we need not make any assump-
tion as to whether the wattless part of the receiver circuit
is in shunt, or in series, to the energy part.

Let—

Z, = 7, — j*, = impedance of the line;

- 2 2.
5, = VrE T ak;

Y =g + /6 = admittance of receiver circuit;
y = Vgi+ b3

E,=¢ + Je,” = impressed E.M.F. at generator end of line;
E,= Vel 4 &%
E =c¢ 4 j¢’ = EM.F. at receiver end of line;
E =~e? +¢'3
7, = i, - 77, = current in the line;
Z =i+ i

The simplest condition is the non-inductive circuit.

1) Non-inductive Receiver Circuit Supplied over an
Inductive Line.
58. In this case, the admittance of the receiver circuit
is ¥ = g, since & = 0.
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We have then —

current, -[o i {5'8 i
impressed E.M.F.,, E,=E+ZL,=E(1+2.).
Hence —

E.M.F. at receiver circuit,
— Eo = Eo .
1+ Zg 1+gr—Jjex’
E,g E,g
current, =] ° = e,
14+ Zg 1+4g7,—jex

Hence, in absolute values —

Z, .
Vt+ery+etwt
Vit 2w 1
VA4 gr)+&ts’
The ratio of E.M.Fs. at receiver circuit and at genera-
tor, or supply circuit, is —
e LN D LB
B Ntz tem
and the power delivered in the non-inductive receiver cir-
cuit, or

E.M.F. at receiver circuit, =

current,

~ Elg

A+ gr)* + &%’

As a function of g, and with a given £,, 7,, and #,, this
power is a maximum, if —

ar
dg

output, JE=W /5

=0 )
that is —

— 1487 + g% =03
hence —

conductance of receiver circuit for maximum output,

J 4 S 1
Resistance of receiver circuit, 7, = — = 2,;
&m
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and, substituting this in 2 —
1550 155
27+ 2) 2§r.,+\/r,,2+x,,"'}’

Maximum output, Py =

and —

ratio of E.M.F. at receiver and at generator end of line,

E \/2 (1 + r,,)
efficiency, 2 2o S
rm + rd ro + ZU

That is, the output which can be transmitted over an
inductive line of resistance, #,, and reactance, x,,— that is,
of impedance, z,, — into a non-inductive receiver circuit, is
a maximum, if the resistance of the receiver circuit equals
the impedance of the line, » = z,, and is—

E 2
Tt
The output is transmitted at the efficiency of

P =

E2)
7ot 2,
and with a ratio of E.M.Fs. of
1

o=
VS

zﬂ
69. We see from this, that the maximum output which
can be delivered over an inductive line is less than the
output delivered over a non-inductive line of the same
resistance — that is, which can be delivered by continuous

currents with the same generator potential.
In Fig. 57 are shown, for the constants

£, = 1000 volts,
Z, = 2.5 — 6;thatis, », = 2.5 ohms, x, = 6 ohms, 2, = 6.5 ohms,

with the current 7, as abscisse, the values —
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E.M.F. at Receiver Circuit, Z, (Curve 1.);

Output of Transmission, 7, (Curve I1.);

Efficiency of Transmission, (Curve IIL).

The same quantities, £ and 2, for a non-inductive line of
resistance, 7, = 2.5 ohms, x, = 0, are shown in Curves IV,,
V., and VI.

[ NONINDUCTIVE RECEIVER CIRCUT
SUPFLIED OVER INQUCTIVE LINE OF IMPEDANCE

AND OVER NON-NDUCTIVE LINE OF RESISTANCE bt il
CURVE' E. M. F. AT RECEIVER (':IRCUIT, INDUCTIVE LINE // 0
” " ” 17 NON-INDUCTIVE 17 =
ll || oquuT N INDUCTIVE ’*
”ov. " = }7 NON-INDUGTIVE 71 13|
»om. EFFICIENCY OF TRANslIISGlON INDUCTIVE »» 'y 90
"oVi. ” ” 17 NON-INDUCTIVE 13 )
N HE
2l &
/] HH
z1 |
512
T 0
ol
z <
=|®
w|J 00
t|d
| 100712000 0
N / i 907 900
"‘\ - 307800 ©
I
AN A 707 700
N T [V loodow %
i
A Z 09500
] \
400
L 20
\ |09 0
W] |

| 104 100

CURRENT IN LINE; 1o AMP‘ERgS

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Fig. 57. Non-i ive Receiver Circuit Over fve Line.

2. Maximum Power Supplied over an Inductive Line.
60. If the receiver circuit contains the susceptance, 4,
d in addition to the conductance, g, its admittance can be

written thus:—
Y=g+jb y=Vg*+ 5"
Then —

current, 1 E Y;
Impressed E.M.F., E E + 1 Z,=E 14YZ).
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Hence —
E.M.F. at receiver terminals,
o E.o o En 1
T 14YZ, (A4 gt w0 —j(xg—70)
current,
L L T Z,(g478)

C Tz, T At retad) —j@E—rb)
or, in absolute values —
E.M.F. at receiver circuit,

E = , ;
VA +7g+ x,0) + (x,.6 — 7.6)*

current,

ey \/ Gl .
VAt e+ A+ g — )
ratio of E.M.Fs. at receiver circuit and at generator circuit,
1 i
VI F g T w0 T g — 7D
and the output in the receiver circuit is,
P=E3g=FEz2dg

E
Q= — =
£,

6l. a.) Dependence of the output upon the susceptance of
the recetver circuil.

At a given conductance, g, of the receiver circuit, its
output, P = £ 2a%g, is a maximum, if a2 is a maximum ; that
is, when — .

gl
S== A+ rg+ 20 + (g — )"
is a minimum,

The condition necessary is —

2,
b

or, expandmg,’ %o (L4 7,8 + %,8) — 7, (xag — 7,8) = O

Hence —
Susceptance of receiver circuit,
— xﬂ xO
S T AR TN
L) + x; Z,

or g b46,=0,
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that is, if the sum of the susceptances of line and of receiver
circuit equals zero.
Substituting this value, we get —

ratio of E.M.Fs. at maximum output,

e g IR
. E, z(g+g)
maximum output,
i e
" (& + &)
current, |
B YL - E, (¢ — jb.)
T +Zo ¥ 1 <% (r _jxa) (g ’—j&a)
E, (g —jb.)

T AT g = wb) = (bt 7od)

A=z \/ &£+ 6’

¥ ° A+ 708 — x000)* + (7265 +xag)2’
and, expanding,
Vg4 b2,

20 (& + &)

phase difference in receiver circuit,
tan & = o RS s '

& &

phase difference in generator circuit,

x4 %o _ b0 (S — 2%
7+ 7 &V + &y

tan &, =

62. b8.) Dependence of the output upon the conductance
of the receiver circuil. :

At a given susceptance, &, of the receiver circuit, its
output, P = £ %’¢, is a maximum, if —

aprP d(1
%0 2)=0

) (1 o 10 + 308 + (ang — ,o,;)e) ’

o &
' &\ o £
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that is, expanding, —
(1 +rag+xnb)2+ (xog_rob)a— 2g(ro+ 78+ xaﬂg) =0;
or, expanding, —
G+ b) =8 —g; &= V&' + (b + b,)%
Substituting this value in the equation for e, page 88,
we get —
ratio of E.M.Fs.,

ag = - ———
2V2 (i (04 0) + & Vel + G + b)Y
e 1 k= s .
2V2g(g+8&) V2g(g+te)
power,
2 Elyt Ely

C2(8+&) 2{e&+ Vet @+ ey}

2
o

= V2
24ty it (st = "‘—)2
22
As a function of the susceptance, &, this power becomes
a maximum for &P, /44 = 0, that is, according to § 61, if —

b= —3,

Substituting this value, we get —
b= —b,,8§ =48,y =2J0,, hence: Y=g+ jb=g,— jb;
K== —Xpy 77=17%, 2= 2, Z=r—jx=ro+ j%,;

substituting this value, we get —

ratio of E.M.Fs,, ap=-2e=20;
260 27,
ower. = £
P ) m=7 = H

that is, the same as with a continuous-current circuit; or,
in other words, the inductance of the line and of the receiver
circuit can be perfectly balanced in its effect upon the
output.

63. As a summary, we thus have:
The output delivered gver an inductive line of impe-
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dance, Z, =7, — j x,, into a non-inductive receiver circuit, is
a maximum for the resistance, » = z,, or conductance, g =
,, of the receiver circuit, or —

E 2
VDS e
2 (" o+ zo) ’
at the ratio of potentials,
1

= —,
rﬂ

V2 (1 " z.,)

With a receiver circuit of constant susceptance, 4, the out-

put, as a function of the conductance, g, is a maximum for

the conductance, —

g=\/goz+(b+boz:

and is
E ﬁy 2
P o o o
2 (&+ 80) ’
at the ratio of potentials,
Jo

4= —— |

V2g(g+8)
With a receiver circuit of constant conductance, g, the
output, as a function of the susceptance, &, is a maximum

for the susceptance, &4 = — 4,, and is
-
o2 (g + £0)*)
at the ratio of potentials,
1
4= —
Yo (& + &)

The maximum output which can be delivered over an in-
ductive line, as a function of the admittance or impedance
of the receiver circuit, takes place when Z = 7, + jx,, or
Y = g,— jb,; that is, when the resistance or conductance
of receiver circuit and line are equal, the reactance or sus-
ceptance of the receiver circuit and line are equal but of
opposite sign, and is, 7 = E2[47,, or independent of the
reactances, but equal to the output of a continuous-current
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circuit of equal line resistance. The ratio of potentials is, in
this case, & = 2, / 2 7,, while in a continuous-current circuit
it is equal to . ‘The efficiency is equal to 50 per cent.

OUTPUT PIAND
RATIO uDLELTl O Reatviug nd sehouls dvo
\ OF LINE OF(IMFEDANCE |2 B
e=£2.5—6] |AT|CONSTANT
D E}M.H., E=I000|
A ™~ % !
\ |/ N
TI{NON-INDUCTIVE RECEIVER CJRCUIT ~
)IIIN RECEIVER CIRCUIT) OF 8USCEPTANCE }\“2
N i e —
4 / \{u’wnnw-nuu TIvi aEgEIVERnIFCUlfb Nl
T NGN-INOUCTIVE [INE
& S
15
= 2~
# / S
18
Al
11 [ v £
//
1.0
K —
— "
8 l v al Ne
a I 4 S~ T
] 4 ~lu ~
% —
=" WVl ] .
i , e e e A N
3 S
| EAmE
W1 1
A GONQUCTANEE GF RECE|VER CIRCUIT
0T 02 .08 .04 .05 .06 .07 .08 .09 .10 JI 12 13 14 6 J6 3

Fig. 58. Variation of the Potentiai in Line at Different Loads.

64. As an instance, in Fig. 58 are shown, for the
constants —
E, = 1000 volts, and Z,=2.5 — 67; that is, for
7o = 2.5 ohms, x, = Gohms, 2, = 6.5 ohms,

and with the variable conductances as abscissz, the values
of the —

output, in Curve I., Curve III, and Curve V. ;
ratio of potentials, in Curve II., Curve IV., and Curve VI.;

Curves 1. and 1I. refer to a non-inductive receiver
circuit ;
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Curves IIL. and IV. refer to a receiver circuit of

constant susceptance . . . . .. b= 142
Curves V. and VI. refer to a receiver c1rcu1t of
constant susceptance . . . . . . . o= —.142;

Curves VII. and VIII refer to a non-inductive re-
ceiver circuit and non-inductive line,

In Fig. 59, the output is shown as Curve I, and the
ratio of potentials as Curve II., for the same line constants,
for a constant conductance, g=.0592 ohms, and for variable
susceptances, 4, of the receiver circuit.

OUTPUT P AND RATIO OF POTENTIAL @ AT RECEMNGJND
SENDING END OF LINE OF IMPEDANCE. Z,=2.5 — —]
AT CONSTANT IMPRESSED E. M.F, E,,“IOOO y
ouTeuT ]
1l RATIO OF POTENTIALS ==
JIR]
/
\
\
/ \
/ \
/ 1l
A
7 \
/ \
/ \
7 %
/ a.
NN
P N N
\ |
SUSCERTANCE OF TEC IVER CIRCYIT S
7=—3 -3 -2 -1 (] FT 32 F35 4

Fig. 69. Variation of Potential in Line at Various Loads.

8.) Maximum Efficiency.
65. The output, for a given conductance, g, of a receiver
circuit, is a maximum if 4 = — 4,. This, however, is gen-
erally not the condition of maximum efficiency.
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and depending upon the resistance only, and not upon the
reactance.

This power is a maximum if ¢ = g,, as shown before;
hence, substituting ¢ = g,, 7 = 7,

: . c I5E
maximum power at maximum efficiency, 2, = v
7o
. : %
at a ratio of potentials, Ay = —2—,
27,
or the same result as in § 62.
KW, va.oToa
g — F—
N ™~ 1
N 1 QUTRUT AT MAXINUM EFFIGIENCY L
1 VOLTS AT RECEIVING END OF LINE —_

i1 eFFiciEncy
TMPRESSEO ExM.F.= E¢=1000 10
LINE IMPEDANCE, Zg"2.8 — 1

70— : V4
pap= [1300!
S ™ 1200
6
& / ™ 1100
1007 ™ 1000
T = T —D

8
N
N
\
\
\

/

BB

1~ 500
20 / |~
300
10| - 1200 |
- 100]
liUNUul, ANCE OF RECEIVER C! Wlll 79— 3
01 W02 . 03 04 05 S0 <0 08

Fig. 60. Load Characteristic of Transmission Line.

In Fig. 60 are shown, for the constants —
£, = 1,000 volts,
Zo =25—067; r,=2. ohms, x, = 6 ohms, z, = 6.5 ohns,
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and with the variable conductances, g, of the receiver circuit
as abscissa, the —

Output at maximum efficiency, (Curve 1.);
Volts at receiving end of line, (Curve IL);

Efficiency = —~—— , (Curve II1.).

7 7o

4.) Control of Receiver Voltage by Shunted Susceptance.

66. By varying the susceptance of the receiver circuit,
the potential at the receiver terminals is varied greatly.
Therefore, since the susceptance of the receiver circuit can
be varied at will, it is possible, at a constant generator
E.M.F,, to adjust the receiver susceptance so as to keep
the potential constant at the receiver end of the line, or to
vary it in any desired manner, and independently of the
generator potential, within certain limits.

The ratio of E.M.Fs. is —

E 1

aQ = — = 5

£, \/(1 + 78+ xoby 4 (xog i o b)z

If at constant generator potential Z,, the receiver potential
E shall be constant,

a = constant;
hence,

1
(1 + rog"'xob)z'*' (xog_ 7‘,,5)2=;2;
or, expanding,

b= — b+ \/({z—")z— (& +50%

which is the value of the susceptance, 4, as a function of
the receiver conductance, — that is, of the load, — which is
required to yield constant potential, aZ,, at the receiver
circuit.

For increasing g, that is, for increasing load, a point is
reached, where, in the expression —

D (et \/(%"Y— (8 + &)
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the term under the root becomes imaginary, and it thus
becomes impossible to maintain a constant potential, aZ,.
Therefore, the maximum output which can be transmitted
at potential 2%, is given by the expression —

% (;")2— (8 +&)°=0;

hence 6 = — o,, the susceptance of receiver circuit,
and g=—g, 22, the conductance of receiver circuit;
a
P = E}ga*

= a*E, ’(—" — g,) , the output.

67. If a=1, that is, if the voltage at the receiver cir-
cuit equals the generator potential —

& =Jo '—Vgo;
P=Ez(Y— &)
If @ =1 wheng=0, =0

wheng >0, 4<0;
if e >1wheng=0,0rg>0,4<0,
that is, condensance;
ift a<lwheng=0, 4>0

Wheng:_ga"‘\/(ia)—boz: 5=0;
y 2
when ¢ > —go-H/(f) —y 5<0,

or, in other words, if @ < 1, the phase difference in the main
line must change from lag to lead with increasing load.

68. The value of @ giving the maximum possible output
in a receiver circuit, is determined by dP [da = 0;

2
expanding : 2a<——g> a{a=0;
a
hence, Yo=2ag,
and a.—_-i____l g L o
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the maximum output is determined by —
£=—&+2L=4g;
a
and is, P==2

From: a=

the line reactance, x,, can be found, which delivers a
maximum output into the receiver circuit at the ratio of

potentials, a,

and 2, =27,a,

X, =7r,V4a®—1;
fore =1,

=207

X = 7‘0'\/5.

If, therefore, the line impedance equals 924 times the line
resistance, the maximum output, 2 = E2/47,, is trans-
mitted into the receiver circuit at the ratio of potentials, a.

If 2, =27, or x, = 7, V3, the maximum output, 2 =
E2/47,, can be supplied to the receiver circuit, without
change of potential at the receiver terminals.

Obviously, in an analogous manner, the law of variation
of the susceptance of the receiver circuit can be found which
is required to increase the receiver voltage proportionally to
the load ; or, still more generally, —to cause any desired
variation of the potential at the receiver circuit indepen-
dently of any variation of the generator potential, as, for in-
stance, to keep the potential of a receiver circuit constant,
even if the generator potential fluctuates widely.

69. In Figs. 61, 62, and 63, are shown, with the output,
P = E2gd? as absciss®, and a constant impressed E.M.F.,,
E, =1,000 volts, and a constant line impedance, Z, =
2.5 — 64, or, 7, = 2.5 ohms, x, = 6 ohms, 2 = 6.5 ohms,
the following values:
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Fig. 61. Variation of Voltage Transmission Lines.
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Fig. 62. Variation of Voltage Transmission Lines.
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T Toalmet T
! RATIO OF RECEIVER VOLT‘GE TO SENDER VOLTIAGE a 1. 3 | | |
LINE IMPEDANCE: Z,=2.6.—6j T
). ENERGY CURRENT CONSTANT GENERATOR POTENTIAL E =000,
h, REACTIVE CURRENT
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e
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Fig. 63. Variation of Voltage Transmjssion Lines.
Energy component of current, gE, (Curve L);
Reactive, or wattless component of current, 4%, (Curve IL);
Total current, YE, (Curve IIL);

for the following conditions :
e =1.0 (Fig. 61); a = .7 (Fig.62); & =1.3 (Fig. 63).

For the non-inductive receiver circuit (in dotted lines),
the curve of EM.F,, £, and of the current, / = g Z, are
added in the three diagrams for comparison, as Curves IV,
and V.

As shown, the output can be increased greatly, and the
potential at the same time maintained constant, by the judi-
cious use of shunted reactance, so that a much larger out-
put can be transmitted over the line at no drop, or even at
a rise, of potential.
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5.) Maximum Rise of Potential at Recetver Circuit.

70. Since, under certain circumstances, the potential at
the receiver circuit may be higher than at the generator,
it is of interest to determine what is the maximum value of
potential, £, that can be produced at the receiver circuit
with a given generator potential, Z,.

The condition is that

o 1 2
@ = maximum or — = minimum;
a

that is,
a/a?) _ dd/e®) _ g,
dg i db ’
substituting,
1
Fa =1 4 708 + % 5)* + (v — 7,0)%

and expanding, we get,

(l__u/(z =0; g=—-r—°;
([g zaz
— a value which is impossible, since neither #, nor ¢ can be
negative. The next possible value is g = 0, —a wattless
circuit.
Substituting this value, we get,
’15‘ — (1 +xab)2+ roabg;
and by substituting, in
d(1/a? &
_%bLZ=0, s
b4 6,=0;
that is, the sum of the susceptances = 0, or the condition
of resonance is present.
Substituting,

we have
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The current in this case is,

I= Eogo = g‘“‘ )
o
or the same as if the line resistance were short-circuited
without any inductance.
This is the condition of perfect resonance, with current
and E.M.F. in phase.

NN

Y’%T 8 \

- 5
g N\ ’
\

CONSTANT IMPRESSED E. M. F, Eg~1000
LINE IMPEDANCE Z,~2.5- 8
1500( | MAXIMUM OUTPUT BY COMPENSATION
1i MAXIMUM EFFICIENCY BY COMPENSATION
1400/ 11 NON-INDUCTIVE RECEIVER CIRCUIT
iV NON-INDUCTIVE LINE AND NON-INDUCTIVE
RECEIVER CIRCUIT

s
\\
I~

\% ErFICIENCY 4] /3
(EFFICIENCY

/
/
>N

3

2§58 8

% utt.
S  0r]

v
oo LA

I

uT UI_LK.V\.-—-b
10 20 30 40 60 60 70 8 90 100

Fig. 64. Efficiency and Output of Transmission Line.

o

71. As summary to this chapter, in Fig. 64 are plotted,
for a constant generator E.M.F., £, = 1000 volts, and a
line impedance, Z, = 2.5 — 6, or, 7, = 2.5 ohms, z, = 6
ohms, z, = 6.5 ohms; and with the receiver output as
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abscissze and the receiver voltages as ordinates, curves
representing —

the condition of maximum output, (Curve L);
the condition of maximum efficiency, (Curve II.);
the condition & = 0, or a non-inductive receiver cir-

cuit, (Curve IIL);

the condition 4 =0, 4, =0, or a non-inductive line and non-
inductive receiver circuit.

In conclusion, it may be remarked here that of the
sources of susceptance, or reactance,

a choking coil or reactive coil corresponds to an inductance ;

a condenser corresponds to a condensance ;

a polarization cell corresponds to a condensance ;

a synchronizing alternator (motor or generator) corresponds to
an inductance or a condensance, at will;

an induction motor or generator corresponds to an inductance.

The choking coil and the polarization cell are specially
suited for series reactance, and the condenser and syn-
chronizer for shunted susceptance.
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CHAPTER X
EFFECTIVE RESISTANCE AND REACTANCE.

72. Theresistance of an electric circuit is determined : —
1.) Bydirect comparison with a known resistance (Wheat-
stone bridge method, etc.).
This method gives what may be called the true ohmic
resistance of the circuit.
2.) By the ratio :
Volts consumed in circuit
Amperes in circuit

In an alternating-current circuit, this method gives, not

the resistance of the circuit, but the impedance,
s=VAER

3.) By the ratio:

= Power consur&d ;
(Current)?

where, however, the “power” does not include the work
done by the circuit, and the counter E.M.Fs. representing
it, as, for instance, in the case of the counter E.M.F. of a
motor.

In alternating-current circuits, this value of resistance is
the energy coefficient of the E.M.F,,

_ Energy component of E.M.F.

Tetal current ’
It is called the effective resistance of the circuit, since it
represents the effect, or power, expended by the circuit.
The energy coefficient of current,

r

Energy component of current
Total E.M.F. ’

is called the effective conductance of the circuit.

g=
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In the same way, the value,

e is Wattless component of E.M.F. ,
Total current

is the effective reactance, and

_ Wattless component of current,

g Total E.M.F.

is the effective susceptance of the circuit,

While the true ohmic resistance represents the expendi-
ture of energy as heat inside of the electric conductor by a
current of uniform density, the effective resistance repre-
sents the total expenditure of energy.

Since, in an alternating-current circuit in general, energy
is expended not only in the conductor, but also outside of
it, through hysteresis, secondary currents, etc., the effective
resistance frequently differs from the true ohmic resistance
in such way as to represent a larger expenditure of energy.

In dealing with alternating-current circuits, it is necessary,
therefore, to substitute everywhere the values “effective re-
sistance,” ‘“effective reactance,” ¢« effective conductance,”
and “effective susceptance,” to make the calculation appli-
cable to general alternating-current circuits, such as induc-
tances, containing iron, etc. '

-While the true ohmic resistance is a constant of the
circuit, depending only upon the temperature, but not upon
the E.M.F,, etc., the effective resistance and effective re-
actance are, in general, not constants, but depend upon
the E.M.F,, current, etc. This dependence is the cause
of most of the difficulties met in dealing analytically with
alternating-current circuits containing iron.

73. The foremost sources of energy loss in alternating-
current circuits, outside of the true ohmic resistance loss,
are as follows :

1.) Molecular friction, as,

a.) Magnetic hysteresis;
4.) Dielectric hysteresis.
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2.) Primary electric currents, as,

a.) Leakage or escape of current through the insu-
lation, brush discharge; 4.) Eddy currents in
the conductor or unequal current distribution.

3.) Secondary or induced currents, as,

a.) Eddy or Foucault currents in surrounding mag-
netic materials ; 4.) Eddy or Foucault currents
in surrounding conducting materials ; ¢.) Sec-
ondary currents of mutual inductance in neigh-
boring circuits.

4.) Induced electric charges, electrostatic influence.

While all these losses can be included in the terms effec-
tive resistance, etc., only the magnetic hysteresis and the
eddy currents in the iron will form the subject of what fol-
lows, since they are the most frequent and important sources
of energy loss.

Magnetic Hysteresis.

74. In an alternating-current circuit surrounded by iron
or other magnetic material, energy is expended outside of
the conductor in the iron, by a kind of molecular friction,
which, when the energy is supplied electrically, appears as
magnetic hysteresis, and is caused by the cyclic reversals of
magnetic flux in the iron in the alternating magnetic field.

To examine this phenomenon, first a circuit may be con-
sidered, of very high inductance, but negligible true ohmic
resistance ; that is, a circuit entirely surrounded by iron, as,
for instance, the primary circuit of an alternating-current
transformer with open secondary circuit.

The wave of current produces in the iron an alternating
magnetic flux which induces in the electric circuit an E.M.F.,
— the counter E.MLF. of self-induction. If the ohmic re-
sistance is negligible, that is, practicalfy no E.M.F. con-
sumed by the resistance, all the impressed E.M.F. must be
consumed by the counter EXM.F. of self-induction, that is,
the counter E.M.F. equals the impressed E.M.F.; hence, if

IR —
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the impressed E.M.F. is a sine wave, the counter E.M.F,,
and, therefore, the magnetic flux which induces the counter
E.M.F. must follow a sine wave also. The alternating wave
of current is not a sine wave in this case, but is distorted
by hysteresis. It is possible, however, to plot the current
wave in this case from the hysteretic cycle of magnetic flux.

From the number of turns, #, of the electric circuit,
the effective counter E.M.F., £, and the frequency, A,
of the current, the maximum magnetic flux, &, is found
by the formula:

E=2xnN®10-8;
hence, ®— £10° )
V2ZanN

A maximum flux, &, and magnetic cross-section, .S, give
the maximum magnetic induction, & = &/ S.

If the magnetic induction varies periodically between
+ ® and — ®, the M.M.F. varies between the correspond-
ing values + & and — &, and describes a looped curve, the
cycle of hysteresis.

If the ordinates are given in lines of magnetic force, the
abscisse in tens of ampere-turns, then the area of the loop
equals the energy consumed by hysteresis in ergs per cycle.

From the hysteretic loop the instantaneous value of
M.M.F. is found, corresponding to an instantaneous value
of magnetic flux, that is, of induced E.M.F.; and from the
M.M.F., &, in ampere-turns per unit length of magnetic cir-
cuit, the length, /, of the magnetic circuit, and the number of
turns, 7, of the electric circuit, are found the instantaneous
values of current, 7, corresponding to a M.M.F., &; that is,
magnetic induction ®, and thus induced E.M.F. ¢, as:

. F7

1= —

7n

75. In Fig. 65, four magnetic cycles are plotted, with
maximum values of magnetic inductions, ® = 2,000, 6,000,
10,000, and 16,000, and corresponding maximum M.M.Fs.,
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F =18, 2.8, 43, 20.0. They show the well-known hys-
teretic loop, which becomes pointed when magnetic satu-
ration is approached.

These magnetic cycles correspond to average good sheet
iron or sheet steel, having a hysteretic coefficient, = .0033,
and are given with ampere-turns per cm as abscissz, and
kilo-lines of magnetic force as ordinates.
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Flg. 65. Hysteretic Cycle of Sheet iron.

In Figs. 66, 67, 68, and 69, the curve of magnetic in-
duction as derived from the induced E.M.F. is a sine wave.
For the different values of magnetic induction of this sine
curve, the corresponding values of M.M.F., hence of current,
are taken from Fig. 65, and plotted, giving thus the exciting
current required to produce the sine wave of magnetism ;
that is, the wave of current which a sine wave of impressed
E.M.F. will send through the circuit.
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As shown in Figs. 66, 67, 68, and 69, these waves of
alternating current are not sine waves, but are distorted by
the superposition of higher harmonics, and are complex
harmonic waves. They reach their maximum value at the
same time with the maximum of magnetism, that is, 90°
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Figs. 66 and 67. Distortion of Current Wave by Hysteresis.

ahead of the maximum induced E.M.F., and hence about
90° behind the maximum impressed E.M.F., but pass the
zero line considerably ahead of the zero value of magnet-
ism, or 42°, 52°, 50°, and 41°, respectively.

The general character of these current waves is, that the
maximum point of the wave coincides in time with the max-



110 ALTERNATING-CURRENT PHENOMENA.

imum point of the sine wave of magnetism ; but the current
wave is bulged out greatly at the rising, and hollowed in at
the decreasing, side. With increasing magnetization, the
maximum of the current wave becomes more pointed, as
shown by the curve of Fig. 68, for ® = 10,000 ; and at still
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Figs. 68 and 69. Distortion of Current Wave by Hysteresis.
higher saturation a peak is formed at the maximum point,
as in the curve of Fig. 69, for ® = 16,000. This is the case
when the curve of magnetization reaches within the range of
magnetic saturation, since in the proximity of saturation the
current near the maximum point of magnetization has to
rise abnormally to cause even a small increase of magneti-
zation. The four curves, Figs. 66, 67, 68, and 69, are not
drawn to the same scale. The maximum values of M.M.F.,
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corresponding to the maximum values of magnetic induction,

® = 2,000, 6,000, 10,000, and 16,000 lines of force per cm?

‘are ¥ =1.8, 2.8, 4.3, and 20.0 ampere-turns per cm. In

the different diagrams these are represented in the ratio of

8:6:4:1, in order to bring the current curves to approxi-

mately the same height. The M.M.F,, in C.G.S. units, is
H=4x/10F =1.257¢.

76. The distortion of the wave of magnetizing current
is as large as shown here only in an iron-closed magnetic
circuit expending energy by hysteresis only, as in an iron-
clad transformer on open secondary circuit. As soon as the
circuit expends energy in any other way, as in resistance, or
by mutual inductance, or if an air-gap is introduced in the
magnetic circuit, the distortion of the current wave rapidly
decreases and practically disappears, and the current becomes
more sinusoidal. That is, while the distorting component
remains the same, the sinusoidal component of the current
greatly increases, and obscures the distortion. For example,
in Figs. 70 and 71, two waves are shown, corresponding in
magnetization to the curve of Fig. 67, as the one most
distorted. The curve in Fig. 70 is the current wave of a
transformer at y; load. At higher loads the distortion is
correspondingly still less, except where the magnetic flux of
self-induction, that is, flux passing between primary and sec-
ondary, and increasing proportionally to the load, is so large
as to reach saturation, in which .case a distortion appears
again and increases with increasing load. The curve of Fig.
71 is the exciting current of a magnetic circuit containing
an air-gap whose length equals 3} the length of the magnetic
circuit. These two curves are drawn to } the size of the curve-
in Fig. 67. As shown, both curves are practically sine waves.
The sine curves of magnetic flux are shown dotted as .

T7. The distorted wave of current can be resolved into
two components : A true sine wave of equal effective intensity
and equal power to the distorted wave, called the equivalent
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sine wave, and a wattless kigher harmonic, consisting chiefly
of a term of triple frequency.
In Figs. 66 to 71 are shown, as 7, the equivalent sine

/

Figs. 70 and 71. Distortion of Current Wave by Hysteresis.

waves and as 7, the difference between the equivalent sine
wave and the real distorted wave, which consists of wattless
complex higher harmonics. The equivalent sine wave of
M.M.F. or of current, in Figs. 66 to 69, leads the magnet-
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ism by 34°, 44°, 38° and 15°.5, respectively. In Fig. T1
the equivalent sine wave almost coincides with the distorted
curve, and leads the magnetism by only 9°.

It is interesting to note, that even in the greatly dis-
torted curves of Figs. 66 to 68, the maximum value of the
equivalent sine wave is nearly the same as the maximum
value of the original distorted wave of M.M.F,, so long as
magnetic saturation is not approached, being 1.8, 2.9, and
4.2, respectively, against 1.8, 2.8, and 4.3, the maximum
values of the distorted curve. Since, by the definition, the
effective value of the equivalent sine wave is the same as
that of the distorted wave, it follows, that this distorted
wave of exciting current shares with the sine wave the
feature, that the maximum value and the effective value
have the ratio of V2 + 1. Hence, below saturation, the
maximum value of the distorted curve can be calculated
from the effective value — which is given by the reading
of an electro-dynamometer — by using the same ratio that
applies to a true sine wave, and the magnetic characteris-
tic can thus be determined by means of alternating cur-
rents, with sufficient exactness, by the electro-dynamometer
method, in the range below saturation.

78. In Fig. 72 is shown the true magnetic character-
istic of a sample of good average sheet iron, as found by
the method of slow reversals with the magnetometer ; for
comparison there is shown in dotted lines the same char-
acteristic, as determined with alternating currents by the
electro-dynamometer, with ampere-turns per cm as ordi-
nates, and magnetic inductions as abscisse. As repre-
sented, the two curves practically coincide up to a value of
® = 18,000 ; that is, up to the highest inductions practicable
in alternating-current apparatus. For higher saturations,
the curves rapidly diverge, and the electro-dynamometer
curve shows comparatively small M.M.Fs. producing appar-
ently very high magnetizations.
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The same Fig. T2 gives the curve of hysteretic loss, in
ergs per cm?® and cycle, as ordinates, and magnetic induc-

tions as abscissze. .
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Fig. 72. Magnetization and Hysteresis Curve.

The electro-dynamometer method of determining the !
magnetic characteristic is preferable for use with alter-
nating-current apparatus, since it is not affected by the
phenomenon of magnetic “creeping,” which, especially at

]
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low densities, may in the magnetometer tests bring the mag-
netism very much higher, or the M.M.F. lower, than found
in practice in alternating-current apparatus.

So far as current strength®and energy consumption are
concerned, the distorted wave can be replaced by the equi-
valent sine wave, and the higher harmonics neglected.

All the measurements of alternating currents, with the
single exception of instantaneous readings, yield the equiv-
alent sine wave only, and suppress the higher harmonic;
since all measuring instruments give either the mean square
of the current wave, or the mean product of instantaneous
values of current and E.M.F., which, by definition, are the
same in the equivalent sine wave as in the distorted wave.

Hence, in all practical applications, it is permissible to
neglect the higher harmonic altogether, and replace the dis-
torted wave by its equivalent sine wave, keeping in mind,
however, the existence of a higher harmonic as a possible
disturbing factor which may become noticeable in those cases
where the frequency of the higher harmonic is near the fre-
quency of resonance of the circuit, that is, in circuits con-
taining capacity besides the inductance.

79. The equivalent sine wave of exciting current leads
the sine wave of magnetism by an angle a, which is called
the angle of lhysteretic advance of phase. Hence the cur-
rent lags behind the E.M.F by 2 90° — o,'and the power

is therefore, ,, _ .~ (90° — @) = ZE sin o

Thus the exciting current, /, consists of an energy compo-
nent, / sin a, called the Zysteretic or magnetic energy current,
and a wattless component, / cos a, which is called the mag-
netizing current. Or, conversely, the E.M.F. consists of an
energy component, £ sin a, the Zpsteretic energy EM.F.,
and a wattless component, £ cos a, the EM.F. of se/f-
induction.

Denoting the absolute value of the impedance of the
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circuit, £//, by z,— where z is determined by the mag-
netic characteristic of the iron, and the shape of the
magnetic and electric circuits, — the impedance is repre-
sented, in phase and intensity, by the symbolic expression,

Z=r—jx=zssina — jzcosa;

and the admittance by,
Y=g4/0= lsina +j1c05a=ysina+j_yc05a.
z z

The quantities, z, 7, x, and y, g, &, are, however, not
constants as in the case of the circuit without iron, but
depend upon the intensity of magnetization, ®, — that is,
upon the EIM.F. This dependence complicates the investi-
gation of circuits containing iron.

In a circuit entirely inclosed by iron, « is quite consider-
able, ranging from 80° to 50° for values below saturation.
Hence, even with negligible true ohmic resistance, no great
lag can be produced in ironclad alternating-current circuits.

80. The loss of energy by hysteresis due to molecular
friction is, with sufficient exactness, proportional to the
1.6™ power of magnetic induction ® Hence it can be ex-
pressed by the formula:

W= 5 ®®
where —
W, = loss of energy per cycle, in ergs or (C.G.S.) units (= 10~7
Joules) per cm?,
® = maximum magnetic induction, in lines of force per cm? and
n = the cocflicient of hiystercsis.

This I found to vary in iron from .00124 to .0055. Asa
fair mean, .0033 * can be accepted for good average annealed
sheet iron or sheet steel. In gray cast iron,  averages
.013; it varies from .0032 to .028 in cast steel, according
to the chemical or physical constitution ; and reaches values
as high as .08 in hardened steel (tungsten and manganese

d 1

* At present, with the imp: in the pri and of sheet steel for
alternating apparatus, .0025 can be considered a fair average in selected material (1899),
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steel).  Soft nickel and cobalt have about the same co-
efficient of hysteresis as gray cast iron; in magnetite I
found n = .023. ’

In the curves of Fig. 62 to 69, y = .0033.

At the frequency, &V, the loss of power in the volume, 7,
is, by this formula, —

P =y NV@-*10 -7 watts
1.6
=9 NV(%) 10-7 watts,

where S is the cross-section of the total magnetic flux, @
The maximum magnetic flux, ® depends upon the
counter E.M.F. of self-induction,

E=V2zNnd1l0-8,
£108

or =,
V2xn Nn

where 72z = number of turns of the electric circuit.
Substituting this in the value of the power, 7, and
canceling, we get, —

ELe 1058 £ 710°
P=1/-m W=58"7—N.6 S8 e’
AELS 71058 102
hs T N.e’whereA_Y]?:a 20 516, e 8175‘6 =y
vV

or, substituting = .0033, we have 4 = 191.4 ST6 8

or, substituting ¥ = SZ, where Z = length of magnetic circuit,

g L1058 58, L10% _ A

4= 08,16 G616 G606 1914 565,187

58 £ L10° 1914 EYL
NESEH8 N6 G6,L6 "

and P =

In Figs. 78, T4, and 75, is shown a curve of hysteretic
loss, with the loss of power as ordinates, and

in curve 73, with the EM.F,, Z, as abscissae, for Z = 6,
T 20, N = 100, and z = 100,



ALTERNATING—CURRENT PHENOMENA.

.l
170
RELATION BETW! =NEAINDP
2
FORIL=6,5=20, N=100. 2= 100

N
1
= A
100

W .
%

o
8y

o
o ¢

3

5 >
£
0
10 /
7 L +—1"] E.M.F.

20 40 60 80 100 120 140 160 180 200 220 240 200 230 300 320 340 360 330 400 420 +0

Fig. 73. Hysteresis Loss as Function of E. M. F.

| ||

E]

I
.LA';TIO sﬁfwssr{n ND|P

FOR L 16, =20, N=100.E~100

1
1" =
130
1
11
i
100
HI
=1
76 = \
\
40,
30 \
\\
= NUMBER OF TURNS
1o N o = ( 1' T
50 100 150 200 250 300 350 400

Flg. 74. Hysteresis Loss as Function of Number of Turns.

¥
¥

LA R



119

LFFECTIVE RESISTANCE AND REACTANCE.
x I 1 Y
RELATION BETWEEN N AND P
FOR § =20, L.=6,7=100. E=100.
55
TN
|
20 2.
o N
ohd I~
Y N=FREQU Ncr—__
o 00 200 300 _
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in curve T4, with the number of turns as abscissae, for

L=6,5=20, N¥=100, and £ =100;

in curve 75, with the frequency, &V, or the cross-section, .S,

as abscissae, for Z = 6, » =100, and £ = 100.

As shown, the hysteretic loss is proportional to the 1.6%
power of the E.M.F., inversely proportional to the 1.6%
power of the number of turns, and inversely proportional to

the .6% power of frequency, and of cross-section.

81. If g = effective conductance, the energy compo-
nent of a current is /= Eg, and the energy consumed in
a conductance, g, is P =/E = E2g.

Since, however :
E 1.8

EI.G
P=A4——, we have A}VT=E‘g;

N.G
or
A 58yL10°
NSEA ™ FA N6 6,18

g=

= 1914

EANSSE,08"

From this we have the following deduction:
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The effective conductance due to magnetic hysteresis is
roportional to the coefficient of hysteresis, v, and to the length
of the magnetic civcuit, L, and inversely proportional to the
4 power of the EM.F., to the 6% power of the frequency,
N, and of the cross-section of the magnetic circuit, S, and to
the 1.6% power of the number of turns, n.

Hence, the effective hysteretic conductance increases
with decreasing E.M.F.,, and decreases with increasing
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Flg. 76. Hysteresis Conductance as Function of E.M.F,

E.M.F.; it varies, however, much slower than the E.M.F,
so that, if the hysteretic conductance represents only a part
of the total energy consumption, it can, within a limited
range of variation —as, for instance, in constant potential
transformers — be assumed as constant without serious
error.

In Figs. 76, 77, and 78, the hysteretic conductance, g; is
plotted, for L = 6, £ =100, N =100, S = 20 and » = 100,
respectively, with the conductance, g, as ordinates, and with
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E as absciss® in Curve 76.
XV as abscisse in Curve 77.
7 as abscisse in Curve 78.

As shown, a variation in the E.M.F. of 50 per cent
causes a variation in g of only 14 per cent, while a varia-
tion in V or .S by 50 per cent causes a variation in g of 21
per cent. )

If ® = magnetic reluctance of a circuit, , = maximum
M.M.F., 7 = effective current, since 7 V2 = maximum cur-
rent, the magnetic flux,

o Fa_niVe
& (G
Substituting this in the equation of the counter E.M.F. of
self-induction,
E=V2zNna10-4

2 —8
S Eo 2mANI107¢,

®

hence, the absolute admittance of the circuit is

where a=
2 m n2

, a constant.

Therefore, the absolute admittance, y, of a circuit of neg-
ligible resistance is proportional to the magnetic reluctance, ®,
and inversely proportional to the frequency, N, and to the
square of the number of turns, n.

82. Ina circuit containing iron, the reluctance, ®, varies
with the magnetization ; that is, with the E.M.F. Hence
the admittance of such a circuit is not a constant, but is
also variable.

In an ironclad electric circuit, — that is, a circuit whose
magnetic field exists entirely within iron, such as the mag-
netic circuit of a well-designed alternating-current trans-
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former, — ®& is the reluctance of the iron circuit. Hence,
if u = permeability, since —

q="5
¢ ’
10
and €FA = LF= 4'—'.LJC = M.I\I-F.,
m™
& =SB = p SI = magnetic flux,
and = 10L
drpsS ’
substituting this value in the equation of the admittance,
- R0 have L1 _ =
T 27N 8 mu SN  Np'
Z10° 127210°
where £ =3 =

S 8erS  2S

Therefore, in an ironclad circuit, the absolute admittance,
Vs 1S tnversely proporvtional to the frequency, N, to the perme-
ability, u, to the cross-section, S, and to the square of the
number of turns, n; and divectly propovtional to the length
of the magnetic circuit, L.

The conductance is 8= Nf 7L
and the admittance Y= 2
3 Nf"’ ’
hence, the angle of hysteretic advance is
4
sine =& = = IL:]V H
¥y 2B

or, substituting for 4 and z (p. 117),
N Z10%  §an2S

sina = PEx Qs ge a8 7100 °
o VAt S4 4 222
I T

or, substituting
E=25zNnS® 10'8,

we have  sine = éﬁﬂ,
(BA
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which is independent of frequency, number of turns, and
shape and size of the magnetic and electric circuit.

Therefore, in an tronclad inductance, the angle of hysteretic
advance, o, depends upon the magnetic constants, permeability
and coefficient of hysteresis, and upon the maximum magnetic
induction, but is entirvely independent of the frequency, of the
shape and other conditions of the magnetic and electric circuit ;
and, therefore, all ironclad magnetic circuits constructed of the
same quality of iron and wusing the same magnetic density,
give the same angle of hysteretic advance.

The angle of lysteretic advance, a, in a closed circuit
transformer, depends wupon the quality of the iron, and wpon
the magnetic density only.

The sine of the angle of lysteretic advance equals 4 times
the product of the permeability and coefficient of lysteresis,
divided by the 4% power of the magnetic density.

83. If the magnetic circuit is not entirely ironclad,
and the magnetic structure contains air-gaps, the total re-
luctance is the sum of the iron reluctance and of the air
reluctance, or

® = (R1 + (Ru;

hence the admittance is
a
y=Vgi+ =5 @+ R

Therefore, in a circuit containing iron, the admittance s
the sum of the admittance due to the iron part of the circuit,
¥ =a® [/ N, and of the admittance due to the air part of the
circuit, y, = a R, [ N, if the iron and the air are in series in
the magnetic circuit.

The conductance, g, represents the loss of energy in
the iron, and, since air has no magnetic hysteresis, is not
changed by the introduction of an air-gap. Hence the
angle of hysteretic advance of phase is

£ _& &

Yty 3 R+ @R

sina=—‘5:=
Y,
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and a maximum, g/y,, for the ironclad circuit, but decreases
with increasing width of the air-gap. The introduction of
the air-gap of reluctance, ®,, decreases sin a in the ratio,
G
(R,- + (Ra N

In the range of practical application, from & = 2,000 to
® = 12,000, the permeability of iron varies between 900
and 2,000 approximately, while sin « in an ironclad circuit
varies in this range from .51 to .69. In air, p = 1.

If, consequently, one per cent of the length of the iren
consists of an air-gap, the total reluctance only varies through
the above range of densities in the proportion of 1} to 13,
or about 6 per cent, that is, remains practically constant ;
while the angle of hysteretic advance varies from sin o = .085
to sin @ = .064. Thus g is negligible compared with &, and
b is practically equal to y.

Therefore, in an electric circuit containing iron, but
forming an open magnetic circuit whose air-gap is not less
than y}5 the length of the iron, the susceptance is practi-
cally constant and equal to the admittance, so long as
saturation is not yet approached, or,

b=Q®Rq/ N, or:x =N/ R,
The angle of hysteretic advance is small, below 4°, and the
hysteretic conductance is,
£= pige
The current wave is practically a sine wave.

As an instance, in Fig. T1, Curve IL, the current curve
of a circuit is shown, containing an air-gap of only ;{m' of
the length of the iron, giving a current wave much resem-
bling the sine shape, with an hysteretic advance of 9°.

84. To determine the electric constants of a circuit
containing iron, we shall proceed in the following way :
Let —
E = counter E.M.F. of self-induction ;
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then from the equation,

E=V2ZanN®10-8,
where,

V = frequency,

7 = number of turns,

we get the magnetism, ®, and by means of the magnetic cross
section, S, the maximum magnetic induction: & = ¢/ S.
From ®, we get, by means of the magnetic characteristic
of the iron, the M.M.F., = & ampere-turns per cm length,
where
F= 3, 3,

if 3¢ = M.M.F. in C.G.S. units.
Hence,
if Z; = length of iron circuit, § = Z; /= ampere-turns re-
quired in the iron ;
if Z, =length of air circuit, Fo =
quired in the air;

10 Z,®
——~24_ = ampere-turns re-
4

hence, §= &, + F, = total ampere-turns, maximum value,
and § / V2 = effective value. The exciting current is

I= —5—vr
. n \/2
and the absolute admittance,
y=Vg+i= é—

If &, is not negligible as compared with &,, this admit-
tance, y, is variable with the E.M.F,, £.
If —

*

V = volume of iron,
n = coefficient of hysteresis,

the loss of energy by hysteresis due to molecular magnetic

friction is, .
W=nNV®S;

hence the hysteretic conductance is g = J¥//F2 and vari-

able with the EM.F,, £.
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The angle of hysteretic advance is, —

sina=g/y;
the susceptance, b=y = g%
the effective resistance, r=g/5»;
and the reactance, x=105/5

85. As conclusions, we derive from this chapter the
following : —

1) In an alternating-current circuit surrounded by iron,
the current produced by a sine wave of E.M.F. is not a true
sine wave, but is distorted by hysteresis, and inversely, a
sine wave of current requires waves of magnetism and
E.M.F. differing from sine shape.

2)) This distortion is excessive only with a closed mag-
netic circuit transferring no energy into a secondary circuit
by mutual inductance. .

3.) The distorted wave of current can be replaced by
the equivalent sine wave-—that is a sine wave of equal effec-
tive intensity and equal power—and the superposed higher
harmonic, consisting mainly of a term of triple frequency,
may be neglected except in resonating circuits.

4.) Below saturation, the distorted curve of current and
its equivalent sine wave have approximately the same max-
imum value.

5.) The angle of hysteretic advance,—that is, the phase
difference between the magnetic flux and equivalent sine
wave of M.M.F.,—is a maximum for the closed magnetic
circuit, and depends there only upon the magnetic constants
of the iron, upon the permeability, p, the coefficient of hys-
teresis, 4, and the maximum magnetic induction, as shownrin

the equation, 4
sine = —£1.

6.) The effect of hysteresis can be represented by an
admittance, ¥ = g -+ 74, or an impedance, Z = » — jx.

7.) The hysteretic admittance, or impedance, varies with
the magnetic induction; that is, with the E.M.F,, etc.
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8.) The hysteretic conductance, g, is proportional to the
coefficient of hysteresis, n, and to the length of the magnetic
circuit, Z, inversely proportional to the .4 power of the
E.M.F,, E, to the .6® power of frequency, &V, and of the
cross-section of the magnetic circuit, S, and to the 1.6%
power of the number of turns of the electric circuit, », as
expressed in the equation,

58 n 2108
§= FansSems
9.) The absolute value of hysteretic admittance, —
y= g,
is proportional to the magnetic reluctance: ® = ®, + ®,,
and inversely proportional to the frequency, 2V, and to the
square of the number of turns, » as expressed in the

equation, e @+ B 10°
27 Nn?

10.) In an ironclad circuit, the absolute value of admit-
tance is proportional to the length of the magnetic circuit,
and inversely proportional to cross-section, .S, frequency, 2V,
permeability, p, and square of the number of turns, 7, or

_ 127 2108
T RESNE

11.) In an open magnetic circuit, the conductance, g, is
the same as in a closed magnetic circuit of the same iron part.

12.) In an open magnetic circuit, the admittance, y, is
practically constant, if the length of the air-gap is at least
135 of the length of the magnetic circuit, and saturation be
not approached.

13.) In a closed magnetic circuit, conductance, suscep-
tance, and admittance can be assumed as constant through
a limited range only.

14.) From the shape and the dimensions of the circuits,
and the magnetic constants of the iron, all the electric con-
stants, g, 4, ¥; # #, 2, can be calculated.
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CHAPTER XI
FOUCAULT OR EDDY CURRENTS.

86. While magnetic hysteresis or molecular friction is
a magnetic phenomenon, eddy currents are rather an elec-
trical phenomenon. When iron passes through a magnetic
field, a loss of energy is caused by hysteresis, which loss,
however, does not react magnetically upon the field. When
cutting an electric conductor, the magnetic field induces a
current therein. The M.M.F. of this current reacts upon
and affects the magnetic field, more or less ; consequently,
an alternating magnetic field cannot penetrate deeply into a
solid conductor, but a kind of screening effect is produced,
which makes solid masses of iron unsuitable for alternating
fields, and necessitates the use of laminated iron or iron
wire as the carrier of magnetic flux.

Eddy currents are true electric currents, though flowing
in minute circuits; and they follow all the laws of electric
circuits.

Their E.M.F. is proportional to the intensity of magneti-
zation, ®, and to the frequency, V.

Eddy currents are thus proportional to the magnetization,
®, the frequency, 2V, and to the electric conductivity, y, of
the iron ; hence, can be expressed by

i=By®N

The power consumed by eddy currents is proportional to
their square, and inversely proportional to the electric con-
ductivity, and can be expressed by ~

’
W= By®N?%;
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or, since, ®V is proportional to the induced E.M.F., Z, in
the equation
E=V2zSnN®10-8

it follows that, The loss of power by eddy currents is propor-
tional to the square of the E.M.F., and proportional to the
electric conductivity of the iron,; or,

W=aFE"?y.

Hence, that component of the effective conductance

which is due to eddy currents, is

—_— W -_— .

=z
that is, 7ke equivalent conductance due to eddy currents in
the iron is a constant of the magnetic circuit; it is indepen-
dent of EXMLF., frequency, etc., but proportional to the electric
conductivity of the iron, y.

87. Eddy currents, like magnetic hysteresis, cause an
advance of phase of the current by an angle of advance, B;
but, unlike hysteresis, eddy currents in general do not dis-
tort the current wave.

The angle of advance of phase due to eddy currents is,

Sinﬁ=§,

where y = absolute admittance of the circuit, g = eddy
current conductance.

While the equivalent conductance, g, due to eddy cur-
rents, is a constant of the circuit, and independent of
E.M.F,, frequency, etc., the loss of power by eddy currents
is proportional to the square of the E.M.F. of self-induction,
and therefore proportional to the square of the frequency
and to the square of the magnetization.

Only the energy component, g £, of eddy currents, is of
interest, since the wattless component is identical with the
wattless component of hysteresis, discussed in a preceding
chapter.

Ve
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88. To calculate the loss of power by eddy currents —

Let V' = volume of iron;
® = maximum magnetic induction ;
&V = frequency;
Y
€

i

= electric conductivity of iron;
= coefficient of eddy currents.

The loss of energy per cm3, in ergs per cycle, is
_ w=eyN &
hence, the total loss of power by eddy currents is
W= eyVN?®*10-7 watts,
and the equivalent conductance due to eddy currents is

i [/_V___ 10(11 _ .507:71’
E* 2x2Sn? Sn?

where :
/ = length of magnetic circuit,
S = section of magnetic circuit,
7 = number of turns of electric circuit.

The coefficient of eddy currents, ¢,
depends merely upon the shape of the
constituent parts of the magnetic cir- = e
cuit; that is, whether of iron plates
or wire, and the thickness of plates or
the diameter of wire, etc.

The two most important cases are :

(a). Laminated iron.
(¢). Iron wire. T |

89. (a). Laminated Iron. |
Let, in Fig. 79,

d = thickness of the iron plates;
® = maximum magnetic induction;
XV = frequency ; Fig. 79.
vy = electric conductivity of the iron.
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Then, if x is the distance of a zone, & X, from the center
of the sheet, the conductance of a zone of thickness, 4x,
and of one cm length and width is y4 x; and the magnetic
flux cut by this zone is ® x. Hence, the E.M.F. induced in
this zone is

= VZ2N®x, in C.G.S. units.

This E.M.F. produces the current :
dI=8Eydx=V2zN®yxdx, in C.G.S. units,

provided the thickness of the plate is negligible as compared
with the length, in order that the current may be assumed
as flowing parallel to the sheet, and in opposite directions
on opposite sides of the sheet.

The power consumed by the induced current in this
zone, d X, is

dP =8EdI=27* N*®?yx*dx, in C.G.S. units or ergs per second,

and, consequently, the total power consumed in one c¢m? of
the sheet of thickness, &, is

+3 o

z B o)
sp:f P = Zr’N’(B"yf Bdx

d a

i S

2 2 (R2 3
ke ’.'N*‘(’;?i, in C.G.S. units ;

the power consumed per cm?® of iron is, therefore,

2 M2
VA= _MY_ , in C.G.S. units or erg-seconds,

a’

and the energy consumed per cycle and per cm?® of iron is

2 2 AT (R2
WEIRCIT.0 B

The coefficient of eddy currents for laminated iron is,

therefore,
2 d?

G

= 1.645 22,
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where y is expressed in C.G.S. units. Hence, if y is ex-
pressed in practical units or 10 =% C.G.S. units,

e ’i’ﬁg;" — 1.645 2210-5,

Substituting for the conductivity of sheet iron the ap-

roximate value,
P 3 7 1Y,

we get as the coefficient of eddy currents for laminated iron,
2
€= ’6L 2*10~° = 1.6457210-°-
loss of energy per cm?® and cycle,
W=y NG = %ﬂ(zﬂyzvosz 10-° — 1.645 22y NG 10 -9 ergs
= 1.6454%* V ®210~* ergs;

or, W=eyN®10-" =1.6454* N ®*10~" joules;
loss of power per cm? at frequency, 2V,

pP=NW=eyN:®*10~7 = 1.645 Z2NV* ®* 10~ ! watts;
total loss of power in volume,

P =Vp=1645 Vd? N?®* 10— watts.

As an example,

d=1mm=.1 cm; V=100; ® = 5000; 7 = 1000 cm?

e=1,645 x 10— 1;

W = 4110 ergs
.000411 joules;

7 = .0411 watts;
P = 41.1 watts.

I

I

90. (b): Tron Wire.

Let, in Fig. 80, d =
diameter of a piece of
iron wire; then if x is
the radius of a circular
zone of thickness, 4 X,
and one cm in length,
the conductance of this Fig. 80.
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zone is, yd x /2 = X, and the magnetic flux inclosed by the

zone is ® X2 7.
Hence, the E.M.F. induced in this zone is:

$E = V2 NG« in C.G.S. units,
and the current produced thereby is,
= YB3 3 NGt
2nx

= 12_” y N®xdx, in C.G.S. units.

The power consumed in this zone is, therefore,
AP =8 Edl ==y N*®*2*dx, in C.G.S. units

consequently, the total power consumed in one cm length

of wire is i
a
82= [faw =y ar@ [*atax
0 0
3
= (’)_'—4~,1v2 ®*@*, in C.G.S. units.
Since the volume of one cm length of wire is

dﬁ
V= &

b

the power consumed in one cm?® of iron is

2
82 _ = N?*®* 4% in C.G.S. units or erg-seconds,

==

v 16
and the energy consumed per cycle and cm?® of iron is

=1%= ’1'—;71\7032 a* ergs.

Therefore, the coefficient of eddy currents for iron wire is

= — 7%= .617 4?2,
=n 16 {

or, if y is expressed in practical units, or 10—? C.G.S. units, _

e= 2210~ — .617 22 10-",
16
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Substituting y =105,
*

we get as the coefficient of eddy currents for iron wire,
2
=T 7%10-° = 617 4210~
‘716

The loss of energy per cm® of iron, and per cycle
becomes
2
W=WNW=ﬁdWNWN%LMMHNWN4
= .617T Z2°NV®?10—* ergs,
= ey N®*1077 = 617 /2 V®? 10~ joules;
loss of power per cm?, at frequency, 2V,
p=Nk=eyN:®B*10~7 = .617 J* NV2®* 10— watts;
total loss of power in volume, 7
P = Vp=.617T Vd* N2®*10~" watts.
As an example,
d=1mm, =.1cm; &N =100; ® = 5,000; V= 1000 cm?®
Then,
e = .617 x 10-1,
W = 1540 ergs = .000154 joules,

2 = 0154 watts,
P = 15.4 watts,

hence very much less than in sheet iron of equal thickness,

O1. Comparison of sheet ivon and iron wire.
If

d; = thickness of lamination of sheet iron, and
dy = diameter of iron wire, ’

the eddy-coefficient of sheet iron being
J i, %dlﬂ 10-,
and the eddy coefficient of iron wire

2
a=Tod2107",
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the loss of power is equal in both — other things being
equal —if ¢, = ¢ ; that is, if,
d =§ 2 or d,=1634,

It follows that the diameter of iron wire can be 1.63
times, or, roughly, 1% as large as the thickness of laminated
iron, to give the same loss of energy through eddy currents,
as shown in Fig. 81.

i

D

Fig. 81.

O2. Demagnetizing, or screening effect of eddy currents.

The formulas derived for the coefficient of eddy cur-
rents in laminated iron and in iren wire, hold only when
the eddy currents are small enough to neglect their mag-
netizing force. Otherwise the phenomenon becomes more
complicated; the magnetic flux in the interior of the lam-
ina, or the wire, is not in phase with the flux at the sur-
face, but lags behind it. The magnetic flux at the surface
is due to the impressed M.M.F., while the flux in the inte-
rior is due to the resultant of the impressed M.M.F. and to
the M.M.F. of eddy currents ; since the eddy currents lag
90° behind the flux producing them, their resultant with
the impressed M.M.F., and therefore the magnetism in the
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interior, is made lagging. Thus, progressing from the sur-
face towards the interior, the magnetic flux gradually lags
more and more in phase, and at the same time decreases
in intensity. While the complete analytical solution of this
phenomenon is beyond the scope of this book, a determina-
tion of the magnitude of this demagnetization, or screening
effect, sufficient to determine whether it is negligible, or
whether the subdivision of the iron has to be increased
to make it negligible, can be made by calculating the maxi-
mum magnetizing effect, which cannot be exceeded by the
eddys.

Assuming the magnetic density as uniform over the
whole cross-section, and therefore all the eddy currents in
phase with each other, their total M.M.F. represents the
maximum possible value, since by the phase difference and
the lesser magnetic density in the center the resultant
M.M.F. is reduced.

- In laminated iron of thickness &, the current in a zone
of thickness, 4x at distance x from center of sheet, is:

dI= V27 N®jxdzx units (C.G.S.)
= V27x N®jxdx10—* amperes;

hence the total current in sheet is

d
l=ﬁd1= VérN(leO"iffxtlx

2
= \/é T N®;7d%10—*% amperes.
Hence, the maximum possible demagnetizing ampere-turns
acting upon the center of the lamina, are

I= l/%r-N(Bja’“lO—8= L5 NG jd210 -8

= .555 N®4210 —* ampere-turns per cm.

Example: d=.1cm, N =100, ®& = 5,000,
or / = 2.775 ampere-turns per cm.
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93. In iron wire of diameter 4, the current in a tubular
zone of dx thickness and x radius is

dl= %rNCBjxa’xlO'“amperes;

hence, the total current is

a d
I= f"‘(l]: \—g—-é':rN(BjIO—Bf’xdx
L4 o

= % x V®7d%*10~* amperes.

Hence, the maximum possible demagnetizing ampere-turns,
acting upon the center of the wire, are
FL¥2
16

N®Bjd*10~8 = 2775 N® jd*10 -2
= .2775 NV ® 4210 — ® ampere-turns per cm.

For example, if d=.1 cm, V=100, & = 5,000, then
7 = 1,338 ampere-turns per cm; that is, half as much as in
a lamina of the thickness 4.

94. Besides the eddy, or Foucault, currents proper, which
flow as parasitic circuits in the interior of the iron lamina
or wire, under certain circumstances eddy currents also
flow in larger orbits from lamina to lamina through the
whole magnetic structure. Obviously a calculation of these
eddy currents is possible only in a particular structure.
They are mostly surface currents, due to short circuits
existing between the laminz at the surface of the magnetic
structure. .

Furthermore, eddy currents are induced outside of the
magnetic iron circuit proper, by the magnetic stray field
cutting electric conductors in the neighborhood, especially
when drawn towards them by iron masses behind, in elec-
tric conductors passing through the iron of an alternating
field, etc. All these phenomena can be calculated only in
particular cases, and are of less interest, since they can
and should be avoided.

I W —
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Eddy Currents in Conductor, and Unequal Current
Distribution.

95. If the electric conductor has a considerable size, the
alternating magnetic field, in cutting the conductor, may
set up differences of potential between the different parts
thereof, thus giving rise to local or eddy currents in the
copper. This phenomenon can obviously be studied only
with reference to a particular case, where the shape of the
conductor and the distribution of the magnetic field are
known.

Only in the case where the magnetic field is produced
by the current flowing in the conductor can a general solu-
tion be given. The alternating current in the conductor
produces a magnetic field, not only outside of the conductor,
but inside of it also; and the lines of magnetic force which
close themselves inside of the conductor induce E.M.Fs.
in their interior only. Thus the counter EM.F. of self-
inductance is largest at the axis of the conductor, and least
at its surface; consequently, the current density at the
surface will be larger than at the axis, or, in extreme cases,
the current may not penetrate at all to the center, or a
reversed current flow there. Hence it follows that only the
exterior part of the conductor may be used for the conduc-
tion of the current, thereby causing an increase of the
ohmic resistance due to unequal current distribution.

The general solution of this problem for round conduc-
tors leads to complicated equations, and can be found else-
where.

In practice, this phenomenon is observed only with very
high frequency currents, as lightning discharges ; in power
distribution circuits it has to be avoided by either keeping
the frequency sufficiently low, or having a shape of con-
ductor such that unequal current distribution does not
take place, as by using a tubular or a flat conductor, or
several conductors in parallel.
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06. It will, therefore, be sufficient to determine the
largest size of round conductor, or the highest frequency,
where this phenomenon is still negligible.

In the interior of the conductor, the current density
is not only less than at the surface, but the current lags
behind the current at the surface, due to the increased
effect of self-inductance. This lag of the current causes the
magnetic fluxes in the conductor to be out of phase with
each other, making their resultant less than their sum, while
the lesser current density in the center reduces the total
flux inside of the conductor. Thus, by assuming, as a basis
for calculation, a uniform current density and no difference
of phase between the currents in the different layers of the
conductor, the unequal distribution is found larger than it
is in reality. Hence this assumption brings us on the safe
side, and at the same time simplifies the calculation greatly.

Let Fig. 82 represent a cross-section of a conductor of
radius R, and a uniform current density,

i== Fis?
where 7 = total current in conductor.

<,

Fig. 82.

The magnetic reluctance of a tubular zone of unit length
and thickness &z, of radius x, is

2xm

B = dx
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The current inclosed by this zone is /, = #x*r, and there
fore, the M.M.F. acting upon this zone is
=47 71, /10 = 4 2% /10,
and the magnetic flux in this zone is
d® =Fx [/ Rx = 2 wixdx [ 10.

Hence, the total magnetic flux inside the conductor is

:p—fRa’(I)——fR dr =Tt 10 1—{)
From this we get, as the excess of counter E.M.F. at the
axis of the conductor over that at the surface —
=N2xN®10-% = V2= NT10 -7, per unit length,
= V2 NiR10 -°;

and the reactivity, or specific reactance at the center of the
conductor, becomes & = AE /i = V2 NR*10 "
Let p = resistivity, or specific resistance, of the material of
the conductor.

We have then, #4/p= V22NR210-°/p;
and p/ N+ P
the ratio of current densities at center and at periphery.

For example, if, in copper, p = 1.7 X 105 and the
perccntage decrease of current density at center shall not
exceed 5 per cent, that is —

p+= VEF g =.95+1,

we have, £k=.501 x10~¢;
hence .51 X 107 = V2x2NR?210~°

“or NR? = 36.6;

hence, when N= 125 100 60 25

R= 541 605 .781 1.21 cm.

D=2R= 108 121 156 242cm,
Hence, even at a frequency of 125 cycles, the effect of
unequal current distribution is still negligible at one cm
diameter of the conductor. Conductors of this size are,
however, excluded from use at this frequency by the exter-
nal self-induction, which is several times larger than the
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resistance. We thus see that unequal current distribution
is usually negligible in practice. The above calculation was
made under the assumption that the conductor consists of
unmagnetic material. If this is not the case, but the con-
ductor of iron of permeability g, then; d® = pF,/®, and
thus ultimately; £ = V22*VuR*10=° and; £/p = V2=
MNpR* 10—°/p. Thus, for instance, for iron wire at
p=10 x 10—% p =500 it is, permitting 5% difference
between center and outside of wire; #=38.2 x 10—° and
NR* = 46,

hence when, N= 125 100 60 25

R =.061 .068 .088 .136 cm.
thus the effect is noticeable even with relatively small iron

wire.
Mutual Inductance.

97. When an alternating magnetic field of force includes
a secondary electric conductor, it induces therein an E.M.F.
which produces a current, and thereby consumes energy if
the circuit of the secondary conductor is closed.

A particular case of such induced secondary currents
are the eddy or Foucault currents previously discussed.

Another important case is the induction of secondary
E.M.Fs. in neighboring circuits ; that is, the interference of
circuits running parallel with each other.

In general, it is preferable to consider this phenomenon
of mutual inductance as not merely producing an energy
component and a wattless component of E.M.F. in the
primary conductor, but to consider explicitly both the sec-’
ondary and the primary circuit, as will be done in the
chapter on the alternating-current transformer.

Only in cases where the energy transferred into the
secondary circuit constitutes a small part of the total pri-
mary energy, as in the discussion of the disturbance caused
by one circuit upon a parallel circuit, may the effect on the
primary circuit be considered analogously as in the chapter
on eddy currents, by the introduction of an energy com-
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ponent, representing the loss of power, and a wattless
component, representing the decrease of self-inductance.

Let —

x =27 NL = reactance of main circuit; that is, L =
total number of interlinkages with the main conductor, of
the lines of magnetic force produced by unit current in
that conductor ;

x; =27 N L, = reactance of secondary circuit; that is,
L, = total number of interlinkages with the secondary
conductor, of the lines of magnetic force produced by unit
current in that conductor;

%, = 2w N L, = mutual inductance of circuits ; that is,
L, = total number of interlinkages with the secondary
conductor, of the lines of magnetic force produced by unit
current in the main conductor, or total number of inter-
linkages with the main conductor of the lines of magnetic
force produced by unit current in the secondary conductor.

Obviously : s

* As coefficient of self-inductance Z, Ly, the total flux surrounding the conductor
.is here meant. Usually in the discussion of inductive apparatus, especially of trans-
formers, that part of the magnetic flux is denoted self-inductance of the one circuit
which surrounds this circuit, but not the other circuit; that is, which passes between
both circuits. Hence, the total self-inductance, Z, is in this ease equal to the sum of
the self-inductance, Z;, and the mutual inductance, Z,,,.

The object of this distinction is to separate the wattless part, Z;, of the
total self-inductance, Z, from that part, Z,., which represents the transfer of
E.M.F. into the secondary circuit, since the action of these two components is
essentially different. | .

Thus, in alternating-current transformers it is customary—and will be
done later in this book —to denote as the self-inductance, Z, of each circuit
only that part of the magnetic flux produced by the circuit which passes
between both circuits, and thus acts in * choking ** only, but not in transform-
ing; while the flux surrounding both circuits is called mutual inductance, or
useful magnetic flux.

With' this denotation, in transformers the mutual inductance, Z, is usu-
ally very much greater than the self-inductances, 72/, and Z,, while, if the
self-inductances, Z and Z;, represent the total flux, their product is larger
than the square of the mutual inductance, Zs ; or

LI > In¥ L+ L) (Lo + L) > L.
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Let », = resistance of secondary circuit. Then the im-
pedance of secondary circuit is
Zy=rn — jx, z1=\/r12+x12;
E.M.F. induced in the secondary circuit, £; =/ x, 7,

where / = primary current. Hence, the secondary current is

]i:é:—_.—.jx”‘_ 7
. o —Jjx%’
and the E.M.F. induced in the primary circuit by the secon-
dary current, 7 is
2
E =janh, = 2" .
s n—ym-’
or, expanded,
— X, 27‘ ]'x- Zx
) i ) o N
i {rlz“l"xlz '+, [

Hence, the E.M.F. consumed thereby

2 ‘e 2
7 TR :
L= p) = m U 4+ o = (r—jx) I
2 rEtat Rty (r —jx) £
Gl fecti : c
r=— ; = effective resistance of mutual inductance;
4+ xy
— XX, . .
x = ——""1 — effective reactance of mutual inductance.
2 2
7'+ %

The susceptance of mutual inductance is negative, or of
opposite sign from the reactance of self-inductance. Or,

Mutual inductance consumes energy and decreases the self-
inductance.

Dielectric and Electrostatic Phenomena.

98. While magnetic hysteresis and eddy currents can
be considered as the energy component of inductance, con-
densance has an energy component also, namely, dielectric
hysteresis. In an alternating magnetic field, energy is con-
sumed in hysteresis due to molecular friction, and similarly,
energy is also consumed in an alternating electrostatic field
in the dielectric medium, in what is called electrostatic or
dielectric hysteresis.
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While the laws of the loss of energy by magnetic hys-
teresis are fairly well understood, and the magnitude of the
effect known, the phenomenon of dielectric hysteresis is
still almost entirely unknown as concerns its laws and the
magnitude of the effect.

It is quite probable that the loss of power in the dielec-
tric in an alternating electrostatic field consists of two dis-
tinctly different components, of which the one is directly
proportional to the frequency, — analogous to magnetic
hysteresis, and thus a constant loss of energy per cycle,
independent of the frequency; while the other component
is proportional to the square of the frequency, — analogous
to the loss of power by eddy currents in the iron, and thus
a loss of energy per cycle proportional to the frequency.

The existence of a loss of power in the dielectric, pro-
portional to the square of the frequency, I observed some
time ago in paraffined paper in a high electrostatic field and
at high frequency, by the electro-dynamometer method,
and other observers under similar conditions have found
the same result.

Arno of Turin found at low frequencies and low field
strength in a larger number of dielectrics, a loss of energy
per cycle independent of the frequency, but proportional to
the 1.6 power of the field strength, —that is, following
the same law as the magnetic hysteresis,

ZV'H =n®'S,

This loss, probably true dielectric static hysteresis, was
observed under conditions such that a loss proportional to
the square of density and frequency must be small, while at
high densities and frequencies, as in condensers, the true
dielectric hysteresis may be entirely obscured by a viscous
loss, represented by Wy = e N @2

99. If the loss of power by electrostatic hysteresis is
proportional to the square of the frequency and of the field
intensity, — as it probably nearly is under the working con-
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ditions of alternating-current condensers, — then it is pro-
portional to the square of the E.M.F., that is, the effective
conductance, g, due to dielectric hysteresis is a constant ;
and, since the condenser susceptance, — &= ¢/, is a constant
also, — unlike the magnetic inductance, — the ratio of con-
ductance and susceptance, that is, the angle of difference
of phase due to dielectric hysteresis, is a constant. This I
found proved by experiment. This would mean that the
dielectric hysteretic admittance of a condenser,
Y=g+ =g — j¥,

where : g = hysteretic conductance, &' = hysteretic suscep-
tance; and the dielectric hysteretic impedance of a con-
denser, A N
where: #» = hysteretic resistance, x, = hysteretic condens-
ance ; and the angle of dielectric hysteretic lag, tana =¢'/ ¢
=z, / », are constants of the circuit, independent of E.M.F.
and frequency. The E.M.F. is obviously inversely propor-
tional to the frequency.

The true static dielectric hysteresis, observed by Arno
as proportional to the 1.6™ power of the density, will enter
the admittance and the impedance as a term variable and
dependent upon E.M.F. and frequency, in the same manner
as discussed in the chapter on magnetic hysteresis.

To the magnetic hysteresis corresponds, in the electro-
static field, the static component of dielectric hysteresis,
following, probably, the same law of 1.6" power.

To the eddy currents in the iron corresponds, in the
electrostatic field, the viscous component of dielectric hys-
teresis, following the square law.

As a rule however, these hysteresis losses in the alter-
nating electrostatic field of a condenser are very much
smaller than the losses in an alternating magnetic field, so
that while the latter exert a very marked effect on the de-
sign of apparatus, representing frequently the largest of all
the losses of energy, the dielectric losses are so small as to
be very difficult to observe.
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To the phenomenon of mutual inductance corresponds,
in the electrostatic field, the electrostatic induction, or in-
fluence.

100. The alternating electrostatic field of force of an
electric circuit induces, in conductors within the field of
force, electrostatic charges by what is called electrostatic
influence. These charges are proportional to the field
strength ; that is, to the E.M.F. in the main circuit.

If a flow of current is produced by the induced charges,
energy is consumed proportional to the square of the charge;
that is, to the square of the E.M.F.

These induced charges, reacting upon the main conduc-
tor, influence therein charges of equal but opposite phase,
and hence lagging behind the main E.M.F. by the angle
of lag between induced charge and inducing field. They
require the expenditure of a charging current in the main
conductor in quadrature with the induced charge thereon ;
that is, nearly in quadrature with the E.M.F., and hence
consisting of an energy component in phase with the
E.M.F. — representing the power consumed by electrostatic
influence — and a wattless component, which increases the
capacity of the conductor, or, in other words, reduces its
capacity reactance, or condensance.

Thus, the electrostatic influence introduces an effective
conductance, g, and an effective susceptance, 4, — of the
same sign with condenser susceptance, — into the equations
of the electric circuit.

While theoretically g and & should be constants of the
circuit, frequently they are very far from such, due to
disruptive phenomena beginning to appear at high electro-"
static stresses.

Even the capacity condensance changes at very high
potentials ; escape of electricity into the air and over the
surfaces of the supporting insulators by brush discharge or
electrostatic glow takes place. As far as this electrostatic



148 ALTERNATING-CURRENT PHENOMENA.

corona reaches, the space is in electric connection with the
conductor, and thus the capacity of the circuit is deter-
mined, not by the surface of the metallic conductor, but
by the exterior surface of the electrostatic glow surround-
ing the conductor. This means that with increasing po-
tential, the capacity increases as soon as the electrostatic
corona appears ; hence, the condensance decreases, and at
the same time an energy component appears, representing
the loss of power in the corona.

This phenomenon thus shows some analogy with the de-
crease of magnetic inductance due to saturation.

At moderate potentials, the condensance due to capacity
can be considered as a constant, consisting of a wattless
component, the condensance proper, and an energy com-
ponent, the dielectric hysteresis.

The condensance of a polarization cell, however, begins
to decrease at very low potentials, as soon as the counter
E.M.F. of chemical dissociation is approached.

The condensance of a synchronizing alternator is of
the nature of a variable quantity; that is, the effective
reactance changes gradually, according to the relation of
impressed and of counter E.M.F., from inductance over
zero to condensance.

Besides the phenomena discussed in the foregoing as
terms of the energy components and the wattless compo-
nents of current and of E.M.F., the electric leakage is
to be considered as a further energy component; that is,
the direct escape of current from conductor to return con-
ductor through the surrounding medium, due to imperfect
insulating qualities. This leakage current represents an
effective conductance, g, theoretically independent of the
E.M.F,, but in reality frequently increasing greatly with the
E.M.F,, owing to the decrease of the insulating strength of
the medium upon approaching the limits of its disruptive
strength.
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101. In the foregoing, the phenomena causing loss of
energy in an alternating-current circuit have been dis-
cussed ; and it has been shown that the mutual relation
between current and E.M.F. can be expressed by two of
the four constants:

Energy component of E.M.F., in phase.with current, and =
current X effective resistance, or 7;

wattless componeunt of E.M.F., in quadrature with current, and =
current' X effective reactance, or x;

energy component of durrent, in phase with E.M.F., and =
E.M.F. X effective conductance, or g;

wattless component of current, in quadrature with E.M.F., and =
E.M.F. X effective susceptance, or &.

In many cases the exact calculation of the quantities,
7, x, &, 0, is not possible in the present state of the art.

In general, #, #, g, 4, are not constants of the circuit, but
depend — besides upon the frequency — more or less upon
E.M.F.,, current, etc. Thus, in each particular case it be-
comes necessary to discuss the variation of # #, g, &, or to
determine whether, and through what range, they can be
assumed as constant.

In what follows, the quantities #, #, g, 4, will always be
considered as the coefficients of the energy and wattless
components of current and E.M.F.,—that is, as the effec-
Zive quantities, — so that the results are directly applicable
to the general electric circuit containing iron and dielectric
losses.

Introducing now, in Chapters VIIL. to IX,, instead of
“ohmic resistance,” the term ¢ effective resistance,” etc.,
as discussed in the preceding chapter, the results apply
also — within the range discussed in the preceding chapter
— to circuits containing iron and other materials producing
energy losses outside of the electric conductor.
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CHAPTER XIIL

POWER, AND DOUBLE FREQUENCY QUANTITIES
IN GENERAL,

102. Graphically alternating currents and E.M.F’s
are represented by vectors, of which the length represents
the intensity, the direction the phase of the alternating
wave. The vectors generally issue from the center of
co-ordinates.

In the topographical method, however, which is more
converient for complex networks, as interlinked polyphase
circuits, the alternating wave is represented by the straight
line between two points, these points representing the abso-
lute values of potential (with regard to any reference point
chosen as co-ordinate center) and their connection the dif-
ference of potential in pflase and intensity.

Algebraically these vectors are represented by complex
quantities. The impedance, admittance, etc., of the circuit
is a complex quantity also, in symbolic denotation.

Thus current, E.M.F., impedance, and admittance are
related by multiplication and division of complex quantities
similar as current, E.M.F., resistance, and conductance are
related by Ohms law in direct current circuits.

In direct current circuits, power is the product of cur-
rent into EM.F. In alternating current circuits, if

E = + st
=41
The product,

Py= EI= (&' — 41 + 7 (41 + &4%)
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is not the power; that is, multiplication and diviéion, which
are correct in the inter-relation of current, E.M.F., impe-
dance, do not give a correct result in the inter-relation of
E.M.F., current, power. The reason is, that £ 7 are vec-
tors of the same frequency, and Z a constant numerical
factor which thus does not change the frequency.

The power 2, however, is ¢f double frequency compared
with £ and 7, that is, makes a complete wave for every
half wave of £ or 7, and thus cannot be represented by a
vector in 